xref: /openbmc/linux/include/linux/netdevice.h (revision c819e2cf)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36 
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42 
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50 
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 				    const struct ethtool_ops *ops);
65 
66 /* Backlog congestion levels */
67 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
68 #define NET_RX_DROP		1	/* packet dropped */
69 
70 /*
71  * Transmit return codes: transmit return codes originate from three different
72  * namespaces:
73  *
74  * - qdisc return codes
75  * - driver transmit return codes
76  * - errno values
77  *
78  * Drivers are allowed to return any one of those in their hard_start_xmit()
79  * function. Real network devices commonly used with qdiscs should only return
80  * the driver transmit return codes though - when qdiscs are used, the actual
81  * transmission happens asynchronously, so the value is not propagated to
82  * higher layers. Virtual network devices transmit synchronously, in this case
83  * the driver transmit return codes are consumed by dev_queue_xmit(), all
84  * others are propagated to higher layers.
85  */
86 
87 /* qdisc ->enqueue() return codes. */
88 #define NET_XMIT_SUCCESS	0x00
89 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
90 #define NET_XMIT_CN		0x02	/* congestion notification	*/
91 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
92 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
93 
94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
95  * indicates that the device will soon be dropping packets, or already drops
96  * some packets of the same priority; prompting us to send less aggressively. */
97 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
98 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
99 
100 /* Driver transmit return codes */
101 #define NETDEV_TX_MASK		0xf0
102 
103 enum netdev_tx {
104 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
105 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
106 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
107 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
108 };
109 typedef enum netdev_tx netdev_tx_t;
110 
111 /*
112  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114  */
115 static inline bool dev_xmit_complete(int rc)
116 {
117 	/*
118 	 * Positive cases with an skb consumed by a driver:
119 	 * - successful transmission (rc == NETDEV_TX_OK)
120 	 * - error while transmitting (rc < 0)
121 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
122 	 */
123 	if (likely(rc < NET_XMIT_MASK))
124 		return true;
125 
126 	return false;
127 }
128 
129 /*
130  *	Compute the worst case header length according to the protocols
131  *	used.
132  */
133 
134 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135 # if defined(CONFIG_MAC80211_MESH)
136 #  define LL_MAX_HEADER 128
137 # else
138 #  define LL_MAX_HEADER 96
139 # endif
140 #else
141 # define LL_MAX_HEADER 32
142 #endif
143 
144 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146 #define MAX_HEADER LL_MAX_HEADER
147 #else
148 #define MAX_HEADER (LL_MAX_HEADER + 48)
149 #endif
150 
151 /*
152  *	Old network device statistics. Fields are native words
153  *	(unsigned long) so they can be read and written atomically.
154  */
155 
156 struct net_device_stats {
157 	unsigned long	rx_packets;
158 	unsigned long	tx_packets;
159 	unsigned long	rx_bytes;
160 	unsigned long	tx_bytes;
161 	unsigned long	rx_errors;
162 	unsigned long	tx_errors;
163 	unsigned long	rx_dropped;
164 	unsigned long	tx_dropped;
165 	unsigned long	multicast;
166 	unsigned long	collisions;
167 	unsigned long	rx_length_errors;
168 	unsigned long	rx_over_errors;
169 	unsigned long	rx_crc_errors;
170 	unsigned long	rx_frame_errors;
171 	unsigned long	rx_fifo_errors;
172 	unsigned long	rx_missed_errors;
173 	unsigned long	tx_aborted_errors;
174 	unsigned long	tx_carrier_errors;
175 	unsigned long	tx_fifo_errors;
176 	unsigned long	tx_heartbeat_errors;
177 	unsigned long	tx_window_errors;
178 	unsigned long	rx_compressed;
179 	unsigned long	tx_compressed;
180 };
181 
182 
183 #include <linux/cache.h>
184 #include <linux/skbuff.h>
185 
186 #ifdef CONFIG_RPS
187 #include <linux/static_key.h>
188 extern struct static_key rps_needed;
189 #endif
190 
191 struct neighbour;
192 struct neigh_parms;
193 struct sk_buff;
194 
195 struct netdev_hw_addr {
196 	struct list_head	list;
197 	unsigned char		addr[MAX_ADDR_LEN];
198 	unsigned char		type;
199 #define NETDEV_HW_ADDR_T_LAN		1
200 #define NETDEV_HW_ADDR_T_SAN		2
201 #define NETDEV_HW_ADDR_T_SLAVE		3
202 #define NETDEV_HW_ADDR_T_UNICAST	4
203 #define NETDEV_HW_ADDR_T_MULTICAST	5
204 	bool			global_use;
205 	int			sync_cnt;
206 	int			refcount;
207 	int			synced;
208 	struct rcu_head		rcu_head;
209 };
210 
211 struct netdev_hw_addr_list {
212 	struct list_head	list;
213 	int			count;
214 };
215 
216 #define netdev_hw_addr_list_count(l) ((l)->count)
217 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218 #define netdev_hw_addr_list_for_each(ha, l) \
219 	list_for_each_entry(ha, &(l)->list, list)
220 
221 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223 #define netdev_for_each_uc_addr(ha, dev) \
224 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225 
226 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228 #define netdev_for_each_mc_addr(ha, dev) \
229 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230 
231 struct hh_cache {
232 	u16		hh_len;
233 	u16		__pad;
234 	seqlock_t	hh_lock;
235 
236 	/* cached hardware header; allow for machine alignment needs.        */
237 #define HH_DATA_MOD	16
238 #define HH_DATA_OFF(__len) \
239 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240 #define HH_DATA_ALIGN(__len) \
241 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243 };
244 
245 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246  * Alternative is:
247  *   dev->hard_header_len ? (dev->hard_header_len +
248  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249  *
250  * We could use other alignment values, but we must maintain the
251  * relationship HH alignment <= LL alignment.
252  */
253 #define LL_RESERVED_SPACE(dev) \
254 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257 
258 struct header_ops {
259 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
260 			   unsigned short type, const void *daddr,
261 			   const void *saddr, unsigned int len);
262 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
263 	int	(*rebuild)(struct sk_buff *skb);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	while (test_bit(NAPI_STATE_SCHED, &n->state))
524 		msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)	barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531 	__QUEUE_STATE_DRV_XOFF,
532 	__QUEUE_STATE_STACK_XOFF,
533 	__QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560 	struct net_device	*dev;
561 	struct Qdisc __rcu	*qdisc;
562 	struct Qdisc		*qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 	struct kobject		kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 	int			numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573 	int			xmit_lock_owner;
574 	/*
575 	 * please use this field instead of dev->trans_start
576 	 */
577 	unsigned long		trans_start;
578 
579 	/*
580 	 * Number of TX timeouts for this queue
581 	 * (/sys/class/net/DEV/Q/trans_timeout)
582 	 */
583 	unsigned long		trans_timeout;
584 
585 	unsigned long		state;
586 
587 #ifdef CONFIG_BQL
588 	struct dql		dql;
589 #endif
590 } ____cacheline_aligned_in_smp;
591 
592 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
593 {
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	return q->numa_node;
596 #else
597 	return NUMA_NO_NODE;
598 #endif
599 }
600 
601 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
602 {
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 	q->numa_node = node;
605 #endif
606 }
607 
608 #ifdef CONFIG_RPS
609 /*
610  * This structure holds an RPS map which can be of variable length.  The
611  * map is an array of CPUs.
612  */
613 struct rps_map {
614 	unsigned int len;
615 	struct rcu_head rcu;
616 	u16 cpus[0];
617 };
618 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
619 
620 /*
621  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
622  * tail pointer for that CPU's input queue at the time of last enqueue, and
623  * a hardware filter index.
624  */
625 struct rps_dev_flow {
626 	u16 cpu;
627 	u16 filter;
628 	unsigned int last_qtail;
629 };
630 #define RPS_NO_FILTER 0xffff
631 
632 /*
633  * The rps_dev_flow_table structure contains a table of flow mappings.
634  */
635 struct rps_dev_flow_table {
636 	unsigned int mask;
637 	struct rcu_head rcu;
638 	struct rps_dev_flow flows[0];
639 };
640 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
641     ((_num) * sizeof(struct rps_dev_flow)))
642 
643 /*
644  * The rps_sock_flow_table contains mappings of flows to the last CPU
645  * on which they were processed by the application (set in recvmsg).
646  */
647 struct rps_sock_flow_table {
648 	unsigned int mask;
649 	u16 ents[0];
650 };
651 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
652     ((_num) * sizeof(u16)))
653 
654 #define RPS_NO_CPU 0xffff
655 
656 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
657 					u32 hash)
658 {
659 	if (table && hash) {
660 		unsigned int cpu, index = hash & table->mask;
661 
662 		/* We only give a hint, preemption can change cpu under us */
663 		cpu = raw_smp_processor_id();
664 
665 		if (table->ents[index] != cpu)
666 			table->ents[index] = cpu;
667 	}
668 }
669 
670 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
671 				       u32 hash)
672 {
673 	if (table && hash)
674 		table->ents[hash & table->mask] = RPS_NO_CPU;
675 }
676 
677 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
678 
679 #ifdef CONFIG_RFS_ACCEL
680 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
681 			 u16 filter_id);
682 #endif
683 #endif /* CONFIG_RPS */
684 
685 /* This structure contains an instance of an RX queue. */
686 struct netdev_rx_queue {
687 #ifdef CONFIG_RPS
688 	struct rps_map __rcu		*rps_map;
689 	struct rps_dev_flow_table __rcu	*rps_flow_table;
690 #endif
691 	struct kobject			kobj;
692 	struct net_device		*dev;
693 } ____cacheline_aligned_in_smp;
694 
695 /*
696  * RX queue sysfs structures and functions.
697  */
698 struct rx_queue_attribute {
699 	struct attribute attr;
700 	ssize_t (*show)(struct netdev_rx_queue *queue,
701 	    struct rx_queue_attribute *attr, char *buf);
702 	ssize_t (*store)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
704 };
705 
706 #ifdef CONFIG_XPS
707 /*
708  * This structure holds an XPS map which can be of variable length.  The
709  * map is an array of queues.
710  */
711 struct xps_map {
712 	unsigned int len;
713 	unsigned int alloc_len;
714 	struct rcu_head rcu;
715 	u16 queues[0];
716 };
717 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
718 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
719     / sizeof(u16))
720 
721 /*
722  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
723  */
724 struct xps_dev_maps {
725 	struct rcu_head rcu;
726 	struct xps_map __rcu *cpu_map[0];
727 };
728 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
729     (nr_cpu_ids * sizeof(struct xps_map *)))
730 #endif /* CONFIG_XPS */
731 
732 #define TC_MAX_QUEUE	16
733 #define TC_BITMASK	15
734 /* HW offloaded queuing disciplines txq count and offset maps */
735 struct netdev_tc_txq {
736 	u16 count;
737 	u16 offset;
738 };
739 
740 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
741 /*
742  * This structure is to hold information about the device
743  * configured to run FCoE protocol stack.
744  */
745 struct netdev_fcoe_hbainfo {
746 	char	manufacturer[64];
747 	char	serial_number[64];
748 	char	hardware_version[64];
749 	char	driver_version[64];
750 	char	optionrom_version[64];
751 	char	firmware_version[64];
752 	char	model[256];
753 	char	model_description[256];
754 };
755 #endif
756 
757 #define MAX_PHYS_ITEM_ID_LEN 32
758 
759 /* This structure holds a unique identifier to identify some
760  * physical item (port for example) used by a netdevice.
761  */
762 struct netdev_phys_item_id {
763 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
764 	unsigned char id_len;
765 };
766 
767 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
768 				       struct sk_buff *skb);
769 
770 /*
771  * This structure defines the management hooks for network devices.
772  * The following hooks can be defined; unless noted otherwise, they are
773  * optional and can be filled with a null pointer.
774  *
775  * int (*ndo_init)(struct net_device *dev);
776  *     This function is called once when network device is registered.
777  *     The network device can use this to any late stage initializaton
778  *     or semantic validattion. It can fail with an error code which will
779  *     be propogated back to register_netdev
780  *
781  * void (*ndo_uninit)(struct net_device *dev);
782  *     This function is called when device is unregistered or when registration
783  *     fails. It is not called if init fails.
784  *
785  * int (*ndo_open)(struct net_device *dev);
786  *     This function is called when network device transistions to the up
787  *     state.
788  *
789  * int (*ndo_stop)(struct net_device *dev);
790  *     This function is called when network device transistions to the down
791  *     state.
792  *
793  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
794  *                               struct net_device *dev);
795  *	Called when a packet needs to be transmitted.
796  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
797  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
798  *	Required can not be NULL.
799  *
800  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
801  *                         void *accel_priv, select_queue_fallback_t fallback);
802  *	Called to decide which queue to when device supports multiple
803  *	transmit queues.
804  *
805  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
806  *	This function is called to allow device receiver to make
807  *	changes to configuration when multicast or promiscious is enabled.
808  *
809  * void (*ndo_set_rx_mode)(struct net_device *dev);
810  *	This function is called device changes address list filtering.
811  *	If driver handles unicast address filtering, it should set
812  *	IFF_UNICAST_FLT to its priv_flags.
813  *
814  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
815  *	This function  is called when the Media Access Control address
816  *	needs to be changed. If this interface is not defined, the
817  *	mac address can not be changed.
818  *
819  * int (*ndo_validate_addr)(struct net_device *dev);
820  *	Test if Media Access Control address is valid for the device.
821  *
822  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
823  *	Called when a user request an ioctl which can't be handled by
824  *	the generic interface code. If not defined ioctl's return
825  *	not supported error code.
826  *
827  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
828  *	Used to set network devices bus interface parameters. This interface
829  *	is retained for legacy reason, new devices should use the bus
830  *	interface (PCI) for low level management.
831  *
832  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
833  *	Called when a user wants to change the Maximum Transfer Unit
834  *	of a device. If not defined, any request to change MTU will
835  *	will return an error.
836  *
837  * void (*ndo_tx_timeout)(struct net_device *dev);
838  *	Callback uses when the transmitter has not made any progress
839  *	for dev->watchdog ticks.
840  *
841  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
842  *                      struct rtnl_link_stats64 *storage);
843  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
844  *	Called when a user wants to get the network device usage
845  *	statistics. Drivers must do one of the following:
846  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
847  *	   rtnl_link_stats64 structure passed by the caller.
848  *	2. Define @ndo_get_stats to update a net_device_stats structure
849  *	   (which should normally be dev->stats) and return a pointer to
850  *	   it. The structure may be changed asynchronously only if each
851  *	   field is written atomically.
852  *	3. Update dev->stats asynchronously and atomically, and define
853  *	   neither operation.
854  *
855  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
856  *	If device support VLAN filtering this function is called when a
857  *	VLAN id is registered.
858  *
859  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
860  *	If device support VLAN filtering this function is called when a
861  *	VLAN id is unregistered.
862  *
863  * void (*ndo_poll_controller)(struct net_device *dev);
864  *
865  *	SR-IOV management functions.
866  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
867  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
868  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
869  *			  int max_tx_rate);
870  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
871  * int (*ndo_get_vf_config)(struct net_device *dev,
872  *			    int vf, struct ifla_vf_info *ivf);
873  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
874  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
875  *			  struct nlattr *port[]);
876  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
877  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
878  * 	Called to setup 'tc' number of traffic classes in the net device. This
879  * 	is always called from the stack with the rtnl lock held and netif tx
880  * 	queues stopped. This allows the netdevice to perform queue management
881  * 	safely.
882  *
883  *	Fiber Channel over Ethernet (FCoE) offload functions.
884  * int (*ndo_fcoe_enable)(struct net_device *dev);
885  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
886  *	so the underlying device can perform whatever needed configuration or
887  *	initialization to support acceleration of FCoE traffic.
888  *
889  * int (*ndo_fcoe_disable)(struct net_device *dev);
890  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
891  *	so the underlying device can perform whatever needed clean-ups to
892  *	stop supporting acceleration of FCoE traffic.
893  *
894  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
895  *			     struct scatterlist *sgl, unsigned int sgc);
896  *	Called when the FCoE Initiator wants to initialize an I/O that
897  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
898  *	perform necessary setup and returns 1 to indicate the device is set up
899  *	successfully to perform DDP on this I/O, otherwise this returns 0.
900  *
901  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
902  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
903  *	indicated by the FC exchange id 'xid', so the underlying device can
904  *	clean up and reuse resources for later DDP requests.
905  *
906  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
907  *			      struct scatterlist *sgl, unsigned int sgc);
908  *	Called when the FCoE Target wants to initialize an I/O that
909  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
910  *	perform necessary setup and returns 1 to indicate the device is set up
911  *	successfully to perform DDP on this I/O, otherwise this returns 0.
912  *
913  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
914  *			       struct netdev_fcoe_hbainfo *hbainfo);
915  *	Called when the FCoE Protocol stack wants information on the underlying
916  *	device. This information is utilized by the FCoE protocol stack to
917  *	register attributes with Fiber Channel management service as per the
918  *	FC-GS Fabric Device Management Information(FDMI) specification.
919  *
920  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
921  *	Called when the underlying device wants to override default World Wide
922  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
923  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
924  *	protocol stack to use.
925  *
926  *	RFS acceleration.
927  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
928  *			    u16 rxq_index, u32 flow_id);
929  *	Set hardware filter for RFS.  rxq_index is the target queue index;
930  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
931  *	Return the filter ID on success, or a negative error code.
932  *
933  *	Slave management functions (for bridge, bonding, etc).
934  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
935  *	Called to make another netdev an underling.
936  *
937  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
938  *	Called to release previously enslaved netdev.
939  *
940  *      Feature/offload setting functions.
941  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
942  *		netdev_features_t features);
943  *	Adjusts the requested feature flags according to device-specific
944  *	constraints, and returns the resulting flags. Must not modify
945  *	the device state.
946  *
947  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
948  *	Called to update device configuration to new features. Passed
949  *	feature set might be less than what was returned by ndo_fix_features()).
950  *	Must return >0 or -errno if it changed dev->features itself.
951  *
952  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
953  *		      struct net_device *dev,
954  *		      const unsigned char *addr, u16 vid, u16 flags)
955  *	Adds an FDB entry to dev for addr.
956  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
957  *		      struct net_device *dev,
958  *		      const unsigned char *addr, u16 vid)
959  *	Deletes the FDB entry from dev coresponding to addr.
960  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
961  *		       struct net_device *dev, struct net_device *filter_dev,
962  *		       int idx)
963  *	Used to add FDB entries to dump requests. Implementers should add
964  *	entries to skb and update idx with the number of entries.
965  *
966  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
967  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
968  *			     struct net_device *dev, u32 filter_mask)
969  *
970  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
971  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
972  *	which do not represent real hardware may define this to allow their
973  *	userspace components to manage their virtual carrier state. Devices
974  *	that determine carrier state from physical hardware properties (eg
975  *	network cables) or protocol-dependent mechanisms (eg
976  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
977  *
978  * int (*ndo_get_phys_port_id)(struct net_device *dev,
979  *			       struct netdev_phys_item_id *ppid);
980  *	Called to get ID of physical port of this device. If driver does
981  *	not implement this, it is assumed that the hw is not able to have
982  *	multiple net devices on single physical port.
983  *
984  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
985  *			      sa_family_t sa_family, __be16 port);
986  *	Called by vxlan to notiy a driver about the UDP port and socket
987  *	address family that vxlan is listnening to. It is called only when
988  *	a new port starts listening. The operation is protected by the
989  *	vxlan_net->sock_lock.
990  *
991  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
992  *			      sa_family_t sa_family, __be16 port);
993  *	Called by vxlan to notify the driver about a UDP port and socket
994  *	address family that vxlan is not listening to anymore. The operation
995  *	is protected by the vxlan_net->sock_lock.
996  *
997  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
998  *				 struct net_device *dev)
999  *	Called by upper layer devices to accelerate switching or other
1000  *	station functionality into hardware. 'pdev is the lowerdev
1001  *	to use for the offload and 'dev' is the net device that will
1002  *	back the offload. Returns a pointer to the private structure
1003  *	the upper layer will maintain.
1004  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1005  *	Called by upper layer device to delete the station created
1006  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1007  *	the station and priv is the structure returned by the add
1008  *	operation.
1009  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1010  *				      struct net_device *dev,
1011  *				      void *priv);
1012  *	Callback to use for xmit over the accelerated station. This
1013  *	is used in place of ndo_start_xmit on accelerated net
1014  *	devices.
1015  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1016  *					    struct net_device *dev
1017  *					    netdev_features_t features);
1018  *	Called by core transmit path to determine if device is capable of
1019  *	performing offload operations on a given packet. This is to give
1020  *	the device an opportunity to implement any restrictions that cannot
1021  *	be otherwise expressed by feature flags. The check is called with
1022  *	the set of features that the stack has calculated and it returns
1023  *	those the driver believes to be appropriate.
1024  *
1025  * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1026  *				   struct netdev_phys_item_id *psid);
1027  *	Called to get an ID of the switch chip this port is part of.
1028  *	If driver implements this, it indicates that it represents a port
1029  *	of a switch chip.
1030  * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1031  *	Called to notify switch device port of bridge port STP
1032  *	state change.
1033  */
1034 struct net_device_ops {
1035 	int			(*ndo_init)(struct net_device *dev);
1036 	void			(*ndo_uninit)(struct net_device *dev);
1037 	int			(*ndo_open)(struct net_device *dev);
1038 	int			(*ndo_stop)(struct net_device *dev);
1039 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1040 						   struct net_device *dev);
1041 	u16			(*ndo_select_queue)(struct net_device *dev,
1042 						    struct sk_buff *skb,
1043 						    void *accel_priv,
1044 						    select_queue_fallback_t fallback);
1045 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1046 						       int flags);
1047 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1048 	int			(*ndo_set_mac_address)(struct net_device *dev,
1049 						       void *addr);
1050 	int			(*ndo_validate_addr)(struct net_device *dev);
1051 	int			(*ndo_do_ioctl)(struct net_device *dev,
1052 					        struct ifreq *ifr, int cmd);
1053 	int			(*ndo_set_config)(struct net_device *dev,
1054 					          struct ifmap *map);
1055 	int			(*ndo_change_mtu)(struct net_device *dev,
1056 						  int new_mtu);
1057 	int			(*ndo_neigh_setup)(struct net_device *dev,
1058 						   struct neigh_parms *);
1059 	void			(*ndo_tx_timeout) (struct net_device *dev);
1060 
1061 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1062 						     struct rtnl_link_stats64 *storage);
1063 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1064 
1065 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1066 						       __be16 proto, u16 vid);
1067 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1068 						        __be16 proto, u16 vid);
1069 #ifdef CONFIG_NET_POLL_CONTROLLER
1070 	void                    (*ndo_poll_controller)(struct net_device *dev);
1071 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1072 						     struct netpoll_info *info);
1073 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1074 #endif
1075 #ifdef CONFIG_NET_RX_BUSY_POLL
1076 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1077 #endif
1078 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1079 						  int queue, u8 *mac);
1080 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1081 						   int queue, u16 vlan, u8 qos);
1082 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1083 						   int vf, int min_tx_rate,
1084 						   int max_tx_rate);
1085 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1086 						       int vf, bool setting);
1087 	int			(*ndo_get_vf_config)(struct net_device *dev,
1088 						     int vf,
1089 						     struct ifla_vf_info *ivf);
1090 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1091 							 int vf, int link_state);
1092 	int			(*ndo_set_vf_port)(struct net_device *dev,
1093 						   int vf,
1094 						   struct nlattr *port[]);
1095 	int			(*ndo_get_vf_port)(struct net_device *dev,
1096 						   int vf, struct sk_buff *skb);
1097 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1098 #if IS_ENABLED(CONFIG_FCOE)
1099 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1100 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1101 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1102 						      u16 xid,
1103 						      struct scatterlist *sgl,
1104 						      unsigned int sgc);
1105 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1106 						     u16 xid);
1107 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1108 						       u16 xid,
1109 						       struct scatterlist *sgl,
1110 						       unsigned int sgc);
1111 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1112 							struct netdev_fcoe_hbainfo *hbainfo);
1113 #endif
1114 
1115 #if IS_ENABLED(CONFIG_LIBFCOE)
1116 #define NETDEV_FCOE_WWNN 0
1117 #define NETDEV_FCOE_WWPN 1
1118 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1119 						    u64 *wwn, int type);
1120 #endif
1121 
1122 #ifdef CONFIG_RFS_ACCEL
1123 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1124 						     const struct sk_buff *skb,
1125 						     u16 rxq_index,
1126 						     u32 flow_id);
1127 #endif
1128 	int			(*ndo_add_slave)(struct net_device *dev,
1129 						 struct net_device *slave_dev);
1130 	int			(*ndo_del_slave)(struct net_device *dev,
1131 						 struct net_device *slave_dev);
1132 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1133 						    netdev_features_t features);
1134 	int			(*ndo_set_features)(struct net_device *dev,
1135 						    netdev_features_t features);
1136 	int			(*ndo_neigh_construct)(struct neighbour *n);
1137 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1138 
1139 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1140 					       struct nlattr *tb[],
1141 					       struct net_device *dev,
1142 					       const unsigned char *addr,
1143 					       u16 vid,
1144 					       u16 flags);
1145 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1146 					       struct nlattr *tb[],
1147 					       struct net_device *dev,
1148 					       const unsigned char *addr,
1149 					       u16 vid);
1150 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1151 						struct netlink_callback *cb,
1152 						struct net_device *dev,
1153 						struct net_device *filter_dev,
1154 						int idx);
1155 
1156 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1157 						      struct nlmsghdr *nlh);
1158 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1159 						      u32 pid, u32 seq,
1160 						      struct net_device *dev,
1161 						      u32 filter_mask);
1162 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1163 						      struct nlmsghdr *nlh);
1164 	int			(*ndo_change_carrier)(struct net_device *dev,
1165 						      bool new_carrier);
1166 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1167 							struct netdev_phys_item_id *ppid);
1168 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1169 						      sa_family_t sa_family,
1170 						      __be16 port);
1171 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1172 						      sa_family_t sa_family,
1173 						      __be16 port);
1174 
1175 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1176 							struct net_device *dev);
1177 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1178 							void *priv);
1179 
1180 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1181 							struct net_device *dev,
1182 							void *priv);
1183 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1184 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1185 						       struct net_device *dev,
1186 						       netdev_features_t features);
1187 #ifdef CONFIG_NET_SWITCHDEV
1188 	int			(*ndo_switch_parent_id_get)(struct net_device *dev,
1189 							    struct netdev_phys_item_id *psid);
1190 	int			(*ndo_switch_port_stp_update)(struct net_device *dev,
1191 							      u8 state);
1192 #endif
1193 };
1194 
1195 /**
1196  * enum net_device_priv_flags - &struct net_device priv_flags
1197  *
1198  * These are the &struct net_device, they are only set internally
1199  * by drivers and used in the kernel. These flags are invisible to
1200  * userspace, this means that the order of these flags can change
1201  * during any kernel release.
1202  *
1203  * You should have a pretty good reason to be extending these flags.
1204  *
1205  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1206  * @IFF_EBRIDGE: Ethernet bridging device
1207  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1208  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1209  * @IFF_MASTER_ALB: bonding master, balance-alb
1210  * @IFF_BONDING: bonding master or slave
1211  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1212  * @IFF_ISATAP: ISATAP interface (RFC4214)
1213  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1214  * @IFF_WAN_HDLC: WAN HDLC device
1215  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1216  *	release skb->dst
1217  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1218  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1219  * @IFF_MACVLAN_PORT: device used as macvlan port
1220  * @IFF_BRIDGE_PORT: device used as bridge port
1221  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1222  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1223  * @IFF_UNICAST_FLT: Supports unicast filtering
1224  * @IFF_TEAM_PORT: device used as team port
1225  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1226  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1227  *	change when it's running
1228  * @IFF_MACVLAN: Macvlan device
1229  */
1230 enum netdev_priv_flags {
1231 	IFF_802_1Q_VLAN			= 1<<0,
1232 	IFF_EBRIDGE			= 1<<1,
1233 	IFF_SLAVE_INACTIVE		= 1<<2,
1234 	IFF_MASTER_8023AD		= 1<<3,
1235 	IFF_MASTER_ALB			= 1<<4,
1236 	IFF_BONDING			= 1<<5,
1237 	IFF_SLAVE_NEEDARP		= 1<<6,
1238 	IFF_ISATAP			= 1<<7,
1239 	IFF_MASTER_ARPMON		= 1<<8,
1240 	IFF_WAN_HDLC			= 1<<9,
1241 	IFF_XMIT_DST_RELEASE		= 1<<10,
1242 	IFF_DONT_BRIDGE			= 1<<11,
1243 	IFF_DISABLE_NETPOLL		= 1<<12,
1244 	IFF_MACVLAN_PORT		= 1<<13,
1245 	IFF_BRIDGE_PORT			= 1<<14,
1246 	IFF_OVS_DATAPATH		= 1<<15,
1247 	IFF_TX_SKB_SHARING		= 1<<16,
1248 	IFF_UNICAST_FLT			= 1<<17,
1249 	IFF_TEAM_PORT			= 1<<18,
1250 	IFF_SUPP_NOFCS			= 1<<19,
1251 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1252 	IFF_MACVLAN			= 1<<21,
1253 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1254 	IFF_IPVLAN_MASTER		= 1<<23,
1255 	IFF_IPVLAN_SLAVE		= 1<<24,
1256 };
1257 
1258 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1259 #define IFF_EBRIDGE			IFF_EBRIDGE
1260 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1261 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1262 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1263 #define IFF_BONDING			IFF_BONDING
1264 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1265 #define IFF_ISATAP			IFF_ISATAP
1266 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1267 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1268 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1269 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1270 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1271 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1272 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1273 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1274 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1275 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1276 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1277 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1278 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1279 #define IFF_MACVLAN			IFF_MACVLAN
1280 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1281 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1282 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1283 
1284 /**
1285  *	struct net_device - The DEVICE structure.
1286  *		Actually, this whole structure is a big mistake.  It mixes I/O
1287  *		data with strictly "high-level" data, and it has to know about
1288  *		almost every data structure used in the INET module.
1289  *
1290  *	@name:	This is the first field of the "visible" part of this structure
1291  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1292  *	 	of the interface.
1293  *
1294  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1295  *	@ifalias:	SNMP alias
1296  *	@mem_end:	Shared memory end
1297  *	@mem_start:	Shared memory start
1298  *	@base_addr:	Device I/O address
1299  *	@irq:		Device IRQ number
1300  *
1301  *	@state:		Generic network queuing layer state, see netdev_state_t
1302  *	@dev_list:	The global list of network devices
1303  *	@napi_list:	List entry, that is used for polling napi devices
1304  *	@unreg_list:	List entry, that is used, when we are unregistering the
1305  *			device, see the function unregister_netdev
1306  *	@close_list:	List entry, that is used, when we are closing the device
1307  *
1308  *	@adj_list:	Directly linked devices, like slaves for bonding
1309  *	@all_adj_list:	All linked devices, *including* neighbours
1310  *	@features:	Currently active device features
1311  *	@hw_features:	User-changeable features
1312  *
1313  *	@wanted_features:	User-requested features
1314  *	@vlan_features:		Mask of features inheritable by VLAN devices
1315  *
1316  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1317  *				This field indicates what encapsulation
1318  *				offloads the hardware is capable of doing,
1319  *				and drivers will need to set them appropriately.
1320  *
1321  *	@mpls_features:	Mask of features inheritable by MPLS
1322  *
1323  *	@ifindex:	interface index
1324  *	@iflink:	unique device identifier
1325  *
1326  *	@stats:		Statistics struct, which was left as a legacy, use
1327  *			rtnl_link_stats64 instead
1328  *
1329  *	@rx_dropped:	Dropped packets by core network,
1330  *			do not use this in drivers
1331  *	@tx_dropped:	Dropped packets by core network,
1332  *			do not use this in drivers
1333  *
1334  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1335  *
1336  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1337  *				instead of ioctl,
1338  *				see <net/iw_handler.h> for details.
1339  *	@wireless_data:	Instance data managed by the core of wireless extensions
1340  *
1341  *	@netdev_ops:	Includes several pointers to callbacks,
1342  *			if one wants to override the ndo_*() functions
1343  *	@ethtool_ops:	Management operations
1344  *	@fwd_ops:	Management operations
1345  *	@header_ops:	Includes callbacks for creating,parsing,rebuilding,etc
1346  *			of Layer 2 headers.
1347  *
1348  *	@flags:		Interface flags (a la BSD)
1349  *	@priv_flags:	Like 'flags' but invisible to userspace,
1350  *			see if.h for the definitions
1351  *	@gflags:	Global flags ( kept as legacy )
1352  *	@padded:	How much padding added by alloc_netdev()
1353  *	@operstate:	RFC2863 operstate
1354  *	@link_mode:	Mapping policy to operstate
1355  *	@if_port:	Selectable AUI, TP, ...
1356  *	@dma:		DMA channel
1357  *	@mtu:		Interface MTU value
1358  *	@type:		Interface hardware type
1359  *	@hard_header_len: Hardware header length
1360  *
1361  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1362  *			  cases can this be guaranteed
1363  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1364  *			  cases can this be guaranteed. Some cases also use
1365  *			  LL_MAX_HEADER instead to allocate the skb
1366  *
1367  *	interface address info:
1368  *
1369  * 	@perm_addr:		Permanent hw address
1370  * 	@addr_assign_type:	Hw address assignment type
1371  * 	@addr_len:		Hardware address length
1372  * 	@neigh_priv_len;	Used in neigh_alloc(),
1373  * 				initialized only in atm/clip.c
1374  * 	@dev_id:		Used to differentiate devices that share
1375  * 				the same link layer address
1376  * 	@dev_port:		Used to differentiate devices that share
1377  * 				the same function
1378  *	@addr_list_lock:	XXX: need comments on this one
1379  *	@uc:			unicast mac addresses
1380  *	@mc:			multicast mac addresses
1381  *	@dev_addrs:		list of device hw addresses
1382  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1383  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1384  *				has been enabled due to the need to listen to
1385  *				additional unicast addresses in a device that
1386  *				does not implement ndo_set_rx_mode()
1387  *	@promiscuity:		Number of times, the NIC is told to work in
1388  *				Promiscuous mode, if it becomes 0 the NIC will
1389  *				exit from working in Promiscuous mode
1390  *	@allmulti:		Counter, enables or disables allmulticast mode
1391  *
1392  *	@vlan_info:	VLAN info
1393  *	@dsa_ptr:	dsa specific data
1394  *	@tipc_ptr:	TIPC specific data
1395  *	@atalk_ptr:	AppleTalk link
1396  *	@ip_ptr:	IPv4 specific data
1397  *	@dn_ptr:	DECnet specific data
1398  *	@ip6_ptr:	IPv6 specific data
1399  *	@ax25_ptr:	AX.25 specific data
1400  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1401  *
1402  *	@last_rx:	Time of last Rx
1403  *	@dev_addr:	Hw address (before bcast,
1404  *			because most packets are unicast)
1405  *
1406  *	@_rx:			Array of RX queues
1407  *	@num_rx_queues:		Number of RX queues
1408  *				allocated at register_netdev() time
1409  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1410  *
1411  *	@rx_handler:		handler for received packets
1412  *	@rx_handler_data: 	XXX: need comments on this one
1413  *	@ingress_queue:		XXX: need comments on this one
1414  *	@broadcast:		hw bcast address
1415  *
1416  *	@_tx:			Array of TX queues
1417  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1418  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1419  *	@qdisc:			Root qdisc from userspace point of view
1420  *	@tx_queue_len:		Max frames per queue allowed
1421  *	@tx_global_lock: 	XXX: need comments on this one
1422  *
1423  *	@xps_maps:	XXX: need comments on this one
1424  *
1425  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1426  *			indexed by RX queue number. Assigned by driver.
1427  *			This must only be set if the ndo_rx_flow_steer
1428  *			operation is defined
1429  *
1430  *	@trans_start:		Time (in jiffies) of last Tx
1431  *	@watchdog_timeo:	Represents the timeout that is used by
1432  *				the watchdog ( see dev_watchdog() )
1433  *	@watchdog_timer:	List of timers
1434  *
1435  *	@pcpu_refcnt:		Number of references to this device
1436  *	@todo_list:		Delayed register/unregister
1437  *	@index_hlist:		Device index hash chain
1438  *	@link_watch_list:	XXX: need comments on this one
1439  *
1440  *	@reg_state:		Register/unregister state machine
1441  *	@dismantle:		Device is going to be freed
1442  *	@rtnl_link_state:	This enum represents the phases of creating
1443  *				a new link
1444  *
1445  *	@destructor:		Called from unregister,
1446  *				can be used to call free_netdev
1447  *	@npinfo:		XXX: need comments on this one
1448  * 	@nd_net:		Network namespace this network device is inside
1449  *
1450  * 	@ml_priv:	Mid-layer private
1451  * 	@lstats:	Loopback statistics
1452  * 	@tstats:	Tunnel statistics
1453  * 	@dstats:	Dummy statistics
1454  * 	@vstats:	Virtual ethernet statistics
1455  *
1456  *	@garp_port:	GARP
1457  *	@mrp_port:	MRP
1458  *
1459  *	@dev:		Class/net/name entry
1460  *	@sysfs_groups:	Space for optional device, statistics and wireless
1461  *			sysfs groups
1462  *
1463  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1464  *	@rtnl_link_ops:	Rtnl_link_ops
1465  *
1466  *	@gso_max_size:	Maximum size of generic segmentation offload
1467  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1468  *			NIC for GSO
1469  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1470  *			NIC for GSO
1471  *
1472  *	@dcbnl_ops:	Data Center Bridging netlink ops
1473  *	@num_tc:	Number of traffic classes in the net device
1474  *	@tc_to_txq:	XXX: need comments on this one
1475  *	@prio_tc_map	XXX: need comments on this one
1476  *
1477  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1478  *
1479  *	@priomap:	XXX: need comments on this one
1480  *	@phydev:	Physical device may attach itself
1481  *			for hardware timestamping
1482  *
1483  *	@qdisc_tx_busylock:	XXX: need comments on this one
1484  *
1485  *	@group:		The group, that the device belongs to
1486  *	@pm_qos_req:	Power Management QoS object
1487  *
1488  *	FIXME: cleanup struct net_device such that network protocol info
1489  *	moves out.
1490  */
1491 
1492 struct net_device {
1493 	char			name[IFNAMSIZ];
1494 	struct hlist_node	name_hlist;
1495 	char 			*ifalias;
1496 	/*
1497 	 *	I/O specific fields
1498 	 *	FIXME: Merge these and struct ifmap into one
1499 	 */
1500 	unsigned long		mem_end;
1501 	unsigned long		mem_start;
1502 	unsigned long		base_addr;
1503 	int			irq;
1504 
1505 	/*
1506 	 *	Some hardware also needs these fields (state,dev_list,
1507 	 *	napi_list,unreg_list,close_list) but they are not
1508 	 *	part of the usual set specified in Space.c.
1509 	 */
1510 
1511 	unsigned long		state;
1512 
1513 	struct list_head	dev_list;
1514 	struct list_head	napi_list;
1515 	struct list_head	unreg_list;
1516 	struct list_head	close_list;
1517 
1518 	struct {
1519 		struct list_head upper;
1520 		struct list_head lower;
1521 	} adj_list;
1522 
1523 	struct {
1524 		struct list_head upper;
1525 		struct list_head lower;
1526 	} all_adj_list;
1527 
1528 	netdev_features_t	features;
1529 	netdev_features_t	hw_features;
1530 	netdev_features_t	wanted_features;
1531 	netdev_features_t	vlan_features;
1532 	netdev_features_t	hw_enc_features;
1533 	netdev_features_t	mpls_features;
1534 
1535 	int			ifindex;
1536 	int			iflink;
1537 
1538 	struct net_device_stats	stats;
1539 
1540 	atomic_long_t		rx_dropped;
1541 	atomic_long_t		tx_dropped;
1542 
1543 	atomic_t		carrier_changes;
1544 
1545 #ifdef CONFIG_WIRELESS_EXT
1546 	const struct iw_handler_def *	wireless_handlers;
1547 	struct iw_public_data *	wireless_data;
1548 #endif
1549 	const struct net_device_ops *netdev_ops;
1550 	const struct ethtool_ops *ethtool_ops;
1551 	const struct forwarding_accel_ops *fwd_ops;
1552 
1553 	const struct header_ops *header_ops;
1554 
1555 	unsigned int		flags;
1556 	unsigned int		priv_flags;
1557 
1558 	unsigned short		gflags;
1559 	unsigned short		padded;
1560 
1561 	unsigned char		operstate;
1562 	unsigned char		link_mode;
1563 
1564 	unsigned char		if_port;
1565 	unsigned char		dma;
1566 
1567 	unsigned int		mtu;
1568 	unsigned short		type;
1569 	unsigned short		hard_header_len;
1570 
1571 	unsigned short		needed_headroom;
1572 	unsigned short		needed_tailroom;
1573 
1574 	/* Interface address info. */
1575 	unsigned char		perm_addr[MAX_ADDR_LEN];
1576 	unsigned char		addr_assign_type;
1577 	unsigned char		addr_len;
1578 	unsigned short		neigh_priv_len;
1579 	unsigned short          dev_id;
1580 	unsigned short          dev_port;
1581 	spinlock_t		addr_list_lock;
1582 	struct netdev_hw_addr_list	uc;
1583 	struct netdev_hw_addr_list	mc;
1584 	struct netdev_hw_addr_list	dev_addrs;
1585 
1586 #ifdef CONFIG_SYSFS
1587 	struct kset		*queues_kset;
1588 #endif
1589 
1590 	unsigned char		name_assign_type;
1591 
1592 	bool			uc_promisc;
1593 	unsigned int		promiscuity;
1594 	unsigned int		allmulti;
1595 
1596 
1597 	/* Protocol specific pointers */
1598 
1599 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1600 	struct vlan_info __rcu	*vlan_info;
1601 #endif
1602 #if IS_ENABLED(CONFIG_NET_DSA)
1603 	struct dsa_switch_tree	*dsa_ptr;
1604 #endif
1605 #if IS_ENABLED(CONFIG_TIPC)
1606 	struct tipc_bearer __rcu *tipc_ptr;
1607 #endif
1608 	void 			*atalk_ptr;
1609 	struct in_device __rcu	*ip_ptr;
1610 	struct dn_dev __rcu     *dn_ptr;
1611 	struct inet6_dev __rcu	*ip6_ptr;
1612 	void			*ax25_ptr;
1613 	struct wireless_dev	*ieee80211_ptr;
1614 	struct wpan_dev		*ieee802154_ptr;
1615 
1616 /*
1617  * Cache lines mostly used on receive path (including eth_type_trans())
1618  */
1619 	unsigned long		last_rx;
1620 
1621 	/* Interface address info used in eth_type_trans() */
1622 	unsigned char		*dev_addr;
1623 
1624 
1625 #ifdef CONFIG_SYSFS
1626 	struct netdev_rx_queue	*_rx;
1627 
1628 	unsigned int		num_rx_queues;
1629 	unsigned int		real_num_rx_queues;
1630 
1631 #endif
1632 
1633 	unsigned long		gro_flush_timeout;
1634 	rx_handler_func_t __rcu	*rx_handler;
1635 	void __rcu		*rx_handler_data;
1636 
1637 	struct netdev_queue __rcu *ingress_queue;
1638 	unsigned char		broadcast[MAX_ADDR_LEN];
1639 
1640 
1641 /*
1642  * Cache lines mostly used on transmit path
1643  */
1644 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1645 	unsigned int		num_tx_queues;
1646 	unsigned int		real_num_tx_queues;
1647 	struct Qdisc		*qdisc;
1648 	unsigned long		tx_queue_len;
1649 	spinlock_t		tx_global_lock;
1650 
1651 #ifdef CONFIG_XPS
1652 	struct xps_dev_maps __rcu *xps_maps;
1653 #endif
1654 #ifdef CONFIG_RFS_ACCEL
1655 	struct cpu_rmap		*rx_cpu_rmap;
1656 #endif
1657 
1658 	/* These may be needed for future network-power-down code. */
1659 
1660 	/*
1661 	 * trans_start here is expensive for high speed devices on SMP,
1662 	 * please use netdev_queue->trans_start instead.
1663 	 */
1664 	unsigned long		trans_start;
1665 
1666 	int			watchdog_timeo;
1667 	struct timer_list	watchdog_timer;
1668 
1669 	int __percpu		*pcpu_refcnt;
1670 	struct list_head	todo_list;
1671 
1672 	struct hlist_node	index_hlist;
1673 	struct list_head	link_watch_list;
1674 
1675 	enum { NETREG_UNINITIALIZED=0,
1676 	       NETREG_REGISTERED,	/* completed register_netdevice */
1677 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1678 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1679 	       NETREG_RELEASED,		/* called free_netdev */
1680 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1681 	} reg_state:8;
1682 
1683 	bool dismantle;
1684 
1685 	enum {
1686 		RTNL_LINK_INITIALIZED,
1687 		RTNL_LINK_INITIALIZING,
1688 	} rtnl_link_state:16;
1689 
1690 	void (*destructor)(struct net_device *dev);
1691 
1692 #ifdef CONFIG_NETPOLL
1693 	struct netpoll_info __rcu	*npinfo;
1694 #endif
1695 
1696 #ifdef CONFIG_NET_NS
1697 	struct net		*nd_net;
1698 #endif
1699 
1700 	/* mid-layer private */
1701 	union {
1702 		void					*ml_priv;
1703 		struct pcpu_lstats __percpu		*lstats;
1704 		struct pcpu_sw_netstats __percpu	*tstats;
1705 		struct pcpu_dstats __percpu		*dstats;
1706 		struct pcpu_vstats __percpu		*vstats;
1707 	};
1708 
1709 	struct garp_port __rcu	*garp_port;
1710 	struct mrp_port __rcu	*mrp_port;
1711 
1712 	struct device	dev;
1713 	const struct attribute_group *sysfs_groups[4];
1714 	const struct attribute_group *sysfs_rx_queue_group;
1715 
1716 	const struct rtnl_link_ops *rtnl_link_ops;
1717 
1718 	/* for setting kernel sock attribute on TCP connection setup */
1719 #define GSO_MAX_SIZE		65536
1720 	unsigned int		gso_max_size;
1721 #define GSO_MAX_SEGS		65535
1722 	u16			gso_max_segs;
1723 	u16			gso_min_segs;
1724 #ifdef CONFIG_DCB
1725 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1726 #endif
1727 	u8 num_tc;
1728 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1729 	u8 prio_tc_map[TC_BITMASK + 1];
1730 
1731 #if IS_ENABLED(CONFIG_FCOE)
1732 	unsigned int		fcoe_ddp_xid;
1733 #endif
1734 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1735 	struct netprio_map __rcu *priomap;
1736 #endif
1737 	struct phy_device *phydev;
1738 	struct lock_class_key *qdisc_tx_busylock;
1739 	int group;
1740 	struct pm_qos_request	pm_qos_req;
1741 };
1742 #define to_net_dev(d) container_of(d, struct net_device, dev)
1743 
1744 #define	NETDEV_ALIGN		32
1745 
1746 static inline
1747 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1748 {
1749 	return dev->prio_tc_map[prio & TC_BITMASK];
1750 }
1751 
1752 static inline
1753 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1754 {
1755 	if (tc >= dev->num_tc)
1756 		return -EINVAL;
1757 
1758 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1759 	return 0;
1760 }
1761 
1762 static inline
1763 void netdev_reset_tc(struct net_device *dev)
1764 {
1765 	dev->num_tc = 0;
1766 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1767 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1768 }
1769 
1770 static inline
1771 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1772 {
1773 	if (tc >= dev->num_tc)
1774 		return -EINVAL;
1775 
1776 	dev->tc_to_txq[tc].count = count;
1777 	dev->tc_to_txq[tc].offset = offset;
1778 	return 0;
1779 }
1780 
1781 static inline
1782 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1783 {
1784 	if (num_tc > TC_MAX_QUEUE)
1785 		return -EINVAL;
1786 
1787 	dev->num_tc = num_tc;
1788 	return 0;
1789 }
1790 
1791 static inline
1792 int netdev_get_num_tc(struct net_device *dev)
1793 {
1794 	return dev->num_tc;
1795 }
1796 
1797 static inline
1798 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1799 					 unsigned int index)
1800 {
1801 	return &dev->_tx[index];
1802 }
1803 
1804 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1805 						    const struct sk_buff *skb)
1806 {
1807 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1808 }
1809 
1810 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1811 					    void (*f)(struct net_device *,
1812 						      struct netdev_queue *,
1813 						      void *),
1814 					    void *arg)
1815 {
1816 	unsigned int i;
1817 
1818 	for (i = 0; i < dev->num_tx_queues; i++)
1819 		f(dev, &dev->_tx[i], arg);
1820 }
1821 
1822 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1823 				    struct sk_buff *skb,
1824 				    void *accel_priv);
1825 
1826 /*
1827  * Net namespace inlines
1828  */
1829 static inline
1830 struct net *dev_net(const struct net_device *dev)
1831 {
1832 	return read_pnet(&dev->nd_net);
1833 }
1834 
1835 static inline
1836 void dev_net_set(struct net_device *dev, struct net *net)
1837 {
1838 #ifdef CONFIG_NET_NS
1839 	release_net(dev->nd_net);
1840 	dev->nd_net = hold_net(net);
1841 #endif
1842 }
1843 
1844 static inline bool netdev_uses_dsa(struct net_device *dev)
1845 {
1846 #if IS_ENABLED(CONFIG_NET_DSA)
1847 	if (dev->dsa_ptr != NULL)
1848 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1849 #endif
1850 	return false;
1851 }
1852 
1853 /**
1854  *	netdev_priv - access network device private data
1855  *	@dev: network device
1856  *
1857  * Get network device private data
1858  */
1859 static inline void *netdev_priv(const struct net_device *dev)
1860 {
1861 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1862 }
1863 
1864 /* Set the sysfs physical device reference for the network logical device
1865  * if set prior to registration will cause a symlink during initialization.
1866  */
1867 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1868 
1869 /* Set the sysfs device type for the network logical device to allow
1870  * fine-grained identification of different network device types. For
1871  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1872  */
1873 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1874 
1875 /* Default NAPI poll() weight
1876  * Device drivers are strongly advised to not use bigger value
1877  */
1878 #define NAPI_POLL_WEIGHT 64
1879 
1880 /**
1881  *	netif_napi_add - initialize a napi context
1882  *	@dev:  network device
1883  *	@napi: napi context
1884  *	@poll: polling function
1885  *	@weight: default weight
1886  *
1887  * netif_napi_add() must be used to initialize a napi context prior to calling
1888  * *any* of the other napi related functions.
1889  */
1890 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1891 		    int (*poll)(struct napi_struct *, int), int weight);
1892 
1893 /**
1894  *  netif_napi_del - remove a napi context
1895  *  @napi: napi context
1896  *
1897  *  netif_napi_del() removes a napi context from the network device napi list
1898  */
1899 void netif_napi_del(struct napi_struct *napi);
1900 
1901 struct napi_gro_cb {
1902 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1903 	void *frag0;
1904 
1905 	/* Length of frag0. */
1906 	unsigned int frag0_len;
1907 
1908 	/* This indicates where we are processing relative to skb->data. */
1909 	int data_offset;
1910 
1911 	/* This is non-zero if the packet cannot be merged with the new skb. */
1912 	u16	flush;
1913 
1914 	/* Save the IP ID here and check when we get to the transport layer */
1915 	u16	flush_id;
1916 
1917 	/* Number of segments aggregated. */
1918 	u16	count;
1919 
1920 	/* This is non-zero if the packet may be of the same flow. */
1921 	u8	same_flow;
1922 
1923 	/* Free the skb? */
1924 	u8	free;
1925 #define NAPI_GRO_FREE		  1
1926 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1927 
1928 	/* jiffies when first packet was created/queued */
1929 	unsigned long age;
1930 
1931 	/* Used in ipv6_gro_receive() and foo-over-udp */
1932 	u16	proto;
1933 
1934 	/* Used in udp_gro_receive */
1935 	u8	udp_mark:1;
1936 
1937 	/* GRO checksum is valid */
1938 	u8	csum_valid:1;
1939 
1940 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1941 	u8	csum_cnt:3;
1942 
1943 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1944 	u8	is_ipv6:1;
1945 
1946 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1947 	__wsum	csum;
1948 
1949 	/* used in skb_gro_receive() slow path */
1950 	struct sk_buff *last;
1951 };
1952 
1953 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1954 
1955 struct packet_type {
1956 	__be16			type;	/* This is really htons(ether_type). */
1957 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1958 	int			(*func) (struct sk_buff *,
1959 					 struct net_device *,
1960 					 struct packet_type *,
1961 					 struct net_device *);
1962 	bool			(*id_match)(struct packet_type *ptype,
1963 					    struct sock *sk);
1964 	void			*af_packet_priv;
1965 	struct list_head	list;
1966 };
1967 
1968 struct offload_callbacks {
1969 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1970 						netdev_features_t features);
1971 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1972 					       struct sk_buff *skb);
1973 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1974 };
1975 
1976 struct packet_offload {
1977 	__be16			 type;	/* This is really htons(ether_type). */
1978 	struct offload_callbacks callbacks;
1979 	struct list_head	 list;
1980 };
1981 
1982 struct udp_offload {
1983 	__be16			 port;
1984 	u8			 ipproto;
1985 	struct offload_callbacks callbacks;
1986 };
1987 
1988 /* often modified stats are per cpu, other are shared (netdev->stats) */
1989 struct pcpu_sw_netstats {
1990 	u64     rx_packets;
1991 	u64     rx_bytes;
1992 	u64     tx_packets;
1993 	u64     tx_bytes;
1994 	struct u64_stats_sync   syncp;
1995 };
1996 
1997 #define netdev_alloc_pcpu_stats(type)				\
1998 ({								\
1999 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2000 	if (pcpu_stats)	{					\
2001 		int i;						\
2002 		for_each_possible_cpu(i) {			\
2003 			typeof(type) *stat;			\
2004 			stat = per_cpu_ptr(pcpu_stats, i);	\
2005 			u64_stats_init(&stat->syncp);		\
2006 		}						\
2007 	}							\
2008 	pcpu_stats;						\
2009 })
2010 
2011 #include <linux/notifier.h>
2012 
2013 /* netdevice notifier chain. Please remember to update the rtnetlink
2014  * notification exclusion list in rtnetlink_event() when adding new
2015  * types.
2016  */
2017 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2018 #define NETDEV_DOWN	0x0002
2019 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2020 				   detected a hardware crash and restarted
2021 				   - we can use this eg to kick tcp sessions
2022 				   once done */
2023 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2024 #define NETDEV_REGISTER 0x0005
2025 #define NETDEV_UNREGISTER	0x0006
2026 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2027 #define NETDEV_CHANGEADDR	0x0008
2028 #define NETDEV_GOING_DOWN	0x0009
2029 #define NETDEV_CHANGENAME	0x000A
2030 #define NETDEV_FEAT_CHANGE	0x000B
2031 #define NETDEV_BONDING_FAILOVER 0x000C
2032 #define NETDEV_PRE_UP		0x000D
2033 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2034 #define NETDEV_POST_TYPE_CHANGE	0x000F
2035 #define NETDEV_POST_INIT	0x0010
2036 #define NETDEV_UNREGISTER_FINAL 0x0011
2037 #define NETDEV_RELEASE		0x0012
2038 #define NETDEV_NOTIFY_PEERS	0x0013
2039 #define NETDEV_JOIN		0x0014
2040 #define NETDEV_CHANGEUPPER	0x0015
2041 #define NETDEV_RESEND_IGMP	0x0016
2042 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2043 #define NETDEV_CHANGEINFODATA	0x0018
2044 
2045 int register_netdevice_notifier(struct notifier_block *nb);
2046 int unregister_netdevice_notifier(struct notifier_block *nb);
2047 
2048 struct netdev_notifier_info {
2049 	struct net_device *dev;
2050 };
2051 
2052 struct netdev_notifier_change_info {
2053 	struct netdev_notifier_info info; /* must be first */
2054 	unsigned int flags_changed;
2055 };
2056 
2057 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2058 					     struct net_device *dev)
2059 {
2060 	info->dev = dev;
2061 }
2062 
2063 static inline struct net_device *
2064 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2065 {
2066 	return info->dev;
2067 }
2068 
2069 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2070 
2071 
2072 extern rwlock_t				dev_base_lock;		/* Device list lock */
2073 
2074 #define for_each_netdev(net, d)		\
2075 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2076 #define for_each_netdev_reverse(net, d)	\
2077 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2078 #define for_each_netdev_rcu(net, d)		\
2079 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2080 #define for_each_netdev_safe(net, d, n)	\
2081 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2082 #define for_each_netdev_continue(net, d)		\
2083 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2084 #define for_each_netdev_continue_rcu(net, d)		\
2085 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2086 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2087 		for_each_netdev_rcu(&init_net, slave)	\
2088 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2089 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2090 
2091 static inline struct net_device *next_net_device(struct net_device *dev)
2092 {
2093 	struct list_head *lh;
2094 	struct net *net;
2095 
2096 	net = dev_net(dev);
2097 	lh = dev->dev_list.next;
2098 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2099 }
2100 
2101 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2102 {
2103 	struct list_head *lh;
2104 	struct net *net;
2105 
2106 	net = dev_net(dev);
2107 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2108 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2109 }
2110 
2111 static inline struct net_device *first_net_device(struct net *net)
2112 {
2113 	return list_empty(&net->dev_base_head) ? NULL :
2114 		net_device_entry(net->dev_base_head.next);
2115 }
2116 
2117 static inline struct net_device *first_net_device_rcu(struct net *net)
2118 {
2119 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2120 
2121 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2122 }
2123 
2124 int netdev_boot_setup_check(struct net_device *dev);
2125 unsigned long netdev_boot_base(const char *prefix, int unit);
2126 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2127 				       const char *hwaddr);
2128 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2129 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2130 void dev_add_pack(struct packet_type *pt);
2131 void dev_remove_pack(struct packet_type *pt);
2132 void __dev_remove_pack(struct packet_type *pt);
2133 void dev_add_offload(struct packet_offload *po);
2134 void dev_remove_offload(struct packet_offload *po);
2135 
2136 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2137 				      unsigned short mask);
2138 struct net_device *dev_get_by_name(struct net *net, const char *name);
2139 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2140 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2141 int dev_alloc_name(struct net_device *dev, const char *name);
2142 int dev_open(struct net_device *dev);
2143 int dev_close(struct net_device *dev);
2144 void dev_disable_lro(struct net_device *dev);
2145 int dev_loopback_xmit(struct sk_buff *newskb);
2146 int dev_queue_xmit(struct sk_buff *skb);
2147 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2148 int register_netdevice(struct net_device *dev);
2149 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2150 void unregister_netdevice_many(struct list_head *head);
2151 static inline void unregister_netdevice(struct net_device *dev)
2152 {
2153 	unregister_netdevice_queue(dev, NULL);
2154 }
2155 
2156 int netdev_refcnt_read(const struct net_device *dev);
2157 void free_netdev(struct net_device *dev);
2158 void netdev_freemem(struct net_device *dev);
2159 void synchronize_net(void);
2160 int init_dummy_netdev(struct net_device *dev);
2161 
2162 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2163 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2164 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2165 int netdev_get_name(struct net *net, char *name, int ifindex);
2166 int dev_restart(struct net_device *dev);
2167 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2168 
2169 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2170 {
2171 	return NAPI_GRO_CB(skb)->data_offset;
2172 }
2173 
2174 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2175 {
2176 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2177 }
2178 
2179 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2180 {
2181 	NAPI_GRO_CB(skb)->data_offset += len;
2182 }
2183 
2184 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2185 					unsigned int offset)
2186 {
2187 	return NAPI_GRO_CB(skb)->frag0 + offset;
2188 }
2189 
2190 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2191 {
2192 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2193 }
2194 
2195 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2196 					unsigned int offset)
2197 {
2198 	if (!pskb_may_pull(skb, hlen))
2199 		return NULL;
2200 
2201 	NAPI_GRO_CB(skb)->frag0 = NULL;
2202 	NAPI_GRO_CB(skb)->frag0_len = 0;
2203 	return skb->data + offset;
2204 }
2205 
2206 static inline void *skb_gro_network_header(struct sk_buff *skb)
2207 {
2208 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2209 	       skb_network_offset(skb);
2210 }
2211 
2212 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2213 					const void *start, unsigned int len)
2214 {
2215 	if (NAPI_GRO_CB(skb)->csum_valid)
2216 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2217 						  csum_partial(start, len, 0));
2218 }
2219 
2220 /* GRO checksum functions. These are logical equivalents of the normal
2221  * checksum functions (in skbuff.h) except that they operate on the GRO
2222  * offsets and fields in sk_buff.
2223  */
2224 
2225 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2226 
2227 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2228 						      bool zero_okay,
2229 						      __sum16 check)
2230 {
2231 	return (skb->ip_summed != CHECKSUM_PARTIAL &&
2232 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2233 		(!zero_okay || check));
2234 }
2235 
2236 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2237 							   __wsum psum)
2238 {
2239 	if (NAPI_GRO_CB(skb)->csum_valid &&
2240 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2241 		return 0;
2242 
2243 	NAPI_GRO_CB(skb)->csum = psum;
2244 
2245 	return __skb_gro_checksum_complete(skb);
2246 }
2247 
2248 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2249 {
2250 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2251 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2252 		NAPI_GRO_CB(skb)->csum_cnt--;
2253 	} else {
2254 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2255 		 * verified a new top level checksum or an encapsulated one
2256 		 * during GRO. This saves work if we fallback to normal path.
2257 		 */
2258 		__skb_incr_checksum_unnecessary(skb);
2259 	}
2260 }
2261 
2262 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2263 				    compute_pseudo)			\
2264 ({									\
2265 	__sum16 __ret = 0;						\
2266 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2267 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2268 				compute_pseudo(skb, proto));		\
2269 	if (__ret)							\
2270 		__skb_mark_checksum_bad(skb);				\
2271 	else								\
2272 		skb_gro_incr_csum_unnecessary(skb);			\
2273 	__ret;								\
2274 })
2275 
2276 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2277 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2278 
2279 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2280 					     compute_pseudo)		\
2281 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2282 
2283 #define skb_gro_checksum_simple_validate(skb)				\
2284 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2285 
2286 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2287 {
2288 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2289 		!NAPI_GRO_CB(skb)->csum_valid);
2290 }
2291 
2292 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2293 					      __sum16 check, __wsum pseudo)
2294 {
2295 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2296 	NAPI_GRO_CB(skb)->csum_valid = 1;
2297 }
2298 
2299 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2300 do {									\
2301 	if (__skb_gro_checksum_convert_check(skb))			\
2302 		__skb_gro_checksum_convert(skb, check,			\
2303 					   compute_pseudo(skb, proto));	\
2304 } while (0)
2305 
2306 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2307 				  unsigned short type,
2308 				  const void *daddr, const void *saddr,
2309 				  unsigned int len)
2310 {
2311 	if (!dev->header_ops || !dev->header_ops->create)
2312 		return 0;
2313 
2314 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2315 }
2316 
2317 static inline int dev_parse_header(const struct sk_buff *skb,
2318 				   unsigned char *haddr)
2319 {
2320 	const struct net_device *dev = skb->dev;
2321 
2322 	if (!dev->header_ops || !dev->header_ops->parse)
2323 		return 0;
2324 	return dev->header_ops->parse(skb, haddr);
2325 }
2326 
2327 static inline int dev_rebuild_header(struct sk_buff *skb)
2328 {
2329 	const struct net_device *dev = skb->dev;
2330 
2331 	if (!dev->header_ops || !dev->header_ops->rebuild)
2332 		return 0;
2333 	return dev->header_ops->rebuild(skb);
2334 }
2335 
2336 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2337 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2338 static inline int unregister_gifconf(unsigned int family)
2339 {
2340 	return register_gifconf(family, NULL);
2341 }
2342 
2343 #ifdef CONFIG_NET_FLOW_LIMIT
2344 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2345 struct sd_flow_limit {
2346 	u64			count;
2347 	unsigned int		num_buckets;
2348 	unsigned int		history_head;
2349 	u16			history[FLOW_LIMIT_HISTORY];
2350 	u8			buckets[];
2351 };
2352 
2353 extern int netdev_flow_limit_table_len;
2354 #endif /* CONFIG_NET_FLOW_LIMIT */
2355 
2356 /*
2357  * Incoming packets are placed on per-cpu queues
2358  */
2359 struct softnet_data {
2360 	struct list_head	poll_list;
2361 	struct sk_buff_head	process_queue;
2362 
2363 	/* stats */
2364 	unsigned int		processed;
2365 	unsigned int		time_squeeze;
2366 	unsigned int		cpu_collision;
2367 	unsigned int		received_rps;
2368 #ifdef CONFIG_RPS
2369 	struct softnet_data	*rps_ipi_list;
2370 #endif
2371 #ifdef CONFIG_NET_FLOW_LIMIT
2372 	struct sd_flow_limit __rcu *flow_limit;
2373 #endif
2374 	struct Qdisc		*output_queue;
2375 	struct Qdisc		**output_queue_tailp;
2376 	struct sk_buff		*completion_queue;
2377 
2378 #ifdef CONFIG_RPS
2379 	/* Elements below can be accessed between CPUs for RPS */
2380 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2381 	struct softnet_data	*rps_ipi_next;
2382 	unsigned int		cpu;
2383 	unsigned int		input_queue_head;
2384 	unsigned int		input_queue_tail;
2385 #endif
2386 	unsigned int		dropped;
2387 	struct sk_buff_head	input_pkt_queue;
2388 	struct napi_struct	backlog;
2389 
2390 };
2391 
2392 static inline void input_queue_head_incr(struct softnet_data *sd)
2393 {
2394 #ifdef CONFIG_RPS
2395 	sd->input_queue_head++;
2396 #endif
2397 }
2398 
2399 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2400 					      unsigned int *qtail)
2401 {
2402 #ifdef CONFIG_RPS
2403 	*qtail = ++sd->input_queue_tail;
2404 #endif
2405 }
2406 
2407 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2408 
2409 void __netif_schedule(struct Qdisc *q);
2410 void netif_schedule_queue(struct netdev_queue *txq);
2411 
2412 static inline void netif_tx_schedule_all(struct net_device *dev)
2413 {
2414 	unsigned int i;
2415 
2416 	for (i = 0; i < dev->num_tx_queues; i++)
2417 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2418 }
2419 
2420 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2421 {
2422 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2423 }
2424 
2425 /**
2426  *	netif_start_queue - allow transmit
2427  *	@dev: network device
2428  *
2429  *	Allow upper layers to call the device hard_start_xmit routine.
2430  */
2431 static inline void netif_start_queue(struct net_device *dev)
2432 {
2433 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2434 }
2435 
2436 static inline void netif_tx_start_all_queues(struct net_device *dev)
2437 {
2438 	unsigned int i;
2439 
2440 	for (i = 0; i < dev->num_tx_queues; i++) {
2441 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2442 		netif_tx_start_queue(txq);
2443 	}
2444 }
2445 
2446 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2447 
2448 /**
2449  *	netif_wake_queue - restart transmit
2450  *	@dev: network device
2451  *
2452  *	Allow upper layers to call the device hard_start_xmit routine.
2453  *	Used for flow control when transmit resources are available.
2454  */
2455 static inline void netif_wake_queue(struct net_device *dev)
2456 {
2457 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2458 }
2459 
2460 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2461 {
2462 	unsigned int i;
2463 
2464 	for (i = 0; i < dev->num_tx_queues; i++) {
2465 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2466 		netif_tx_wake_queue(txq);
2467 	}
2468 }
2469 
2470 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2471 {
2472 	if (WARN_ON(!dev_queue)) {
2473 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2474 		return;
2475 	}
2476 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2477 }
2478 
2479 /**
2480  *	netif_stop_queue - stop transmitted packets
2481  *	@dev: network device
2482  *
2483  *	Stop upper layers calling the device hard_start_xmit routine.
2484  *	Used for flow control when transmit resources are unavailable.
2485  */
2486 static inline void netif_stop_queue(struct net_device *dev)
2487 {
2488 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2489 }
2490 
2491 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2492 {
2493 	unsigned int i;
2494 
2495 	for (i = 0; i < dev->num_tx_queues; i++) {
2496 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2497 		netif_tx_stop_queue(txq);
2498 	}
2499 }
2500 
2501 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2502 {
2503 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2504 }
2505 
2506 /**
2507  *	netif_queue_stopped - test if transmit queue is flowblocked
2508  *	@dev: network device
2509  *
2510  *	Test if transmit queue on device is currently unable to send.
2511  */
2512 static inline bool netif_queue_stopped(const struct net_device *dev)
2513 {
2514 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2515 }
2516 
2517 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2518 {
2519 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2520 }
2521 
2522 static inline bool
2523 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2524 {
2525 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2526 }
2527 
2528 static inline bool
2529 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2530 {
2531 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2532 }
2533 
2534 /**
2535  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2536  *	@dev_queue: pointer to transmit queue
2537  *
2538  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2539  * to give appropriate hint to the cpu.
2540  */
2541 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2542 {
2543 #ifdef CONFIG_BQL
2544 	prefetchw(&dev_queue->dql.num_queued);
2545 #endif
2546 }
2547 
2548 /**
2549  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2550  *	@dev_queue: pointer to transmit queue
2551  *
2552  * BQL enabled drivers might use this helper in their TX completion path,
2553  * to give appropriate hint to the cpu.
2554  */
2555 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2556 {
2557 #ifdef CONFIG_BQL
2558 	prefetchw(&dev_queue->dql.limit);
2559 #endif
2560 }
2561 
2562 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2563 					unsigned int bytes)
2564 {
2565 #ifdef CONFIG_BQL
2566 	dql_queued(&dev_queue->dql, bytes);
2567 
2568 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2569 		return;
2570 
2571 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2572 
2573 	/*
2574 	 * The XOFF flag must be set before checking the dql_avail below,
2575 	 * because in netdev_tx_completed_queue we update the dql_completed
2576 	 * before checking the XOFF flag.
2577 	 */
2578 	smp_mb();
2579 
2580 	/* check again in case another CPU has just made room avail */
2581 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2582 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2583 #endif
2584 }
2585 
2586 /**
2587  * 	netdev_sent_queue - report the number of bytes queued to hardware
2588  * 	@dev: network device
2589  * 	@bytes: number of bytes queued to the hardware device queue
2590  *
2591  * 	Report the number of bytes queued for sending/completion to the network
2592  * 	device hardware queue. @bytes should be a good approximation and should
2593  * 	exactly match netdev_completed_queue() @bytes
2594  */
2595 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2596 {
2597 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2598 }
2599 
2600 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2601 					     unsigned int pkts, unsigned int bytes)
2602 {
2603 #ifdef CONFIG_BQL
2604 	if (unlikely(!bytes))
2605 		return;
2606 
2607 	dql_completed(&dev_queue->dql, bytes);
2608 
2609 	/*
2610 	 * Without the memory barrier there is a small possiblity that
2611 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2612 	 * be stopped forever
2613 	 */
2614 	smp_mb();
2615 
2616 	if (dql_avail(&dev_queue->dql) < 0)
2617 		return;
2618 
2619 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2620 		netif_schedule_queue(dev_queue);
2621 #endif
2622 }
2623 
2624 /**
2625  * 	netdev_completed_queue - report bytes and packets completed by device
2626  * 	@dev: network device
2627  * 	@pkts: actual number of packets sent over the medium
2628  * 	@bytes: actual number of bytes sent over the medium
2629  *
2630  * 	Report the number of bytes and packets transmitted by the network device
2631  * 	hardware queue over the physical medium, @bytes must exactly match the
2632  * 	@bytes amount passed to netdev_sent_queue()
2633  */
2634 static inline void netdev_completed_queue(struct net_device *dev,
2635 					  unsigned int pkts, unsigned int bytes)
2636 {
2637 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2638 }
2639 
2640 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2641 {
2642 #ifdef CONFIG_BQL
2643 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2644 	dql_reset(&q->dql);
2645 #endif
2646 }
2647 
2648 /**
2649  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2650  * 	@dev_queue: network device
2651  *
2652  * 	Reset the bytes and packet count of a network device and clear the
2653  * 	software flow control OFF bit for this network device
2654  */
2655 static inline void netdev_reset_queue(struct net_device *dev_queue)
2656 {
2657 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2658 }
2659 
2660 /**
2661  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2662  * 	@dev: network device
2663  * 	@queue_index: given tx queue index
2664  *
2665  * 	Returns 0 if given tx queue index >= number of device tx queues,
2666  * 	otherwise returns the originally passed tx queue index.
2667  */
2668 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2669 {
2670 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2671 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2672 				     dev->name, queue_index,
2673 				     dev->real_num_tx_queues);
2674 		return 0;
2675 	}
2676 
2677 	return queue_index;
2678 }
2679 
2680 /**
2681  *	netif_running - test if up
2682  *	@dev: network device
2683  *
2684  *	Test if the device has been brought up.
2685  */
2686 static inline bool netif_running(const struct net_device *dev)
2687 {
2688 	return test_bit(__LINK_STATE_START, &dev->state);
2689 }
2690 
2691 /*
2692  * Routines to manage the subqueues on a device.  We only need start
2693  * stop, and a check if it's stopped.  All other device management is
2694  * done at the overall netdevice level.
2695  * Also test the device if we're multiqueue.
2696  */
2697 
2698 /**
2699  *	netif_start_subqueue - allow sending packets on subqueue
2700  *	@dev: network device
2701  *	@queue_index: sub queue index
2702  *
2703  * Start individual transmit queue of a device with multiple transmit queues.
2704  */
2705 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2706 {
2707 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2708 
2709 	netif_tx_start_queue(txq);
2710 }
2711 
2712 /**
2713  *	netif_stop_subqueue - stop sending packets on subqueue
2714  *	@dev: network device
2715  *	@queue_index: sub queue index
2716  *
2717  * Stop individual transmit queue of a device with multiple transmit queues.
2718  */
2719 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2720 {
2721 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2722 	netif_tx_stop_queue(txq);
2723 }
2724 
2725 /**
2726  *	netif_subqueue_stopped - test status of subqueue
2727  *	@dev: network device
2728  *	@queue_index: sub queue index
2729  *
2730  * Check individual transmit queue of a device with multiple transmit queues.
2731  */
2732 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2733 					    u16 queue_index)
2734 {
2735 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2736 
2737 	return netif_tx_queue_stopped(txq);
2738 }
2739 
2740 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2741 					  struct sk_buff *skb)
2742 {
2743 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2744 }
2745 
2746 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2747 
2748 #ifdef CONFIG_XPS
2749 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2750 			u16 index);
2751 #else
2752 static inline int netif_set_xps_queue(struct net_device *dev,
2753 				      const struct cpumask *mask,
2754 				      u16 index)
2755 {
2756 	return 0;
2757 }
2758 #endif
2759 
2760 /*
2761  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2762  * as a distribution range limit for the returned value.
2763  */
2764 static inline u16 skb_tx_hash(const struct net_device *dev,
2765 			      struct sk_buff *skb)
2766 {
2767 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2768 }
2769 
2770 /**
2771  *	netif_is_multiqueue - test if device has multiple transmit queues
2772  *	@dev: network device
2773  *
2774  * Check if device has multiple transmit queues
2775  */
2776 static inline bool netif_is_multiqueue(const struct net_device *dev)
2777 {
2778 	return dev->num_tx_queues > 1;
2779 }
2780 
2781 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2782 
2783 #ifdef CONFIG_SYSFS
2784 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2785 #else
2786 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2787 						unsigned int rxq)
2788 {
2789 	return 0;
2790 }
2791 #endif
2792 
2793 #ifdef CONFIG_SYSFS
2794 static inline unsigned int get_netdev_rx_queue_index(
2795 		struct netdev_rx_queue *queue)
2796 {
2797 	struct net_device *dev = queue->dev;
2798 	int index = queue - dev->_rx;
2799 
2800 	BUG_ON(index >= dev->num_rx_queues);
2801 	return index;
2802 }
2803 #endif
2804 
2805 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2806 int netif_get_num_default_rss_queues(void);
2807 
2808 enum skb_free_reason {
2809 	SKB_REASON_CONSUMED,
2810 	SKB_REASON_DROPPED,
2811 };
2812 
2813 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2814 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2815 
2816 /*
2817  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2818  * interrupt context or with hardware interrupts being disabled.
2819  * (in_irq() || irqs_disabled())
2820  *
2821  * We provide four helpers that can be used in following contexts :
2822  *
2823  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2824  *  replacing kfree_skb(skb)
2825  *
2826  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2827  *  Typically used in place of consume_skb(skb) in TX completion path
2828  *
2829  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2830  *  replacing kfree_skb(skb)
2831  *
2832  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2833  *  and consumed a packet. Used in place of consume_skb(skb)
2834  */
2835 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2836 {
2837 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2838 }
2839 
2840 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2841 {
2842 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2843 }
2844 
2845 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2846 {
2847 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2848 }
2849 
2850 static inline void dev_consume_skb_any(struct sk_buff *skb)
2851 {
2852 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2853 }
2854 
2855 int netif_rx(struct sk_buff *skb);
2856 int netif_rx_ni(struct sk_buff *skb);
2857 int netif_receive_skb(struct sk_buff *skb);
2858 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2859 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2860 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2861 gro_result_t napi_gro_frags(struct napi_struct *napi);
2862 struct packet_offload *gro_find_receive_by_type(__be16 type);
2863 struct packet_offload *gro_find_complete_by_type(__be16 type);
2864 
2865 static inline void napi_free_frags(struct napi_struct *napi)
2866 {
2867 	kfree_skb(napi->skb);
2868 	napi->skb = NULL;
2869 }
2870 
2871 int netdev_rx_handler_register(struct net_device *dev,
2872 			       rx_handler_func_t *rx_handler,
2873 			       void *rx_handler_data);
2874 void netdev_rx_handler_unregister(struct net_device *dev);
2875 
2876 bool dev_valid_name(const char *name);
2877 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2878 int dev_ethtool(struct net *net, struct ifreq *);
2879 unsigned int dev_get_flags(const struct net_device *);
2880 int __dev_change_flags(struct net_device *, unsigned int flags);
2881 int dev_change_flags(struct net_device *, unsigned int);
2882 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2883 			unsigned int gchanges);
2884 int dev_change_name(struct net_device *, const char *);
2885 int dev_set_alias(struct net_device *, const char *, size_t);
2886 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2887 int dev_set_mtu(struct net_device *, int);
2888 void dev_set_group(struct net_device *, int);
2889 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2890 int dev_change_carrier(struct net_device *, bool new_carrier);
2891 int dev_get_phys_port_id(struct net_device *dev,
2892 			 struct netdev_phys_item_id *ppid);
2893 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2894 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2895 				    struct netdev_queue *txq, int *ret);
2896 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2897 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2898 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2899 
2900 extern int		netdev_budget;
2901 
2902 /* Called by rtnetlink.c:rtnl_unlock() */
2903 void netdev_run_todo(void);
2904 
2905 /**
2906  *	dev_put - release reference to device
2907  *	@dev: network device
2908  *
2909  * Release reference to device to allow it to be freed.
2910  */
2911 static inline void dev_put(struct net_device *dev)
2912 {
2913 	this_cpu_dec(*dev->pcpu_refcnt);
2914 }
2915 
2916 /**
2917  *	dev_hold - get reference to device
2918  *	@dev: network device
2919  *
2920  * Hold reference to device to keep it from being freed.
2921  */
2922 static inline void dev_hold(struct net_device *dev)
2923 {
2924 	this_cpu_inc(*dev->pcpu_refcnt);
2925 }
2926 
2927 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2928  * and _off may be called from IRQ context, but it is caller
2929  * who is responsible for serialization of these calls.
2930  *
2931  * The name carrier is inappropriate, these functions should really be
2932  * called netif_lowerlayer_*() because they represent the state of any
2933  * kind of lower layer not just hardware media.
2934  */
2935 
2936 void linkwatch_init_dev(struct net_device *dev);
2937 void linkwatch_fire_event(struct net_device *dev);
2938 void linkwatch_forget_dev(struct net_device *dev);
2939 
2940 /**
2941  *	netif_carrier_ok - test if carrier present
2942  *	@dev: network device
2943  *
2944  * Check if carrier is present on device
2945  */
2946 static inline bool netif_carrier_ok(const struct net_device *dev)
2947 {
2948 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2949 }
2950 
2951 unsigned long dev_trans_start(struct net_device *dev);
2952 
2953 void __netdev_watchdog_up(struct net_device *dev);
2954 
2955 void netif_carrier_on(struct net_device *dev);
2956 
2957 void netif_carrier_off(struct net_device *dev);
2958 
2959 /**
2960  *	netif_dormant_on - mark device as dormant.
2961  *	@dev: network device
2962  *
2963  * Mark device as dormant (as per RFC2863).
2964  *
2965  * The dormant state indicates that the relevant interface is not
2966  * actually in a condition to pass packets (i.e., it is not 'up') but is
2967  * in a "pending" state, waiting for some external event.  For "on-
2968  * demand" interfaces, this new state identifies the situation where the
2969  * interface is waiting for events to place it in the up state.
2970  *
2971  */
2972 static inline void netif_dormant_on(struct net_device *dev)
2973 {
2974 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2975 		linkwatch_fire_event(dev);
2976 }
2977 
2978 /**
2979  *	netif_dormant_off - set device as not dormant.
2980  *	@dev: network device
2981  *
2982  * Device is not in dormant state.
2983  */
2984 static inline void netif_dormant_off(struct net_device *dev)
2985 {
2986 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2987 		linkwatch_fire_event(dev);
2988 }
2989 
2990 /**
2991  *	netif_dormant - test if carrier present
2992  *	@dev: network device
2993  *
2994  * Check if carrier is present on device
2995  */
2996 static inline bool netif_dormant(const struct net_device *dev)
2997 {
2998 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2999 }
3000 
3001 
3002 /**
3003  *	netif_oper_up - test if device is operational
3004  *	@dev: network device
3005  *
3006  * Check if carrier is operational
3007  */
3008 static inline bool netif_oper_up(const struct net_device *dev)
3009 {
3010 	return (dev->operstate == IF_OPER_UP ||
3011 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3012 }
3013 
3014 /**
3015  *	netif_device_present - is device available or removed
3016  *	@dev: network device
3017  *
3018  * Check if device has not been removed from system.
3019  */
3020 static inline bool netif_device_present(struct net_device *dev)
3021 {
3022 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3023 }
3024 
3025 void netif_device_detach(struct net_device *dev);
3026 
3027 void netif_device_attach(struct net_device *dev);
3028 
3029 /*
3030  * Network interface message level settings
3031  */
3032 
3033 enum {
3034 	NETIF_MSG_DRV		= 0x0001,
3035 	NETIF_MSG_PROBE		= 0x0002,
3036 	NETIF_MSG_LINK		= 0x0004,
3037 	NETIF_MSG_TIMER		= 0x0008,
3038 	NETIF_MSG_IFDOWN	= 0x0010,
3039 	NETIF_MSG_IFUP		= 0x0020,
3040 	NETIF_MSG_RX_ERR	= 0x0040,
3041 	NETIF_MSG_TX_ERR	= 0x0080,
3042 	NETIF_MSG_TX_QUEUED	= 0x0100,
3043 	NETIF_MSG_INTR		= 0x0200,
3044 	NETIF_MSG_TX_DONE	= 0x0400,
3045 	NETIF_MSG_RX_STATUS	= 0x0800,
3046 	NETIF_MSG_PKTDATA	= 0x1000,
3047 	NETIF_MSG_HW		= 0x2000,
3048 	NETIF_MSG_WOL		= 0x4000,
3049 };
3050 
3051 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3052 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3053 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3054 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3055 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3056 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3057 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3058 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3059 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3060 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3061 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3062 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3063 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3064 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3065 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3066 
3067 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3068 {
3069 	/* use default */
3070 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3071 		return default_msg_enable_bits;
3072 	if (debug_value == 0)	/* no output */
3073 		return 0;
3074 	/* set low N bits */
3075 	return (1 << debug_value) - 1;
3076 }
3077 
3078 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3079 {
3080 	spin_lock(&txq->_xmit_lock);
3081 	txq->xmit_lock_owner = cpu;
3082 }
3083 
3084 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3085 {
3086 	spin_lock_bh(&txq->_xmit_lock);
3087 	txq->xmit_lock_owner = smp_processor_id();
3088 }
3089 
3090 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3091 {
3092 	bool ok = spin_trylock(&txq->_xmit_lock);
3093 	if (likely(ok))
3094 		txq->xmit_lock_owner = smp_processor_id();
3095 	return ok;
3096 }
3097 
3098 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3099 {
3100 	txq->xmit_lock_owner = -1;
3101 	spin_unlock(&txq->_xmit_lock);
3102 }
3103 
3104 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3105 {
3106 	txq->xmit_lock_owner = -1;
3107 	spin_unlock_bh(&txq->_xmit_lock);
3108 }
3109 
3110 static inline void txq_trans_update(struct netdev_queue *txq)
3111 {
3112 	if (txq->xmit_lock_owner != -1)
3113 		txq->trans_start = jiffies;
3114 }
3115 
3116 /**
3117  *	netif_tx_lock - grab network device transmit lock
3118  *	@dev: network device
3119  *
3120  * Get network device transmit lock
3121  */
3122 static inline void netif_tx_lock(struct net_device *dev)
3123 {
3124 	unsigned int i;
3125 	int cpu;
3126 
3127 	spin_lock(&dev->tx_global_lock);
3128 	cpu = smp_processor_id();
3129 	for (i = 0; i < dev->num_tx_queues; i++) {
3130 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3131 
3132 		/* We are the only thread of execution doing a
3133 		 * freeze, but we have to grab the _xmit_lock in
3134 		 * order to synchronize with threads which are in
3135 		 * the ->hard_start_xmit() handler and already
3136 		 * checked the frozen bit.
3137 		 */
3138 		__netif_tx_lock(txq, cpu);
3139 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3140 		__netif_tx_unlock(txq);
3141 	}
3142 }
3143 
3144 static inline void netif_tx_lock_bh(struct net_device *dev)
3145 {
3146 	local_bh_disable();
3147 	netif_tx_lock(dev);
3148 }
3149 
3150 static inline void netif_tx_unlock(struct net_device *dev)
3151 {
3152 	unsigned int i;
3153 
3154 	for (i = 0; i < dev->num_tx_queues; i++) {
3155 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3156 
3157 		/* No need to grab the _xmit_lock here.  If the
3158 		 * queue is not stopped for another reason, we
3159 		 * force a schedule.
3160 		 */
3161 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3162 		netif_schedule_queue(txq);
3163 	}
3164 	spin_unlock(&dev->tx_global_lock);
3165 }
3166 
3167 static inline void netif_tx_unlock_bh(struct net_device *dev)
3168 {
3169 	netif_tx_unlock(dev);
3170 	local_bh_enable();
3171 }
3172 
3173 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3174 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3175 		__netif_tx_lock(txq, cpu);		\
3176 	}						\
3177 }
3178 
3179 #define HARD_TX_TRYLOCK(dev, txq)			\
3180 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3181 		__netif_tx_trylock(txq) :		\
3182 		true )
3183 
3184 #define HARD_TX_UNLOCK(dev, txq) {			\
3185 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3186 		__netif_tx_unlock(txq);			\
3187 	}						\
3188 }
3189 
3190 static inline void netif_tx_disable(struct net_device *dev)
3191 {
3192 	unsigned int i;
3193 	int cpu;
3194 
3195 	local_bh_disable();
3196 	cpu = smp_processor_id();
3197 	for (i = 0; i < dev->num_tx_queues; i++) {
3198 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3199 
3200 		__netif_tx_lock(txq, cpu);
3201 		netif_tx_stop_queue(txq);
3202 		__netif_tx_unlock(txq);
3203 	}
3204 	local_bh_enable();
3205 }
3206 
3207 static inline void netif_addr_lock(struct net_device *dev)
3208 {
3209 	spin_lock(&dev->addr_list_lock);
3210 }
3211 
3212 static inline void netif_addr_lock_nested(struct net_device *dev)
3213 {
3214 	int subclass = SINGLE_DEPTH_NESTING;
3215 
3216 	if (dev->netdev_ops->ndo_get_lock_subclass)
3217 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3218 
3219 	spin_lock_nested(&dev->addr_list_lock, subclass);
3220 }
3221 
3222 static inline void netif_addr_lock_bh(struct net_device *dev)
3223 {
3224 	spin_lock_bh(&dev->addr_list_lock);
3225 }
3226 
3227 static inline void netif_addr_unlock(struct net_device *dev)
3228 {
3229 	spin_unlock(&dev->addr_list_lock);
3230 }
3231 
3232 static inline void netif_addr_unlock_bh(struct net_device *dev)
3233 {
3234 	spin_unlock_bh(&dev->addr_list_lock);
3235 }
3236 
3237 /*
3238  * dev_addrs walker. Should be used only for read access. Call with
3239  * rcu_read_lock held.
3240  */
3241 #define for_each_dev_addr(dev, ha) \
3242 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3243 
3244 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3245 
3246 void ether_setup(struct net_device *dev);
3247 
3248 /* Support for loadable net-drivers */
3249 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3250 				    unsigned char name_assign_type,
3251 				    void (*setup)(struct net_device *),
3252 				    unsigned int txqs, unsigned int rxqs);
3253 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3254 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3255 
3256 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3257 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3258 			 count)
3259 
3260 int register_netdev(struct net_device *dev);
3261 void unregister_netdev(struct net_device *dev);
3262 
3263 /* General hardware address lists handling functions */
3264 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3265 		   struct netdev_hw_addr_list *from_list, int addr_len);
3266 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3267 		      struct netdev_hw_addr_list *from_list, int addr_len);
3268 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3269 		       struct net_device *dev,
3270 		       int (*sync)(struct net_device *, const unsigned char *),
3271 		       int (*unsync)(struct net_device *,
3272 				     const unsigned char *));
3273 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3274 			  struct net_device *dev,
3275 			  int (*unsync)(struct net_device *,
3276 					const unsigned char *));
3277 void __hw_addr_init(struct netdev_hw_addr_list *list);
3278 
3279 /* Functions used for device addresses handling */
3280 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3281 		 unsigned char addr_type);
3282 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3283 		 unsigned char addr_type);
3284 void dev_addr_flush(struct net_device *dev);
3285 int dev_addr_init(struct net_device *dev);
3286 
3287 /* Functions used for unicast addresses handling */
3288 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3289 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3290 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3291 int dev_uc_sync(struct net_device *to, struct net_device *from);
3292 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3293 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3294 void dev_uc_flush(struct net_device *dev);
3295 void dev_uc_init(struct net_device *dev);
3296 
3297 /**
3298  *  __dev_uc_sync - Synchonize device's unicast list
3299  *  @dev:  device to sync
3300  *  @sync: function to call if address should be added
3301  *  @unsync: function to call if address should be removed
3302  *
3303  *  Add newly added addresses to the interface, and release
3304  *  addresses that have been deleted.
3305  **/
3306 static inline int __dev_uc_sync(struct net_device *dev,
3307 				int (*sync)(struct net_device *,
3308 					    const unsigned char *),
3309 				int (*unsync)(struct net_device *,
3310 					      const unsigned char *))
3311 {
3312 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3313 }
3314 
3315 /**
3316  *  __dev_uc_unsync - Remove synchronized addresses from device
3317  *  @dev:  device to sync
3318  *  @unsync: function to call if address should be removed
3319  *
3320  *  Remove all addresses that were added to the device by dev_uc_sync().
3321  **/
3322 static inline void __dev_uc_unsync(struct net_device *dev,
3323 				   int (*unsync)(struct net_device *,
3324 						 const unsigned char *))
3325 {
3326 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3327 }
3328 
3329 /* Functions used for multicast addresses handling */
3330 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3331 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3332 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3333 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3334 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3335 int dev_mc_sync(struct net_device *to, struct net_device *from);
3336 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3337 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3338 void dev_mc_flush(struct net_device *dev);
3339 void dev_mc_init(struct net_device *dev);
3340 
3341 /**
3342  *  __dev_mc_sync - Synchonize device's multicast list
3343  *  @dev:  device to sync
3344  *  @sync: function to call if address should be added
3345  *  @unsync: function to call if address should be removed
3346  *
3347  *  Add newly added addresses to the interface, and release
3348  *  addresses that have been deleted.
3349  **/
3350 static inline int __dev_mc_sync(struct net_device *dev,
3351 				int (*sync)(struct net_device *,
3352 					    const unsigned char *),
3353 				int (*unsync)(struct net_device *,
3354 					      const unsigned char *))
3355 {
3356 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3357 }
3358 
3359 /**
3360  *  __dev_mc_unsync - Remove synchronized addresses from device
3361  *  @dev:  device to sync
3362  *  @unsync: function to call if address should be removed
3363  *
3364  *  Remove all addresses that were added to the device by dev_mc_sync().
3365  **/
3366 static inline void __dev_mc_unsync(struct net_device *dev,
3367 				   int (*unsync)(struct net_device *,
3368 						 const unsigned char *))
3369 {
3370 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3371 }
3372 
3373 /* Functions used for secondary unicast and multicast support */
3374 void dev_set_rx_mode(struct net_device *dev);
3375 void __dev_set_rx_mode(struct net_device *dev);
3376 int dev_set_promiscuity(struct net_device *dev, int inc);
3377 int dev_set_allmulti(struct net_device *dev, int inc);
3378 void netdev_state_change(struct net_device *dev);
3379 void netdev_notify_peers(struct net_device *dev);
3380 void netdev_features_change(struct net_device *dev);
3381 /* Load a device via the kmod */
3382 void dev_load(struct net *net, const char *name);
3383 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3384 					struct rtnl_link_stats64 *storage);
3385 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3386 			     const struct net_device_stats *netdev_stats);
3387 
3388 extern int		netdev_max_backlog;
3389 extern int		netdev_tstamp_prequeue;
3390 extern int		weight_p;
3391 extern int		bpf_jit_enable;
3392 
3393 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3394 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3395 						     struct list_head **iter);
3396 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3397 						     struct list_head **iter);
3398 
3399 /* iterate through upper list, must be called under RCU read lock */
3400 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3401 	for (iter = &(dev)->adj_list.upper, \
3402 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3403 	     updev; \
3404 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3405 
3406 /* iterate through upper list, must be called under RCU read lock */
3407 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3408 	for (iter = &(dev)->all_adj_list.upper, \
3409 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3410 	     updev; \
3411 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3412 
3413 void *netdev_lower_get_next_private(struct net_device *dev,
3414 				    struct list_head **iter);
3415 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3416 					struct list_head **iter);
3417 
3418 #define netdev_for_each_lower_private(dev, priv, iter) \
3419 	for (iter = (dev)->adj_list.lower.next, \
3420 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3421 	     priv; \
3422 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3423 
3424 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3425 	for (iter = &(dev)->adj_list.lower, \
3426 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3427 	     priv; \
3428 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3429 
3430 void *netdev_lower_get_next(struct net_device *dev,
3431 				struct list_head **iter);
3432 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3433 	for (iter = &(dev)->adj_list.lower, \
3434 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3435 	     ldev; \
3436 	     ldev = netdev_lower_get_next(dev, &(iter)))
3437 
3438 void *netdev_adjacent_get_private(struct list_head *adj_list);
3439 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3440 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3441 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3442 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3443 int netdev_master_upper_dev_link(struct net_device *dev,
3444 				 struct net_device *upper_dev);
3445 int netdev_master_upper_dev_link_private(struct net_device *dev,
3446 					 struct net_device *upper_dev,
3447 					 void *private);
3448 void netdev_upper_dev_unlink(struct net_device *dev,
3449 			     struct net_device *upper_dev);
3450 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3451 void *netdev_lower_dev_get_private(struct net_device *dev,
3452 				   struct net_device *lower_dev);
3453 
3454 /* RSS keys are 40 or 52 bytes long */
3455 #define NETDEV_RSS_KEY_LEN 52
3456 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3457 void netdev_rss_key_fill(void *buffer, size_t len);
3458 
3459 int dev_get_nest_level(struct net_device *dev,
3460 		       bool (*type_check)(struct net_device *dev));
3461 int skb_checksum_help(struct sk_buff *skb);
3462 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3463 				  netdev_features_t features, bool tx_path);
3464 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3465 				    netdev_features_t features);
3466 
3467 static inline
3468 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3469 {
3470 	return __skb_gso_segment(skb, features, true);
3471 }
3472 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3473 
3474 static inline bool can_checksum_protocol(netdev_features_t features,
3475 					 __be16 protocol)
3476 {
3477 	return ((features & NETIF_F_GEN_CSUM) ||
3478 		((features & NETIF_F_V4_CSUM) &&
3479 		 protocol == htons(ETH_P_IP)) ||
3480 		((features & NETIF_F_V6_CSUM) &&
3481 		 protocol == htons(ETH_P_IPV6)) ||
3482 		((features & NETIF_F_FCOE_CRC) &&
3483 		 protocol == htons(ETH_P_FCOE)));
3484 }
3485 
3486 #ifdef CONFIG_BUG
3487 void netdev_rx_csum_fault(struct net_device *dev);
3488 #else
3489 static inline void netdev_rx_csum_fault(struct net_device *dev)
3490 {
3491 }
3492 #endif
3493 /* rx skb timestamps */
3494 void net_enable_timestamp(void);
3495 void net_disable_timestamp(void);
3496 
3497 #ifdef CONFIG_PROC_FS
3498 int __init dev_proc_init(void);
3499 #else
3500 #define dev_proc_init() 0
3501 #endif
3502 
3503 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3504 					      struct sk_buff *skb, struct net_device *dev,
3505 					      bool more)
3506 {
3507 	skb->xmit_more = more ? 1 : 0;
3508 	return ops->ndo_start_xmit(skb, dev);
3509 }
3510 
3511 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3512 					    struct netdev_queue *txq, bool more)
3513 {
3514 	const struct net_device_ops *ops = dev->netdev_ops;
3515 	int rc;
3516 
3517 	rc = __netdev_start_xmit(ops, skb, dev, more);
3518 	if (rc == NETDEV_TX_OK)
3519 		txq_trans_update(txq);
3520 
3521 	return rc;
3522 }
3523 
3524 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3525 				const void *ns);
3526 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3527 				 const void *ns);
3528 
3529 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3530 {
3531 	return netdev_class_create_file_ns(class_attr, NULL);
3532 }
3533 
3534 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3535 {
3536 	netdev_class_remove_file_ns(class_attr, NULL);
3537 }
3538 
3539 extern struct kobj_ns_type_operations net_ns_type_operations;
3540 
3541 const char *netdev_drivername(const struct net_device *dev);
3542 
3543 void linkwatch_run_queue(void);
3544 
3545 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3546 							  netdev_features_t f2)
3547 {
3548 	if (f1 & NETIF_F_GEN_CSUM)
3549 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3550 	if (f2 & NETIF_F_GEN_CSUM)
3551 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3552 	f1 &= f2;
3553 	if (f1 & NETIF_F_GEN_CSUM)
3554 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3555 
3556 	return f1;
3557 }
3558 
3559 static inline netdev_features_t netdev_get_wanted_features(
3560 	struct net_device *dev)
3561 {
3562 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3563 }
3564 netdev_features_t netdev_increment_features(netdev_features_t all,
3565 	netdev_features_t one, netdev_features_t mask);
3566 
3567 /* Allow TSO being used on stacked device :
3568  * Performing the GSO segmentation before last device
3569  * is a performance improvement.
3570  */
3571 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3572 							netdev_features_t mask)
3573 {
3574 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3575 }
3576 
3577 int __netdev_update_features(struct net_device *dev);
3578 void netdev_update_features(struct net_device *dev);
3579 void netdev_change_features(struct net_device *dev);
3580 
3581 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3582 					struct net_device *dev);
3583 
3584 netdev_features_t netif_skb_features(struct sk_buff *skb);
3585 
3586 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3587 {
3588 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3589 
3590 	/* check flags correspondence */
3591 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3592 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3593 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3594 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3595 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3596 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3597 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3598 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3599 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3600 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3601 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3602 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3603 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3604 
3605 	return (features & feature) == feature;
3606 }
3607 
3608 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3609 {
3610 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3611 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3612 }
3613 
3614 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3615 				   netdev_features_t features)
3616 {
3617 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3618 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3619 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3620 }
3621 
3622 static inline void netif_set_gso_max_size(struct net_device *dev,
3623 					  unsigned int size)
3624 {
3625 	dev->gso_max_size = size;
3626 }
3627 
3628 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3629 					int pulled_hlen, u16 mac_offset,
3630 					int mac_len)
3631 {
3632 	skb->protocol = protocol;
3633 	skb->encapsulation = 1;
3634 	skb_push(skb, pulled_hlen);
3635 	skb_reset_transport_header(skb);
3636 	skb->mac_header = mac_offset;
3637 	skb->network_header = skb->mac_header + mac_len;
3638 	skb->mac_len = mac_len;
3639 }
3640 
3641 static inline bool netif_is_macvlan(struct net_device *dev)
3642 {
3643 	return dev->priv_flags & IFF_MACVLAN;
3644 }
3645 
3646 static inline bool netif_is_macvlan_port(struct net_device *dev)
3647 {
3648 	return dev->priv_flags & IFF_MACVLAN_PORT;
3649 }
3650 
3651 static inline bool netif_is_ipvlan(struct net_device *dev)
3652 {
3653 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3654 }
3655 
3656 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3657 {
3658 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3659 }
3660 
3661 static inline bool netif_is_bond_master(struct net_device *dev)
3662 {
3663 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3664 }
3665 
3666 static inline bool netif_is_bond_slave(struct net_device *dev)
3667 {
3668 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3669 }
3670 
3671 static inline bool netif_supports_nofcs(struct net_device *dev)
3672 {
3673 	return dev->priv_flags & IFF_SUPP_NOFCS;
3674 }
3675 
3676 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3677 static inline void netif_keep_dst(struct net_device *dev)
3678 {
3679 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3680 }
3681 
3682 extern struct pernet_operations __net_initdata loopback_net_ops;
3683 
3684 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3685 
3686 /* netdev_printk helpers, similar to dev_printk */
3687 
3688 static inline const char *netdev_name(const struct net_device *dev)
3689 {
3690 	if (!dev->name[0] || strchr(dev->name, '%'))
3691 		return "(unnamed net_device)";
3692 	return dev->name;
3693 }
3694 
3695 static inline const char *netdev_reg_state(const struct net_device *dev)
3696 {
3697 	switch (dev->reg_state) {
3698 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3699 	case NETREG_REGISTERED: return "";
3700 	case NETREG_UNREGISTERING: return " (unregistering)";
3701 	case NETREG_UNREGISTERED: return " (unregistered)";
3702 	case NETREG_RELEASED: return " (released)";
3703 	case NETREG_DUMMY: return " (dummy)";
3704 	}
3705 
3706 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3707 	return " (unknown)";
3708 }
3709 
3710 __printf(3, 4)
3711 void netdev_printk(const char *level, const struct net_device *dev,
3712 		   const char *format, ...);
3713 __printf(2, 3)
3714 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3715 __printf(2, 3)
3716 void netdev_alert(const struct net_device *dev, const char *format, ...);
3717 __printf(2, 3)
3718 void netdev_crit(const struct net_device *dev, const char *format, ...);
3719 __printf(2, 3)
3720 void netdev_err(const struct net_device *dev, const char *format, ...);
3721 __printf(2, 3)
3722 void netdev_warn(const struct net_device *dev, const char *format, ...);
3723 __printf(2, 3)
3724 void netdev_notice(const struct net_device *dev, const char *format, ...);
3725 __printf(2, 3)
3726 void netdev_info(const struct net_device *dev, const char *format, ...);
3727 
3728 #define MODULE_ALIAS_NETDEV(device) \
3729 	MODULE_ALIAS("netdev-" device)
3730 
3731 #if defined(CONFIG_DYNAMIC_DEBUG)
3732 #define netdev_dbg(__dev, format, args...)			\
3733 do {								\
3734 	dynamic_netdev_dbg(__dev, format, ##args);		\
3735 } while (0)
3736 #elif defined(DEBUG)
3737 #define netdev_dbg(__dev, format, args...)			\
3738 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3739 #else
3740 #define netdev_dbg(__dev, format, args...)			\
3741 ({								\
3742 	if (0)							\
3743 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3744 })
3745 #endif
3746 
3747 #if defined(VERBOSE_DEBUG)
3748 #define netdev_vdbg	netdev_dbg
3749 #else
3750 
3751 #define netdev_vdbg(dev, format, args...)			\
3752 ({								\
3753 	if (0)							\
3754 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3755 	0;							\
3756 })
3757 #endif
3758 
3759 /*
3760  * netdev_WARN() acts like dev_printk(), but with the key difference
3761  * of using a WARN/WARN_ON to get the message out, including the
3762  * file/line information and a backtrace.
3763  */
3764 #define netdev_WARN(dev, format, args...)			\
3765 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3766 	     netdev_reg_state(dev), ##args)
3767 
3768 /* netif printk helpers, similar to netdev_printk */
3769 
3770 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3771 do {					  			\
3772 	if (netif_msg_##type(priv))				\
3773 		netdev_printk(level, (dev), fmt, ##args);	\
3774 } while (0)
3775 
3776 #define netif_level(level, priv, type, dev, fmt, args...)	\
3777 do {								\
3778 	if (netif_msg_##type(priv))				\
3779 		netdev_##level(dev, fmt, ##args);		\
3780 } while (0)
3781 
3782 #define netif_emerg(priv, type, dev, fmt, args...)		\
3783 	netif_level(emerg, priv, type, dev, fmt, ##args)
3784 #define netif_alert(priv, type, dev, fmt, args...)		\
3785 	netif_level(alert, priv, type, dev, fmt, ##args)
3786 #define netif_crit(priv, type, dev, fmt, args...)		\
3787 	netif_level(crit, priv, type, dev, fmt, ##args)
3788 #define netif_err(priv, type, dev, fmt, args...)		\
3789 	netif_level(err, priv, type, dev, fmt, ##args)
3790 #define netif_warn(priv, type, dev, fmt, args...)		\
3791 	netif_level(warn, priv, type, dev, fmt, ##args)
3792 #define netif_notice(priv, type, dev, fmt, args...)		\
3793 	netif_level(notice, priv, type, dev, fmt, ##args)
3794 #define netif_info(priv, type, dev, fmt, args...)		\
3795 	netif_level(info, priv, type, dev, fmt, ##args)
3796 
3797 #if defined(CONFIG_DYNAMIC_DEBUG)
3798 #define netif_dbg(priv, type, netdev, format, args...)		\
3799 do {								\
3800 	if (netif_msg_##type(priv))				\
3801 		dynamic_netdev_dbg(netdev, format, ##args);	\
3802 } while (0)
3803 #elif defined(DEBUG)
3804 #define netif_dbg(priv, type, dev, format, args...)		\
3805 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3806 #else
3807 #define netif_dbg(priv, type, dev, format, args...)			\
3808 ({									\
3809 	if (0)								\
3810 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3811 	0;								\
3812 })
3813 #endif
3814 
3815 #if defined(VERBOSE_DEBUG)
3816 #define netif_vdbg	netif_dbg
3817 #else
3818 #define netif_vdbg(priv, type, dev, format, args...)		\
3819 ({								\
3820 	if (0)							\
3821 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3822 	0;							\
3823 })
3824 #endif
3825 
3826 /*
3827  *	The list of packet types we will receive (as opposed to discard)
3828  *	and the routines to invoke.
3829  *
3830  *	Why 16. Because with 16 the only overlap we get on a hash of the
3831  *	low nibble of the protocol value is RARP/SNAP/X.25.
3832  *
3833  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3834  *             sure which should go first, but I bet it won't make much
3835  *             difference if we are running VLANs.  The good news is that
3836  *             this protocol won't be in the list unless compiled in, so
3837  *             the average user (w/out VLANs) will not be adversely affected.
3838  *             --BLG
3839  *
3840  *		0800	IP
3841  *		8100    802.1Q VLAN
3842  *		0001	802.3
3843  *		0002	AX.25
3844  *		0004	802.2
3845  *		8035	RARP
3846  *		0005	SNAP
3847  *		0805	X.25
3848  *		0806	ARP
3849  *		8137	IPX
3850  *		0009	Localtalk
3851  *		86DD	IPv6
3852  */
3853 #define PTYPE_HASH_SIZE	(16)
3854 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3855 
3856 #endif	/* _LINUX_NETDEVICE_H */
3857