xref: /openbmc/linux/include/linux/netdevice.h (revision bd336e63)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 				    const struct ethtool_ops *ops);
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously; in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90  * others are propagated to higher layers.
91  */
92 
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS	0x00
95 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
96 #define NET_XMIT_CN		0x02	/* congestion notification	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 	/*
122 	 * Positive cases with an skb consumed by a driver:
123 	 * - successful transmission (rc == NETDEV_TX_OK)
124 	 * - error while transmitting (rc < 0)
125 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 	 */
127 	if (likely(rc < NET_XMIT_MASK))
128 		return true;
129 
130 	return false;
131 }
132 
133 /*
134  *	Compute the worst-case header length according to the protocols
135  *	used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *	Old network device statistics. Fields are native words
159  *	(unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163 	unsigned long	rx_packets;
164 	unsigned long	tx_packets;
165 	unsigned long	rx_bytes;
166 	unsigned long	tx_bytes;
167 	unsigned long	rx_errors;
168 	unsigned long	tx_errors;
169 	unsigned long	rx_dropped;
170 	unsigned long	tx_dropped;
171 	unsigned long	multicast;
172 	unsigned long	collisions;
173 	unsigned long	rx_length_errors;
174 	unsigned long	rx_over_errors;
175 	unsigned long	rx_crc_errors;
176 	unsigned long	rx_frame_errors;
177 	unsigned long	rx_fifo_errors;
178 	unsigned long	rx_missed_errors;
179 	unsigned long	tx_aborted_errors;
180 	unsigned long	tx_carrier_errors;
181 	unsigned long	tx_fifo_errors;
182 	unsigned long	tx_heartbeat_errors;
183 	unsigned long	tx_window_errors;
184 	unsigned long	rx_compressed;
185 	unsigned long	tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	u16		hh_len;
239 	u16		__pad;
240 	seqlock_t	hh_lock;
241 
242 	/* cached hardware header; allow for machine alignment needs.        */
243 #define HH_DATA_MOD	16
244 #define HH_DATA_OFF(__len) \
245 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
246 #define HH_DATA_ALIGN(__len) \
247 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
248 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
249 };
250 
251 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
252  * Alternative is:
253  *   dev->hard_header_len ? (dev->hard_header_len +
254  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
255  *
256  * We could use other alignment values, but we must maintain the
257  * relationship HH alignment <= LL alignment.
258  */
259 #define LL_RESERVED_SPACE(dev) \
260 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 
264 struct header_ops {
265 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
266 			   unsigned short type, const void *daddr,
267 			   const void *saddr, unsigned int len);
268 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
269 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
270 	void	(*cache_update)(struct hh_cache *hh,
271 				const struct net_device *dev,
272 				const unsigned char *haddr);
273 	bool	(*validate)(const char *ll_header, unsigned int len);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 /*
303  * Structure for NAPI scheduling similar to tasklet but with weighting
304  */
305 struct napi_struct {
306 	/* The poll_list must only be managed by the entity which
307 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
308 	 * whoever atomically sets that bit can add this napi_struct
309 	 * to the per-CPU poll_list, and whoever clears that bit
310 	 * can remove from the list right before clearing the bit.
311 	 */
312 	struct list_head	poll_list;
313 
314 	unsigned long		state;
315 	int			weight;
316 	unsigned int		gro_count;
317 	int			(*poll)(struct napi_struct *, int);
318 #ifdef CONFIG_NETPOLL
319 	spinlock_t		poll_lock;
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
336 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 };
338 
339 enum gro_result {
340 	GRO_MERGED,
341 	GRO_MERGED_FREE,
342 	GRO_HELD,
343 	GRO_NORMAL,
344 	GRO_DROP,
345 };
346 typedef enum gro_result gro_result_t;
347 
348 /*
349  * enum rx_handler_result - Possible return values for rx_handlers.
350  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
351  * further.
352  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
353  * case skb->dev was changed by rx_handler.
354  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
355  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
356  *
357  * rx_handlers are functions called from inside __netif_receive_skb(), to do
358  * special processing of the skb, prior to delivery to protocol handlers.
359  *
360  * Currently, a net_device can only have a single rx_handler registered. Trying
361  * to register a second rx_handler will return -EBUSY.
362  *
363  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
364  * To unregister a rx_handler on a net_device, use
365  * netdev_rx_handler_unregister().
366  *
367  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
368  * do with the skb.
369  *
370  * If the rx_handler consumed the skb in some way, it should return
371  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
372  * the skb to be delivered in some other way.
373  *
374  * If the rx_handler changed skb->dev, to divert the skb to another
375  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
376  * new device will be called if it exists.
377  *
378  * If the rx_handler decides the skb should be ignored, it should return
379  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
380  * are registered on exact device (ptype->dev == skb->dev).
381  *
382  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
383  * delivered, it should return RX_HANDLER_PASS.
384  *
385  * A device without a registered rx_handler will behave as if rx_handler
386  * returned RX_HANDLER_PASS.
387  */
388 
389 enum rx_handler_result {
390 	RX_HANDLER_CONSUMED,
391 	RX_HANDLER_ANOTHER,
392 	RX_HANDLER_EXACT,
393 	RX_HANDLER_PASS,
394 };
395 typedef enum rx_handler_result rx_handler_result_t;
396 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
397 
398 void __napi_schedule(struct napi_struct *n);
399 void __napi_schedule_irqoff(struct napi_struct *n);
400 
401 static inline bool napi_disable_pending(struct napi_struct *n)
402 {
403 	return test_bit(NAPI_STATE_DISABLE, &n->state);
404 }
405 
406 /**
407  *	napi_schedule_prep - check if NAPI can be scheduled
408  *	@n: NAPI context
409  *
410  * Test if NAPI routine is already running, and if not mark
411  * it as running.  This is used as a condition variable to
412  * insure only one NAPI poll instance runs.  We also make
413  * sure there is no pending NAPI disable.
414  */
415 static inline bool napi_schedule_prep(struct napi_struct *n)
416 {
417 	return !napi_disable_pending(n) &&
418 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
419 }
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 void __napi_complete(struct napi_struct *n);
457 void napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459  *	napi_complete - NAPI processing complete
460  *	@n: NAPI context
461  *
462  * Mark NAPI processing as complete.
463  * Consider using napi_complete_done() instead.
464  */
465 static inline void napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_add - add a NAPI to global hashtable
472  *	@napi: NAPI context
473  *
474  * Generate a new napi_id and store a @napi under it in napi_hash.
475  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
476  * Note: This is normally automatically done from netif_napi_add(),
477  * so might disappear in a future Linux version.
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: NAPI context
484  *
485  * Warning: caller must observe RCU grace period
486  * before freeing memory containing @napi, if
487  * this function returns true.
488  * Note: core networking stack automatically calls it
489  * from netif_napi_del().
490  * Drivers might want to call this helper to combine all
491  * the needed RCU grace periods into a single one.
492  */
493 bool napi_hash_del(struct napi_struct *napi);
494 
495 /**
496  *	napi_disable - prevent NAPI from scheduling
497  *	@n: NAPI context
498  *
499  * Stop NAPI from being scheduled on this context.
500  * Waits till any outstanding processing completes.
501  */
502 void napi_disable(struct napi_struct *n);
503 
504 /**
505  *	napi_enable - enable NAPI scheduling
506  *	@n: NAPI context
507  *
508  * Resume NAPI from being scheduled on this context.
509  * Must be paired with napi_disable.
510  */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 	smp_mb__before_atomic();
515 	clear_bit(NAPI_STATE_SCHED, &n->state);
516 	clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518 
519 /**
520  *	napi_synchronize - wait until NAPI is not running
521  *	@n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 	if (IS_ENABLED(CONFIG_SMP))
530 		while (test_bit(NAPI_STATE_SCHED, &n->state))
531 			msleep(1);
532 	else
533 		barrier();
534 }
535 
536 enum netdev_queue_state_t {
537 	__QUEUE_STATE_DRV_XOFF,
538 	__QUEUE_STATE_STACK_XOFF,
539 	__QUEUE_STATE_FROZEN,
540 };
541 
542 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
545 
546 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 					QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 					QUEUE_STATE_FROZEN)
551 
552 /*
553  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
554  * netif_tx_* functions below are used to manipulate this flag.  The
555  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556  * queue independently.  The netif_xmit_*stopped functions below are called
557  * to check if the queue has been stopped by the driver or stack (either
558  * of the XOFF bits are set in the state).  Drivers should not need to call
559  * netif_xmit*stopped functions, they should only be using netif_tx_*.
560  */
561 
562 struct netdev_queue {
563 /*
564  * read-mostly part
565  */
566 	struct net_device	*dev;
567 	struct Qdisc __rcu	*qdisc;
568 	struct Qdisc		*qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 	struct kobject		kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 	int			numa_node;
574 #endif
575 	unsigned long		tx_maxrate;
576 	/*
577 	 * Number of TX timeouts for this queue
578 	 * (/sys/class/net/DEV/Q/trans_timeout)
579 	 */
580 	unsigned long		trans_timeout;
581 /*
582  * write-mostly part
583  */
584 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
585 	int			xmit_lock_owner;
586 	/*
587 	 * Time (in jiffies) of last Tx
588 	 */
589 	unsigned long		trans_start;
590 
591 	unsigned long		state;
592 
593 #ifdef CONFIG_BQL
594 	struct dql		dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 } ____cacheline_aligned_in_smp;
701 
702 /*
703  * RX queue sysfs structures and functions.
704  */
705 struct rx_queue_attribute {
706 	struct attribute attr;
707 	ssize_t (*show)(struct netdev_rx_queue *queue,
708 	    struct rx_queue_attribute *attr, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
736     (nr_cpu_ids * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 /* These structures hold the attributes of qdisc and classifiers
785  * that are being passed to the netdevice through the setup_tc op.
786  */
787 enum {
788 	TC_SETUP_MQPRIO,
789 	TC_SETUP_CLSU32,
790 	TC_SETUP_CLSFLOWER,
791 	TC_SETUP_MATCHALL,
792 	TC_SETUP_CLSBPF,
793 };
794 
795 struct tc_cls_u32_offload;
796 
797 struct tc_to_netdev {
798 	unsigned int type;
799 	union {
800 		u8 tc;
801 		struct tc_cls_u32_offload *cls_u32;
802 		struct tc_cls_flower_offload *cls_flower;
803 		struct tc_cls_matchall_offload *cls_mall;
804 		struct tc_cls_bpf_offload *cls_bpf;
805 	};
806 };
807 
808 /* These structures hold the attributes of xdp state that are being passed
809  * to the netdevice through the xdp op.
810  */
811 enum xdp_netdev_command {
812 	/* Set or clear a bpf program used in the earliest stages of packet
813 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
814 	 * is responsible for calling bpf_prog_put on any old progs that are
815 	 * stored. In case of error, the callee need not release the new prog
816 	 * reference, but on success it takes ownership and must bpf_prog_put
817 	 * when it is no longer used.
818 	 */
819 	XDP_SETUP_PROG,
820 	/* Check if a bpf program is set on the device.  The callee should
821 	 * return true if a program is currently attached and running.
822 	 */
823 	XDP_QUERY_PROG,
824 };
825 
826 struct netdev_xdp {
827 	enum xdp_netdev_command command;
828 	union {
829 		/* XDP_SETUP_PROG */
830 		struct bpf_prog *prog;
831 		/* XDP_QUERY_PROG */
832 		bool prog_attached;
833 	};
834 };
835 
836 /*
837  * This structure defines the management hooks for network devices.
838  * The following hooks can be defined; unless noted otherwise, they are
839  * optional and can be filled with a null pointer.
840  *
841  * int (*ndo_init)(struct net_device *dev);
842  *     This function is called once when a network device is registered.
843  *     The network device can use this for any late stage initialization
844  *     or semantic validation. It can fail with an error code which will
845  *     be propagated back to register_netdev.
846  *
847  * void (*ndo_uninit)(struct net_device *dev);
848  *     This function is called when device is unregistered or when registration
849  *     fails. It is not called if init fails.
850  *
851  * int (*ndo_open)(struct net_device *dev);
852  *     This function is called when a network device transitions to the up
853  *     state.
854  *
855  * int (*ndo_stop)(struct net_device *dev);
856  *     This function is called when a network device transitions to the down
857  *     state.
858  *
859  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
860  *                               struct net_device *dev);
861  *	Called when a packet needs to be transmitted.
862  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
863  *	the queue before that can happen; it's for obsolete devices and weird
864  *	corner cases, but the stack really does a non-trivial amount
865  *	of useless work if you return NETDEV_TX_BUSY.
866  *	Required; cannot be NULL.
867  *
868  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869  *		netdev_features_t features);
870  *	Adjusts the requested feature flags according to device-specific
871  *	constraints, and returns the resulting flags. Must not modify
872  *	the device state.
873  *
874  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
875  *                         void *accel_priv, select_queue_fallback_t fallback);
876  *	Called to decide which queue to use when device supports multiple
877  *	transmit queues.
878  *
879  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
880  *	This function is called to allow device receiver to make
881  *	changes to configuration when multicast or promiscuous is enabled.
882  *
883  * void (*ndo_set_rx_mode)(struct net_device *dev);
884  *	This function is called device changes address list filtering.
885  *	If driver handles unicast address filtering, it should set
886  *	IFF_UNICAST_FLT in its priv_flags.
887  *
888  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
889  *	This function  is called when the Media Access Control address
890  *	needs to be changed. If this interface is not defined, the
891  *	MAC address can not be changed.
892  *
893  * int (*ndo_validate_addr)(struct net_device *dev);
894  *	Test if Media Access Control address is valid for the device.
895  *
896  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
897  *	Called when a user requests an ioctl which can't be handled by
898  *	the generic interface code. If not defined ioctls return
899  *	not supported error code.
900  *
901  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
902  *	Used to set network devices bus interface parameters. This interface
903  *	is retained for legacy reasons; new devices should use the bus
904  *	interface (PCI) for low level management.
905  *
906  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
907  *	Called when a user wants to change the Maximum Transfer Unit
908  *	of a device. If not defined, any request to change MTU will
909  *	will return an error.
910  *
911  * void (*ndo_tx_timeout)(struct net_device *dev);
912  *	Callback used when the transmitter has not made any progress
913  *	for dev->watchdog ticks.
914  *
915  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
916  *                      struct rtnl_link_stats64 *storage);
917  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
918  *	Called when a user wants to get the network device usage
919  *	statistics. Drivers must do one of the following:
920  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
921  *	   rtnl_link_stats64 structure passed by the caller.
922  *	2. Define @ndo_get_stats to update a net_device_stats structure
923  *	   (which should normally be dev->stats) and return a pointer to
924  *	   it. The structure may be changed asynchronously only if each
925  *	   field is written atomically.
926  *	3. Update dev->stats asynchronously and atomically, and define
927  *	   neither operation.
928  *
929  * bool (*ndo_has_offload_stats)(int attr_id)
930  *	Return true if this device supports offload stats of this attr_id.
931  *
932  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
933  *	void *attr_data)
934  *	Get statistics for offload operations by attr_id. Write it into the
935  *	attr_data pointer.
936  *
937  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
938  *	If device supports VLAN filtering this function is called when a
939  *	VLAN id is registered.
940  *
941  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
942  *	If device supports VLAN filtering this function is called when a
943  *	VLAN id is unregistered.
944  *
945  * void (*ndo_poll_controller)(struct net_device *dev);
946  *
947  *	SR-IOV management functions.
948  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
949  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
950  *			  u8 qos, __be16 proto);
951  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
952  *			  int max_tx_rate);
953  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
954  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
955  * int (*ndo_get_vf_config)(struct net_device *dev,
956  *			    int vf, struct ifla_vf_info *ivf);
957  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
958  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
959  *			  struct nlattr *port[]);
960  *
961  *      Enable or disable the VF ability to query its RSS Redirection Table and
962  *      Hash Key. This is needed since on some devices VF share this information
963  *      with PF and querying it may introduce a theoretical security risk.
964  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
965  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
966  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
967  * 	Called to setup 'tc' number of traffic classes in the net device. This
968  * 	is always called from the stack with the rtnl lock held and netif tx
969  * 	queues stopped. This allows the netdevice to perform queue management
970  * 	safely.
971  *
972  *	Fiber Channel over Ethernet (FCoE) offload functions.
973  * int (*ndo_fcoe_enable)(struct net_device *dev);
974  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
975  *	so the underlying device can perform whatever needed configuration or
976  *	initialization to support acceleration of FCoE traffic.
977  *
978  * int (*ndo_fcoe_disable)(struct net_device *dev);
979  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
980  *	so the underlying device can perform whatever needed clean-ups to
981  *	stop supporting acceleration of FCoE traffic.
982  *
983  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
984  *			     struct scatterlist *sgl, unsigned int sgc);
985  *	Called when the FCoE Initiator wants to initialize an I/O that
986  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
987  *	perform necessary setup and returns 1 to indicate the device is set up
988  *	successfully to perform DDP on this I/O, otherwise this returns 0.
989  *
990  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
991  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
992  *	indicated by the FC exchange id 'xid', so the underlying device can
993  *	clean up and reuse resources for later DDP requests.
994  *
995  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
996  *			      struct scatterlist *sgl, unsigned int sgc);
997  *	Called when the FCoE Target wants to initialize an I/O that
998  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
999  *	perform necessary setup and returns 1 to indicate the device is set up
1000  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1001  *
1002  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1003  *			       struct netdev_fcoe_hbainfo *hbainfo);
1004  *	Called when the FCoE Protocol stack wants information on the underlying
1005  *	device. This information is utilized by the FCoE protocol stack to
1006  *	register attributes with Fiber Channel management service as per the
1007  *	FC-GS Fabric Device Management Information(FDMI) specification.
1008  *
1009  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1010  *	Called when the underlying device wants to override default World Wide
1011  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1012  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1013  *	protocol stack to use.
1014  *
1015  *	RFS acceleration.
1016  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1017  *			    u16 rxq_index, u32 flow_id);
1018  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1019  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1020  *	Return the filter ID on success, or a negative error code.
1021  *
1022  *	Slave management functions (for bridge, bonding, etc).
1023  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1024  *	Called to make another netdev an underling.
1025  *
1026  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1027  *	Called to release previously enslaved netdev.
1028  *
1029  *      Feature/offload setting functions.
1030  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1031  *	Called to update device configuration to new features. Passed
1032  *	feature set might be less than what was returned by ndo_fix_features()).
1033  *	Must return >0 or -errno if it changed dev->features itself.
1034  *
1035  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1036  *		      struct net_device *dev,
1037  *		      const unsigned char *addr, u16 vid, u16 flags)
1038  *	Adds an FDB entry to dev for addr.
1039  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1040  *		      struct net_device *dev,
1041  *		      const unsigned char *addr, u16 vid)
1042  *	Deletes the FDB entry from dev coresponding to addr.
1043  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1044  *		       struct net_device *dev, struct net_device *filter_dev,
1045  *		       int *idx)
1046  *	Used to add FDB entries to dump requests. Implementers should add
1047  *	entries to skb and update idx with the number of entries.
1048  *
1049  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1050  *			     u16 flags)
1051  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1052  *			     struct net_device *dev, u32 filter_mask,
1053  *			     int nlflags)
1054  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1055  *			     u16 flags);
1056  *
1057  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1058  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1059  *	which do not represent real hardware may define this to allow their
1060  *	userspace components to manage their virtual carrier state. Devices
1061  *	that determine carrier state from physical hardware properties (eg
1062  *	network cables) or protocol-dependent mechanisms (eg
1063  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1064  *
1065  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1066  *			       struct netdev_phys_item_id *ppid);
1067  *	Called to get ID of physical port of this device. If driver does
1068  *	not implement this, it is assumed that the hw is not able to have
1069  *	multiple net devices on single physical port.
1070  *
1071  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1072  *			      struct udp_tunnel_info *ti);
1073  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1074  *	address family that a UDP tunnel is listnening to. It is called only
1075  *	when a new port starts listening. The operation is protected by the
1076  *	RTNL.
1077  *
1078  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1079  *			      struct udp_tunnel_info *ti);
1080  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1081  *	address family that the UDP tunnel is not listening to anymore. The
1082  *	operation is protected by the RTNL.
1083  *
1084  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1085  *				 struct net_device *dev)
1086  *	Called by upper layer devices to accelerate switching or other
1087  *	station functionality into hardware. 'pdev is the lowerdev
1088  *	to use for the offload and 'dev' is the net device that will
1089  *	back the offload. Returns a pointer to the private structure
1090  *	the upper layer will maintain.
1091  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1092  *	Called by upper layer device to delete the station created
1093  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1094  *	the station and priv is the structure returned by the add
1095  *	operation.
1096  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1097  *				      struct net_device *dev,
1098  *				      void *priv);
1099  *	Callback to use for xmit over the accelerated station. This
1100  *	is used in place of ndo_start_xmit on accelerated net
1101  *	devices.
1102  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1103  *					   struct net_device *dev
1104  *					   netdev_features_t features);
1105  *	Called by core transmit path to determine if device is capable of
1106  *	performing offload operations on a given packet. This is to give
1107  *	the device an opportunity to implement any restrictions that cannot
1108  *	be otherwise expressed by feature flags. The check is called with
1109  *	the set of features that the stack has calculated and it returns
1110  *	those the driver believes to be appropriate.
1111  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1112  *			     int queue_index, u32 maxrate);
1113  *	Called when a user wants to set a max-rate limitation of specific
1114  *	TX queue.
1115  * int (*ndo_get_iflink)(const struct net_device *dev);
1116  *	Called to get the iflink value of this device.
1117  * void (*ndo_change_proto_down)(struct net_device *dev,
1118  *				 bool proto_down);
1119  *	This function is used to pass protocol port error state information
1120  *	to the switch driver. The switch driver can react to the proto_down
1121  *      by doing a phys down on the associated switch port.
1122  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1123  *	This function is used to get egress tunnel information for given skb.
1124  *	This is useful for retrieving outer tunnel header parameters while
1125  *	sampling packet.
1126  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1127  *	This function is used to specify the headroom that the skb must
1128  *	consider when allocation skb during packet reception. Setting
1129  *	appropriate rx headroom value allows avoiding skb head copy on
1130  *	forward. Setting a negative value resets the rx headroom to the
1131  *	default value.
1132  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1133  *	This function is used to set or query state related to XDP on the
1134  *	netdevice. See definition of enum xdp_netdev_command for details.
1135  *
1136  */
1137 struct net_device_ops {
1138 	int			(*ndo_init)(struct net_device *dev);
1139 	void			(*ndo_uninit)(struct net_device *dev);
1140 	int			(*ndo_open)(struct net_device *dev);
1141 	int			(*ndo_stop)(struct net_device *dev);
1142 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1143 						  struct net_device *dev);
1144 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1145 						      struct net_device *dev,
1146 						      netdev_features_t features);
1147 	u16			(*ndo_select_queue)(struct net_device *dev,
1148 						    struct sk_buff *skb,
1149 						    void *accel_priv,
1150 						    select_queue_fallback_t fallback);
1151 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1152 						       int flags);
1153 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1154 	int			(*ndo_set_mac_address)(struct net_device *dev,
1155 						       void *addr);
1156 	int			(*ndo_validate_addr)(struct net_device *dev);
1157 	int			(*ndo_do_ioctl)(struct net_device *dev,
1158 					        struct ifreq *ifr, int cmd);
1159 	int			(*ndo_set_config)(struct net_device *dev,
1160 					          struct ifmap *map);
1161 	int			(*ndo_change_mtu)(struct net_device *dev,
1162 						  int new_mtu);
1163 	int			(*ndo_neigh_setup)(struct net_device *dev,
1164 						   struct neigh_parms *);
1165 	void			(*ndo_tx_timeout) (struct net_device *dev);
1166 
1167 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1168 						     struct rtnl_link_stats64 *storage);
1169 	bool			(*ndo_has_offload_stats)(int attr_id);
1170 	int			(*ndo_get_offload_stats)(int attr_id,
1171 							 const struct net_device *dev,
1172 							 void *attr_data);
1173 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1174 
1175 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1176 						       __be16 proto, u16 vid);
1177 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1178 						        __be16 proto, u16 vid);
1179 #ifdef CONFIG_NET_POLL_CONTROLLER
1180 	void                    (*ndo_poll_controller)(struct net_device *dev);
1181 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1182 						     struct netpoll_info *info);
1183 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1184 #endif
1185 #ifdef CONFIG_NET_RX_BUSY_POLL
1186 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1187 #endif
1188 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1189 						  int queue, u8 *mac);
1190 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1191 						   int queue, u16 vlan,
1192 						   u8 qos, __be16 proto);
1193 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1194 						   int vf, int min_tx_rate,
1195 						   int max_tx_rate);
1196 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1197 						       int vf, bool setting);
1198 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1199 						    int vf, bool setting);
1200 	int			(*ndo_get_vf_config)(struct net_device *dev,
1201 						     int vf,
1202 						     struct ifla_vf_info *ivf);
1203 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1204 							 int vf, int link_state);
1205 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1206 						    int vf,
1207 						    struct ifla_vf_stats
1208 						    *vf_stats);
1209 	int			(*ndo_set_vf_port)(struct net_device *dev,
1210 						   int vf,
1211 						   struct nlattr *port[]);
1212 	int			(*ndo_get_vf_port)(struct net_device *dev,
1213 						   int vf, struct sk_buff *skb);
1214 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1215 						   int vf, u64 guid,
1216 						   int guid_type);
1217 	int			(*ndo_set_vf_rss_query_en)(
1218 						   struct net_device *dev,
1219 						   int vf, bool setting);
1220 	int			(*ndo_setup_tc)(struct net_device *dev,
1221 						u32 handle,
1222 						__be16 protocol,
1223 						struct tc_to_netdev *tc);
1224 #if IS_ENABLED(CONFIG_FCOE)
1225 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1226 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1227 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1228 						      u16 xid,
1229 						      struct scatterlist *sgl,
1230 						      unsigned int sgc);
1231 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1232 						     u16 xid);
1233 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1234 						       u16 xid,
1235 						       struct scatterlist *sgl,
1236 						       unsigned int sgc);
1237 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1238 							struct netdev_fcoe_hbainfo *hbainfo);
1239 #endif
1240 
1241 #if IS_ENABLED(CONFIG_LIBFCOE)
1242 #define NETDEV_FCOE_WWNN 0
1243 #define NETDEV_FCOE_WWPN 1
1244 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1245 						    u64 *wwn, int type);
1246 #endif
1247 
1248 #ifdef CONFIG_RFS_ACCEL
1249 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1250 						     const struct sk_buff *skb,
1251 						     u16 rxq_index,
1252 						     u32 flow_id);
1253 #endif
1254 	int			(*ndo_add_slave)(struct net_device *dev,
1255 						 struct net_device *slave_dev);
1256 	int			(*ndo_del_slave)(struct net_device *dev,
1257 						 struct net_device *slave_dev);
1258 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1259 						    netdev_features_t features);
1260 	int			(*ndo_set_features)(struct net_device *dev,
1261 						    netdev_features_t features);
1262 	int			(*ndo_neigh_construct)(struct net_device *dev,
1263 						       struct neighbour *n);
1264 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1265 						     struct neighbour *n);
1266 
1267 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1268 					       struct nlattr *tb[],
1269 					       struct net_device *dev,
1270 					       const unsigned char *addr,
1271 					       u16 vid,
1272 					       u16 flags);
1273 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1274 					       struct nlattr *tb[],
1275 					       struct net_device *dev,
1276 					       const unsigned char *addr,
1277 					       u16 vid);
1278 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1279 						struct netlink_callback *cb,
1280 						struct net_device *dev,
1281 						struct net_device *filter_dev,
1282 						int *idx);
1283 
1284 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1285 						      struct nlmsghdr *nlh,
1286 						      u16 flags);
1287 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1288 						      u32 pid, u32 seq,
1289 						      struct net_device *dev,
1290 						      u32 filter_mask,
1291 						      int nlflags);
1292 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1293 						      struct nlmsghdr *nlh,
1294 						      u16 flags);
1295 	int			(*ndo_change_carrier)(struct net_device *dev,
1296 						      bool new_carrier);
1297 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1298 							struct netdev_phys_item_id *ppid);
1299 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1300 							  char *name, size_t len);
1301 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1302 						      struct udp_tunnel_info *ti);
1303 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1304 						      struct udp_tunnel_info *ti);
1305 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1306 							struct net_device *dev);
1307 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1308 							void *priv);
1309 
1310 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1311 							struct net_device *dev,
1312 							void *priv);
1313 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1314 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1315 						      int queue_index,
1316 						      u32 maxrate);
1317 	int			(*ndo_get_iflink)(const struct net_device *dev);
1318 	int			(*ndo_change_proto_down)(struct net_device *dev,
1319 							 bool proto_down);
1320 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1321 						       struct sk_buff *skb);
1322 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1323 						       int needed_headroom);
1324 	int			(*ndo_xdp)(struct net_device *dev,
1325 					   struct netdev_xdp *xdp);
1326 };
1327 
1328 /**
1329  * enum net_device_priv_flags - &struct net_device priv_flags
1330  *
1331  * These are the &struct net_device, they are only set internally
1332  * by drivers and used in the kernel. These flags are invisible to
1333  * userspace; this means that the order of these flags can change
1334  * during any kernel release.
1335  *
1336  * You should have a pretty good reason to be extending these flags.
1337  *
1338  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1339  * @IFF_EBRIDGE: Ethernet bridging device
1340  * @IFF_BONDING: bonding master or slave
1341  * @IFF_ISATAP: ISATAP interface (RFC4214)
1342  * @IFF_WAN_HDLC: WAN HDLC device
1343  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1344  *	release skb->dst
1345  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1346  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1347  * @IFF_MACVLAN_PORT: device used as macvlan port
1348  * @IFF_BRIDGE_PORT: device used as bridge port
1349  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1350  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1351  * @IFF_UNICAST_FLT: Supports unicast filtering
1352  * @IFF_TEAM_PORT: device used as team port
1353  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1354  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1355  *	change when it's running
1356  * @IFF_MACVLAN: Macvlan device
1357  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1358  *	underlying stacked devices
1359  * @IFF_IPVLAN_MASTER: IPvlan master device
1360  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1361  * @IFF_L3MDEV_MASTER: device is an L3 master device
1362  * @IFF_NO_QUEUE: device can run without qdisc attached
1363  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1364  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1365  * @IFF_TEAM: device is a team device
1366  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1367  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1368  *	entity (i.e. the master device for bridged veth)
1369  * @IFF_MACSEC: device is a MACsec device
1370  */
1371 enum netdev_priv_flags {
1372 	IFF_802_1Q_VLAN			= 1<<0,
1373 	IFF_EBRIDGE			= 1<<1,
1374 	IFF_BONDING			= 1<<2,
1375 	IFF_ISATAP			= 1<<3,
1376 	IFF_WAN_HDLC			= 1<<4,
1377 	IFF_XMIT_DST_RELEASE		= 1<<5,
1378 	IFF_DONT_BRIDGE			= 1<<6,
1379 	IFF_DISABLE_NETPOLL		= 1<<7,
1380 	IFF_MACVLAN_PORT		= 1<<8,
1381 	IFF_BRIDGE_PORT			= 1<<9,
1382 	IFF_OVS_DATAPATH		= 1<<10,
1383 	IFF_TX_SKB_SHARING		= 1<<11,
1384 	IFF_UNICAST_FLT			= 1<<12,
1385 	IFF_TEAM_PORT			= 1<<13,
1386 	IFF_SUPP_NOFCS			= 1<<14,
1387 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1388 	IFF_MACVLAN			= 1<<16,
1389 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1390 	IFF_IPVLAN_MASTER		= 1<<18,
1391 	IFF_IPVLAN_SLAVE		= 1<<19,
1392 	IFF_L3MDEV_MASTER		= 1<<20,
1393 	IFF_NO_QUEUE			= 1<<21,
1394 	IFF_OPENVSWITCH			= 1<<22,
1395 	IFF_L3MDEV_SLAVE		= 1<<23,
1396 	IFF_TEAM			= 1<<24,
1397 	IFF_RXFH_CONFIGURED		= 1<<25,
1398 	IFF_PHONY_HEADROOM		= 1<<26,
1399 	IFF_MACSEC			= 1<<27,
1400 };
1401 
1402 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1403 #define IFF_EBRIDGE			IFF_EBRIDGE
1404 #define IFF_BONDING			IFF_BONDING
1405 #define IFF_ISATAP			IFF_ISATAP
1406 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1407 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1408 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1409 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1410 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1411 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1412 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1413 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1414 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1415 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1416 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1417 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1418 #define IFF_MACVLAN			IFF_MACVLAN
1419 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1420 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1421 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1422 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1423 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1424 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1425 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1426 #define IFF_TEAM			IFF_TEAM
1427 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1428 #define IFF_MACSEC			IFF_MACSEC
1429 
1430 /**
1431  *	struct net_device - The DEVICE structure.
1432  *		Actually, this whole structure is a big mistake.  It mixes I/O
1433  *		data with strictly "high-level" data, and it has to know about
1434  *		almost every data structure used in the INET module.
1435  *
1436  *	@name:	This is the first field of the "visible" part of this structure
1437  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1438  *	 	of the interface.
1439  *
1440  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1441  *	@ifalias:	SNMP alias
1442  *	@mem_end:	Shared memory end
1443  *	@mem_start:	Shared memory start
1444  *	@base_addr:	Device I/O address
1445  *	@irq:		Device IRQ number
1446  *
1447  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1448  *
1449  *	@state:		Generic network queuing layer state, see netdev_state_t
1450  *	@dev_list:	The global list of network devices
1451  *	@napi_list:	List entry used for polling NAPI devices
1452  *	@unreg_list:	List entry  when we are unregistering the
1453  *			device; see the function unregister_netdev
1454  *	@close_list:	List entry used when we are closing the device
1455  *	@ptype_all:     Device-specific packet handlers for all protocols
1456  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1457  *
1458  *	@adj_list:	Directly linked devices, like slaves for bonding
1459  *	@all_adj_list:	All linked devices, *including* neighbours
1460  *	@features:	Currently active device features
1461  *	@hw_features:	User-changeable features
1462  *
1463  *	@wanted_features:	User-requested features
1464  *	@vlan_features:		Mask of features inheritable by VLAN devices
1465  *
1466  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1467  *				This field indicates what encapsulation
1468  *				offloads the hardware is capable of doing,
1469  *				and drivers will need to set them appropriately.
1470  *
1471  *	@mpls_features:	Mask of features inheritable by MPLS
1472  *
1473  *	@ifindex:	interface index
1474  *	@group:		The group the device belongs to
1475  *
1476  *	@stats:		Statistics struct, which was left as a legacy, use
1477  *			rtnl_link_stats64 instead
1478  *
1479  *	@rx_dropped:	Dropped packets by core network,
1480  *			do not use this in drivers
1481  *	@tx_dropped:	Dropped packets by core network,
1482  *			do not use this in drivers
1483  *	@rx_nohandler:	nohandler dropped packets by core network on
1484  *			inactive devices, do not use this in drivers
1485  *
1486  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1487  *				instead of ioctl,
1488  *				see <net/iw_handler.h> for details.
1489  *	@wireless_data:	Instance data managed by the core of wireless extensions
1490  *
1491  *	@netdev_ops:	Includes several pointers to callbacks,
1492  *			if one wants to override the ndo_*() functions
1493  *	@ethtool_ops:	Management operations
1494  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1495  *			discovery handling. Necessary for e.g. 6LoWPAN.
1496  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1497  *			of Layer 2 headers.
1498  *
1499  *	@flags:		Interface flags (a la BSD)
1500  *	@priv_flags:	Like 'flags' but invisible to userspace,
1501  *			see if.h for the definitions
1502  *	@gflags:	Global flags ( kept as legacy )
1503  *	@padded:	How much padding added by alloc_netdev()
1504  *	@operstate:	RFC2863 operstate
1505  *	@link_mode:	Mapping policy to operstate
1506  *	@if_port:	Selectable AUI, TP, ...
1507  *	@dma:		DMA channel
1508  *	@mtu:		Interface MTU value
1509  *	@type:		Interface hardware type
1510  *	@hard_header_len: Maximum hardware header length.
1511  *
1512  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1513  *			  cases can this be guaranteed
1514  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1515  *			  cases can this be guaranteed. Some cases also use
1516  *			  LL_MAX_HEADER instead to allocate the skb
1517  *
1518  *	interface address info:
1519  *
1520  * 	@perm_addr:		Permanent hw address
1521  * 	@addr_assign_type:	Hw address assignment type
1522  * 	@addr_len:		Hardware address length
1523  *	@neigh_priv_len:	Used in neigh_alloc()
1524  * 	@dev_id:		Used to differentiate devices that share
1525  * 				the same link layer address
1526  * 	@dev_port:		Used to differentiate devices that share
1527  * 				the same function
1528  *	@addr_list_lock:	XXX: need comments on this one
1529  *	@uc_promisc:		Counter that indicates promiscuous mode
1530  *				has been enabled due to the need to listen to
1531  *				additional unicast addresses in a device that
1532  *				does not implement ndo_set_rx_mode()
1533  *	@uc:			unicast mac addresses
1534  *	@mc:			multicast mac addresses
1535  *	@dev_addrs:		list of device hw addresses
1536  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1537  *	@promiscuity:		Number of times the NIC is told to work in
1538  *				promiscuous mode; if it becomes 0 the NIC will
1539  *				exit promiscuous mode
1540  *	@allmulti:		Counter, enables or disables allmulticast mode
1541  *
1542  *	@vlan_info:	VLAN info
1543  *	@dsa_ptr:	dsa specific data
1544  *	@tipc_ptr:	TIPC specific data
1545  *	@atalk_ptr:	AppleTalk link
1546  *	@ip_ptr:	IPv4 specific data
1547  *	@dn_ptr:	DECnet specific data
1548  *	@ip6_ptr:	IPv6 specific data
1549  *	@ax25_ptr:	AX.25 specific data
1550  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1551  *
1552  *	@last_rx:	Time of last Rx
1553  *	@dev_addr:	Hw address (before bcast,
1554  *			because most packets are unicast)
1555  *
1556  *	@_rx:			Array of RX queues
1557  *	@num_rx_queues:		Number of RX queues
1558  *				allocated at register_netdev() time
1559  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1560  *
1561  *	@rx_handler:		handler for received packets
1562  *	@rx_handler_data: 	XXX: need comments on this one
1563  *	@ingress_queue:		XXX: need comments on this one
1564  *	@broadcast:		hw bcast address
1565  *
1566  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1567  *			indexed by RX queue number. Assigned by driver.
1568  *			This must only be set if the ndo_rx_flow_steer
1569  *			operation is defined
1570  *	@index_hlist:		Device index hash chain
1571  *
1572  *	@_tx:			Array of TX queues
1573  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1574  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1575  *	@qdisc:			Root qdisc from userspace point of view
1576  *	@tx_queue_len:		Max frames per queue allowed
1577  *	@tx_global_lock: 	XXX: need comments on this one
1578  *
1579  *	@xps_maps:	XXX: need comments on this one
1580  *
1581  *	@watchdog_timeo:	Represents the timeout that is used by
1582  *				the watchdog (see dev_watchdog())
1583  *	@watchdog_timer:	List of timers
1584  *
1585  *	@pcpu_refcnt:		Number of references to this device
1586  *	@todo_list:		Delayed register/unregister
1587  *	@link_watch_list:	XXX: need comments on this one
1588  *
1589  *	@reg_state:		Register/unregister state machine
1590  *	@dismantle:		Device is going to be freed
1591  *	@rtnl_link_state:	This enum represents the phases of creating
1592  *				a new link
1593  *
1594  *	@destructor:		Called from unregister,
1595  *				can be used to call free_netdev
1596  *	@npinfo:		XXX: need comments on this one
1597  * 	@nd_net:		Network namespace this network device is inside
1598  *
1599  * 	@ml_priv:	Mid-layer private
1600  * 	@lstats:	Loopback statistics
1601  * 	@tstats:	Tunnel statistics
1602  * 	@dstats:	Dummy statistics
1603  * 	@vstats:	Virtual ethernet statistics
1604  *
1605  *	@garp_port:	GARP
1606  *	@mrp_port:	MRP
1607  *
1608  *	@dev:		Class/net/name entry
1609  *	@sysfs_groups:	Space for optional device, statistics and wireless
1610  *			sysfs groups
1611  *
1612  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1613  *	@rtnl_link_ops:	Rtnl_link_ops
1614  *
1615  *	@gso_max_size:	Maximum size of generic segmentation offload
1616  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1617  *			NIC for GSO
1618  *
1619  *	@dcbnl_ops:	Data Center Bridging netlink ops
1620  *	@num_tc:	Number of traffic classes in the net device
1621  *	@tc_to_txq:	XXX: need comments on this one
1622  *	@prio_tc_map	XXX: need comments on this one
1623  *
1624  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1625  *
1626  *	@priomap:	XXX: need comments on this one
1627  *	@phydev:	Physical device may attach itself
1628  *			for hardware timestamping
1629  *
1630  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1631  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1632  *
1633  *	@proto_down:	protocol port state information can be sent to the
1634  *			switch driver and used to set the phys state of the
1635  *			switch port.
1636  *
1637  *	FIXME: cleanup struct net_device such that network protocol info
1638  *	moves out.
1639  */
1640 
1641 struct net_device {
1642 	char			name[IFNAMSIZ];
1643 	struct hlist_node	name_hlist;
1644 	char 			*ifalias;
1645 	/*
1646 	 *	I/O specific fields
1647 	 *	FIXME: Merge these and struct ifmap into one
1648 	 */
1649 	unsigned long		mem_end;
1650 	unsigned long		mem_start;
1651 	unsigned long		base_addr;
1652 	int			irq;
1653 
1654 	atomic_t		carrier_changes;
1655 
1656 	/*
1657 	 *	Some hardware also needs these fields (state,dev_list,
1658 	 *	napi_list,unreg_list,close_list) but they are not
1659 	 *	part of the usual set specified in Space.c.
1660 	 */
1661 
1662 	unsigned long		state;
1663 
1664 	struct list_head	dev_list;
1665 	struct list_head	napi_list;
1666 	struct list_head	unreg_list;
1667 	struct list_head	close_list;
1668 	struct list_head	ptype_all;
1669 	struct list_head	ptype_specific;
1670 
1671 	struct {
1672 		struct list_head upper;
1673 		struct list_head lower;
1674 	} adj_list;
1675 
1676 	struct {
1677 		struct list_head upper;
1678 		struct list_head lower;
1679 	} all_adj_list;
1680 
1681 	netdev_features_t	features;
1682 	netdev_features_t	hw_features;
1683 	netdev_features_t	wanted_features;
1684 	netdev_features_t	vlan_features;
1685 	netdev_features_t	hw_enc_features;
1686 	netdev_features_t	mpls_features;
1687 	netdev_features_t	gso_partial_features;
1688 
1689 	int			ifindex;
1690 	int			group;
1691 
1692 	struct net_device_stats	stats;
1693 
1694 	atomic_long_t		rx_dropped;
1695 	atomic_long_t		tx_dropped;
1696 	atomic_long_t		rx_nohandler;
1697 
1698 #ifdef CONFIG_WIRELESS_EXT
1699 	const struct iw_handler_def *wireless_handlers;
1700 	struct iw_public_data	*wireless_data;
1701 #endif
1702 	const struct net_device_ops *netdev_ops;
1703 	const struct ethtool_ops *ethtool_ops;
1704 #ifdef CONFIG_NET_SWITCHDEV
1705 	const struct switchdev_ops *switchdev_ops;
1706 #endif
1707 #ifdef CONFIG_NET_L3_MASTER_DEV
1708 	const struct l3mdev_ops	*l3mdev_ops;
1709 #endif
1710 #if IS_ENABLED(CONFIG_IPV6)
1711 	const struct ndisc_ops *ndisc_ops;
1712 #endif
1713 
1714 	const struct header_ops *header_ops;
1715 
1716 	unsigned int		flags;
1717 	unsigned int		priv_flags;
1718 
1719 	unsigned short		gflags;
1720 	unsigned short		padded;
1721 
1722 	unsigned char		operstate;
1723 	unsigned char		link_mode;
1724 
1725 	unsigned char		if_port;
1726 	unsigned char		dma;
1727 
1728 	unsigned int		mtu;
1729 	unsigned short		type;
1730 	unsigned short		hard_header_len;
1731 
1732 	unsigned short		needed_headroom;
1733 	unsigned short		needed_tailroom;
1734 
1735 	/* Interface address info. */
1736 	unsigned char		perm_addr[MAX_ADDR_LEN];
1737 	unsigned char		addr_assign_type;
1738 	unsigned char		addr_len;
1739 	unsigned short		neigh_priv_len;
1740 	unsigned short          dev_id;
1741 	unsigned short          dev_port;
1742 	spinlock_t		addr_list_lock;
1743 	unsigned char		name_assign_type;
1744 	bool			uc_promisc;
1745 	struct netdev_hw_addr_list	uc;
1746 	struct netdev_hw_addr_list	mc;
1747 	struct netdev_hw_addr_list	dev_addrs;
1748 
1749 #ifdef CONFIG_SYSFS
1750 	struct kset		*queues_kset;
1751 #endif
1752 	unsigned int		promiscuity;
1753 	unsigned int		allmulti;
1754 
1755 
1756 	/* Protocol-specific pointers */
1757 
1758 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1759 	struct vlan_info __rcu	*vlan_info;
1760 #endif
1761 #if IS_ENABLED(CONFIG_NET_DSA)
1762 	struct dsa_switch_tree	*dsa_ptr;
1763 #endif
1764 #if IS_ENABLED(CONFIG_TIPC)
1765 	struct tipc_bearer __rcu *tipc_ptr;
1766 #endif
1767 	void 			*atalk_ptr;
1768 	struct in_device __rcu	*ip_ptr;
1769 	struct dn_dev __rcu     *dn_ptr;
1770 	struct inet6_dev __rcu	*ip6_ptr;
1771 	void			*ax25_ptr;
1772 	struct wireless_dev	*ieee80211_ptr;
1773 	struct wpan_dev		*ieee802154_ptr;
1774 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1775 	struct mpls_dev __rcu	*mpls_ptr;
1776 #endif
1777 
1778 /*
1779  * Cache lines mostly used on receive path (including eth_type_trans())
1780  */
1781 	unsigned long		last_rx;
1782 
1783 	/* Interface address info used in eth_type_trans() */
1784 	unsigned char		*dev_addr;
1785 
1786 #ifdef CONFIG_SYSFS
1787 	struct netdev_rx_queue	*_rx;
1788 
1789 	unsigned int		num_rx_queues;
1790 	unsigned int		real_num_rx_queues;
1791 #endif
1792 
1793 	unsigned long		gro_flush_timeout;
1794 	rx_handler_func_t __rcu	*rx_handler;
1795 	void __rcu		*rx_handler_data;
1796 
1797 #ifdef CONFIG_NET_CLS_ACT
1798 	struct tcf_proto __rcu  *ingress_cl_list;
1799 #endif
1800 	struct netdev_queue __rcu *ingress_queue;
1801 #ifdef CONFIG_NETFILTER_INGRESS
1802 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1803 #endif
1804 
1805 	unsigned char		broadcast[MAX_ADDR_LEN];
1806 #ifdef CONFIG_RFS_ACCEL
1807 	struct cpu_rmap		*rx_cpu_rmap;
1808 #endif
1809 	struct hlist_node	index_hlist;
1810 
1811 /*
1812  * Cache lines mostly used on transmit path
1813  */
1814 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1815 	unsigned int		num_tx_queues;
1816 	unsigned int		real_num_tx_queues;
1817 	struct Qdisc		*qdisc;
1818 #ifdef CONFIG_NET_SCHED
1819 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1820 #endif
1821 	unsigned long		tx_queue_len;
1822 	spinlock_t		tx_global_lock;
1823 	int			watchdog_timeo;
1824 
1825 #ifdef CONFIG_XPS
1826 	struct xps_dev_maps __rcu *xps_maps;
1827 #endif
1828 #ifdef CONFIG_NET_CLS_ACT
1829 	struct tcf_proto __rcu  *egress_cl_list;
1830 #endif
1831 
1832 	/* These may be needed for future network-power-down code. */
1833 	struct timer_list	watchdog_timer;
1834 
1835 	int __percpu		*pcpu_refcnt;
1836 	struct list_head	todo_list;
1837 
1838 	struct list_head	link_watch_list;
1839 
1840 	enum { NETREG_UNINITIALIZED=0,
1841 	       NETREG_REGISTERED,	/* completed register_netdevice */
1842 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1843 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1844 	       NETREG_RELEASED,		/* called free_netdev */
1845 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1846 	} reg_state:8;
1847 
1848 	bool dismantle;
1849 
1850 	enum {
1851 		RTNL_LINK_INITIALIZED,
1852 		RTNL_LINK_INITIALIZING,
1853 	} rtnl_link_state:16;
1854 
1855 	void (*destructor)(struct net_device *dev);
1856 
1857 #ifdef CONFIG_NETPOLL
1858 	struct netpoll_info __rcu	*npinfo;
1859 #endif
1860 
1861 	possible_net_t			nd_net;
1862 
1863 	/* mid-layer private */
1864 	union {
1865 		void					*ml_priv;
1866 		struct pcpu_lstats __percpu		*lstats;
1867 		struct pcpu_sw_netstats __percpu	*tstats;
1868 		struct pcpu_dstats __percpu		*dstats;
1869 		struct pcpu_vstats __percpu		*vstats;
1870 	};
1871 
1872 	struct garp_port __rcu	*garp_port;
1873 	struct mrp_port __rcu	*mrp_port;
1874 
1875 	struct device		dev;
1876 	const struct attribute_group *sysfs_groups[4];
1877 	const struct attribute_group *sysfs_rx_queue_group;
1878 
1879 	const struct rtnl_link_ops *rtnl_link_ops;
1880 
1881 	/* for setting kernel sock attribute on TCP connection setup */
1882 #define GSO_MAX_SIZE		65536
1883 	unsigned int		gso_max_size;
1884 #define GSO_MAX_SEGS		65535
1885 	u16			gso_max_segs;
1886 
1887 #ifdef CONFIG_DCB
1888 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1889 #endif
1890 	u8			num_tc;
1891 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1892 	u8			prio_tc_map[TC_BITMASK + 1];
1893 
1894 #if IS_ENABLED(CONFIG_FCOE)
1895 	unsigned int		fcoe_ddp_xid;
1896 #endif
1897 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1898 	struct netprio_map __rcu *priomap;
1899 #endif
1900 	struct phy_device	*phydev;
1901 	struct lock_class_key	*qdisc_tx_busylock;
1902 	struct lock_class_key	*qdisc_running_key;
1903 	bool			proto_down;
1904 };
1905 #define to_net_dev(d) container_of(d, struct net_device, dev)
1906 
1907 #define	NETDEV_ALIGN		32
1908 
1909 static inline
1910 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1911 {
1912 	return dev->prio_tc_map[prio & TC_BITMASK];
1913 }
1914 
1915 static inline
1916 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1917 {
1918 	if (tc >= dev->num_tc)
1919 		return -EINVAL;
1920 
1921 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1922 	return 0;
1923 }
1924 
1925 static inline
1926 void netdev_reset_tc(struct net_device *dev)
1927 {
1928 	dev->num_tc = 0;
1929 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1930 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1931 }
1932 
1933 static inline
1934 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1935 {
1936 	if (tc >= dev->num_tc)
1937 		return -EINVAL;
1938 
1939 	dev->tc_to_txq[tc].count = count;
1940 	dev->tc_to_txq[tc].offset = offset;
1941 	return 0;
1942 }
1943 
1944 static inline
1945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1946 {
1947 	if (num_tc > TC_MAX_QUEUE)
1948 		return -EINVAL;
1949 
1950 	dev->num_tc = num_tc;
1951 	return 0;
1952 }
1953 
1954 static inline
1955 int netdev_get_num_tc(struct net_device *dev)
1956 {
1957 	return dev->num_tc;
1958 }
1959 
1960 static inline
1961 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1962 					 unsigned int index)
1963 {
1964 	return &dev->_tx[index];
1965 }
1966 
1967 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1968 						    const struct sk_buff *skb)
1969 {
1970 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1971 }
1972 
1973 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1974 					    void (*f)(struct net_device *,
1975 						      struct netdev_queue *,
1976 						      void *),
1977 					    void *arg)
1978 {
1979 	unsigned int i;
1980 
1981 	for (i = 0; i < dev->num_tx_queues; i++)
1982 		f(dev, &dev->_tx[i], arg);
1983 }
1984 
1985 #define netdev_lockdep_set_classes(dev)				\
1986 {								\
1987 	static struct lock_class_key qdisc_tx_busylock_key;	\
1988 	static struct lock_class_key qdisc_running_key;		\
1989 	static struct lock_class_key qdisc_xmit_lock_key;	\
1990 	static struct lock_class_key dev_addr_list_lock_key;	\
1991 	unsigned int i;						\
1992 								\
1993 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1994 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1995 	lockdep_set_class(&(dev)->addr_list_lock,		\
1996 			  &dev_addr_list_lock_key); 		\
1997 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1998 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1999 				  &qdisc_xmit_lock_key);	\
2000 }
2001 
2002 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2003 				    struct sk_buff *skb,
2004 				    void *accel_priv);
2005 
2006 /* returns the headroom that the master device needs to take in account
2007  * when forwarding to this dev
2008  */
2009 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2010 {
2011 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2012 }
2013 
2014 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2015 {
2016 	if (dev->netdev_ops->ndo_set_rx_headroom)
2017 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2018 }
2019 
2020 /* set the device rx headroom to the dev's default */
2021 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2022 {
2023 	netdev_set_rx_headroom(dev, -1);
2024 }
2025 
2026 /*
2027  * Net namespace inlines
2028  */
2029 static inline
2030 struct net *dev_net(const struct net_device *dev)
2031 {
2032 	return read_pnet(&dev->nd_net);
2033 }
2034 
2035 static inline
2036 void dev_net_set(struct net_device *dev, struct net *net)
2037 {
2038 	write_pnet(&dev->nd_net, net);
2039 }
2040 
2041 static inline bool netdev_uses_dsa(struct net_device *dev)
2042 {
2043 #if IS_ENABLED(CONFIG_NET_DSA)
2044 	if (dev->dsa_ptr != NULL)
2045 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2046 #endif
2047 	return false;
2048 }
2049 
2050 /**
2051  *	netdev_priv - access network device private data
2052  *	@dev: network device
2053  *
2054  * Get network device private data
2055  */
2056 static inline void *netdev_priv(const struct net_device *dev)
2057 {
2058 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2059 }
2060 
2061 /* Set the sysfs physical device reference for the network logical device
2062  * if set prior to registration will cause a symlink during initialization.
2063  */
2064 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2065 
2066 /* Set the sysfs device type for the network logical device to allow
2067  * fine-grained identification of different network device types. For
2068  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2069  */
2070 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2071 
2072 /* Default NAPI poll() weight
2073  * Device drivers are strongly advised to not use bigger value
2074  */
2075 #define NAPI_POLL_WEIGHT 64
2076 
2077 /**
2078  *	netif_napi_add - initialize a NAPI context
2079  *	@dev:  network device
2080  *	@napi: NAPI context
2081  *	@poll: polling function
2082  *	@weight: default weight
2083  *
2084  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2085  * *any* of the other NAPI-related functions.
2086  */
2087 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2088 		    int (*poll)(struct napi_struct *, int), int weight);
2089 
2090 /**
2091  *	netif_tx_napi_add - initialize a NAPI context
2092  *	@dev:  network device
2093  *	@napi: NAPI context
2094  *	@poll: polling function
2095  *	@weight: default weight
2096  *
2097  * This variant of netif_napi_add() should be used from drivers using NAPI
2098  * to exclusively poll a TX queue.
2099  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2100  */
2101 static inline void netif_tx_napi_add(struct net_device *dev,
2102 				     struct napi_struct *napi,
2103 				     int (*poll)(struct napi_struct *, int),
2104 				     int weight)
2105 {
2106 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2107 	netif_napi_add(dev, napi, poll, weight);
2108 }
2109 
2110 /**
2111  *  netif_napi_del - remove a NAPI context
2112  *  @napi: NAPI context
2113  *
2114  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2115  */
2116 void netif_napi_del(struct napi_struct *napi);
2117 
2118 struct napi_gro_cb {
2119 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2120 	void	*frag0;
2121 
2122 	/* Length of frag0. */
2123 	unsigned int frag0_len;
2124 
2125 	/* This indicates where we are processing relative to skb->data. */
2126 	int	data_offset;
2127 
2128 	/* This is non-zero if the packet cannot be merged with the new skb. */
2129 	u16	flush;
2130 
2131 	/* Save the IP ID here and check when we get to the transport layer */
2132 	u16	flush_id;
2133 
2134 	/* Number of segments aggregated. */
2135 	u16	count;
2136 
2137 	/* Start offset for remote checksum offload */
2138 	u16	gro_remcsum_start;
2139 
2140 	/* jiffies when first packet was created/queued */
2141 	unsigned long age;
2142 
2143 	/* Used in ipv6_gro_receive() and foo-over-udp */
2144 	u16	proto;
2145 
2146 	/* This is non-zero if the packet may be of the same flow. */
2147 	u8	same_flow:1;
2148 
2149 	/* Used in tunnel GRO receive */
2150 	u8	encap_mark:1;
2151 
2152 	/* GRO checksum is valid */
2153 	u8	csum_valid:1;
2154 
2155 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2156 	u8	csum_cnt:3;
2157 
2158 	/* Free the skb? */
2159 	u8	free:2;
2160 #define NAPI_GRO_FREE		  1
2161 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2162 
2163 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2164 	u8	is_ipv6:1;
2165 
2166 	/* Used in GRE, set in fou/gue_gro_receive */
2167 	u8	is_fou:1;
2168 
2169 	/* Used to determine if flush_id can be ignored */
2170 	u8	is_atomic:1;
2171 
2172 	/* Number of gro_receive callbacks this packet already went through */
2173 	u8 recursion_counter:4;
2174 
2175 	/* 1 bit hole */
2176 
2177 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2178 	__wsum	csum;
2179 
2180 	/* used in skb_gro_receive() slow path */
2181 	struct sk_buff *last;
2182 };
2183 
2184 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2185 
2186 #define GRO_RECURSION_LIMIT 15
2187 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2188 {
2189 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2190 }
2191 
2192 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2193 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2194 						struct sk_buff **head,
2195 						struct sk_buff *skb)
2196 {
2197 	if (unlikely(gro_recursion_inc_test(skb))) {
2198 		NAPI_GRO_CB(skb)->flush |= 1;
2199 		return NULL;
2200 	}
2201 
2202 	return cb(head, skb);
2203 }
2204 
2205 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2206 					     struct sk_buff *);
2207 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2208 						   struct sock *sk,
2209 						   struct sk_buff **head,
2210 						   struct sk_buff *skb)
2211 {
2212 	if (unlikely(gro_recursion_inc_test(skb))) {
2213 		NAPI_GRO_CB(skb)->flush |= 1;
2214 		return NULL;
2215 	}
2216 
2217 	return cb(sk, head, skb);
2218 }
2219 
2220 struct packet_type {
2221 	__be16			type;	/* This is really htons(ether_type). */
2222 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2223 	int			(*func) (struct sk_buff *,
2224 					 struct net_device *,
2225 					 struct packet_type *,
2226 					 struct net_device *);
2227 	bool			(*id_match)(struct packet_type *ptype,
2228 					    struct sock *sk);
2229 	void			*af_packet_priv;
2230 	struct list_head	list;
2231 };
2232 
2233 struct offload_callbacks {
2234 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2235 						netdev_features_t features);
2236 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2237 						 struct sk_buff *skb);
2238 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2239 };
2240 
2241 struct packet_offload {
2242 	__be16			 type;	/* This is really htons(ether_type). */
2243 	u16			 priority;
2244 	struct offload_callbacks callbacks;
2245 	struct list_head	 list;
2246 };
2247 
2248 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2249 struct pcpu_sw_netstats {
2250 	u64     rx_packets;
2251 	u64     rx_bytes;
2252 	u64     tx_packets;
2253 	u64     tx_bytes;
2254 	struct u64_stats_sync   syncp;
2255 };
2256 
2257 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2258 ({									\
2259 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2260 	if (pcpu_stats)	{						\
2261 		int __cpu;						\
2262 		for_each_possible_cpu(__cpu) {				\
2263 			typeof(type) *stat;				\
2264 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2265 			u64_stats_init(&stat->syncp);			\
2266 		}							\
2267 	}								\
2268 	pcpu_stats;							\
2269 })
2270 
2271 #define netdev_alloc_pcpu_stats(type)					\
2272 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2273 
2274 enum netdev_lag_tx_type {
2275 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2276 	NETDEV_LAG_TX_TYPE_RANDOM,
2277 	NETDEV_LAG_TX_TYPE_BROADCAST,
2278 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2279 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2280 	NETDEV_LAG_TX_TYPE_HASH,
2281 };
2282 
2283 struct netdev_lag_upper_info {
2284 	enum netdev_lag_tx_type tx_type;
2285 };
2286 
2287 struct netdev_lag_lower_state_info {
2288 	u8 link_up : 1,
2289 	   tx_enabled : 1;
2290 };
2291 
2292 #include <linux/notifier.h>
2293 
2294 /* netdevice notifier chain. Please remember to update the rtnetlink
2295  * notification exclusion list in rtnetlink_event() when adding new
2296  * types.
2297  */
2298 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2299 #define NETDEV_DOWN	0x0002
2300 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2301 				   detected a hardware crash and restarted
2302 				   - we can use this eg to kick tcp sessions
2303 				   once done */
2304 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2305 #define NETDEV_REGISTER 0x0005
2306 #define NETDEV_UNREGISTER	0x0006
2307 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2308 #define NETDEV_CHANGEADDR	0x0008
2309 #define NETDEV_GOING_DOWN	0x0009
2310 #define NETDEV_CHANGENAME	0x000A
2311 #define NETDEV_FEAT_CHANGE	0x000B
2312 #define NETDEV_BONDING_FAILOVER 0x000C
2313 #define NETDEV_PRE_UP		0x000D
2314 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2315 #define NETDEV_POST_TYPE_CHANGE	0x000F
2316 #define NETDEV_POST_INIT	0x0010
2317 #define NETDEV_UNREGISTER_FINAL 0x0011
2318 #define NETDEV_RELEASE		0x0012
2319 #define NETDEV_NOTIFY_PEERS	0x0013
2320 #define NETDEV_JOIN		0x0014
2321 #define NETDEV_CHANGEUPPER	0x0015
2322 #define NETDEV_RESEND_IGMP	0x0016
2323 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2324 #define NETDEV_CHANGEINFODATA	0x0018
2325 #define NETDEV_BONDING_INFO	0x0019
2326 #define NETDEV_PRECHANGEUPPER	0x001A
2327 #define NETDEV_CHANGELOWERSTATE	0x001B
2328 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2329 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2330 
2331 int register_netdevice_notifier(struct notifier_block *nb);
2332 int unregister_netdevice_notifier(struct notifier_block *nb);
2333 
2334 struct netdev_notifier_info {
2335 	struct net_device *dev;
2336 };
2337 
2338 struct netdev_notifier_change_info {
2339 	struct netdev_notifier_info info; /* must be first */
2340 	unsigned int flags_changed;
2341 };
2342 
2343 struct netdev_notifier_changeupper_info {
2344 	struct netdev_notifier_info info; /* must be first */
2345 	struct net_device *upper_dev; /* new upper dev */
2346 	bool master; /* is upper dev master */
2347 	bool linking; /* is the notification for link or unlink */
2348 	void *upper_info; /* upper dev info */
2349 };
2350 
2351 struct netdev_notifier_changelowerstate_info {
2352 	struct netdev_notifier_info info; /* must be first */
2353 	void *lower_state_info; /* is lower dev state */
2354 };
2355 
2356 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2357 					     struct net_device *dev)
2358 {
2359 	info->dev = dev;
2360 }
2361 
2362 static inline struct net_device *
2363 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2364 {
2365 	return info->dev;
2366 }
2367 
2368 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2369 
2370 
2371 extern rwlock_t				dev_base_lock;		/* Device list lock */
2372 
2373 #define for_each_netdev(net, d)		\
2374 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2375 #define for_each_netdev_reverse(net, d)	\
2376 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2377 #define for_each_netdev_rcu(net, d)		\
2378 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2379 #define for_each_netdev_safe(net, d, n)	\
2380 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2381 #define for_each_netdev_continue(net, d)		\
2382 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2383 #define for_each_netdev_continue_rcu(net, d)		\
2384 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2385 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2386 		for_each_netdev_rcu(&init_net, slave)	\
2387 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2388 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2389 
2390 static inline struct net_device *next_net_device(struct net_device *dev)
2391 {
2392 	struct list_head *lh;
2393 	struct net *net;
2394 
2395 	net = dev_net(dev);
2396 	lh = dev->dev_list.next;
2397 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2398 }
2399 
2400 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2401 {
2402 	struct list_head *lh;
2403 	struct net *net;
2404 
2405 	net = dev_net(dev);
2406 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2407 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2408 }
2409 
2410 static inline struct net_device *first_net_device(struct net *net)
2411 {
2412 	return list_empty(&net->dev_base_head) ? NULL :
2413 		net_device_entry(net->dev_base_head.next);
2414 }
2415 
2416 static inline struct net_device *first_net_device_rcu(struct net *net)
2417 {
2418 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2419 
2420 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2421 }
2422 
2423 int netdev_boot_setup_check(struct net_device *dev);
2424 unsigned long netdev_boot_base(const char *prefix, int unit);
2425 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2426 				       const char *hwaddr);
2427 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2428 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2429 void dev_add_pack(struct packet_type *pt);
2430 void dev_remove_pack(struct packet_type *pt);
2431 void __dev_remove_pack(struct packet_type *pt);
2432 void dev_add_offload(struct packet_offload *po);
2433 void dev_remove_offload(struct packet_offload *po);
2434 
2435 int dev_get_iflink(const struct net_device *dev);
2436 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2437 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2438 				      unsigned short mask);
2439 struct net_device *dev_get_by_name(struct net *net, const char *name);
2440 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2441 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2442 int dev_alloc_name(struct net_device *dev, const char *name);
2443 int dev_open(struct net_device *dev);
2444 int dev_close(struct net_device *dev);
2445 int dev_close_many(struct list_head *head, bool unlink);
2446 void dev_disable_lro(struct net_device *dev);
2447 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2448 int dev_queue_xmit(struct sk_buff *skb);
2449 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2450 int register_netdevice(struct net_device *dev);
2451 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2452 void unregister_netdevice_many(struct list_head *head);
2453 static inline void unregister_netdevice(struct net_device *dev)
2454 {
2455 	unregister_netdevice_queue(dev, NULL);
2456 }
2457 
2458 int netdev_refcnt_read(const struct net_device *dev);
2459 void free_netdev(struct net_device *dev);
2460 void netdev_freemem(struct net_device *dev);
2461 void synchronize_net(void);
2462 int init_dummy_netdev(struct net_device *dev);
2463 
2464 DECLARE_PER_CPU(int, xmit_recursion);
2465 #define XMIT_RECURSION_LIMIT	10
2466 
2467 static inline int dev_recursion_level(void)
2468 {
2469 	return this_cpu_read(xmit_recursion);
2470 }
2471 
2472 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2473 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2474 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2475 int netdev_get_name(struct net *net, char *name, int ifindex);
2476 int dev_restart(struct net_device *dev);
2477 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2478 
2479 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2480 {
2481 	return NAPI_GRO_CB(skb)->data_offset;
2482 }
2483 
2484 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2485 {
2486 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2487 }
2488 
2489 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2490 {
2491 	NAPI_GRO_CB(skb)->data_offset += len;
2492 }
2493 
2494 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2495 					unsigned int offset)
2496 {
2497 	return NAPI_GRO_CB(skb)->frag0 + offset;
2498 }
2499 
2500 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2501 {
2502 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2503 }
2504 
2505 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2506 					unsigned int offset)
2507 {
2508 	if (!pskb_may_pull(skb, hlen))
2509 		return NULL;
2510 
2511 	NAPI_GRO_CB(skb)->frag0 = NULL;
2512 	NAPI_GRO_CB(skb)->frag0_len = 0;
2513 	return skb->data + offset;
2514 }
2515 
2516 static inline void *skb_gro_network_header(struct sk_buff *skb)
2517 {
2518 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2519 	       skb_network_offset(skb);
2520 }
2521 
2522 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2523 					const void *start, unsigned int len)
2524 {
2525 	if (NAPI_GRO_CB(skb)->csum_valid)
2526 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2527 						  csum_partial(start, len, 0));
2528 }
2529 
2530 /* GRO checksum functions. These are logical equivalents of the normal
2531  * checksum functions (in skbuff.h) except that they operate on the GRO
2532  * offsets and fields in sk_buff.
2533  */
2534 
2535 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2536 
2537 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2538 {
2539 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2540 }
2541 
2542 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2543 						      bool zero_okay,
2544 						      __sum16 check)
2545 {
2546 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2547 		skb_checksum_start_offset(skb) <
2548 		 skb_gro_offset(skb)) &&
2549 		!skb_at_gro_remcsum_start(skb) &&
2550 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2551 		(!zero_okay || check));
2552 }
2553 
2554 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2555 							   __wsum psum)
2556 {
2557 	if (NAPI_GRO_CB(skb)->csum_valid &&
2558 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2559 		return 0;
2560 
2561 	NAPI_GRO_CB(skb)->csum = psum;
2562 
2563 	return __skb_gro_checksum_complete(skb);
2564 }
2565 
2566 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2567 {
2568 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2569 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2570 		NAPI_GRO_CB(skb)->csum_cnt--;
2571 	} else {
2572 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2573 		 * verified a new top level checksum or an encapsulated one
2574 		 * during GRO. This saves work if we fallback to normal path.
2575 		 */
2576 		__skb_incr_checksum_unnecessary(skb);
2577 	}
2578 }
2579 
2580 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2581 				    compute_pseudo)			\
2582 ({									\
2583 	__sum16 __ret = 0;						\
2584 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2585 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2586 				compute_pseudo(skb, proto));		\
2587 	if (__ret)							\
2588 		__skb_mark_checksum_bad(skb);				\
2589 	else								\
2590 		skb_gro_incr_csum_unnecessary(skb);			\
2591 	__ret;								\
2592 })
2593 
2594 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2595 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2596 
2597 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2598 					     compute_pseudo)		\
2599 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2600 
2601 #define skb_gro_checksum_simple_validate(skb)				\
2602 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2603 
2604 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2605 {
2606 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2607 		!NAPI_GRO_CB(skb)->csum_valid);
2608 }
2609 
2610 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2611 					      __sum16 check, __wsum pseudo)
2612 {
2613 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2614 	NAPI_GRO_CB(skb)->csum_valid = 1;
2615 }
2616 
2617 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2618 do {									\
2619 	if (__skb_gro_checksum_convert_check(skb))			\
2620 		__skb_gro_checksum_convert(skb, check,			\
2621 					   compute_pseudo(skb, proto));	\
2622 } while (0)
2623 
2624 struct gro_remcsum {
2625 	int offset;
2626 	__wsum delta;
2627 };
2628 
2629 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2630 {
2631 	grc->offset = 0;
2632 	grc->delta = 0;
2633 }
2634 
2635 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2636 					    unsigned int off, size_t hdrlen,
2637 					    int start, int offset,
2638 					    struct gro_remcsum *grc,
2639 					    bool nopartial)
2640 {
2641 	__wsum delta;
2642 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2643 
2644 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2645 
2646 	if (!nopartial) {
2647 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2648 		return ptr;
2649 	}
2650 
2651 	ptr = skb_gro_header_fast(skb, off);
2652 	if (skb_gro_header_hard(skb, off + plen)) {
2653 		ptr = skb_gro_header_slow(skb, off + plen, off);
2654 		if (!ptr)
2655 			return NULL;
2656 	}
2657 
2658 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2659 			       start, offset);
2660 
2661 	/* Adjust skb->csum since we changed the packet */
2662 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2663 
2664 	grc->offset = off + hdrlen + offset;
2665 	grc->delta = delta;
2666 
2667 	return ptr;
2668 }
2669 
2670 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2671 					   struct gro_remcsum *grc)
2672 {
2673 	void *ptr;
2674 	size_t plen = grc->offset + sizeof(u16);
2675 
2676 	if (!grc->delta)
2677 		return;
2678 
2679 	ptr = skb_gro_header_fast(skb, grc->offset);
2680 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2681 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2682 		if (!ptr)
2683 			return;
2684 	}
2685 
2686 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2687 }
2688 
2689 struct skb_csum_offl_spec {
2690 	__u16		ipv4_okay:1,
2691 			ipv6_okay:1,
2692 			encap_okay:1,
2693 			ip_options_okay:1,
2694 			ext_hdrs_okay:1,
2695 			tcp_okay:1,
2696 			udp_okay:1,
2697 			sctp_okay:1,
2698 			vlan_okay:1,
2699 			no_encapped_ipv6:1,
2700 			no_not_encapped:1;
2701 };
2702 
2703 bool __skb_csum_offload_chk(struct sk_buff *skb,
2704 			    const struct skb_csum_offl_spec *spec,
2705 			    bool *csum_encapped,
2706 			    bool csum_help);
2707 
2708 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2709 					const struct skb_csum_offl_spec *spec,
2710 					bool *csum_encapped,
2711 					bool csum_help)
2712 {
2713 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2714 		return false;
2715 
2716 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2717 }
2718 
2719 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2720 					     const struct skb_csum_offl_spec *spec)
2721 {
2722 	bool csum_encapped;
2723 
2724 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2725 }
2726 
2727 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2728 {
2729 	static const struct skb_csum_offl_spec csum_offl_spec = {
2730 		.ipv4_okay = 1,
2731 		.ip_options_okay = 1,
2732 		.ipv6_okay = 1,
2733 		.vlan_okay = 1,
2734 		.tcp_okay = 1,
2735 		.udp_okay = 1,
2736 	};
2737 
2738 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2739 }
2740 
2741 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2742 {
2743 	static const struct skb_csum_offl_spec csum_offl_spec = {
2744 		.ipv4_okay = 1,
2745 		.ip_options_okay = 1,
2746 		.tcp_okay = 1,
2747 		.udp_okay = 1,
2748 		.vlan_okay = 1,
2749 	};
2750 
2751 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2752 }
2753 
2754 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2755 				  unsigned short type,
2756 				  const void *daddr, const void *saddr,
2757 				  unsigned int len)
2758 {
2759 	if (!dev->header_ops || !dev->header_ops->create)
2760 		return 0;
2761 
2762 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2763 }
2764 
2765 static inline int dev_parse_header(const struct sk_buff *skb,
2766 				   unsigned char *haddr)
2767 {
2768 	const struct net_device *dev = skb->dev;
2769 
2770 	if (!dev->header_ops || !dev->header_ops->parse)
2771 		return 0;
2772 	return dev->header_ops->parse(skb, haddr);
2773 }
2774 
2775 /* ll_header must have at least hard_header_len allocated */
2776 static inline bool dev_validate_header(const struct net_device *dev,
2777 				       char *ll_header, int len)
2778 {
2779 	if (likely(len >= dev->hard_header_len))
2780 		return true;
2781 
2782 	if (capable(CAP_SYS_RAWIO)) {
2783 		memset(ll_header + len, 0, dev->hard_header_len - len);
2784 		return true;
2785 	}
2786 
2787 	if (dev->header_ops && dev->header_ops->validate)
2788 		return dev->header_ops->validate(ll_header, len);
2789 
2790 	return false;
2791 }
2792 
2793 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2794 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2795 static inline int unregister_gifconf(unsigned int family)
2796 {
2797 	return register_gifconf(family, NULL);
2798 }
2799 
2800 #ifdef CONFIG_NET_FLOW_LIMIT
2801 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2802 struct sd_flow_limit {
2803 	u64			count;
2804 	unsigned int		num_buckets;
2805 	unsigned int		history_head;
2806 	u16			history[FLOW_LIMIT_HISTORY];
2807 	u8			buckets[];
2808 };
2809 
2810 extern int netdev_flow_limit_table_len;
2811 #endif /* CONFIG_NET_FLOW_LIMIT */
2812 
2813 /*
2814  * Incoming packets are placed on per-CPU queues
2815  */
2816 struct softnet_data {
2817 	struct list_head	poll_list;
2818 	struct sk_buff_head	process_queue;
2819 
2820 	/* stats */
2821 	unsigned int		processed;
2822 	unsigned int		time_squeeze;
2823 	unsigned int		received_rps;
2824 #ifdef CONFIG_RPS
2825 	struct softnet_data	*rps_ipi_list;
2826 #endif
2827 #ifdef CONFIG_NET_FLOW_LIMIT
2828 	struct sd_flow_limit __rcu *flow_limit;
2829 #endif
2830 	struct Qdisc		*output_queue;
2831 	struct Qdisc		**output_queue_tailp;
2832 	struct sk_buff		*completion_queue;
2833 
2834 #ifdef CONFIG_RPS
2835 	/* input_queue_head should be written by cpu owning this struct,
2836 	 * and only read by other cpus. Worth using a cache line.
2837 	 */
2838 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2839 
2840 	/* Elements below can be accessed between CPUs for RPS/RFS */
2841 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2842 	struct softnet_data	*rps_ipi_next;
2843 	unsigned int		cpu;
2844 	unsigned int		input_queue_tail;
2845 #endif
2846 	unsigned int		dropped;
2847 	struct sk_buff_head	input_pkt_queue;
2848 	struct napi_struct	backlog;
2849 
2850 };
2851 
2852 static inline void input_queue_head_incr(struct softnet_data *sd)
2853 {
2854 #ifdef CONFIG_RPS
2855 	sd->input_queue_head++;
2856 #endif
2857 }
2858 
2859 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2860 					      unsigned int *qtail)
2861 {
2862 #ifdef CONFIG_RPS
2863 	*qtail = ++sd->input_queue_tail;
2864 #endif
2865 }
2866 
2867 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2868 
2869 void __netif_schedule(struct Qdisc *q);
2870 void netif_schedule_queue(struct netdev_queue *txq);
2871 
2872 static inline void netif_tx_schedule_all(struct net_device *dev)
2873 {
2874 	unsigned int i;
2875 
2876 	for (i = 0; i < dev->num_tx_queues; i++)
2877 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2878 }
2879 
2880 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2881 {
2882 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2883 }
2884 
2885 /**
2886  *	netif_start_queue - allow transmit
2887  *	@dev: network device
2888  *
2889  *	Allow upper layers to call the device hard_start_xmit routine.
2890  */
2891 static inline void netif_start_queue(struct net_device *dev)
2892 {
2893 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2894 }
2895 
2896 static inline void netif_tx_start_all_queues(struct net_device *dev)
2897 {
2898 	unsigned int i;
2899 
2900 	for (i = 0; i < dev->num_tx_queues; i++) {
2901 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2902 		netif_tx_start_queue(txq);
2903 	}
2904 }
2905 
2906 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2907 
2908 /**
2909  *	netif_wake_queue - restart transmit
2910  *	@dev: network device
2911  *
2912  *	Allow upper layers to call the device hard_start_xmit routine.
2913  *	Used for flow control when transmit resources are available.
2914  */
2915 static inline void netif_wake_queue(struct net_device *dev)
2916 {
2917 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2918 }
2919 
2920 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2921 {
2922 	unsigned int i;
2923 
2924 	for (i = 0; i < dev->num_tx_queues; i++) {
2925 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2926 		netif_tx_wake_queue(txq);
2927 	}
2928 }
2929 
2930 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2931 {
2932 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2933 }
2934 
2935 /**
2936  *	netif_stop_queue - stop transmitted packets
2937  *	@dev: network device
2938  *
2939  *	Stop upper layers calling the device hard_start_xmit routine.
2940  *	Used for flow control when transmit resources are unavailable.
2941  */
2942 static inline void netif_stop_queue(struct net_device *dev)
2943 {
2944 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2945 }
2946 
2947 void netif_tx_stop_all_queues(struct net_device *dev);
2948 
2949 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2950 {
2951 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2952 }
2953 
2954 /**
2955  *	netif_queue_stopped - test if transmit queue is flowblocked
2956  *	@dev: network device
2957  *
2958  *	Test if transmit queue on device is currently unable to send.
2959  */
2960 static inline bool netif_queue_stopped(const struct net_device *dev)
2961 {
2962 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2963 }
2964 
2965 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2966 {
2967 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2968 }
2969 
2970 static inline bool
2971 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2972 {
2973 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2974 }
2975 
2976 static inline bool
2977 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2978 {
2979 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2980 }
2981 
2982 /**
2983  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2984  *	@dev_queue: pointer to transmit queue
2985  *
2986  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2987  * to give appropriate hint to the CPU.
2988  */
2989 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2990 {
2991 #ifdef CONFIG_BQL
2992 	prefetchw(&dev_queue->dql.num_queued);
2993 #endif
2994 }
2995 
2996 /**
2997  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2998  *	@dev_queue: pointer to transmit queue
2999  *
3000  * BQL enabled drivers might use this helper in their TX completion path,
3001  * to give appropriate hint to the CPU.
3002  */
3003 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3004 {
3005 #ifdef CONFIG_BQL
3006 	prefetchw(&dev_queue->dql.limit);
3007 #endif
3008 }
3009 
3010 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3011 					unsigned int bytes)
3012 {
3013 #ifdef CONFIG_BQL
3014 	dql_queued(&dev_queue->dql, bytes);
3015 
3016 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3017 		return;
3018 
3019 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3020 
3021 	/*
3022 	 * The XOFF flag must be set before checking the dql_avail below,
3023 	 * because in netdev_tx_completed_queue we update the dql_completed
3024 	 * before checking the XOFF flag.
3025 	 */
3026 	smp_mb();
3027 
3028 	/* check again in case another CPU has just made room avail */
3029 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3030 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3031 #endif
3032 }
3033 
3034 /**
3035  * 	netdev_sent_queue - report the number of bytes queued to hardware
3036  * 	@dev: network device
3037  * 	@bytes: number of bytes queued to the hardware device queue
3038  *
3039  * 	Report the number of bytes queued for sending/completion to the network
3040  * 	device hardware queue. @bytes should be a good approximation and should
3041  * 	exactly match netdev_completed_queue() @bytes
3042  */
3043 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3044 {
3045 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3046 }
3047 
3048 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3049 					     unsigned int pkts, unsigned int bytes)
3050 {
3051 #ifdef CONFIG_BQL
3052 	if (unlikely(!bytes))
3053 		return;
3054 
3055 	dql_completed(&dev_queue->dql, bytes);
3056 
3057 	/*
3058 	 * Without the memory barrier there is a small possiblity that
3059 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3060 	 * be stopped forever
3061 	 */
3062 	smp_mb();
3063 
3064 	if (dql_avail(&dev_queue->dql) < 0)
3065 		return;
3066 
3067 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3068 		netif_schedule_queue(dev_queue);
3069 #endif
3070 }
3071 
3072 /**
3073  * 	netdev_completed_queue - report bytes and packets completed by device
3074  * 	@dev: network device
3075  * 	@pkts: actual number of packets sent over the medium
3076  * 	@bytes: actual number of bytes sent over the medium
3077  *
3078  * 	Report the number of bytes and packets transmitted by the network device
3079  * 	hardware queue over the physical medium, @bytes must exactly match the
3080  * 	@bytes amount passed to netdev_sent_queue()
3081  */
3082 static inline void netdev_completed_queue(struct net_device *dev,
3083 					  unsigned int pkts, unsigned int bytes)
3084 {
3085 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3086 }
3087 
3088 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3089 {
3090 #ifdef CONFIG_BQL
3091 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3092 	dql_reset(&q->dql);
3093 #endif
3094 }
3095 
3096 /**
3097  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3098  * 	@dev_queue: network device
3099  *
3100  * 	Reset the bytes and packet count of a network device and clear the
3101  * 	software flow control OFF bit for this network device
3102  */
3103 static inline void netdev_reset_queue(struct net_device *dev_queue)
3104 {
3105 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3106 }
3107 
3108 /**
3109  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3110  * 	@dev: network device
3111  * 	@queue_index: given tx queue index
3112  *
3113  * 	Returns 0 if given tx queue index >= number of device tx queues,
3114  * 	otherwise returns the originally passed tx queue index.
3115  */
3116 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3117 {
3118 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3119 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3120 				     dev->name, queue_index,
3121 				     dev->real_num_tx_queues);
3122 		return 0;
3123 	}
3124 
3125 	return queue_index;
3126 }
3127 
3128 /**
3129  *	netif_running - test if up
3130  *	@dev: network device
3131  *
3132  *	Test if the device has been brought up.
3133  */
3134 static inline bool netif_running(const struct net_device *dev)
3135 {
3136 	return test_bit(__LINK_STATE_START, &dev->state);
3137 }
3138 
3139 /*
3140  * Routines to manage the subqueues on a device.  We only need start,
3141  * stop, and a check if it's stopped.  All other device management is
3142  * done at the overall netdevice level.
3143  * Also test the device if we're multiqueue.
3144  */
3145 
3146 /**
3147  *	netif_start_subqueue - allow sending packets on subqueue
3148  *	@dev: network device
3149  *	@queue_index: sub queue index
3150  *
3151  * Start individual transmit queue of a device with multiple transmit queues.
3152  */
3153 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3154 {
3155 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3156 
3157 	netif_tx_start_queue(txq);
3158 }
3159 
3160 /**
3161  *	netif_stop_subqueue - stop sending packets on subqueue
3162  *	@dev: network device
3163  *	@queue_index: sub queue index
3164  *
3165  * Stop individual transmit queue of a device with multiple transmit queues.
3166  */
3167 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3168 {
3169 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3170 	netif_tx_stop_queue(txq);
3171 }
3172 
3173 /**
3174  *	netif_subqueue_stopped - test status of subqueue
3175  *	@dev: network device
3176  *	@queue_index: sub queue index
3177  *
3178  * Check individual transmit queue of a device with multiple transmit queues.
3179  */
3180 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3181 					    u16 queue_index)
3182 {
3183 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3184 
3185 	return netif_tx_queue_stopped(txq);
3186 }
3187 
3188 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3189 					  struct sk_buff *skb)
3190 {
3191 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3192 }
3193 
3194 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3195 
3196 #ifdef CONFIG_XPS
3197 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3198 			u16 index);
3199 #else
3200 static inline int netif_set_xps_queue(struct net_device *dev,
3201 				      const struct cpumask *mask,
3202 				      u16 index)
3203 {
3204 	return 0;
3205 }
3206 #endif
3207 
3208 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3209 		  unsigned int num_tx_queues);
3210 
3211 /*
3212  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3213  * as a distribution range limit for the returned value.
3214  */
3215 static inline u16 skb_tx_hash(const struct net_device *dev,
3216 			      struct sk_buff *skb)
3217 {
3218 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3219 }
3220 
3221 /**
3222  *	netif_is_multiqueue - test if device has multiple transmit queues
3223  *	@dev: network device
3224  *
3225  * Check if device has multiple transmit queues
3226  */
3227 static inline bool netif_is_multiqueue(const struct net_device *dev)
3228 {
3229 	return dev->num_tx_queues > 1;
3230 }
3231 
3232 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3233 
3234 #ifdef CONFIG_SYSFS
3235 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3236 #else
3237 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3238 						unsigned int rxq)
3239 {
3240 	return 0;
3241 }
3242 #endif
3243 
3244 #ifdef CONFIG_SYSFS
3245 static inline unsigned int get_netdev_rx_queue_index(
3246 		struct netdev_rx_queue *queue)
3247 {
3248 	struct net_device *dev = queue->dev;
3249 	int index = queue - dev->_rx;
3250 
3251 	BUG_ON(index >= dev->num_rx_queues);
3252 	return index;
3253 }
3254 #endif
3255 
3256 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3257 int netif_get_num_default_rss_queues(void);
3258 
3259 enum skb_free_reason {
3260 	SKB_REASON_CONSUMED,
3261 	SKB_REASON_DROPPED,
3262 };
3263 
3264 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3265 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3266 
3267 /*
3268  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3269  * interrupt context or with hardware interrupts being disabled.
3270  * (in_irq() || irqs_disabled())
3271  *
3272  * We provide four helpers that can be used in following contexts :
3273  *
3274  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3275  *  replacing kfree_skb(skb)
3276  *
3277  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3278  *  Typically used in place of consume_skb(skb) in TX completion path
3279  *
3280  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3281  *  replacing kfree_skb(skb)
3282  *
3283  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3284  *  and consumed a packet. Used in place of consume_skb(skb)
3285  */
3286 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3287 {
3288 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3289 }
3290 
3291 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3292 {
3293 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3294 }
3295 
3296 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3297 {
3298 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3299 }
3300 
3301 static inline void dev_consume_skb_any(struct sk_buff *skb)
3302 {
3303 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3304 }
3305 
3306 int netif_rx(struct sk_buff *skb);
3307 int netif_rx_ni(struct sk_buff *skb);
3308 int netif_receive_skb(struct sk_buff *skb);
3309 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3310 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3311 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3312 gro_result_t napi_gro_frags(struct napi_struct *napi);
3313 struct packet_offload *gro_find_receive_by_type(__be16 type);
3314 struct packet_offload *gro_find_complete_by_type(__be16 type);
3315 
3316 static inline void napi_free_frags(struct napi_struct *napi)
3317 {
3318 	kfree_skb(napi->skb);
3319 	napi->skb = NULL;
3320 }
3321 
3322 bool netdev_is_rx_handler_busy(struct net_device *dev);
3323 int netdev_rx_handler_register(struct net_device *dev,
3324 			       rx_handler_func_t *rx_handler,
3325 			       void *rx_handler_data);
3326 void netdev_rx_handler_unregister(struct net_device *dev);
3327 
3328 bool dev_valid_name(const char *name);
3329 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3330 int dev_ethtool(struct net *net, struct ifreq *);
3331 unsigned int dev_get_flags(const struct net_device *);
3332 int __dev_change_flags(struct net_device *, unsigned int flags);
3333 int dev_change_flags(struct net_device *, unsigned int);
3334 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3335 			unsigned int gchanges);
3336 int dev_change_name(struct net_device *, const char *);
3337 int dev_set_alias(struct net_device *, const char *, size_t);
3338 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3339 int dev_set_mtu(struct net_device *, int);
3340 void dev_set_group(struct net_device *, int);
3341 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3342 int dev_change_carrier(struct net_device *, bool new_carrier);
3343 int dev_get_phys_port_id(struct net_device *dev,
3344 			 struct netdev_phys_item_id *ppid);
3345 int dev_get_phys_port_name(struct net_device *dev,
3346 			   char *name, size_t len);
3347 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3348 int dev_change_xdp_fd(struct net_device *dev, int fd);
3349 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3350 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3351 				    struct netdev_queue *txq, int *ret);
3352 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3353 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3354 bool is_skb_forwardable(const struct net_device *dev,
3355 			const struct sk_buff *skb);
3356 
3357 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3358 
3359 extern int		netdev_budget;
3360 
3361 /* Called by rtnetlink.c:rtnl_unlock() */
3362 void netdev_run_todo(void);
3363 
3364 /**
3365  *	dev_put - release reference to device
3366  *	@dev: network device
3367  *
3368  * Release reference to device to allow it to be freed.
3369  */
3370 static inline void dev_put(struct net_device *dev)
3371 {
3372 	this_cpu_dec(*dev->pcpu_refcnt);
3373 }
3374 
3375 /**
3376  *	dev_hold - get reference to device
3377  *	@dev: network device
3378  *
3379  * Hold reference to device to keep it from being freed.
3380  */
3381 static inline void dev_hold(struct net_device *dev)
3382 {
3383 	this_cpu_inc(*dev->pcpu_refcnt);
3384 }
3385 
3386 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3387  * and _off may be called from IRQ context, but it is caller
3388  * who is responsible for serialization of these calls.
3389  *
3390  * The name carrier is inappropriate, these functions should really be
3391  * called netif_lowerlayer_*() because they represent the state of any
3392  * kind of lower layer not just hardware media.
3393  */
3394 
3395 void linkwatch_init_dev(struct net_device *dev);
3396 void linkwatch_fire_event(struct net_device *dev);
3397 void linkwatch_forget_dev(struct net_device *dev);
3398 
3399 /**
3400  *	netif_carrier_ok - test if carrier present
3401  *	@dev: network device
3402  *
3403  * Check if carrier is present on device
3404  */
3405 static inline bool netif_carrier_ok(const struct net_device *dev)
3406 {
3407 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3408 }
3409 
3410 unsigned long dev_trans_start(struct net_device *dev);
3411 
3412 void __netdev_watchdog_up(struct net_device *dev);
3413 
3414 void netif_carrier_on(struct net_device *dev);
3415 
3416 void netif_carrier_off(struct net_device *dev);
3417 
3418 /**
3419  *	netif_dormant_on - mark device as dormant.
3420  *	@dev: network device
3421  *
3422  * Mark device as dormant (as per RFC2863).
3423  *
3424  * The dormant state indicates that the relevant interface is not
3425  * actually in a condition to pass packets (i.e., it is not 'up') but is
3426  * in a "pending" state, waiting for some external event.  For "on-
3427  * demand" interfaces, this new state identifies the situation where the
3428  * interface is waiting for events to place it in the up state.
3429  */
3430 static inline void netif_dormant_on(struct net_device *dev)
3431 {
3432 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3433 		linkwatch_fire_event(dev);
3434 }
3435 
3436 /**
3437  *	netif_dormant_off - set device as not dormant.
3438  *	@dev: network device
3439  *
3440  * Device is not in dormant state.
3441  */
3442 static inline void netif_dormant_off(struct net_device *dev)
3443 {
3444 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3445 		linkwatch_fire_event(dev);
3446 }
3447 
3448 /**
3449  *	netif_dormant - test if carrier present
3450  *	@dev: network device
3451  *
3452  * Check if carrier is present on device
3453  */
3454 static inline bool netif_dormant(const struct net_device *dev)
3455 {
3456 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3457 }
3458 
3459 
3460 /**
3461  *	netif_oper_up - test if device is operational
3462  *	@dev: network device
3463  *
3464  * Check if carrier is operational
3465  */
3466 static inline bool netif_oper_up(const struct net_device *dev)
3467 {
3468 	return (dev->operstate == IF_OPER_UP ||
3469 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3470 }
3471 
3472 /**
3473  *	netif_device_present - is device available or removed
3474  *	@dev: network device
3475  *
3476  * Check if device has not been removed from system.
3477  */
3478 static inline bool netif_device_present(struct net_device *dev)
3479 {
3480 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3481 }
3482 
3483 void netif_device_detach(struct net_device *dev);
3484 
3485 void netif_device_attach(struct net_device *dev);
3486 
3487 /*
3488  * Network interface message level settings
3489  */
3490 
3491 enum {
3492 	NETIF_MSG_DRV		= 0x0001,
3493 	NETIF_MSG_PROBE		= 0x0002,
3494 	NETIF_MSG_LINK		= 0x0004,
3495 	NETIF_MSG_TIMER		= 0x0008,
3496 	NETIF_MSG_IFDOWN	= 0x0010,
3497 	NETIF_MSG_IFUP		= 0x0020,
3498 	NETIF_MSG_RX_ERR	= 0x0040,
3499 	NETIF_MSG_TX_ERR	= 0x0080,
3500 	NETIF_MSG_TX_QUEUED	= 0x0100,
3501 	NETIF_MSG_INTR		= 0x0200,
3502 	NETIF_MSG_TX_DONE	= 0x0400,
3503 	NETIF_MSG_RX_STATUS	= 0x0800,
3504 	NETIF_MSG_PKTDATA	= 0x1000,
3505 	NETIF_MSG_HW		= 0x2000,
3506 	NETIF_MSG_WOL		= 0x4000,
3507 };
3508 
3509 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3510 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3511 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3512 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3513 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3514 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3515 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3516 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3517 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3518 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3519 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3520 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3521 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3522 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3523 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3524 
3525 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3526 {
3527 	/* use default */
3528 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3529 		return default_msg_enable_bits;
3530 	if (debug_value == 0)	/* no output */
3531 		return 0;
3532 	/* set low N bits */
3533 	return (1 << debug_value) - 1;
3534 }
3535 
3536 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3537 {
3538 	spin_lock(&txq->_xmit_lock);
3539 	txq->xmit_lock_owner = cpu;
3540 }
3541 
3542 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3543 {
3544 	spin_lock_bh(&txq->_xmit_lock);
3545 	txq->xmit_lock_owner = smp_processor_id();
3546 }
3547 
3548 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3549 {
3550 	bool ok = spin_trylock(&txq->_xmit_lock);
3551 	if (likely(ok))
3552 		txq->xmit_lock_owner = smp_processor_id();
3553 	return ok;
3554 }
3555 
3556 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3557 {
3558 	txq->xmit_lock_owner = -1;
3559 	spin_unlock(&txq->_xmit_lock);
3560 }
3561 
3562 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3563 {
3564 	txq->xmit_lock_owner = -1;
3565 	spin_unlock_bh(&txq->_xmit_lock);
3566 }
3567 
3568 static inline void txq_trans_update(struct netdev_queue *txq)
3569 {
3570 	if (txq->xmit_lock_owner != -1)
3571 		txq->trans_start = jiffies;
3572 }
3573 
3574 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3575 static inline void netif_trans_update(struct net_device *dev)
3576 {
3577 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3578 
3579 	if (txq->trans_start != jiffies)
3580 		txq->trans_start = jiffies;
3581 }
3582 
3583 /**
3584  *	netif_tx_lock - grab network device transmit lock
3585  *	@dev: network device
3586  *
3587  * Get network device transmit lock
3588  */
3589 static inline void netif_tx_lock(struct net_device *dev)
3590 {
3591 	unsigned int i;
3592 	int cpu;
3593 
3594 	spin_lock(&dev->tx_global_lock);
3595 	cpu = smp_processor_id();
3596 	for (i = 0; i < dev->num_tx_queues; i++) {
3597 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3598 
3599 		/* We are the only thread of execution doing a
3600 		 * freeze, but we have to grab the _xmit_lock in
3601 		 * order to synchronize with threads which are in
3602 		 * the ->hard_start_xmit() handler and already
3603 		 * checked the frozen bit.
3604 		 */
3605 		__netif_tx_lock(txq, cpu);
3606 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3607 		__netif_tx_unlock(txq);
3608 	}
3609 }
3610 
3611 static inline void netif_tx_lock_bh(struct net_device *dev)
3612 {
3613 	local_bh_disable();
3614 	netif_tx_lock(dev);
3615 }
3616 
3617 static inline void netif_tx_unlock(struct net_device *dev)
3618 {
3619 	unsigned int i;
3620 
3621 	for (i = 0; i < dev->num_tx_queues; i++) {
3622 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3623 
3624 		/* No need to grab the _xmit_lock here.  If the
3625 		 * queue is not stopped for another reason, we
3626 		 * force a schedule.
3627 		 */
3628 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3629 		netif_schedule_queue(txq);
3630 	}
3631 	spin_unlock(&dev->tx_global_lock);
3632 }
3633 
3634 static inline void netif_tx_unlock_bh(struct net_device *dev)
3635 {
3636 	netif_tx_unlock(dev);
3637 	local_bh_enable();
3638 }
3639 
3640 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3641 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3642 		__netif_tx_lock(txq, cpu);		\
3643 	}						\
3644 }
3645 
3646 #define HARD_TX_TRYLOCK(dev, txq)			\
3647 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3648 		__netif_tx_trylock(txq) :		\
3649 		true )
3650 
3651 #define HARD_TX_UNLOCK(dev, txq) {			\
3652 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3653 		__netif_tx_unlock(txq);			\
3654 	}						\
3655 }
3656 
3657 static inline void netif_tx_disable(struct net_device *dev)
3658 {
3659 	unsigned int i;
3660 	int cpu;
3661 
3662 	local_bh_disable();
3663 	cpu = smp_processor_id();
3664 	for (i = 0; i < dev->num_tx_queues; i++) {
3665 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3666 
3667 		__netif_tx_lock(txq, cpu);
3668 		netif_tx_stop_queue(txq);
3669 		__netif_tx_unlock(txq);
3670 	}
3671 	local_bh_enable();
3672 }
3673 
3674 static inline void netif_addr_lock(struct net_device *dev)
3675 {
3676 	spin_lock(&dev->addr_list_lock);
3677 }
3678 
3679 static inline void netif_addr_lock_nested(struct net_device *dev)
3680 {
3681 	int subclass = SINGLE_DEPTH_NESTING;
3682 
3683 	if (dev->netdev_ops->ndo_get_lock_subclass)
3684 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3685 
3686 	spin_lock_nested(&dev->addr_list_lock, subclass);
3687 }
3688 
3689 static inline void netif_addr_lock_bh(struct net_device *dev)
3690 {
3691 	spin_lock_bh(&dev->addr_list_lock);
3692 }
3693 
3694 static inline void netif_addr_unlock(struct net_device *dev)
3695 {
3696 	spin_unlock(&dev->addr_list_lock);
3697 }
3698 
3699 static inline void netif_addr_unlock_bh(struct net_device *dev)
3700 {
3701 	spin_unlock_bh(&dev->addr_list_lock);
3702 }
3703 
3704 /*
3705  * dev_addrs walker. Should be used only for read access. Call with
3706  * rcu_read_lock held.
3707  */
3708 #define for_each_dev_addr(dev, ha) \
3709 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3710 
3711 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3712 
3713 void ether_setup(struct net_device *dev);
3714 
3715 /* Support for loadable net-drivers */
3716 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3717 				    unsigned char name_assign_type,
3718 				    void (*setup)(struct net_device *),
3719 				    unsigned int txqs, unsigned int rxqs);
3720 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3721 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3722 
3723 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3724 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3725 			 count)
3726 
3727 int register_netdev(struct net_device *dev);
3728 void unregister_netdev(struct net_device *dev);
3729 
3730 /* General hardware address lists handling functions */
3731 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3732 		   struct netdev_hw_addr_list *from_list, int addr_len);
3733 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3734 		      struct netdev_hw_addr_list *from_list, int addr_len);
3735 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3736 		       struct net_device *dev,
3737 		       int (*sync)(struct net_device *, const unsigned char *),
3738 		       int (*unsync)(struct net_device *,
3739 				     const unsigned char *));
3740 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3741 			  struct net_device *dev,
3742 			  int (*unsync)(struct net_device *,
3743 					const unsigned char *));
3744 void __hw_addr_init(struct netdev_hw_addr_list *list);
3745 
3746 /* Functions used for device addresses handling */
3747 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3748 		 unsigned char addr_type);
3749 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3750 		 unsigned char addr_type);
3751 void dev_addr_flush(struct net_device *dev);
3752 int dev_addr_init(struct net_device *dev);
3753 
3754 /* Functions used for unicast addresses handling */
3755 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3756 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3757 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3758 int dev_uc_sync(struct net_device *to, struct net_device *from);
3759 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3760 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3761 void dev_uc_flush(struct net_device *dev);
3762 void dev_uc_init(struct net_device *dev);
3763 
3764 /**
3765  *  __dev_uc_sync - Synchonize device's unicast list
3766  *  @dev:  device to sync
3767  *  @sync: function to call if address should be added
3768  *  @unsync: function to call if address should be removed
3769  *
3770  *  Add newly added addresses to the interface, and release
3771  *  addresses that have been deleted.
3772  */
3773 static inline int __dev_uc_sync(struct net_device *dev,
3774 				int (*sync)(struct net_device *,
3775 					    const unsigned char *),
3776 				int (*unsync)(struct net_device *,
3777 					      const unsigned char *))
3778 {
3779 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3780 }
3781 
3782 /**
3783  *  __dev_uc_unsync - Remove synchronized addresses from device
3784  *  @dev:  device to sync
3785  *  @unsync: function to call if address should be removed
3786  *
3787  *  Remove all addresses that were added to the device by dev_uc_sync().
3788  */
3789 static inline void __dev_uc_unsync(struct net_device *dev,
3790 				   int (*unsync)(struct net_device *,
3791 						 const unsigned char *))
3792 {
3793 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3794 }
3795 
3796 /* Functions used for multicast addresses handling */
3797 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3798 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3799 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3800 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3801 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3802 int dev_mc_sync(struct net_device *to, struct net_device *from);
3803 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3804 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3805 void dev_mc_flush(struct net_device *dev);
3806 void dev_mc_init(struct net_device *dev);
3807 
3808 /**
3809  *  __dev_mc_sync - Synchonize device's multicast list
3810  *  @dev:  device to sync
3811  *  @sync: function to call if address should be added
3812  *  @unsync: function to call if address should be removed
3813  *
3814  *  Add newly added addresses to the interface, and release
3815  *  addresses that have been deleted.
3816  */
3817 static inline int __dev_mc_sync(struct net_device *dev,
3818 				int (*sync)(struct net_device *,
3819 					    const unsigned char *),
3820 				int (*unsync)(struct net_device *,
3821 					      const unsigned char *))
3822 {
3823 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3824 }
3825 
3826 /**
3827  *  __dev_mc_unsync - Remove synchronized addresses from device
3828  *  @dev:  device to sync
3829  *  @unsync: function to call if address should be removed
3830  *
3831  *  Remove all addresses that were added to the device by dev_mc_sync().
3832  */
3833 static inline void __dev_mc_unsync(struct net_device *dev,
3834 				   int (*unsync)(struct net_device *,
3835 						 const unsigned char *))
3836 {
3837 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3838 }
3839 
3840 /* Functions used for secondary unicast and multicast support */
3841 void dev_set_rx_mode(struct net_device *dev);
3842 void __dev_set_rx_mode(struct net_device *dev);
3843 int dev_set_promiscuity(struct net_device *dev, int inc);
3844 int dev_set_allmulti(struct net_device *dev, int inc);
3845 void netdev_state_change(struct net_device *dev);
3846 void netdev_notify_peers(struct net_device *dev);
3847 void netdev_features_change(struct net_device *dev);
3848 /* Load a device via the kmod */
3849 void dev_load(struct net *net, const char *name);
3850 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3851 					struct rtnl_link_stats64 *storage);
3852 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3853 			     const struct net_device_stats *netdev_stats);
3854 
3855 extern int		netdev_max_backlog;
3856 extern int		netdev_tstamp_prequeue;
3857 extern int		weight_p;
3858 
3859 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3860 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3861 						     struct list_head **iter);
3862 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3863 						     struct list_head **iter);
3864 
3865 /* iterate through upper list, must be called under RCU read lock */
3866 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3867 	for (iter = &(dev)->adj_list.upper, \
3868 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3869 	     updev; \
3870 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3871 
3872 /* iterate through upper list, must be called under RCU read lock */
3873 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3874 	for (iter = &(dev)->all_adj_list.upper, \
3875 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3876 	     updev; \
3877 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3878 
3879 void *netdev_lower_get_next_private(struct net_device *dev,
3880 				    struct list_head **iter);
3881 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3882 					struct list_head **iter);
3883 
3884 #define netdev_for_each_lower_private(dev, priv, iter) \
3885 	for (iter = (dev)->adj_list.lower.next, \
3886 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3887 	     priv; \
3888 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3889 
3890 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3891 	for (iter = &(dev)->adj_list.lower, \
3892 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3893 	     priv; \
3894 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3895 
3896 void *netdev_lower_get_next(struct net_device *dev,
3897 				struct list_head **iter);
3898 
3899 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3900 	for (iter = (dev)->adj_list.lower.next, \
3901 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3902 	     ldev; \
3903 	     ldev = netdev_lower_get_next(dev, &(iter)))
3904 
3905 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3906 					     struct list_head **iter);
3907 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3908 						 struct list_head **iter);
3909 
3910 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3911 	for (iter = (dev)->all_adj_list.lower.next, \
3912 	     ldev = netdev_all_lower_get_next(dev, &(iter)); \
3913 	     ldev; \
3914 	     ldev = netdev_all_lower_get_next(dev, &(iter)))
3915 
3916 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3917 	for (iter = &(dev)->all_adj_list.lower, \
3918 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3919 	     ldev; \
3920 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3921 
3922 void *netdev_adjacent_get_private(struct list_head *adj_list);
3923 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3924 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3925 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3926 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3927 int netdev_master_upper_dev_link(struct net_device *dev,
3928 				 struct net_device *upper_dev,
3929 				 void *upper_priv, void *upper_info);
3930 void netdev_upper_dev_unlink(struct net_device *dev,
3931 			     struct net_device *upper_dev);
3932 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3933 void *netdev_lower_dev_get_private(struct net_device *dev,
3934 				   struct net_device *lower_dev);
3935 void netdev_lower_state_changed(struct net_device *lower_dev,
3936 				void *lower_state_info);
3937 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3938 					   struct neighbour *n);
3939 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3940 					  struct neighbour *n);
3941 
3942 /* RSS keys are 40 or 52 bytes long */
3943 #define NETDEV_RSS_KEY_LEN 52
3944 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3945 void netdev_rss_key_fill(void *buffer, size_t len);
3946 
3947 int dev_get_nest_level(struct net_device *dev);
3948 int skb_checksum_help(struct sk_buff *skb);
3949 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3950 				  netdev_features_t features, bool tx_path);
3951 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3952 				    netdev_features_t features);
3953 
3954 struct netdev_bonding_info {
3955 	ifslave	slave;
3956 	ifbond	master;
3957 };
3958 
3959 struct netdev_notifier_bonding_info {
3960 	struct netdev_notifier_info info; /* must be first */
3961 	struct netdev_bonding_info  bonding_info;
3962 };
3963 
3964 void netdev_bonding_info_change(struct net_device *dev,
3965 				struct netdev_bonding_info *bonding_info);
3966 
3967 static inline
3968 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3969 {
3970 	return __skb_gso_segment(skb, features, true);
3971 }
3972 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3973 
3974 static inline bool can_checksum_protocol(netdev_features_t features,
3975 					 __be16 protocol)
3976 {
3977 	if (protocol == htons(ETH_P_FCOE))
3978 		return !!(features & NETIF_F_FCOE_CRC);
3979 
3980 	/* Assume this is an IP checksum (not SCTP CRC) */
3981 
3982 	if (features & NETIF_F_HW_CSUM) {
3983 		/* Can checksum everything */
3984 		return true;
3985 	}
3986 
3987 	switch (protocol) {
3988 	case htons(ETH_P_IP):
3989 		return !!(features & NETIF_F_IP_CSUM);
3990 	case htons(ETH_P_IPV6):
3991 		return !!(features & NETIF_F_IPV6_CSUM);
3992 	default:
3993 		return false;
3994 	}
3995 }
3996 
3997 /* Map an ethertype into IP protocol if possible */
3998 static inline int eproto_to_ipproto(int eproto)
3999 {
4000 	switch (eproto) {
4001 	case htons(ETH_P_IP):
4002 		return IPPROTO_IP;
4003 	case htons(ETH_P_IPV6):
4004 		return IPPROTO_IPV6;
4005 	default:
4006 		return -1;
4007 	}
4008 }
4009 
4010 #ifdef CONFIG_BUG
4011 void netdev_rx_csum_fault(struct net_device *dev);
4012 #else
4013 static inline void netdev_rx_csum_fault(struct net_device *dev)
4014 {
4015 }
4016 #endif
4017 /* rx skb timestamps */
4018 void net_enable_timestamp(void);
4019 void net_disable_timestamp(void);
4020 
4021 #ifdef CONFIG_PROC_FS
4022 int __init dev_proc_init(void);
4023 #else
4024 #define dev_proc_init() 0
4025 #endif
4026 
4027 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4028 					      struct sk_buff *skb, struct net_device *dev,
4029 					      bool more)
4030 {
4031 	skb->xmit_more = more ? 1 : 0;
4032 	return ops->ndo_start_xmit(skb, dev);
4033 }
4034 
4035 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4036 					    struct netdev_queue *txq, bool more)
4037 {
4038 	const struct net_device_ops *ops = dev->netdev_ops;
4039 	int rc;
4040 
4041 	rc = __netdev_start_xmit(ops, skb, dev, more);
4042 	if (rc == NETDEV_TX_OK)
4043 		txq_trans_update(txq);
4044 
4045 	return rc;
4046 }
4047 
4048 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4049 				const void *ns);
4050 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4051 				 const void *ns);
4052 
4053 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4054 {
4055 	return netdev_class_create_file_ns(class_attr, NULL);
4056 }
4057 
4058 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4059 {
4060 	netdev_class_remove_file_ns(class_attr, NULL);
4061 }
4062 
4063 extern struct kobj_ns_type_operations net_ns_type_operations;
4064 
4065 const char *netdev_drivername(const struct net_device *dev);
4066 
4067 void linkwatch_run_queue(void);
4068 
4069 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4070 							  netdev_features_t f2)
4071 {
4072 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4073 		if (f1 & NETIF_F_HW_CSUM)
4074 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4075 		else
4076 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4077 	}
4078 
4079 	return f1 & f2;
4080 }
4081 
4082 static inline netdev_features_t netdev_get_wanted_features(
4083 	struct net_device *dev)
4084 {
4085 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4086 }
4087 netdev_features_t netdev_increment_features(netdev_features_t all,
4088 	netdev_features_t one, netdev_features_t mask);
4089 
4090 /* Allow TSO being used on stacked device :
4091  * Performing the GSO segmentation before last device
4092  * is a performance improvement.
4093  */
4094 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4095 							netdev_features_t mask)
4096 {
4097 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4098 }
4099 
4100 int __netdev_update_features(struct net_device *dev);
4101 void netdev_update_features(struct net_device *dev);
4102 void netdev_change_features(struct net_device *dev);
4103 
4104 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4105 					struct net_device *dev);
4106 
4107 netdev_features_t passthru_features_check(struct sk_buff *skb,
4108 					  struct net_device *dev,
4109 					  netdev_features_t features);
4110 netdev_features_t netif_skb_features(struct sk_buff *skb);
4111 
4112 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4113 {
4114 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4115 
4116 	/* check flags correspondence */
4117 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4118 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4119 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4120 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4121 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4122 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4123 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4124 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4125 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4126 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4127 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4128 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4129 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4130 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4131 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4132 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4133 
4134 	return (features & feature) == feature;
4135 }
4136 
4137 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4138 {
4139 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4140 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4141 }
4142 
4143 static inline bool netif_needs_gso(struct sk_buff *skb,
4144 				   netdev_features_t features)
4145 {
4146 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4147 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4148 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4149 }
4150 
4151 static inline void netif_set_gso_max_size(struct net_device *dev,
4152 					  unsigned int size)
4153 {
4154 	dev->gso_max_size = size;
4155 }
4156 
4157 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4158 					int pulled_hlen, u16 mac_offset,
4159 					int mac_len)
4160 {
4161 	skb->protocol = protocol;
4162 	skb->encapsulation = 1;
4163 	skb_push(skb, pulled_hlen);
4164 	skb_reset_transport_header(skb);
4165 	skb->mac_header = mac_offset;
4166 	skb->network_header = skb->mac_header + mac_len;
4167 	skb->mac_len = mac_len;
4168 }
4169 
4170 static inline bool netif_is_macsec(const struct net_device *dev)
4171 {
4172 	return dev->priv_flags & IFF_MACSEC;
4173 }
4174 
4175 static inline bool netif_is_macvlan(const struct net_device *dev)
4176 {
4177 	return dev->priv_flags & IFF_MACVLAN;
4178 }
4179 
4180 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4181 {
4182 	return dev->priv_flags & IFF_MACVLAN_PORT;
4183 }
4184 
4185 static inline bool netif_is_ipvlan(const struct net_device *dev)
4186 {
4187 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4188 }
4189 
4190 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4191 {
4192 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4193 }
4194 
4195 static inline bool netif_is_bond_master(const struct net_device *dev)
4196 {
4197 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4198 }
4199 
4200 static inline bool netif_is_bond_slave(const struct net_device *dev)
4201 {
4202 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4203 }
4204 
4205 static inline bool netif_supports_nofcs(struct net_device *dev)
4206 {
4207 	return dev->priv_flags & IFF_SUPP_NOFCS;
4208 }
4209 
4210 static inline bool netif_is_l3_master(const struct net_device *dev)
4211 {
4212 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4213 }
4214 
4215 static inline bool netif_is_l3_slave(const struct net_device *dev)
4216 {
4217 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4218 }
4219 
4220 static inline bool netif_is_bridge_master(const struct net_device *dev)
4221 {
4222 	return dev->priv_flags & IFF_EBRIDGE;
4223 }
4224 
4225 static inline bool netif_is_bridge_port(const struct net_device *dev)
4226 {
4227 	return dev->priv_flags & IFF_BRIDGE_PORT;
4228 }
4229 
4230 static inline bool netif_is_ovs_master(const struct net_device *dev)
4231 {
4232 	return dev->priv_flags & IFF_OPENVSWITCH;
4233 }
4234 
4235 static inline bool netif_is_team_master(const struct net_device *dev)
4236 {
4237 	return dev->priv_flags & IFF_TEAM;
4238 }
4239 
4240 static inline bool netif_is_team_port(const struct net_device *dev)
4241 {
4242 	return dev->priv_flags & IFF_TEAM_PORT;
4243 }
4244 
4245 static inline bool netif_is_lag_master(const struct net_device *dev)
4246 {
4247 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4248 }
4249 
4250 static inline bool netif_is_lag_port(const struct net_device *dev)
4251 {
4252 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4253 }
4254 
4255 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4256 {
4257 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4258 }
4259 
4260 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4261 static inline void netif_keep_dst(struct net_device *dev)
4262 {
4263 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4264 }
4265 
4266 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4267 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4268 {
4269 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4270 	return dev->priv_flags & IFF_MACSEC;
4271 }
4272 
4273 extern struct pernet_operations __net_initdata loopback_net_ops;
4274 
4275 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4276 
4277 /* netdev_printk helpers, similar to dev_printk */
4278 
4279 static inline const char *netdev_name(const struct net_device *dev)
4280 {
4281 	if (!dev->name[0] || strchr(dev->name, '%'))
4282 		return "(unnamed net_device)";
4283 	return dev->name;
4284 }
4285 
4286 static inline const char *netdev_reg_state(const struct net_device *dev)
4287 {
4288 	switch (dev->reg_state) {
4289 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4290 	case NETREG_REGISTERED: return "";
4291 	case NETREG_UNREGISTERING: return " (unregistering)";
4292 	case NETREG_UNREGISTERED: return " (unregistered)";
4293 	case NETREG_RELEASED: return " (released)";
4294 	case NETREG_DUMMY: return " (dummy)";
4295 	}
4296 
4297 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4298 	return " (unknown)";
4299 }
4300 
4301 __printf(3, 4)
4302 void netdev_printk(const char *level, const struct net_device *dev,
4303 		   const char *format, ...);
4304 __printf(2, 3)
4305 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4306 __printf(2, 3)
4307 void netdev_alert(const struct net_device *dev, const char *format, ...);
4308 __printf(2, 3)
4309 void netdev_crit(const struct net_device *dev, const char *format, ...);
4310 __printf(2, 3)
4311 void netdev_err(const struct net_device *dev, const char *format, ...);
4312 __printf(2, 3)
4313 void netdev_warn(const struct net_device *dev, const char *format, ...);
4314 __printf(2, 3)
4315 void netdev_notice(const struct net_device *dev, const char *format, ...);
4316 __printf(2, 3)
4317 void netdev_info(const struct net_device *dev, const char *format, ...);
4318 
4319 #define MODULE_ALIAS_NETDEV(device) \
4320 	MODULE_ALIAS("netdev-" device)
4321 
4322 #if defined(CONFIG_DYNAMIC_DEBUG)
4323 #define netdev_dbg(__dev, format, args...)			\
4324 do {								\
4325 	dynamic_netdev_dbg(__dev, format, ##args);		\
4326 } while (0)
4327 #elif defined(DEBUG)
4328 #define netdev_dbg(__dev, format, args...)			\
4329 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4330 #else
4331 #define netdev_dbg(__dev, format, args...)			\
4332 ({								\
4333 	if (0)							\
4334 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4335 })
4336 #endif
4337 
4338 #if defined(VERBOSE_DEBUG)
4339 #define netdev_vdbg	netdev_dbg
4340 #else
4341 
4342 #define netdev_vdbg(dev, format, args...)			\
4343 ({								\
4344 	if (0)							\
4345 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4346 	0;							\
4347 })
4348 #endif
4349 
4350 /*
4351  * netdev_WARN() acts like dev_printk(), but with the key difference
4352  * of using a WARN/WARN_ON to get the message out, including the
4353  * file/line information and a backtrace.
4354  */
4355 #define netdev_WARN(dev, format, args...)			\
4356 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4357 	     netdev_reg_state(dev), ##args)
4358 
4359 /* netif printk helpers, similar to netdev_printk */
4360 
4361 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4362 do {					  			\
4363 	if (netif_msg_##type(priv))				\
4364 		netdev_printk(level, (dev), fmt, ##args);	\
4365 } while (0)
4366 
4367 #define netif_level(level, priv, type, dev, fmt, args...)	\
4368 do {								\
4369 	if (netif_msg_##type(priv))				\
4370 		netdev_##level(dev, fmt, ##args);		\
4371 } while (0)
4372 
4373 #define netif_emerg(priv, type, dev, fmt, args...)		\
4374 	netif_level(emerg, priv, type, dev, fmt, ##args)
4375 #define netif_alert(priv, type, dev, fmt, args...)		\
4376 	netif_level(alert, priv, type, dev, fmt, ##args)
4377 #define netif_crit(priv, type, dev, fmt, args...)		\
4378 	netif_level(crit, priv, type, dev, fmt, ##args)
4379 #define netif_err(priv, type, dev, fmt, args...)		\
4380 	netif_level(err, priv, type, dev, fmt, ##args)
4381 #define netif_warn(priv, type, dev, fmt, args...)		\
4382 	netif_level(warn, priv, type, dev, fmt, ##args)
4383 #define netif_notice(priv, type, dev, fmt, args...)		\
4384 	netif_level(notice, priv, type, dev, fmt, ##args)
4385 #define netif_info(priv, type, dev, fmt, args...)		\
4386 	netif_level(info, priv, type, dev, fmt, ##args)
4387 
4388 #if defined(CONFIG_DYNAMIC_DEBUG)
4389 #define netif_dbg(priv, type, netdev, format, args...)		\
4390 do {								\
4391 	if (netif_msg_##type(priv))				\
4392 		dynamic_netdev_dbg(netdev, format, ##args);	\
4393 } while (0)
4394 #elif defined(DEBUG)
4395 #define netif_dbg(priv, type, dev, format, args...)		\
4396 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4397 #else
4398 #define netif_dbg(priv, type, dev, format, args...)			\
4399 ({									\
4400 	if (0)								\
4401 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4402 	0;								\
4403 })
4404 #endif
4405 
4406 #if defined(VERBOSE_DEBUG)
4407 #define netif_vdbg	netif_dbg
4408 #else
4409 #define netif_vdbg(priv, type, dev, format, args...)		\
4410 ({								\
4411 	if (0)							\
4412 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4413 	0;							\
4414 })
4415 #endif
4416 
4417 /*
4418  *	The list of packet types we will receive (as opposed to discard)
4419  *	and the routines to invoke.
4420  *
4421  *	Why 16. Because with 16 the only overlap we get on a hash of the
4422  *	low nibble of the protocol value is RARP/SNAP/X.25.
4423  *
4424  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4425  *             sure which should go first, but I bet it won't make much
4426  *             difference if we are running VLANs.  The good news is that
4427  *             this protocol won't be in the list unless compiled in, so
4428  *             the average user (w/out VLANs) will not be adversely affected.
4429  *             --BLG
4430  *
4431  *		0800	IP
4432  *		8100    802.1Q VLAN
4433  *		0001	802.3
4434  *		0002	AX.25
4435  *		0004	802.2
4436  *		8035	RARP
4437  *		0005	SNAP
4438  *		0805	X.25
4439  *		0806	ARP
4440  *		8137	IPX
4441  *		0009	Localtalk
4442  *		86DD	IPv6
4443  */
4444 #define PTYPE_HASH_SIZE	(16)
4445 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4446 
4447 #endif	/* _LINUX_NETDEVICE_H */
4448