1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 #include <uapi/linux/if_bonding.h> 54 55 struct netpoll_info; 56 struct device; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 64 void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67 /* Backlog congestion levels */ 68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69 #define NET_RX_DROP 1 /* packet dropped */ 70 71 /* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88 /* qdisc ->enqueue() return codes. */ 89 #define NET_XMIT_SUCCESS 0x00 90 #define NET_XMIT_DROP 0x01 /* skb dropped */ 91 #define NET_XMIT_CN 0x02 /* congestion notification */ 92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101 /* Driver transmit return codes */ 102 #define NETDEV_TX_MASK 0xf0 103 104 enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109 }; 110 typedef enum netdev_tx netdev_tx_t; 111 112 /* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116 static inline bool dev_xmit_complete(int rc) 117 { 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128 } 129 130 /* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 136 # if defined(CONFIG_MAC80211_MESH) 137 # define LL_MAX_HEADER 128 138 # else 139 # define LL_MAX_HEADER 96 140 # endif 141 #else 142 # define LL_MAX_HEADER 32 143 #endif 144 145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 147 #define MAX_HEADER LL_MAX_HEADER 148 #else 149 #define MAX_HEADER (LL_MAX_HEADER + 48) 150 #endif 151 152 /* 153 * Old network device statistics. Fields are native words 154 * (unsigned long) so they can be read and written atomically. 155 */ 156 157 struct net_device_stats { 158 unsigned long rx_packets; 159 unsigned long tx_packets; 160 unsigned long rx_bytes; 161 unsigned long tx_bytes; 162 unsigned long rx_errors; 163 unsigned long tx_errors; 164 unsigned long rx_dropped; 165 unsigned long tx_dropped; 166 unsigned long multicast; 167 unsigned long collisions; 168 unsigned long rx_length_errors; 169 unsigned long rx_over_errors; 170 unsigned long rx_crc_errors; 171 unsigned long rx_frame_errors; 172 unsigned long rx_fifo_errors; 173 unsigned long rx_missed_errors; 174 unsigned long tx_aborted_errors; 175 unsigned long tx_carrier_errors; 176 unsigned long tx_fifo_errors; 177 unsigned long tx_heartbeat_errors; 178 unsigned long tx_window_errors; 179 unsigned long rx_compressed; 180 unsigned long tx_compressed; 181 }; 182 183 184 #include <linux/cache.h> 185 #include <linux/skbuff.h> 186 187 #ifdef CONFIG_RPS 188 #include <linux/static_key.h> 189 extern struct static_key rps_needed; 190 #endif 191 192 struct neighbour; 193 struct neigh_parms; 194 struct sk_buff; 195 196 struct netdev_hw_addr { 197 struct list_head list; 198 unsigned char addr[MAX_ADDR_LEN]; 199 unsigned char type; 200 #define NETDEV_HW_ADDR_T_LAN 1 201 #define NETDEV_HW_ADDR_T_SAN 2 202 #define NETDEV_HW_ADDR_T_SLAVE 3 203 #define NETDEV_HW_ADDR_T_UNICAST 4 204 #define NETDEV_HW_ADDR_T_MULTICAST 5 205 bool global_use; 206 int sync_cnt; 207 int refcount; 208 int synced; 209 struct rcu_head rcu_head; 210 }; 211 212 struct netdev_hw_addr_list { 213 struct list_head list; 214 int count; 215 }; 216 217 #define netdev_hw_addr_list_count(l) ((l)->count) 218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 219 #define netdev_hw_addr_list_for_each(ha, l) \ 220 list_for_each_entry(ha, &(l)->list, list) 221 222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 224 #define netdev_for_each_uc_addr(ha, dev) \ 225 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 226 227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 229 #define netdev_for_each_mc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 231 232 struct hh_cache { 233 u16 hh_len; 234 u16 __pad; 235 seqlock_t hh_lock; 236 237 /* cached hardware header; allow for machine alignment needs. */ 238 #define HH_DATA_MOD 16 239 #define HH_DATA_OFF(__len) \ 240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 241 #define HH_DATA_ALIGN(__len) \ 242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 244 }; 245 246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 247 * Alternative is: 248 * dev->hard_header_len ? (dev->hard_header_len + 249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 250 * 251 * We could use other alignment values, but we must maintain the 252 * relationship HH alignment <= LL alignment. 253 */ 254 #define LL_RESERVED_SPACE(dev) \ 255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 259 struct header_ops { 260 int (*create) (struct sk_buff *skb, struct net_device *dev, 261 unsigned short type, const void *daddr, 262 const void *saddr, unsigned int len); 263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 265 void (*cache_update)(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr); 268 }; 269 270 /* These flag bits are private to the generic network queueing 271 * layer, they may not be explicitly referenced by any other 272 * code. 273 */ 274 275 enum netdev_state_t { 276 __LINK_STATE_START, 277 __LINK_STATE_PRESENT, 278 __LINK_STATE_NOCARRIER, 279 __LINK_STATE_LINKWATCH_PENDING, 280 __LINK_STATE_DORMANT, 281 }; 282 283 284 /* 285 * This structure holds at boot time configured netdevice settings. They 286 * are then used in the device probing. 287 */ 288 struct netdev_boot_setup { 289 char name[IFNAMSIZ]; 290 struct ifmap map; 291 }; 292 #define NETDEV_BOOT_SETUP_MAX 8 293 294 int __init netdev_boot_setup(char *str); 295 296 /* 297 * Structure for NAPI scheduling similar to tasklet but with weighting 298 */ 299 struct napi_struct { 300 /* The poll_list must only be managed by the entity which 301 * changes the state of the NAPI_STATE_SCHED bit. This means 302 * whoever atomically sets that bit can add this napi_struct 303 * to the per-cpu poll_list, and whoever clears that bit 304 * can remove from the list right before clearing the bit. 305 */ 306 struct list_head poll_list; 307 308 unsigned long state; 309 int weight; 310 unsigned int gro_count; 311 int (*poll)(struct napi_struct *, int); 312 #ifdef CONFIG_NETPOLL 313 spinlock_t poll_lock; 314 int poll_owner; 315 #endif 316 struct net_device *dev; 317 struct sk_buff *gro_list; 318 struct sk_buff *skb; 319 struct hrtimer timer; 320 struct list_head dev_list; 321 struct hlist_node napi_hash_node; 322 unsigned int napi_id; 323 }; 324 325 enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329 NAPI_STATE_HASHED, /* In NAPI hash */ 330 }; 331 332 enum gro_result { 333 GRO_MERGED, 334 GRO_MERGED_FREE, 335 GRO_HELD, 336 GRO_NORMAL, 337 GRO_DROP, 338 }; 339 typedef enum gro_result gro_result_t; 340 341 /* 342 * enum rx_handler_result - Possible return values for rx_handlers. 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 344 * further. 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 346 * case skb->dev was changed by rx_handler. 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 349 * 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do 351 * special processing of the skb, prior to delivery to protocol handlers. 352 * 353 * Currently, a net_device can only have a single rx_handler registered. Trying 354 * to register a second rx_handler will return -EBUSY. 355 * 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 357 * To unregister a rx_handler on a net_device, use 358 * netdev_rx_handler_unregister(). 359 * 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 361 * do with the skb. 362 * 363 * If the rx_handler consumed to skb in some way, it should return 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 365 * the skb to be delivered in some other ways. 366 * 367 * If the rx_handler changed skb->dev, to divert the skb to another 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 369 * new device will be called if it exists. 370 * 371 * If the rx_handler consider the skb should be ignored, it should return 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 373 * are registered on exact device (ptype->dev == skb->dev). 374 * 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 376 * delivered, it should return RX_HANDLER_PASS. 377 * 378 * A device without a registered rx_handler will behave as if rx_handler 379 * returned RX_HANDLER_PASS. 380 */ 381 382 enum rx_handler_result { 383 RX_HANDLER_CONSUMED, 384 RX_HANDLER_ANOTHER, 385 RX_HANDLER_EXACT, 386 RX_HANDLER_PASS, 387 }; 388 typedef enum rx_handler_result rx_handler_result_t; 389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 390 391 void __napi_schedule(struct napi_struct *n); 392 void __napi_schedule_irqoff(struct napi_struct *n); 393 394 static inline bool napi_disable_pending(struct napi_struct *n) 395 { 396 return test_bit(NAPI_STATE_DISABLE, &n->state); 397 } 398 399 /** 400 * napi_schedule_prep - check if napi can be scheduled 401 * @n: napi context 402 * 403 * Test if NAPI routine is already running, and if not mark 404 * it as running. This is used as a condition variable 405 * insure only one NAPI poll instance runs. We also make 406 * sure there is no pending NAPI disable. 407 */ 408 static inline bool napi_schedule_prep(struct napi_struct *n) 409 { 410 return !napi_disable_pending(n) && 411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 412 } 413 414 /** 415 * napi_schedule - schedule NAPI poll 416 * @n: napi context 417 * 418 * Schedule NAPI poll routine to be called if it is not already 419 * running. 420 */ 421 static inline void napi_schedule(struct napi_struct *n) 422 { 423 if (napi_schedule_prep(n)) 424 __napi_schedule(n); 425 } 426 427 /** 428 * napi_schedule_irqoff - schedule NAPI poll 429 * @n: napi context 430 * 431 * Variant of napi_schedule(), assuming hard irqs are masked. 432 */ 433 static inline void napi_schedule_irqoff(struct napi_struct *n) 434 { 435 if (napi_schedule_prep(n)) 436 __napi_schedule_irqoff(n); 437 } 438 439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 440 static inline bool napi_reschedule(struct napi_struct *napi) 441 { 442 if (napi_schedule_prep(napi)) { 443 __napi_schedule(napi); 444 return true; 445 } 446 return false; 447 } 448 449 void __napi_complete(struct napi_struct *n); 450 void napi_complete_done(struct napi_struct *n, int work_done); 451 /** 452 * napi_complete - NAPI processing complete 453 * @n: napi context 454 * 455 * Mark NAPI processing as complete. 456 * Consider using napi_complete_done() instead. 457 */ 458 static inline void napi_complete(struct napi_struct *n) 459 { 460 return napi_complete_done(n, 0); 461 } 462 463 /** 464 * napi_by_id - lookup a NAPI by napi_id 465 * @napi_id: hashed napi_id 466 * 467 * lookup @napi_id in napi_hash table 468 * must be called under rcu_read_lock() 469 */ 470 struct napi_struct *napi_by_id(unsigned int napi_id); 471 472 /** 473 * napi_hash_add - add a NAPI to global hashtable 474 * @napi: napi context 475 * 476 * generate a new napi_id and store a @napi under it in napi_hash 477 */ 478 void napi_hash_add(struct napi_struct *napi); 479 480 /** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: napi context 483 * 484 * Warning: caller must observe rcu grace period 485 * before freeing memory containing @napi 486 */ 487 void napi_hash_del(struct napi_struct *napi); 488 489 /** 490 * napi_disable - prevent NAPI from scheduling 491 * @n: napi context 492 * 493 * Stop NAPI from being scheduled on this context. 494 * Waits till any outstanding processing completes. 495 */ 496 void napi_disable(struct napi_struct *n); 497 498 /** 499 * napi_enable - enable NAPI scheduling 500 * @n: napi context 501 * 502 * Resume NAPI from being scheduled on this context. 503 * Must be paired with napi_disable. 504 */ 505 static inline void napi_enable(struct napi_struct *n) 506 { 507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 508 smp_mb__before_atomic(); 509 clear_bit(NAPI_STATE_SCHED, &n->state); 510 clear_bit(NAPI_STATE_NPSVC, &n->state); 511 } 512 513 #ifdef CONFIG_SMP 514 /** 515 * napi_synchronize - wait until NAPI is not running 516 * @n: napi context 517 * 518 * Wait until NAPI is done being scheduled on this context. 519 * Waits till any outstanding processing completes but 520 * does not disable future activations. 521 */ 522 static inline void napi_synchronize(const struct napi_struct *n) 523 { 524 while (test_bit(NAPI_STATE_SCHED, &n->state)) 525 msleep(1); 526 } 527 #else 528 # define napi_synchronize(n) barrier() 529 #endif 530 531 enum netdev_queue_state_t { 532 __QUEUE_STATE_DRV_XOFF, 533 __QUEUE_STATE_STACK_XOFF, 534 __QUEUE_STATE_FROZEN, 535 }; 536 537 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 538 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 539 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 540 541 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 543 QUEUE_STATE_FROZEN) 544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 545 QUEUE_STATE_FROZEN) 546 547 /* 548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 549 * netif_tx_* functions below are used to manipulate this flag. The 550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 551 * queue independently. The netif_xmit_*stopped functions below are called 552 * to check if the queue has been stopped by the driver or stack (either 553 * of the XOFF bits are set in the state). Drivers should not need to call 554 * netif_xmit*stopped functions, they should only be using netif_tx_*. 555 */ 556 557 struct netdev_queue { 558 /* 559 * read mostly part 560 */ 561 struct net_device *dev; 562 struct Qdisc __rcu *qdisc; 563 struct Qdisc *qdisc_sleeping; 564 #ifdef CONFIG_SYSFS 565 struct kobject kobj; 566 #endif 567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 568 int numa_node; 569 #endif 570 /* 571 * write mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * please use this field instead of dev->trans_start 577 */ 578 unsigned long trans_start; 579 580 /* 581 * Number of TX timeouts for this queue 582 * (/sys/class/net/DEV/Q/trans_timeout) 583 */ 584 unsigned long trans_timeout; 585 586 unsigned long state; 587 588 #ifdef CONFIG_BQL 589 struct dql dql; 590 #endif 591 unsigned long tx_maxrate; 592 } ____cacheline_aligned_in_smp; 593 594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 595 { 596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 597 return q->numa_node; 598 #else 599 return NUMA_NO_NODE; 600 #endif 601 } 602 603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 604 { 605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 606 q->numa_node = node; 607 #endif 608 } 609 610 #ifdef CONFIG_RPS 611 /* 612 * This structure holds an RPS map which can be of variable length. The 613 * map is an array of CPUs. 614 */ 615 struct rps_map { 616 unsigned int len; 617 struct rcu_head rcu; 618 u16 cpus[0]; 619 }; 620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 621 622 /* 623 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 624 * tail pointer for that CPU's input queue at the time of last enqueue, and 625 * a hardware filter index. 626 */ 627 struct rps_dev_flow { 628 u16 cpu; 629 u16 filter; 630 unsigned int last_qtail; 631 }; 632 #define RPS_NO_FILTER 0xffff 633 634 /* 635 * The rps_dev_flow_table structure contains a table of flow mappings. 636 */ 637 struct rps_dev_flow_table { 638 unsigned int mask; 639 struct rcu_head rcu; 640 struct rps_dev_flow flows[0]; 641 }; 642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 643 ((_num) * sizeof(struct rps_dev_flow))) 644 645 /* 646 * The rps_sock_flow_table contains mappings of flows to the last CPU 647 * on which they were processed by the application (set in recvmsg). 648 * Each entry is a 32bit value. Upper part is the high order bits 649 * of flow hash, lower part is cpu number. 650 * rps_cpu_mask is used to partition the space, depending on number of 651 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 652 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 653 * meaning we use 32-6=26 bits for the hash. 654 */ 655 struct rps_sock_flow_table { 656 u32 mask; 657 658 u32 ents[0] ____cacheline_aligned_in_smp; 659 }; 660 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 661 662 #define RPS_NO_CPU 0xffff 663 664 extern u32 rps_cpu_mask; 665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 666 667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 668 u32 hash) 669 { 670 if (table && hash) { 671 unsigned int index = hash & table->mask; 672 u32 val = hash & ~rps_cpu_mask; 673 674 /* We only give a hint, preemption can change cpu under us */ 675 val |= raw_smp_processor_id(); 676 677 if (table->ents[index] != val) 678 table->ents[index] = val; 679 } 680 } 681 682 #ifdef CONFIG_RFS_ACCEL 683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 684 u16 filter_id); 685 #endif 686 #endif /* CONFIG_RPS */ 687 688 /* This structure contains an instance of an RX queue. */ 689 struct netdev_rx_queue { 690 #ifdef CONFIG_RPS 691 struct rps_map __rcu *rps_map; 692 struct rps_dev_flow_table __rcu *rps_flow_table; 693 #endif 694 struct kobject kobj; 695 struct net_device *dev; 696 } ____cacheline_aligned_in_smp; 697 698 /* 699 * RX queue sysfs structures and functions. 700 */ 701 struct rx_queue_attribute { 702 struct attribute attr; 703 ssize_t (*show)(struct netdev_rx_queue *queue, 704 struct rx_queue_attribute *attr, char *buf); 705 ssize_t (*store)(struct netdev_rx_queue *queue, 706 struct rx_queue_attribute *attr, const char *buf, size_t len); 707 }; 708 709 #ifdef CONFIG_XPS 710 /* 711 * This structure holds an XPS map which can be of variable length. The 712 * map is an array of queues. 713 */ 714 struct xps_map { 715 unsigned int len; 716 unsigned int alloc_len; 717 struct rcu_head rcu; 718 u16 queues[0]; 719 }; 720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 722 / sizeof(u16)) 723 724 /* 725 * This structure holds all XPS maps for device. Maps are indexed by CPU. 726 */ 727 struct xps_dev_maps { 728 struct rcu_head rcu; 729 struct xps_map __rcu *cpu_map[0]; 730 }; 731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 732 (nr_cpu_ids * sizeof(struct xps_map *))) 733 #endif /* CONFIG_XPS */ 734 735 #define TC_MAX_QUEUE 16 736 #define TC_BITMASK 15 737 /* HW offloaded queuing disciplines txq count and offset maps */ 738 struct netdev_tc_txq { 739 u16 count; 740 u16 offset; 741 }; 742 743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 744 /* 745 * This structure is to hold information about the device 746 * configured to run FCoE protocol stack. 747 */ 748 struct netdev_fcoe_hbainfo { 749 char manufacturer[64]; 750 char serial_number[64]; 751 char hardware_version[64]; 752 char driver_version[64]; 753 char optionrom_version[64]; 754 char firmware_version[64]; 755 char model[256]; 756 char model_description[256]; 757 }; 758 #endif 759 760 #define MAX_PHYS_ITEM_ID_LEN 32 761 762 /* This structure holds a unique identifier to identify some 763 * physical item (port for example) used by a netdevice. 764 */ 765 struct netdev_phys_item_id { 766 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 767 unsigned char id_len; 768 }; 769 770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 771 struct netdev_phys_item_id *b) 772 { 773 return a->id_len == b->id_len && 774 memcmp(a->id, b->id, a->id_len) == 0; 775 } 776 777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 778 struct sk_buff *skb); 779 780 /* 781 * This structure defines the management hooks for network devices. 782 * The following hooks can be defined; unless noted otherwise, they are 783 * optional and can be filled with a null pointer. 784 * 785 * int (*ndo_init)(struct net_device *dev); 786 * This function is called once when network device is registered. 787 * The network device can use this to any late stage initializaton 788 * or semantic validattion. It can fail with an error code which will 789 * be propogated back to register_netdev 790 * 791 * void (*ndo_uninit)(struct net_device *dev); 792 * This function is called when device is unregistered or when registration 793 * fails. It is not called if init fails. 794 * 795 * int (*ndo_open)(struct net_device *dev); 796 * This function is called when network device transistions to the up 797 * state. 798 * 799 * int (*ndo_stop)(struct net_device *dev); 800 * This function is called when network device transistions to the down 801 * state. 802 * 803 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 804 * struct net_device *dev); 805 * Called when a packet needs to be transmitted. 806 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 807 * the queue before that can happen; it's for obsolete devices and weird 808 * corner cases, but the stack really does a non-trivial amount 809 * of useless work if you return NETDEV_TX_BUSY. 810 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 811 * Required can not be NULL. 812 * 813 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 814 * void *accel_priv, select_queue_fallback_t fallback); 815 * Called to decide which queue to when device supports multiple 816 * transmit queues. 817 * 818 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 819 * This function is called to allow device receiver to make 820 * changes to configuration when multicast or promiscious is enabled. 821 * 822 * void (*ndo_set_rx_mode)(struct net_device *dev); 823 * This function is called device changes address list filtering. 824 * If driver handles unicast address filtering, it should set 825 * IFF_UNICAST_FLT to its priv_flags. 826 * 827 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 828 * This function is called when the Media Access Control address 829 * needs to be changed. If this interface is not defined, the 830 * mac address can not be changed. 831 * 832 * int (*ndo_validate_addr)(struct net_device *dev); 833 * Test if Media Access Control address is valid for the device. 834 * 835 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 836 * Called when a user request an ioctl which can't be handled by 837 * the generic interface code. If not defined ioctl's return 838 * not supported error code. 839 * 840 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 841 * Used to set network devices bus interface parameters. This interface 842 * is retained for legacy reason, new devices should use the bus 843 * interface (PCI) for low level management. 844 * 845 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 846 * Called when a user wants to change the Maximum Transfer Unit 847 * of a device. If not defined, any request to change MTU will 848 * will return an error. 849 * 850 * void (*ndo_tx_timeout)(struct net_device *dev); 851 * Callback uses when the transmitter has not made any progress 852 * for dev->watchdog ticks. 853 * 854 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 855 * struct rtnl_link_stats64 *storage); 856 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 857 * Called when a user wants to get the network device usage 858 * statistics. Drivers must do one of the following: 859 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 860 * rtnl_link_stats64 structure passed by the caller. 861 * 2. Define @ndo_get_stats to update a net_device_stats structure 862 * (which should normally be dev->stats) and return a pointer to 863 * it. The structure may be changed asynchronously only if each 864 * field is written atomically. 865 * 3. Update dev->stats asynchronously and atomically, and define 866 * neither operation. 867 * 868 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 869 * If device support VLAN filtering this function is called when a 870 * VLAN id is registered. 871 * 872 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 873 * If device support VLAN filtering this function is called when a 874 * VLAN id is unregistered. 875 * 876 * void (*ndo_poll_controller)(struct net_device *dev); 877 * 878 * SR-IOV management functions. 879 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 880 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 881 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 882 * int max_tx_rate); 883 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 884 * int (*ndo_get_vf_config)(struct net_device *dev, 885 * int vf, struct ifla_vf_info *ivf); 886 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 887 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 888 * struct nlattr *port[]); 889 * 890 * Enable or disable the VF ability to query its RSS Redirection Table and 891 * Hash Key. This is needed since on some devices VF share this information 892 * with PF and querying it may adduce a theoretical security risk. 893 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 894 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 895 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 896 * Called to setup 'tc' number of traffic classes in the net device. This 897 * is always called from the stack with the rtnl lock held and netif tx 898 * queues stopped. This allows the netdevice to perform queue management 899 * safely. 900 * 901 * Fiber Channel over Ethernet (FCoE) offload functions. 902 * int (*ndo_fcoe_enable)(struct net_device *dev); 903 * Called when the FCoE protocol stack wants to start using LLD for FCoE 904 * so the underlying device can perform whatever needed configuration or 905 * initialization to support acceleration of FCoE traffic. 906 * 907 * int (*ndo_fcoe_disable)(struct net_device *dev); 908 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 909 * so the underlying device can perform whatever needed clean-ups to 910 * stop supporting acceleration of FCoE traffic. 911 * 912 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 913 * struct scatterlist *sgl, unsigned int sgc); 914 * Called when the FCoE Initiator wants to initialize an I/O that 915 * is a possible candidate for Direct Data Placement (DDP). The LLD can 916 * perform necessary setup and returns 1 to indicate the device is set up 917 * successfully to perform DDP on this I/O, otherwise this returns 0. 918 * 919 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 920 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 921 * indicated by the FC exchange id 'xid', so the underlying device can 922 * clean up and reuse resources for later DDP requests. 923 * 924 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 925 * struct scatterlist *sgl, unsigned int sgc); 926 * Called when the FCoE Target wants to initialize an I/O that 927 * is a possible candidate for Direct Data Placement (DDP). The LLD can 928 * perform necessary setup and returns 1 to indicate the device is set up 929 * successfully to perform DDP on this I/O, otherwise this returns 0. 930 * 931 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 932 * struct netdev_fcoe_hbainfo *hbainfo); 933 * Called when the FCoE Protocol stack wants information on the underlying 934 * device. This information is utilized by the FCoE protocol stack to 935 * register attributes with Fiber Channel management service as per the 936 * FC-GS Fabric Device Management Information(FDMI) specification. 937 * 938 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 939 * Called when the underlying device wants to override default World Wide 940 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 941 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 942 * protocol stack to use. 943 * 944 * RFS acceleration. 945 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 946 * u16 rxq_index, u32 flow_id); 947 * Set hardware filter for RFS. rxq_index is the target queue index; 948 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 949 * Return the filter ID on success, or a negative error code. 950 * 951 * Slave management functions (for bridge, bonding, etc). 952 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 953 * Called to make another netdev an underling. 954 * 955 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 956 * Called to release previously enslaved netdev. 957 * 958 * Feature/offload setting functions. 959 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 960 * netdev_features_t features); 961 * Adjusts the requested feature flags according to device-specific 962 * constraints, and returns the resulting flags. Must not modify 963 * the device state. 964 * 965 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 966 * Called to update device configuration to new features. Passed 967 * feature set might be less than what was returned by ndo_fix_features()). 968 * Must return >0 or -errno if it changed dev->features itself. 969 * 970 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 971 * struct net_device *dev, 972 * const unsigned char *addr, u16 vid, u16 flags) 973 * Adds an FDB entry to dev for addr. 974 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 975 * struct net_device *dev, 976 * const unsigned char *addr, u16 vid) 977 * Deletes the FDB entry from dev coresponding to addr. 978 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 979 * struct net_device *dev, struct net_device *filter_dev, 980 * int idx) 981 * Used to add FDB entries to dump requests. Implementers should add 982 * entries to skb and update idx with the number of entries. 983 * 984 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 985 * u16 flags) 986 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 987 * struct net_device *dev, u32 filter_mask, 988 * int nlflags) 989 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 990 * u16 flags); 991 * 992 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 993 * Called to change device carrier. Soft-devices (like dummy, team, etc) 994 * which do not represent real hardware may define this to allow their 995 * userspace components to manage their virtual carrier state. Devices 996 * that determine carrier state from physical hardware properties (eg 997 * network cables) or protocol-dependent mechanisms (eg 998 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 999 * 1000 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1001 * struct netdev_phys_item_id *ppid); 1002 * Called to get ID of physical port of this device. If driver does 1003 * not implement this, it is assumed that the hw is not able to have 1004 * multiple net devices on single physical port. 1005 * 1006 * void (*ndo_add_vxlan_port)(struct net_device *dev, 1007 * sa_family_t sa_family, __be16 port); 1008 * Called by vxlan to notiy a driver about the UDP port and socket 1009 * address family that vxlan is listnening to. It is called only when 1010 * a new port starts listening. The operation is protected by the 1011 * vxlan_net->sock_lock. 1012 * 1013 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1014 * sa_family_t sa_family, __be16 port); 1015 * Called by vxlan to notify the driver about a UDP port and socket 1016 * address family that vxlan is not listening to anymore. The operation 1017 * is protected by the vxlan_net->sock_lock. 1018 * 1019 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1020 * struct net_device *dev) 1021 * Called by upper layer devices to accelerate switching or other 1022 * station functionality into hardware. 'pdev is the lowerdev 1023 * to use for the offload and 'dev' is the net device that will 1024 * back the offload. Returns a pointer to the private structure 1025 * the upper layer will maintain. 1026 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1027 * Called by upper layer device to delete the station created 1028 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1029 * the station and priv is the structure returned by the add 1030 * operation. 1031 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1032 * struct net_device *dev, 1033 * void *priv); 1034 * Callback to use for xmit over the accelerated station. This 1035 * is used in place of ndo_start_xmit on accelerated net 1036 * devices. 1037 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1038 * struct net_device *dev 1039 * netdev_features_t features); 1040 * Called by core transmit path to determine if device is capable of 1041 * performing offload operations on a given packet. This is to give 1042 * the device an opportunity to implement any restrictions that cannot 1043 * be otherwise expressed by feature flags. The check is called with 1044 * the set of features that the stack has calculated and it returns 1045 * those the driver believes to be appropriate. 1046 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1047 * int queue_index, u32 maxrate); 1048 * Called when a user wants to set a max-rate limitation of specific 1049 * TX queue. 1050 * int (*ndo_get_iflink)(const struct net_device *dev); 1051 * Called to get the iflink value of this device. 1052 * void (*ndo_change_proto_down)(struct net_device *dev, 1053 * bool proto_down); 1054 * This function is used to pass protocol port error state information 1055 * to the switch driver. The switch driver can react to the proto_down 1056 * by doing a phys down on the associated switch port. 1057 * 1058 */ 1059 struct net_device_ops { 1060 int (*ndo_init)(struct net_device *dev); 1061 void (*ndo_uninit)(struct net_device *dev); 1062 int (*ndo_open)(struct net_device *dev); 1063 int (*ndo_stop)(struct net_device *dev); 1064 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1065 struct net_device *dev); 1066 u16 (*ndo_select_queue)(struct net_device *dev, 1067 struct sk_buff *skb, 1068 void *accel_priv, 1069 select_queue_fallback_t fallback); 1070 void (*ndo_change_rx_flags)(struct net_device *dev, 1071 int flags); 1072 void (*ndo_set_rx_mode)(struct net_device *dev); 1073 int (*ndo_set_mac_address)(struct net_device *dev, 1074 void *addr); 1075 int (*ndo_validate_addr)(struct net_device *dev); 1076 int (*ndo_do_ioctl)(struct net_device *dev, 1077 struct ifreq *ifr, int cmd); 1078 int (*ndo_set_config)(struct net_device *dev, 1079 struct ifmap *map); 1080 int (*ndo_change_mtu)(struct net_device *dev, 1081 int new_mtu); 1082 int (*ndo_neigh_setup)(struct net_device *dev, 1083 struct neigh_parms *); 1084 void (*ndo_tx_timeout) (struct net_device *dev); 1085 1086 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1087 struct rtnl_link_stats64 *storage); 1088 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1089 1090 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1091 __be16 proto, u16 vid); 1092 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1093 __be16 proto, u16 vid); 1094 #ifdef CONFIG_NET_POLL_CONTROLLER 1095 void (*ndo_poll_controller)(struct net_device *dev); 1096 int (*ndo_netpoll_setup)(struct net_device *dev, 1097 struct netpoll_info *info); 1098 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1099 #endif 1100 #ifdef CONFIG_NET_RX_BUSY_POLL 1101 int (*ndo_busy_poll)(struct napi_struct *dev); 1102 #endif 1103 int (*ndo_set_vf_mac)(struct net_device *dev, 1104 int queue, u8 *mac); 1105 int (*ndo_set_vf_vlan)(struct net_device *dev, 1106 int queue, u16 vlan, u8 qos); 1107 int (*ndo_set_vf_rate)(struct net_device *dev, 1108 int vf, int min_tx_rate, 1109 int max_tx_rate); 1110 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1111 int vf, bool setting); 1112 int (*ndo_get_vf_config)(struct net_device *dev, 1113 int vf, 1114 struct ifla_vf_info *ivf); 1115 int (*ndo_set_vf_link_state)(struct net_device *dev, 1116 int vf, int link_state); 1117 int (*ndo_get_vf_stats)(struct net_device *dev, 1118 int vf, 1119 struct ifla_vf_stats 1120 *vf_stats); 1121 int (*ndo_set_vf_port)(struct net_device *dev, 1122 int vf, 1123 struct nlattr *port[]); 1124 int (*ndo_get_vf_port)(struct net_device *dev, 1125 int vf, struct sk_buff *skb); 1126 int (*ndo_set_vf_rss_query_en)( 1127 struct net_device *dev, 1128 int vf, bool setting); 1129 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1130 #if IS_ENABLED(CONFIG_FCOE) 1131 int (*ndo_fcoe_enable)(struct net_device *dev); 1132 int (*ndo_fcoe_disable)(struct net_device *dev); 1133 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1134 u16 xid, 1135 struct scatterlist *sgl, 1136 unsigned int sgc); 1137 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1138 u16 xid); 1139 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1140 u16 xid, 1141 struct scatterlist *sgl, 1142 unsigned int sgc); 1143 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1144 struct netdev_fcoe_hbainfo *hbainfo); 1145 #endif 1146 1147 #if IS_ENABLED(CONFIG_LIBFCOE) 1148 #define NETDEV_FCOE_WWNN 0 1149 #define NETDEV_FCOE_WWPN 1 1150 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1151 u64 *wwn, int type); 1152 #endif 1153 1154 #ifdef CONFIG_RFS_ACCEL 1155 int (*ndo_rx_flow_steer)(struct net_device *dev, 1156 const struct sk_buff *skb, 1157 u16 rxq_index, 1158 u32 flow_id); 1159 #endif 1160 int (*ndo_add_slave)(struct net_device *dev, 1161 struct net_device *slave_dev); 1162 int (*ndo_del_slave)(struct net_device *dev, 1163 struct net_device *slave_dev); 1164 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1165 netdev_features_t features); 1166 int (*ndo_set_features)(struct net_device *dev, 1167 netdev_features_t features); 1168 int (*ndo_neigh_construct)(struct neighbour *n); 1169 void (*ndo_neigh_destroy)(struct neighbour *n); 1170 1171 int (*ndo_fdb_add)(struct ndmsg *ndm, 1172 struct nlattr *tb[], 1173 struct net_device *dev, 1174 const unsigned char *addr, 1175 u16 vid, 1176 u16 flags); 1177 int (*ndo_fdb_del)(struct ndmsg *ndm, 1178 struct nlattr *tb[], 1179 struct net_device *dev, 1180 const unsigned char *addr, 1181 u16 vid); 1182 int (*ndo_fdb_dump)(struct sk_buff *skb, 1183 struct netlink_callback *cb, 1184 struct net_device *dev, 1185 struct net_device *filter_dev, 1186 int idx); 1187 1188 int (*ndo_bridge_setlink)(struct net_device *dev, 1189 struct nlmsghdr *nlh, 1190 u16 flags); 1191 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1192 u32 pid, u32 seq, 1193 struct net_device *dev, 1194 u32 filter_mask, 1195 int nlflags); 1196 int (*ndo_bridge_dellink)(struct net_device *dev, 1197 struct nlmsghdr *nlh, 1198 u16 flags); 1199 int (*ndo_change_carrier)(struct net_device *dev, 1200 bool new_carrier); 1201 int (*ndo_get_phys_port_id)(struct net_device *dev, 1202 struct netdev_phys_item_id *ppid); 1203 int (*ndo_get_phys_port_name)(struct net_device *dev, 1204 char *name, size_t len); 1205 void (*ndo_add_vxlan_port)(struct net_device *dev, 1206 sa_family_t sa_family, 1207 __be16 port); 1208 void (*ndo_del_vxlan_port)(struct net_device *dev, 1209 sa_family_t sa_family, 1210 __be16 port); 1211 1212 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1213 struct net_device *dev); 1214 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1215 void *priv); 1216 1217 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1218 struct net_device *dev, 1219 void *priv); 1220 int (*ndo_get_lock_subclass)(struct net_device *dev); 1221 netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1222 struct net_device *dev, 1223 netdev_features_t features); 1224 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1225 int queue_index, 1226 u32 maxrate); 1227 int (*ndo_get_iflink)(const struct net_device *dev); 1228 int (*ndo_change_proto_down)(struct net_device *dev, 1229 bool proto_down); 1230 }; 1231 1232 /** 1233 * enum net_device_priv_flags - &struct net_device priv_flags 1234 * 1235 * These are the &struct net_device, they are only set internally 1236 * by drivers and used in the kernel. These flags are invisible to 1237 * userspace, this means that the order of these flags can change 1238 * during any kernel release. 1239 * 1240 * You should have a pretty good reason to be extending these flags. 1241 * 1242 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1243 * @IFF_EBRIDGE: Ethernet bridging device 1244 * @IFF_BONDING: bonding master or slave 1245 * @IFF_ISATAP: ISATAP interface (RFC4214) 1246 * @IFF_WAN_HDLC: WAN HDLC device 1247 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1248 * release skb->dst 1249 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1250 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1251 * @IFF_MACVLAN_PORT: device used as macvlan port 1252 * @IFF_BRIDGE_PORT: device used as bridge port 1253 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1254 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1255 * @IFF_UNICAST_FLT: Supports unicast filtering 1256 * @IFF_TEAM_PORT: device used as team port 1257 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1258 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1259 * change when it's running 1260 * @IFF_MACVLAN: Macvlan device 1261 * @IFF_VRF_MASTER: device is a VRF master 1262 * @IFF_NO_QUEUE: device can run without qdisc attached 1263 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1264 */ 1265 enum netdev_priv_flags { 1266 IFF_802_1Q_VLAN = 1<<0, 1267 IFF_EBRIDGE = 1<<1, 1268 IFF_BONDING = 1<<2, 1269 IFF_ISATAP = 1<<3, 1270 IFF_WAN_HDLC = 1<<4, 1271 IFF_XMIT_DST_RELEASE = 1<<5, 1272 IFF_DONT_BRIDGE = 1<<6, 1273 IFF_DISABLE_NETPOLL = 1<<7, 1274 IFF_MACVLAN_PORT = 1<<8, 1275 IFF_BRIDGE_PORT = 1<<9, 1276 IFF_OVS_DATAPATH = 1<<10, 1277 IFF_TX_SKB_SHARING = 1<<11, 1278 IFF_UNICAST_FLT = 1<<12, 1279 IFF_TEAM_PORT = 1<<13, 1280 IFF_SUPP_NOFCS = 1<<14, 1281 IFF_LIVE_ADDR_CHANGE = 1<<15, 1282 IFF_MACVLAN = 1<<16, 1283 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1284 IFF_IPVLAN_MASTER = 1<<18, 1285 IFF_IPVLAN_SLAVE = 1<<19, 1286 IFF_VRF_MASTER = 1<<20, 1287 IFF_NO_QUEUE = 1<<21, 1288 IFF_OPENVSWITCH = 1<<22, 1289 }; 1290 1291 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1292 #define IFF_EBRIDGE IFF_EBRIDGE 1293 #define IFF_BONDING IFF_BONDING 1294 #define IFF_ISATAP IFF_ISATAP 1295 #define IFF_WAN_HDLC IFF_WAN_HDLC 1296 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1297 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1298 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1299 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1300 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1301 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1302 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1303 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1304 #define IFF_TEAM_PORT IFF_TEAM_PORT 1305 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1306 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1307 #define IFF_MACVLAN IFF_MACVLAN 1308 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1309 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1310 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1311 #define IFF_VRF_MASTER IFF_VRF_MASTER 1312 #define IFF_NO_QUEUE IFF_NO_QUEUE 1313 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1314 1315 /** 1316 * struct net_device - The DEVICE structure. 1317 * Actually, this whole structure is a big mistake. It mixes I/O 1318 * data with strictly "high-level" data, and it has to know about 1319 * almost every data structure used in the INET module. 1320 * 1321 * @name: This is the first field of the "visible" part of this structure 1322 * (i.e. as seen by users in the "Space.c" file). It is the name 1323 * of the interface. 1324 * 1325 * @name_hlist: Device name hash chain, please keep it close to name[] 1326 * @ifalias: SNMP alias 1327 * @mem_end: Shared memory end 1328 * @mem_start: Shared memory start 1329 * @base_addr: Device I/O address 1330 * @irq: Device IRQ number 1331 * 1332 * @carrier_changes: Stats to monitor carrier on<->off transitions 1333 * 1334 * @state: Generic network queuing layer state, see netdev_state_t 1335 * @dev_list: The global list of network devices 1336 * @napi_list: List entry, that is used for polling napi devices 1337 * @unreg_list: List entry, that is used, when we are unregistering the 1338 * device, see the function unregister_netdev 1339 * @close_list: List entry, that is used, when we are closing the device 1340 * 1341 * @adj_list: Directly linked devices, like slaves for bonding 1342 * @all_adj_list: All linked devices, *including* neighbours 1343 * @features: Currently active device features 1344 * @hw_features: User-changeable features 1345 * 1346 * @wanted_features: User-requested features 1347 * @vlan_features: Mask of features inheritable by VLAN devices 1348 * 1349 * @hw_enc_features: Mask of features inherited by encapsulating devices 1350 * This field indicates what encapsulation 1351 * offloads the hardware is capable of doing, 1352 * and drivers will need to set them appropriately. 1353 * 1354 * @mpls_features: Mask of features inheritable by MPLS 1355 * 1356 * @ifindex: interface index 1357 * @group: The group, that the device belongs to 1358 * 1359 * @stats: Statistics struct, which was left as a legacy, use 1360 * rtnl_link_stats64 instead 1361 * 1362 * @rx_dropped: Dropped packets by core network, 1363 * do not use this in drivers 1364 * @tx_dropped: Dropped packets by core network, 1365 * do not use this in drivers 1366 * 1367 * @wireless_handlers: List of functions to handle Wireless Extensions, 1368 * instead of ioctl, 1369 * see <net/iw_handler.h> for details. 1370 * @wireless_data: Instance data managed by the core of wireless extensions 1371 * 1372 * @netdev_ops: Includes several pointers to callbacks, 1373 * if one wants to override the ndo_*() functions 1374 * @ethtool_ops: Management operations 1375 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1376 * of Layer 2 headers. 1377 * 1378 * @flags: Interface flags (a la BSD) 1379 * @priv_flags: Like 'flags' but invisible to userspace, 1380 * see if.h for the definitions 1381 * @gflags: Global flags ( kept as legacy ) 1382 * @padded: How much padding added by alloc_netdev() 1383 * @operstate: RFC2863 operstate 1384 * @link_mode: Mapping policy to operstate 1385 * @if_port: Selectable AUI, TP, ... 1386 * @dma: DMA channel 1387 * @mtu: Interface MTU value 1388 * @type: Interface hardware type 1389 * @hard_header_len: Hardware header length 1390 * 1391 * @needed_headroom: Extra headroom the hardware may need, but not in all 1392 * cases can this be guaranteed 1393 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1394 * cases can this be guaranteed. Some cases also use 1395 * LL_MAX_HEADER instead to allocate the skb 1396 * 1397 * interface address info: 1398 * 1399 * @perm_addr: Permanent hw address 1400 * @addr_assign_type: Hw address assignment type 1401 * @addr_len: Hardware address length 1402 * @neigh_priv_len; Used in neigh_alloc(), 1403 * initialized only in atm/clip.c 1404 * @dev_id: Used to differentiate devices that share 1405 * the same link layer address 1406 * @dev_port: Used to differentiate devices that share 1407 * the same function 1408 * @addr_list_lock: XXX: need comments on this one 1409 * @uc_promisc: Counter, that indicates, that promiscuous mode 1410 * has been enabled due to the need to listen to 1411 * additional unicast addresses in a device that 1412 * does not implement ndo_set_rx_mode() 1413 * @uc: unicast mac addresses 1414 * @mc: multicast mac addresses 1415 * @dev_addrs: list of device hw addresses 1416 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1417 * @promiscuity: Number of times, the NIC is told to work in 1418 * Promiscuous mode, if it becomes 0 the NIC will 1419 * exit from working in Promiscuous mode 1420 * @allmulti: Counter, enables or disables allmulticast mode 1421 * 1422 * @vlan_info: VLAN info 1423 * @dsa_ptr: dsa specific data 1424 * @tipc_ptr: TIPC specific data 1425 * @atalk_ptr: AppleTalk link 1426 * @ip_ptr: IPv4 specific data 1427 * @dn_ptr: DECnet specific data 1428 * @ip6_ptr: IPv6 specific data 1429 * @ax25_ptr: AX.25 specific data 1430 * @vrf_ptr: VRF specific data 1431 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1432 * 1433 * @last_rx: Time of last Rx 1434 * @dev_addr: Hw address (before bcast, 1435 * because most packets are unicast) 1436 * 1437 * @_rx: Array of RX queues 1438 * @num_rx_queues: Number of RX queues 1439 * allocated at register_netdev() time 1440 * @real_num_rx_queues: Number of RX queues currently active in device 1441 * 1442 * @rx_handler: handler for received packets 1443 * @rx_handler_data: XXX: need comments on this one 1444 * @ingress_queue: XXX: need comments on this one 1445 * @broadcast: hw bcast address 1446 * 1447 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1448 * indexed by RX queue number. Assigned by driver. 1449 * This must only be set if the ndo_rx_flow_steer 1450 * operation is defined 1451 * @index_hlist: Device index hash chain 1452 * 1453 * @_tx: Array of TX queues 1454 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1455 * @real_num_tx_queues: Number of TX queues currently active in device 1456 * @qdisc: Root qdisc from userspace point of view 1457 * @tx_queue_len: Max frames per queue allowed 1458 * @tx_global_lock: XXX: need comments on this one 1459 * 1460 * @xps_maps: XXX: need comments on this one 1461 * 1462 * @offload_fwd_mark: Offload device fwding mark 1463 * 1464 * @trans_start: Time (in jiffies) of last Tx 1465 * @watchdog_timeo: Represents the timeout that is used by 1466 * the watchdog ( see dev_watchdog() ) 1467 * @watchdog_timer: List of timers 1468 * 1469 * @pcpu_refcnt: Number of references to this device 1470 * @todo_list: Delayed register/unregister 1471 * @link_watch_list: XXX: need comments on this one 1472 * 1473 * @reg_state: Register/unregister state machine 1474 * @dismantle: Device is going to be freed 1475 * @rtnl_link_state: This enum represents the phases of creating 1476 * a new link 1477 * 1478 * @destructor: Called from unregister, 1479 * can be used to call free_netdev 1480 * @npinfo: XXX: need comments on this one 1481 * @nd_net: Network namespace this network device is inside 1482 * 1483 * @ml_priv: Mid-layer private 1484 * @lstats: Loopback statistics 1485 * @tstats: Tunnel statistics 1486 * @dstats: Dummy statistics 1487 * @vstats: Virtual ethernet statistics 1488 * 1489 * @garp_port: GARP 1490 * @mrp_port: MRP 1491 * 1492 * @dev: Class/net/name entry 1493 * @sysfs_groups: Space for optional device, statistics and wireless 1494 * sysfs groups 1495 * 1496 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1497 * @rtnl_link_ops: Rtnl_link_ops 1498 * 1499 * @gso_max_size: Maximum size of generic segmentation offload 1500 * @gso_max_segs: Maximum number of segments that can be passed to the 1501 * NIC for GSO 1502 * @gso_min_segs: Minimum number of segments that can be passed to the 1503 * NIC for GSO 1504 * 1505 * @dcbnl_ops: Data Center Bridging netlink ops 1506 * @num_tc: Number of traffic classes in the net device 1507 * @tc_to_txq: XXX: need comments on this one 1508 * @prio_tc_map XXX: need comments on this one 1509 * 1510 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1511 * 1512 * @priomap: XXX: need comments on this one 1513 * @phydev: Physical device may attach itself 1514 * for hardware timestamping 1515 * 1516 * @qdisc_tx_busylock: XXX: need comments on this one 1517 * 1518 * @proto_down: protocol port state information can be sent to the 1519 * switch driver and used to set the phys state of the 1520 * switch port. 1521 * 1522 * FIXME: cleanup struct net_device such that network protocol info 1523 * moves out. 1524 */ 1525 1526 struct net_device { 1527 char name[IFNAMSIZ]; 1528 struct hlist_node name_hlist; 1529 char *ifalias; 1530 /* 1531 * I/O specific fields 1532 * FIXME: Merge these and struct ifmap into one 1533 */ 1534 unsigned long mem_end; 1535 unsigned long mem_start; 1536 unsigned long base_addr; 1537 int irq; 1538 1539 atomic_t carrier_changes; 1540 1541 /* 1542 * Some hardware also needs these fields (state,dev_list, 1543 * napi_list,unreg_list,close_list) but they are not 1544 * part of the usual set specified in Space.c. 1545 */ 1546 1547 unsigned long state; 1548 1549 struct list_head dev_list; 1550 struct list_head napi_list; 1551 struct list_head unreg_list; 1552 struct list_head close_list; 1553 struct list_head ptype_all; 1554 struct list_head ptype_specific; 1555 1556 struct { 1557 struct list_head upper; 1558 struct list_head lower; 1559 } adj_list; 1560 1561 struct { 1562 struct list_head upper; 1563 struct list_head lower; 1564 } all_adj_list; 1565 1566 netdev_features_t features; 1567 netdev_features_t hw_features; 1568 netdev_features_t wanted_features; 1569 netdev_features_t vlan_features; 1570 netdev_features_t hw_enc_features; 1571 netdev_features_t mpls_features; 1572 1573 int ifindex; 1574 int group; 1575 1576 struct net_device_stats stats; 1577 1578 atomic_long_t rx_dropped; 1579 atomic_long_t tx_dropped; 1580 1581 #ifdef CONFIG_WIRELESS_EXT 1582 const struct iw_handler_def * wireless_handlers; 1583 struct iw_public_data * wireless_data; 1584 #endif 1585 const struct net_device_ops *netdev_ops; 1586 const struct ethtool_ops *ethtool_ops; 1587 #ifdef CONFIG_NET_SWITCHDEV 1588 const struct switchdev_ops *switchdev_ops; 1589 #endif 1590 1591 const struct header_ops *header_ops; 1592 1593 unsigned int flags; 1594 unsigned int priv_flags; 1595 1596 unsigned short gflags; 1597 unsigned short padded; 1598 1599 unsigned char operstate; 1600 unsigned char link_mode; 1601 1602 unsigned char if_port; 1603 unsigned char dma; 1604 1605 unsigned int mtu; 1606 unsigned short type; 1607 unsigned short hard_header_len; 1608 1609 unsigned short needed_headroom; 1610 unsigned short needed_tailroom; 1611 1612 /* Interface address info. */ 1613 unsigned char perm_addr[MAX_ADDR_LEN]; 1614 unsigned char addr_assign_type; 1615 unsigned char addr_len; 1616 unsigned short neigh_priv_len; 1617 unsigned short dev_id; 1618 unsigned short dev_port; 1619 spinlock_t addr_list_lock; 1620 unsigned char name_assign_type; 1621 bool uc_promisc; 1622 struct netdev_hw_addr_list uc; 1623 struct netdev_hw_addr_list mc; 1624 struct netdev_hw_addr_list dev_addrs; 1625 1626 #ifdef CONFIG_SYSFS 1627 struct kset *queues_kset; 1628 #endif 1629 unsigned int promiscuity; 1630 unsigned int allmulti; 1631 1632 1633 /* Protocol specific pointers */ 1634 1635 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1636 struct vlan_info __rcu *vlan_info; 1637 #endif 1638 #if IS_ENABLED(CONFIG_NET_DSA) 1639 struct dsa_switch_tree *dsa_ptr; 1640 #endif 1641 #if IS_ENABLED(CONFIG_TIPC) 1642 struct tipc_bearer __rcu *tipc_ptr; 1643 #endif 1644 void *atalk_ptr; 1645 struct in_device __rcu *ip_ptr; 1646 struct dn_dev __rcu *dn_ptr; 1647 struct inet6_dev __rcu *ip6_ptr; 1648 void *ax25_ptr; 1649 struct net_vrf_dev __rcu *vrf_ptr; 1650 struct wireless_dev *ieee80211_ptr; 1651 struct wpan_dev *ieee802154_ptr; 1652 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1653 struct mpls_dev __rcu *mpls_ptr; 1654 #endif 1655 1656 /* 1657 * Cache lines mostly used on receive path (including eth_type_trans()) 1658 */ 1659 unsigned long last_rx; 1660 1661 /* Interface address info used in eth_type_trans() */ 1662 unsigned char *dev_addr; 1663 1664 1665 #ifdef CONFIG_SYSFS 1666 struct netdev_rx_queue *_rx; 1667 1668 unsigned int num_rx_queues; 1669 unsigned int real_num_rx_queues; 1670 1671 #endif 1672 1673 unsigned long gro_flush_timeout; 1674 rx_handler_func_t __rcu *rx_handler; 1675 void __rcu *rx_handler_data; 1676 1677 #ifdef CONFIG_NET_CLS_ACT 1678 struct tcf_proto __rcu *ingress_cl_list; 1679 #endif 1680 struct netdev_queue __rcu *ingress_queue; 1681 #ifdef CONFIG_NETFILTER_INGRESS 1682 struct list_head nf_hooks_ingress; 1683 #endif 1684 1685 unsigned char broadcast[MAX_ADDR_LEN]; 1686 #ifdef CONFIG_RFS_ACCEL 1687 struct cpu_rmap *rx_cpu_rmap; 1688 #endif 1689 struct hlist_node index_hlist; 1690 1691 /* 1692 * Cache lines mostly used on transmit path 1693 */ 1694 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1695 unsigned int num_tx_queues; 1696 unsigned int real_num_tx_queues; 1697 struct Qdisc *qdisc; 1698 unsigned long tx_queue_len; 1699 spinlock_t tx_global_lock; 1700 int watchdog_timeo; 1701 1702 #ifdef CONFIG_XPS 1703 struct xps_dev_maps __rcu *xps_maps; 1704 #endif 1705 1706 #ifdef CONFIG_NET_SWITCHDEV 1707 u32 offload_fwd_mark; 1708 #endif 1709 1710 /* These may be needed for future network-power-down code. */ 1711 1712 /* 1713 * trans_start here is expensive for high speed devices on SMP, 1714 * please use netdev_queue->trans_start instead. 1715 */ 1716 unsigned long trans_start; 1717 1718 struct timer_list watchdog_timer; 1719 1720 int __percpu *pcpu_refcnt; 1721 struct list_head todo_list; 1722 1723 struct list_head link_watch_list; 1724 1725 enum { NETREG_UNINITIALIZED=0, 1726 NETREG_REGISTERED, /* completed register_netdevice */ 1727 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1728 NETREG_UNREGISTERED, /* completed unregister todo */ 1729 NETREG_RELEASED, /* called free_netdev */ 1730 NETREG_DUMMY, /* dummy device for NAPI poll */ 1731 } reg_state:8; 1732 1733 bool dismantle; 1734 1735 enum { 1736 RTNL_LINK_INITIALIZED, 1737 RTNL_LINK_INITIALIZING, 1738 } rtnl_link_state:16; 1739 1740 void (*destructor)(struct net_device *dev); 1741 1742 #ifdef CONFIG_NETPOLL 1743 struct netpoll_info __rcu *npinfo; 1744 #endif 1745 1746 possible_net_t nd_net; 1747 1748 /* mid-layer private */ 1749 union { 1750 void *ml_priv; 1751 struct pcpu_lstats __percpu *lstats; 1752 struct pcpu_sw_netstats __percpu *tstats; 1753 struct pcpu_dstats __percpu *dstats; 1754 struct pcpu_vstats __percpu *vstats; 1755 }; 1756 1757 struct garp_port __rcu *garp_port; 1758 struct mrp_port __rcu *mrp_port; 1759 1760 struct device dev; 1761 const struct attribute_group *sysfs_groups[4]; 1762 const struct attribute_group *sysfs_rx_queue_group; 1763 1764 const struct rtnl_link_ops *rtnl_link_ops; 1765 1766 /* for setting kernel sock attribute on TCP connection setup */ 1767 #define GSO_MAX_SIZE 65536 1768 unsigned int gso_max_size; 1769 #define GSO_MAX_SEGS 65535 1770 u16 gso_max_segs; 1771 u16 gso_min_segs; 1772 #ifdef CONFIG_DCB 1773 const struct dcbnl_rtnl_ops *dcbnl_ops; 1774 #endif 1775 u8 num_tc; 1776 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1777 u8 prio_tc_map[TC_BITMASK + 1]; 1778 1779 #if IS_ENABLED(CONFIG_FCOE) 1780 unsigned int fcoe_ddp_xid; 1781 #endif 1782 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1783 struct netprio_map __rcu *priomap; 1784 #endif 1785 struct phy_device *phydev; 1786 struct lock_class_key *qdisc_tx_busylock; 1787 bool proto_down; 1788 }; 1789 #define to_net_dev(d) container_of(d, struct net_device, dev) 1790 1791 #define NETDEV_ALIGN 32 1792 1793 static inline 1794 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1795 { 1796 return dev->prio_tc_map[prio & TC_BITMASK]; 1797 } 1798 1799 static inline 1800 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1801 { 1802 if (tc >= dev->num_tc) 1803 return -EINVAL; 1804 1805 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1806 return 0; 1807 } 1808 1809 static inline 1810 void netdev_reset_tc(struct net_device *dev) 1811 { 1812 dev->num_tc = 0; 1813 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1814 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1815 } 1816 1817 static inline 1818 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1819 { 1820 if (tc >= dev->num_tc) 1821 return -EINVAL; 1822 1823 dev->tc_to_txq[tc].count = count; 1824 dev->tc_to_txq[tc].offset = offset; 1825 return 0; 1826 } 1827 1828 static inline 1829 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1830 { 1831 if (num_tc > TC_MAX_QUEUE) 1832 return -EINVAL; 1833 1834 dev->num_tc = num_tc; 1835 return 0; 1836 } 1837 1838 static inline 1839 int netdev_get_num_tc(struct net_device *dev) 1840 { 1841 return dev->num_tc; 1842 } 1843 1844 static inline 1845 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1846 unsigned int index) 1847 { 1848 return &dev->_tx[index]; 1849 } 1850 1851 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1852 const struct sk_buff *skb) 1853 { 1854 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1855 } 1856 1857 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1858 void (*f)(struct net_device *, 1859 struct netdev_queue *, 1860 void *), 1861 void *arg) 1862 { 1863 unsigned int i; 1864 1865 for (i = 0; i < dev->num_tx_queues; i++) 1866 f(dev, &dev->_tx[i], arg); 1867 } 1868 1869 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1870 struct sk_buff *skb, 1871 void *accel_priv); 1872 1873 /* 1874 * Net namespace inlines 1875 */ 1876 static inline 1877 struct net *dev_net(const struct net_device *dev) 1878 { 1879 return read_pnet(&dev->nd_net); 1880 } 1881 1882 static inline 1883 void dev_net_set(struct net_device *dev, struct net *net) 1884 { 1885 write_pnet(&dev->nd_net, net); 1886 } 1887 1888 static inline bool netdev_uses_dsa(struct net_device *dev) 1889 { 1890 #if IS_ENABLED(CONFIG_NET_DSA) 1891 if (dev->dsa_ptr != NULL) 1892 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1893 #endif 1894 return false; 1895 } 1896 1897 /** 1898 * netdev_priv - access network device private data 1899 * @dev: network device 1900 * 1901 * Get network device private data 1902 */ 1903 static inline void *netdev_priv(const struct net_device *dev) 1904 { 1905 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1906 } 1907 1908 /* Set the sysfs physical device reference for the network logical device 1909 * if set prior to registration will cause a symlink during initialization. 1910 */ 1911 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1912 1913 /* Set the sysfs device type for the network logical device to allow 1914 * fine-grained identification of different network device types. For 1915 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1916 */ 1917 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1918 1919 /* Default NAPI poll() weight 1920 * Device drivers are strongly advised to not use bigger value 1921 */ 1922 #define NAPI_POLL_WEIGHT 64 1923 1924 /** 1925 * netif_napi_add - initialize a napi context 1926 * @dev: network device 1927 * @napi: napi context 1928 * @poll: polling function 1929 * @weight: default weight 1930 * 1931 * netif_napi_add() must be used to initialize a napi context prior to calling 1932 * *any* of the other napi related functions. 1933 */ 1934 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1935 int (*poll)(struct napi_struct *, int), int weight); 1936 1937 /** 1938 * netif_napi_del - remove a napi context 1939 * @napi: napi context 1940 * 1941 * netif_napi_del() removes a napi context from the network device napi list 1942 */ 1943 void netif_napi_del(struct napi_struct *napi); 1944 1945 struct napi_gro_cb { 1946 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1947 void *frag0; 1948 1949 /* Length of frag0. */ 1950 unsigned int frag0_len; 1951 1952 /* This indicates where we are processing relative to skb->data. */ 1953 int data_offset; 1954 1955 /* This is non-zero if the packet cannot be merged with the new skb. */ 1956 u16 flush; 1957 1958 /* Save the IP ID here and check when we get to the transport layer */ 1959 u16 flush_id; 1960 1961 /* Number of segments aggregated. */ 1962 u16 count; 1963 1964 /* Start offset for remote checksum offload */ 1965 u16 gro_remcsum_start; 1966 1967 /* jiffies when first packet was created/queued */ 1968 unsigned long age; 1969 1970 /* Used in ipv6_gro_receive() and foo-over-udp */ 1971 u16 proto; 1972 1973 /* This is non-zero if the packet may be of the same flow. */ 1974 u8 same_flow:1; 1975 1976 /* Used in udp_gro_receive */ 1977 u8 udp_mark:1; 1978 1979 /* GRO checksum is valid */ 1980 u8 csum_valid:1; 1981 1982 /* Number of checksums via CHECKSUM_UNNECESSARY */ 1983 u8 csum_cnt:3; 1984 1985 /* Free the skb? */ 1986 u8 free:2; 1987 #define NAPI_GRO_FREE 1 1988 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1989 1990 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 1991 u8 is_ipv6:1; 1992 1993 /* 7 bit hole */ 1994 1995 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1996 __wsum csum; 1997 1998 /* used in skb_gro_receive() slow path */ 1999 struct sk_buff *last; 2000 }; 2001 2002 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2003 2004 struct packet_type { 2005 __be16 type; /* This is really htons(ether_type). */ 2006 struct net_device *dev; /* NULL is wildcarded here */ 2007 int (*func) (struct sk_buff *, 2008 struct net_device *, 2009 struct packet_type *, 2010 struct net_device *); 2011 bool (*id_match)(struct packet_type *ptype, 2012 struct sock *sk); 2013 void *af_packet_priv; 2014 struct list_head list; 2015 }; 2016 2017 struct offload_callbacks { 2018 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2019 netdev_features_t features); 2020 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2021 struct sk_buff *skb); 2022 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2023 }; 2024 2025 struct packet_offload { 2026 __be16 type; /* This is really htons(ether_type). */ 2027 u16 priority; 2028 struct offload_callbacks callbacks; 2029 struct list_head list; 2030 }; 2031 2032 struct udp_offload; 2033 2034 struct udp_offload_callbacks { 2035 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2036 struct sk_buff *skb, 2037 struct udp_offload *uoff); 2038 int (*gro_complete)(struct sk_buff *skb, 2039 int nhoff, 2040 struct udp_offload *uoff); 2041 }; 2042 2043 struct udp_offload { 2044 __be16 port; 2045 u8 ipproto; 2046 struct udp_offload_callbacks callbacks; 2047 }; 2048 2049 /* often modified stats are per cpu, other are shared (netdev->stats) */ 2050 struct pcpu_sw_netstats { 2051 u64 rx_packets; 2052 u64 rx_bytes; 2053 u64 tx_packets; 2054 u64 tx_bytes; 2055 struct u64_stats_sync syncp; 2056 }; 2057 2058 #define netdev_alloc_pcpu_stats(type) \ 2059 ({ \ 2060 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 2061 if (pcpu_stats) { \ 2062 int __cpu; \ 2063 for_each_possible_cpu(__cpu) { \ 2064 typeof(type) *stat; \ 2065 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2066 u64_stats_init(&stat->syncp); \ 2067 } \ 2068 } \ 2069 pcpu_stats; \ 2070 }) 2071 2072 #include <linux/notifier.h> 2073 2074 /* netdevice notifier chain. Please remember to update the rtnetlink 2075 * notification exclusion list in rtnetlink_event() when adding new 2076 * types. 2077 */ 2078 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2079 #define NETDEV_DOWN 0x0002 2080 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2081 detected a hardware crash and restarted 2082 - we can use this eg to kick tcp sessions 2083 once done */ 2084 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2085 #define NETDEV_REGISTER 0x0005 2086 #define NETDEV_UNREGISTER 0x0006 2087 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2088 #define NETDEV_CHANGEADDR 0x0008 2089 #define NETDEV_GOING_DOWN 0x0009 2090 #define NETDEV_CHANGENAME 0x000A 2091 #define NETDEV_FEAT_CHANGE 0x000B 2092 #define NETDEV_BONDING_FAILOVER 0x000C 2093 #define NETDEV_PRE_UP 0x000D 2094 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2095 #define NETDEV_POST_TYPE_CHANGE 0x000F 2096 #define NETDEV_POST_INIT 0x0010 2097 #define NETDEV_UNREGISTER_FINAL 0x0011 2098 #define NETDEV_RELEASE 0x0012 2099 #define NETDEV_NOTIFY_PEERS 0x0013 2100 #define NETDEV_JOIN 0x0014 2101 #define NETDEV_CHANGEUPPER 0x0015 2102 #define NETDEV_RESEND_IGMP 0x0016 2103 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2104 #define NETDEV_CHANGEINFODATA 0x0018 2105 #define NETDEV_BONDING_INFO 0x0019 2106 2107 int register_netdevice_notifier(struct notifier_block *nb); 2108 int unregister_netdevice_notifier(struct notifier_block *nb); 2109 2110 struct netdev_notifier_info { 2111 struct net_device *dev; 2112 }; 2113 2114 struct netdev_notifier_change_info { 2115 struct netdev_notifier_info info; /* must be first */ 2116 unsigned int flags_changed; 2117 }; 2118 2119 struct netdev_notifier_changeupper_info { 2120 struct netdev_notifier_info info; /* must be first */ 2121 struct net_device *upper_dev; /* new upper dev */ 2122 bool master; /* is upper dev master */ 2123 bool linking; /* is the nofication for link or unlink */ 2124 }; 2125 2126 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2127 struct net_device *dev) 2128 { 2129 info->dev = dev; 2130 } 2131 2132 static inline struct net_device * 2133 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2134 { 2135 return info->dev; 2136 } 2137 2138 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2139 2140 2141 extern rwlock_t dev_base_lock; /* Device list lock */ 2142 2143 #define for_each_netdev(net, d) \ 2144 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2145 #define for_each_netdev_reverse(net, d) \ 2146 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2147 #define for_each_netdev_rcu(net, d) \ 2148 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2149 #define for_each_netdev_safe(net, d, n) \ 2150 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2151 #define for_each_netdev_continue(net, d) \ 2152 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2153 #define for_each_netdev_continue_rcu(net, d) \ 2154 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2155 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2156 for_each_netdev_rcu(&init_net, slave) \ 2157 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2158 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2159 2160 static inline struct net_device *next_net_device(struct net_device *dev) 2161 { 2162 struct list_head *lh; 2163 struct net *net; 2164 2165 net = dev_net(dev); 2166 lh = dev->dev_list.next; 2167 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2168 } 2169 2170 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2171 { 2172 struct list_head *lh; 2173 struct net *net; 2174 2175 net = dev_net(dev); 2176 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2177 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2178 } 2179 2180 static inline struct net_device *first_net_device(struct net *net) 2181 { 2182 return list_empty(&net->dev_base_head) ? NULL : 2183 net_device_entry(net->dev_base_head.next); 2184 } 2185 2186 static inline struct net_device *first_net_device_rcu(struct net *net) 2187 { 2188 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2189 2190 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2191 } 2192 2193 int netdev_boot_setup_check(struct net_device *dev); 2194 unsigned long netdev_boot_base(const char *prefix, int unit); 2195 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2196 const char *hwaddr); 2197 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2198 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2199 void dev_add_pack(struct packet_type *pt); 2200 void dev_remove_pack(struct packet_type *pt); 2201 void __dev_remove_pack(struct packet_type *pt); 2202 void dev_add_offload(struct packet_offload *po); 2203 void dev_remove_offload(struct packet_offload *po); 2204 2205 int dev_get_iflink(const struct net_device *dev); 2206 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2207 unsigned short mask); 2208 struct net_device *dev_get_by_name(struct net *net, const char *name); 2209 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2210 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2211 int dev_alloc_name(struct net_device *dev, const char *name); 2212 int dev_open(struct net_device *dev); 2213 int dev_close(struct net_device *dev); 2214 int dev_close_many(struct list_head *head, bool unlink); 2215 void dev_disable_lro(struct net_device *dev); 2216 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb); 2217 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb); 2218 static inline int dev_queue_xmit(struct sk_buff *skb) 2219 { 2220 return dev_queue_xmit_sk(skb->sk, skb); 2221 } 2222 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2223 int register_netdevice(struct net_device *dev); 2224 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2225 void unregister_netdevice_many(struct list_head *head); 2226 static inline void unregister_netdevice(struct net_device *dev) 2227 { 2228 unregister_netdevice_queue(dev, NULL); 2229 } 2230 2231 int netdev_refcnt_read(const struct net_device *dev); 2232 void free_netdev(struct net_device *dev); 2233 void netdev_freemem(struct net_device *dev); 2234 void synchronize_net(void); 2235 int init_dummy_netdev(struct net_device *dev); 2236 2237 DECLARE_PER_CPU(int, xmit_recursion); 2238 static inline int dev_recursion_level(void) 2239 { 2240 return this_cpu_read(xmit_recursion); 2241 } 2242 2243 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2244 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2245 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2246 int netdev_get_name(struct net *net, char *name, int ifindex); 2247 int dev_restart(struct net_device *dev); 2248 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2249 2250 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2251 { 2252 return NAPI_GRO_CB(skb)->data_offset; 2253 } 2254 2255 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2256 { 2257 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2258 } 2259 2260 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2261 { 2262 NAPI_GRO_CB(skb)->data_offset += len; 2263 } 2264 2265 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2266 unsigned int offset) 2267 { 2268 return NAPI_GRO_CB(skb)->frag0 + offset; 2269 } 2270 2271 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2272 { 2273 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2274 } 2275 2276 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2277 unsigned int offset) 2278 { 2279 if (!pskb_may_pull(skb, hlen)) 2280 return NULL; 2281 2282 NAPI_GRO_CB(skb)->frag0 = NULL; 2283 NAPI_GRO_CB(skb)->frag0_len = 0; 2284 return skb->data + offset; 2285 } 2286 2287 static inline void *skb_gro_network_header(struct sk_buff *skb) 2288 { 2289 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2290 skb_network_offset(skb); 2291 } 2292 2293 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2294 const void *start, unsigned int len) 2295 { 2296 if (NAPI_GRO_CB(skb)->csum_valid) 2297 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2298 csum_partial(start, len, 0)); 2299 } 2300 2301 /* GRO checksum functions. These are logical equivalents of the normal 2302 * checksum functions (in skbuff.h) except that they operate on the GRO 2303 * offsets and fields in sk_buff. 2304 */ 2305 2306 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2307 2308 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2309 { 2310 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2311 } 2312 2313 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2314 bool zero_okay, 2315 __sum16 check) 2316 { 2317 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2318 skb_checksum_start_offset(skb) < 2319 skb_gro_offset(skb)) && 2320 !skb_at_gro_remcsum_start(skb) && 2321 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2322 (!zero_okay || check)); 2323 } 2324 2325 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2326 __wsum psum) 2327 { 2328 if (NAPI_GRO_CB(skb)->csum_valid && 2329 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2330 return 0; 2331 2332 NAPI_GRO_CB(skb)->csum = psum; 2333 2334 return __skb_gro_checksum_complete(skb); 2335 } 2336 2337 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2338 { 2339 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2340 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2341 NAPI_GRO_CB(skb)->csum_cnt--; 2342 } else { 2343 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2344 * verified a new top level checksum or an encapsulated one 2345 * during GRO. This saves work if we fallback to normal path. 2346 */ 2347 __skb_incr_checksum_unnecessary(skb); 2348 } 2349 } 2350 2351 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2352 compute_pseudo) \ 2353 ({ \ 2354 __sum16 __ret = 0; \ 2355 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2356 __ret = __skb_gro_checksum_validate_complete(skb, \ 2357 compute_pseudo(skb, proto)); \ 2358 if (__ret) \ 2359 __skb_mark_checksum_bad(skb); \ 2360 else \ 2361 skb_gro_incr_csum_unnecessary(skb); \ 2362 __ret; \ 2363 }) 2364 2365 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2366 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2367 2368 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2369 compute_pseudo) \ 2370 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2371 2372 #define skb_gro_checksum_simple_validate(skb) \ 2373 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2374 2375 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2376 { 2377 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2378 !NAPI_GRO_CB(skb)->csum_valid); 2379 } 2380 2381 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2382 __sum16 check, __wsum pseudo) 2383 { 2384 NAPI_GRO_CB(skb)->csum = ~pseudo; 2385 NAPI_GRO_CB(skb)->csum_valid = 1; 2386 } 2387 2388 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2389 do { \ 2390 if (__skb_gro_checksum_convert_check(skb)) \ 2391 __skb_gro_checksum_convert(skb, check, \ 2392 compute_pseudo(skb, proto)); \ 2393 } while (0) 2394 2395 struct gro_remcsum { 2396 int offset; 2397 __wsum delta; 2398 }; 2399 2400 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2401 { 2402 grc->offset = 0; 2403 grc->delta = 0; 2404 } 2405 2406 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2407 unsigned int off, size_t hdrlen, 2408 int start, int offset, 2409 struct gro_remcsum *grc, 2410 bool nopartial) 2411 { 2412 __wsum delta; 2413 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2414 2415 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2416 2417 if (!nopartial) { 2418 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2419 return ptr; 2420 } 2421 2422 ptr = skb_gro_header_fast(skb, off); 2423 if (skb_gro_header_hard(skb, off + plen)) { 2424 ptr = skb_gro_header_slow(skb, off + plen, off); 2425 if (!ptr) 2426 return NULL; 2427 } 2428 2429 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2430 start, offset); 2431 2432 /* Adjust skb->csum since we changed the packet */ 2433 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2434 2435 grc->offset = off + hdrlen + offset; 2436 grc->delta = delta; 2437 2438 return ptr; 2439 } 2440 2441 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2442 struct gro_remcsum *grc) 2443 { 2444 void *ptr; 2445 size_t plen = grc->offset + sizeof(u16); 2446 2447 if (!grc->delta) 2448 return; 2449 2450 ptr = skb_gro_header_fast(skb, grc->offset); 2451 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2452 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2453 if (!ptr) 2454 return; 2455 } 2456 2457 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2458 } 2459 2460 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2461 unsigned short type, 2462 const void *daddr, const void *saddr, 2463 unsigned int len) 2464 { 2465 if (!dev->header_ops || !dev->header_ops->create) 2466 return 0; 2467 2468 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2469 } 2470 2471 static inline int dev_parse_header(const struct sk_buff *skb, 2472 unsigned char *haddr) 2473 { 2474 const struct net_device *dev = skb->dev; 2475 2476 if (!dev->header_ops || !dev->header_ops->parse) 2477 return 0; 2478 return dev->header_ops->parse(skb, haddr); 2479 } 2480 2481 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2482 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2483 static inline int unregister_gifconf(unsigned int family) 2484 { 2485 return register_gifconf(family, NULL); 2486 } 2487 2488 #ifdef CONFIG_NET_FLOW_LIMIT 2489 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2490 struct sd_flow_limit { 2491 u64 count; 2492 unsigned int num_buckets; 2493 unsigned int history_head; 2494 u16 history[FLOW_LIMIT_HISTORY]; 2495 u8 buckets[]; 2496 }; 2497 2498 extern int netdev_flow_limit_table_len; 2499 #endif /* CONFIG_NET_FLOW_LIMIT */ 2500 2501 /* 2502 * Incoming packets are placed on per-cpu queues 2503 */ 2504 struct softnet_data { 2505 struct list_head poll_list; 2506 struct sk_buff_head process_queue; 2507 2508 /* stats */ 2509 unsigned int processed; 2510 unsigned int time_squeeze; 2511 unsigned int cpu_collision; 2512 unsigned int received_rps; 2513 #ifdef CONFIG_RPS 2514 struct softnet_data *rps_ipi_list; 2515 #endif 2516 #ifdef CONFIG_NET_FLOW_LIMIT 2517 struct sd_flow_limit __rcu *flow_limit; 2518 #endif 2519 struct Qdisc *output_queue; 2520 struct Qdisc **output_queue_tailp; 2521 struct sk_buff *completion_queue; 2522 2523 #ifdef CONFIG_RPS 2524 /* Elements below can be accessed between CPUs for RPS */ 2525 struct call_single_data csd ____cacheline_aligned_in_smp; 2526 struct softnet_data *rps_ipi_next; 2527 unsigned int cpu; 2528 unsigned int input_queue_head; 2529 unsigned int input_queue_tail; 2530 #endif 2531 unsigned int dropped; 2532 struct sk_buff_head input_pkt_queue; 2533 struct napi_struct backlog; 2534 2535 }; 2536 2537 static inline void input_queue_head_incr(struct softnet_data *sd) 2538 { 2539 #ifdef CONFIG_RPS 2540 sd->input_queue_head++; 2541 #endif 2542 } 2543 2544 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2545 unsigned int *qtail) 2546 { 2547 #ifdef CONFIG_RPS 2548 *qtail = ++sd->input_queue_tail; 2549 #endif 2550 } 2551 2552 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2553 2554 void __netif_schedule(struct Qdisc *q); 2555 void netif_schedule_queue(struct netdev_queue *txq); 2556 2557 static inline void netif_tx_schedule_all(struct net_device *dev) 2558 { 2559 unsigned int i; 2560 2561 for (i = 0; i < dev->num_tx_queues; i++) 2562 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2563 } 2564 2565 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2566 { 2567 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2568 } 2569 2570 /** 2571 * netif_start_queue - allow transmit 2572 * @dev: network device 2573 * 2574 * Allow upper layers to call the device hard_start_xmit routine. 2575 */ 2576 static inline void netif_start_queue(struct net_device *dev) 2577 { 2578 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2579 } 2580 2581 static inline void netif_tx_start_all_queues(struct net_device *dev) 2582 { 2583 unsigned int i; 2584 2585 for (i = 0; i < dev->num_tx_queues; i++) { 2586 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2587 netif_tx_start_queue(txq); 2588 } 2589 } 2590 2591 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2592 2593 /** 2594 * netif_wake_queue - restart transmit 2595 * @dev: network device 2596 * 2597 * Allow upper layers to call the device hard_start_xmit routine. 2598 * Used for flow control when transmit resources are available. 2599 */ 2600 static inline void netif_wake_queue(struct net_device *dev) 2601 { 2602 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2603 } 2604 2605 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2606 { 2607 unsigned int i; 2608 2609 for (i = 0; i < dev->num_tx_queues; i++) { 2610 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2611 netif_tx_wake_queue(txq); 2612 } 2613 } 2614 2615 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2616 { 2617 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2618 } 2619 2620 /** 2621 * netif_stop_queue - stop transmitted packets 2622 * @dev: network device 2623 * 2624 * Stop upper layers calling the device hard_start_xmit routine. 2625 * Used for flow control when transmit resources are unavailable. 2626 */ 2627 static inline void netif_stop_queue(struct net_device *dev) 2628 { 2629 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2630 } 2631 2632 void netif_tx_stop_all_queues(struct net_device *dev); 2633 2634 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2635 { 2636 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2637 } 2638 2639 /** 2640 * netif_queue_stopped - test if transmit queue is flowblocked 2641 * @dev: network device 2642 * 2643 * Test if transmit queue on device is currently unable to send. 2644 */ 2645 static inline bool netif_queue_stopped(const struct net_device *dev) 2646 { 2647 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2648 } 2649 2650 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2651 { 2652 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2653 } 2654 2655 static inline bool 2656 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2657 { 2658 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2659 } 2660 2661 static inline bool 2662 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2663 { 2664 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2665 } 2666 2667 /** 2668 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2669 * @dev_queue: pointer to transmit queue 2670 * 2671 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2672 * to give appropriate hint to the cpu. 2673 */ 2674 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2675 { 2676 #ifdef CONFIG_BQL 2677 prefetchw(&dev_queue->dql.num_queued); 2678 #endif 2679 } 2680 2681 /** 2682 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2683 * @dev_queue: pointer to transmit queue 2684 * 2685 * BQL enabled drivers might use this helper in their TX completion path, 2686 * to give appropriate hint to the cpu. 2687 */ 2688 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2689 { 2690 #ifdef CONFIG_BQL 2691 prefetchw(&dev_queue->dql.limit); 2692 #endif 2693 } 2694 2695 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2696 unsigned int bytes) 2697 { 2698 #ifdef CONFIG_BQL 2699 dql_queued(&dev_queue->dql, bytes); 2700 2701 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2702 return; 2703 2704 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2705 2706 /* 2707 * The XOFF flag must be set before checking the dql_avail below, 2708 * because in netdev_tx_completed_queue we update the dql_completed 2709 * before checking the XOFF flag. 2710 */ 2711 smp_mb(); 2712 2713 /* check again in case another CPU has just made room avail */ 2714 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2715 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2716 #endif 2717 } 2718 2719 /** 2720 * netdev_sent_queue - report the number of bytes queued to hardware 2721 * @dev: network device 2722 * @bytes: number of bytes queued to the hardware device queue 2723 * 2724 * Report the number of bytes queued for sending/completion to the network 2725 * device hardware queue. @bytes should be a good approximation and should 2726 * exactly match netdev_completed_queue() @bytes 2727 */ 2728 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2729 { 2730 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2731 } 2732 2733 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2734 unsigned int pkts, unsigned int bytes) 2735 { 2736 #ifdef CONFIG_BQL 2737 if (unlikely(!bytes)) 2738 return; 2739 2740 dql_completed(&dev_queue->dql, bytes); 2741 2742 /* 2743 * Without the memory barrier there is a small possiblity that 2744 * netdev_tx_sent_queue will miss the update and cause the queue to 2745 * be stopped forever 2746 */ 2747 smp_mb(); 2748 2749 if (dql_avail(&dev_queue->dql) < 0) 2750 return; 2751 2752 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2753 netif_schedule_queue(dev_queue); 2754 #endif 2755 } 2756 2757 /** 2758 * netdev_completed_queue - report bytes and packets completed by device 2759 * @dev: network device 2760 * @pkts: actual number of packets sent over the medium 2761 * @bytes: actual number of bytes sent over the medium 2762 * 2763 * Report the number of bytes and packets transmitted by the network device 2764 * hardware queue over the physical medium, @bytes must exactly match the 2765 * @bytes amount passed to netdev_sent_queue() 2766 */ 2767 static inline void netdev_completed_queue(struct net_device *dev, 2768 unsigned int pkts, unsigned int bytes) 2769 { 2770 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2771 } 2772 2773 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2774 { 2775 #ifdef CONFIG_BQL 2776 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2777 dql_reset(&q->dql); 2778 #endif 2779 } 2780 2781 /** 2782 * netdev_reset_queue - reset the packets and bytes count of a network device 2783 * @dev_queue: network device 2784 * 2785 * Reset the bytes and packet count of a network device and clear the 2786 * software flow control OFF bit for this network device 2787 */ 2788 static inline void netdev_reset_queue(struct net_device *dev_queue) 2789 { 2790 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2791 } 2792 2793 /** 2794 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2795 * @dev: network device 2796 * @queue_index: given tx queue index 2797 * 2798 * Returns 0 if given tx queue index >= number of device tx queues, 2799 * otherwise returns the originally passed tx queue index. 2800 */ 2801 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2802 { 2803 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2804 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2805 dev->name, queue_index, 2806 dev->real_num_tx_queues); 2807 return 0; 2808 } 2809 2810 return queue_index; 2811 } 2812 2813 /** 2814 * netif_running - test if up 2815 * @dev: network device 2816 * 2817 * Test if the device has been brought up. 2818 */ 2819 static inline bool netif_running(const struct net_device *dev) 2820 { 2821 return test_bit(__LINK_STATE_START, &dev->state); 2822 } 2823 2824 /* 2825 * Routines to manage the subqueues on a device. We only need start 2826 * stop, and a check if it's stopped. All other device management is 2827 * done at the overall netdevice level. 2828 * Also test the device if we're multiqueue. 2829 */ 2830 2831 /** 2832 * netif_start_subqueue - allow sending packets on subqueue 2833 * @dev: network device 2834 * @queue_index: sub queue index 2835 * 2836 * Start individual transmit queue of a device with multiple transmit queues. 2837 */ 2838 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2839 { 2840 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2841 2842 netif_tx_start_queue(txq); 2843 } 2844 2845 /** 2846 * netif_stop_subqueue - stop sending packets on subqueue 2847 * @dev: network device 2848 * @queue_index: sub queue index 2849 * 2850 * Stop individual transmit queue of a device with multiple transmit queues. 2851 */ 2852 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2853 { 2854 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2855 netif_tx_stop_queue(txq); 2856 } 2857 2858 /** 2859 * netif_subqueue_stopped - test status of subqueue 2860 * @dev: network device 2861 * @queue_index: sub queue index 2862 * 2863 * Check individual transmit queue of a device with multiple transmit queues. 2864 */ 2865 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2866 u16 queue_index) 2867 { 2868 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2869 2870 return netif_tx_queue_stopped(txq); 2871 } 2872 2873 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2874 struct sk_buff *skb) 2875 { 2876 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2877 } 2878 2879 void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 2880 2881 #ifdef CONFIG_XPS 2882 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2883 u16 index); 2884 #else 2885 static inline int netif_set_xps_queue(struct net_device *dev, 2886 const struct cpumask *mask, 2887 u16 index) 2888 { 2889 return 0; 2890 } 2891 #endif 2892 2893 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2894 unsigned int num_tx_queues); 2895 2896 /* 2897 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2898 * as a distribution range limit for the returned value. 2899 */ 2900 static inline u16 skb_tx_hash(const struct net_device *dev, 2901 struct sk_buff *skb) 2902 { 2903 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2904 } 2905 2906 /** 2907 * netif_is_multiqueue - test if device has multiple transmit queues 2908 * @dev: network device 2909 * 2910 * Check if device has multiple transmit queues 2911 */ 2912 static inline bool netif_is_multiqueue(const struct net_device *dev) 2913 { 2914 return dev->num_tx_queues > 1; 2915 } 2916 2917 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2918 2919 #ifdef CONFIG_SYSFS 2920 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2921 #else 2922 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2923 unsigned int rxq) 2924 { 2925 return 0; 2926 } 2927 #endif 2928 2929 #ifdef CONFIG_SYSFS 2930 static inline unsigned int get_netdev_rx_queue_index( 2931 struct netdev_rx_queue *queue) 2932 { 2933 struct net_device *dev = queue->dev; 2934 int index = queue - dev->_rx; 2935 2936 BUG_ON(index >= dev->num_rx_queues); 2937 return index; 2938 } 2939 #endif 2940 2941 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2942 int netif_get_num_default_rss_queues(void); 2943 2944 enum skb_free_reason { 2945 SKB_REASON_CONSUMED, 2946 SKB_REASON_DROPPED, 2947 }; 2948 2949 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2950 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2951 2952 /* 2953 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2954 * interrupt context or with hardware interrupts being disabled. 2955 * (in_irq() || irqs_disabled()) 2956 * 2957 * We provide four helpers that can be used in following contexts : 2958 * 2959 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2960 * replacing kfree_skb(skb) 2961 * 2962 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2963 * Typically used in place of consume_skb(skb) in TX completion path 2964 * 2965 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2966 * replacing kfree_skb(skb) 2967 * 2968 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2969 * and consumed a packet. Used in place of consume_skb(skb) 2970 */ 2971 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2972 { 2973 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2974 } 2975 2976 static inline void dev_consume_skb_irq(struct sk_buff *skb) 2977 { 2978 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2979 } 2980 2981 static inline void dev_kfree_skb_any(struct sk_buff *skb) 2982 { 2983 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2984 } 2985 2986 static inline void dev_consume_skb_any(struct sk_buff *skb) 2987 { 2988 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2989 } 2990 2991 int netif_rx(struct sk_buff *skb); 2992 int netif_rx_ni(struct sk_buff *skb); 2993 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb); 2994 static inline int netif_receive_skb(struct sk_buff *skb) 2995 { 2996 return netif_receive_skb_sk(skb->sk, skb); 2997 } 2998 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2999 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3000 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3001 gro_result_t napi_gro_frags(struct napi_struct *napi); 3002 struct packet_offload *gro_find_receive_by_type(__be16 type); 3003 struct packet_offload *gro_find_complete_by_type(__be16 type); 3004 3005 static inline void napi_free_frags(struct napi_struct *napi) 3006 { 3007 kfree_skb(napi->skb); 3008 napi->skb = NULL; 3009 } 3010 3011 int netdev_rx_handler_register(struct net_device *dev, 3012 rx_handler_func_t *rx_handler, 3013 void *rx_handler_data); 3014 void netdev_rx_handler_unregister(struct net_device *dev); 3015 3016 bool dev_valid_name(const char *name); 3017 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3018 int dev_ethtool(struct net *net, struct ifreq *); 3019 unsigned int dev_get_flags(const struct net_device *); 3020 int __dev_change_flags(struct net_device *, unsigned int flags); 3021 int dev_change_flags(struct net_device *, unsigned int); 3022 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3023 unsigned int gchanges); 3024 int dev_change_name(struct net_device *, const char *); 3025 int dev_set_alias(struct net_device *, const char *, size_t); 3026 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3027 int dev_set_mtu(struct net_device *, int); 3028 void dev_set_group(struct net_device *, int); 3029 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3030 int dev_change_carrier(struct net_device *, bool new_carrier); 3031 int dev_get_phys_port_id(struct net_device *dev, 3032 struct netdev_phys_item_id *ppid); 3033 int dev_get_phys_port_name(struct net_device *dev, 3034 char *name, size_t len); 3035 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3036 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3037 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3038 struct netdev_queue *txq, int *ret); 3039 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3040 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3041 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 3042 3043 extern int netdev_budget; 3044 3045 /* Called by rtnetlink.c:rtnl_unlock() */ 3046 void netdev_run_todo(void); 3047 3048 /** 3049 * dev_put - release reference to device 3050 * @dev: network device 3051 * 3052 * Release reference to device to allow it to be freed. 3053 */ 3054 static inline void dev_put(struct net_device *dev) 3055 { 3056 this_cpu_dec(*dev->pcpu_refcnt); 3057 } 3058 3059 /** 3060 * dev_hold - get reference to device 3061 * @dev: network device 3062 * 3063 * Hold reference to device to keep it from being freed. 3064 */ 3065 static inline void dev_hold(struct net_device *dev) 3066 { 3067 this_cpu_inc(*dev->pcpu_refcnt); 3068 } 3069 3070 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3071 * and _off may be called from IRQ context, but it is caller 3072 * who is responsible for serialization of these calls. 3073 * 3074 * The name carrier is inappropriate, these functions should really be 3075 * called netif_lowerlayer_*() because they represent the state of any 3076 * kind of lower layer not just hardware media. 3077 */ 3078 3079 void linkwatch_init_dev(struct net_device *dev); 3080 void linkwatch_fire_event(struct net_device *dev); 3081 void linkwatch_forget_dev(struct net_device *dev); 3082 3083 /** 3084 * netif_carrier_ok - test if carrier present 3085 * @dev: network device 3086 * 3087 * Check if carrier is present on device 3088 */ 3089 static inline bool netif_carrier_ok(const struct net_device *dev) 3090 { 3091 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3092 } 3093 3094 unsigned long dev_trans_start(struct net_device *dev); 3095 3096 void __netdev_watchdog_up(struct net_device *dev); 3097 3098 void netif_carrier_on(struct net_device *dev); 3099 3100 void netif_carrier_off(struct net_device *dev); 3101 3102 /** 3103 * netif_dormant_on - mark device as dormant. 3104 * @dev: network device 3105 * 3106 * Mark device as dormant (as per RFC2863). 3107 * 3108 * The dormant state indicates that the relevant interface is not 3109 * actually in a condition to pass packets (i.e., it is not 'up') but is 3110 * in a "pending" state, waiting for some external event. For "on- 3111 * demand" interfaces, this new state identifies the situation where the 3112 * interface is waiting for events to place it in the up state. 3113 * 3114 */ 3115 static inline void netif_dormant_on(struct net_device *dev) 3116 { 3117 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3118 linkwatch_fire_event(dev); 3119 } 3120 3121 /** 3122 * netif_dormant_off - set device as not dormant. 3123 * @dev: network device 3124 * 3125 * Device is not in dormant state. 3126 */ 3127 static inline void netif_dormant_off(struct net_device *dev) 3128 { 3129 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3130 linkwatch_fire_event(dev); 3131 } 3132 3133 /** 3134 * netif_dormant - test if carrier present 3135 * @dev: network device 3136 * 3137 * Check if carrier is present on device 3138 */ 3139 static inline bool netif_dormant(const struct net_device *dev) 3140 { 3141 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3142 } 3143 3144 3145 /** 3146 * netif_oper_up - test if device is operational 3147 * @dev: network device 3148 * 3149 * Check if carrier is operational 3150 */ 3151 static inline bool netif_oper_up(const struct net_device *dev) 3152 { 3153 return (dev->operstate == IF_OPER_UP || 3154 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3155 } 3156 3157 /** 3158 * netif_device_present - is device available or removed 3159 * @dev: network device 3160 * 3161 * Check if device has not been removed from system. 3162 */ 3163 static inline bool netif_device_present(struct net_device *dev) 3164 { 3165 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3166 } 3167 3168 void netif_device_detach(struct net_device *dev); 3169 3170 void netif_device_attach(struct net_device *dev); 3171 3172 /* 3173 * Network interface message level settings 3174 */ 3175 3176 enum { 3177 NETIF_MSG_DRV = 0x0001, 3178 NETIF_MSG_PROBE = 0x0002, 3179 NETIF_MSG_LINK = 0x0004, 3180 NETIF_MSG_TIMER = 0x0008, 3181 NETIF_MSG_IFDOWN = 0x0010, 3182 NETIF_MSG_IFUP = 0x0020, 3183 NETIF_MSG_RX_ERR = 0x0040, 3184 NETIF_MSG_TX_ERR = 0x0080, 3185 NETIF_MSG_TX_QUEUED = 0x0100, 3186 NETIF_MSG_INTR = 0x0200, 3187 NETIF_MSG_TX_DONE = 0x0400, 3188 NETIF_MSG_RX_STATUS = 0x0800, 3189 NETIF_MSG_PKTDATA = 0x1000, 3190 NETIF_MSG_HW = 0x2000, 3191 NETIF_MSG_WOL = 0x4000, 3192 }; 3193 3194 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3195 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3196 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3197 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3198 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3199 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3200 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3201 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3202 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3203 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3204 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3205 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3206 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3207 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3208 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3209 3210 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3211 { 3212 /* use default */ 3213 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3214 return default_msg_enable_bits; 3215 if (debug_value == 0) /* no output */ 3216 return 0; 3217 /* set low N bits */ 3218 return (1 << debug_value) - 1; 3219 } 3220 3221 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3222 { 3223 spin_lock(&txq->_xmit_lock); 3224 txq->xmit_lock_owner = cpu; 3225 } 3226 3227 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3228 { 3229 spin_lock_bh(&txq->_xmit_lock); 3230 txq->xmit_lock_owner = smp_processor_id(); 3231 } 3232 3233 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3234 { 3235 bool ok = spin_trylock(&txq->_xmit_lock); 3236 if (likely(ok)) 3237 txq->xmit_lock_owner = smp_processor_id(); 3238 return ok; 3239 } 3240 3241 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3242 { 3243 txq->xmit_lock_owner = -1; 3244 spin_unlock(&txq->_xmit_lock); 3245 } 3246 3247 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3248 { 3249 txq->xmit_lock_owner = -1; 3250 spin_unlock_bh(&txq->_xmit_lock); 3251 } 3252 3253 static inline void txq_trans_update(struct netdev_queue *txq) 3254 { 3255 if (txq->xmit_lock_owner != -1) 3256 txq->trans_start = jiffies; 3257 } 3258 3259 /** 3260 * netif_tx_lock - grab network device transmit lock 3261 * @dev: network device 3262 * 3263 * Get network device transmit lock 3264 */ 3265 static inline void netif_tx_lock(struct net_device *dev) 3266 { 3267 unsigned int i; 3268 int cpu; 3269 3270 spin_lock(&dev->tx_global_lock); 3271 cpu = smp_processor_id(); 3272 for (i = 0; i < dev->num_tx_queues; i++) { 3273 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3274 3275 /* We are the only thread of execution doing a 3276 * freeze, but we have to grab the _xmit_lock in 3277 * order to synchronize with threads which are in 3278 * the ->hard_start_xmit() handler and already 3279 * checked the frozen bit. 3280 */ 3281 __netif_tx_lock(txq, cpu); 3282 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3283 __netif_tx_unlock(txq); 3284 } 3285 } 3286 3287 static inline void netif_tx_lock_bh(struct net_device *dev) 3288 { 3289 local_bh_disable(); 3290 netif_tx_lock(dev); 3291 } 3292 3293 static inline void netif_tx_unlock(struct net_device *dev) 3294 { 3295 unsigned int i; 3296 3297 for (i = 0; i < dev->num_tx_queues; i++) { 3298 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3299 3300 /* No need to grab the _xmit_lock here. If the 3301 * queue is not stopped for another reason, we 3302 * force a schedule. 3303 */ 3304 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3305 netif_schedule_queue(txq); 3306 } 3307 spin_unlock(&dev->tx_global_lock); 3308 } 3309 3310 static inline void netif_tx_unlock_bh(struct net_device *dev) 3311 { 3312 netif_tx_unlock(dev); 3313 local_bh_enable(); 3314 } 3315 3316 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3317 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3318 __netif_tx_lock(txq, cpu); \ 3319 } \ 3320 } 3321 3322 #define HARD_TX_TRYLOCK(dev, txq) \ 3323 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3324 __netif_tx_trylock(txq) : \ 3325 true ) 3326 3327 #define HARD_TX_UNLOCK(dev, txq) { \ 3328 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3329 __netif_tx_unlock(txq); \ 3330 } \ 3331 } 3332 3333 static inline void netif_tx_disable(struct net_device *dev) 3334 { 3335 unsigned int i; 3336 int cpu; 3337 3338 local_bh_disable(); 3339 cpu = smp_processor_id(); 3340 for (i = 0; i < dev->num_tx_queues; i++) { 3341 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3342 3343 __netif_tx_lock(txq, cpu); 3344 netif_tx_stop_queue(txq); 3345 __netif_tx_unlock(txq); 3346 } 3347 local_bh_enable(); 3348 } 3349 3350 static inline void netif_addr_lock(struct net_device *dev) 3351 { 3352 spin_lock(&dev->addr_list_lock); 3353 } 3354 3355 static inline void netif_addr_lock_nested(struct net_device *dev) 3356 { 3357 int subclass = SINGLE_DEPTH_NESTING; 3358 3359 if (dev->netdev_ops->ndo_get_lock_subclass) 3360 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3361 3362 spin_lock_nested(&dev->addr_list_lock, subclass); 3363 } 3364 3365 static inline void netif_addr_lock_bh(struct net_device *dev) 3366 { 3367 spin_lock_bh(&dev->addr_list_lock); 3368 } 3369 3370 static inline void netif_addr_unlock(struct net_device *dev) 3371 { 3372 spin_unlock(&dev->addr_list_lock); 3373 } 3374 3375 static inline void netif_addr_unlock_bh(struct net_device *dev) 3376 { 3377 spin_unlock_bh(&dev->addr_list_lock); 3378 } 3379 3380 /* 3381 * dev_addrs walker. Should be used only for read access. Call with 3382 * rcu_read_lock held. 3383 */ 3384 #define for_each_dev_addr(dev, ha) \ 3385 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3386 3387 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3388 3389 void ether_setup(struct net_device *dev); 3390 3391 /* Support for loadable net-drivers */ 3392 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3393 unsigned char name_assign_type, 3394 void (*setup)(struct net_device *), 3395 unsigned int txqs, unsigned int rxqs); 3396 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3397 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3398 3399 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3400 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3401 count) 3402 3403 int register_netdev(struct net_device *dev); 3404 void unregister_netdev(struct net_device *dev); 3405 3406 /* General hardware address lists handling functions */ 3407 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3408 struct netdev_hw_addr_list *from_list, int addr_len); 3409 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3410 struct netdev_hw_addr_list *from_list, int addr_len); 3411 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3412 struct net_device *dev, 3413 int (*sync)(struct net_device *, const unsigned char *), 3414 int (*unsync)(struct net_device *, 3415 const unsigned char *)); 3416 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3417 struct net_device *dev, 3418 int (*unsync)(struct net_device *, 3419 const unsigned char *)); 3420 void __hw_addr_init(struct netdev_hw_addr_list *list); 3421 3422 /* Functions used for device addresses handling */ 3423 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3424 unsigned char addr_type); 3425 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3426 unsigned char addr_type); 3427 void dev_addr_flush(struct net_device *dev); 3428 int dev_addr_init(struct net_device *dev); 3429 3430 /* Functions used for unicast addresses handling */ 3431 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3432 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3433 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3434 int dev_uc_sync(struct net_device *to, struct net_device *from); 3435 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3436 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3437 void dev_uc_flush(struct net_device *dev); 3438 void dev_uc_init(struct net_device *dev); 3439 3440 /** 3441 * __dev_uc_sync - Synchonize device's unicast list 3442 * @dev: device to sync 3443 * @sync: function to call if address should be added 3444 * @unsync: function to call if address should be removed 3445 * 3446 * Add newly added addresses to the interface, and release 3447 * addresses that have been deleted. 3448 **/ 3449 static inline int __dev_uc_sync(struct net_device *dev, 3450 int (*sync)(struct net_device *, 3451 const unsigned char *), 3452 int (*unsync)(struct net_device *, 3453 const unsigned char *)) 3454 { 3455 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3456 } 3457 3458 /** 3459 * __dev_uc_unsync - Remove synchronized addresses from device 3460 * @dev: device to sync 3461 * @unsync: function to call if address should be removed 3462 * 3463 * Remove all addresses that were added to the device by dev_uc_sync(). 3464 **/ 3465 static inline void __dev_uc_unsync(struct net_device *dev, 3466 int (*unsync)(struct net_device *, 3467 const unsigned char *)) 3468 { 3469 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3470 } 3471 3472 /* Functions used for multicast addresses handling */ 3473 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3474 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3475 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3476 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3477 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3478 int dev_mc_sync(struct net_device *to, struct net_device *from); 3479 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3480 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3481 void dev_mc_flush(struct net_device *dev); 3482 void dev_mc_init(struct net_device *dev); 3483 3484 /** 3485 * __dev_mc_sync - Synchonize device's multicast list 3486 * @dev: device to sync 3487 * @sync: function to call if address should be added 3488 * @unsync: function to call if address should be removed 3489 * 3490 * Add newly added addresses to the interface, and release 3491 * addresses that have been deleted. 3492 **/ 3493 static inline int __dev_mc_sync(struct net_device *dev, 3494 int (*sync)(struct net_device *, 3495 const unsigned char *), 3496 int (*unsync)(struct net_device *, 3497 const unsigned char *)) 3498 { 3499 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3500 } 3501 3502 /** 3503 * __dev_mc_unsync - Remove synchronized addresses from device 3504 * @dev: device to sync 3505 * @unsync: function to call if address should be removed 3506 * 3507 * Remove all addresses that were added to the device by dev_mc_sync(). 3508 **/ 3509 static inline void __dev_mc_unsync(struct net_device *dev, 3510 int (*unsync)(struct net_device *, 3511 const unsigned char *)) 3512 { 3513 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3514 } 3515 3516 /* Functions used for secondary unicast and multicast support */ 3517 void dev_set_rx_mode(struct net_device *dev); 3518 void __dev_set_rx_mode(struct net_device *dev); 3519 int dev_set_promiscuity(struct net_device *dev, int inc); 3520 int dev_set_allmulti(struct net_device *dev, int inc); 3521 void netdev_state_change(struct net_device *dev); 3522 void netdev_notify_peers(struct net_device *dev); 3523 void netdev_features_change(struct net_device *dev); 3524 /* Load a device via the kmod */ 3525 void dev_load(struct net *net, const char *name); 3526 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3527 struct rtnl_link_stats64 *storage); 3528 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3529 const struct net_device_stats *netdev_stats); 3530 3531 extern int netdev_max_backlog; 3532 extern int netdev_tstamp_prequeue; 3533 extern int weight_p; 3534 extern int bpf_jit_enable; 3535 3536 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3537 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3538 struct list_head **iter); 3539 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3540 struct list_head **iter); 3541 3542 /* iterate through upper list, must be called under RCU read lock */ 3543 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3544 for (iter = &(dev)->adj_list.upper, \ 3545 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3546 updev; \ 3547 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3548 3549 /* iterate through upper list, must be called under RCU read lock */ 3550 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3551 for (iter = &(dev)->all_adj_list.upper, \ 3552 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3553 updev; \ 3554 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3555 3556 void *netdev_lower_get_next_private(struct net_device *dev, 3557 struct list_head **iter); 3558 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3559 struct list_head **iter); 3560 3561 #define netdev_for_each_lower_private(dev, priv, iter) \ 3562 for (iter = (dev)->adj_list.lower.next, \ 3563 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3564 priv; \ 3565 priv = netdev_lower_get_next_private(dev, &(iter))) 3566 3567 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3568 for (iter = &(dev)->adj_list.lower, \ 3569 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3570 priv; \ 3571 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3572 3573 void *netdev_lower_get_next(struct net_device *dev, 3574 struct list_head **iter); 3575 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3576 for (iter = &(dev)->adj_list.lower, \ 3577 ldev = netdev_lower_get_next(dev, &(iter)); \ 3578 ldev; \ 3579 ldev = netdev_lower_get_next(dev, &(iter))) 3580 3581 void *netdev_adjacent_get_private(struct list_head *adj_list); 3582 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3583 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3584 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3585 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3586 int netdev_master_upper_dev_link(struct net_device *dev, 3587 struct net_device *upper_dev); 3588 int netdev_master_upper_dev_link_private(struct net_device *dev, 3589 struct net_device *upper_dev, 3590 void *private); 3591 void netdev_upper_dev_unlink(struct net_device *dev, 3592 struct net_device *upper_dev); 3593 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3594 void *netdev_lower_dev_get_private(struct net_device *dev, 3595 struct net_device *lower_dev); 3596 3597 /* RSS keys are 40 or 52 bytes long */ 3598 #define NETDEV_RSS_KEY_LEN 52 3599 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3600 void netdev_rss_key_fill(void *buffer, size_t len); 3601 3602 int dev_get_nest_level(struct net_device *dev, 3603 bool (*type_check)(struct net_device *dev)); 3604 int skb_checksum_help(struct sk_buff *skb); 3605 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3606 netdev_features_t features, bool tx_path); 3607 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3608 netdev_features_t features); 3609 3610 struct netdev_bonding_info { 3611 ifslave slave; 3612 ifbond master; 3613 }; 3614 3615 struct netdev_notifier_bonding_info { 3616 struct netdev_notifier_info info; /* must be first */ 3617 struct netdev_bonding_info bonding_info; 3618 }; 3619 3620 void netdev_bonding_info_change(struct net_device *dev, 3621 struct netdev_bonding_info *bonding_info); 3622 3623 static inline 3624 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3625 { 3626 return __skb_gso_segment(skb, features, true); 3627 } 3628 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3629 3630 static inline bool can_checksum_protocol(netdev_features_t features, 3631 __be16 protocol) 3632 { 3633 return ((features & NETIF_F_GEN_CSUM) || 3634 ((features & NETIF_F_V4_CSUM) && 3635 protocol == htons(ETH_P_IP)) || 3636 ((features & NETIF_F_V6_CSUM) && 3637 protocol == htons(ETH_P_IPV6)) || 3638 ((features & NETIF_F_FCOE_CRC) && 3639 protocol == htons(ETH_P_FCOE))); 3640 } 3641 3642 #ifdef CONFIG_BUG 3643 void netdev_rx_csum_fault(struct net_device *dev); 3644 #else 3645 static inline void netdev_rx_csum_fault(struct net_device *dev) 3646 { 3647 } 3648 #endif 3649 /* rx skb timestamps */ 3650 void net_enable_timestamp(void); 3651 void net_disable_timestamp(void); 3652 3653 #ifdef CONFIG_PROC_FS 3654 int __init dev_proc_init(void); 3655 #else 3656 #define dev_proc_init() 0 3657 #endif 3658 3659 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3660 struct sk_buff *skb, struct net_device *dev, 3661 bool more) 3662 { 3663 skb->xmit_more = more ? 1 : 0; 3664 return ops->ndo_start_xmit(skb, dev); 3665 } 3666 3667 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3668 struct netdev_queue *txq, bool more) 3669 { 3670 const struct net_device_ops *ops = dev->netdev_ops; 3671 int rc; 3672 3673 rc = __netdev_start_xmit(ops, skb, dev, more); 3674 if (rc == NETDEV_TX_OK) 3675 txq_trans_update(txq); 3676 3677 return rc; 3678 } 3679 3680 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3681 const void *ns); 3682 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3683 const void *ns); 3684 3685 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3686 { 3687 return netdev_class_create_file_ns(class_attr, NULL); 3688 } 3689 3690 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3691 { 3692 netdev_class_remove_file_ns(class_attr, NULL); 3693 } 3694 3695 extern struct kobj_ns_type_operations net_ns_type_operations; 3696 3697 const char *netdev_drivername(const struct net_device *dev); 3698 3699 void linkwatch_run_queue(void); 3700 3701 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3702 netdev_features_t f2) 3703 { 3704 if (f1 & NETIF_F_GEN_CSUM) 3705 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3706 if (f2 & NETIF_F_GEN_CSUM) 3707 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3708 f1 &= f2; 3709 if (f1 & NETIF_F_GEN_CSUM) 3710 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3711 3712 return f1; 3713 } 3714 3715 static inline netdev_features_t netdev_get_wanted_features( 3716 struct net_device *dev) 3717 { 3718 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3719 } 3720 netdev_features_t netdev_increment_features(netdev_features_t all, 3721 netdev_features_t one, netdev_features_t mask); 3722 3723 /* Allow TSO being used on stacked device : 3724 * Performing the GSO segmentation before last device 3725 * is a performance improvement. 3726 */ 3727 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3728 netdev_features_t mask) 3729 { 3730 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3731 } 3732 3733 int __netdev_update_features(struct net_device *dev); 3734 void netdev_update_features(struct net_device *dev); 3735 void netdev_change_features(struct net_device *dev); 3736 3737 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3738 struct net_device *dev); 3739 3740 netdev_features_t passthru_features_check(struct sk_buff *skb, 3741 struct net_device *dev, 3742 netdev_features_t features); 3743 netdev_features_t netif_skb_features(struct sk_buff *skb); 3744 3745 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3746 { 3747 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3748 3749 /* check flags correspondence */ 3750 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3751 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3752 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3753 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3754 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3755 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3756 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3757 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3758 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3759 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3760 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3761 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3762 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3763 3764 return (features & feature) == feature; 3765 } 3766 3767 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3768 { 3769 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3770 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3771 } 3772 3773 static inline bool netif_needs_gso(struct sk_buff *skb, 3774 netdev_features_t features) 3775 { 3776 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3777 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3778 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3779 } 3780 3781 static inline void netif_set_gso_max_size(struct net_device *dev, 3782 unsigned int size) 3783 { 3784 dev->gso_max_size = size; 3785 } 3786 3787 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3788 int pulled_hlen, u16 mac_offset, 3789 int mac_len) 3790 { 3791 skb->protocol = protocol; 3792 skb->encapsulation = 1; 3793 skb_push(skb, pulled_hlen); 3794 skb_reset_transport_header(skb); 3795 skb->mac_header = mac_offset; 3796 skb->network_header = skb->mac_header + mac_len; 3797 skb->mac_len = mac_len; 3798 } 3799 3800 static inline bool netif_is_macvlan(struct net_device *dev) 3801 { 3802 return dev->priv_flags & IFF_MACVLAN; 3803 } 3804 3805 static inline bool netif_is_macvlan_port(struct net_device *dev) 3806 { 3807 return dev->priv_flags & IFF_MACVLAN_PORT; 3808 } 3809 3810 static inline bool netif_is_ipvlan(struct net_device *dev) 3811 { 3812 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3813 } 3814 3815 static inline bool netif_is_ipvlan_port(struct net_device *dev) 3816 { 3817 return dev->priv_flags & IFF_IPVLAN_MASTER; 3818 } 3819 3820 static inline bool netif_is_bond_master(struct net_device *dev) 3821 { 3822 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3823 } 3824 3825 static inline bool netif_is_bond_slave(struct net_device *dev) 3826 { 3827 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3828 } 3829 3830 static inline bool netif_supports_nofcs(struct net_device *dev) 3831 { 3832 return dev->priv_flags & IFF_SUPP_NOFCS; 3833 } 3834 3835 static inline bool netif_is_vrf(const struct net_device *dev) 3836 { 3837 return dev->priv_flags & IFF_VRF_MASTER; 3838 } 3839 3840 static inline bool netif_is_bridge_master(const struct net_device *dev) 3841 { 3842 return dev->priv_flags & IFF_EBRIDGE; 3843 } 3844 3845 static inline bool netif_is_ovs_master(const struct net_device *dev) 3846 { 3847 return dev->priv_flags & IFF_OPENVSWITCH; 3848 } 3849 3850 static inline bool netif_index_is_vrf(struct net *net, int ifindex) 3851 { 3852 bool rc = false; 3853 3854 #if IS_ENABLED(CONFIG_NET_VRF) 3855 struct net_device *dev; 3856 3857 if (ifindex == 0) 3858 return false; 3859 3860 rcu_read_lock(); 3861 3862 dev = dev_get_by_index_rcu(net, ifindex); 3863 if (dev) 3864 rc = netif_is_vrf(dev); 3865 3866 rcu_read_unlock(); 3867 #endif 3868 return rc; 3869 } 3870 3871 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 3872 static inline void netif_keep_dst(struct net_device *dev) 3873 { 3874 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 3875 } 3876 3877 extern struct pernet_operations __net_initdata loopback_net_ops; 3878 3879 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 3880 3881 /* netdev_printk helpers, similar to dev_printk */ 3882 3883 static inline const char *netdev_name(const struct net_device *dev) 3884 { 3885 if (!dev->name[0] || strchr(dev->name, '%')) 3886 return "(unnamed net_device)"; 3887 return dev->name; 3888 } 3889 3890 static inline const char *netdev_reg_state(const struct net_device *dev) 3891 { 3892 switch (dev->reg_state) { 3893 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3894 case NETREG_REGISTERED: return ""; 3895 case NETREG_UNREGISTERING: return " (unregistering)"; 3896 case NETREG_UNREGISTERED: return " (unregistered)"; 3897 case NETREG_RELEASED: return " (released)"; 3898 case NETREG_DUMMY: return " (dummy)"; 3899 } 3900 3901 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3902 return " (unknown)"; 3903 } 3904 3905 __printf(3, 4) 3906 void netdev_printk(const char *level, const struct net_device *dev, 3907 const char *format, ...); 3908 __printf(2, 3) 3909 void netdev_emerg(const struct net_device *dev, const char *format, ...); 3910 __printf(2, 3) 3911 void netdev_alert(const struct net_device *dev, const char *format, ...); 3912 __printf(2, 3) 3913 void netdev_crit(const struct net_device *dev, const char *format, ...); 3914 __printf(2, 3) 3915 void netdev_err(const struct net_device *dev, const char *format, ...); 3916 __printf(2, 3) 3917 void netdev_warn(const struct net_device *dev, const char *format, ...); 3918 __printf(2, 3) 3919 void netdev_notice(const struct net_device *dev, const char *format, ...); 3920 __printf(2, 3) 3921 void netdev_info(const struct net_device *dev, const char *format, ...); 3922 3923 #define MODULE_ALIAS_NETDEV(device) \ 3924 MODULE_ALIAS("netdev-" device) 3925 3926 #if defined(CONFIG_DYNAMIC_DEBUG) 3927 #define netdev_dbg(__dev, format, args...) \ 3928 do { \ 3929 dynamic_netdev_dbg(__dev, format, ##args); \ 3930 } while (0) 3931 #elif defined(DEBUG) 3932 #define netdev_dbg(__dev, format, args...) \ 3933 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3934 #else 3935 #define netdev_dbg(__dev, format, args...) \ 3936 ({ \ 3937 if (0) \ 3938 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3939 }) 3940 #endif 3941 3942 #if defined(VERBOSE_DEBUG) 3943 #define netdev_vdbg netdev_dbg 3944 #else 3945 3946 #define netdev_vdbg(dev, format, args...) \ 3947 ({ \ 3948 if (0) \ 3949 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3950 0; \ 3951 }) 3952 #endif 3953 3954 /* 3955 * netdev_WARN() acts like dev_printk(), but with the key difference 3956 * of using a WARN/WARN_ON to get the message out, including the 3957 * file/line information and a backtrace. 3958 */ 3959 #define netdev_WARN(dev, format, args...) \ 3960 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3961 netdev_reg_state(dev), ##args) 3962 3963 /* netif printk helpers, similar to netdev_printk */ 3964 3965 #define netif_printk(priv, type, level, dev, fmt, args...) \ 3966 do { \ 3967 if (netif_msg_##type(priv)) \ 3968 netdev_printk(level, (dev), fmt, ##args); \ 3969 } while (0) 3970 3971 #define netif_level(level, priv, type, dev, fmt, args...) \ 3972 do { \ 3973 if (netif_msg_##type(priv)) \ 3974 netdev_##level(dev, fmt, ##args); \ 3975 } while (0) 3976 3977 #define netif_emerg(priv, type, dev, fmt, args...) \ 3978 netif_level(emerg, priv, type, dev, fmt, ##args) 3979 #define netif_alert(priv, type, dev, fmt, args...) \ 3980 netif_level(alert, priv, type, dev, fmt, ##args) 3981 #define netif_crit(priv, type, dev, fmt, args...) \ 3982 netif_level(crit, priv, type, dev, fmt, ##args) 3983 #define netif_err(priv, type, dev, fmt, args...) \ 3984 netif_level(err, priv, type, dev, fmt, ##args) 3985 #define netif_warn(priv, type, dev, fmt, args...) \ 3986 netif_level(warn, priv, type, dev, fmt, ##args) 3987 #define netif_notice(priv, type, dev, fmt, args...) \ 3988 netif_level(notice, priv, type, dev, fmt, ##args) 3989 #define netif_info(priv, type, dev, fmt, args...) \ 3990 netif_level(info, priv, type, dev, fmt, ##args) 3991 3992 #if defined(CONFIG_DYNAMIC_DEBUG) 3993 #define netif_dbg(priv, type, netdev, format, args...) \ 3994 do { \ 3995 if (netif_msg_##type(priv)) \ 3996 dynamic_netdev_dbg(netdev, format, ##args); \ 3997 } while (0) 3998 #elif defined(DEBUG) 3999 #define netif_dbg(priv, type, dev, format, args...) \ 4000 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4001 #else 4002 #define netif_dbg(priv, type, dev, format, args...) \ 4003 ({ \ 4004 if (0) \ 4005 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4006 0; \ 4007 }) 4008 #endif 4009 4010 #if defined(VERBOSE_DEBUG) 4011 #define netif_vdbg netif_dbg 4012 #else 4013 #define netif_vdbg(priv, type, dev, format, args...) \ 4014 ({ \ 4015 if (0) \ 4016 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4017 0; \ 4018 }) 4019 #endif 4020 4021 /* 4022 * The list of packet types we will receive (as opposed to discard) 4023 * and the routines to invoke. 4024 * 4025 * Why 16. Because with 16 the only overlap we get on a hash of the 4026 * low nibble of the protocol value is RARP/SNAP/X.25. 4027 * 4028 * NOTE: That is no longer true with the addition of VLAN tags. Not 4029 * sure which should go first, but I bet it won't make much 4030 * difference if we are running VLANs. The good news is that 4031 * this protocol won't be in the list unless compiled in, so 4032 * the average user (w/out VLANs) will not be adversely affected. 4033 * --BLG 4034 * 4035 * 0800 IP 4036 * 8100 802.1Q VLAN 4037 * 0001 802.3 4038 * 0002 AX.25 4039 * 0004 802.2 4040 * 8035 RARP 4041 * 0005 SNAP 4042 * 0805 X.25 4043 * 0806 ARP 4044 * 8137 IPX 4045 * 0009 Localtalk 4046 * 86DD IPv6 4047 */ 4048 #define PTYPE_HASH_SIZE (16) 4049 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4050 4051 #endif /* _LINUX_NETDEVICE_H */ 4052