xref: /openbmc/linux/include/linux/netdevice.h (revision b34e08d5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 				    const struct ethtool_ops *ops);
65 
66 /* Backlog congestion levels */
67 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
68 #define NET_RX_DROP		1	/* packet dropped */
69 
70 /*
71  * Transmit return codes: transmit return codes originate from three different
72  * namespaces:
73  *
74  * - qdisc return codes
75  * - driver transmit return codes
76  * - errno values
77  *
78  * Drivers are allowed to return any one of those in their hard_start_xmit()
79  * function. Real network devices commonly used with qdiscs should only return
80  * the driver transmit return codes though - when qdiscs are used, the actual
81  * transmission happens asynchronously, so the value is not propagated to
82  * higher layers. Virtual network devices transmit synchronously, in this case
83  * the driver transmit return codes are consumed by dev_queue_xmit(), all
84  * others are propagated to higher layers.
85  */
86 
87 /* qdisc ->enqueue() return codes. */
88 #define NET_XMIT_SUCCESS	0x00
89 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
90 #define NET_XMIT_CN		0x02	/* congestion notification	*/
91 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
92 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
93 
94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
95  * indicates that the device will soon be dropping packets, or already drops
96  * some packets of the same priority; prompting us to send less aggressively. */
97 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
98 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
99 
100 /* Driver transmit return codes */
101 #define NETDEV_TX_MASK		0xf0
102 
103 enum netdev_tx {
104 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
105 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
106 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
107 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
108 };
109 typedef enum netdev_tx netdev_tx_t;
110 
111 /*
112  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114  */
115 static inline bool dev_xmit_complete(int rc)
116 {
117 	/*
118 	 * Positive cases with an skb consumed by a driver:
119 	 * - successful transmission (rc == NETDEV_TX_OK)
120 	 * - error while transmitting (rc < 0)
121 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
122 	 */
123 	if (likely(rc < NET_XMIT_MASK))
124 		return true;
125 
126 	return false;
127 }
128 
129 /*
130  *	Compute the worst case header length according to the protocols
131  *	used.
132  */
133 
134 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135 # if defined(CONFIG_MAC80211_MESH)
136 #  define LL_MAX_HEADER 128
137 # else
138 #  define LL_MAX_HEADER 96
139 # endif
140 #else
141 # define LL_MAX_HEADER 32
142 #endif
143 
144 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146 #define MAX_HEADER LL_MAX_HEADER
147 #else
148 #define MAX_HEADER (LL_MAX_HEADER + 48)
149 #endif
150 
151 /*
152  *	Old network device statistics. Fields are native words
153  *	(unsigned long) so they can be read and written atomically.
154  */
155 
156 struct net_device_stats {
157 	unsigned long	rx_packets;
158 	unsigned long	tx_packets;
159 	unsigned long	rx_bytes;
160 	unsigned long	tx_bytes;
161 	unsigned long	rx_errors;
162 	unsigned long	tx_errors;
163 	unsigned long	rx_dropped;
164 	unsigned long	tx_dropped;
165 	unsigned long	multicast;
166 	unsigned long	collisions;
167 	unsigned long	rx_length_errors;
168 	unsigned long	rx_over_errors;
169 	unsigned long	rx_crc_errors;
170 	unsigned long	rx_frame_errors;
171 	unsigned long	rx_fifo_errors;
172 	unsigned long	rx_missed_errors;
173 	unsigned long	tx_aborted_errors;
174 	unsigned long	tx_carrier_errors;
175 	unsigned long	tx_fifo_errors;
176 	unsigned long	tx_heartbeat_errors;
177 	unsigned long	tx_window_errors;
178 	unsigned long	rx_compressed;
179 	unsigned long	tx_compressed;
180 };
181 
182 
183 #include <linux/cache.h>
184 #include <linux/skbuff.h>
185 
186 #ifdef CONFIG_RPS
187 #include <linux/static_key.h>
188 extern struct static_key rps_needed;
189 #endif
190 
191 struct neighbour;
192 struct neigh_parms;
193 struct sk_buff;
194 
195 struct netdev_hw_addr {
196 	struct list_head	list;
197 	unsigned char		addr[MAX_ADDR_LEN];
198 	unsigned char		type;
199 #define NETDEV_HW_ADDR_T_LAN		1
200 #define NETDEV_HW_ADDR_T_SAN		2
201 #define NETDEV_HW_ADDR_T_SLAVE		3
202 #define NETDEV_HW_ADDR_T_UNICAST	4
203 #define NETDEV_HW_ADDR_T_MULTICAST	5
204 	bool			global_use;
205 	int			sync_cnt;
206 	int			refcount;
207 	int			synced;
208 	struct rcu_head		rcu_head;
209 };
210 
211 struct netdev_hw_addr_list {
212 	struct list_head	list;
213 	int			count;
214 };
215 
216 #define netdev_hw_addr_list_count(l) ((l)->count)
217 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218 #define netdev_hw_addr_list_for_each(ha, l) \
219 	list_for_each_entry(ha, &(l)->list, list)
220 
221 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223 #define netdev_for_each_uc_addr(ha, dev) \
224 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225 
226 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228 #define netdev_for_each_mc_addr(ha, dev) \
229 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230 
231 struct hh_cache {
232 	u16		hh_len;
233 	u16		__pad;
234 	seqlock_t	hh_lock;
235 
236 	/* cached hardware header; allow for machine alignment needs.        */
237 #define HH_DATA_MOD	16
238 #define HH_DATA_OFF(__len) \
239 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240 #define HH_DATA_ALIGN(__len) \
241 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243 };
244 
245 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246  * Alternative is:
247  *   dev->hard_header_len ? (dev->hard_header_len +
248  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249  *
250  * We could use other alignment values, but we must maintain the
251  * relationship HH alignment <= LL alignment.
252  */
253 #define LL_RESERVED_SPACE(dev) \
254 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257 
258 struct header_ops {
259 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
260 			   unsigned short type, const void *daddr,
261 			   const void *saddr, unsigned int len);
262 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
263 	int	(*rebuild)(struct sk_buff *skb);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct list_head	dev_list;
320 	struct hlist_node	napi_hash_node;
321 	unsigned int		napi_id;
322 };
323 
324 enum {
325 	NAPI_STATE_SCHED,	/* Poll is scheduled */
326 	NAPI_STATE_DISABLE,	/* Disable pending */
327 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
328 	NAPI_STATE_HASHED,	/* In NAPI hash */
329 };
330 
331 enum gro_result {
332 	GRO_MERGED,
333 	GRO_MERGED_FREE,
334 	GRO_HELD,
335 	GRO_NORMAL,
336 	GRO_DROP,
337 };
338 typedef enum gro_result gro_result_t;
339 
340 /*
341  * enum rx_handler_result - Possible return values for rx_handlers.
342  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343  * further.
344  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345  * case skb->dev was changed by rx_handler.
346  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348  *
349  * rx_handlers are functions called from inside __netif_receive_skb(), to do
350  * special processing of the skb, prior to delivery to protocol handlers.
351  *
352  * Currently, a net_device can only have a single rx_handler registered. Trying
353  * to register a second rx_handler will return -EBUSY.
354  *
355  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356  * To unregister a rx_handler on a net_device, use
357  * netdev_rx_handler_unregister().
358  *
359  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360  * do with the skb.
361  *
362  * If the rx_handler consumed to skb in some way, it should return
363  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364  * the skb to be delivered in some other ways.
365  *
366  * If the rx_handler changed skb->dev, to divert the skb to another
367  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368  * new device will be called if it exists.
369  *
370  * If the rx_handler consider the skb should be ignored, it should return
371  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372  * are registered on exact device (ptype->dev == skb->dev).
373  *
374  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375  * delivered, it should return RX_HANDLER_PASS.
376  *
377  * A device without a registered rx_handler will behave as if rx_handler
378  * returned RX_HANDLER_PASS.
379  */
380 
381 enum rx_handler_result {
382 	RX_HANDLER_CONSUMED,
383 	RX_HANDLER_ANOTHER,
384 	RX_HANDLER_EXACT,
385 	RX_HANDLER_PASS,
386 };
387 typedef enum rx_handler_result rx_handler_result_t;
388 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
389 
390 void __napi_schedule(struct napi_struct *n);
391 
392 static inline bool napi_disable_pending(struct napi_struct *n)
393 {
394 	return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396 
397 /**
398  *	napi_schedule_prep - check if napi can be scheduled
399  *	@n: napi context
400  *
401  * Test if NAPI routine is already running, and if not mark
402  * it as running.  This is used as a condition variable
403  * insure only one NAPI poll instance runs.  We also make
404  * sure there is no pending NAPI disable.
405  */
406 static inline bool napi_schedule_prep(struct napi_struct *n)
407 {
408 	return !napi_disable_pending(n) &&
409 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410 }
411 
412 /**
413  *	napi_schedule - schedule NAPI poll
414  *	@n: napi context
415  *
416  * Schedule NAPI poll routine to be called if it is not already
417  * running.
418  */
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421 	if (napi_schedule_prep(n))
422 		__napi_schedule(n);
423 }
424 
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
426 static inline bool napi_reschedule(struct napi_struct *napi)
427 {
428 	if (napi_schedule_prep(napi)) {
429 		__napi_schedule(napi);
430 		return true;
431 	}
432 	return false;
433 }
434 
435 /**
436  *	napi_complete - NAPI processing complete
437  *	@n: napi context
438  *
439  * Mark NAPI processing as complete.
440  */
441 void __napi_complete(struct napi_struct *n);
442 void napi_complete(struct napi_struct *n);
443 
444 /**
445  *	napi_by_id - lookup a NAPI by napi_id
446  *	@napi_id: hashed napi_id
447  *
448  * lookup @napi_id in napi_hash table
449  * must be called under rcu_read_lock()
450  */
451 struct napi_struct *napi_by_id(unsigned int napi_id);
452 
453 /**
454  *	napi_hash_add - add a NAPI to global hashtable
455  *	@napi: napi context
456  *
457  * generate a new napi_id and store a @napi under it in napi_hash
458  */
459 void napi_hash_add(struct napi_struct *napi);
460 
461 /**
462  *	napi_hash_del - remove a NAPI from global table
463  *	@napi: napi context
464  *
465  * Warning: caller must observe rcu grace period
466  * before freeing memory containing @napi
467  */
468 void napi_hash_del(struct napi_struct *napi);
469 
470 /**
471  *	napi_disable - prevent NAPI from scheduling
472  *	@n: napi context
473  *
474  * Stop NAPI from being scheduled on this context.
475  * Waits till any outstanding processing completes.
476  */
477 static inline void napi_disable(struct napi_struct *n)
478 {
479 	might_sleep();
480 	set_bit(NAPI_STATE_DISABLE, &n->state);
481 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
482 		msleep(1);
483 	clear_bit(NAPI_STATE_DISABLE, &n->state);
484 }
485 
486 /**
487  *	napi_enable - enable NAPI scheduling
488  *	@n: napi context
489  *
490  * Resume NAPI from being scheduled on this context.
491  * Must be paired with napi_disable.
492  */
493 static inline void napi_enable(struct napi_struct *n)
494 {
495 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
496 	smp_mb__before_clear_bit();
497 	clear_bit(NAPI_STATE_SCHED, &n->state);
498 }
499 
500 #ifdef CONFIG_SMP
501 /**
502  *	napi_synchronize - wait until NAPI is not running
503  *	@n: napi context
504  *
505  * Wait until NAPI is done being scheduled on this context.
506  * Waits till any outstanding processing completes but
507  * does not disable future activations.
508  */
509 static inline void napi_synchronize(const struct napi_struct *n)
510 {
511 	while (test_bit(NAPI_STATE_SCHED, &n->state))
512 		msleep(1);
513 }
514 #else
515 # define napi_synchronize(n)	barrier()
516 #endif
517 
518 enum netdev_queue_state_t {
519 	__QUEUE_STATE_DRV_XOFF,
520 	__QUEUE_STATE_STACK_XOFF,
521 	__QUEUE_STATE_FROZEN,
522 };
523 
524 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
525 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
526 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
527 
528 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
529 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
530 					QUEUE_STATE_FROZEN)
531 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
532 					QUEUE_STATE_FROZEN)
533 
534 /*
535  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
536  * netif_tx_* functions below are used to manipulate this flag.  The
537  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538  * queue independently.  The netif_xmit_*stopped functions below are called
539  * to check if the queue has been stopped by the driver or stack (either
540  * of the XOFF bits are set in the state).  Drivers should not need to call
541  * netif_xmit*stopped functions, they should only be using netif_tx_*.
542  */
543 
544 struct netdev_queue {
545 /*
546  * read mostly part
547  */
548 	struct net_device	*dev;
549 	struct Qdisc		*qdisc;
550 	struct Qdisc		*qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552 	struct kobject		kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555 	int			numa_node;
556 #endif
557 /*
558  * write mostly part
559  */
560 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
561 	int			xmit_lock_owner;
562 	/*
563 	 * please use this field instead of dev->trans_start
564 	 */
565 	unsigned long		trans_start;
566 
567 	/*
568 	 * Number of TX timeouts for this queue
569 	 * (/sys/class/net/DEV/Q/trans_timeout)
570 	 */
571 	unsigned long		trans_timeout;
572 
573 	unsigned long		state;
574 
575 #ifdef CONFIG_BQL
576 	struct dql		dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579 
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 	return q->numa_node;
584 #else
585 	return NUMA_NO_NODE;
586 #endif
587 }
588 
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592 	q->numa_node = node;
593 #endif
594 }
595 
596 #ifdef CONFIG_RPS
597 /*
598  * This structure holds an RPS map which can be of variable length.  The
599  * map is an array of CPUs.
600  */
601 struct rps_map {
602 	unsigned int len;
603 	struct rcu_head rcu;
604 	u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607 
608 /*
609  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610  * tail pointer for that CPU's input queue at the time of last enqueue, and
611  * a hardware filter index.
612  */
613 struct rps_dev_flow {
614 	u16 cpu;
615 	u16 filter;
616 	unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619 
620 /*
621  * The rps_dev_flow_table structure contains a table of flow mappings.
622  */
623 struct rps_dev_flow_table {
624 	unsigned int mask;
625 	struct rcu_head rcu;
626 	struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629     ((_num) * sizeof(struct rps_dev_flow)))
630 
631 /*
632  * The rps_sock_flow_table contains mappings of flows to the last CPU
633  * on which they were processed by the application (set in recvmsg).
634  */
635 struct rps_sock_flow_table {
636 	unsigned int mask;
637 	u16 ents[0];
638 };
639 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640     ((_num) * sizeof(u16)))
641 
642 #define RPS_NO_CPU 0xffff
643 
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645 					u32 hash)
646 {
647 	if (table && hash) {
648 		unsigned int cpu, index = hash & table->mask;
649 
650 		/* We only give a hint, preemption can change cpu under us */
651 		cpu = raw_smp_processor_id();
652 
653 		if (table->ents[index] != cpu)
654 			table->ents[index] = cpu;
655 	}
656 }
657 
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659 				       u32 hash)
660 {
661 	if (table && hash)
662 		table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664 
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669 			 u16 filter_id);
670 #endif
671 #endif /* CONFIG_RPS */
672 
673 /* This structure contains an instance of an RX queue. */
674 struct netdev_rx_queue {
675 #ifdef CONFIG_RPS
676 	struct rps_map __rcu		*rps_map;
677 	struct rps_dev_flow_table __rcu	*rps_flow_table;
678 #endif
679 	struct kobject			kobj;
680 	struct net_device		*dev;
681 } ____cacheline_aligned_in_smp;
682 
683 /*
684  * RX queue sysfs structures and functions.
685  */
686 struct rx_queue_attribute {
687 	struct attribute attr;
688 	ssize_t (*show)(struct netdev_rx_queue *queue,
689 	    struct rx_queue_attribute *attr, char *buf);
690 	ssize_t (*store)(struct netdev_rx_queue *queue,
691 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
692 };
693 
694 #ifdef CONFIG_XPS
695 /*
696  * This structure holds an XPS map which can be of variable length.  The
697  * map is an array of queues.
698  */
699 struct xps_map {
700 	unsigned int len;
701 	unsigned int alloc_len;
702 	struct rcu_head rcu;
703 	u16 queues[0];
704 };
705 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
706 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
707     / sizeof(u16))
708 
709 /*
710  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
711  */
712 struct xps_dev_maps {
713 	struct rcu_head rcu;
714 	struct xps_map __rcu *cpu_map[0];
715 };
716 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
717     (nr_cpu_ids * sizeof(struct xps_map *)))
718 #endif /* CONFIG_XPS */
719 
720 #define TC_MAX_QUEUE	16
721 #define TC_BITMASK	15
722 /* HW offloaded queuing disciplines txq count and offset maps */
723 struct netdev_tc_txq {
724 	u16 count;
725 	u16 offset;
726 };
727 
728 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
729 /*
730  * This structure is to hold information about the device
731  * configured to run FCoE protocol stack.
732  */
733 struct netdev_fcoe_hbainfo {
734 	char	manufacturer[64];
735 	char	serial_number[64];
736 	char	hardware_version[64];
737 	char	driver_version[64];
738 	char	optionrom_version[64];
739 	char	firmware_version[64];
740 	char	model[256];
741 	char	model_description[256];
742 };
743 #endif
744 
745 #define MAX_PHYS_PORT_ID_LEN 32
746 
747 /* This structure holds a unique identifier to identify the
748  * physical port used by a netdevice.
749  */
750 struct netdev_phys_port_id {
751 	unsigned char id[MAX_PHYS_PORT_ID_LEN];
752 	unsigned char id_len;
753 };
754 
755 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
756 				       struct sk_buff *skb);
757 
758 /*
759  * This structure defines the management hooks for network devices.
760  * The following hooks can be defined; unless noted otherwise, they are
761  * optional and can be filled with a null pointer.
762  *
763  * int (*ndo_init)(struct net_device *dev);
764  *     This function is called once when network device is registered.
765  *     The network device can use this to any late stage initializaton
766  *     or semantic validattion. It can fail with an error code which will
767  *     be propogated back to register_netdev
768  *
769  * void (*ndo_uninit)(struct net_device *dev);
770  *     This function is called when device is unregistered or when registration
771  *     fails. It is not called if init fails.
772  *
773  * int (*ndo_open)(struct net_device *dev);
774  *     This function is called when network device transistions to the up
775  *     state.
776  *
777  * int (*ndo_stop)(struct net_device *dev);
778  *     This function is called when network device transistions to the down
779  *     state.
780  *
781  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
782  *                               struct net_device *dev);
783  *	Called when a packet needs to be transmitted.
784  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
785  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
786  *	Required can not be NULL.
787  *
788  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
789  *                         void *accel_priv, select_queue_fallback_t fallback);
790  *	Called to decide which queue to when device supports multiple
791  *	transmit queues.
792  *
793  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
794  *	This function is called to allow device receiver to make
795  *	changes to configuration when multicast or promiscious is enabled.
796  *
797  * void (*ndo_set_rx_mode)(struct net_device *dev);
798  *	This function is called device changes address list filtering.
799  *	If driver handles unicast address filtering, it should set
800  *	IFF_UNICAST_FLT to its priv_flags.
801  *
802  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
803  *	This function  is called when the Media Access Control address
804  *	needs to be changed. If this interface is not defined, the
805  *	mac address can not be changed.
806  *
807  * int (*ndo_validate_addr)(struct net_device *dev);
808  *	Test if Media Access Control address is valid for the device.
809  *
810  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
811  *	Called when a user request an ioctl which can't be handled by
812  *	the generic interface code. If not defined ioctl's return
813  *	not supported error code.
814  *
815  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
816  *	Used to set network devices bus interface parameters. This interface
817  *	is retained for legacy reason, new devices should use the bus
818  *	interface (PCI) for low level management.
819  *
820  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
821  *	Called when a user wants to change the Maximum Transfer Unit
822  *	of a device. If not defined, any request to change MTU will
823  *	will return an error.
824  *
825  * void (*ndo_tx_timeout)(struct net_device *dev);
826  *	Callback uses when the transmitter has not made any progress
827  *	for dev->watchdog ticks.
828  *
829  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
830  *                      struct rtnl_link_stats64 *storage);
831  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
832  *	Called when a user wants to get the network device usage
833  *	statistics. Drivers must do one of the following:
834  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
835  *	   rtnl_link_stats64 structure passed by the caller.
836  *	2. Define @ndo_get_stats to update a net_device_stats structure
837  *	   (which should normally be dev->stats) and return a pointer to
838  *	   it. The structure may be changed asynchronously only if each
839  *	   field is written atomically.
840  *	3. Update dev->stats asynchronously and atomically, and define
841  *	   neither operation.
842  *
843  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
844  *	If device support VLAN filtering this function is called when a
845  *	VLAN id is registered.
846  *
847  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
848  *	If device support VLAN filtering this function is called when a
849  *	VLAN id is unregistered.
850  *
851  * void (*ndo_poll_controller)(struct net_device *dev);
852  *
853  *	SR-IOV management functions.
854  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
855  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
856  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
857  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
858  * int (*ndo_get_vf_config)(struct net_device *dev,
859  *			    int vf, struct ifla_vf_info *ivf);
860  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
861  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
862  *			  struct nlattr *port[]);
863  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
864  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
865  * 	Called to setup 'tc' number of traffic classes in the net device. This
866  * 	is always called from the stack with the rtnl lock held and netif tx
867  * 	queues stopped. This allows the netdevice to perform queue management
868  * 	safely.
869  *
870  *	Fiber Channel over Ethernet (FCoE) offload functions.
871  * int (*ndo_fcoe_enable)(struct net_device *dev);
872  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
873  *	so the underlying device can perform whatever needed configuration or
874  *	initialization to support acceleration of FCoE traffic.
875  *
876  * int (*ndo_fcoe_disable)(struct net_device *dev);
877  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
878  *	so the underlying device can perform whatever needed clean-ups to
879  *	stop supporting acceleration of FCoE traffic.
880  *
881  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
882  *			     struct scatterlist *sgl, unsigned int sgc);
883  *	Called when the FCoE Initiator wants to initialize an I/O that
884  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
885  *	perform necessary setup and returns 1 to indicate the device is set up
886  *	successfully to perform DDP on this I/O, otherwise this returns 0.
887  *
888  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
889  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
890  *	indicated by the FC exchange id 'xid', so the underlying device can
891  *	clean up and reuse resources for later DDP requests.
892  *
893  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
894  *			      struct scatterlist *sgl, unsigned int sgc);
895  *	Called when the FCoE Target wants to initialize an I/O that
896  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
897  *	perform necessary setup and returns 1 to indicate the device is set up
898  *	successfully to perform DDP on this I/O, otherwise this returns 0.
899  *
900  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
901  *			       struct netdev_fcoe_hbainfo *hbainfo);
902  *	Called when the FCoE Protocol stack wants information on the underlying
903  *	device. This information is utilized by the FCoE protocol stack to
904  *	register attributes with Fiber Channel management service as per the
905  *	FC-GS Fabric Device Management Information(FDMI) specification.
906  *
907  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
908  *	Called when the underlying device wants to override default World Wide
909  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
910  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
911  *	protocol stack to use.
912  *
913  *	RFS acceleration.
914  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
915  *			    u16 rxq_index, u32 flow_id);
916  *	Set hardware filter for RFS.  rxq_index is the target queue index;
917  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
918  *	Return the filter ID on success, or a negative error code.
919  *
920  *	Slave management functions (for bridge, bonding, etc).
921  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
922  *	Called to make another netdev an underling.
923  *
924  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
925  *	Called to release previously enslaved netdev.
926  *
927  *      Feature/offload setting functions.
928  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
929  *		netdev_features_t features);
930  *	Adjusts the requested feature flags according to device-specific
931  *	constraints, and returns the resulting flags. Must not modify
932  *	the device state.
933  *
934  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
935  *	Called to update device configuration to new features. Passed
936  *	feature set might be less than what was returned by ndo_fix_features()).
937  *	Must return >0 or -errno if it changed dev->features itself.
938  *
939  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
940  *		      struct net_device *dev,
941  *		      const unsigned char *addr, u16 flags)
942  *	Adds an FDB entry to dev for addr.
943  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
944  *		      struct net_device *dev,
945  *		      const unsigned char *addr)
946  *	Deletes the FDB entry from dev coresponding to addr.
947  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
948  *		       struct net_device *dev, int idx)
949  *	Used to add FDB entries to dump requests. Implementers should add
950  *	entries to skb and update idx with the number of entries.
951  *
952  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954  *			     struct net_device *dev, u32 filter_mask)
955  *
956  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
958  *	which do not represent real hardware may define this to allow their
959  *	userspace components to manage their virtual carrier state. Devices
960  *	that determine carrier state from physical hardware properties (eg
961  *	network cables) or protocol-dependent mechanisms (eg
962  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963  *
964  * int (*ndo_get_phys_port_id)(struct net_device *dev,
965  *			       struct netdev_phys_port_id *ppid);
966  *	Called to get ID of physical port of this device. If driver does
967  *	not implement this, it is assumed that the hw is not able to have
968  *	multiple net devices on single physical port.
969  *
970  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
971  *			      sa_family_t sa_family, __be16 port);
972  *	Called by vxlan to notiy a driver about the UDP port and socket
973  *	address family that vxlan is listnening to. It is called only when
974  *	a new port starts listening. The operation is protected by the
975  *	vxlan_net->sock_lock.
976  *
977  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
978  *			      sa_family_t sa_family, __be16 port);
979  *	Called by vxlan to notify the driver about a UDP port and socket
980  *	address family that vxlan is not listening to anymore. The operation
981  *	is protected by the vxlan_net->sock_lock.
982  *
983  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984  *				 struct net_device *dev)
985  *	Called by upper layer devices to accelerate switching or other
986  *	station functionality into hardware. 'pdev is the lowerdev
987  *	to use for the offload and 'dev' is the net device that will
988  *	back the offload. Returns a pointer to the private structure
989  *	the upper layer will maintain.
990  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991  *	Called by upper layer device to delete the station created
992  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993  *	the station and priv is the structure returned by the add
994  *	operation.
995  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996  *				      struct net_device *dev,
997  *				      void *priv);
998  *	Callback to use for xmit over the accelerated station. This
999  *	is used in place of ndo_start_xmit on accelerated net
1000  *	devices.
1001  */
1002 struct net_device_ops {
1003 	int			(*ndo_init)(struct net_device *dev);
1004 	void			(*ndo_uninit)(struct net_device *dev);
1005 	int			(*ndo_open)(struct net_device *dev);
1006 	int			(*ndo_stop)(struct net_device *dev);
1007 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1008 						   struct net_device *dev);
1009 	u16			(*ndo_select_queue)(struct net_device *dev,
1010 						    struct sk_buff *skb,
1011 						    void *accel_priv,
1012 						    select_queue_fallback_t fallback);
1013 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1014 						       int flags);
1015 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1016 	int			(*ndo_set_mac_address)(struct net_device *dev,
1017 						       void *addr);
1018 	int			(*ndo_validate_addr)(struct net_device *dev);
1019 	int			(*ndo_do_ioctl)(struct net_device *dev,
1020 					        struct ifreq *ifr, int cmd);
1021 	int			(*ndo_set_config)(struct net_device *dev,
1022 					          struct ifmap *map);
1023 	int			(*ndo_change_mtu)(struct net_device *dev,
1024 						  int new_mtu);
1025 	int			(*ndo_neigh_setup)(struct net_device *dev,
1026 						   struct neigh_parms *);
1027 	void			(*ndo_tx_timeout) (struct net_device *dev);
1028 
1029 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030 						     struct rtnl_link_stats64 *storage);
1031 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032 
1033 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034 						       __be16 proto, u16 vid);
1035 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036 						        __be16 proto, u16 vid);
1037 #ifdef CONFIG_NET_POLL_CONTROLLER
1038 	void                    (*ndo_poll_controller)(struct net_device *dev);
1039 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1040 						     struct netpoll_info *info);
1041 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1042 #endif
1043 #ifdef CONFIG_NET_RX_BUSY_POLL
1044 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1045 #endif
1046 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1047 						  int queue, u8 *mac);
1048 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1049 						   int queue, u16 vlan, u8 qos);
1050 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
1051 						      int vf, int rate);
1052 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1053 						       int vf, bool setting);
1054 	int			(*ndo_get_vf_config)(struct net_device *dev,
1055 						     int vf,
1056 						     struct ifla_vf_info *ivf);
1057 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1058 							 int vf, int link_state);
1059 	int			(*ndo_set_vf_port)(struct net_device *dev,
1060 						   int vf,
1061 						   struct nlattr *port[]);
1062 	int			(*ndo_get_vf_port)(struct net_device *dev,
1063 						   int vf, struct sk_buff *skb);
1064 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1065 #if IS_ENABLED(CONFIG_FCOE)
1066 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1067 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1068 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1069 						      u16 xid,
1070 						      struct scatterlist *sgl,
1071 						      unsigned int sgc);
1072 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1073 						     u16 xid);
1074 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1075 						       u16 xid,
1076 						       struct scatterlist *sgl,
1077 						       unsigned int sgc);
1078 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1079 							struct netdev_fcoe_hbainfo *hbainfo);
1080 #endif
1081 
1082 #if IS_ENABLED(CONFIG_LIBFCOE)
1083 #define NETDEV_FCOE_WWNN 0
1084 #define NETDEV_FCOE_WWPN 1
1085 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1086 						    u64 *wwn, int type);
1087 #endif
1088 
1089 #ifdef CONFIG_RFS_ACCEL
1090 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1091 						     const struct sk_buff *skb,
1092 						     u16 rxq_index,
1093 						     u32 flow_id);
1094 #endif
1095 	int			(*ndo_add_slave)(struct net_device *dev,
1096 						 struct net_device *slave_dev);
1097 	int			(*ndo_del_slave)(struct net_device *dev,
1098 						 struct net_device *slave_dev);
1099 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1100 						    netdev_features_t features);
1101 	int			(*ndo_set_features)(struct net_device *dev,
1102 						    netdev_features_t features);
1103 	int			(*ndo_neigh_construct)(struct neighbour *n);
1104 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1105 
1106 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1107 					       struct nlattr *tb[],
1108 					       struct net_device *dev,
1109 					       const unsigned char *addr,
1110 					       u16 flags);
1111 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1112 					       struct nlattr *tb[],
1113 					       struct net_device *dev,
1114 					       const unsigned char *addr);
1115 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1116 						struct netlink_callback *cb,
1117 						struct net_device *dev,
1118 						int idx);
1119 
1120 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1121 						      struct nlmsghdr *nlh);
1122 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1123 						      u32 pid, u32 seq,
1124 						      struct net_device *dev,
1125 						      u32 filter_mask);
1126 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1127 						      struct nlmsghdr *nlh);
1128 	int			(*ndo_change_carrier)(struct net_device *dev,
1129 						      bool new_carrier);
1130 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1131 							struct netdev_phys_port_id *ppid);
1132 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1133 						      sa_family_t sa_family,
1134 						      __be16 port);
1135 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1136 						      sa_family_t sa_family,
1137 						      __be16 port);
1138 
1139 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1140 							struct net_device *dev);
1141 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1142 							void *priv);
1143 
1144 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1145 							struct net_device *dev,
1146 							void *priv);
1147 };
1148 
1149 /**
1150  * enum net_device_priv_flags - &struct net_device priv_flags
1151  *
1152  * These are the &struct net_device, they are only set internally
1153  * by drivers and used in the kernel. These flags are invisible to
1154  * userspace, this means that the order of these flags can change
1155  * during any kernel release.
1156  *
1157  * You should have a pretty good reason to be extending these flags.
1158  *
1159  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1160  * @IFF_EBRIDGE: Ethernet bridging device
1161  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1162  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1163  * @IFF_MASTER_ALB: bonding master, balance-alb
1164  * @IFF_BONDING: bonding master or slave
1165  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1166  * @IFF_ISATAP: ISATAP interface (RFC4214)
1167  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1168  * @IFF_WAN_HDLC: WAN HDLC device
1169  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1170  *	release skb->dst
1171  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1172  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1173  * @IFF_MACVLAN_PORT: device used as macvlan port
1174  * @IFF_BRIDGE_PORT: device used as bridge port
1175  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1176  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1177  * @IFF_UNICAST_FLT: Supports unicast filtering
1178  * @IFF_TEAM_PORT: device used as team port
1179  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1180  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1181  *	change when it's running
1182  * @IFF_MACVLAN: Macvlan device
1183  */
1184 enum netdev_priv_flags {
1185 	IFF_802_1Q_VLAN			= 1<<0,
1186 	IFF_EBRIDGE			= 1<<1,
1187 	IFF_SLAVE_INACTIVE		= 1<<2,
1188 	IFF_MASTER_8023AD		= 1<<3,
1189 	IFF_MASTER_ALB			= 1<<4,
1190 	IFF_BONDING			= 1<<5,
1191 	IFF_SLAVE_NEEDARP		= 1<<6,
1192 	IFF_ISATAP			= 1<<7,
1193 	IFF_MASTER_ARPMON		= 1<<8,
1194 	IFF_WAN_HDLC			= 1<<9,
1195 	IFF_XMIT_DST_RELEASE		= 1<<10,
1196 	IFF_DONT_BRIDGE			= 1<<11,
1197 	IFF_DISABLE_NETPOLL		= 1<<12,
1198 	IFF_MACVLAN_PORT		= 1<<13,
1199 	IFF_BRIDGE_PORT			= 1<<14,
1200 	IFF_OVS_DATAPATH		= 1<<15,
1201 	IFF_TX_SKB_SHARING		= 1<<16,
1202 	IFF_UNICAST_FLT			= 1<<17,
1203 	IFF_TEAM_PORT			= 1<<18,
1204 	IFF_SUPP_NOFCS			= 1<<19,
1205 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1206 	IFF_MACVLAN			= 1<<21,
1207 };
1208 
1209 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1210 #define IFF_EBRIDGE			IFF_EBRIDGE
1211 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1212 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1213 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1214 #define IFF_BONDING			IFF_BONDING
1215 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1216 #define IFF_ISATAP			IFF_ISATAP
1217 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1218 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1219 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1220 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1221 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1222 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1223 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1224 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1225 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1226 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1227 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1228 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1229 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1230 #define IFF_MACVLAN			IFF_MACVLAN
1231 
1232 /*
1233  *	The DEVICE structure.
1234  *	Actually, this whole structure is a big mistake.  It mixes I/O
1235  *	data with strictly "high-level" data, and it has to know about
1236  *	almost every data structure used in the INET module.
1237  *
1238  *	FIXME: cleanup struct net_device such that network protocol info
1239  *	moves out.
1240  */
1241 
1242 struct net_device {
1243 
1244 	/*
1245 	 * This is the first field of the "visible" part of this structure
1246 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1247 	 * of the interface.
1248 	 */
1249 	char			name[IFNAMSIZ];
1250 
1251 	/* device name hash chain, please keep it close to name[] */
1252 	struct hlist_node	name_hlist;
1253 
1254 	/* snmp alias */
1255 	char 			*ifalias;
1256 
1257 	/*
1258 	 *	I/O specific fields
1259 	 *	FIXME: Merge these and struct ifmap into one
1260 	 */
1261 	unsigned long		mem_end;	/* shared mem end	*/
1262 	unsigned long		mem_start;	/* shared mem start	*/
1263 	unsigned long		base_addr;	/* device I/O address	*/
1264 	int			irq;		/* device IRQ number	*/
1265 
1266 	/*
1267 	 *	Some hardware also needs these fields, but they are not
1268 	 *	part of the usual set specified in Space.c.
1269 	 */
1270 
1271 	unsigned long		state;
1272 
1273 	struct list_head	dev_list;
1274 	struct list_head	napi_list;
1275 	struct list_head	unreg_list;
1276 	struct list_head	close_list;
1277 
1278 	/* directly linked devices, like slaves for bonding */
1279 	struct {
1280 		struct list_head upper;
1281 		struct list_head lower;
1282 	} adj_list;
1283 
1284 	/* all linked devices, *including* neighbours */
1285 	struct {
1286 		struct list_head upper;
1287 		struct list_head lower;
1288 	} all_adj_list;
1289 
1290 
1291 	/* currently active device features */
1292 	netdev_features_t	features;
1293 	/* user-changeable features */
1294 	netdev_features_t	hw_features;
1295 	/* user-requested features */
1296 	netdev_features_t	wanted_features;
1297 	/* mask of features inheritable by VLAN devices */
1298 	netdev_features_t	vlan_features;
1299 	/* mask of features inherited by encapsulating devices
1300 	 * This field indicates what encapsulation offloads
1301 	 * the hardware is capable of doing, and drivers will
1302 	 * need to set them appropriately.
1303 	 */
1304 	netdev_features_t	hw_enc_features;
1305 	/* mask of fetures inheritable by MPLS */
1306 	netdev_features_t	mpls_features;
1307 
1308 	/* Interface index. Unique device identifier	*/
1309 	int			ifindex;
1310 	int			iflink;
1311 
1312 	struct net_device_stats	stats;
1313 
1314 	/* dropped packets by core network, Do not use this in drivers */
1315 	atomic_long_t		rx_dropped;
1316 	atomic_long_t		tx_dropped;
1317 
1318 	/* Stats to monitor carrier on<->off transitions */
1319 	atomic_t		carrier_changes;
1320 
1321 #ifdef CONFIG_WIRELESS_EXT
1322 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1323 	 * See <net/iw_handler.h> for details. Jean II */
1324 	const struct iw_handler_def *	wireless_handlers;
1325 	/* Instance data managed by the core of Wireless Extensions. */
1326 	struct iw_public_data *	wireless_data;
1327 #endif
1328 	/* Management operations */
1329 	const struct net_device_ops *netdev_ops;
1330 	const struct ethtool_ops *ethtool_ops;
1331 	const struct forwarding_accel_ops *fwd_ops;
1332 
1333 	/* Hardware header description */
1334 	const struct header_ops *header_ops;
1335 
1336 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1337 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1338 					     * See if.h for definitions. */
1339 	unsigned short		gflags;
1340 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1341 
1342 	unsigned char		operstate; /* RFC2863 operstate */
1343 	unsigned char		link_mode; /* mapping policy to operstate */
1344 
1345 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1346 	unsigned char		dma;		/* DMA channel		*/
1347 
1348 	unsigned int		mtu;	/* interface MTU value		*/
1349 	unsigned short		type;	/* interface hardware type	*/
1350 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1351 
1352 	/* extra head- and tailroom the hardware may need, but not in all cases
1353 	 * can this be guaranteed, especially tailroom. Some cases also use
1354 	 * LL_MAX_HEADER instead to allocate the skb.
1355 	 */
1356 	unsigned short		needed_headroom;
1357 	unsigned short		needed_tailroom;
1358 
1359 	/* Interface address info. */
1360 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1361 	unsigned char		addr_assign_type; /* hw address assignment type */
1362 	unsigned char		addr_len;	/* hardware address length	*/
1363 	unsigned short		neigh_priv_len;
1364 	unsigned short          dev_id;		/* Used to differentiate devices
1365 						 * that share the same link
1366 						 * layer address
1367 						 */
1368 	unsigned short          dev_port;	/* Used to differentiate
1369 						 * devices that share the same
1370 						 * function
1371 						 */
1372 	spinlock_t		addr_list_lock;
1373 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1374 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1375 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1376 						    * hw addresses
1377 						    */
1378 #ifdef CONFIG_SYSFS
1379 	struct kset		*queues_kset;
1380 #endif
1381 
1382 	bool			uc_promisc;
1383 	unsigned int		promiscuity;
1384 	unsigned int		allmulti;
1385 
1386 
1387 	/* Protocol specific pointers */
1388 
1389 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1390 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1391 #endif
1392 #if IS_ENABLED(CONFIG_NET_DSA)
1393 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1394 #endif
1395 #if IS_ENABLED(CONFIG_TIPC)
1396 	struct tipc_bearer __rcu *tipc_ptr;	/* TIPC specific data */
1397 #endif
1398 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1399 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1400 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1401 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1402 	void			*ax25_ptr;	/* AX.25 specific data */
1403 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1404 						   assign before registering */
1405 
1406 /*
1407  * Cache lines mostly used on receive path (including eth_type_trans())
1408  */
1409 	unsigned long		last_rx;	/* Time of last Rx */
1410 
1411 	/* Interface address info used in eth_type_trans() */
1412 	unsigned char		*dev_addr;	/* hw address, (before bcast
1413 						   because most packets are
1414 						   unicast) */
1415 
1416 
1417 #ifdef CONFIG_SYSFS
1418 	struct netdev_rx_queue	*_rx;
1419 
1420 	/* Number of RX queues allocated at register_netdev() time */
1421 	unsigned int		num_rx_queues;
1422 
1423 	/* Number of RX queues currently active in device */
1424 	unsigned int		real_num_rx_queues;
1425 
1426 #endif
1427 
1428 	rx_handler_func_t __rcu	*rx_handler;
1429 	void __rcu		*rx_handler_data;
1430 
1431 	struct netdev_queue __rcu *ingress_queue;
1432 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1433 
1434 
1435 /*
1436  * Cache lines mostly used on transmit path
1437  */
1438 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1439 
1440 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1441 	unsigned int		num_tx_queues;
1442 
1443 	/* Number of TX queues currently active in device  */
1444 	unsigned int		real_num_tx_queues;
1445 
1446 	/* root qdisc from userspace point of view */
1447 	struct Qdisc		*qdisc;
1448 
1449 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1450 	spinlock_t		tx_global_lock;
1451 
1452 #ifdef CONFIG_XPS
1453 	struct xps_dev_maps __rcu *xps_maps;
1454 #endif
1455 #ifdef CONFIG_RFS_ACCEL
1456 	/* CPU reverse-mapping for RX completion interrupts, indexed
1457 	 * by RX queue number.  Assigned by driver.  This must only be
1458 	 * set if the ndo_rx_flow_steer operation is defined. */
1459 	struct cpu_rmap		*rx_cpu_rmap;
1460 #endif
1461 
1462 	/* These may be needed for future network-power-down code. */
1463 
1464 	/*
1465 	 * trans_start here is expensive for high speed devices on SMP,
1466 	 * please use netdev_queue->trans_start instead.
1467 	 */
1468 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1469 
1470 	int			watchdog_timeo; /* used by dev_watchdog() */
1471 	struct timer_list	watchdog_timer;
1472 
1473 	/* Number of references to this device */
1474 	int __percpu		*pcpu_refcnt;
1475 
1476 	/* delayed register/unregister */
1477 	struct list_head	todo_list;
1478 	/* device index hash chain */
1479 	struct hlist_node	index_hlist;
1480 
1481 	struct list_head	link_watch_list;
1482 
1483 	/* register/unregister state machine */
1484 	enum { NETREG_UNINITIALIZED=0,
1485 	       NETREG_REGISTERED,	/* completed register_netdevice */
1486 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1487 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1488 	       NETREG_RELEASED,		/* called free_netdev */
1489 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1490 	} reg_state:8;
1491 
1492 	bool dismantle; /* device is going do be freed */
1493 
1494 	enum {
1495 		RTNL_LINK_INITIALIZED,
1496 		RTNL_LINK_INITIALIZING,
1497 	} rtnl_link_state:16;
1498 
1499 	/* Called from unregister, can be used to call free_netdev */
1500 	void (*destructor)(struct net_device *dev);
1501 
1502 #ifdef CONFIG_NETPOLL
1503 	struct netpoll_info __rcu	*npinfo;
1504 #endif
1505 
1506 #ifdef CONFIG_NET_NS
1507 	/* Network namespace this network device is inside */
1508 	struct net		*nd_net;
1509 #endif
1510 
1511 	/* mid-layer private */
1512 	union {
1513 		void				*ml_priv;
1514 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1515 		struct pcpu_sw_netstats __percpu	*tstats;
1516 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1517 		struct pcpu_vstats __percpu	*vstats; /* veth stats */
1518 	};
1519 	/* GARP */
1520 	struct garp_port __rcu	*garp_port;
1521 	/* MRP */
1522 	struct mrp_port __rcu	*mrp_port;
1523 
1524 	/* class/net/name entry */
1525 	struct device		dev;
1526 	/* space for optional device, statistics, and wireless sysfs groups */
1527 	const struct attribute_group *sysfs_groups[4];
1528 	/* space for optional per-rx queue attributes */
1529 	const struct attribute_group *sysfs_rx_queue_group;
1530 
1531 	/* rtnetlink link ops */
1532 	const struct rtnl_link_ops *rtnl_link_ops;
1533 
1534 	/* for setting kernel sock attribute on TCP connection setup */
1535 #define GSO_MAX_SIZE		65536
1536 	unsigned int		gso_max_size;
1537 #define GSO_MAX_SEGS		65535
1538 	u16			gso_max_segs;
1539 
1540 #ifdef CONFIG_DCB
1541 	/* Data Center Bridging netlink ops */
1542 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1543 #endif
1544 	u8 num_tc;
1545 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1546 	u8 prio_tc_map[TC_BITMASK + 1];
1547 
1548 #if IS_ENABLED(CONFIG_FCOE)
1549 	/* max exchange id for FCoE LRO by ddp */
1550 	unsigned int		fcoe_ddp_xid;
1551 #endif
1552 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1553 	struct netprio_map __rcu *priomap;
1554 #endif
1555 	/* phy device may attach itself for hardware timestamping */
1556 	struct phy_device *phydev;
1557 
1558 	struct lock_class_key *qdisc_tx_busylock;
1559 
1560 	/* group the device belongs to */
1561 	int group;
1562 
1563 	struct pm_qos_request	pm_qos_req;
1564 };
1565 #define to_net_dev(d) container_of(d, struct net_device, dev)
1566 
1567 #define	NETDEV_ALIGN		32
1568 
1569 static inline
1570 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1571 {
1572 	return dev->prio_tc_map[prio & TC_BITMASK];
1573 }
1574 
1575 static inline
1576 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1577 {
1578 	if (tc >= dev->num_tc)
1579 		return -EINVAL;
1580 
1581 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1582 	return 0;
1583 }
1584 
1585 static inline
1586 void netdev_reset_tc(struct net_device *dev)
1587 {
1588 	dev->num_tc = 0;
1589 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1590 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1591 }
1592 
1593 static inline
1594 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1595 {
1596 	if (tc >= dev->num_tc)
1597 		return -EINVAL;
1598 
1599 	dev->tc_to_txq[tc].count = count;
1600 	dev->tc_to_txq[tc].offset = offset;
1601 	return 0;
1602 }
1603 
1604 static inline
1605 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1606 {
1607 	if (num_tc > TC_MAX_QUEUE)
1608 		return -EINVAL;
1609 
1610 	dev->num_tc = num_tc;
1611 	return 0;
1612 }
1613 
1614 static inline
1615 int netdev_get_num_tc(struct net_device *dev)
1616 {
1617 	return dev->num_tc;
1618 }
1619 
1620 static inline
1621 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1622 					 unsigned int index)
1623 {
1624 	return &dev->_tx[index];
1625 }
1626 
1627 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1628 					    void (*f)(struct net_device *,
1629 						      struct netdev_queue *,
1630 						      void *),
1631 					    void *arg)
1632 {
1633 	unsigned int i;
1634 
1635 	for (i = 0; i < dev->num_tx_queues; i++)
1636 		f(dev, &dev->_tx[i], arg);
1637 }
1638 
1639 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1640 				    struct sk_buff *skb,
1641 				    void *accel_priv);
1642 
1643 /*
1644  * Net namespace inlines
1645  */
1646 static inline
1647 struct net *dev_net(const struct net_device *dev)
1648 {
1649 	return read_pnet(&dev->nd_net);
1650 }
1651 
1652 static inline
1653 void dev_net_set(struct net_device *dev, struct net *net)
1654 {
1655 #ifdef CONFIG_NET_NS
1656 	release_net(dev->nd_net);
1657 	dev->nd_net = hold_net(net);
1658 #endif
1659 }
1660 
1661 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1662 {
1663 #ifdef CONFIG_NET_DSA_TAG_DSA
1664 	if (dev->dsa_ptr != NULL)
1665 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1666 #endif
1667 
1668 	return 0;
1669 }
1670 
1671 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1672 {
1673 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1674 	if (dev->dsa_ptr != NULL)
1675 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1676 #endif
1677 
1678 	return 0;
1679 }
1680 
1681 /**
1682  *	netdev_priv - access network device private data
1683  *	@dev: network device
1684  *
1685  * Get network device private data
1686  */
1687 static inline void *netdev_priv(const struct net_device *dev)
1688 {
1689 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1690 }
1691 
1692 /* Set the sysfs physical device reference for the network logical device
1693  * if set prior to registration will cause a symlink during initialization.
1694  */
1695 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1696 
1697 /* Set the sysfs device type for the network logical device to allow
1698  * fine-grained identification of different network device types. For
1699  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1700  */
1701 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1702 
1703 /* Default NAPI poll() weight
1704  * Device drivers are strongly advised to not use bigger value
1705  */
1706 #define NAPI_POLL_WEIGHT 64
1707 
1708 /**
1709  *	netif_napi_add - initialize a napi context
1710  *	@dev:  network device
1711  *	@napi: napi context
1712  *	@poll: polling function
1713  *	@weight: default weight
1714  *
1715  * netif_napi_add() must be used to initialize a napi context prior to calling
1716  * *any* of the other napi related functions.
1717  */
1718 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1719 		    int (*poll)(struct napi_struct *, int), int weight);
1720 
1721 /**
1722  *  netif_napi_del - remove a napi context
1723  *  @napi: napi context
1724  *
1725  *  netif_napi_del() removes a napi context from the network device napi list
1726  */
1727 void netif_napi_del(struct napi_struct *napi);
1728 
1729 struct napi_gro_cb {
1730 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1731 	void *frag0;
1732 
1733 	/* Length of frag0. */
1734 	unsigned int frag0_len;
1735 
1736 	/* This indicates where we are processing relative to skb->data. */
1737 	int data_offset;
1738 
1739 	/* This is non-zero if the packet cannot be merged with the new skb. */
1740 	u16	flush;
1741 
1742 	/* Save the IP ID here and check when we get to the transport layer */
1743 	u16	flush_id;
1744 
1745 	/* Number of segments aggregated. */
1746 	u16	count;
1747 
1748 	/* This is non-zero if the packet may be of the same flow. */
1749 	u8	same_flow;
1750 
1751 	/* Free the skb? */
1752 	u8	free;
1753 #define NAPI_GRO_FREE		  1
1754 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1755 
1756 	/* jiffies when first packet was created/queued */
1757 	unsigned long age;
1758 
1759 	/* Used in ipv6_gro_receive() */
1760 	u16	proto;
1761 
1762 	/* Used in udp_gro_receive */
1763 	u16	udp_mark;
1764 
1765 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1766 	__wsum	csum;
1767 
1768 	/* used in skb_gro_receive() slow path */
1769 	struct sk_buff *last;
1770 };
1771 
1772 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1773 
1774 struct packet_type {
1775 	__be16			type;	/* This is really htons(ether_type). */
1776 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1777 	int			(*func) (struct sk_buff *,
1778 					 struct net_device *,
1779 					 struct packet_type *,
1780 					 struct net_device *);
1781 	bool			(*id_match)(struct packet_type *ptype,
1782 					    struct sock *sk);
1783 	void			*af_packet_priv;
1784 	struct list_head	list;
1785 };
1786 
1787 struct offload_callbacks {
1788 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1789 						netdev_features_t features);
1790 	int			(*gso_send_check)(struct sk_buff *skb);
1791 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1792 					       struct sk_buff *skb);
1793 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1794 };
1795 
1796 struct packet_offload {
1797 	__be16			 type;	/* This is really htons(ether_type). */
1798 	struct offload_callbacks callbacks;
1799 	struct list_head	 list;
1800 };
1801 
1802 struct udp_offload {
1803 	__be16			 port;
1804 	struct offload_callbacks callbacks;
1805 };
1806 
1807 /* often modified stats are per cpu, other are shared (netdev->stats) */
1808 struct pcpu_sw_netstats {
1809 	u64     rx_packets;
1810 	u64     rx_bytes;
1811 	u64     tx_packets;
1812 	u64     tx_bytes;
1813 	struct u64_stats_sync   syncp;
1814 };
1815 
1816 #define netdev_alloc_pcpu_stats(type)				\
1817 ({								\
1818 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1819 	if (pcpu_stats)	{					\
1820 		int i;						\
1821 		for_each_possible_cpu(i) {			\
1822 			typeof(type) *stat;			\
1823 			stat = per_cpu_ptr(pcpu_stats, i);	\
1824 			u64_stats_init(&stat->syncp);		\
1825 		}						\
1826 	}							\
1827 	pcpu_stats;						\
1828 })
1829 
1830 #include <linux/notifier.h>
1831 
1832 /* netdevice notifier chain. Please remember to update the rtnetlink
1833  * notification exclusion list in rtnetlink_event() when adding new
1834  * types.
1835  */
1836 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1837 #define NETDEV_DOWN	0x0002
1838 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1839 				   detected a hardware crash and restarted
1840 				   - we can use this eg to kick tcp sessions
1841 				   once done */
1842 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1843 #define NETDEV_REGISTER 0x0005
1844 #define NETDEV_UNREGISTER	0x0006
1845 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
1846 #define NETDEV_CHANGEADDR	0x0008
1847 #define NETDEV_GOING_DOWN	0x0009
1848 #define NETDEV_CHANGENAME	0x000A
1849 #define NETDEV_FEAT_CHANGE	0x000B
1850 #define NETDEV_BONDING_FAILOVER 0x000C
1851 #define NETDEV_PRE_UP		0x000D
1852 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1853 #define NETDEV_POST_TYPE_CHANGE	0x000F
1854 #define NETDEV_POST_INIT	0x0010
1855 #define NETDEV_UNREGISTER_FINAL 0x0011
1856 #define NETDEV_RELEASE		0x0012
1857 #define NETDEV_NOTIFY_PEERS	0x0013
1858 #define NETDEV_JOIN		0x0014
1859 #define NETDEV_CHANGEUPPER	0x0015
1860 #define NETDEV_RESEND_IGMP	0x0016
1861 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
1862 
1863 int register_netdevice_notifier(struct notifier_block *nb);
1864 int unregister_netdevice_notifier(struct notifier_block *nb);
1865 
1866 struct netdev_notifier_info {
1867 	struct net_device *dev;
1868 };
1869 
1870 struct netdev_notifier_change_info {
1871 	struct netdev_notifier_info info; /* must be first */
1872 	unsigned int flags_changed;
1873 };
1874 
1875 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1876 					     struct net_device *dev)
1877 {
1878 	info->dev = dev;
1879 }
1880 
1881 static inline struct net_device *
1882 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1883 {
1884 	return info->dev;
1885 }
1886 
1887 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1888 
1889 
1890 extern rwlock_t				dev_base_lock;		/* Device list lock */
1891 
1892 #define for_each_netdev(net, d)		\
1893 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1894 #define for_each_netdev_reverse(net, d)	\
1895 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1896 #define for_each_netdev_rcu(net, d)		\
1897 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1898 #define for_each_netdev_safe(net, d, n)	\
1899 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1900 #define for_each_netdev_continue(net, d)		\
1901 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1902 #define for_each_netdev_continue_rcu(net, d)		\
1903 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1904 #define for_each_netdev_in_bond_rcu(bond, slave)	\
1905 		for_each_netdev_rcu(&init_net, slave)	\
1906 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
1907 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1908 
1909 static inline struct net_device *next_net_device(struct net_device *dev)
1910 {
1911 	struct list_head *lh;
1912 	struct net *net;
1913 
1914 	net = dev_net(dev);
1915 	lh = dev->dev_list.next;
1916 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1917 }
1918 
1919 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1920 {
1921 	struct list_head *lh;
1922 	struct net *net;
1923 
1924 	net = dev_net(dev);
1925 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1926 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1927 }
1928 
1929 static inline struct net_device *first_net_device(struct net *net)
1930 {
1931 	return list_empty(&net->dev_base_head) ? NULL :
1932 		net_device_entry(net->dev_base_head.next);
1933 }
1934 
1935 static inline struct net_device *first_net_device_rcu(struct net *net)
1936 {
1937 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1938 
1939 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1940 }
1941 
1942 int netdev_boot_setup_check(struct net_device *dev);
1943 unsigned long netdev_boot_base(const char *prefix, int unit);
1944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1945 				       const char *hwaddr);
1946 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1947 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1948 void dev_add_pack(struct packet_type *pt);
1949 void dev_remove_pack(struct packet_type *pt);
1950 void __dev_remove_pack(struct packet_type *pt);
1951 void dev_add_offload(struct packet_offload *po);
1952 void dev_remove_offload(struct packet_offload *po);
1953 
1954 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1955 					unsigned short mask);
1956 struct net_device *dev_get_by_name(struct net *net, const char *name);
1957 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1958 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1959 int dev_alloc_name(struct net_device *dev, const char *name);
1960 int dev_open(struct net_device *dev);
1961 int dev_close(struct net_device *dev);
1962 void dev_disable_lro(struct net_device *dev);
1963 int dev_loopback_xmit(struct sk_buff *newskb);
1964 int dev_queue_xmit(struct sk_buff *skb);
1965 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1966 int register_netdevice(struct net_device *dev);
1967 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1968 void unregister_netdevice_many(struct list_head *head);
1969 static inline void unregister_netdevice(struct net_device *dev)
1970 {
1971 	unregister_netdevice_queue(dev, NULL);
1972 }
1973 
1974 int netdev_refcnt_read(const struct net_device *dev);
1975 void free_netdev(struct net_device *dev);
1976 void netdev_freemem(struct net_device *dev);
1977 void synchronize_net(void);
1978 int init_dummy_netdev(struct net_device *dev);
1979 
1980 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1981 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1982 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1983 int netdev_get_name(struct net *net, char *name, int ifindex);
1984 int dev_restart(struct net_device *dev);
1985 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1986 
1987 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1988 {
1989 	return NAPI_GRO_CB(skb)->data_offset;
1990 }
1991 
1992 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1993 {
1994 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1995 }
1996 
1997 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1998 {
1999 	NAPI_GRO_CB(skb)->data_offset += len;
2000 }
2001 
2002 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2003 					unsigned int offset)
2004 {
2005 	return NAPI_GRO_CB(skb)->frag0 + offset;
2006 }
2007 
2008 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2009 {
2010 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2011 }
2012 
2013 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2014 					unsigned int offset)
2015 {
2016 	if (!pskb_may_pull(skb, hlen))
2017 		return NULL;
2018 
2019 	NAPI_GRO_CB(skb)->frag0 = NULL;
2020 	NAPI_GRO_CB(skb)->frag0_len = 0;
2021 	return skb->data + offset;
2022 }
2023 
2024 static inline void *skb_gro_network_header(struct sk_buff *skb)
2025 {
2026 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2027 	       skb_network_offset(skb);
2028 }
2029 
2030 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2031 					const void *start, unsigned int len)
2032 {
2033 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2034 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2035 						  csum_partial(start, len, 0));
2036 }
2037 
2038 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2039 				  unsigned short type,
2040 				  const void *daddr, const void *saddr,
2041 				  unsigned int len)
2042 {
2043 	if (!dev->header_ops || !dev->header_ops->create)
2044 		return 0;
2045 
2046 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2047 }
2048 
2049 static inline int dev_parse_header(const struct sk_buff *skb,
2050 				   unsigned char *haddr)
2051 {
2052 	const struct net_device *dev = skb->dev;
2053 
2054 	if (!dev->header_ops || !dev->header_ops->parse)
2055 		return 0;
2056 	return dev->header_ops->parse(skb, haddr);
2057 }
2058 
2059 static inline int dev_rebuild_header(struct sk_buff *skb)
2060 {
2061 	const struct net_device *dev = skb->dev;
2062 
2063 	if (!dev->header_ops || !dev->header_ops->rebuild)
2064 		return 0;
2065 	return dev->header_ops->rebuild(skb);
2066 }
2067 
2068 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2069 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2070 static inline int unregister_gifconf(unsigned int family)
2071 {
2072 	return register_gifconf(family, NULL);
2073 }
2074 
2075 #ifdef CONFIG_NET_FLOW_LIMIT
2076 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2077 struct sd_flow_limit {
2078 	u64			count;
2079 	unsigned int		num_buckets;
2080 	unsigned int		history_head;
2081 	u16			history[FLOW_LIMIT_HISTORY];
2082 	u8			buckets[];
2083 };
2084 
2085 extern int netdev_flow_limit_table_len;
2086 #endif /* CONFIG_NET_FLOW_LIMIT */
2087 
2088 /*
2089  * Incoming packets are placed on per-cpu queues
2090  */
2091 struct softnet_data {
2092 	struct Qdisc		*output_queue;
2093 	struct Qdisc		**output_queue_tailp;
2094 	struct list_head	poll_list;
2095 	struct sk_buff		*completion_queue;
2096 	struct sk_buff_head	process_queue;
2097 
2098 	/* stats */
2099 	unsigned int		processed;
2100 	unsigned int		time_squeeze;
2101 	unsigned int		cpu_collision;
2102 	unsigned int		received_rps;
2103 
2104 #ifdef CONFIG_RPS
2105 	struct softnet_data	*rps_ipi_list;
2106 
2107 	/* Elements below can be accessed between CPUs for RPS */
2108 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2109 	struct softnet_data	*rps_ipi_next;
2110 	unsigned int		cpu;
2111 	unsigned int		input_queue_head;
2112 	unsigned int		input_queue_tail;
2113 #endif
2114 	unsigned int		dropped;
2115 	struct sk_buff_head	input_pkt_queue;
2116 	struct napi_struct	backlog;
2117 
2118 #ifdef CONFIG_NET_FLOW_LIMIT
2119 	struct sd_flow_limit __rcu *flow_limit;
2120 #endif
2121 };
2122 
2123 static inline void input_queue_head_incr(struct softnet_data *sd)
2124 {
2125 #ifdef CONFIG_RPS
2126 	sd->input_queue_head++;
2127 #endif
2128 }
2129 
2130 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2131 					      unsigned int *qtail)
2132 {
2133 #ifdef CONFIG_RPS
2134 	*qtail = ++sd->input_queue_tail;
2135 #endif
2136 }
2137 
2138 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2139 
2140 void __netif_schedule(struct Qdisc *q);
2141 
2142 static inline void netif_schedule_queue(struct netdev_queue *txq)
2143 {
2144 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2145 		__netif_schedule(txq->qdisc);
2146 }
2147 
2148 static inline void netif_tx_schedule_all(struct net_device *dev)
2149 {
2150 	unsigned int i;
2151 
2152 	for (i = 0; i < dev->num_tx_queues; i++)
2153 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2154 }
2155 
2156 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2157 {
2158 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2159 }
2160 
2161 /**
2162  *	netif_start_queue - allow transmit
2163  *	@dev: network device
2164  *
2165  *	Allow upper layers to call the device hard_start_xmit routine.
2166  */
2167 static inline void netif_start_queue(struct net_device *dev)
2168 {
2169 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2170 }
2171 
2172 static inline void netif_tx_start_all_queues(struct net_device *dev)
2173 {
2174 	unsigned int i;
2175 
2176 	for (i = 0; i < dev->num_tx_queues; i++) {
2177 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2178 		netif_tx_start_queue(txq);
2179 	}
2180 }
2181 
2182 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2183 {
2184 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2185 		__netif_schedule(dev_queue->qdisc);
2186 }
2187 
2188 /**
2189  *	netif_wake_queue - restart transmit
2190  *	@dev: network device
2191  *
2192  *	Allow upper layers to call the device hard_start_xmit routine.
2193  *	Used for flow control when transmit resources are available.
2194  */
2195 static inline void netif_wake_queue(struct net_device *dev)
2196 {
2197 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2198 }
2199 
2200 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2201 {
2202 	unsigned int i;
2203 
2204 	for (i = 0; i < dev->num_tx_queues; i++) {
2205 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2206 		netif_tx_wake_queue(txq);
2207 	}
2208 }
2209 
2210 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2211 {
2212 	if (WARN_ON(!dev_queue)) {
2213 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2214 		return;
2215 	}
2216 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2217 }
2218 
2219 /**
2220  *	netif_stop_queue - stop transmitted packets
2221  *	@dev: network device
2222  *
2223  *	Stop upper layers calling the device hard_start_xmit routine.
2224  *	Used for flow control when transmit resources are unavailable.
2225  */
2226 static inline void netif_stop_queue(struct net_device *dev)
2227 {
2228 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2229 }
2230 
2231 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2232 {
2233 	unsigned int i;
2234 
2235 	for (i = 0; i < dev->num_tx_queues; i++) {
2236 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2237 		netif_tx_stop_queue(txq);
2238 	}
2239 }
2240 
2241 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2242 {
2243 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2244 }
2245 
2246 /**
2247  *	netif_queue_stopped - test if transmit queue is flowblocked
2248  *	@dev: network device
2249  *
2250  *	Test if transmit queue on device is currently unable to send.
2251  */
2252 static inline bool netif_queue_stopped(const struct net_device *dev)
2253 {
2254 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2255 }
2256 
2257 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2258 {
2259 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2260 }
2261 
2262 static inline bool
2263 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2264 {
2265 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2266 }
2267 
2268 static inline bool
2269 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2270 {
2271 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2272 }
2273 
2274 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2275 					unsigned int bytes)
2276 {
2277 #ifdef CONFIG_BQL
2278 	dql_queued(&dev_queue->dql, bytes);
2279 
2280 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2281 		return;
2282 
2283 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2284 
2285 	/*
2286 	 * The XOFF flag must be set before checking the dql_avail below,
2287 	 * because in netdev_tx_completed_queue we update the dql_completed
2288 	 * before checking the XOFF flag.
2289 	 */
2290 	smp_mb();
2291 
2292 	/* check again in case another CPU has just made room avail */
2293 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2294 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2295 #endif
2296 }
2297 
2298 /**
2299  * 	netdev_sent_queue - report the number of bytes queued to hardware
2300  * 	@dev: network device
2301  * 	@bytes: number of bytes queued to the hardware device queue
2302  *
2303  * 	Report the number of bytes queued for sending/completion to the network
2304  * 	device hardware queue. @bytes should be a good approximation and should
2305  * 	exactly match netdev_completed_queue() @bytes
2306  */
2307 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2308 {
2309 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2310 }
2311 
2312 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2313 					     unsigned int pkts, unsigned int bytes)
2314 {
2315 #ifdef CONFIG_BQL
2316 	if (unlikely(!bytes))
2317 		return;
2318 
2319 	dql_completed(&dev_queue->dql, bytes);
2320 
2321 	/*
2322 	 * Without the memory barrier there is a small possiblity that
2323 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2324 	 * be stopped forever
2325 	 */
2326 	smp_mb();
2327 
2328 	if (dql_avail(&dev_queue->dql) < 0)
2329 		return;
2330 
2331 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2332 		netif_schedule_queue(dev_queue);
2333 #endif
2334 }
2335 
2336 /**
2337  * 	netdev_completed_queue - report bytes and packets completed by device
2338  * 	@dev: network device
2339  * 	@pkts: actual number of packets sent over the medium
2340  * 	@bytes: actual number of bytes sent over the medium
2341  *
2342  * 	Report the number of bytes and packets transmitted by the network device
2343  * 	hardware queue over the physical medium, @bytes must exactly match the
2344  * 	@bytes amount passed to netdev_sent_queue()
2345  */
2346 static inline void netdev_completed_queue(struct net_device *dev,
2347 					  unsigned int pkts, unsigned int bytes)
2348 {
2349 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2350 }
2351 
2352 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2353 {
2354 #ifdef CONFIG_BQL
2355 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2356 	dql_reset(&q->dql);
2357 #endif
2358 }
2359 
2360 /**
2361  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2362  * 	@dev_queue: network device
2363  *
2364  * 	Reset the bytes and packet count of a network device and clear the
2365  * 	software flow control OFF bit for this network device
2366  */
2367 static inline void netdev_reset_queue(struct net_device *dev_queue)
2368 {
2369 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2370 }
2371 
2372 /**
2373  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2374  * 	@dev: network device
2375  * 	@queue_index: given tx queue index
2376  *
2377  * 	Returns 0 if given tx queue index >= number of device tx queues,
2378  * 	otherwise returns the originally passed tx queue index.
2379  */
2380 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2381 {
2382 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2383 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2384 				     dev->name, queue_index,
2385 				     dev->real_num_tx_queues);
2386 		return 0;
2387 	}
2388 
2389 	return queue_index;
2390 }
2391 
2392 /**
2393  *	netif_running - test if up
2394  *	@dev: network device
2395  *
2396  *	Test if the device has been brought up.
2397  */
2398 static inline bool netif_running(const struct net_device *dev)
2399 {
2400 	return test_bit(__LINK_STATE_START, &dev->state);
2401 }
2402 
2403 /*
2404  * Routines to manage the subqueues on a device.  We only need start
2405  * stop, and a check if it's stopped.  All other device management is
2406  * done at the overall netdevice level.
2407  * Also test the device if we're multiqueue.
2408  */
2409 
2410 /**
2411  *	netif_start_subqueue - allow sending packets on subqueue
2412  *	@dev: network device
2413  *	@queue_index: sub queue index
2414  *
2415  * Start individual transmit queue of a device with multiple transmit queues.
2416  */
2417 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2418 {
2419 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2420 
2421 	netif_tx_start_queue(txq);
2422 }
2423 
2424 /**
2425  *	netif_stop_subqueue - stop sending packets on subqueue
2426  *	@dev: network device
2427  *	@queue_index: sub queue index
2428  *
2429  * Stop individual transmit queue of a device with multiple transmit queues.
2430  */
2431 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2432 {
2433 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2434 	netif_tx_stop_queue(txq);
2435 }
2436 
2437 /**
2438  *	netif_subqueue_stopped - test status of subqueue
2439  *	@dev: network device
2440  *	@queue_index: sub queue index
2441  *
2442  * Check individual transmit queue of a device with multiple transmit queues.
2443  */
2444 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2445 					    u16 queue_index)
2446 {
2447 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2448 
2449 	return netif_tx_queue_stopped(txq);
2450 }
2451 
2452 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2453 					  struct sk_buff *skb)
2454 {
2455 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2456 }
2457 
2458 /**
2459  *	netif_wake_subqueue - allow sending packets on subqueue
2460  *	@dev: network device
2461  *	@queue_index: sub queue index
2462  *
2463  * Resume individual transmit queue of a device with multiple transmit queues.
2464  */
2465 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2466 {
2467 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2468 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2469 		__netif_schedule(txq->qdisc);
2470 }
2471 
2472 #ifdef CONFIG_XPS
2473 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2474 			u16 index);
2475 #else
2476 static inline int netif_set_xps_queue(struct net_device *dev,
2477 				      const struct cpumask *mask,
2478 				      u16 index)
2479 {
2480 	return 0;
2481 }
2482 #endif
2483 
2484 /*
2485  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2486  * as a distribution range limit for the returned value.
2487  */
2488 static inline u16 skb_tx_hash(const struct net_device *dev,
2489 			      const struct sk_buff *skb)
2490 {
2491 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2492 }
2493 
2494 /**
2495  *	netif_is_multiqueue - test if device has multiple transmit queues
2496  *	@dev: network device
2497  *
2498  * Check if device has multiple transmit queues
2499  */
2500 static inline bool netif_is_multiqueue(const struct net_device *dev)
2501 {
2502 	return dev->num_tx_queues > 1;
2503 }
2504 
2505 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2506 
2507 #ifdef CONFIG_SYSFS
2508 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2509 #else
2510 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2511 						unsigned int rxq)
2512 {
2513 	return 0;
2514 }
2515 #endif
2516 
2517 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2518 					     const struct net_device *from_dev)
2519 {
2520 	int err;
2521 
2522 	err = netif_set_real_num_tx_queues(to_dev,
2523 					   from_dev->real_num_tx_queues);
2524 	if (err)
2525 		return err;
2526 #ifdef CONFIG_SYSFS
2527 	return netif_set_real_num_rx_queues(to_dev,
2528 					    from_dev->real_num_rx_queues);
2529 #else
2530 	return 0;
2531 #endif
2532 }
2533 
2534 #ifdef CONFIG_SYSFS
2535 static inline unsigned int get_netdev_rx_queue_index(
2536 		struct netdev_rx_queue *queue)
2537 {
2538 	struct net_device *dev = queue->dev;
2539 	int index = queue - dev->_rx;
2540 
2541 	BUG_ON(index >= dev->num_rx_queues);
2542 	return index;
2543 }
2544 #endif
2545 
2546 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2547 int netif_get_num_default_rss_queues(void);
2548 
2549 enum skb_free_reason {
2550 	SKB_REASON_CONSUMED,
2551 	SKB_REASON_DROPPED,
2552 };
2553 
2554 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2555 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2556 
2557 /*
2558  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2559  * interrupt context or with hardware interrupts being disabled.
2560  * (in_irq() || irqs_disabled())
2561  *
2562  * We provide four helpers that can be used in following contexts :
2563  *
2564  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2565  *  replacing kfree_skb(skb)
2566  *
2567  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2568  *  Typically used in place of consume_skb(skb) in TX completion path
2569  *
2570  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2571  *  replacing kfree_skb(skb)
2572  *
2573  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2574  *  and consumed a packet. Used in place of consume_skb(skb)
2575  */
2576 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2577 {
2578 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2579 }
2580 
2581 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2582 {
2583 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2584 }
2585 
2586 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2587 {
2588 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2589 }
2590 
2591 static inline void dev_consume_skb_any(struct sk_buff *skb)
2592 {
2593 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2594 }
2595 
2596 int netif_rx(struct sk_buff *skb);
2597 int netif_rx_ni(struct sk_buff *skb);
2598 int netif_receive_skb(struct sk_buff *skb);
2599 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2600 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2601 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2602 gro_result_t napi_gro_frags(struct napi_struct *napi);
2603 struct packet_offload *gro_find_receive_by_type(__be16 type);
2604 struct packet_offload *gro_find_complete_by_type(__be16 type);
2605 
2606 static inline void napi_free_frags(struct napi_struct *napi)
2607 {
2608 	kfree_skb(napi->skb);
2609 	napi->skb = NULL;
2610 }
2611 
2612 int netdev_rx_handler_register(struct net_device *dev,
2613 			       rx_handler_func_t *rx_handler,
2614 			       void *rx_handler_data);
2615 void netdev_rx_handler_unregister(struct net_device *dev);
2616 
2617 bool dev_valid_name(const char *name);
2618 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2619 int dev_ethtool(struct net *net, struct ifreq *);
2620 unsigned int dev_get_flags(const struct net_device *);
2621 int __dev_change_flags(struct net_device *, unsigned int flags);
2622 int dev_change_flags(struct net_device *, unsigned int);
2623 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2624 			unsigned int gchanges);
2625 int dev_change_name(struct net_device *, const char *);
2626 int dev_set_alias(struct net_device *, const char *, size_t);
2627 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2628 int dev_set_mtu(struct net_device *, int);
2629 void dev_set_group(struct net_device *, int);
2630 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2631 int dev_change_carrier(struct net_device *, bool new_carrier);
2632 int dev_get_phys_port_id(struct net_device *dev,
2633 			 struct netdev_phys_port_id *ppid);
2634 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2635 			struct netdev_queue *txq);
2636 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2637 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2638 
2639 extern int		netdev_budget;
2640 
2641 /* Called by rtnetlink.c:rtnl_unlock() */
2642 void netdev_run_todo(void);
2643 
2644 /**
2645  *	dev_put - release reference to device
2646  *	@dev: network device
2647  *
2648  * Release reference to device to allow it to be freed.
2649  */
2650 static inline void dev_put(struct net_device *dev)
2651 {
2652 	this_cpu_dec(*dev->pcpu_refcnt);
2653 }
2654 
2655 /**
2656  *	dev_hold - get reference to device
2657  *	@dev: network device
2658  *
2659  * Hold reference to device to keep it from being freed.
2660  */
2661 static inline void dev_hold(struct net_device *dev)
2662 {
2663 	this_cpu_inc(*dev->pcpu_refcnt);
2664 }
2665 
2666 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2667  * and _off may be called from IRQ context, but it is caller
2668  * who is responsible for serialization of these calls.
2669  *
2670  * The name carrier is inappropriate, these functions should really be
2671  * called netif_lowerlayer_*() because they represent the state of any
2672  * kind of lower layer not just hardware media.
2673  */
2674 
2675 void linkwatch_init_dev(struct net_device *dev);
2676 void linkwatch_fire_event(struct net_device *dev);
2677 void linkwatch_forget_dev(struct net_device *dev);
2678 
2679 /**
2680  *	netif_carrier_ok - test if carrier present
2681  *	@dev: network device
2682  *
2683  * Check if carrier is present on device
2684  */
2685 static inline bool netif_carrier_ok(const struct net_device *dev)
2686 {
2687 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2688 }
2689 
2690 unsigned long dev_trans_start(struct net_device *dev);
2691 
2692 void __netdev_watchdog_up(struct net_device *dev);
2693 
2694 void netif_carrier_on(struct net_device *dev);
2695 
2696 void netif_carrier_off(struct net_device *dev);
2697 
2698 /**
2699  *	netif_dormant_on - mark device as dormant.
2700  *	@dev: network device
2701  *
2702  * Mark device as dormant (as per RFC2863).
2703  *
2704  * The dormant state indicates that the relevant interface is not
2705  * actually in a condition to pass packets (i.e., it is not 'up') but is
2706  * in a "pending" state, waiting for some external event.  For "on-
2707  * demand" interfaces, this new state identifies the situation where the
2708  * interface is waiting for events to place it in the up state.
2709  *
2710  */
2711 static inline void netif_dormant_on(struct net_device *dev)
2712 {
2713 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2714 		linkwatch_fire_event(dev);
2715 }
2716 
2717 /**
2718  *	netif_dormant_off - set device as not dormant.
2719  *	@dev: network device
2720  *
2721  * Device is not in dormant state.
2722  */
2723 static inline void netif_dormant_off(struct net_device *dev)
2724 {
2725 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2726 		linkwatch_fire_event(dev);
2727 }
2728 
2729 /**
2730  *	netif_dormant - test if carrier present
2731  *	@dev: network device
2732  *
2733  * Check if carrier is present on device
2734  */
2735 static inline bool netif_dormant(const struct net_device *dev)
2736 {
2737 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2738 }
2739 
2740 
2741 /**
2742  *	netif_oper_up - test if device is operational
2743  *	@dev: network device
2744  *
2745  * Check if carrier is operational
2746  */
2747 static inline bool netif_oper_up(const struct net_device *dev)
2748 {
2749 	return (dev->operstate == IF_OPER_UP ||
2750 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2751 }
2752 
2753 /**
2754  *	netif_device_present - is device available or removed
2755  *	@dev: network device
2756  *
2757  * Check if device has not been removed from system.
2758  */
2759 static inline bool netif_device_present(struct net_device *dev)
2760 {
2761 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2762 }
2763 
2764 void netif_device_detach(struct net_device *dev);
2765 
2766 void netif_device_attach(struct net_device *dev);
2767 
2768 /*
2769  * Network interface message level settings
2770  */
2771 
2772 enum {
2773 	NETIF_MSG_DRV		= 0x0001,
2774 	NETIF_MSG_PROBE		= 0x0002,
2775 	NETIF_MSG_LINK		= 0x0004,
2776 	NETIF_MSG_TIMER		= 0x0008,
2777 	NETIF_MSG_IFDOWN	= 0x0010,
2778 	NETIF_MSG_IFUP		= 0x0020,
2779 	NETIF_MSG_RX_ERR	= 0x0040,
2780 	NETIF_MSG_TX_ERR	= 0x0080,
2781 	NETIF_MSG_TX_QUEUED	= 0x0100,
2782 	NETIF_MSG_INTR		= 0x0200,
2783 	NETIF_MSG_TX_DONE	= 0x0400,
2784 	NETIF_MSG_RX_STATUS	= 0x0800,
2785 	NETIF_MSG_PKTDATA	= 0x1000,
2786 	NETIF_MSG_HW		= 0x2000,
2787 	NETIF_MSG_WOL		= 0x4000,
2788 };
2789 
2790 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2791 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2792 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2793 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2794 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2795 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2796 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2797 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2798 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2799 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2800 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2801 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2802 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2803 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2804 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2805 
2806 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2807 {
2808 	/* use default */
2809 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2810 		return default_msg_enable_bits;
2811 	if (debug_value == 0)	/* no output */
2812 		return 0;
2813 	/* set low N bits */
2814 	return (1 << debug_value) - 1;
2815 }
2816 
2817 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2818 {
2819 	spin_lock(&txq->_xmit_lock);
2820 	txq->xmit_lock_owner = cpu;
2821 }
2822 
2823 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2824 {
2825 	spin_lock_bh(&txq->_xmit_lock);
2826 	txq->xmit_lock_owner = smp_processor_id();
2827 }
2828 
2829 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2830 {
2831 	bool ok = spin_trylock(&txq->_xmit_lock);
2832 	if (likely(ok))
2833 		txq->xmit_lock_owner = smp_processor_id();
2834 	return ok;
2835 }
2836 
2837 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2838 {
2839 	txq->xmit_lock_owner = -1;
2840 	spin_unlock(&txq->_xmit_lock);
2841 }
2842 
2843 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2844 {
2845 	txq->xmit_lock_owner = -1;
2846 	spin_unlock_bh(&txq->_xmit_lock);
2847 }
2848 
2849 static inline void txq_trans_update(struct netdev_queue *txq)
2850 {
2851 	if (txq->xmit_lock_owner != -1)
2852 		txq->trans_start = jiffies;
2853 }
2854 
2855 /**
2856  *	netif_tx_lock - grab network device transmit lock
2857  *	@dev: network device
2858  *
2859  * Get network device transmit lock
2860  */
2861 static inline void netif_tx_lock(struct net_device *dev)
2862 {
2863 	unsigned int i;
2864 	int cpu;
2865 
2866 	spin_lock(&dev->tx_global_lock);
2867 	cpu = smp_processor_id();
2868 	for (i = 0; i < dev->num_tx_queues; i++) {
2869 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2870 
2871 		/* We are the only thread of execution doing a
2872 		 * freeze, but we have to grab the _xmit_lock in
2873 		 * order to synchronize with threads which are in
2874 		 * the ->hard_start_xmit() handler and already
2875 		 * checked the frozen bit.
2876 		 */
2877 		__netif_tx_lock(txq, cpu);
2878 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2879 		__netif_tx_unlock(txq);
2880 	}
2881 }
2882 
2883 static inline void netif_tx_lock_bh(struct net_device *dev)
2884 {
2885 	local_bh_disable();
2886 	netif_tx_lock(dev);
2887 }
2888 
2889 static inline void netif_tx_unlock(struct net_device *dev)
2890 {
2891 	unsigned int i;
2892 
2893 	for (i = 0; i < dev->num_tx_queues; i++) {
2894 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2895 
2896 		/* No need to grab the _xmit_lock here.  If the
2897 		 * queue is not stopped for another reason, we
2898 		 * force a schedule.
2899 		 */
2900 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2901 		netif_schedule_queue(txq);
2902 	}
2903 	spin_unlock(&dev->tx_global_lock);
2904 }
2905 
2906 static inline void netif_tx_unlock_bh(struct net_device *dev)
2907 {
2908 	netif_tx_unlock(dev);
2909 	local_bh_enable();
2910 }
2911 
2912 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2913 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2914 		__netif_tx_lock(txq, cpu);		\
2915 	}						\
2916 }
2917 
2918 #define HARD_TX_TRYLOCK(dev, txq)			\
2919 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
2920 		__netif_tx_trylock(txq) :		\
2921 		true )
2922 
2923 #define HARD_TX_UNLOCK(dev, txq) {			\
2924 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2925 		__netif_tx_unlock(txq);			\
2926 	}						\
2927 }
2928 
2929 static inline void netif_tx_disable(struct net_device *dev)
2930 {
2931 	unsigned int i;
2932 	int cpu;
2933 
2934 	local_bh_disable();
2935 	cpu = smp_processor_id();
2936 	for (i = 0; i < dev->num_tx_queues; i++) {
2937 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2938 
2939 		__netif_tx_lock(txq, cpu);
2940 		netif_tx_stop_queue(txq);
2941 		__netif_tx_unlock(txq);
2942 	}
2943 	local_bh_enable();
2944 }
2945 
2946 static inline void netif_addr_lock(struct net_device *dev)
2947 {
2948 	spin_lock(&dev->addr_list_lock);
2949 }
2950 
2951 static inline void netif_addr_lock_nested(struct net_device *dev)
2952 {
2953 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2954 }
2955 
2956 static inline void netif_addr_lock_bh(struct net_device *dev)
2957 {
2958 	spin_lock_bh(&dev->addr_list_lock);
2959 }
2960 
2961 static inline void netif_addr_unlock(struct net_device *dev)
2962 {
2963 	spin_unlock(&dev->addr_list_lock);
2964 }
2965 
2966 static inline void netif_addr_unlock_bh(struct net_device *dev)
2967 {
2968 	spin_unlock_bh(&dev->addr_list_lock);
2969 }
2970 
2971 /*
2972  * dev_addrs walker. Should be used only for read access. Call with
2973  * rcu_read_lock held.
2974  */
2975 #define for_each_dev_addr(dev, ha) \
2976 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2977 
2978 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2979 
2980 void ether_setup(struct net_device *dev);
2981 
2982 /* Support for loadable net-drivers */
2983 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2984 				    void (*setup)(struct net_device *),
2985 				    unsigned int txqs, unsigned int rxqs);
2986 #define alloc_netdev(sizeof_priv, name, setup) \
2987 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2988 
2989 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2990 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2991 
2992 int register_netdev(struct net_device *dev);
2993 void unregister_netdev(struct net_device *dev);
2994 
2995 /* General hardware address lists handling functions */
2996 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2997 		   struct netdev_hw_addr_list *from_list, int addr_len);
2998 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2999 		      struct netdev_hw_addr_list *from_list, int addr_len);
3000 void __hw_addr_init(struct netdev_hw_addr_list *list);
3001 
3002 /* Functions used for device addresses handling */
3003 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3004 		 unsigned char addr_type);
3005 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3006 		 unsigned char addr_type);
3007 void dev_addr_flush(struct net_device *dev);
3008 int dev_addr_init(struct net_device *dev);
3009 
3010 /* Functions used for unicast addresses handling */
3011 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3012 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3013 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3014 int dev_uc_sync(struct net_device *to, struct net_device *from);
3015 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3016 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3017 void dev_uc_flush(struct net_device *dev);
3018 void dev_uc_init(struct net_device *dev);
3019 
3020 /* Functions used for multicast addresses handling */
3021 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3022 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3023 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3024 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3025 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3026 int dev_mc_sync(struct net_device *to, struct net_device *from);
3027 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3028 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3029 void dev_mc_flush(struct net_device *dev);
3030 void dev_mc_init(struct net_device *dev);
3031 
3032 /* Functions used for secondary unicast and multicast support */
3033 void dev_set_rx_mode(struct net_device *dev);
3034 void __dev_set_rx_mode(struct net_device *dev);
3035 int dev_set_promiscuity(struct net_device *dev, int inc);
3036 int dev_set_allmulti(struct net_device *dev, int inc);
3037 void netdev_state_change(struct net_device *dev);
3038 void netdev_notify_peers(struct net_device *dev);
3039 void netdev_features_change(struct net_device *dev);
3040 /* Load a device via the kmod */
3041 void dev_load(struct net *net, const char *name);
3042 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3043 					struct rtnl_link_stats64 *storage);
3044 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3045 			     const struct net_device_stats *netdev_stats);
3046 
3047 extern int		netdev_max_backlog;
3048 extern int		netdev_tstamp_prequeue;
3049 extern int		weight_p;
3050 extern int		bpf_jit_enable;
3051 
3052 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3053 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3054 						     struct list_head **iter);
3055 
3056 /* iterate through upper list, must be called under RCU read lock */
3057 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3058 	for (iter = &(dev)->all_adj_list.upper, \
3059 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3060 	     updev; \
3061 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3062 
3063 void *netdev_lower_get_next_private(struct net_device *dev,
3064 				    struct list_head **iter);
3065 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3066 					struct list_head **iter);
3067 
3068 #define netdev_for_each_lower_private(dev, priv, iter) \
3069 	for (iter = (dev)->adj_list.lower.next, \
3070 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3071 	     priv; \
3072 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3073 
3074 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3075 	for (iter = &(dev)->adj_list.lower, \
3076 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3077 	     priv; \
3078 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3079 
3080 void *netdev_adjacent_get_private(struct list_head *adj_list);
3081 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3082 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3083 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3084 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3085 int netdev_master_upper_dev_link(struct net_device *dev,
3086 				 struct net_device *upper_dev);
3087 int netdev_master_upper_dev_link_private(struct net_device *dev,
3088 					 struct net_device *upper_dev,
3089 					 void *private);
3090 void netdev_upper_dev_unlink(struct net_device *dev,
3091 			     struct net_device *upper_dev);
3092 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3093 void *netdev_lower_dev_get_private(struct net_device *dev,
3094 				   struct net_device *lower_dev);
3095 int skb_checksum_help(struct sk_buff *skb);
3096 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3097 				  netdev_features_t features, bool tx_path);
3098 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3099 				    netdev_features_t features);
3100 
3101 static inline
3102 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3103 {
3104 	return __skb_gso_segment(skb, features, true);
3105 }
3106 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3107 
3108 static inline bool can_checksum_protocol(netdev_features_t features,
3109 					 __be16 protocol)
3110 {
3111 	return ((features & NETIF_F_GEN_CSUM) ||
3112 		((features & NETIF_F_V4_CSUM) &&
3113 		 protocol == htons(ETH_P_IP)) ||
3114 		((features & NETIF_F_V6_CSUM) &&
3115 		 protocol == htons(ETH_P_IPV6)) ||
3116 		((features & NETIF_F_FCOE_CRC) &&
3117 		 protocol == htons(ETH_P_FCOE)));
3118 }
3119 
3120 #ifdef CONFIG_BUG
3121 void netdev_rx_csum_fault(struct net_device *dev);
3122 #else
3123 static inline void netdev_rx_csum_fault(struct net_device *dev)
3124 {
3125 }
3126 #endif
3127 /* rx skb timestamps */
3128 void net_enable_timestamp(void);
3129 void net_disable_timestamp(void);
3130 
3131 #ifdef CONFIG_PROC_FS
3132 int __init dev_proc_init(void);
3133 #else
3134 #define dev_proc_init() 0
3135 #endif
3136 
3137 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3138 				const void *ns);
3139 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3140 				 const void *ns);
3141 
3142 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3143 {
3144 	return netdev_class_create_file_ns(class_attr, NULL);
3145 }
3146 
3147 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3148 {
3149 	netdev_class_remove_file_ns(class_attr, NULL);
3150 }
3151 
3152 extern struct kobj_ns_type_operations net_ns_type_operations;
3153 
3154 const char *netdev_drivername(const struct net_device *dev);
3155 
3156 void linkwatch_run_queue(void);
3157 
3158 static inline netdev_features_t netdev_get_wanted_features(
3159 	struct net_device *dev)
3160 {
3161 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3162 }
3163 netdev_features_t netdev_increment_features(netdev_features_t all,
3164 	netdev_features_t one, netdev_features_t mask);
3165 
3166 /* Allow TSO being used on stacked device :
3167  * Performing the GSO segmentation before last device
3168  * is a performance improvement.
3169  */
3170 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3171 							netdev_features_t mask)
3172 {
3173 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3174 }
3175 
3176 int __netdev_update_features(struct net_device *dev);
3177 void netdev_update_features(struct net_device *dev);
3178 void netdev_change_features(struct net_device *dev);
3179 
3180 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3181 					struct net_device *dev);
3182 
3183 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
3184 					 const struct net_device *dev);
3185 static inline netdev_features_t netif_skb_features(struct sk_buff *skb)
3186 {
3187 	return netif_skb_dev_features(skb, skb->dev);
3188 }
3189 
3190 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3191 {
3192 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3193 
3194 	/* check flags correspondence */
3195 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3196 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3197 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3198 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3199 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3200 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3201 
3202 	return (features & feature) == feature;
3203 }
3204 
3205 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3206 {
3207 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3208 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3209 }
3210 
3211 static inline bool netif_needs_gso(struct sk_buff *skb,
3212 				   netdev_features_t features)
3213 {
3214 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3215 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3216 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3217 }
3218 
3219 static inline void netif_set_gso_max_size(struct net_device *dev,
3220 					  unsigned int size)
3221 {
3222 	dev->gso_max_size = size;
3223 }
3224 
3225 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3226 					int pulled_hlen, u16 mac_offset,
3227 					int mac_len)
3228 {
3229 	skb->protocol = protocol;
3230 	skb->encapsulation = 1;
3231 	skb_push(skb, pulled_hlen);
3232 	skb_reset_transport_header(skb);
3233 	skb->mac_header = mac_offset;
3234 	skb->network_header = skb->mac_header + mac_len;
3235 	skb->mac_len = mac_len;
3236 }
3237 
3238 static inline bool netif_is_macvlan(struct net_device *dev)
3239 {
3240 	return dev->priv_flags & IFF_MACVLAN;
3241 }
3242 
3243 static inline bool netif_is_bond_master(struct net_device *dev)
3244 {
3245 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3246 }
3247 
3248 static inline bool netif_is_bond_slave(struct net_device *dev)
3249 {
3250 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3251 }
3252 
3253 static inline bool netif_supports_nofcs(struct net_device *dev)
3254 {
3255 	return dev->priv_flags & IFF_SUPP_NOFCS;
3256 }
3257 
3258 extern struct pernet_operations __net_initdata loopback_net_ops;
3259 
3260 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3261 
3262 /* netdev_printk helpers, similar to dev_printk */
3263 
3264 static inline const char *netdev_name(const struct net_device *dev)
3265 {
3266 	if (dev->reg_state != NETREG_REGISTERED)
3267 		return "(unregistered net_device)";
3268 	return dev->name;
3269 }
3270 
3271 __printf(3, 4)
3272 int netdev_printk(const char *level, const struct net_device *dev,
3273 		  const char *format, ...);
3274 __printf(2, 3)
3275 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3276 __printf(2, 3)
3277 int netdev_alert(const struct net_device *dev, const char *format, ...);
3278 __printf(2, 3)
3279 int netdev_crit(const struct net_device *dev, const char *format, ...);
3280 __printf(2, 3)
3281 int netdev_err(const struct net_device *dev, const char *format, ...);
3282 __printf(2, 3)
3283 int netdev_warn(const struct net_device *dev, const char *format, ...);
3284 __printf(2, 3)
3285 int netdev_notice(const struct net_device *dev, const char *format, ...);
3286 __printf(2, 3)
3287 int netdev_info(const struct net_device *dev, const char *format, ...);
3288 
3289 #define MODULE_ALIAS_NETDEV(device) \
3290 	MODULE_ALIAS("netdev-" device)
3291 
3292 #if defined(CONFIG_DYNAMIC_DEBUG)
3293 #define netdev_dbg(__dev, format, args...)			\
3294 do {								\
3295 	dynamic_netdev_dbg(__dev, format, ##args);		\
3296 } while (0)
3297 #elif defined(DEBUG)
3298 #define netdev_dbg(__dev, format, args...)			\
3299 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3300 #else
3301 #define netdev_dbg(__dev, format, args...)			\
3302 ({								\
3303 	if (0)							\
3304 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3305 	0;							\
3306 })
3307 #endif
3308 
3309 #if defined(VERBOSE_DEBUG)
3310 #define netdev_vdbg	netdev_dbg
3311 #else
3312 
3313 #define netdev_vdbg(dev, format, args...)			\
3314 ({								\
3315 	if (0)							\
3316 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3317 	0;							\
3318 })
3319 #endif
3320 
3321 /*
3322  * netdev_WARN() acts like dev_printk(), but with the key difference
3323  * of using a WARN/WARN_ON to get the message out, including the
3324  * file/line information and a backtrace.
3325  */
3326 #define netdev_WARN(dev, format, args...)			\
3327 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3328 
3329 /* netif printk helpers, similar to netdev_printk */
3330 
3331 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3332 do {					  			\
3333 	if (netif_msg_##type(priv))				\
3334 		netdev_printk(level, (dev), fmt, ##args);	\
3335 } while (0)
3336 
3337 #define netif_level(level, priv, type, dev, fmt, args...)	\
3338 do {								\
3339 	if (netif_msg_##type(priv))				\
3340 		netdev_##level(dev, fmt, ##args);		\
3341 } while (0)
3342 
3343 #define netif_emerg(priv, type, dev, fmt, args...)		\
3344 	netif_level(emerg, priv, type, dev, fmt, ##args)
3345 #define netif_alert(priv, type, dev, fmt, args...)		\
3346 	netif_level(alert, priv, type, dev, fmt, ##args)
3347 #define netif_crit(priv, type, dev, fmt, args...)		\
3348 	netif_level(crit, priv, type, dev, fmt, ##args)
3349 #define netif_err(priv, type, dev, fmt, args...)		\
3350 	netif_level(err, priv, type, dev, fmt, ##args)
3351 #define netif_warn(priv, type, dev, fmt, args...)		\
3352 	netif_level(warn, priv, type, dev, fmt, ##args)
3353 #define netif_notice(priv, type, dev, fmt, args...)		\
3354 	netif_level(notice, priv, type, dev, fmt, ##args)
3355 #define netif_info(priv, type, dev, fmt, args...)		\
3356 	netif_level(info, priv, type, dev, fmt, ##args)
3357 
3358 #if defined(CONFIG_DYNAMIC_DEBUG)
3359 #define netif_dbg(priv, type, netdev, format, args...)		\
3360 do {								\
3361 	if (netif_msg_##type(priv))				\
3362 		dynamic_netdev_dbg(netdev, format, ##args);	\
3363 } while (0)
3364 #elif defined(DEBUG)
3365 #define netif_dbg(priv, type, dev, format, args...)		\
3366 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3367 #else
3368 #define netif_dbg(priv, type, dev, format, args...)			\
3369 ({									\
3370 	if (0)								\
3371 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3372 	0;								\
3373 })
3374 #endif
3375 
3376 #if defined(VERBOSE_DEBUG)
3377 #define netif_vdbg	netif_dbg
3378 #else
3379 #define netif_vdbg(priv, type, dev, format, args...)		\
3380 ({								\
3381 	if (0)							\
3382 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3383 	0;							\
3384 })
3385 #endif
3386 
3387 /*
3388  *	The list of packet types we will receive (as opposed to discard)
3389  *	and the routines to invoke.
3390  *
3391  *	Why 16. Because with 16 the only overlap we get on a hash of the
3392  *	low nibble of the protocol value is RARP/SNAP/X.25.
3393  *
3394  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3395  *             sure which should go first, but I bet it won't make much
3396  *             difference if we are running VLANs.  The good news is that
3397  *             this protocol won't be in the list unless compiled in, so
3398  *             the average user (w/out VLANs) will not be adversely affected.
3399  *             --BLG
3400  *
3401  *		0800	IP
3402  *		8100    802.1Q VLAN
3403  *		0001	802.3
3404  *		0002	AX.25
3405  *		0004	802.2
3406  *		8035	RARP
3407  *		0005	SNAP
3408  *		0805	X.25
3409  *		0806	ARP
3410  *		8137	IPX
3411  *		0009	Localtalk
3412  *		86DD	IPv6
3413  */
3414 #define PTYPE_HASH_SIZE	(16)
3415 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3416 
3417 #endif	/* _LINUX_NETDEVICE_H */
3418