xref: /openbmc/linux/include/linux/netdevice.h (revision b96fc2f3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 	clear_bit(NAPI_STATE_NPSVC, &n->state);
511 }
512 
513 #ifdef CONFIG_SMP
514 /**
515  *	napi_synchronize - wait until NAPI is not running
516  *	@n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 	while (test_bit(NAPI_STATE_SCHED, &n->state))
525 		msleep(1);
526 }
527 #else
528 # define napi_synchronize(n)	barrier()
529 #endif
530 
531 enum netdev_queue_state_t {
532 	__QUEUE_STATE_DRV_XOFF,
533 	__QUEUE_STATE_STACK_XOFF,
534 	__QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 					QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561 	struct net_device	*dev;
562 	struct Qdisc __rcu	*qdisc;
563 	struct Qdisc		*qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 	struct kobject		kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 	int			numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * please use this field instead of dev->trans_start
577 	 */
578 	unsigned long		trans_start;
579 
580 	/*
581 	 * Number of TX timeouts for this queue
582 	 * (/sys/class/net/DEV/Q/trans_timeout)
583 	 */
584 	unsigned long		trans_timeout;
585 
586 	unsigned long		state;
587 
588 #ifdef CONFIG_BQL
589 	struct dql		dql;
590 #endif
591 	unsigned long		tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593 
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 	return q->numa_node;
598 #else
599 	return NUMA_NO_NODE;
600 #endif
601 }
602 
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	q->numa_node = node;
607 #endif
608 }
609 
610 #ifdef CONFIG_RPS
611 /*
612  * This structure holds an RPS map which can be of variable length.  The
613  * map is an array of CPUs.
614  */
615 struct rps_map {
616 	unsigned int len;
617 	struct rcu_head rcu;
618 	u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621 
622 /*
623  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624  * tail pointer for that CPU's input queue at the time of last enqueue, and
625  * a hardware filter index.
626  */
627 struct rps_dev_flow {
628 	u16 cpu;
629 	u16 filter;
630 	unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633 
634 /*
635  * The rps_dev_flow_table structure contains a table of flow mappings.
636  */
637 struct rps_dev_flow_table {
638 	unsigned int mask;
639 	struct rcu_head rcu;
640 	struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643     ((_num) * sizeof(struct rps_dev_flow)))
644 
645 /*
646  * The rps_sock_flow_table contains mappings of flows to the last CPU
647  * on which they were processed by the application (set in recvmsg).
648  * Each entry is a 32bit value. Upper part is the high order bits
649  * of flow hash, lower part is cpu number.
650  * rps_cpu_mask is used to partition the space, depending on number of
651  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653  * meaning we use 32-6=26 bits for the hash.
654  */
655 struct rps_sock_flow_table {
656 	u32	mask;
657 
658 	u32	ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 
662 #define RPS_NO_CPU 0xffff
663 
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 					u32 hash)
669 {
670 	if (table && hash) {
671 		unsigned int index = hash & table->mask;
672 		u32 val = hash & ~rps_cpu_mask;
673 
674 		/* We only give a hint, preemption can change cpu under us */
675 		val |= raw_smp_processor_id();
676 
677 		if (table->ents[index] != val)
678 			table->ents[index] = val;
679 	}
680 }
681 
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 			 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687 
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 	struct rps_map __rcu		*rps_map;
692 	struct rps_dev_flow_table __rcu	*rps_flow_table;
693 #endif
694 	struct kobject			kobj;
695 	struct net_device		*dev;
696 } ____cacheline_aligned_in_smp;
697 
698 /*
699  * RX queue sysfs structures and functions.
700  */
701 struct rx_queue_attribute {
702 	struct attribute attr;
703 	ssize_t (*show)(struct netdev_rx_queue *queue,
704 	    struct rx_queue_attribute *attr, char *buf);
705 	ssize_t (*store)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708 
709 #ifdef CONFIG_XPS
710 /*
711  * This structure holds an XPS map which can be of variable length.  The
712  * map is an array of queues.
713  */
714 struct xps_map {
715 	unsigned int len;
716 	unsigned int alloc_len;
717 	struct rcu_head rcu;
718 	u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
722     / sizeof(u16))
723 
724 /*
725  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
726  */
727 struct xps_dev_maps {
728 	struct rcu_head rcu;
729 	struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
732     (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734 
735 #define TC_MAX_QUEUE	16
736 #define TC_BITMASK	15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 	u16 count;
740 	u16 offset;
741 };
742 
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745  * This structure is to hold information about the device
746  * configured to run FCoE protocol stack.
747  */
748 struct netdev_fcoe_hbainfo {
749 	char	manufacturer[64];
750 	char	serial_number[64];
751 	char	hardware_version[64];
752 	char	driver_version[64];
753 	char	optionrom_version[64];
754 	char	firmware_version[64];
755 	char	model[256];
756 	char	model_description[256];
757 };
758 #endif
759 
760 #define MAX_PHYS_ITEM_ID_LEN 32
761 
762 /* This structure holds a unique identifier to identify some
763  * physical item (port for example) used by a netdevice.
764  */
765 struct netdev_phys_item_id {
766 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 	unsigned char id_len;
768 };
769 
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 					    struct netdev_phys_item_id *b)
772 {
773 	return a->id_len == b->id_len &&
774 	       memcmp(a->id, b->id, a->id_len) == 0;
775 }
776 
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 				       struct sk_buff *skb);
779 
780 /*
781  * This structure defines the management hooks for network devices.
782  * The following hooks can be defined; unless noted otherwise, they are
783  * optional and can be filled with a null pointer.
784  *
785  * int (*ndo_init)(struct net_device *dev);
786  *     This function is called once when network device is registered.
787  *     The network device can use this to any late stage initializaton
788  *     or semantic validattion. It can fail with an error code which will
789  *     be propogated back to register_netdev
790  *
791  * void (*ndo_uninit)(struct net_device *dev);
792  *     This function is called when device is unregistered or when registration
793  *     fails. It is not called if init fails.
794  *
795  * int (*ndo_open)(struct net_device *dev);
796  *     This function is called when network device transistions to the up
797  *     state.
798  *
799  * int (*ndo_stop)(struct net_device *dev);
800  *     This function is called when network device transistions to the down
801  *     state.
802  *
803  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804  *                               struct net_device *dev);
805  *	Called when a packet needs to be transmitted.
806  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
807  *	the queue before that can happen; it's for obsolete devices and weird
808  *	corner cases, but the stack really does a non-trivial amount
809  *	of useless work if you return NETDEV_TX_BUSY.
810  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811  *	Required can not be NULL.
812  *
813  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814  *                         void *accel_priv, select_queue_fallback_t fallback);
815  *	Called to decide which queue to when device supports multiple
816  *	transmit queues.
817  *
818  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819  *	This function is called to allow device receiver to make
820  *	changes to configuration when multicast or promiscious is enabled.
821  *
822  * void (*ndo_set_rx_mode)(struct net_device *dev);
823  *	This function is called device changes address list filtering.
824  *	If driver handles unicast address filtering, it should set
825  *	IFF_UNICAST_FLT to its priv_flags.
826  *
827  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828  *	This function  is called when the Media Access Control address
829  *	needs to be changed. If this interface is not defined, the
830  *	mac address can not be changed.
831  *
832  * int (*ndo_validate_addr)(struct net_device *dev);
833  *	Test if Media Access Control address is valid for the device.
834  *
835  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836  *	Called when a user request an ioctl which can't be handled by
837  *	the generic interface code. If not defined ioctl's return
838  *	not supported error code.
839  *
840  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841  *	Used to set network devices bus interface parameters. This interface
842  *	is retained for legacy reason, new devices should use the bus
843  *	interface (PCI) for low level management.
844  *
845  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846  *	Called when a user wants to change the Maximum Transfer Unit
847  *	of a device. If not defined, any request to change MTU will
848  *	will return an error.
849  *
850  * void (*ndo_tx_timeout)(struct net_device *dev);
851  *	Callback uses when the transmitter has not made any progress
852  *	for dev->watchdog ticks.
853  *
854  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855  *                      struct rtnl_link_stats64 *storage);
856  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857  *	Called when a user wants to get the network device usage
858  *	statistics. Drivers must do one of the following:
859  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
860  *	   rtnl_link_stats64 structure passed by the caller.
861  *	2. Define @ndo_get_stats to update a net_device_stats structure
862  *	   (which should normally be dev->stats) and return a pointer to
863  *	   it. The structure may be changed asynchronously only if each
864  *	   field is written atomically.
865  *	3. Update dev->stats asynchronously and atomically, and define
866  *	   neither operation.
867  *
868  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869  *	If device support VLAN filtering this function is called when a
870  *	VLAN id is registered.
871  *
872  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873  *	If device support VLAN filtering this function is called when a
874  *	VLAN id is unregistered.
875  *
876  * void (*ndo_poll_controller)(struct net_device *dev);
877  *
878  *	SR-IOV management functions.
879  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882  *			  int max_tx_rate);
883  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884  * int (*ndo_get_vf_config)(struct net_device *dev,
885  *			    int vf, struct ifla_vf_info *ivf);
886  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
887  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
888  *			  struct nlattr *port[]);
889  *
890  *      Enable or disable the VF ability to query its RSS Redirection Table and
891  *      Hash Key. This is needed since on some devices VF share this information
892  *      with PF and querying it may adduce a theoretical security risk.
893  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
894  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
895  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
896  * 	Called to setup 'tc' number of traffic classes in the net device. This
897  * 	is always called from the stack with the rtnl lock held and netif tx
898  * 	queues stopped. This allows the netdevice to perform queue management
899  * 	safely.
900  *
901  *	Fiber Channel over Ethernet (FCoE) offload functions.
902  * int (*ndo_fcoe_enable)(struct net_device *dev);
903  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
904  *	so the underlying device can perform whatever needed configuration or
905  *	initialization to support acceleration of FCoE traffic.
906  *
907  * int (*ndo_fcoe_disable)(struct net_device *dev);
908  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
909  *	so the underlying device can perform whatever needed clean-ups to
910  *	stop supporting acceleration of FCoE traffic.
911  *
912  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
913  *			     struct scatterlist *sgl, unsigned int sgc);
914  *	Called when the FCoE Initiator wants to initialize an I/O that
915  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
916  *	perform necessary setup and returns 1 to indicate the device is set up
917  *	successfully to perform DDP on this I/O, otherwise this returns 0.
918  *
919  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
920  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
921  *	indicated by the FC exchange id 'xid', so the underlying device can
922  *	clean up and reuse resources for later DDP requests.
923  *
924  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
925  *			      struct scatterlist *sgl, unsigned int sgc);
926  *	Called when the FCoE Target wants to initialize an I/O that
927  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
928  *	perform necessary setup and returns 1 to indicate the device is set up
929  *	successfully to perform DDP on this I/O, otherwise this returns 0.
930  *
931  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
932  *			       struct netdev_fcoe_hbainfo *hbainfo);
933  *	Called when the FCoE Protocol stack wants information on the underlying
934  *	device. This information is utilized by the FCoE protocol stack to
935  *	register attributes with Fiber Channel management service as per the
936  *	FC-GS Fabric Device Management Information(FDMI) specification.
937  *
938  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
939  *	Called when the underlying device wants to override default World Wide
940  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
941  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
942  *	protocol stack to use.
943  *
944  *	RFS acceleration.
945  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
946  *			    u16 rxq_index, u32 flow_id);
947  *	Set hardware filter for RFS.  rxq_index is the target queue index;
948  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
949  *	Return the filter ID on success, or a negative error code.
950  *
951  *	Slave management functions (for bridge, bonding, etc).
952  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
953  *	Called to make another netdev an underling.
954  *
955  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
956  *	Called to release previously enslaved netdev.
957  *
958  *      Feature/offload setting functions.
959  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
960  *		netdev_features_t features);
961  *	Adjusts the requested feature flags according to device-specific
962  *	constraints, and returns the resulting flags. Must not modify
963  *	the device state.
964  *
965  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
966  *	Called to update device configuration to new features. Passed
967  *	feature set might be less than what was returned by ndo_fix_features()).
968  *	Must return >0 or -errno if it changed dev->features itself.
969  *
970  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
971  *		      struct net_device *dev,
972  *		      const unsigned char *addr, u16 vid, u16 flags)
973  *	Adds an FDB entry to dev for addr.
974  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
975  *		      struct net_device *dev,
976  *		      const unsigned char *addr, u16 vid)
977  *	Deletes the FDB entry from dev coresponding to addr.
978  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
979  *		       struct net_device *dev, struct net_device *filter_dev,
980  *		       int idx)
981  *	Used to add FDB entries to dump requests. Implementers should add
982  *	entries to skb and update idx with the number of entries.
983  *
984  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
985  *			     u16 flags)
986  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
987  *			     struct net_device *dev, u32 filter_mask,
988  *			     int nlflags)
989  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
990  *			     u16 flags);
991  *
992  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
993  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
994  *	which do not represent real hardware may define this to allow their
995  *	userspace components to manage their virtual carrier state. Devices
996  *	that determine carrier state from physical hardware properties (eg
997  *	network cables) or protocol-dependent mechanisms (eg
998  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
999  *
1000  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1001  *			       struct netdev_phys_item_id *ppid);
1002  *	Called to get ID of physical port of this device. If driver does
1003  *	not implement this, it is assumed that the hw is not able to have
1004  *	multiple net devices on single physical port.
1005  *
1006  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1007  *			      sa_family_t sa_family, __be16 port);
1008  *	Called by vxlan to notiy a driver about the UDP port and socket
1009  *	address family that vxlan is listnening to. It is called only when
1010  *	a new port starts listening. The operation is protected by the
1011  *	vxlan_net->sock_lock.
1012  *
1013  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1014  *			      sa_family_t sa_family, __be16 port);
1015  *	Called by vxlan to notify the driver about a UDP port and socket
1016  *	address family that vxlan is not listening to anymore. The operation
1017  *	is protected by the vxlan_net->sock_lock.
1018  *
1019  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1020  *				 struct net_device *dev)
1021  *	Called by upper layer devices to accelerate switching or other
1022  *	station functionality into hardware. 'pdev is the lowerdev
1023  *	to use for the offload and 'dev' is the net device that will
1024  *	back the offload. Returns a pointer to the private structure
1025  *	the upper layer will maintain.
1026  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1027  *	Called by upper layer device to delete the station created
1028  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1029  *	the station and priv is the structure returned by the add
1030  *	operation.
1031  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1032  *				      struct net_device *dev,
1033  *				      void *priv);
1034  *	Callback to use for xmit over the accelerated station. This
1035  *	is used in place of ndo_start_xmit on accelerated net
1036  *	devices.
1037  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1038  *					    struct net_device *dev
1039  *					    netdev_features_t features);
1040  *	Called by core transmit path to determine if device is capable of
1041  *	performing offload operations on a given packet. This is to give
1042  *	the device an opportunity to implement any restrictions that cannot
1043  *	be otherwise expressed by feature flags. The check is called with
1044  *	the set of features that the stack has calculated and it returns
1045  *	those the driver believes to be appropriate.
1046  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1047  *			     int queue_index, u32 maxrate);
1048  *	Called when a user wants to set a max-rate limitation of specific
1049  *	TX queue.
1050  * int (*ndo_get_iflink)(const struct net_device *dev);
1051  *	Called to get the iflink value of this device.
1052  * void (*ndo_change_proto_down)(struct net_device *dev,
1053  *				  bool proto_down);
1054  *	This function is used to pass protocol port error state information
1055  *	to the switch driver. The switch driver can react to the proto_down
1056  *      by doing a phys down on the associated switch port.
1057  *
1058  */
1059 struct net_device_ops {
1060 	int			(*ndo_init)(struct net_device *dev);
1061 	void			(*ndo_uninit)(struct net_device *dev);
1062 	int			(*ndo_open)(struct net_device *dev);
1063 	int			(*ndo_stop)(struct net_device *dev);
1064 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1065 						   struct net_device *dev);
1066 	u16			(*ndo_select_queue)(struct net_device *dev,
1067 						    struct sk_buff *skb,
1068 						    void *accel_priv,
1069 						    select_queue_fallback_t fallback);
1070 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1071 						       int flags);
1072 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1073 	int			(*ndo_set_mac_address)(struct net_device *dev,
1074 						       void *addr);
1075 	int			(*ndo_validate_addr)(struct net_device *dev);
1076 	int			(*ndo_do_ioctl)(struct net_device *dev,
1077 					        struct ifreq *ifr, int cmd);
1078 	int			(*ndo_set_config)(struct net_device *dev,
1079 					          struct ifmap *map);
1080 	int			(*ndo_change_mtu)(struct net_device *dev,
1081 						  int new_mtu);
1082 	int			(*ndo_neigh_setup)(struct net_device *dev,
1083 						   struct neigh_parms *);
1084 	void			(*ndo_tx_timeout) (struct net_device *dev);
1085 
1086 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1087 						     struct rtnl_link_stats64 *storage);
1088 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1089 
1090 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1091 						       __be16 proto, u16 vid);
1092 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1093 						        __be16 proto, u16 vid);
1094 #ifdef CONFIG_NET_POLL_CONTROLLER
1095 	void                    (*ndo_poll_controller)(struct net_device *dev);
1096 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1097 						     struct netpoll_info *info);
1098 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1099 #endif
1100 #ifdef CONFIG_NET_RX_BUSY_POLL
1101 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1102 #endif
1103 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1104 						  int queue, u8 *mac);
1105 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1106 						   int queue, u16 vlan, u8 qos);
1107 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1108 						   int vf, int min_tx_rate,
1109 						   int max_tx_rate);
1110 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1111 						       int vf, bool setting);
1112 	int			(*ndo_get_vf_config)(struct net_device *dev,
1113 						     int vf,
1114 						     struct ifla_vf_info *ivf);
1115 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1116 							 int vf, int link_state);
1117 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1118 						    int vf,
1119 						    struct ifla_vf_stats
1120 						    *vf_stats);
1121 	int			(*ndo_set_vf_port)(struct net_device *dev,
1122 						   int vf,
1123 						   struct nlattr *port[]);
1124 	int			(*ndo_get_vf_port)(struct net_device *dev,
1125 						   int vf, struct sk_buff *skb);
1126 	int			(*ndo_set_vf_rss_query_en)(
1127 						   struct net_device *dev,
1128 						   int vf, bool setting);
1129 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1130 #if IS_ENABLED(CONFIG_FCOE)
1131 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1132 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1133 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1134 						      u16 xid,
1135 						      struct scatterlist *sgl,
1136 						      unsigned int sgc);
1137 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1138 						     u16 xid);
1139 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1140 						       u16 xid,
1141 						       struct scatterlist *sgl,
1142 						       unsigned int sgc);
1143 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1144 							struct netdev_fcoe_hbainfo *hbainfo);
1145 #endif
1146 
1147 #if IS_ENABLED(CONFIG_LIBFCOE)
1148 #define NETDEV_FCOE_WWNN 0
1149 #define NETDEV_FCOE_WWPN 1
1150 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1151 						    u64 *wwn, int type);
1152 #endif
1153 
1154 #ifdef CONFIG_RFS_ACCEL
1155 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1156 						     const struct sk_buff *skb,
1157 						     u16 rxq_index,
1158 						     u32 flow_id);
1159 #endif
1160 	int			(*ndo_add_slave)(struct net_device *dev,
1161 						 struct net_device *slave_dev);
1162 	int			(*ndo_del_slave)(struct net_device *dev,
1163 						 struct net_device *slave_dev);
1164 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1165 						    netdev_features_t features);
1166 	int			(*ndo_set_features)(struct net_device *dev,
1167 						    netdev_features_t features);
1168 	int			(*ndo_neigh_construct)(struct neighbour *n);
1169 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1170 
1171 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1172 					       struct nlattr *tb[],
1173 					       struct net_device *dev,
1174 					       const unsigned char *addr,
1175 					       u16 vid,
1176 					       u16 flags);
1177 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1178 					       struct nlattr *tb[],
1179 					       struct net_device *dev,
1180 					       const unsigned char *addr,
1181 					       u16 vid);
1182 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1183 						struct netlink_callback *cb,
1184 						struct net_device *dev,
1185 						struct net_device *filter_dev,
1186 						int idx);
1187 
1188 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1189 						      struct nlmsghdr *nlh,
1190 						      u16 flags);
1191 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1192 						      u32 pid, u32 seq,
1193 						      struct net_device *dev,
1194 						      u32 filter_mask,
1195 						      int nlflags);
1196 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1197 						      struct nlmsghdr *nlh,
1198 						      u16 flags);
1199 	int			(*ndo_change_carrier)(struct net_device *dev,
1200 						      bool new_carrier);
1201 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1202 							struct netdev_phys_item_id *ppid);
1203 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1204 							  char *name, size_t len);
1205 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1206 						      sa_family_t sa_family,
1207 						      __be16 port);
1208 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1209 						      sa_family_t sa_family,
1210 						      __be16 port);
1211 
1212 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1213 							struct net_device *dev);
1214 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1215 							void *priv);
1216 
1217 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1218 							struct net_device *dev,
1219 							void *priv);
1220 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1221 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1222 						       struct net_device *dev,
1223 						       netdev_features_t features);
1224 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1225 						      int queue_index,
1226 						      u32 maxrate);
1227 	int			(*ndo_get_iflink)(const struct net_device *dev);
1228 	int			(*ndo_change_proto_down)(struct net_device *dev,
1229 							 bool proto_down);
1230 };
1231 
1232 /**
1233  * enum net_device_priv_flags - &struct net_device priv_flags
1234  *
1235  * These are the &struct net_device, they are only set internally
1236  * by drivers and used in the kernel. These flags are invisible to
1237  * userspace, this means that the order of these flags can change
1238  * during any kernel release.
1239  *
1240  * You should have a pretty good reason to be extending these flags.
1241  *
1242  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1243  * @IFF_EBRIDGE: Ethernet bridging device
1244  * @IFF_BONDING: bonding master or slave
1245  * @IFF_ISATAP: ISATAP interface (RFC4214)
1246  * @IFF_WAN_HDLC: WAN HDLC device
1247  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1248  *	release skb->dst
1249  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1250  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1251  * @IFF_MACVLAN_PORT: device used as macvlan port
1252  * @IFF_BRIDGE_PORT: device used as bridge port
1253  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1254  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1255  * @IFF_UNICAST_FLT: Supports unicast filtering
1256  * @IFF_TEAM_PORT: device used as team port
1257  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1258  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1259  *	change when it's running
1260  * @IFF_MACVLAN: Macvlan device
1261  * @IFF_VRF_MASTER: device is a VRF master
1262  * @IFF_NO_QUEUE: device can run without qdisc attached
1263  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1264  */
1265 enum netdev_priv_flags {
1266 	IFF_802_1Q_VLAN			= 1<<0,
1267 	IFF_EBRIDGE			= 1<<1,
1268 	IFF_BONDING			= 1<<2,
1269 	IFF_ISATAP			= 1<<3,
1270 	IFF_WAN_HDLC			= 1<<4,
1271 	IFF_XMIT_DST_RELEASE		= 1<<5,
1272 	IFF_DONT_BRIDGE			= 1<<6,
1273 	IFF_DISABLE_NETPOLL		= 1<<7,
1274 	IFF_MACVLAN_PORT		= 1<<8,
1275 	IFF_BRIDGE_PORT			= 1<<9,
1276 	IFF_OVS_DATAPATH		= 1<<10,
1277 	IFF_TX_SKB_SHARING		= 1<<11,
1278 	IFF_UNICAST_FLT			= 1<<12,
1279 	IFF_TEAM_PORT			= 1<<13,
1280 	IFF_SUPP_NOFCS			= 1<<14,
1281 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1282 	IFF_MACVLAN			= 1<<16,
1283 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1284 	IFF_IPVLAN_MASTER		= 1<<18,
1285 	IFF_IPVLAN_SLAVE		= 1<<19,
1286 	IFF_VRF_MASTER			= 1<<20,
1287 	IFF_NO_QUEUE			= 1<<21,
1288 	IFF_OPENVSWITCH			= 1<<22,
1289 };
1290 
1291 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1292 #define IFF_EBRIDGE			IFF_EBRIDGE
1293 #define IFF_BONDING			IFF_BONDING
1294 #define IFF_ISATAP			IFF_ISATAP
1295 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1296 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1297 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1298 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1299 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1300 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1301 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1302 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1303 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1304 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1305 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1306 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1307 #define IFF_MACVLAN			IFF_MACVLAN
1308 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1309 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1310 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1311 #define IFF_VRF_MASTER			IFF_VRF_MASTER
1312 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1313 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1314 
1315 /**
1316  *	struct net_device - The DEVICE structure.
1317  *		Actually, this whole structure is a big mistake.  It mixes I/O
1318  *		data with strictly "high-level" data, and it has to know about
1319  *		almost every data structure used in the INET module.
1320  *
1321  *	@name:	This is the first field of the "visible" part of this structure
1322  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1323  *	 	of the interface.
1324  *
1325  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1326  *	@ifalias:	SNMP alias
1327  *	@mem_end:	Shared memory end
1328  *	@mem_start:	Shared memory start
1329  *	@base_addr:	Device I/O address
1330  *	@irq:		Device IRQ number
1331  *
1332  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1333  *
1334  *	@state:		Generic network queuing layer state, see netdev_state_t
1335  *	@dev_list:	The global list of network devices
1336  *	@napi_list:	List entry, that is used for polling napi devices
1337  *	@unreg_list:	List entry, that is used, when we are unregistering the
1338  *			device, see the function unregister_netdev
1339  *	@close_list:	List entry, that is used, when we are closing the device
1340  *
1341  *	@adj_list:	Directly linked devices, like slaves for bonding
1342  *	@all_adj_list:	All linked devices, *including* neighbours
1343  *	@features:	Currently active device features
1344  *	@hw_features:	User-changeable features
1345  *
1346  *	@wanted_features:	User-requested features
1347  *	@vlan_features:		Mask of features inheritable by VLAN devices
1348  *
1349  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1350  *				This field indicates what encapsulation
1351  *				offloads the hardware is capable of doing,
1352  *				and drivers will need to set them appropriately.
1353  *
1354  *	@mpls_features:	Mask of features inheritable by MPLS
1355  *
1356  *	@ifindex:	interface index
1357  *	@group:		The group, that the device belongs to
1358  *
1359  *	@stats:		Statistics struct, which was left as a legacy, use
1360  *			rtnl_link_stats64 instead
1361  *
1362  *	@rx_dropped:	Dropped packets by core network,
1363  *			do not use this in drivers
1364  *	@tx_dropped:	Dropped packets by core network,
1365  *			do not use this in drivers
1366  *
1367  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1368  *				instead of ioctl,
1369  *				see <net/iw_handler.h> for details.
1370  *	@wireless_data:	Instance data managed by the core of wireless extensions
1371  *
1372  *	@netdev_ops:	Includes several pointers to callbacks,
1373  *			if one wants to override the ndo_*() functions
1374  *	@ethtool_ops:	Management operations
1375  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1376  *			of Layer 2 headers.
1377  *
1378  *	@flags:		Interface flags (a la BSD)
1379  *	@priv_flags:	Like 'flags' but invisible to userspace,
1380  *			see if.h for the definitions
1381  *	@gflags:	Global flags ( kept as legacy )
1382  *	@padded:	How much padding added by alloc_netdev()
1383  *	@operstate:	RFC2863 operstate
1384  *	@link_mode:	Mapping policy to operstate
1385  *	@if_port:	Selectable AUI, TP, ...
1386  *	@dma:		DMA channel
1387  *	@mtu:		Interface MTU value
1388  *	@type:		Interface hardware type
1389  *	@hard_header_len: Hardware header length
1390  *
1391  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1392  *			  cases can this be guaranteed
1393  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1394  *			  cases can this be guaranteed. Some cases also use
1395  *			  LL_MAX_HEADER instead to allocate the skb
1396  *
1397  *	interface address info:
1398  *
1399  * 	@perm_addr:		Permanent hw address
1400  * 	@addr_assign_type:	Hw address assignment type
1401  * 	@addr_len:		Hardware address length
1402  * 	@neigh_priv_len;	Used in neigh_alloc(),
1403  * 				initialized only in atm/clip.c
1404  * 	@dev_id:		Used to differentiate devices that share
1405  * 				the same link layer address
1406  * 	@dev_port:		Used to differentiate devices that share
1407  * 				the same function
1408  *	@addr_list_lock:	XXX: need comments on this one
1409  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1410  *				has been enabled due to the need to listen to
1411  *				additional unicast addresses in a device that
1412  *				does not implement ndo_set_rx_mode()
1413  *	@uc:			unicast mac addresses
1414  *	@mc:			multicast mac addresses
1415  *	@dev_addrs:		list of device hw addresses
1416  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1417  *	@promiscuity:		Number of times, the NIC is told to work in
1418  *				Promiscuous mode, if it becomes 0 the NIC will
1419  *				exit from working in Promiscuous mode
1420  *	@allmulti:		Counter, enables or disables allmulticast mode
1421  *
1422  *	@vlan_info:	VLAN info
1423  *	@dsa_ptr:	dsa specific data
1424  *	@tipc_ptr:	TIPC specific data
1425  *	@atalk_ptr:	AppleTalk link
1426  *	@ip_ptr:	IPv4 specific data
1427  *	@dn_ptr:	DECnet specific data
1428  *	@ip6_ptr:	IPv6 specific data
1429  *	@ax25_ptr:	AX.25 specific data
1430  *	@vrf_ptr:	VRF specific data
1431  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1432  *
1433  *	@last_rx:	Time of last Rx
1434  *	@dev_addr:	Hw address (before bcast,
1435  *			because most packets are unicast)
1436  *
1437  *	@_rx:			Array of RX queues
1438  *	@num_rx_queues:		Number of RX queues
1439  *				allocated at register_netdev() time
1440  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1441  *
1442  *	@rx_handler:		handler for received packets
1443  *	@rx_handler_data: 	XXX: need comments on this one
1444  *	@ingress_queue:		XXX: need comments on this one
1445  *	@broadcast:		hw bcast address
1446  *
1447  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1448  *			indexed by RX queue number. Assigned by driver.
1449  *			This must only be set if the ndo_rx_flow_steer
1450  *			operation is defined
1451  *	@index_hlist:		Device index hash chain
1452  *
1453  *	@_tx:			Array of TX queues
1454  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1455  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1456  *	@qdisc:			Root qdisc from userspace point of view
1457  *	@tx_queue_len:		Max frames per queue allowed
1458  *	@tx_global_lock: 	XXX: need comments on this one
1459  *
1460  *	@xps_maps:	XXX: need comments on this one
1461  *
1462  *	@offload_fwd_mark:	Offload device fwding mark
1463  *
1464  *	@trans_start:		Time (in jiffies) of last Tx
1465  *	@watchdog_timeo:	Represents the timeout that is used by
1466  *				the watchdog ( see dev_watchdog() )
1467  *	@watchdog_timer:	List of timers
1468  *
1469  *	@pcpu_refcnt:		Number of references to this device
1470  *	@todo_list:		Delayed register/unregister
1471  *	@link_watch_list:	XXX: need comments on this one
1472  *
1473  *	@reg_state:		Register/unregister state machine
1474  *	@dismantle:		Device is going to be freed
1475  *	@rtnl_link_state:	This enum represents the phases of creating
1476  *				a new link
1477  *
1478  *	@destructor:		Called from unregister,
1479  *				can be used to call free_netdev
1480  *	@npinfo:		XXX: need comments on this one
1481  * 	@nd_net:		Network namespace this network device is inside
1482  *
1483  * 	@ml_priv:	Mid-layer private
1484  * 	@lstats:	Loopback statistics
1485  * 	@tstats:	Tunnel statistics
1486  * 	@dstats:	Dummy statistics
1487  * 	@vstats:	Virtual ethernet statistics
1488  *
1489  *	@garp_port:	GARP
1490  *	@mrp_port:	MRP
1491  *
1492  *	@dev:		Class/net/name entry
1493  *	@sysfs_groups:	Space for optional device, statistics and wireless
1494  *			sysfs groups
1495  *
1496  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1497  *	@rtnl_link_ops:	Rtnl_link_ops
1498  *
1499  *	@gso_max_size:	Maximum size of generic segmentation offload
1500  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1501  *			NIC for GSO
1502  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1503  *			NIC for GSO
1504  *
1505  *	@dcbnl_ops:	Data Center Bridging netlink ops
1506  *	@num_tc:	Number of traffic classes in the net device
1507  *	@tc_to_txq:	XXX: need comments on this one
1508  *	@prio_tc_map	XXX: need comments on this one
1509  *
1510  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1511  *
1512  *	@priomap:	XXX: need comments on this one
1513  *	@phydev:	Physical device may attach itself
1514  *			for hardware timestamping
1515  *
1516  *	@qdisc_tx_busylock:	XXX: need comments on this one
1517  *
1518  *	@proto_down:	protocol port state information can be sent to the
1519  *			switch driver and used to set the phys state of the
1520  *			switch port.
1521  *
1522  *	FIXME: cleanup struct net_device such that network protocol info
1523  *	moves out.
1524  */
1525 
1526 struct net_device {
1527 	char			name[IFNAMSIZ];
1528 	struct hlist_node	name_hlist;
1529 	char 			*ifalias;
1530 	/*
1531 	 *	I/O specific fields
1532 	 *	FIXME: Merge these and struct ifmap into one
1533 	 */
1534 	unsigned long		mem_end;
1535 	unsigned long		mem_start;
1536 	unsigned long		base_addr;
1537 	int			irq;
1538 
1539 	atomic_t		carrier_changes;
1540 
1541 	/*
1542 	 *	Some hardware also needs these fields (state,dev_list,
1543 	 *	napi_list,unreg_list,close_list) but they are not
1544 	 *	part of the usual set specified in Space.c.
1545 	 */
1546 
1547 	unsigned long		state;
1548 
1549 	struct list_head	dev_list;
1550 	struct list_head	napi_list;
1551 	struct list_head	unreg_list;
1552 	struct list_head	close_list;
1553 	struct list_head	ptype_all;
1554 	struct list_head	ptype_specific;
1555 
1556 	struct {
1557 		struct list_head upper;
1558 		struct list_head lower;
1559 	} adj_list;
1560 
1561 	struct {
1562 		struct list_head upper;
1563 		struct list_head lower;
1564 	} all_adj_list;
1565 
1566 	netdev_features_t	features;
1567 	netdev_features_t	hw_features;
1568 	netdev_features_t	wanted_features;
1569 	netdev_features_t	vlan_features;
1570 	netdev_features_t	hw_enc_features;
1571 	netdev_features_t	mpls_features;
1572 
1573 	int			ifindex;
1574 	int			group;
1575 
1576 	struct net_device_stats	stats;
1577 
1578 	atomic_long_t		rx_dropped;
1579 	atomic_long_t		tx_dropped;
1580 
1581 #ifdef CONFIG_WIRELESS_EXT
1582 	const struct iw_handler_def *	wireless_handlers;
1583 	struct iw_public_data *	wireless_data;
1584 #endif
1585 	const struct net_device_ops *netdev_ops;
1586 	const struct ethtool_ops *ethtool_ops;
1587 #ifdef CONFIG_NET_SWITCHDEV
1588 	const struct switchdev_ops *switchdev_ops;
1589 #endif
1590 
1591 	const struct header_ops *header_ops;
1592 
1593 	unsigned int		flags;
1594 	unsigned int		priv_flags;
1595 
1596 	unsigned short		gflags;
1597 	unsigned short		padded;
1598 
1599 	unsigned char		operstate;
1600 	unsigned char		link_mode;
1601 
1602 	unsigned char		if_port;
1603 	unsigned char		dma;
1604 
1605 	unsigned int		mtu;
1606 	unsigned short		type;
1607 	unsigned short		hard_header_len;
1608 
1609 	unsigned short		needed_headroom;
1610 	unsigned short		needed_tailroom;
1611 
1612 	/* Interface address info. */
1613 	unsigned char		perm_addr[MAX_ADDR_LEN];
1614 	unsigned char		addr_assign_type;
1615 	unsigned char		addr_len;
1616 	unsigned short		neigh_priv_len;
1617 	unsigned short          dev_id;
1618 	unsigned short          dev_port;
1619 	spinlock_t		addr_list_lock;
1620 	unsigned char		name_assign_type;
1621 	bool			uc_promisc;
1622 	struct netdev_hw_addr_list	uc;
1623 	struct netdev_hw_addr_list	mc;
1624 	struct netdev_hw_addr_list	dev_addrs;
1625 
1626 #ifdef CONFIG_SYSFS
1627 	struct kset		*queues_kset;
1628 #endif
1629 	unsigned int		promiscuity;
1630 	unsigned int		allmulti;
1631 
1632 
1633 	/* Protocol specific pointers */
1634 
1635 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1636 	struct vlan_info __rcu	*vlan_info;
1637 #endif
1638 #if IS_ENABLED(CONFIG_NET_DSA)
1639 	struct dsa_switch_tree	*dsa_ptr;
1640 #endif
1641 #if IS_ENABLED(CONFIG_TIPC)
1642 	struct tipc_bearer __rcu *tipc_ptr;
1643 #endif
1644 	void 			*atalk_ptr;
1645 	struct in_device __rcu	*ip_ptr;
1646 	struct dn_dev __rcu     *dn_ptr;
1647 	struct inet6_dev __rcu	*ip6_ptr;
1648 	void			*ax25_ptr;
1649 	struct net_vrf_dev __rcu *vrf_ptr;
1650 	struct wireless_dev	*ieee80211_ptr;
1651 	struct wpan_dev		*ieee802154_ptr;
1652 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1653 	struct mpls_dev __rcu	*mpls_ptr;
1654 #endif
1655 
1656 /*
1657  * Cache lines mostly used on receive path (including eth_type_trans())
1658  */
1659 	unsigned long		last_rx;
1660 
1661 	/* Interface address info used in eth_type_trans() */
1662 	unsigned char		*dev_addr;
1663 
1664 
1665 #ifdef CONFIG_SYSFS
1666 	struct netdev_rx_queue	*_rx;
1667 
1668 	unsigned int		num_rx_queues;
1669 	unsigned int		real_num_rx_queues;
1670 
1671 #endif
1672 
1673 	unsigned long		gro_flush_timeout;
1674 	rx_handler_func_t __rcu	*rx_handler;
1675 	void __rcu		*rx_handler_data;
1676 
1677 #ifdef CONFIG_NET_CLS_ACT
1678 	struct tcf_proto __rcu  *ingress_cl_list;
1679 #endif
1680 	struct netdev_queue __rcu *ingress_queue;
1681 #ifdef CONFIG_NETFILTER_INGRESS
1682 	struct list_head	nf_hooks_ingress;
1683 #endif
1684 
1685 	unsigned char		broadcast[MAX_ADDR_LEN];
1686 #ifdef CONFIG_RFS_ACCEL
1687 	struct cpu_rmap		*rx_cpu_rmap;
1688 #endif
1689 	struct hlist_node	index_hlist;
1690 
1691 /*
1692  * Cache lines mostly used on transmit path
1693  */
1694 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1695 	unsigned int		num_tx_queues;
1696 	unsigned int		real_num_tx_queues;
1697 	struct Qdisc		*qdisc;
1698 	unsigned long		tx_queue_len;
1699 	spinlock_t		tx_global_lock;
1700 	int			watchdog_timeo;
1701 
1702 #ifdef CONFIG_XPS
1703 	struct xps_dev_maps __rcu *xps_maps;
1704 #endif
1705 
1706 #ifdef CONFIG_NET_SWITCHDEV
1707 	u32			offload_fwd_mark;
1708 #endif
1709 
1710 	/* These may be needed for future network-power-down code. */
1711 
1712 	/*
1713 	 * trans_start here is expensive for high speed devices on SMP,
1714 	 * please use netdev_queue->trans_start instead.
1715 	 */
1716 	unsigned long		trans_start;
1717 
1718 	struct timer_list	watchdog_timer;
1719 
1720 	int __percpu		*pcpu_refcnt;
1721 	struct list_head	todo_list;
1722 
1723 	struct list_head	link_watch_list;
1724 
1725 	enum { NETREG_UNINITIALIZED=0,
1726 	       NETREG_REGISTERED,	/* completed register_netdevice */
1727 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1728 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1729 	       NETREG_RELEASED,		/* called free_netdev */
1730 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1731 	} reg_state:8;
1732 
1733 	bool dismantle;
1734 
1735 	enum {
1736 		RTNL_LINK_INITIALIZED,
1737 		RTNL_LINK_INITIALIZING,
1738 	} rtnl_link_state:16;
1739 
1740 	void (*destructor)(struct net_device *dev);
1741 
1742 #ifdef CONFIG_NETPOLL
1743 	struct netpoll_info __rcu	*npinfo;
1744 #endif
1745 
1746 	possible_net_t			nd_net;
1747 
1748 	/* mid-layer private */
1749 	union {
1750 		void					*ml_priv;
1751 		struct pcpu_lstats __percpu		*lstats;
1752 		struct pcpu_sw_netstats __percpu	*tstats;
1753 		struct pcpu_dstats __percpu		*dstats;
1754 		struct pcpu_vstats __percpu		*vstats;
1755 	};
1756 
1757 	struct garp_port __rcu	*garp_port;
1758 	struct mrp_port __rcu	*mrp_port;
1759 
1760 	struct device	dev;
1761 	const struct attribute_group *sysfs_groups[4];
1762 	const struct attribute_group *sysfs_rx_queue_group;
1763 
1764 	const struct rtnl_link_ops *rtnl_link_ops;
1765 
1766 	/* for setting kernel sock attribute on TCP connection setup */
1767 #define GSO_MAX_SIZE		65536
1768 	unsigned int		gso_max_size;
1769 #define GSO_MAX_SEGS		65535
1770 	u16			gso_max_segs;
1771 	u16			gso_min_segs;
1772 #ifdef CONFIG_DCB
1773 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1774 #endif
1775 	u8 num_tc;
1776 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1777 	u8 prio_tc_map[TC_BITMASK + 1];
1778 
1779 #if IS_ENABLED(CONFIG_FCOE)
1780 	unsigned int		fcoe_ddp_xid;
1781 #endif
1782 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1783 	struct netprio_map __rcu *priomap;
1784 #endif
1785 	struct phy_device *phydev;
1786 	struct lock_class_key *qdisc_tx_busylock;
1787 	bool proto_down;
1788 };
1789 #define to_net_dev(d) container_of(d, struct net_device, dev)
1790 
1791 #define	NETDEV_ALIGN		32
1792 
1793 static inline
1794 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1795 {
1796 	return dev->prio_tc_map[prio & TC_BITMASK];
1797 }
1798 
1799 static inline
1800 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1801 {
1802 	if (tc >= dev->num_tc)
1803 		return -EINVAL;
1804 
1805 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1806 	return 0;
1807 }
1808 
1809 static inline
1810 void netdev_reset_tc(struct net_device *dev)
1811 {
1812 	dev->num_tc = 0;
1813 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1814 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1815 }
1816 
1817 static inline
1818 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1819 {
1820 	if (tc >= dev->num_tc)
1821 		return -EINVAL;
1822 
1823 	dev->tc_to_txq[tc].count = count;
1824 	dev->tc_to_txq[tc].offset = offset;
1825 	return 0;
1826 }
1827 
1828 static inline
1829 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1830 {
1831 	if (num_tc > TC_MAX_QUEUE)
1832 		return -EINVAL;
1833 
1834 	dev->num_tc = num_tc;
1835 	return 0;
1836 }
1837 
1838 static inline
1839 int netdev_get_num_tc(struct net_device *dev)
1840 {
1841 	return dev->num_tc;
1842 }
1843 
1844 static inline
1845 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1846 					 unsigned int index)
1847 {
1848 	return &dev->_tx[index];
1849 }
1850 
1851 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1852 						    const struct sk_buff *skb)
1853 {
1854 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1855 }
1856 
1857 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1858 					    void (*f)(struct net_device *,
1859 						      struct netdev_queue *,
1860 						      void *),
1861 					    void *arg)
1862 {
1863 	unsigned int i;
1864 
1865 	for (i = 0; i < dev->num_tx_queues; i++)
1866 		f(dev, &dev->_tx[i], arg);
1867 }
1868 
1869 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1870 				    struct sk_buff *skb,
1871 				    void *accel_priv);
1872 
1873 /*
1874  * Net namespace inlines
1875  */
1876 static inline
1877 struct net *dev_net(const struct net_device *dev)
1878 {
1879 	return read_pnet(&dev->nd_net);
1880 }
1881 
1882 static inline
1883 void dev_net_set(struct net_device *dev, struct net *net)
1884 {
1885 	write_pnet(&dev->nd_net, net);
1886 }
1887 
1888 static inline bool netdev_uses_dsa(struct net_device *dev)
1889 {
1890 #if IS_ENABLED(CONFIG_NET_DSA)
1891 	if (dev->dsa_ptr != NULL)
1892 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1893 #endif
1894 	return false;
1895 }
1896 
1897 /**
1898  *	netdev_priv - access network device private data
1899  *	@dev: network device
1900  *
1901  * Get network device private data
1902  */
1903 static inline void *netdev_priv(const struct net_device *dev)
1904 {
1905 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1906 }
1907 
1908 /* Set the sysfs physical device reference for the network logical device
1909  * if set prior to registration will cause a symlink during initialization.
1910  */
1911 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1912 
1913 /* Set the sysfs device type for the network logical device to allow
1914  * fine-grained identification of different network device types. For
1915  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1916  */
1917 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1918 
1919 /* Default NAPI poll() weight
1920  * Device drivers are strongly advised to not use bigger value
1921  */
1922 #define NAPI_POLL_WEIGHT 64
1923 
1924 /**
1925  *	netif_napi_add - initialize a napi context
1926  *	@dev:  network device
1927  *	@napi: napi context
1928  *	@poll: polling function
1929  *	@weight: default weight
1930  *
1931  * netif_napi_add() must be used to initialize a napi context prior to calling
1932  * *any* of the other napi related functions.
1933  */
1934 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1935 		    int (*poll)(struct napi_struct *, int), int weight);
1936 
1937 /**
1938  *  netif_napi_del - remove a napi context
1939  *  @napi: napi context
1940  *
1941  *  netif_napi_del() removes a napi context from the network device napi list
1942  */
1943 void netif_napi_del(struct napi_struct *napi);
1944 
1945 struct napi_gro_cb {
1946 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1947 	void *frag0;
1948 
1949 	/* Length of frag0. */
1950 	unsigned int frag0_len;
1951 
1952 	/* This indicates where we are processing relative to skb->data. */
1953 	int data_offset;
1954 
1955 	/* This is non-zero if the packet cannot be merged with the new skb. */
1956 	u16	flush;
1957 
1958 	/* Save the IP ID here and check when we get to the transport layer */
1959 	u16	flush_id;
1960 
1961 	/* Number of segments aggregated. */
1962 	u16	count;
1963 
1964 	/* Start offset for remote checksum offload */
1965 	u16	gro_remcsum_start;
1966 
1967 	/* jiffies when first packet was created/queued */
1968 	unsigned long age;
1969 
1970 	/* Used in ipv6_gro_receive() and foo-over-udp */
1971 	u16	proto;
1972 
1973 	/* This is non-zero if the packet may be of the same flow. */
1974 	u8	same_flow:1;
1975 
1976 	/* Used in udp_gro_receive */
1977 	u8	udp_mark:1;
1978 
1979 	/* GRO checksum is valid */
1980 	u8	csum_valid:1;
1981 
1982 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1983 	u8	csum_cnt:3;
1984 
1985 	/* Free the skb? */
1986 	u8	free:2;
1987 #define NAPI_GRO_FREE		  1
1988 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1989 
1990 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1991 	u8	is_ipv6:1;
1992 
1993 	/* 7 bit hole */
1994 
1995 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1996 	__wsum	csum;
1997 
1998 	/* used in skb_gro_receive() slow path */
1999 	struct sk_buff *last;
2000 };
2001 
2002 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2003 
2004 struct packet_type {
2005 	__be16			type;	/* This is really htons(ether_type). */
2006 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2007 	int			(*func) (struct sk_buff *,
2008 					 struct net_device *,
2009 					 struct packet_type *,
2010 					 struct net_device *);
2011 	bool			(*id_match)(struct packet_type *ptype,
2012 					    struct sock *sk);
2013 	void			*af_packet_priv;
2014 	struct list_head	list;
2015 };
2016 
2017 struct offload_callbacks {
2018 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2019 						netdev_features_t features);
2020 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2021 						 struct sk_buff *skb);
2022 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2023 };
2024 
2025 struct packet_offload {
2026 	__be16			 type;	/* This is really htons(ether_type). */
2027 	u16			 priority;
2028 	struct offload_callbacks callbacks;
2029 	struct list_head	 list;
2030 };
2031 
2032 struct udp_offload;
2033 
2034 struct udp_offload_callbacks {
2035 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2036 						 struct sk_buff *skb,
2037 						 struct udp_offload *uoff);
2038 	int			(*gro_complete)(struct sk_buff *skb,
2039 						int nhoff,
2040 						struct udp_offload *uoff);
2041 };
2042 
2043 struct udp_offload {
2044 	__be16			 port;
2045 	u8			 ipproto;
2046 	struct udp_offload_callbacks callbacks;
2047 };
2048 
2049 /* often modified stats are per cpu, other are shared (netdev->stats) */
2050 struct pcpu_sw_netstats {
2051 	u64     rx_packets;
2052 	u64     rx_bytes;
2053 	u64     tx_packets;
2054 	u64     tx_bytes;
2055 	struct u64_stats_sync   syncp;
2056 };
2057 
2058 #define netdev_alloc_pcpu_stats(type)				\
2059 ({								\
2060 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2061 	if (pcpu_stats)	{					\
2062 		int __cpu;					\
2063 		for_each_possible_cpu(__cpu) {			\
2064 			typeof(type) *stat;			\
2065 			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2066 			u64_stats_init(&stat->syncp);		\
2067 		}						\
2068 	}							\
2069 	pcpu_stats;						\
2070 })
2071 
2072 #include <linux/notifier.h>
2073 
2074 /* netdevice notifier chain. Please remember to update the rtnetlink
2075  * notification exclusion list in rtnetlink_event() when adding new
2076  * types.
2077  */
2078 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2079 #define NETDEV_DOWN	0x0002
2080 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2081 				   detected a hardware crash and restarted
2082 				   - we can use this eg to kick tcp sessions
2083 				   once done */
2084 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2085 #define NETDEV_REGISTER 0x0005
2086 #define NETDEV_UNREGISTER	0x0006
2087 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2088 #define NETDEV_CHANGEADDR	0x0008
2089 #define NETDEV_GOING_DOWN	0x0009
2090 #define NETDEV_CHANGENAME	0x000A
2091 #define NETDEV_FEAT_CHANGE	0x000B
2092 #define NETDEV_BONDING_FAILOVER 0x000C
2093 #define NETDEV_PRE_UP		0x000D
2094 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2095 #define NETDEV_POST_TYPE_CHANGE	0x000F
2096 #define NETDEV_POST_INIT	0x0010
2097 #define NETDEV_UNREGISTER_FINAL 0x0011
2098 #define NETDEV_RELEASE		0x0012
2099 #define NETDEV_NOTIFY_PEERS	0x0013
2100 #define NETDEV_JOIN		0x0014
2101 #define NETDEV_CHANGEUPPER	0x0015
2102 #define NETDEV_RESEND_IGMP	0x0016
2103 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2104 #define NETDEV_CHANGEINFODATA	0x0018
2105 #define NETDEV_BONDING_INFO	0x0019
2106 
2107 int register_netdevice_notifier(struct notifier_block *nb);
2108 int unregister_netdevice_notifier(struct notifier_block *nb);
2109 
2110 struct netdev_notifier_info {
2111 	struct net_device *dev;
2112 };
2113 
2114 struct netdev_notifier_change_info {
2115 	struct netdev_notifier_info info; /* must be first */
2116 	unsigned int flags_changed;
2117 };
2118 
2119 struct netdev_notifier_changeupper_info {
2120 	struct netdev_notifier_info info; /* must be first */
2121 	struct net_device *upper_dev; /* new upper dev */
2122 	bool master; /* is upper dev master */
2123 	bool linking; /* is the nofication for link or unlink */
2124 };
2125 
2126 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2127 					     struct net_device *dev)
2128 {
2129 	info->dev = dev;
2130 }
2131 
2132 static inline struct net_device *
2133 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2134 {
2135 	return info->dev;
2136 }
2137 
2138 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2139 
2140 
2141 extern rwlock_t				dev_base_lock;		/* Device list lock */
2142 
2143 #define for_each_netdev(net, d)		\
2144 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2145 #define for_each_netdev_reverse(net, d)	\
2146 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2147 #define for_each_netdev_rcu(net, d)		\
2148 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2149 #define for_each_netdev_safe(net, d, n)	\
2150 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2151 #define for_each_netdev_continue(net, d)		\
2152 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2153 #define for_each_netdev_continue_rcu(net, d)		\
2154 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2155 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2156 		for_each_netdev_rcu(&init_net, slave)	\
2157 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2158 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2159 
2160 static inline struct net_device *next_net_device(struct net_device *dev)
2161 {
2162 	struct list_head *lh;
2163 	struct net *net;
2164 
2165 	net = dev_net(dev);
2166 	lh = dev->dev_list.next;
2167 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2168 }
2169 
2170 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2171 {
2172 	struct list_head *lh;
2173 	struct net *net;
2174 
2175 	net = dev_net(dev);
2176 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2177 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2178 }
2179 
2180 static inline struct net_device *first_net_device(struct net *net)
2181 {
2182 	return list_empty(&net->dev_base_head) ? NULL :
2183 		net_device_entry(net->dev_base_head.next);
2184 }
2185 
2186 static inline struct net_device *first_net_device_rcu(struct net *net)
2187 {
2188 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2189 
2190 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2191 }
2192 
2193 int netdev_boot_setup_check(struct net_device *dev);
2194 unsigned long netdev_boot_base(const char *prefix, int unit);
2195 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2196 				       const char *hwaddr);
2197 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2198 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2199 void dev_add_pack(struct packet_type *pt);
2200 void dev_remove_pack(struct packet_type *pt);
2201 void __dev_remove_pack(struct packet_type *pt);
2202 void dev_add_offload(struct packet_offload *po);
2203 void dev_remove_offload(struct packet_offload *po);
2204 
2205 int dev_get_iflink(const struct net_device *dev);
2206 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2207 				      unsigned short mask);
2208 struct net_device *dev_get_by_name(struct net *net, const char *name);
2209 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2210 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2211 int dev_alloc_name(struct net_device *dev, const char *name);
2212 int dev_open(struct net_device *dev);
2213 int dev_close(struct net_device *dev);
2214 int dev_close_many(struct list_head *head, bool unlink);
2215 void dev_disable_lro(struct net_device *dev);
2216 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2217 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2218 static inline int dev_queue_xmit(struct sk_buff *skb)
2219 {
2220 	return dev_queue_xmit_sk(skb->sk, skb);
2221 }
2222 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2223 int register_netdevice(struct net_device *dev);
2224 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2225 void unregister_netdevice_many(struct list_head *head);
2226 static inline void unregister_netdevice(struct net_device *dev)
2227 {
2228 	unregister_netdevice_queue(dev, NULL);
2229 }
2230 
2231 int netdev_refcnt_read(const struct net_device *dev);
2232 void free_netdev(struct net_device *dev);
2233 void netdev_freemem(struct net_device *dev);
2234 void synchronize_net(void);
2235 int init_dummy_netdev(struct net_device *dev);
2236 
2237 DECLARE_PER_CPU(int, xmit_recursion);
2238 static inline int dev_recursion_level(void)
2239 {
2240 	return this_cpu_read(xmit_recursion);
2241 }
2242 
2243 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2244 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2245 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2246 int netdev_get_name(struct net *net, char *name, int ifindex);
2247 int dev_restart(struct net_device *dev);
2248 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2249 
2250 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2251 {
2252 	return NAPI_GRO_CB(skb)->data_offset;
2253 }
2254 
2255 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2256 {
2257 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2258 }
2259 
2260 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2261 {
2262 	NAPI_GRO_CB(skb)->data_offset += len;
2263 }
2264 
2265 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2266 					unsigned int offset)
2267 {
2268 	return NAPI_GRO_CB(skb)->frag0 + offset;
2269 }
2270 
2271 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2272 {
2273 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2274 }
2275 
2276 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2277 					unsigned int offset)
2278 {
2279 	if (!pskb_may_pull(skb, hlen))
2280 		return NULL;
2281 
2282 	NAPI_GRO_CB(skb)->frag0 = NULL;
2283 	NAPI_GRO_CB(skb)->frag0_len = 0;
2284 	return skb->data + offset;
2285 }
2286 
2287 static inline void *skb_gro_network_header(struct sk_buff *skb)
2288 {
2289 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2290 	       skb_network_offset(skb);
2291 }
2292 
2293 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2294 					const void *start, unsigned int len)
2295 {
2296 	if (NAPI_GRO_CB(skb)->csum_valid)
2297 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2298 						  csum_partial(start, len, 0));
2299 }
2300 
2301 /* GRO checksum functions. These are logical equivalents of the normal
2302  * checksum functions (in skbuff.h) except that they operate on the GRO
2303  * offsets and fields in sk_buff.
2304  */
2305 
2306 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2307 
2308 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2309 {
2310 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2311 }
2312 
2313 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2314 						      bool zero_okay,
2315 						      __sum16 check)
2316 {
2317 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2318 		skb_checksum_start_offset(skb) <
2319 		 skb_gro_offset(skb)) &&
2320 		!skb_at_gro_remcsum_start(skb) &&
2321 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2322 		(!zero_okay || check));
2323 }
2324 
2325 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2326 							   __wsum psum)
2327 {
2328 	if (NAPI_GRO_CB(skb)->csum_valid &&
2329 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2330 		return 0;
2331 
2332 	NAPI_GRO_CB(skb)->csum = psum;
2333 
2334 	return __skb_gro_checksum_complete(skb);
2335 }
2336 
2337 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2338 {
2339 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2340 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2341 		NAPI_GRO_CB(skb)->csum_cnt--;
2342 	} else {
2343 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2344 		 * verified a new top level checksum or an encapsulated one
2345 		 * during GRO. This saves work if we fallback to normal path.
2346 		 */
2347 		__skb_incr_checksum_unnecessary(skb);
2348 	}
2349 }
2350 
2351 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2352 				    compute_pseudo)			\
2353 ({									\
2354 	__sum16 __ret = 0;						\
2355 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2356 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2357 				compute_pseudo(skb, proto));		\
2358 	if (__ret)							\
2359 		__skb_mark_checksum_bad(skb);				\
2360 	else								\
2361 		skb_gro_incr_csum_unnecessary(skb);			\
2362 	__ret;								\
2363 })
2364 
2365 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2366 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2367 
2368 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2369 					     compute_pseudo)		\
2370 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2371 
2372 #define skb_gro_checksum_simple_validate(skb)				\
2373 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2374 
2375 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2376 {
2377 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2378 		!NAPI_GRO_CB(skb)->csum_valid);
2379 }
2380 
2381 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2382 					      __sum16 check, __wsum pseudo)
2383 {
2384 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2385 	NAPI_GRO_CB(skb)->csum_valid = 1;
2386 }
2387 
2388 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2389 do {									\
2390 	if (__skb_gro_checksum_convert_check(skb))			\
2391 		__skb_gro_checksum_convert(skb, check,			\
2392 					   compute_pseudo(skb, proto));	\
2393 } while (0)
2394 
2395 struct gro_remcsum {
2396 	int offset;
2397 	__wsum delta;
2398 };
2399 
2400 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2401 {
2402 	grc->offset = 0;
2403 	grc->delta = 0;
2404 }
2405 
2406 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2407 					    unsigned int off, size_t hdrlen,
2408 					    int start, int offset,
2409 					    struct gro_remcsum *grc,
2410 					    bool nopartial)
2411 {
2412 	__wsum delta;
2413 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2414 
2415 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2416 
2417 	if (!nopartial) {
2418 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2419 		return ptr;
2420 	}
2421 
2422 	ptr = skb_gro_header_fast(skb, off);
2423 	if (skb_gro_header_hard(skb, off + plen)) {
2424 		ptr = skb_gro_header_slow(skb, off + plen, off);
2425 		if (!ptr)
2426 			return NULL;
2427 	}
2428 
2429 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2430 			       start, offset);
2431 
2432 	/* Adjust skb->csum since we changed the packet */
2433 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2434 
2435 	grc->offset = off + hdrlen + offset;
2436 	grc->delta = delta;
2437 
2438 	return ptr;
2439 }
2440 
2441 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2442 					   struct gro_remcsum *grc)
2443 {
2444 	void *ptr;
2445 	size_t plen = grc->offset + sizeof(u16);
2446 
2447 	if (!grc->delta)
2448 		return;
2449 
2450 	ptr = skb_gro_header_fast(skb, grc->offset);
2451 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2452 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2453 		if (!ptr)
2454 			return;
2455 	}
2456 
2457 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2458 }
2459 
2460 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2461 				  unsigned short type,
2462 				  const void *daddr, const void *saddr,
2463 				  unsigned int len)
2464 {
2465 	if (!dev->header_ops || !dev->header_ops->create)
2466 		return 0;
2467 
2468 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2469 }
2470 
2471 static inline int dev_parse_header(const struct sk_buff *skb,
2472 				   unsigned char *haddr)
2473 {
2474 	const struct net_device *dev = skb->dev;
2475 
2476 	if (!dev->header_ops || !dev->header_ops->parse)
2477 		return 0;
2478 	return dev->header_ops->parse(skb, haddr);
2479 }
2480 
2481 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2482 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2483 static inline int unregister_gifconf(unsigned int family)
2484 {
2485 	return register_gifconf(family, NULL);
2486 }
2487 
2488 #ifdef CONFIG_NET_FLOW_LIMIT
2489 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2490 struct sd_flow_limit {
2491 	u64			count;
2492 	unsigned int		num_buckets;
2493 	unsigned int		history_head;
2494 	u16			history[FLOW_LIMIT_HISTORY];
2495 	u8			buckets[];
2496 };
2497 
2498 extern int netdev_flow_limit_table_len;
2499 #endif /* CONFIG_NET_FLOW_LIMIT */
2500 
2501 /*
2502  * Incoming packets are placed on per-cpu queues
2503  */
2504 struct softnet_data {
2505 	struct list_head	poll_list;
2506 	struct sk_buff_head	process_queue;
2507 
2508 	/* stats */
2509 	unsigned int		processed;
2510 	unsigned int		time_squeeze;
2511 	unsigned int		cpu_collision;
2512 	unsigned int		received_rps;
2513 #ifdef CONFIG_RPS
2514 	struct softnet_data	*rps_ipi_list;
2515 #endif
2516 #ifdef CONFIG_NET_FLOW_LIMIT
2517 	struct sd_flow_limit __rcu *flow_limit;
2518 #endif
2519 	struct Qdisc		*output_queue;
2520 	struct Qdisc		**output_queue_tailp;
2521 	struct sk_buff		*completion_queue;
2522 
2523 #ifdef CONFIG_RPS
2524 	/* Elements below can be accessed between CPUs for RPS */
2525 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2526 	struct softnet_data	*rps_ipi_next;
2527 	unsigned int		cpu;
2528 	unsigned int		input_queue_head;
2529 	unsigned int		input_queue_tail;
2530 #endif
2531 	unsigned int		dropped;
2532 	struct sk_buff_head	input_pkt_queue;
2533 	struct napi_struct	backlog;
2534 
2535 };
2536 
2537 static inline void input_queue_head_incr(struct softnet_data *sd)
2538 {
2539 #ifdef CONFIG_RPS
2540 	sd->input_queue_head++;
2541 #endif
2542 }
2543 
2544 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2545 					      unsigned int *qtail)
2546 {
2547 #ifdef CONFIG_RPS
2548 	*qtail = ++sd->input_queue_tail;
2549 #endif
2550 }
2551 
2552 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2553 
2554 void __netif_schedule(struct Qdisc *q);
2555 void netif_schedule_queue(struct netdev_queue *txq);
2556 
2557 static inline void netif_tx_schedule_all(struct net_device *dev)
2558 {
2559 	unsigned int i;
2560 
2561 	for (i = 0; i < dev->num_tx_queues; i++)
2562 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2563 }
2564 
2565 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2566 {
2567 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2568 }
2569 
2570 /**
2571  *	netif_start_queue - allow transmit
2572  *	@dev: network device
2573  *
2574  *	Allow upper layers to call the device hard_start_xmit routine.
2575  */
2576 static inline void netif_start_queue(struct net_device *dev)
2577 {
2578 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2579 }
2580 
2581 static inline void netif_tx_start_all_queues(struct net_device *dev)
2582 {
2583 	unsigned int i;
2584 
2585 	for (i = 0; i < dev->num_tx_queues; i++) {
2586 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2587 		netif_tx_start_queue(txq);
2588 	}
2589 }
2590 
2591 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2592 
2593 /**
2594  *	netif_wake_queue - restart transmit
2595  *	@dev: network device
2596  *
2597  *	Allow upper layers to call the device hard_start_xmit routine.
2598  *	Used for flow control when transmit resources are available.
2599  */
2600 static inline void netif_wake_queue(struct net_device *dev)
2601 {
2602 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2603 }
2604 
2605 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2606 {
2607 	unsigned int i;
2608 
2609 	for (i = 0; i < dev->num_tx_queues; i++) {
2610 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2611 		netif_tx_wake_queue(txq);
2612 	}
2613 }
2614 
2615 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2616 {
2617 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2618 }
2619 
2620 /**
2621  *	netif_stop_queue - stop transmitted packets
2622  *	@dev: network device
2623  *
2624  *	Stop upper layers calling the device hard_start_xmit routine.
2625  *	Used for flow control when transmit resources are unavailable.
2626  */
2627 static inline void netif_stop_queue(struct net_device *dev)
2628 {
2629 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2630 }
2631 
2632 void netif_tx_stop_all_queues(struct net_device *dev);
2633 
2634 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2635 {
2636 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2637 }
2638 
2639 /**
2640  *	netif_queue_stopped - test if transmit queue is flowblocked
2641  *	@dev: network device
2642  *
2643  *	Test if transmit queue on device is currently unable to send.
2644  */
2645 static inline bool netif_queue_stopped(const struct net_device *dev)
2646 {
2647 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2648 }
2649 
2650 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2651 {
2652 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2653 }
2654 
2655 static inline bool
2656 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2657 {
2658 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2659 }
2660 
2661 static inline bool
2662 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2663 {
2664 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2665 }
2666 
2667 /**
2668  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2669  *	@dev_queue: pointer to transmit queue
2670  *
2671  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2672  * to give appropriate hint to the cpu.
2673  */
2674 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2675 {
2676 #ifdef CONFIG_BQL
2677 	prefetchw(&dev_queue->dql.num_queued);
2678 #endif
2679 }
2680 
2681 /**
2682  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2683  *	@dev_queue: pointer to transmit queue
2684  *
2685  * BQL enabled drivers might use this helper in their TX completion path,
2686  * to give appropriate hint to the cpu.
2687  */
2688 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2689 {
2690 #ifdef CONFIG_BQL
2691 	prefetchw(&dev_queue->dql.limit);
2692 #endif
2693 }
2694 
2695 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2696 					unsigned int bytes)
2697 {
2698 #ifdef CONFIG_BQL
2699 	dql_queued(&dev_queue->dql, bytes);
2700 
2701 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2702 		return;
2703 
2704 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2705 
2706 	/*
2707 	 * The XOFF flag must be set before checking the dql_avail below,
2708 	 * because in netdev_tx_completed_queue we update the dql_completed
2709 	 * before checking the XOFF flag.
2710 	 */
2711 	smp_mb();
2712 
2713 	/* check again in case another CPU has just made room avail */
2714 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2715 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2716 #endif
2717 }
2718 
2719 /**
2720  * 	netdev_sent_queue - report the number of bytes queued to hardware
2721  * 	@dev: network device
2722  * 	@bytes: number of bytes queued to the hardware device queue
2723  *
2724  * 	Report the number of bytes queued for sending/completion to the network
2725  * 	device hardware queue. @bytes should be a good approximation and should
2726  * 	exactly match netdev_completed_queue() @bytes
2727  */
2728 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2729 {
2730 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2731 }
2732 
2733 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2734 					     unsigned int pkts, unsigned int bytes)
2735 {
2736 #ifdef CONFIG_BQL
2737 	if (unlikely(!bytes))
2738 		return;
2739 
2740 	dql_completed(&dev_queue->dql, bytes);
2741 
2742 	/*
2743 	 * Without the memory barrier there is a small possiblity that
2744 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2745 	 * be stopped forever
2746 	 */
2747 	smp_mb();
2748 
2749 	if (dql_avail(&dev_queue->dql) < 0)
2750 		return;
2751 
2752 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2753 		netif_schedule_queue(dev_queue);
2754 #endif
2755 }
2756 
2757 /**
2758  * 	netdev_completed_queue - report bytes and packets completed by device
2759  * 	@dev: network device
2760  * 	@pkts: actual number of packets sent over the medium
2761  * 	@bytes: actual number of bytes sent over the medium
2762  *
2763  * 	Report the number of bytes and packets transmitted by the network device
2764  * 	hardware queue over the physical medium, @bytes must exactly match the
2765  * 	@bytes amount passed to netdev_sent_queue()
2766  */
2767 static inline void netdev_completed_queue(struct net_device *dev,
2768 					  unsigned int pkts, unsigned int bytes)
2769 {
2770 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2771 }
2772 
2773 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2774 {
2775 #ifdef CONFIG_BQL
2776 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2777 	dql_reset(&q->dql);
2778 #endif
2779 }
2780 
2781 /**
2782  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2783  * 	@dev_queue: network device
2784  *
2785  * 	Reset the bytes and packet count of a network device and clear the
2786  * 	software flow control OFF bit for this network device
2787  */
2788 static inline void netdev_reset_queue(struct net_device *dev_queue)
2789 {
2790 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2791 }
2792 
2793 /**
2794  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2795  * 	@dev: network device
2796  * 	@queue_index: given tx queue index
2797  *
2798  * 	Returns 0 if given tx queue index >= number of device tx queues,
2799  * 	otherwise returns the originally passed tx queue index.
2800  */
2801 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2802 {
2803 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2804 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2805 				     dev->name, queue_index,
2806 				     dev->real_num_tx_queues);
2807 		return 0;
2808 	}
2809 
2810 	return queue_index;
2811 }
2812 
2813 /**
2814  *	netif_running - test if up
2815  *	@dev: network device
2816  *
2817  *	Test if the device has been brought up.
2818  */
2819 static inline bool netif_running(const struct net_device *dev)
2820 {
2821 	return test_bit(__LINK_STATE_START, &dev->state);
2822 }
2823 
2824 /*
2825  * Routines to manage the subqueues on a device.  We only need start
2826  * stop, and a check if it's stopped.  All other device management is
2827  * done at the overall netdevice level.
2828  * Also test the device if we're multiqueue.
2829  */
2830 
2831 /**
2832  *	netif_start_subqueue - allow sending packets on subqueue
2833  *	@dev: network device
2834  *	@queue_index: sub queue index
2835  *
2836  * Start individual transmit queue of a device with multiple transmit queues.
2837  */
2838 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2839 {
2840 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2841 
2842 	netif_tx_start_queue(txq);
2843 }
2844 
2845 /**
2846  *	netif_stop_subqueue - stop sending packets on subqueue
2847  *	@dev: network device
2848  *	@queue_index: sub queue index
2849  *
2850  * Stop individual transmit queue of a device with multiple transmit queues.
2851  */
2852 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2853 {
2854 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2855 	netif_tx_stop_queue(txq);
2856 }
2857 
2858 /**
2859  *	netif_subqueue_stopped - test status of subqueue
2860  *	@dev: network device
2861  *	@queue_index: sub queue index
2862  *
2863  * Check individual transmit queue of a device with multiple transmit queues.
2864  */
2865 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2866 					    u16 queue_index)
2867 {
2868 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2869 
2870 	return netif_tx_queue_stopped(txq);
2871 }
2872 
2873 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2874 					  struct sk_buff *skb)
2875 {
2876 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2877 }
2878 
2879 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2880 
2881 #ifdef CONFIG_XPS
2882 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2883 			u16 index);
2884 #else
2885 static inline int netif_set_xps_queue(struct net_device *dev,
2886 				      const struct cpumask *mask,
2887 				      u16 index)
2888 {
2889 	return 0;
2890 }
2891 #endif
2892 
2893 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2894 		  unsigned int num_tx_queues);
2895 
2896 /*
2897  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2898  * as a distribution range limit for the returned value.
2899  */
2900 static inline u16 skb_tx_hash(const struct net_device *dev,
2901 			      struct sk_buff *skb)
2902 {
2903 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2904 }
2905 
2906 /**
2907  *	netif_is_multiqueue - test if device has multiple transmit queues
2908  *	@dev: network device
2909  *
2910  * Check if device has multiple transmit queues
2911  */
2912 static inline bool netif_is_multiqueue(const struct net_device *dev)
2913 {
2914 	return dev->num_tx_queues > 1;
2915 }
2916 
2917 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2918 
2919 #ifdef CONFIG_SYSFS
2920 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2921 #else
2922 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2923 						unsigned int rxq)
2924 {
2925 	return 0;
2926 }
2927 #endif
2928 
2929 #ifdef CONFIG_SYSFS
2930 static inline unsigned int get_netdev_rx_queue_index(
2931 		struct netdev_rx_queue *queue)
2932 {
2933 	struct net_device *dev = queue->dev;
2934 	int index = queue - dev->_rx;
2935 
2936 	BUG_ON(index >= dev->num_rx_queues);
2937 	return index;
2938 }
2939 #endif
2940 
2941 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2942 int netif_get_num_default_rss_queues(void);
2943 
2944 enum skb_free_reason {
2945 	SKB_REASON_CONSUMED,
2946 	SKB_REASON_DROPPED,
2947 };
2948 
2949 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2950 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2951 
2952 /*
2953  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2954  * interrupt context or with hardware interrupts being disabled.
2955  * (in_irq() || irqs_disabled())
2956  *
2957  * We provide four helpers that can be used in following contexts :
2958  *
2959  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2960  *  replacing kfree_skb(skb)
2961  *
2962  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2963  *  Typically used in place of consume_skb(skb) in TX completion path
2964  *
2965  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2966  *  replacing kfree_skb(skb)
2967  *
2968  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2969  *  and consumed a packet. Used in place of consume_skb(skb)
2970  */
2971 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2972 {
2973 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2974 }
2975 
2976 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2977 {
2978 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2979 }
2980 
2981 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2982 {
2983 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2984 }
2985 
2986 static inline void dev_consume_skb_any(struct sk_buff *skb)
2987 {
2988 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2989 }
2990 
2991 int netif_rx(struct sk_buff *skb);
2992 int netif_rx_ni(struct sk_buff *skb);
2993 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2994 static inline int netif_receive_skb(struct sk_buff *skb)
2995 {
2996 	return netif_receive_skb_sk(skb->sk, skb);
2997 }
2998 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2999 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3000 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3001 gro_result_t napi_gro_frags(struct napi_struct *napi);
3002 struct packet_offload *gro_find_receive_by_type(__be16 type);
3003 struct packet_offload *gro_find_complete_by_type(__be16 type);
3004 
3005 static inline void napi_free_frags(struct napi_struct *napi)
3006 {
3007 	kfree_skb(napi->skb);
3008 	napi->skb = NULL;
3009 }
3010 
3011 int netdev_rx_handler_register(struct net_device *dev,
3012 			       rx_handler_func_t *rx_handler,
3013 			       void *rx_handler_data);
3014 void netdev_rx_handler_unregister(struct net_device *dev);
3015 
3016 bool dev_valid_name(const char *name);
3017 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3018 int dev_ethtool(struct net *net, struct ifreq *);
3019 unsigned int dev_get_flags(const struct net_device *);
3020 int __dev_change_flags(struct net_device *, unsigned int flags);
3021 int dev_change_flags(struct net_device *, unsigned int);
3022 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3023 			unsigned int gchanges);
3024 int dev_change_name(struct net_device *, const char *);
3025 int dev_set_alias(struct net_device *, const char *, size_t);
3026 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3027 int dev_set_mtu(struct net_device *, int);
3028 void dev_set_group(struct net_device *, int);
3029 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3030 int dev_change_carrier(struct net_device *, bool new_carrier);
3031 int dev_get_phys_port_id(struct net_device *dev,
3032 			 struct netdev_phys_item_id *ppid);
3033 int dev_get_phys_port_name(struct net_device *dev,
3034 			   char *name, size_t len);
3035 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3036 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3037 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3038 				    struct netdev_queue *txq, int *ret);
3039 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3040 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3041 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3042 
3043 extern int		netdev_budget;
3044 
3045 /* Called by rtnetlink.c:rtnl_unlock() */
3046 void netdev_run_todo(void);
3047 
3048 /**
3049  *	dev_put - release reference to device
3050  *	@dev: network device
3051  *
3052  * Release reference to device to allow it to be freed.
3053  */
3054 static inline void dev_put(struct net_device *dev)
3055 {
3056 	this_cpu_dec(*dev->pcpu_refcnt);
3057 }
3058 
3059 /**
3060  *	dev_hold - get reference to device
3061  *	@dev: network device
3062  *
3063  * Hold reference to device to keep it from being freed.
3064  */
3065 static inline void dev_hold(struct net_device *dev)
3066 {
3067 	this_cpu_inc(*dev->pcpu_refcnt);
3068 }
3069 
3070 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3071  * and _off may be called from IRQ context, but it is caller
3072  * who is responsible for serialization of these calls.
3073  *
3074  * The name carrier is inappropriate, these functions should really be
3075  * called netif_lowerlayer_*() because they represent the state of any
3076  * kind of lower layer not just hardware media.
3077  */
3078 
3079 void linkwatch_init_dev(struct net_device *dev);
3080 void linkwatch_fire_event(struct net_device *dev);
3081 void linkwatch_forget_dev(struct net_device *dev);
3082 
3083 /**
3084  *	netif_carrier_ok - test if carrier present
3085  *	@dev: network device
3086  *
3087  * Check if carrier is present on device
3088  */
3089 static inline bool netif_carrier_ok(const struct net_device *dev)
3090 {
3091 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3092 }
3093 
3094 unsigned long dev_trans_start(struct net_device *dev);
3095 
3096 void __netdev_watchdog_up(struct net_device *dev);
3097 
3098 void netif_carrier_on(struct net_device *dev);
3099 
3100 void netif_carrier_off(struct net_device *dev);
3101 
3102 /**
3103  *	netif_dormant_on - mark device as dormant.
3104  *	@dev: network device
3105  *
3106  * Mark device as dormant (as per RFC2863).
3107  *
3108  * The dormant state indicates that the relevant interface is not
3109  * actually in a condition to pass packets (i.e., it is not 'up') but is
3110  * in a "pending" state, waiting for some external event.  For "on-
3111  * demand" interfaces, this new state identifies the situation where the
3112  * interface is waiting for events to place it in the up state.
3113  *
3114  */
3115 static inline void netif_dormant_on(struct net_device *dev)
3116 {
3117 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3118 		linkwatch_fire_event(dev);
3119 }
3120 
3121 /**
3122  *	netif_dormant_off - set device as not dormant.
3123  *	@dev: network device
3124  *
3125  * Device is not in dormant state.
3126  */
3127 static inline void netif_dormant_off(struct net_device *dev)
3128 {
3129 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3130 		linkwatch_fire_event(dev);
3131 }
3132 
3133 /**
3134  *	netif_dormant - test if carrier present
3135  *	@dev: network device
3136  *
3137  * Check if carrier is present on device
3138  */
3139 static inline bool netif_dormant(const struct net_device *dev)
3140 {
3141 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3142 }
3143 
3144 
3145 /**
3146  *	netif_oper_up - test if device is operational
3147  *	@dev: network device
3148  *
3149  * Check if carrier is operational
3150  */
3151 static inline bool netif_oper_up(const struct net_device *dev)
3152 {
3153 	return (dev->operstate == IF_OPER_UP ||
3154 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3155 }
3156 
3157 /**
3158  *	netif_device_present - is device available or removed
3159  *	@dev: network device
3160  *
3161  * Check if device has not been removed from system.
3162  */
3163 static inline bool netif_device_present(struct net_device *dev)
3164 {
3165 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3166 }
3167 
3168 void netif_device_detach(struct net_device *dev);
3169 
3170 void netif_device_attach(struct net_device *dev);
3171 
3172 /*
3173  * Network interface message level settings
3174  */
3175 
3176 enum {
3177 	NETIF_MSG_DRV		= 0x0001,
3178 	NETIF_MSG_PROBE		= 0x0002,
3179 	NETIF_MSG_LINK		= 0x0004,
3180 	NETIF_MSG_TIMER		= 0x0008,
3181 	NETIF_MSG_IFDOWN	= 0x0010,
3182 	NETIF_MSG_IFUP		= 0x0020,
3183 	NETIF_MSG_RX_ERR	= 0x0040,
3184 	NETIF_MSG_TX_ERR	= 0x0080,
3185 	NETIF_MSG_TX_QUEUED	= 0x0100,
3186 	NETIF_MSG_INTR		= 0x0200,
3187 	NETIF_MSG_TX_DONE	= 0x0400,
3188 	NETIF_MSG_RX_STATUS	= 0x0800,
3189 	NETIF_MSG_PKTDATA	= 0x1000,
3190 	NETIF_MSG_HW		= 0x2000,
3191 	NETIF_MSG_WOL		= 0x4000,
3192 };
3193 
3194 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3195 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3196 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3197 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3198 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3199 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3200 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3201 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3202 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3203 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3204 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3205 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3206 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3207 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3208 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3209 
3210 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3211 {
3212 	/* use default */
3213 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3214 		return default_msg_enable_bits;
3215 	if (debug_value == 0)	/* no output */
3216 		return 0;
3217 	/* set low N bits */
3218 	return (1 << debug_value) - 1;
3219 }
3220 
3221 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3222 {
3223 	spin_lock(&txq->_xmit_lock);
3224 	txq->xmit_lock_owner = cpu;
3225 }
3226 
3227 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3228 {
3229 	spin_lock_bh(&txq->_xmit_lock);
3230 	txq->xmit_lock_owner = smp_processor_id();
3231 }
3232 
3233 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3234 {
3235 	bool ok = spin_trylock(&txq->_xmit_lock);
3236 	if (likely(ok))
3237 		txq->xmit_lock_owner = smp_processor_id();
3238 	return ok;
3239 }
3240 
3241 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3242 {
3243 	txq->xmit_lock_owner = -1;
3244 	spin_unlock(&txq->_xmit_lock);
3245 }
3246 
3247 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3248 {
3249 	txq->xmit_lock_owner = -1;
3250 	spin_unlock_bh(&txq->_xmit_lock);
3251 }
3252 
3253 static inline void txq_trans_update(struct netdev_queue *txq)
3254 {
3255 	if (txq->xmit_lock_owner != -1)
3256 		txq->trans_start = jiffies;
3257 }
3258 
3259 /**
3260  *	netif_tx_lock - grab network device transmit lock
3261  *	@dev: network device
3262  *
3263  * Get network device transmit lock
3264  */
3265 static inline void netif_tx_lock(struct net_device *dev)
3266 {
3267 	unsigned int i;
3268 	int cpu;
3269 
3270 	spin_lock(&dev->tx_global_lock);
3271 	cpu = smp_processor_id();
3272 	for (i = 0; i < dev->num_tx_queues; i++) {
3273 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3274 
3275 		/* We are the only thread of execution doing a
3276 		 * freeze, but we have to grab the _xmit_lock in
3277 		 * order to synchronize with threads which are in
3278 		 * the ->hard_start_xmit() handler and already
3279 		 * checked the frozen bit.
3280 		 */
3281 		__netif_tx_lock(txq, cpu);
3282 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3283 		__netif_tx_unlock(txq);
3284 	}
3285 }
3286 
3287 static inline void netif_tx_lock_bh(struct net_device *dev)
3288 {
3289 	local_bh_disable();
3290 	netif_tx_lock(dev);
3291 }
3292 
3293 static inline void netif_tx_unlock(struct net_device *dev)
3294 {
3295 	unsigned int i;
3296 
3297 	for (i = 0; i < dev->num_tx_queues; i++) {
3298 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3299 
3300 		/* No need to grab the _xmit_lock here.  If the
3301 		 * queue is not stopped for another reason, we
3302 		 * force a schedule.
3303 		 */
3304 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3305 		netif_schedule_queue(txq);
3306 	}
3307 	spin_unlock(&dev->tx_global_lock);
3308 }
3309 
3310 static inline void netif_tx_unlock_bh(struct net_device *dev)
3311 {
3312 	netif_tx_unlock(dev);
3313 	local_bh_enable();
3314 }
3315 
3316 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3317 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3318 		__netif_tx_lock(txq, cpu);		\
3319 	}						\
3320 }
3321 
3322 #define HARD_TX_TRYLOCK(dev, txq)			\
3323 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3324 		__netif_tx_trylock(txq) :		\
3325 		true )
3326 
3327 #define HARD_TX_UNLOCK(dev, txq) {			\
3328 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3329 		__netif_tx_unlock(txq);			\
3330 	}						\
3331 }
3332 
3333 static inline void netif_tx_disable(struct net_device *dev)
3334 {
3335 	unsigned int i;
3336 	int cpu;
3337 
3338 	local_bh_disable();
3339 	cpu = smp_processor_id();
3340 	for (i = 0; i < dev->num_tx_queues; i++) {
3341 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3342 
3343 		__netif_tx_lock(txq, cpu);
3344 		netif_tx_stop_queue(txq);
3345 		__netif_tx_unlock(txq);
3346 	}
3347 	local_bh_enable();
3348 }
3349 
3350 static inline void netif_addr_lock(struct net_device *dev)
3351 {
3352 	spin_lock(&dev->addr_list_lock);
3353 }
3354 
3355 static inline void netif_addr_lock_nested(struct net_device *dev)
3356 {
3357 	int subclass = SINGLE_DEPTH_NESTING;
3358 
3359 	if (dev->netdev_ops->ndo_get_lock_subclass)
3360 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3361 
3362 	spin_lock_nested(&dev->addr_list_lock, subclass);
3363 }
3364 
3365 static inline void netif_addr_lock_bh(struct net_device *dev)
3366 {
3367 	spin_lock_bh(&dev->addr_list_lock);
3368 }
3369 
3370 static inline void netif_addr_unlock(struct net_device *dev)
3371 {
3372 	spin_unlock(&dev->addr_list_lock);
3373 }
3374 
3375 static inline void netif_addr_unlock_bh(struct net_device *dev)
3376 {
3377 	spin_unlock_bh(&dev->addr_list_lock);
3378 }
3379 
3380 /*
3381  * dev_addrs walker. Should be used only for read access. Call with
3382  * rcu_read_lock held.
3383  */
3384 #define for_each_dev_addr(dev, ha) \
3385 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3386 
3387 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3388 
3389 void ether_setup(struct net_device *dev);
3390 
3391 /* Support for loadable net-drivers */
3392 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3393 				    unsigned char name_assign_type,
3394 				    void (*setup)(struct net_device *),
3395 				    unsigned int txqs, unsigned int rxqs);
3396 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3397 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3398 
3399 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3400 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3401 			 count)
3402 
3403 int register_netdev(struct net_device *dev);
3404 void unregister_netdev(struct net_device *dev);
3405 
3406 /* General hardware address lists handling functions */
3407 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3408 		   struct netdev_hw_addr_list *from_list, int addr_len);
3409 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3410 		      struct netdev_hw_addr_list *from_list, int addr_len);
3411 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3412 		       struct net_device *dev,
3413 		       int (*sync)(struct net_device *, const unsigned char *),
3414 		       int (*unsync)(struct net_device *,
3415 				     const unsigned char *));
3416 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3417 			  struct net_device *dev,
3418 			  int (*unsync)(struct net_device *,
3419 					const unsigned char *));
3420 void __hw_addr_init(struct netdev_hw_addr_list *list);
3421 
3422 /* Functions used for device addresses handling */
3423 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3424 		 unsigned char addr_type);
3425 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3426 		 unsigned char addr_type);
3427 void dev_addr_flush(struct net_device *dev);
3428 int dev_addr_init(struct net_device *dev);
3429 
3430 /* Functions used for unicast addresses handling */
3431 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3432 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3433 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3434 int dev_uc_sync(struct net_device *to, struct net_device *from);
3435 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3436 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3437 void dev_uc_flush(struct net_device *dev);
3438 void dev_uc_init(struct net_device *dev);
3439 
3440 /**
3441  *  __dev_uc_sync - Synchonize device's unicast list
3442  *  @dev:  device to sync
3443  *  @sync: function to call if address should be added
3444  *  @unsync: function to call if address should be removed
3445  *
3446  *  Add newly added addresses to the interface, and release
3447  *  addresses that have been deleted.
3448  **/
3449 static inline int __dev_uc_sync(struct net_device *dev,
3450 				int (*sync)(struct net_device *,
3451 					    const unsigned char *),
3452 				int (*unsync)(struct net_device *,
3453 					      const unsigned char *))
3454 {
3455 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3456 }
3457 
3458 /**
3459  *  __dev_uc_unsync - Remove synchronized addresses from device
3460  *  @dev:  device to sync
3461  *  @unsync: function to call if address should be removed
3462  *
3463  *  Remove all addresses that were added to the device by dev_uc_sync().
3464  **/
3465 static inline void __dev_uc_unsync(struct net_device *dev,
3466 				   int (*unsync)(struct net_device *,
3467 						 const unsigned char *))
3468 {
3469 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3470 }
3471 
3472 /* Functions used for multicast addresses handling */
3473 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3474 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3475 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3476 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3477 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3478 int dev_mc_sync(struct net_device *to, struct net_device *from);
3479 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3480 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3481 void dev_mc_flush(struct net_device *dev);
3482 void dev_mc_init(struct net_device *dev);
3483 
3484 /**
3485  *  __dev_mc_sync - Synchonize device's multicast list
3486  *  @dev:  device to sync
3487  *  @sync: function to call if address should be added
3488  *  @unsync: function to call if address should be removed
3489  *
3490  *  Add newly added addresses to the interface, and release
3491  *  addresses that have been deleted.
3492  **/
3493 static inline int __dev_mc_sync(struct net_device *dev,
3494 				int (*sync)(struct net_device *,
3495 					    const unsigned char *),
3496 				int (*unsync)(struct net_device *,
3497 					      const unsigned char *))
3498 {
3499 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3500 }
3501 
3502 /**
3503  *  __dev_mc_unsync - Remove synchronized addresses from device
3504  *  @dev:  device to sync
3505  *  @unsync: function to call if address should be removed
3506  *
3507  *  Remove all addresses that were added to the device by dev_mc_sync().
3508  **/
3509 static inline void __dev_mc_unsync(struct net_device *dev,
3510 				   int (*unsync)(struct net_device *,
3511 						 const unsigned char *))
3512 {
3513 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3514 }
3515 
3516 /* Functions used for secondary unicast and multicast support */
3517 void dev_set_rx_mode(struct net_device *dev);
3518 void __dev_set_rx_mode(struct net_device *dev);
3519 int dev_set_promiscuity(struct net_device *dev, int inc);
3520 int dev_set_allmulti(struct net_device *dev, int inc);
3521 void netdev_state_change(struct net_device *dev);
3522 void netdev_notify_peers(struct net_device *dev);
3523 void netdev_features_change(struct net_device *dev);
3524 /* Load a device via the kmod */
3525 void dev_load(struct net *net, const char *name);
3526 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3527 					struct rtnl_link_stats64 *storage);
3528 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3529 			     const struct net_device_stats *netdev_stats);
3530 
3531 extern int		netdev_max_backlog;
3532 extern int		netdev_tstamp_prequeue;
3533 extern int		weight_p;
3534 extern int		bpf_jit_enable;
3535 
3536 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3537 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3538 						     struct list_head **iter);
3539 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3540 						     struct list_head **iter);
3541 
3542 /* iterate through upper list, must be called under RCU read lock */
3543 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3544 	for (iter = &(dev)->adj_list.upper, \
3545 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3546 	     updev; \
3547 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3548 
3549 /* iterate through upper list, must be called under RCU read lock */
3550 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3551 	for (iter = &(dev)->all_adj_list.upper, \
3552 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3553 	     updev; \
3554 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3555 
3556 void *netdev_lower_get_next_private(struct net_device *dev,
3557 				    struct list_head **iter);
3558 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3559 					struct list_head **iter);
3560 
3561 #define netdev_for_each_lower_private(dev, priv, iter) \
3562 	for (iter = (dev)->adj_list.lower.next, \
3563 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3564 	     priv; \
3565 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3566 
3567 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3568 	for (iter = &(dev)->adj_list.lower, \
3569 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3570 	     priv; \
3571 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3572 
3573 void *netdev_lower_get_next(struct net_device *dev,
3574 				struct list_head **iter);
3575 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3576 	for (iter = &(dev)->adj_list.lower, \
3577 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3578 	     ldev; \
3579 	     ldev = netdev_lower_get_next(dev, &(iter)))
3580 
3581 void *netdev_adjacent_get_private(struct list_head *adj_list);
3582 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3583 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3584 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3585 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3586 int netdev_master_upper_dev_link(struct net_device *dev,
3587 				 struct net_device *upper_dev);
3588 int netdev_master_upper_dev_link_private(struct net_device *dev,
3589 					 struct net_device *upper_dev,
3590 					 void *private);
3591 void netdev_upper_dev_unlink(struct net_device *dev,
3592 			     struct net_device *upper_dev);
3593 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3594 void *netdev_lower_dev_get_private(struct net_device *dev,
3595 				   struct net_device *lower_dev);
3596 
3597 /* RSS keys are 40 or 52 bytes long */
3598 #define NETDEV_RSS_KEY_LEN 52
3599 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3600 void netdev_rss_key_fill(void *buffer, size_t len);
3601 
3602 int dev_get_nest_level(struct net_device *dev,
3603 		       bool (*type_check)(struct net_device *dev));
3604 int skb_checksum_help(struct sk_buff *skb);
3605 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3606 				  netdev_features_t features, bool tx_path);
3607 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3608 				    netdev_features_t features);
3609 
3610 struct netdev_bonding_info {
3611 	ifslave	slave;
3612 	ifbond	master;
3613 };
3614 
3615 struct netdev_notifier_bonding_info {
3616 	struct netdev_notifier_info info; /* must be first */
3617 	struct netdev_bonding_info  bonding_info;
3618 };
3619 
3620 void netdev_bonding_info_change(struct net_device *dev,
3621 				struct netdev_bonding_info *bonding_info);
3622 
3623 static inline
3624 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3625 {
3626 	return __skb_gso_segment(skb, features, true);
3627 }
3628 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3629 
3630 static inline bool can_checksum_protocol(netdev_features_t features,
3631 					 __be16 protocol)
3632 {
3633 	return ((features & NETIF_F_GEN_CSUM) ||
3634 		((features & NETIF_F_V4_CSUM) &&
3635 		 protocol == htons(ETH_P_IP)) ||
3636 		((features & NETIF_F_V6_CSUM) &&
3637 		 protocol == htons(ETH_P_IPV6)) ||
3638 		((features & NETIF_F_FCOE_CRC) &&
3639 		 protocol == htons(ETH_P_FCOE)));
3640 }
3641 
3642 #ifdef CONFIG_BUG
3643 void netdev_rx_csum_fault(struct net_device *dev);
3644 #else
3645 static inline void netdev_rx_csum_fault(struct net_device *dev)
3646 {
3647 }
3648 #endif
3649 /* rx skb timestamps */
3650 void net_enable_timestamp(void);
3651 void net_disable_timestamp(void);
3652 
3653 #ifdef CONFIG_PROC_FS
3654 int __init dev_proc_init(void);
3655 #else
3656 #define dev_proc_init() 0
3657 #endif
3658 
3659 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3660 					      struct sk_buff *skb, struct net_device *dev,
3661 					      bool more)
3662 {
3663 	skb->xmit_more = more ? 1 : 0;
3664 	return ops->ndo_start_xmit(skb, dev);
3665 }
3666 
3667 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3668 					    struct netdev_queue *txq, bool more)
3669 {
3670 	const struct net_device_ops *ops = dev->netdev_ops;
3671 	int rc;
3672 
3673 	rc = __netdev_start_xmit(ops, skb, dev, more);
3674 	if (rc == NETDEV_TX_OK)
3675 		txq_trans_update(txq);
3676 
3677 	return rc;
3678 }
3679 
3680 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3681 				const void *ns);
3682 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3683 				 const void *ns);
3684 
3685 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3686 {
3687 	return netdev_class_create_file_ns(class_attr, NULL);
3688 }
3689 
3690 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3691 {
3692 	netdev_class_remove_file_ns(class_attr, NULL);
3693 }
3694 
3695 extern struct kobj_ns_type_operations net_ns_type_operations;
3696 
3697 const char *netdev_drivername(const struct net_device *dev);
3698 
3699 void linkwatch_run_queue(void);
3700 
3701 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3702 							  netdev_features_t f2)
3703 {
3704 	if (f1 & NETIF_F_GEN_CSUM)
3705 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3706 	if (f2 & NETIF_F_GEN_CSUM)
3707 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3708 	f1 &= f2;
3709 	if (f1 & NETIF_F_GEN_CSUM)
3710 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3711 
3712 	return f1;
3713 }
3714 
3715 static inline netdev_features_t netdev_get_wanted_features(
3716 	struct net_device *dev)
3717 {
3718 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3719 }
3720 netdev_features_t netdev_increment_features(netdev_features_t all,
3721 	netdev_features_t one, netdev_features_t mask);
3722 
3723 /* Allow TSO being used on stacked device :
3724  * Performing the GSO segmentation before last device
3725  * is a performance improvement.
3726  */
3727 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3728 							netdev_features_t mask)
3729 {
3730 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3731 }
3732 
3733 int __netdev_update_features(struct net_device *dev);
3734 void netdev_update_features(struct net_device *dev);
3735 void netdev_change_features(struct net_device *dev);
3736 
3737 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3738 					struct net_device *dev);
3739 
3740 netdev_features_t passthru_features_check(struct sk_buff *skb,
3741 					  struct net_device *dev,
3742 					  netdev_features_t features);
3743 netdev_features_t netif_skb_features(struct sk_buff *skb);
3744 
3745 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3746 {
3747 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3748 
3749 	/* check flags correspondence */
3750 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3751 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3752 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3753 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3754 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3755 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3756 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3757 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3758 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3759 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3760 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3761 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3762 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3763 
3764 	return (features & feature) == feature;
3765 }
3766 
3767 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3768 {
3769 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3770 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3771 }
3772 
3773 static inline bool netif_needs_gso(struct sk_buff *skb,
3774 				   netdev_features_t features)
3775 {
3776 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3777 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3778 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3779 }
3780 
3781 static inline void netif_set_gso_max_size(struct net_device *dev,
3782 					  unsigned int size)
3783 {
3784 	dev->gso_max_size = size;
3785 }
3786 
3787 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3788 					int pulled_hlen, u16 mac_offset,
3789 					int mac_len)
3790 {
3791 	skb->protocol = protocol;
3792 	skb->encapsulation = 1;
3793 	skb_push(skb, pulled_hlen);
3794 	skb_reset_transport_header(skb);
3795 	skb->mac_header = mac_offset;
3796 	skb->network_header = skb->mac_header + mac_len;
3797 	skb->mac_len = mac_len;
3798 }
3799 
3800 static inline bool netif_is_macvlan(struct net_device *dev)
3801 {
3802 	return dev->priv_flags & IFF_MACVLAN;
3803 }
3804 
3805 static inline bool netif_is_macvlan_port(struct net_device *dev)
3806 {
3807 	return dev->priv_flags & IFF_MACVLAN_PORT;
3808 }
3809 
3810 static inline bool netif_is_ipvlan(struct net_device *dev)
3811 {
3812 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3813 }
3814 
3815 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3816 {
3817 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3818 }
3819 
3820 static inline bool netif_is_bond_master(struct net_device *dev)
3821 {
3822 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3823 }
3824 
3825 static inline bool netif_is_bond_slave(struct net_device *dev)
3826 {
3827 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3828 }
3829 
3830 static inline bool netif_supports_nofcs(struct net_device *dev)
3831 {
3832 	return dev->priv_flags & IFF_SUPP_NOFCS;
3833 }
3834 
3835 static inline bool netif_is_vrf(const struct net_device *dev)
3836 {
3837 	return dev->priv_flags & IFF_VRF_MASTER;
3838 }
3839 
3840 static inline bool netif_is_bridge_master(const struct net_device *dev)
3841 {
3842 	return dev->priv_flags & IFF_EBRIDGE;
3843 }
3844 
3845 static inline bool netif_is_ovs_master(const struct net_device *dev)
3846 {
3847 	return dev->priv_flags & IFF_OPENVSWITCH;
3848 }
3849 
3850 static inline bool netif_index_is_vrf(struct net *net, int ifindex)
3851 {
3852 	bool rc = false;
3853 
3854 #if IS_ENABLED(CONFIG_NET_VRF)
3855 	struct net_device *dev;
3856 
3857 	if (ifindex == 0)
3858 		return false;
3859 
3860 	rcu_read_lock();
3861 
3862 	dev = dev_get_by_index_rcu(net, ifindex);
3863 	if (dev)
3864 		rc = netif_is_vrf(dev);
3865 
3866 	rcu_read_unlock();
3867 #endif
3868 	return rc;
3869 }
3870 
3871 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3872 static inline void netif_keep_dst(struct net_device *dev)
3873 {
3874 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3875 }
3876 
3877 extern struct pernet_operations __net_initdata loopback_net_ops;
3878 
3879 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3880 
3881 /* netdev_printk helpers, similar to dev_printk */
3882 
3883 static inline const char *netdev_name(const struct net_device *dev)
3884 {
3885 	if (!dev->name[0] || strchr(dev->name, '%'))
3886 		return "(unnamed net_device)";
3887 	return dev->name;
3888 }
3889 
3890 static inline const char *netdev_reg_state(const struct net_device *dev)
3891 {
3892 	switch (dev->reg_state) {
3893 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3894 	case NETREG_REGISTERED: return "";
3895 	case NETREG_UNREGISTERING: return " (unregistering)";
3896 	case NETREG_UNREGISTERED: return " (unregistered)";
3897 	case NETREG_RELEASED: return " (released)";
3898 	case NETREG_DUMMY: return " (dummy)";
3899 	}
3900 
3901 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3902 	return " (unknown)";
3903 }
3904 
3905 __printf(3, 4)
3906 void netdev_printk(const char *level, const struct net_device *dev,
3907 		   const char *format, ...);
3908 __printf(2, 3)
3909 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3910 __printf(2, 3)
3911 void netdev_alert(const struct net_device *dev, const char *format, ...);
3912 __printf(2, 3)
3913 void netdev_crit(const struct net_device *dev, const char *format, ...);
3914 __printf(2, 3)
3915 void netdev_err(const struct net_device *dev, const char *format, ...);
3916 __printf(2, 3)
3917 void netdev_warn(const struct net_device *dev, const char *format, ...);
3918 __printf(2, 3)
3919 void netdev_notice(const struct net_device *dev, const char *format, ...);
3920 __printf(2, 3)
3921 void netdev_info(const struct net_device *dev, const char *format, ...);
3922 
3923 #define MODULE_ALIAS_NETDEV(device) \
3924 	MODULE_ALIAS("netdev-" device)
3925 
3926 #if defined(CONFIG_DYNAMIC_DEBUG)
3927 #define netdev_dbg(__dev, format, args...)			\
3928 do {								\
3929 	dynamic_netdev_dbg(__dev, format, ##args);		\
3930 } while (0)
3931 #elif defined(DEBUG)
3932 #define netdev_dbg(__dev, format, args...)			\
3933 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3934 #else
3935 #define netdev_dbg(__dev, format, args...)			\
3936 ({								\
3937 	if (0)							\
3938 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3939 })
3940 #endif
3941 
3942 #if defined(VERBOSE_DEBUG)
3943 #define netdev_vdbg	netdev_dbg
3944 #else
3945 
3946 #define netdev_vdbg(dev, format, args...)			\
3947 ({								\
3948 	if (0)							\
3949 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3950 	0;							\
3951 })
3952 #endif
3953 
3954 /*
3955  * netdev_WARN() acts like dev_printk(), but with the key difference
3956  * of using a WARN/WARN_ON to get the message out, including the
3957  * file/line information and a backtrace.
3958  */
3959 #define netdev_WARN(dev, format, args...)			\
3960 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3961 	     netdev_reg_state(dev), ##args)
3962 
3963 /* netif printk helpers, similar to netdev_printk */
3964 
3965 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3966 do {					  			\
3967 	if (netif_msg_##type(priv))				\
3968 		netdev_printk(level, (dev), fmt, ##args);	\
3969 } while (0)
3970 
3971 #define netif_level(level, priv, type, dev, fmt, args...)	\
3972 do {								\
3973 	if (netif_msg_##type(priv))				\
3974 		netdev_##level(dev, fmt, ##args);		\
3975 } while (0)
3976 
3977 #define netif_emerg(priv, type, dev, fmt, args...)		\
3978 	netif_level(emerg, priv, type, dev, fmt, ##args)
3979 #define netif_alert(priv, type, dev, fmt, args...)		\
3980 	netif_level(alert, priv, type, dev, fmt, ##args)
3981 #define netif_crit(priv, type, dev, fmt, args...)		\
3982 	netif_level(crit, priv, type, dev, fmt, ##args)
3983 #define netif_err(priv, type, dev, fmt, args...)		\
3984 	netif_level(err, priv, type, dev, fmt, ##args)
3985 #define netif_warn(priv, type, dev, fmt, args...)		\
3986 	netif_level(warn, priv, type, dev, fmt, ##args)
3987 #define netif_notice(priv, type, dev, fmt, args...)		\
3988 	netif_level(notice, priv, type, dev, fmt, ##args)
3989 #define netif_info(priv, type, dev, fmt, args...)		\
3990 	netif_level(info, priv, type, dev, fmt, ##args)
3991 
3992 #if defined(CONFIG_DYNAMIC_DEBUG)
3993 #define netif_dbg(priv, type, netdev, format, args...)		\
3994 do {								\
3995 	if (netif_msg_##type(priv))				\
3996 		dynamic_netdev_dbg(netdev, format, ##args);	\
3997 } while (0)
3998 #elif defined(DEBUG)
3999 #define netif_dbg(priv, type, dev, format, args...)		\
4000 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4001 #else
4002 #define netif_dbg(priv, type, dev, format, args...)			\
4003 ({									\
4004 	if (0)								\
4005 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4006 	0;								\
4007 })
4008 #endif
4009 
4010 #if defined(VERBOSE_DEBUG)
4011 #define netif_vdbg	netif_dbg
4012 #else
4013 #define netif_vdbg(priv, type, dev, format, args...)		\
4014 ({								\
4015 	if (0)							\
4016 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4017 	0;							\
4018 })
4019 #endif
4020 
4021 /*
4022  *	The list of packet types we will receive (as opposed to discard)
4023  *	and the routines to invoke.
4024  *
4025  *	Why 16. Because with 16 the only overlap we get on a hash of the
4026  *	low nibble of the protocol value is RARP/SNAP/X.25.
4027  *
4028  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4029  *             sure which should go first, but I bet it won't make much
4030  *             difference if we are running VLANs.  The good news is that
4031  *             this protocol won't be in the list unless compiled in, so
4032  *             the average user (w/out VLANs) will not be adversely affected.
4033  *             --BLG
4034  *
4035  *		0800	IP
4036  *		8100    802.1Q VLAN
4037  *		0001	802.3
4038  *		0002	AX.25
4039  *		0004	802.2
4040  *		8035	RARP
4041  *		0005	SNAP
4042  *		0805	X.25
4043  *		0806	ARP
4044  *		8137	IPX
4045  *		0009	Localtalk
4046  *		86DD	IPv6
4047  */
4048 #define PTYPE_HASH_SIZE	(16)
4049 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4050 
4051 #endif	/* _LINUX_NETDEVICE_H */
4052