1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 55 struct netpoll_info; 56 struct device; 57 struct ethtool_ops; 58 struct phy_device; 59 struct dsa_port; 60 struct ip_tunnel_parm; 61 struct macsec_context; 62 struct macsec_ops; 63 struct netdev_name_node; 64 struct sd_flow_limit; 65 struct sfp_bus; 66 /* 802.11 specific */ 67 struct wireless_dev; 68 /* 802.15.4 specific */ 69 struct wpan_dev; 70 struct mpls_dev; 71 /* UDP Tunnel offloads */ 72 struct udp_tunnel_info; 73 struct udp_tunnel_nic_info; 74 struct udp_tunnel_nic; 75 struct bpf_prog; 76 struct xdp_buff; 77 78 void synchronize_net(void); 79 void netdev_set_default_ethtool_ops(struct net_device *dev, 80 const struct ethtool_ops *ops); 81 82 /* Backlog congestion levels */ 83 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 84 #define NET_RX_DROP 1 /* packet dropped */ 85 86 #define MAX_NEST_DEV 8 87 88 /* 89 * Transmit return codes: transmit return codes originate from three different 90 * namespaces: 91 * 92 * - qdisc return codes 93 * - driver transmit return codes 94 * - errno values 95 * 96 * Drivers are allowed to return any one of those in their hard_start_xmit() 97 * function. Real network devices commonly used with qdiscs should only return 98 * the driver transmit return codes though - when qdiscs are used, the actual 99 * transmission happens asynchronously, so the value is not propagated to 100 * higher layers. Virtual network devices transmit synchronously; in this case 101 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 102 * others are propagated to higher layers. 103 */ 104 105 /* qdisc ->enqueue() return codes. */ 106 #define NET_XMIT_SUCCESS 0x00 107 #define NET_XMIT_DROP 0x01 /* skb dropped */ 108 #define NET_XMIT_CN 0x02 /* congestion notification */ 109 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 110 111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 112 * indicates that the device will soon be dropping packets, or already drops 113 * some packets of the same priority; prompting us to send less aggressively. */ 114 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 115 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 116 117 /* Driver transmit return codes */ 118 #define NETDEV_TX_MASK 0xf0 119 120 enum netdev_tx { 121 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 122 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 123 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 124 }; 125 typedef enum netdev_tx netdev_tx_t; 126 127 /* 128 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 129 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 130 */ 131 static inline bool dev_xmit_complete(int rc) 132 { 133 /* 134 * Positive cases with an skb consumed by a driver: 135 * - successful transmission (rc == NETDEV_TX_OK) 136 * - error while transmitting (rc < 0) 137 * - error while queueing to a different device (rc & NET_XMIT_MASK) 138 */ 139 if (likely(rc < NET_XMIT_MASK)) 140 return true; 141 142 return false; 143 } 144 145 /* 146 * Compute the worst-case header length according to the protocols 147 * used. 148 */ 149 150 #if defined(CONFIG_HYPERV_NET) 151 # define LL_MAX_HEADER 128 152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 153 # if defined(CONFIG_MAC80211_MESH) 154 # define LL_MAX_HEADER 128 155 # else 156 # define LL_MAX_HEADER 96 157 # endif 158 #else 159 # define LL_MAX_HEADER 32 160 #endif 161 162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 163 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 164 #define MAX_HEADER LL_MAX_HEADER 165 #else 166 #define MAX_HEADER (LL_MAX_HEADER + 48) 167 #endif 168 169 /* 170 * Old network device statistics. Fields are native words 171 * (unsigned long) so they can be read and written atomically. 172 */ 173 174 struct net_device_stats { 175 unsigned long rx_packets; 176 unsigned long tx_packets; 177 unsigned long rx_bytes; 178 unsigned long tx_bytes; 179 unsigned long rx_errors; 180 unsigned long tx_errors; 181 unsigned long rx_dropped; 182 unsigned long tx_dropped; 183 unsigned long multicast; 184 unsigned long collisions; 185 unsigned long rx_length_errors; 186 unsigned long rx_over_errors; 187 unsigned long rx_crc_errors; 188 unsigned long rx_frame_errors; 189 unsigned long rx_fifo_errors; 190 unsigned long rx_missed_errors; 191 unsigned long tx_aborted_errors; 192 unsigned long tx_carrier_errors; 193 unsigned long tx_fifo_errors; 194 unsigned long tx_heartbeat_errors; 195 unsigned long tx_window_errors; 196 unsigned long rx_compressed; 197 unsigned long tx_compressed; 198 }; 199 200 /* per-cpu stats, allocated on demand. 201 * Try to fit them in a single cache line, for dev_get_stats() sake. 202 */ 203 struct net_device_core_stats { 204 unsigned long rx_dropped; 205 unsigned long tx_dropped; 206 unsigned long rx_nohandler; 207 unsigned long rx_otherhost_dropped; 208 } __aligned(4 * sizeof(unsigned long)); 209 210 #include <linux/cache.h> 211 #include <linux/skbuff.h> 212 213 #ifdef CONFIG_RPS 214 #include <linux/static_key.h> 215 extern struct static_key_false rps_needed; 216 extern struct static_key_false rfs_needed; 217 #endif 218 219 struct neighbour; 220 struct neigh_parms; 221 struct sk_buff; 222 223 struct netdev_hw_addr { 224 struct list_head list; 225 struct rb_node node; 226 unsigned char addr[MAX_ADDR_LEN]; 227 unsigned char type; 228 #define NETDEV_HW_ADDR_T_LAN 1 229 #define NETDEV_HW_ADDR_T_SAN 2 230 #define NETDEV_HW_ADDR_T_UNICAST 3 231 #define NETDEV_HW_ADDR_T_MULTICAST 4 232 bool global_use; 233 int sync_cnt; 234 int refcount; 235 int synced; 236 struct rcu_head rcu_head; 237 }; 238 239 struct netdev_hw_addr_list { 240 struct list_head list; 241 int count; 242 243 /* Auxiliary tree for faster lookup on addition and deletion */ 244 struct rb_root tree; 245 }; 246 247 #define netdev_hw_addr_list_count(l) ((l)->count) 248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 249 #define netdev_hw_addr_list_for_each(ha, l) \ 250 list_for_each_entry(ha, &(l)->list, list) 251 252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 254 #define netdev_for_each_uc_addr(ha, dev) \ 255 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 256 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 257 netdev_for_each_uc_addr((_ha), (_dev)) \ 258 if ((_ha)->sync_cnt) 259 260 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 261 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 262 #define netdev_for_each_mc_addr(ha, dev) \ 263 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 264 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 265 netdev_for_each_mc_addr((_ha), (_dev)) \ 266 if ((_ha)->sync_cnt) 267 268 struct hh_cache { 269 unsigned int hh_len; 270 seqlock_t hh_lock; 271 272 /* cached hardware header; allow for machine alignment needs. */ 273 #define HH_DATA_MOD 16 274 #define HH_DATA_OFF(__len) \ 275 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 276 #define HH_DATA_ALIGN(__len) \ 277 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 278 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 279 }; 280 281 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 282 * Alternative is: 283 * dev->hard_header_len ? (dev->hard_header_len + 284 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 285 * 286 * We could use other alignment values, but we must maintain the 287 * relationship HH alignment <= LL alignment. 288 */ 289 #define LL_RESERVED_SPACE(dev) \ 290 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 291 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 292 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 293 294 struct header_ops { 295 int (*create) (struct sk_buff *skb, struct net_device *dev, 296 unsigned short type, const void *daddr, 297 const void *saddr, unsigned int len); 298 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 299 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 300 void (*cache_update)(struct hh_cache *hh, 301 const struct net_device *dev, 302 const unsigned char *haddr); 303 bool (*validate)(const char *ll_header, unsigned int len); 304 __be16 (*parse_protocol)(const struct sk_buff *skb); 305 }; 306 307 /* These flag bits are private to the generic network queueing 308 * layer; they may not be explicitly referenced by any other 309 * code. 310 */ 311 312 enum netdev_state_t { 313 __LINK_STATE_START, 314 __LINK_STATE_PRESENT, 315 __LINK_STATE_NOCARRIER, 316 __LINK_STATE_LINKWATCH_PENDING, 317 __LINK_STATE_DORMANT, 318 __LINK_STATE_TESTING, 319 }; 320 321 struct gro_list { 322 struct list_head list; 323 int count; 324 }; 325 326 /* 327 * size of gro hash buckets, must less than bit number of 328 * napi_struct::gro_bitmask 329 */ 330 #define GRO_HASH_BUCKETS 8 331 332 /* 333 * Structure for NAPI scheduling similar to tasklet but with weighting 334 */ 335 struct napi_struct { 336 /* The poll_list must only be managed by the entity which 337 * changes the state of the NAPI_STATE_SCHED bit. This means 338 * whoever atomically sets that bit can add this napi_struct 339 * to the per-CPU poll_list, and whoever clears that bit 340 * can remove from the list right before clearing the bit. 341 */ 342 struct list_head poll_list; 343 344 unsigned long state; 345 int weight; 346 int defer_hard_irqs_count; 347 unsigned long gro_bitmask; 348 int (*poll)(struct napi_struct *, int); 349 #ifdef CONFIG_NETPOLL 350 int poll_owner; 351 #endif 352 struct net_device *dev; 353 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 354 struct sk_buff *skb; 355 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 356 int rx_count; /* length of rx_list */ 357 struct hrtimer timer; 358 struct list_head dev_list; 359 struct hlist_node napi_hash_node; 360 unsigned int napi_id; 361 struct task_struct *thread; 362 }; 363 364 enum { 365 NAPI_STATE_SCHED, /* Poll is scheduled */ 366 NAPI_STATE_MISSED, /* reschedule a napi */ 367 NAPI_STATE_DISABLE, /* Disable pending */ 368 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 369 NAPI_STATE_LISTED, /* NAPI added to system lists */ 370 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 371 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 372 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 373 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 374 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 375 }; 376 377 enum { 378 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 379 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 380 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 381 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 382 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 383 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 384 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 385 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 386 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 387 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 388 }; 389 390 enum gro_result { 391 GRO_MERGED, 392 GRO_MERGED_FREE, 393 GRO_HELD, 394 GRO_NORMAL, 395 GRO_CONSUMED, 396 }; 397 typedef enum gro_result gro_result_t; 398 399 /* 400 * enum rx_handler_result - Possible return values for rx_handlers. 401 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 402 * further. 403 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 404 * case skb->dev was changed by rx_handler. 405 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 406 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 407 * 408 * rx_handlers are functions called from inside __netif_receive_skb(), to do 409 * special processing of the skb, prior to delivery to protocol handlers. 410 * 411 * Currently, a net_device can only have a single rx_handler registered. Trying 412 * to register a second rx_handler will return -EBUSY. 413 * 414 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 415 * To unregister a rx_handler on a net_device, use 416 * netdev_rx_handler_unregister(). 417 * 418 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 419 * do with the skb. 420 * 421 * If the rx_handler consumed the skb in some way, it should return 422 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 423 * the skb to be delivered in some other way. 424 * 425 * If the rx_handler changed skb->dev, to divert the skb to another 426 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 427 * new device will be called if it exists. 428 * 429 * If the rx_handler decides the skb should be ignored, it should return 430 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 431 * are registered on exact device (ptype->dev == skb->dev). 432 * 433 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 434 * delivered, it should return RX_HANDLER_PASS. 435 * 436 * A device without a registered rx_handler will behave as if rx_handler 437 * returned RX_HANDLER_PASS. 438 */ 439 440 enum rx_handler_result { 441 RX_HANDLER_CONSUMED, 442 RX_HANDLER_ANOTHER, 443 RX_HANDLER_EXACT, 444 RX_HANDLER_PASS, 445 }; 446 typedef enum rx_handler_result rx_handler_result_t; 447 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 448 449 void __napi_schedule(struct napi_struct *n); 450 void __napi_schedule_irqoff(struct napi_struct *n); 451 452 static inline bool napi_disable_pending(struct napi_struct *n) 453 { 454 return test_bit(NAPI_STATE_DISABLE, &n->state); 455 } 456 457 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 458 { 459 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 460 } 461 462 bool napi_schedule_prep(struct napi_struct *n); 463 464 /** 465 * napi_schedule - schedule NAPI poll 466 * @n: NAPI context 467 * 468 * Schedule NAPI poll routine to be called if it is not already 469 * running. 470 */ 471 static inline void napi_schedule(struct napi_struct *n) 472 { 473 if (napi_schedule_prep(n)) 474 __napi_schedule(n); 475 } 476 477 /** 478 * napi_schedule_irqoff - schedule NAPI poll 479 * @n: NAPI context 480 * 481 * Variant of napi_schedule(), assuming hard irqs are masked. 482 */ 483 static inline void napi_schedule_irqoff(struct napi_struct *n) 484 { 485 if (napi_schedule_prep(n)) 486 __napi_schedule_irqoff(n); 487 } 488 489 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 490 static inline bool napi_reschedule(struct napi_struct *napi) 491 { 492 if (napi_schedule_prep(napi)) { 493 __napi_schedule(napi); 494 return true; 495 } 496 return false; 497 } 498 499 bool napi_complete_done(struct napi_struct *n, int work_done); 500 /** 501 * napi_complete - NAPI processing complete 502 * @n: NAPI context 503 * 504 * Mark NAPI processing as complete. 505 * Consider using napi_complete_done() instead. 506 * Return false if device should avoid rearming interrupts. 507 */ 508 static inline bool napi_complete(struct napi_struct *n) 509 { 510 return napi_complete_done(n, 0); 511 } 512 513 int dev_set_threaded(struct net_device *dev, bool threaded); 514 515 /** 516 * napi_disable - prevent NAPI from scheduling 517 * @n: NAPI context 518 * 519 * Stop NAPI from being scheduled on this context. 520 * Waits till any outstanding processing completes. 521 */ 522 void napi_disable(struct napi_struct *n); 523 524 void napi_enable(struct napi_struct *n); 525 526 /** 527 * napi_synchronize - wait until NAPI is not running 528 * @n: NAPI context 529 * 530 * Wait until NAPI is done being scheduled on this context. 531 * Waits till any outstanding processing completes but 532 * does not disable future activations. 533 */ 534 static inline void napi_synchronize(const struct napi_struct *n) 535 { 536 if (IS_ENABLED(CONFIG_SMP)) 537 while (test_bit(NAPI_STATE_SCHED, &n->state)) 538 msleep(1); 539 else 540 barrier(); 541 } 542 543 /** 544 * napi_if_scheduled_mark_missed - if napi is running, set the 545 * NAPIF_STATE_MISSED 546 * @n: NAPI context 547 * 548 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 549 * NAPI is scheduled. 550 **/ 551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 552 { 553 unsigned long val, new; 554 555 val = READ_ONCE(n->state); 556 do { 557 if (val & NAPIF_STATE_DISABLE) 558 return true; 559 560 if (!(val & NAPIF_STATE_SCHED)) 561 return false; 562 563 new = val | NAPIF_STATE_MISSED; 564 } while (!try_cmpxchg(&n->state, &val, new)); 565 566 return true; 567 } 568 569 enum netdev_queue_state_t { 570 __QUEUE_STATE_DRV_XOFF, 571 __QUEUE_STATE_STACK_XOFF, 572 __QUEUE_STATE_FROZEN, 573 }; 574 575 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 576 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 577 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 578 579 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 581 QUEUE_STATE_FROZEN) 582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 583 QUEUE_STATE_FROZEN) 584 585 /* 586 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 587 * netif_tx_* functions below are used to manipulate this flag. The 588 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 589 * queue independently. The netif_xmit_*stopped functions below are called 590 * to check if the queue has been stopped by the driver or stack (either 591 * of the XOFF bits are set in the state). Drivers should not need to call 592 * netif_xmit*stopped functions, they should only be using netif_tx_*. 593 */ 594 595 struct netdev_queue { 596 /* 597 * read-mostly part 598 */ 599 struct net_device *dev; 600 netdevice_tracker dev_tracker; 601 602 struct Qdisc __rcu *qdisc; 603 struct Qdisc *qdisc_sleeping; 604 #ifdef CONFIG_SYSFS 605 struct kobject kobj; 606 #endif 607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 608 int numa_node; 609 #endif 610 unsigned long tx_maxrate; 611 /* 612 * Number of TX timeouts for this queue 613 * (/sys/class/net/DEV/Q/trans_timeout) 614 */ 615 atomic_long_t trans_timeout; 616 617 /* Subordinate device that the queue has been assigned to */ 618 struct net_device *sb_dev; 619 #ifdef CONFIG_XDP_SOCKETS 620 struct xsk_buff_pool *pool; 621 #endif 622 /* 623 * write-mostly part 624 */ 625 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 626 int xmit_lock_owner; 627 /* 628 * Time (in jiffies) of last Tx 629 */ 630 unsigned long trans_start; 631 632 unsigned long state; 633 634 #ifdef CONFIG_BQL 635 struct dql dql; 636 #endif 637 } ____cacheline_aligned_in_smp; 638 639 extern int sysctl_fb_tunnels_only_for_init_net; 640 extern int sysctl_devconf_inherit_init_net; 641 642 /* 643 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 644 * == 1 : For initns only 645 * == 2 : For none. 646 */ 647 static inline bool net_has_fallback_tunnels(const struct net *net) 648 { 649 #if IS_ENABLED(CONFIG_SYSCTL) 650 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 651 652 return !fb_tunnels_only_for_init_net || 653 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 654 #else 655 return true; 656 #endif 657 } 658 659 static inline int net_inherit_devconf(void) 660 { 661 #if IS_ENABLED(CONFIG_SYSCTL) 662 return READ_ONCE(sysctl_devconf_inherit_init_net); 663 #else 664 return 0; 665 #endif 666 } 667 668 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 669 { 670 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 671 return q->numa_node; 672 #else 673 return NUMA_NO_NODE; 674 #endif 675 } 676 677 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 678 { 679 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 680 q->numa_node = node; 681 #endif 682 } 683 684 #ifdef CONFIG_RPS 685 /* 686 * This structure holds an RPS map which can be of variable length. The 687 * map is an array of CPUs. 688 */ 689 struct rps_map { 690 unsigned int len; 691 struct rcu_head rcu; 692 u16 cpus[]; 693 }; 694 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 695 696 /* 697 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 698 * tail pointer for that CPU's input queue at the time of last enqueue, and 699 * a hardware filter index. 700 */ 701 struct rps_dev_flow { 702 u16 cpu; 703 u16 filter; 704 unsigned int last_qtail; 705 }; 706 #define RPS_NO_FILTER 0xffff 707 708 /* 709 * The rps_dev_flow_table structure contains a table of flow mappings. 710 */ 711 struct rps_dev_flow_table { 712 unsigned int mask; 713 struct rcu_head rcu; 714 struct rps_dev_flow flows[]; 715 }; 716 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 717 ((_num) * sizeof(struct rps_dev_flow))) 718 719 /* 720 * The rps_sock_flow_table contains mappings of flows to the last CPU 721 * on which they were processed by the application (set in recvmsg). 722 * Each entry is a 32bit value. Upper part is the high-order bits 723 * of flow hash, lower part is CPU number. 724 * rps_cpu_mask is used to partition the space, depending on number of 725 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 726 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 727 * meaning we use 32-6=26 bits for the hash. 728 */ 729 struct rps_sock_flow_table { 730 u32 mask; 731 732 u32 ents[] ____cacheline_aligned_in_smp; 733 }; 734 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 735 736 #define RPS_NO_CPU 0xffff 737 738 extern u32 rps_cpu_mask; 739 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 740 741 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 742 u32 hash) 743 { 744 if (table && hash) { 745 unsigned int index = hash & table->mask; 746 u32 val = hash & ~rps_cpu_mask; 747 748 /* We only give a hint, preemption can change CPU under us */ 749 val |= raw_smp_processor_id(); 750 751 if (table->ents[index] != val) 752 table->ents[index] = val; 753 } 754 } 755 756 #ifdef CONFIG_RFS_ACCEL 757 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 758 u16 filter_id); 759 #endif 760 #endif /* CONFIG_RPS */ 761 762 /* This structure contains an instance of an RX queue. */ 763 struct netdev_rx_queue { 764 struct xdp_rxq_info xdp_rxq; 765 #ifdef CONFIG_RPS 766 struct rps_map __rcu *rps_map; 767 struct rps_dev_flow_table __rcu *rps_flow_table; 768 #endif 769 struct kobject kobj; 770 struct net_device *dev; 771 netdevice_tracker dev_tracker; 772 773 #ifdef CONFIG_XDP_SOCKETS 774 struct xsk_buff_pool *pool; 775 #endif 776 } ____cacheline_aligned_in_smp; 777 778 /* 779 * RX queue sysfs structures and functions. 780 */ 781 struct rx_queue_attribute { 782 struct attribute attr; 783 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 784 ssize_t (*store)(struct netdev_rx_queue *queue, 785 const char *buf, size_t len); 786 }; 787 788 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 789 enum xps_map_type { 790 XPS_CPUS = 0, 791 XPS_RXQS, 792 XPS_MAPS_MAX, 793 }; 794 795 #ifdef CONFIG_XPS 796 /* 797 * This structure holds an XPS map which can be of variable length. The 798 * map is an array of queues. 799 */ 800 struct xps_map { 801 unsigned int len; 802 unsigned int alloc_len; 803 struct rcu_head rcu; 804 u16 queues[]; 805 }; 806 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 807 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 808 - sizeof(struct xps_map)) / sizeof(u16)) 809 810 /* 811 * This structure holds all XPS maps for device. Maps are indexed by CPU. 812 * 813 * We keep track of the number of cpus/rxqs used when the struct is allocated, 814 * in nr_ids. This will help not accessing out-of-bound memory. 815 * 816 * We keep track of the number of traffic classes used when the struct is 817 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 818 * not crossing its upper bound, as the original dev->num_tc can be updated in 819 * the meantime. 820 */ 821 struct xps_dev_maps { 822 struct rcu_head rcu; 823 unsigned int nr_ids; 824 s16 num_tc; 825 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 826 }; 827 828 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 829 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 830 831 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 832 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 833 834 #endif /* CONFIG_XPS */ 835 836 #define TC_MAX_QUEUE 16 837 #define TC_BITMASK 15 838 /* HW offloaded queuing disciplines txq count and offset maps */ 839 struct netdev_tc_txq { 840 u16 count; 841 u16 offset; 842 }; 843 844 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 845 /* 846 * This structure is to hold information about the device 847 * configured to run FCoE protocol stack. 848 */ 849 struct netdev_fcoe_hbainfo { 850 char manufacturer[64]; 851 char serial_number[64]; 852 char hardware_version[64]; 853 char driver_version[64]; 854 char optionrom_version[64]; 855 char firmware_version[64]; 856 char model[256]; 857 char model_description[256]; 858 }; 859 #endif 860 861 #define MAX_PHYS_ITEM_ID_LEN 32 862 863 /* This structure holds a unique identifier to identify some 864 * physical item (port for example) used by a netdevice. 865 */ 866 struct netdev_phys_item_id { 867 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 868 unsigned char id_len; 869 }; 870 871 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 872 struct netdev_phys_item_id *b) 873 { 874 return a->id_len == b->id_len && 875 memcmp(a->id, b->id, a->id_len) == 0; 876 } 877 878 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 879 struct sk_buff *skb, 880 struct net_device *sb_dev); 881 882 enum net_device_path_type { 883 DEV_PATH_ETHERNET = 0, 884 DEV_PATH_VLAN, 885 DEV_PATH_BRIDGE, 886 DEV_PATH_PPPOE, 887 DEV_PATH_DSA, 888 DEV_PATH_MTK_WDMA, 889 }; 890 891 struct net_device_path { 892 enum net_device_path_type type; 893 const struct net_device *dev; 894 union { 895 struct { 896 u16 id; 897 __be16 proto; 898 u8 h_dest[ETH_ALEN]; 899 } encap; 900 struct { 901 enum { 902 DEV_PATH_BR_VLAN_KEEP, 903 DEV_PATH_BR_VLAN_TAG, 904 DEV_PATH_BR_VLAN_UNTAG, 905 DEV_PATH_BR_VLAN_UNTAG_HW, 906 } vlan_mode; 907 u16 vlan_id; 908 __be16 vlan_proto; 909 } bridge; 910 struct { 911 int port; 912 u16 proto; 913 } dsa; 914 struct { 915 u8 wdma_idx; 916 u8 queue; 917 u16 wcid; 918 u8 bss; 919 } mtk_wdma; 920 }; 921 }; 922 923 #define NET_DEVICE_PATH_STACK_MAX 5 924 #define NET_DEVICE_PATH_VLAN_MAX 2 925 926 struct net_device_path_stack { 927 int num_paths; 928 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 929 }; 930 931 struct net_device_path_ctx { 932 const struct net_device *dev; 933 u8 daddr[ETH_ALEN]; 934 935 int num_vlans; 936 struct { 937 u16 id; 938 __be16 proto; 939 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 940 }; 941 942 enum tc_setup_type { 943 TC_SETUP_QDISC_MQPRIO, 944 TC_SETUP_CLSU32, 945 TC_SETUP_CLSFLOWER, 946 TC_SETUP_CLSMATCHALL, 947 TC_SETUP_CLSBPF, 948 TC_SETUP_BLOCK, 949 TC_SETUP_QDISC_CBS, 950 TC_SETUP_QDISC_RED, 951 TC_SETUP_QDISC_PRIO, 952 TC_SETUP_QDISC_MQ, 953 TC_SETUP_QDISC_ETF, 954 TC_SETUP_ROOT_QDISC, 955 TC_SETUP_QDISC_GRED, 956 TC_SETUP_QDISC_TAPRIO, 957 TC_SETUP_FT, 958 TC_SETUP_QDISC_ETS, 959 TC_SETUP_QDISC_TBF, 960 TC_SETUP_QDISC_FIFO, 961 TC_SETUP_QDISC_HTB, 962 TC_SETUP_ACT, 963 }; 964 965 /* These structures hold the attributes of bpf state that are being passed 966 * to the netdevice through the bpf op. 967 */ 968 enum bpf_netdev_command { 969 /* Set or clear a bpf program used in the earliest stages of packet 970 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 971 * is responsible for calling bpf_prog_put on any old progs that are 972 * stored. In case of error, the callee need not release the new prog 973 * reference, but on success it takes ownership and must bpf_prog_put 974 * when it is no longer used. 975 */ 976 XDP_SETUP_PROG, 977 XDP_SETUP_PROG_HW, 978 /* BPF program for offload callbacks, invoked at program load time. */ 979 BPF_OFFLOAD_MAP_ALLOC, 980 BPF_OFFLOAD_MAP_FREE, 981 XDP_SETUP_XSK_POOL, 982 }; 983 984 struct bpf_prog_offload_ops; 985 struct netlink_ext_ack; 986 struct xdp_umem; 987 struct xdp_dev_bulk_queue; 988 struct bpf_xdp_link; 989 990 enum bpf_xdp_mode { 991 XDP_MODE_SKB = 0, 992 XDP_MODE_DRV = 1, 993 XDP_MODE_HW = 2, 994 __MAX_XDP_MODE 995 }; 996 997 struct bpf_xdp_entity { 998 struct bpf_prog *prog; 999 struct bpf_xdp_link *link; 1000 }; 1001 1002 struct netdev_bpf { 1003 enum bpf_netdev_command command; 1004 union { 1005 /* XDP_SETUP_PROG */ 1006 struct { 1007 u32 flags; 1008 struct bpf_prog *prog; 1009 struct netlink_ext_ack *extack; 1010 }; 1011 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1012 struct { 1013 struct bpf_offloaded_map *offmap; 1014 }; 1015 /* XDP_SETUP_XSK_POOL */ 1016 struct { 1017 struct xsk_buff_pool *pool; 1018 u16 queue_id; 1019 } xsk; 1020 }; 1021 }; 1022 1023 /* Flags for ndo_xsk_wakeup. */ 1024 #define XDP_WAKEUP_RX (1 << 0) 1025 #define XDP_WAKEUP_TX (1 << 1) 1026 1027 #ifdef CONFIG_XFRM_OFFLOAD 1028 struct xfrmdev_ops { 1029 int (*xdo_dev_state_add) (struct xfrm_state *x); 1030 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1031 void (*xdo_dev_state_free) (struct xfrm_state *x); 1032 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1033 struct xfrm_state *x); 1034 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1035 }; 1036 #endif 1037 1038 struct dev_ifalias { 1039 struct rcu_head rcuhead; 1040 char ifalias[]; 1041 }; 1042 1043 struct devlink; 1044 struct tlsdev_ops; 1045 1046 struct netdev_net_notifier { 1047 struct list_head list; 1048 struct notifier_block *nb; 1049 }; 1050 1051 /* 1052 * This structure defines the management hooks for network devices. 1053 * The following hooks can be defined; unless noted otherwise, they are 1054 * optional and can be filled with a null pointer. 1055 * 1056 * int (*ndo_init)(struct net_device *dev); 1057 * This function is called once when a network device is registered. 1058 * The network device can use this for any late stage initialization 1059 * or semantic validation. It can fail with an error code which will 1060 * be propagated back to register_netdev. 1061 * 1062 * void (*ndo_uninit)(struct net_device *dev); 1063 * This function is called when device is unregistered or when registration 1064 * fails. It is not called if init fails. 1065 * 1066 * int (*ndo_open)(struct net_device *dev); 1067 * This function is called when a network device transitions to the up 1068 * state. 1069 * 1070 * int (*ndo_stop)(struct net_device *dev); 1071 * This function is called when a network device transitions to the down 1072 * state. 1073 * 1074 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1075 * struct net_device *dev); 1076 * Called when a packet needs to be transmitted. 1077 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1078 * the queue before that can happen; it's for obsolete devices and weird 1079 * corner cases, but the stack really does a non-trivial amount 1080 * of useless work if you return NETDEV_TX_BUSY. 1081 * Required; cannot be NULL. 1082 * 1083 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1084 * struct net_device *dev 1085 * netdev_features_t features); 1086 * Called by core transmit path to determine if device is capable of 1087 * performing offload operations on a given packet. This is to give 1088 * the device an opportunity to implement any restrictions that cannot 1089 * be otherwise expressed by feature flags. The check is called with 1090 * the set of features that the stack has calculated and it returns 1091 * those the driver believes to be appropriate. 1092 * 1093 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1094 * struct net_device *sb_dev); 1095 * Called to decide which queue to use when device supports multiple 1096 * transmit queues. 1097 * 1098 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1099 * This function is called to allow device receiver to make 1100 * changes to configuration when multicast or promiscuous is enabled. 1101 * 1102 * void (*ndo_set_rx_mode)(struct net_device *dev); 1103 * This function is called device changes address list filtering. 1104 * If driver handles unicast address filtering, it should set 1105 * IFF_UNICAST_FLT in its priv_flags. 1106 * 1107 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1108 * This function is called when the Media Access Control address 1109 * needs to be changed. If this interface is not defined, the 1110 * MAC address can not be changed. 1111 * 1112 * int (*ndo_validate_addr)(struct net_device *dev); 1113 * Test if Media Access Control address is valid for the device. 1114 * 1115 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1116 * Old-style ioctl entry point. This is used internally by the 1117 * appletalk and ieee802154 subsystems but is no longer called by 1118 * the device ioctl handler. 1119 * 1120 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1121 * Used by the bonding driver for its device specific ioctls: 1122 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1123 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1124 * 1125 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1126 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1127 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1128 * 1129 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1130 * Used to set network devices bus interface parameters. This interface 1131 * is retained for legacy reasons; new devices should use the bus 1132 * interface (PCI) for low level management. 1133 * 1134 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1135 * Called when a user wants to change the Maximum Transfer Unit 1136 * of a device. 1137 * 1138 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1139 * Callback used when the transmitter has not made any progress 1140 * for dev->watchdog ticks. 1141 * 1142 * void (*ndo_get_stats64)(struct net_device *dev, 1143 * struct rtnl_link_stats64 *storage); 1144 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1145 * Called when a user wants to get the network device usage 1146 * statistics. Drivers must do one of the following: 1147 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1148 * rtnl_link_stats64 structure passed by the caller. 1149 * 2. Define @ndo_get_stats to update a net_device_stats structure 1150 * (which should normally be dev->stats) and return a pointer to 1151 * it. The structure may be changed asynchronously only if each 1152 * field is written atomically. 1153 * 3. Update dev->stats asynchronously and atomically, and define 1154 * neither operation. 1155 * 1156 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1157 * Return true if this device supports offload stats of this attr_id. 1158 * 1159 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1160 * void *attr_data) 1161 * Get statistics for offload operations by attr_id. Write it into the 1162 * attr_data pointer. 1163 * 1164 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1165 * If device supports VLAN filtering this function is called when a 1166 * VLAN id is registered. 1167 * 1168 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1169 * If device supports VLAN filtering this function is called when a 1170 * VLAN id is unregistered. 1171 * 1172 * void (*ndo_poll_controller)(struct net_device *dev); 1173 * 1174 * SR-IOV management functions. 1175 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1176 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1177 * u8 qos, __be16 proto); 1178 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1179 * int max_tx_rate); 1180 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1181 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1182 * int (*ndo_get_vf_config)(struct net_device *dev, 1183 * int vf, struct ifla_vf_info *ivf); 1184 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1185 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1186 * struct nlattr *port[]); 1187 * 1188 * Enable or disable the VF ability to query its RSS Redirection Table and 1189 * Hash Key. This is needed since on some devices VF share this information 1190 * with PF and querying it may introduce a theoretical security risk. 1191 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1192 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1193 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1194 * void *type_data); 1195 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1196 * This is always called from the stack with the rtnl lock held and netif 1197 * tx queues stopped. This allows the netdevice to perform queue 1198 * management safely. 1199 * 1200 * Fiber Channel over Ethernet (FCoE) offload functions. 1201 * int (*ndo_fcoe_enable)(struct net_device *dev); 1202 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1203 * so the underlying device can perform whatever needed configuration or 1204 * initialization to support acceleration of FCoE traffic. 1205 * 1206 * int (*ndo_fcoe_disable)(struct net_device *dev); 1207 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1208 * so the underlying device can perform whatever needed clean-ups to 1209 * stop supporting acceleration of FCoE traffic. 1210 * 1211 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1212 * struct scatterlist *sgl, unsigned int sgc); 1213 * Called when the FCoE Initiator wants to initialize an I/O that 1214 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1215 * perform necessary setup and returns 1 to indicate the device is set up 1216 * successfully to perform DDP on this I/O, otherwise this returns 0. 1217 * 1218 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1219 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1220 * indicated by the FC exchange id 'xid', so the underlying device can 1221 * clean up and reuse resources for later DDP requests. 1222 * 1223 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1224 * struct scatterlist *sgl, unsigned int sgc); 1225 * Called when the FCoE Target wants to initialize an I/O that 1226 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1227 * perform necessary setup and returns 1 to indicate the device is set up 1228 * successfully to perform DDP on this I/O, otherwise this returns 0. 1229 * 1230 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1231 * struct netdev_fcoe_hbainfo *hbainfo); 1232 * Called when the FCoE Protocol stack wants information on the underlying 1233 * device. This information is utilized by the FCoE protocol stack to 1234 * register attributes with Fiber Channel management service as per the 1235 * FC-GS Fabric Device Management Information(FDMI) specification. 1236 * 1237 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1238 * Called when the underlying device wants to override default World Wide 1239 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1240 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1241 * protocol stack to use. 1242 * 1243 * RFS acceleration. 1244 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1245 * u16 rxq_index, u32 flow_id); 1246 * Set hardware filter for RFS. rxq_index is the target queue index; 1247 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1248 * Return the filter ID on success, or a negative error code. 1249 * 1250 * Slave management functions (for bridge, bonding, etc). 1251 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1252 * Called to make another netdev an underling. 1253 * 1254 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1255 * Called to release previously enslaved netdev. 1256 * 1257 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1258 * struct sk_buff *skb, 1259 * bool all_slaves); 1260 * Get the xmit slave of master device. If all_slaves is true, function 1261 * assume all the slaves can transmit. 1262 * 1263 * Feature/offload setting functions. 1264 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1265 * netdev_features_t features); 1266 * Adjusts the requested feature flags according to device-specific 1267 * constraints, and returns the resulting flags. Must not modify 1268 * the device state. 1269 * 1270 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1271 * Called to update device configuration to new features. Passed 1272 * feature set might be less than what was returned by ndo_fix_features()). 1273 * Must return >0 or -errno if it changed dev->features itself. 1274 * 1275 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1276 * struct net_device *dev, 1277 * const unsigned char *addr, u16 vid, u16 flags, 1278 * struct netlink_ext_ack *extack); 1279 * Adds an FDB entry to dev for addr. 1280 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1281 * struct net_device *dev, 1282 * const unsigned char *addr, u16 vid) 1283 * Deletes the FDB entry from dev coresponding to addr. 1284 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1285 * struct net_device *dev, 1286 * u16 vid, 1287 * struct netlink_ext_ack *extack); 1288 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1289 * struct net_device *dev, struct net_device *filter_dev, 1290 * int *idx) 1291 * Used to add FDB entries to dump requests. Implementers should add 1292 * entries to skb and update idx with the number of entries. 1293 * 1294 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1295 * u16 flags, struct netlink_ext_ack *extack) 1296 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1297 * struct net_device *dev, u32 filter_mask, 1298 * int nlflags) 1299 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1300 * u16 flags); 1301 * 1302 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1303 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1304 * which do not represent real hardware may define this to allow their 1305 * userspace components to manage their virtual carrier state. Devices 1306 * that determine carrier state from physical hardware properties (eg 1307 * network cables) or protocol-dependent mechanisms (eg 1308 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1309 * 1310 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1311 * struct netdev_phys_item_id *ppid); 1312 * Called to get ID of physical port of this device. If driver does 1313 * not implement this, it is assumed that the hw is not able to have 1314 * multiple net devices on single physical port. 1315 * 1316 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1317 * struct netdev_phys_item_id *ppid) 1318 * Called to get the parent ID of the physical port of this device. 1319 * 1320 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1321 * struct net_device *dev) 1322 * Called by upper layer devices to accelerate switching or other 1323 * station functionality into hardware. 'pdev is the lowerdev 1324 * to use for the offload and 'dev' is the net device that will 1325 * back the offload. Returns a pointer to the private structure 1326 * the upper layer will maintain. 1327 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1328 * Called by upper layer device to delete the station created 1329 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1330 * the station and priv is the structure returned by the add 1331 * operation. 1332 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1333 * int queue_index, u32 maxrate); 1334 * Called when a user wants to set a max-rate limitation of specific 1335 * TX queue. 1336 * int (*ndo_get_iflink)(const struct net_device *dev); 1337 * Called to get the iflink value of this device. 1338 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1339 * This function is used to get egress tunnel information for given skb. 1340 * This is useful for retrieving outer tunnel header parameters while 1341 * sampling packet. 1342 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1343 * This function is used to specify the headroom that the skb must 1344 * consider when allocation skb during packet reception. Setting 1345 * appropriate rx headroom value allows avoiding skb head copy on 1346 * forward. Setting a negative value resets the rx headroom to the 1347 * default value. 1348 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1349 * This function is used to set or query state related to XDP on the 1350 * netdevice and manage BPF offload. See definition of 1351 * enum bpf_netdev_command for details. 1352 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1353 * u32 flags); 1354 * This function is used to submit @n XDP packets for transmit on a 1355 * netdevice. Returns number of frames successfully transmitted, frames 1356 * that got dropped are freed/returned via xdp_return_frame(). 1357 * Returns negative number, means general error invoking ndo, meaning 1358 * no frames were xmit'ed and core-caller will free all frames. 1359 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1360 * struct xdp_buff *xdp); 1361 * Get the xmit slave of master device based on the xdp_buff. 1362 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1363 * This function is used to wake up the softirq, ksoftirqd or kthread 1364 * responsible for sending and/or receiving packets on a specific 1365 * queue id bound to an AF_XDP socket. The flags field specifies if 1366 * only RX, only Tx, or both should be woken up using the flags 1367 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1368 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1369 * Get devlink port instance associated with a given netdev. 1370 * Called with a reference on the netdevice and devlink locks only, 1371 * rtnl_lock is not held. 1372 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1373 * int cmd); 1374 * Add, change, delete or get information on an IPv4 tunnel. 1375 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1376 * If a device is paired with a peer device, return the peer instance. 1377 * The caller must be under RCU read context. 1378 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1379 * Get the forwarding path to reach the real device from the HW destination address 1380 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1381 * const struct skb_shared_hwtstamps *hwtstamps, 1382 * bool cycles); 1383 * Get hardware timestamp based on normal/adjustable time or free running 1384 * cycle counter. This function is required if physical clock supports a 1385 * free running cycle counter. 1386 */ 1387 struct net_device_ops { 1388 int (*ndo_init)(struct net_device *dev); 1389 void (*ndo_uninit)(struct net_device *dev); 1390 int (*ndo_open)(struct net_device *dev); 1391 int (*ndo_stop)(struct net_device *dev); 1392 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1393 struct net_device *dev); 1394 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1395 struct net_device *dev, 1396 netdev_features_t features); 1397 u16 (*ndo_select_queue)(struct net_device *dev, 1398 struct sk_buff *skb, 1399 struct net_device *sb_dev); 1400 void (*ndo_change_rx_flags)(struct net_device *dev, 1401 int flags); 1402 void (*ndo_set_rx_mode)(struct net_device *dev); 1403 int (*ndo_set_mac_address)(struct net_device *dev, 1404 void *addr); 1405 int (*ndo_validate_addr)(struct net_device *dev); 1406 int (*ndo_do_ioctl)(struct net_device *dev, 1407 struct ifreq *ifr, int cmd); 1408 int (*ndo_eth_ioctl)(struct net_device *dev, 1409 struct ifreq *ifr, int cmd); 1410 int (*ndo_siocbond)(struct net_device *dev, 1411 struct ifreq *ifr, int cmd); 1412 int (*ndo_siocwandev)(struct net_device *dev, 1413 struct if_settings *ifs); 1414 int (*ndo_siocdevprivate)(struct net_device *dev, 1415 struct ifreq *ifr, 1416 void __user *data, int cmd); 1417 int (*ndo_set_config)(struct net_device *dev, 1418 struct ifmap *map); 1419 int (*ndo_change_mtu)(struct net_device *dev, 1420 int new_mtu); 1421 int (*ndo_neigh_setup)(struct net_device *dev, 1422 struct neigh_parms *); 1423 void (*ndo_tx_timeout) (struct net_device *dev, 1424 unsigned int txqueue); 1425 1426 void (*ndo_get_stats64)(struct net_device *dev, 1427 struct rtnl_link_stats64 *storage); 1428 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1429 int (*ndo_get_offload_stats)(int attr_id, 1430 const struct net_device *dev, 1431 void *attr_data); 1432 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1433 1434 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1435 __be16 proto, u16 vid); 1436 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1437 __be16 proto, u16 vid); 1438 #ifdef CONFIG_NET_POLL_CONTROLLER 1439 void (*ndo_poll_controller)(struct net_device *dev); 1440 int (*ndo_netpoll_setup)(struct net_device *dev, 1441 struct netpoll_info *info); 1442 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1443 #endif 1444 int (*ndo_set_vf_mac)(struct net_device *dev, 1445 int queue, u8 *mac); 1446 int (*ndo_set_vf_vlan)(struct net_device *dev, 1447 int queue, u16 vlan, 1448 u8 qos, __be16 proto); 1449 int (*ndo_set_vf_rate)(struct net_device *dev, 1450 int vf, int min_tx_rate, 1451 int max_tx_rate); 1452 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1453 int vf, bool setting); 1454 int (*ndo_set_vf_trust)(struct net_device *dev, 1455 int vf, bool setting); 1456 int (*ndo_get_vf_config)(struct net_device *dev, 1457 int vf, 1458 struct ifla_vf_info *ivf); 1459 int (*ndo_set_vf_link_state)(struct net_device *dev, 1460 int vf, int link_state); 1461 int (*ndo_get_vf_stats)(struct net_device *dev, 1462 int vf, 1463 struct ifla_vf_stats 1464 *vf_stats); 1465 int (*ndo_set_vf_port)(struct net_device *dev, 1466 int vf, 1467 struct nlattr *port[]); 1468 int (*ndo_get_vf_port)(struct net_device *dev, 1469 int vf, struct sk_buff *skb); 1470 int (*ndo_get_vf_guid)(struct net_device *dev, 1471 int vf, 1472 struct ifla_vf_guid *node_guid, 1473 struct ifla_vf_guid *port_guid); 1474 int (*ndo_set_vf_guid)(struct net_device *dev, 1475 int vf, u64 guid, 1476 int guid_type); 1477 int (*ndo_set_vf_rss_query_en)( 1478 struct net_device *dev, 1479 int vf, bool setting); 1480 int (*ndo_setup_tc)(struct net_device *dev, 1481 enum tc_setup_type type, 1482 void *type_data); 1483 #if IS_ENABLED(CONFIG_FCOE) 1484 int (*ndo_fcoe_enable)(struct net_device *dev); 1485 int (*ndo_fcoe_disable)(struct net_device *dev); 1486 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1487 u16 xid, 1488 struct scatterlist *sgl, 1489 unsigned int sgc); 1490 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1491 u16 xid); 1492 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1493 u16 xid, 1494 struct scatterlist *sgl, 1495 unsigned int sgc); 1496 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1497 struct netdev_fcoe_hbainfo *hbainfo); 1498 #endif 1499 1500 #if IS_ENABLED(CONFIG_LIBFCOE) 1501 #define NETDEV_FCOE_WWNN 0 1502 #define NETDEV_FCOE_WWPN 1 1503 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1504 u64 *wwn, int type); 1505 #endif 1506 1507 #ifdef CONFIG_RFS_ACCEL 1508 int (*ndo_rx_flow_steer)(struct net_device *dev, 1509 const struct sk_buff *skb, 1510 u16 rxq_index, 1511 u32 flow_id); 1512 #endif 1513 int (*ndo_add_slave)(struct net_device *dev, 1514 struct net_device *slave_dev, 1515 struct netlink_ext_ack *extack); 1516 int (*ndo_del_slave)(struct net_device *dev, 1517 struct net_device *slave_dev); 1518 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1519 struct sk_buff *skb, 1520 bool all_slaves); 1521 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1522 struct sock *sk); 1523 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1524 netdev_features_t features); 1525 int (*ndo_set_features)(struct net_device *dev, 1526 netdev_features_t features); 1527 int (*ndo_neigh_construct)(struct net_device *dev, 1528 struct neighbour *n); 1529 void (*ndo_neigh_destroy)(struct net_device *dev, 1530 struct neighbour *n); 1531 1532 int (*ndo_fdb_add)(struct ndmsg *ndm, 1533 struct nlattr *tb[], 1534 struct net_device *dev, 1535 const unsigned char *addr, 1536 u16 vid, 1537 u16 flags, 1538 struct netlink_ext_ack *extack); 1539 int (*ndo_fdb_del)(struct ndmsg *ndm, 1540 struct nlattr *tb[], 1541 struct net_device *dev, 1542 const unsigned char *addr, 1543 u16 vid, struct netlink_ext_ack *extack); 1544 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1545 struct nlattr *tb[], 1546 struct net_device *dev, 1547 u16 vid, 1548 struct netlink_ext_ack *extack); 1549 int (*ndo_fdb_dump)(struct sk_buff *skb, 1550 struct netlink_callback *cb, 1551 struct net_device *dev, 1552 struct net_device *filter_dev, 1553 int *idx); 1554 int (*ndo_fdb_get)(struct sk_buff *skb, 1555 struct nlattr *tb[], 1556 struct net_device *dev, 1557 const unsigned char *addr, 1558 u16 vid, u32 portid, u32 seq, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_bridge_setlink)(struct net_device *dev, 1561 struct nlmsghdr *nlh, 1562 u16 flags, 1563 struct netlink_ext_ack *extack); 1564 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1565 u32 pid, u32 seq, 1566 struct net_device *dev, 1567 u32 filter_mask, 1568 int nlflags); 1569 int (*ndo_bridge_dellink)(struct net_device *dev, 1570 struct nlmsghdr *nlh, 1571 u16 flags); 1572 int (*ndo_change_carrier)(struct net_device *dev, 1573 bool new_carrier); 1574 int (*ndo_get_phys_port_id)(struct net_device *dev, 1575 struct netdev_phys_item_id *ppid); 1576 int (*ndo_get_port_parent_id)(struct net_device *dev, 1577 struct netdev_phys_item_id *ppid); 1578 int (*ndo_get_phys_port_name)(struct net_device *dev, 1579 char *name, size_t len); 1580 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1581 struct net_device *dev); 1582 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1583 void *priv); 1584 1585 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1586 int queue_index, 1587 u32 maxrate); 1588 int (*ndo_get_iflink)(const struct net_device *dev); 1589 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1590 struct sk_buff *skb); 1591 void (*ndo_set_rx_headroom)(struct net_device *dev, 1592 int needed_headroom); 1593 int (*ndo_bpf)(struct net_device *dev, 1594 struct netdev_bpf *bpf); 1595 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1596 struct xdp_frame **xdp, 1597 u32 flags); 1598 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1599 struct xdp_buff *xdp); 1600 int (*ndo_xsk_wakeup)(struct net_device *dev, 1601 u32 queue_id, u32 flags); 1602 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1603 int (*ndo_tunnel_ctl)(struct net_device *dev, 1604 struct ip_tunnel_parm *p, int cmd); 1605 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1606 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1607 struct net_device_path *path); 1608 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1609 const struct skb_shared_hwtstamps *hwtstamps, 1610 bool cycles); 1611 }; 1612 1613 /** 1614 * enum netdev_priv_flags - &struct net_device priv_flags 1615 * 1616 * These are the &struct net_device, they are only set internally 1617 * by drivers and used in the kernel. These flags are invisible to 1618 * userspace; this means that the order of these flags can change 1619 * during any kernel release. 1620 * 1621 * You should have a pretty good reason to be extending these flags. 1622 * 1623 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1624 * @IFF_EBRIDGE: Ethernet bridging device 1625 * @IFF_BONDING: bonding master or slave 1626 * @IFF_ISATAP: ISATAP interface (RFC4214) 1627 * @IFF_WAN_HDLC: WAN HDLC device 1628 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1629 * release skb->dst 1630 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1631 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1632 * @IFF_MACVLAN_PORT: device used as macvlan port 1633 * @IFF_BRIDGE_PORT: device used as bridge port 1634 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1635 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1636 * @IFF_UNICAST_FLT: Supports unicast filtering 1637 * @IFF_TEAM_PORT: device used as team port 1638 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1639 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1640 * change when it's running 1641 * @IFF_MACVLAN: Macvlan device 1642 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1643 * underlying stacked devices 1644 * @IFF_L3MDEV_MASTER: device is an L3 master device 1645 * @IFF_NO_QUEUE: device can run without qdisc attached 1646 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1647 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1648 * @IFF_TEAM: device is a team device 1649 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1650 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1651 * entity (i.e. the master device for bridged veth) 1652 * @IFF_MACSEC: device is a MACsec device 1653 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1654 * @IFF_FAILOVER: device is a failover master device 1655 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1656 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1657 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1658 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1659 * skb_headlen(skb) == 0 (data starts from frag0) 1660 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1661 */ 1662 enum netdev_priv_flags { 1663 IFF_802_1Q_VLAN = 1<<0, 1664 IFF_EBRIDGE = 1<<1, 1665 IFF_BONDING = 1<<2, 1666 IFF_ISATAP = 1<<3, 1667 IFF_WAN_HDLC = 1<<4, 1668 IFF_XMIT_DST_RELEASE = 1<<5, 1669 IFF_DONT_BRIDGE = 1<<6, 1670 IFF_DISABLE_NETPOLL = 1<<7, 1671 IFF_MACVLAN_PORT = 1<<8, 1672 IFF_BRIDGE_PORT = 1<<9, 1673 IFF_OVS_DATAPATH = 1<<10, 1674 IFF_TX_SKB_SHARING = 1<<11, 1675 IFF_UNICAST_FLT = 1<<12, 1676 IFF_TEAM_PORT = 1<<13, 1677 IFF_SUPP_NOFCS = 1<<14, 1678 IFF_LIVE_ADDR_CHANGE = 1<<15, 1679 IFF_MACVLAN = 1<<16, 1680 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1681 IFF_L3MDEV_MASTER = 1<<18, 1682 IFF_NO_QUEUE = 1<<19, 1683 IFF_OPENVSWITCH = 1<<20, 1684 IFF_L3MDEV_SLAVE = 1<<21, 1685 IFF_TEAM = 1<<22, 1686 IFF_RXFH_CONFIGURED = 1<<23, 1687 IFF_PHONY_HEADROOM = 1<<24, 1688 IFF_MACSEC = 1<<25, 1689 IFF_NO_RX_HANDLER = 1<<26, 1690 IFF_FAILOVER = 1<<27, 1691 IFF_FAILOVER_SLAVE = 1<<28, 1692 IFF_L3MDEV_RX_HANDLER = 1<<29, 1693 IFF_LIVE_RENAME_OK = 1<<30, 1694 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1695 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1696 }; 1697 1698 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1699 #define IFF_EBRIDGE IFF_EBRIDGE 1700 #define IFF_BONDING IFF_BONDING 1701 #define IFF_ISATAP IFF_ISATAP 1702 #define IFF_WAN_HDLC IFF_WAN_HDLC 1703 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1704 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1705 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1706 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1707 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1708 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1709 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1710 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1711 #define IFF_TEAM_PORT IFF_TEAM_PORT 1712 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1713 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1714 #define IFF_MACVLAN IFF_MACVLAN 1715 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1716 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1717 #define IFF_NO_QUEUE IFF_NO_QUEUE 1718 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1719 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1720 #define IFF_TEAM IFF_TEAM 1721 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1722 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1723 #define IFF_MACSEC IFF_MACSEC 1724 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1725 #define IFF_FAILOVER IFF_FAILOVER 1726 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1727 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1728 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1729 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1730 1731 /* Specifies the type of the struct net_device::ml_priv pointer */ 1732 enum netdev_ml_priv_type { 1733 ML_PRIV_NONE, 1734 ML_PRIV_CAN, 1735 }; 1736 1737 /** 1738 * struct net_device - The DEVICE structure. 1739 * 1740 * Actually, this whole structure is a big mistake. It mixes I/O 1741 * data with strictly "high-level" data, and it has to know about 1742 * almost every data structure used in the INET module. 1743 * 1744 * @name: This is the first field of the "visible" part of this structure 1745 * (i.e. as seen by users in the "Space.c" file). It is the name 1746 * of the interface. 1747 * 1748 * @name_node: Name hashlist node 1749 * @ifalias: SNMP alias 1750 * @mem_end: Shared memory end 1751 * @mem_start: Shared memory start 1752 * @base_addr: Device I/O address 1753 * @irq: Device IRQ number 1754 * 1755 * @state: Generic network queuing layer state, see netdev_state_t 1756 * @dev_list: The global list of network devices 1757 * @napi_list: List entry used for polling NAPI devices 1758 * @unreg_list: List entry when we are unregistering the 1759 * device; see the function unregister_netdev 1760 * @close_list: List entry used when we are closing the device 1761 * @ptype_all: Device-specific packet handlers for all protocols 1762 * @ptype_specific: Device-specific, protocol-specific packet handlers 1763 * 1764 * @adj_list: Directly linked devices, like slaves for bonding 1765 * @features: Currently active device features 1766 * @hw_features: User-changeable features 1767 * 1768 * @wanted_features: User-requested features 1769 * @vlan_features: Mask of features inheritable by VLAN devices 1770 * 1771 * @hw_enc_features: Mask of features inherited by encapsulating devices 1772 * This field indicates what encapsulation 1773 * offloads the hardware is capable of doing, 1774 * and drivers will need to set them appropriately. 1775 * 1776 * @mpls_features: Mask of features inheritable by MPLS 1777 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1778 * 1779 * @ifindex: interface index 1780 * @group: The group the device belongs to 1781 * 1782 * @stats: Statistics struct, which was left as a legacy, use 1783 * rtnl_link_stats64 instead 1784 * 1785 * @core_stats: core networking counters, 1786 * do not use this in drivers 1787 * @carrier_up_count: Number of times the carrier has been up 1788 * @carrier_down_count: Number of times the carrier has been down 1789 * 1790 * @wireless_handlers: List of functions to handle Wireless Extensions, 1791 * instead of ioctl, 1792 * see <net/iw_handler.h> for details. 1793 * @wireless_data: Instance data managed by the core of wireless extensions 1794 * 1795 * @netdev_ops: Includes several pointers to callbacks, 1796 * if one wants to override the ndo_*() functions 1797 * @ethtool_ops: Management operations 1798 * @l3mdev_ops: Layer 3 master device operations 1799 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1800 * discovery handling. Necessary for e.g. 6LoWPAN. 1801 * @xfrmdev_ops: Transformation offload operations 1802 * @tlsdev_ops: Transport Layer Security offload operations 1803 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1804 * of Layer 2 headers. 1805 * 1806 * @flags: Interface flags (a la BSD) 1807 * @priv_flags: Like 'flags' but invisible to userspace, 1808 * see if.h for the definitions 1809 * @gflags: Global flags ( kept as legacy ) 1810 * @padded: How much padding added by alloc_netdev() 1811 * @operstate: RFC2863 operstate 1812 * @link_mode: Mapping policy to operstate 1813 * @if_port: Selectable AUI, TP, ... 1814 * @dma: DMA channel 1815 * @mtu: Interface MTU value 1816 * @min_mtu: Interface Minimum MTU value 1817 * @max_mtu: Interface Maximum MTU value 1818 * @type: Interface hardware type 1819 * @hard_header_len: Maximum hardware header length. 1820 * @min_header_len: Minimum hardware header length 1821 * 1822 * @needed_headroom: Extra headroom the hardware may need, but not in all 1823 * cases can this be guaranteed 1824 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1825 * cases can this be guaranteed. Some cases also use 1826 * LL_MAX_HEADER instead to allocate the skb 1827 * 1828 * interface address info: 1829 * 1830 * @perm_addr: Permanent hw address 1831 * @addr_assign_type: Hw address assignment type 1832 * @addr_len: Hardware address length 1833 * @upper_level: Maximum depth level of upper devices. 1834 * @lower_level: Maximum depth level of lower devices. 1835 * @neigh_priv_len: Used in neigh_alloc() 1836 * @dev_id: Used to differentiate devices that share 1837 * the same link layer address 1838 * @dev_port: Used to differentiate devices that share 1839 * the same function 1840 * @addr_list_lock: XXX: need comments on this one 1841 * @name_assign_type: network interface name assignment type 1842 * @uc_promisc: Counter that indicates promiscuous mode 1843 * has been enabled due to the need to listen to 1844 * additional unicast addresses in a device that 1845 * does not implement ndo_set_rx_mode() 1846 * @uc: unicast mac addresses 1847 * @mc: multicast mac addresses 1848 * @dev_addrs: list of device hw addresses 1849 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1850 * @promiscuity: Number of times the NIC is told to work in 1851 * promiscuous mode; if it becomes 0 the NIC will 1852 * exit promiscuous mode 1853 * @allmulti: Counter, enables or disables allmulticast mode 1854 * 1855 * @vlan_info: VLAN info 1856 * @dsa_ptr: dsa specific data 1857 * @tipc_ptr: TIPC specific data 1858 * @atalk_ptr: AppleTalk link 1859 * @ip_ptr: IPv4 specific data 1860 * @ip6_ptr: IPv6 specific data 1861 * @ax25_ptr: AX.25 specific data 1862 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1863 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1864 * device struct 1865 * @mpls_ptr: mpls_dev struct pointer 1866 * @mctp_ptr: MCTP specific data 1867 * 1868 * @dev_addr: Hw address (before bcast, 1869 * because most packets are unicast) 1870 * 1871 * @_rx: Array of RX queues 1872 * @num_rx_queues: Number of RX queues 1873 * allocated at register_netdev() time 1874 * @real_num_rx_queues: Number of RX queues currently active in device 1875 * @xdp_prog: XDP sockets filter program pointer 1876 * @gro_flush_timeout: timeout for GRO layer in NAPI 1877 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1878 * allow to avoid NIC hard IRQ, on busy queues. 1879 * 1880 * @rx_handler: handler for received packets 1881 * @rx_handler_data: XXX: need comments on this one 1882 * @miniq_ingress: ingress/clsact qdisc specific data for 1883 * ingress processing 1884 * @ingress_queue: XXX: need comments on this one 1885 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1886 * @broadcast: hw bcast address 1887 * 1888 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1889 * indexed by RX queue number. Assigned by driver. 1890 * This must only be set if the ndo_rx_flow_steer 1891 * operation is defined 1892 * @index_hlist: Device index hash chain 1893 * 1894 * @_tx: Array of TX queues 1895 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1896 * @real_num_tx_queues: Number of TX queues currently active in device 1897 * @qdisc: Root qdisc from userspace point of view 1898 * @tx_queue_len: Max frames per queue allowed 1899 * @tx_global_lock: XXX: need comments on this one 1900 * @xdp_bulkq: XDP device bulk queue 1901 * @xps_maps: all CPUs/RXQs maps for XPS device 1902 * 1903 * @xps_maps: XXX: need comments on this one 1904 * @miniq_egress: clsact qdisc specific data for 1905 * egress processing 1906 * @nf_hooks_egress: netfilter hooks executed for egress packets 1907 * @qdisc_hash: qdisc hash table 1908 * @watchdog_timeo: Represents the timeout that is used by 1909 * the watchdog (see dev_watchdog()) 1910 * @watchdog_timer: List of timers 1911 * 1912 * @proto_down_reason: reason a netdev interface is held down 1913 * @pcpu_refcnt: Number of references to this device 1914 * @dev_refcnt: Number of references to this device 1915 * @refcnt_tracker: Tracker directory for tracked references to this device 1916 * @todo_list: Delayed register/unregister 1917 * @link_watch_list: XXX: need comments on this one 1918 * 1919 * @reg_state: Register/unregister state machine 1920 * @dismantle: Device is going to be freed 1921 * @rtnl_link_state: This enum represents the phases of creating 1922 * a new link 1923 * 1924 * @needs_free_netdev: Should unregister perform free_netdev? 1925 * @priv_destructor: Called from unregister 1926 * @npinfo: XXX: need comments on this one 1927 * @nd_net: Network namespace this network device is inside 1928 * 1929 * @ml_priv: Mid-layer private 1930 * @ml_priv_type: Mid-layer private type 1931 * @lstats: Loopback statistics 1932 * @tstats: Tunnel statistics 1933 * @dstats: Dummy statistics 1934 * @vstats: Virtual ethernet statistics 1935 * 1936 * @garp_port: GARP 1937 * @mrp_port: MRP 1938 * 1939 * @dm_private: Drop monitor private 1940 * 1941 * @dev: Class/net/name entry 1942 * @sysfs_groups: Space for optional device, statistics and wireless 1943 * sysfs groups 1944 * 1945 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1946 * @rtnl_link_ops: Rtnl_link_ops 1947 * 1948 * @gso_max_size: Maximum size of generic segmentation offload 1949 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1950 * @gso_max_segs: Maximum number of segments that can be passed to the 1951 * NIC for GSO 1952 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1953 * 1954 * @dcbnl_ops: Data Center Bridging netlink ops 1955 * @num_tc: Number of traffic classes in the net device 1956 * @tc_to_txq: XXX: need comments on this one 1957 * @prio_tc_map: XXX: need comments on this one 1958 * 1959 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1960 * 1961 * @priomap: XXX: need comments on this one 1962 * @phydev: Physical device may attach itself 1963 * for hardware timestamping 1964 * @sfp_bus: attached &struct sfp_bus structure. 1965 * 1966 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1967 * 1968 * @proto_down: protocol port state information can be sent to the 1969 * switch driver and used to set the phys state of the 1970 * switch port. 1971 * 1972 * @wol_enabled: Wake-on-LAN is enabled 1973 * 1974 * @threaded: napi threaded mode is enabled 1975 * 1976 * @net_notifier_list: List of per-net netdev notifier block 1977 * that follow this device when it is moved 1978 * to another network namespace. 1979 * 1980 * @macsec_ops: MACsec offloading ops 1981 * 1982 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1983 * offload capabilities of the device 1984 * @udp_tunnel_nic: UDP tunnel offload state 1985 * @xdp_state: stores info on attached XDP BPF programs 1986 * 1987 * @nested_level: Used as a parameter of spin_lock_nested() of 1988 * dev->addr_list_lock. 1989 * @unlink_list: As netif_addr_lock() can be called recursively, 1990 * keep a list of interfaces to be deleted. 1991 * @gro_max_size: Maximum size of aggregated packet in generic 1992 * receive offload (GRO) 1993 * 1994 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 1995 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 1996 * @watchdog_dev_tracker: refcount tracker used by watchdog. 1997 * @dev_registered_tracker: tracker for reference held while 1998 * registered 1999 * @offload_xstats_l3: L3 HW stats for this netdevice. 2000 * 2001 * FIXME: cleanup struct net_device such that network protocol info 2002 * moves out. 2003 */ 2004 2005 struct net_device { 2006 char name[IFNAMSIZ]; 2007 struct netdev_name_node *name_node; 2008 struct dev_ifalias __rcu *ifalias; 2009 /* 2010 * I/O specific fields 2011 * FIXME: Merge these and struct ifmap into one 2012 */ 2013 unsigned long mem_end; 2014 unsigned long mem_start; 2015 unsigned long base_addr; 2016 2017 /* 2018 * Some hardware also needs these fields (state,dev_list, 2019 * napi_list,unreg_list,close_list) but they are not 2020 * part of the usual set specified in Space.c. 2021 */ 2022 2023 unsigned long state; 2024 2025 struct list_head dev_list; 2026 struct list_head napi_list; 2027 struct list_head unreg_list; 2028 struct list_head close_list; 2029 struct list_head ptype_all; 2030 struct list_head ptype_specific; 2031 2032 struct { 2033 struct list_head upper; 2034 struct list_head lower; 2035 } adj_list; 2036 2037 /* Read-mostly cache-line for fast-path access */ 2038 unsigned int flags; 2039 unsigned long long priv_flags; 2040 const struct net_device_ops *netdev_ops; 2041 int ifindex; 2042 unsigned short gflags; 2043 unsigned short hard_header_len; 2044 2045 /* Note : dev->mtu is often read without holding a lock. 2046 * Writers usually hold RTNL. 2047 * It is recommended to use READ_ONCE() to annotate the reads, 2048 * and to use WRITE_ONCE() to annotate the writes. 2049 */ 2050 unsigned int mtu; 2051 unsigned short needed_headroom; 2052 unsigned short needed_tailroom; 2053 2054 netdev_features_t features; 2055 netdev_features_t hw_features; 2056 netdev_features_t wanted_features; 2057 netdev_features_t vlan_features; 2058 netdev_features_t hw_enc_features; 2059 netdev_features_t mpls_features; 2060 netdev_features_t gso_partial_features; 2061 2062 unsigned int min_mtu; 2063 unsigned int max_mtu; 2064 unsigned short type; 2065 unsigned char min_header_len; 2066 unsigned char name_assign_type; 2067 2068 int group; 2069 2070 struct net_device_stats stats; /* not used by modern drivers */ 2071 2072 struct net_device_core_stats __percpu *core_stats; 2073 2074 /* Stats to monitor link on/off, flapping */ 2075 atomic_t carrier_up_count; 2076 atomic_t carrier_down_count; 2077 2078 #ifdef CONFIG_WIRELESS_EXT 2079 const struct iw_handler_def *wireless_handlers; 2080 struct iw_public_data *wireless_data; 2081 #endif 2082 const struct ethtool_ops *ethtool_ops; 2083 #ifdef CONFIG_NET_L3_MASTER_DEV 2084 const struct l3mdev_ops *l3mdev_ops; 2085 #endif 2086 #if IS_ENABLED(CONFIG_IPV6) 2087 const struct ndisc_ops *ndisc_ops; 2088 #endif 2089 2090 #ifdef CONFIG_XFRM_OFFLOAD 2091 const struct xfrmdev_ops *xfrmdev_ops; 2092 #endif 2093 2094 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2095 const struct tlsdev_ops *tlsdev_ops; 2096 #endif 2097 2098 const struct header_ops *header_ops; 2099 2100 unsigned char operstate; 2101 unsigned char link_mode; 2102 2103 unsigned char if_port; 2104 unsigned char dma; 2105 2106 /* Interface address info. */ 2107 unsigned char perm_addr[MAX_ADDR_LEN]; 2108 unsigned char addr_assign_type; 2109 unsigned char addr_len; 2110 unsigned char upper_level; 2111 unsigned char lower_level; 2112 2113 unsigned short neigh_priv_len; 2114 unsigned short dev_id; 2115 unsigned short dev_port; 2116 unsigned short padded; 2117 2118 spinlock_t addr_list_lock; 2119 int irq; 2120 2121 struct netdev_hw_addr_list uc; 2122 struct netdev_hw_addr_list mc; 2123 struct netdev_hw_addr_list dev_addrs; 2124 2125 #ifdef CONFIG_SYSFS 2126 struct kset *queues_kset; 2127 #endif 2128 #ifdef CONFIG_LOCKDEP 2129 struct list_head unlink_list; 2130 #endif 2131 unsigned int promiscuity; 2132 unsigned int allmulti; 2133 bool uc_promisc; 2134 #ifdef CONFIG_LOCKDEP 2135 unsigned char nested_level; 2136 #endif 2137 2138 2139 /* Protocol-specific pointers */ 2140 2141 struct in_device __rcu *ip_ptr; 2142 struct inet6_dev __rcu *ip6_ptr; 2143 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2144 struct vlan_info __rcu *vlan_info; 2145 #endif 2146 #if IS_ENABLED(CONFIG_NET_DSA) 2147 struct dsa_port *dsa_ptr; 2148 #endif 2149 #if IS_ENABLED(CONFIG_TIPC) 2150 struct tipc_bearer __rcu *tipc_ptr; 2151 #endif 2152 #if IS_ENABLED(CONFIG_ATALK) 2153 void *atalk_ptr; 2154 #endif 2155 #if IS_ENABLED(CONFIG_AX25) 2156 void *ax25_ptr; 2157 #endif 2158 #if IS_ENABLED(CONFIG_CFG80211) 2159 struct wireless_dev *ieee80211_ptr; 2160 #endif 2161 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2162 struct wpan_dev *ieee802154_ptr; 2163 #endif 2164 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2165 struct mpls_dev __rcu *mpls_ptr; 2166 #endif 2167 #if IS_ENABLED(CONFIG_MCTP) 2168 struct mctp_dev __rcu *mctp_ptr; 2169 #endif 2170 2171 /* 2172 * Cache lines mostly used on receive path (including eth_type_trans()) 2173 */ 2174 /* Interface address info used in eth_type_trans() */ 2175 const unsigned char *dev_addr; 2176 2177 struct netdev_rx_queue *_rx; 2178 unsigned int num_rx_queues; 2179 unsigned int real_num_rx_queues; 2180 2181 struct bpf_prog __rcu *xdp_prog; 2182 unsigned long gro_flush_timeout; 2183 int napi_defer_hard_irqs; 2184 #define GRO_LEGACY_MAX_SIZE 65536u 2185 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2186 * and shinfo->gso_segs is a 16bit field. 2187 */ 2188 #define GRO_MAX_SIZE (8 * 65535u) 2189 unsigned int gro_max_size; 2190 rx_handler_func_t __rcu *rx_handler; 2191 void __rcu *rx_handler_data; 2192 2193 #ifdef CONFIG_NET_CLS_ACT 2194 struct mini_Qdisc __rcu *miniq_ingress; 2195 #endif 2196 struct netdev_queue __rcu *ingress_queue; 2197 #ifdef CONFIG_NETFILTER_INGRESS 2198 struct nf_hook_entries __rcu *nf_hooks_ingress; 2199 #endif 2200 2201 unsigned char broadcast[MAX_ADDR_LEN]; 2202 #ifdef CONFIG_RFS_ACCEL 2203 struct cpu_rmap *rx_cpu_rmap; 2204 #endif 2205 struct hlist_node index_hlist; 2206 2207 /* 2208 * Cache lines mostly used on transmit path 2209 */ 2210 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2211 unsigned int num_tx_queues; 2212 unsigned int real_num_tx_queues; 2213 struct Qdisc __rcu *qdisc; 2214 unsigned int tx_queue_len; 2215 spinlock_t tx_global_lock; 2216 2217 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2218 2219 #ifdef CONFIG_XPS 2220 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2221 #endif 2222 #ifdef CONFIG_NET_CLS_ACT 2223 struct mini_Qdisc __rcu *miniq_egress; 2224 #endif 2225 #ifdef CONFIG_NETFILTER_EGRESS 2226 struct nf_hook_entries __rcu *nf_hooks_egress; 2227 #endif 2228 2229 #ifdef CONFIG_NET_SCHED 2230 DECLARE_HASHTABLE (qdisc_hash, 4); 2231 #endif 2232 /* These may be needed for future network-power-down code. */ 2233 struct timer_list watchdog_timer; 2234 int watchdog_timeo; 2235 2236 u32 proto_down_reason; 2237 2238 struct list_head todo_list; 2239 2240 #ifdef CONFIG_PCPU_DEV_REFCNT 2241 int __percpu *pcpu_refcnt; 2242 #else 2243 refcount_t dev_refcnt; 2244 #endif 2245 struct ref_tracker_dir refcnt_tracker; 2246 2247 struct list_head link_watch_list; 2248 2249 enum { NETREG_UNINITIALIZED=0, 2250 NETREG_REGISTERED, /* completed register_netdevice */ 2251 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2252 NETREG_UNREGISTERED, /* completed unregister todo */ 2253 NETREG_RELEASED, /* called free_netdev */ 2254 NETREG_DUMMY, /* dummy device for NAPI poll */ 2255 } reg_state:8; 2256 2257 bool dismantle; 2258 2259 enum { 2260 RTNL_LINK_INITIALIZED, 2261 RTNL_LINK_INITIALIZING, 2262 } rtnl_link_state:16; 2263 2264 bool needs_free_netdev; 2265 void (*priv_destructor)(struct net_device *dev); 2266 2267 #ifdef CONFIG_NETPOLL 2268 struct netpoll_info __rcu *npinfo; 2269 #endif 2270 2271 possible_net_t nd_net; 2272 2273 /* mid-layer private */ 2274 void *ml_priv; 2275 enum netdev_ml_priv_type ml_priv_type; 2276 2277 union { 2278 struct pcpu_lstats __percpu *lstats; 2279 struct pcpu_sw_netstats __percpu *tstats; 2280 struct pcpu_dstats __percpu *dstats; 2281 }; 2282 2283 #if IS_ENABLED(CONFIG_GARP) 2284 struct garp_port __rcu *garp_port; 2285 #endif 2286 #if IS_ENABLED(CONFIG_MRP) 2287 struct mrp_port __rcu *mrp_port; 2288 #endif 2289 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2290 struct dm_hw_stat_delta __rcu *dm_private; 2291 #endif 2292 struct device dev; 2293 const struct attribute_group *sysfs_groups[4]; 2294 const struct attribute_group *sysfs_rx_queue_group; 2295 2296 const struct rtnl_link_ops *rtnl_link_ops; 2297 2298 /* for setting kernel sock attribute on TCP connection setup */ 2299 #define GSO_MAX_SEGS 65535u 2300 #define GSO_LEGACY_MAX_SIZE 65536u 2301 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2302 * and shinfo->gso_segs is a 16bit field. 2303 */ 2304 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2305 2306 unsigned int gso_max_size; 2307 #define TSO_LEGACY_MAX_SIZE 65536 2308 #define TSO_MAX_SIZE UINT_MAX 2309 unsigned int tso_max_size; 2310 u16 gso_max_segs; 2311 #define TSO_MAX_SEGS U16_MAX 2312 u16 tso_max_segs; 2313 2314 #ifdef CONFIG_DCB 2315 const struct dcbnl_rtnl_ops *dcbnl_ops; 2316 #endif 2317 s16 num_tc; 2318 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2319 u8 prio_tc_map[TC_BITMASK + 1]; 2320 2321 #if IS_ENABLED(CONFIG_FCOE) 2322 unsigned int fcoe_ddp_xid; 2323 #endif 2324 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2325 struct netprio_map __rcu *priomap; 2326 #endif 2327 struct phy_device *phydev; 2328 struct sfp_bus *sfp_bus; 2329 struct lock_class_key *qdisc_tx_busylock; 2330 bool proto_down; 2331 unsigned wol_enabled:1; 2332 unsigned threaded:1; 2333 2334 struct list_head net_notifier_list; 2335 2336 #if IS_ENABLED(CONFIG_MACSEC) 2337 /* MACsec management functions */ 2338 const struct macsec_ops *macsec_ops; 2339 #endif 2340 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2341 struct udp_tunnel_nic *udp_tunnel_nic; 2342 2343 /* protected by rtnl_lock */ 2344 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2345 2346 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2347 netdevice_tracker linkwatch_dev_tracker; 2348 netdevice_tracker watchdog_dev_tracker; 2349 netdevice_tracker dev_registered_tracker; 2350 struct rtnl_hw_stats64 *offload_xstats_l3; 2351 }; 2352 #define to_net_dev(d) container_of(d, struct net_device, dev) 2353 2354 static inline bool netif_elide_gro(const struct net_device *dev) 2355 { 2356 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2357 return true; 2358 return false; 2359 } 2360 2361 #define NETDEV_ALIGN 32 2362 2363 static inline 2364 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2365 { 2366 return dev->prio_tc_map[prio & TC_BITMASK]; 2367 } 2368 2369 static inline 2370 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2371 { 2372 if (tc >= dev->num_tc) 2373 return -EINVAL; 2374 2375 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2376 return 0; 2377 } 2378 2379 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2380 void netdev_reset_tc(struct net_device *dev); 2381 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2382 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2383 2384 static inline 2385 int netdev_get_num_tc(struct net_device *dev) 2386 { 2387 return dev->num_tc; 2388 } 2389 2390 static inline void net_prefetch(void *p) 2391 { 2392 prefetch(p); 2393 #if L1_CACHE_BYTES < 128 2394 prefetch((u8 *)p + L1_CACHE_BYTES); 2395 #endif 2396 } 2397 2398 static inline void net_prefetchw(void *p) 2399 { 2400 prefetchw(p); 2401 #if L1_CACHE_BYTES < 128 2402 prefetchw((u8 *)p + L1_CACHE_BYTES); 2403 #endif 2404 } 2405 2406 void netdev_unbind_sb_channel(struct net_device *dev, 2407 struct net_device *sb_dev); 2408 int netdev_bind_sb_channel_queue(struct net_device *dev, 2409 struct net_device *sb_dev, 2410 u8 tc, u16 count, u16 offset); 2411 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2412 static inline int netdev_get_sb_channel(struct net_device *dev) 2413 { 2414 return max_t(int, -dev->num_tc, 0); 2415 } 2416 2417 static inline 2418 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2419 unsigned int index) 2420 { 2421 return &dev->_tx[index]; 2422 } 2423 2424 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2425 const struct sk_buff *skb) 2426 { 2427 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2428 } 2429 2430 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2431 void (*f)(struct net_device *, 2432 struct netdev_queue *, 2433 void *), 2434 void *arg) 2435 { 2436 unsigned int i; 2437 2438 for (i = 0; i < dev->num_tx_queues; i++) 2439 f(dev, &dev->_tx[i], arg); 2440 } 2441 2442 #define netdev_lockdep_set_classes(dev) \ 2443 { \ 2444 static struct lock_class_key qdisc_tx_busylock_key; \ 2445 static struct lock_class_key qdisc_xmit_lock_key; \ 2446 static struct lock_class_key dev_addr_list_lock_key; \ 2447 unsigned int i; \ 2448 \ 2449 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2450 lockdep_set_class(&(dev)->addr_list_lock, \ 2451 &dev_addr_list_lock_key); \ 2452 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2453 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2454 &qdisc_xmit_lock_key); \ 2455 } 2456 2457 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2458 struct net_device *sb_dev); 2459 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2460 struct sk_buff *skb, 2461 struct net_device *sb_dev); 2462 2463 /* returns the headroom that the master device needs to take in account 2464 * when forwarding to this dev 2465 */ 2466 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2467 { 2468 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2469 } 2470 2471 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2472 { 2473 if (dev->netdev_ops->ndo_set_rx_headroom) 2474 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2475 } 2476 2477 /* set the device rx headroom to the dev's default */ 2478 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2479 { 2480 netdev_set_rx_headroom(dev, -1); 2481 } 2482 2483 static inline void *netdev_get_ml_priv(struct net_device *dev, 2484 enum netdev_ml_priv_type type) 2485 { 2486 if (dev->ml_priv_type != type) 2487 return NULL; 2488 2489 return dev->ml_priv; 2490 } 2491 2492 static inline void netdev_set_ml_priv(struct net_device *dev, 2493 void *ml_priv, 2494 enum netdev_ml_priv_type type) 2495 { 2496 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2497 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2498 dev->ml_priv_type, type); 2499 WARN(!dev->ml_priv_type && dev->ml_priv, 2500 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2501 2502 dev->ml_priv = ml_priv; 2503 dev->ml_priv_type = type; 2504 } 2505 2506 /* 2507 * Net namespace inlines 2508 */ 2509 static inline 2510 struct net *dev_net(const struct net_device *dev) 2511 { 2512 return read_pnet(&dev->nd_net); 2513 } 2514 2515 static inline 2516 void dev_net_set(struct net_device *dev, struct net *net) 2517 { 2518 write_pnet(&dev->nd_net, net); 2519 } 2520 2521 /** 2522 * netdev_priv - access network device private data 2523 * @dev: network device 2524 * 2525 * Get network device private data 2526 */ 2527 static inline void *netdev_priv(const struct net_device *dev) 2528 { 2529 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2530 } 2531 2532 /* Set the sysfs physical device reference for the network logical device 2533 * if set prior to registration will cause a symlink during initialization. 2534 */ 2535 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2536 2537 /* Set the sysfs device type for the network logical device to allow 2538 * fine-grained identification of different network device types. For 2539 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2540 */ 2541 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2542 2543 /* Default NAPI poll() weight 2544 * Device drivers are strongly advised to not use bigger value 2545 */ 2546 #define NAPI_POLL_WEIGHT 64 2547 2548 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2549 int (*poll)(struct napi_struct *, int), int weight); 2550 2551 /** 2552 * netif_napi_add() - initialize a NAPI context 2553 * @dev: network device 2554 * @napi: NAPI context 2555 * @poll: polling function 2556 * 2557 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2558 * *any* of the other NAPI-related functions. 2559 */ 2560 static inline void 2561 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2562 int (*poll)(struct napi_struct *, int)) 2563 { 2564 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2565 } 2566 2567 static inline void 2568 netif_napi_add_tx_weight(struct net_device *dev, 2569 struct napi_struct *napi, 2570 int (*poll)(struct napi_struct *, int), 2571 int weight) 2572 { 2573 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2574 netif_napi_add_weight(dev, napi, poll, weight); 2575 } 2576 2577 /** 2578 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2579 * @dev: network device 2580 * @napi: NAPI context 2581 * @poll: polling function 2582 * 2583 * This variant of netif_napi_add() should be used from drivers using NAPI 2584 * to exclusively poll a TX queue. 2585 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2586 */ 2587 static inline void netif_napi_add_tx(struct net_device *dev, 2588 struct napi_struct *napi, 2589 int (*poll)(struct napi_struct *, int)) 2590 { 2591 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2592 } 2593 2594 /** 2595 * __netif_napi_del - remove a NAPI context 2596 * @napi: NAPI context 2597 * 2598 * Warning: caller must observe RCU grace period before freeing memory 2599 * containing @napi. Drivers might want to call this helper to combine 2600 * all the needed RCU grace periods into a single one. 2601 */ 2602 void __netif_napi_del(struct napi_struct *napi); 2603 2604 /** 2605 * netif_napi_del - remove a NAPI context 2606 * @napi: NAPI context 2607 * 2608 * netif_napi_del() removes a NAPI context from the network device NAPI list 2609 */ 2610 static inline void netif_napi_del(struct napi_struct *napi) 2611 { 2612 __netif_napi_del(napi); 2613 synchronize_net(); 2614 } 2615 2616 struct packet_type { 2617 __be16 type; /* This is really htons(ether_type). */ 2618 bool ignore_outgoing; 2619 struct net_device *dev; /* NULL is wildcarded here */ 2620 netdevice_tracker dev_tracker; 2621 int (*func) (struct sk_buff *, 2622 struct net_device *, 2623 struct packet_type *, 2624 struct net_device *); 2625 void (*list_func) (struct list_head *, 2626 struct packet_type *, 2627 struct net_device *); 2628 bool (*id_match)(struct packet_type *ptype, 2629 struct sock *sk); 2630 struct net *af_packet_net; 2631 void *af_packet_priv; 2632 struct list_head list; 2633 }; 2634 2635 struct offload_callbacks { 2636 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2637 netdev_features_t features); 2638 struct sk_buff *(*gro_receive)(struct list_head *head, 2639 struct sk_buff *skb); 2640 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2641 }; 2642 2643 struct packet_offload { 2644 __be16 type; /* This is really htons(ether_type). */ 2645 u16 priority; 2646 struct offload_callbacks callbacks; 2647 struct list_head list; 2648 }; 2649 2650 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2651 struct pcpu_sw_netstats { 2652 u64_stats_t rx_packets; 2653 u64_stats_t rx_bytes; 2654 u64_stats_t tx_packets; 2655 u64_stats_t tx_bytes; 2656 struct u64_stats_sync syncp; 2657 } __aligned(4 * sizeof(u64)); 2658 2659 struct pcpu_lstats { 2660 u64_stats_t packets; 2661 u64_stats_t bytes; 2662 struct u64_stats_sync syncp; 2663 } __aligned(2 * sizeof(u64)); 2664 2665 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2666 2667 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2668 { 2669 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2670 2671 u64_stats_update_begin(&tstats->syncp); 2672 u64_stats_add(&tstats->rx_bytes, len); 2673 u64_stats_inc(&tstats->rx_packets); 2674 u64_stats_update_end(&tstats->syncp); 2675 } 2676 2677 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2678 unsigned int packets, 2679 unsigned int len) 2680 { 2681 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2682 2683 u64_stats_update_begin(&tstats->syncp); 2684 u64_stats_add(&tstats->tx_bytes, len); 2685 u64_stats_add(&tstats->tx_packets, packets); 2686 u64_stats_update_end(&tstats->syncp); 2687 } 2688 2689 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2690 { 2691 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2692 2693 u64_stats_update_begin(&lstats->syncp); 2694 u64_stats_add(&lstats->bytes, len); 2695 u64_stats_inc(&lstats->packets); 2696 u64_stats_update_end(&lstats->syncp); 2697 } 2698 2699 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2700 ({ \ 2701 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2702 if (pcpu_stats) { \ 2703 int __cpu; \ 2704 for_each_possible_cpu(__cpu) { \ 2705 typeof(type) *stat; \ 2706 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2707 u64_stats_init(&stat->syncp); \ 2708 } \ 2709 } \ 2710 pcpu_stats; \ 2711 }) 2712 2713 #define netdev_alloc_pcpu_stats(type) \ 2714 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2715 2716 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2717 ({ \ 2718 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2719 if (pcpu_stats) { \ 2720 int __cpu; \ 2721 for_each_possible_cpu(__cpu) { \ 2722 typeof(type) *stat; \ 2723 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2724 u64_stats_init(&stat->syncp); \ 2725 } \ 2726 } \ 2727 pcpu_stats; \ 2728 }) 2729 2730 enum netdev_lag_tx_type { 2731 NETDEV_LAG_TX_TYPE_UNKNOWN, 2732 NETDEV_LAG_TX_TYPE_RANDOM, 2733 NETDEV_LAG_TX_TYPE_BROADCAST, 2734 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2735 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2736 NETDEV_LAG_TX_TYPE_HASH, 2737 }; 2738 2739 enum netdev_lag_hash { 2740 NETDEV_LAG_HASH_NONE, 2741 NETDEV_LAG_HASH_L2, 2742 NETDEV_LAG_HASH_L34, 2743 NETDEV_LAG_HASH_L23, 2744 NETDEV_LAG_HASH_E23, 2745 NETDEV_LAG_HASH_E34, 2746 NETDEV_LAG_HASH_VLAN_SRCMAC, 2747 NETDEV_LAG_HASH_UNKNOWN, 2748 }; 2749 2750 struct netdev_lag_upper_info { 2751 enum netdev_lag_tx_type tx_type; 2752 enum netdev_lag_hash hash_type; 2753 }; 2754 2755 struct netdev_lag_lower_state_info { 2756 u8 link_up : 1, 2757 tx_enabled : 1; 2758 }; 2759 2760 #include <linux/notifier.h> 2761 2762 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2763 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2764 * adding new types. 2765 */ 2766 enum netdev_cmd { 2767 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2768 NETDEV_DOWN, 2769 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2770 detected a hardware crash and restarted 2771 - we can use this eg to kick tcp sessions 2772 once done */ 2773 NETDEV_CHANGE, /* Notify device state change */ 2774 NETDEV_REGISTER, 2775 NETDEV_UNREGISTER, 2776 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2777 NETDEV_CHANGEADDR, /* notify after the address change */ 2778 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2779 NETDEV_GOING_DOWN, 2780 NETDEV_CHANGENAME, 2781 NETDEV_FEAT_CHANGE, 2782 NETDEV_BONDING_FAILOVER, 2783 NETDEV_PRE_UP, 2784 NETDEV_PRE_TYPE_CHANGE, 2785 NETDEV_POST_TYPE_CHANGE, 2786 NETDEV_POST_INIT, 2787 NETDEV_RELEASE, 2788 NETDEV_NOTIFY_PEERS, 2789 NETDEV_JOIN, 2790 NETDEV_CHANGEUPPER, 2791 NETDEV_RESEND_IGMP, 2792 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2793 NETDEV_CHANGEINFODATA, 2794 NETDEV_BONDING_INFO, 2795 NETDEV_PRECHANGEUPPER, 2796 NETDEV_CHANGELOWERSTATE, 2797 NETDEV_UDP_TUNNEL_PUSH_INFO, 2798 NETDEV_UDP_TUNNEL_DROP_INFO, 2799 NETDEV_CHANGE_TX_QUEUE_LEN, 2800 NETDEV_CVLAN_FILTER_PUSH_INFO, 2801 NETDEV_CVLAN_FILTER_DROP_INFO, 2802 NETDEV_SVLAN_FILTER_PUSH_INFO, 2803 NETDEV_SVLAN_FILTER_DROP_INFO, 2804 NETDEV_OFFLOAD_XSTATS_ENABLE, 2805 NETDEV_OFFLOAD_XSTATS_DISABLE, 2806 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2807 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2808 }; 2809 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2810 2811 int register_netdevice_notifier(struct notifier_block *nb); 2812 int unregister_netdevice_notifier(struct notifier_block *nb); 2813 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2814 int unregister_netdevice_notifier_net(struct net *net, 2815 struct notifier_block *nb); 2816 int register_netdevice_notifier_dev_net(struct net_device *dev, 2817 struct notifier_block *nb, 2818 struct netdev_net_notifier *nn); 2819 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2820 struct notifier_block *nb, 2821 struct netdev_net_notifier *nn); 2822 2823 struct netdev_notifier_info { 2824 struct net_device *dev; 2825 struct netlink_ext_ack *extack; 2826 }; 2827 2828 struct netdev_notifier_info_ext { 2829 struct netdev_notifier_info info; /* must be first */ 2830 union { 2831 u32 mtu; 2832 } ext; 2833 }; 2834 2835 struct netdev_notifier_change_info { 2836 struct netdev_notifier_info info; /* must be first */ 2837 unsigned int flags_changed; 2838 }; 2839 2840 struct netdev_notifier_changeupper_info { 2841 struct netdev_notifier_info info; /* must be first */ 2842 struct net_device *upper_dev; /* new upper dev */ 2843 bool master; /* is upper dev master */ 2844 bool linking; /* is the notification for link or unlink */ 2845 void *upper_info; /* upper dev info */ 2846 }; 2847 2848 struct netdev_notifier_changelowerstate_info { 2849 struct netdev_notifier_info info; /* must be first */ 2850 void *lower_state_info; /* is lower dev state */ 2851 }; 2852 2853 struct netdev_notifier_pre_changeaddr_info { 2854 struct netdev_notifier_info info; /* must be first */ 2855 const unsigned char *dev_addr; 2856 }; 2857 2858 enum netdev_offload_xstats_type { 2859 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2860 }; 2861 2862 struct netdev_notifier_offload_xstats_info { 2863 struct netdev_notifier_info info; /* must be first */ 2864 enum netdev_offload_xstats_type type; 2865 2866 union { 2867 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2868 struct netdev_notifier_offload_xstats_rd *report_delta; 2869 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2870 struct netdev_notifier_offload_xstats_ru *report_used; 2871 }; 2872 }; 2873 2874 int netdev_offload_xstats_enable(struct net_device *dev, 2875 enum netdev_offload_xstats_type type, 2876 struct netlink_ext_ack *extack); 2877 int netdev_offload_xstats_disable(struct net_device *dev, 2878 enum netdev_offload_xstats_type type); 2879 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2880 enum netdev_offload_xstats_type type); 2881 int netdev_offload_xstats_get(struct net_device *dev, 2882 enum netdev_offload_xstats_type type, 2883 struct rtnl_hw_stats64 *stats, bool *used, 2884 struct netlink_ext_ack *extack); 2885 void 2886 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2887 const struct rtnl_hw_stats64 *stats); 2888 void 2889 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2890 void netdev_offload_xstats_push_delta(struct net_device *dev, 2891 enum netdev_offload_xstats_type type, 2892 const struct rtnl_hw_stats64 *stats); 2893 2894 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2895 struct net_device *dev) 2896 { 2897 info->dev = dev; 2898 info->extack = NULL; 2899 } 2900 2901 static inline struct net_device * 2902 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2903 { 2904 return info->dev; 2905 } 2906 2907 static inline struct netlink_ext_ack * 2908 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2909 { 2910 return info->extack; 2911 } 2912 2913 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2914 2915 2916 extern rwlock_t dev_base_lock; /* Device list lock */ 2917 2918 #define for_each_netdev(net, d) \ 2919 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2920 #define for_each_netdev_reverse(net, d) \ 2921 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2922 #define for_each_netdev_rcu(net, d) \ 2923 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2924 #define for_each_netdev_safe(net, d, n) \ 2925 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2926 #define for_each_netdev_continue(net, d) \ 2927 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2928 #define for_each_netdev_continue_reverse(net, d) \ 2929 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2930 dev_list) 2931 #define for_each_netdev_continue_rcu(net, d) \ 2932 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2933 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2934 for_each_netdev_rcu(&init_net, slave) \ 2935 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2936 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2937 2938 static inline struct net_device *next_net_device(struct net_device *dev) 2939 { 2940 struct list_head *lh; 2941 struct net *net; 2942 2943 net = dev_net(dev); 2944 lh = dev->dev_list.next; 2945 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2946 } 2947 2948 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2949 { 2950 struct list_head *lh; 2951 struct net *net; 2952 2953 net = dev_net(dev); 2954 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2955 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2956 } 2957 2958 static inline struct net_device *first_net_device(struct net *net) 2959 { 2960 return list_empty(&net->dev_base_head) ? NULL : 2961 net_device_entry(net->dev_base_head.next); 2962 } 2963 2964 static inline struct net_device *first_net_device_rcu(struct net *net) 2965 { 2966 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2967 2968 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2969 } 2970 2971 int netdev_boot_setup_check(struct net_device *dev); 2972 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2973 const char *hwaddr); 2974 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2975 void dev_add_pack(struct packet_type *pt); 2976 void dev_remove_pack(struct packet_type *pt); 2977 void __dev_remove_pack(struct packet_type *pt); 2978 void dev_add_offload(struct packet_offload *po); 2979 void dev_remove_offload(struct packet_offload *po); 2980 2981 int dev_get_iflink(const struct net_device *dev); 2982 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2983 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 2984 struct net_device_path_stack *stack); 2985 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2986 unsigned short mask); 2987 struct net_device *dev_get_by_name(struct net *net, const char *name); 2988 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2989 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2990 bool netdev_name_in_use(struct net *net, const char *name); 2991 int dev_alloc_name(struct net_device *dev, const char *name); 2992 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2993 void dev_close(struct net_device *dev); 2994 void dev_close_many(struct list_head *head, bool unlink); 2995 void dev_disable_lro(struct net_device *dev); 2996 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2997 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2998 struct net_device *sb_dev); 2999 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3000 struct net_device *sb_dev); 3001 3002 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3003 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3004 3005 static inline int dev_queue_xmit(struct sk_buff *skb) 3006 { 3007 return __dev_queue_xmit(skb, NULL); 3008 } 3009 3010 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3011 struct net_device *sb_dev) 3012 { 3013 return __dev_queue_xmit(skb, sb_dev); 3014 } 3015 3016 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3017 { 3018 int ret; 3019 3020 ret = __dev_direct_xmit(skb, queue_id); 3021 if (!dev_xmit_complete(ret)) 3022 kfree_skb(skb); 3023 return ret; 3024 } 3025 3026 int register_netdevice(struct net_device *dev); 3027 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3028 void unregister_netdevice_many(struct list_head *head); 3029 static inline void unregister_netdevice(struct net_device *dev) 3030 { 3031 unregister_netdevice_queue(dev, NULL); 3032 } 3033 3034 int netdev_refcnt_read(const struct net_device *dev); 3035 void free_netdev(struct net_device *dev); 3036 void netdev_freemem(struct net_device *dev); 3037 int init_dummy_netdev(struct net_device *dev); 3038 3039 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3040 struct sk_buff *skb, 3041 bool all_slaves); 3042 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3043 struct sock *sk); 3044 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3045 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3046 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3047 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3048 int dev_restart(struct net_device *dev); 3049 3050 3051 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3052 unsigned short type, 3053 const void *daddr, const void *saddr, 3054 unsigned int len) 3055 { 3056 if (!dev->header_ops || !dev->header_ops->create) 3057 return 0; 3058 3059 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3060 } 3061 3062 static inline int dev_parse_header(const struct sk_buff *skb, 3063 unsigned char *haddr) 3064 { 3065 const struct net_device *dev = skb->dev; 3066 3067 if (!dev->header_ops || !dev->header_ops->parse) 3068 return 0; 3069 return dev->header_ops->parse(skb, haddr); 3070 } 3071 3072 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3073 { 3074 const struct net_device *dev = skb->dev; 3075 3076 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3077 return 0; 3078 return dev->header_ops->parse_protocol(skb); 3079 } 3080 3081 /* ll_header must have at least hard_header_len allocated */ 3082 static inline bool dev_validate_header(const struct net_device *dev, 3083 char *ll_header, int len) 3084 { 3085 if (likely(len >= dev->hard_header_len)) 3086 return true; 3087 if (len < dev->min_header_len) 3088 return false; 3089 3090 if (capable(CAP_SYS_RAWIO)) { 3091 memset(ll_header + len, 0, dev->hard_header_len - len); 3092 return true; 3093 } 3094 3095 if (dev->header_ops && dev->header_ops->validate) 3096 return dev->header_ops->validate(ll_header, len); 3097 3098 return false; 3099 } 3100 3101 static inline bool dev_has_header(const struct net_device *dev) 3102 { 3103 return dev->header_ops && dev->header_ops->create; 3104 } 3105 3106 /* 3107 * Incoming packets are placed on per-CPU queues 3108 */ 3109 struct softnet_data { 3110 struct list_head poll_list; 3111 struct sk_buff_head process_queue; 3112 3113 /* stats */ 3114 unsigned int processed; 3115 unsigned int time_squeeze; 3116 unsigned int received_rps; 3117 #ifdef CONFIG_RPS 3118 struct softnet_data *rps_ipi_list; 3119 #endif 3120 #ifdef CONFIG_NET_FLOW_LIMIT 3121 struct sd_flow_limit __rcu *flow_limit; 3122 #endif 3123 struct Qdisc *output_queue; 3124 struct Qdisc **output_queue_tailp; 3125 struct sk_buff *completion_queue; 3126 #ifdef CONFIG_XFRM_OFFLOAD 3127 struct sk_buff_head xfrm_backlog; 3128 #endif 3129 /* written and read only by owning cpu: */ 3130 struct { 3131 u16 recursion; 3132 u8 more; 3133 #ifdef CONFIG_NET_EGRESS 3134 u8 skip_txqueue; 3135 #endif 3136 } xmit; 3137 #ifdef CONFIG_RPS 3138 /* input_queue_head should be written by cpu owning this struct, 3139 * and only read by other cpus. Worth using a cache line. 3140 */ 3141 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3142 3143 /* Elements below can be accessed between CPUs for RPS/RFS */ 3144 call_single_data_t csd ____cacheline_aligned_in_smp; 3145 struct softnet_data *rps_ipi_next; 3146 unsigned int cpu; 3147 unsigned int input_queue_tail; 3148 #endif 3149 unsigned int dropped; 3150 struct sk_buff_head input_pkt_queue; 3151 struct napi_struct backlog; 3152 3153 /* Another possibly contended cache line */ 3154 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3155 int defer_count; 3156 int defer_ipi_scheduled; 3157 struct sk_buff *defer_list; 3158 call_single_data_t defer_csd; 3159 }; 3160 3161 static inline void input_queue_head_incr(struct softnet_data *sd) 3162 { 3163 #ifdef CONFIG_RPS 3164 sd->input_queue_head++; 3165 #endif 3166 } 3167 3168 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3169 unsigned int *qtail) 3170 { 3171 #ifdef CONFIG_RPS 3172 *qtail = ++sd->input_queue_tail; 3173 #endif 3174 } 3175 3176 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3177 3178 static inline int dev_recursion_level(void) 3179 { 3180 return this_cpu_read(softnet_data.xmit.recursion); 3181 } 3182 3183 #define XMIT_RECURSION_LIMIT 8 3184 static inline bool dev_xmit_recursion(void) 3185 { 3186 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3187 XMIT_RECURSION_LIMIT); 3188 } 3189 3190 static inline void dev_xmit_recursion_inc(void) 3191 { 3192 __this_cpu_inc(softnet_data.xmit.recursion); 3193 } 3194 3195 static inline void dev_xmit_recursion_dec(void) 3196 { 3197 __this_cpu_dec(softnet_data.xmit.recursion); 3198 } 3199 3200 void __netif_schedule(struct Qdisc *q); 3201 void netif_schedule_queue(struct netdev_queue *txq); 3202 3203 static inline void netif_tx_schedule_all(struct net_device *dev) 3204 { 3205 unsigned int i; 3206 3207 for (i = 0; i < dev->num_tx_queues; i++) 3208 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3209 } 3210 3211 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3212 { 3213 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3214 } 3215 3216 /** 3217 * netif_start_queue - allow transmit 3218 * @dev: network device 3219 * 3220 * Allow upper layers to call the device hard_start_xmit routine. 3221 */ 3222 static inline void netif_start_queue(struct net_device *dev) 3223 { 3224 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3225 } 3226 3227 static inline void netif_tx_start_all_queues(struct net_device *dev) 3228 { 3229 unsigned int i; 3230 3231 for (i = 0; i < dev->num_tx_queues; i++) { 3232 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3233 netif_tx_start_queue(txq); 3234 } 3235 } 3236 3237 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3238 3239 /** 3240 * netif_wake_queue - restart transmit 3241 * @dev: network device 3242 * 3243 * Allow upper layers to call the device hard_start_xmit routine. 3244 * Used for flow control when transmit resources are available. 3245 */ 3246 static inline void netif_wake_queue(struct net_device *dev) 3247 { 3248 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3249 } 3250 3251 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3252 { 3253 unsigned int i; 3254 3255 for (i = 0; i < dev->num_tx_queues; i++) { 3256 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3257 netif_tx_wake_queue(txq); 3258 } 3259 } 3260 3261 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3262 { 3263 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3264 } 3265 3266 /** 3267 * netif_stop_queue - stop transmitted packets 3268 * @dev: network device 3269 * 3270 * Stop upper layers calling the device hard_start_xmit routine. 3271 * Used for flow control when transmit resources are unavailable. 3272 */ 3273 static inline void netif_stop_queue(struct net_device *dev) 3274 { 3275 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3276 } 3277 3278 void netif_tx_stop_all_queues(struct net_device *dev); 3279 3280 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3281 { 3282 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3283 } 3284 3285 /** 3286 * netif_queue_stopped - test if transmit queue is flowblocked 3287 * @dev: network device 3288 * 3289 * Test if transmit queue on device is currently unable to send. 3290 */ 3291 static inline bool netif_queue_stopped(const struct net_device *dev) 3292 { 3293 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3294 } 3295 3296 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3297 { 3298 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3299 } 3300 3301 static inline bool 3302 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3303 { 3304 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3305 } 3306 3307 static inline bool 3308 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3309 { 3310 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3311 } 3312 3313 /** 3314 * netdev_queue_set_dql_min_limit - set dql minimum limit 3315 * @dev_queue: pointer to transmit queue 3316 * @min_limit: dql minimum limit 3317 * 3318 * Forces xmit_more() to return true until the minimum threshold 3319 * defined by @min_limit is reached (or until the tx queue is 3320 * empty). Warning: to be use with care, misuse will impact the 3321 * latency. 3322 */ 3323 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3324 unsigned int min_limit) 3325 { 3326 #ifdef CONFIG_BQL 3327 dev_queue->dql.min_limit = min_limit; 3328 #endif 3329 } 3330 3331 /** 3332 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3333 * @dev_queue: pointer to transmit queue 3334 * 3335 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3336 * to give appropriate hint to the CPU. 3337 */ 3338 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3339 { 3340 #ifdef CONFIG_BQL 3341 prefetchw(&dev_queue->dql.num_queued); 3342 #endif 3343 } 3344 3345 /** 3346 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3347 * @dev_queue: pointer to transmit queue 3348 * 3349 * BQL enabled drivers might use this helper in their TX completion path, 3350 * to give appropriate hint to the CPU. 3351 */ 3352 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3353 { 3354 #ifdef CONFIG_BQL 3355 prefetchw(&dev_queue->dql.limit); 3356 #endif 3357 } 3358 3359 /** 3360 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3361 * @dev_queue: network device queue 3362 * @bytes: number of bytes queued to the device queue 3363 * 3364 * Report the number of bytes queued for sending/completion to the network 3365 * device hardware queue. @bytes should be a good approximation and should 3366 * exactly match netdev_completed_queue() @bytes. 3367 * This is typically called once per packet, from ndo_start_xmit(). 3368 */ 3369 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3370 unsigned int bytes) 3371 { 3372 #ifdef CONFIG_BQL 3373 dql_queued(&dev_queue->dql, bytes); 3374 3375 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3376 return; 3377 3378 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3379 3380 /* 3381 * The XOFF flag must be set before checking the dql_avail below, 3382 * because in netdev_tx_completed_queue we update the dql_completed 3383 * before checking the XOFF flag. 3384 */ 3385 smp_mb(); 3386 3387 /* check again in case another CPU has just made room avail */ 3388 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3389 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3390 #endif 3391 } 3392 3393 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3394 * that they should not test BQL status themselves. 3395 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3396 * skb of a batch. 3397 * Returns true if the doorbell must be used to kick the NIC. 3398 */ 3399 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3400 unsigned int bytes, 3401 bool xmit_more) 3402 { 3403 if (xmit_more) { 3404 #ifdef CONFIG_BQL 3405 dql_queued(&dev_queue->dql, bytes); 3406 #endif 3407 return netif_tx_queue_stopped(dev_queue); 3408 } 3409 netdev_tx_sent_queue(dev_queue, bytes); 3410 return true; 3411 } 3412 3413 /** 3414 * netdev_sent_queue - report the number of bytes queued to hardware 3415 * @dev: network device 3416 * @bytes: number of bytes queued to the hardware device queue 3417 * 3418 * Report the number of bytes queued for sending/completion to the network 3419 * device hardware queue#0. @bytes should be a good approximation and should 3420 * exactly match netdev_completed_queue() @bytes. 3421 * This is typically called once per packet, from ndo_start_xmit(). 3422 */ 3423 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3424 { 3425 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3426 } 3427 3428 static inline bool __netdev_sent_queue(struct net_device *dev, 3429 unsigned int bytes, 3430 bool xmit_more) 3431 { 3432 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3433 xmit_more); 3434 } 3435 3436 /** 3437 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3438 * @dev_queue: network device queue 3439 * @pkts: number of packets (currently ignored) 3440 * @bytes: number of bytes dequeued from the device queue 3441 * 3442 * Must be called at most once per TX completion round (and not per 3443 * individual packet), so that BQL can adjust its limits appropriately. 3444 */ 3445 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3446 unsigned int pkts, unsigned int bytes) 3447 { 3448 #ifdef CONFIG_BQL 3449 if (unlikely(!bytes)) 3450 return; 3451 3452 dql_completed(&dev_queue->dql, bytes); 3453 3454 /* 3455 * Without the memory barrier there is a small possiblity that 3456 * netdev_tx_sent_queue will miss the update and cause the queue to 3457 * be stopped forever 3458 */ 3459 smp_mb(); 3460 3461 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3462 return; 3463 3464 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3465 netif_schedule_queue(dev_queue); 3466 #endif 3467 } 3468 3469 /** 3470 * netdev_completed_queue - report bytes and packets completed by device 3471 * @dev: network device 3472 * @pkts: actual number of packets sent over the medium 3473 * @bytes: actual number of bytes sent over the medium 3474 * 3475 * Report the number of bytes and packets transmitted by the network device 3476 * hardware queue over the physical medium, @bytes must exactly match the 3477 * @bytes amount passed to netdev_sent_queue() 3478 */ 3479 static inline void netdev_completed_queue(struct net_device *dev, 3480 unsigned int pkts, unsigned int bytes) 3481 { 3482 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3483 } 3484 3485 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3486 { 3487 #ifdef CONFIG_BQL 3488 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3489 dql_reset(&q->dql); 3490 #endif 3491 } 3492 3493 /** 3494 * netdev_reset_queue - reset the packets and bytes count of a network device 3495 * @dev_queue: network device 3496 * 3497 * Reset the bytes and packet count of a network device and clear the 3498 * software flow control OFF bit for this network device 3499 */ 3500 static inline void netdev_reset_queue(struct net_device *dev_queue) 3501 { 3502 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3503 } 3504 3505 /** 3506 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3507 * @dev: network device 3508 * @queue_index: given tx queue index 3509 * 3510 * Returns 0 if given tx queue index >= number of device tx queues, 3511 * otherwise returns the originally passed tx queue index. 3512 */ 3513 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3514 { 3515 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3516 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3517 dev->name, queue_index, 3518 dev->real_num_tx_queues); 3519 return 0; 3520 } 3521 3522 return queue_index; 3523 } 3524 3525 /** 3526 * netif_running - test if up 3527 * @dev: network device 3528 * 3529 * Test if the device has been brought up. 3530 */ 3531 static inline bool netif_running(const struct net_device *dev) 3532 { 3533 return test_bit(__LINK_STATE_START, &dev->state); 3534 } 3535 3536 /* 3537 * Routines to manage the subqueues on a device. We only need start, 3538 * stop, and a check if it's stopped. All other device management is 3539 * done at the overall netdevice level. 3540 * Also test the device if we're multiqueue. 3541 */ 3542 3543 /** 3544 * netif_start_subqueue - allow sending packets on subqueue 3545 * @dev: network device 3546 * @queue_index: sub queue index 3547 * 3548 * Start individual transmit queue of a device with multiple transmit queues. 3549 */ 3550 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3551 { 3552 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3553 3554 netif_tx_start_queue(txq); 3555 } 3556 3557 /** 3558 * netif_stop_subqueue - stop sending packets on subqueue 3559 * @dev: network device 3560 * @queue_index: sub queue index 3561 * 3562 * Stop individual transmit queue of a device with multiple transmit queues. 3563 */ 3564 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3565 { 3566 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3567 netif_tx_stop_queue(txq); 3568 } 3569 3570 /** 3571 * __netif_subqueue_stopped - test status of subqueue 3572 * @dev: network device 3573 * @queue_index: sub queue index 3574 * 3575 * Check individual transmit queue of a device with multiple transmit queues. 3576 */ 3577 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3578 u16 queue_index) 3579 { 3580 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3581 3582 return netif_tx_queue_stopped(txq); 3583 } 3584 3585 /** 3586 * netif_subqueue_stopped - test status of subqueue 3587 * @dev: network device 3588 * @skb: sub queue buffer pointer 3589 * 3590 * Check individual transmit queue of a device with multiple transmit queues. 3591 */ 3592 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3593 struct sk_buff *skb) 3594 { 3595 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3596 } 3597 3598 /** 3599 * netif_wake_subqueue - allow sending packets on subqueue 3600 * @dev: network device 3601 * @queue_index: sub queue index 3602 * 3603 * Resume individual transmit queue of a device with multiple transmit queues. 3604 */ 3605 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3606 { 3607 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3608 3609 netif_tx_wake_queue(txq); 3610 } 3611 3612 #ifdef CONFIG_XPS 3613 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3614 u16 index); 3615 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3616 u16 index, enum xps_map_type type); 3617 3618 /** 3619 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3620 * @j: CPU/Rx queue index 3621 * @mask: bitmask of all cpus/rx queues 3622 * @nr_bits: number of bits in the bitmask 3623 * 3624 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3625 */ 3626 static inline bool netif_attr_test_mask(unsigned long j, 3627 const unsigned long *mask, 3628 unsigned int nr_bits) 3629 { 3630 cpu_max_bits_warn(j, nr_bits); 3631 return test_bit(j, mask); 3632 } 3633 3634 /** 3635 * netif_attr_test_online - Test for online CPU/Rx queue 3636 * @j: CPU/Rx queue index 3637 * @online_mask: bitmask for CPUs/Rx queues that are online 3638 * @nr_bits: number of bits in the bitmask 3639 * 3640 * Returns true if a CPU/Rx queue is online. 3641 */ 3642 static inline bool netif_attr_test_online(unsigned long j, 3643 const unsigned long *online_mask, 3644 unsigned int nr_bits) 3645 { 3646 cpu_max_bits_warn(j, nr_bits); 3647 3648 if (online_mask) 3649 return test_bit(j, online_mask); 3650 3651 return (j < nr_bits); 3652 } 3653 3654 /** 3655 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3656 * @n: CPU/Rx queue index 3657 * @srcp: the cpumask/Rx queue mask pointer 3658 * @nr_bits: number of bits in the bitmask 3659 * 3660 * Returns >= nr_bits if no further CPUs/Rx queues set. 3661 */ 3662 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3663 unsigned int nr_bits) 3664 { 3665 /* -1 is a legal arg here. */ 3666 if (n != -1) 3667 cpu_max_bits_warn(n, nr_bits); 3668 3669 if (srcp) 3670 return find_next_bit(srcp, nr_bits, n + 1); 3671 3672 return n + 1; 3673 } 3674 3675 /** 3676 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3677 * @n: CPU/Rx queue index 3678 * @src1p: the first CPUs/Rx queues mask pointer 3679 * @src2p: the second CPUs/Rx queues mask pointer 3680 * @nr_bits: number of bits in the bitmask 3681 * 3682 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3683 */ 3684 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3685 const unsigned long *src2p, 3686 unsigned int nr_bits) 3687 { 3688 /* -1 is a legal arg here. */ 3689 if (n != -1) 3690 cpu_max_bits_warn(n, nr_bits); 3691 3692 if (src1p && src2p) 3693 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3694 else if (src1p) 3695 return find_next_bit(src1p, nr_bits, n + 1); 3696 else if (src2p) 3697 return find_next_bit(src2p, nr_bits, n + 1); 3698 3699 return n + 1; 3700 } 3701 #else 3702 static inline int netif_set_xps_queue(struct net_device *dev, 3703 const struct cpumask *mask, 3704 u16 index) 3705 { 3706 return 0; 3707 } 3708 3709 static inline int __netif_set_xps_queue(struct net_device *dev, 3710 const unsigned long *mask, 3711 u16 index, enum xps_map_type type) 3712 { 3713 return 0; 3714 } 3715 #endif 3716 3717 /** 3718 * netif_is_multiqueue - test if device has multiple transmit queues 3719 * @dev: network device 3720 * 3721 * Check if device has multiple transmit queues 3722 */ 3723 static inline bool netif_is_multiqueue(const struct net_device *dev) 3724 { 3725 return dev->num_tx_queues > 1; 3726 } 3727 3728 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3729 3730 #ifdef CONFIG_SYSFS 3731 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3732 #else 3733 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3734 unsigned int rxqs) 3735 { 3736 dev->real_num_rx_queues = rxqs; 3737 return 0; 3738 } 3739 #endif 3740 int netif_set_real_num_queues(struct net_device *dev, 3741 unsigned int txq, unsigned int rxq); 3742 3743 static inline struct netdev_rx_queue * 3744 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3745 { 3746 return dev->_rx + rxq; 3747 } 3748 3749 #ifdef CONFIG_SYSFS 3750 static inline unsigned int get_netdev_rx_queue_index( 3751 struct netdev_rx_queue *queue) 3752 { 3753 struct net_device *dev = queue->dev; 3754 int index = queue - dev->_rx; 3755 3756 BUG_ON(index >= dev->num_rx_queues); 3757 return index; 3758 } 3759 #endif 3760 3761 int netif_get_num_default_rss_queues(void); 3762 3763 enum skb_free_reason { 3764 SKB_REASON_CONSUMED, 3765 SKB_REASON_DROPPED, 3766 }; 3767 3768 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3769 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3770 3771 /* 3772 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3773 * interrupt context or with hardware interrupts being disabled. 3774 * (in_hardirq() || irqs_disabled()) 3775 * 3776 * We provide four helpers that can be used in following contexts : 3777 * 3778 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3779 * replacing kfree_skb(skb) 3780 * 3781 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3782 * Typically used in place of consume_skb(skb) in TX completion path 3783 * 3784 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3785 * replacing kfree_skb(skb) 3786 * 3787 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3788 * and consumed a packet. Used in place of consume_skb(skb) 3789 */ 3790 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3791 { 3792 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3793 } 3794 3795 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3796 { 3797 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3798 } 3799 3800 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3801 { 3802 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3803 } 3804 3805 static inline void dev_consume_skb_any(struct sk_buff *skb) 3806 { 3807 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3808 } 3809 3810 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3811 struct bpf_prog *xdp_prog); 3812 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3813 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3814 int netif_rx(struct sk_buff *skb); 3815 int __netif_rx(struct sk_buff *skb); 3816 3817 int netif_receive_skb(struct sk_buff *skb); 3818 int netif_receive_skb_core(struct sk_buff *skb); 3819 void netif_receive_skb_list_internal(struct list_head *head); 3820 void netif_receive_skb_list(struct list_head *head); 3821 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3822 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3823 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3824 gro_result_t napi_gro_frags(struct napi_struct *napi); 3825 struct packet_offload *gro_find_receive_by_type(__be16 type); 3826 struct packet_offload *gro_find_complete_by_type(__be16 type); 3827 3828 static inline void napi_free_frags(struct napi_struct *napi) 3829 { 3830 kfree_skb(napi->skb); 3831 napi->skb = NULL; 3832 } 3833 3834 bool netdev_is_rx_handler_busy(struct net_device *dev); 3835 int netdev_rx_handler_register(struct net_device *dev, 3836 rx_handler_func_t *rx_handler, 3837 void *rx_handler_data); 3838 void netdev_rx_handler_unregister(struct net_device *dev); 3839 3840 bool dev_valid_name(const char *name); 3841 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3842 { 3843 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3844 } 3845 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3846 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3847 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3848 void __user *data, bool *need_copyout); 3849 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3850 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3851 unsigned int dev_get_flags(const struct net_device *); 3852 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3853 struct netlink_ext_ack *extack); 3854 int dev_change_flags(struct net_device *dev, unsigned int flags, 3855 struct netlink_ext_ack *extack); 3856 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3857 unsigned int gchanges); 3858 int dev_set_alias(struct net_device *, const char *, size_t); 3859 int dev_get_alias(const struct net_device *, char *, size_t); 3860 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3861 const char *pat, int new_ifindex); 3862 static inline 3863 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3864 const char *pat) 3865 { 3866 return __dev_change_net_namespace(dev, net, pat, 0); 3867 } 3868 int __dev_set_mtu(struct net_device *, int); 3869 int dev_set_mtu(struct net_device *, int); 3870 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3871 struct netlink_ext_ack *extack); 3872 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3873 struct netlink_ext_ack *extack); 3874 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3875 struct netlink_ext_ack *extack); 3876 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3877 int dev_get_port_parent_id(struct net_device *dev, 3878 struct netdev_phys_item_id *ppid, bool recurse); 3879 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3880 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3881 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3882 struct netdev_queue *txq, int *ret); 3883 3884 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3885 u8 dev_xdp_prog_count(struct net_device *dev); 3886 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3887 3888 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3889 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3890 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3891 bool is_skb_forwardable(const struct net_device *dev, 3892 const struct sk_buff *skb); 3893 3894 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3895 const struct sk_buff *skb, 3896 const bool check_mtu) 3897 { 3898 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3899 unsigned int len; 3900 3901 if (!(dev->flags & IFF_UP)) 3902 return false; 3903 3904 if (!check_mtu) 3905 return true; 3906 3907 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3908 if (skb->len <= len) 3909 return true; 3910 3911 /* if TSO is enabled, we don't care about the length as the packet 3912 * could be forwarded without being segmented before 3913 */ 3914 if (skb_is_gso(skb)) 3915 return true; 3916 3917 return false; 3918 } 3919 3920 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3921 3922 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 3923 { 3924 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 3925 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 3926 3927 if (likely(p)) 3928 return p; 3929 3930 return netdev_core_stats_alloc(dev); 3931 } 3932 3933 #define DEV_CORE_STATS_INC(FIELD) \ 3934 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3935 { \ 3936 struct net_device_core_stats __percpu *p; \ 3937 \ 3938 p = dev_core_stats(dev); \ 3939 if (p) \ 3940 this_cpu_inc(p->FIELD); \ 3941 } 3942 DEV_CORE_STATS_INC(rx_dropped) 3943 DEV_CORE_STATS_INC(tx_dropped) 3944 DEV_CORE_STATS_INC(rx_nohandler) 3945 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3946 3947 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3948 struct sk_buff *skb, 3949 const bool check_mtu) 3950 { 3951 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3952 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3953 dev_core_stats_rx_dropped_inc(dev); 3954 kfree_skb(skb); 3955 return NET_RX_DROP; 3956 } 3957 3958 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 3959 skb->priority = 0; 3960 return 0; 3961 } 3962 3963 bool dev_nit_active(struct net_device *dev); 3964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3965 3966 static inline void __dev_put(struct net_device *dev) 3967 { 3968 if (dev) { 3969 #ifdef CONFIG_PCPU_DEV_REFCNT 3970 this_cpu_dec(*dev->pcpu_refcnt); 3971 #else 3972 refcount_dec(&dev->dev_refcnt); 3973 #endif 3974 } 3975 } 3976 3977 static inline void __dev_hold(struct net_device *dev) 3978 { 3979 if (dev) { 3980 #ifdef CONFIG_PCPU_DEV_REFCNT 3981 this_cpu_inc(*dev->pcpu_refcnt); 3982 #else 3983 refcount_inc(&dev->dev_refcnt); 3984 #endif 3985 } 3986 } 3987 3988 static inline void __netdev_tracker_alloc(struct net_device *dev, 3989 netdevice_tracker *tracker, 3990 gfp_t gfp) 3991 { 3992 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 3993 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 3994 #endif 3995 } 3996 3997 /* netdev_tracker_alloc() can upgrade a prior untracked reference 3998 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 3999 */ 4000 static inline void netdev_tracker_alloc(struct net_device *dev, 4001 netdevice_tracker *tracker, gfp_t gfp) 4002 { 4003 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4004 refcount_dec(&dev->refcnt_tracker.no_tracker); 4005 __netdev_tracker_alloc(dev, tracker, gfp); 4006 #endif 4007 } 4008 4009 static inline void netdev_tracker_free(struct net_device *dev, 4010 netdevice_tracker *tracker) 4011 { 4012 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4013 ref_tracker_free(&dev->refcnt_tracker, tracker); 4014 #endif 4015 } 4016 4017 static inline void netdev_hold(struct net_device *dev, 4018 netdevice_tracker *tracker, gfp_t gfp) 4019 { 4020 if (dev) { 4021 __dev_hold(dev); 4022 __netdev_tracker_alloc(dev, tracker, gfp); 4023 } 4024 } 4025 4026 static inline void netdev_put(struct net_device *dev, 4027 netdevice_tracker *tracker) 4028 { 4029 if (dev) { 4030 netdev_tracker_free(dev, tracker); 4031 __dev_put(dev); 4032 } 4033 } 4034 4035 /** 4036 * dev_hold - get reference to device 4037 * @dev: network device 4038 * 4039 * Hold reference to device to keep it from being freed. 4040 * Try using netdev_hold() instead. 4041 */ 4042 static inline void dev_hold(struct net_device *dev) 4043 { 4044 netdev_hold(dev, NULL, GFP_ATOMIC); 4045 } 4046 4047 /** 4048 * dev_put - release reference to device 4049 * @dev: network device 4050 * 4051 * Release reference to device to allow it to be freed. 4052 * Try using netdev_put() instead. 4053 */ 4054 static inline void dev_put(struct net_device *dev) 4055 { 4056 netdev_put(dev, NULL); 4057 } 4058 4059 static inline void netdev_ref_replace(struct net_device *odev, 4060 struct net_device *ndev, 4061 netdevice_tracker *tracker, 4062 gfp_t gfp) 4063 { 4064 if (odev) 4065 netdev_tracker_free(odev, tracker); 4066 4067 __dev_hold(ndev); 4068 __dev_put(odev); 4069 4070 if (ndev) 4071 __netdev_tracker_alloc(ndev, tracker, gfp); 4072 } 4073 4074 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4075 * and _off may be called from IRQ context, but it is caller 4076 * who is responsible for serialization of these calls. 4077 * 4078 * The name carrier is inappropriate, these functions should really be 4079 * called netif_lowerlayer_*() because they represent the state of any 4080 * kind of lower layer not just hardware media. 4081 */ 4082 void linkwatch_fire_event(struct net_device *dev); 4083 4084 /** 4085 * netif_carrier_ok - test if carrier present 4086 * @dev: network device 4087 * 4088 * Check if carrier is present on device 4089 */ 4090 static inline bool netif_carrier_ok(const struct net_device *dev) 4091 { 4092 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4093 } 4094 4095 unsigned long dev_trans_start(struct net_device *dev); 4096 4097 void __netdev_watchdog_up(struct net_device *dev); 4098 4099 void netif_carrier_on(struct net_device *dev); 4100 void netif_carrier_off(struct net_device *dev); 4101 void netif_carrier_event(struct net_device *dev); 4102 4103 /** 4104 * netif_dormant_on - mark device as dormant. 4105 * @dev: network device 4106 * 4107 * Mark device as dormant (as per RFC2863). 4108 * 4109 * The dormant state indicates that the relevant interface is not 4110 * actually in a condition to pass packets (i.e., it is not 'up') but is 4111 * in a "pending" state, waiting for some external event. For "on- 4112 * demand" interfaces, this new state identifies the situation where the 4113 * interface is waiting for events to place it in the up state. 4114 */ 4115 static inline void netif_dormant_on(struct net_device *dev) 4116 { 4117 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4118 linkwatch_fire_event(dev); 4119 } 4120 4121 /** 4122 * netif_dormant_off - set device as not dormant. 4123 * @dev: network device 4124 * 4125 * Device is not in dormant state. 4126 */ 4127 static inline void netif_dormant_off(struct net_device *dev) 4128 { 4129 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4130 linkwatch_fire_event(dev); 4131 } 4132 4133 /** 4134 * netif_dormant - test if device is dormant 4135 * @dev: network device 4136 * 4137 * Check if device is dormant. 4138 */ 4139 static inline bool netif_dormant(const struct net_device *dev) 4140 { 4141 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4142 } 4143 4144 4145 /** 4146 * netif_testing_on - mark device as under test. 4147 * @dev: network device 4148 * 4149 * Mark device as under test (as per RFC2863). 4150 * 4151 * The testing state indicates that some test(s) must be performed on 4152 * the interface. After completion, of the test, the interface state 4153 * will change to up, dormant, or down, as appropriate. 4154 */ 4155 static inline void netif_testing_on(struct net_device *dev) 4156 { 4157 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4158 linkwatch_fire_event(dev); 4159 } 4160 4161 /** 4162 * netif_testing_off - set device as not under test. 4163 * @dev: network device 4164 * 4165 * Device is not in testing state. 4166 */ 4167 static inline void netif_testing_off(struct net_device *dev) 4168 { 4169 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4170 linkwatch_fire_event(dev); 4171 } 4172 4173 /** 4174 * netif_testing - test if device is under test 4175 * @dev: network device 4176 * 4177 * Check if device is under test 4178 */ 4179 static inline bool netif_testing(const struct net_device *dev) 4180 { 4181 return test_bit(__LINK_STATE_TESTING, &dev->state); 4182 } 4183 4184 4185 /** 4186 * netif_oper_up - test if device is operational 4187 * @dev: network device 4188 * 4189 * Check if carrier is operational 4190 */ 4191 static inline bool netif_oper_up(const struct net_device *dev) 4192 { 4193 return (dev->operstate == IF_OPER_UP || 4194 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4195 } 4196 4197 /** 4198 * netif_device_present - is device available or removed 4199 * @dev: network device 4200 * 4201 * Check if device has not been removed from system. 4202 */ 4203 static inline bool netif_device_present(const struct net_device *dev) 4204 { 4205 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4206 } 4207 4208 void netif_device_detach(struct net_device *dev); 4209 4210 void netif_device_attach(struct net_device *dev); 4211 4212 /* 4213 * Network interface message level settings 4214 */ 4215 4216 enum { 4217 NETIF_MSG_DRV_BIT, 4218 NETIF_MSG_PROBE_BIT, 4219 NETIF_MSG_LINK_BIT, 4220 NETIF_MSG_TIMER_BIT, 4221 NETIF_MSG_IFDOWN_BIT, 4222 NETIF_MSG_IFUP_BIT, 4223 NETIF_MSG_RX_ERR_BIT, 4224 NETIF_MSG_TX_ERR_BIT, 4225 NETIF_MSG_TX_QUEUED_BIT, 4226 NETIF_MSG_INTR_BIT, 4227 NETIF_MSG_TX_DONE_BIT, 4228 NETIF_MSG_RX_STATUS_BIT, 4229 NETIF_MSG_PKTDATA_BIT, 4230 NETIF_MSG_HW_BIT, 4231 NETIF_MSG_WOL_BIT, 4232 4233 /* When you add a new bit above, update netif_msg_class_names array 4234 * in net/ethtool/common.c 4235 */ 4236 NETIF_MSG_CLASS_COUNT, 4237 }; 4238 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4239 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4240 4241 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4242 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4243 4244 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4245 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4246 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4247 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4248 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4249 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4250 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4251 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4252 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4253 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4254 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4255 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4256 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4257 #define NETIF_MSG_HW __NETIF_MSG(HW) 4258 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4259 4260 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4261 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4262 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4263 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4264 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4265 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4266 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4267 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4268 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4269 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4270 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4271 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4272 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4273 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4274 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4275 4276 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4277 { 4278 /* use default */ 4279 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4280 return default_msg_enable_bits; 4281 if (debug_value == 0) /* no output */ 4282 return 0; 4283 /* set low N bits */ 4284 return (1U << debug_value) - 1; 4285 } 4286 4287 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4288 { 4289 spin_lock(&txq->_xmit_lock); 4290 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4291 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4292 } 4293 4294 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4295 { 4296 __acquire(&txq->_xmit_lock); 4297 return true; 4298 } 4299 4300 static inline void __netif_tx_release(struct netdev_queue *txq) 4301 { 4302 __release(&txq->_xmit_lock); 4303 } 4304 4305 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4306 { 4307 spin_lock_bh(&txq->_xmit_lock); 4308 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4309 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4310 } 4311 4312 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4313 { 4314 bool ok = spin_trylock(&txq->_xmit_lock); 4315 4316 if (likely(ok)) { 4317 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4318 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4319 } 4320 return ok; 4321 } 4322 4323 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4324 { 4325 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4326 WRITE_ONCE(txq->xmit_lock_owner, -1); 4327 spin_unlock(&txq->_xmit_lock); 4328 } 4329 4330 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4331 { 4332 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4333 WRITE_ONCE(txq->xmit_lock_owner, -1); 4334 spin_unlock_bh(&txq->_xmit_lock); 4335 } 4336 4337 /* 4338 * txq->trans_start can be read locklessly from dev_watchdog() 4339 */ 4340 static inline void txq_trans_update(struct netdev_queue *txq) 4341 { 4342 if (txq->xmit_lock_owner != -1) 4343 WRITE_ONCE(txq->trans_start, jiffies); 4344 } 4345 4346 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4347 { 4348 unsigned long now = jiffies; 4349 4350 if (READ_ONCE(txq->trans_start) != now) 4351 WRITE_ONCE(txq->trans_start, now); 4352 } 4353 4354 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4355 static inline void netif_trans_update(struct net_device *dev) 4356 { 4357 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4358 4359 txq_trans_cond_update(txq); 4360 } 4361 4362 /** 4363 * netif_tx_lock - grab network device transmit lock 4364 * @dev: network device 4365 * 4366 * Get network device transmit lock 4367 */ 4368 void netif_tx_lock(struct net_device *dev); 4369 4370 static inline void netif_tx_lock_bh(struct net_device *dev) 4371 { 4372 local_bh_disable(); 4373 netif_tx_lock(dev); 4374 } 4375 4376 void netif_tx_unlock(struct net_device *dev); 4377 4378 static inline void netif_tx_unlock_bh(struct net_device *dev) 4379 { 4380 netif_tx_unlock(dev); 4381 local_bh_enable(); 4382 } 4383 4384 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4385 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4386 __netif_tx_lock(txq, cpu); \ 4387 } else { \ 4388 __netif_tx_acquire(txq); \ 4389 } \ 4390 } 4391 4392 #define HARD_TX_TRYLOCK(dev, txq) \ 4393 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4394 __netif_tx_trylock(txq) : \ 4395 __netif_tx_acquire(txq)) 4396 4397 #define HARD_TX_UNLOCK(dev, txq) { \ 4398 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4399 __netif_tx_unlock(txq); \ 4400 } else { \ 4401 __netif_tx_release(txq); \ 4402 } \ 4403 } 4404 4405 static inline void netif_tx_disable(struct net_device *dev) 4406 { 4407 unsigned int i; 4408 int cpu; 4409 4410 local_bh_disable(); 4411 cpu = smp_processor_id(); 4412 spin_lock(&dev->tx_global_lock); 4413 for (i = 0; i < dev->num_tx_queues; i++) { 4414 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4415 4416 __netif_tx_lock(txq, cpu); 4417 netif_tx_stop_queue(txq); 4418 __netif_tx_unlock(txq); 4419 } 4420 spin_unlock(&dev->tx_global_lock); 4421 local_bh_enable(); 4422 } 4423 4424 static inline void netif_addr_lock(struct net_device *dev) 4425 { 4426 unsigned char nest_level = 0; 4427 4428 #ifdef CONFIG_LOCKDEP 4429 nest_level = dev->nested_level; 4430 #endif 4431 spin_lock_nested(&dev->addr_list_lock, nest_level); 4432 } 4433 4434 static inline void netif_addr_lock_bh(struct net_device *dev) 4435 { 4436 unsigned char nest_level = 0; 4437 4438 #ifdef CONFIG_LOCKDEP 4439 nest_level = dev->nested_level; 4440 #endif 4441 local_bh_disable(); 4442 spin_lock_nested(&dev->addr_list_lock, nest_level); 4443 } 4444 4445 static inline void netif_addr_unlock(struct net_device *dev) 4446 { 4447 spin_unlock(&dev->addr_list_lock); 4448 } 4449 4450 static inline void netif_addr_unlock_bh(struct net_device *dev) 4451 { 4452 spin_unlock_bh(&dev->addr_list_lock); 4453 } 4454 4455 /* 4456 * dev_addrs walker. Should be used only for read access. Call with 4457 * rcu_read_lock held. 4458 */ 4459 #define for_each_dev_addr(dev, ha) \ 4460 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4461 4462 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4463 4464 void ether_setup(struct net_device *dev); 4465 4466 /* Support for loadable net-drivers */ 4467 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4468 unsigned char name_assign_type, 4469 void (*setup)(struct net_device *), 4470 unsigned int txqs, unsigned int rxqs); 4471 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4472 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4473 4474 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4475 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4476 count) 4477 4478 int register_netdev(struct net_device *dev); 4479 void unregister_netdev(struct net_device *dev); 4480 4481 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4482 4483 /* General hardware address lists handling functions */ 4484 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4485 struct netdev_hw_addr_list *from_list, int addr_len); 4486 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4487 struct netdev_hw_addr_list *from_list, int addr_len); 4488 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4489 struct net_device *dev, 4490 int (*sync)(struct net_device *, const unsigned char *), 4491 int (*unsync)(struct net_device *, 4492 const unsigned char *)); 4493 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4494 struct net_device *dev, 4495 int (*sync)(struct net_device *, 4496 const unsigned char *, int), 4497 int (*unsync)(struct net_device *, 4498 const unsigned char *, int)); 4499 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4500 struct net_device *dev, 4501 int (*unsync)(struct net_device *, 4502 const unsigned char *, int)); 4503 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4504 struct net_device *dev, 4505 int (*unsync)(struct net_device *, 4506 const unsigned char *)); 4507 void __hw_addr_init(struct netdev_hw_addr_list *list); 4508 4509 /* Functions used for device addresses handling */ 4510 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4511 const void *addr, size_t len); 4512 4513 static inline void 4514 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4515 { 4516 dev_addr_mod(dev, 0, addr, len); 4517 } 4518 4519 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4520 { 4521 __dev_addr_set(dev, addr, dev->addr_len); 4522 } 4523 4524 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4525 unsigned char addr_type); 4526 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4527 unsigned char addr_type); 4528 4529 /* Functions used for unicast addresses handling */ 4530 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4531 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4532 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4533 int dev_uc_sync(struct net_device *to, struct net_device *from); 4534 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4535 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4536 void dev_uc_flush(struct net_device *dev); 4537 void dev_uc_init(struct net_device *dev); 4538 4539 /** 4540 * __dev_uc_sync - Synchonize device's unicast list 4541 * @dev: device to sync 4542 * @sync: function to call if address should be added 4543 * @unsync: function to call if address should be removed 4544 * 4545 * Add newly added addresses to the interface, and release 4546 * addresses that have been deleted. 4547 */ 4548 static inline int __dev_uc_sync(struct net_device *dev, 4549 int (*sync)(struct net_device *, 4550 const unsigned char *), 4551 int (*unsync)(struct net_device *, 4552 const unsigned char *)) 4553 { 4554 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4555 } 4556 4557 /** 4558 * __dev_uc_unsync - Remove synchronized addresses from device 4559 * @dev: device to sync 4560 * @unsync: function to call if address should be removed 4561 * 4562 * Remove all addresses that were added to the device by dev_uc_sync(). 4563 */ 4564 static inline void __dev_uc_unsync(struct net_device *dev, 4565 int (*unsync)(struct net_device *, 4566 const unsigned char *)) 4567 { 4568 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4569 } 4570 4571 /* Functions used for multicast addresses handling */ 4572 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4573 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4574 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4575 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4576 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4577 int dev_mc_sync(struct net_device *to, struct net_device *from); 4578 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4579 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4580 void dev_mc_flush(struct net_device *dev); 4581 void dev_mc_init(struct net_device *dev); 4582 4583 /** 4584 * __dev_mc_sync - Synchonize device's multicast list 4585 * @dev: device to sync 4586 * @sync: function to call if address should be added 4587 * @unsync: function to call if address should be removed 4588 * 4589 * Add newly added addresses to the interface, and release 4590 * addresses that have been deleted. 4591 */ 4592 static inline int __dev_mc_sync(struct net_device *dev, 4593 int (*sync)(struct net_device *, 4594 const unsigned char *), 4595 int (*unsync)(struct net_device *, 4596 const unsigned char *)) 4597 { 4598 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4599 } 4600 4601 /** 4602 * __dev_mc_unsync - Remove synchronized addresses from device 4603 * @dev: device to sync 4604 * @unsync: function to call if address should be removed 4605 * 4606 * Remove all addresses that were added to the device by dev_mc_sync(). 4607 */ 4608 static inline void __dev_mc_unsync(struct net_device *dev, 4609 int (*unsync)(struct net_device *, 4610 const unsigned char *)) 4611 { 4612 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4613 } 4614 4615 /* Functions used for secondary unicast and multicast support */ 4616 void dev_set_rx_mode(struct net_device *dev); 4617 int dev_set_promiscuity(struct net_device *dev, int inc); 4618 int dev_set_allmulti(struct net_device *dev, int inc); 4619 void netdev_state_change(struct net_device *dev); 4620 void __netdev_notify_peers(struct net_device *dev); 4621 void netdev_notify_peers(struct net_device *dev); 4622 void netdev_features_change(struct net_device *dev); 4623 /* Load a device via the kmod */ 4624 void dev_load(struct net *net, const char *name); 4625 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4626 struct rtnl_link_stats64 *storage); 4627 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4628 const struct net_device_stats *netdev_stats); 4629 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4630 const struct pcpu_sw_netstats __percpu *netstats); 4631 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4632 4633 extern int netdev_max_backlog; 4634 extern int dev_rx_weight; 4635 extern int dev_tx_weight; 4636 extern int gro_normal_batch; 4637 4638 enum { 4639 NESTED_SYNC_IMM_BIT, 4640 NESTED_SYNC_TODO_BIT, 4641 }; 4642 4643 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4644 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4645 4646 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4647 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4648 4649 struct netdev_nested_priv { 4650 unsigned char flags; 4651 void *data; 4652 }; 4653 4654 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4655 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4656 struct list_head **iter); 4657 4658 /* iterate through upper list, must be called under RCU read lock */ 4659 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4660 for (iter = &(dev)->adj_list.upper, \ 4661 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4662 updev; \ 4663 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4664 4665 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4666 int (*fn)(struct net_device *upper_dev, 4667 struct netdev_nested_priv *priv), 4668 struct netdev_nested_priv *priv); 4669 4670 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4671 struct net_device *upper_dev); 4672 4673 bool netdev_has_any_upper_dev(struct net_device *dev); 4674 4675 void *netdev_lower_get_next_private(struct net_device *dev, 4676 struct list_head **iter); 4677 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4678 struct list_head **iter); 4679 4680 #define netdev_for_each_lower_private(dev, priv, iter) \ 4681 for (iter = (dev)->adj_list.lower.next, \ 4682 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4683 priv; \ 4684 priv = netdev_lower_get_next_private(dev, &(iter))) 4685 4686 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4687 for (iter = &(dev)->adj_list.lower, \ 4688 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4689 priv; \ 4690 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4691 4692 void *netdev_lower_get_next(struct net_device *dev, 4693 struct list_head **iter); 4694 4695 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4696 for (iter = (dev)->adj_list.lower.next, \ 4697 ldev = netdev_lower_get_next(dev, &(iter)); \ 4698 ldev; \ 4699 ldev = netdev_lower_get_next(dev, &(iter))) 4700 4701 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4702 struct list_head **iter); 4703 int netdev_walk_all_lower_dev(struct net_device *dev, 4704 int (*fn)(struct net_device *lower_dev, 4705 struct netdev_nested_priv *priv), 4706 struct netdev_nested_priv *priv); 4707 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4708 int (*fn)(struct net_device *lower_dev, 4709 struct netdev_nested_priv *priv), 4710 struct netdev_nested_priv *priv); 4711 4712 void *netdev_adjacent_get_private(struct list_head *adj_list); 4713 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4714 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4715 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4716 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4717 struct netlink_ext_ack *extack); 4718 int netdev_master_upper_dev_link(struct net_device *dev, 4719 struct net_device *upper_dev, 4720 void *upper_priv, void *upper_info, 4721 struct netlink_ext_ack *extack); 4722 void netdev_upper_dev_unlink(struct net_device *dev, 4723 struct net_device *upper_dev); 4724 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4725 struct net_device *new_dev, 4726 struct net_device *dev, 4727 struct netlink_ext_ack *extack); 4728 void netdev_adjacent_change_commit(struct net_device *old_dev, 4729 struct net_device *new_dev, 4730 struct net_device *dev); 4731 void netdev_adjacent_change_abort(struct net_device *old_dev, 4732 struct net_device *new_dev, 4733 struct net_device *dev); 4734 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4735 void *netdev_lower_dev_get_private(struct net_device *dev, 4736 struct net_device *lower_dev); 4737 void netdev_lower_state_changed(struct net_device *lower_dev, 4738 void *lower_state_info); 4739 4740 /* RSS keys are 40 or 52 bytes long */ 4741 #define NETDEV_RSS_KEY_LEN 52 4742 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4743 void netdev_rss_key_fill(void *buffer, size_t len); 4744 4745 int skb_checksum_help(struct sk_buff *skb); 4746 int skb_crc32c_csum_help(struct sk_buff *skb); 4747 int skb_csum_hwoffload_help(struct sk_buff *skb, 4748 const netdev_features_t features); 4749 4750 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4751 netdev_features_t features, bool tx_path); 4752 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4753 netdev_features_t features, __be16 type); 4754 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4755 netdev_features_t features); 4756 4757 struct netdev_bonding_info { 4758 ifslave slave; 4759 ifbond master; 4760 }; 4761 4762 struct netdev_notifier_bonding_info { 4763 struct netdev_notifier_info info; /* must be first */ 4764 struct netdev_bonding_info bonding_info; 4765 }; 4766 4767 void netdev_bonding_info_change(struct net_device *dev, 4768 struct netdev_bonding_info *bonding_info); 4769 4770 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4771 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4772 #else 4773 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4774 const void *data) 4775 { 4776 } 4777 #endif 4778 4779 static inline 4780 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4781 { 4782 return __skb_gso_segment(skb, features, true); 4783 } 4784 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4785 4786 static inline bool can_checksum_protocol(netdev_features_t features, 4787 __be16 protocol) 4788 { 4789 if (protocol == htons(ETH_P_FCOE)) 4790 return !!(features & NETIF_F_FCOE_CRC); 4791 4792 /* Assume this is an IP checksum (not SCTP CRC) */ 4793 4794 if (features & NETIF_F_HW_CSUM) { 4795 /* Can checksum everything */ 4796 return true; 4797 } 4798 4799 switch (protocol) { 4800 case htons(ETH_P_IP): 4801 return !!(features & NETIF_F_IP_CSUM); 4802 case htons(ETH_P_IPV6): 4803 return !!(features & NETIF_F_IPV6_CSUM); 4804 default: 4805 return false; 4806 } 4807 } 4808 4809 #ifdef CONFIG_BUG 4810 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4811 #else 4812 static inline void netdev_rx_csum_fault(struct net_device *dev, 4813 struct sk_buff *skb) 4814 { 4815 } 4816 #endif 4817 /* rx skb timestamps */ 4818 void net_enable_timestamp(void); 4819 void net_disable_timestamp(void); 4820 4821 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4822 const struct skb_shared_hwtstamps *hwtstamps, 4823 bool cycles) 4824 { 4825 const struct net_device_ops *ops = dev->netdev_ops; 4826 4827 if (ops->ndo_get_tstamp) 4828 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4829 4830 return hwtstamps->hwtstamp; 4831 } 4832 4833 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4834 struct sk_buff *skb, struct net_device *dev, 4835 bool more) 4836 { 4837 __this_cpu_write(softnet_data.xmit.more, more); 4838 return ops->ndo_start_xmit(skb, dev); 4839 } 4840 4841 static inline bool netdev_xmit_more(void) 4842 { 4843 return __this_cpu_read(softnet_data.xmit.more); 4844 } 4845 4846 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4847 struct netdev_queue *txq, bool more) 4848 { 4849 const struct net_device_ops *ops = dev->netdev_ops; 4850 netdev_tx_t rc; 4851 4852 rc = __netdev_start_xmit(ops, skb, dev, more); 4853 if (rc == NETDEV_TX_OK) 4854 txq_trans_update(txq); 4855 4856 return rc; 4857 } 4858 4859 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4860 const void *ns); 4861 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4862 const void *ns); 4863 4864 extern const struct kobj_ns_type_operations net_ns_type_operations; 4865 4866 const char *netdev_drivername(const struct net_device *dev); 4867 4868 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4869 netdev_features_t f2) 4870 { 4871 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4872 if (f1 & NETIF_F_HW_CSUM) 4873 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4874 else 4875 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4876 } 4877 4878 return f1 & f2; 4879 } 4880 4881 static inline netdev_features_t netdev_get_wanted_features( 4882 struct net_device *dev) 4883 { 4884 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4885 } 4886 netdev_features_t netdev_increment_features(netdev_features_t all, 4887 netdev_features_t one, netdev_features_t mask); 4888 4889 /* Allow TSO being used on stacked device : 4890 * Performing the GSO segmentation before last device 4891 * is a performance improvement. 4892 */ 4893 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4894 netdev_features_t mask) 4895 { 4896 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4897 } 4898 4899 int __netdev_update_features(struct net_device *dev); 4900 void netdev_update_features(struct net_device *dev); 4901 void netdev_change_features(struct net_device *dev); 4902 4903 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4904 struct net_device *dev); 4905 4906 netdev_features_t passthru_features_check(struct sk_buff *skb, 4907 struct net_device *dev, 4908 netdev_features_t features); 4909 netdev_features_t netif_skb_features(struct sk_buff *skb); 4910 4911 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4912 { 4913 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4914 4915 /* check flags correspondence */ 4916 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4917 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4918 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4919 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4920 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4921 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4922 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4923 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4924 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4925 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4926 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4927 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4928 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4929 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4930 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4931 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4932 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4933 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4934 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4935 4936 return (features & feature) == feature; 4937 } 4938 4939 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4940 { 4941 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4942 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4943 } 4944 4945 static inline bool netif_needs_gso(struct sk_buff *skb, 4946 netdev_features_t features) 4947 { 4948 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4949 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4950 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4951 } 4952 4953 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 4954 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 4955 void netif_inherit_tso_max(struct net_device *to, 4956 const struct net_device *from); 4957 4958 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4959 int pulled_hlen, u16 mac_offset, 4960 int mac_len) 4961 { 4962 skb->protocol = protocol; 4963 skb->encapsulation = 1; 4964 skb_push(skb, pulled_hlen); 4965 skb_reset_transport_header(skb); 4966 skb->mac_header = mac_offset; 4967 skb->network_header = skb->mac_header + mac_len; 4968 skb->mac_len = mac_len; 4969 } 4970 4971 static inline bool netif_is_macsec(const struct net_device *dev) 4972 { 4973 return dev->priv_flags & IFF_MACSEC; 4974 } 4975 4976 static inline bool netif_is_macvlan(const struct net_device *dev) 4977 { 4978 return dev->priv_flags & IFF_MACVLAN; 4979 } 4980 4981 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4982 { 4983 return dev->priv_flags & IFF_MACVLAN_PORT; 4984 } 4985 4986 static inline bool netif_is_bond_master(const struct net_device *dev) 4987 { 4988 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4989 } 4990 4991 static inline bool netif_is_bond_slave(const struct net_device *dev) 4992 { 4993 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4994 } 4995 4996 static inline bool netif_supports_nofcs(struct net_device *dev) 4997 { 4998 return dev->priv_flags & IFF_SUPP_NOFCS; 4999 } 5000 5001 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5002 { 5003 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5004 } 5005 5006 static inline bool netif_is_l3_master(const struct net_device *dev) 5007 { 5008 return dev->priv_flags & IFF_L3MDEV_MASTER; 5009 } 5010 5011 static inline bool netif_is_l3_slave(const struct net_device *dev) 5012 { 5013 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5014 } 5015 5016 static inline bool netif_is_bridge_master(const struct net_device *dev) 5017 { 5018 return dev->priv_flags & IFF_EBRIDGE; 5019 } 5020 5021 static inline bool netif_is_bridge_port(const struct net_device *dev) 5022 { 5023 return dev->priv_flags & IFF_BRIDGE_PORT; 5024 } 5025 5026 static inline bool netif_is_ovs_master(const struct net_device *dev) 5027 { 5028 return dev->priv_flags & IFF_OPENVSWITCH; 5029 } 5030 5031 static inline bool netif_is_ovs_port(const struct net_device *dev) 5032 { 5033 return dev->priv_flags & IFF_OVS_DATAPATH; 5034 } 5035 5036 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5037 { 5038 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5039 } 5040 5041 static inline bool netif_is_team_master(const struct net_device *dev) 5042 { 5043 return dev->priv_flags & IFF_TEAM; 5044 } 5045 5046 static inline bool netif_is_team_port(const struct net_device *dev) 5047 { 5048 return dev->priv_flags & IFF_TEAM_PORT; 5049 } 5050 5051 static inline bool netif_is_lag_master(const struct net_device *dev) 5052 { 5053 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5054 } 5055 5056 static inline bool netif_is_lag_port(const struct net_device *dev) 5057 { 5058 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5059 } 5060 5061 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5062 { 5063 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5064 } 5065 5066 static inline bool netif_is_failover(const struct net_device *dev) 5067 { 5068 return dev->priv_flags & IFF_FAILOVER; 5069 } 5070 5071 static inline bool netif_is_failover_slave(const struct net_device *dev) 5072 { 5073 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5074 } 5075 5076 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5077 static inline void netif_keep_dst(struct net_device *dev) 5078 { 5079 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5080 } 5081 5082 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5083 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5084 { 5085 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5086 return netif_is_macsec(dev); 5087 } 5088 5089 extern struct pernet_operations __net_initdata loopback_net_ops; 5090 5091 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5092 5093 /* netdev_printk helpers, similar to dev_printk */ 5094 5095 static inline const char *netdev_name(const struct net_device *dev) 5096 { 5097 if (!dev->name[0] || strchr(dev->name, '%')) 5098 return "(unnamed net_device)"; 5099 return dev->name; 5100 } 5101 5102 static inline bool netdev_unregistering(const struct net_device *dev) 5103 { 5104 return dev->reg_state == NETREG_UNREGISTERING; 5105 } 5106 5107 static inline const char *netdev_reg_state(const struct net_device *dev) 5108 { 5109 switch (dev->reg_state) { 5110 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5111 case NETREG_REGISTERED: return ""; 5112 case NETREG_UNREGISTERING: return " (unregistering)"; 5113 case NETREG_UNREGISTERED: return " (unregistered)"; 5114 case NETREG_RELEASED: return " (released)"; 5115 case NETREG_DUMMY: return " (dummy)"; 5116 } 5117 5118 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5119 return " (unknown)"; 5120 } 5121 5122 #define MODULE_ALIAS_NETDEV(device) \ 5123 MODULE_ALIAS("netdev-" device) 5124 5125 /* 5126 * netdev_WARN() acts like dev_printk(), but with the key difference 5127 * of using a WARN/WARN_ON to get the message out, including the 5128 * file/line information and a backtrace. 5129 */ 5130 #define netdev_WARN(dev, format, args...) \ 5131 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5132 netdev_reg_state(dev), ##args) 5133 5134 #define netdev_WARN_ONCE(dev, format, args...) \ 5135 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5136 netdev_reg_state(dev), ##args) 5137 5138 /* 5139 * The list of packet types we will receive (as opposed to discard) 5140 * and the routines to invoke. 5141 * 5142 * Why 16. Because with 16 the only overlap we get on a hash of the 5143 * low nibble of the protocol value is RARP/SNAP/X.25. 5144 * 5145 * 0800 IP 5146 * 0001 802.3 5147 * 0002 AX.25 5148 * 0004 802.2 5149 * 8035 RARP 5150 * 0005 SNAP 5151 * 0805 X.25 5152 * 0806 ARP 5153 * 8137 IPX 5154 * 0009 Localtalk 5155 * 86DD IPv6 5156 */ 5157 #define PTYPE_HASH_SIZE (16) 5158 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5159 5160 extern struct list_head ptype_all __read_mostly; 5161 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5162 5163 extern struct net_device *blackhole_netdev; 5164 5165 #endif /* _LINUX_NETDEVICE_H */ 5166