1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos_params.h> 35 #include <linux/timer.h> 36 #include <linux/delay.h> 37 #include <linux/mm.h> 38 #include <asm/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/device.h> 43 #include <linux/percpu.h> 44 #include <linux/rculist.h> 45 #include <linux/dmaengine.h> 46 #include <linux/workqueue.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 55 struct vlan_group; 56 struct netpoll_info; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* source back-compat hooks */ 61 #define SET_ETHTOOL_OPS(netdev,ops) \ 62 ( (netdev)->ethtool_ops = (ops) ) 63 64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 65 functions are available. */ 66 #define HAVE_FREE_NETDEV /* free_netdev() */ 67 #define HAVE_NETDEV_PRIV /* netdev_priv() */ 68 69 /* hardware address assignment types */ 70 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 /* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously, in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), all 92 * others are propagated to higher layers. 93 */ 94 95 /* qdisc ->enqueue() return codes. */ 96 #define NET_XMIT_SUCCESS 0x00 97 #define NET_XMIT_DROP 0x01 /* skb dropped */ 98 #define NET_XMIT_CN 0x02 /* congestion notification */ 99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 116 }; 117 typedef enum netdev_tx netdev_tx_t; 118 119 /* 120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 122 */ 123 static inline bool dev_xmit_complete(int rc) 124 { 125 /* 126 * Positive cases with an skb consumed by a driver: 127 * - successful transmission (rc == NETDEV_TX_OK) 128 * - error while transmitting (rc < 0) 129 * - error while queueing to a different device (rc & NET_XMIT_MASK) 130 */ 131 if (likely(rc < NET_XMIT_MASK)) 132 return true; 133 134 return false; 135 } 136 137 #endif 138 139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 140 141 #ifdef __KERNEL__ 142 /* 143 * Compute the worst case header length according to the protocols 144 * used. 145 */ 146 147 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 154 # define LL_MAX_HEADER 48 155 #else 156 # define LL_MAX_HEADER 32 157 #endif 158 159 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 160 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 161 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 162 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 163 #define MAX_HEADER LL_MAX_HEADER 164 #else 165 #define MAX_HEADER (LL_MAX_HEADER + 48) 166 #endif 167 168 /* 169 * Old network device statistics. Fields are native words 170 * (unsigned long) so they can be read and written atomically. 171 */ 172 173 struct net_device_stats { 174 unsigned long rx_packets; 175 unsigned long tx_packets; 176 unsigned long rx_bytes; 177 unsigned long tx_bytes; 178 unsigned long rx_errors; 179 unsigned long tx_errors; 180 unsigned long rx_dropped; 181 unsigned long tx_dropped; 182 unsigned long multicast; 183 unsigned long collisions; 184 unsigned long rx_length_errors; 185 unsigned long rx_over_errors; 186 unsigned long rx_crc_errors; 187 unsigned long rx_frame_errors; 188 unsigned long rx_fifo_errors; 189 unsigned long rx_missed_errors; 190 unsigned long tx_aborted_errors; 191 unsigned long tx_carrier_errors; 192 unsigned long tx_fifo_errors; 193 unsigned long tx_heartbeat_errors; 194 unsigned long tx_window_errors; 195 unsigned long rx_compressed; 196 unsigned long tx_compressed; 197 }; 198 199 #endif /* __KERNEL__ */ 200 201 202 /* Media selection options. */ 203 enum { 204 IF_PORT_UNKNOWN = 0, 205 IF_PORT_10BASE2, 206 IF_PORT_10BASET, 207 IF_PORT_AUI, 208 IF_PORT_100BASET, 209 IF_PORT_100BASETX, 210 IF_PORT_100BASEFX 211 }; 212 213 #ifdef __KERNEL__ 214 215 #include <linux/cache.h> 216 #include <linux/skbuff.h> 217 218 struct neighbour; 219 struct neigh_parms; 220 struct sk_buff; 221 222 struct netdev_hw_addr { 223 struct list_head list; 224 unsigned char addr[MAX_ADDR_LEN]; 225 unsigned char type; 226 #define NETDEV_HW_ADDR_T_LAN 1 227 #define NETDEV_HW_ADDR_T_SAN 2 228 #define NETDEV_HW_ADDR_T_SLAVE 3 229 #define NETDEV_HW_ADDR_T_UNICAST 4 230 #define NETDEV_HW_ADDR_T_MULTICAST 5 231 bool synced; 232 bool global_use; 233 int refcount; 234 struct rcu_head rcu_head; 235 }; 236 237 struct netdev_hw_addr_list { 238 struct list_head list; 239 int count; 240 }; 241 242 #define netdev_hw_addr_list_count(l) ((l)->count) 243 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 244 #define netdev_hw_addr_list_for_each(ha, l) \ 245 list_for_each_entry(ha, &(l)->list, list) 246 247 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 248 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 249 #define netdev_for_each_uc_addr(ha, dev) \ 250 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 251 252 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 253 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 254 #define netdev_for_each_mc_addr(ha, dev) \ 255 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 256 257 struct hh_cache { 258 struct hh_cache *hh_next; /* Next entry */ 259 atomic_t hh_refcnt; /* number of users */ 260 /* 261 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 262 * cache line on SMP. 263 * They are mostly read, but hh_refcnt may be changed quite frequently, 264 * incurring cache line ping pongs. 265 */ 266 __be16 hh_type ____cacheline_aligned_in_smp; 267 /* protocol identifier, f.e ETH_P_IP 268 * NOTE: For VLANs, this will be the 269 * encapuslated type. --BLG 270 */ 271 u16 hh_len; /* length of header */ 272 int (*hh_output)(struct sk_buff *skb); 273 seqlock_t hh_lock; 274 275 /* cached hardware header; allow for machine alignment needs. */ 276 #define HH_DATA_MOD 16 277 #define HH_DATA_OFF(__len) \ 278 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 279 #define HH_DATA_ALIGN(__len) \ 280 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 281 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 282 }; 283 284 static inline void hh_cache_put(struct hh_cache *hh) 285 { 286 if (atomic_dec_and_test(&hh->hh_refcnt)) 287 kfree(hh); 288 } 289 290 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 291 * Alternative is: 292 * dev->hard_header_len ? (dev->hard_header_len + 293 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 294 * 295 * We could use other alignment values, but we must maintain the 296 * relationship HH alignment <= LL alignment. 297 * 298 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 299 * may need. 300 */ 301 #define LL_RESERVED_SPACE(dev) \ 302 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 304 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 305 #define LL_ALLOCATED_SPACE(dev) \ 306 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 307 308 struct header_ops { 309 int (*create) (struct sk_buff *skb, struct net_device *dev, 310 unsigned short type, const void *daddr, 311 const void *saddr, unsigned len); 312 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 313 int (*rebuild)(struct sk_buff *skb); 314 #define HAVE_HEADER_CACHE 315 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 316 void (*cache_update)(struct hh_cache *hh, 317 const struct net_device *dev, 318 const unsigned char *haddr); 319 }; 320 321 /* These flag bits are private to the generic network queueing 322 * layer, they may not be explicitly referenced by any other 323 * code. 324 */ 325 326 enum netdev_state_t { 327 __LINK_STATE_START, 328 __LINK_STATE_PRESENT, 329 __LINK_STATE_NOCARRIER, 330 __LINK_STATE_LINKWATCH_PENDING, 331 __LINK_STATE_DORMANT, 332 }; 333 334 335 /* 336 * This structure holds at boot time configured netdevice settings. They 337 * are then used in the device probing. 338 */ 339 struct netdev_boot_setup { 340 char name[IFNAMSIZ]; 341 struct ifmap map; 342 }; 343 #define NETDEV_BOOT_SETUP_MAX 8 344 345 extern int __init netdev_boot_setup(char *str); 346 347 /* 348 * Structure for NAPI scheduling similar to tasklet but with weighting 349 */ 350 struct napi_struct { 351 /* The poll_list must only be managed by the entity which 352 * changes the state of the NAPI_STATE_SCHED bit. This means 353 * whoever atomically sets that bit can add this napi_struct 354 * to the per-cpu poll_list, and whoever clears that bit 355 * can remove from the list right before clearing the bit. 356 */ 357 struct list_head poll_list; 358 359 unsigned long state; 360 int weight; 361 int (*poll)(struct napi_struct *, int); 362 #ifdef CONFIG_NETPOLL 363 spinlock_t poll_lock; 364 int poll_owner; 365 #endif 366 367 unsigned int gro_count; 368 369 struct net_device *dev; 370 struct list_head dev_list; 371 struct sk_buff *gro_list; 372 struct sk_buff *skb; 373 }; 374 375 enum { 376 NAPI_STATE_SCHED, /* Poll is scheduled */ 377 NAPI_STATE_DISABLE, /* Disable pending */ 378 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 379 }; 380 381 enum gro_result { 382 GRO_MERGED, 383 GRO_MERGED_FREE, 384 GRO_HELD, 385 GRO_NORMAL, 386 GRO_DROP, 387 }; 388 typedef enum gro_result gro_result_t; 389 390 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb); 391 392 extern void __napi_schedule(struct napi_struct *n); 393 394 static inline int napi_disable_pending(struct napi_struct *n) 395 { 396 return test_bit(NAPI_STATE_DISABLE, &n->state); 397 } 398 399 /** 400 * napi_schedule_prep - check if napi can be scheduled 401 * @n: napi context 402 * 403 * Test if NAPI routine is already running, and if not mark 404 * it as running. This is used as a condition variable 405 * insure only one NAPI poll instance runs. We also make 406 * sure there is no pending NAPI disable. 407 */ 408 static inline int napi_schedule_prep(struct napi_struct *n) 409 { 410 return !napi_disable_pending(n) && 411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 412 } 413 414 /** 415 * napi_schedule - schedule NAPI poll 416 * @n: napi context 417 * 418 * Schedule NAPI poll routine to be called if it is not already 419 * running. 420 */ 421 static inline void napi_schedule(struct napi_struct *n) 422 { 423 if (napi_schedule_prep(n)) 424 __napi_schedule(n); 425 } 426 427 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 428 static inline int napi_reschedule(struct napi_struct *napi) 429 { 430 if (napi_schedule_prep(napi)) { 431 __napi_schedule(napi); 432 return 1; 433 } 434 return 0; 435 } 436 437 /** 438 * napi_complete - NAPI processing complete 439 * @n: napi context 440 * 441 * Mark NAPI processing as complete. 442 */ 443 extern void __napi_complete(struct napi_struct *n); 444 extern void napi_complete(struct napi_struct *n); 445 446 /** 447 * napi_disable - prevent NAPI from scheduling 448 * @n: napi context 449 * 450 * Stop NAPI from being scheduled on this context. 451 * Waits till any outstanding processing completes. 452 */ 453 static inline void napi_disable(struct napi_struct *n) 454 { 455 set_bit(NAPI_STATE_DISABLE, &n->state); 456 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 457 msleep(1); 458 clear_bit(NAPI_STATE_DISABLE, &n->state); 459 } 460 461 /** 462 * napi_enable - enable NAPI scheduling 463 * @n: napi context 464 * 465 * Resume NAPI from being scheduled on this context. 466 * Must be paired with napi_disable. 467 */ 468 static inline void napi_enable(struct napi_struct *n) 469 { 470 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 471 smp_mb__before_clear_bit(); 472 clear_bit(NAPI_STATE_SCHED, &n->state); 473 } 474 475 #ifdef CONFIG_SMP 476 /** 477 * napi_synchronize - wait until NAPI is not running 478 * @n: napi context 479 * 480 * Wait until NAPI is done being scheduled on this context. 481 * Waits till any outstanding processing completes but 482 * does not disable future activations. 483 */ 484 static inline void napi_synchronize(const struct napi_struct *n) 485 { 486 while (test_bit(NAPI_STATE_SCHED, &n->state)) 487 msleep(1); 488 } 489 #else 490 # define napi_synchronize(n) barrier() 491 #endif 492 493 enum netdev_queue_state_t { 494 __QUEUE_STATE_XOFF, 495 __QUEUE_STATE_FROZEN, 496 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ 497 (1 << __QUEUE_STATE_FROZEN)) 498 }; 499 500 struct netdev_queue { 501 /* 502 * read mostly part 503 */ 504 struct net_device *dev; 505 struct Qdisc *qdisc; 506 unsigned long state; 507 struct Qdisc *qdisc_sleeping; 508 #ifdef CONFIG_RPS 509 struct kobject kobj; 510 #endif 511 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 512 int numa_node; 513 #endif 514 /* 515 * write mostly part 516 */ 517 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 518 int xmit_lock_owner; 519 /* 520 * please use this field instead of dev->trans_start 521 */ 522 unsigned long trans_start; 523 u64 tx_bytes; 524 u64 tx_packets; 525 u64 tx_dropped; 526 } ____cacheline_aligned_in_smp; 527 528 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 529 { 530 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 531 return q->numa_node; 532 #else 533 return NUMA_NO_NODE; 534 #endif 535 } 536 537 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 538 { 539 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 540 q->numa_node = node; 541 #endif 542 } 543 544 #ifdef CONFIG_RPS 545 /* 546 * This structure holds an RPS map which can be of variable length. The 547 * map is an array of CPUs. 548 */ 549 struct rps_map { 550 unsigned int len; 551 struct rcu_head rcu; 552 u16 cpus[0]; 553 }; 554 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 555 556 /* 557 * The rps_dev_flow structure contains the mapping of a flow to a CPU and the 558 * tail pointer for that CPU's input queue at the time of last enqueue. 559 */ 560 struct rps_dev_flow { 561 u16 cpu; 562 u16 fill; 563 unsigned int last_qtail; 564 }; 565 566 /* 567 * The rps_dev_flow_table structure contains a table of flow mappings. 568 */ 569 struct rps_dev_flow_table { 570 unsigned int mask; 571 struct rcu_head rcu; 572 struct work_struct free_work; 573 struct rps_dev_flow flows[0]; 574 }; 575 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 576 (_num * sizeof(struct rps_dev_flow))) 577 578 /* 579 * The rps_sock_flow_table contains mappings of flows to the last CPU 580 * on which they were processed by the application (set in recvmsg). 581 */ 582 struct rps_sock_flow_table { 583 unsigned int mask; 584 u16 ents[0]; 585 }; 586 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 587 (_num * sizeof(u16))) 588 589 #define RPS_NO_CPU 0xffff 590 591 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 592 u32 hash) 593 { 594 if (table && hash) { 595 unsigned int cpu, index = hash & table->mask; 596 597 /* We only give a hint, preemption can change cpu under us */ 598 cpu = raw_smp_processor_id(); 599 600 if (table->ents[index] != cpu) 601 table->ents[index] = cpu; 602 } 603 } 604 605 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 606 u32 hash) 607 { 608 if (table && hash) 609 table->ents[hash & table->mask] = RPS_NO_CPU; 610 } 611 612 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 613 614 /* This structure contains an instance of an RX queue. */ 615 struct netdev_rx_queue { 616 struct rps_map __rcu *rps_map; 617 struct rps_dev_flow_table __rcu *rps_flow_table; 618 struct kobject kobj; 619 struct net_device *dev; 620 } ____cacheline_aligned_in_smp; 621 #endif /* CONFIG_RPS */ 622 623 #ifdef CONFIG_XPS 624 /* 625 * This structure holds an XPS map which can be of variable length. The 626 * map is an array of queues. 627 */ 628 struct xps_map { 629 unsigned int len; 630 unsigned int alloc_len; 631 struct rcu_head rcu; 632 u16 queues[0]; 633 }; 634 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) 635 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 636 / sizeof(u16)) 637 638 /* 639 * This structure holds all XPS maps for device. Maps are indexed by CPU. 640 */ 641 struct xps_dev_maps { 642 struct rcu_head rcu; 643 struct xps_map __rcu *cpu_map[0]; 644 }; 645 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 646 (nr_cpu_ids * sizeof(struct xps_map *))) 647 #endif /* CONFIG_XPS */ 648 649 /* 650 * This structure defines the management hooks for network devices. 651 * The following hooks can be defined; unless noted otherwise, they are 652 * optional and can be filled with a null pointer. 653 * 654 * int (*ndo_init)(struct net_device *dev); 655 * This function is called once when network device is registered. 656 * The network device can use this to any late stage initializaton 657 * or semantic validattion. It can fail with an error code which will 658 * be propogated back to register_netdev 659 * 660 * void (*ndo_uninit)(struct net_device *dev); 661 * This function is called when device is unregistered or when registration 662 * fails. It is not called if init fails. 663 * 664 * int (*ndo_open)(struct net_device *dev); 665 * This function is called when network device transistions to the up 666 * state. 667 * 668 * int (*ndo_stop)(struct net_device *dev); 669 * This function is called when network device transistions to the down 670 * state. 671 * 672 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 673 * struct net_device *dev); 674 * Called when a packet needs to be transmitted. 675 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 676 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 677 * Required can not be NULL. 678 * 679 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 680 * Called to decide which queue to when device supports multiple 681 * transmit queues. 682 * 683 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 684 * This function is called to allow device receiver to make 685 * changes to configuration when multicast or promiscious is enabled. 686 * 687 * void (*ndo_set_rx_mode)(struct net_device *dev); 688 * This function is called device changes address list filtering. 689 * 690 * void (*ndo_set_multicast_list)(struct net_device *dev); 691 * This function is called when the multicast address list changes. 692 * 693 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 694 * This function is called when the Media Access Control address 695 * needs to be changed. If this interface is not defined, the 696 * mac address can not be changed. 697 * 698 * int (*ndo_validate_addr)(struct net_device *dev); 699 * Test if Media Access Control address is valid for the device. 700 * 701 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 702 * Called when a user request an ioctl which can't be handled by 703 * the generic interface code. If not defined ioctl's return 704 * not supported error code. 705 * 706 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 707 * Used to set network devices bus interface parameters. This interface 708 * is retained for legacy reason, new devices should use the bus 709 * interface (PCI) for low level management. 710 * 711 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 712 * Called when a user wants to change the Maximum Transfer Unit 713 * of a device. If not defined, any request to change MTU will 714 * will return an error. 715 * 716 * void (*ndo_tx_timeout)(struct net_device *dev); 717 * Callback uses when the transmitter has not made any progress 718 * for dev->watchdog ticks. 719 * 720 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 721 * struct rtnl_link_stats64 *storage); 722 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 723 * Called when a user wants to get the network device usage 724 * statistics. Drivers must do one of the following: 725 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 726 * rtnl_link_stats64 structure passed by the caller. 727 * 2. Define @ndo_get_stats to update a net_device_stats structure 728 * (which should normally be dev->stats) and return a pointer to 729 * it. The structure may be changed asynchronously only if each 730 * field is written atomically. 731 * 3. Update dev->stats asynchronously and atomically, and define 732 * neither operation. 733 * 734 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 735 * If device support VLAN receive acceleration 736 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 737 * when vlan groups for the device changes. Note: grp is NULL 738 * if no vlan's groups are being used. 739 * 740 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 741 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 742 * this function is called when a VLAN id is registered. 743 * 744 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 745 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 746 * this function is called when a VLAN id is unregistered. 747 * 748 * void (*ndo_poll_controller)(struct net_device *dev); 749 * 750 * SR-IOV management functions. 751 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 752 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 753 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 754 * int (*ndo_get_vf_config)(struct net_device *dev, 755 * int vf, struct ifla_vf_info *ivf); 756 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 757 * struct nlattr *port[]); 758 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 759 */ 760 #define HAVE_NET_DEVICE_OPS 761 struct net_device_ops { 762 int (*ndo_init)(struct net_device *dev); 763 void (*ndo_uninit)(struct net_device *dev); 764 int (*ndo_open)(struct net_device *dev); 765 int (*ndo_stop)(struct net_device *dev); 766 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 767 struct net_device *dev); 768 u16 (*ndo_select_queue)(struct net_device *dev, 769 struct sk_buff *skb); 770 void (*ndo_change_rx_flags)(struct net_device *dev, 771 int flags); 772 void (*ndo_set_rx_mode)(struct net_device *dev); 773 void (*ndo_set_multicast_list)(struct net_device *dev); 774 int (*ndo_set_mac_address)(struct net_device *dev, 775 void *addr); 776 int (*ndo_validate_addr)(struct net_device *dev); 777 int (*ndo_do_ioctl)(struct net_device *dev, 778 struct ifreq *ifr, int cmd); 779 int (*ndo_set_config)(struct net_device *dev, 780 struct ifmap *map); 781 int (*ndo_change_mtu)(struct net_device *dev, 782 int new_mtu); 783 int (*ndo_neigh_setup)(struct net_device *dev, 784 struct neigh_parms *); 785 void (*ndo_tx_timeout) (struct net_device *dev); 786 787 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 788 struct rtnl_link_stats64 *storage); 789 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 790 791 void (*ndo_vlan_rx_register)(struct net_device *dev, 792 struct vlan_group *grp); 793 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 794 unsigned short vid); 795 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 796 unsigned short vid); 797 #ifdef CONFIG_NET_POLL_CONTROLLER 798 void (*ndo_poll_controller)(struct net_device *dev); 799 int (*ndo_netpoll_setup)(struct net_device *dev, 800 struct netpoll_info *info); 801 void (*ndo_netpoll_cleanup)(struct net_device *dev); 802 #endif 803 int (*ndo_set_vf_mac)(struct net_device *dev, 804 int queue, u8 *mac); 805 int (*ndo_set_vf_vlan)(struct net_device *dev, 806 int queue, u16 vlan, u8 qos); 807 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 808 int vf, int rate); 809 int (*ndo_get_vf_config)(struct net_device *dev, 810 int vf, 811 struct ifla_vf_info *ivf); 812 int (*ndo_set_vf_port)(struct net_device *dev, 813 int vf, 814 struct nlattr *port[]); 815 int (*ndo_get_vf_port)(struct net_device *dev, 816 int vf, struct sk_buff *skb); 817 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 818 int (*ndo_fcoe_enable)(struct net_device *dev); 819 int (*ndo_fcoe_disable)(struct net_device *dev); 820 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 821 u16 xid, 822 struct scatterlist *sgl, 823 unsigned int sgc); 824 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 825 u16 xid); 826 #define NETDEV_FCOE_WWNN 0 827 #define NETDEV_FCOE_WWPN 1 828 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 829 u64 *wwn, int type); 830 #endif 831 }; 832 833 /* 834 * The DEVICE structure. 835 * Actually, this whole structure is a big mistake. It mixes I/O 836 * data with strictly "high-level" data, and it has to know about 837 * almost every data structure used in the INET module. 838 * 839 * FIXME: cleanup struct net_device such that network protocol info 840 * moves out. 841 */ 842 843 struct net_device { 844 845 /* 846 * This is the first field of the "visible" part of this structure 847 * (i.e. as seen by users in the "Space.c" file). It is the name 848 * of the interface. 849 */ 850 char name[IFNAMSIZ]; 851 852 struct pm_qos_request_list pm_qos_req; 853 854 /* device name hash chain */ 855 struct hlist_node name_hlist; 856 /* snmp alias */ 857 char *ifalias; 858 859 /* 860 * I/O specific fields 861 * FIXME: Merge these and struct ifmap into one 862 */ 863 unsigned long mem_end; /* shared mem end */ 864 unsigned long mem_start; /* shared mem start */ 865 unsigned long base_addr; /* device I/O address */ 866 unsigned int irq; /* device IRQ number */ 867 868 /* 869 * Some hardware also needs these fields, but they are not 870 * part of the usual set specified in Space.c. 871 */ 872 873 unsigned char if_port; /* Selectable AUI, TP,..*/ 874 unsigned char dma; /* DMA channel */ 875 876 unsigned long state; 877 878 struct list_head dev_list; 879 struct list_head napi_list; 880 struct list_head unreg_list; 881 882 /* Net device features */ 883 unsigned long features; 884 #define NETIF_F_SG 1 /* Scatter/gather IO. */ 885 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 886 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 887 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 888 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 889 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 890 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 891 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 892 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 893 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 894 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 895 #define NETIF_F_GSO 2048 /* Enable software GSO. */ 896 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 897 /* do not use LLTX in new drivers */ 898 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 899 #define NETIF_F_GRO 16384 /* Generic receive offload */ 900 #define NETIF_F_LRO 32768 /* large receive offload */ 901 902 /* the GSO_MASK reserves bits 16 through 23 */ 903 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 904 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 905 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 906 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 907 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 908 909 /* Segmentation offload features */ 910 #define NETIF_F_GSO_SHIFT 16 911 #define NETIF_F_GSO_MASK 0x00ff0000 912 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 913 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 914 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 915 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 916 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 917 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 918 919 /* List of features with software fallbacks. */ 920 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 921 NETIF_F_TSO6 | NETIF_F_UFO) 922 923 924 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 925 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 926 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 927 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 928 929 /* 930 * If one device supports one of these features, then enable them 931 * for all in netdev_increment_features. 932 */ 933 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 934 NETIF_F_SG | NETIF_F_HIGHDMA | \ 935 NETIF_F_FRAGLIST) 936 937 /* Interface index. Unique device identifier */ 938 int ifindex; 939 int iflink; 940 941 struct net_device_stats stats; 942 atomic_long_t rx_dropped; /* dropped packets by core network 943 * Do not use this in drivers. 944 */ 945 946 #ifdef CONFIG_WIRELESS_EXT 947 /* List of functions to handle Wireless Extensions (instead of ioctl). 948 * See <net/iw_handler.h> for details. Jean II */ 949 const struct iw_handler_def * wireless_handlers; 950 /* Instance data managed by the core of Wireless Extensions. */ 951 struct iw_public_data * wireless_data; 952 #endif 953 /* Management operations */ 954 const struct net_device_ops *netdev_ops; 955 const struct ethtool_ops *ethtool_ops; 956 957 /* Hardware header description */ 958 const struct header_ops *header_ops; 959 960 unsigned int flags; /* interface flags (a la BSD) */ 961 unsigned short gflags; 962 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 963 unsigned short padded; /* How much padding added by alloc_netdev() */ 964 965 unsigned char operstate; /* RFC2863 operstate */ 966 unsigned char link_mode; /* mapping policy to operstate */ 967 968 unsigned int mtu; /* interface MTU value */ 969 unsigned short type; /* interface hardware type */ 970 unsigned short hard_header_len; /* hardware hdr length */ 971 972 /* extra head- and tailroom the hardware may need, but not in all cases 973 * can this be guaranteed, especially tailroom. Some cases also use 974 * LL_MAX_HEADER instead to allocate the skb. 975 */ 976 unsigned short needed_headroom; 977 unsigned short needed_tailroom; 978 979 /* Interface address info. */ 980 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 981 unsigned char addr_assign_type; /* hw address assignment type */ 982 unsigned char addr_len; /* hardware address length */ 983 unsigned short dev_id; /* for shared network cards */ 984 985 spinlock_t addr_list_lock; 986 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 987 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 988 int uc_promisc; 989 unsigned int promiscuity; 990 unsigned int allmulti; 991 992 993 /* Protocol specific pointers */ 994 995 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 996 struct vlan_group __rcu *vlgrp; /* VLAN group */ 997 #endif 998 #ifdef CONFIG_NET_DSA 999 void *dsa_ptr; /* dsa specific data */ 1000 #endif 1001 void *atalk_ptr; /* AppleTalk link */ 1002 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1003 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1004 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1005 void *ec_ptr; /* Econet specific data */ 1006 void *ax25_ptr; /* AX.25 specific data */ 1007 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1008 assign before registering */ 1009 1010 /* 1011 * Cache lines mostly used on receive path (including eth_type_trans()) 1012 */ 1013 unsigned long last_rx; /* Time of last Rx 1014 * This should not be set in 1015 * drivers, unless really needed, 1016 * because network stack (bonding) 1017 * use it if/when necessary, to 1018 * avoid dirtying this cache line. 1019 */ 1020 1021 struct net_device *master; /* Pointer to master device of a group, 1022 * which this device is member of. 1023 */ 1024 1025 /* Interface address info used in eth_type_trans() */ 1026 unsigned char *dev_addr; /* hw address, (before bcast 1027 because most packets are 1028 unicast) */ 1029 1030 struct netdev_hw_addr_list dev_addrs; /* list of device 1031 hw addresses */ 1032 1033 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1034 1035 #ifdef CONFIG_RPS 1036 struct kset *queues_kset; 1037 1038 struct netdev_rx_queue *_rx; 1039 1040 /* Number of RX queues allocated at register_netdev() time */ 1041 unsigned int num_rx_queues; 1042 1043 /* Number of RX queues currently active in device */ 1044 unsigned int real_num_rx_queues; 1045 #endif 1046 1047 rx_handler_func_t __rcu *rx_handler; 1048 void __rcu *rx_handler_data; 1049 1050 struct netdev_queue __rcu *ingress_queue; 1051 1052 /* 1053 * Cache lines mostly used on transmit path 1054 */ 1055 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1056 1057 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1058 unsigned int num_tx_queues; 1059 1060 /* Number of TX queues currently active in device */ 1061 unsigned int real_num_tx_queues; 1062 1063 /* root qdisc from userspace point of view */ 1064 struct Qdisc *qdisc; 1065 1066 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1067 spinlock_t tx_global_lock; 1068 1069 #ifdef CONFIG_XPS 1070 struct xps_dev_maps __rcu *xps_maps; 1071 #endif 1072 1073 /* These may be needed for future network-power-down code. */ 1074 1075 /* 1076 * trans_start here is expensive for high speed devices on SMP, 1077 * please use netdev_queue->trans_start instead. 1078 */ 1079 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1080 1081 int watchdog_timeo; /* used by dev_watchdog() */ 1082 struct timer_list watchdog_timer; 1083 1084 /* Number of references to this device */ 1085 int __percpu *pcpu_refcnt; 1086 1087 /* delayed register/unregister */ 1088 struct list_head todo_list; 1089 /* device index hash chain */ 1090 struct hlist_node index_hlist; 1091 1092 struct list_head link_watch_list; 1093 1094 /* register/unregister state machine */ 1095 enum { NETREG_UNINITIALIZED=0, 1096 NETREG_REGISTERED, /* completed register_netdevice */ 1097 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1098 NETREG_UNREGISTERED, /* completed unregister todo */ 1099 NETREG_RELEASED, /* called free_netdev */ 1100 NETREG_DUMMY, /* dummy device for NAPI poll */ 1101 } reg_state:16; 1102 1103 enum { 1104 RTNL_LINK_INITIALIZED, 1105 RTNL_LINK_INITIALIZING, 1106 } rtnl_link_state:16; 1107 1108 /* Called from unregister, can be used to call free_netdev */ 1109 void (*destructor)(struct net_device *dev); 1110 1111 #ifdef CONFIG_NETPOLL 1112 struct netpoll_info *npinfo; 1113 #endif 1114 1115 #ifdef CONFIG_NET_NS 1116 /* Network namespace this network device is inside */ 1117 struct net *nd_net; 1118 #endif 1119 1120 /* mid-layer private */ 1121 union { 1122 void *ml_priv; 1123 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1124 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1125 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1126 }; 1127 /* GARP */ 1128 struct garp_port __rcu *garp_port; 1129 1130 /* class/net/name entry */ 1131 struct device dev; 1132 /* space for optional device, statistics, and wireless sysfs groups */ 1133 const struct attribute_group *sysfs_groups[4]; 1134 1135 /* rtnetlink link ops */ 1136 const struct rtnl_link_ops *rtnl_link_ops; 1137 1138 /* VLAN feature mask */ 1139 unsigned long vlan_features; 1140 1141 /* for setting kernel sock attribute on TCP connection setup */ 1142 #define GSO_MAX_SIZE 65536 1143 unsigned int gso_max_size; 1144 1145 #ifdef CONFIG_DCB 1146 /* Data Center Bridging netlink ops */ 1147 const struct dcbnl_rtnl_ops *dcbnl_ops; 1148 #endif 1149 1150 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1151 /* max exchange id for FCoE LRO by ddp */ 1152 unsigned int fcoe_ddp_xid; 1153 #endif 1154 /* n-tuple filter list attached to this device */ 1155 struct ethtool_rx_ntuple_list ethtool_ntuple_list; 1156 1157 /* phy device may attach itself for hardware timestamping */ 1158 struct phy_device *phydev; 1159 }; 1160 #define to_net_dev(d) container_of(d, struct net_device, dev) 1161 1162 #define NETDEV_ALIGN 32 1163 1164 static inline 1165 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1166 unsigned int index) 1167 { 1168 return &dev->_tx[index]; 1169 } 1170 1171 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1172 void (*f)(struct net_device *, 1173 struct netdev_queue *, 1174 void *), 1175 void *arg) 1176 { 1177 unsigned int i; 1178 1179 for (i = 0; i < dev->num_tx_queues; i++) 1180 f(dev, &dev->_tx[i], arg); 1181 } 1182 1183 /* 1184 * Net namespace inlines 1185 */ 1186 static inline 1187 struct net *dev_net(const struct net_device *dev) 1188 { 1189 return read_pnet(&dev->nd_net); 1190 } 1191 1192 static inline 1193 void dev_net_set(struct net_device *dev, struct net *net) 1194 { 1195 #ifdef CONFIG_NET_NS 1196 release_net(dev->nd_net); 1197 dev->nd_net = hold_net(net); 1198 #endif 1199 } 1200 1201 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1202 { 1203 #ifdef CONFIG_NET_DSA_TAG_DSA 1204 if (dev->dsa_ptr != NULL) 1205 return dsa_uses_dsa_tags(dev->dsa_ptr); 1206 #endif 1207 1208 return 0; 1209 } 1210 1211 #ifndef CONFIG_NET_NS 1212 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1213 { 1214 skb->dev = dev; 1215 } 1216 #else /* CONFIG_NET_NS */ 1217 void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1218 #endif 1219 1220 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1221 { 1222 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1223 if (dev->dsa_ptr != NULL) 1224 return dsa_uses_trailer_tags(dev->dsa_ptr); 1225 #endif 1226 1227 return 0; 1228 } 1229 1230 /** 1231 * netdev_priv - access network device private data 1232 * @dev: network device 1233 * 1234 * Get network device private data 1235 */ 1236 static inline void *netdev_priv(const struct net_device *dev) 1237 { 1238 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1239 } 1240 1241 /* Set the sysfs physical device reference for the network logical device 1242 * if set prior to registration will cause a symlink during initialization. 1243 */ 1244 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1245 1246 /* Set the sysfs device type for the network logical device to allow 1247 * fin grained indentification of different network device types. For 1248 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1249 */ 1250 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1251 1252 /** 1253 * netif_napi_add - initialize a napi context 1254 * @dev: network device 1255 * @napi: napi context 1256 * @poll: polling function 1257 * @weight: default weight 1258 * 1259 * netif_napi_add() must be used to initialize a napi context prior to calling 1260 * *any* of the other napi related functions. 1261 */ 1262 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1263 int (*poll)(struct napi_struct *, int), int weight); 1264 1265 /** 1266 * netif_napi_del - remove a napi context 1267 * @napi: napi context 1268 * 1269 * netif_napi_del() removes a napi context from the network device napi list 1270 */ 1271 void netif_napi_del(struct napi_struct *napi); 1272 1273 struct napi_gro_cb { 1274 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1275 void *frag0; 1276 1277 /* Length of frag0. */ 1278 unsigned int frag0_len; 1279 1280 /* This indicates where we are processing relative to skb->data. */ 1281 int data_offset; 1282 1283 /* This is non-zero if the packet may be of the same flow. */ 1284 int same_flow; 1285 1286 /* This is non-zero if the packet cannot be merged with the new skb. */ 1287 int flush; 1288 1289 /* Number of segments aggregated. */ 1290 int count; 1291 1292 /* Free the skb? */ 1293 int free; 1294 }; 1295 1296 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1297 1298 struct packet_type { 1299 __be16 type; /* This is really htons(ether_type). */ 1300 struct net_device *dev; /* NULL is wildcarded here */ 1301 int (*func) (struct sk_buff *, 1302 struct net_device *, 1303 struct packet_type *, 1304 struct net_device *); 1305 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1306 int features); 1307 int (*gso_send_check)(struct sk_buff *skb); 1308 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1309 struct sk_buff *skb); 1310 int (*gro_complete)(struct sk_buff *skb); 1311 void *af_packet_priv; 1312 struct list_head list; 1313 }; 1314 1315 #include <linux/interrupt.h> 1316 #include <linux/notifier.h> 1317 1318 extern rwlock_t dev_base_lock; /* Device list lock */ 1319 1320 1321 #define for_each_netdev(net, d) \ 1322 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1323 #define for_each_netdev_reverse(net, d) \ 1324 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1325 #define for_each_netdev_rcu(net, d) \ 1326 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1327 #define for_each_netdev_safe(net, d, n) \ 1328 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1329 #define for_each_netdev_continue(net, d) \ 1330 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1331 #define for_each_netdev_continue_rcu(net, d) \ 1332 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1333 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1334 1335 static inline struct net_device *next_net_device(struct net_device *dev) 1336 { 1337 struct list_head *lh; 1338 struct net *net; 1339 1340 net = dev_net(dev); 1341 lh = dev->dev_list.next; 1342 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1343 } 1344 1345 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1346 { 1347 struct list_head *lh; 1348 struct net *net; 1349 1350 net = dev_net(dev); 1351 lh = rcu_dereference(dev->dev_list.next); 1352 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1353 } 1354 1355 static inline struct net_device *first_net_device(struct net *net) 1356 { 1357 return list_empty(&net->dev_base_head) ? NULL : 1358 net_device_entry(net->dev_base_head.next); 1359 } 1360 1361 extern int netdev_boot_setup_check(struct net_device *dev); 1362 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1363 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1364 const char *hwaddr); 1365 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1366 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1367 extern void dev_add_pack(struct packet_type *pt); 1368 extern void dev_remove_pack(struct packet_type *pt); 1369 extern void __dev_remove_pack(struct packet_type *pt); 1370 1371 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1372 unsigned short mask); 1373 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1374 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1375 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1376 extern int dev_alloc_name(struct net_device *dev, const char *name); 1377 extern int dev_open(struct net_device *dev); 1378 extern int dev_close(struct net_device *dev); 1379 extern void dev_disable_lro(struct net_device *dev); 1380 extern int dev_queue_xmit(struct sk_buff *skb); 1381 extern int register_netdevice(struct net_device *dev); 1382 extern void unregister_netdevice_queue(struct net_device *dev, 1383 struct list_head *head); 1384 extern void unregister_netdevice_many(struct list_head *head); 1385 static inline void unregister_netdevice(struct net_device *dev) 1386 { 1387 unregister_netdevice_queue(dev, NULL); 1388 } 1389 1390 extern int netdev_refcnt_read(const struct net_device *dev); 1391 extern void free_netdev(struct net_device *dev); 1392 extern void synchronize_net(void); 1393 extern int register_netdevice_notifier(struct notifier_block *nb); 1394 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1395 extern int init_dummy_netdev(struct net_device *dev); 1396 extern void netdev_resync_ops(struct net_device *dev); 1397 1398 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1399 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1400 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1401 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1402 extern int dev_restart(struct net_device *dev); 1403 #ifdef CONFIG_NETPOLL_TRAP 1404 extern int netpoll_trap(void); 1405 #endif 1406 extern int skb_gro_receive(struct sk_buff **head, 1407 struct sk_buff *skb); 1408 extern void skb_gro_reset_offset(struct sk_buff *skb); 1409 1410 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1411 { 1412 return NAPI_GRO_CB(skb)->data_offset; 1413 } 1414 1415 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1416 { 1417 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1418 } 1419 1420 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1421 { 1422 NAPI_GRO_CB(skb)->data_offset += len; 1423 } 1424 1425 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1426 unsigned int offset) 1427 { 1428 return NAPI_GRO_CB(skb)->frag0 + offset; 1429 } 1430 1431 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1432 { 1433 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1434 } 1435 1436 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1437 unsigned int offset) 1438 { 1439 NAPI_GRO_CB(skb)->frag0 = NULL; 1440 NAPI_GRO_CB(skb)->frag0_len = 0; 1441 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1442 } 1443 1444 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1445 { 1446 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1447 } 1448 1449 static inline void *skb_gro_network_header(struct sk_buff *skb) 1450 { 1451 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1452 skb_network_offset(skb); 1453 } 1454 1455 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1456 unsigned short type, 1457 const void *daddr, const void *saddr, 1458 unsigned len) 1459 { 1460 if (!dev->header_ops || !dev->header_ops->create) 1461 return 0; 1462 1463 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1464 } 1465 1466 static inline int dev_parse_header(const struct sk_buff *skb, 1467 unsigned char *haddr) 1468 { 1469 const struct net_device *dev = skb->dev; 1470 1471 if (!dev->header_ops || !dev->header_ops->parse) 1472 return 0; 1473 return dev->header_ops->parse(skb, haddr); 1474 } 1475 1476 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1477 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1478 static inline int unregister_gifconf(unsigned int family) 1479 { 1480 return register_gifconf(family, NULL); 1481 } 1482 1483 /* 1484 * Incoming packets are placed on per-cpu queues 1485 */ 1486 struct softnet_data { 1487 struct Qdisc *output_queue; 1488 struct Qdisc **output_queue_tailp; 1489 struct list_head poll_list; 1490 struct sk_buff *completion_queue; 1491 struct sk_buff_head process_queue; 1492 1493 /* stats */ 1494 unsigned int processed; 1495 unsigned int time_squeeze; 1496 unsigned int cpu_collision; 1497 unsigned int received_rps; 1498 1499 #ifdef CONFIG_RPS 1500 struct softnet_data *rps_ipi_list; 1501 1502 /* Elements below can be accessed between CPUs for RPS */ 1503 struct call_single_data csd ____cacheline_aligned_in_smp; 1504 struct softnet_data *rps_ipi_next; 1505 unsigned int cpu; 1506 unsigned int input_queue_head; 1507 unsigned int input_queue_tail; 1508 #endif 1509 unsigned dropped; 1510 struct sk_buff_head input_pkt_queue; 1511 struct napi_struct backlog; 1512 }; 1513 1514 static inline void input_queue_head_incr(struct softnet_data *sd) 1515 { 1516 #ifdef CONFIG_RPS 1517 sd->input_queue_head++; 1518 #endif 1519 } 1520 1521 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1522 unsigned int *qtail) 1523 { 1524 #ifdef CONFIG_RPS 1525 *qtail = ++sd->input_queue_tail; 1526 #endif 1527 } 1528 1529 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1530 1531 #define HAVE_NETIF_QUEUE 1532 1533 extern void __netif_schedule(struct Qdisc *q); 1534 1535 static inline void netif_schedule_queue(struct netdev_queue *txq) 1536 { 1537 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1538 __netif_schedule(txq->qdisc); 1539 } 1540 1541 static inline void netif_tx_schedule_all(struct net_device *dev) 1542 { 1543 unsigned int i; 1544 1545 for (i = 0; i < dev->num_tx_queues; i++) 1546 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1547 } 1548 1549 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1550 { 1551 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1552 } 1553 1554 /** 1555 * netif_start_queue - allow transmit 1556 * @dev: network device 1557 * 1558 * Allow upper layers to call the device hard_start_xmit routine. 1559 */ 1560 static inline void netif_start_queue(struct net_device *dev) 1561 { 1562 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1563 } 1564 1565 static inline void netif_tx_start_all_queues(struct net_device *dev) 1566 { 1567 unsigned int i; 1568 1569 for (i = 0; i < dev->num_tx_queues; i++) { 1570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1571 netif_tx_start_queue(txq); 1572 } 1573 } 1574 1575 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1576 { 1577 #ifdef CONFIG_NETPOLL_TRAP 1578 if (netpoll_trap()) { 1579 netif_tx_start_queue(dev_queue); 1580 return; 1581 } 1582 #endif 1583 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1584 __netif_schedule(dev_queue->qdisc); 1585 } 1586 1587 /** 1588 * netif_wake_queue - restart transmit 1589 * @dev: network device 1590 * 1591 * Allow upper layers to call the device hard_start_xmit routine. 1592 * Used for flow control when transmit resources are available. 1593 */ 1594 static inline void netif_wake_queue(struct net_device *dev) 1595 { 1596 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1597 } 1598 1599 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1600 { 1601 unsigned int i; 1602 1603 for (i = 0; i < dev->num_tx_queues; i++) { 1604 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1605 netif_tx_wake_queue(txq); 1606 } 1607 } 1608 1609 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1610 { 1611 if (WARN_ON(!dev_queue)) { 1612 printk(KERN_INFO "netif_stop_queue() cannot be called before " 1613 "register_netdev()"); 1614 return; 1615 } 1616 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1617 } 1618 1619 /** 1620 * netif_stop_queue - stop transmitted packets 1621 * @dev: network device 1622 * 1623 * Stop upper layers calling the device hard_start_xmit routine. 1624 * Used for flow control when transmit resources are unavailable. 1625 */ 1626 static inline void netif_stop_queue(struct net_device *dev) 1627 { 1628 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1629 } 1630 1631 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1632 { 1633 unsigned int i; 1634 1635 for (i = 0; i < dev->num_tx_queues; i++) { 1636 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1637 netif_tx_stop_queue(txq); 1638 } 1639 } 1640 1641 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1642 { 1643 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1644 } 1645 1646 /** 1647 * netif_queue_stopped - test if transmit queue is flowblocked 1648 * @dev: network device 1649 * 1650 * Test if transmit queue on device is currently unable to send. 1651 */ 1652 static inline int netif_queue_stopped(const struct net_device *dev) 1653 { 1654 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1655 } 1656 1657 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) 1658 { 1659 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; 1660 } 1661 1662 /** 1663 * netif_running - test if up 1664 * @dev: network device 1665 * 1666 * Test if the device has been brought up. 1667 */ 1668 static inline int netif_running(const struct net_device *dev) 1669 { 1670 return test_bit(__LINK_STATE_START, &dev->state); 1671 } 1672 1673 /* 1674 * Routines to manage the subqueues on a device. We only need start 1675 * stop, and a check if it's stopped. All other device management is 1676 * done at the overall netdevice level. 1677 * Also test the device if we're multiqueue. 1678 */ 1679 1680 /** 1681 * netif_start_subqueue - allow sending packets on subqueue 1682 * @dev: network device 1683 * @queue_index: sub queue index 1684 * 1685 * Start individual transmit queue of a device with multiple transmit queues. 1686 */ 1687 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1688 { 1689 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1690 1691 netif_tx_start_queue(txq); 1692 } 1693 1694 /** 1695 * netif_stop_subqueue - stop sending packets on subqueue 1696 * @dev: network device 1697 * @queue_index: sub queue index 1698 * 1699 * Stop individual transmit queue of a device with multiple transmit queues. 1700 */ 1701 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1702 { 1703 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1704 #ifdef CONFIG_NETPOLL_TRAP 1705 if (netpoll_trap()) 1706 return; 1707 #endif 1708 netif_tx_stop_queue(txq); 1709 } 1710 1711 /** 1712 * netif_subqueue_stopped - test status of subqueue 1713 * @dev: network device 1714 * @queue_index: sub queue index 1715 * 1716 * Check individual transmit queue of a device with multiple transmit queues. 1717 */ 1718 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1719 u16 queue_index) 1720 { 1721 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1722 1723 return netif_tx_queue_stopped(txq); 1724 } 1725 1726 static inline int netif_subqueue_stopped(const struct net_device *dev, 1727 struct sk_buff *skb) 1728 { 1729 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1730 } 1731 1732 /** 1733 * netif_wake_subqueue - allow sending packets on subqueue 1734 * @dev: network device 1735 * @queue_index: sub queue index 1736 * 1737 * Resume individual transmit queue of a device with multiple transmit queues. 1738 */ 1739 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1740 { 1741 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1742 #ifdef CONFIG_NETPOLL_TRAP 1743 if (netpoll_trap()) 1744 return; 1745 #endif 1746 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1747 __netif_schedule(txq->qdisc); 1748 } 1749 1750 /* 1751 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 1752 * as a distribution range limit for the returned value. 1753 */ 1754 static inline u16 skb_tx_hash(const struct net_device *dev, 1755 const struct sk_buff *skb) 1756 { 1757 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 1758 } 1759 1760 /** 1761 * netif_is_multiqueue - test if device has multiple transmit queues 1762 * @dev: network device 1763 * 1764 * Check if device has multiple transmit queues 1765 */ 1766 static inline int netif_is_multiqueue(const struct net_device *dev) 1767 { 1768 return dev->num_tx_queues > 1; 1769 } 1770 1771 extern int netif_set_real_num_tx_queues(struct net_device *dev, 1772 unsigned int txq); 1773 1774 #ifdef CONFIG_RPS 1775 extern int netif_set_real_num_rx_queues(struct net_device *dev, 1776 unsigned int rxq); 1777 #else 1778 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 1779 unsigned int rxq) 1780 { 1781 return 0; 1782 } 1783 #endif 1784 1785 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 1786 const struct net_device *from_dev) 1787 { 1788 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 1789 #ifdef CONFIG_RPS 1790 return netif_set_real_num_rx_queues(to_dev, 1791 from_dev->real_num_rx_queues); 1792 #else 1793 return 0; 1794 #endif 1795 } 1796 1797 /* Use this variant when it is known for sure that it 1798 * is executing from hardware interrupt context or with hardware interrupts 1799 * disabled. 1800 */ 1801 extern void dev_kfree_skb_irq(struct sk_buff *skb); 1802 1803 /* Use this variant in places where it could be invoked 1804 * from either hardware interrupt or other context, with hardware interrupts 1805 * either disabled or enabled. 1806 */ 1807 extern void dev_kfree_skb_any(struct sk_buff *skb); 1808 1809 #define HAVE_NETIF_RX 1 1810 extern int netif_rx(struct sk_buff *skb); 1811 extern int netif_rx_ni(struct sk_buff *skb); 1812 #define HAVE_NETIF_RECEIVE_SKB 1 1813 extern int netif_receive_skb(struct sk_buff *skb); 1814 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 1815 struct sk_buff *skb); 1816 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 1817 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 1818 struct sk_buff *skb); 1819 extern void napi_gro_flush(struct napi_struct *napi); 1820 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 1821 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 1822 struct sk_buff *skb, 1823 gro_result_t ret); 1824 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 1825 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 1826 1827 static inline void napi_free_frags(struct napi_struct *napi) 1828 { 1829 kfree_skb(napi->skb); 1830 napi->skb = NULL; 1831 } 1832 1833 extern int netdev_rx_handler_register(struct net_device *dev, 1834 rx_handler_func_t *rx_handler, 1835 void *rx_handler_data); 1836 extern void netdev_rx_handler_unregister(struct net_device *dev); 1837 1838 extern int dev_valid_name(const char *name); 1839 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 1840 extern int dev_ethtool(struct net *net, struct ifreq *); 1841 extern unsigned dev_get_flags(const struct net_device *); 1842 extern int __dev_change_flags(struct net_device *, unsigned int flags); 1843 extern int dev_change_flags(struct net_device *, unsigned); 1844 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 1845 extern int dev_change_name(struct net_device *, const char *); 1846 extern int dev_set_alias(struct net_device *, const char *, size_t); 1847 extern int dev_change_net_namespace(struct net_device *, 1848 struct net *, const char *); 1849 extern int dev_set_mtu(struct net_device *, int); 1850 extern int dev_set_mac_address(struct net_device *, 1851 struct sockaddr *); 1852 extern int dev_hard_start_xmit(struct sk_buff *skb, 1853 struct net_device *dev, 1854 struct netdev_queue *txq); 1855 extern int dev_forward_skb(struct net_device *dev, 1856 struct sk_buff *skb); 1857 1858 extern int netdev_budget; 1859 1860 /* Called by rtnetlink.c:rtnl_unlock() */ 1861 extern void netdev_run_todo(void); 1862 1863 /** 1864 * dev_put - release reference to device 1865 * @dev: network device 1866 * 1867 * Release reference to device to allow it to be freed. 1868 */ 1869 static inline void dev_put(struct net_device *dev) 1870 { 1871 irqsafe_cpu_dec(*dev->pcpu_refcnt); 1872 } 1873 1874 /** 1875 * dev_hold - get reference to device 1876 * @dev: network device 1877 * 1878 * Hold reference to device to keep it from being freed. 1879 */ 1880 static inline void dev_hold(struct net_device *dev) 1881 { 1882 irqsafe_cpu_inc(*dev->pcpu_refcnt); 1883 } 1884 1885 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 1886 * and _off may be called from IRQ context, but it is caller 1887 * who is responsible for serialization of these calls. 1888 * 1889 * The name carrier is inappropriate, these functions should really be 1890 * called netif_lowerlayer_*() because they represent the state of any 1891 * kind of lower layer not just hardware media. 1892 */ 1893 1894 extern void linkwatch_fire_event(struct net_device *dev); 1895 extern void linkwatch_forget_dev(struct net_device *dev); 1896 1897 /** 1898 * netif_carrier_ok - test if carrier present 1899 * @dev: network device 1900 * 1901 * Check if carrier is present on device 1902 */ 1903 static inline int netif_carrier_ok(const struct net_device *dev) 1904 { 1905 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 1906 } 1907 1908 extern unsigned long dev_trans_start(struct net_device *dev); 1909 1910 extern void __netdev_watchdog_up(struct net_device *dev); 1911 1912 extern void netif_carrier_on(struct net_device *dev); 1913 1914 extern void netif_carrier_off(struct net_device *dev); 1915 1916 extern void netif_notify_peers(struct net_device *dev); 1917 1918 /** 1919 * netif_dormant_on - mark device as dormant. 1920 * @dev: network device 1921 * 1922 * Mark device as dormant (as per RFC2863). 1923 * 1924 * The dormant state indicates that the relevant interface is not 1925 * actually in a condition to pass packets (i.e., it is not 'up') but is 1926 * in a "pending" state, waiting for some external event. For "on- 1927 * demand" interfaces, this new state identifies the situation where the 1928 * interface is waiting for events to place it in the up state. 1929 * 1930 */ 1931 static inline void netif_dormant_on(struct net_device *dev) 1932 { 1933 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 1934 linkwatch_fire_event(dev); 1935 } 1936 1937 /** 1938 * netif_dormant_off - set device as not dormant. 1939 * @dev: network device 1940 * 1941 * Device is not in dormant state. 1942 */ 1943 static inline void netif_dormant_off(struct net_device *dev) 1944 { 1945 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 1946 linkwatch_fire_event(dev); 1947 } 1948 1949 /** 1950 * netif_dormant - test if carrier present 1951 * @dev: network device 1952 * 1953 * Check if carrier is present on device 1954 */ 1955 static inline int netif_dormant(const struct net_device *dev) 1956 { 1957 return test_bit(__LINK_STATE_DORMANT, &dev->state); 1958 } 1959 1960 1961 /** 1962 * netif_oper_up - test if device is operational 1963 * @dev: network device 1964 * 1965 * Check if carrier is operational 1966 */ 1967 static inline int netif_oper_up(const struct net_device *dev) 1968 { 1969 return (dev->operstate == IF_OPER_UP || 1970 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 1971 } 1972 1973 /** 1974 * netif_device_present - is device available or removed 1975 * @dev: network device 1976 * 1977 * Check if device has not been removed from system. 1978 */ 1979 static inline int netif_device_present(struct net_device *dev) 1980 { 1981 return test_bit(__LINK_STATE_PRESENT, &dev->state); 1982 } 1983 1984 extern void netif_device_detach(struct net_device *dev); 1985 1986 extern void netif_device_attach(struct net_device *dev); 1987 1988 /* 1989 * Network interface message level settings 1990 */ 1991 #define HAVE_NETIF_MSG 1 1992 1993 enum { 1994 NETIF_MSG_DRV = 0x0001, 1995 NETIF_MSG_PROBE = 0x0002, 1996 NETIF_MSG_LINK = 0x0004, 1997 NETIF_MSG_TIMER = 0x0008, 1998 NETIF_MSG_IFDOWN = 0x0010, 1999 NETIF_MSG_IFUP = 0x0020, 2000 NETIF_MSG_RX_ERR = 0x0040, 2001 NETIF_MSG_TX_ERR = 0x0080, 2002 NETIF_MSG_TX_QUEUED = 0x0100, 2003 NETIF_MSG_INTR = 0x0200, 2004 NETIF_MSG_TX_DONE = 0x0400, 2005 NETIF_MSG_RX_STATUS = 0x0800, 2006 NETIF_MSG_PKTDATA = 0x1000, 2007 NETIF_MSG_HW = 0x2000, 2008 NETIF_MSG_WOL = 0x4000, 2009 }; 2010 2011 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2012 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2013 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2014 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2015 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2016 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2017 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2018 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2019 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2020 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2021 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2022 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2023 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2024 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2025 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2026 2027 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2028 { 2029 /* use default */ 2030 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2031 return default_msg_enable_bits; 2032 if (debug_value == 0) /* no output */ 2033 return 0; 2034 /* set low N bits */ 2035 return (1 << debug_value) - 1; 2036 } 2037 2038 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2039 { 2040 spin_lock(&txq->_xmit_lock); 2041 txq->xmit_lock_owner = cpu; 2042 } 2043 2044 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2045 { 2046 spin_lock_bh(&txq->_xmit_lock); 2047 txq->xmit_lock_owner = smp_processor_id(); 2048 } 2049 2050 static inline int __netif_tx_trylock(struct netdev_queue *txq) 2051 { 2052 int ok = spin_trylock(&txq->_xmit_lock); 2053 if (likely(ok)) 2054 txq->xmit_lock_owner = smp_processor_id(); 2055 return ok; 2056 } 2057 2058 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2059 { 2060 txq->xmit_lock_owner = -1; 2061 spin_unlock(&txq->_xmit_lock); 2062 } 2063 2064 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2065 { 2066 txq->xmit_lock_owner = -1; 2067 spin_unlock_bh(&txq->_xmit_lock); 2068 } 2069 2070 static inline void txq_trans_update(struct netdev_queue *txq) 2071 { 2072 if (txq->xmit_lock_owner != -1) 2073 txq->trans_start = jiffies; 2074 } 2075 2076 /** 2077 * netif_tx_lock - grab network device transmit lock 2078 * @dev: network device 2079 * 2080 * Get network device transmit lock 2081 */ 2082 static inline void netif_tx_lock(struct net_device *dev) 2083 { 2084 unsigned int i; 2085 int cpu; 2086 2087 spin_lock(&dev->tx_global_lock); 2088 cpu = smp_processor_id(); 2089 for (i = 0; i < dev->num_tx_queues; i++) { 2090 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2091 2092 /* We are the only thread of execution doing a 2093 * freeze, but we have to grab the _xmit_lock in 2094 * order to synchronize with threads which are in 2095 * the ->hard_start_xmit() handler and already 2096 * checked the frozen bit. 2097 */ 2098 __netif_tx_lock(txq, cpu); 2099 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2100 __netif_tx_unlock(txq); 2101 } 2102 } 2103 2104 static inline void netif_tx_lock_bh(struct net_device *dev) 2105 { 2106 local_bh_disable(); 2107 netif_tx_lock(dev); 2108 } 2109 2110 static inline void netif_tx_unlock(struct net_device *dev) 2111 { 2112 unsigned int i; 2113 2114 for (i = 0; i < dev->num_tx_queues; i++) { 2115 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2116 2117 /* No need to grab the _xmit_lock here. If the 2118 * queue is not stopped for another reason, we 2119 * force a schedule. 2120 */ 2121 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2122 netif_schedule_queue(txq); 2123 } 2124 spin_unlock(&dev->tx_global_lock); 2125 } 2126 2127 static inline void netif_tx_unlock_bh(struct net_device *dev) 2128 { 2129 netif_tx_unlock(dev); 2130 local_bh_enable(); 2131 } 2132 2133 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2134 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2135 __netif_tx_lock(txq, cpu); \ 2136 } \ 2137 } 2138 2139 #define HARD_TX_UNLOCK(dev, txq) { \ 2140 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2141 __netif_tx_unlock(txq); \ 2142 } \ 2143 } 2144 2145 static inline void netif_tx_disable(struct net_device *dev) 2146 { 2147 unsigned int i; 2148 int cpu; 2149 2150 local_bh_disable(); 2151 cpu = smp_processor_id(); 2152 for (i = 0; i < dev->num_tx_queues; i++) { 2153 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2154 2155 __netif_tx_lock(txq, cpu); 2156 netif_tx_stop_queue(txq); 2157 __netif_tx_unlock(txq); 2158 } 2159 local_bh_enable(); 2160 } 2161 2162 static inline void netif_addr_lock(struct net_device *dev) 2163 { 2164 spin_lock(&dev->addr_list_lock); 2165 } 2166 2167 static inline void netif_addr_lock_bh(struct net_device *dev) 2168 { 2169 spin_lock_bh(&dev->addr_list_lock); 2170 } 2171 2172 static inline void netif_addr_unlock(struct net_device *dev) 2173 { 2174 spin_unlock(&dev->addr_list_lock); 2175 } 2176 2177 static inline void netif_addr_unlock_bh(struct net_device *dev) 2178 { 2179 spin_unlock_bh(&dev->addr_list_lock); 2180 } 2181 2182 /* 2183 * dev_addrs walker. Should be used only for read access. Call with 2184 * rcu_read_lock held. 2185 */ 2186 #define for_each_dev_addr(dev, ha) \ 2187 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2188 2189 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2190 2191 extern void ether_setup(struct net_device *dev); 2192 2193 /* Support for loadable net-drivers */ 2194 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 2195 void (*setup)(struct net_device *), 2196 unsigned int queue_count); 2197 #define alloc_netdev(sizeof_priv, name, setup) \ 2198 alloc_netdev_mq(sizeof_priv, name, setup, 1) 2199 extern int register_netdev(struct net_device *dev); 2200 extern void unregister_netdev(struct net_device *dev); 2201 2202 /* General hardware address lists handling functions */ 2203 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2204 struct netdev_hw_addr_list *from_list, 2205 int addr_len, unsigned char addr_type); 2206 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2207 struct netdev_hw_addr_list *from_list, 2208 int addr_len, unsigned char addr_type); 2209 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2210 struct netdev_hw_addr_list *from_list, 2211 int addr_len); 2212 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2213 struct netdev_hw_addr_list *from_list, 2214 int addr_len); 2215 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2216 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2217 2218 /* Functions used for device addresses handling */ 2219 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2220 unsigned char addr_type); 2221 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2222 unsigned char addr_type); 2223 extern int dev_addr_add_multiple(struct net_device *to_dev, 2224 struct net_device *from_dev, 2225 unsigned char addr_type); 2226 extern int dev_addr_del_multiple(struct net_device *to_dev, 2227 struct net_device *from_dev, 2228 unsigned char addr_type); 2229 extern void dev_addr_flush(struct net_device *dev); 2230 extern int dev_addr_init(struct net_device *dev); 2231 2232 /* Functions used for unicast addresses handling */ 2233 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2234 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2235 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2236 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2237 extern void dev_uc_flush(struct net_device *dev); 2238 extern void dev_uc_init(struct net_device *dev); 2239 2240 /* Functions used for multicast addresses handling */ 2241 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2242 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2243 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2244 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2245 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2246 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2247 extern void dev_mc_flush(struct net_device *dev); 2248 extern void dev_mc_init(struct net_device *dev); 2249 2250 /* Functions used for secondary unicast and multicast support */ 2251 extern void dev_set_rx_mode(struct net_device *dev); 2252 extern void __dev_set_rx_mode(struct net_device *dev); 2253 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2254 extern int dev_set_allmulti(struct net_device *dev, int inc); 2255 extern void netdev_state_change(struct net_device *dev); 2256 extern int netdev_bonding_change(struct net_device *dev, 2257 unsigned long event); 2258 extern void netdev_features_change(struct net_device *dev); 2259 /* Load a device via the kmod */ 2260 extern void dev_load(struct net *net, const char *name); 2261 extern void dev_mcast_init(void); 2262 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2263 struct rtnl_link_stats64 *storage); 2264 extern void dev_txq_stats_fold(const struct net_device *dev, 2265 struct rtnl_link_stats64 *stats); 2266 2267 extern int netdev_max_backlog; 2268 extern int netdev_tstamp_prequeue; 2269 extern int weight_p; 2270 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2271 extern int skb_checksum_help(struct sk_buff *skb); 2272 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features); 2273 #ifdef CONFIG_BUG 2274 extern void netdev_rx_csum_fault(struct net_device *dev); 2275 #else 2276 static inline void netdev_rx_csum_fault(struct net_device *dev) 2277 { 2278 } 2279 #endif 2280 /* rx skb timestamps */ 2281 extern void net_enable_timestamp(void); 2282 extern void net_disable_timestamp(void); 2283 2284 #ifdef CONFIG_PROC_FS 2285 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2286 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2287 extern void dev_seq_stop(struct seq_file *seq, void *v); 2288 #endif 2289 2290 extern int netdev_class_create_file(struct class_attribute *class_attr); 2291 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2292 2293 extern struct kobj_ns_type_operations net_ns_type_operations; 2294 2295 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); 2296 2297 extern void linkwatch_run_queue(void); 2298 2299 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 2300 unsigned long mask); 2301 unsigned long netdev_fix_features(unsigned long features, const char *name); 2302 2303 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2304 struct net_device *dev); 2305 2306 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev); 2307 2308 static inline int net_gso_ok(int features, int gso_type) 2309 { 2310 int feature = gso_type << NETIF_F_GSO_SHIFT; 2311 return (features & feature) == feature; 2312 } 2313 2314 static inline int skb_gso_ok(struct sk_buff *skb, int features) 2315 { 2316 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2317 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2318 } 2319 2320 static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb) 2321 { 2322 if (skb_is_gso(skb)) { 2323 int features = netif_get_vlan_features(skb, dev); 2324 2325 return (!skb_gso_ok(skb, features) || 2326 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2327 } 2328 2329 return 0; 2330 } 2331 2332 static inline void netif_set_gso_max_size(struct net_device *dev, 2333 unsigned int size) 2334 { 2335 dev->gso_max_size = size; 2336 } 2337 2338 extern int __skb_bond_should_drop(struct sk_buff *skb, 2339 struct net_device *master); 2340 2341 static inline int skb_bond_should_drop(struct sk_buff *skb, 2342 struct net_device *master) 2343 { 2344 if (master) 2345 return __skb_bond_should_drop(skb, master); 2346 return 0; 2347 } 2348 2349 extern struct pernet_operations __net_initdata loopback_net_ops; 2350 2351 static inline int dev_ethtool_get_settings(struct net_device *dev, 2352 struct ethtool_cmd *cmd) 2353 { 2354 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 2355 return -EOPNOTSUPP; 2356 return dev->ethtool_ops->get_settings(dev, cmd); 2357 } 2358 2359 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2360 { 2361 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2362 return 0; 2363 return dev->ethtool_ops->get_rx_csum(dev); 2364 } 2365 2366 static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2367 { 2368 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2369 return 0; 2370 return dev->ethtool_ops->get_flags(dev); 2371 } 2372 2373 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2374 2375 /* netdev_printk helpers, similar to dev_printk */ 2376 2377 static inline const char *netdev_name(const struct net_device *dev) 2378 { 2379 if (dev->reg_state != NETREG_REGISTERED) 2380 return "(unregistered net_device)"; 2381 return dev->name; 2382 } 2383 2384 extern int netdev_printk(const char *level, const struct net_device *dev, 2385 const char *format, ...) 2386 __attribute__ ((format (printf, 3, 4))); 2387 extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2388 __attribute__ ((format (printf, 2, 3))); 2389 extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2390 __attribute__ ((format (printf, 2, 3))); 2391 extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2392 __attribute__ ((format (printf, 2, 3))); 2393 extern int netdev_err(const struct net_device *dev, const char *format, ...) 2394 __attribute__ ((format (printf, 2, 3))); 2395 extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2396 __attribute__ ((format (printf, 2, 3))); 2397 extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2398 __attribute__ ((format (printf, 2, 3))); 2399 extern int netdev_info(const struct net_device *dev, const char *format, ...) 2400 __attribute__ ((format (printf, 2, 3))); 2401 2402 #if defined(DEBUG) 2403 #define netdev_dbg(__dev, format, args...) \ 2404 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2405 #elif defined(CONFIG_DYNAMIC_DEBUG) 2406 #define netdev_dbg(__dev, format, args...) \ 2407 do { \ 2408 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2409 netdev_name(__dev), ##args); \ 2410 } while (0) 2411 #else 2412 #define netdev_dbg(__dev, format, args...) \ 2413 ({ \ 2414 if (0) \ 2415 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2416 0; \ 2417 }) 2418 #endif 2419 2420 #if defined(VERBOSE_DEBUG) 2421 #define netdev_vdbg netdev_dbg 2422 #else 2423 2424 #define netdev_vdbg(dev, format, args...) \ 2425 ({ \ 2426 if (0) \ 2427 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2428 0; \ 2429 }) 2430 #endif 2431 2432 /* 2433 * netdev_WARN() acts like dev_printk(), but with the key difference 2434 * of using a WARN/WARN_ON to get the message out, including the 2435 * file/line information and a backtrace. 2436 */ 2437 #define netdev_WARN(dev, format, args...) \ 2438 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2439 2440 /* netif printk helpers, similar to netdev_printk */ 2441 2442 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2443 do { \ 2444 if (netif_msg_##type(priv)) \ 2445 netdev_printk(level, (dev), fmt, ##args); \ 2446 } while (0) 2447 2448 #define netif_level(level, priv, type, dev, fmt, args...) \ 2449 do { \ 2450 if (netif_msg_##type(priv)) \ 2451 netdev_##level(dev, fmt, ##args); \ 2452 } while (0) 2453 2454 #define netif_emerg(priv, type, dev, fmt, args...) \ 2455 netif_level(emerg, priv, type, dev, fmt, ##args) 2456 #define netif_alert(priv, type, dev, fmt, args...) \ 2457 netif_level(alert, priv, type, dev, fmt, ##args) 2458 #define netif_crit(priv, type, dev, fmt, args...) \ 2459 netif_level(crit, priv, type, dev, fmt, ##args) 2460 #define netif_err(priv, type, dev, fmt, args...) \ 2461 netif_level(err, priv, type, dev, fmt, ##args) 2462 #define netif_warn(priv, type, dev, fmt, args...) \ 2463 netif_level(warn, priv, type, dev, fmt, ##args) 2464 #define netif_notice(priv, type, dev, fmt, args...) \ 2465 netif_level(notice, priv, type, dev, fmt, ##args) 2466 #define netif_info(priv, type, dev, fmt, args...) \ 2467 netif_level(info, priv, type, dev, fmt, ##args) 2468 2469 #if defined(DEBUG) 2470 #define netif_dbg(priv, type, dev, format, args...) \ 2471 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2472 #elif defined(CONFIG_DYNAMIC_DEBUG) 2473 #define netif_dbg(priv, type, netdev, format, args...) \ 2474 do { \ 2475 if (netif_msg_##type(priv)) \ 2476 dynamic_dev_dbg((netdev)->dev.parent, \ 2477 "%s: " format, \ 2478 netdev_name(netdev), ##args); \ 2479 } while (0) 2480 #else 2481 #define netif_dbg(priv, type, dev, format, args...) \ 2482 ({ \ 2483 if (0) \ 2484 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2485 0; \ 2486 }) 2487 #endif 2488 2489 #if defined(VERBOSE_DEBUG) 2490 #define netif_vdbg netif_dbg 2491 #else 2492 #define netif_vdbg(priv, type, dev, format, args...) \ 2493 ({ \ 2494 if (0) \ 2495 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2496 0; \ 2497 }) 2498 #endif 2499 2500 #endif /* __KERNEL__ */ 2501 2502 #endif /* _LINUX_NETDEVICE_H */ 2503