1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 32 #ifdef __KERNEL__ 33 #include <linux/timer.h> 34 #include <linux/delay.h> 35 #include <linux/mm.h> 36 #include <asm/atomic.h> 37 #include <asm/cache.h> 38 #include <asm/byteorder.h> 39 40 #include <linux/device.h> 41 #include <linux/percpu.h> 42 #include <linux/rculist.h> 43 #include <linux/dmaengine.h> 44 #include <linux/workqueue.h> 45 46 #include <linux/ethtool.h> 47 #include <net/net_namespace.h> 48 #include <net/dsa.h> 49 #ifdef CONFIG_DCB 50 #include <net/dcbnl.h> 51 #endif 52 53 struct vlan_group; 54 struct netpoll_info; 55 /* 802.11 specific */ 56 struct wireless_dev; 57 /* source back-compat hooks */ 58 #define SET_ETHTOOL_OPS(netdev,ops) \ 59 ( (netdev)->ethtool_ops = (ops) ) 60 61 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 62 functions are available. */ 63 #define HAVE_FREE_NETDEV /* free_netdev() */ 64 #define HAVE_NETDEV_PRIV /* netdev_priv() */ 65 66 /* Backlog congestion levels */ 67 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 68 #define NET_RX_DROP 1 /* packet dropped */ 69 70 /* 71 * Transmit return codes: transmit return codes originate from three different 72 * namespaces: 73 * 74 * - qdisc return codes 75 * - driver transmit return codes 76 * - errno values 77 * 78 * Drivers are allowed to return any one of those in their hard_start_xmit() 79 * function. Real network devices commonly used with qdiscs should only return 80 * the driver transmit return codes though - when qdiscs are used, the actual 81 * transmission happens asynchronously, so the value is not propagated to 82 * higher layers. Virtual network devices transmit synchronously, in this case 83 * the driver transmit return codes are consumed by dev_queue_xmit(), all 84 * others are propagated to higher layers. 85 */ 86 87 /* qdisc ->enqueue() return codes. */ 88 #define NET_XMIT_SUCCESS 0x00 89 #define NET_XMIT_DROP 0x01 /* skb dropped */ 90 #define NET_XMIT_CN 0x02 /* congestion notification */ 91 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 92 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 93 94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 95 * indicates that the device will soon be dropping packets, or already drops 96 * some packets of the same priority; prompting us to send less aggressively. */ 97 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 98 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 99 100 /* Driver transmit return codes */ 101 #define NETDEV_TX_MASK 0xf0 102 103 enum netdev_tx { 104 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 105 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 106 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 107 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 108 }; 109 typedef enum netdev_tx netdev_tx_t; 110 111 /* 112 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 113 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 114 */ 115 static inline bool dev_xmit_complete(int rc) 116 { 117 /* 118 * Positive cases with an skb consumed by a driver: 119 * - successful transmission (rc == NETDEV_TX_OK) 120 * - error while transmitting (rc < 0) 121 * - error while queueing to a different device (rc & NET_XMIT_MASK) 122 */ 123 if (likely(rc < NET_XMIT_MASK)) 124 return true; 125 126 return false; 127 } 128 129 #endif 130 131 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 132 133 #ifdef __KERNEL__ 134 /* 135 * Compute the worst case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_WLAN_80211) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 140 # if defined(CONFIG_MAC80211_MESH) 141 # define LL_MAX_HEADER 128 142 # else 143 # define LL_MAX_HEADER 96 144 # endif 145 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 146 # define LL_MAX_HEADER 48 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 152 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 153 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 154 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 #endif /* __KERNEL__ */ 161 162 /* 163 * Network device statistics. Akin to the 2.0 ether stats but 164 * with byte counters. 165 */ 166 167 struct net_device_stats { 168 unsigned long rx_packets; /* total packets received */ 169 unsigned long tx_packets; /* total packets transmitted */ 170 unsigned long rx_bytes; /* total bytes received */ 171 unsigned long tx_bytes; /* total bytes transmitted */ 172 unsigned long rx_errors; /* bad packets received */ 173 unsigned long tx_errors; /* packet transmit problems */ 174 unsigned long rx_dropped; /* no space in linux buffers */ 175 unsigned long tx_dropped; /* no space available in linux */ 176 unsigned long multicast; /* multicast packets received */ 177 unsigned long collisions; 178 179 /* detailed rx_errors: */ 180 unsigned long rx_length_errors; 181 unsigned long rx_over_errors; /* receiver ring buff overflow */ 182 unsigned long rx_crc_errors; /* recved pkt with crc error */ 183 unsigned long rx_frame_errors; /* recv'd frame alignment error */ 184 unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 185 unsigned long rx_missed_errors; /* receiver missed packet */ 186 187 /* detailed tx_errors */ 188 unsigned long tx_aborted_errors; 189 unsigned long tx_carrier_errors; 190 unsigned long tx_fifo_errors; 191 unsigned long tx_heartbeat_errors; 192 unsigned long tx_window_errors; 193 194 /* for cslip etc */ 195 unsigned long rx_compressed; 196 unsigned long tx_compressed; 197 }; 198 199 200 /* Media selection options. */ 201 enum { 202 IF_PORT_UNKNOWN = 0, 203 IF_PORT_10BASE2, 204 IF_PORT_10BASET, 205 IF_PORT_AUI, 206 IF_PORT_100BASET, 207 IF_PORT_100BASETX, 208 IF_PORT_100BASEFX 209 }; 210 211 #ifdef __KERNEL__ 212 213 #include <linux/cache.h> 214 #include <linux/skbuff.h> 215 216 struct neighbour; 217 struct neigh_parms; 218 struct sk_buff; 219 220 struct netif_rx_stats { 221 unsigned total; 222 unsigned dropped; 223 unsigned time_squeeze; 224 unsigned cpu_collision; 225 }; 226 227 DECLARE_PER_CPU(struct netif_rx_stats, netdev_rx_stat); 228 229 struct dev_addr_list { 230 struct dev_addr_list *next; 231 u8 da_addr[MAX_ADDR_LEN]; 232 u8 da_addrlen; 233 u8 da_synced; 234 int da_users; 235 int da_gusers; 236 }; 237 238 /* 239 * We tag multicasts with these structures. 240 */ 241 242 #define dev_mc_list dev_addr_list 243 #define dmi_addr da_addr 244 #define dmi_addrlen da_addrlen 245 #define dmi_users da_users 246 #define dmi_gusers da_gusers 247 248 struct netdev_hw_addr { 249 struct list_head list; 250 unsigned char addr[MAX_ADDR_LEN]; 251 unsigned char type; 252 #define NETDEV_HW_ADDR_T_LAN 1 253 #define NETDEV_HW_ADDR_T_SAN 2 254 #define NETDEV_HW_ADDR_T_SLAVE 3 255 #define NETDEV_HW_ADDR_T_UNICAST 4 256 int refcount; 257 bool synced; 258 struct rcu_head rcu_head; 259 }; 260 261 struct netdev_hw_addr_list { 262 struct list_head list; 263 int count; 264 }; 265 266 struct hh_cache { 267 struct hh_cache *hh_next; /* Next entry */ 268 atomic_t hh_refcnt; /* number of users */ 269 /* 270 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 271 * cache line on SMP. 272 * They are mostly read, but hh_refcnt may be changed quite frequently, 273 * incurring cache line ping pongs. 274 */ 275 __be16 hh_type ____cacheline_aligned_in_smp; 276 /* protocol identifier, f.e ETH_P_IP 277 * NOTE: For VLANs, this will be the 278 * encapuslated type. --BLG 279 */ 280 u16 hh_len; /* length of header */ 281 int (*hh_output)(struct sk_buff *skb); 282 seqlock_t hh_lock; 283 284 /* cached hardware header; allow for machine alignment needs. */ 285 #define HH_DATA_MOD 16 286 #define HH_DATA_OFF(__len) \ 287 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 288 #define HH_DATA_ALIGN(__len) \ 289 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 290 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 291 }; 292 293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 294 * Alternative is: 295 * dev->hard_header_len ? (dev->hard_header_len + 296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 297 * 298 * We could use other alignment values, but we must maintain the 299 * relationship HH alignment <= LL alignment. 300 * 301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 302 * may need. 303 */ 304 #define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 308 #define LL_ALLOCATED_SPACE(dev) \ 309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311 struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*rebuild)(struct sk_buff *skb); 317 #define HAVE_HEADER_CACHE 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 }; 323 324 /* These flag bits are private to the generic network queueing 325 * layer, they may not be explicitly referenced by any other 326 * code. 327 */ 328 329 enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335 }; 336 337 338 /* 339 * This structure holds at boot time configured netdevice settings. They 340 * are then used in the device probing. 341 */ 342 struct netdev_boot_setup { 343 char name[IFNAMSIZ]; 344 struct ifmap map; 345 }; 346 #define NETDEV_BOOT_SETUP_MAX 8 347 348 extern int __init netdev_boot_setup(char *str); 349 350 /* 351 * Structure for NAPI scheduling similar to tasklet but with weighting 352 */ 353 struct napi_struct { 354 /* The poll_list must only be managed by the entity which 355 * changes the state of the NAPI_STATE_SCHED bit. This means 356 * whoever atomically sets that bit can add this napi_struct 357 * to the per-cpu poll_list, and whoever clears that bit 358 * can remove from the list right before clearing the bit. 359 */ 360 struct list_head poll_list; 361 362 unsigned long state; 363 int weight; 364 int (*poll)(struct napi_struct *, int); 365 #ifdef CONFIG_NETPOLL 366 spinlock_t poll_lock; 367 int poll_owner; 368 #endif 369 370 unsigned int gro_count; 371 372 struct net_device *dev; 373 struct list_head dev_list; 374 struct sk_buff *gro_list; 375 struct sk_buff *skb; 376 }; 377 378 enum { 379 NAPI_STATE_SCHED, /* Poll is scheduled */ 380 NAPI_STATE_DISABLE, /* Disable pending */ 381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 382 }; 383 384 enum gro_result { 385 GRO_MERGED, 386 GRO_MERGED_FREE, 387 GRO_HELD, 388 GRO_NORMAL, 389 GRO_DROP, 390 }; 391 typedef enum gro_result gro_result_t; 392 393 extern void __napi_schedule(struct napi_struct *n); 394 395 static inline int napi_disable_pending(struct napi_struct *n) 396 { 397 return test_bit(NAPI_STATE_DISABLE, &n->state); 398 } 399 400 /** 401 * napi_schedule_prep - check if napi can be scheduled 402 * @n: napi context 403 * 404 * Test if NAPI routine is already running, and if not mark 405 * it as running. This is used as a condition variable 406 * insure only one NAPI poll instance runs. We also make 407 * sure there is no pending NAPI disable. 408 */ 409 static inline int napi_schedule_prep(struct napi_struct *n) 410 { 411 return !napi_disable_pending(n) && 412 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 413 } 414 415 /** 416 * napi_schedule - schedule NAPI poll 417 * @n: napi context 418 * 419 * Schedule NAPI poll routine to be called if it is not already 420 * running. 421 */ 422 static inline void napi_schedule(struct napi_struct *n) 423 { 424 if (napi_schedule_prep(n)) 425 __napi_schedule(n); 426 } 427 428 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 429 static inline int napi_reschedule(struct napi_struct *napi) 430 { 431 if (napi_schedule_prep(napi)) { 432 __napi_schedule(napi); 433 return 1; 434 } 435 return 0; 436 } 437 438 /** 439 * napi_complete - NAPI processing complete 440 * @n: napi context 441 * 442 * Mark NAPI processing as complete. 443 */ 444 extern void __napi_complete(struct napi_struct *n); 445 extern void napi_complete(struct napi_struct *n); 446 447 /** 448 * napi_disable - prevent NAPI from scheduling 449 * @n: napi context 450 * 451 * Stop NAPI from being scheduled on this context. 452 * Waits till any outstanding processing completes. 453 */ 454 static inline void napi_disable(struct napi_struct *n) 455 { 456 set_bit(NAPI_STATE_DISABLE, &n->state); 457 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 458 msleep(1); 459 clear_bit(NAPI_STATE_DISABLE, &n->state); 460 } 461 462 /** 463 * napi_enable - enable NAPI scheduling 464 * @n: napi context 465 * 466 * Resume NAPI from being scheduled on this context. 467 * Must be paired with napi_disable. 468 */ 469 static inline void napi_enable(struct napi_struct *n) 470 { 471 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 472 smp_mb__before_clear_bit(); 473 clear_bit(NAPI_STATE_SCHED, &n->state); 474 } 475 476 #ifdef CONFIG_SMP 477 /** 478 * napi_synchronize - wait until NAPI is not running 479 * @n: napi context 480 * 481 * Wait until NAPI is done being scheduled on this context. 482 * Waits till any outstanding processing completes but 483 * does not disable future activations. 484 */ 485 static inline void napi_synchronize(const struct napi_struct *n) 486 { 487 while (test_bit(NAPI_STATE_SCHED, &n->state)) 488 msleep(1); 489 } 490 #else 491 # define napi_synchronize(n) barrier() 492 #endif 493 494 enum netdev_queue_state_t { 495 __QUEUE_STATE_XOFF, 496 __QUEUE_STATE_FROZEN, 497 }; 498 499 struct netdev_queue { 500 /* 501 * read mostly part 502 */ 503 struct net_device *dev; 504 struct Qdisc *qdisc; 505 unsigned long state; 506 struct Qdisc *qdisc_sleeping; 507 /* 508 * write mostly part 509 */ 510 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 511 int xmit_lock_owner; 512 /* 513 * please use this field instead of dev->trans_start 514 */ 515 unsigned long trans_start; 516 unsigned long tx_bytes; 517 unsigned long tx_packets; 518 unsigned long tx_dropped; 519 } ____cacheline_aligned_in_smp; 520 521 522 /* 523 * This structure defines the management hooks for network devices. 524 * The following hooks can be defined; unless noted otherwise, they are 525 * optional and can be filled with a null pointer. 526 * 527 * int (*ndo_init)(struct net_device *dev); 528 * This function is called once when network device is registered. 529 * The network device can use this to any late stage initializaton 530 * or semantic validattion. It can fail with an error code which will 531 * be propogated back to register_netdev 532 * 533 * void (*ndo_uninit)(struct net_device *dev); 534 * This function is called when device is unregistered or when registration 535 * fails. It is not called if init fails. 536 * 537 * int (*ndo_open)(struct net_device *dev); 538 * This function is called when network device transistions to the up 539 * state. 540 * 541 * int (*ndo_stop)(struct net_device *dev); 542 * This function is called when network device transistions to the down 543 * state. 544 * 545 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 546 * struct net_device *dev); 547 * Called when a packet needs to be transmitted. 548 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 549 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 550 * Required can not be NULL. 551 * 552 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 553 * Called to decide which queue to when device supports multiple 554 * transmit queues. 555 * 556 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 557 * This function is called to allow device receiver to make 558 * changes to configuration when multicast or promiscious is enabled. 559 * 560 * void (*ndo_set_rx_mode)(struct net_device *dev); 561 * This function is called device changes address list filtering. 562 * 563 * void (*ndo_set_multicast_list)(struct net_device *dev); 564 * This function is called when the multicast address list changes. 565 * 566 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 567 * This function is called when the Media Access Control address 568 * needs to be changed. If this interface is not defined, the 569 * mac address can not be changed. 570 * 571 * int (*ndo_validate_addr)(struct net_device *dev); 572 * Test if Media Access Control address is valid for the device. 573 * 574 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 575 * Called when a user request an ioctl which can't be handled by 576 * the generic interface code. If not defined ioctl's return 577 * not supported error code. 578 * 579 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 580 * Used to set network devices bus interface parameters. This interface 581 * is retained for legacy reason, new devices should use the bus 582 * interface (PCI) for low level management. 583 * 584 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 585 * Called when a user wants to change the Maximum Transfer Unit 586 * of a device. If not defined, any request to change MTU will 587 * will return an error. 588 * 589 * void (*ndo_tx_timeout)(struct net_device *dev); 590 * Callback uses when the transmitter has not made any progress 591 * for dev->watchdog ticks. 592 * 593 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 594 * Called when a user wants to get the network device usage 595 * statistics. If not defined, the counters in dev->stats will 596 * be used. 597 * 598 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 599 * If device support VLAN receive accleration 600 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 601 * when vlan groups for the device changes. Note: grp is NULL 602 * if no vlan's groups are being used. 603 * 604 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 605 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 606 * this function is called when a VLAN id is registered. 607 * 608 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 609 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 610 * this function is called when a VLAN id is unregistered. 611 * 612 * void (*ndo_poll_controller)(struct net_device *dev); 613 */ 614 #define HAVE_NET_DEVICE_OPS 615 struct net_device_ops { 616 int (*ndo_init)(struct net_device *dev); 617 void (*ndo_uninit)(struct net_device *dev); 618 int (*ndo_open)(struct net_device *dev); 619 int (*ndo_stop)(struct net_device *dev); 620 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 621 struct net_device *dev); 622 u16 (*ndo_select_queue)(struct net_device *dev, 623 struct sk_buff *skb); 624 #define HAVE_CHANGE_RX_FLAGS 625 void (*ndo_change_rx_flags)(struct net_device *dev, 626 int flags); 627 #define HAVE_SET_RX_MODE 628 void (*ndo_set_rx_mode)(struct net_device *dev); 629 #define HAVE_MULTICAST 630 void (*ndo_set_multicast_list)(struct net_device *dev); 631 #define HAVE_SET_MAC_ADDR 632 int (*ndo_set_mac_address)(struct net_device *dev, 633 void *addr); 634 #define HAVE_VALIDATE_ADDR 635 int (*ndo_validate_addr)(struct net_device *dev); 636 #define HAVE_PRIVATE_IOCTL 637 int (*ndo_do_ioctl)(struct net_device *dev, 638 struct ifreq *ifr, int cmd); 639 #define HAVE_SET_CONFIG 640 int (*ndo_set_config)(struct net_device *dev, 641 struct ifmap *map); 642 #define HAVE_CHANGE_MTU 643 int (*ndo_change_mtu)(struct net_device *dev, 644 int new_mtu); 645 int (*ndo_neigh_setup)(struct net_device *dev, 646 struct neigh_parms *); 647 #define HAVE_TX_TIMEOUT 648 void (*ndo_tx_timeout) (struct net_device *dev); 649 650 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 651 652 void (*ndo_vlan_rx_register)(struct net_device *dev, 653 struct vlan_group *grp); 654 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 655 unsigned short vid); 656 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 657 unsigned short vid); 658 #ifdef CONFIG_NET_POLL_CONTROLLER 659 #define HAVE_NETDEV_POLL 660 void (*ndo_poll_controller)(struct net_device *dev); 661 #endif 662 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 663 int (*ndo_fcoe_enable)(struct net_device *dev); 664 int (*ndo_fcoe_disable)(struct net_device *dev); 665 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 666 u16 xid, 667 struct scatterlist *sgl, 668 unsigned int sgc); 669 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 670 u16 xid); 671 #define NETDEV_FCOE_WWNN 0 672 #define NETDEV_FCOE_WWPN 1 673 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 674 u64 *wwn, int type); 675 #endif 676 }; 677 678 /* 679 * The DEVICE structure. 680 * Actually, this whole structure is a big mistake. It mixes I/O 681 * data with strictly "high-level" data, and it has to know about 682 * almost every data structure used in the INET module. 683 * 684 * FIXME: cleanup struct net_device such that network protocol info 685 * moves out. 686 */ 687 688 struct net_device { 689 690 /* 691 * This is the first field of the "visible" part of this structure 692 * (i.e. as seen by users in the "Space.c" file). It is the name 693 * the interface. 694 */ 695 char name[IFNAMSIZ]; 696 /* device name hash chain */ 697 struct hlist_node name_hlist; 698 /* snmp alias */ 699 char *ifalias; 700 701 /* 702 * I/O specific fields 703 * FIXME: Merge these and struct ifmap into one 704 */ 705 unsigned long mem_end; /* shared mem end */ 706 unsigned long mem_start; /* shared mem start */ 707 unsigned long base_addr; /* device I/O address */ 708 unsigned int irq; /* device IRQ number */ 709 710 /* 711 * Some hardware also needs these fields, but they are not 712 * part of the usual set specified in Space.c. 713 */ 714 715 unsigned char if_port; /* Selectable AUI, TP,..*/ 716 unsigned char dma; /* DMA channel */ 717 718 unsigned long state; 719 720 struct list_head dev_list; 721 struct list_head napi_list; 722 struct list_head unreg_list; 723 724 /* Net device features */ 725 unsigned long features; 726 #define NETIF_F_SG 1 /* Scatter/gather IO. */ 727 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 728 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 729 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 730 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 731 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 732 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 733 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 734 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 735 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 736 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 737 #define NETIF_F_GSO 2048 /* Enable software GSO. */ 738 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 739 /* do not use LLTX in new drivers */ 740 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 741 #define NETIF_F_GRO 16384 /* Generic receive offload */ 742 #define NETIF_F_LRO 32768 /* large receive offload */ 743 744 /* the GSO_MASK reserves bits 16 through 23 */ 745 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 746 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 747 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 748 749 /* Segmentation offload features */ 750 #define NETIF_F_GSO_SHIFT 16 751 #define NETIF_F_GSO_MASK 0x00ff0000 752 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 753 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 754 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 755 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 756 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 757 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 758 759 /* List of features with software fallbacks. */ 760 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6) 761 762 763 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 764 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 765 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 766 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 767 768 /* 769 * If one device supports one of these features, then enable them 770 * for all in netdev_increment_features. 771 */ 772 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 773 NETIF_F_SG | NETIF_F_HIGHDMA | \ 774 NETIF_F_FRAGLIST) 775 776 /* Interface index. Unique device identifier */ 777 int ifindex; 778 int iflink; 779 780 struct net_device_stats stats; 781 782 #ifdef CONFIG_WIRELESS_EXT 783 /* List of functions to handle Wireless Extensions (instead of ioctl). 784 * See <net/iw_handler.h> for details. Jean II */ 785 const struct iw_handler_def * wireless_handlers; 786 /* Instance data managed by the core of Wireless Extensions. */ 787 struct iw_public_data * wireless_data; 788 #endif 789 /* Management operations */ 790 const struct net_device_ops *netdev_ops; 791 const struct ethtool_ops *ethtool_ops; 792 793 /* Hardware header description */ 794 const struct header_ops *header_ops; 795 796 unsigned int flags; /* interface flags (a la BSD) */ 797 unsigned short gflags; 798 unsigned short priv_flags; /* Like 'flags' but invisible to userspace. */ 799 unsigned short padded; /* How much padding added by alloc_netdev() */ 800 801 unsigned char operstate; /* RFC2863 operstate */ 802 unsigned char link_mode; /* mapping policy to operstate */ 803 804 unsigned mtu; /* interface MTU value */ 805 unsigned short type; /* interface hardware type */ 806 unsigned short hard_header_len; /* hardware hdr length */ 807 808 /* extra head- and tailroom the hardware may need, but not in all cases 809 * can this be guaranteed, especially tailroom. Some cases also use 810 * LL_MAX_HEADER instead to allocate the skb. 811 */ 812 unsigned short needed_headroom; 813 unsigned short needed_tailroom; 814 815 struct net_device *master; /* Pointer to master device of a group, 816 * which this device is member of. 817 */ 818 819 /* Interface address info. */ 820 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 821 unsigned char addr_len; /* hardware address length */ 822 unsigned short dev_id; /* for shared network cards */ 823 824 struct netdev_hw_addr_list uc; /* Secondary unicast 825 mac addresses */ 826 int uc_promisc; 827 spinlock_t addr_list_lock; 828 struct dev_addr_list *mc_list; /* Multicast mac addresses */ 829 int mc_count; /* Number of installed mcasts */ 830 unsigned int promiscuity; 831 unsigned int allmulti; 832 833 834 /* Protocol specific pointers */ 835 836 #ifdef CONFIG_NET_DSA 837 void *dsa_ptr; /* dsa specific data */ 838 #endif 839 void *atalk_ptr; /* AppleTalk link */ 840 void *ip_ptr; /* IPv4 specific data */ 841 void *dn_ptr; /* DECnet specific data */ 842 void *ip6_ptr; /* IPv6 specific data */ 843 void *ec_ptr; /* Econet specific data */ 844 void *ax25_ptr; /* AX.25 specific data */ 845 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 846 assign before registering */ 847 848 /* 849 * Cache line mostly used on receive path (including eth_type_trans()) 850 */ 851 unsigned long last_rx; /* Time of last Rx */ 852 /* Interface address info used in eth_type_trans() */ 853 unsigned char *dev_addr; /* hw address, (before bcast 854 because most packets are 855 unicast) */ 856 857 struct netdev_hw_addr_list dev_addrs; /* list of device 858 hw addresses */ 859 860 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 861 862 struct netdev_queue rx_queue; 863 864 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 865 866 /* Number of TX queues allocated at alloc_netdev_mq() time */ 867 unsigned int num_tx_queues; 868 869 /* Number of TX queues currently active in device */ 870 unsigned int real_num_tx_queues; 871 872 /* root qdisc from userspace point of view */ 873 struct Qdisc *qdisc; 874 875 unsigned long tx_queue_len; /* Max frames per queue allowed */ 876 spinlock_t tx_global_lock; 877 /* 878 * One part is mostly used on xmit path (device) 879 */ 880 /* These may be needed for future network-power-down code. */ 881 882 /* 883 * trans_start here is expensive for high speed devices on SMP, 884 * please use netdev_queue->trans_start instead. 885 */ 886 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 887 888 int watchdog_timeo; /* used by dev_watchdog() */ 889 struct timer_list watchdog_timer; 890 891 /* Number of references to this device */ 892 atomic_t refcnt ____cacheline_aligned_in_smp; 893 894 /* delayed register/unregister */ 895 struct list_head todo_list; 896 /* device index hash chain */ 897 struct hlist_node index_hlist; 898 899 struct list_head link_watch_list; 900 901 /* register/unregister state machine */ 902 enum { NETREG_UNINITIALIZED=0, 903 NETREG_REGISTERED, /* completed register_netdevice */ 904 NETREG_UNREGISTERING, /* called unregister_netdevice */ 905 NETREG_UNREGISTERED, /* completed unregister todo */ 906 NETREG_RELEASED, /* called free_netdev */ 907 NETREG_DUMMY, /* dummy device for NAPI poll */ 908 } reg_state; 909 910 /* Called from unregister, can be used to call free_netdev */ 911 void (*destructor)(struct net_device *dev); 912 913 #ifdef CONFIG_NETPOLL 914 struct netpoll_info *npinfo; 915 #endif 916 917 #ifdef CONFIG_NET_NS 918 /* Network namespace this network device is inside */ 919 struct net *nd_net; 920 #endif 921 922 /* mid-layer private */ 923 void *ml_priv; 924 925 /* bridge stuff */ 926 struct net_bridge_port *br_port; 927 /* macvlan */ 928 struct macvlan_port *macvlan_port; 929 /* GARP */ 930 struct garp_port *garp_port; 931 932 /* class/net/name entry */ 933 struct device dev; 934 /* space for optional device, statistics, and wireless sysfs groups */ 935 const struct attribute_group *sysfs_groups[4]; 936 937 /* rtnetlink link ops */ 938 const struct rtnl_link_ops *rtnl_link_ops; 939 940 /* VLAN feature mask */ 941 unsigned long vlan_features; 942 943 /* for setting kernel sock attribute on TCP connection setup */ 944 #define GSO_MAX_SIZE 65536 945 unsigned int gso_max_size; 946 947 #ifdef CONFIG_DCB 948 /* Data Center Bridging netlink ops */ 949 const struct dcbnl_rtnl_ops *dcbnl_ops; 950 #endif 951 952 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 953 /* max exchange id for FCoE LRO by ddp */ 954 unsigned int fcoe_ddp_xid; 955 #endif 956 }; 957 #define to_net_dev(d) container_of(d, struct net_device, dev) 958 959 #define NETDEV_ALIGN 32 960 961 static inline 962 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 963 unsigned int index) 964 { 965 return &dev->_tx[index]; 966 } 967 968 static inline void netdev_for_each_tx_queue(struct net_device *dev, 969 void (*f)(struct net_device *, 970 struct netdev_queue *, 971 void *), 972 void *arg) 973 { 974 unsigned int i; 975 976 for (i = 0; i < dev->num_tx_queues; i++) 977 f(dev, &dev->_tx[i], arg); 978 } 979 980 /* 981 * Net namespace inlines 982 */ 983 static inline 984 struct net *dev_net(const struct net_device *dev) 985 { 986 #ifdef CONFIG_NET_NS 987 return dev->nd_net; 988 #else 989 return &init_net; 990 #endif 991 } 992 993 static inline 994 void dev_net_set(struct net_device *dev, struct net *net) 995 { 996 #ifdef CONFIG_NET_NS 997 release_net(dev->nd_net); 998 dev->nd_net = hold_net(net); 999 #endif 1000 } 1001 1002 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1003 { 1004 #ifdef CONFIG_NET_DSA_TAG_DSA 1005 if (dev->dsa_ptr != NULL) 1006 return dsa_uses_dsa_tags(dev->dsa_ptr); 1007 #endif 1008 1009 return 0; 1010 } 1011 1012 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1013 { 1014 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1015 if (dev->dsa_ptr != NULL) 1016 return dsa_uses_trailer_tags(dev->dsa_ptr); 1017 #endif 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * netdev_priv - access network device private data 1024 * @dev: network device 1025 * 1026 * Get network device private data 1027 */ 1028 static inline void *netdev_priv(const struct net_device *dev) 1029 { 1030 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1031 } 1032 1033 /* Set the sysfs physical device reference for the network logical device 1034 * if set prior to registration will cause a symlink during initialization. 1035 */ 1036 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1037 1038 /* Set the sysfs device type for the network logical device to allow 1039 * fin grained indentification of different network device types. For 1040 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1041 */ 1042 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1043 1044 /** 1045 * netif_napi_add - initialize a napi context 1046 * @dev: network device 1047 * @napi: napi context 1048 * @poll: polling function 1049 * @weight: default weight 1050 * 1051 * netif_napi_add() must be used to initialize a napi context prior to calling 1052 * *any* of the other napi related functions. 1053 */ 1054 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1055 int (*poll)(struct napi_struct *, int), int weight); 1056 1057 /** 1058 * netif_napi_del - remove a napi context 1059 * @napi: napi context 1060 * 1061 * netif_napi_del() removes a napi context from the network device napi list 1062 */ 1063 void netif_napi_del(struct napi_struct *napi); 1064 1065 struct napi_gro_cb { 1066 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1067 void *frag0; 1068 1069 /* Length of frag0. */ 1070 unsigned int frag0_len; 1071 1072 /* This indicates where we are processing relative to skb->data. */ 1073 int data_offset; 1074 1075 /* This is non-zero if the packet may be of the same flow. */ 1076 int same_flow; 1077 1078 /* This is non-zero if the packet cannot be merged with the new skb. */ 1079 int flush; 1080 1081 /* Number of segments aggregated. */ 1082 int count; 1083 1084 /* Free the skb? */ 1085 int free; 1086 }; 1087 1088 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1089 1090 struct packet_type { 1091 __be16 type; /* This is really htons(ether_type). */ 1092 struct net_device *dev; /* NULL is wildcarded here */ 1093 int (*func) (struct sk_buff *, 1094 struct net_device *, 1095 struct packet_type *, 1096 struct net_device *); 1097 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1098 int features); 1099 int (*gso_send_check)(struct sk_buff *skb); 1100 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1101 struct sk_buff *skb); 1102 int (*gro_complete)(struct sk_buff *skb); 1103 void *af_packet_priv; 1104 struct list_head list; 1105 }; 1106 1107 #include <linux/interrupt.h> 1108 #include <linux/notifier.h> 1109 1110 extern rwlock_t dev_base_lock; /* Device list lock */ 1111 1112 1113 #define for_each_netdev(net, d) \ 1114 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1115 #define for_each_netdev_reverse(net, d) \ 1116 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1117 #define for_each_netdev_rcu(net, d) \ 1118 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1119 #define for_each_netdev_safe(net, d, n) \ 1120 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1121 #define for_each_netdev_continue(net, d) \ 1122 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1123 #define for_each_netdev_continue_rcu(net, d) \ 1124 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1125 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1126 1127 static inline struct net_device *next_net_device(struct net_device *dev) 1128 { 1129 struct list_head *lh; 1130 struct net *net; 1131 1132 net = dev_net(dev); 1133 lh = dev->dev_list.next; 1134 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1135 } 1136 1137 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1138 { 1139 struct list_head *lh; 1140 struct net *net; 1141 1142 net = dev_net(dev); 1143 lh = rcu_dereference(dev->dev_list.next); 1144 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1145 } 1146 1147 static inline struct net_device *first_net_device(struct net *net) 1148 { 1149 return list_empty(&net->dev_base_head) ? NULL : 1150 net_device_entry(net->dev_base_head.next); 1151 } 1152 1153 extern int netdev_boot_setup_check(struct net_device *dev); 1154 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1155 extern struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *hwaddr); 1156 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1157 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1158 extern void dev_add_pack(struct packet_type *pt); 1159 extern void dev_remove_pack(struct packet_type *pt); 1160 extern void __dev_remove_pack(struct packet_type *pt); 1161 1162 extern struct net_device *dev_get_by_flags(struct net *net, unsigned short flags, 1163 unsigned short mask); 1164 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1165 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1166 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1167 extern int dev_alloc_name(struct net_device *dev, const char *name); 1168 extern int dev_open(struct net_device *dev); 1169 extern int dev_close(struct net_device *dev); 1170 extern void dev_disable_lro(struct net_device *dev); 1171 extern int dev_queue_xmit(struct sk_buff *skb); 1172 extern int register_netdevice(struct net_device *dev); 1173 extern void unregister_netdevice_queue(struct net_device *dev, 1174 struct list_head *head); 1175 extern void unregister_netdevice_many(struct list_head *head); 1176 static inline void unregister_netdevice(struct net_device *dev) 1177 { 1178 unregister_netdevice_queue(dev, NULL); 1179 } 1180 1181 extern void free_netdev(struct net_device *dev); 1182 extern void synchronize_net(void); 1183 extern int register_netdevice_notifier(struct notifier_block *nb); 1184 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1185 extern int init_dummy_netdev(struct net_device *dev); 1186 extern void netdev_resync_ops(struct net_device *dev); 1187 1188 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1189 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1190 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1191 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1192 extern int dev_restart(struct net_device *dev); 1193 #ifdef CONFIG_NETPOLL_TRAP 1194 extern int netpoll_trap(void); 1195 #endif 1196 extern int skb_gro_receive(struct sk_buff **head, 1197 struct sk_buff *skb); 1198 extern void skb_gro_reset_offset(struct sk_buff *skb); 1199 1200 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1201 { 1202 return NAPI_GRO_CB(skb)->data_offset; 1203 } 1204 1205 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1206 { 1207 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1208 } 1209 1210 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1211 { 1212 NAPI_GRO_CB(skb)->data_offset += len; 1213 } 1214 1215 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1216 unsigned int offset) 1217 { 1218 return NAPI_GRO_CB(skb)->frag0 + offset; 1219 } 1220 1221 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1222 { 1223 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1224 } 1225 1226 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1227 unsigned int offset) 1228 { 1229 NAPI_GRO_CB(skb)->frag0 = NULL; 1230 NAPI_GRO_CB(skb)->frag0_len = 0; 1231 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1232 } 1233 1234 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1235 { 1236 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1237 } 1238 1239 static inline void *skb_gro_network_header(struct sk_buff *skb) 1240 { 1241 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1242 skb_network_offset(skb); 1243 } 1244 1245 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1246 unsigned short type, 1247 const void *daddr, const void *saddr, 1248 unsigned len) 1249 { 1250 if (!dev->header_ops || !dev->header_ops->create) 1251 return 0; 1252 1253 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1254 } 1255 1256 static inline int dev_parse_header(const struct sk_buff *skb, 1257 unsigned char *haddr) 1258 { 1259 const struct net_device *dev = skb->dev; 1260 1261 if (!dev->header_ops || !dev->header_ops->parse) 1262 return 0; 1263 return dev->header_ops->parse(skb, haddr); 1264 } 1265 1266 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1267 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1268 static inline int unregister_gifconf(unsigned int family) 1269 { 1270 return register_gifconf(family, NULL); 1271 } 1272 1273 /* 1274 * Incoming packets are placed on per-cpu queues so that 1275 * no locking is needed. 1276 */ 1277 struct softnet_data { 1278 struct Qdisc *output_queue; 1279 struct sk_buff_head input_pkt_queue; 1280 struct list_head poll_list; 1281 struct sk_buff *completion_queue; 1282 1283 struct napi_struct backlog; 1284 }; 1285 1286 DECLARE_PER_CPU(struct softnet_data,softnet_data); 1287 1288 #define HAVE_NETIF_QUEUE 1289 1290 extern void __netif_schedule(struct Qdisc *q); 1291 1292 static inline void netif_schedule_queue(struct netdev_queue *txq) 1293 { 1294 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1295 __netif_schedule(txq->qdisc); 1296 } 1297 1298 static inline void netif_tx_schedule_all(struct net_device *dev) 1299 { 1300 unsigned int i; 1301 1302 for (i = 0; i < dev->num_tx_queues; i++) 1303 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1304 } 1305 1306 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1307 { 1308 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1309 } 1310 1311 /** 1312 * netif_start_queue - allow transmit 1313 * @dev: network device 1314 * 1315 * Allow upper layers to call the device hard_start_xmit routine. 1316 */ 1317 static inline void netif_start_queue(struct net_device *dev) 1318 { 1319 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1320 } 1321 1322 static inline void netif_tx_start_all_queues(struct net_device *dev) 1323 { 1324 unsigned int i; 1325 1326 for (i = 0; i < dev->num_tx_queues; i++) { 1327 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1328 netif_tx_start_queue(txq); 1329 } 1330 } 1331 1332 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1333 { 1334 #ifdef CONFIG_NETPOLL_TRAP 1335 if (netpoll_trap()) { 1336 netif_tx_start_queue(dev_queue); 1337 return; 1338 } 1339 #endif 1340 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1341 __netif_schedule(dev_queue->qdisc); 1342 } 1343 1344 /** 1345 * netif_wake_queue - restart transmit 1346 * @dev: network device 1347 * 1348 * Allow upper layers to call the device hard_start_xmit routine. 1349 * Used for flow control when transmit resources are available. 1350 */ 1351 static inline void netif_wake_queue(struct net_device *dev) 1352 { 1353 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1354 } 1355 1356 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1357 { 1358 unsigned int i; 1359 1360 for (i = 0; i < dev->num_tx_queues; i++) { 1361 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1362 netif_tx_wake_queue(txq); 1363 } 1364 } 1365 1366 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1367 { 1368 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1369 } 1370 1371 /** 1372 * netif_stop_queue - stop transmitted packets 1373 * @dev: network device 1374 * 1375 * Stop upper layers calling the device hard_start_xmit routine. 1376 * Used for flow control when transmit resources are unavailable. 1377 */ 1378 static inline void netif_stop_queue(struct net_device *dev) 1379 { 1380 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1381 } 1382 1383 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1384 { 1385 unsigned int i; 1386 1387 for (i = 0; i < dev->num_tx_queues; i++) { 1388 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1389 netif_tx_stop_queue(txq); 1390 } 1391 } 1392 1393 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1394 { 1395 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1396 } 1397 1398 /** 1399 * netif_queue_stopped - test if transmit queue is flowblocked 1400 * @dev: network device 1401 * 1402 * Test if transmit queue on device is currently unable to send. 1403 */ 1404 static inline int netif_queue_stopped(const struct net_device *dev) 1405 { 1406 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1407 } 1408 1409 static inline int netif_tx_queue_frozen(const struct netdev_queue *dev_queue) 1410 { 1411 return test_bit(__QUEUE_STATE_FROZEN, &dev_queue->state); 1412 } 1413 1414 /** 1415 * netif_running - test if up 1416 * @dev: network device 1417 * 1418 * Test if the device has been brought up. 1419 */ 1420 static inline int netif_running(const struct net_device *dev) 1421 { 1422 return test_bit(__LINK_STATE_START, &dev->state); 1423 } 1424 1425 /* 1426 * Routines to manage the subqueues on a device. We only need start 1427 * stop, and a check if it's stopped. All other device management is 1428 * done at the overall netdevice level. 1429 * Also test the device if we're multiqueue. 1430 */ 1431 1432 /** 1433 * netif_start_subqueue - allow sending packets on subqueue 1434 * @dev: network device 1435 * @queue_index: sub queue index 1436 * 1437 * Start individual transmit queue of a device with multiple transmit queues. 1438 */ 1439 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1440 { 1441 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1442 1443 netif_tx_start_queue(txq); 1444 } 1445 1446 /** 1447 * netif_stop_subqueue - stop sending packets on subqueue 1448 * @dev: network device 1449 * @queue_index: sub queue index 1450 * 1451 * Stop individual transmit queue of a device with multiple transmit queues. 1452 */ 1453 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1454 { 1455 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1456 #ifdef CONFIG_NETPOLL_TRAP 1457 if (netpoll_trap()) 1458 return; 1459 #endif 1460 netif_tx_stop_queue(txq); 1461 } 1462 1463 /** 1464 * netif_subqueue_stopped - test status of subqueue 1465 * @dev: network device 1466 * @queue_index: sub queue index 1467 * 1468 * Check individual transmit queue of a device with multiple transmit queues. 1469 */ 1470 static inline int __netif_subqueue_stopped(const struct net_device *dev, 1471 u16 queue_index) 1472 { 1473 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1474 1475 return netif_tx_queue_stopped(txq); 1476 } 1477 1478 static inline int netif_subqueue_stopped(const struct net_device *dev, 1479 struct sk_buff *skb) 1480 { 1481 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1482 } 1483 1484 /** 1485 * netif_wake_subqueue - allow sending packets on subqueue 1486 * @dev: network device 1487 * @queue_index: sub queue index 1488 * 1489 * Resume individual transmit queue of a device with multiple transmit queues. 1490 */ 1491 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1492 { 1493 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1494 #ifdef CONFIG_NETPOLL_TRAP 1495 if (netpoll_trap()) 1496 return; 1497 #endif 1498 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1499 __netif_schedule(txq->qdisc); 1500 } 1501 1502 /** 1503 * netif_is_multiqueue - test if device has multiple transmit queues 1504 * @dev: network device 1505 * 1506 * Check if device has multiple transmit queues 1507 */ 1508 static inline int netif_is_multiqueue(const struct net_device *dev) 1509 { 1510 return (dev->num_tx_queues > 1); 1511 } 1512 1513 /* Use this variant when it is known for sure that it 1514 * is executing from hardware interrupt context or with hardware interrupts 1515 * disabled. 1516 */ 1517 extern void dev_kfree_skb_irq(struct sk_buff *skb); 1518 1519 /* Use this variant in places where it could be invoked 1520 * from either hardware interrupt or other context, with hardware interrupts 1521 * either disabled or enabled. 1522 */ 1523 extern void dev_kfree_skb_any(struct sk_buff *skb); 1524 1525 #define HAVE_NETIF_RX 1 1526 extern int netif_rx(struct sk_buff *skb); 1527 extern int netif_rx_ni(struct sk_buff *skb); 1528 #define HAVE_NETIF_RECEIVE_SKB 1 1529 extern int netif_receive_skb(struct sk_buff *skb); 1530 extern void napi_gro_flush(struct napi_struct *napi); 1531 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 1532 struct sk_buff *skb); 1533 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 1534 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 1535 struct sk_buff *skb); 1536 extern void napi_reuse_skb(struct napi_struct *napi, 1537 struct sk_buff *skb); 1538 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 1539 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 1540 struct sk_buff *skb, 1541 gro_result_t ret); 1542 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 1543 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 1544 1545 static inline void napi_free_frags(struct napi_struct *napi) 1546 { 1547 kfree_skb(napi->skb); 1548 napi->skb = NULL; 1549 } 1550 1551 extern void netif_nit_deliver(struct sk_buff *skb); 1552 extern int dev_valid_name(const char *name); 1553 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 1554 extern int dev_ethtool(struct net *net, struct ifreq *); 1555 extern unsigned dev_get_flags(const struct net_device *); 1556 extern int dev_change_flags(struct net_device *, unsigned); 1557 extern int dev_change_name(struct net_device *, const char *); 1558 extern int dev_set_alias(struct net_device *, const char *, size_t); 1559 extern int dev_change_net_namespace(struct net_device *, 1560 struct net *, const char *); 1561 extern int dev_set_mtu(struct net_device *, int); 1562 extern int dev_set_mac_address(struct net_device *, 1563 struct sockaddr *); 1564 extern int dev_hard_start_xmit(struct sk_buff *skb, 1565 struct net_device *dev, 1566 struct netdev_queue *txq); 1567 extern int dev_forward_skb(struct net_device *dev, 1568 struct sk_buff *skb); 1569 1570 extern int netdev_budget; 1571 1572 /* Called by rtnetlink.c:rtnl_unlock() */ 1573 extern void netdev_run_todo(void); 1574 1575 /** 1576 * dev_put - release reference to device 1577 * @dev: network device 1578 * 1579 * Release reference to device to allow it to be freed. 1580 */ 1581 static inline void dev_put(struct net_device *dev) 1582 { 1583 atomic_dec(&dev->refcnt); 1584 } 1585 1586 /** 1587 * dev_hold - get reference to device 1588 * @dev: network device 1589 * 1590 * Hold reference to device to keep it from being freed. 1591 */ 1592 static inline void dev_hold(struct net_device *dev) 1593 { 1594 atomic_inc(&dev->refcnt); 1595 } 1596 1597 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 1598 * and _off may be called from IRQ context, but it is caller 1599 * who is responsible for serialization of these calls. 1600 * 1601 * The name carrier is inappropriate, these functions should really be 1602 * called netif_lowerlayer_*() because they represent the state of any 1603 * kind of lower layer not just hardware media. 1604 */ 1605 1606 extern void linkwatch_fire_event(struct net_device *dev); 1607 extern void linkwatch_forget_dev(struct net_device *dev); 1608 1609 /** 1610 * netif_carrier_ok - test if carrier present 1611 * @dev: network device 1612 * 1613 * Check if carrier is present on device 1614 */ 1615 static inline int netif_carrier_ok(const struct net_device *dev) 1616 { 1617 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 1618 } 1619 1620 extern unsigned long dev_trans_start(struct net_device *dev); 1621 1622 extern void __netdev_watchdog_up(struct net_device *dev); 1623 1624 extern void netif_carrier_on(struct net_device *dev); 1625 1626 extern void netif_carrier_off(struct net_device *dev); 1627 1628 /** 1629 * netif_dormant_on - mark device as dormant. 1630 * @dev: network device 1631 * 1632 * Mark device as dormant (as per RFC2863). 1633 * 1634 * The dormant state indicates that the relevant interface is not 1635 * actually in a condition to pass packets (i.e., it is not 'up') but is 1636 * in a "pending" state, waiting for some external event. For "on- 1637 * demand" interfaces, this new state identifies the situation where the 1638 * interface is waiting for events to place it in the up state. 1639 * 1640 */ 1641 static inline void netif_dormant_on(struct net_device *dev) 1642 { 1643 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 1644 linkwatch_fire_event(dev); 1645 } 1646 1647 /** 1648 * netif_dormant_off - set device as not dormant. 1649 * @dev: network device 1650 * 1651 * Device is not in dormant state. 1652 */ 1653 static inline void netif_dormant_off(struct net_device *dev) 1654 { 1655 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 1656 linkwatch_fire_event(dev); 1657 } 1658 1659 /** 1660 * netif_dormant - test if carrier present 1661 * @dev: network device 1662 * 1663 * Check if carrier is present on device 1664 */ 1665 static inline int netif_dormant(const struct net_device *dev) 1666 { 1667 return test_bit(__LINK_STATE_DORMANT, &dev->state); 1668 } 1669 1670 1671 /** 1672 * netif_oper_up - test if device is operational 1673 * @dev: network device 1674 * 1675 * Check if carrier is operational 1676 */ 1677 static inline int netif_oper_up(const struct net_device *dev) 1678 { 1679 return (dev->operstate == IF_OPER_UP || 1680 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 1681 } 1682 1683 /** 1684 * netif_device_present - is device available or removed 1685 * @dev: network device 1686 * 1687 * Check if device has not been removed from system. 1688 */ 1689 static inline int netif_device_present(struct net_device *dev) 1690 { 1691 return test_bit(__LINK_STATE_PRESENT, &dev->state); 1692 } 1693 1694 extern void netif_device_detach(struct net_device *dev); 1695 1696 extern void netif_device_attach(struct net_device *dev); 1697 1698 /* 1699 * Network interface message level settings 1700 */ 1701 #define HAVE_NETIF_MSG 1 1702 1703 enum { 1704 NETIF_MSG_DRV = 0x0001, 1705 NETIF_MSG_PROBE = 0x0002, 1706 NETIF_MSG_LINK = 0x0004, 1707 NETIF_MSG_TIMER = 0x0008, 1708 NETIF_MSG_IFDOWN = 0x0010, 1709 NETIF_MSG_IFUP = 0x0020, 1710 NETIF_MSG_RX_ERR = 0x0040, 1711 NETIF_MSG_TX_ERR = 0x0080, 1712 NETIF_MSG_TX_QUEUED = 0x0100, 1713 NETIF_MSG_INTR = 0x0200, 1714 NETIF_MSG_TX_DONE = 0x0400, 1715 NETIF_MSG_RX_STATUS = 0x0800, 1716 NETIF_MSG_PKTDATA = 0x1000, 1717 NETIF_MSG_HW = 0x2000, 1718 NETIF_MSG_WOL = 0x4000, 1719 }; 1720 1721 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 1722 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 1723 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 1724 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 1725 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 1726 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 1727 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 1728 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 1729 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 1730 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 1731 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 1732 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 1733 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 1734 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 1735 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 1736 1737 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 1738 { 1739 /* use default */ 1740 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 1741 return default_msg_enable_bits; 1742 if (debug_value == 0) /* no output */ 1743 return 0; 1744 /* set low N bits */ 1745 return (1 << debug_value) - 1; 1746 } 1747 1748 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 1749 { 1750 spin_lock(&txq->_xmit_lock); 1751 txq->xmit_lock_owner = cpu; 1752 } 1753 1754 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 1755 { 1756 spin_lock_bh(&txq->_xmit_lock); 1757 txq->xmit_lock_owner = smp_processor_id(); 1758 } 1759 1760 static inline int __netif_tx_trylock(struct netdev_queue *txq) 1761 { 1762 int ok = spin_trylock(&txq->_xmit_lock); 1763 if (likely(ok)) 1764 txq->xmit_lock_owner = smp_processor_id(); 1765 return ok; 1766 } 1767 1768 static inline void __netif_tx_unlock(struct netdev_queue *txq) 1769 { 1770 txq->xmit_lock_owner = -1; 1771 spin_unlock(&txq->_xmit_lock); 1772 } 1773 1774 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 1775 { 1776 txq->xmit_lock_owner = -1; 1777 spin_unlock_bh(&txq->_xmit_lock); 1778 } 1779 1780 static inline void txq_trans_update(struct netdev_queue *txq) 1781 { 1782 if (txq->xmit_lock_owner != -1) 1783 txq->trans_start = jiffies; 1784 } 1785 1786 /** 1787 * netif_tx_lock - grab network device transmit lock 1788 * @dev: network device 1789 * 1790 * Get network device transmit lock 1791 */ 1792 static inline void netif_tx_lock(struct net_device *dev) 1793 { 1794 unsigned int i; 1795 int cpu; 1796 1797 spin_lock(&dev->tx_global_lock); 1798 cpu = smp_processor_id(); 1799 for (i = 0; i < dev->num_tx_queues; i++) { 1800 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1801 1802 /* We are the only thread of execution doing a 1803 * freeze, but we have to grab the _xmit_lock in 1804 * order to synchronize with threads which are in 1805 * the ->hard_start_xmit() handler and already 1806 * checked the frozen bit. 1807 */ 1808 __netif_tx_lock(txq, cpu); 1809 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 1810 __netif_tx_unlock(txq); 1811 } 1812 } 1813 1814 static inline void netif_tx_lock_bh(struct net_device *dev) 1815 { 1816 local_bh_disable(); 1817 netif_tx_lock(dev); 1818 } 1819 1820 static inline void netif_tx_unlock(struct net_device *dev) 1821 { 1822 unsigned int i; 1823 1824 for (i = 0; i < dev->num_tx_queues; i++) { 1825 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1826 1827 /* No need to grab the _xmit_lock here. If the 1828 * queue is not stopped for another reason, we 1829 * force a schedule. 1830 */ 1831 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 1832 netif_schedule_queue(txq); 1833 } 1834 spin_unlock(&dev->tx_global_lock); 1835 } 1836 1837 static inline void netif_tx_unlock_bh(struct net_device *dev) 1838 { 1839 netif_tx_unlock(dev); 1840 local_bh_enable(); 1841 } 1842 1843 #define HARD_TX_LOCK(dev, txq, cpu) { \ 1844 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1845 __netif_tx_lock(txq, cpu); \ 1846 } \ 1847 } 1848 1849 #define HARD_TX_UNLOCK(dev, txq) { \ 1850 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1851 __netif_tx_unlock(txq); \ 1852 } \ 1853 } 1854 1855 static inline void netif_tx_disable(struct net_device *dev) 1856 { 1857 unsigned int i; 1858 int cpu; 1859 1860 local_bh_disable(); 1861 cpu = smp_processor_id(); 1862 for (i = 0; i < dev->num_tx_queues; i++) { 1863 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1864 1865 __netif_tx_lock(txq, cpu); 1866 netif_tx_stop_queue(txq); 1867 __netif_tx_unlock(txq); 1868 } 1869 local_bh_enable(); 1870 } 1871 1872 static inline void netif_addr_lock(struct net_device *dev) 1873 { 1874 spin_lock(&dev->addr_list_lock); 1875 } 1876 1877 static inline void netif_addr_lock_bh(struct net_device *dev) 1878 { 1879 spin_lock_bh(&dev->addr_list_lock); 1880 } 1881 1882 static inline void netif_addr_unlock(struct net_device *dev) 1883 { 1884 spin_unlock(&dev->addr_list_lock); 1885 } 1886 1887 static inline void netif_addr_unlock_bh(struct net_device *dev) 1888 { 1889 spin_unlock_bh(&dev->addr_list_lock); 1890 } 1891 1892 /* 1893 * dev_addrs walker. Should be used only for read access. Call with 1894 * rcu_read_lock held. 1895 */ 1896 #define for_each_dev_addr(dev, ha) \ 1897 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 1898 1899 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 1900 1901 extern void ether_setup(struct net_device *dev); 1902 1903 /* Support for loadable net-drivers */ 1904 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 1905 void (*setup)(struct net_device *), 1906 unsigned int queue_count); 1907 #define alloc_netdev(sizeof_priv, name, setup) \ 1908 alloc_netdev_mq(sizeof_priv, name, setup, 1) 1909 extern int register_netdev(struct net_device *dev); 1910 extern void unregister_netdev(struct net_device *dev); 1911 1912 /* Functions used for device addresses handling */ 1913 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 1914 unsigned char addr_type); 1915 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 1916 unsigned char addr_type); 1917 extern int dev_addr_add_multiple(struct net_device *to_dev, 1918 struct net_device *from_dev, 1919 unsigned char addr_type); 1920 extern int dev_addr_del_multiple(struct net_device *to_dev, 1921 struct net_device *from_dev, 1922 unsigned char addr_type); 1923 1924 /* Functions used for secondary unicast and multicast support */ 1925 extern void dev_set_rx_mode(struct net_device *dev); 1926 extern void __dev_set_rx_mode(struct net_device *dev); 1927 extern int dev_unicast_delete(struct net_device *dev, void *addr); 1928 extern int dev_unicast_add(struct net_device *dev, void *addr); 1929 extern int dev_unicast_sync(struct net_device *to, struct net_device *from); 1930 extern void dev_unicast_unsync(struct net_device *to, struct net_device *from); 1931 extern int dev_mc_delete(struct net_device *dev, void *addr, int alen, int all); 1932 extern int dev_mc_add(struct net_device *dev, void *addr, int alen, int newonly); 1933 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 1934 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 1935 extern int __dev_addr_delete(struct dev_addr_list **list, int *count, void *addr, int alen, int all); 1936 extern int __dev_addr_add(struct dev_addr_list **list, int *count, void *addr, int alen, int newonly); 1937 extern int __dev_addr_sync(struct dev_addr_list **to, int *to_count, struct dev_addr_list **from, int *from_count); 1938 extern void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, struct dev_addr_list **from, int *from_count); 1939 extern int dev_set_promiscuity(struct net_device *dev, int inc); 1940 extern int dev_set_allmulti(struct net_device *dev, int inc); 1941 extern void netdev_state_change(struct net_device *dev); 1942 extern void netdev_bonding_change(struct net_device *dev, 1943 unsigned long event); 1944 extern void netdev_features_change(struct net_device *dev); 1945 /* Load a device via the kmod */ 1946 extern void dev_load(struct net *net, const char *name); 1947 extern void dev_mcast_init(void); 1948 extern const struct net_device_stats *dev_get_stats(struct net_device *dev); 1949 extern void dev_txq_stats_fold(const struct net_device *dev, struct net_device_stats *stats); 1950 1951 extern int netdev_max_backlog; 1952 extern int weight_p; 1953 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 1954 extern int skb_checksum_help(struct sk_buff *skb); 1955 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features); 1956 #ifdef CONFIG_BUG 1957 extern void netdev_rx_csum_fault(struct net_device *dev); 1958 #else 1959 static inline void netdev_rx_csum_fault(struct net_device *dev) 1960 { 1961 } 1962 #endif 1963 /* rx skb timestamps */ 1964 extern void net_enable_timestamp(void); 1965 extern void net_disable_timestamp(void); 1966 1967 #ifdef CONFIG_PROC_FS 1968 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 1969 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1970 extern void dev_seq_stop(struct seq_file *seq, void *v); 1971 #endif 1972 1973 extern int netdev_class_create_file(struct class_attribute *class_attr); 1974 extern void netdev_class_remove_file(struct class_attribute *class_attr); 1975 1976 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); 1977 1978 extern void linkwatch_run_queue(void); 1979 1980 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 1981 unsigned long mask); 1982 unsigned long netdev_fix_features(unsigned long features, const char *name); 1983 1984 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 1985 struct net_device *dev); 1986 1987 static inline int net_gso_ok(int features, int gso_type) 1988 { 1989 int feature = gso_type << NETIF_F_GSO_SHIFT; 1990 return (features & feature) == feature; 1991 } 1992 1993 static inline int skb_gso_ok(struct sk_buff *skb, int features) 1994 { 1995 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 1996 (!skb_has_frags(skb) || (features & NETIF_F_FRAGLIST)); 1997 } 1998 1999 static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb) 2000 { 2001 return skb_is_gso(skb) && 2002 (!skb_gso_ok(skb, dev->features) || 2003 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2004 } 2005 2006 static inline void netif_set_gso_max_size(struct net_device *dev, 2007 unsigned int size) 2008 { 2009 dev->gso_max_size = size; 2010 } 2011 2012 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2013 struct net_device *master) 2014 { 2015 if (skb->pkt_type == PACKET_HOST) { 2016 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2017 2018 memcpy(dest, master->dev_addr, ETH_ALEN); 2019 } 2020 } 2021 2022 /* On bonding slaves other than the currently active slave, suppress 2023 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2024 * ARP on active-backup slaves with arp_validate enabled. 2025 */ 2026 static inline int skb_bond_should_drop(struct sk_buff *skb) 2027 { 2028 struct net_device *dev = skb->dev; 2029 struct net_device *master = dev->master; 2030 2031 if (master) { 2032 if (master->priv_flags & IFF_MASTER_ARPMON) 2033 dev->last_rx = jiffies; 2034 2035 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) { 2036 /* Do address unmangle. The local destination address 2037 * will be always the one master has. Provides the right 2038 * functionality in a bridge. 2039 */ 2040 skb_bond_set_mac_by_master(skb, master); 2041 } 2042 2043 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2044 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2045 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2046 return 0; 2047 2048 if (master->priv_flags & IFF_MASTER_ALB) { 2049 if (skb->pkt_type != PACKET_BROADCAST && 2050 skb->pkt_type != PACKET_MULTICAST) 2051 return 0; 2052 } 2053 if (master->priv_flags & IFF_MASTER_8023AD && 2054 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2055 return 0; 2056 2057 return 1; 2058 } 2059 } 2060 return 0; 2061 } 2062 2063 extern struct pernet_operations __net_initdata loopback_net_ops; 2064 2065 static inline int dev_ethtool_get_settings(struct net_device *dev, 2066 struct ethtool_cmd *cmd) 2067 { 2068 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 2069 return -EOPNOTSUPP; 2070 return dev->ethtool_ops->get_settings(dev, cmd); 2071 } 2072 2073 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2074 { 2075 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2076 return 0; 2077 return dev->ethtool_ops->get_rx_csum(dev); 2078 } 2079 2080 static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2081 { 2082 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2083 return 0; 2084 return dev->ethtool_ops->get_flags(dev); 2085 } 2086 #endif /* __KERNEL__ */ 2087 2088 #endif /* _LINUX_NETDEVICE_H */ 2089