xref: /openbmc/linux/include/linux/netdevice.h (revision baf2c002)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	unsigned int	hh_len;
264 	seqlock_t	hh_lock;
265 
266 	/* cached hardware header; allow for machine alignment needs.        */
267 #define HH_DATA_MOD	16
268 #define HH_DATA_OFF(__len) \
269 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274 
275 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
276  * Alternative is:
277  *   dev->hard_header_len ? (dev->hard_header_len +
278  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279  *
280  * We could use other alignment values, but we must maintain the
281  * relationship HH alignment <= LL alignment.
282  */
283 #define LL_RESERVED_SPACE(dev) \
284 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287 
288 struct header_ops {
289 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
290 			   unsigned short type, const void *daddr,
291 			   const void *saddr, unsigned int len);
292 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 	bool	(*validate)(const char *ll_header, unsigned int len);
298 	__be16	(*parse_protocol)(const struct sk_buff *skb);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer; they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 	__LINK_STATE_TESTING,
313 };
314 
315 struct gro_list {
316 	struct list_head	list;
317 	int			count;
318 };
319 
320 /*
321  * size of gro hash buckets, must less than bit number of
322  * napi_struct::gro_bitmask
323  */
324 #define GRO_HASH_BUCKETS	8
325 
326 /*
327  * Structure for NAPI scheduling similar to tasklet but with weighting
328  */
329 struct napi_struct {
330 	/* The poll_list must only be managed by the entity which
331 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
332 	 * whoever atomically sets that bit can add this napi_struct
333 	 * to the per-CPU poll_list, and whoever clears that bit
334 	 * can remove from the list right before clearing the bit.
335 	 */
336 	struct list_head	poll_list;
337 
338 	unsigned long		state;
339 	int			weight;
340 	int			defer_hard_irqs_count;
341 	unsigned long		gro_bitmask;
342 	int			(*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 	int			poll_owner;
345 #endif
346 	struct net_device	*dev;
347 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
348 	struct sk_buff		*skb;
349 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
350 	int			rx_count; /* length of rx_list */
351 	struct hrtimer		timer;
352 	struct list_head	dev_list;
353 	struct hlist_node	napi_hash_node;
354 	unsigned int		napi_id;
355 	struct task_struct	*thread;
356 };
357 
358 enum {
359 	NAPI_STATE_SCHED,		/* Poll is scheduled */
360 	NAPI_STATE_MISSED,		/* reschedule a napi */
361 	NAPI_STATE_DISABLE,		/* Disable pending */
362 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
363 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
364 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
365 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
366 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
367 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
368 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
379 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
380 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
381 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
382 };
383 
384 enum gro_result {
385 	GRO_MERGED,
386 	GRO_MERGED_FREE,
387 	GRO_HELD,
388 	GRO_NORMAL,
389 	GRO_CONSUMED,
390 };
391 typedef enum gro_result gro_result_t;
392 
393 /*
394  * enum rx_handler_result - Possible return values for rx_handlers.
395  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396  * further.
397  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398  * case skb->dev was changed by rx_handler.
399  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
401  *
402  * rx_handlers are functions called from inside __netif_receive_skb(), to do
403  * special processing of the skb, prior to delivery to protocol handlers.
404  *
405  * Currently, a net_device can only have a single rx_handler registered. Trying
406  * to register a second rx_handler will return -EBUSY.
407  *
408  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409  * To unregister a rx_handler on a net_device, use
410  * netdev_rx_handler_unregister().
411  *
412  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413  * do with the skb.
414  *
415  * If the rx_handler consumed the skb in some way, it should return
416  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417  * the skb to be delivered in some other way.
418  *
419  * If the rx_handler changed skb->dev, to divert the skb to another
420  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421  * new device will be called if it exists.
422  *
423  * If the rx_handler decides the skb should be ignored, it should return
424  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425  * are registered on exact device (ptype->dev == skb->dev).
426  *
427  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
428  * delivered, it should return RX_HANDLER_PASS.
429  *
430  * A device without a registered rx_handler will behave as if rx_handler
431  * returned RX_HANDLER_PASS.
432  */
433 
434 enum rx_handler_result {
435 	RX_HANDLER_CONSUMED,
436 	RX_HANDLER_ANOTHER,
437 	RX_HANDLER_EXACT,
438 	RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442 
443 void __napi_schedule(struct napi_struct *n);
444 void __napi_schedule_irqoff(struct napi_struct *n);
445 
446 static inline bool napi_disable_pending(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_DISABLE, &n->state);
449 }
450 
451 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
452 {
453 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
454 }
455 
456 bool napi_schedule_prep(struct napi_struct *n);
457 
458 /**
459  *	napi_schedule - schedule NAPI poll
460  *	@n: NAPI context
461  *
462  * Schedule NAPI poll routine to be called if it is not already
463  * running.
464  */
465 static inline void napi_schedule(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule(n);
469 }
470 
471 /**
472  *	napi_schedule_irqoff - schedule NAPI poll
473  *	@n: NAPI context
474  *
475  * Variant of napi_schedule(), assuming hard irqs are masked.
476  */
477 static inline void napi_schedule_irqoff(struct napi_struct *n)
478 {
479 	if (napi_schedule_prep(n))
480 		__napi_schedule_irqoff(n);
481 }
482 
483 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
484 static inline bool napi_reschedule(struct napi_struct *napi)
485 {
486 	if (napi_schedule_prep(napi)) {
487 		__napi_schedule(napi);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 bool napi_complete_done(struct napi_struct *n, int work_done);
494 /**
495  *	napi_complete - NAPI processing complete
496  *	@n: NAPI context
497  *
498  * Mark NAPI processing as complete.
499  * Consider using napi_complete_done() instead.
500  * Return false if device should avoid rearming interrupts.
501  */
502 static inline bool napi_complete(struct napi_struct *n)
503 {
504 	return napi_complete_done(n, 0);
505 }
506 
507 int dev_set_threaded(struct net_device *dev, bool threaded);
508 
509 /**
510  *	napi_disable - prevent NAPI from scheduling
511  *	@n: NAPI context
512  *
513  * Stop NAPI from being scheduled on this context.
514  * Waits till any outstanding processing completes.
515  */
516 void napi_disable(struct napi_struct *n);
517 
518 void napi_enable(struct napi_struct *n);
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	netdevice_tracker	dev_tracker;
595 
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	atomic_long_t		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 #if IS_ENABLED(CONFIG_SYSCTL)
644 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
645 
646 	return !fb_tunnels_only_for_init_net ||
647 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
648 #else
649 	return true;
650 #endif
651 }
652 
653 static inline int net_inherit_devconf(void)
654 {
655 #if IS_ENABLED(CONFIG_SYSCTL)
656 	return READ_ONCE(sysctl_devconf_inherit_init_net);
657 #else
658 	return 0;
659 #endif
660 }
661 
662 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
663 {
664 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
665 	return q->numa_node;
666 #else
667 	return NUMA_NO_NODE;
668 #endif
669 }
670 
671 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
672 {
673 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
674 	q->numa_node = node;
675 #endif
676 }
677 
678 #ifdef CONFIG_RPS
679 /*
680  * This structure holds an RPS map which can be of variable length.  The
681  * map is an array of CPUs.
682  */
683 struct rps_map {
684 	unsigned int len;
685 	struct rcu_head rcu;
686 	u16 cpus[];
687 };
688 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
689 
690 /*
691  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
692  * tail pointer for that CPU's input queue at the time of last enqueue, and
693  * a hardware filter index.
694  */
695 struct rps_dev_flow {
696 	u16 cpu;
697 	u16 filter;
698 	unsigned int last_qtail;
699 };
700 #define RPS_NO_FILTER 0xffff
701 
702 /*
703  * The rps_dev_flow_table structure contains a table of flow mappings.
704  */
705 struct rps_dev_flow_table {
706 	unsigned int mask;
707 	struct rcu_head rcu;
708 	struct rps_dev_flow flows[];
709 };
710 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
711     ((_num) * sizeof(struct rps_dev_flow)))
712 
713 /*
714  * The rps_sock_flow_table contains mappings of flows to the last CPU
715  * on which they were processed by the application (set in recvmsg).
716  * Each entry is a 32bit value. Upper part is the high-order bits
717  * of flow hash, lower part is CPU number.
718  * rps_cpu_mask is used to partition the space, depending on number of
719  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
720  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
721  * meaning we use 32-6=26 bits for the hash.
722  */
723 struct rps_sock_flow_table {
724 	u32	mask;
725 
726 	u32	ents[] ____cacheline_aligned_in_smp;
727 };
728 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
729 
730 #define RPS_NO_CPU 0xffff
731 
732 extern u32 rps_cpu_mask;
733 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
734 
735 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
736 					u32 hash)
737 {
738 	if (table && hash) {
739 		unsigned int index = hash & table->mask;
740 		u32 val = hash & ~rps_cpu_mask;
741 
742 		/* We only give a hint, preemption can change CPU under us */
743 		val |= raw_smp_processor_id();
744 
745 		if (table->ents[index] != val)
746 			table->ents[index] = val;
747 	}
748 }
749 
750 #ifdef CONFIG_RFS_ACCEL
751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
752 			 u16 filter_id);
753 #endif
754 #endif /* CONFIG_RPS */
755 
756 /* This structure contains an instance of an RX queue. */
757 struct netdev_rx_queue {
758 	struct xdp_rxq_info		xdp_rxq;
759 #ifdef CONFIG_RPS
760 	struct rps_map __rcu		*rps_map;
761 	struct rps_dev_flow_table __rcu	*rps_flow_table;
762 #endif
763 	struct kobject			kobj;
764 	struct net_device		*dev;
765 	netdevice_tracker		dev_tracker;
766 
767 #ifdef CONFIG_XDP_SOCKETS
768 	struct xsk_buff_pool            *pool;
769 #endif
770 } ____cacheline_aligned_in_smp;
771 
772 /*
773  * RX queue sysfs structures and functions.
774  */
775 struct rx_queue_attribute {
776 	struct attribute attr;
777 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
778 	ssize_t (*store)(struct netdev_rx_queue *queue,
779 			 const char *buf, size_t len);
780 };
781 
782 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
783 enum xps_map_type {
784 	XPS_CPUS = 0,
785 	XPS_RXQS,
786 	XPS_MAPS_MAX,
787 };
788 
789 #ifdef CONFIG_XPS
790 /*
791  * This structure holds an XPS map which can be of variable length.  The
792  * map is an array of queues.
793  */
794 struct xps_map {
795 	unsigned int len;
796 	unsigned int alloc_len;
797 	struct rcu_head rcu;
798 	u16 queues[];
799 };
800 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
801 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
802        - sizeof(struct xps_map)) / sizeof(u16))
803 
804 /*
805  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
806  *
807  * We keep track of the number of cpus/rxqs used when the struct is allocated,
808  * in nr_ids. This will help not accessing out-of-bound memory.
809  *
810  * We keep track of the number of traffic classes used when the struct is
811  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
812  * not crossing its upper bound, as the original dev->num_tc can be updated in
813  * the meantime.
814  */
815 struct xps_dev_maps {
816 	struct rcu_head rcu;
817 	unsigned int nr_ids;
818 	s16 num_tc;
819 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
820 };
821 
822 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
823 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
824 
825 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
826 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
827 
828 #endif /* CONFIG_XPS */
829 
830 #define TC_MAX_QUEUE	16
831 #define TC_BITMASK	15
832 /* HW offloaded queuing disciplines txq count and offset maps */
833 struct netdev_tc_txq {
834 	u16 count;
835 	u16 offset;
836 };
837 
838 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
839 /*
840  * This structure is to hold information about the device
841  * configured to run FCoE protocol stack.
842  */
843 struct netdev_fcoe_hbainfo {
844 	char	manufacturer[64];
845 	char	serial_number[64];
846 	char	hardware_version[64];
847 	char	driver_version[64];
848 	char	optionrom_version[64];
849 	char	firmware_version[64];
850 	char	model[256];
851 	char	model_description[256];
852 };
853 #endif
854 
855 #define MAX_PHYS_ITEM_ID_LEN 32
856 
857 /* This structure holds a unique identifier to identify some
858  * physical item (port for example) used by a netdevice.
859  */
860 struct netdev_phys_item_id {
861 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
862 	unsigned char id_len;
863 };
864 
865 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
866 					    struct netdev_phys_item_id *b)
867 {
868 	return a->id_len == b->id_len &&
869 	       memcmp(a->id, b->id, a->id_len) == 0;
870 }
871 
872 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
873 				       struct sk_buff *skb,
874 				       struct net_device *sb_dev);
875 
876 enum net_device_path_type {
877 	DEV_PATH_ETHERNET = 0,
878 	DEV_PATH_VLAN,
879 	DEV_PATH_BRIDGE,
880 	DEV_PATH_PPPOE,
881 	DEV_PATH_DSA,
882 	DEV_PATH_MTK_WDMA,
883 };
884 
885 struct net_device_path {
886 	enum net_device_path_type	type;
887 	const struct net_device		*dev;
888 	union {
889 		struct {
890 			u16		id;
891 			__be16		proto;
892 			u8		h_dest[ETH_ALEN];
893 		} encap;
894 		struct {
895 			enum {
896 				DEV_PATH_BR_VLAN_KEEP,
897 				DEV_PATH_BR_VLAN_TAG,
898 				DEV_PATH_BR_VLAN_UNTAG,
899 				DEV_PATH_BR_VLAN_UNTAG_HW,
900 			}		vlan_mode;
901 			u16		vlan_id;
902 			__be16		vlan_proto;
903 		} bridge;
904 		struct {
905 			int port;
906 			u16 proto;
907 		} dsa;
908 		struct {
909 			u8 wdma_idx;
910 			u8 queue;
911 			u16 wcid;
912 			u8 bss;
913 		} mtk_wdma;
914 	};
915 };
916 
917 #define NET_DEVICE_PATH_STACK_MAX	5
918 #define NET_DEVICE_PATH_VLAN_MAX	2
919 
920 struct net_device_path_stack {
921 	int			num_paths;
922 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
923 };
924 
925 struct net_device_path_ctx {
926 	const struct net_device *dev;
927 	u8			daddr[ETH_ALEN];
928 
929 	int			num_vlans;
930 	struct {
931 		u16		id;
932 		__be16		proto;
933 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
934 };
935 
936 enum tc_setup_type {
937 	TC_SETUP_QDISC_MQPRIO,
938 	TC_SETUP_CLSU32,
939 	TC_SETUP_CLSFLOWER,
940 	TC_SETUP_CLSMATCHALL,
941 	TC_SETUP_CLSBPF,
942 	TC_SETUP_BLOCK,
943 	TC_SETUP_QDISC_CBS,
944 	TC_SETUP_QDISC_RED,
945 	TC_SETUP_QDISC_PRIO,
946 	TC_SETUP_QDISC_MQ,
947 	TC_SETUP_QDISC_ETF,
948 	TC_SETUP_ROOT_QDISC,
949 	TC_SETUP_QDISC_GRED,
950 	TC_SETUP_QDISC_TAPRIO,
951 	TC_SETUP_FT,
952 	TC_SETUP_QDISC_ETS,
953 	TC_SETUP_QDISC_TBF,
954 	TC_SETUP_QDISC_FIFO,
955 	TC_SETUP_QDISC_HTB,
956 	TC_SETUP_ACT,
957 };
958 
959 /* These structures hold the attributes of bpf state that are being passed
960  * to the netdevice through the bpf op.
961  */
962 enum bpf_netdev_command {
963 	/* Set or clear a bpf program used in the earliest stages of packet
964 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
965 	 * is responsible for calling bpf_prog_put on any old progs that are
966 	 * stored. In case of error, the callee need not release the new prog
967 	 * reference, but on success it takes ownership and must bpf_prog_put
968 	 * when it is no longer used.
969 	 */
970 	XDP_SETUP_PROG,
971 	XDP_SETUP_PROG_HW,
972 	/* BPF program for offload callbacks, invoked at program load time. */
973 	BPF_OFFLOAD_MAP_ALLOC,
974 	BPF_OFFLOAD_MAP_FREE,
975 	XDP_SETUP_XSK_POOL,
976 };
977 
978 struct bpf_prog_offload_ops;
979 struct netlink_ext_ack;
980 struct xdp_umem;
981 struct xdp_dev_bulk_queue;
982 struct bpf_xdp_link;
983 
984 enum bpf_xdp_mode {
985 	XDP_MODE_SKB = 0,
986 	XDP_MODE_DRV = 1,
987 	XDP_MODE_HW = 2,
988 	__MAX_XDP_MODE
989 };
990 
991 struct bpf_xdp_entity {
992 	struct bpf_prog *prog;
993 	struct bpf_xdp_link *link;
994 };
995 
996 struct netdev_bpf {
997 	enum bpf_netdev_command command;
998 	union {
999 		/* XDP_SETUP_PROG */
1000 		struct {
1001 			u32 flags;
1002 			struct bpf_prog *prog;
1003 			struct netlink_ext_ack *extack;
1004 		};
1005 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1006 		struct {
1007 			struct bpf_offloaded_map *offmap;
1008 		};
1009 		/* XDP_SETUP_XSK_POOL */
1010 		struct {
1011 			struct xsk_buff_pool *pool;
1012 			u16 queue_id;
1013 		} xsk;
1014 	};
1015 };
1016 
1017 /* Flags for ndo_xsk_wakeup. */
1018 #define XDP_WAKEUP_RX (1 << 0)
1019 #define XDP_WAKEUP_TX (1 << 1)
1020 
1021 #ifdef CONFIG_XFRM_OFFLOAD
1022 struct xfrmdev_ops {
1023 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1024 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1025 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1026 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1027 				       struct xfrm_state *x);
1028 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1029 };
1030 #endif
1031 
1032 struct dev_ifalias {
1033 	struct rcu_head rcuhead;
1034 	char ifalias[];
1035 };
1036 
1037 struct devlink;
1038 struct tlsdev_ops;
1039 
1040 struct netdev_net_notifier {
1041 	struct list_head list;
1042 	struct notifier_block *nb;
1043 };
1044 
1045 /*
1046  * This structure defines the management hooks for network devices.
1047  * The following hooks can be defined; unless noted otherwise, they are
1048  * optional and can be filled with a null pointer.
1049  *
1050  * int (*ndo_init)(struct net_device *dev);
1051  *     This function is called once when a network device is registered.
1052  *     The network device can use this for any late stage initialization
1053  *     or semantic validation. It can fail with an error code which will
1054  *     be propagated back to register_netdev.
1055  *
1056  * void (*ndo_uninit)(struct net_device *dev);
1057  *     This function is called when device is unregistered or when registration
1058  *     fails. It is not called if init fails.
1059  *
1060  * int (*ndo_open)(struct net_device *dev);
1061  *     This function is called when a network device transitions to the up
1062  *     state.
1063  *
1064  * int (*ndo_stop)(struct net_device *dev);
1065  *     This function is called when a network device transitions to the down
1066  *     state.
1067  *
1068  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1069  *                               struct net_device *dev);
1070  *	Called when a packet needs to be transmitted.
1071  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1072  *	the queue before that can happen; it's for obsolete devices and weird
1073  *	corner cases, but the stack really does a non-trivial amount
1074  *	of useless work if you return NETDEV_TX_BUSY.
1075  *	Required; cannot be NULL.
1076  *
1077  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1078  *					   struct net_device *dev
1079  *					   netdev_features_t features);
1080  *	Called by core transmit path to determine if device is capable of
1081  *	performing offload operations on a given packet. This is to give
1082  *	the device an opportunity to implement any restrictions that cannot
1083  *	be otherwise expressed by feature flags. The check is called with
1084  *	the set of features that the stack has calculated and it returns
1085  *	those the driver believes to be appropriate.
1086  *
1087  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1088  *                         struct net_device *sb_dev);
1089  *	Called to decide which queue to use when device supports multiple
1090  *	transmit queues.
1091  *
1092  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1093  *	This function is called to allow device receiver to make
1094  *	changes to configuration when multicast or promiscuous is enabled.
1095  *
1096  * void (*ndo_set_rx_mode)(struct net_device *dev);
1097  *	This function is called device changes address list filtering.
1098  *	If driver handles unicast address filtering, it should set
1099  *	IFF_UNICAST_FLT in its priv_flags.
1100  *
1101  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1102  *	This function  is called when the Media Access Control address
1103  *	needs to be changed. If this interface is not defined, the
1104  *	MAC address can not be changed.
1105  *
1106  * int (*ndo_validate_addr)(struct net_device *dev);
1107  *	Test if Media Access Control address is valid for the device.
1108  *
1109  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1110  *	Old-style ioctl entry point. This is used internally by the
1111  *	appletalk and ieee802154 subsystems but is no longer called by
1112  *	the device ioctl handler.
1113  *
1114  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1115  *	Used by the bonding driver for its device specific ioctls:
1116  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1117  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1118  *
1119  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1120  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1121  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1122  *
1123  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1124  *	Used to set network devices bus interface parameters. This interface
1125  *	is retained for legacy reasons; new devices should use the bus
1126  *	interface (PCI) for low level management.
1127  *
1128  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1129  *	Called when a user wants to change the Maximum Transfer Unit
1130  *	of a device.
1131  *
1132  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1133  *	Callback used when the transmitter has not made any progress
1134  *	for dev->watchdog ticks.
1135  *
1136  * void (*ndo_get_stats64)(struct net_device *dev,
1137  *                         struct rtnl_link_stats64 *storage);
1138  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1139  *	Called when a user wants to get the network device usage
1140  *	statistics. Drivers must do one of the following:
1141  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1142  *	   rtnl_link_stats64 structure passed by the caller.
1143  *	2. Define @ndo_get_stats to update a net_device_stats structure
1144  *	   (which should normally be dev->stats) and return a pointer to
1145  *	   it. The structure may be changed asynchronously only if each
1146  *	   field is written atomically.
1147  *	3. Update dev->stats asynchronously and atomically, and define
1148  *	   neither operation.
1149  *
1150  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1151  *	Return true if this device supports offload stats of this attr_id.
1152  *
1153  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1154  *	void *attr_data)
1155  *	Get statistics for offload operations by attr_id. Write it into the
1156  *	attr_data pointer.
1157  *
1158  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1159  *	If device supports VLAN filtering this function is called when a
1160  *	VLAN id is registered.
1161  *
1162  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1163  *	If device supports VLAN filtering this function is called when a
1164  *	VLAN id is unregistered.
1165  *
1166  * void (*ndo_poll_controller)(struct net_device *dev);
1167  *
1168  *	SR-IOV management functions.
1169  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1170  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1171  *			  u8 qos, __be16 proto);
1172  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1173  *			  int max_tx_rate);
1174  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1175  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1176  * int (*ndo_get_vf_config)(struct net_device *dev,
1177  *			    int vf, struct ifla_vf_info *ivf);
1178  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1179  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1180  *			  struct nlattr *port[]);
1181  *
1182  *      Enable or disable the VF ability to query its RSS Redirection Table and
1183  *      Hash Key. This is needed since on some devices VF share this information
1184  *      with PF and querying it may introduce a theoretical security risk.
1185  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1186  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1187  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1188  *		       void *type_data);
1189  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1190  *	This is always called from the stack with the rtnl lock held and netif
1191  *	tx queues stopped. This allows the netdevice to perform queue
1192  *	management safely.
1193  *
1194  *	Fiber Channel over Ethernet (FCoE) offload functions.
1195  * int (*ndo_fcoe_enable)(struct net_device *dev);
1196  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1197  *	so the underlying device can perform whatever needed configuration or
1198  *	initialization to support acceleration of FCoE traffic.
1199  *
1200  * int (*ndo_fcoe_disable)(struct net_device *dev);
1201  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1202  *	so the underlying device can perform whatever needed clean-ups to
1203  *	stop supporting acceleration of FCoE traffic.
1204  *
1205  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1206  *			     struct scatterlist *sgl, unsigned int sgc);
1207  *	Called when the FCoE Initiator wants to initialize an I/O that
1208  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1209  *	perform necessary setup and returns 1 to indicate the device is set up
1210  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1211  *
1212  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1213  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1214  *	indicated by the FC exchange id 'xid', so the underlying device can
1215  *	clean up and reuse resources for later DDP requests.
1216  *
1217  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1218  *			      struct scatterlist *sgl, unsigned int sgc);
1219  *	Called when the FCoE Target wants to initialize an I/O that
1220  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1221  *	perform necessary setup and returns 1 to indicate the device is set up
1222  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1223  *
1224  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1225  *			       struct netdev_fcoe_hbainfo *hbainfo);
1226  *	Called when the FCoE Protocol stack wants information on the underlying
1227  *	device. This information is utilized by the FCoE protocol stack to
1228  *	register attributes with Fiber Channel management service as per the
1229  *	FC-GS Fabric Device Management Information(FDMI) specification.
1230  *
1231  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1232  *	Called when the underlying device wants to override default World Wide
1233  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1234  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1235  *	protocol stack to use.
1236  *
1237  *	RFS acceleration.
1238  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1239  *			    u16 rxq_index, u32 flow_id);
1240  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1241  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1242  *	Return the filter ID on success, or a negative error code.
1243  *
1244  *	Slave management functions (for bridge, bonding, etc).
1245  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1246  *	Called to make another netdev an underling.
1247  *
1248  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1249  *	Called to release previously enslaved netdev.
1250  *
1251  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1252  *					    struct sk_buff *skb,
1253  *					    bool all_slaves);
1254  *	Get the xmit slave of master device. If all_slaves is true, function
1255  *	assume all the slaves can transmit.
1256  *
1257  *      Feature/offload setting functions.
1258  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1259  *		netdev_features_t features);
1260  *	Adjusts the requested feature flags according to device-specific
1261  *	constraints, and returns the resulting flags. Must not modify
1262  *	the device state.
1263  *
1264  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1265  *	Called to update device configuration to new features. Passed
1266  *	feature set might be less than what was returned by ndo_fix_features()).
1267  *	Must return >0 or -errno if it changed dev->features itself.
1268  *
1269  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1270  *		      struct net_device *dev,
1271  *		      const unsigned char *addr, u16 vid, u16 flags,
1272  *		      struct netlink_ext_ack *extack);
1273  *	Adds an FDB entry to dev for addr.
1274  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1275  *		      struct net_device *dev,
1276  *		      const unsigned char *addr, u16 vid)
1277  *	Deletes the FDB entry from dev coresponding to addr.
1278  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1279  *			   struct net_device *dev,
1280  *			   u16 vid,
1281  *			   struct netlink_ext_ack *extack);
1282  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1283  *		       struct net_device *dev, struct net_device *filter_dev,
1284  *		       int *idx)
1285  *	Used to add FDB entries to dump requests. Implementers should add
1286  *	entries to skb and update idx with the number of entries.
1287  *
1288  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1289  *			     u16 flags, struct netlink_ext_ack *extack)
1290  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1291  *			     struct net_device *dev, u32 filter_mask,
1292  *			     int nlflags)
1293  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1294  *			     u16 flags);
1295  *
1296  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1297  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1298  *	which do not represent real hardware may define this to allow their
1299  *	userspace components to manage their virtual carrier state. Devices
1300  *	that determine carrier state from physical hardware properties (eg
1301  *	network cables) or protocol-dependent mechanisms (eg
1302  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1303  *
1304  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1305  *			       struct netdev_phys_item_id *ppid);
1306  *	Called to get ID of physical port of this device. If driver does
1307  *	not implement this, it is assumed that the hw is not able to have
1308  *	multiple net devices on single physical port.
1309  *
1310  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1311  *				 struct netdev_phys_item_id *ppid)
1312  *	Called to get the parent ID of the physical port of this device.
1313  *
1314  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1315  *				 struct net_device *dev)
1316  *	Called by upper layer devices to accelerate switching or other
1317  *	station functionality into hardware. 'pdev is the lowerdev
1318  *	to use for the offload and 'dev' is the net device that will
1319  *	back the offload. Returns a pointer to the private structure
1320  *	the upper layer will maintain.
1321  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1322  *	Called by upper layer device to delete the station created
1323  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1324  *	the station and priv is the structure returned by the add
1325  *	operation.
1326  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1327  *			     int queue_index, u32 maxrate);
1328  *	Called when a user wants to set a max-rate limitation of specific
1329  *	TX queue.
1330  * int (*ndo_get_iflink)(const struct net_device *dev);
1331  *	Called to get the iflink value of this device.
1332  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1333  *	This function is used to get egress tunnel information for given skb.
1334  *	This is useful for retrieving outer tunnel header parameters while
1335  *	sampling packet.
1336  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1337  *	This function is used to specify the headroom that the skb must
1338  *	consider when allocation skb during packet reception. Setting
1339  *	appropriate rx headroom value allows avoiding skb head copy on
1340  *	forward. Setting a negative value resets the rx headroom to the
1341  *	default value.
1342  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1343  *	This function is used to set or query state related to XDP on the
1344  *	netdevice and manage BPF offload. See definition of
1345  *	enum bpf_netdev_command for details.
1346  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1347  *			u32 flags);
1348  *	This function is used to submit @n XDP packets for transmit on a
1349  *	netdevice. Returns number of frames successfully transmitted, frames
1350  *	that got dropped are freed/returned via xdp_return_frame().
1351  *	Returns negative number, means general error invoking ndo, meaning
1352  *	no frames were xmit'ed and core-caller will free all frames.
1353  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1354  *					        struct xdp_buff *xdp);
1355  *      Get the xmit slave of master device based on the xdp_buff.
1356  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1357  *      This function is used to wake up the softirq, ksoftirqd or kthread
1358  *	responsible for sending and/or receiving packets on a specific
1359  *	queue id bound to an AF_XDP socket. The flags field specifies if
1360  *	only RX, only Tx, or both should be woken up using the flags
1361  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1362  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1363  *	Get devlink port instance associated with a given netdev.
1364  *	Called with a reference on the netdevice and devlink locks only,
1365  *	rtnl_lock is not held.
1366  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1367  *			 int cmd);
1368  *	Add, change, delete or get information on an IPv4 tunnel.
1369  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1370  *	If a device is paired with a peer device, return the peer instance.
1371  *	The caller must be under RCU read context.
1372  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1373  *     Get the forwarding path to reach the real device from the HW destination address
1374  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1375  *			     const struct skb_shared_hwtstamps *hwtstamps,
1376  *			     bool cycles);
1377  *	Get hardware timestamp based on normal/adjustable time or free running
1378  *	cycle counter. This function is required if physical clock supports a
1379  *	free running cycle counter.
1380  */
1381 struct net_device_ops {
1382 	int			(*ndo_init)(struct net_device *dev);
1383 	void			(*ndo_uninit)(struct net_device *dev);
1384 	int			(*ndo_open)(struct net_device *dev);
1385 	int			(*ndo_stop)(struct net_device *dev);
1386 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1387 						  struct net_device *dev);
1388 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1389 						      struct net_device *dev,
1390 						      netdev_features_t features);
1391 	u16			(*ndo_select_queue)(struct net_device *dev,
1392 						    struct sk_buff *skb,
1393 						    struct net_device *sb_dev);
1394 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1395 						       int flags);
1396 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1397 	int			(*ndo_set_mac_address)(struct net_device *dev,
1398 						       void *addr);
1399 	int			(*ndo_validate_addr)(struct net_device *dev);
1400 	int			(*ndo_do_ioctl)(struct net_device *dev,
1401 					        struct ifreq *ifr, int cmd);
1402 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1403 						 struct ifreq *ifr, int cmd);
1404 	int			(*ndo_siocbond)(struct net_device *dev,
1405 						struct ifreq *ifr, int cmd);
1406 	int			(*ndo_siocwandev)(struct net_device *dev,
1407 						  struct if_settings *ifs);
1408 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1409 						      struct ifreq *ifr,
1410 						      void __user *data, int cmd);
1411 	int			(*ndo_set_config)(struct net_device *dev,
1412 					          struct ifmap *map);
1413 	int			(*ndo_change_mtu)(struct net_device *dev,
1414 						  int new_mtu);
1415 	int			(*ndo_neigh_setup)(struct net_device *dev,
1416 						   struct neigh_parms *);
1417 	void			(*ndo_tx_timeout) (struct net_device *dev,
1418 						   unsigned int txqueue);
1419 
1420 	void			(*ndo_get_stats64)(struct net_device *dev,
1421 						   struct rtnl_link_stats64 *storage);
1422 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1423 	int			(*ndo_get_offload_stats)(int attr_id,
1424 							 const struct net_device *dev,
1425 							 void *attr_data);
1426 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1427 
1428 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1429 						       __be16 proto, u16 vid);
1430 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1431 						        __be16 proto, u16 vid);
1432 #ifdef CONFIG_NET_POLL_CONTROLLER
1433 	void                    (*ndo_poll_controller)(struct net_device *dev);
1434 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1435 						     struct netpoll_info *info);
1436 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1437 #endif
1438 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1439 						  int queue, u8 *mac);
1440 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1441 						   int queue, u16 vlan,
1442 						   u8 qos, __be16 proto);
1443 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1444 						   int vf, int min_tx_rate,
1445 						   int max_tx_rate);
1446 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1447 						       int vf, bool setting);
1448 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1449 						    int vf, bool setting);
1450 	int			(*ndo_get_vf_config)(struct net_device *dev,
1451 						     int vf,
1452 						     struct ifla_vf_info *ivf);
1453 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1454 							 int vf, int link_state);
1455 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1456 						    int vf,
1457 						    struct ifla_vf_stats
1458 						    *vf_stats);
1459 	int			(*ndo_set_vf_port)(struct net_device *dev,
1460 						   int vf,
1461 						   struct nlattr *port[]);
1462 	int			(*ndo_get_vf_port)(struct net_device *dev,
1463 						   int vf, struct sk_buff *skb);
1464 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1465 						   int vf,
1466 						   struct ifla_vf_guid *node_guid,
1467 						   struct ifla_vf_guid *port_guid);
1468 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1469 						   int vf, u64 guid,
1470 						   int guid_type);
1471 	int			(*ndo_set_vf_rss_query_en)(
1472 						   struct net_device *dev,
1473 						   int vf, bool setting);
1474 	int			(*ndo_setup_tc)(struct net_device *dev,
1475 						enum tc_setup_type type,
1476 						void *type_data);
1477 #if IS_ENABLED(CONFIG_FCOE)
1478 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1479 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1480 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1481 						      u16 xid,
1482 						      struct scatterlist *sgl,
1483 						      unsigned int sgc);
1484 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1485 						     u16 xid);
1486 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1487 						       u16 xid,
1488 						       struct scatterlist *sgl,
1489 						       unsigned int sgc);
1490 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1491 							struct netdev_fcoe_hbainfo *hbainfo);
1492 #endif
1493 
1494 #if IS_ENABLED(CONFIG_LIBFCOE)
1495 #define NETDEV_FCOE_WWNN 0
1496 #define NETDEV_FCOE_WWPN 1
1497 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1498 						    u64 *wwn, int type);
1499 #endif
1500 
1501 #ifdef CONFIG_RFS_ACCEL
1502 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1503 						     const struct sk_buff *skb,
1504 						     u16 rxq_index,
1505 						     u32 flow_id);
1506 #endif
1507 	int			(*ndo_add_slave)(struct net_device *dev,
1508 						 struct net_device *slave_dev,
1509 						 struct netlink_ext_ack *extack);
1510 	int			(*ndo_del_slave)(struct net_device *dev,
1511 						 struct net_device *slave_dev);
1512 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1513 						      struct sk_buff *skb,
1514 						      bool all_slaves);
1515 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1516 							struct sock *sk);
1517 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1518 						    netdev_features_t features);
1519 	int			(*ndo_set_features)(struct net_device *dev,
1520 						    netdev_features_t features);
1521 	int			(*ndo_neigh_construct)(struct net_device *dev,
1522 						       struct neighbour *n);
1523 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1524 						     struct neighbour *n);
1525 
1526 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1527 					       struct nlattr *tb[],
1528 					       struct net_device *dev,
1529 					       const unsigned char *addr,
1530 					       u16 vid,
1531 					       u16 flags,
1532 					       struct netlink_ext_ack *extack);
1533 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1534 					       struct nlattr *tb[],
1535 					       struct net_device *dev,
1536 					       const unsigned char *addr,
1537 					       u16 vid, struct netlink_ext_ack *extack);
1538 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1539 						    struct nlattr *tb[],
1540 						    struct net_device *dev,
1541 						    u16 vid,
1542 						    struct netlink_ext_ack *extack);
1543 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1544 						struct netlink_callback *cb,
1545 						struct net_device *dev,
1546 						struct net_device *filter_dev,
1547 						int *idx);
1548 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1549 					       struct nlattr *tb[],
1550 					       struct net_device *dev,
1551 					       const unsigned char *addr,
1552 					       u16 vid, u32 portid, u32 seq,
1553 					       struct netlink_ext_ack *extack);
1554 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1555 						      struct nlmsghdr *nlh,
1556 						      u16 flags,
1557 						      struct netlink_ext_ack *extack);
1558 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1559 						      u32 pid, u32 seq,
1560 						      struct net_device *dev,
1561 						      u32 filter_mask,
1562 						      int nlflags);
1563 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1564 						      struct nlmsghdr *nlh,
1565 						      u16 flags);
1566 	int			(*ndo_change_carrier)(struct net_device *dev,
1567 						      bool new_carrier);
1568 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1569 							struct netdev_phys_item_id *ppid);
1570 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1571 							  struct netdev_phys_item_id *ppid);
1572 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1573 							  char *name, size_t len);
1574 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1575 							struct net_device *dev);
1576 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1577 							void *priv);
1578 
1579 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1580 						      int queue_index,
1581 						      u32 maxrate);
1582 	int			(*ndo_get_iflink)(const struct net_device *dev);
1583 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1584 						       struct sk_buff *skb);
1585 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1586 						       int needed_headroom);
1587 	int			(*ndo_bpf)(struct net_device *dev,
1588 					   struct netdev_bpf *bpf);
1589 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1590 						struct xdp_frame **xdp,
1591 						u32 flags);
1592 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1593 							  struct xdp_buff *xdp);
1594 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1595 						  u32 queue_id, u32 flags);
1596 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1597 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1598 						  struct ip_tunnel_parm *p, int cmd);
1599 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1600 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1601                                                          struct net_device_path *path);
1602 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1603 						  const struct skb_shared_hwtstamps *hwtstamps,
1604 						  bool cycles);
1605 };
1606 
1607 /**
1608  * enum netdev_priv_flags - &struct net_device priv_flags
1609  *
1610  * These are the &struct net_device, they are only set internally
1611  * by drivers and used in the kernel. These flags are invisible to
1612  * userspace; this means that the order of these flags can change
1613  * during any kernel release.
1614  *
1615  * You should have a pretty good reason to be extending these flags.
1616  *
1617  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1618  * @IFF_EBRIDGE: Ethernet bridging device
1619  * @IFF_BONDING: bonding master or slave
1620  * @IFF_ISATAP: ISATAP interface (RFC4214)
1621  * @IFF_WAN_HDLC: WAN HDLC device
1622  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1623  *	release skb->dst
1624  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1625  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1626  * @IFF_MACVLAN_PORT: device used as macvlan port
1627  * @IFF_BRIDGE_PORT: device used as bridge port
1628  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1629  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1630  * @IFF_UNICAST_FLT: Supports unicast filtering
1631  * @IFF_TEAM_PORT: device used as team port
1632  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1633  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1634  *	change when it's running
1635  * @IFF_MACVLAN: Macvlan device
1636  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1637  *	underlying stacked devices
1638  * @IFF_L3MDEV_MASTER: device is an L3 master device
1639  * @IFF_NO_QUEUE: device can run without qdisc attached
1640  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1641  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1642  * @IFF_TEAM: device is a team device
1643  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1644  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1645  *	entity (i.e. the master device for bridged veth)
1646  * @IFF_MACSEC: device is a MACsec device
1647  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1648  * @IFF_FAILOVER: device is a failover master device
1649  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1650  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1651  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1652  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1653  *	skb_headlen(skb) == 0 (data starts from frag0)
1654  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1655  */
1656 enum netdev_priv_flags {
1657 	IFF_802_1Q_VLAN			= 1<<0,
1658 	IFF_EBRIDGE			= 1<<1,
1659 	IFF_BONDING			= 1<<2,
1660 	IFF_ISATAP			= 1<<3,
1661 	IFF_WAN_HDLC			= 1<<4,
1662 	IFF_XMIT_DST_RELEASE		= 1<<5,
1663 	IFF_DONT_BRIDGE			= 1<<6,
1664 	IFF_DISABLE_NETPOLL		= 1<<7,
1665 	IFF_MACVLAN_PORT		= 1<<8,
1666 	IFF_BRIDGE_PORT			= 1<<9,
1667 	IFF_OVS_DATAPATH		= 1<<10,
1668 	IFF_TX_SKB_SHARING		= 1<<11,
1669 	IFF_UNICAST_FLT			= 1<<12,
1670 	IFF_TEAM_PORT			= 1<<13,
1671 	IFF_SUPP_NOFCS			= 1<<14,
1672 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1673 	IFF_MACVLAN			= 1<<16,
1674 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1675 	IFF_L3MDEV_MASTER		= 1<<18,
1676 	IFF_NO_QUEUE			= 1<<19,
1677 	IFF_OPENVSWITCH			= 1<<20,
1678 	IFF_L3MDEV_SLAVE		= 1<<21,
1679 	IFF_TEAM			= 1<<22,
1680 	IFF_RXFH_CONFIGURED		= 1<<23,
1681 	IFF_PHONY_HEADROOM		= 1<<24,
1682 	IFF_MACSEC			= 1<<25,
1683 	IFF_NO_RX_HANDLER		= 1<<26,
1684 	IFF_FAILOVER			= 1<<27,
1685 	IFF_FAILOVER_SLAVE		= 1<<28,
1686 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1687 	IFF_LIVE_RENAME_OK		= 1<<30,
1688 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1689 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1690 };
1691 
1692 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1693 #define IFF_EBRIDGE			IFF_EBRIDGE
1694 #define IFF_BONDING			IFF_BONDING
1695 #define IFF_ISATAP			IFF_ISATAP
1696 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1697 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1698 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1699 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1700 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1701 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1702 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1703 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1704 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1705 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1706 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1707 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1708 #define IFF_MACVLAN			IFF_MACVLAN
1709 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1710 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1711 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1712 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1713 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1714 #define IFF_TEAM			IFF_TEAM
1715 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1716 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1717 #define IFF_MACSEC			IFF_MACSEC
1718 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1719 #define IFF_FAILOVER			IFF_FAILOVER
1720 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1721 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1722 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1723 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1724 
1725 /* Specifies the type of the struct net_device::ml_priv pointer */
1726 enum netdev_ml_priv_type {
1727 	ML_PRIV_NONE,
1728 	ML_PRIV_CAN,
1729 };
1730 
1731 /**
1732  *	struct net_device - The DEVICE structure.
1733  *
1734  *	Actually, this whole structure is a big mistake.  It mixes I/O
1735  *	data with strictly "high-level" data, and it has to know about
1736  *	almost every data structure used in the INET module.
1737  *
1738  *	@name:	This is the first field of the "visible" part of this structure
1739  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1740  *		of the interface.
1741  *
1742  *	@name_node:	Name hashlist node
1743  *	@ifalias:	SNMP alias
1744  *	@mem_end:	Shared memory end
1745  *	@mem_start:	Shared memory start
1746  *	@base_addr:	Device I/O address
1747  *	@irq:		Device IRQ number
1748  *
1749  *	@state:		Generic network queuing layer state, see netdev_state_t
1750  *	@dev_list:	The global list of network devices
1751  *	@napi_list:	List entry used for polling NAPI devices
1752  *	@unreg_list:	List entry  when we are unregistering the
1753  *			device; see the function unregister_netdev
1754  *	@close_list:	List entry used when we are closing the device
1755  *	@ptype_all:     Device-specific packet handlers for all protocols
1756  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1757  *
1758  *	@adj_list:	Directly linked devices, like slaves for bonding
1759  *	@features:	Currently active device features
1760  *	@hw_features:	User-changeable features
1761  *
1762  *	@wanted_features:	User-requested features
1763  *	@vlan_features:		Mask of features inheritable by VLAN devices
1764  *
1765  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1766  *				This field indicates what encapsulation
1767  *				offloads the hardware is capable of doing,
1768  *				and drivers will need to set them appropriately.
1769  *
1770  *	@mpls_features:	Mask of features inheritable by MPLS
1771  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1772  *
1773  *	@ifindex:	interface index
1774  *	@group:		The group the device belongs to
1775  *
1776  *	@stats:		Statistics struct, which was left as a legacy, use
1777  *			rtnl_link_stats64 instead
1778  *
1779  *	@core_stats:	core networking counters,
1780  *			do not use this in drivers
1781  *	@carrier_up_count:	Number of times the carrier has been up
1782  *	@carrier_down_count:	Number of times the carrier has been down
1783  *
1784  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1785  *				instead of ioctl,
1786  *				see <net/iw_handler.h> for details.
1787  *	@wireless_data:	Instance data managed by the core of wireless extensions
1788  *
1789  *	@netdev_ops:	Includes several pointers to callbacks,
1790  *			if one wants to override the ndo_*() functions
1791  *	@ethtool_ops:	Management operations
1792  *	@l3mdev_ops:	Layer 3 master device operations
1793  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1794  *			discovery handling. Necessary for e.g. 6LoWPAN.
1795  *	@xfrmdev_ops:	Transformation offload operations
1796  *	@tlsdev_ops:	Transport Layer Security offload operations
1797  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1798  *			of Layer 2 headers.
1799  *
1800  *	@flags:		Interface flags (a la BSD)
1801  *	@priv_flags:	Like 'flags' but invisible to userspace,
1802  *			see if.h for the definitions
1803  *	@gflags:	Global flags ( kept as legacy )
1804  *	@padded:	How much padding added by alloc_netdev()
1805  *	@operstate:	RFC2863 operstate
1806  *	@link_mode:	Mapping policy to operstate
1807  *	@if_port:	Selectable AUI, TP, ...
1808  *	@dma:		DMA channel
1809  *	@mtu:		Interface MTU value
1810  *	@min_mtu:	Interface Minimum MTU value
1811  *	@max_mtu:	Interface Maximum MTU value
1812  *	@type:		Interface hardware type
1813  *	@hard_header_len: Maximum hardware header length.
1814  *	@min_header_len:  Minimum hardware header length
1815  *
1816  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1817  *			  cases can this be guaranteed
1818  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1819  *			  cases can this be guaranteed. Some cases also use
1820  *			  LL_MAX_HEADER instead to allocate the skb
1821  *
1822  *	interface address info:
1823  *
1824  * 	@perm_addr:		Permanent hw address
1825  * 	@addr_assign_type:	Hw address assignment type
1826  * 	@addr_len:		Hardware address length
1827  *	@upper_level:		Maximum depth level of upper devices.
1828  *	@lower_level:		Maximum depth level of lower devices.
1829  *	@neigh_priv_len:	Used in neigh_alloc()
1830  * 	@dev_id:		Used to differentiate devices that share
1831  * 				the same link layer address
1832  * 	@dev_port:		Used to differentiate devices that share
1833  * 				the same function
1834  *	@addr_list_lock:	XXX: need comments on this one
1835  *	@name_assign_type:	network interface name assignment type
1836  *	@uc_promisc:		Counter that indicates promiscuous mode
1837  *				has been enabled due to the need to listen to
1838  *				additional unicast addresses in a device that
1839  *				does not implement ndo_set_rx_mode()
1840  *	@uc:			unicast mac addresses
1841  *	@mc:			multicast mac addresses
1842  *	@dev_addrs:		list of device hw addresses
1843  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1844  *	@promiscuity:		Number of times the NIC is told to work in
1845  *				promiscuous mode; if it becomes 0 the NIC will
1846  *				exit promiscuous mode
1847  *	@allmulti:		Counter, enables or disables allmulticast mode
1848  *
1849  *	@vlan_info:	VLAN info
1850  *	@dsa_ptr:	dsa specific data
1851  *	@tipc_ptr:	TIPC specific data
1852  *	@atalk_ptr:	AppleTalk link
1853  *	@ip_ptr:	IPv4 specific data
1854  *	@dn_ptr:	DECnet specific data
1855  *	@ip6_ptr:	IPv6 specific data
1856  *	@ax25_ptr:	AX.25 specific data
1857  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1858  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1859  *			 device struct
1860  *	@mpls_ptr:	mpls_dev struct pointer
1861  *	@mctp_ptr:	MCTP specific data
1862  *
1863  *	@dev_addr:	Hw address (before bcast,
1864  *			because most packets are unicast)
1865  *
1866  *	@_rx:			Array of RX queues
1867  *	@num_rx_queues:		Number of RX queues
1868  *				allocated at register_netdev() time
1869  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1870  *	@xdp_prog:		XDP sockets filter program pointer
1871  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1872  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1873  *				allow to avoid NIC hard IRQ, on busy queues.
1874  *
1875  *	@rx_handler:		handler for received packets
1876  *	@rx_handler_data: 	XXX: need comments on this one
1877  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1878  *				ingress processing
1879  *	@ingress_queue:		XXX: need comments on this one
1880  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1881  *	@broadcast:		hw bcast address
1882  *
1883  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1884  *			indexed by RX queue number. Assigned by driver.
1885  *			This must only be set if the ndo_rx_flow_steer
1886  *			operation is defined
1887  *	@index_hlist:		Device index hash chain
1888  *
1889  *	@_tx:			Array of TX queues
1890  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1891  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1892  *	@qdisc:			Root qdisc from userspace point of view
1893  *	@tx_queue_len:		Max frames per queue allowed
1894  *	@tx_global_lock: 	XXX: need comments on this one
1895  *	@xdp_bulkq:		XDP device bulk queue
1896  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1897  *
1898  *	@xps_maps:	XXX: need comments on this one
1899  *	@miniq_egress:		clsact qdisc specific data for
1900  *				egress processing
1901  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1902  *	@qdisc_hash:		qdisc hash table
1903  *	@watchdog_timeo:	Represents the timeout that is used by
1904  *				the watchdog (see dev_watchdog())
1905  *	@watchdog_timer:	List of timers
1906  *
1907  *	@proto_down_reason:	reason a netdev interface is held down
1908  *	@pcpu_refcnt:		Number of references to this device
1909  *	@dev_refcnt:		Number of references to this device
1910  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1911  *	@todo_list:		Delayed register/unregister
1912  *	@link_watch_list:	XXX: need comments on this one
1913  *
1914  *	@reg_state:		Register/unregister state machine
1915  *	@dismantle:		Device is going to be freed
1916  *	@rtnl_link_state:	This enum represents the phases of creating
1917  *				a new link
1918  *
1919  *	@needs_free_netdev:	Should unregister perform free_netdev?
1920  *	@priv_destructor:	Called from unregister
1921  *	@npinfo:		XXX: need comments on this one
1922  * 	@nd_net:		Network namespace this network device is inside
1923  *
1924  * 	@ml_priv:	Mid-layer private
1925  *	@ml_priv_type:  Mid-layer private type
1926  * 	@lstats:	Loopback statistics
1927  * 	@tstats:	Tunnel statistics
1928  * 	@dstats:	Dummy statistics
1929  * 	@vstats:	Virtual ethernet statistics
1930  *
1931  *	@garp_port:	GARP
1932  *	@mrp_port:	MRP
1933  *
1934  *	@dm_private:	Drop monitor private
1935  *
1936  *	@dev:		Class/net/name entry
1937  *	@sysfs_groups:	Space for optional device, statistics and wireless
1938  *			sysfs groups
1939  *
1940  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1941  *	@rtnl_link_ops:	Rtnl_link_ops
1942  *
1943  *	@gso_max_size:	Maximum size of generic segmentation offload
1944  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1945  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1946  *			NIC for GSO
1947  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1948  *
1949  *	@dcbnl_ops:	Data Center Bridging netlink ops
1950  *	@num_tc:	Number of traffic classes in the net device
1951  *	@tc_to_txq:	XXX: need comments on this one
1952  *	@prio_tc_map:	XXX: need comments on this one
1953  *
1954  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1955  *
1956  *	@priomap:	XXX: need comments on this one
1957  *	@phydev:	Physical device may attach itself
1958  *			for hardware timestamping
1959  *	@sfp_bus:	attached &struct sfp_bus structure.
1960  *
1961  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1962  *
1963  *	@proto_down:	protocol port state information can be sent to the
1964  *			switch driver and used to set the phys state of the
1965  *			switch port.
1966  *
1967  *	@wol_enabled:	Wake-on-LAN is enabled
1968  *
1969  *	@threaded:	napi threaded mode is enabled
1970  *
1971  *	@net_notifier_list:	List of per-net netdev notifier block
1972  *				that follow this device when it is moved
1973  *				to another network namespace.
1974  *
1975  *	@macsec_ops:    MACsec offloading ops
1976  *
1977  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1978  *				offload capabilities of the device
1979  *	@udp_tunnel_nic:	UDP tunnel offload state
1980  *	@xdp_state:		stores info on attached XDP BPF programs
1981  *
1982  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1983  *			dev->addr_list_lock.
1984  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1985  *			keep a list of interfaces to be deleted.
1986  *	@gro_max_size:	Maximum size of aggregated packet in generic
1987  *			receive offload (GRO)
1988  *
1989  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1990  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1991  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1992  *	@dev_registered_tracker:	tracker for reference held while
1993  *					registered
1994  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1995  *
1996  *	FIXME: cleanup struct net_device such that network protocol info
1997  *	moves out.
1998  */
1999 
2000 struct net_device {
2001 	char			name[IFNAMSIZ];
2002 	struct netdev_name_node	*name_node;
2003 	struct dev_ifalias	__rcu *ifalias;
2004 	/*
2005 	 *	I/O specific fields
2006 	 *	FIXME: Merge these and struct ifmap into one
2007 	 */
2008 	unsigned long		mem_end;
2009 	unsigned long		mem_start;
2010 	unsigned long		base_addr;
2011 
2012 	/*
2013 	 *	Some hardware also needs these fields (state,dev_list,
2014 	 *	napi_list,unreg_list,close_list) but they are not
2015 	 *	part of the usual set specified in Space.c.
2016 	 */
2017 
2018 	unsigned long		state;
2019 
2020 	struct list_head	dev_list;
2021 	struct list_head	napi_list;
2022 	struct list_head	unreg_list;
2023 	struct list_head	close_list;
2024 	struct list_head	ptype_all;
2025 	struct list_head	ptype_specific;
2026 
2027 	struct {
2028 		struct list_head upper;
2029 		struct list_head lower;
2030 	} adj_list;
2031 
2032 	/* Read-mostly cache-line for fast-path access */
2033 	unsigned int		flags;
2034 	unsigned long long	priv_flags;
2035 	const struct net_device_ops *netdev_ops;
2036 	int			ifindex;
2037 	unsigned short		gflags;
2038 	unsigned short		hard_header_len;
2039 
2040 	/* Note : dev->mtu is often read without holding a lock.
2041 	 * Writers usually hold RTNL.
2042 	 * It is recommended to use READ_ONCE() to annotate the reads,
2043 	 * and to use WRITE_ONCE() to annotate the writes.
2044 	 */
2045 	unsigned int		mtu;
2046 	unsigned short		needed_headroom;
2047 	unsigned short		needed_tailroom;
2048 
2049 	netdev_features_t	features;
2050 	netdev_features_t	hw_features;
2051 	netdev_features_t	wanted_features;
2052 	netdev_features_t	vlan_features;
2053 	netdev_features_t	hw_enc_features;
2054 	netdev_features_t	mpls_features;
2055 	netdev_features_t	gso_partial_features;
2056 
2057 	unsigned int		min_mtu;
2058 	unsigned int		max_mtu;
2059 	unsigned short		type;
2060 	unsigned char		min_header_len;
2061 	unsigned char		name_assign_type;
2062 
2063 	int			group;
2064 
2065 	struct net_device_stats	stats; /* not used by modern drivers */
2066 
2067 	struct net_device_core_stats __percpu *core_stats;
2068 
2069 	/* Stats to monitor link on/off, flapping */
2070 	atomic_t		carrier_up_count;
2071 	atomic_t		carrier_down_count;
2072 
2073 #ifdef CONFIG_WIRELESS_EXT
2074 	const struct iw_handler_def *wireless_handlers;
2075 	struct iw_public_data	*wireless_data;
2076 #endif
2077 	const struct ethtool_ops *ethtool_ops;
2078 #ifdef CONFIG_NET_L3_MASTER_DEV
2079 	const struct l3mdev_ops	*l3mdev_ops;
2080 #endif
2081 #if IS_ENABLED(CONFIG_IPV6)
2082 	const struct ndisc_ops *ndisc_ops;
2083 #endif
2084 
2085 #ifdef CONFIG_XFRM_OFFLOAD
2086 	const struct xfrmdev_ops *xfrmdev_ops;
2087 #endif
2088 
2089 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2090 	const struct tlsdev_ops *tlsdev_ops;
2091 #endif
2092 
2093 	const struct header_ops *header_ops;
2094 
2095 	unsigned char		operstate;
2096 	unsigned char		link_mode;
2097 
2098 	unsigned char		if_port;
2099 	unsigned char		dma;
2100 
2101 	/* Interface address info. */
2102 	unsigned char		perm_addr[MAX_ADDR_LEN];
2103 	unsigned char		addr_assign_type;
2104 	unsigned char		addr_len;
2105 	unsigned char		upper_level;
2106 	unsigned char		lower_level;
2107 
2108 	unsigned short		neigh_priv_len;
2109 	unsigned short          dev_id;
2110 	unsigned short          dev_port;
2111 	unsigned short		padded;
2112 
2113 	spinlock_t		addr_list_lock;
2114 	int			irq;
2115 
2116 	struct netdev_hw_addr_list	uc;
2117 	struct netdev_hw_addr_list	mc;
2118 	struct netdev_hw_addr_list	dev_addrs;
2119 
2120 #ifdef CONFIG_SYSFS
2121 	struct kset		*queues_kset;
2122 #endif
2123 #ifdef CONFIG_LOCKDEP
2124 	struct list_head	unlink_list;
2125 #endif
2126 	unsigned int		promiscuity;
2127 	unsigned int		allmulti;
2128 	bool			uc_promisc;
2129 #ifdef CONFIG_LOCKDEP
2130 	unsigned char		nested_level;
2131 #endif
2132 
2133 
2134 	/* Protocol-specific pointers */
2135 
2136 	struct in_device __rcu	*ip_ptr;
2137 	struct inet6_dev __rcu	*ip6_ptr;
2138 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2139 	struct vlan_info __rcu	*vlan_info;
2140 #endif
2141 #if IS_ENABLED(CONFIG_NET_DSA)
2142 	struct dsa_port		*dsa_ptr;
2143 #endif
2144 #if IS_ENABLED(CONFIG_TIPC)
2145 	struct tipc_bearer __rcu *tipc_ptr;
2146 #endif
2147 #if IS_ENABLED(CONFIG_ATALK)
2148 	void 			*atalk_ptr;
2149 #endif
2150 #if IS_ENABLED(CONFIG_DECNET)
2151 	struct dn_dev __rcu     *dn_ptr;
2152 #endif
2153 #if IS_ENABLED(CONFIG_AX25)
2154 	void			*ax25_ptr;
2155 #endif
2156 #if IS_ENABLED(CONFIG_CFG80211)
2157 	struct wireless_dev	*ieee80211_ptr;
2158 #endif
2159 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2160 	struct wpan_dev		*ieee802154_ptr;
2161 #endif
2162 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2163 	struct mpls_dev __rcu	*mpls_ptr;
2164 #endif
2165 #if IS_ENABLED(CONFIG_MCTP)
2166 	struct mctp_dev __rcu	*mctp_ptr;
2167 #endif
2168 
2169 /*
2170  * Cache lines mostly used on receive path (including eth_type_trans())
2171  */
2172 	/* Interface address info used in eth_type_trans() */
2173 	const unsigned char	*dev_addr;
2174 
2175 	struct netdev_rx_queue	*_rx;
2176 	unsigned int		num_rx_queues;
2177 	unsigned int		real_num_rx_queues;
2178 
2179 	struct bpf_prog __rcu	*xdp_prog;
2180 	unsigned long		gro_flush_timeout;
2181 	int			napi_defer_hard_irqs;
2182 #define GRO_LEGACY_MAX_SIZE	65536u
2183 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2184  * and shinfo->gso_segs is a 16bit field.
2185  */
2186 #define GRO_MAX_SIZE		(8 * 65535u)
2187 	unsigned int		gro_max_size;
2188 	rx_handler_func_t __rcu	*rx_handler;
2189 	void __rcu		*rx_handler_data;
2190 
2191 #ifdef CONFIG_NET_CLS_ACT
2192 	struct mini_Qdisc __rcu	*miniq_ingress;
2193 #endif
2194 	struct netdev_queue __rcu *ingress_queue;
2195 #ifdef CONFIG_NETFILTER_INGRESS
2196 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2197 #endif
2198 
2199 	unsigned char		broadcast[MAX_ADDR_LEN];
2200 #ifdef CONFIG_RFS_ACCEL
2201 	struct cpu_rmap		*rx_cpu_rmap;
2202 #endif
2203 	struct hlist_node	index_hlist;
2204 
2205 /*
2206  * Cache lines mostly used on transmit path
2207  */
2208 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2209 	unsigned int		num_tx_queues;
2210 	unsigned int		real_num_tx_queues;
2211 	struct Qdisc __rcu	*qdisc;
2212 	unsigned int		tx_queue_len;
2213 	spinlock_t		tx_global_lock;
2214 
2215 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2216 
2217 #ifdef CONFIG_XPS
2218 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2219 #endif
2220 #ifdef CONFIG_NET_CLS_ACT
2221 	struct mini_Qdisc __rcu	*miniq_egress;
2222 #endif
2223 #ifdef CONFIG_NETFILTER_EGRESS
2224 	struct nf_hook_entries __rcu *nf_hooks_egress;
2225 #endif
2226 
2227 #ifdef CONFIG_NET_SCHED
2228 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2229 #endif
2230 	/* These may be needed for future network-power-down code. */
2231 	struct timer_list	watchdog_timer;
2232 	int			watchdog_timeo;
2233 
2234 	u32                     proto_down_reason;
2235 
2236 	struct list_head	todo_list;
2237 
2238 #ifdef CONFIG_PCPU_DEV_REFCNT
2239 	int __percpu		*pcpu_refcnt;
2240 #else
2241 	refcount_t		dev_refcnt;
2242 #endif
2243 	struct ref_tracker_dir	refcnt_tracker;
2244 
2245 	struct list_head	link_watch_list;
2246 
2247 	enum { NETREG_UNINITIALIZED=0,
2248 	       NETREG_REGISTERED,	/* completed register_netdevice */
2249 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2250 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2251 	       NETREG_RELEASED,		/* called free_netdev */
2252 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2253 	} reg_state:8;
2254 
2255 	bool dismantle;
2256 
2257 	enum {
2258 		RTNL_LINK_INITIALIZED,
2259 		RTNL_LINK_INITIALIZING,
2260 	} rtnl_link_state:16;
2261 
2262 	bool needs_free_netdev;
2263 	void (*priv_destructor)(struct net_device *dev);
2264 
2265 #ifdef CONFIG_NETPOLL
2266 	struct netpoll_info __rcu	*npinfo;
2267 #endif
2268 
2269 	possible_net_t			nd_net;
2270 
2271 	/* mid-layer private */
2272 	void				*ml_priv;
2273 	enum netdev_ml_priv_type	ml_priv_type;
2274 
2275 	union {
2276 		struct pcpu_lstats __percpu		*lstats;
2277 		struct pcpu_sw_netstats __percpu	*tstats;
2278 		struct pcpu_dstats __percpu		*dstats;
2279 	};
2280 
2281 #if IS_ENABLED(CONFIG_GARP)
2282 	struct garp_port __rcu	*garp_port;
2283 #endif
2284 #if IS_ENABLED(CONFIG_MRP)
2285 	struct mrp_port __rcu	*mrp_port;
2286 #endif
2287 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2288 	struct dm_hw_stat_delta __rcu *dm_private;
2289 #endif
2290 	struct device		dev;
2291 	const struct attribute_group *sysfs_groups[4];
2292 	const struct attribute_group *sysfs_rx_queue_group;
2293 
2294 	const struct rtnl_link_ops *rtnl_link_ops;
2295 
2296 	/* for setting kernel sock attribute on TCP connection setup */
2297 #define GSO_MAX_SEGS		65535u
2298 #define GSO_LEGACY_MAX_SIZE	65536u
2299 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2300  * and shinfo->gso_segs is a 16bit field.
2301  */
2302 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2303 
2304 	unsigned int		gso_max_size;
2305 #define TSO_LEGACY_MAX_SIZE	65536
2306 #define TSO_MAX_SIZE		UINT_MAX
2307 	unsigned int		tso_max_size;
2308 	u16			gso_max_segs;
2309 #define TSO_MAX_SEGS		U16_MAX
2310 	u16			tso_max_segs;
2311 
2312 #ifdef CONFIG_DCB
2313 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2314 #endif
2315 	s16			num_tc;
2316 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2317 	u8			prio_tc_map[TC_BITMASK + 1];
2318 
2319 #if IS_ENABLED(CONFIG_FCOE)
2320 	unsigned int		fcoe_ddp_xid;
2321 #endif
2322 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2323 	struct netprio_map __rcu *priomap;
2324 #endif
2325 	struct phy_device	*phydev;
2326 	struct sfp_bus		*sfp_bus;
2327 	struct lock_class_key	*qdisc_tx_busylock;
2328 	bool			proto_down;
2329 	unsigned		wol_enabled:1;
2330 	unsigned		threaded:1;
2331 
2332 	struct list_head	net_notifier_list;
2333 
2334 #if IS_ENABLED(CONFIG_MACSEC)
2335 	/* MACsec management functions */
2336 	const struct macsec_ops *macsec_ops;
2337 #endif
2338 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2339 	struct udp_tunnel_nic	*udp_tunnel_nic;
2340 
2341 	/* protected by rtnl_lock */
2342 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2343 
2344 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2345 	netdevice_tracker	linkwatch_dev_tracker;
2346 	netdevice_tracker	watchdog_dev_tracker;
2347 	netdevice_tracker	dev_registered_tracker;
2348 	struct rtnl_hw_stats64	*offload_xstats_l3;
2349 };
2350 #define to_net_dev(d) container_of(d, struct net_device, dev)
2351 
2352 static inline bool netif_elide_gro(const struct net_device *dev)
2353 {
2354 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2355 		return true;
2356 	return false;
2357 }
2358 
2359 #define	NETDEV_ALIGN		32
2360 
2361 static inline
2362 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2363 {
2364 	return dev->prio_tc_map[prio & TC_BITMASK];
2365 }
2366 
2367 static inline
2368 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2369 {
2370 	if (tc >= dev->num_tc)
2371 		return -EINVAL;
2372 
2373 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2374 	return 0;
2375 }
2376 
2377 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2378 void netdev_reset_tc(struct net_device *dev);
2379 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2380 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2381 
2382 static inline
2383 int netdev_get_num_tc(struct net_device *dev)
2384 {
2385 	return dev->num_tc;
2386 }
2387 
2388 static inline void net_prefetch(void *p)
2389 {
2390 	prefetch(p);
2391 #if L1_CACHE_BYTES < 128
2392 	prefetch((u8 *)p + L1_CACHE_BYTES);
2393 #endif
2394 }
2395 
2396 static inline void net_prefetchw(void *p)
2397 {
2398 	prefetchw(p);
2399 #if L1_CACHE_BYTES < 128
2400 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2401 #endif
2402 }
2403 
2404 void netdev_unbind_sb_channel(struct net_device *dev,
2405 			      struct net_device *sb_dev);
2406 int netdev_bind_sb_channel_queue(struct net_device *dev,
2407 				 struct net_device *sb_dev,
2408 				 u8 tc, u16 count, u16 offset);
2409 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2410 static inline int netdev_get_sb_channel(struct net_device *dev)
2411 {
2412 	return max_t(int, -dev->num_tc, 0);
2413 }
2414 
2415 static inline
2416 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2417 					 unsigned int index)
2418 {
2419 	return &dev->_tx[index];
2420 }
2421 
2422 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2423 						    const struct sk_buff *skb)
2424 {
2425 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2426 }
2427 
2428 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2429 					    void (*f)(struct net_device *,
2430 						      struct netdev_queue *,
2431 						      void *),
2432 					    void *arg)
2433 {
2434 	unsigned int i;
2435 
2436 	for (i = 0; i < dev->num_tx_queues; i++)
2437 		f(dev, &dev->_tx[i], arg);
2438 }
2439 
2440 #define netdev_lockdep_set_classes(dev)				\
2441 {								\
2442 	static struct lock_class_key qdisc_tx_busylock_key;	\
2443 	static struct lock_class_key qdisc_xmit_lock_key;	\
2444 	static struct lock_class_key dev_addr_list_lock_key;	\
2445 	unsigned int i;						\
2446 								\
2447 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2448 	lockdep_set_class(&(dev)->addr_list_lock,		\
2449 			  &dev_addr_list_lock_key);		\
2450 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2451 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2452 				  &qdisc_xmit_lock_key);	\
2453 }
2454 
2455 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2456 		     struct net_device *sb_dev);
2457 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2458 					 struct sk_buff *skb,
2459 					 struct net_device *sb_dev);
2460 
2461 /* returns the headroom that the master device needs to take in account
2462  * when forwarding to this dev
2463  */
2464 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2465 {
2466 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2467 }
2468 
2469 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2470 {
2471 	if (dev->netdev_ops->ndo_set_rx_headroom)
2472 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2473 }
2474 
2475 /* set the device rx headroom to the dev's default */
2476 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2477 {
2478 	netdev_set_rx_headroom(dev, -1);
2479 }
2480 
2481 static inline void *netdev_get_ml_priv(struct net_device *dev,
2482 				       enum netdev_ml_priv_type type)
2483 {
2484 	if (dev->ml_priv_type != type)
2485 		return NULL;
2486 
2487 	return dev->ml_priv;
2488 }
2489 
2490 static inline void netdev_set_ml_priv(struct net_device *dev,
2491 				      void *ml_priv,
2492 				      enum netdev_ml_priv_type type)
2493 {
2494 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2495 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2496 	     dev->ml_priv_type, type);
2497 	WARN(!dev->ml_priv_type && dev->ml_priv,
2498 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2499 
2500 	dev->ml_priv = ml_priv;
2501 	dev->ml_priv_type = type;
2502 }
2503 
2504 /*
2505  * Net namespace inlines
2506  */
2507 static inline
2508 struct net *dev_net(const struct net_device *dev)
2509 {
2510 	return read_pnet(&dev->nd_net);
2511 }
2512 
2513 static inline
2514 void dev_net_set(struct net_device *dev, struct net *net)
2515 {
2516 	write_pnet(&dev->nd_net, net);
2517 }
2518 
2519 /**
2520  *	netdev_priv - access network device private data
2521  *	@dev: network device
2522  *
2523  * Get network device private data
2524  */
2525 static inline void *netdev_priv(const struct net_device *dev)
2526 {
2527 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2528 }
2529 
2530 /* Set the sysfs physical device reference for the network logical device
2531  * if set prior to registration will cause a symlink during initialization.
2532  */
2533 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2534 
2535 /* Set the sysfs device type for the network logical device to allow
2536  * fine-grained identification of different network device types. For
2537  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2538  */
2539 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2540 
2541 /* Default NAPI poll() weight
2542  * Device drivers are strongly advised to not use bigger value
2543  */
2544 #define NAPI_POLL_WEIGHT 64
2545 
2546 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2547 			   int (*poll)(struct napi_struct *, int), int weight);
2548 
2549 /**
2550  * netif_napi_add() - initialize a NAPI context
2551  * @dev:  network device
2552  * @napi: NAPI context
2553  * @poll: polling function
2554  * @weight: default weight
2555  *
2556  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2557  * *any* of the other NAPI-related functions.
2558  */
2559 static inline void
2560 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2561 	       int (*poll)(struct napi_struct *, int), int weight)
2562 {
2563 	netif_napi_add_weight(dev, napi, poll, weight);
2564 }
2565 
2566 static inline void
2567 netif_napi_add_tx_weight(struct net_device *dev,
2568 			 struct napi_struct *napi,
2569 			 int (*poll)(struct napi_struct *, int),
2570 			 int weight)
2571 {
2572 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2573 	netif_napi_add_weight(dev, napi, poll, weight);
2574 }
2575 
2576 #define netif_tx_napi_add netif_napi_add_tx_weight
2577 
2578 /**
2579  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2580  * @dev:  network device
2581  * @napi: NAPI context
2582  * @poll: polling function
2583  *
2584  * This variant of netif_napi_add() should be used from drivers using NAPI
2585  * to exclusively poll a TX queue.
2586  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2587  */
2588 static inline void netif_napi_add_tx(struct net_device *dev,
2589 				     struct napi_struct *napi,
2590 				     int (*poll)(struct napi_struct *, int))
2591 {
2592 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2593 }
2594 
2595 /**
2596  *  __netif_napi_del - remove a NAPI context
2597  *  @napi: NAPI context
2598  *
2599  * Warning: caller must observe RCU grace period before freeing memory
2600  * containing @napi. Drivers might want to call this helper to combine
2601  * all the needed RCU grace periods into a single one.
2602  */
2603 void __netif_napi_del(struct napi_struct *napi);
2604 
2605 /**
2606  *  netif_napi_del - remove a NAPI context
2607  *  @napi: NAPI context
2608  *
2609  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2610  */
2611 static inline void netif_napi_del(struct napi_struct *napi)
2612 {
2613 	__netif_napi_del(napi);
2614 	synchronize_net();
2615 }
2616 
2617 struct packet_type {
2618 	__be16			type;	/* This is really htons(ether_type). */
2619 	bool			ignore_outgoing;
2620 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2621 	netdevice_tracker	dev_tracker;
2622 	int			(*func) (struct sk_buff *,
2623 					 struct net_device *,
2624 					 struct packet_type *,
2625 					 struct net_device *);
2626 	void			(*list_func) (struct list_head *,
2627 					      struct packet_type *,
2628 					      struct net_device *);
2629 	bool			(*id_match)(struct packet_type *ptype,
2630 					    struct sock *sk);
2631 	struct net		*af_packet_net;
2632 	void			*af_packet_priv;
2633 	struct list_head	list;
2634 };
2635 
2636 struct offload_callbacks {
2637 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2638 						netdev_features_t features);
2639 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2640 						struct sk_buff *skb);
2641 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2642 };
2643 
2644 struct packet_offload {
2645 	__be16			 type;	/* This is really htons(ether_type). */
2646 	u16			 priority;
2647 	struct offload_callbacks callbacks;
2648 	struct list_head	 list;
2649 };
2650 
2651 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2652 struct pcpu_sw_netstats {
2653 	u64_stats_t		rx_packets;
2654 	u64_stats_t		rx_bytes;
2655 	u64_stats_t		tx_packets;
2656 	u64_stats_t		tx_bytes;
2657 	struct u64_stats_sync   syncp;
2658 } __aligned(4 * sizeof(u64));
2659 
2660 struct pcpu_lstats {
2661 	u64_stats_t packets;
2662 	u64_stats_t bytes;
2663 	struct u64_stats_sync syncp;
2664 } __aligned(2 * sizeof(u64));
2665 
2666 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2667 
2668 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2669 {
2670 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2671 
2672 	u64_stats_update_begin(&tstats->syncp);
2673 	u64_stats_add(&tstats->rx_bytes, len);
2674 	u64_stats_inc(&tstats->rx_packets);
2675 	u64_stats_update_end(&tstats->syncp);
2676 }
2677 
2678 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2679 					  unsigned int packets,
2680 					  unsigned int len)
2681 {
2682 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2683 
2684 	u64_stats_update_begin(&tstats->syncp);
2685 	u64_stats_add(&tstats->tx_bytes, len);
2686 	u64_stats_add(&tstats->tx_packets, packets);
2687 	u64_stats_update_end(&tstats->syncp);
2688 }
2689 
2690 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2691 {
2692 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2693 
2694 	u64_stats_update_begin(&lstats->syncp);
2695 	u64_stats_add(&lstats->bytes, len);
2696 	u64_stats_inc(&lstats->packets);
2697 	u64_stats_update_end(&lstats->syncp);
2698 }
2699 
2700 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2701 ({									\
2702 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2703 	if (pcpu_stats)	{						\
2704 		int __cpu;						\
2705 		for_each_possible_cpu(__cpu) {				\
2706 			typeof(type) *stat;				\
2707 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2708 			u64_stats_init(&stat->syncp);			\
2709 		}							\
2710 	}								\
2711 	pcpu_stats;							\
2712 })
2713 
2714 #define netdev_alloc_pcpu_stats(type)					\
2715 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2716 
2717 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2718 ({									\
2719 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2720 	if (pcpu_stats) {						\
2721 		int __cpu;						\
2722 		for_each_possible_cpu(__cpu) {				\
2723 			typeof(type) *stat;				\
2724 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2725 			u64_stats_init(&stat->syncp);			\
2726 		}							\
2727 	}								\
2728 	pcpu_stats;							\
2729 })
2730 
2731 enum netdev_lag_tx_type {
2732 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2733 	NETDEV_LAG_TX_TYPE_RANDOM,
2734 	NETDEV_LAG_TX_TYPE_BROADCAST,
2735 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2736 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2737 	NETDEV_LAG_TX_TYPE_HASH,
2738 };
2739 
2740 enum netdev_lag_hash {
2741 	NETDEV_LAG_HASH_NONE,
2742 	NETDEV_LAG_HASH_L2,
2743 	NETDEV_LAG_HASH_L34,
2744 	NETDEV_LAG_HASH_L23,
2745 	NETDEV_LAG_HASH_E23,
2746 	NETDEV_LAG_HASH_E34,
2747 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2748 	NETDEV_LAG_HASH_UNKNOWN,
2749 };
2750 
2751 struct netdev_lag_upper_info {
2752 	enum netdev_lag_tx_type tx_type;
2753 	enum netdev_lag_hash hash_type;
2754 };
2755 
2756 struct netdev_lag_lower_state_info {
2757 	u8 link_up : 1,
2758 	   tx_enabled : 1;
2759 };
2760 
2761 #include <linux/notifier.h>
2762 
2763 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2764  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2765  * adding new types.
2766  */
2767 enum netdev_cmd {
2768 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2769 	NETDEV_DOWN,
2770 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2771 				   detected a hardware crash and restarted
2772 				   - we can use this eg to kick tcp sessions
2773 				   once done */
2774 	NETDEV_CHANGE,		/* Notify device state change */
2775 	NETDEV_REGISTER,
2776 	NETDEV_UNREGISTER,
2777 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2778 	NETDEV_CHANGEADDR,	/* notify after the address change */
2779 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2780 	NETDEV_GOING_DOWN,
2781 	NETDEV_CHANGENAME,
2782 	NETDEV_FEAT_CHANGE,
2783 	NETDEV_BONDING_FAILOVER,
2784 	NETDEV_PRE_UP,
2785 	NETDEV_PRE_TYPE_CHANGE,
2786 	NETDEV_POST_TYPE_CHANGE,
2787 	NETDEV_POST_INIT,
2788 	NETDEV_RELEASE,
2789 	NETDEV_NOTIFY_PEERS,
2790 	NETDEV_JOIN,
2791 	NETDEV_CHANGEUPPER,
2792 	NETDEV_RESEND_IGMP,
2793 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2794 	NETDEV_CHANGEINFODATA,
2795 	NETDEV_BONDING_INFO,
2796 	NETDEV_PRECHANGEUPPER,
2797 	NETDEV_CHANGELOWERSTATE,
2798 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2799 	NETDEV_UDP_TUNNEL_DROP_INFO,
2800 	NETDEV_CHANGE_TX_QUEUE_LEN,
2801 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2802 	NETDEV_CVLAN_FILTER_DROP_INFO,
2803 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2804 	NETDEV_SVLAN_FILTER_DROP_INFO,
2805 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2806 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2807 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2808 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2809 };
2810 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2811 
2812 int register_netdevice_notifier(struct notifier_block *nb);
2813 int unregister_netdevice_notifier(struct notifier_block *nb);
2814 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2815 int unregister_netdevice_notifier_net(struct net *net,
2816 				      struct notifier_block *nb);
2817 int register_netdevice_notifier_dev_net(struct net_device *dev,
2818 					struct notifier_block *nb,
2819 					struct netdev_net_notifier *nn);
2820 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2821 					  struct notifier_block *nb,
2822 					  struct netdev_net_notifier *nn);
2823 
2824 struct netdev_notifier_info {
2825 	struct net_device	*dev;
2826 	struct netlink_ext_ack	*extack;
2827 };
2828 
2829 struct netdev_notifier_info_ext {
2830 	struct netdev_notifier_info info; /* must be first */
2831 	union {
2832 		u32 mtu;
2833 	} ext;
2834 };
2835 
2836 struct netdev_notifier_change_info {
2837 	struct netdev_notifier_info info; /* must be first */
2838 	unsigned int flags_changed;
2839 };
2840 
2841 struct netdev_notifier_changeupper_info {
2842 	struct netdev_notifier_info info; /* must be first */
2843 	struct net_device *upper_dev; /* new upper dev */
2844 	bool master; /* is upper dev master */
2845 	bool linking; /* is the notification for link or unlink */
2846 	void *upper_info; /* upper dev info */
2847 };
2848 
2849 struct netdev_notifier_changelowerstate_info {
2850 	struct netdev_notifier_info info; /* must be first */
2851 	void *lower_state_info; /* is lower dev state */
2852 };
2853 
2854 struct netdev_notifier_pre_changeaddr_info {
2855 	struct netdev_notifier_info info; /* must be first */
2856 	const unsigned char *dev_addr;
2857 };
2858 
2859 enum netdev_offload_xstats_type {
2860 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2861 };
2862 
2863 struct netdev_notifier_offload_xstats_info {
2864 	struct netdev_notifier_info info; /* must be first */
2865 	enum netdev_offload_xstats_type type;
2866 
2867 	union {
2868 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2869 		struct netdev_notifier_offload_xstats_rd *report_delta;
2870 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2871 		struct netdev_notifier_offload_xstats_ru *report_used;
2872 	};
2873 };
2874 
2875 int netdev_offload_xstats_enable(struct net_device *dev,
2876 				 enum netdev_offload_xstats_type type,
2877 				 struct netlink_ext_ack *extack);
2878 int netdev_offload_xstats_disable(struct net_device *dev,
2879 				  enum netdev_offload_xstats_type type);
2880 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2881 				   enum netdev_offload_xstats_type type);
2882 int netdev_offload_xstats_get(struct net_device *dev,
2883 			      enum netdev_offload_xstats_type type,
2884 			      struct rtnl_hw_stats64 *stats, bool *used,
2885 			      struct netlink_ext_ack *extack);
2886 void
2887 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2888 				   const struct rtnl_hw_stats64 *stats);
2889 void
2890 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2891 void netdev_offload_xstats_push_delta(struct net_device *dev,
2892 				      enum netdev_offload_xstats_type type,
2893 				      const struct rtnl_hw_stats64 *stats);
2894 
2895 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2896 					     struct net_device *dev)
2897 {
2898 	info->dev = dev;
2899 	info->extack = NULL;
2900 }
2901 
2902 static inline struct net_device *
2903 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2904 {
2905 	return info->dev;
2906 }
2907 
2908 static inline struct netlink_ext_ack *
2909 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2910 {
2911 	return info->extack;
2912 }
2913 
2914 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2915 
2916 
2917 extern rwlock_t				dev_base_lock;		/* Device list lock */
2918 
2919 #define for_each_netdev(net, d)		\
2920 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2921 #define for_each_netdev_reverse(net, d)	\
2922 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2923 #define for_each_netdev_rcu(net, d)		\
2924 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2925 #define for_each_netdev_safe(net, d, n)	\
2926 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2927 #define for_each_netdev_continue(net, d)		\
2928 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2929 #define for_each_netdev_continue_reverse(net, d)		\
2930 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2931 						     dev_list)
2932 #define for_each_netdev_continue_rcu(net, d)		\
2933 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2934 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2935 		for_each_netdev_rcu(&init_net, slave)	\
2936 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2937 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2938 
2939 static inline struct net_device *next_net_device(struct net_device *dev)
2940 {
2941 	struct list_head *lh;
2942 	struct net *net;
2943 
2944 	net = dev_net(dev);
2945 	lh = dev->dev_list.next;
2946 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2947 }
2948 
2949 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2950 {
2951 	struct list_head *lh;
2952 	struct net *net;
2953 
2954 	net = dev_net(dev);
2955 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2956 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2957 }
2958 
2959 static inline struct net_device *first_net_device(struct net *net)
2960 {
2961 	return list_empty(&net->dev_base_head) ? NULL :
2962 		net_device_entry(net->dev_base_head.next);
2963 }
2964 
2965 static inline struct net_device *first_net_device_rcu(struct net *net)
2966 {
2967 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2968 
2969 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2970 }
2971 
2972 int netdev_boot_setup_check(struct net_device *dev);
2973 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2974 				       const char *hwaddr);
2975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2976 void dev_add_pack(struct packet_type *pt);
2977 void dev_remove_pack(struct packet_type *pt);
2978 void __dev_remove_pack(struct packet_type *pt);
2979 void dev_add_offload(struct packet_offload *po);
2980 void dev_remove_offload(struct packet_offload *po);
2981 
2982 int dev_get_iflink(const struct net_device *dev);
2983 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2984 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2985 			  struct net_device_path_stack *stack);
2986 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2987 				      unsigned short mask);
2988 struct net_device *dev_get_by_name(struct net *net, const char *name);
2989 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2990 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2991 bool netdev_name_in_use(struct net *net, const char *name);
2992 int dev_alloc_name(struct net_device *dev, const char *name);
2993 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2994 void dev_close(struct net_device *dev);
2995 void dev_close_many(struct list_head *head, bool unlink);
2996 void dev_disable_lro(struct net_device *dev);
2997 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2998 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2999 		     struct net_device *sb_dev);
3000 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3001 		       struct net_device *sb_dev);
3002 
3003 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3004 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3005 
3006 static inline int dev_queue_xmit(struct sk_buff *skb)
3007 {
3008 	return __dev_queue_xmit(skb, NULL);
3009 }
3010 
3011 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3012 				       struct net_device *sb_dev)
3013 {
3014 	return __dev_queue_xmit(skb, sb_dev);
3015 }
3016 
3017 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3018 {
3019 	int ret;
3020 
3021 	ret = __dev_direct_xmit(skb, queue_id);
3022 	if (!dev_xmit_complete(ret))
3023 		kfree_skb(skb);
3024 	return ret;
3025 }
3026 
3027 int register_netdevice(struct net_device *dev);
3028 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3029 void unregister_netdevice_many(struct list_head *head);
3030 static inline void unregister_netdevice(struct net_device *dev)
3031 {
3032 	unregister_netdevice_queue(dev, NULL);
3033 }
3034 
3035 int netdev_refcnt_read(const struct net_device *dev);
3036 void free_netdev(struct net_device *dev);
3037 void netdev_freemem(struct net_device *dev);
3038 int init_dummy_netdev(struct net_device *dev);
3039 
3040 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3041 					 struct sk_buff *skb,
3042 					 bool all_slaves);
3043 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3044 					    struct sock *sk);
3045 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3046 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3047 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3048 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3049 int dev_restart(struct net_device *dev);
3050 
3051 
3052 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3053 				  unsigned short type,
3054 				  const void *daddr, const void *saddr,
3055 				  unsigned int len)
3056 {
3057 	if (!dev->header_ops || !dev->header_ops->create)
3058 		return 0;
3059 
3060 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3061 }
3062 
3063 static inline int dev_parse_header(const struct sk_buff *skb,
3064 				   unsigned char *haddr)
3065 {
3066 	const struct net_device *dev = skb->dev;
3067 
3068 	if (!dev->header_ops || !dev->header_ops->parse)
3069 		return 0;
3070 	return dev->header_ops->parse(skb, haddr);
3071 }
3072 
3073 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3074 {
3075 	const struct net_device *dev = skb->dev;
3076 
3077 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3078 		return 0;
3079 	return dev->header_ops->parse_protocol(skb);
3080 }
3081 
3082 /* ll_header must have at least hard_header_len allocated */
3083 static inline bool dev_validate_header(const struct net_device *dev,
3084 				       char *ll_header, int len)
3085 {
3086 	if (likely(len >= dev->hard_header_len))
3087 		return true;
3088 	if (len < dev->min_header_len)
3089 		return false;
3090 
3091 	if (capable(CAP_SYS_RAWIO)) {
3092 		memset(ll_header + len, 0, dev->hard_header_len - len);
3093 		return true;
3094 	}
3095 
3096 	if (dev->header_ops && dev->header_ops->validate)
3097 		return dev->header_ops->validate(ll_header, len);
3098 
3099 	return false;
3100 }
3101 
3102 static inline bool dev_has_header(const struct net_device *dev)
3103 {
3104 	return dev->header_ops && dev->header_ops->create;
3105 }
3106 
3107 /*
3108  * Incoming packets are placed on per-CPU queues
3109  */
3110 struct softnet_data {
3111 	struct list_head	poll_list;
3112 	struct sk_buff_head	process_queue;
3113 
3114 	/* stats */
3115 	unsigned int		processed;
3116 	unsigned int		time_squeeze;
3117 	unsigned int		received_rps;
3118 #ifdef CONFIG_RPS
3119 	struct softnet_data	*rps_ipi_list;
3120 #endif
3121 #ifdef CONFIG_NET_FLOW_LIMIT
3122 	struct sd_flow_limit __rcu *flow_limit;
3123 #endif
3124 	struct Qdisc		*output_queue;
3125 	struct Qdisc		**output_queue_tailp;
3126 	struct sk_buff		*completion_queue;
3127 #ifdef CONFIG_XFRM_OFFLOAD
3128 	struct sk_buff_head	xfrm_backlog;
3129 #endif
3130 	/* written and read only by owning cpu: */
3131 	struct {
3132 		u16 recursion;
3133 		u8  more;
3134 #ifdef CONFIG_NET_EGRESS
3135 		u8  skip_txqueue;
3136 #endif
3137 	} xmit;
3138 #ifdef CONFIG_RPS
3139 	/* input_queue_head should be written by cpu owning this struct,
3140 	 * and only read by other cpus. Worth using a cache line.
3141 	 */
3142 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3143 
3144 	/* Elements below can be accessed between CPUs for RPS/RFS */
3145 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3146 	struct softnet_data	*rps_ipi_next;
3147 	unsigned int		cpu;
3148 	unsigned int		input_queue_tail;
3149 #endif
3150 	unsigned int		dropped;
3151 	struct sk_buff_head	input_pkt_queue;
3152 	struct napi_struct	backlog;
3153 
3154 	/* Another possibly contended cache line */
3155 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3156 	int			defer_count;
3157 	int			defer_ipi_scheduled;
3158 	struct sk_buff		*defer_list;
3159 	call_single_data_t	defer_csd;
3160 };
3161 
3162 static inline void input_queue_head_incr(struct softnet_data *sd)
3163 {
3164 #ifdef CONFIG_RPS
3165 	sd->input_queue_head++;
3166 #endif
3167 }
3168 
3169 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3170 					      unsigned int *qtail)
3171 {
3172 #ifdef CONFIG_RPS
3173 	*qtail = ++sd->input_queue_tail;
3174 #endif
3175 }
3176 
3177 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3178 
3179 static inline int dev_recursion_level(void)
3180 {
3181 	return this_cpu_read(softnet_data.xmit.recursion);
3182 }
3183 
3184 #define XMIT_RECURSION_LIMIT	8
3185 static inline bool dev_xmit_recursion(void)
3186 {
3187 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3188 			XMIT_RECURSION_LIMIT);
3189 }
3190 
3191 static inline void dev_xmit_recursion_inc(void)
3192 {
3193 	__this_cpu_inc(softnet_data.xmit.recursion);
3194 }
3195 
3196 static inline void dev_xmit_recursion_dec(void)
3197 {
3198 	__this_cpu_dec(softnet_data.xmit.recursion);
3199 }
3200 
3201 void __netif_schedule(struct Qdisc *q);
3202 void netif_schedule_queue(struct netdev_queue *txq);
3203 
3204 static inline void netif_tx_schedule_all(struct net_device *dev)
3205 {
3206 	unsigned int i;
3207 
3208 	for (i = 0; i < dev->num_tx_queues; i++)
3209 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3210 }
3211 
3212 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3213 {
3214 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3215 }
3216 
3217 /**
3218  *	netif_start_queue - allow transmit
3219  *	@dev: network device
3220  *
3221  *	Allow upper layers to call the device hard_start_xmit routine.
3222  */
3223 static inline void netif_start_queue(struct net_device *dev)
3224 {
3225 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3226 }
3227 
3228 static inline void netif_tx_start_all_queues(struct net_device *dev)
3229 {
3230 	unsigned int i;
3231 
3232 	for (i = 0; i < dev->num_tx_queues; i++) {
3233 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3234 		netif_tx_start_queue(txq);
3235 	}
3236 }
3237 
3238 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3239 
3240 /**
3241  *	netif_wake_queue - restart transmit
3242  *	@dev: network device
3243  *
3244  *	Allow upper layers to call the device hard_start_xmit routine.
3245  *	Used for flow control when transmit resources are available.
3246  */
3247 static inline void netif_wake_queue(struct net_device *dev)
3248 {
3249 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3250 }
3251 
3252 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3253 {
3254 	unsigned int i;
3255 
3256 	for (i = 0; i < dev->num_tx_queues; i++) {
3257 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3258 		netif_tx_wake_queue(txq);
3259 	}
3260 }
3261 
3262 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3263 {
3264 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3265 }
3266 
3267 /**
3268  *	netif_stop_queue - stop transmitted packets
3269  *	@dev: network device
3270  *
3271  *	Stop upper layers calling the device hard_start_xmit routine.
3272  *	Used for flow control when transmit resources are unavailable.
3273  */
3274 static inline void netif_stop_queue(struct net_device *dev)
3275 {
3276 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3277 }
3278 
3279 void netif_tx_stop_all_queues(struct net_device *dev);
3280 
3281 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3282 {
3283 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3284 }
3285 
3286 /**
3287  *	netif_queue_stopped - test if transmit queue is flowblocked
3288  *	@dev: network device
3289  *
3290  *	Test if transmit queue on device is currently unable to send.
3291  */
3292 static inline bool netif_queue_stopped(const struct net_device *dev)
3293 {
3294 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3295 }
3296 
3297 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3298 {
3299 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3300 }
3301 
3302 static inline bool
3303 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3304 {
3305 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3306 }
3307 
3308 static inline bool
3309 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3310 {
3311 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3312 }
3313 
3314 /**
3315  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3316  *	@dev_queue: pointer to transmit queue
3317  *	@min_limit: dql minimum limit
3318  *
3319  * Forces xmit_more() to return true until the minimum threshold
3320  * defined by @min_limit is reached (or until the tx queue is
3321  * empty). Warning: to be use with care, misuse will impact the
3322  * latency.
3323  */
3324 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3325 						  unsigned int min_limit)
3326 {
3327 #ifdef CONFIG_BQL
3328 	dev_queue->dql.min_limit = min_limit;
3329 #endif
3330 }
3331 
3332 /**
3333  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3334  *	@dev_queue: pointer to transmit queue
3335  *
3336  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3337  * to give appropriate hint to the CPU.
3338  */
3339 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3340 {
3341 #ifdef CONFIG_BQL
3342 	prefetchw(&dev_queue->dql.num_queued);
3343 #endif
3344 }
3345 
3346 /**
3347  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3348  *	@dev_queue: pointer to transmit queue
3349  *
3350  * BQL enabled drivers might use this helper in their TX completion path,
3351  * to give appropriate hint to the CPU.
3352  */
3353 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3354 {
3355 #ifdef CONFIG_BQL
3356 	prefetchw(&dev_queue->dql.limit);
3357 #endif
3358 }
3359 
3360 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3361 					unsigned int bytes)
3362 {
3363 #ifdef CONFIG_BQL
3364 	dql_queued(&dev_queue->dql, bytes);
3365 
3366 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3367 		return;
3368 
3369 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3370 
3371 	/*
3372 	 * The XOFF flag must be set before checking the dql_avail below,
3373 	 * because in netdev_tx_completed_queue we update the dql_completed
3374 	 * before checking the XOFF flag.
3375 	 */
3376 	smp_mb();
3377 
3378 	/* check again in case another CPU has just made room avail */
3379 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3380 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3381 #endif
3382 }
3383 
3384 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3385  * that they should not test BQL status themselves.
3386  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3387  * skb of a batch.
3388  * Returns true if the doorbell must be used to kick the NIC.
3389  */
3390 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3391 					  unsigned int bytes,
3392 					  bool xmit_more)
3393 {
3394 	if (xmit_more) {
3395 #ifdef CONFIG_BQL
3396 		dql_queued(&dev_queue->dql, bytes);
3397 #endif
3398 		return netif_tx_queue_stopped(dev_queue);
3399 	}
3400 	netdev_tx_sent_queue(dev_queue, bytes);
3401 	return true;
3402 }
3403 
3404 /**
3405  * 	netdev_sent_queue - report the number of bytes queued to hardware
3406  * 	@dev: network device
3407  * 	@bytes: number of bytes queued to the hardware device queue
3408  *
3409  * 	Report the number of bytes queued for sending/completion to the network
3410  * 	device hardware queue. @bytes should be a good approximation and should
3411  * 	exactly match netdev_completed_queue() @bytes
3412  */
3413 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3414 {
3415 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3416 }
3417 
3418 static inline bool __netdev_sent_queue(struct net_device *dev,
3419 				       unsigned int bytes,
3420 				       bool xmit_more)
3421 {
3422 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3423 				      xmit_more);
3424 }
3425 
3426 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3427 					     unsigned int pkts, unsigned int bytes)
3428 {
3429 #ifdef CONFIG_BQL
3430 	if (unlikely(!bytes))
3431 		return;
3432 
3433 	dql_completed(&dev_queue->dql, bytes);
3434 
3435 	/*
3436 	 * Without the memory barrier there is a small possiblity that
3437 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3438 	 * be stopped forever
3439 	 */
3440 	smp_mb();
3441 
3442 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3443 		return;
3444 
3445 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3446 		netif_schedule_queue(dev_queue);
3447 #endif
3448 }
3449 
3450 /**
3451  * 	netdev_completed_queue - report bytes and packets completed by device
3452  * 	@dev: network device
3453  * 	@pkts: actual number of packets sent over the medium
3454  * 	@bytes: actual number of bytes sent over the medium
3455  *
3456  * 	Report the number of bytes and packets transmitted by the network device
3457  * 	hardware queue over the physical medium, @bytes must exactly match the
3458  * 	@bytes amount passed to netdev_sent_queue()
3459  */
3460 static inline void netdev_completed_queue(struct net_device *dev,
3461 					  unsigned int pkts, unsigned int bytes)
3462 {
3463 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3464 }
3465 
3466 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3467 {
3468 #ifdef CONFIG_BQL
3469 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3470 	dql_reset(&q->dql);
3471 #endif
3472 }
3473 
3474 /**
3475  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3476  * 	@dev_queue: network device
3477  *
3478  * 	Reset the bytes and packet count of a network device and clear the
3479  * 	software flow control OFF bit for this network device
3480  */
3481 static inline void netdev_reset_queue(struct net_device *dev_queue)
3482 {
3483 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3484 }
3485 
3486 /**
3487  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3488  * 	@dev: network device
3489  * 	@queue_index: given tx queue index
3490  *
3491  * 	Returns 0 if given tx queue index >= number of device tx queues,
3492  * 	otherwise returns the originally passed tx queue index.
3493  */
3494 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3495 {
3496 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3497 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3498 				     dev->name, queue_index,
3499 				     dev->real_num_tx_queues);
3500 		return 0;
3501 	}
3502 
3503 	return queue_index;
3504 }
3505 
3506 /**
3507  *	netif_running - test if up
3508  *	@dev: network device
3509  *
3510  *	Test if the device has been brought up.
3511  */
3512 static inline bool netif_running(const struct net_device *dev)
3513 {
3514 	return test_bit(__LINK_STATE_START, &dev->state);
3515 }
3516 
3517 /*
3518  * Routines to manage the subqueues on a device.  We only need start,
3519  * stop, and a check if it's stopped.  All other device management is
3520  * done at the overall netdevice level.
3521  * Also test the device if we're multiqueue.
3522  */
3523 
3524 /**
3525  *	netif_start_subqueue - allow sending packets on subqueue
3526  *	@dev: network device
3527  *	@queue_index: sub queue index
3528  *
3529  * Start individual transmit queue of a device with multiple transmit queues.
3530  */
3531 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3532 {
3533 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3534 
3535 	netif_tx_start_queue(txq);
3536 }
3537 
3538 /**
3539  *	netif_stop_subqueue - stop sending packets on subqueue
3540  *	@dev: network device
3541  *	@queue_index: sub queue index
3542  *
3543  * Stop individual transmit queue of a device with multiple transmit queues.
3544  */
3545 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3546 {
3547 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3548 	netif_tx_stop_queue(txq);
3549 }
3550 
3551 /**
3552  *	__netif_subqueue_stopped - test status of subqueue
3553  *	@dev: network device
3554  *	@queue_index: sub queue index
3555  *
3556  * Check individual transmit queue of a device with multiple transmit queues.
3557  */
3558 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3559 					    u16 queue_index)
3560 {
3561 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3562 
3563 	return netif_tx_queue_stopped(txq);
3564 }
3565 
3566 /**
3567  *	netif_subqueue_stopped - test status of subqueue
3568  *	@dev: network device
3569  *	@skb: sub queue buffer pointer
3570  *
3571  * Check individual transmit queue of a device with multiple transmit queues.
3572  */
3573 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3574 					  struct sk_buff *skb)
3575 {
3576 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3577 }
3578 
3579 /**
3580  *	netif_wake_subqueue - allow sending packets on subqueue
3581  *	@dev: network device
3582  *	@queue_index: sub queue index
3583  *
3584  * Resume individual transmit queue of a device with multiple transmit queues.
3585  */
3586 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3587 {
3588 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3589 
3590 	netif_tx_wake_queue(txq);
3591 }
3592 
3593 #ifdef CONFIG_XPS
3594 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3595 			u16 index);
3596 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3597 			  u16 index, enum xps_map_type type);
3598 
3599 /**
3600  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3601  *	@j: CPU/Rx queue index
3602  *	@mask: bitmask of all cpus/rx queues
3603  *	@nr_bits: number of bits in the bitmask
3604  *
3605  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3606  */
3607 static inline bool netif_attr_test_mask(unsigned long j,
3608 					const unsigned long *mask,
3609 					unsigned int nr_bits)
3610 {
3611 	cpu_max_bits_warn(j, nr_bits);
3612 	return test_bit(j, mask);
3613 }
3614 
3615 /**
3616  *	netif_attr_test_online - Test for online CPU/Rx queue
3617  *	@j: CPU/Rx queue index
3618  *	@online_mask: bitmask for CPUs/Rx queues that are online
3619  *	@nr_bits: number of bits in the bitmask
3620  *
3621  * Returns true if a CPU/Rx queue is online.
3622  */
3623 static inline bool netif_attr_test_online(unsigned long j,
3624 					  const unsigned long *online_mask,
3625 					  unsigned int nr_bits)
3626 {
3627 	cpu_max_bits_warn(j, nr_bits);
3628 
3629 	if (online_mask)
3630 		return test_bit(j, online_mask);
3631 
3632 	return (j < nr_bits);
3633 }
3634 
3635 /**
3636  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3637  *	@n: CPU/Rx queue index
3638  *	@srcp: the cpumask/Rx queue mask pointer
3639  *	@nr_bits: number of bits in the bitmask
3640  *
3641  * Returns >= nr_bits if no further CPUs/Rx queues set.
3642  */
3643 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3644 					       unsigned int nr_bits)
3645 {
3646 	/* -1 is a legal arg here. */
3647 	if (n != -1)
3648 		cpu_max_bits_warn(n, nr_bits);
3649 
3650 	if (srcp)
3651 		return find_next_bit(srcp, nr_bits, n + 1);
3652 
3653 	return n + 1;
3654 }
3655 
3656 /**
3657  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3658  *	@n: CPU/Rx queue index
3659  *	@src1p: the first CPUs/Rx queues mask pointer
3660  *	@src2p: the second CPUs/Rx queues mask pointer
3661  *	@nr_bits: number of bits in the bitmask
3662  *
3663  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3664  */
3665 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3666 					  const unsigned long *src2p,
3667 					  unsigned int nr_bits)
3668 {
3669 	/* -1 is a legal arg here. */
3670 	if (n != -1)
3671 		cpu_max_bits_warn(n, nr_bits);
3672 
3673 	if (src1p && src2p)
3674 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3675 	else if (src1p)
3676 		return find_next_bit(src1p, nr_bits, n + 1);
3677 	else if (src2p)
3678 		return find_next_bit(src2p, nr_bits, n + 1);
3679 
3680 	return n + 1;
3681 }
3682 #else
3683 static inline int netif_set_xps_queue(struct net_device *dev,
3684 				      const struct cpumask *mask,
3685 				      u16 index)
3686 {
3687 	return 0;
3688 }
3689 
3690 static inline int __netif_set_xps_queue(struct net_device *dev,
3691 					const unsigned long *mask,
3692 					u16 index, enum xps_map_type type)
3693 {
3694 	return 0;
3695 }
3696 #endif
3697 
3698 /**
3699  *	netif_is_multiqueue - test if device has multiple transmit queues
3700  *	@dev: network device
3701  *
3702  * Check if device has multiple transmit queues
3703  */
3704 static inline bool netif_is_multiqueue(const struct net_device *dev)
3705 {
3706 	return dev->num_tx_queues > 1;
3707 }
3708 
3709 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3710 
3711 #ifdef CONFIG_SYSFS
3712 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3713 #else
3714 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3715 						unsigned int rxqs)
3716 {
3717 	dev->real_num_rx_queues = rxqs;
3718 	return 0;
3719 }
3720 #endif
3721 int netif_set_real_num_queues(struct net_device *dev,
3722 			      unsigned int txq, unsigned int rxq);
3723 
3724 static inline struct netdev_rx_queue *
3725 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3726 {
3727 	return dev->_rx + rxq;
3728 }
3729 
3730 #ifdef CONFIG_SYSFS
3731 static inline unsigned int get_netdev_rx_queue_index(
3732 		struct netdev_rx_queue *queue)
3733 {
3734 	struct net_device *dev = queue->dev;
3735 	int index = queue - dev->_rx;
3736 
3737 	BUG_ON(index >= dev->num_rx_queues);
3738 	return index;
3739 }
3740 #endif
3741 
3742 int netif_get_num_default_rss_queues(void);
3743 
3744 enum skb_free_reason {
3745 	SKB_REASON_CONSUMED,
3746 	SKB_REASON_DROPPED,
3747 };
3748 
3749 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3750 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3751 
3752 /*
3753  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3754  * interrupt context or with hardware interrupts being disabled.
3755  * (in_hardirq() || irqs_disabled())
3756  *
3757  * We provide four helpers that can be used in following contexts :
3758  *
3759  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3760  *  replacing kfree_skb(skb)
3761  *
3762  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3763  *  Typically used in place of consume_skb(skb) in TX completion path
3764  *
3765  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3766  *  replacing kfree_skb(skb)
3767  *
3768  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3769  *  and consumed a packet. Used in place of consume_skb(skb)
3770  */
3771 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3772 {
3773 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3774 }
3775 
3776 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3777 {
3778 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3779 }
3780 
3781 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3782 {
3783 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3784 }
3785 
3786 static inline void dev_consume_skb_any(struct sk_buff *skb)
3787 {
3788 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3789 }
3790 
3791 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3792 			     struct bpf_prog *xdp_prog);
3793 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3794 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3795 int netif_rx(struct sk_buff *skb);
3796 int __netif_rx(struct sk_buff *skb);
3797 
3798 int netif_receive_skb(struct sk_buff *skb);
3799 int netif_receive_skb_core(struct sk_buff *skb);
3800 void netif_receive_skb_list_internal(struct list_head *head);
3801 void netif_receive_skb_list(struct list_head *head);
3802 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3803 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3804 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3805 gro_result_t napi_gro_frags(struct napi_struct *napi);
3806 struct packet_offload *gro_find_receive_by_type(__be16 type);
3807 struct packet_offload *gro_find_complete_by_type(__be16 type);
3808 
3809 static inline void napi_free_frags(struct napi_struct *napi)
3810 {
3811 	kfree_skb(napi->skb);
3812 	napi->skb = NULL;
3813 }
3814 
3815 bool netdev_is_rx_handler_busy(struct net_device *dev);
3816 int netdev_rx_handler_register(struct net_device *dev,
3817 			       rx_handler_func_t *rx_handler,
3818 			       void *rx_handler_data);
3819 void netdev_rx_handler_unregister(struct net_device *dev);
3820 
3821 bool dev_valid_name(const char *name);
3822 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3823 {
3824 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3825 }
3826 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3827 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3828 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3829 		void __user *data, bool *need_copyout);
3830 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3831 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3832 unsigned int dev_get_flags(const struct net_device *);
3833 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3834 		       struct netlink_ext_ack *extack);
3835 int dev_change_flags(struct net_device *dev, unsigned int flags,
3836 		     struct netlink_ext_ack *extack);
3837 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3838 			unsigned int gchanges);
3839 int dev_set_alias(struct net_device *, const char *, size_t);
3840 int dev_get_alias(const struct net_device *, char *, size_t);
3841 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3842 			       const char *pat, int new_ifindex);
3843 static inline
3844 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3845 			     const char *pat)
3846 {
3847 	return __dev_change_net_namespace(dev, net, pat, 0);
3848 }
3849 int __dev_set_mtu(struct net_device *, int);
3850 int dev_set_mtu(struct net_device *, int);
3851 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3852 			      struct netlink_ext_ack *extack);
3853 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3854 			struct netlink_ext_ack *extack);
3855 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3856 			     struct netlink_ext_ack *extack);
3857 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3858 int dev_get_port_parent_id(struct net_device *dev,
3859 			   struct netdev_phys_item_id *ppid, bool recurse);
3860 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3861 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3862 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3863 				    struct netdev_queue *txq, int *ret);
3864 
3865 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3866 u8 dev_xdp_prog_count(struct net_device *dev);
3867 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3868 
3869 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3870 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3871 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3872 bool is_skb_forwardable(const struct net_device *dev,
3873 			const struct sk_buff *skb);
3874 
3875 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3876 						 const struct sk_buff *skb,
3877 						 const bool check_mtu)
3878 {
3879 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3880 	unsigned int len;
3881 
3882 	if (!(dev->flags & IFF_UP))
3883 		return false;
3884 
3885 	if (!check_mtu)
3886 		return true;
3887 
3888 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3889 	if (skb->len <= len)
3890 		return true;
3891 
3892 	/* if TSO is enabled, we don't care about the length as the packet
3893 	 * could be forwarded without being segmented before
3894 	 */
3895 	if (skb_is_gso(skb))
3896 		return true;
3897 
3898 	return false;
3899 }
3900 
3901 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3902 
3903 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3904 {
3905 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3906 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3907 
3908 	if (likely(p))
3909 		return p;
3910 
3911 	return netdev_core_stats_alloc(dev);
3912 }
3913 
3914 #define DEV_CORE_STATS_INC(FIELD)						\
3915 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3916 {										\
3917 	struct net_device_core_stats __percpu *p;				\
3918 										\
3919 	p = dev_core_stats(dev);						\
3920 	if (p)									\
3921 		this_cpu_inc(p->FIELD);						\
3922 }
3923 DEV_CORE_STATS_INC(rx_dropped)
3924 DEV_CORE_STATS_INC(tx_dropped)
3925 DEV_CORE_STATS_INC(rx_nohandler)
3926 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3927 
3928 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3929 					       struct sk_buff *skb,
3930 					       const bool check_mtu)
3931 {
3932 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3933 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3934 		dev_core_stats_rx_dropped_inc(dev);
3935 		kfree_skb(skb);
3936 		return NET_RX_DROP;
3937 	}
3938 
3939 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3940 	skb->priority = 0;
3941 	return 0;
3942 }
3943 
3944 bool dev_nit_active(struct net_device *dev);
3945 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3946 
3947 static inline void __dev_put(struct net_device *dev)
3948 {
3949 	if (dev) {
3950 #ifdef CONFIG_PCPU_DEV_REFCNT
3951 		this_cpu_dec(*dev->pcpu_refcnt);
3952 #else
3953 		refcount_dec(&dev->dev_refcnt);
3954 #endif
3955 	}
3956 }
3957 
3958 static inline void __dev_hold(struct net_device *dev)
3959 {
3960 	if (dev) {
3961 #ifdef CONFIG_PCPU_DEV_REFCNT
3962 		this_cpu_inc(*dev->pcpu_refcnt);
3963 #else
3964 		refcount_inc(&dev->dev_refcnt);
3965 #endif
3966 	}
3967 }
3968 
3969 static inline void __netdev_tracker_alloc(struct net_device *dev,
3970 					  netdevice_tracker *tracker,
3971 					  gfp_t gfp)
3972 {
3973 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3974 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3975 #endif
3976 }
3977 
3978 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3979  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3980  */
3981 static inline void netdev_tracker_alloc(struct net_device *dev,
3982 					netdevice_tracker *tracker, gfp_t gfp)
3983 {
3984 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3985 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3986 	__netdev_tracker_alloc(dev, tracker, gfp);
3987 #endif
3988 }
3989 
3990 static inline void netdev_tracker_free(struct net_device *dev,
3991 				       netdevice_tracker *tracker)
3992 {
3993 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3994 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3995 #endif
3996 }
3997 
3998 static inline void netdev_hold(struct net_device *dev,
3999 			       netdevice_tracker *tracker, gfp_t gfp)
4000 {
4001 	if (dev) {
4002 		__dev_hold(dev);
4003 		__netdev_tracker_alloc(dev, tracker, gfp);
4004 	}
4005 }
4006 
4007 static inline void netdev_put(struct net_device *dev,
4008 			      netdevice_tracker *tracker)
4009 {
4010 	if (dev) {
4011 		netdev_tracker_free(dev, tracker);
4012 		__dev_put(dev);
4013 	}
4014 }
4015 
4016 /**
4017  *	dev_hold - get reference to device
4018  *	@dev: network device
4019  *
4020  * Hold reference to device to keep it from being freed.
4021  * Try using netdev_hold() instead.
4022  */
4023 static inline void dev_hold(struct net_device *dev)
4024 {
4025 	netdev_hold(dev, NULL, GFP_ATOMIC);
4026 }
4027 
4028 /**
4029  *	dev_put - release reference to device
4030  *	@dev: network device
4031  *
4032  * Release reference to device to allow it to be freed.
4033  * Try using netdev_put() instead.
4034  */
4035 static inline void dev_put(struct net_device *dev)
4036 {
4037 	netdev_put(dev, NULL);
4038 }
4039 
4040 static inline void netdev_ref_replace(struct net_device *odev,
4041 				      struct net_device *ndev,
4042 				      netdevice_tracker *tracker,
4043 				      gfp_t gfp)
4044 {
4045 	if (odev)
4046 		netdev_tracker_free(odev, tracker);
4047 
4048 	__dev_hold(ndev);
4049 	__dev_put(odev);
4050 
4051 	if (ndev)
4052 		__netdev_tracker_alloc(ndev, tracker, gfp);
4053 }
4054 
4055 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4056  * and _off may be called from IRQ context, but it is caller
4057  * who is responsible for serialization of these calls.
4058  *
4059  * The name carrier is inappropriate, these functions should really be
4060  * called netif_lowerlayer_*() because they represent the state of any
4061  * kind of lower layer not just hardware media.
4062  */
4063 void linkwatch_fire_event(struct net_device *dev);
4064 
4065 /**
4066  *	netif_carrier_ok - test if carrier present
4067  *	@dev: network device
4068  *
4069  * Check if carrier is present on device
4070  */
4071 static inline bool netif_carrier_ok(const struct net_device *dev)
4072 {
4073 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4074 }
4075 
4076 unsigned long dev_trans_start(struct net_device *dev);
4077 
4078 void __netdev_watchdog_up(struct net_device *dev);
4079 
4080 void netif_carrier_on(struct net_device *dev);
4081 void netif_carrier_off(struct net_device *dev);
4082 void netif_carrier_event(struct net_device *dev);
4083 
4084 /**
4085  *	netif_dormant_on - mark device as dormant.
4086  *	@dev: network device
4087  *
4088  * Mark device as dormant (as per RFC2863).
4089  *
4090  * The dormant state indicates that the relevant interface is not
4091  * actually in a condition to pass packets (i.e., it is not 'up') but is
4092  * in a "pending" state, waiting for some external event.  For "on-
4093  * demand" interfaces, this new state identifies the situation where the
4094  * interface is waiting for events to place it in the up state.
4095  */
4096 static inline void netif_dormant_on(struct net_device *dev)
4097 {
4098 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4099 		linkwatch_fire_event(dev);
4100 }
4101 
4102 /**
4103  *	netif_dormant_off - set device as not dormant.
4104  *	@dev: network device
4105  *
4106  * Device is not in dormant state.
4107  */
4108 static inline void netif_dormant_off(struct net_device *dev)
4109 {
4110 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4111 		linkwatch_fire_event(dev);
4112 }
4113 
4114 /**
4115  *	netif_dormant - test if device is dormant
4116  *	@dev: network device
4117  *
4118  * Check if device is dormant.
4119  */
4120 static inline bool netif_dormant(const struct net_device *dev)
4121 {
4122 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4123 }
4124 
4125 
4126 /**
4127  *	netif_testing_on - mark device as under test.
4128  *	@dev: network device
4129  *
4130  * Mark device as under test (as per RFC2863).
4131  *
4132  * The testing state indicates that some test(s) must be performed on
4133  * the interface. After completion, of the test, the interface state
4134  * will change to up, dormant, or down, as appropriate.
4135  */
4136 static inline void netif_testing_on(struct net_device *dev)
4137 {
4138 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4139 		linkwatch_fire_event(dev);
4140 }
4141 
4142 /**
4143  *	netif_testing_off - set device as not under test.
4144  *	@dev: network device
4145  *
4146  * Device is not in testing state.
4147  */
4148 static inline void netif_testing_off(struct net_device *dev)
4149 {
4150 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4151 		linkwatch_fire_event(dev);
4152 }
4153 
4154 /**
4155  *	netif_testing - test if device is under test
4156  *	@dev: network device
4157  *
4158  * Check if device is under test
4159  */
4160 static inline bool netif_testing(const struct net_device *dev)
4161 {
4162 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4163 }
4164 
4165 
4166 /**
4167  *	netif_oper_up - test if device is operational
4168  *	@dev: network device
4169  *
4170  * Check if carrier is operational
4171  */
4172 static inline bool netif_oper_up(const struct net_device *dev)
4173 {
4174 	return (dev->operstate == IF_OPER_UP ||
4175 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4176 }
4177 
4178 /**
4179  *	netif_device_present - is device available or removed
4180  *	@dev: network device
4181  *
4182  * Check if device has not been removed from system.
4183  */
4184 static inline bool netif_device_present(const struct net_device *dev)
4185 {
4186 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4187 }
4188 
4189 void netif_device_detach(struct net_device *dev);
4190 
4191 void netif_device_attach(struct net_device *dev);
4192 
4193 /*
4194  * Network interface message level settings
4195  */
4196 
4197 enum {
4198 	NETIF_MSG_DRV_BIT,
4199 	NETIF_MSG_PROBE_BIT,
4200 	NETIF_MSG_LINK_BIT,
4201 	NETIF_MSG_TIMER_BIT,
4202 	NETIF_MSG_IFDOWN_BIT,
4203 	NETIF_MSG_IFUP_BIT,
4204 	NETIF_MSG_RX_ERR_BIT,
4205 	NETIF_MSG_TX_ERR_BIT,
4206 	NETIF_MSG_TX_QUEUED_BIT,
4207 	NETIF_MSG_INTR_BIT,
4208 	NETIF_MSG_TX_DONE_BIT,
4209 	NETIF_MSG_RX_STATUS_BIT,
4210 	NETIF_MSG_PKTDATA_BIT,
4211 	NETIF_MSG_HW_BIT,
4212 	NETIF_MSG_WOL_BIT,
4213 
4214 	/* When you add a new bit above, update netif_msg_class_names array
4215 	 * in net/ethtool/common.c
4216 	 */
4217 	NETIF_MSG_CLASS_COUNT,
4218 };
4219 /* Both ethtool_ops interface and internal driver implementation use u32 */
4220 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4221 
4222 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4223 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4224 
4225 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4226 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4227 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4228 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4229 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4230 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4231 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4232 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4233 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4234 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4235 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4236 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4237 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4238 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4239 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4240 
4241 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4242 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4243 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4244 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4245 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4246 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4247 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4248 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4249 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4250 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4251 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4252 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4253 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4254 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4255 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4256 
4257 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4258 {
4259 	/* use default */
4260 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4261 		return default_msg_enable_bits;
4262 	if (debug_value == 0)	/* no output */
4263 		return 0;
4264 	/* set low N bits */
4265 	return (1U << debug_value) - 1;
4266 }
4267 
4268 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4269 {
4270 	spin_lock(&txq->_xmit_lock);
4271 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4272 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4273 }
4274 
4275 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4276 {
4277 	__acquire(&txq->_xmit_lock);
4278 	return true;
4279 }
4280 
4281 static inline void __netif_tx_release(struct netdev_queue *txq)
4282 {
4283 	__release(&txq->_xmit_lock);
4284 }
4285 
4286 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4287 {
4288 	spin_lock_bh(&txq->_xmit_lock);
4289 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4290 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4291 }
4292 
4293 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4294 {
4295 	bool ok = spin_trylock(&txq->_xmit_lock);
4296 
4297 	if (likely(ok)) {
4298 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4299 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4300 	}
4301 	return ok;
4302 }
4303 
4304 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4305 {
4306 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4307 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4308 	spin_unlock(&txq->_xmit_lock);
4309 }
4310 
4311 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4312 {
4313 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4314 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4315 	spin_unlock_bh(&txq->_xmit_lock);
4316 }
4317 
4318 /*
4319  * txq->trans_start can be read locklessly from dev_watchdog()
4320  */
4321 static inline void txq_trans_update(struct netdev_queue *txq)
4322 {
4323 	if (txq->xmit_lock_owner != -1)
4324 		WRITE_ONCE(txq->trans_start, jiffies);
4325 }
4326 
4327 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4328 {
4329 	unsigned long now = jiffies;
4330 
4331 	if (READ_ONCE(txq->trans_start) != now)
4332 		WRITE_ONCE(txq->trans_start, now);
4333 }
4334 
4335 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4336 static inline void netif_trans_update(struct net_device *dev)
4337 {
4338 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4339 
4340 	txq_trans_cond_update(txq);
4341 }
4342 
4343 /**
4344  *	netif_tx_lock - grab network device transmit lock
4345  *	@dev: network device
4346  *
4347  * Get network device transmit lock
4348  */
4349 void netif_tx_lock(struct net_device *dev);
4350 
4351 static inline void netif_tx_lock_bh(struct net_device *dev)
4352 {
4353 	local_bh_disable();
4354 	netif_tx_lock(dev);
4355 }
4356 
4357 void netif_tx_unlock(struct net_device *dev);
4358 
4359 static inline void netif_tx_unlock_bh(struct net_device *dev)
4360 {
4361 	netif_tx_unlock(dev);
4362 	local_bh_enable();
4363 }
4364 
4365 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4366 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4367 		__netif_tx_lock(txq, cpu);		\
4368 	} else {					\
4369 		__netif_tx_acquire(txq);		\
4370 	}						\
4371 }
4372 
4373 #define HARD_TX_TRYLOCK(dev, txq)			\
4374 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4375 		__netif_tx_trylock(txq) :		\
4376 		__netif_tx_acquire(txq))
4377 
4378 #define HARD_TX_UNLOCK(dev, txq) {			\
4379 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4380 		__netif_tx_unlock(txq);			\
4381 	} else {					\
4382 		__netif_tx_release(txq);		\
4383 	}						\
4384 }
4385 
4386 static inline void netif_tx_disable(struct net_device *dev)
4387 {
4388 	unsigned int i;
4389 	int cpu;
4390 
4391 	local_bh_disable();
4392 	cpu = smp_processor_id();
4393 	spin_lock(&dev->tx_global_lock);
4394 	for (i = 0; i < dev->num_tx_queues; i++) {
4395 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4396 
4397 		__netif_tx_lock(txq, cpu);
4398 		netif_tx_stop_queue(txq);
4399 		__netif_tx_unlock(txq);
4400 	}
4401 	spin_unlock(&dev->tx_global_lock);
4402 	local_bh_enable();
4403 }
4404 
4405 static inline void netif_addr_lock(struct net_device *dev)
4406 {
4407 	unsigned char nest_level = 0;
4408 
4409 #ifdef CONFIG_LOCKDEP
4410 	nest_level = dev->nested_level;
4411 #endif
4412 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4413 }
4414 
4415 static inline void netif_addr_lock_bh(struct net_device *dev)
4416 {
4417 	unsigned char nest_level = 0;
4418 
4419 #ifdef CONFIG_LOCKDEP
4420 	nest_level = dev->nested_level;
4421 #endif
4422 	local_bh_disable();
4423 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4424 }
4425 
4426 static inline void netif_addr_unlock(struct net_device *dev)
4427 {
4428 	spin_unlock(&dev->addr_list_lock);
4429 }
4430 
4431 static inline void netif_addr_unlock_bh(struct net_device *dev)
4432 {
4433 	spin_unlock_bh(&dev->addr_list_lock);
4434 }
4435 
4436 /*
4437  * dev_addrs walker. Should be used only for read access. Call with
4438  * rcu_read_lock held.
4439  */
4440 #define for_each_dev_addr(dev, ha) \
4441 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4442 
4443 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4444 
4445 void ether_setup(struct net_device *dev);
4446 
4447 /* Support for loadable net-drivers */
4448 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4449 				    unsigned char name_assign_type,
4450 				    void (*setup)(struct net_device *),
4451 				    unsigned int txqs, unsigned int rxqs);
4452 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4453 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4454 
4455 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4456 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4457 			 count)
4458 
4459 int register_netdev(struct net_device *dev);
4460 void unregister_netdev(struct net_device *dev);
4461 
4462 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4463 
4464 /* General hardware address lists handling functions */
4465 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4466 		   struct netdev_hw_addr_list *from_list, int addr_len);
4467 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4468 		      struct netdev_hw_addr_list *from_list, int addr_len);
4469 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4470 		       struct net_device *dev,
4471 		       int (*sync)(struct net_device *, const unsigned char *),
4472 		       int (*unsync)(struct net_device *,
4473 				     const unsigned char *));
4474 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4475 			   struct net_device *dev,
4476 			   int (*sync)(struct net_device *,
4477 				       const unsigned char *, int),
4478 			   int (*unsync)(struct net_device *,
4479 					 const unsigned char *, int));
4480 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4481 			      struct net_device *dev,
4482 			      int (*unsync)(struct net_device *,
4483 					    const unsigned char *, int));
4484 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4485 			  struct net_device *dev,
4486 			  int (*unsync)(struct net_device *,
4487 					const unsigned char *));
4488 void __hw_addr_init(struct netdev_hw_addr_list *list);
4489 
4490 /* Functions used for device addresses handling */
4491 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4492 		  const void *addr, size_t len);
4493 
4494 static inline void
4495 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4496 {
4497 	dev_addr_mod(dev, 0, addr, len);
4498 }
4499 
4500 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4501 {
4502 	__dev_addr_set(dev, addr, dev->addr_len);
4503 }
4504 
4505 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4506 		 unsigned char addr_type);
4507 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4508 		 unsigned char addr_type);
4509 
4510 /* Functions used for unicast addresses handling */
4511 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4512 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4513 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4514 int dev_uc_sync(struct net_device *to, struct net_device *from);
4515 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4516 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4517 void dev_uc_flush(struct net_device *dev);
4518 void dev_uc_init(struct net_device *dev);
4519 
4520 /**
4521  *  __dev_uc_sync - Synchonize device's unicast list
4522  *  @dev:  device to sync
4523  *  @sync: function to call if address should be added
4524  *  @unsync: function to call if address should be removed
4525  *
4526  *  Add newly added addresses to the interface, and release
4527  *  addresses that have been deleted.
4528  */
4529 static inline int __dev_uc_sync(struct net_device *dev,
4530 				int (*sync)(struct net_device *,
4531 					    const unsigned char *),
4532 				int (*unsync)(struct net_device *,
4533 					      const unsigned char *))
4534 {
4535 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4536 }
4537 
4538 /**
4539  *  __dev_uc_unsync - Remove synchronized addresses from device
4540  *  @dev:  device to sync
4541  *  @unsync: function to call if address should be removed
4542  *
4543  *  Remove all addresses that were added to the device by dev_uc_sync().
4544  */
4545 static inline void __dev_uc_unsync(struct net_device *dev,
4546 				   int (*unsync)(struct net_device *,
4547 						 const unsigned char *))
4548 {
4549 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4550 }
4551 
4552 /* Functions used for multicast addresses handling */
4553 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4554 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4555 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4556 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4557 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4558 int dev_mc_sync(struct net_device *to, struct net_device *from);
4559 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4560 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4561 void dev_mc_flush(struct net_device *dev);
4562 void dev_mc_init(struct net_device *dev);
4563 
4564 /**
4565  *  __dev_mc_sync - Synchonize device's multicast list
4566  *  @dev:  device to sync
4567  *  @sync: function to call if address should be added
4568  *  @unsync: function to call if address should be removed
4569  *
4570  *  Add newly added addresses to the interface, and release
4571  *  addresses that have been deleted.
4572  */
4573 static inline int __dev_mc_sync(struct net_device *dev,
4574 				int (*sync)(struct net_device *,
4575 					    const unsigned char *),
4576 				int (*unsync)(struct net_device *,
4577 					      const unsigned char *))
4578 {
4579 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4580 }
4581 
4582 /**
4583  *  __dev_mc_unsync - Remove synchronized addresses from device
4584  *  @dev:  device to sync
4585  *  @unsync: function to call if address should be removed
4586  *
4587  *  Remove all addresses that were added to the device by dev_mc_sync().
4588  */
4589 static inline void __dev_mc_unsync(struct net_device *dev,
4590 				   int (*unsync)(struct net_device *,
4591 						 const unsigned char *))
4592 {
4593 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4594 }
4595 
4596 /* Functions used for secondary unicast and multicast support */
4597 void dev_set_rx_mode(struct net_device *dev);
4598 int dev_set_promiscuity(struct net_device *dev, int inc);
4599 int dev_set_allmulti(struct net_device *dev, int inc);
4600 void netdev_state_change(struct net_device *dev);
4601 void __netdev_notify_peers(struct net_device *dev);
4602 void netdev_notify_peers(struct net_device *dev);
4603 void netdev_features_change(struct net_device *dev);
4604 /* Load a device via the kmod */
4605 void dev_load(struct net *net, const char *name);
4606 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4607 					struct rtnl_link_stats64 *storage);
4608 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4609 			     const struct net_device_stats *netdev_stats);
4610 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4611 			   const struct pcpu_sw_netstats __percpu *netstats);
4612 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4613 
4614 extern int		netdev_max_backlog;
4615 extern int		dev_rx_weight;
4616 extern int		dev_tx_weight;
4617 extern int		gro_normal_batch;
4618 
4619 enum {
4620 	NESTED_SYNC_IMM_BIT,
4621 	NESTED_SYNC_TODO_BIT,
4622 };
4623 
4624 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4625 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4626 
4627 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4628 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4629 
4630 struct netdev_nested_priv {
4631 	unsigned char flags;
4632 	void *data;
4633 };
4634 
4635 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4636 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4637 						     struct list_head **iter);
4638 
4639 /* iterate through upper list, must be called under RCU read lock */
4640 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4641 	for (iter = &(dev)->adj_list.upper, \
4642 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4643 	     updev; \
4644 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4645 
4646 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4647 				  int (*fn)(struct net_device *upper_dev,
4648 					    struct netdev_nested_priv *priv),
4649 				  struct netdev_nested_priv *priv);
4650 
4651 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4652 				  struct net_device *upper_dev);
4653 
4654 bool netdev_has_any_upper_dev(struct net_device *dev);
4655 
4656 void *netdev_lower_get_next_private(struct net_device *dev,
4657 				    struct list_head **iter);
4658 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4659 					struct list_head **iter);
4660 
4661 #define netdev_for_each_lower_private(dev, priv, iter) \
4662 	for (iter = (dev)->adj_list.lower.next, \
4663 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4664 	     priv; \
4665 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4666 
4667 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4668 	for (iter = &(dev)->adj_list.lower, \
4669 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4670 	     priv; \
4671 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4672 
4673 void *netdev_lower_get_next(struct net_device *dev,
4674 				struct list_head **iter);
4675 
4676 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4677 	for (iter = (dev)->adj_list.lower.next, \
4678 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4679 	     ldev; \
4680 	     ldev = netdev_lower_get_next(dev, &(iter)))
4681 
4682 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4683 					     struct list_head **iter);
4684 int netdev_walk_all_lower_dev(struct net_device *dev,
4685 			      int (*fn)(struct net_device *lower_dev,
4686 					struct netdev_nested_priv *priv),
4687 			      struct netdev_nested_priv *priv);
4688 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4689 				  int (*fn)(struct net_device *lower_dev,
4690 					    struct netdev_nested_priv *priv),
4691 				  struct netdev_nested_priv *priv);
4692 
4693 void *netdev_adjacent_get_private(struct list_head *adj_list);
4694 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4695 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4696 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4697 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4698 			  struct netlink_ext_ack *extack);
4699 int netdev_master_upper_dev_link(struct net_device *dev,
4700 				 struct net_device *upper_dev,
4701 				 void *upper_priv, void *upper_info,
4702 				 struct netlink_ext_ack *extack);
4703 void netdev_upper_dev_unlink(struct net_device *dev,
4704 			     struct net_device *upper_dev);
4705 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4706 				   struct net_device *new_dev,
4707 				   struct net_device *dev,
4708 				   struct netlink_ext_ack *extack);
4709 void netdev_adjacent_change_commit(struct net_device *old_dev,
4710 				   struct net_device *new_dev,
4711 				   struct net_device *dev);
4712 void netdev_adjacent_change_abort(struct net_device *old_dev,
4713 				  struct net_device *new_dev,
4714 				  struct net_device *dev);
4715 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4716 void *netdev_lower_dev_get_private(struct net_device *dev,
4717 				   struct net_device *lower_dev);
4718 void netdev_lower_state_changed(struct net_device *lower_dev,
4719 				void *lower_state_info);
4720 
4721 /* RSS keys are 40 or 52 bytes long */
4722 #define NETDEV_RSS_KEY_LEN 52
4723 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4724 void netdev_rss_key_fill(void *buffer, size_t len);
4725 
4726 int skb_checksum_help(struct sk_buff *skb);
4727 int skb_crc32c_csum_help(struct sk_buff *skb);
4728 int skb_csum_hwoffload_help(struct sk_buff *skb,
4729 			    const netdev_features_t features);
4730 
4731 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4732 				  netdev_features_t features, bool tx_path);
4733 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4734 				    netdev_features_t features, __be16 type);
4735 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4736 				    netdev_features_t features);
4737 
4738 struct netdev_bonding_info {
4739 	ifslave	slave;
4740 	ifbond	master;
4741 };
4742 
4743 struct netdev_notifier_bonding_info {
4744 	struct netdev_notifier_info info; /* must be first */
4745 	struct netdev_bonding_info  bonding_info;
4746 };
4747 
4748 void netdev_bonding_info_change(struct net_device *dev,
4749 				struct netdev_bonding_info *bonding_info);
4750 
4751 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4752 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4753 #else
4754 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4755 				  const void *data)
4756 {
4757 }
4758 #endif
4759 
4760 static inline
4761 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4762 {
4763 	return __skb_gso_segment(skb, features, true);
4764 }
4765 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4766 
4767 static inline bool can_checksum_protocol(netdev_features_t features,
4768 					 __be16 protocol)
4769 {
4770 	if (protocol == htons(ETH_P_FCOE))
4771 		return !!(features & NETIF_F_FCOE_CRC);
4772 
4773 	/* Assume this is an IP checksum (not SCTP CRC) */
4774 
4775 	if (features & NETIF_F_HW_CSUM) {
4776 		/* Can checksum everything */
4777 		return true;
4778 	}
4779 
4780 	switch (protocol) {
4781 	case htons(ETH_P_IP):
4782 		return !!(features & NETIF_F_IP_CSUM);
4783 	case htons(ETH_P_IPV6):
4784 		return !!(features & NETIF_F_IPV6_CSUM);
4785 	default:
4786 		return false;
4787 	}
4788 }
4789 
4790 #ifdef CONFIG_BUG
4791 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4792 #else
4793 static inline void netdev_rx_csum_fault(struct net_device *dev,
4794 					struct sk_buff *skb)
4795 {
4796 }
4797 #endif
4798 /* rx skb timestamps */
4799 void net_enable_timestamp(void);
4800 void net_disable_timestamp(void);
4801 
4802 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4803 					const struct skb_shared_hwtstamps *hwtstamps,
4804 					bool cycles)
4805 {
4806 	const struct net_device_ops *ops = dev->netdev_ops;
4807 
4808 	if (ops->ndo_get_tstamp)
4809 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4810 
4811 	return hwtstamps->hwtstamp;
4812 }
4813 
4814 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4815 					      struct sk_buff *skb, struct net_device *dev,
4816 					      bool more)
4817 {
4818 	__this_cpu_write(softnet_data.xmit.more, more);
4819 	return ops->ndo_start_xmit(skb, dev);
4820 }
4821 
4822 static inline bool netdev_xmit_more(void)
4823 {
4824 	return __this_cpu_read(softnet_data.xmit.more);
4825 }
4826 
4827 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4828 					    struct netdev_queue *txq, bool more)
4829 {
4830 	const struct net_device_ops *ops = dev->netdev_ops;
4831 	netdev_tx_t rc;
4832 
4833 	rc = __netdev_start_xmit(ops, skb, dev, more);
4834 	if (rc == NETDEV_TX_OK)
4835 		txq_trans_update(txq);
4836 
4837 	return rc;
4838 }
4839 
4840 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4841 				const void *ns);
4842 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4843 				 const void *ns);
4844 
4845 extern const struct kobj_ns_type_operations net_ns_type_operations;
4846 
4847 const char *netdev_drivername(const struct net_device *dev);
4848 
4849 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4850 							  netdev_features_t f2)
4851 {
4852 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4853 		if (f1 & NETIF_F_HW_CSUM)
4854 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4855 		else
4856 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4857 	}
4858 
4859 	return f1 & f2;
4860 }
4861 
4862 static inline netdev_features_t netdev_get_wanted_features(
4863 	struct net_device *dev)
4864 {
4865 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4866 }
4867 netdev_features_t netdev_increment_features(netdev_features_t all,
4868 	netdev_features_t one, netdev_features_t mask);
4869 
4870 /* Allow TSO being used on stacked device :
4871  * Performing the GSO segmentation before last device
4872  * is a performance improvement.
4873  */
4874 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4875 							netdev_features_t mask)
4876 {
4877 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4878 }
4879 
4880 int __netdev_update_features(struct net_device *dev);
4881 void netdev_update_features(struct net_device *dev);
4882 void netdev_change_features(struct net_device *dev);
4883 
4884 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4885 					struct net_device *dev);
4886 
4887 netdev_features_t passthru_features_check(struct sk_buff *skb,
4888 					  struct net_device *dev,
4889 					  netdev_features_t features);
4890 netdev_features_t netif_skb_features(struct sk_buff *skb);
4891 
4892 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4893 {
4894 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4895 
4896 	/* check flags correspondence */
4897 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4898 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4899 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4900 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4901 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4902 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4903 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4904 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4905 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4906 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4907 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4908 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4909 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4910 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4911 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4912 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4913 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4914 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4915 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4916 
4917 	return (features & feature) == feature;
4918 }
4919 
4920 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4921 {
4922 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4923 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4924 }
4925 
4926 static inline bool netif_needs_gso(struct sk_buff *skb,
4927 				   netdev_features_t features)
4928 {
4929 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4930 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4931 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4932 }
4933 
4934 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4935 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4936 void netif_inherit_tso_max(struct net_device *to,
4937 			   const struct net_device *from);
4938 
4939 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4940 					int pulled_hlen, u16 mac_offset,
4941 					int mac_len)
4942 {
4943 	skb->protocol = protocol;
4944 	skb->encapsulation = 1;
4945 	skb_push(skb, pulled_hlen);
4946 	skb_reset_transport_header(skb);
4947 	skb->mac_header = mac_offset;
4948 	skb->network_header = skb->mac_header + mac_len;
4949 	skb->mac_len = mac_len;
4950 }
4951 
4952 static inline bool netif_is_macsec(const struct net_device *dev)
4953 {
4954 	return dev->priv_flags & IFF_MACSEC;
4955 }
4956 
4957 static inline bool netif_is_macvlan(const struct net_device *dev)
4958 {
4959 	return dev->priv_flags & IFF_MACVLAN;
4960 }
4961 
4962 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4963 {
4964 	return dev->priv_flags & IFF_MACVLAN_PORT;
4965 }
4966 
4967 static inline bool netif_is_bond_master(const struct net_device *dev)
4968 {
4969 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4970 }
4971 
4972 static inline bool netif_is_bond_slave(const struct net_device *dev)
4973 {
4974 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4975 }
4976 
4977 static inline bool netif_supports_nofcs(struct net_device *dev)
4978 {
4979 	return dev->priv_flags & IFF_SUPP_NOFCS;
4980 }
4981 
4982 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4983 {
4984 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4985 }
4986 
4987 static inline bool netif_is_l3_master(const struct net_device *dev)
4988 {
4989 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4990 }
4991 
4992 static inline bool netif_is_l3_slave(const struct net_device *dev)
4993 {
4994 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4995 }
4996 
4997 static inline bool netif_is_bridge_master(const struct net_device *dev)
4998 {
4999 	return dev->priv_flags & IFF_EBRIDGE;
5000 }
5001 
5002 static inline bool netif_is_bridge_port(const struct net_device *dev)
5003 {
5004 	return dev->priv_flags & IFF_BRIDGE_PORT;
5005 }
5006 
5007 static inline bool netif_is_ovs_master(const struct net_device *dev)
5008 {
5009 	return dev->priv_flags & IFF_OPENVSWITCH;
5010 }
5011 
5012 static inline bool netif_is_ovs_port(const struct net_device *dev)
5013 {
5014 	return dev->priv_flags & IFF_OVS_DATAPATH;
5015 }
5016 
5017 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5018 {
5019 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5020 }
5021 
5022 static inline bool netif_is_team_master(const struct net_device *dev)
5023 {
5024 	return dev->priv_flags & IFF_TEAM;
5025 }
5026 
5027 static inline bool netif_is_team_port(const struct net_device *dev)
5028 {
5029 	return dev->priv_flags & IFF_TEAM_PORT;
5030 }
5031 
5032 static inline bool netif_is_lag_master(const struct net_device *dev)
5033 {
5034 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5035 }
5036 
5037 static inline bool netif_is_lag_port(const struct net_device *dev)
5038 {
5039 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5040 }
5041 
5042 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5043 {
5044 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5045 }
5046 
5047 static inline bool netif_is_failover(const struct net_device *dev)
5048 {
5049 	return dev->priv_flags & IFF_FAILOVER;
5050 }
5051 
5052 static inline bool netif_is_failover_slave(const struct net_device *dev)
5053 {
5054 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5055 }
5056 
5057 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5058 static inline void netif_keep_dst(struct net_device *dev)
5059 {
5060 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5061 }
5062 
5063 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5064 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5065 {
5066 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5067 	return netif_is_macsec(dev);
5068 }
5069 
5070 extern struct pernet_operations __net_initdata loopback_net_ops;
5071 
5072 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5073 
5074 /* netdev_printk helpers, similar to dev_printk */
5075 
5076 static inline const char *netdev_name(const struct net_device *dev)
5077 {
5078 	if (!dev->name[0] || strchr(dev->name, '%'))
5079 		return "(unnamed net_device)";
5080 	return dev->name;
5081 }
5082 
5083 static inline bool netdev_unregistering(const struct net_device *dev)
5084 {
5085 	return dev->reg_state == NETREG_UNREGISTERING;
5086 }
5087 
5088 static inline const char *netdev_reg_state(const struct net_device *dev)
5089 {
5090 	switch (dev->reg_state) {
5091 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5092 	case NETREG_REGISTERED: return "";
5093 	case NETREG_UNREGISTERING: return " (unregistering)";
5094 	case NETREG_UNREGISTERED: return " (unregistered)";
5095 	case NETREG_RELEASED: return " (released)";
5096 	case NETREG_DUMMY: return " (dummy)";
5097 	}
5098 
5099 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5100 	return " (unknown)";
5101 }
5102 
5103 #define MODULE_ALIAS_NETDEV(device) \
5104 	MODULE_ALIAS("netdev-" device)
5105 
5106 /*
5107  * netdev_WARN() acts like dev_printk(), but with the key difference
5108  * of using a WARN/WARN_ON to get the message out, including the
5109  * file/line information and a backtrace.
5110  */
5111 #define netdev_WARN(dev, format, args...)			\
5112 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5113 	     netdev_reg_state(dev), ##args)
5114 
5115 #define netdev_WARN_ONCE(dev, format, args...)				\
5116 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5117 		  netdev_reg_state(dev), ##args)
5118 
5119 /*
5120  *	The list of packet types we will receive (as opposed to discard)
5121  *	and the routines to invoke.
5122  *
5123  *	Why 16. Because with 16 the only overlap we get on a hash of the
5124  *	low nibble of the protocol value is RARP/SNAP/X.25.
5125  *
5126  *		0800	IP
5127  *		0001	802.3
5128  *		0002	AX.25
5129  *		0004	802.2
5130  *		8035	RARP
5131  *		0005	SNAP
5132  *		0805	X.25
5133  *		0806	ARP
5134  *		8137	IPX
5135  *		0009	Localtalk
5136  *		86DD	IPv6
5137  */
5138 #define PTYPE_HASH_SIZE	(16)
5139 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5140 
5141 extern struct list_head ptype_all __read_mostly;
5142 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5143 
5144 extern struct net_device *blackhole_netdev;
5145 
5146 #endif	/* _LINUX_NETDEVICE_H */
5147