1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key_false rps_needed; 198 extern struct static_key_false rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 __be16 (*parse_protocol)(const struct sk_buff *skb); 278 }; 279 280 /* These flag bits are private to the generic network queueing 281 * layer; they may not be explicitly referenced by any other 282 * code. 283 */ 284 285 enum netdev_state_t { 286 __LINK_STATE_START, 287 __LINK_STATE_PRESENT, 288 __LINK_STATE_NOCARRIER, 289 __LINK_STATE_LINKWATCH_PENDING, 290 __LINK_STATE_DORMANT, 291 }; 292 293 294 /* 295 * This structure holds boot-time configured netdevice settings. They 296 * are then used in the device probing. 297 */ 298 struct netdev_boot_setup { 299 char name[IFNAMSIZ]; 300 struct ifmap map; 301 }; 302 #define NETDEV_BOOT_SETUP_MAX 8 303 304 int __init netdev_boot_setup(char *str); 305 306 struct gro_list { 307 struct list_head list; 308 int count; 309 }; 310 311 /* 312 * size of gro hash buckets, must less than bit number of 313 * napi_struct::gro_bitmask 314 */ 315 #define GRO_HASH_BUCKETS 8 316 317 /* 318 * Structure for NAPI scheduling similar to tasklet but with weighting 319 */ 320 struct napi_struct { 321 /* The poll_list must only be managed by the entity which 322 * changes the state of the NAPI_STATE_SCHED bit. This means 323 * whoever atomically sets that bit can add this napi_struct 324 * to the per-CPU poll_list, and whoever clears that bit 325 * can remove from the list right before clearing the bit. 326 */ 327 struct list_head poll_list; 328 329 unsigned long state; 330 int weight; 331 unsigned long gro_bitmask; 332 int (*poll)(struct napi_struct *, int); 333 #ifdef CONFIG_NETPOLL 334 int poll_owner; 335 #endif 336 struct net_device *dev; 337 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 338 struct sk_buff *skb; 339 struct hrtimer timer; 340 struct list_head dev_list; 341 struct hlist_node napi_hash_node; 342 unsigned int napi_id; 343 }; 344 345 enum { 346 NAPI_STATE_SCHED, /* Poll is scheduled */ 347 NAPI_STATE_MISSED, /* reschedule a napi */ 348 NAPI_STATE_DISABLE, /* Disable pending */ 349 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 350 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 351 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 352 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 353 }; 354 355 enum { 356 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 357 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 358 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 359 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 360 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 361 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 362 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 363 }; 364 365 enum gro_result { 366 GRO_MERGED, 367 GRO_MERGED_FREE, 368 GRO_HELD, 369 GRO_NORMAL, 370 GRO_DROP, 371 GRO_CONSUMED, 372 }; 373 typedef enum gro_result gro_result_t; 374 375 /* 376 * enum rx_handler_result - Possible return values for rx_handlers. 377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 378 * further. 379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 380 * case skb->dev was changed by rx_handler. 381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 383 * 384 * rx_handlers are functions called from inside __netif_receive_skb(), to do 385 * special processing of the skb, prior to delivery to protocol handlers. 386 * 387 * Currently, a net_device can only have a single rx_handler registered. Trying 388 * to register a second rx_handler will return -EBUSY. 389 * 390 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 391 * To unregister a rx_handler on a net_device, use 392 * netdev_rx_handler_unregister(). 393 * 394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 395 * do with the skb. 396 * 397 * If the rx_handler consumed the skb in some way, it should return 398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 399 * the skb to be delivered in some other way. 400 * 401 * If the rx_handler changed skb->dev, to divert the skb to another 402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 403 * new device will be called if it exists. 404 * 405 * If the rx_handler decides the skb should be ignored, it should return 406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 407 * are registered on exact device (ptype->dev == skb->dev). 408 * 409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 410 * delivered, it should return RX_HANDLER_PASS. 411 * 412 * A device without a registered rx_handler will behave as if rx_handler 413 * returned RX_HANDLER_PASS. 414 */ 415 416 enum rx_handler_result { 417 RX_HANDLER_CONSUMED, 418 RX_HANDLER_ANOTHER, 419 RX_HANDLER_EXACT, 420 RX_HANDLER_PASS, 421 }; 422 typedef enum rx_handler_result rx_handler_result_t; 423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 424 425 void __napi_schedule(struct napi_struct *n); 426 void __napi_schedule_irqoff(struct napi_struct *n); 427 428 static inline bool napi_disable_pending(struct napi_struct *n) 429 { 430 return test_bit(NAPI_STATE_DISABLE, &n->state); 431 } 432 433 bool napi_schedule_prep(struct napi_struct *n); 434 435 /** 436 * napi_schedule - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Schedule NAPI poll routine to be called if it is not already 440 * running. 441 */ 442 static inline void napi_schedule(struct napi_struct *n) 443 { 444 if (napi_schedule_prep(n)) 445 __napi_schedule(n); 446 } 447 448 /** 449 * napi_schedule_irqoff - schedule NAPI poll 450 * @n: NAPI context 451 * 452 * Variant of napi_schedule(), assuming hard irqs are masked. 453 */ 454 static inline void napi_schedule_irqoff(struct napi_struct *n) 455 { 456 if (napi_schedule_prep(n)) 457 __napi_schedule_irqoff(n); 458 } 459 460 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 461 static inline bool napi_reschedule(struct napi_struct *napi) 462 { 463 if (napi_schedule_prep(napi)) { 464 __napi_schedule(napi); 465 return true; 466 } 467 return false; 468 } 469 470 bool napi_complete_done(struct napi_struct *n, int work_done); 471 /** 472 * napi_complete - NAPI processing complete 473 * @n: NAPI context 474 * 475 * Mark NAPI processing as complete. 476 * Consider using napi_complete_done() instead. 477 * Return false if device should avoid rearming interrupts. 478 */ 479 static inline bool napi_complete(struct napi_struct *n) 480 { 481 return napi_complete_done(n, 0); 482 } 483 484 /** 485 * napi_hash_del - remove a NAPI from global table 486 * @napi: NAPI context 487 * 488 * Warning: caller must observe RCU grace period 489 * before freeing memory containing @napi, if 490 * this function returns true. 491 * Note: core networking stack automatically calls it 492 * from netif_napi_del(). 493 * Drivers might want to call this helper to combine all 494 * the needed RCU grace periods into a single one. 495 */ 496 bool napi_hash_del(struct napi_struct *napi); 497 498 /** 499 * napi_disable - prevent NAPI from scheduling 500 * @n: NAPI context 501 * 502 * Stop NAPI from being scheduled on this context. 503 * Waits till any outstanding processing completes. 504 */ 505 void napi_disable(struct napi_struct *n); 506 507 /** 508 * napi_enable - enable NAPI scheduling 509 * @n: NAPI context 510 * 511 * Resume NAPI from being scheduled on this context. 512 * Must be paired with napi_disable. 513 */ 514 static inline void napi_enable(struct napi_struct *n) 515 { 516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 517 smp_mb__before_atomic(); 518 clear_bit(NAPI_STATE_SCHED, &n->state); 519 clear_bit(NAPI_STATE_NPSVC, &n->state); 520 } 521 522 /** 523 * napi_synchronize - wait until NAPI is not running 524 * @n: NAPI context 525 * 526 * Wait until NAPI is done being scheduled on this context. 527 * Waits till any outstanding processing completes but 528 * does not disable future activations. 529 */ 530 static inline void napi_synchronize(const struct napi_struct *n) 531 { 532 if (IS_ENABLED(CONFIG_SMP)) 533 while (test_bit(NAPI_STATE_SCHED, &n->state)) 534 msleep(1); 535 else 536 barrier(); 537 } 538 539 /** 540 * napi_if_scheduled_mark_missed - if napi is running, set the 541 * NAPIF_STATE_MISSED 542 * @n: NAPI context 543 * 544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 545 * NAPI is scheduled. 546 **/ 547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 548 { 549 unsigned long val, new; 550 551 do { 552 val = READ_ONCE(n->state); 553 if (val & NAPIF_STATE_DISABLE) 554 return true; 555 556 if (!(val & NAPIF_STATE_SCHED)) 557 return false; 558 559 new = val | NAPIF_STATE_MISSED; 560 } while (cmpxchg(&n->state, val, new) != val); 561 562 return true; 563 } 564 565 enum netdev_queue_state_t { 566 __QUEUE_STATE_DRV_XOFF, 567 __QUEUE_STATE_STACK_XOFF, 568 __QUEUE_STATE_FROZEN, 569 }; 570 571 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 572 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 573 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 574 575 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 579 QUEUE_STATE_FROZEN) 580 581 /* 582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 583 * netif_tx_* functions below are used to manipulate this flag. The 584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 585 * queue independently. The netif_xmit_*stopped functions below are called 586 * to check if the queue has been stopped by the driver or stack (either 587 * of the XOFF bits are set in the state). Drivers should not need to call 588 * netif_xmit*stopped functions, they should only be using netif_tx_*. 589 */ 590 591 struct netdev_queue { 592 /* 593 * read-mostly part 594 */ 595 struct net_device *dev; 596 struct Qdisc __rcu *qdisc; 597 struct Qdisc *qdisc_sleeping; 598 #ifdef CONFIG_SYSFS 599 struct kobject kobj; 600 #endif 601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 602 int numa_node; 603 #endif 604 unsigned long tx_maxrate; 605 /* 606 * Number of TX timeouts for this queue 607 * (/sys/class/net/DEV/Q/trans_timeout) 608 */ 609 unsigned long trans_timeout; 610 611 /* Subordinate device that the queue has been assigned to */ 612 struct net_device *sb_dev; 613 #ifdef CONFIG_XDP_SOCKETS 614 struct xdp_umem *umem; 615 #endif 616 /* 617 * write-mostly part 618 */ 619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 620 int xmit_lock_owner; 621 /* 622 * Time (in jiffies) of last Tx 623 */ 624 unsigned long trans_start; 625 626 unsigned long state; 627 628 #ifdef CONFIG_BQL 629 struct dql dql; 630 #endif 631 } ____cacheline_aligned_in_smp; 632 633 extern int sysctl_fb_tunnels_only_for_init_net; 634 extern int sysctl_devconf_inherit_init_net; 635 636 static inline bool net_has_fallback_tunnels(const struct net *net) 637 { 638 return net == &init_net || 639 !IS_ENABLED(CONFIG_SYSCTL) || 640 !sysctl_fb_tunnels_only_for_init_net; 641 } 642 643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 644 { 645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 646 return q->numa_node; 647 #else 648 return NUMA_NO_NODE; 649 #endif 650 } 651 652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 653 { 654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 q->numa_node = node; 656 #endif 657 } 658 659 #ifdef CONFIG_RPS 660 /* 661 * This structure holds an RPS map which can be of variable length. The 662 * map is an array of CPUs. 663 */ 664 struct rps_map { 665 unsigned int len; 666 struct rcu_head rcu; 667 u16 cpus[0]; 668 }; 669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 670 671 /* 672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 673 * tail pointer for that CPU's input queue at the time of last enqueue, and 674 * a hardware filter index. 675 */ 676 struct rps_dev_flow { 677 u16 cpu; 678 u16 filter; 679 unsigned int last_qtail; 680 }; 681 #define RPS_NO_FILTER 0xffff 682 683 /* 684 * The rps_dev_flow_table structure contains a table of flow mappings. 685 */ 686 struct rps_dev_flow_table { 687 unsigned int mask; 688 struct rcu_head rcu; 689 struct rps_dev_flow flows[0]; 690 }; 691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 692 ((_num) * sizeof(struct rps_dev_flow))) 693 694 /* 695 * The rps_sock_flow_table contains mappings of flows to the last CPU 696 * on which they were processed by the application (set in recvmsg). 697 * Each entry is a 32bit value. Upper part is the high-order bits 698 * of flow hash, lower part is CPU number. 699 * rps_cpu_mask is used to partition the space, depending on number of 700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 702 * meaning we use 32-6=26 bits for the hash. 703 */ 704 struct rps_sock_flow_table { 705 u32 mask; 706 707 u32 ents[0] ____cacheline_aligned_in_smp; 708 }; 709 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 710 711 #define RPS_NO_CPU 0xffff 712 713 extern u32 rps_cpu_mask; 714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 715 716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 717 u32 hash) 718 { 719 if (table && hash) { 720 unsigned int index = hash & table->mask; 721 u32 val = hash & ~rps_cpu_mask; 722 723 /* We only give a hint, preemption can change CPU under us */ 724 val |= raw_smp_processor_id(); 725 726 if (table->ents[index] != val) 727 table->ents[index] = val; 728 } 729 } 730 731 #ifdef CONFIG_RFS_ACCEL 732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 733 u16 filter_id); 734 #endif 735 #endif /* CONFIG_RPS */ 736 737 /* This structure contains an instance of an RX queue. */ 738 struct netdev_rx_queue { 739 #ifdef CONFIG_RPS 740 struct rps_map __rcu *rps_map; 741 struct rps_dev_flow_table __rcu *rps_flow_table; 742 #endif 743 struct kobject kobj; 744 struct net_device *dev; 745 struct xdp_rxq_info xdp_rxq; 746 #ifdef CONFIG_XDP_SOCKETS 747 struct xdp_umem *umem; 748 #endif 749 } ____cacheline_aligned_in_smp; 750 751 /* 752 * RX queue sysfs structures and functions. 753 */ 754 struct rx_queue_attribute { 755 struct attribute attr; 756 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 757 ssize_t (*store)(struct netdev_rx_queue *queue, 758 const char *buf, size_t len); 759 }; 760 761 #ifdef CONFIG_XPS 762 /* 763 * This structure holds an XPS map which can be of variable length. The 764 * map is an array of queues. 765 */ 766 struct xps_map { 767 unsigned int len; 768 unsigned int alloc_len; 769 struct rcu_head rcu; 770 u16 queues[0]; 771 }; 772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 774 - sizeof(struct xps_map)) / sizeof(u16)) 775 776 /* 777 * This structure holds all XPS maps for device. Maps are indexed by CPU. 778 */ 779 struct xps_dev_maps { 780 struct rcu_head rcu; 781 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 782 }; 783 784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 785 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 786 787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 788 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 789 790 #endif /* CONFIG_XPS */ 791 792 #define TC_MAX_QUEUE 16 793 #define TC_BITMASK 15 794 /* HW offloaded queuing disciplines txq count and offset maps */ 795 struct netdev_tc_txq { 796 u16 count; 797 u16 offset; 798 }; 799 800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 801 /* 802 * This structure is to hold information about the device 803 * configured to run FCoE protocol stack. 804 */ 805 struct netdev_fcoe_hbainfo { 806 char manufacturer[64]; 807 char serial_number[64]; 808 char hardware_version[64]; 809 char driver_version[64]; 810 char optionrom_version[64]; 811 char firmware_version[64]; 812 char model[256]; 813 char model_description[256]; 814 }; 815 #endif 816 817 #define MAX_PHYS_ITEM_ID_LEN 32 818 819 /* This structure holds a unique identifier to identify some 820 * physical item (port for example) used by a netdevice. 821 */ 822 struct netdev_phys_item_id { 823 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 824 unsigned char id_len; 825 }; 826 827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 828 struct netdev_phys_item_id *b) 829 { 830 return a->id_len == b->id_len && 831 memcmp(a->id, b->id, a->id_len) == 0; 832 } 833 834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 835 struct sk_buff *skb, 836 struct net_device *sb_dev); 837 838 enum tc_setup_type { 839 TC_SETUP_QDISC_MQPRIO, 840 TC_SETUP_CLSU32, 841 TC_SETUP_CLSFLOWER, 842 TC_SETUP_CLSMATCHALL, 843 TC_SETUP_CLSBPF, 844 TC_SETUP_BLOCK, 845 TC_SETUP_QDISC_CBS, 846 TC_SETUP_QDISC_RED, 847 TC_SETUP_QDISC_PRIO, 848 TC_SETUP_QDISC_MQ, 849 TC_SETUP_QDISC_ETF, 850 TC_SETUP_ROOT_QDISC, 851 TC_SETUP_QDISC_GRED, 852 }; 853 854 /* These structures hold the attributes of bpf state that are being passed 855 * to the netdevice through the bpf op. 856 */ 857 enum bpf_netdev_command { 858 /* Set or clear a bpf program used in the earliest stages of packet 859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 860 * is responsible for calling bpf_prog_put on any old progs that are 861 * stored. In case of error, the callee need not release the new prog 862 * reference, but on success it takes ownership and must bpf_prog_put 863 * when it is no longer used. 864 */ 865 XDP_SETUP_PROG, 866 XDP_SETUP_PROG_HW, 867 XDP_QUERY_PROG, 868 XDP_QUERY_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_UMEM, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 879 struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 895 struct { 896 struct bpf_offloaded_map *offmap; 897 }; 898 /* XDP_SETUP_XSK_UMEM */ 899 struct { 900 struct xdp_umem *umem; 901 u16 queue_id; 902 } xsk; 903 }; 904 }; 905 906 #ifdef CONFIG_XFRM_OFFLOAD 907 struct xfrmdev_ops { 908 int (*xdo_dev_state_add) (struct xfrm_state *x); 909 void (*xdo_dev_state_delete) (struct xfrm_state *x); 910 void (*xdo_dev_state_free) (struct xfrm_state *x); 911 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 912 struct xfrm_state *x); 913 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 914 }; 915 #endif 916 917 #if IS_ENABLED(CONFIG_TLS_DEVICE) 918 enum tls_offload_ctx_dir { 919 TLS_OFFLOAD_CTX_DIR_RX, 920 TLS_OFFLOAD_CTX_DIR_TX, 921 }; 922 923 struct tls_crypto_info; 924 struct tls_context; 925 926 struct tlsdev_ops { 927 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 928 enum tls_offload_ctx_dir direction, 929 struct tls_crypto_info *crypto_info, 930 u32 start_offload_tcp_sn); 931 void (*tls_dev_del)(struct net_device *netdev, 932 struct tls_context *ctx, 933 enum tls_offload_ctx_dir direction); 934 void (*tls_dev_resync_rx)(struct net_device *netdev, 935 struct sock *sk, u32 seq, u64 rcd_sn); 936 }; 937 #endif 938 939 struct dev_ifalias { 940 struct rcu_head rcuhead; 941 char ifalias[]; 942 }; 943 944 struct devlink; 945 946 /* 947 * This structure defines the management hooks for network devices. 948 * The following hooks can be defined; unless noted otherwise, they are 949 * optional and can be filled with a null pointer. 950 * 951 * int (*ndo_init)(struct net_device *dev); 952 * This function is called once when a network device is registered. 953 * The network device can use this for any late stage initialization 954 * or semantic validation. It can fail with an error code which will 955 * be propagated back to register_netdev. 956 * 957 * void (*ndo_uninit)(struct net_device *dev); 958 * This function is called when device is unregistered or when registration 959 * fails. It is not called if init fails. 960 * 961 * int (*ndo_open)(struct net_device *dev); 962 * This function is called when a network device transitions to the up 963 * state. 964 * 965 * int (*ndo_stop)(struct net_device *dev); 966 * This function is called when a network device transitions to the down 967 * state. 968 * 969 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 970 * struct net_device *dev); 971 * Called when a packet needs to be transmitted. 972 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 973 * the queue before that can happen; it's for obsolete devices and weird 974 * corner cases, but the stack really does a non-trivial amount 975 * of useless work if you return NETDEV_TX_BUSY. 976 * Required; cannot be NULL. 977 * 978 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 979 * struct net_device *dev 980 * netdev_features_t features); 981 * Called by core transmit path to determine if device is capable of 982 * performing offload operations on a given packet. This is to give 983 * the device an opportunity to implement any restrictions that cannot 984 * be otherwise expressed by feature flags. The check is called with 985 * the set of features that the stack has calculated and it returns 986 * those the driver believes to be appropriate. 987 * 988 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 989 * struct net_device *sb_dev); 990 * Called to decide which queue to use when device supports multiple 991 * transmit queues. 992 * 993 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 994 * This function is called to allow device receiver to make 995 * changes to configuration when multicast or promiscuous is enabled. 996 * 997 * void (*ndo_set_rx_mode)(struct net_device *dev); 998 * This function is called device changes address list filtering. 999 * If driver handles unicast address filtering, it should set 1000 * IFF_UNICAST_FLT in its priv_flags. 1001 * 1002 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1003 * This function is called when the Media Access Control address 1004 * needs to be changed. If this interface is not defined, the 1005 * MAC address can not be changed. 1006 * 1007 * int (*ndo_validate_addr)(struct net_device *dev); 1008 * Test if Media Access Control address is valid for the device. 1009 * 1010 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1011 * Called when a user requests an ioctl which can't be handled by 1012 * the generic interface code. If not defined ioctls return 1013 * not supported error code. 1014 * 1015 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1016 * Used to set network devices bus interface parameters. This interface 1017 * is retained for legacy reasons; new devices should use the bus 1018 * interface (PCI) for low level management. 1019 * 1020 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1021 * Called when a user wants to change the Maximum Transfer Unit 1022 * of a device. 1023 * 1024 * void (*ndo_tx_timeout)(struct net_device *dev); 1025 * Callback used when the transmitter has not made any progress 1026 * for dev->watchdog ticks. 1027 * 1028 * void (*ndo_get_stats64)(struct net_device *dev, 1029 * struct rtnl_link_stats64 *storage); 1030 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1031 * Called when a user wants to get the network device usage 1032 * statistics. Drivers must do one of the following: 1033 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1034 * rtnl_link_stats64 structure passed by the caller. 1035 * 2. Define @ndo_get_stats to update a net_device_stats structure 1036 * (which should normally be dev->stats) and return a pointer to 1037 * it. The structure may be changed asynchronously only if each 1038 * field is written atomically. 1039 * 3. Update dev->stats asynchronously and atomically, and define 1040 * neither operation. 1041 * 1042 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1043 * Return true if this device supports offload stats of this attr_id. 1044 * 1045 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1046 * void *attr_data) 1047 * Get statistics for offload operations by attr_id. Write it into the 1048 * attr_data pointer. 1049 * 1050 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1051 * If device supports VLAN filtering this function is called when a 1052 * VLAN id is registered. 1053 * 1054 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1055 * If device supports VLAN filtering this function is called when a 1056 * VLAN id is unregistered. 1057 * 1058 * void (*ndo_poll_controller)(struct net_device *dev); 1059 * 1060 * SR-IOV management functions. 1061 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1062 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1063 * u8 qos, __be16 proto); 1064 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1065 * int max_tx_rate); 1066 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1067 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1068 * int (*ndo_get_vf_config)(struct net_device *dev, 1069 * int vf, struct ifla_vf_info *ivf); 1070 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1071 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1072 * struct nlattr *port[]); 1073 * 1074 * Enable or disable the VF ability to query its RSS Redirection Table and 1075 * Hash Key. This is needed since on some devices VF share this information 1076 * with PF and querying it may introduce a theoretical security risk. 1077 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1078 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1079 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1080 * void *type_data); 1081 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1082 * This is always called from the stack with the rtnl lock held and netif 1083 * tx queues stopped. This allows the netdevice to perform queue 1084 * management safely. 1085 * 1086 * Fiber Channel over Ethernet (FCoE) offload functions. 1087 * int (*ndo_fcoe_enable)(struct net_device *dev); 1088 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1089 * so the underlying device can perform whatever needed configuration or 1090 * initialization to support acceleration of FCoE traffic. 1091 * 1092 * int (*ndo_fcoe_disable)(struct net_device *dev); 1093 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1094 * so the underlying device can perform whatever needed clean-ups to 1095 * stop supporting acceleration of FCoE traffic. 1096 * 1097 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1098 * struct scatterlist *sgl, unsigned int sgc); 1099 * Called when the FCoE Initiator wants to initialize an I/O that 1100 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1101 * perform necessary setup and returns 1 to indicate the device is set up 1102 * successfully to perform DDP on this I/O, otherwise this returns 0. 1103 * 1104 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1105 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1106 * indicated by the FC exchange id 'xid', so the underlying device can 1107 * clean up and reuse resources for later DDP requests. 1108 * 1109 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1110 * struct scatterlist *sgl, unsigned int sgc); 1111 * Called when the FCoE Target wants to initialize an I/O that 1112 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1113 * perform necessary setup and returns 1 to indicate the device is set up 1114 * successfully to perform DDP on this I/O, otherwise this returns 0. 1115 * 1116 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1117 * struct netdev_fcoe_hbainfo *hbainfo); 1118 * Called when the FCoE Protocol stack wants information on the underlying 1119 * device. This information is utilized by the FCoE protocol stack to 1120 * register attributes with Fiber Channel management service as per the 1121 * FC-GS Fabric Device Management Information(FDMI) specification. 1122 * 1123 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1124 * Called when the underlying device wants to override default World Wide 1125 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1126 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1127 * protocol stack to use. 1128 * 1129 * RFS acceleration. 1130 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1131 * u16 rxq_index, u32 flow_id); 1132 * Set hardware filter for RFS. rxq_index is the target queue index; 1133 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1134 * Return the filter ID on success, or a negative error code. 1135 * 1136 * Slave management functions (for bridge, bonding, etc). 1137 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1138 * Called to make another netdev an underling. 1139 * 1140 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1141 * Called to release previously enslaved netdev. 1142 * 1143 * Feature/offload setting functions. 1144 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1145 * netdev_features_t features); 1146 * Adjusts the requested feature flags according to device-specific 1147 * constraints, and returns the resulting flags. Must not modify 1148 * the device state. 1149 * 1150 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1151 * Called to update device configuration to new features. Passed 1152 * feature set might be less than what was returned by ndo_fix_features()). 1153 * Must return >0 or -errno if it changed dev->features itself. 1154 * 1155 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1156 * struct net_device *dev, 1157 * const unsigned char *addr, u16 vid, u16 flags, 1158 * struct netlink_ext_ack *extack); 1159 * Adds an FDB entry to dev for addr. 1160 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1161 * struct net_device *dev, 1162 * const unsigned char *addr, u16 vid) 1163 * Deletes the FDB entry from dev coresponding to addr. 1164 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1165 * struct net_device *dev, struct net_device *filter_dev, 1166 * int *idx) 1167 * Used to add FDB entries to dump requests. Implementers should add 1168 * entries to skb and update idx with the number of entries. 1169 * 1170 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1171 * u16 flags, struct netlink_ext_ack *extack) 1172 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1173 * struct net_device *dev, u32 filter_mask, 1174 * int nlflags) 1175 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1176 * u16 flags); 1177 * 1178 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1179 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1180 * which do not represent real hardware may define this to allow their 1181 * userspace components to manage their virtual carrier state. Devices 1182 * that determine carrier state from physical hardware properties (eg 1183 * network cables) or protocol-dependent mechanisms (eg 1184 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1185 * 1186 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1187 * struct netdev_phys_item_id *ppid); 1188 * Called to get ID of physical port of this device. If driver does 1189 * not implement this, it is assumed that the hw is not able to have 1190 * multiple net devices on single physical port. 1191 * 1192 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1193 * struct netdev_phys_item_id *ppid) 1194 * Called to get the parent ID of the physical port of this device. 1195 * 1196 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1197 * struct udp_tunnel_info *ti); 1198 * Called by UDP tunnel to notify a driver about the UDP port and socket 1199 * address family that a UDP tunnel is listnening to. It is called only 1200 * when a new port starts listening. The operation is protected by the 1201 * RTNL. 1202 * 1203 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1204 * struct udp_tunnel_info *ti); 1205 * Called by UDP tunnel to notify the driver about a UDP port and socket 1206 * address family that the UDP tunnel is not listening to anymore. The 1207 * operation is protected by the RTNL. 1208 * 1209 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1210 * struct net_device *dev) 1211 * Called by upper layer devices to accelerate switching or other 1212 * station functionality into hardware. 'pdev is the lowerdev 1213 * to use for the offload and 'dev' is the net device that will 1214 * back the offload. Returns a pointer to the private structure 1215 * the upper layer will maintain. 1216 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1217 * Called by upper layer device to delete the station created 1218 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1219 * the station and priv is the structure returned by the add 1220 * operation. 1221 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1222 * int queue_index, u32 maxrate); 1223 * Called when a user wants to set a max-rate limitation of specific 1224 * TX queue. 1225 * int (*ndo_get_iflink)(const struct net_device *dev); 1226 * Called to get the iflink value of this device. 1227 * void (*ndo_change_proto_down)(struct net_device *dev, 1228 * bool proto_down); 1229 * This function is used to pass protocol port error state information 1230 * to the switch driver. The switch driver can react to the proto_down 1231 * by doing a phys down on the associated switch port. 1232 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1233 * This function is used to get egress tunnel information for given skb. 1234 * This is useful for retrieving outer tunnel header parameters while 1235 * sampling packet. 1236 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1237 * This function is used to specify the headroom that the skb must 1238 * consider when allocation skb during packet reception. Setting 1239 * appropriate rx headroom value allows avoiding skb head copy on 1240 * forward. Setting a negative value resets the rx headroom to the 1241 * default value. 1242 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1243 * This function is used to set or query state related to XDP on the 1244 * netdevice and manage BPF offload. See definition of 1245 * enum bpf_netdev_command for details. 1246 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1247 * u32 flags); 1248 * This function is used to submit @n XDP packets for transmit on a 1249 * netdevice. Returns number of frames successfully transmitted, frames 1250 * that got dropped are freed/returned via xdp_return_frame(). 1251 * Returns negative number, means general error invoking ndo, meaning 1252 * no frames were xmit'ed and core-caller will free all frames. 1253 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1254 * Get devlink port instance associated with a given netdev. 1255 * Called with a reference on the netdevice and devlink locks only, 1256 * rtnl_lock is not held. 1257 */ 1258 struct net_device_ops { 1259 int (*ndo_init)(struct net_device *dev); 1260 void (*ndo_uninit)(struct net_device *dev); 1261 int (*ndo_open)(struct net_device *dev); 1262 int (*ndo_stop)(struct net_device *dev); 1263 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1264 struct net_device *dev); 1265 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1266 struct net_device *dev, 1267 netdev_features_t features); 1268 u16 (*ndo_select_queue)(struct net_device *dev, 1269 struct sk_buff *skb, 1270 struct net_device *sb_dev); 1271 void (*ndo_change_rx_flags)(struct net_device *dev, 1272 int flags); 1273 void (*ndo_set_rx_mode)(struct net_device *dev); 1274 int (*ndo_set_mac_address)(struct net_device *dev, 1275 void *addr); 1276 int (*ndo_validate_addr)(struct net_device *dev); 1277 int (*ndo_do_ioctl)(struct net_device *dev, 1278 struct ifreq *ifr, int cmd); 1279 int (*ndo_set_config)(struct net_device *dev, 1280 struct ifmap *map); 1281 int (*ndo_change_mtu)(struct net_device *dev, 1282 int new_mtu); 1283 int (*ndo_neigh_setup)(struct net_device *dev, 1284 struct neigh_parms *); 1285 void (*ndo_tx_timeout) (struct net_device *dev); 1286 1287 void (*ndo_get_stats64)(struct net_device *dev, 1288 struct rtnl_link_stats64 *storage); 1289 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1290 int (*ndo_get_offload_stats)(int attr_id, 1291 const struct net_device *dev, 1292 void *attr_data); 1293 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1294 1295 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1296 __be16 proto, u16 vid); 1297 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1298 __be16 proto, u16 vid); 1299 #ifdef CONFIG_NET_POLL_CONTROLLER 1300 void (*ndo_poll_controller)(struct net_device *dev); 1301 int (*ndo_netpoll_setup)(struct net_device *dev, 1302 struct netpoll_info *info); 1303 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1304 #endif 1305 int (*ndo_set_vf_mac)(struct net_device *dev, 1306 int queue, u8 *mac); 1307 int (*ndo_set_vf_vlan)(struct net_device *dev, 1308 int queue, u16 vlan, 1309 u8 qos, __be16 proto); 1310 int (*ndo_set_vf_rate)(struct net_device *dev, 1311 int vf, int min_tx_rate, 1312 int max_tx_rate); 1313 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1314 int vf, bool setting); 1315 int (*ndo_set_vf_trust)(struct net_device *dev, 1316 int vf, bool setting); 1317 int (*ndo_get_vf_config)(struct net_device *dev, 1318 int vf, 1319 struct ifla_vf_info *ivf); 1320 int (*ndo_set_vf_link_state)(struct net_device *dev, 1321 int vf, int link_state); 1322 int (*ndo_get_vf_stats)(struct net_device *dev, 1323 int vf, 1324 struct ifla_vf_stats 1325 *vf_stats); 1326 int (*ndo_set_vf_port)(struct net_device *dev, 1327 int vf, 1328 struct nlattr *port[]); 1329 int (*ndo_get_vf_port)(struct net_device *dev, 1330 int vf, struct sk_buff *skb); 1331 int (*ndo_set_vf_guid)(struct net_device *dev, 1332 int vf, u64 guid, 1333 int guid_type); 1334 int (*ndo_set_vf_rss_query_en)( 1335 struct net_device *dev, 1336 int vf, bool setting); 1337 int (*ndo_setup_tc)(struct net_device *dev, 1338 enum tc_setup_type type, 1339 void *type_data); 1340 #if IS_ENABLED(CONFIG_FCOE) 1341 int (*ndo_fcoe_enable)(struct net_device *dev); 1342 int (*ndo_fcoe_disable)(struct net_device *dev); 1343 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1344 u16 xid, 1345 struct scatterlist *sgl, 1346 unsigned int sgc); 1347 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1348 u16 xid); 1349 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1350 u16 xid, 1351 struct scatterlist *sgl, 1352 unsigned int sgc); 1353 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1354 struct netdev_fcoe_hbainfo *hbainfo); 1355 #endif 1356 1357 #if IS_ENABLED(CONFIG_LIBFCOE) 1358 #define NETDEV_FCOE_WWNN 0 1359 #define NETDEV_FCOE_WWPN 1 1360 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1361 u64 *wwn, int type); 1362 #endif 1363 1364 #ifdef CONFIG_RFS_ACCEL 1365 int (*ndo_rx_flow_steer)(struct net_device *dev, 1366 const struct sk_buff *skb, 1367 u16 rxq_index, 1368 u32 flow_id); 1369 #endif 1370 int (*ndo_add_slave)(struct net_device *dev, 1371 struct net_device *slave_dev, 1372 struct netlink_ext_ack *extack); 1373 int (*ndo_del_slave)(struct net_device *dev, 1374 struct net_device *slave_dev); 1375 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1376 netdev_features_t features); 1377 int (*ndo_set_features)(struct net_device *dev, 1378 netdev_features_t features); 1379 int (*ndo_neigh_construct)(struct net_device *dev, 1380 struct neighbour *n); 1381 void (*ndo_neigh_destroy)(struct net_device *dev, 1382 struct neighbour *n); 1383 1384 int (*ndo_fdb_add)(struct ndmsg *ndm, 1385 struct nlattr *tb[], 1386 struct net_device *dev, 1387 const unsigned char *addr, 1388 u16 vid, 1389 u16 flags, 1390 struct netlink_ext_ack *extack); 1391 int (*ndo_fdb_del)(struct ndmsg *ndm, 1392 struct nlattr *tb[], 1393 struct net_device *dev, 1394 const unsigned char *addr, 1395 u16 vid); 1396 int (*ndo_fdb_dump)(struct sk_buff *skb, 1397 struct netlink_callback *cb, 1398 struct net_device *dev, 1399 struct net_device *filter_dev, 1400 int *idx); 1401 int (*ndo_fdb_get)(struct sk_buff *skb, 1402 struct nlattr *tb[], 1403 struct net_device *dev, 1404 const unsigned char *addr, 1405 u16 vid, u32 portid, u32 seq, 1406 struct netlink_ext_ack *extack); 1407 int (*ndo_bridge_setlink)(struct net_device *dev, 1408 struct nlmsghdr *nlh, 1409 u16 flags, 1410 struct netlink_ext_ack *extack); 1411 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1412 u32 pid, u32 seq, 1413 struct net_device *dev, 1414 u32 filter_mask, 1415 int nlflags); 1416 int (*ndo_bridge_dellink)(struct net_device *dev, 1417 struct nlmsghdr *nlh, 1418 u16 flags); 1419 int (*ndo_change_carrier)(struct net_device *dev, 1420 bool new_carrier); 1421 int (*ndo_get_phys_port_id)(struct net_device *dev, 1422 struct netdev_phys_item_id *ppid); 1423 int (*ndo_get_port_parent_id)(struct net_device *dev, 1424 struct netdev_phys_item_id *ppid); 1425 int (*ndo_get_phys_port_name)(struct net_device *dev, 1426 char *name, size_t len); 1427 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1428 struct udp_tunnel_info *ti); 1429 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1430 struct udp_tunnel_info *ti); 1431 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1432 struct net_device *dev); 1433 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1434 void *priv); 1435 1436 int (*ndo_get_lock_subclass)(struct net_device *dev); 1437 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1438 int queue_index, 1439 u32 maxrate); 1440 int (*ndo_get_iflink)(const struct net_device *dev); 1441 int (*ndo_change_proto_down)(struct net_device *dev, 1442 bool proto_down); 1443 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1444 struct sk_buff *skb); 1445 void (*ndo_set_rx_headroom)(struct net_device *dev, 1446 int needed_headroom); 1447 int (*ndo_bpf)(struct net_device *dev, 1448 struct netdev_bpf *bpf); 1449 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1450 struct xdp_frame **xdp, 1451 u32 flags); 1452 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1453 u32 queue_id); 1454 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1455 }; 1456 1457 /** 1458 * enum net_device_priv_flags - &struct net_device priv_flags 1459 * 1460 * These are the &struct net_device, they are only set internally 1461 * by drivers and used in the kernel. These flags are invisible to 1462 * userspace; this means that the order of these flags can change 1463 * during any kernel release. 1464 * 1465 * You should have a pretty good reason to be extending these flags. 1466 * 1467 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1468 * @IFF_EBRIDGE: Ethernet bridging device 1469 * @IFF_BONDING: bonding master or slave 1470 * @IFF_ISATAP: ISATAP interface (RFC4214) 1471 * @IFF_WAN_HDLC: WAN HDLC device 1472 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1473 * release skb->dst 1474 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1475 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1476 * @IFF_MACVLAN_PORT: device used as macvlan port 1477 * @IFF_BRIDGE_PORT: device used as bridge port 1478 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1479 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1480 * @IFF_UNICAST_FLT: Supports unicast filtering 1481 * @IFF_TEAM_PORT: device used as team port 1482 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1483 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1484 * change when it's running 1485 * @IFF_MACVLAN: Macvlan device 1486 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1487 * underlying stacked devices 1488 * @IFF_L3MDEV_MASTER: device is an L3 master device 1489 * @IFF_NO_QUEUE: device can run without qdisc attached 1490 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1491 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1492 * @IFF_TEAM: device is a team device 1493 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1494 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1495 * entity (i.e. the master device for bridged veth) 1496 * @IFF_MACSEC: device is a MACsec device 1497 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1498 * @IFF_FAILOVER: device is a failover master device 1499 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1500 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1501 */ 1502 enum netdev_priv_flags { 1503 IFF_802_1Q_VLAN = 1<<0, 1504 IFF_EBRIDGE = 1<<1, 1505 IFF_BONDING = 1<<2, 1506 IFF_ISATAP = 1<<3, 1507 IFF_WAN_HDLC = 1<<4, 1508 IFF_XMIT_DST_RELEASE = 1<<5, 1509 IFF_DONT_BRIDGE = 1<<6, 1510 IFF_DISABLE_NETPOLL = 1<<7, 1511 IFF_MACVLAN_PORT = 1<<8, 1512 IFF_BRIDGE_PORT = 1<<9, 1513 IFF_OVS_DATAPATH = 1<<10, 1514 IFF_TX_SKB_SHARING = 1<<11, 1515 IFF_UNICAST_FLT = 1<<12, 1516 IFF_TEAM_PORT = 1<<13, 1517 IFF_SUPP_NOFCS = 1<<14, 1518 IFF_LIVE_ADDR_CHANGE = 1<<15, 1519 IFF_MACVLAN = 1<<16, 1520 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1521 IFF_L3MDEV_MASTER = 1<<18, 1522 IFF_NO_QUEUE = 1<<19, 1523 IFF_OPENVSWITCH = 1<<20, 1524 IFF_L3MDEV_SLAVE = 1<<21, 1525 IFF_TEAM = 1<<22, 1526 IFF_RXFH_CONFIGURED = 1<<23, 1527 IFF_PHONY_HEADROOM = 1<<24, 1528 IFF_MACSEC = 1<<25, 1529 IFF_NO_RX_HANDLER = 1<<26, 1530 IFF_FAILOVER = 1<<27, 1531 IFF_FAILOVER_SLAVE = 1<<28, 1532 IFF_L3MDEV_RX_HANDLER = 1<<29, 1533 }; 1534 1535 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1536 #define IFF_EBRIDGE IFF_EBRIDGE 1537 #define IFF_BONDING IFF_BONDING 1538 #define IFF_ISATAP IFF_ISATAP 1539 #define IFF_WAN_HDLC IFF_WAN_HDLC 1540 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1541 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1542 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1543 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1544 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1545 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1546 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1547 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1548 #define IFF_TEAM_PORT IFF_TEAM_PORT 1549 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1550 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1551 #define IFF_MACVLAN IFF_MACVLAN 1552 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1553 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1554 #define IFF_NO_QUEUE IFF_NO_QUEUE 1555 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1556 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1557 #define IFF_TEAM IFF_TEAM 1558 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1559 #define IFF_MACSEC IFF_MACSEC 1560 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1561 #define IFF_FAILOVER IFF_FAILOVER 1562 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1563 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1564 1565 /** 1566 * struct net_device - The DEVICE structure. 1567 * 1568 * Actually, this whole structure is a big mistake. It mixes I/O 1569 * data with strictly "high-level" data, and it has to know about 1570 * almost every data structure used in the INET module. 1571 * 1572 * @name: This is the first field of the "visible" part of this structure 1573 * (i.e. as seen by users in the "Space.c" file). It is the name 1574 * of the interface. 1575 * 1576 * @name_hlist: Device name hash chain, please keep it close to name[] 1577 * @ifalias: SNMP alias 1578 * @mem_end: Shared memory end 1579 * @mem_start: Shared memory start 1580 * @base_addr: Device I/O address 1581 * @irq: Device IRQ number 1582 * 1583 * @state: Generic network queuing layer state, see netdev_state_t 1584 * @dev_list: The global list of network devices 1585 * @napi_list: List entry used for polling NAPI devices 1586 * @unreg_list: List entry when we are unregistering the 1587 * device; see the function unregister_netdev 1588 * @close_list: List entry used when we are closing the device 1589 * @ptype_all: Device-specific packet handlers for all protocols 1590 * @ptype_specific: Device-specific, protocol-specific packet handlers 1591 * 1592 * @adj_list: Directly linked devices, like slaves for bonding 1593 * @features: Currently active device features 1594 * @hw_features: User-changeable features 1595 * 1596 * @wanted_features: User-requested features 1597 * @vlan_features: Mask of features inheritable by VLAN devices 1598 * 1599 * @hw_enc_features: Mask of features inherited by encapsulating devices 1600 * This field indicates what encapsulation 1601 * offloads the hardware is capable of doing, 1602 * and drivers will need to set them appropriately. 1603 * 1604 * @mpls_features: Mask of features inheritable by MPLS 1605 * 1606 * @ifindex: interface index 1607 * @group: The group the device belongs to 1608 * 1609 * @stats: Statistics struct, which was left as a legacy, use 1610 * rtnl_link_stats64 instead 1611 * 1612 * @rx_dropped: Dropped packets by core network, 1613 * do not use this in drivers 1614 * @tx_dropped: Dropped packets by core network, 1615 * do not use this in drivers 1616 * @rx_nohandler: nohandler dropped packets by core network on 1617 * inactive devices, do not use this in drivers 1618 * @carrier_up_count: Number of times the carrier has been up 1619 * @carrier_down_count: Number of times the carrier has been down 1620 * 1621 * @wireless_handlers: List of functions to handle Wireless Extensions, 1622 * instead of ioctl, 1623 * see <net/iw_handler.h> for details. 1624 * @wireless_data: Instance data managed by the core of wireless extensions 1625 * 1626 * @netdev_ops: Includes several pointers to callbacks, 1627 * if one wants to override the ndo_*() functions 1628 * @ethtool_ops: Management operations 1629 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1630 * discovery handling. Necessary for e.g. 6LoWPAN. 1631 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1632 * of Layer 2 headers. 1633 * 1634 * @flags: Interface flags (a la BSD) 1635 * @priv_flags: Like 'flags' but invisible to userspace, 1636 * see if.h for the definitions 1637 * @gflags: Global flags ( kept as legacy ) 1638 * @padded: How much padding added by alloc_netdev() 1639 * @operstate: RFC2863 operstate 1640 * @link_mode: Mapping policy to operstate 1641 * @if_port: Selectable AUI, TP, ... 1642 * @dma: DMA channel 1643 * @mtu: Interface MTU value 1644 * @min_mtu: Interface Minimum MTU value 1645 * @max_mtu: Interface Maximum MTU value 1646 * @type: Interface hardware type 1647 * @hard_header_len: Maximum hardware header length. 1648 * @min_header_len: Minimum hardware header length 1649 * 1650 * @needed_headroom: Extra headroom the hardware may need, but not in all 1651 * cases can this be guaranteed 1652 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1653 * cases can this be guaranteed. Some cases also use 1654 * LL_MAX_HEADER instead to allocate the skb 1655 * 1656 * interface address info: 1657 * 1658 * @perm_addr: Permanent hw address 1659 * @addr_assign_type: Hw address assignment type 1660 * @addr_len: Hardware address length 1661 * @neigh_priv_len: Used in neigh_alloc() 1662 * @dev_id: Used to differentiate devices that share 1663 * the same link layer address 1664 * @dev_port: Used to differentiate devices that share 1665 * the same function 1666 * @addr_list_lock: XXX: need comments on this one 1667 * @uc_promisc: Counter that indicates promiscuous mode 1668 * has been enabled due to the need to listen to 1669 * additional unicast addresses in a device that 1670 * does not implement ndo_set_rx_mode() 1671 * @uc: unicast mac addresses 1672 * @mc: multicast mac addresses 1673 * @dev_addrs: list of device hw addresses 1674 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1675 * @promiscuity: Number of times the NIC is told to work in 1676 * promiscuous mode; if it becomes 0 the NIC will 1677 * exit promiscuous mode 1678 * @allmulti: Counter, enables or disables allmulticast mode 1679 * 1680 * @vlan_info: VLAN info 1681 * @dsa_ptr: dsa specific data 1682 * @tipc_ptr: TIPC specific data 1683 * @atalk_ptr: AppleTalk link 1684 * @ip_ptr: IPv4 specific data 1685 * @dn_ptr: DECnet specific data 1686 * @ip6_ptr: IPv6 specific data 1687 * @ax25_ptr: AX.25 specific data 1688 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1689 * 1690 * @dev_addr: Hw address (before bcast, 1691 * because most packets are unicast) 1692 * 1693 * @_rx: Array of RX queues 1694 * @num_rx_queues: Number of RX queues 1695 * allocated at register_netdev() time 1696 * @real_num_rx_queues: Number of RX queues currently active in device 1697 * 1698 * @rx_handler: handler for received packets 1699 * @rx_handler_data: XXX: need comments on this one 1700 * @miniq_ingress: ingress/clsact qdisc specific data for 1701 * ingress processing 1702 * @ingress_queue: XXX: need comments on this one 1703 * @broadcast: hw bcast address 1704 * 1705 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1706 * indexed by RX queue number. Assigned by driver. 1707 * This must only be set if the ndo_rx_flow_steer 1708 * operation is defined 1709 * @index_hlist: Device index hash chain 1710 * 1711 * @_tx: Array of TX queues 1712 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1713 * @real_num_tx_queues: Number of TX queues currently active in device 1714 * @qdisc: Root qdisc from userspace point of view 1715 * @tx_queue_len: Max frames per queue allowed 1716 * @tx_global_lock: XXX: need comments on this one 1717 * 1718 * @xps_maps: XXX: need comments on this one 1719 * @miniq_egress: clsact qdisc specific data for 1720 * egress processing 1721 * @watchdog_timeo: Represents the timeout that is used by 1722 * the watchdog (see dev_watchdog()) 1723 * @watchdog_timer: List of timers 1724 * 1725 * @pcpu_refcnt: Number of references to this device 1726 * @todo_list: Delayed register/unregister 1727 * @link_watch_list: XXX: need comments on this one 1728 * 1729 * @reg_state: Register/unregister state machine 1730 * @dismantle: Device is going to be freed 1731 * @rtnl_link_state: This enum represents the phases of creating 1732 * a new link 1733 * 1734 * @needs_free_netdev: Should unregister perform free_netdev? 1735 * @priv_destructor: Called from unregister 1736 * @npinfo: XXX: need comments on this one 1737 * @nd_net: Network namespace this network device is inside 1738 * 1739 * @ml_priv: Mid-layer private 1740 * @lstats: Loopback statistics 1741 * @tstats: Tunnel statistics 1742 * @dstats: Dummy statistics 1743 * @vstats: Virtual ethernet statistics 1744 * 1745 * @garp_port: GARP 1746 * @mrp_port: MRP 1747 * 1748 * @dev: Class/net/name entry 1749 * @sysfs_groups: Space for optional device, statistics and wireless 1750 * sysfs groups 1751 * 1752 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1753 * @rtnl_link_ops: Rtnl_link_ops 1754 * 1755 * @gso_max_size: Maximum size of generic segmentation offload 1756 * @gso_max_segs: Maximum number of segments that can be passed to the 1757 * NIC for GSO 1758 * 1759 * @dcbnl_ops: Data Center Bridging netlink ops 1760 * @num_tc: Number of traffic classes in the net device 1761 * @tc_to_txq: XXX: need comments on this one 1762 * @prio_tc_map: XXX: need comments on this one 1763 * 1764 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1765 * 1766 * @priomap: XXX: need comments on this one 1767 * @phydev: Physical device may attach itself 1768 * for hardware timestamping 1769 * @sfp_bus: attached &struct sfp_bus structure. 1770 * 1771 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1772 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1773 * 1774 * @proto_down: protocol port state information can be sent to the 1775 * switch driver and used to set the phys state of the 1776 * switch port. 1777 * 1778 * @wol_enabled: Wake-on-LAN is enabled 1779 * 1780 * FIXME: cleanup struct net_device such that network protocol info 1781 * moves out. 1782 */ 1783 1784 struct net_device { 1785 char name[IFNAMSIZ]; 1786 struct hlist_node name_hlist; 1787 struct dev_ifalias __rcu *ifalias; 1788 /* 1789 * I/O specific fields 1790 * FIXME: Merge these and struct ifmap into one 1791 */ 1792 unsigned long mem_end; 1793 unsigned long mem_start; 1794 unsigned long base_addr; 1795 int irq; 1796 1797 /* 1798 * Some hardware also needs these fields (state,dev_list, 1799 * napi_list,unreg_list,close_list) but they are not 1800 * part of the usual set specified in Space.c. 1801 */ 1802 1803 unsigned long state; 1804 1805 struct list_head dev_list; 1806 struct list_head napi_list; 1807 struct list_head unreg_list; 1808 struct list_head close_list; 1809 struct list_head ptype_all; 1810 struct list_head ptype_specific; 1811 1812 struct { 1813 struct list_head upper; 1814 struct list_head lower; 1815 } adj_list; 1816 1817 netdev_features_t features; 1818 netdev_features_t hw_features; 1819 netdev_features_t wanted_features; 1820 netdev_features_t vlan_features; 1821 netdev_features_t hw_enc_features; 1822 netdev_features_t mpls_features; 1823 netdev_features_t gso_partial_features; 1824 1825 int ifindex; 1826 int group; 1827 1828 struct net_device_stats stats; 1829 1830 atomic_long_t rx_dropped; 1831 atomic_long_t tx_dropped; 1832 atomic_long_t rx_nohandler; 1833 1834 /* Stats to monitor link on/off, flapping */ 1835 atomic_t carrier_up_count; 1836 atomic_t carrier_down_count; 1837 1838 #ifdef CONFIG_WIRELESS_EXT 1839 const struct iw_handler_def *wireless_handlers; 1840 struct iw_public_data *wireless_data; 1841 #endif 1842 const struct net_device_ops *netdev_ops; 1843 const struct ethtool_ops *ethtool_ops; 1844 #ifdef CONFIG_NET_L3_MASTER_DEV 1845 const struct l3mdev_ops *l3mdev_ops; 1846 #endif 1847 #if IS_ENABLED(CONFIG_IPV6) 1848 const struct ndisc_ops *ndisc_ops; 1849 #endif 1850 1851 #ifdef CONFIG_XFRM_OFFLOAD 1852 const struct xfrmdev_ops *xfrmdev_ops; 1853 #endif 1854 1855 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1856 const struct tlsdev_ops *tlsdev_ops; 1857 #endif 1858 1859 const struct header_ops *header_ops; 1860 1861 unsigned int flags; 1862 unsigned int priv_flags; 1863 1864 unsigned short gflags; 1865 unsigned short padded; 1866 1867 unsigned char operstate; 1868 unsigned char link_mode; 1869 1870 unsigned char if_port; 1871 unsigned char dma; 1872 1873 unsigned int mtu; 1874 unsigned int min_mtu; 1875 unsigned int max_mtu; 1876 unsigned short type; 1877 unsigned short hard_header_len; 1878 unsigned char min_header_len; 1879 1880 unsigned short needed_headroom; 1881 unsigned short needed_tailroom; 1882 1883 /* Interface address info. */ 1884 unsigned char perm_addr[MAX_ADDR_LEN]; 1885 unsigned char addr_assign_type; 1886 unsigned char addr_len; 1887 unsigned short neigh_priv_len; 1888 unsigned short dev_id; 1889 unsigned short dev_port; 1890 spinlock_t addr_list_lock; 1891 unsigned char name_assign_type; 1892 bool uc_promisc; 1893 struct netdev_hw_addr_list uc; 1894 struct netdev_hw_addr_list mc; 1895 struct netdev_hw_addr_list dev_addrs; 1896 1897 #ifdef CONFIG_SYSFS 1898 struct kset *queues_kset; 1899 #endif 1900 unsigned int promiscuity; 1901 unsigned int allmulti; 1902 1903 1904 /* Protocol-specific pointers */ 1905 1906 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1907 struct vlan_info __rcu *vlan_info; 1908 #endif 1909 #if IS_ENABLED(CONFIG_NET_DSA) 1910 struct dsa_port *dsa_ptr; 1911 #endif 1912 #if IS_ENABLED(CONFIG_TIPC) 1913 struct tipc_bearer __rcu *tipc_ptr; 1914 #endif 1915 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1916 void *atalk_ptr; 1917 #endif 1918 struct in_device __rcu *ip_ptr; 1919 #if IS_ENABLED(CONFIG_DECNET) 1920 struct dn_dev __rcu *dn_ptr; 1921 #endif 1922 struct inet6_dev __rcu *ip6_ptr; 1923 #if IS_ENABLED(CONFIG_AX25) 1924 void *ax25_ptr; 1925 #endif 1926 struct wireless_dev *ieee80211_ptr; 1927 struct wpan_dev *ieee802154_ptr; 1928 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1929 struct mpls_dev __rcu *mpls_ptr; 1930 #endif 1931 1932 /* 1933 * Cache lines mostly used on receive path (including eth_type_trans()) 1934 */ 1935 /* Interface address info used in eth_type_trans() */ 1936 unsigned char *dev_addr; 1937 1938 struct netdev_rx_queue *_rx; 1939 unsigned int num_rx_queues; 1940 unsigned int real_num_rx_queues; 1941 1942 struct bpf_prog __rcu *xdp_prog; 1943 unsigned long gro_flush_timeout; 1944 rx_handler_func_t __rcu *rx_handler; 1945 void __rcu *rx_handler_data; 1946 1947 #ifdef CONFIG_NET_CLS_ACT 1948 struct mini_Qdisc __rcu *miniq_ingress; 1949 #endif 1950 struct netdev_queue __rcu *ingress_queue; 1951 #ifdef CONFIG_NETFILTER_INGRESS 1952 struct nf_hook_entries __rcu *nf_hooks_ingress; 1953 #endif 1954 1955 unsigned char broadcast[MAX_ADDR_LEN]; 1956 #ifdef CONFIG_RFS_ACCEL 1957 struct cpu_rmap *rx_cpu_rmap; 1958 #endif 1959 struct hlist_node index_hlist; 1960 1961 /* 1962 * Cache lines mostly used on transmit path 1963 */ 1964 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1965 unsigned int num_tx_queues; 1966 unsigned int real_num_tx_queues; 1967 struct Qdisc *qdisc; 1968 #ifdef CONFIG_NET_SCHED 1969 DECLARE_HASHTABLE (qdisc_hash, 4); 1970 #endif 1971 unsigned int tx_queue_len; 1972 spinlock_t tx_global_lock; 1973 int watchdog_timeo; 1974 1975 #ifdef CONFIG_XPS 1976 struct xps_dev_maps __rcu *xps_cpus_map; 1977 struct xps_dev_maps __rcu *xps_rxqs_map; 1978 #endif 1979 #ifdef CONFIG_NET_CLS_ACT 1980 struct mini_Qdisc __rcu *miniq_egress; 1981 #endif 1982 1983 /* These may be needed for future network-power-down code. */ 1984 struct timer_list watchdog_timer; 1985 1986 int __percpu *pcpu_refcnt; 1987 struct list_head todo_list; 1988 1989 struct list_head link_watch_list; 1990 1991 enum { NETREG_UNINITIALIZED=0, 1992 NETREG_REGISTERED, /* completed register_netdevice */ 1993 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1994 NETREG_UNREGISTERED, /* completed unregister todo */ 1995 NETREG_RELEASED, /* called free_netdev */ 1996 NETREG_DUMMY, /* dummy device for NAPI poll */ 1997 } reg_state:8; 1998 1999 bool dismantle; 2000 2001 enum { 2002 RTNL_LINK_INITIALIZED, 2003 RTNL_LINK_INITIALIZING, 2004 } rtnl_link_state:16; 2005 2006 bool needs_free_netdev; 2007 void (*priv_destructor)(struct net_device *dev); 2008 2009 #ifdef CONFIG_NETPOLL 2010 struct netpoll_info __rcu *npinfo; 2011 #endif 2012 2013 possible_net_t nd_net; 2014 2015 /* mid-layer private */ 2016 union { 2017 void *ml_priv; 2018 struct pcpu_lstats __percpu *lstats; 2019 struct pcpu_sw_netstats __percpu *tstats; 2020 struct pcpu_dstats __percpu *dstats; 2021 }; 2022 2023 #if IS_ENABLED(CONFIG_GARP) 2024 struct garp_port __rcu *garp_port; 2025 #endif 2026 #if IS_ENABLED(CONFIG_MRP) 2027 struct mrp_port __rcu *mrp_port; 2028 #endif 2029 2030 struct device dev; 2031 const struct attribute_group *sysfs_groups[4]; 2032 const struct attribute_group *sysfs_rx_queue_group; 2033 2034 const struct rtnl_link_ops *rtnl_link_ops; 2035 2036 /* for setting kernel sock attribute on TCP connection setup */ 2037 #define GSO_MAX_SIZE 65536 2038 unsigned int gso_max_size; 2039 #define GSO_MAX_SEGS 65535 2040 u16 gso_max_segs; 2041 2042 #ifdef CONFIG_DCB 2043 const struct dcbnl_rtnl_ops *dcbnl_ops; 2044 #endif 2045 s16 num_tc; 2046 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2047 u8 prio_tc_map[TC_BITMASK + 1]; 2048 2049 #if IS_ENABLED(CONFIG_FCOE) 2050 unsigned int fcoe_ddp_xid; 2051 #endif 2052 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2053 struct netprio_map __rcu *priomap; 2054 #endif 2055 struct phy_device *phydev; 2056 struct sfp_bus *sfp_bus; 2057 struct lock_class_key *qdisc_tx_busylock; 2058 struct lock_class_key *qdisc_running_key; 2059 bool proto_down; 2060 unsigned wol_enabled:1; 2061 }; 2062 #define to_net_dev(d) container_of(d, struct net_device, dev) 2063 2064 static inline bool netif_elide_gro(const struct net_device *dev) 2065 { 2066 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2067 return true; 2068 return false; 2069 } 2070 2071 #define NETDEV_ALIGN 32 2072 2073 static inline 2074 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2075 { 2076 return dev->prio_tc_map[prio & TC_BITMASK]; 2077 } 2078 2079 static inline 2080 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2081 { 2082 if (tc >= dev->num_tc) 2083 return -EINVAL; 2084 2085 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2086 return 0; 2087 } 2088 2089 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2090 void netdev_reset_tc(struct net_device *dev); 2091 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2092 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2093 2094 static inline 2095 int netdev_get_num_tc(struct net_device *dev) 2096 { 2097 return dev->num_tc; 2098 } 2099 2100 void netdev_unbind_sb_channel(struct net_device *dev, 2101 struct net_device *sb_dev); 2102 int netdev_bind_sb_channel_queue(struct net_device *dev, 2103 struct net_device *sb_dev, 2104 u8 tc, u16 count, u16 offset); 2105 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2106 static inline int netdev_get_sb_channel(struct net_device *dev) 2107 { 2108 return max_t(int, -dev->num_tc, 0); 2109 } 2110 2111 static inline 2112 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2113 unsigned int index) 2114 { 2115 return &dev->_tx[index]; 2116 } 2117 2118 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2119 const struct sk_buff *skb) 2120 { 2121 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2122 } 2123 2124 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2125 void (*f)(struct net_device *, 2126 struct netdev_queue *, 2127 void *), 2128 void *arg) 2129 { 2130 unsigned int i; 2131 2132 for (i = 0; i < dev->num_tx_queues; i++) 2133 f(dev, &dev->_tx[i], arg); 2134 } 2135 2136 #define netdev_lockdep_set_classes(dev) \ 2137 { \ 2138 static struct lock_class_key qdisc_tx_busylock_key; \ 2139 static struct lock_class_key qdisc_running_key; \ 2140 static struct lock_class_key qdisc_xmit_lock_key; \ 2141 static struct lock_class_key dev_addr_list_lock_key; \ 2142 unsigned int i; \ 2143 \ 2144 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2145 (dev)->qdisc_running_key = &qdisc_running_key; \ 2146 lockdep_set_class(&(dev)->addr_list_lock, \ 2147 &dev_addr_list_lock_key); \ 2148 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2149 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2150 &qdisc_xmit_lock_key); \ 2151 } 2152 2153 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2154 struct net_device *sb_dev); 2155 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2156 struct sk_buff *skb, 2157 struct net_device *sb_dev); 2158 2159 /* returns the headroom that the master device needs to take in account 2160 * when forwarding to this dev 2161 */ 2162 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2163 { 2164 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2165 } 2166 2167 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2168 { 2169 if (dev->netdev_ops->ndo_set_rx_headroom) 2170 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2171 } 2172 2173 /* set the device rx headroom to the dev's default */ 2174 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2175 { 2176 netdev_set_rx_headroom(dev, -1); 2177 } 2178 2179 /* 2180 * Net namespace inlines 2181 */ 2182 static inline 2183 struct net *dev_net(const struct net_device *dev) 2184 { 2185 return read_pnet(&dev->nd_net); 2186 } 2187 2188 static inline 2189 void dev_net_set(struct net_device *dev, struct net *net) 2190 { 2191 write_pnet(&dev->nd_net, net); 2192 } 2193 2194 /** 2195 * netdev_priv - access network device private data 2196 * @dev: network device 2197 * 2198 * Get network device private data 2199 */ 2200 static inline void *netdev_priv(const struct net_device *dev) 2201 { 2202 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2203 } 2204 2205 /* Set the sysfs physical device reference for the network logical device 2206 * if set prior to registration will cause a symlink during initialization. 2207 */ 2208 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2209 2210 /* Set the sysfs device type for the network logical device to allow 2211 * fine-grained identification of different network device types. For 2212 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2213 */ 2214 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2215 2216 /* Default NAPI poll() weight 2217 * Device drivers are strongly advised to not use bigger value 2218 */ 2219 #define NAPI_POLL_WEIGHT 64 2220 2221 /** 2222 * netif_napi_add - initialize a NAPI context 2223 * @dev: network device 2224 * @napi: NAPI context 2225 * @poll: polling function 2226 * @weight: default weight 2227 * 2228 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2229 * *any* of the other NAPI-related functions. 2230 */ 2231 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2232 int (*poll)(struct napi_struct *, int), int weight); 2233 2234 /** 2235 * netif_tx_napi_add - initialize a NAPI context 2236 * @dev: network device 2237 * @napi: NAPI context 2238 * @poll: polling function 2239 * @weight: default weight 2240 * 2241 * This variant of netif_napi_add() should be used from drivers using NAPI 2242 * to exclusively poll a TX queue. 2243 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2244 */ 2245 static inline void netif_tx_napi_add(struct net_device *dev, 2246 struct napi_struct *napi, 2247 int (*poll)(struct napi_struct *, int), 2248 int weight) 2249 { 2250 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2251 netif_napi_add(dev, napi, poll, weight); 2252 } 2253 2254 /** 2255 * netif_napi_del - remove a NAPI context 2256 * @napi: NAPI context 2257 * 2258 * netif_napi_del() removes a NAPI context from the network device NAPI list 2259 */ 2260 void netif_napi_del(struct napi_struct *napi); 2261 2262 struct napi_gro_cb { 2263 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2264 void *frag0; 2265 2266 /* Length of frag0. */ 2267 unsigned int frag0_len; 2268 2269 /* This indicates where we are processing relative to skb->data. */ 2270 int data_offset; 2271 2272 /* This is non-zero if the packet cannot be merged with the new skb. */ 2273 u16 flush; 2274 2275 /* Save the IP ID here and check when we get to the transport layer */ 2276 u16 flush_id; 2277 2278 /* Number of segments aggregated. */ 2279 u16 count; 2280 2281 /* Start offset for remote checksum offload */ 2282 u16 gro_remcsum_start; 2283 2284 /* jiffies when first packet was created/queued */ 2285 unsigned long age; 2286 2287 /* Used in ipv6_gro_receive() and foo-over-udp */ 2288 u16 proto; 2289 2290 /* This is non-zero if the packet may be of the same flow. */ 2291 u8 same_flow:1; 2292 2293 /* Used in tunnel GRO receive */ 2294 u8 encap_mark:1; 2295 2296 /* GRO checksum is valid */ 2297 u8 csum_valid:1; 2298 2299 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2300 u8 csum_cnt:3; 2301 2302 /* Free the skb? */ 2303 u8 free:2; 2304 #define NAPI_GRO_FREE 1 2305 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2306 2307 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2308 u8 is_ipv6:1; 2309 2310 /* Used in GRE, set in fou/gue_gro_receive */ 2311 u8 is_fou:1; 2312 2313 /* Used to determine if flush_id can be ignored */ 2314 u8 is_atomic:1; 2315 2316 /* Number of gro_receive callbacks this packet already went through */ 2317 u8 recursion_counter:4; 2318 2319 /* 1 bit hole */ 2320 2321 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2322 __wsum csum; 2323 2324 /* used in skb_gro_receive() slow path */ 2325 struct sk_buff *last; 2326 }; 2327 2328 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2329 2330 #define GRO_RECURSION_LIMIT 15 2331 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2332 { 2333 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2334 } 2335 2336 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2337 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2338 struct list_head *head, 2339 struct sk_buff *skb) 2340 { 2341 if (unlikely(gro_recursion_inc_test(skb))) { 2342 NAPI_GRO_CB(skb)->flush |= 1; 2343 return NULL; 2344 } 2345 2346 return cb(head, skb); 2347 } 2348 2349 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2350 struct sk_buff *); 2351 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2352 struct sock *sk, 2353 struct list_head *head, 2354 struct sk_buff *skb) 2355 { 2356 if (unlikely(gro_recursion_inc_test(skb))) { 2357 NAPI_GRO_CB(skb)->flush |= 1; 2358 return NULL; 2359 } 2360 2361 return cb(sk, head, skb); 2362 } 2363 2364 struct packet_type { 2365 __be16 type; /* This is really htons(ether_type). */ 2366 bool ignore_outgoing; 2367 struct net_device *dev; /* NULL is wildcarded here */ 2368 int (*func) (struct sk_buff *, 2369 struct net_device *, 2370 struct packet_type *, 2371 struct net_device *); 2372 void (*list_func) (struct list_head *, 2373 struct packet_type *, 2374 struct net_device *); 2375 bool (*id_match)(struct packet_type *ptype, 2376 struct sock *sk); 2377 void *af_packet_priv; 2378 struct list_head list; 2379 }; 2380 2381 struct offload_callbacks { 2382 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2383 netdev_features_t features); 2384 struct sk_buff *(*gro_receive)(struct list_head *head, 2385 struct sk_buff *skb); 2386 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2387 }; 2388 2389 struct packet_offload { 2390 __be16 type; /* This is really htons(ether_type). */ 2391 u16 priority; 2392 struct offload_callbacks callbacks; 2393 struct list_head list; 2394 }; 2395 2396 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2397 struct pcpu_sw_netstats { 2398 u64 rx_packets; 2399 u64 rx_bytes; 2400 u64 tx_packets; 2401 u64 tx_bytes; 2402 struct u64_stats_sync syncp; 2403 } __aligned(4 * sizeof(u64)); 2404 2405 struct pcpu_lstats { 2406 u64 packets; 2407 u64 bytes; 2408 struct u64_stats_sync syncp; 2409 } __aligned(2 * sizeof(u64)); 2410 2411 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2412 ({ \ 2413 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2414 if (pcpu_stats) { \ 2415 int __cpu; \ 2416 for_each_possible_cpu(__cpu) { \ 2417 typeof(type) *stat; \ 2418 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2419 u64_stats_init(&stat->syncp); \ 2420 } \ 2421 } \ 2422 pcpu_stats; \ 2423 }) 2424 2425 #define netdev_alloc_pcpu_stats(type) \ 2426 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2427 2428 enum netdev_lag_tx_type { 2429 NETDEV_LAG_TX_TYPE_UNKNOWN, 2430 NETDEV_LAG_TX_TYPE_RANDOM, 2431 NETDEV_LAG_TX_TYPE_BROADCAST, 2432 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2433 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2434 NETDEV_LAG_TX_TYPE_HASH, 2435 }; 2436 2437 enum netdev_lag_hash { 2438 NETDEV_LAG_HASH_NONE, 2439 NETDEV_LAG_HASH_L2, 2440 NETDEV_LAG_HASH_L34, 2441 NETDEV_LAG_HASH_L23, 2442 NETDEV_LAG_HASH_E23, 2443 NETDEV_LAG_HASH_E34, 2444 NETDEV_LAG_HASH_UNKNOWN, 2445 }; 2446 2447 struct netdev_lag_upper_info { 2448 enum netdev_lag_tx_type tx_type; 2449 enum netdev_lag_hash hash_type; 2450 }; 2451 2452 struct netdev_lag_lower_state_info { 2453 u8 link_up : 1, 2454 tx_enabled : 1; 2455 }; 2456 2457 #include <linux/notifier.h> 2458 2459 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2460 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2461 * adding new types. 2462 */ 2463 enum netdev_cmd { 2464 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2465 NETDEV_DOWN, 2466 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2467 detected a hardware crash and restarted 2468 - we can use this eg to kick tcp sessions 2469 once done */ 2470 NETDEV_CHANGE, /* Notify device state change */ 2471 NETDEV_REGISTER, 2472 NETDEV_UNREGISTER, 2473 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2474 NETDEV_CHANGEADDR, /* notify after the address change */ 2475 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2476 NETDEV_GOING_DOWN, 2477 NETDEV_CHANGENAME, 2478 NETDEV_FEAT_CHANGE, 2479 NETDEV_BONDING_FAILOVER, 2480 NETDEV_PRE_UP, 2481 NETDEV_PRE_TYPE_CHANGE, 2482 NETDEV_POST_TYPE_CHANGE, 2483 NETDEV_POST_INIT, 2484 NETDEV_RELEASE, 2485 NETDEV_NOTIFY_PEERS, 2486 NETDEV_JOIN, 2487 NETDEV_CHANGEUPPER, 2488 NETDEV_RESEND_IGMP, 2489 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2490 NETDEV_CHANGEINFODATA, 2491 NETDEV_BONDING_INFO, 2492 NETDEV_PRECHANGEUPPER, 2493 NETDEV_CHANGELOWERSTATE, 2494 NETDEV_UDP_TUNNEL_PUSH_INFO, 2495 NETDEV_UDP_TUNNEL_DROP_INFO, 2496 NETDEV_CHANGE_TX_QUEUE_LEN, 2497 NETDEV_CVLAN_FILTER_PUSH_INFO, 2498 NETDEV_CVLAN_FILTER_DROP_INFO, 2499 NETDEV_SVLAN_FILTER_PUSH_INFO, 2500 NETDEV_SVLAN_FILTER_DROP_INFO, 2501 }; 2502 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2503 2504 int register_netdevice_notifier(struct notifier_block *nb); 2505 int unregister_netdevice_notifier(struct notifier_block *nb); 2506 2507 struct netdev_notifier_info { 2508 struct net_device *dev; 2509 struct netlink_ext_ack *extack; 2510 }; 2511 2512 struct netdev_notifier_info_ext { 2513 struct netdev_notifier_info info; /* must be first */ 2514 union { 2515 u32 mtu; 2516 } ext; 2517 }; 2518 2519 struct netdev_notifier_change_info { 2520 struct netdev_notifier_info info; /* must be first */ 2521 unsigned int flags_changed; 2522 }; 2523 2524 struct netdev_notifier_changeupper_info { 2525 struct netdev_notifier_info info; /* must be first */ 2526 struct net_device *upper_dev; /* new upper dev */ 2527 bool master; /* is upper dev master */ 2528 bool linking; /* is the notification for link or unlink */ 2529 void *upper_info; /* upper dev info */ 2530 }; 2531 2532 struct netdev_notifier_changelowerstate_info { 2533 struct netdev_notifier_info info; /* must be first */ 2534 void *lower_state_info; /* is lower dev state */ 2535 }; 2536 2537 struct netdev_notifier_pre_changeaddr_info { 2538 struct netdev_notifier_info info; /* must be first */ 2539 const unsigned char *dev_addr; 2540 }; 2541 2542 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2543 struct net_device *dev) 2544 { 2545 info->dev = dev; 2546 info->extack = NULL; 2547 } 2548 2549 static inline struct net_device * 2550 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2551 { 2552 return info->dev; 2553 } 2554 2555 static inline struct netlink_ext_ack * 2556 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2557 { 2558 return info->extack; 2559 } 2560 2561 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2562 2563 2564 extern rwlock_t dev_base_lock; /* Device list lock */ 2565 2566 #define for_each_netdev(net, d) \ 2567 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2568 #define for_each_netdev_reverse(net, d) \ 2569 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2570 #define for_each_netdev_rcu(net, d) \ 2571 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2572 #define for_each_netdev_safe(net, d, n) \ 2573 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2574 #define for_each_netdev_continue(net, d) \ 2575 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2576 #define for_each_netdev_continue_rcu(net, d) \ 2577 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2578 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2579 for_each_netdev_rcu(&init_net, slave) \ 2580 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2581 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2582 2583 static inline struct net_device *next_net_device(struct net_device *dev) 2584 { 2585 struct list_head *lh; 2586 struct net *net; 2587 2588 net = dev_net(dev); 2589 lh = dev->dev_list.next; 2590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2591 } 2592 2593 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2594 { 2595 struct list_head *lh; 2596 struct net *net; 2597 2598 net = dev_net(dev); 2599 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2600 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2601 } 2602 2603 static inline struct net_device *first_net_device(struct net *net) 2604 { 2605 return list_empty(&net->dev_base_head) ? NULL : 2606 net_device_entry(net->dev_base_head.next); 2607 } 2608 2609 static inline struct net_device *first_net_device_rcu(struct net *net) 2610 { 2611 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2612 2613 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2614 } 2615 2616 int netdev_boot_setup_check(struct net_device *dev); 2617 unsigned long netdev_boot_base(const char *prefix, int unit); 2618 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2619 const char *hwaddr); 2620 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2621 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2622 void dev_add_pack(struct packet_type *pt); 2623 void dev_remove_pack(struct packet_type *pt); 2624 void __dev_remove_pack(struct packet_type *pt); 2625 void dev_add_offload(struct packet_offload *po); 2626 void dev_remove_offload(struct packet_offload *po); 2627 2628 int dev_get_iflink(const struct net_device *dev); 2629 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2630 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2631 unsigned short mask); 2632 struct net_device *dev_get_by_name(struct net *net, const char *name); 2633 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2634 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2635 int dev_alloc_name(struct net_device *dev, const char *name); 2636 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2637 void dev_close(struct net_device *dev); 2638 void dev_close_many(struct list_head *head, bool unlink); 2639 void dev_disable_lro(struct net_device *dev); 2640 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2641 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2642 struct net_device *sb_dev); 2643 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2644 struct net_device *sb_dev); 2645 int dev_queue_xmit(struct sk_buff *skb); 2646 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2647 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2648 int register_netdevice(struct net_device *dev); 2649 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2650 void unregister_netdevice_many(struct list_head *head); 2651 static inline void unregister_netdevice(struct net_device *dev) 2652 { 2653 unregister_netdevice_queue(dev, NULL); 2654 } 2655 2656 int netdev_refcnt_read(const struct net_device *dev); 2657 void free_netdev(struct net_device *dev); 2658 void netdev_freemem(struct net_device *dev); 2659 void synchronize_net(void); 2660 int init_dummy_netdev(struct net_device *dev); 2661 2662 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2663 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2664 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2665 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2666 int netdev_get_name(struct net *net, char *name, int ifindex); 2667 int dev_restart(struct net_device *dev); 2668 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2669 2670 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2671 { 2672 return NAPI_GRO_CB(skb)->data_offset; 2673 } 2674 2675 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2676 { 2677 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2678 } 2679 2680 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2681 { 2682 NAPI_GRO_CB(skb)->data_offset += len; 2683 } 2684 2685 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2686 unsigned int offset) 2687 { 2688 return NAPI_GRO_CB(skb)->frag0 + offset; 2689 } 2690 2691 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2692 { 2693 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2694 } 2695 2696 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2697 { 2698 NAPI_GRO_CB(skb)->frag0 = NULL; 2699 NAPI_GRO_CB(skb)->frag0_len = 0; 2700 } 2701 2702 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2703 unsigned int offset) 2704 { 2705 if (!pskb_may_pull(skb, hlen)) 2706 return NULL; 2707 2708 skb_gro_frag0_invalidate(skb); 2709 return skb->data + offset; 2710 } 2711 2712 static inline void *skb_gro_network_header(struct sk_buff *skb) 2713 { 2714 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2715 skb_network_offset(skb); 2716 } 2717 2718 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2719 const void *start, unsigned int len) 2720 { 2721 if (NAPI_GRO_CB(skb)->csum_valid) 2722 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2723 csum_partial(start, len, 0)); 2724 } 2725 2726 /* GRO checksum functions. These are logical equivalents of the normal 2727 * checksum functions (in skbuff.h) except that they operate on the GRO 2728 * offsets and fields in sk_buff. 2729 */ 2730 2731 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2732 2733 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2734 { 2735 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2736 } 2737 2738 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2739 bool zero_okay, 2740 __sum16 check) 2741 { 2742 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2743 skb_checksum_start_offset(skb) < 2744 skb_gro_offset(skb)) && 2745 !skb_at_gro_remcsum_start(skb) && 2746 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2747 (!zero_okay || check)); 2748 } 2749 2750 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2751 __wsum psum) 2752 { 2753 if (NAPI_GRO_CB(skb)->csum_valid && 2754 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2755 return 0; 2756 2757 NAPI_GRO_CB(skb)->csum = psum; 2758 2759 return __skb_gro_checksum_complete(skb); 2760 } 2761 2762 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2763 { 2764 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2765 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2766 NAPI_GRO_CB(skb)->csum_cnt--; 2767 } else { 2768 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2769 * verified a new top level checksum or an encapsulated one 2770 * during GRO. This saves work if we fallback to normal path. 2771 */ 2772 __skb_incr_checksum_unnecessary(skb); 2773 } 2774 } 2775 2776 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2777 compute_pseudo) \ 2778 ({ \ 2779 __sum16 __ret = 0; \ 2780 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2781 __ret = __skb_gro_checksum_validate_complete(skb, \ 2782 compute_pseudo(skb, proto)); \ 2783 if (!__ret) \ 2784 skb_gro_incr_csum_unnecessary(skb); \ 2785 __ret; \ 2786 }) 2787 2788 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2789 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2790 2791 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2792 compute_pseudo) \ 2793 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2794 2795 #define skb_gro_checksum_simple_validate(skb) \ 2796 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2797 2798 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2799 { 2800 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2801 !NAPI_GRO_CB(skb)->csum_valid); 2802 } 2803 2804 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2805 __sum16 check, __wsum pseudo) 2806 { 2807 NAPI_GRO_CB(skb)->csum = ~pseudo; 2808 NAPI_GRO_CB(skb)->csum_valid = 1; 2809 } 2810 2811 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2812 do { \ 2813 if (__skb_gro_checksum_convert_check(skb)) \ 2814 __skb_gro_checksum_convert(skb, check, \ 2815 compute_pseudo(skb, proto)); \ 2816 } while (0) 2817 2818 struct gro_remcsum { 2819 int offset; 2820 __wsum delta; 2821 }; 2822 2823 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2824 { 2825 grc->offset = 0; 2826 grc->delta = 0; 2827 } 2828 2829 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2830 unsigned int off, size_t hdrlen, 2831 int start, int offset, 2832 struct gro_remcsum *grc, 2833 bool nopartial) 2834 { 2835 __wsum delta; 2836 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2837 2838 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2839 2840 if (!nopartial) { 2841 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2842 return ptr; 2843 } 2844 2845 ptr = skb_gro_header_fast(skb, off); 2846 if (skb_gro_header_hard(skb, off + plen)) { 2847 ptr = skb_gro_header_slow(skb, off + plen, off); 2848 if (!ptr) 2849 return NULL; 2850 } 2851 2852 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2853 start, offset); 2854 2855 /* Adjust skb->csum since we changed the packet */ 2856 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2857 2858 grc->offset = off + hdrlen + offset; 2859 grc->delta = delta; 2860 2861 return ptr; 2862 } 2863 2864 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2865 struct gro_remcsum *grc) 2866 { 2867 void *ptr; 2868 size_t plen = grc->offset + sizeof(u16); 2869 2870 if (!grc->delta) 2871 return; 2872 2873 ptr = skb_gro_header_fast(skb, grc->offset); 2874 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2875 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2876 if (!ptr) 2877 return; 2878 } 2879 2880 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2881 } 2882 2883 #ifdef CONFIG_XFRM_OFFLOAD 2884 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2885 { 2886 if (PTR_ERR(pp) != -EINPROGRESS) 2887 NAPI_GRO_CB(skb)->flush |= flush; 2888 } 2889 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2890 struct sk_buff *pp, 2891 int flush, 2892 struct gro_remcsum *grc) 2893 { 2894 if (PTR_ERR(pp) != -EINPROGRESS) { 2895 NAPI_GRO_CB(skb)->flush |= flush; 2896 skb_gro_remcsum_cleanup(skb, grc); 2897 skb->remcsum_offload = 0; 2898 } 2899 } 2900 #else 2901 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2902 { 2903 NAPI_GRO_CB(skb)->flush |= flush; 2904 } 2905 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2906 struct sk_buff *pp, 2907 int flush, 2908 struct gro_remcsum *grc) 2909 { 2910 NAPI_GRO_CB(skb)->flush |= flush; 2911 skb_gro_remcsum_cleanup(skb, grc); 2912 skb->remcsum_offload = 0; 2913 } 2914 #endif 2915 2916 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2917 unsigned short type, 2918 const void *daddr, const void *saddr, 2919 unsigned int len) 2920 { 2921 if (!dev->header_ops || !dev->header_ops->create) 2922 return 0; 2923 2924 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2925 } 2926 2927 static inline int dev_parse_header(const struct sk_buff *skb, 2928 unsigned char *haddr) 2929 { 2930 const struct net_device *dev = skb->dev; 2931 2932 if (!dev->header_ops || !dev->header_ops->parse) 2933 return 0; 2934 return dev->header_ops->parse(skb, haddr); 2935 } 2936 2937 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2938 { 2939 const struct net_device *dev = skb->dev; 2940 2941 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2942 return 0; 2943 return dev->header_ops->parse_protocol(skb); 2944 } 2945 2946 /* ll_header must have at least hard_header_len allocated */ 2947 static inline bool dev_validate_header(const struct net_device *dev, 2948 char *ll_header, int len) 2949 { 2950 if (likely(len >= dev->hard_header_len)) 2951 return true; 2952 if (len < dev->min_header_len) 2953 return false; 2954 2955 if (capable(CAP_SYS_RAWIO)) { 2956 memset(ll_header + len, 0, dev->hard_header_len - len); 2957 return true; 2958 } 2959 2960 if (dev->header_ops && dev->header_ops->validate) 2961 return dev->header_ops->validate(ll_header, len); 2962 2963 return false; 2964 } 2965 2966 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2967 int len, int size); 2968 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2969 static inline int unregister_gifconf(unsigned int family) 2970 { 2971 return register_gifconf(family, NULL); 2972 } 2973 2974 #ifdef CONFIG_NET_FLOW_LIMIT 2975 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2976 struct sd_flow_limit { 2977 u64 count; 2978 unsigned int num_buckets; 2979 unsigned int history_head; 2980 u16 history[FLOW_LIMIT_HISTORY]; 2981 u8 buckets[]; 2982 }; 2983 2984 extern int netdev_flow_limit_table_len; 2985 #endif /* CONFIG_NET_FLOW_LIMIT */ 2986 2987 /* 2988 * Incoming packets are placed on per-CPU queues 2989 */ 2990 struct softnet_data { 2991 struct list_head poll_list; 2992 struct sk_buff_head process_queue; 2993 2994 /* stats */ 2995 unsigned int processed; 2996 unsigned int time_squeeze; 2997 unsigned int received_rps; 2998 #ifdef CONFIG_RPS 2999 struct softnet_data *rps_ipi_list; 3000 #endif 3001 #ifdef CONFIG_NET_FLOW_LIMIT 3002 struct sd_flow_limit __rcu *flow_limit; 3003 #endif 3004 struct Qdisc *output_queue; 3005 struct Qdisc **output_queue_tailp; 3006 struct sk_buff *completion_queue; 3007 #ifdef CONFIG_XFRM_OFFLOAD 3008 struct sk_buff_head xfrm_backlog; 3009 #endif 3010 /* written and read only by owning cpu: */ 3011 struct { 3012 u16 recursion; 3013 u8 more; 3014 } xmit; 3015 #ifdef CONFIG_RPS 3016 /* input_queue_head should be written by cpu owning this struct, 3017 * and only read by other cpus. Worth using a cache line. 3018 */ 3019 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3020 3021 /* Elements below can be accessed between CPUs for RPS/RFS */ 3022 call_single_data_t csd ____cacheline_aligned_in_smp; 3023 struct softnet_data *rps_ipi_next; 3024 unsigned int cpu; 3025 unsigned int input_queue_tail; 3026 #endif 3027 unsigned int dropped; 3028 struct sk_buff_head input_pkt_queue; 3029 struct napi_struct backlog; 3030 3031 }; 3032 3033 static inline void input_queue_head_incr(struct softnet_data *sd) 3034 { 3035 #ifdef CONFIG_RPS 3036 sd->input_queue_head++; 3037 #endif 3038 } 3039 3040 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3041 unsigned int *qtail) 3042 { 3043 #ifdef CONFIG_RPS 3044 *qtail = ++sd->input_queue_tail; 3045 #endif 3046 } 3047 3048 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3049 3050 static inline int dev_recursion_level(void) 3051 { 3052 return this_cpu_read(softnet_data.xmit.recursion); 3053 } 3054 3055 #define XMIT_RECURSION_LIMIT 10 3056 static inline bool dev_xmit_recursion(void) 3057 { 3058 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3059 XMIT_RECURSION_LIMIT); 3060 } 3061 3062 static inline void dev_xmit_recursion_inc(void) 3063 { 3064 __this_cpu_inc(softnet_data.xmit.recursion); 3065 } 3066 3067 static inline void dev_xmit_recursion_dec(void) 3068 { 3069 __this_cpu_dec(softnet_data.xmit.recursion); 3070 } 3071 3072 void __netif_schedule(struct Qdisc *q); 3073 void netif_schedule_queue(struct netdev_queue *txq); 3074 3075 static inline void netif_tx_schedule_all(struct net_device *dev) 3076 { 3077 unsigned int i; 3078 3079 for (i = 0; i < dev->num_tx_queues; i++) 3080 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3081 } 3082 3083 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3084 { 3085 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3086 } 3087 3088 /** 3089 * netif_start_queue - allow transmit 3090 * @dev: network device 3091 * 3092 * Allow upper layers to call the device hard_start_xmit routine. 3093 */ 3094 static inline void netif_start_queue(struct net_device *dev) 3095 { 3096 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3097 } 3098 3099 static inline void netif_tx_start_all_queues(struct net_device *dev) 3100 { 3101 unsigned int i; 3102 3103 for (i = 0; i < dev->num_tx_queues; i++) { 3104 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3105 netif_tx_start_queue(txq); 3106 } 3107 } 3108 3109 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3110 3111 /** 3112 * netif_wake_queue - restart transmit 3113 * @dev: network device 3114 * 3115 * Allow upper layers to call the device hard_start_xmit routine. 3116 * Used for flow control when transmit resources are available. 3117 */ 3118 static inline void netif_wake_queue(struct net_device *dev) 3119 { 3120 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3121 } 3122 3123 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3124 { 3125 unsigned int i; 3126 3127 for (i = 0; i < dev->num_tx_queues; i++) { 3128 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3129 netif_tx_wake_queue(txq); 3130 } 3131 } 3132 3133 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3134 { 3135 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3136 } 3137 3138 /** 3139 * netif_stop_queue - stop transmitted packets 3140 * @dev: network device 3141 * 3142 * Stop upper layers calling the device hard_start_xmit routine. 3143 * Used for flow control when transmit resources are unavailable. 3144 */ 3145 static inline void netif_stop_queue(struct net_device *dev) 3146 { 3147 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3148 } 3149 3150 void netif_tx_stop_all_queues(struct net_device *dev); 3151 3152 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3153 { 3154 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3155 } 3156 3157 /** 3158 * netif_queue_stopped - test if transmit queue is flowblocked 3159 * @dev: network device 3160 * 3161 * Test if transmit queue on device is currently unable to send. 3162 */ 3163 static inline bool netif_queue_stopped(const struct net_device *dev) 3164 { 3165 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3166 } 3167 3168 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3169 { 3170 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3171 } 3172 3173 static inline bool 3174 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3175 { 3176 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3177 } 3178 3179 static inline bool 3180 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3181 { 3182 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3183 } 3184 3185 /** 3186 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3187 * @dev_queue: pointer to transmit queue 3188 * 3189 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3190 * to give appropriate hint to the CPU. 3191 */ 3192 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3193 { 3194 #ifdef CONFIG_BQL 3195 prefetchw(&dev_queue->dql.num_queued); 3196 #endif 3197 } 3198 3199 /** 3200 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3201 * @dev_queue: pointer to transmit queue 3202 * 3203 * BQL enabled drivers might use this helper in their TX completion path, 3204 * to give appropriate hint to the CPU. 3205 */ 3206 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3207 { 3208 #ifdef CONFIG_BQL 3209 prefetchw(&dev_queue->dql.limit); 3210 #endif 3211 } 3212 3213 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3214 unsigned int bytes) 3215 { 3216 #ifdef CONFIG_BQL 3217 dql_queued(&dev_queue->dql, bytes); 3218 3219 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3220 return; 3221 3222 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3223 3224 /* 3225 * The XOFF flag must be set before checking the dql_avail below, 3226 * because in netdev_tx_completed_queue we update the dql_completed 3227 * before checking the XOFF flag. 3228 */ 3229 smp_mb(); 3230 3231 /* check again in case another CPU has just made room avail */ 3232 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3233 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3234 #endif 3235 } 3236 3237 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3238 * that they should not test BQL status themselves. 3239 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3240 * skb of a batch. 3241 * Returns true if the doorbell must be used to kick the NIC. 3242 */ 3243 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3244 unsigned int bytes, 3245 bool xmit_more) 3246 { 3247 if (xmit_more) { 3248 #ifdef CONFIG_BQL 3249 dql_queued(&dev_queue->dql, bytes); 3250 #endif 3251 return netif_tx_queue_stopped(dev_queue); 3252 } 3253 netdev_tx_sent_queue(dev_queue, bytes); 3254 return true; 3255 } 3256 3257 /** 3258 * netdev_sent_queue - report the number of bytes queued to hardware 3259 * @dev: network device 3260 * @bytes: number of bytes queued to the hardware device queue 3261 * 3262 * Report the number of bytes queued for sending/completion to the network 3263 * device hardware queue. @bytes should be a good approximation and should 3264 * exactly match netdev_completed_queue() @bytes 3265 */ 3266 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3267 { 3268 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3269 } 3270 3271 static inline bool __netdev_sent_queue(struct net_device *dev, 3272 unsigned int bytes, 3273 bool xmit_more) 3274 { 3275 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3276 xmit_more); 3277 } 3278 3279 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3280 unsigned int pkts, unsigned int bytes) 3281 { 3282 #ifdef CONFIG_BQL 3283 if (unlikely(!bytes)) 3284 return; 3285 3286 dql_completed(&dev_queue->dql, bytes); 3287 3288 /* 3289 * Without the memory barrier there is a small possiblity that 3290 * netdev_tx_sent_queue will miss the update and cause the queue to 3291 * be stopped forever 3292 */ 3293 smp_mb(); 3294 3295 if (dql_avail(&dev_queue->dql) < 0) 3296 return; 3297 3298 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3299 netif_schedule_queue(dev_queue); 3300 #endif 3301 } 3302 3303 /** 3304 * netdev_completed_queue - report bytes and packets completed by device 3305 * @dev: network device 3306 * @pkts: actual number of packets sent over the medium 3307 * @bytes: actual number of bytes sent over the medium 3308 * 3309 * Report the number of bytes and packets transmitted by the network device 3310 * hardware queue over the physical medium, @bytes must exactly match the 3311 * @bytes amount passed to netdev_sent_queue() 3312 */ 3313 static inline void netdev_completed_queue(struct net_device *dev, 3314 unsigned int pkts, unsigned int bytes) 3315 { 3316 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3317 } 3318 3319 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3320 { 3321 #ifdef CONFIG_BQL 3322 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3323 dql_reset(&q->dql); 3324 #endif 3325 } 3326 3327 /** 3328 * netdev_reset_queue - reset the packets and bytes count of a network device 3329 * @dev_queue: network device 3330 * 3331 * Reset the bytes and packet count of a network device and clear the 3332 * software flow control OFF bit for this network device 3333 */ 3334 static inline void netdev_reset_queue(struct net_device *dev_queue) 3335 { 3336 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3337 } 3338 3339 /** 3340 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3341 * @dev: network device 3342 * @queue_index: given tx queue index 3343 * 3344 * Returns 0 if given tx queue index >= number of device tx queues, 3345 * otherwise returns the originally passed tx queue index. 3346 */ 3347 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3348 { 3349 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3350 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3351 dev->name, queue_index, 3352 dev->real_num_tx_queues); 3353 return 0; 3354 } 3355 3356 return queue_index; 3357 } 3358 3359 /** 3360 * netif_running - test if up 3361 * @dev: network device 3362 * 3363 * Test if the device has been brought up. 3364 */ 3365 static inline bool netif_running(const struct net_device *dev) 3366 { 3367 return test_bit(__LINK_STATE_START, &dev->state); 3368 } 3369 3370 /* 3371 * Routines to manage the subqueues on a device. We only need start, 3372 * stop, and a check if it's stopped. All other device management is 3373 * done at the overall netdevice level. 3374 * Also test the device if we're multiqueue. 3375 */ 3376 3377 /** 3378 * netif_start_subqueue - allow sending packets on subqueue 3379 * @dev: network device 3380 * @queue_index: sub queue index 3381 * 3382 * Start individual transmit queue of a device with multiple transmit queues. 3383 */ 3384 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3385 { 3386 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3387 3388 netif_tx_start_queue(txq); 3389 } 3390 3391 /** 3392 * netif_stop_subqueue - stop sending packets on subqueue 3393 * @dev: network device 3394 * @queue_index: sub queue index 3395 * 3396 * Stop individual transmit queue of a device with multiple transmit queues. 3397 */ 3398 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3399 { 3400 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3401 netif_tx_stop_queue(txq); 3402 } 3403 3404 /** 3405 * netif_subqueue_stopped - test status of subqueue 3406 * @dev: network device 3407 * @queue_index: sub queue index 3408 * 3409 * Check individual transmit queue of a device with multiple transmit queues. 3410 */ 3411 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3412 u16 queue_index) 3413 { 3414 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3415 3416 return netif_tx_queue_stopped(txq); 3417 } 3418 3419 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3420 struct sk_buff *skb) 3421 { 3422 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3423 } 3424 3425 /** 3426 * netif_wake_subqueue - allow sending packets on subqueue 3427 * @dev: network device 3428 * @queue_index: sub queue index 3429 * 3430 * Resume individual transmit queue of a device with multiple transmit queues. 3431 */ 3432 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3433 { 3434 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3435 3436 netif_tx_wake_queue(txq); 3437 } 3438 3439 #ifdef CONFIG_XPS 3440 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3441 u16 index); 3442 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3443 u16 index, bool is_rxqs_map); 3444 3445 /** 3446 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3447 * @j: CPU/Rx queue index 3448 * @mask: bitmask of all cpus/rx queues 3449 * @nr_bits: number of bits in the bitmask 3450 * 3451 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3452 */ 3453 static inline bool netif_attr_test_mask(unsigned long j, 3454 const unsigned long *mask, 3455 unsigned int nr_bits) 3456 { 3457 cpu_max_bits_warn(j, nr_bits); 3458 return test_bit(j, mask); 3459 } 3460 3461 /** 3462 * netif_attr_test_online - Test for online CPU/Rx queue 3463 * @j: CPU/Rx queue index 3464 * @online_mask: bitmask for CPUs/Rx queues that are online 3465 * @nr_bits: number of bits in the bitmask 3466 * 3467 * Returns true if a CPU/Rx queue is online. 3468 */ 3469 static inline bool netif_attr_test_online(unsigned long j, 3470 const unsigned long *online_mask, 3471 unsigned int nr_bits) 3472 { 3473 cpu_max_bits_warn(j, nr_bits); 3474 3475 if (online_mask) 3476 return test_bit(j, online_mask); 3477 3478 return (j < nr_bits); 3479 } 3480 3481 /** 3482 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3483 * @n: CPU/Rx queue index 3484 * @srcp: the cpumask/Rx queue mask pointer 3485 * @nr_bits: number of bits in the bitmask 3486 * 3487 * Returns >= nr_bits if no further CPUs/Rx queues set. 3488 */ 3489 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3490 unsigned int nr_bits) 3491 { 3492 /* -1 is a legal arg here. */ 3493 if (n != -1) 3494 cpu_max_bits_warn(n, nr_bits); 3495 3496 if (srcp) 3497 return find_next_bit(srcp, nr_bits, n + 1); 3498 3499 return n + 1; 3500 } 3501 3502 /** 3503 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3504 * @n: CPU/Rx queue index 3505 * @src1p: the first CPUs/Rx queues mask pointer 3506 * @src2p: the second CPUs/Rx queues mask pointer 3507 * @nr_bits: number of bits in the bitmask 3508 * 3509 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3510 */ 3511 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3512 const unsigned long *src2p, 3513 unsigned int nr_bits) 3514 { 3515 /* -1 is a legal arg here. */ 3516 if (n != -1) 3517 cpu_max_bits_warn(n, nr_bits); 3518 3519 if (src1p && src2p) 3520 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3521 else if (src1p) 3522 return find_next_bit(src1p, nr_bits, n + 1); 3523 else if (src2p) 3524 return find_next_bit(src2p, nr_bits, n + 1); 3525 3526 return n + 1; 3527 } 3528 #else 3529 static inline int netif_set_xps_queue(struct net_device *dev, 3530 const struct cpumask *mask, 3531 u16 index) 3532 { 3533 return 0; 3534 } 3535 3536 static inline int __netif_set_xps_queue(struct net_device *dev, 3537 const unsigned long *mask, 3538 u16 index, bool is_rxqs_map) 3539 { 3540 return 0; 3541 } 3542 #endif 3543 3544 /** 3545 * netif_is_multiqueue - test if device has multiple transmit queues 3546 * @dev: network device 3547 * 3548 * Check if device has multiple transmit queues 3549 */ 3550 static inline bool netif_is_multiqueue(const struct net_device *dev) 3551 { 3552 return dev->num_tx_queues > 1; 3553 } 3554 3555 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3556 3557 #ifdef CONFIG_SYSFS 3558 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3559 #else 3560 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3561 unsigned int rxqs) 3562 { 3563 dev->real_num_rx_queues = rxqs; 3564 return 0; 3565 } 3566 #endif 3567 3568 static inline struct netdev_rx_queue * 3569 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3570 { 3571 return dev->_rx + rxq; 3572 } 3573 3574 #ifdef CONFIG_SYSFS 3575 static inline unsigned int get_netdev_rx_queue_index( 3576 struct netdev_rx_queue *queue) 3577 { 3578 struct net_device *dev = queue->dev; 3579 int index = queue - dev->_rx; 3580 3581 BUG_ON(index >= dev->num_rx_queues); 3582 return index; 3583 } 3584 #endif 3585 3586 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3587 int netif_get_num_default_rss_queues(void); 3588 3589 enum skb_free_reason { 3590 SKB_REASON_CONSUMED, 3591 SKB_REASON_DROPPED, 3592 }; 3593 3594 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3595 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3596 3597 /* 3598 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3599 * interrupt context or with hardware interrupts being disabled. 3600 * (in_irq() || irqs_disabled()) 3601 * 3602 * We provide four helpers that can be used in following contexts : 3603 * 3604 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3605 * replacing kfree_skb(skb) 3606 * 3607 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3608 * Typically used in place of consume_skb(skb) in TX completion path 3609 * 3610 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3611 * replacing kfree_skb(skb) 3612 * 3613 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3614 * and consumed a packet. Used in place of consume_skb(skb) 3615 */ 3616 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3617 { 3618 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3619 } 3620 3621 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3622 { 3623 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3624 } 3625 3626 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3627 { 3628 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3629 } 3630 3631 static inline void dev_consume_skb_any(struct sk_buff *skb) 3632 { 3633 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3634 } 3635 3636 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3637 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3638 int netif_rx(struct sk_buff *skb); 3639 int netif_rx_ni(struct sk_buff *skb); 3640 int netif_receive_skb(struct sk_buff *skb); 3641 int netif_receive_skb_core(struct sk_buff *skb); 3642 void netif_receive_skb_list(struct list_head *head); 3643 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3644 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3645 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3646 gro_result_t napi_gro_frags(struct napi_struct *napi); 3647 struct packet_offload *gro_find_receive_by_type(__be16 type); 3648 struct packet_offload *gro_find_complete_by_type(__be16 type); 3649 3650 static inline void napi_free_frags(struct napi_struct *napi) 3651 { 3652 kfree_skb(napi->skb); 3653 napi->skb = NULL; 3654 } 3655 3656 bool netdev_is_rx_handler_busy(struct net_device *dev); 3657 int netdev_rx_handler_register(struct net_device *dev, 3658 rx_handler_func_t *rx_handler, 3659 void *rx_handler_data); 3660 void netdev_rx_handler_unregister(struct net_device *dev); 3661 3662 bool dev_valid_name(const char *name); 3663 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3664 bool *need_copyout); 3665 int dev_ifconf(struct net *net, struct ifconf *, int); 3666 int dev_ethtool(struct net *net, struct ifreq *); 3667 unsigned int dev_get_flags(const struct net_device *); 3668 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3669 struct netlink_ext_ack *extack); 3670 int dev_change_flags(struct net_device *dev, unsigned int flags, 3671 struct netlink_ext_ack *extack); 3672 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3673 unsigned int gchanges); 3674 int dev_change_name(struct net_device *, const char *); 3675 int dev_set_alias(struct net_device *, const char *, size_t); 3676 int dev_get_alias(const struct net_device *, char *, size_t); 3677 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3678 int __dev_set_mtu(struct net_device *, int); 3679 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3680 struct netlink_ext_ack *extack); 3681 int dev_set_mtu(struct net_device *, int); 3682 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3683 void dev_set_group(struct net_device *, int); 3684 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3685 struct netlink_ext_ack *extack); 3686 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3687 struct netlink_ext_ack *extack); 3688 int dev_change_carrier(struct net_device *, bool new_carrier); 3689 int dev_get_phys_port_id(struct net_device *dev, 3690 struct netdev_phys_item_id *ppid); 3691 int dev_get_phys_port_name(struct net_device *dev, 3692 char *name, size_t len); 3693 int dev_get_port_parent_id(struct net_device *dev, 3694 struct netdev_phys_item_id *ppid, bool recurse); 3695 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3696 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3697 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3699 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3700 struct netdev_queue *txq, int *ret); 3701 3702 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3703 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3704 int fd, u32 flags); 3705 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3706 enum bpf_netdev_command cmd); 3707 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3708 3709 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3710 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3711 bool is_skb_forwardable(const struct net_device *dev, 3712 const struct sk_buff *skb); 3713 3714 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3715 struct sk_buff *skb) 3716 { 3717 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3718 unlikely(!is_skb_forwardable(dev, skb))) { 3719 atomic_long_inc(&dev->rx_dropped); 3720 kfree_skb(skb); 3721 return NET_RX_DROP; 3722 } 3723 3724 skb_scrub_packet(skb, true); 3725 skb->priority = 0; 3726 return 0; 3727 } 3728 3729 bool dev_nit_active(struct net_device *dev); 3730 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3731 3732 extern int netdev_budget; 3733 extern unsigned int netdev_budget_usecs; 3734 3735 /* Called by rtnetlink.c:rtnl_unlock() */ 3736 void netdev_run_todo(void); 3737 3738 /** 3739 * dev_put - release reference to device 3740 * @dev: network device 3741 * 3742 * Release reference to device to allow it to be freed. 3743 */ 3744 static inline void dev_put(struct net_device *dev) 3745 { 3746 this_cpu_dec(*dev->pcpu_refcnt); 3747 } 3748 3749 /** 3750 * dev_hold - get reference to device 3751 * @dev: network device 3752 * 3753 * Hold reference to device to keep it from being freed. 3754 */ 3755 static inline void dev_hold(struct net_device *dev) 3756 { 3757 this_cpu_inc(*dev->pcpu_refcnt); 3758 } 3759 3760 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3761 * and _off may be called from IRQ context, but it is caller 3762 * who is responsible for serialization of these calls. 3763 * 3764 * The name carrier is inappropriate, these functions should really be 3765 * called netif_lowerlayer_*() because they represent the state of any 3766 * kind of lower layer not just hardware media. 3767 */ 3768 3769 void linkwatch_init_dev(struct net_device *dev); 3770 void linkwatch_fire_event(struct net_device *dev); 3771 void linkwatch_forget_dev(struct net_device *dev); 3772 3773 /** 3774 * netif_carrier_ok - test if carrier present 3775 * @dev: network device 3776 * 3777 * Check if carrier is present on device 3778 */ 3779 static inline bool netif_carrier_ok(const struct net_device *dev) 3780 { 3781 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3782 } 3783 3784 unsigned long dev_trans_start(struct net_device *dev); 3785 3786 void __netdev_watchdog_up(struct net_device *dev); 3787 3788 void netif_carrier_on(struct net_device *dev); 3789 3790 void netif_carrier_off(struct net_device *dev); 3791 3792 /** 3793 * netif_dormant_on - mark device as dormant. 3794 * @dev: network device 3795 * 3796 * Mark device as dormant (as per RFC2863). 3797 * 3798 * The dormant state indicates that the relevant interface is not 3799 * actually in a condition to pass packets (i.e., it is not 'up') but is 3800 * in a "pending" state, waiting for some external event. For "on- 3801 * demand" interfaces, this new state identifies the situation where the 3802 * interface is waiting for events to place it in the up state. 3803 */ 3804 static inline void netif_dormant_on(struct net_device *dev) 3805 { 3806 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3807 linkwatch_fire_event(dev); 3808 } 3809 3810 /** 3811 * netif_dormant_off - set device as not dormant. 3812 * @dev: network device 3813 * 3814 * Device is not in dormant state. 3815 */ 3816 static inline void netif_dormant_off(struct net_device *dev) 3817 { 3818 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3819 linkwatch_fire_event(dev); 3820 } 3821 3822 /** 3823 * netif_dormant - test if device is dormant 3824 * @dev: network device 3825 * 3826 * Check if device is dormant. 3827 */ 3828 static inline bool netif_dormant(const struct net_device *dev) 3829 { 3830 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3831 } 3832 3833 3834 /** 3835 * netif_oper_up - test if device is operational 3836 * @dev: network device 3837 * 3838 * Check if carrier is operational 3839 */ 3840 static inline bool netif_oper_up(const struct net_device *dev) 3841 { 3842 return (dev->operstate == IF_OPER_UP || 3843 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3844 } 3845 3846 /** 3847 * netif_device_present - is device available or removed 3848 * @dev: network device 3849 * 3850 * Check if device has not been removed from system. 3851 */ 3852 static inline bool netif_device_present(struct net_device *dev) 3853 { 3854 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3855 } 3856 3857 void netif_device_detach(struct net_device *dev); 3858 3859 void netif_device_attach(struct net_device *dev); 3860 3861 /* 3862 * Network interface message level settings 3863 */ 3864 3865 enum { 3866 NETIF_MSG_DRV = 0x0001, 3867 NETIF_MSG_PROBE = 0x0002, 3868 NETIF_MSG_LINK = 0x0004, 3869 NETIF_MSG_TIMER = 0x0008, 3870 NETIF_MSG_IFDOWN = 0x0010, 3871 NETIF_MSG_IFUP = 0x0020, 3872 NETIF_MSG_RX_ERR = 0x0040, 3873 NETIF_MSG_TX_ERR = 0x0080, 3874 NETIF_MSG_TX_QUEUED = 0x0100, 3875 NETIF_MSG_INTR = 0x0200, 3876 NETIF_MSG_TX_DONE = 0x0400, 3877 NETIF_MSG_RX_STATUS = 0x0800, 3878 NETIF_MSG_PKTDATA = 0x1000, 3879 NETIF_MSG_HW = 0x2000, 3880 NETIF_MSG_WOL = 0x4000, 3881 }; 3882 3883 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3884 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3885 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3886 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3887 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3888 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3889 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3890 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3891 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3892 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3893 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3894 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3895 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3896 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3897 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3898 3899 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3900 { 3901 /* use default */ 3902 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3903 return default_msg_enable_bits; 3904 if (debug_value == 0) /* no output */ 3905 return 0; 3906 /* set low N bits */ 3907 return (1U << debug_value) - 1; 3908 } 3909 3910 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3911 { 3912 spin_lock(&txq->_xmit_lock); 3913 txq->xmit_lock_owner = cpu; 3914 } 3915 3916 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3917 { 3918 __acquire(&txq->_xmit_lock); 3919 return true; 3920 } 3921 3922 static inline void __netif_tx_release(struct netdev_queue *txq) 3923 { 3924 __release(&txq->_xmit_lock); 3925 } 3926 3927 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3928 { 3929 spin_lock_bh(&txq->_xmit_lock); 3930 txq->xmit_lock_owner = smp_processor_id(); 3931 } 3932 3933 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3934 { 3935 bool ok = spin_trylock(&txq->_xmit_lock); 3936 if (likely(ok)) 3937 txq->xmit_lock_owner = smp_processor_id(); 3938 return ok; 3939 } 3940 3941 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3942 { 3943 txq->xmit_lock_owner = -1; 3944 spin_unlock(&txq->_xmit_lock); 3945 } 3946 3947 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3948 { 3949 txq->xmit_lock_owner = -1; 3950 spin_unlock_bh(&txq->_xmit_lock); 3951 } 3952 3953 static inline void txq_trans_update(struct netdev_queue *txq) 3954 { 3955 if (txq->xmit_lock_owner != -1) 3956 txq->trans_start = jiffies; 3957 } 3958 3959 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3960 static inline void netif_trans_update(struct net_device *dev) 3961 { 3962 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3963 3964 if (txq->trans_start != jiffies) 3965 txq->trans_start = jiffies; 3966 } 3967 3968 /** 3969 * netif_tx_lock - grab network device transmit lock 3970 * @dev: network device 3971 * 3972 * Get network device transmit lock 3973 */ 3974 static inline void netif_tx_lock(struct net_device *dev) 3975 { 3976 unsigned int i; 3977 int cpu; 3978 3979 spin_lock(&dev->tx_global_lock); 3980 cpu = smp_processor_id(); 3981 for (i = 0; i < dev->num_tx_queues; i++) { 3982 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3983 3984 /* We are the only thread of execution doing a 3985 * freeze, but we have to grab the _xmit_lock in 3986 * order to synchronize with threads which are in 3987 * the ->hard_start_xmit() handler and already 3988 * checked the frozen bit. 3989 */ 3990 __netif_tx_lock(txq, cpu); 3991 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3992 __netif_tx_unlock(txq); 3993 } 3994 } 3995 3996 static inline void netif_tx_lock_bh(struct net_device *dev) 3997 { 3998 local_bh_disable(); 3999 netif_tx_lock(dev); 4000 } 4001 4002 static inline void netif_tx_unlock(struct net_device *dev) 4003 { 4004 unsigned int i; 4005 4006 for (i = 0; i < dev->num_tx_queues; i++) { 4007 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4008 4009 /* No need to grab the _xmit_lock here. If the 4010 * queue is not stopped for another reason, we 4011 * force a schedule. 4012 */ 4013 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4014 netif_schedule_queue(txq); 4015 } 4016 spin_unlock(&dev->tx_global_lock); 4017 } 4018 4019 static inline void netif_tx_unlock_bh(struct net_device *dev) 4020 { 4021 netif_tx_unlock(dev); 4022 local_bh_enable(); 4023 } 4024 4025 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4026 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4027 __netif_tx_lock(txq, cpu); \ 4028 } else { \ 4029 __netif_tx_acquire(txq); \ 4030 } \ 4031 } 4032 4033 #define HARD_TX_TRYLOCK(dev, txq) \ 4034 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4035 __netif_tx_trylock(txq) : \ 4036 __netif_tx_acquire(txq)) 4037 4038 #define HARD_TX_UNLOCK(dev, txq) { \ 4039 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4040 __netif_tx_unlock(txq); \ 4041 } else { \ 4042 __netif_tx_release(txq); \ 4043 } \ 4044 } 4045 4046 static inline void netif_tx_disable(struct net_device *dev) 4047 { 4048 unsigned int i; 4049 int cpu; 4050 4051 local_bh_disable(); 4052 cpu = smp_processor_id(); 4053 for (i = 0; i < dev->num_tx_queues; i++) { 4054 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4055 4056 __netif_tx_lock(txq, cpu); 4057 netif_tx_stop_queue(txq); 4058 __netif_tx_unlock(txq); 4059 } 4060 local_bh_enable(); 4061 } 4062 4063 static inline void netif_addr_lock(struct net_device *dev) 4064 { 4065 spin_lock(&dev->addr_list_lock); 4066 } 4067 4068 static inline void netif_addr_lock_nested(struct net_device *dev) 4069 { 4070 int subclass = SINGLE_DEPTH_NESTING; 4071 4072 if (dev->netdev_ops->ndo_get_lock_subclass) 4073 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4074 4075 spin_lock_nested(&dev->addr_list_lock, subclass); 4076 } 4077 4078 static inline void netif_addr_lock_bh(struct net_device *dev) 4079 { 4080 spin_lock_bh(&dev->addr_list_lock); 4081 } 4082 4083 static inline void netif_addr_unlock(struct net_device *dev) 4084 { 4085 spin_unlock(&dev->addr_list_lock); 4086 } 4087 4088 static inline void netif_addr_unlock_bh(struct net_device *dev) 4089 { 4090 spin_unlock_bh(&dev->addr_list_lock); 4091 } 4092 4093 /* 4094 * dev_addrs walker. Should be used only for read access. Call with 4095 * rcu_read_lock held. 4096 */ 4097 #define for_each_dev_addr(dev, ha) \ 4098 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4099 4100 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4101 4102 void ether_setup(struct net_device *dev); 4103 4104 /* Support for loadable net-drivers */ 4105 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4106 unsigned char name_assign_type, 4107 void (*setup)(struct net_device *), 4108 unsigned int txqs, unsigned int rxqs); 4109 int dev_get_valid_name(struct net *net, struct net_device *dev, 4110 const char *name); 4111 4112 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4113 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4114 4115 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4116 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4117 count) 4118 4119 int register_netdev(struct net_device *dev); 4120 void unregister_netdev(struct net_device *dev); 4121 4122 /* General hardware address lists handling functions */ 4123 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4124 struct netdev_hw_addr_list *from_list, int addr_len); 4125 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4126 struct netdev_hw_addr_list *from_list, int addr_len); 4127 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4128 struct net_device *dev, 4129 int (*sync)(struct net_device *, const unsigned char *), 4130 int (*unsync)(struct net_device *, 4131 const unsigned char *)); 4132 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4133 struct net_device *dev, 4134 int (*sync)(struct net_device *, 4135 const unsigned char *, int), 4136 int (*unsync)(struct net_device *, 4137 const unsigned char *, int)); 4138 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4139 struct net_device *dev, 4140 int (*unsync)(struct net_device *, 4141 const unsigned char *, int)); 4142 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4143 struct net_device *dev, 4144 int (*unsync)(struct net_device *, 4145 const unsigned char *)); 4146 void __hw_addr_init(struct netdev_hw_addr_list *list); 4147 4148 /* Functions used for device addresses handling */ 4149 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4150 unsigned char addr_type); 4151 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4152 unsigned char addr_type); 4153 void dev_addr_flush(struct net_device *dev); 4154 int dev_addr_init(struct net_device *dev); 4155 4156 /* Functions used for unicast addresses handling */ 4157 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4158 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4159 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4160 int dev_uc_sync(struct net_device *to, struct net_device *from); 4161 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4162 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4163 void dev_uc_flush(struct net_device *dev); 4164 void dev_uc_init(struct net_device *dev); 4165 4166 /** 4167 * __dev_uc_sync - Synchonize device's unicast list 4168 * @dev: device to sync 4169 * @sync: function to call if address should be added 4170 * @unsync: function to call if address should be removed 4171 * 4172 * Add newly added addresses to the interface, and release 4173 * addresses that have been deleted. 4174 */ 4175 static inline int __dev_uc_sync(struct net_device *dev, 4176 int (*sync)(struct net_device *, 4177 const unsigned char *), 4178 int (*unsync)(struct net_device *, 4179 const unsigned char *)) 4180 { 4181 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4182 } 4183 4184 /** 4185 * __dev_uc_unsync - Remove synchronized addresses from device 4186 * @dev: device to sync 4187 * @unsync: function to call if address should be removed 4188 * 4189 * Remove all addresses that were added to the device by dev_uc_sync(). 4190 */ 4191 static inline void __dev_uc_unsync(struct net_device *dev, 4192 int (*unsync)(struct net_device *, 4193 const unsigned char *)) 4194 { 4195 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4196 } 4197 4198 /* Functions used for multicast addresses handling */ 4199 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4200 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4201 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4202 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4203 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4204 int dev_mc_sync(struct net_device *to, struct net_device *from); 4205 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4206 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4207 void dev_mc_flush(struct net_device *dev); 4208 void dev_mc_init(struct net_device *dev); 4209 4210 /** 4211 * __dev_mc_sync - Synchonize device's multicast list 4212 * @dev: device to sync 4213 * @sync: function to call if address should be added 4214 * @unsync: function to call if address should be removed 4215 * 4216 * Add newly added addresses to the interface, and release 4217 * addresses that have been deleted. 4218 */ 4219 static inline int __dev_mc_sync(struct net_device *dev, 4220 int (*sync)(struct net_device *, 4221 const unsigned char *), 4222 int (*unsync)(struct net_device *, 4223 const unsigned char *)) 4224 { 4225 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4226 } 4227 4228 /** 4229 * __dev_mc_unsync - Remove synchronized addresses from device 4230 * @dev: device to sync 4231 * @unsync: function to call if address should be removed 4232 * 4233 * Remove all addresses that were added to the device by dev_mc_sync(). 4234 */ 4235 static inline void __dev_mc_unsync(struct net_device *dev, 4236 int (*unsync)(struct net_device *, 4237 const unsigned char *)) 4238 { 4239 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4240 } 4241 4242 /* Functions used for secondary unicast and multicast support */ 4243 void dev_set_rx_mode(struct net_device *dev); 4244 void __dev_set_rx_mode(struct net_device *dev); 4245 int dev_set_promiscuity(struct net_device *dev, int inc); 4246 int dev_set_allmulti(struct net_device *dev, int inc); 4247 void netdev_state_change(struct net_device *dev); 4248 void netdev_notify_peers(struct net_device *dev); 4249 void netdev_features_change(struct net_device *dev); 4250 /* Load a device via the kmod */ 4251 void dev_load(struct net *net, const char *name); 4252 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4253 struct rtnl_link_stats64 *storage); 4254 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4255 const struct net_device_stats *netdev_stats); 4256 4257 extern int netdev_max_backlog; 4258 extern int netdev_tstamp_prequeue; 4259 extern int weight_p; 4260 extern int dev_weight_rx_bias; 4261 extern int dev_weight_tx_bias; 4262 extern int dev_rx_weight; 4263 extern int dev_tx_weight; 4264 4265 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4266 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4267 struct list_head **iter); 4268 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4269 struct list_head **iter); 4270 4271 /* iterate through upper list, must be called under RCU read lock */ 4272 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4273 for (iter = &(dev)->adj_list.upper, \ 4274 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4275 updev; \ 4276 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4277 4278 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4279 int (*fn)(struct net_device *upper_dev, 4280 void *data), 4281 void *data); 4282 4283 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4284 struct net_device *upper_dev); 4285 4286 bool netdev_has_any_upper_dev(struct net_device *dev); 4287 4288 void *netdev_lower_get_next_private(struct net_device *dev, 4289 struct list_head **iter); 4290 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4291 struct list_head **iter); 4292 4293 #define netdev_for_each_lower_private(dev, priv, iter) \ 4294 for (iter = (dev)->adj_list.lower.next, \ 4295 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4296 priv; \ 4297 priv = netdev_lower_get_next_private(dev, &(iter))) 4298 4299 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4300 for (iter = &(dev)->adj_list.lower, \ 4301 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4302 priv; \ 4303 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4304 4305 void *netdev_lower_get_next(struct net_device *dev, 4306 struct list_head **iter); 4307 4308 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4309 for (iter = (dev)->adj_list.lower.next, \ 4310 ldev = netdev_lower_get_next(dev, &(iter)); \ 4311 ldev; \ 4312 ldev = netdev_lower_get_next(dev, &(iter))) 4313 4314 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4315 struct list_head **iter); 4316 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4317 struct list_head **iter); 4318 4319 int netdev_walk_all_lower_dev(struct net_device *dev, 4320 int (*fn)(struct net_device *lower_dev, 4321 void *data), 4322 void *data); 4323 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4324 int (*fn)(struct net_device *lower_dev, 4325 void *data), 4326 void *data); 4327 4328 void *netdev_adjacent_get_private(struct list_head *adj_list); 4329 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4330 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4331 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4332 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4333 struct netlink_ext_ack *extack); 4334 int netdev_master_upper_dev_link(struct net_device *dev, 4335 struct net_device *upper_dev, 4336 void *upper_priv, void *upper_info, 4337 struct netlink_ext_ack *extack); 4338 void netdev_upper_dev_unlink(struct net_device *dev, 4339 struct net_device *upper_dev); 4340 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4341 void *netdev_lower_dev_get_private(struct net_device *dev, 4342 struct net_device *lower_dev); 4343 void netdev_lower_state_changed(struct net_device *lower_dev, 4344 void *lower_state_info); 4345 4346 /* RSS keys are 40 or 52 bytes long */ 4347 #define NETDEV_RSS_KEY_LEN 52 4348 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4349 void netdev_rss_key_fill(void *buffer, size_t len); 4350 4351 int dev_get_nest_level(struct net_device *dev); 4352 int skb_checksum_help(struct sk_buff *skb); 4353 int skb_crc32c_csum_help(struct sk_buff *skb); 4354 int skb_csum_hwoffload_help(struct sk_buff *skb, 4355 const netdev_features_t features); 4356 4357 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4358 netdev_features_t features, bool tx_path); 4359 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4360 netdev_features_t features); 4361 4362 struct netdev_bonding_info { 4363 ifslave slave; 4364 ifbond master; 4365 }; 4366 4367 struct netdev_notifier_bonding_info { 4368 struct netdev_notifier_info info; /* must be first */ 4369 struct netdev_bonding_info bonding_info; 4370 }; 4371 4372 void netdev_bonding_info_change(struct net_device *dev, 4373 struct netdev_bonding_info *bonding_info); 4374 4375 static inline 4376 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4377 { 4378 return __skb_gso_segment(skb, features, true); 4379 } 4380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4381 4382 static inline bool can_checksum_protocol(netdev_features_t features, 4383 __be16 protocol) 4384 { 4385 if (protocol == htons(ETH_P_FCOE)) 4386 return !!(features & NETIF_F_FCOE_CRC); 4387 4388 /* Assume this is an IP checksum (not SCTP CRC) */ 4389 4390 if (features & NETIF_F_HW_CSUM) { 4391 /* Can checksum everything */ 4392 return true; 4393 } 4394 4395 switch (protocol) { 4396 case htons(ETH_P_IP): 4397 return !!(features & NETIF_F_IP_CSUM); 4398 case htons(ETH_P_IPV6): 4399 return !!(features & NETIF_F_IPV6_CSUM); 4400 default: 4401 return false; 4402 } 4403 } 4404 4405 #ifdef CONFIG_BUG 4406 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4407 #else 4408 static inline void netdev_rx_csum_fault(struct net_device *dev, 4409 struct sk_buff *skb) 4410 { 4411 } 4412 #endif 4413 /* rx skb timestamps */ 4414 void net_enable_timestamp(void); 4415 void net_disable_timestamp(void); 4416 4417 #ifdef CONFIG_PROC_FS 4418 int __init dev_proc_init(void); 4419 #else 4420 #define dev_proc_init() 0 4421 #endif 4422 4423 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4424 struct sk_buff *skb, struct net_device *dev, 4425 bool more) 4426 { 4427 __this_cpu_write(softnet_data.xmit.more, more); 4428 return ops->ndo_start_xmit(skb, dev); 4429 } 4430 4431 static inline bool netdev_xmit_more(void) 4432 { 4433 return __this_cpu_read(softnet_data.xmit.more); 4434 } 4435 4436 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4437 struct netdev_queue *txq, bool more) 4438 { 4439 const struct net_device_ops *ops = dev->netdev_ops; 4440 netdev_tx_t rc; 4441 4442 rc = __netdev_start_xmit(ops, skb, dev, more); 4443 if (rc == NETDEV_TX_OK) 4444 txq_trans_update(txq); 4445 4446 return rc; 4447 } 4448 4449 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4450 const void *ns); 4451 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4452 const void *ns); 4453 4454 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4455 { 4456 return netdev_class_create_file_ns(class_attr, NULL); 4457 } 4458 4459 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4460 { 4461 netdev_class_remove_file_ns(class_attr, NULL); 4462 } 4463 4464 extern const struct kobj_ns_type_operations net_ns_type_operations; 4465 4466 const char *netdev_drivername(const struct net_device *dev); 4467 4468 void linkwatch_run_queue(void); 4469 4470 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4471 netdev_features_t f2) 4472 { 4473 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4474 if (f1 & NETIF_F_HW_CSUM) 4475 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4476 else 4477 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4478 } 4479 4480 return f1 & f2; 4481 } 4482 4483 static inline netdev_features_t netdev_get_wanted_features( 4484 struct net_device *dev) 4485 { 4486 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4487 } 4488 netdev_features_t netdev_increment_features(netdev_features_t all, 4489 netdev_features_t one, netdev_features_t mask); 4490 4491 /* Allow TSO being used on stacked device : 4492 * Performing the GSO segmentation before last device 4493 * is a performance improvement. 4494 */ 4495 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4496 netdev_features_t mask) 4497 { 4498 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4499 } 4500 4501 int __netdev_update_features(struct net_device *dev); 4502 void netdev_update_features(struct net_device *dev); 4503 void netdev_change_features(struct net_device *dev); 4504 4505 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4506 struct net_device *dev); 4507 4508 netdev_features_t passthru_features_check(struct sk_buff *skb, 4509 struct net_device *dev, 4510 netdev_features_t features); 4511 netdev_features_t netif_skb_features(struct sk_buff *skb); 4512 4513 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4514 { 4515 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4516 4517 /* check flags correspondence */ 4518 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4519 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4520 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4521 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4522 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4523 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4524 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4525 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4526 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4527 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4528 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4529 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4530 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4531 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4532 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4533 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4534 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4535 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4536 4537 return (features & feature) == feature; 4538 } 4539 4540 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4541 { 4542 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4543 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4544 } 4545 4546 static inline bool netif_needs_gso(struct sk_buff *skb, 4547 netdev_features_t features) 4548 { 4549 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4550 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4551 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4552 } 4553 4554 static inline void netif_set_gso_max_size(struct net_device *dev, 4555 unsigned int size) 4556 { 4557 dev->gso_max_size = size; 4558 } 4559 4560 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4561 int pulled_hlen, u16 mac_offset, 4562 int mac_len) 4563 { 4564 skb->protocol = protocol; 4565 skb->encapsulation = 1; 4566 skb_push(skb, pulled_hlen); 4567 skb_reset_transport_header(skb); 4568 skb->mac_header = mac_offset; 4569 skb->network_header = skb->mac_header + mac_len; 4570 skb->mac_len = mac_len; 4571 } 4572 4573 static inline bool netif_is_macsec(const struct net_device *dev) 4574 { 4575 return dev->priv_flags & IFF_MACSEC; 4576 } 4577 4578 static inline bool netif_is_macvlan(const struct net_device *dev) 4579 { 4580 return dev->priv_flags & IFF_MACVLAN; 4581 } 4582 4583 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4584 { 4585 return dev->priv_flags & IFF_MACVLAN_PORT; 4586 } 4587 4588 static inline bool netif_is_bond_master(const struct net_device *dev) 4589 { 4590 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4591 } 4592 4593 static inline bool netif_is_bond_slave(const struct net_device *dev) 4594 { 4595 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4596 } 4597 4598 static inline bool netif_supports_nofcs(struct net_device *dev) 4599 { 4600 return dev->priv_flags & IFF_SUPP_NOFCS; 4601 } 4602 4603 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4604 { 4605 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4606 } 4607 4608 static inline bool netif_is_l3_master(const struct net_device *dev) 4609 { 4610 return dev->priv_flags & IFF_L3MDEV_MASTER; 4611 } 4612 4613 static inline bool netif_is_l3_slave(const struct net_device *dev) 4614 { 4615 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4616 } 4617 4618 static inline bool netif_is_bridge_master(const struct net_device *dev) 4619 { 4620 return dev->priv_flags & IFF_EBRIDGE; 4621 } 4622 4623 static inline bool netif_is_bridge_port(const struct net_device *dev) 4624 { 4625 return dev->priv_flags & IFF_BRIDGE_PORT; 4626 } 4627 4628 static inline bool netif_is_ovs_master(const struct net_device *dev) 4629 { 4630 return dev->priv_flags & IFF_OPENVSWITCH; 4631 } 4632 4633 static inline bool netif_is_ovs_port(const struct net_device *dev) 4634 { 4635 return dev->priv_flags & IFF_OVS_DATAPATH; 4636 } 4637 4638 static inline bool netif_is_team_master(const struct net_device *dev) 4639 { 4640 return dev->priv_flags & IFF_TEAM; 4641 } 4642 4643 static inline bool netif_is_team_port(const struct net_device *dev) 4644 { 4645 return dev->priv_flags & IFF_TEAM_PORT; 4646 } 4647 4648 static inline bool netif_is_lag_master(const struct net_device *dev) 4649 { 4650 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4651 } 4652 4653 static inline bool netif_is_lag_port(const struct net_device *dev) 4654 { 4655 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4656 } 4657 4658 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4659 { 4660 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4661 } 4662 4663 static inline bool netif_is_failover(const struct net_device *dev) 4664 { 4665 return dev->priv_flags & IFF_FAILOVER; 4666 } 4667 4668 static inline bool netif_is_failover_slave(const struct net_device *dev) 4669 { 4670 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4671 } 4672 4673 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4674 static inline void netif_keep_dst(struct net_device *dev) 4675 { 4676 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4677 } 4678 4679 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4680 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4681 { 4682 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4683 return dev->priv_flags & IFF_MACSEC; 4684 } 4685 4686 extern struct pernet_operations __net_initdata loopback_net_ops; 4687 4688 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4689 4690 /* netdev_printk helpers, similar to dev_printk */ 4691 4692 static inline const char *netdev_name(const struct net_device *dev) 4693 { 4694 if (!dev->name[0] || strchr(dev->name, '%')) 4695 return "(unnamed net_device)"; 4696 return dev->name; 4697 } 4698 4699 static inline bool netdev_unregistering(const struct net_device *dev) 4700 { 4701 return dev->reg_state == NETREG_UNREGISTERING; 4702 } 4703 4704 static inline const char *netdev_reg_state(const struct net_device *dev) 4705 { 4706 switch (dev->reg_state) { 4707 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4708 case NETREG_REGISTERED: return ""; 4709 case NETREG_UNREGISTERING: return " (unregistering)"; 4710 case NETREG_UNREGISTERED: return " (unregistered)"; 4711 case NETREG_RELEASED: return " (released)"; 4712 case NETREG_DUMMY: return " (dummy)"; 4713 } 4714 4715 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4716 return " (unknown)"; 4717 } 4718 4719 __printf(3, 4) __cold 4720 void netdev_printk(const char *level, const struct net_device *dev, 4721 const char *format, ...); 4722 __printf(2, 3) __cold 4723 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4724 __printf(2, 3) __cold 4725 void netdev_alert(const struct net_device *dev, const char *format, ...); 4726 __printf(2, 3) __cold 4727 void netdev_crit(const struct net_device *dev, const char *format, ...); 4728 __printf(2, 3) __cold 4729 void netdev_err(const struct net_device *dev, const char *format, ...); 4730 __printf(2, 3) __cold 4731 void netdev_warn(const struct net_device *dev, const char *format, ...); 4732 __printf(2, 3) __cold 4733 void netdev_notice(const struct net_device *dev, const char *format, ...); 4734 __printf(2, 3) __cold 4735 void netdev_info(const struct net_device *dev, const char *format, ...); 4736 4737 #define netdev_level_once(level, dev, fmt, ...) \ 4738 do { \ 4739 static bool __print_once __read_mostly; \ 4740 \ 4741 if (!__print_once) { \ 4742 __print_once = true; \ 4743 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4744 } \ 4745 } while (0) 4746 4747 #define netdev_emerg_once(dev, fmt, ...) \ 4748 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4749 #define netdev_alert_once(dev, fmt, ...) \ 4750 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4751 #define netdev_crit_once(dev, fmt, ...) \ 4752 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4753 #define netdev_err_once(dev, fmt, ...) \ 4754 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4755 #define netdev_warn_once(dev, fmt, ...) \ 4756 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4757 #define netdev_notice_once(dev, fmt, ...) \ 4758 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4759 #define netdev_info_once(dev, fmt, ...) \ 4760 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4761 4762 #define MODULE_ALIAS_NETDEV(device) \ 4763 MODULE_ALIAS("netdev-" device) 4764 4765 #if defined(CONFIG_DYNAMIC_DEBUG) 4766 #define netdev_dbg(__dev, format, args...) \ 4767 do { \ 4768 dynamic_netdev_dbg(__dev, format, ##args); \ 4769 } while (0) 4770 #elif defined(DEBUG) 4771 #define netdev_dbg(__dev, format, args...) \ 4772 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4773 #else 4774 #define netdev_dbg(__dev, format, args...) \ 4775 ({ \ 4776 if (0) \ 4777 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4778 }) 4779 #endif 4780 4781 #if defined(VERBOSE_DEBUG) 4782 #define netdev_vdbg netdev_dbg 4783 #else 4784 4785 #define netdev_vdbg(dev, format, args...) \ 4786 ({ \ 4787 if (0) \ 4788 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4789 0; \ 4790 }) 4791 #endif 4792 4793 /* 4794 * netdev_WARN() acts like dev_printk(), but with the key difference 4795 * of using a WARN/WARN_ON to get the message out, including the 4796 * file/line information and a backtrace. 4797 */ 4798 #define netdev_WARN(dev, format, args...) \ 4799 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4800 netdev_reg_state(dev), ##args) 4801 4802 #define netdev_WARN_ONCE(dev, format, args...) \ 4803 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4804 netdev_reg_state(dev), ##args) 4805 4806 /* netif printk helpers, similar to netdev_printk */ 4807 4808 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4809 do { \ 4810 if (netif_msg_##type(priv)) \ 4811 netdev_printk(level, (dev), fmt, ##args); \ 4812 } while (0) 4813 4814 #define netif_level(level, priv, type, dev, fmt, args...) \ 4815 do { \ 4816 if (netif_msg_##type(priv)) \ 4817 netdev_##level(dev, fmt, ##args); \ 4818 } while (0) 4819 4820 #define netif_emerg(priv, type, dev, fmt, args...) \ 4821 netif_level(emerg, priv, type, dev, fmt, ##args) 4822 #define netif_alert(priv, type, dev, fmt, args...) \ 4823 netif_level(alert, priv, type, dev, fmt, ##args) 4824 #define netif_crit(priv, type, dev, fmt, args...) \ 4825 netif_level(crit, priv, type, dev, fmt, ##args) 4826 #define netif_err(priv, type, dev, fmt, args...) \ 4827 netif_level(err, priv, type, dev, fmt, ##args) 4828 #define netif_warn(priv, type, dev, fmt, args...) \ 4829 netif_level(warn, priv, type, dev, fmt, ##args) 4830 #define netif_notice(priv, type, dev, fmt, args...) \ 4831 netif_level(notice, priv, type, dev, fmt, ##args) 4832 #define netif_info(priv, type, dev, fmt, args...) \ 4833 netif_level(info, priv, type, dev, fmt, ##args) 4834 4835 #if defined(CONFIG_DYNAMIC_DEBUG) 4836 #define netif_dbg(priv, type, netdev, format, args...) \ 4837 do { \ 4838 if (netif_msg_##type(priv)) \ 4839 dynamic_netdev_dbg(netdev, format, ##args); \ 4840 } while (0) 4841 #elif defined(DEBUG) 4842 #define netif_dbg(priv, type, dev, format, args...) \ 4843 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4844 #else 4845 #define netif_dbg(priv, type, dev, format, args...) \ 4846 ({ \ 4847 if (0) \ 4848 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4849 0; \ 4850 }) 4851 #endif 4852 4853 /* if @cond then downgrade to debug, else print at @level */ 4854 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4855 do { \ 4856 if (cond) \ 4857 netif_dbg(priv, type, netdev, fmt, ##args); \ 4858 else \ 4859 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4860 } while (0) 4861 4862 #if defined(VERBOSE_DEBUG) 4863 #define netif_vdbg netif_dbg 4864 #else 4865 #define netif_vdbg(priv, type, dev, format, args...) \ 4866 ({ \ 4867 if (0) \ 4868 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4869 0; \ 4870 }) 4871 #endif 4872 4873 /* 4874 * The list of packet types we will receive (as opposed to discard) 4875 * and the routines to invoke. 4876 * 4877 * Why 16. Because with 16 the only overlap we get on a hash of the 4878 * low nibble of the protocol value is RARP/SNAP/X.25. 4879 * 4880 * 0800 IP 4881 * 0001 802.3 4882 * 0002 AX.25 4883 * 0004 802.2 4884 * 8035 RARP 4885 * 0005 SNAP 4886 * 0805 X.25 4887 * 0806 ARP 4888 * 8137 IPX 4889 * 0009 Localtalk 4890 * 86DD IPv6 4891 */ 4892 #define PTYPE_HASH_SIZE (16) 4893 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4894 4895 #endif /* _LINUX_NETDEVICE_H */ 4896