xref: /openbmc/linux/include/linux/netdevice.h (revision b296a6d5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void netdev_set_default_ethtool_ops(struct net_device *dev,
74 				    const struct ethtool_ops *ops);
75 
76 /* Backlog congestion levels */
77 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
78 #define NET_RX_DROP		1	/* packet dropped */
79 
80 #define MAX_NEST_DEV 8
81 
82 /*
83  * Transmit return codes: transmit return codes originate from three different
84  * namespaces:
85  *
86  * - qdisc return codes
87  * - driver transmit return codes
88  * - errno values
89  *
90  * Drivers are allowed to return any one of those in their hard_start_xmit()
91  * function. Real network devices commonly used with qdiscs should only return
92  * the driver transmit return codes though - when qdiscs are used, the actual
93  * transmission happens asynchronously, so the value is not propagated to
94  * higher layers. Virtual network devices transmit synchronously; in this case
95  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
96  * others are propagated to higher layers.
97  */
98 
99 /* qdisc ->enqueue() return codes. */
100 #define NET_XMIT_SUCCESS	0x00
101 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
102 #define NET_XMIT_CN		0x02	/* congestion notification	*/
103 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
104 
105 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
106  * indicates that the device will soon be dropping packets, or already drops
107  * some packets of the same priority; prompting us to send less aggressively. */
108 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
109 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
110 
111 /* Driver transmit return codes */
112 #define NETDEV_TX_MASK		0xf0
113 
114 enum netdev_tx {
115 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
116 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
117 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
118 };
119 typedef enum netdev_tx netdev_tx_t;
120 
121 /*
122  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
123  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
124  */
125 static inline bool dev_xmit_complete(int rc)
126 {
127 	/*
128 	 * Positive cases with an skb consumed by a driver:
129 	 * - successful transmission (rc == NETDEV_TX_OK)
130 	 * - error while transmitting (rc < 0)
131 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
132 	 */
133 	if (likely(rc < NET_XMIT_MASK))
134 		return true;
135 
136 	return false;
137 }
138 
139 /*
140  *	Compute the worst-case header length according to the protocols
141  *	used.
142  */
143 
144 #if defined(CONFIG_HYPERV_NET)
145 # define LL_MAX_HEADER 128
146 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
147 # if defined(CONFIG_MAC80211_MESH)
148 #  define LL_MAX_HEADER 128
149 # else
150 #  define LL_MAX_HEADER 96
151 # endif
152 #else
153 # define LL_MAX_HEADER 32
154 #endif
155 
156 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
157     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
158 #define MAX_HEADER LL_MAX_HEADER
159 #else
160 #define MAX_HEADER (LL_MAX_HEADER + 48)
161 #endif
162 
163 /*
164  *	Old network device statistics. Fields are native words
165  *	(unsigned long) so they can be read and written atomically.
166  */
167 
168 struct net_device_stats {
169 	unsigned long	rx_packets;
170 	unsigned long	tx_packets;
171 	unsigned long	rx_bytes;
172 	unsigned long	tx_bytes;
173 	unsigned long	rx_errors;
174 	unsigned long	tx_errors;
175 	unsigned long	rx_dropped;
176 	unsigned long	tx_dropped;
177 	unsigned long	multicast;
178 	unsigned long	collisions;
179 	unsigned long	rx_length_errors;
180 	unsigned long	rx_over_errors;
181 	unsigned long	rx_crc_errors;
182 	unsigned long	rx_frame_errors;
183 	unsigned long	rx_fifo_errors;
184 	unsigned long	rx_missed_errors;
185 	unsigned long	tx_aborted_errors;
186 	unsigned long	tx_carrier_errors;
187 	unsigned long	tx_fifo_errors;
188 	unsigned long	tx_heartbeat_errors;
189 	unsigned long	tx_window_errors;
190 	unsigned long	rx_compressed;
191 	unsigned long	tx_compressed;
192 };
193 
194 
195 #include <linux/cache.h>
196 #include <linux/skbuff.h>
197 
198 #ifdef CONFIG_RPS
199 #include <linux/static_key.h>
200 extern struct static_key_false rps_needed;
201 extern struct static_key_false rfs_needed;
202 #endif
203 
204 struct neighbour;
205 struct neigh_parms;
206 struct sk_buff;
207 
208 struct netdev_hw_addr {
209 	struct list_head	list;
210 	unsigned char		addr[MAX_ADDR_LEN];
211 	unsigned char		type;
212 #define NETDEV_HW_ADDR_T_LAN		1
213 #define NETDEV_HW_ADDR_T_SAN		2
214 #define NETDEV_HW_ADDR_T_SLAVE		3
215 #define NETDEV_HW_ADDR_T_UNICAST	4
216 #define NETDEV_HW_ADDR_T_MULTICAST	5
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,	/* Poll is scheduled */
354 	NAPI_STATE_MISSED,	/* reschedule a napi */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
358 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361 
362 enum {
363 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
364 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
365 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
366 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
367 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
368 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_DROP,
378 	GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381 
382 /*
383  * enum rx_handler_result - Possible return values for rx_handlers.
384  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385  * further.
386  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387  * case skb->dev was changed by rx_handler.
388  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390  *
391  * rx_handlers are functions called from inside __netif_receive_skb(), to do
392  * special processing of the skb, prior to delivery to protocol handlers.
393  *
394  * Currently, a net_device can only have a single rx_handler registered. Trying
395  * to register a second rx_handler will return -EBUSY.
396  *
397  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398  * To unregister a rx_handler on a net_device, use
399  * netdev_rx_handler_unregister().
400  *
401  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402  * do with the skb.
403  *
404  * If the rx_handler consumed the skb in some way, it should return
405  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406  * the skb to be delivered in some other way.
407  *
408  * If the rx_handler changed skb->dev, to divert the skb to another
409  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410  * new device will be called if it exists.
411  *
412  * If the rx_handler decides the skb should be ignored, it should return
413  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414  * are registered on exact device (ptype->dev == skb->dev).
415  *
416  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417  * delivered, it should return RX_HANDLER_PASS.
418  *
419  * A device without a registered rx_handler will behave as if rx_handler
420  * returned RX_HANDLER_PASS.
421  */
422 
423 enum rx_handler_result {
424 	RX_HANDLER_CONSUMED,
425 	RX_HANDLER_ANOTHER,
426 	RX_HANDLER_EXACT,
427 	RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431 
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434 
435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 	return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439 
440 bool napi_schedule_prep(struct napi_struct *n);
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /**
456  *	napi_schedule_irqoff - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Variant of napi_schedule(), assuming hard irqs are masked.
460  */
461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 	if (napi_schedule_prep(n))
464 		__napi_schedule_irqoff(n);
465 }
466 
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 	if (napi_schedule_prep(napi)) {
471 		__napi_schedule(napi);
472 		return true;
473 	}
474 	return false;
475 }
476 
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479  *	napi_complete - NAPI processing complete
480  *	@n: NAPI context
481  *
482  * Mark NAPI processing as complete.
483  * Consider using napi_complete_done() instead.
484  * Return false if device should avoid rearming interrupts.
485  */
486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 	return napi_complete_done(n, 0);
489 }
490 
491 /**
492  *	napi_hash_del - remove a NAPI from global table
493  *	@napi: NAPI context
494  *
495  * Warning: caller must observe RCU grace period
496  * before freeing memory containing @napi, if
497  * this function returns true.
498  * Note: core networking stack automatically calls it
499  * from netif_napi_del().
500  * Drivers might want to call this helper to combine all
501  * the needed RCU grace periods into a single one.
502  */
503 bool napi_hash_del(struct napi_struct *napi);
504 
505 /**
506  *	napi_disable - prevent NAPI from scheduling
507  *	@n: NAPI context
508  *
509  * Stop NAPI from being scheduled on this context.
510  * Waits till any outstanding processing completes.
511  */
512 void napi_disable(struct napi_struct *n);
513 
514 /**
515  *	napi_enable - enable NAPI scheduling
516  *	@n: NAPI context
517  *
518  * Resume NAPI from being scheduled on this context.
519  * Must be paired with napi_disable.
520  */
521 static inline void napi_enable(struct napi_struct *n)
522 {
523 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
524 	smp_mb__before_atomic();
525 	clear_bit(NAPI_STATE_SCHED, &n->state);
526 	clear_bit(NAPI_STATE_NPSVC, &n->state);
527 }
528 
529 /**
530  *	napi_synchronize - wait until NAPI is not running
531  *	@n: NAPI context
532  *
533  * Wait until NAPI is done being scheduled on this context.
534  * Waits till any outstanding processing completes but
535  * does not disable future activations.
536  */
537 static inline void napi_synchronize(const struct napi_struct *n)
538 {
539 	if (IS_ENABLED(CONFIG_SMP))
540 		while (test_bit(NAPI_STATE_SCHED, &n->state))
541 			msleep(1);
542 	else
543 		barrier();
544 }
545 
546 /**
547  *	napi_if_scheduled_mark_missed - if napi is running, set the
548  *	NAPIF_STATE_MISSED
549  *	@n: NAPI context
550  *
551  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
552  * NAPI is scheduled.
553  **/
554 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
555 {
556 	unsigned long val, new;
557 
558 	do {
559 		val = READ_ONCE(n->state);
560 		if (val & NAPIF_STATE_DISABLE)
561 			return true;
562 
563 		if (!(val & NAPIF_STATE_SCHED))
564 			return false;
565 
566 		new = val | NAPIF_STATE_MISSED;
567 	} while (cmpxchg(&n->state, val, new) != val);
568 
569 	return true;
570 }
571 
572 enum netdev_queue_state_t {
573 	__QUEUE_STATE_DRV_XOFF,
574 	__QUEUE_STATE_STACK_XOFF,
575 	__QUEUE_STATE_FROZEN,
576 };
577 
578 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
579 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
581 
582 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
583 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
584 					QUEUE_STATE_FROZEN)
585 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
586 					QUEUE_STATE_FROZEN)
587 
588 /*
589  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
590  * netif_tx_* functions below are used to manipulate this flag.  The
591  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
592  * queue independently.  The netif_xmit_*stopped functions below are called
593  * to check if the queue has been stopped by the driver or stack (either
594  * of the XOFF bits are set in the state).  Drivers should not need to call
595  * netif_xmit*stopped functions, they should only be using netif_tx_*.
596  */
597 
598 struct netdev_queue {
599 /*
600  * read-mostly part
601  */
602 	struct net_device	*dev;
603 	struct Qdisc __rcu	*qdisc;
604 	struct Qdisc		*qdisc_sleeping;
605 #ifdef CONFIG_SYSFS
606 	struct kobject		kobj;
607 #endif
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 	int			numa_node;
610 #endif
611 	unsigned long		tx_maxrate;
612 	/*
613 	 * Number of TX timeouts for this queue
614 	 * (/sys/class/net/DEV/Q/trans_timeout)
615 	 */
616 	unsigned long		trans_timeout;
617 
618 	/* Subordinate device that the queue has been assigned to */
619 	struct net_device	*sb_dev;
620 #ifdef CONFIG_XDP_SOCKETS
621 	struct xdp_umem         *umem;
622 #endif
623 /*
624  * write-mostly part
625  */
626 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
627 	int			xmit_lock_owner;
628 	/*
629 	 * Time (in jiffies) of last Tx
630 	 */
631 	unsigned long		trans_start;
632 
633 	unsigned long		state;
634 
635 #ifdef CONFIG_BQL
636 	struct dql		dql;
637 #endif
638 } ____cacheline_aligned_in_smp;
639 
640 extern int sysctl_fb_tunnels_only_for_init_net;
641 extern int sysctl_devconf_inherit_init_net;
642 
643 static inline bool net_has_fallback_tunnels(const struct net *net)
644 {
645 	return net == &init_net ||
646 	       !IS_ENABLED(CONFIG_SYSCTL) ||
647 	       !sysctl_fb_tunnels_only_for_init_net;
648 }
649 
650 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	return q->numa_node;
654 #else
655 	return NUMA_NO_NODE;
656 #endif
657 }
658 
659 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
660 {
661 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
662 	q->numa_node = node;
663 #endif
664 }
665 
666 #ifdef CONFIG_RPS
667 /*
668  * This structure holds an RPS map which can be of variable length.  The
669  * map is an array of CPUs.
670  */
671 struct rps_map {
672 	unsigned int len;
673 	struct rcu_head rcu;
674 	u16 cpus[];
675 };
676 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
677 
678 /*
679  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
680  * tail pointer for that CPU's input queue at the time of last enqueue, and
681  * a hardware filter index.
682  */
683 struct rps_dev_flow {
684 	u16 cpu;
685 	u16 filter;
686 	unsigned int last_qtail;
687 };
688 #define RPS_NO_FILTER 0xffff
689 
690 /*
691  * The rps_dev_flow_table structure contains a table of flow mappings.
692  */
693 struct rps_dev_flow_table {
694 	unsigned int mask;
695 	struct rcu_head rcu;
696 	struct rps_dev_flow flows[];
697 };
698 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
699     ((_num) * sizeof(struct rps_dev_flow)))
700 
701 /*
702  * The rps_sock_flow_table contains mappings of flows to the last CPU
703  * on which they were processed by the application (set in recvmsg).
704  * Each entry is a 32bit value. Upper part is the high-order bits
705  * of flow hash, lower part is CPU number.
706  * rps_cpu_mask is used to partition the space, depending on number of
707  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
708  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
709  * meaning we use 32-6=26 bits for the hash.
710  */
711 struct rps_sock_flow_table {
712 	u32	mask;
713 
714 	u32	ents[] ____cacheline_aligned_in_smp;
715 };
716 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
717 
718 #define RPS_NO_CPU 0xffff
719 
720 extern u32 rps_cpu_mask;
721 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
722 
723 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
724 					u32 hash)
725 {
726 	if (table && hash) {
727 		unsigned int index = hash & table->mask;
728 		u32 val = hash & ~rps_cpu_mask;
729 
730 		/* We only give a hint, preemption can change CPU under us */
731 		val |= raw_smp_processor_id();
732 
733 		if (table->ents[index] != val)
734 			table->ents[index] = val;
735 	}
736 }
737 
738 #ifdef CONFIG_RFS_ACCEL
739 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
740 			 u16 filter_id);
741 #endif
742 #endif /* CONFIG_RPS */
743 
744 /* This structure contains an instance of an RX queue. */
745 struct netdev_rx_queue {
746 #ifdef CONFIG_RPS
747 	struct rps_map __rcu		*rps_map;
748 	struct rps_dev_flow_table __rcu	*rps_flow_table;
749 #endif
750 	struct kobject			kobj;
751 	struct net_device		*dev;
752 	struct xdp_rxq_info		xdp_rxq;
753 #ifdef CONFIG_XDP_SOCKETS
754 	struct xdp_umem                 *umem;
755 #endif
756 } ____cacheline_aligned_in_smp;
757 
758 /*
759  * RX queue sysfs structures and functions.
760  */
761 struct rx_queue_attribute {
762 	struct attribute attr;
763 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 	ssize_t (*store)(struct netdev_rx_queue *queue,
765 			 const char *buf, size_t len);
766 };
767 
768 #ifdef CONFIG_XPS
769 /*
770  * This structure holds an XPS map which can be of variable length.  The
771  * map is an array of queues.
772  */
773 struct xps_map {
774 	unsigned int len;
775 	unsigned int alloc_len;
776 	struct rcu_head rcu;
777 	u16 queues[];
778 };
779 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
780 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
781        - sizeof(struct xps_map)) / sizeof(u16))
782 
783 /*
784  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
785  */
786 struct xps_dev_maps {
787 	struct rcu_head rcu;
788 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
789 };
790 
791 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
792 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
793 
794 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
795 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
796 
797 #endif /* CONFIG_XPS */
798 
799 #define TC_MAX_QUEUE	16
800 #define TC_BITMASK	15
801 /* HW offloaded queuing disciplines txq count and offset maps */
802 struct netdev_tc_txq {
803 	u16 count;
804 	u16 offset;
805 };
806 
807 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
808 /*
809  * This structure is to hold information about the device
810  * configured to run FCoE protocol stack.
811  */
812 struct netdev_fcoe_hbainfo {
813 	char	manufacturer[64];
814 	char	serial_number[64];
815 	char	hardware_version[64];
816 	char	driver_version[64];
817 	char	optionrom_version[64];
818 	char	firmware_version[64];
819 	char	model[256];
820 	char	model_description[256];
821 };
822 #endif
823 
824 #define MAX_PHYS_ITEM_ID_LEN 32
825 
826 /* This structure holds a unique identifier to identify some
827  * physical item (port for example) used by a netdevice.
828  */
829 struct netdev_phys_item_id {
830 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
831 	unsigned char id_len;
832 };
833 
834 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
835 					    struct netdev_phys_item_id *b)
836 {
837 	return a->id_len == b->id_len &&
838 	       memcmp(a->id, b->id, a->id_len) == 0;
839 }
840 
841 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
842 				       struct sk_buff *skb,
843 				       struct net_device *sb_dev);
844 
845 enum tc_setup_type {
846 	TC_SETUP_QDISC_MQPRIO,
847 	TC_SETUP_CLSU32,
848 	TC_SETUP_CLSFLOWER,
849 	TC_SETUP_CLSMATCHALL,
850 	TC_SETUP_CLSBPF,
851 	TC_SETUP_BLOCK,
852 	TC_SETUP_QDISC_CBS,
853 	TC_SETUP_QDISC_RED,
854 	TC_SETUP_QDISC_PRIO,
855 	TC_SETUP_QDISC_MQ,
856 	TC_SETUP_QDISC_ETF,
857 	TC_SETUP_ROOT_QDISC,
858 	TC_SETUP_QDISC_GRED,
859 	TC_SETUP_QDISC_TAPRIO,
860 	TC_SETUP_FT,
861 	TC_SETUP_QDISC_ETS,
862 	TC_SETUP_QDISC_TBF,
863 	TC_SETUP_QDISC_FIFO,
864 };
865 
866 /* These structures hold the attributes of bpf state that are being passed
867  * to the netdevice through the bpf op.
868  */
869 enum bpf_netdev_command {
870 	/* Set or clear a bpf program used in the earliest stages of packet
871 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
872 	 * is responsible for calling bpf_prog_put on any old progs that are
873 	 * stored. In case of error, the callee need not release the new prog
874 	 * reference, but on success it takes ownership and must bpf_prog_put
875 	 * when it is no longer used.
876 	 */
877 	XDP_SETUP_PROG,
878 	XDP_SETUP_PROG_HW,
879 	/* BPF program for offload callbacks, invoked at program load time. */
880 	BPF_OFFLOAD_MAP_ALLOC,
881 	BPF_OFFLOAD_MAP_FREE,
882 	XDP_SETUP_XSK_UMEM,
883 };
884 
885 struct bpf_prog_offload_ops;
886 struct netlink_ext_ack;
887 struct xdp_umem;
888 struct xdp_dev_bulk_queue;
889 struct bpf_xdp_link;
890 
891 enum bpf_xdp_mode {
892 	XDP_MODE_SKB = 0,
893 	XDP_MODE_DRV = 1,
894 	XDP_MODE_HW = 2,
895 	__MAX_XDP_MODE
896 };
897 
898 struct bpf_xdp_entity {
899 	struct bpf_prog *prog;
900 	struct bpf_xdp_link *link;
901 };
902 
903 struct netdev_bpf {
904 	enum bpf_netdev_command command;
905 	union {
906 		/* XDP_SETUP_PROG */
907 		struct {
908 			u32 flags;
909 			struct bpf_prog *prog;
910 			struct netlink_ext_ack *extack;
911 		};
912 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
913 		struct {
914 			struct bpf_offloaded_map *offmap;
915 		};
916 		/* XDP_SETUP_XSK_UMEM */
917 		struct {
918 			struct xdp_umem *umem;
919 			u16 queue_id;
920 		} xsk;
921 	};
922 };
923 
924 /* Flags for ndo_xsk_wakeup. */
925 #define XDP_WAKEUP_RX (1 << 0)
926 #define XDP_WAKEUP_TX (1 << 1)
927 
928 #ifdef CONFIG_XFRM_OFFLOAD
929 struct xfrmdev_ops {
930 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
931 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
932 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
933 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
934 				       struct xfrm_state *x);
935 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
936 };
937 #endif
938 
939 struct dev_ifalias {
940 	struct rcu_head rcuhead;
941 	char ifalias[];
942 };
943 
944 struct devlink;
945 struct tlsdev_ops;
946 
947 struct netdev_name_node {
948 	struct hlist_node hlist;
949 	struct list_head list;
950 	struct net_device *dev;
951 	const char *name;
952 };
953 
954 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
955 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
956 
957 struct netdev_net_notifier {
958 	struct list_head list;
959 	struct notifier_block *nb;
960 };
961 
962 /*
963  * This structure defines the management hooks for network devices.
964  * The following hooks can be defined; unless noted otherwise, they are
965  * optional and can be filled with a null pointer.
966  *
967  * int (*ndo_init)(struct net_device *dev);
968  *     This function is called once when a network device is registered.
969  *     The network device can use this for any late stage initialization
970  *     or semantic validation. It can fail with an error code which will
971  *     be propagated back to register_netdev.
972  *
973  * void (*ndo_uninit)(struct net_device *dev);
974  *     This function is called when device is unregistered or when registration
975  *     fails. It is not called if init fails.
976  *
977  * int (*ndo_open)(struct net_device *dev);
978  *     This function is called when a network device transitions to the up
979  *     state.
980  *
981  * int (*ndo_stop)(struct net_device *dev);
982  *     This function is called when a network device transitions to the down
983  *     state.
984  *
985  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
986  *                               struct net_device *dev);
987  *	Called when a packet needs to be transmitted.
988  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
989  *	the queue before that can happen; it's for obsolete devices and weird
990  *	corner cases, but the stack really does a non-trivial amount
991  *	of useless work if you return NETDEV_TX_BUSY.
992  *	Required; cannot be NULL.
993  *
994  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
995  *					   struct net_device *dev
996  *					   netdev_features_t features);
997  *	Called by core transmit path to determine if device is capable of
998  *	performing offload operations on a given packet. This is to give
999  *	the device an opportunity to implement any restrictions that cannot
1000  *	be otherwise expressed by feature flags. The check is called with
1001  *	the set of features that the stack has calculated and it returns
1002  *	those the driver believes to be appropriate.
1003  *
1004  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005  *                         struct net_device *sb_dev);
1006  *	Called to decide which queue to use when device supports multiple
1007  *	transmit queues.
1008  *
1009  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010  *	This function is called to allow device receiver to make
1011  *	changes to configuration when multicast or promiscuous is enabled.
1012  *
1013  * void (*ndo_set_rx_mode)(struct net_device *dev);
1014  *	This function is called device changes address list filtering.
1015  *	If driver handles unicast address filtering, it should set
1016  *	IFF_UNICAST_FLT in its priv_flags.
1017  *
1018  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019  *	This function  is called when the Media Access Control address
1020  *	needs to be changed. If this interface is not defined, the
1021  *	MAC address can not be changed.
1022  *
1023  * int (*ndo_validate_addr)(struct net_device *dev);
1024  *	Test if Media Access Control address is valid for the device.
1025  *
1026  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027  *	Called when a user requests an ioctl which can't be handled by
1028  *	the generic interface code. If not defined ioctls return
1029  *	not supported error code.
1030  *
1031  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032  *	Used to set network devices bus interface parameters. This interface
1033  *	is retained for legacy reasons; new devices should use the bus
1034  *	interface (PCI) for low level management.
1035  *
1036  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037  *	Called when a user wants to change the Maximum Transfer Unit
1038  *	of a device.
1039  *
1040  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041  *	Callback used when the transmitter has not made any progress
1042  *	for dev->watchdog ticks.
1043  *
1044  * void (*ndo_get_stats64)(struct net_device *dev,
1045  *                         struct rtnl_link_stats64 *storage);
1046  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047  *	Called when a user wants to get the network device usage
1048  *	statistics. Drivers must do one of the following:
1049  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1050  *	   rtnl_link_stats64 structure passed by the caller.
1051  *	2. Define @ndo_get_stats to update a net_device_stats structure
1052  *	   (which should normally be dev->stats) and return a pointer to
1053  *	   it. The structure may be changed asynchronously only if each
1054  *	   field is written atomically.
1055  *	3. Update dev->stats asynchronously and atomically, and define
1056  *	   neither operation.
1057  *
1058  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059  *	Return true if this device supports offload stats of this attr_id.
1060  *
1061  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062  *	void *attr_data)
1063  *	Get statistics for offload operations by attr_id. Write it into the
1064  *	attr_data pointer.
1065  *
1066  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067  *	If device supports VLAN filtering this function is called when a
1068  *	VLAN id is registered.
1069  *
1070  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071  *	If device supports VLAN filtering this function is called when a
1072  *	VLAN id is unregistered.
1073  *
1074  * void (*ndo_poll_controller)(struct net_device *dev);
1075  *
1076  *	SR-IOV management functions.
1077  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079  *			  u8 qos, __be16 proto);
1080  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081  *			  int max_tx_rate);
1082  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084  * int (*ndo_get_vf_config)(struct net_device *dev,
1085  *			    int vf, struct ifla_vf_info *ivf);
1086  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088  *			  struct nlattr *port[]);
1089  *
1090  *      Enable or disable the VF ability to query its RSS Redirection Table and
1091  *      Hash Key. This is needed since on some devices VF share this information
1092  *      with PF and querying it may introduce a theoretical security risk.
1093  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096  *		       void *type_data);
1097  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1098  *	This is always called from the stack with the rtnl lock held and netif
1099  *	tx queues stopped. This allows the netdevice to perform queue
1100  *	management safely.
1101  *
1102  *	Fiber Channel over Ethernet (FCoE) offload functions.
1103  * int (*ndo_fcoe_enable)(struct net_device *dev);
1104  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1105  *	so the underlying device can perform whatever needed configuration or
1106  *	initialization to support acceleration of FCoE traffic.
1107  *
1108  * int (*ndo_fcoe_disable)(struct net_device *dev);
1109  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110  *	so the underlying device can perform whatever needed clean-ups to
1111  *	stop supporting acceleration of FCoE traffic.
1112  *
1113  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114  *			     struct scatterlist *sgl, unsigned int sgc);
1115  *	Called when the FCoE Initiator wants to initialize an I/O that
1116  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1117  *	perform necessary setup and returns 1 to indicate the device is set up
1118  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1119  *
1120  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1121  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122  *	indicated by the FC exchange id 'xid', so the underlying device can
1123  *	clean up and reuse resources for later DDP requests.
1124  *
1125  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126  *			      struct scatterlist *sgl, unsigned int sgc);
1127  *	Called when the FCoE Target wants to initialize an I/O that
1128  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1129  *	perform necessary setup and returns 1 to indicate the device is set up
1130  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1131  *
1132  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133  *			       struct netdev_fcoe_hbainfo *hbainfo);
1134  *	Called when the FCoE Protocol stack wants information on the underlying
1135  *	device. This information is utilized by the FCoE protocol stack to
1136  *	register attributes with Fiber Channel management service as per the
1137  *	FC-GS Fabric Device Management Information(FDMI) specification.
1138  *
1139  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140  *	Called when the underlying device wants to override default World Wide
1141  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143  *	protocol stack to use.
1144  *
1145  *	RFS acceleration.
1146  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147  *			    u16 rxq_index, u32 flow_id);
1148  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1149  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150  *	Return the filter ID on success, or a negative error code.
1151  *
1152  *	Slave management functions (for bridge, bonding, etc).
1153  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154  *	Called to make another netdev an underling.
1155  *
1156  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157  *	Called to release previously enslaved netdev.
1158  *
1159  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160  *					    struct sk_buff *skb,
1161  *					    bool all_slaves);
1162  *	Get the xmit slave of master device. If all_slaves is true, function
1163  *	assume all the slaves can transmit.
1164  *
1165  *      Feature/offload setting functions.
1166  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167  *		netdev_features_t features);
1168  *	Adjusts the requested feature flags according to device-specific
1169  *	constraints, and returns the resulting flags. Must not modify
1170  *	the device state.
1171  *
1172  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173  *	Called to update device configuration to new features. Passed
1174  *	feature set might be less than what was returned by ndo_fix_features()).
1175  *	Must return >0 or -errno if it changed dev->features itself.
1176  *
1177  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178  *		      struct net_device *dev,
1179  *		      const unsigned char *addr, u16 vid, u16 flags,
1180  *		      struct netlink_ext_ack *extack);
1181  *	Adds an FDB entry to dev for addr.
1182  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183  *		      struct net_device *dev,
1184  *		      const unsigned char *addr, u16 vid)
1185  *	Deletes the FDB entry from dev coresponding to addr.
1186  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187  *		       struct net_device *dev, struct net_device *filter_dev,
1188  *		       int *idx)
1189  *	Used to add FDB entries to dump requests. Implementers should add
1190  *	entries to skb and update idx with the number of entries.
1191  *
1192  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193  *			     u16 flags, struct netlink_ext_ack *extack)
1194  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195  *			     struct net_device *dev, u32 filter_mask,
1196  *			     int nlflags)
1197  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198  *			     u16 flags);
1199  *
1200  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1202  *	which do not represent real hardware may define this to allow their
1203  *	userspace components to manage their virtual carrier state. Devices
1204  *	that determine carrier state from physical hardware properties (eg
1205  *	network cables) or protocol-dependent mechanisms (eg
1206  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207  *
1208  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209  *			       struct netdev_phys_item_id *ppid);
1210  *	Called to get ID of physical port of this device. If driver does
1211  *	not implement this, it is assumed that the hw is not able to have
1212  *	multiple net devices on single physical port.
1213  *
1214  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215  *				 struct netdev_phys_item_id *ppid)
1216  *	Called to get the parent ID of the physical port of this device.
1217  *
1218  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219  *			      struct udp_tunnel_info *ti);
1220  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1221  *	address family that a UDP tunnel is listnening to. It is called only
1222  *	when a new port starts listening. The operation is protected by the
1223  *	RTNL.
1224  *
1225  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226  *			      struct udp_tunnel_info *ti);
1227  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1228  *	address family that the UDP tunnel is not listening to anymore. The
1229  *	operation is protected by the RTNL.
1230  *
1231  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232  *				 struct net_device *dev)
1233  *	Called by upper layer devices to accelerate switching or other
1234  *	station functionality into hardware. 'pdev is the lowerdev
1235  *	to use for the offload and 'dev' is the net device that will
1236  *	back the offload. Returns a pointer to the private structure
1237  *	the upper layer will maintain.
1238  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239  *	Called by upper layer device to delete the station created
1240  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241  *	the station and priv is the structure returned by the add
1242  *	operation.
1243  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244  *			     int queue_index, u32 maxrate);
1245  *	Called when a user wants to set a max-rate limitation of specific
1246  *	TX queue.
1247  * int (*ndo_get_iflink)(const struct net_device *dev);
1248  *	Called to get the iflink value of this device.
1249  * void (*ndo_change_proto_down)(struct net_device *dev,
1250  *				 bool proto_down);
1251  *	This function is used to pass protocol port error state information
1252  *	to the switch driver. The switch driver can react to the proto_down
1253  *      by doing a phys down on the associated switch port.
1254  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255  *	This function is used to get egress tunnel information for given skb.
1256  *	This is useful for retrieving outer tunnel header parameters while
1257  *	sampling packet.
1258  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259  *	This function is used to specify the headroom that the skb must
1260  *	consider when allocation skb during packet reception. Setting
1261  *	appropriate rx headroom value allows avoiding skb head copy on
1262  *	forward. Setting a negative value resets the rx headroom to the
1263  *	default value.
1264  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265  *	This function is used to set or query state related to XDP on the
1266  *	netdevice and manage BPF offload. See definition of
1267  *	enum bpf_netdev_command for details.
1268  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269  *			u32 flags);
1270  *	This function is used to submit @n XDP packets for transmit on a
1271  *	netdevice. Returns number of frames successfully transmitted, frames
1272  *	that got dropped are freed/returned via xdp_return_frame().
1273  *	Returns negative number, means general error invoking ndo, meaning
1274  *	no frames were xmit'ed and core-caller will free all frames.
1275  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276  *      This function is used to wake up the softirq, ksoftirqd or kthread
1277  *	responsible for sending and/or receiving packets on a specific
1278  *	queue id bound to an AF_XDP socket. The flags field specifies if
1279  *	only RX, only Tx, or both should be woken up using the flags
1280  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282  *	Get devlink port instance associated with a given netdev.
1283  *	Called with a reference on the netdevice and devlink locks only,
1284  *	rtnl_lock is not held.
1285  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286  *			 int cmd);
1287  *	Add, change, delete or get information on an IPv4 tunnel.
1288  */
1289 struct net_device_ops {
1290 	int			(*ndo_init)(struct net_device *dev);
1291 	void			(*ndo_uninit)(struct net_device *dev);
1292 	int			(*ndo_open)(struct net_device *dev);
1293 	int			(*ndo_stop)(struct net_device *dev);
1294 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1295 						  struct net_device *dev);
1296 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1297 						      struct net_device *dev,
1298 						      netdev_features_t features);
1299 	u16			(*ndo_select_queue)(struct net_device *dev,
1300 						    struct sk_buff *skb,
1301 						    struct net_device *sb_dev);
1302 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1303 						       int flags);
1304 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1305 	int			(*ndo_set_mac_address)(struct net_device *dev,
1306 						       void *addr);
1307 	int			(*ndo_validate_addr)(struct net_device *dev);
1308 	int			(*ndo_do_ioctl)(struct net_device *dev,
1309 					        struct ifreq *ifr, int cmd);
1310 	int			(*ndo_set_config)(struct net_device *dev,
1311 					          struct ifmap *map);
1312 	int			(*ndo_change_mtu)(struct net_device *dev,
1313 						  int new_mtu);
1314 	int			(*ndo_neigh_setup)(struct net_device *dev,
1315 						   struct neigh_parms *);
1316 	void			(*ndo_tx_timeout) (struct net_device *dev,
1317 						   unsigned int txqueue);
1318 
1319 	void			(*ndo_get_stats64)(struct net_device *dev,
1320 						   struct rtnl_link_stats64 *storage);
1321 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322 	int			(*ndo_get_offload_stats)(int attr_id,
1323 							 const struct net_device *dev,
1324 							 void *attr_data);
1325 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326 
1327 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328 						       __be16 proto, u16 vid);
1329 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330 						        __be16 proto, u16 vid);
1331 #ifdef CONFIG_NET_POLL_CONTROLLER
1332 	void                    (*ndo_poll_controller)(struct net_device *dev);
1333 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1334 						     struct netpoll_info *info);
1335 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1336 #endif
1337 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1338 						  int queue, u8 *mac);
1339 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1340 						   int queue, u16 vlan,
1341 						   u8 qos, __be16 proto);
1342 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1343 						   int vf, int min_tx_rate,
1344 						   int max_tx_rate);
1345 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1346 						       int vf, bool setting);
1347 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1348 						    int vf, bool setting);
1349 	int			(*ndo_get_vf_config)(struct net_device *dev,
1350 						     int vf,
1351 						     struct ifla_vf_info *ivf);
1352 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1353 							 int vf, int link_state);
1354 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1355 						    int vf,
1356 						    struct ifla_vf_stats
1357 						    *vf_stats);
1358 	int			(*ndo_set_vf_port)(struct net_device *dev,
1359 						   int vf,
1360 						   struct nlattr *port[]);
1361 	int			(*ndo_get_vf_port)(struct net_device *dev,
1362 						   int vf, struct sk_buff *skb);
1363 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1364 						   int vf,
1365 						   struct ifla_vf_guid *node_guid,
1366 						   struct ifla_vf_guid *port_guid);
1367 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1368 						   int vf, u64 guid,
1369 						   int guid_type);
1370 	int			(*ndo_set_vf_rss_query_en)(
1371 						   struct net_device *dev,
1372 						   int vf, bool setting);
1373 	int			(*ndo_setup_tc)(struct net_device *dev,
1374 						enum tc_setup_type type,
1375 						void *type_data);
1376 #if IS_ENABLED(CONFIG_FCOE)
1377 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1378 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1379 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380 						      u16 xid,
1381 						      struct scatterlist *sgl,
1382 						      unsigned int sgc);
1383 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1384 						     u16 xid);
1385 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1386 						       u16 xid,
1387 						       struct scatterlist *sgl,
1388 						       unsigned int sgc);
1389 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390 							struct netdev_fcoe_hbainfo *hbainfo);
1391 #endif
1392 
1393 #if IS_ENABLED(CONFIG_LIBFCOE)
1394 #define NETDEV_FCOE_WWNN 0
1395 #define NETDEV_FCOE_WWPN 1
1396 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1397 						    u64 *wwn, int type);
1398 #endif
1399 
1400 #ifdef CONFIG_RFS_ACCEL
1401 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1402 						     const struct sk_buff *skb,
1403 						     u16 rxq_index,
1404 						     u32 flow_id);
1405 #endif
1406 	int			(*ndo_add_slave)(struct net_device *dev,
1407 						 struct net_device *slave_dev,
1408 						 struct netlink_ext_ack *extack);
1409 	int			(*ndo_del_slave)(struct net_device *dev,
1410 						 struct net_device *slave_dev);
1411 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1412 						      struct sk_buff *skb,
1413 						      bool all_slaves);
1414 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1415 						    netdev_features_t features);
1416 	int			(*ndo_set_features)(struct net_device *dev,
1417 						    netdev_features_t features);
1418 	int			(*ndo_neigh_construct)(struct net_device *dev,
1419 						       struct neighbour *n);
1420 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1421 						     struct neighbour *n);
1422 
1423 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1424 					       struct nlattr *tb[],
1425 					       struct net_device *dev,
1426 					       const unsigned char *addr,
1427 					       u16 vid,
1428 					       u16 flags,
1429 					       struct netlink_ext_ack *extack);
1430 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1431 					       struct nlattr *tb[],
1432 					       struct net_device *dev,
1433 					       const unsigned char *addr,
1434 					       u16 vid);
1435 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1436 						struct netlink_callback *cb,
1437 						struct net_device *dev,
1438 						struct net_device *filter_dev,
1439 						int *idx);
1440 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1441 					       struct nlattr *tb[],
1442 					       struct net_device *dev,
1443 					       const unsigned char *addr,
1444 					       u16 vid, u32 portid, u32 seq,
1445 					       struct netlink_ext_ack *extack);
1446 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1447 						      struct nlmsghdr *nlh,
1448 						      u16 flags,
1449 						      struct netlink_ext_ack *extack);
1450 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1451 						      u32 pid, u32 seq,
1452 						      struct net_device *dev,
1453 						      u32 filter_mask,
1454 						      int nlflags);
1455 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1456 						      struct nlmsghdr *nlh,
1457 						      u16 flags);
1458 	int			(*ndo_change_carrier)(struct net_device *dev,
1459 						      bool new_carrier);
1460 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1461 							struct netdev_phys_item_id *ppid);
1462 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1463 							  struct netdev_phys_item_id *ppid);
1464 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1465 							  char *name, size_t len);
1466 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1467 						      struct udp_tunnel_info *ti);
1468 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1469 						      struct udp_tunnel_info *ti);
1470 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1471 							struct net_device *dev);
1472 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1473 							void *priv);
1474 
1475 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1476 						      int queue_index,
1477 						      u32 maxrate);
1478 	int			(*ndo_get_iflink)(const struct net_device *dev);
1479 	int			(*ndo_change_proto_down)(struct net_device *dev,
1480 							 bool proto_down);
1481 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1482 						       struct sk_buff *skb);
1483 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1484 						       int needed_headroom);
1485 	int			(*ndo_bpf)(struct net_device *dev,
1486 					   struct netdev_bpf *bpf);
1487 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1488 						struct xdp_frame **xdp,
1489 						u32 flags);
1490 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1491 						  u32 queue_id, u32 flags);
1492 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1493 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1494 						  struct ip_tunnel_parm *p, int cmd);
1495 };
1496 
1497 /**
1498  * enum net_device_priv_flags - &struct net_device priv_flags
1499  *
1500  * These are the &struct net_device, they are only set internally
1501  * by drivers and used in the kernel. These flags are invisible to
1502  * userspace; this means that the order of these flags can change
1503  * during any kernel release.
1504  *
1505  * You should have a pretty good reason to be extending these flags.
1506  *
1507  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508  * @IFF_EBRIDGE: Ethernet bridging device
1509  * @IFF_BONDING: bonding master or slave
1510  * @IFF_ISATAP: ISATAP interface (RFC4214)
1511  * @IFF_WAN_HDLC: WAN HDLC device
1512  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513  *	release skb->dst
1514  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516  * @IFF_MACVLAN_PORT: device used as macvlan port
1517  * @IFF_BRIDGE_PORT: device used as bridge port
1518  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520  * @IFF_UNICAST_FLT: Supports unicast filtering
1521  * @IFF_TEAM_PORT: device used as team port
1522  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524  *	change when it's running
1525  * @IFF_MACVLAN: Macvlan device
1526  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527  *	underlying stacked devices
1528  * @IFF_L3MDEV_MASTER: device is an L3 master device
1529  * @IFF_NO_QUEUE: device can run without qdisc attached
1530  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532  * @IFF_TEAM: device is a team device
1533  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535  *	entity (i.e. the master device for bridged veth)
1536  * @IFF_MACSEC: device is a MACsec device
1537  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538  * @IFF_FAILOVER: device is a failover master device
1539  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1542  */
1543 enum netdev_priv_flags {
1544 	IFF_802_1Q_VLAN			= 1<<0,
1545 	IFF_EBRIDGE			= 1<<1,
1546 	IFF_BONDING			= 1<<2,
1547 	IFF_ISATAP			= 1<<3,
1548 	IFF_WAN_HDLC			= 1<<4,
1549 	IFF_XMIT_DST_RELEASE		= 1<<5,
1550 	IFF_DONT_BRIDGE			= 1<<6,
1551 	IFF_DISABLE_NETPOLL		= 1<<7,
1552 	IFF_MACVLAN_PORT		= 1<<8,
1553 	IFF_BRIDGE_PORT			= 1<<9,
1554 	IFF_OVS_DATAPATH		= 1<<10,
1555 	IFF_TX_SKB_SHARING		= 1<<11,
1556 	IFF_UNICAST_FLT			= 1<<12,
1557 	IFF_TEAM_PORT			= 1<<13,
1558 	IFF_SUPP_NOFCS			= 1<<14,
1559 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1560 	IFF_MACVLAN			= 1<<16,
1561 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1562 	IFF_L3MDEV_MASTER		= 1<<18,
1563 	IFF_NO_QUEUE			= 1<<19,
1564 	IFF_OPENVSWITCH			= 1<<20,
1565 	IFF_L3MDEV_SLAVE		= 1<<21,
1566 	IFF_TEAM			= 1<<22,
1567 	IFF_RXFH_CONFIGURED		= 1<<23,
1568 	IFF_PHONY_HEADROOM		= 1<<24,
1569 	IFF_MACSEC			= 1<<25,
1570 	IFF_NO_RX_HANDLER		= 1<<26,
1571 	IFF_FAILOVER			= 1<<27,
1572 	IFF_FAILOVER_SLAVE		= 1<<28,
1573 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1574 	IFF_LIVE_RENAME_OK		= 1<<30,
1575 };
1576 
1577 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1578 #define IFF_EBRIDGE			IFF_EBRIDGE
1579 #define IFF_BONDING			IFF_BONDING
1580 #define IFF_ISATAP			IFF_ISATAP
1581 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1582 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1583 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1584 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1585 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1586 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1587 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1588 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1589 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1590 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1591 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1592 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1593 #define IFF_MACVLAN			IFF_MACVLAN
1594 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1595 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1596 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1597 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1598 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1599 #define IFF_TEAM			IFF_TEAM
1600 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1601 #define IFF_MACSEC			IFF_MACSEC
1602 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1603 #define IFF_FAILOVER			IFF_FAILOVER
1604 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1605 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1606 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1607 
1608 /**
1609  *	struct net_device - The DEVICE structure.
1610  *
1611  *	Actually, this whole structure is a big mistake.  It mixes I/O
1612  *	data with strictly "high-level" data, and it has to know about
1613  *	almost every data structure used in the INET module.
1614  *
1615  *	@name:	This is the first field of the "visible" part of this structure
1616  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1617  *		of the interface.
1618  *
1619  *	@name_node:	Name hashlist node
1620  *	@ifalias:	SNMP alias
1621  *	@mem_end:	Shared memory end
1622  *	@mem_start:	Shared memory start
1623  *	@base_addr:	Device I/O address
1624  *	@irq:		Device IRQ number
1625  *
1626  *	@state:		Generic network queuing layer state, see netdev_state_t
1627  *	@dev_list:	The global list of network devices
1628  *	@napi_list:	List entry used for polling NAPI devices
1629  *	@unreg_list:	List entry  when we are unregistering the
1630  *			device; see the function unregister_netdev
1631  *	@close_list:	List entry used when we are closing the device
1632  *	@ptype_all:     Device-specific packet handlers for all protocols
1633  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1634  *
1635  *	@adj_list:	Directly linked devices, like slaves for bonding
1636  *	@features:	Currently active device features
1637  *	@hw_features:	User-changeable features
1638  *
1639  *	@wanted_features:	User-requested features
1640  *	@vlan_features:		Mask of features inheritable by VLAN devices
1641  *
1642  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1643  *				This field indicates what encapsulation
1644  *				offloads the hardware is capable of doing,
1645  *				and drivers will need to set them appropriately.
1646  *
1647  *	@mpls_features:	Mask of features inheritable by MPLS
1648  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1649  *
1650  *	@ifindex:	interface index
1651  *	@group:		The group the device belongs to
1652  *
1653  *	@stats:		Statistics struct, which was left as a legacy, use
1654  *			rtnl_link_stats64 instead
1655  *
1656  *	@rx_dropped:	Dropped packets by core network,
1657  *			do not use this in drivers
1658  *	@tx_dropped:	Dropped packets by core network,
1659  *			do not use this in drivers
1660  *	@rx_nohandler:	nohandler dropped packets by core network on
1661  *			inactive devices, do not use this in drivers
1662  *	@carrier_up_count:	Number of times the carrier has been up
1663  *	@carrier_down_count:	Number of times the carrier has been down
1664  *
1665  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1666  *				instead of ioctl,
1667  *				see <net/iw_handler.h> for details.
1668  *	@wireless_data:	Instance data managed by the core of wireless extensions
1669  *
1670  *	@netdev_ops:	Includes several pointers to callbacks,
1671  *			if one wants to override the ndo_*() functions
1672  *	@ethtool_ops:	Management operations
1673  *	@l3mdev_ops:	Layer 3 master device operations
1674  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1675  *			discovery handling. Necessary for e.g. 6LoWPAN.
1676  *	@xfrmdev_ops:	Transformation offload operations
1677  *	@tlsdev_ops:	Transport Layer Security offload operations
1678  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1679  *			of Layer 2 headers.
1680  *
1681  *	@flags:		Interface flags (a la BSD)
1682  *	@priv_flags:	Like 'flags' but invisible to userspace,
1683  *			see if.h for the definitions
1684  *	@gflags:	Global flags ( kept as legacy )
1685  *	@padded:	How much padding added by alloc_netdev()
1686  *	@operstate:	RFC2863 operstate
1687  *	@link_mode:	Mapping policy to operstate
1688  *	@if_port:	Selectable AUI, TP, ...
1689  *	@dma:		DMA channel
1690  *	@mtu:		Interface MTU value
1691  *	@min_mtu:	Interface Minimum MTU value
1692  *	@max_mtu:	Interface Maximum MTU value
1693  *	@type:		Interface hardware type
1694  *	@hard_header_len: Maximum hardware header length.
1695  *	@min_header_len:  Minimum hardware header length
1696  *
1697  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1698  *			  cases can this be guaranteed
1699  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1700  *			  cases can this be guaranteed. Some cases also use
1701  *			  LL_MAX_HEADER instead to allocate the skb
1702  *
1703  *	interface address info:
1704  *
1705  * 	@perm_addr:		Permanent hw address
1706  * 	@addr_assign_type:	Hw address assignment type
1707  * 	@addr_len:		Hardware address length
1708  *	@upper_level:		Maximum depth level of upper devices.
1709  *	@lower_level:		Maximum depth level of lower devices.
1710  *	@neigh_priv_len:	Used in neigh_alloc()
1711  * 	@dev_id:		Used to differentiate devices that share
1712  * 				the same link layer address
1713  * 	@dev_port:		Used to differentiate devices that share
1714  * 				the same function
1715  *	@addr_list_lock:	XXX: need comments on this one
1716  *	@name_assign_type:	network interface name assignment type
1717  *	@uc_promisc:		Counter that indicates promiscuous mode
1718  *				has been enabled due to the need to listen to
1719  *				additional unicast addresses in a device that
1720  *				does not implement ndo_set_rx_mode()
1721  *	@uc:			unicast mac addresses
1722  *	@mc:			multicast mac addresses
1723  *	@dev_addrs:		list of device hw addresses
1724  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1725  *	@promiscuity:		Number of times the NIC is told to work in
1726  *				promiscuous mode; if it becomes 0 the NIC will
1727  *				exit promiscuous mode
1728  *	@allmulti:		Counter, enables or disables allmulticast mode
1729  *
1730  *	@vlan_info:	VLAN info
1731  *	@dsa_ptr:	dsa specific data
1732  *	@tipc_ptr:	TIPC specific data
1733  *	@atalk_ptr:	AppleTalk link
1734  *	@ip_ptr:	IPv4 specific data
1735  *	@dn_ptr:	DECnet specific data
1736  *	@ip6_ptr:	IPv6 specific data
1737  *	@ax25_ptr:	AX.25 specific data
1738  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1739  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740  *			 device struct
1741  *	@mpls_ptr:	mpls_dev struct pointer
1742  *
1743  *	@dev_addr:	Hw address (before bcast,
1744  *			because most packets are unicast)
1745  *
1746  *	@_rx:			Array of RX queues
1747  *	@num_rx_queues:		Number of RX queues
1748  *				allocated at register_netdev() time
1749  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1750  *	@xdp_prog:		XDP sockets filter program pointer
1751  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1752  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1753  *				allow to avoid NIC hard IRQ, on busy queues.
1754  *
1755  *	@rx_handler:		handler for received packets
1756  *	@rx_handler_data: 	XXX: need comments on this one
1757  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1758  *				ingress processing
1759  *	@ingress_queue:		XXX: need comments on this one
1760  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1761  *	@broadcast:		hw bcast address
1762  *
1763  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1764  *			indexed by RX queue number. Assigned by driver.
1765  *			This must only be set if the ndo_rx_flow_steer
1766  *			operation is defined
1767  *	@index_hlist:		Device index hash chain
1768  *
1769  *	@_tx:			Array of TX queues
1770  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1771  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1772  *	@qdisc:			Root qdisc from userspace point of view
1773  *	@tx_queue_len:		Max frames per queue allowed
1774  *	@tx_global_lock: 	XXX: need comments on this one
1775  *	@xdp_bulkq:		XDP device bulk queue
1776  *	@xps_cpus_map:		all CPUs map for XPS device
1777  *	@xps_rxqs_map:		all RXQs map for XPS device
1778  *
1779  *	@xps_maps:	XXX: need comments on this one
1780  *	@miniq_egress:		clsact qdisc specific data for
1781  *				egress processing
1782  *	@qdisc_hash:		qdisc hash table
1783  *	@watchdog_timeo:	Represents the timeout that is used by
1784  *				the watchdog (see dev_watchdog())
1785  *	@watchdog_timer:	List of timers
1786  *
1787  *	@proto_down_reason:	reason a netdev interface is held down
1788  *	@pcpu_refcnt:		Number of references to this device
1789  *	@todo_list:		Delayed register/unregister
1790  *	@link_watch_list:	XXX: need comments on this one
1791  *
1792  *	@reg_state:		Register/unregister state machine
1793  *	@dismantle:		Device is going to be freed
1794  *	@rtnl_link_state:	This enum represents the phases of creating
1795  *				a new link
1796  *
1797  *	@needs_free_netdev:	Should unregister perform free_netdev?
1798  *	@priv_destructor:	Called from unregister
1799  *	@npinfo:		XXX: need comments on this one
1800  * 	@nd_net:		Network namespace this network device is inside
1801  *
1802  * 	@ml_priv:	Mid-layer private
1803  * 	@lstats:	Loopback statistics
1804  * 	@tstats:	Tunnel statistics
1805  * 	@dstats:	Dummy statistics
1806  * 	@vstats:	Virtual ethernet statistics
1807  *
1808  *	@garp_port:	GARP
1809  *	@mrp_port:	MRP
1810  *
1811  *	@dev:		Class/net/name entry
1812  *	@sysfs_groups:	Space for optional device, statistics and wireless
1813  *			sysfs groups
1814  *
1815  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1816  *	@rtnl_link_ops:	Rtnl_link_ops
1817  *
1818  *	@gso_max_size:	Maximum size of generic segmentation offload
1819  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1820  *			NIC for GSO
1821  *
1822  *	@dcbnl_ops:	Data Center Bridging netlink ops
1823  *	@num_tc:	Number of traffic classes in the net device
1824  *	@tc_to_txq:	XXX: need comments on this one
1825  *	@prio_tc_map:	XXX: need comments on this one
1826  *
1827  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1828  *
1829  *	@priomap:	XXX: need comments on this one
1830  *	@phydev:	Physical device may attach itself
1831  *			for hardware timestamping
1832  *	@sfp_bus:	attached &struct sfp_bus structure.
1833  *
1834  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1835  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1836  *
1837  *	@proto_down:	protocol port state information can be sent to the
1838  *			switch driver and used to set the phys state of the
1839  *			switch port.
1840  *
1841  *	@wol_enabled:	Wake-on-LAN is enabled
1842  *
1843  *	@net_notifier_list:	List of per-net netdev notifier block
1844  *				that follow this device when it is moved
1845  *				to another network namespace.
1846  *
1847  *	@macsec_ops:    MACsec offloading ops
1848  *
1849  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1850  *				offload capabilities of the device
1851  *	@udp_tunnel_nic:	UDP tunnel offload state
1852  *	@xdp_state:		stores info on attached XDP BPF programs
1853  *
1854  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1855  *			dev->addr_list_lock.
1856  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1857  *			keep a list of interfaces to be deleted.
1858  *
1859  *	FIXME: cleanup struct net_device such that network protocol info
1860  *	moves out.
1861  */
1862 
1863 struct net_device {
1864 	char			name[IFNAMSIZ];
1865 	struct netdev_name_node	*name_node;
1866 	struct dev_ifalias	__rcu *ifalias;
1867 	/*
1868 	 *	I/O specific fields
1869 	 *	FIXME: Merge these and struct ifmap into one
1870 	 */
1871 	unsigned long		mem_end;
1872 	unsigned long		mem_start;
1873 	unsigned long		base_addr;
1874 	int			irq;
1875 
1876 	/*
1877 	 *	Some hardware also needs these fields (state,dev_list,
1878 	 *	napi_list,unreg_list,close_list) but they are not
1879 	 *	part of the usual set specified in Space.c.
1880 	 */
1881 
1882 	unsigned long		state;
1883 
1884 	struct list_head	dev_list;
1885 	struct list_head	napi_list;
1886 	struct list_head	unreg_list;
1887 	struct list_head	close_list;
1888 	struct list_head	ptype_all;
1889 	struct list_head	ptype_specific;
1890 
1891 	struct {
1892 		struct list_head upper;
1893 		struct list_head lower;
1894 	} adj_list;
1895 
1896 	netdev_features_t	features;
1897 	netdev_features_t	hw_features;
1898 	netdev_features_t	wanted_features;
1899 	netdev_features_t	vlan_features;
1900 	netdev_features_t	hw_enc_features;
1901 	netdev_features_t	mpls_features;
1902 	netdev_features_t	gso_partial_features;
1903 
1904 	int			ifindex;
1905 	int			group;
1906 
1907 	struct net_device_stats	stats;
1908 
1909 	atomic_long_t		rx_dropped;
1910 	atomic_long_t		tx_dropped;
1911 	atomic_long_t		rx_nohandler;
1912 
1913 	/* Stats to monitor link on/off, flapping */
1914 	atomic_t		carrier_up_count;
1915 	atomic_t		carrier_down_count;
1916 
1917 #ifdef CONFIG_WIRELESS_EXT
1918 	const struct iw_handler_def *wireless_handlers;
1919 	struct iw_public_data	*wireless_data;
1920 #endif
1921 	const struct net_device_ops *netdev_ops;
1922 	const struct ethtool_ops *ethtool_ops;
1923 #ifdef CONFIG_NET_L3_MASTER_DEV
1924 	const struct l3mdev_ops	*l3mdev_ops;
1925 #endif
1926 #if IS_ENABLED(CONFIG_IPV6)
1927 	const struct ndisc_ops *ndisc_ops;
1928 #endif
1929 
1930 #ifdef CONFIG_XFRM_OFFLOAD
1931 	const struct xfrmdev_ops *xfrmdev_ops;
1932 #endif
1933 
1934 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1935 	const struct tlsdev_ops *tlsdev_ops;
1936 #endif
1937 
1938 	const struct header_ops *header_ops;
1939 
1940 	unsigned int		flags;
1941 	unsigned int		priv_flags;
1942 
1943 	unsigned short		gflags;
1944 	unsigned short		padded;
1945 
1946 	unsigned char		operstate;
1947 	unsigned char		link_mode;
1948 
1949 	unsigned char		if_port;
1950 	unsigned char		dma;
1951 
1952 	/* Note : dev->mtu is often read without holding a lock.
1953 	 * Writers usually hold RTNL.
1954 	 * It is recommended to use READ_ONCE() to annotate the reads,
1955 	 * and to use WRITE_ONCE() to annotate the writes.
1956 	 */
1957 	unsigned int		mtu;
1958 	unsigned int		min_mtu;
1959 	unsigned int		max_mtu;
1960 	unsigned short		type;
1961 	unsigned short		hard_header_len;
1962 	unsigned char		min_header_len;
1963 	unsigned char		name_assign_type;
1964 
1965 	unsigned short		needed_headroom;
1966 	unsigned short		needed_tailroom;
1967 
1968 	/* Interface address info. */
1969 	unsigned char		perm_addr[MAX_ADDR_LEN];
1970 	unsigned char		addr_assign_type;
1971 	unsigned char		addr_len;
1972 	unsigned char		upper_level;
1973 	unsigned char		lower_level;
1974 
1975 	unsigned short		neigh_priv_len;
1976 	unsigned short          dev_id;
1977 	unsigned short          dev_port;
1978 	spinlock_t		addr_list_lock;
1979 
1980 	struct netdev_hw_addr_list	uc;
1981 	struct netdev_hw_addr_list	mc;
1982 	struct netdev_hw_addr_list	dev_addrs;
1983 
1984 #ifdef CONFIG_SYSFS
1985 	struct kset		*queues_kset;
1986 #endif
1987 #ifdef CONFIG_LOCKDEP
1988 	struct list_head	unlink_list;
1989 #endif
1990 	unsigned int		promiscuity;
1991 	unsigned int		allmulti;
1992 	bool			uc_promisc;
1993 #ifdef CONFIG_LOCKDEP
1994 	unsigned char		nested_level;
1995 #endif
1996 
1997 
1998 	/* Protocol-specific pointers */
1999 
2000 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2001 	struct vlan_info __rcu	*vlan_info;
2002 #endif
2003 #if IS_ENABLED(CONFIG_NET_DSA)
2004 	struct dsa_port		*dsa_ptr;
2005 #endif
2006 #if IS_ENABLED(CONFIG_TIPC)
2007 	struct tipc_bearer __rcu *tipc_ptr;
2008 #endif
2009 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2010 	void 			*atalk_ptr;
2011 #endif
2012 	struct in_device __rcu	*ip_ptr;
2013 #if IS_ENABLED(CONFIG_DECNET)
2014 	struct dn_dev __rcu     *dn_ptr;
2015 #endif
2016 	struct inet6_dev __rcu	*ip6_ptr;
2017 #if IS_ENABLED(CONFIG_AX25)
2018 	void			*ax25_ptr;
2019 #endif
2020 	struct wireless_dev	*ieee80211_ptr;
2021 	struct wpan_dev		*ieee802154_ptr;
2022 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2023 	struct mpls_dev __rcu	*mpls_ptr;
2024 #endif
2025 
2026 /*
2027  * Cache lines mostly used on receive path (including eth_type_trans())
2028  */
2029 	/* Interface address info used in eth_type_trans() */
2030 	unsigned char		*dev_addr;
2031 
2032 	struct netdev_rx_queue	*_rx;
2033 	unsigned int		num_rx_queues;
2034 	unsigned int		real_num_rx_queues;
2035 
2036 	struct bpf_prog __rcu	*xdp_prog;
2037 	unsigned long		gro_flush_timeout;
2038 	int			napi_defer_hard_irqs;
2039 	rx_handler_func_t __rcu	*rx_handler;
2040 	void __rcu		*rx_handler_data;
2041 
2042 #ifdef CONFIG_NET_CLS_ACT
2043 	struct mini_Qdisc __rcu	*miniq_ingress;
2044 #endif
2045 	struct netdev_queue __rcu *ingress_queue;
2046 #ifdef CONFIG_NETFILTER_INGRESS
2047 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2048 #endif
2049 
2050 	unsigned char		broadcast[MAX_ADDR_LEN];
2051 #ifdef CONFIG_RFS_ACCEL
2052 	struct cpu_rmap		*rx_cpu_rmap;
2053 #endif
2054 	struct hlist_node	index_hlist;
2055 
2056 /*
2057  * Cache lines mostly used on transmit path
2058  */
2059 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2060 	unsigned int		num_tx_queues;
2061 	unsigned int		real_num_tx_queues;
2062 	struct Qdisc		*qdisc;
2063 	unsigned int		tx_queue_len;
2064 	spinlock_t		tx_global_lock;
2065 
2066 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2067 
2068 #ifdef CONFIG_XPS
2069 	struct xps_dev_maps __rcu *xps_cpus_map;
2070 	struct xps_dev_maps __rcu *xps_rxqs_map;
2071 #endif
2072 #ifdef CONFIG_NET_CLS_ACT
2073 	struct mini_Qdisc __rcu	*miniq_egress;
2074 #endif
2075 
2076 #ifdef CONFIG_NET_SCHED
2077 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2078 #endif
2079 	/* These may be needed for future network-power-down code. */
2080 	struct timer_list	watchdog_timer;
2081 	int			watchdog_timeo;
2082 
2083 	u32                     proto_down_reason;
2084 
2085 	struct list_head	todo_list;
2086 	int __percpu		*pcpu_refcnt;
2087 
2088 	struct list_head	link_watch_list;
2089 
2090 	enum { NETREG_UNINITIALIZED=0,
2091 	       NETREG_REGISTERED,	/* completed register_netdevice */
2092 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2093 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2094 	       NETREG_RELEASED,		/* called free_netdev */
2095 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2096 	} reg_state:8;
2097 
2098 	bool dismantle;
2099 
2100 	enum {
2101 		RTNL_LINK_INITIALIZED,
2102 		RTNL_LINK_INITIALIZING,
2103 	} rtnl_link_state:16;
2104 
2105 	bool needs_free_netdev;
2106 	void (*priv_destructor)(struct net_device *dev);
2107 
2108 #ifdef CONFIG_NETPOLL
2109 	struct netpoll_info __rcu	*npinfo;
2110 #endif
2111 
2112 	possible_net_t			nd_net;
2113 
2114 	/* mid-layer private */
2115 	union {
2116 		void					*ml_priv;
2117 		struct pcpu_lstats __percpu		*lstats;
2118 		struct pcpu_sw_netstats __percpu	*tstats;
2119 		struct pcpu_dstats __percpu		*dstats;
2120 	};
2121 
2122 #if IS_ENABLED(CONFIG_GARP)
2123 	struct garp_port __rcu	*garp_port;
2124 #endif
2125 #if IS_ENABLED(CONFIG_MRP)
2126 	struct mrp_port __rcu	*mrp_port;
2127 #endif
2128 
2129 	struct device		dev;
2130 	const struct attribute_group *sysfs_groups[4];
2131 	const struct attribute_group *sysfs_rx_queue_group;
2132 
2133 	const struct rtnl_link_ops *rtnl_link_ops;
2134 
2135 	/* for setting kernel sock attribute on TCP connection setup */
2136 #define GSO_MAX_SIZE		65536
2137 	unsigned int		gso_max_size;
2138 #define GSO_MAX_SEGS		65535
2139 	u16			gso_max_segs;
2140 
2141 #ifdef CONFIG_DCB
2142 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2143 #endif
2144 	s16			num_tc;
2145 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2146 	u8			prio_tc_map[TC_BITMASK + 1];
2147 
2148 #if IS_ENABLED(CONFIG_FCOE)
2149 	unsigned int		fcoe_ddp_xid;
2150 #endif
2151 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2152 	struct netprio_map __rcu *priomap;
2153 #endif
2154 	struct phy_device	*phydev;
2155 	struct sfp_bus		*sfp_bus;
2156 	struct lock_class_key	*qdisc_tx_busylock;
2157 	struct lock_class_key	*qdisc_running_key;
2158 	bool			proto_down;
2159 	unsigned		wol_enabled:1;
2160 
2161 	struct list_head	net_notifier_list;
2162 
2163 #if IS_ENABLED(CONFIG_MACSEC)
2164 	/* MACsec management functions */
2165 	const struct macsec_ops *macsec_ops;
2166 #endif
2167 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2168 	struct udp_tunnel_nic	*udp_tunnel_nic;
2169 
2170 	/* protected by rtnl_lock */
2171 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2172 };
2173 #define to_net_dev(d) container_of(d, struct net_device, dev)
2174 
2175 static inline bool netif_elide_gro(const struct net_device *dev)
2176 {
2177 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2178 		return true;
2179 	return false;
2180 }
2181 
2182 #define	NETDEV_ALIGN		32
2183 
2184 static inline
2185 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2186 {
2187 	return dev->prio_tc_map[prio & TC_BITMASK];
2188 }
2189 
2190 static inline
2191 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2192 {
2193 	if (tc >= dev->num_tc)
2194 		return -EINVAL;
2195 
2196 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2197 	return 0;
2198 }
2199 
2200 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2201 void netdev_reset_tc(struct net_device *dev);
2202 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2203 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2204 
2205 static inline
2206 int netdev_get_num_tc(struct net_device *dev)
2207 {
2208 	return dev->num_tc;
2209 }
2210 
2211 void netdev_unbind_sb_channel(struct net_device *dev,
2212 			      struct net_device *sb_dev);
2213 int netdev_bind_sb_channel_queue(struct net_device *dev,
2214 				 struct net_device *sb_dev,
2215 				 u8 tc, u16 count, u16 offset);
2216 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2217 static inline int netdev_get_sb_channel(struct net_device *dev)
2218 {
2219 	return max_t(int, -dev->num_tc, 0);
2220 }
2221 
2222 static inline
2223 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2224 					 unsigned int index)
2225 {
2226 	return &dev->_tx[index];
2227 }
2228 
2229 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2230 						    const struct sk_buff *skb)
2231 {
2232 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2233 }
2234 
2235 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2236 					    void (*f)(struct net_device *,
2237 						      struct netdev_queue *,
2238 						      void *),
2239 					    void *arg)
2240 {
2241 	unsigned int i;
2242 
2243 	for (i = 0; i < dev->num_tx_queues; i++)
2244 		f(dev, &dev->_tx[i], arg);
2245 }
2246 
2247 #define netdev_lockdep_set_classes(dev)				\
2248 {								\
2249 	static struct lock_class_key qdisc_tx_busylock_key;	\
2250 	static struct lock_class_key qdisc_running_key;		\
2251 	static struct lock_class_key qdisc_xmit_lock_key;	\
2252 	static struct lock_class_key dev_addr_list_lock_key;	\
2253 	unsigned int i;						\
2254 								\
2255 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2256 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2257 	lockdep_set_class(&(dev)->addr_list_lock,		\
2258 			  &dev_addr_list_lock_key);		\
2259 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2260 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2261 				  &qdisc_xmit_lock_key);	\
2262 }
2263 
2264 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2265 		     struct net_device *sb_dev);
2266 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2267 					 struct sk_buff *skb,
2268 					 struct net_device *sb_dev);
2269 
2270 /* returns the headroom that the master device needs to take in account
2271  * when forwarding to this dev
2272  */
2273 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2274 {
2275 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2276 }
2277 
2278 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2279 {
2280 	if (dev->netdev_ops->ndo_set_rx_headroom)
2281 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2282 }
2283 
2284 /* set the device rx headroom to the dev's default */
2285 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2286 {
2287 	netdev_set_rx_headroom(dev, -1);
2288 }
2289 
2290 /*
2291  * Net namespace inlines
2292  */
2293 static inline
2294 struct net *dev_net(const struct net_device *dev)
2295 {
2296 	return read_pnet(&dev->nd_net);
2297 }
2298 
2299 static inline
2300 void dev_net_set(struct net_device *dev, struct net *net)
2301 {
2302 	write_pnet(&dev->nd_net, net);
2303 }
2304 
2305 /**
2306  *	netdev_priv - access network device private data
2307  *	@dev: network device
2308  *
2309  * Get network device private data
2310  */
2311 static inline void *netdev_priv(const struct net_device *dev)
2312 {
2313 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2314 }
2315 
2316 /* Set the sysfs physical device reference for the network logical device
2317  * if set prior to registration will cause a symlink during initialization.
2318  */
2319 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2320 
2321 /* Set the sysfs device type for the network logical device to allow
2322  * fine-grained identification of different network device types. For
2323  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2324  */
2325 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2326 
2327 /* Default NAPI poll() weight
2328  * Device drivers are strongly advised to not use bigger value
2329  */
2330 #define NAPI_POLL_WEIGHT 64
2331 
2332 /**
2333  *	netif_napi_add - initialize a NAPI context
2334  *	@dev:  network device
2335  *	@napi: NAPI context
2336  *	@poll: polling function
2337  *	@weight: default weight
2338  *
2339  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2340  * *any* of the other NAPI-related functions.
2341  */
2342 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2343 		    int (*poll)(struct napi_struct *, int), int weight);
2344 
2345 /**
2346  *	netif_tx_napi_add - initialize a NAPI context
2347  *	@dev:  network device
2348  *	@napi: NAPI context
2349  *	@poll: polling function
2350  *	@weight: default weight
2351  *
2352  * This variant of netif_napi_add() should be used from drivers using NAPI
2353  * to exclusively poll a TX queue.
2354  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2355  */
2356 static inline void netif_tx_napi_add(struct net_device *dev,
2357 				     struct napi_struct *napi,
2358 				     int (*poll)(struct napi_struct *, int),
2359 				     int weight)
2360 {
2361 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2362 	netif_napi_add(dev, napi, poll, weight);
2363 }
2364 
2365 /**
2366  *  netif_napi_del - remove a NAPI context
2367  *  @napi: NAPI context
2368  *
2369  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2370  */
2371 void netif_napi_del(struct napi_struct *napi);
2372 
2373 struct napi_gro_cb {
2374 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2375 	void	*frag0;
2376 
2377 	/* Length of frag0. */
2378 	unsigned int frag0_len;
2379 
2380 	/* This indicates where we are processing relative to skb->data. */
2381 	int	data_offset;
2382 
2383 	/* This is non-zero if the packet cannot be merged with the new skb. */
2384 	u16	flush;
2385 
2386 	/* Save the IP ID here and check when we get to the transport layer */
2387 	u16	flush_id;
2388 
2389 	/* Number of segments aggregated. */
2390 	u16	count;
2391 
2392 	/* Start offset for remote checksum offload */
2393 	u16	gro_remcsum_start;
2394 
2395 	/* jiffies when first packet was created/queued */
2396 	unsigned long age;
2397 
2398 	/* Used in ipv6_gro_receive() and foo-over-udp */
2399 	u16	proto;
2400 
2401 	/* This is non-zero if the packet may be of the same flow. */
2402 	u8	same_flow:1;
2403 
2404 	/* Used in tunnel GRO receive */
2405 	u8	encap_mark:1;
2406 
2407 	/* GRO checksum is valid */
2408 	u8	csum_valid:1;
2409 
2410 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2411 	u8	csum_cnt:3;
2412 
2413 	/* Free the skb? */
2414 	u8	free:2;
2415 #define NAPI_GRO_FREE		  1
2416 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2417 
2418 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2419 	u8	is_ipv6:1;
2420 
2421 	/* Used in GRE, set in fou/gue_gro_receive */
2422 	u8	is_fou:1;
2423 
2424 	/* Used to determine if flush_id can be ignored */
2425 	u8	is_atomic:1;
2426 
2427 	/* Number of gro_receive callbacks this packet already went through */
2428 	u8 recursion_counter:4;
2429 
2430 	/* GRO is done by frag_list pointer chaining. */
2431 	u8	is_flist:1;
2432 
2433 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2434 	__wsum	csum;
2435 
2436 	/* used in skb_gro_receive() slow path */
2437 	struct sk_buff *last;
2438 };
2439 
2440 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2441 
2442 #define GRO_RECURSION_LIMIT 15
2443 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2444 {
2445 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2446 }
2447 
2448 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2449 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2450 					       struct list_head *head,
2451 					       struct sk_buff *skb)
2452 {
2453 	if (unlikely(gro_recursion_inc_test(skb))) {
2454 		NAPI_GRO_CB(skb)->flush |= 1;
2455 		return NULL;
2456 	}
2457 
2458 	return cb(head, skb);
2459 }
2460 
2461 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2462 					    struct sk_buff *);
2463 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2464 						  struct sock *sk,
2465 						  struct list_head *head,
2466 						  struct sk_buff *skb)
2467 {
2468 	if (unlikely(gro_recursion_inc_test(skb))) {
2469 		NAPI_GRO_CB(skb)->flush |= 1;
2470 		return NULL;
2471 	}
2472 
2473 	return cb(sk, head, skb);
2474 }
2475 
2476 struct packet_type {
2477 	__be16			type;	/* This is really htons(ether_type). */
2478 	bool			ignore_outgoing;
2479 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2480 	int			(*func) (struct sk_buff *,
2481 					 struct net_device *,
2482 					 struct packet_type *,
2483 					 struct net_device *);
2484 	void			(*list_func) (struct list_head *,
2485 					      struct packet_type *,
2486 					      struct net_device *);
2487 	bool			(*id_match)(struct packet_type *ptype,
2488 					    struct sock *sk);
2489 	void			*af_packet_priv;
2490 	struct list_head	list;
2491 };
2492 
2493 struct offload_callbacks {
2494 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2495 						netdev_features_t features);
2496 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2497 						struct sk_buff *skb);
2498 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2499 };
2500 
2501 struct packet_offload {
2502 	__be16			 type;	/* This is really htons(ether_type). */
2503 	u16			 priority;
2504 	struct offload_callbacks callbacks;
2505 	struct list_head	 list;
2506 };
2507 
2508 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2509 struct pcpu_sw_netstats {
2510 	u64     rx_packets;
2511 	u64     rx_bytes;
2512 	u64     tx_packets;
2513 	u64     tx_bytes;
2514 	struct u64_stats_sync   syncp;
2515 } __aligned(4 * sizeof(u64));
2516 
2517 struct pcpu_lstats {
2518 	u64_stats_t packets;
2519 	u64_stats_t bytes;
2520 	struct u64_stats_sync syncp;
2521 } __aligned(2 * sizeof(u64));
2522 
2523 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2524 
2525 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2526 {
2527 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2528 
2529 	u64_stats_update_begin(&lstats->syncp);
2530 	u64_stats_add(&lstats->bytes, len);
2531 	u64_stats_inc(&lstats->packets);
2532 	u64_stats_update_end(&lstats->syncp);
2533 }
2534 
2535 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2536 ({									\
2537 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2538 	if (pcpu_stats)	{						\
2539 		int __cpu;						\
2540 		for_each_possible_cpu(__cpu) {				\
2541 			typeof(type) *stat;				\
2542 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2543 			u64_stats_init(&stat->syncp);			\
2544 		}							\
2545 	}								\
2546 	pcpu_stats;							\
2547 })
2548 
2549 #define netdev_alloc_pcpu_stats(type)					\
2550 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2551 
2552 enum netdev_lag_tx_type {
2553 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2554 	NETDEV_LAG_TX_TYPE_RANDOM,
2555 	NETDEV_LAG_TX_TYPE_BROADCAST,
2556 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2557 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2558 	NETDEV_LAG_TX_TYPE_HASH,
2559 };
2560 
2561 enum netdev_lag_hash {
2562 	NETDEV_LAG_HASH_NONE,
2563 	NETDEV_LAG_HASH_L2,
2564 	NETDEV_LAG_HASH_L34,
2565 	NETDEV_LAG_HASH_L23,
2566 	NETDEV_LAG_HASH_E23,
2567 	NETDEV_LAG_HASH_E34,
2568 	NETDEV_LAG_HASH_UNKNOWN,
2569 };
2570 
2571 struct netdev_lag_upper_info {
2572 	enum netdev_lag_tx_type tx_type;
2573 	enum netdev_lag_hash hash_type;
2574 };
2575 
2576 struct netdev_lag_lower_state_info {
2577 	u8 link_up : 1,
2578 	   tx_enabled : 1;
2579 };
2580 
2581 #include <linux/notifier.h>
2582 
2583 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2584  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2585  * adding new types.
2586  */
2587 enum netdev_cmd {
2588 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2589 	NETDEV_DOWN,
2590 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2591 				   detected a hardware crash and restarted
2592 				   - we can use this eg to kick tcp sessions
2593 				   once done */
2594 	NETDEV_CHANGE,		/* Notify device state change */
2595 	NETDEV_REGISTER,
2596 	NETDEV_UNREGISTER,
2597 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2598 	NETDEV_CHANGEADDR,	/* notify after the address change */
2599 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2600 	NETDEV_GOING_DOWN,
2601 	NETDEV_CHANGENAME,
2602 	NETDEV_FEAT_CHANGE,
2603 	NETDEV_BONDING_FAILOVER,
2604 	NETDEV_PRE_UP,
2605 	NETDEV_PRE_TYPE_CHANGE,
2606 	NETDEV_POST_TYPE_CHANGE,
2607 	NETDEV_POST_INIT,
2608 	NETDEV_RELEASE,
2609 	NETDEV_NOTIFY_PEERS,
2610 	NETDEV_JOIN,
2611 	NETDEV_CHANGEUPPER,
2612 	NETDEV_RESEND_IGMP,
2613 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2614 	NETDEV_CHANGEINFODATA,
2615 	NETDEV_BONDING_INFO,
2616 	NETDEV_PRECHANGEUPPER,
2617 	NETDEV_CHANGELOWERSTATE,
2618 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2619 	NETDEV_UDP_TUNNEL_DROP_INFO,
2620 	NETDEV_CHANGE_TX_QUEUE_LEN,
2621 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2622 	NETDEV_CVLAN_FILTER_DROP_INFO,
2623 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2624 	NETDEV_SVLAN_FILTER_DROP_INFO,
2625 };
2626 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2627 
2628 int register_netdevice_notifier(struct notifier_block *nb);
2629 int unregister_netdevice_notifier(struct notifier_block *nb);
2630 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2631 int unregister_netdevice_notifier_net(struct net *net,
2632 				      struct notifier_block *nb);
2633 int register_netdevice_notifier_dev_net(struct net_device *dev,
2634 					struct notifier_block *nb,
2635 					struct netdev_net_notifier *nn);
2636 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2637 					  struct notifier_block *nb,
2638 					  struct netdev_net_notifier *nn);
2639 
2640 struct netdev_notifier_info {
2641 	struct net_device	*dev;
2642 	struct netlink_ext_ack	*extack;
2643 };
2644 
2645 struct netdev_notifier_info_ext {
2646 	struct netdev_notifier_info info; /* must be first */
2647 	union {
2648 		u32 mtu;
2649 	} ext;
2650 };
2651 
2652 struct netdev_notifier_change_info {
2653 	struct netdev_notifier_info info; /* must be first */
2654 	unsigned int flags_changed;
2655 };
2656 
2657 struct netdev_notifier_changeupper_info {
2658 	struct netdev_notifier_info info; /* must be first */
2659 	struct net_device *upper_dev; /* new upper dev */
2660 	bool master; /* is upper dev master */
2661 	bool linking; /* is the notification for link or unlink */
2662 	void *upper_info; /* upper dev info */
2663 };
2664 
2665 struct netdev_notifier_changelowerstate_info {
2666 	struct netdev_notifier_info info; /* must be first */
2667 	void *lower_state_info; /* is lower dev state */
2668 };
2669 
2670 struct netdev_notifier_pre_changeaddr_info {
2671 	struct netdev_notifier_info info; /* must be first */
2672 	const unsigned char *dev_addr;
2673 };
2674 
2675 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2676 					     struct net_device *dev)
2677 {
2678 	info->dev = dev;
2679 	info->extack = NULL;
2680 }
2681 
2682 static inline struct net_device *
2683 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2684 {
2685 	return info->dev;
2686 }
2687 
2688 static inline struct netlink_ext_ack *
2689 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2690 {
2691 	return info->extack;
2692 }
2693 
2694 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2695 
2696 
2697 extern rwlock_t				dev_base_lock;		/* Device list lock */
2698 
2699 #define for_each_netdev(net, d)		\
2700 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2701 #define for_each_netdev_reverse(net, d)	\
2702 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2703 #define for_each_netdev_rcu(net, d)		\
2704 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2705 #define for_each_netdev_safe(net, d, n)	\
2706 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2707 #define for_each_netdev_continue(net, d)		\
2708 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2709 #define for_each_netdev_continue_reverse(net, d)		\
2710 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2711 						     dev_list)
2712 #define for_each_netdev_continue_rcu(net, d)		\
2713 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2714 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2715 		for_each_netdev_rcu(&init_net, slave)	\
2716 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2717 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2718 
2719 static inline struct net_device *next_net_device(struct net_device *dev)
2720 {
2721 	struct list_head *lh;
2722 	struct net *net;
2723 
2724 	net = dev_net(dev);
2725 	lh = dev->dev_list.next;
2726 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2727 }
2728 
2729 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2730 {
2731 	struct list_head *lh;
2732 	struct net *net;
2733 
2734 	net = dev_net(dev);
2735 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2736 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2737 }
2738 
2739 static inline struct net_device *first_net_device(struct net *net)
2740 {
2741 	return list_empty(&net->dev_base_head) ? NULL :
2742 		net_device_entry(net->dev_base_head.next);
2743 }
2744 
2745 static inline struct net_device *first_net_device_rcu(struct net *net)
2746 {
2747 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2748 
2749 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2750 }
2751 
2752 int netdev_boot_setup_check(struct net_device *dev);
2753 unsigned long netdev_boot_base(const char *prefix, int unit);
2754 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2755 				       const char *hwaddr);
2756 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2757 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2758 void dev_add_pack(struct packet_type *pt);
2759 void dev_remove_pack(struct packet_type *pt);
2760 void __dev_remove_pack(struct packet_type *pt);
2761 void dev_add_offload(struct packet_offload *po);
2762 void dev_remove_offload(struct packet_offload *po);
2763 
2764 int dev_get_iflink(const struct net_device *dev);
2765 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2766 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2767 				      unsigned short mask);
2768 struct net_device *dev_get_by_name(struct net *net, const char *name);
2769 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2770 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2771 int dev_alloc_name(struct net_device *dev, const char *name);
2772 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2773 void dev_close(struct net_device *dev);
2774 void dev_close_many(struct list_head *head, bool unlink);
2775 void dev_disable_lro(struct net_device *dev);
2776 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2777 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2778 		     struct net_device *sb_dev);
2779 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2780 		       struct net_device *sb_dev);
2781 int dev_queue_xmit(struct sk_buff *skb);
2782 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2783 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2784 int register_netdevice(struct net_device *dev);
2785 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2786 void unregister_netdevice_many(struct list_head *head);
2787 static inline void unregister_netdevice(struct net_device *dev)
2788 {
2789 	unregister_netdevice_queue(dev, NULL);
2790 }
2791 
2792 int netdev_refcnt_read(const struct net_device *dev);
2793 void free_netdev(struct net_device *dev);
2794 void netdev_freemem(struct net_device *dev);
2795 void synchronize_net(void);
2796 int init_dummy_netdev(struct net_device *dev);
2797 
2798 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2799 					 struct sk_buff *skb,
2800 					 bool all_slaves);
2801 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2802 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2803 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2804 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2805 int netdev_get_name(struct net *net, char *name, int ifindex);
2806 int dev_restart(struct net_device *dev);
2807 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2808 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2809 
2810 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2811 {
2812 	return NAPI_GRO_CB(skb)->data_offset;
2813 }
2814 
2815 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2816 {
2817 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2818 }
2819 
2820 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2821 {
2822 	NAPI_GRO_CB(skb)->data_offset += len;
2823 }
2824 
2825 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2826 					unsigned int offset)
2827 {
2828 	return NAPI_GRO_CB(skb)->frag0 + offset;
2829 }
2830 
2831 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2832 {
2833 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2834 }
2835 
2836 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2837 {
2838 	NAPI_GRO_CB(skb)->frag0 = NULL;
2839 	NAPI_GRO_CB(skb)->frag0_len = 0;
2840 }
2841 
2842 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2843 					unsigned int offset)
2844 {
2845 	if (!pskb_may_pull(skb, hlen))
2846 		return NULL;
2847 
2848 	skb_gro_frag0_invalidate(skb);
2849 	return skb->data + offset;
2850 }
2851 
2852 static inline void *skb_gro_network_header(struct sk_buff *skb)
2853 {
2854 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2855 	       skb_network_offset(skb);
2856 }
2857 
2858 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2859 					const void *start, unsigned int len)
2860 {
2861 	if (NAPI_GRO_CB(skb)->csum_valid)
2862 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2863 						  csum_partial(start, len, 0));
2864 }
2865 
2866 /* GRO checksum functions. These are logical equivalents of the normal
2867  * checksum functions (in skbuff.h) except that they operate on the GRO
2868  * offsets and fields in sk_buff.
2869  */
2870 
2871 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2872 
2873 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2874 {
2875 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2876 }
2877 
2878 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2879 						      bool zero_okay,
2880 						      __sum16 check)
2881 {
2882 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2883 		skb_checksum_start_offset(skb) <
2884 		 skb_gro_offset(skb)) &&
2885 		!skb_at_gro_remcsum_start(skb) &&
2886 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2887 		(!zero_okay || check));
2888 }
2889 
2890 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2891 							   __wsum psum)
2892 {
2893 	if (NAPI_GRO_CB(skb)->csum_valid &&
2894 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2895 		return 0;
2896 
2897 	NAPI_GRO_CB(skb)->csum = psum;
2898 
2899 	return __skb_gro_checksum_complete(skb);
2900 }
2901 
2902 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2903 {
2904 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2905 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2906 		NAPI_GRO_CB(skb)->csum_cnt--;
2907 	} else {
2908 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2909 		 * verified a new top level checksum or an encapsulated one
2910 		 * during GRO. This saves work if we fallback to normal path.
2911 		 */
2912 		__skb_incr_checksum_unnecessary(skb);
2913 	}
2914 }
2915 
2916 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2917 				    compute_pseudo)			\
2918 ({									\
2919 	__sum16 __ret = 0;						\
2920 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2921 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2922 				compute_pseudo(skb, proto));		\
2923 	if (!__ret)							\
2924 		skb_gro_incr_csum_unnecessary(skb);			\
2925 	__ret;								\
2926 })
2927 
2928 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2929 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2930 
2931 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2932 					     compute_pseudo)		\
2933 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2934 
2935 #define skb_gro_checksum_simple_validate(skb)				\
2936 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2937 
2938 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2939 {
2940 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2941 		!NAPI_GRO_CB(skb)->csum_valid);
2942 }
2943 
2944 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2945 					      __wsum pseudo)
2946 {
2947 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2948 	NAPI_GRO_CB(skb)->csum_valid = 1;
2949 }
2950 
2951 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2952 do {									\
2953 	if (__skb_gro_checksum_convert_check(skb))			\
2954 		__skb_gro_checksum_convert(skb, 			\
2955 					   compute_pseudo(skb, proto));	\
2956 } while (0)
2957 
2958 struct gro_remcsum {
2959 	int offset;
2960 	__wsum delta;
2961 };
2962 
2963 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2964 {
2965 	grc->offset = 0;
2966 	grc->delta = 0;
2967 }
2968 
2969 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2970 					    unsigned int off, size_t hdrlen,
2971 					    int start, int offset,
2972 					    struct gro_remcsum *grc,
2973 					    bool nopartial)
2974 {
2975 	__wsum delta;
2976 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2977 
2978 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2979 
2980 	if (!nopartial) {
2981 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2982 		return ptr;
2983 	}
2984 
2985 	ptr = skb_gro_header_fast(skb, off);
2986 	if (skb_gro_header_hard(skb, off + plen)) {
2987 		ptr = skb_gro_header_slow(skb, off + plen, off);
2988 		if (!ptr)
2989 			return NULL;
2990 	}
2991 
2992 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2993 			       start, offset);
2994 
2995 	/* Adjust skb->csum since we changed the packet */
2996 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2997 
2998 	grc->offset = off + hdrlen + offset;
2999 	grc->delta = delta;
3000 
3001 	return ptr;
3002 }
3003 
3004 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3005 					   struct gro_remcsum *grc)
3006 {
3007 	void *ptr;
3008 	size_t plen = grc->offset + sizeof(u16);
3009 
3010 	if (!grc->delta)
3011 		return;
3012 
3013 	ptr = skb_gro_header_fast(skb, grc->offset);
3014 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3015 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3016 		if (!ptr)
3017 			return;
3018 	}
3019 
3020 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3021 }
3022 
3023 #ifdef CONFIG_XFRM_OFFLOAD
3024 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3025 {
3026 	if (PTR_ERR(pp) != -EINPROGRESS)
3027 		NAPI_GRO_CB(skb)->flush |= flush;
3028 }
3029 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3030 					       struct sk_buff *pp,
3031 					       int flush,
3032 					       struct gro_remcsum *grc)
3033 {
3034 	if (PTR_ERR(pp) != -EINPROGRESS) {
3035 		NAPI_GRO_CB(skb)->flush |= flush;
3036 		skb_gro_remcsum_cleanup(skb, grc);
3037 		skb->remcsum_offload = 0;
3038 	}
3039 }
3040 #else
3041 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3042 {
3043 	NAPI_GRO_CB(skb)->flush |= flush;
3044 }
3045 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3046 					       struct sk_buff *pp,
3047 					       int flush,
3048 					       struct gro_remcsum *grc)
3049 {
3050 	NAPI_GRO_CB(skb)->flush |= flush;
3051 	skb_gro_remcsum_cleanup(skb, grc);
3052 	skb->remcsum_offload = 0;
3053 }
3054 #endif
3055 
3056 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3057 				  unsigned short type,
3058 				  const void *daddr, const void *saddr,
3059 				  unsigned int len)
3060 {
3061 	if (!dev->header_ops || !dev->header_ops->create)
3062 		return 0;
3063 
3064 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3065 }
3066 
3067 static inline int dev_parse_header(const struct sk_buff *skb,
3068 				   unsigned char *haddr)
3069 {
3070 	const struct net_device *dev = skb->dev;
3071 
3072 	if (!dev->header_ops || !dev->header_ops->parse)
3073 		return 0;
3074 	return dev->header_ops->parse(skb, haddr);
3075 }
3076 
3077 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3078 {
3079 	const struct net_device *dev = skb->dev;
3080 
3081 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3082 		return 0;
3083 	return dev->header_ops->parse_protocol(skb);
3084 }
3085 
3086 /* ll_header must have at least hard_header_len allocated */
3087 static inline bool dev_validate_header(const struct net_device *dev,
3088 				       char *ll_header, int len)
3089 {
3090 	if (likely(len >= dev->hard_header_len))
3091 		return true;
3092 	if (len < dev->min_header_len)
3093 		return false;
3094 
3095 	if (capable(CAP_SYS_RAWIO)) {
3096 		memset(ll_header + len, 0, dev->hard_header_len - len);
3097 		return true;
3098 	}
3099 
3100 	if (dev->header_ops && dev->header_ops->validate)
3101 		return dev->header_ops->validate(ll_header, len);
3102 
3103 	return false;
3104 }
3105 
3106 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3107 			   int len, int size);
3108 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3109 static inline int unregister_gifconf(unsigned int family)
3110 {
3111 	return register_gifconf(family, NULL);
3112 }
3113 
3114 #ifdef CONFIG_NET_FLOW_LIMIT
3115 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3116 struct sd_flow_limit {
3117 	u64			count;
3118 	unsigned int		num_buckets;
3119 	unsigned int		history_head;
3120 	u16			history[FLOW_LIMIT_HISTORY];
3121 	u8			buckets[];
3122 };
3123 
3124 extern int netdev_flow_limit_table_len;
3125 #endif /* CONFIG_NET_FLOW_LIMIT */
3126 
3127 /*
3128  * Incoming packets are placed on per-CPU queues
3129  */
3130 struct softnet_data {
3131 	struct list_head	poll_list;
3132 	struct sk_buff_head	process_queue;
3133 
3134 	/* stats */
3135 	unsigned int		processed;
3136 	unsigned int		time_squeeze;
3137 	unsigned int		received_rps;
3138 #ifdef CONFIG_RPS
3139 	struct softnet_data	*rps_ipi_list;
3140 #endif
3141 #ifdef CONFIG_NET_FLOW_LIMIT
3142 	struct sd_flow_limit __rcu *flow_limit;
3143 #endif
3144 	struct Qdisc		*output_queue;
3145 	struct Qdisc		**output_queue_tailp;
3146 	struct sk_buff		*completion_queue;
3147 #ifdef CONFIG_XFRM_OFFLOAD
3148 	struct sk_buff_head	xfrm_backlog;
3149 #endif
3150 	/* written and read only by owning cpu: */
3151 	struct {
3152 		u16 recursion;
3153 		u8  more;
3154 	} xmit;
3155 #ifdef CONFIG_RPS
3156 	/* input_queue_head should be written by cpu owning this struct,
3157 	 * and only read by other cpus. Worth using a cache line.
3158 	 */
3159 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3160 
3161 	/* Elements below can be accessed between CPUs for RPS/RFS */
3162 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3163 	struct softnet_data	*rps_ipi_next;
3164 	unsigned int		cpu;
3165 	unsigned int		input_queue_tail;
3166 #endif
3167 	unsigned int		dropped;
3168 	struct sk_buff_head	input_pkt_queue;
3169 	struct napi_struct	backlog;
3170 
3171 };
3172 
3173 static inline void input_queue_head_incr(struct softnet_data *sd)
3174 {
3175 #ifdef CONFIG_RPS
3176 	sd->input_queue_head++;
3177 #endif
3178 }
3179 
3180 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3181 					      unsigned int *qtail)
3182 {
3183 #ifdef CONFIG_RPS
3184 	*qtail = ++sd->input_queue_tail;
3185 #endif
3186 }
3187 
3188 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3189 
3190 static inline int dev_recursion_level(void)
3191 {
3192 	return this_cpu_read(softnet_data.xmit.recursion);
3193 }
3194 
3195 #define XMIT_RECURSION_LIMIT	8
3196 static inline bool dev_xmit_recursion(void)
3197 {
3198 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3199 			XMIT_RECURSION_LIMIT);
3200 }
3201 
3202 static inline void dev_xmit_recursion_inc(void)
3203 {
3204 	__this_cpu_inc(softnet_data.xmit.recursion);
3205 }
3206 
3207 static inline void dev_xmit_recursion_dec(void)
3208 {
3209 	__this_cpu_dec(softnet_data.xmit.recursion);
3210 }
3211 
3212 void __netif_schedule(struct Qdisc *q);
3213 void netif_schedule_queue(struct netdev_queue *txq);
3214 
3215 static inline void netif_tx_schedule_all(struct net_device *dev)
3216 {
3217 	unsigned int i;
3218 
3219 	for (i = 0; i < dev->num_tx_queues; i++)
3220 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3221 }
3222 
3223 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3224 {
3225 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3226 }
3227 
3228 /**
3229  *	netif_start_queue - allow transmit
3230  *	@dev: network device
3231  *
3232  *	Allow upper layers to call the device hard_start_xmit routine.
3233  */
3234 static inline void netif_start_queue(struct net_device *dev)
3235 {
3236 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3237 }
3238 
3239 static inline void netif_tx_start_all_queues(struct net_device *dev)
3240 {
3241 	unsigned int i;
3242 
3243 	for (i = 0; i < dev->num_tx_queues; i++) {
3244 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245 		netif_tx_start_queue(txq);
3246 	}
3247 }
3248 
3249 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3250 
3251 /**
3252  *	netif_wake_queue - restart transmit
3253  *	@dev: network device
3254  *
3255  *	Allow upper layers to call the device hard_start_xmit routine.
3256  *	Used for flow control when transmit resources are available.
3257  */
3258 static inline void netif_wake_queue(struct net_device *dev)
3259 {
3260 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3261 }
3262 
3263 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3264 {
3265 	unsigned int i;
3266 
3267 	for (i = 0; i < dev->num_tx_queues; i++) {
3268 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269 		netif_tx_wake_queue(txq);
3270 	}
3271 }
3272 
3273 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3274 {
3275 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3276 }
3277 
3278 /**
3279  *	netif_stop_queue - stop transmitted packets
3280  *	@dev: network device
3281  *
3282  *	Stop upper layers calling the device hard_start_xmit routine.
3283  *	Used for flow control when transmit resources are unavailable.
3284  */
3285 static inline void netif_stop_queue(struct net_device *dev)
3286 {
3287 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3288 }
3289 
3290 void netif_tx_stop_all_queues(struct net_device *dev);
3291 
3292 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3293 {
3294 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295 }
3296 
3297 /**
3298  *	netif_queue_stopped - test if transmit queue is flowblocked
3299  *	@dev: network device
3300  *
3301  *	Test if transmit queue on device is currently unable to send.
3302  */
3303 static inline bool netif_queue_stopped(const struct net_device *dev)
3304 {
3305 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3306 }
3307 
3308 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3309 {
3310 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3311 }
3312 
3313 static inline bool
3314 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3315 {
3316 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3317 }
3318 
3319 static inline bool
3320 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3321 {
3322 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3323 }
3324 
3325 /**
3326  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3327  *	@dev_queue: pointer to transmit queue
3328  *
3329  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3330  * to give appropriate hint to the CPU.
3331  */
3332 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3333 {
3334 #ifdef CONFIG_BQL
3335 	prefetchw(&dev_queue->dql.num_queued);
3336 #endif
3337 }
3338 
3339 /**
3340  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3341  *	@dev_queue: pointer to transmit queue
3342  *
3343  * BQL enabled drivers might use this helper in their TX completion path,
3344  * to give appropriate hint to the CPU.
3345  */
3346 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3347 {
3348 #ifdef CONFIG_BQL
3349 	prefetchw(&dev_queue->dql.limit);
3350 #endif
3351 }
3352 
3353 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3354 					unsigned int bytes)
3355 {
3356 #ifdef CONFIG_BQL
3357 	dql_queued(&dev_queue->dql, bytes);
3358 
3359 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3360 		return;
3361 
3362 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3363 
3364 	/*
3365 	 * The XOFF flag must be set before checking the dql_avail below,
3366 	 * because in netdev_tx_completed_queue we update the dql_completed
3367 	 * before checking the XOFF flag.
3368 	 */
3369 	smp_mb();
3370 
3371 	/* check again in case another CPU has just made room avail */
3372 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3373 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3374 #endif
3375 }
3376 
3377 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3378  * that they should not test BQL status themselves.
3379  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3380  * skb of a batch.
3381  * Returns true if the doorbell must be used to kick the NIC.
3382  */
3383 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3384 					  unsigned int bytes,
3385 					  bool xmit_more)
3386 {
3387 	if (xmit_more) {
3388 #ifdef CONFIG_BQL
3389 		dql_queued(&dev_queue->dql, bytes);
3390 #endif
3391 		return netif_tx_queue_stopped(dev_queue);
3392 	}
3393 	netdev_tx_sent_queue(dev_queue, bytes);
3394 	return true;
3395 }
3396 
3397 /**
3398  * 	netdev_sent_queue - report the number of bytes queued to hardware
3399  * 	@dev: network device
3400  * 	@bytes: number of bytes queued to the hardware device queue
3401  *
3402  * 	Report the number of bytes queued for sending/completion to the network
3403  * 	device hardware queue. @bytes should be a good approximation and should
3404  * 	exactly match netdev_completed_queue() @bytes
3405  */
3406 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3407 {
3408 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3409 }
3410 
3411 static inline bool __netdev_sent_queue(struct net_device *dev,
3412 				       unsigned int bytes,
3413 				       bool xmit_more)
3414 {
3415 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3416 				      xmit_more);
3417 }
3418 
3419 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3420 					     unsigned int pkts, unsigned int bytes)
3421 {
3422 #ifdef CONFIG_BQL
3423 	if (unlikely(!bytes))
3424 		return;
3425 
3426 	dql_completed(&dev_queue->dql, bytes);
3427 
3428 	/*
3429 	 * Without the memory barrier there is a small possiblity that
3430 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3431 	 * be stopped forever
3432 	 */
3433 	smp_mb();
3434 
3435 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3436 		return;
3437 
3438 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3439 		netif_schedule_queue(dev_queue);
3440 #endif
3441 }
3442 
3443 /**
3444  * 	netdev_completed_queue - report bytes and packets completed by device
3445  * 	@dev: network device
3446  * 	@pkts: actual number of packets sent over the medium
3447  * 	@bytes: actual number of bytes sent over the medium
3448  *
3449  * 	Report the number of bytes and packets transmitted by the network device
3450  * 	hardware queue over the physical medium, @bytes must exactly match the
3451  * 	@bytes amount passed to netdev_sent_queue()
3452  */
3453 static inline void netdev_completed_queue(struct net_device *dev,
3454 					  unsigned int pkts, unsigned int bytes)
3455 {
3456 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3457 }
3458 
3459 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3460 {
3461 #ifdef CONFIG_BQL
3462 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3463 	dql_reset(&q->dql);
3464 #endif
3465 }
3466 
3467 /**
3468  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3469  * 	@dev_queue: network device
3470  *
3471  * 	Reset the bytes and packet count of a network device and clear the
3472  * 	software flow control OFF bit for this network device
3473  */
3474 static inline void netdev_reset_queue(struct net_device *dev_queue)
3475 {
3476 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3477 }
3478 
3479 /**
3480  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3481  * 	@dev: network device
3482  * 	@queue_index: given tx queue index
3483  *
3484  * 	Returns 0 if given tx queue index >= number of device tx queues,
3485  * 	otherwise returns the originally passed tx queue index.
3486  */
3487 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3488 {
3489 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3490 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3491 				     dev->name, queue_index,
3492 				     dev->real_num_tx_queues);
3493 		return 0;
3494 	}
3495 
3496 	return queue_index;
3497 }
3498 
3499 /**
3500  *	netif_running - test if up
3501  *	@dev: network device
3502  *
3503  *	Test if the device has been brought up.
3504  */
3505 static inline bool netif_running(const struct net_device *dev)
3506 {
3507 	return test_bit(__LINK_STATE_START, &dev->state);
3508 }
3509 
3510 /*
3511  * Routines to manage the subqueues on a device.  We only need start,
3512  * stop, and a check if it's stopped.  All other device management is
3513  * done at the overall netdevice level.
3514  * Also test the device if we're multiqueue.
3515  */
3516 
3517 /**
3518  *	netif_start_subqueue - allow sending packets on subqueue
3519  *	@dev: network device
3520  *	@queue_index: sub queue index
3521  *
3522  * Start individual transmit queue of a device with multiple transmit queues.
3523  */
3524 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3525 {
3526 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3527 
3528 	netif_tx_start_queue(txq);
3529 }
3530 
3531 /**
3532  *	netif_stop_subqueue - stop sending packets on subqueue
3533  *	@dev: network device
3534  *	@queue_index: sub queue index
3535  *
3536  * Stop individual transmit queue of a device with multiple transmit queues.
3537  */
3538 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3539 {
3540 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3541 	netif_tx_stop_queue(txq);
3542 }
3543 
3544 /**
3545  *	netif_subqueue_stopped - test status of subqueue
3546  *	@dev: network device
3547  *	@queue_index: sub queue index
3548  *
3549  * Check individual transmit queue of a device with multiple transmit queues.
3550  */
3551 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3552 					    u16 queue_index)
3553 {
3554 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3555 
3556 	return netif_tx_queue_stopped(txq);
3557 }
3558 
3559 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3560 					  struct sk_buff *skb)
3561 {
3562 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3563 }
3564 
3565 /**
3566  *	netif_wake_subqueue - allow sending packets on subqueue
3567  *	@dev: network device
3568  *	@queue_index: sub queue index
3569  *
3570  * Resume individual transmit queue of a device with multiple transmit queues.
3571  */
3572 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3573 {
3574 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575 
3576 	netif_tx_wake_queue(txq);
3577 }
3578 
3579 #ifdef CONFIG_XPS
3580 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3581 			u16 index);
3582 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3583 			  u16 index, bool is_rxqs_map);
3584 
3585 /**
3586  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3587  *	@j: CPU/Rx queue index
3588  *	@mask: bitmask of all cpus/rx queues
3589  *	@nr_bits: number of bits in the bitmask
3590  *
3591  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3592  */
3593 static inline bool netif_attr_test_mask(unsigned long j,
3594 					const unsigned long *mask,
3595 					unsigned int nr_bits)
3596 {
3597 	cpu_max_bits_warn(j, nr_bits);
3598 	return test_bit(j, mask);
3599 }
3600 
3601 /**
3602  *	netif_attr_test_online - Test for online CPU/Rx queue
3603  *	@j: CPU/Rx queue index
3604  *	@online_mask: bitmask for CPUs/Rx queues that are online
3605  *	@nr_bits: number of bits in the bitmask
3606  *
3607  * Returns true if a CPU/Rx queue is online.
3608  */
3609 static inline bool netif_attr_test_online(unsigned long j,
3610 					  const unsigned long *online_mask,
3611 					  unsigned int nr_bits)
3612 {
3613 	cpu_max_bits_warn(j, nr_bits);
3614 
3615 	if (online_mask)
3616 		return test_bit(j, online_mask);
3617 
3618 	return (j < nr_bits);
3619 }
3620 
3621 /**
3622  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3623  *	@n: CPU/Rx queue index
3624  *	@srcp: the cpumask/Rx queue mask pointer
3625  *	@nr_bits: number of bits in the bitmask
3626  *
3627  * Returns >= nr_bits if no further CPUs/Rx queues set.
3628  */
3629 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3630 					       unsigned int nr_bits)
3631 {
3632 	/* -1 is a legal arg here. */
3633 	if (n != -1)
3634 		cpu_max_bits_warn(n, nr_bits);
3635 
3636 	if (srcp)
3637 		return find_next_bit(srcp, nr_bits, n + 1);
3638 
3639 	return n + 1;
3640 }
3641 
3642 /**
3643  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3644  *	@n: CPU/Rx queue index
3645  *	@src1p: the first CPUs/Rx queues mask pointer
3646  *	@src2p: the second CPUs/Rx queues mask pointer
3647  *	@nr_bits: number of bits in the bitmask
3648  *
3649  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3650  */
3651 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3652 					  const unsigned long *src2p,
3653 					  unsigned int nr_bits)
3654 {
3655 	/* -1 is a legal arg here. */
3656 	if (n != -1)
3657 		cpu_max_bits_warn(n, nr_bits);
3658 
3659 	if (src1p && src2p)
3660 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3661 	else if (src1p)
3662 		return find_next_bit(src1p, nr_bits, n + 1);
3663 	else if (src2p)
3664 		return find_next_bit(src2p, nr_bits, n + 1);
3665 
3666 	return n + 1;
3667 }
3668 #else
3669 static inline int netif_set_xps_queue(struct net_device *dev,
3670 				      const struct cpumask *mask,
3671 				      u16 index)
3672 {
3673 	return 0;
3674 }
3675 
3676 static inline int __netif_set_xps_queue(struct net_device *dev,
3677 					const unsigned long *mask,
3678 					u16 index, bool is_rxqs_map)
3679 {
3680 	return 0;
3681 }
3682 #endif
3683 
3684 /**
3685  *	netif_is_multiqueue - test if device has multiple transmit queues
3686  *	@dev: network device
3687  *
3688  * Check if device has multiple transmit queues
3689  */
3690 static inline bool netif_is_multiqueue(const struct net_device *dev)
3691 {
3692 	return dev->num_tx_queues > 1;
3693 }
3694 
3695 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3696 
3697 #ifdef CONFIG_SYSFS
3698 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3699 #else
3700 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3701 						unsigned int rxqs)
3702 {
3703 	dev->real_num_rx_queues = rxqs;
3704 	return 0;
3705 }
3706 #endif
3707 
3708 static inline struct netdev_rx_queue *
3709 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3710 {
3711 	return dev->_rx + rxq;
3712 }
3713 
3714 #ifdef CONFIG_SYSFS
3715 static inline unsigned int get_netdev_rx_queue_index(
3716 		struct netdev_rx_queue *queue)
3717 {
3718 	struct net_device *dev = queue->dev;
3719 	int index = queue - dev->_rx;
3720 
3721 	BUG_ON(index >= dev->num_rx_queues);
3722 	return index;
3723 }
3724 #endif
3725 
3726 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3727 int netif_get_num_default_rss_queues(void);
3728 
3729 enum skb_free_reason {
3730 	SKB_REASON_CONSUMED,
3731 	SKB_REASON_DROPPED,
3732 };
3733 
3734 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3735 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3736 
3737 /*
3738  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3739  * interrupt context or with hardware interrupts being disabled.
3740  * (in_irq() || irqs_disabled())
3741  *
3742  * We provide four helpers that can be used in following contexts :
3743  *
3744  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3745  *  replacing kfree_skb(skb)
3746  *
3747  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3748  *  Typically used in place of consume_skb(skb) in TX completion path
3749  *
3750  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3751  *  replacing kfree_skb(skb)
3752  *
3753  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3754  *  and consumed a packet. Used in place of consume_skb(skb)
3755  */
3756 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3757 {
3758 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3759 }
3760 
3761 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3762 {
3763 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3764 }
3765 
3766 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3767 {
3768 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3769 }
3770 
3771 static inline void dev_consume_skb_any(struct sk_buff *skb)
3772 {
3773 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3774 }
3775 
3776 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3777 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3778 int netif_rx(struct sk_buff *skb);
3779 int netif_rx_ni(struct sk_buff *skb);
3780 int netif_receive_skb(struct sk_buff *skb);
3781 int netif_receive_skb_core(struct sk_buff *skb);
3782 void netif_receive_skb_list(struct list_head *head);
3783 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3784 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3785 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3786 gro_result_t napi_gro_frags(struct napi_struct *napi);
3787 struct packet_offload *gro_find_receive_by_type(__be16 type);
3788 struct packet_offload *gro_find_complete_by_type(__be16 type);
3789 
3790 static inline void napi_free_frags(struct napi_struct *napi)
3791 {
3792 	kfree_skb(napi->skb);
3793 	napi->skb = NULL;
3794 }
3795 
3796 bool netdev_is_rx_handler_busy(struct net_device *dev);
3797 int netdev_rx_handler_register(struct net_device *dev,
3798 			       rx_handler_func_t *rx_handler,
3799 			       void *rx_handler_data);
3800 void netdev_rx_handler_unregister(struct net_device *dev);
3801 
3802 bool dev_valid_name(const char *name);
3803 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3804 		bool *need_copyout);
3805 int dev_ifconf(struct net *net, struct ifconf *, int);
3806 int dev_ethtool(struct net *net, struct ifreq *);
3807 unsigned int dev_get_flags(const struct net_device *);
3808 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3809 		       struct netlink_ext_ack *extack);
3810 int dev_change_flags(struct net_device *dev, unsigned int flags,
3811 		     struct netlink_ext_ack *extack);
3812 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3813 			unsigned int gchanges);
3814 int dev_change_name(struct net_device *, const char *);
3815 int dev_set_alias(struct net_device *, const char *, size_t);
3816 int dev_get_alias(const struct net_device *, char *, size_t);
3817 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3818 int __dev_set_mtu(struct net_device *, int);
3819 int dev_validate_mtu(struct net_device *dev, int mtu,
3820 		     struct netlink_ext_ack *extack);
3821 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3822 		    struct netlink_ext_ack *extack);
3823 int dev_set_mtu(struct net_device *, int);
3824 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3825 void dev_set_group(struct net_device *, int);
3826 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3827 			      struct netlink_ext_ack *extack);
3828 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3829 			struct netlink_ext_ack *extack);
3830 int dev_change_carrier(struct net_device *, bool new_carrier);
3831 int dev_get_phys_port_id(struct net_device *dev,
3832 			 struct netdev_phys_item_id *ppid);
3833 int dev_get_phys_port_name(struct net_device *dev,
3834 			   char *name, size_t len);
3835 int dev_get_port_parent_id(struct net_device *dev,
3836 			   struct netdev_phys_item_id *ppid, bool recurse);
3837 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3838 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3839 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3840 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3841 				  u32 value);
3842 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3843 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3844 				    struct netdev_queue *txq, int *ret);
3845 
3846 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3847 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3848 		      int fd, int expected_fd, u32 flags);
3849 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3850 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3851 
3852 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3853 
3854 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3855 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3856 bool is_skb_forwardable(const struct net_device *dev,
3857 			const struct sk_buff *skb);
3858 
3859 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3860 					       struct sk_buff *skb)
3861 {
3862 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3863 	    unlikely(!is_skb_forwardable(dev, skb))) {
3864 		atomic_long_inc(&dev->rx_dropped);
3865 		kfree_skb(skb);
3866 		return NET_RX_DROP;
3867 	}
3868 
3869 	skb_scrub_packet(skb, true);
3870 	skb->priority = 0;
3871 	return 0;
3872 }
3873 
3874 bool dev_nit_active(struct net_device *dev);
3875 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3876 
3877 extern int		netdev_budget;
3878 extern unsigned int	netdev_budget_usecs;
3879 
3880 /* Called by rtnetlink.c:rtnl_unlock() */
3881 void netdev_run_todo(void);
3882 
3883 /**
3884  *	dev_put - release reference to device
3885  *	@dev: network device
3886  *
3887  * Release reference to device to allow it to be freed.
3888  */
3889 static inline void dev_put(struct net_device *dev)
3890 {
3891 	this_cpu_dec(*dev->pcpu_refcnt);
3892 }
3893 
3894 /**
3895  *	dev_hold - get reference to device
3896  *	@dev: network device
3897  *
3898  * Hold reference to device to keep it from being freed.
3899  */
3900 static inline void dev_hold(struct net_device *dev)
3901 {
3902 	this_cpu_inc(*dev->pcpu_refcnt);
3903 }
3904 
3905 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3906  * and _off may be called from IRQ context, but it is caller
3907  * who is responsible for serialization of these calls.
3908  *
3909  * The name carrier is inappropriate, these functions should really be
3910  * called netif_lowerlayer_*() because they represent the state of any
3911  * kind of lower layer not just hardware media.
3912  */
3913 
3914 void linkwatch_init_dev(struct net_device *dev);
3915 void linkwatch_fire_event(struct net_device *dev);
3916 void linkwatch_forget_dev(struct net_device *dev);
3917 
3918 /**
3919  *	netif_carrier_ok - test if carrier present
3920  *	@dev: network device
3921  *
3922  * Check if carrier is present on device
3923  */
3924 static inline bool netif_carrier_ok(const struct net_device *dev)
3925 {
3926 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3927 }
3928 
3929 unsigned long dev_trans_start(struct net_device *dev);
3930 
3931 void __netdev_watchdog_up(struct net_device *dev);
3932 
3933 void netif_carrier_on(struct net_device *dev);
3934 
3935 void netif_carrier_off(struct net_device *dev);
3936 
3937 /**
3938  *	netif_dormant_on - mark device as dormant.
3939  *	@dev: network device
3940  *
3941  * Mark device as dormant (as per RFC2863).
3942  *
3943  * The dormant state indicates that the relevant interface is not
3944  * actually in a condition to pass packets (i.e., it is not 'up') but is
3945  * in a "pending" state, waiting for some external event.  For "on-
3946  * demand" interfaces, this new state identifies the situation where the
3947  * interface is waiting for events to place it in the up state.
3948  */
3949 static inline void netif_dormant_on(struct net_device *dev)
3950 {
3951 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3952 		linkwatch_fire_event(dev);
3953 }
3954 
3955 /**
3956  *	netif_dormant_off - set device as not dormant.
3957  *	@dev: network device
3958  *
3959  * Device is not in dormant state.
3960  */
3961 static inline void netif_dormant_off(struct net_device *dev)
3962 {
3963 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3964 		linkwatch_fire_event(dev);
3965 }
3966 
3967 /**
3968  *	netif_dormant - test if device is dormant
3969  *	@dev: network device
3970  *
3971  * Check if device is dormant.
3972  */
3973 static inline bool netif_dormant(const struct net_device *dev)
3974 {
3975 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3976 }
3977 
3978 
3979 /**
3980  *	netif_testing_on - mark device as under test.
3981  *	@dev: network device
3982  *
3983  * Mark device as under test (as per RFC2863).
3984  *
3985  * The testing state indicates that some test(s) must be performed on
3986  * the interface. After completion, of the test, the interface state
3987  * will change to up, dormant, or down, as appropriate.
3988  */
3989 static inline void netif_testing_on(struct net_device *dev)
3990 {
3991 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3992 		linkwatch_fire_event(dev);
3993 }
3994 
3995 /**
3996  *	netif_testing_off - set device as not under test.
3997  *	@dev: network device
3998  *
3999  * Device is not in testing state.
4000  */
4001 static inline void netif_testing_off(struct net_device *dev)
4002 {
4003 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4004 		linkwatch_fire_event(dev);
4005 }
4006 
4007 /**
4008  *	netif_testing - test if device is under test
4009  *	@dev: network device
4010  *
4011  * Check if device is under test
4012  */
4013 static inline bool netif_testing(const struct net_device *dev)
4014 {
4015 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4016 }
4017 
4018 
4019 /**
4020  *	netif_oper_up - test if device is operational
4021  *	@dev: network device
4022  *
4023  * Check if carrier is operational
4024  */
4025 static inline bool netif_oper_up(const struct net_device *dev)
4026 {
4027 	return (dev->operstate == IF_OPER_UP ||
4028 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4029 }
4030 
4031 /**
4032  *	netif_device_present - is device available or removed
4033  *	@dev: network device
4034  *
4035  * Check if device has not been removed from system.
4036  */
4037 static inline bool netif_device_present(struct net_device *dev)
4038 {
4039 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4040 }
4041 
4042 void netif_device_detach(struct net_device *dev);
4043 
4044 void netif_device_attach(struct net_device *dev);
4045 
4046 /*
4047  * Network interface message level settings
4048  */
4049 
4050 enum {
4051 	NETIF_MSG_DRV_BIT,
4052 	NETIF_MSG_PROBE_BIT,
4053 	NETIF_MSG_LINK_BIT,
4054 	NETIF_MSG_TIMER_BIT,
4055 	NETIF_MSG_IFDOWN_BIT,
4056 	NETIF_MSG_IFUP_BIT,
4057 	NETIF_MSG_RX_ERR_BIT,
4058 	NETIF_MSG_TX_ERR_BIT,
4059 	NETIF_MSG_TX_QUEUED_BIT,
4060 	NETIF_MSG_INTR_BIT,
4061 	NETIF_MSG_TX_DONE_BIT,
4062 	NETIF_MSG_RX_STATUS_BIT,
4063 	NETIF_MSG_PKTDATA_BIT,
4064 	NETIF_MSG_HW_BIT,
4065 	NETIF_MSG_WOL_BIT,
4066 
4067 	/* When you add a new bit above, update netif_msg_class_names array
4068 	 * in net/ethtool/common.c
4069 	 */
4070 	NETIF_MSG_CLASS_COUNT,
4071 };
4072 /* Both ethtool_ops interface and internal driver implementation use u32 */
4073 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4074 
4075 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4076 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4077 
4078 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4079 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4080 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4081 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4082 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4083 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4084 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4085 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4086 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4087 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4088 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4089 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4090 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4091 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4092 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4093 
4094 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4095 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4096 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4097 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4098 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4099 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4100 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4101 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4102 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4103 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4104 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4105 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4106 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4107 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4108 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4109 
4110 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4111 {
4112 	/* use default */
4113 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4114 		return default_msg_enable_bits;
4115 	if (debug_value == 0)	/* no output */
4116 		return 0;
4117 	/* set low N bits */
4118 	return (1U << debug_value) - 1;
4119 }
4120 
4121 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4122 {
4123 	spin_lock(&txq->_xmit_lock);
4124 	txq->xmit_lock_owner = cpu;
4125 }
4126 
4127 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128 {
4129 	__acquire(&txq->_xmit_lock);
4130 	return true;
4131 }
4132 
4133 static inline void __netif_tx_release(struct netdev_queue *txq)
4134 {
4135 	__release(&txq->_xmit_lock);
4136 }
4137 
4138 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139 {
4140 	spin_lock_bh(&txq->_xmit_lock);
4141 	txq->xmit_lock_owner = smp_processor_id();
4142 }
4143 
4144 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4145 {
4146 	bool ok = spin_trylock(&txq->_xmit_lock);
4147 	if (likely(ok))
4148 		txq->xmit_lock_owner = smp_processor_id();
4149 	return ok;
4150 }
4151 
4152 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4153 {
4154 	txq->xmit_lock_owner = -1;
4155 	spin_unlock(&txq->_xmit_lock);
4156 }
4157 
4158 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4159 {
4160 	txq->xmit_lock_owner = -1;
4161 	spin_unlock_bh(&txq->_xmit_lock);
4162 }
4163 
4164 static inline void txq_trans_update(struct netdev_queue *txq)
4165 {
4166 	if (txq->xmit_lock_owner != -1)
4167 		txq->trans_start = jiffies;
4168 }
4169 
4170 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4171 static inline void netif_trans_update(struct net_device *dev)
4172 {
4173 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4174 
4175 	if (txq->trans_start != jiffies)
4176 		txq->trans_start = jiffies;
4177 }
4178 
4179 /**
4180  *	netif_tx_lock - grab network device transmit lock
4181  *	@dev: network device
4182  *
4183  * Get network device transmit lock
4184  */
4185 static inline void netif_tx_lock(struct net_device *dev)
4186 {
4187 	unsigned int i;
4188 	int cpu;
4189 
4190 	spin_lock(&dev->tx_global_lock);
4191 	cpu = smp_processor_id();
4192 	for (i = 0; i < dev->num_tx_queues; i++) {
4193 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4194 
4195 		/* We are the only thread of execution doing a
4196 		 * freeze, but we have to grab the _xmit_lock in
4197 		 * order to synchronize with threads which are in
4198 		 * the ->hard_start_xmit() handler and already
4199 		 * checked the frozen bit.
4200 		 */
4201 		__netif_tx_lock(txq, cpu);
4202 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4203 		__netif_tx_unlock(txq);
4204 	}
4205 }
4206 
4207 static inline void netif_tx_lock_bh(struct net_device *dev)
4208 {
4209 	local_bh_disable();
4210 	netif_tx_lock(dev);
4211 }
4212 
4213 static inline void netif_tx_unlock(struct net_device *dev)
4214 {
4215 	unsigned int i;
4216 
4217 	for (i = 0; i < dev->num_tx_queues; i++) {
4218 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4219 
4220 		/* No need to grab the _xmit_lock here.  If the
4221 		 * queue is not stopped for another reason, we
4222 		 * force a schedule.
4223 		 */
4224 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4225 		netif_schedule_queue(txq);
4226 	}
4227 	spin_unlock(&dev->tx_global_lock);
4228 }
4229 
4230 static inline void netif_tx_unlock_bh(struct net_device *dev)
4231 {
4232 	netif_tx_unlock(dev);
4233 	local_bh_enable();
4234 }
4235 
4236 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4237 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4238 		__netif_tx_lock(txq, cpu);		\
4239 	} else {					\
4240 		__netif_tx_acquire(txq);		\
4241 	}						\
4242 }
4243 
4244 #define HARD_TX_TRYLOCK(dev, txq)			\
4245 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4246 		__netif_tx_trylock(txq) :		\
4247 		__netif_tx_acquire(txq))
4248 
4249 #define HARD_TX_UNLOCK(dev, txq) {			\
4250 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4251 		__netif_tx_unlock(txq);			\
4252 	} else {					\
4253 		__netif_tx_release(txq);		\
4254 	}						\
4255 }
4256 
4257 static inline void netif_tx_disable(struct net_device *dev)
4258 {
4259 	unsigned int i;
4260 	int cpu;
4261 
4262 	local_bh_disable();
4263 	cpu = smp_processor_id();
4264 	for (i = 0; i < dev->num_tx_queues; i++) {
4265 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4266 
4267 		__netif_tx_lock(txq, cpu);
4268 		netif_tx_stop_queue(txq);
4269 		__netif_tx_unlock(txq);
4270 	}
4271 	local_bh_enable();
4272 }
4273 
4274 static inline void netif_addr_lock(struct net_device *dev)
4275 {
4276 	unsigned char nest_level = 0;
4277 
4278 #ifdef CONFIG_LOCKDEP
4279 	nest_level = dev->nested_level;
4280 #endif
4281 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4282 }
4283 
4284 static inline void netif_addr_lock_bh(struct net_device *dev)
4285 {
4286 	unsigned char nest_level = 0;
4287 
4288 #ifdef CONFIG_LOCKDEP
4289 	nest_level = dev->nested_level;
4290 #endif
4291 	local_bh_disable();
4292 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4293 }
4294 
4295 static inline void netif_addr_unlock(struct net_device *dev)
4296 {
4297 	spin_unlock(&dev->addr_list_lock);
4298 }
4299 
4300 static inline void netif_addr_unlock_bh(struct net_device *dev)
4301 {
4302 	spin_unlock_bh(&dev->addr_list_lock);
4303 }
4304 
4305 /*
4306  * dev_addrs walker. Should be used only for read access. Call with
4307  * rcu_read_lock held.
4308  */
4309 #define for_each_dev_addr(dev, ha) \
4310 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4311 
4312 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4313 
4314 void ether_setup(struct net_device *dev);
4315 
4316 /* Support for loadable net-drivers */
4317 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4318 				    unsigned char name_assign_type,
4319 				    void (*setup)(struct net_device *),
4320 				    unsigned int txqs, unsigned int rxqs);
4321 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4322 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4323 
4324 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4325 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4326 			 count)
4327 
4328 int register_netdev(struct net_device *dev);
4329 void unregister_netdev(struct net_device *dev);
4330 
4331 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4332 
4333 /* General hardware address lists handling functions */
4334 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4335 		   struct netdev_hw_addr_list *from_list, int addr_len);
4336 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4337 		      struct netdev_hw_addr_list *from_list, int addr_len);
4338 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4339 		       struct net_device *dev,
4340 		       int (*sync)(struct net_device *, const unsigned char *),
4341 		       int (*unsync)(struct net_device *,
4342 				     const unsigned char *));
4343 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4344 			   struct net_device *dev,
4345 			   int (*sync)(struct net_device *,
4346 				       const unsigned char *, int),
4347 			   int (*unsync)(struct net_device *,
4348 					 const unsigned char *, int));
4349 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4350 			      struct net_device *dev,
4351 			      int (*unsync)(struct net_device *,
4352 					    const unsigned char *, int));
4353 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4354 			  struct net_device *dev,
4355 			  int (*unsync)(struct net_device *,
4356 					const unsigned char *));
4357 void __hw_addr_init(struct netdev_hw_addr_list *list);
4358 
4359 /* Functions used for device addresses handling */
4360 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4361 		 unsigned char addr_type);
4362 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4363 		 unsigned char addr_type);
4364 void dev_addr_flush(struct net_device *dev);
4365 int dev_addr_init(struct net_device *dev);
4366 
4367 /* Functions used for unicast addresses handling */
4368 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4369 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4370 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4371 int dev_uc_sync(struct net_device *to, struct net_device *from);
4372 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4373 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4374 void dev_uc_flush(struct net_device *dev);
4375 void dev_uc_init(struct net_device *dev);
4376 
4377 /**
4378  *  __dev_uc_sync - Synchonize device's unicast list
4379  *  @dev:  device to sync
4380  *  @sync: function to call if address should be added
4381  *  @unsync: function to call if address should be removed
4382  *
4383  *  Add newly added addresses to the interface, and release
4384  *  addresses that have been deleted.
4385  */
4386 static inline int __dev_uc_sync(struct net_device *dev,
4387 				int (*sync)(struct net_device *,
4388 					    const unsigned char *),
4389 				int (*unsync)(struct net_device *,
4390 					      const unsigned char *))
4391 {
4392 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4393 }
4394 
4395 /**
4396  *  __dev_uc_unsync - Remove synchronized addresses from device
4397  *  @dev:  device to sync
4398  *  @unsync: function to call if address should be removed
4399  *
4400  *  Remove all addresses that were added to the device by dev_uc_sync().
4401  */
4402 static inline void __dev_uc_unsync(struct net_device *dev,
4403 				   int (*unsync)(struct net_device *,
4404 						 const unsigned char *))
4405 {
4406 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4407 }
4408 
4409 /* Functions used for multicast addresses handling */
4410 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4411 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4412 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4413 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4414 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4415 int dev_mc_sync(struct net_device *to, struct net_device *from);
4416 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4417 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4418 void dev_mc_flush(struct net_device *dev);
4419 void dev_mc_init(struct net_device *dev);
4420 
4421 /**
4422  *  __dev_mc_sync - Synchonize device's multicast list
4423  *  @dev:  device to sync
4424  *  @sync: function to call if address should be added
4425  *  @unsync: function to call if address should be removed
4426  *
4427  *  Add newly added addresses to the interface, and release
4428  *  addresses that have been deleted.
4429  */
4430 static inline int __dev_mc_sync(struct net_device *dev,
4431 				int (*sync)(struct net_device *,
4432 					    const unsigned char *),
4433 				int (*unsync)(struct net_device *,
4434 					      const unsigned char *))
4435 {
4436 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4437 }
4438 
4439 /**
4440  *  __dev_mc_unsync - Remove synchronized addresses from device
4441  *  @dev:  device to sync
4442  *  @unsync: function to call if address should be removed
4443  *
4444  *  Remove all addresses that were added to the device by dev_mc_sync().
4445  */
4446 static inline void __dev_mc_unsync(struct net_device *dev,
4447 				   int (*unsync)(struct net_device *,
4448 						 const unsigned char *))
4449 {
4450 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4451 }
4452 
4453 /* Functions used for secondary unicast and multicast support */
4454 void dev_set_rx_mode(struct net_device *dev);
4455 void __dev_set_rx_mode(struct net_device *dev);
4456 int dev_set_promiscuity(struct net_device *dev, int inc);
4457 int dev_set_allmulti(struct net_device *dev, int inc);
4458 void netdev_state_change(struct net_device *dev);
4459 void netdev_notify_peers(struct net_device *dev);
4460 void netdev_features_change(struct net_device *dev);
4461 /* Load a device via the kmod */
4462 void dev_load(struct net *net, const char *name);
4463 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4464 					struct rtnl_link_stats64 *storage);
4465 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4466 			     const struct net_device_stats *netdev_stats);
4467 
4468 extern int		netdev_max_backlog;
4469 extern int		netdev_tstamp_prequeue;
4470 extern int		weight_p;
4471 extern int		dev_weight_rx_bias;
4472 extern int		dev_weight_tx_bias;
4473 extern int		dev_rx_weight;
4474 extern int		dev_tx_weight;
4475 extern int		gro_normal_batch;
4476 
4477 enum {
4478 	NESTED_SYNC_IMM_BIT,
4479 	NESTED_SYNC_TODO_BIT,
4480 };
4481 
4482 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4483 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4484 
4485 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4486 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4487 
4488 struct netdev_nested_priv {
4489 	unsigned char flags;
4490 	void *data;
4491 };
4492 
4493 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4494 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4495 						     struct list_head **iter);
4496 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4497 						     struct list_head **iter);
4498 
4499 #ifdef CONFIG_LOCKDEP
4500 static LIST_HEAD(net_unlink_list);
4501 
4502 static inline void net_unlink_todo(struct net_device *dev)
4503 {
4504 	if (list_empty(&dev->unlink_list))
4505 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4506 }
4507 #endif
4508 
4509 /* iterate through upper list, must be called under RCU read lock */
4510 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4511 	for (iter = &(dev)->adj_list.upper, \
4512 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4513 	     updev; \
4514 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4515 
4516 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4517 				  int (*fn)(struct net_device *upper_dev,
4518 					    struct netdev_nested_priv *priv),
4519 				  struct netdev_nested_priv *priv);
4520 
4521 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4522 				  struct net_device *upper_dev);
4523 
4524 bool netdev_has_any_upper_dev(struct net_device *dev);
4525 
4526 void *netdev_lower_get_next_private(struct net_device *dev,
4527 				    struct list_head **iter);
4528 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4529 					struct list_head **iter);
4530 
4531 #define netdev_for_each_lower_private(dev, priv, iter) \
4532 	for (iter = (dev)->adj_list.lower.next, \
4533 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4534 	     priv; \
4535 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4536 
4537 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4538 	for (iter = &(dev)->adj_list.lower, \
4539 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4540 	     priv; \
4541 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4542 
4543 void *netdev_lower_get_next(struct net_device *dev,
4544 				struct list_head **iter);
4545 
4546 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4547 	for (iter = (dev)->adj_list.lower.next, \
4548 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4549 	     ldev; \
4550 	     ldev = netdev_lower_get_next(dev, &(iter)))
4551 
4552 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4553 					     struct list_head **iter);
4554 int netdev_walk_all_lower_dev(struct net_device *dev,
4555 			      int (*fn)(struct net_device *lower_dev,
4556 					struct netdev_nested_priv *priv),
4557 			      struct netdev_nested_priv *priv);
4558 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4559 				  int (*fn)(struct net_device *lower_dev,
4560 					    struct netdev_nested_priv *priv),
4561 				  struct netdev_nested_priv *priv);
4562 
4563 void *netdev_adjacent_get_private(struct list_head *adj_list);
4564 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4565 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4566 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4567 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4568 			  struct netlink_ext_ack *extack);
4569 int netdev_master_upper_dev_link(struct net_device *dev,
4570 				 struct net_device *upper_dev,
4571 				 void *upper_priv, void *upper_info,
4572 				 struct netlink_ext_ack *extack);
4573 void netdev_upper_dev_unlink(struct net_device *dev,
4574 			     struct net_device *upper_dev);
4575 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4576 				   struct net_device *new_dev,
4577 				   struct net_device *dev,
4578 				   struct netlink_ext_ack *extack);
4579 void netdev_adjacent_change_commit(struct net_device *old_dev,
4580 				   struct net_device *new_dev,
4581 				   struct net_device *dev);
4582 void netdev_adjacent_change_abort(struct net_device *old_dev,
4583 				  struct net_device *new_dev,
4584 				  struct net_device *dev);
4585 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4586 void *netdev_lower_dev_get_private(struct net_device *dev,
4587 				   struct net_device *lower_dev);
4588 void netdev_lower_state_changed(struct net_device *lower_dev,
4589 				void *lower_state_info);
4590 
4591 /* RSS keys are 40 or 52 bytes long */
4592 #define NETDEV_RSS_KEY_LEN 52
4593 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4594 void netdev_rss_key_fill(void *buffer, size_t len);
4595 
4596 int skb_checksum_help(struct sk_buff *skb);
4597 int skb_crc32c_csum_help(struct sk_buff *skb);
4598 int skb_csum_hwoffload_help(struct sk_buff *skb,
4599 			    const netdev_features_t features);
4600 
4601 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4602 				  netdev_features_t features, bool tx_path);
4603 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4604 				    netdev_features_t features);
4605 
4606 struct netdev_bonding_info {
4607 	ifslave	slave;
4608 	ifbond	master;
4609 };
4610 
4611 struct netdev_notifier_bonding_info {
4612 	struct netdev_notifier_info info; /* must be first */
4613 	struct netdev_bonding_info  bonding_info;
4614 };
4615 
4616 void netdev_bonding_info_change(struct net_device *dev,
4617 				struct netdev_bonding_info *bonding_info);
4618 
4619 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4620 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4621 #else
4622 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4623 				  const void *data)
4624 {
4625 }
4626 #endif
4627 
4628 static inline
4629 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4630 {
4631 	return __skb_gso_segment(skb, features, true);
4632 }
4633 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4634 
4635 static inline bool can_checksum_protocol(netdev_features_t features,
4636 					 __be16 protocol)
4637 {
4638 	if (protocol == htons(ETH_P_FCOE))
4639 		return !!(features & NETIF_F_FCOE_CRC);
4640 
4641 	/* Assume this is an IP checksum (not SCTP CRC) */
4642 
4643 	if (features & NETIF_F_HW_CSUM) {
4644 		/* Can checksum everything */
4645 		return true;
4646 	}
4647 
4648 	switch (protocol) {
4649 	case htons(ETH_P_IP):
4650 		return !!(features & NETIF_F_IP_CSUM);
4651 	case htons(ETH_P_IPV6):
4652 		return !!(features & NETIF_F_IPV6_CSUM);
4653 	default:
4654 		return false;
4655 	}
4656 }
4657 
4658 #ifdef CONFIG_BUG
4659 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4660 #else
4661 static inline void netdev_rx_csum_fault(struct net_device *dev,
4662 					struct sk_buff *skb)
4663 {
4664 }
4665 #endif
4666 /* rx skb timestamps */
4667 void net_enable_timestamp(void);
4668 void net_disable_timestamp(void);
4669 
4670 #ifdef CONFIG_PROC_FS
4671 int __init dev_proc_init(void);
4672 #else
4673 #define dev_proc_init() 0
4674 #endif
4675 
4676 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4677 					      struct sk_buff *skb, struct net_device *dev,
4678 					      bool more)
4679 {
4680 	__this_cpu_write(softnet_data.xmit.more, more);
4681 	return ops->ndo_start_xmit(skb, dev);
4682 }
4683 
4684 static inline bool netdev_xmit_more(void)
4685 {
4686 	return __this_cpu_read(softnet_data.xmit.more);
4687 }
4688 
4689 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4690 					    struct netdev_queue *txq, bool more)
4691 {
4692 	const struct net_device_ops *ops = dev->netdev_ops;
4693 	netdev_tx_t rc;
4694 
4695 	rc = __netdev_start_xmit(ops, skb, dev, more);
4696 	if (rc == NETDEV_TX_OK)
4697 		txq_trans_update(txq);
4698 
4699 	return rc;
4700 }
4701 
4702 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4703 				const void *ns);
4704 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4705 				 const void *ns);
4706 
4707 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4708 {
4709 	return netdev_class_create_file_ns(class_attr, NULL);
4710 }
4711 
4712 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4713 {
4714 	netdev_class_remove_file_ns(class_attr, NULL);
4715 }
4716 
4717 extern const struct kobj_ns_type_operations net_ns_type_operations;
4718 
4719 const char *netdev_drivername(const struct net_device *dev);
4720 
4721 void linkwatch_run_queue(void);
4722 
4723 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4724 							  netdev_features_t f2)
4725 {
4726 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4727 		if (f1 & NETIF_F_HW_CSUM)
4728 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4729 		else
4730 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4731 	}
4732 
4733 	return f1 & f2;
4734 }
4735 
4736 static inline netdev_features_t netdev_get_wanted_features(
4737 	struct net_device *dev)
4738 {
4739 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4740 }
4741 netdev_features_t netdev_increment_features(netdev_features_t all,
4742 	netdev_features_t one, netdev_features_t mask);
4743 
4744 /* Allow TSO being used on stacked device :
4745  * Performing the GSO segmentation before last device
4746  * is a performance improvement.
4747  */
4748 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4749 							netdev_features_t mask)
4750 {
4751 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4752 }
4753 
4754 int __netdev_update_features(struct net_device *dev);
4755 void netdev_update_features(struct net_device *dev);
4756 void netdev_change_features(struct net_device *dev);
4757 
4758 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4759 					struct net_device *dev);
4760 
4761 netdev_features_t passthru_features_check(struct sk_buff *skb,
4762 					  struct net_device *dev,
4763 					  netdev_features_t features);
4764 netdev_features_t netif_skb_features(struct sk_buff *skb);
4765 
4766 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4767 {
4768 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4769 
4770 	/* check flags correspondence */
4771 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4772 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4773 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4774 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4775 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4776 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4777 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4778 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4779 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4780 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4781 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4782 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4783 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4784 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4785 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4786 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4787 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4788 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4789 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4790 
4791 	return (features & feature) == feature;
4792 }
4793 
4794 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4795 {
4796 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4797 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4798 }
4799 
4800 static inline bool netif_needs_gso(struct sk_buff *skb,
4801 				   netdev_features_t features)
4802 {
4803 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4804 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4805 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4806 }
4807 
4808 static inline void netif_set_gso_max_size(struct net_device *dev,
4809 					  unsigned int size)
4810 {
4811 	dev->gso_max_size = size;
4812 }
4813 
4814 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4815 					int pulled_hlen, u16 mac_offset,
4816 					int mac_len)
4817 {
4818 	skb->protocol = protocol;
4819 	skb->encapsulation = 1;
4820 	skb_push(skb, pulled_hlen);
4821 	skb_reset_transport_header(skb);
4822 	skb->mac_header = mac_offset;
4823 	skb->network_header = skb->mac_header + mac_len;
4824 	skb->mac_len = mac_len;
4825 }
4826 
4827 static inline bool netif_is_macsec(const struct net_device *dev)
4828 {
4829 	return dev->priv_flags & IFF_MACSEC;
4830 }
4831 
4832 static inline bool netif_is_macvlan(const struct net_device *dev)
4833 {
4834 	return dev->priv_flags & IFF_MACVLAN;
4835 }
4836 
4837 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4838 {
4839 	return dev->priv_flags & IFF_MACVLAN_PORT;
4840 }
4841 
4842 static inline bool netif_is_bond_master(const struct net_device *dev)
4843 {
4844 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4845 }
4846 
4847 static inline bool netif_is_bond_slave(const struct net_device *dev)
4848 {
4849 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4850 }
4851 
4852 static inline bool netif_supports_nofcs(struct net_device *dev)
4853 {
4854 	return dev->priv_flags & IFF_SUPP_NOFCS;
4855 }
4856 
4857 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4858 {
4859 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4860 }
4861 
4862 static inline bool netif_is_l3_master(const struct net_device *dev)
4863 {
4864 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4865 }
4866 
4867 static inline bool netif_is_l3_slave(const struct net_device *dev)
4868 {
4869 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4870 }
4871 
4872 static inline bool netif_is_bridge_master(const struct net_device *dev)
4873 {
4874 	return dev->priv_flags & IFF_EBRIDGE;
4875 }
4876 
4877 static inline bool netif_is_bridge_port(const struct net_device *dev)
4878 {
4879 	return dev->priv_flags & IFF_BRIDGE_PORT;
4880 }
4881 
4882 static inline bool netif_is_ovs_master(const struct net_device *dev)
4883 {
4884 	return dev->priv_flags & IFF_OPENVSWITCH;
4885 }
4886 
4887 static inline bool netif_is_ovs_port(const struct net_device *dev)
4888 {
4889 	return dev->priv_flags & IFF_OVS_DATAPATH;
4890 }
4891 
4892 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4893 {
4894 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4895 }
4896 
4897 static inline bool netif_is_team_master(const struct net_device *dev)
4898 {
4899 	return dev->priv_flags & IFF_TEAM;
4900 }
4901 
4902 static inline bool netif_is_team_port(const struct net_device *dev)
4903 {
4904 	return dev->priv_flags & IFF_TEAM_PORT;
4905 }
4906 
4907 static inline bool netif_is_lag_master(const struct net_device *dev)
4908 {
4909 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4910 }
4911 
4912 static inline bool netif_is_lag_port(const struct net_device *dev)
4913 {
4914 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4915 }
4916 
4917 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4918 {
4919 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4920 }
4921 
4922 static inline bool netif_is_failover(const struct net_device *dev)
4923 {
4924 	return dev->priv_flags & IFF_FAILOVER;
4925 }
4926 
4927 static inline bool netif_is_failover_slave(const struct net_device *dev)
4928 {
4929 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4930 }
4931 
4932 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4933 static inline void netif_keep_dst(struct net_device *dev)
4934 {
4935 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4936 }
4937 
4938 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4939 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4940 {
4941 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4942 	return dev->priv_flags & IFF_MACSEC;
4943 }
4944 
4945 extern struct pernet_operations __net_initdata loopback_net_ops;
4946 
4947 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4948 
4949 /* netdev_printk helpers, similar to dev_printk */
4950 
4951 static inline const char *netdev_name(const struct net_device *dev)
4952 {
4953 	if (!dev->name[0] || strchr(dev->name, '%'))
4954 		return "(unnamed net_device)";
4955 	return dev->name;
4956 }
4957 
4958 static inline bool netdev_unregistering(const struct net_device *dev)
4959 {
4960 	return dev->reg_state == NETREG_UNREGISTERING;
4961 }
4962 
4963 static inline const char *netdev_reg_state(const struct net_device *dev)
4964 {
4965 	switch (dev->reg_state) {
4966 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4967 	case NETREG_REGISTERED: return "";
4968 	case NETREG_UNREGISTERING: return " (unregistering)";
4969 	case NETREG_UNREGISTERED: return " (unregistered)";
4970 	case NETREG_RELEASED: return " (released)";
4971 	case NETREG_DUMMY: return " (dummy)";
4972 	}
4973 
4974 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4975 	return " (unknown)";
4976 }
4977 
4978 __printf(3, 4) __cold
4979 void netdev_printk(const char *level, const struct net_device *dev,
4980 		   const char *format, ...);
4981 __printf(2, 3) __cold
4982 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4983 __printf(2, 3) __cold
4984 void netdev_alert(const struct net_device *dev, const char *format, ...);
4985 __printf(2, 3) __cold
4986 void netdev_crit(const struct net_device *dev, const char *format, ...);
4987 __printf(2, 3) __cold
4988 void netdev_err(const struct net_device *dev, const char *format, ...);
4989 __printf(2, 3) __cold
4990 void netdev_warn(const struct net_device *dev, const char *format, ...);
4991 __printf(2, 3) __cold
4992 void netdev_notice(const struct net_device *dev, const char *format, ...);
4993 __printf(2, 3) __cold
4994 void netdev_info(const struct net_device *dev, const char *format, ...);
4995 
4996 #define netdev_level_once(level, dev, fmt, ...)			\
4997 do {								\
4998 	static bool __print_once __read_mostly;			\
4999 								\
5000 	if (!__print_once) {					\
5001 		__print_once = true;				\
5002 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5003 	}							\
5004 } while (0)
5005 
5006 #define netdev_emerg_once(dev, fmt, ...) \
5007 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5008 #define netdev_alert_once(dev, fmt, ...) \
5009 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5010 #define netdev_crit_once(dev, fmt, ...) \
5011 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5012 #define netdev_err_once(dev, fmt, ...) \
5013 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5014 #define netdev_warn_once(dev, fmt, ...) \
5015 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5016 #define netdev_notice_once(dev, fmt, ...) \
5017 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5018 #define netdev_info_once(dev, fmt, ...) \
5019 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5020 
5021 #define MODULE_ALIAS_NETDEV(device) \
5022 	MODULE_ALIAS("netdev-" device)
5023 
5024 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5025 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5026 #define netdev_dbg(__dev, format, args...)			\
5027 do {								\
5028 	dynamic_netdev_dbg(__dev, format, ##args);		\
5029 } while (0)
5030 #elif defined(DEBUG)
5031 #define netdev_dbg(__dev, format, args...)			\
5032 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5033 #else
5034 #define netdev_dbg(__dev, format, args...)			\
5035 ({								\
5036 	if (0)							\
5037 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5038 })
5039 #endif
5040 
5041 #if defined(VERBOSE_DEBUG)
5042 #define netdev_vdbg	netdev_dbg
5043 #else
5044 
5045 #define netdev_vdbg(dev, format, args...)			\
5046 ({								\
5047 	if (0)							\
5048 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5049 	0;							\
5050 })
5051 #endif
5052 
5053 /*
5054  * netdev_WARN() acts like dev_printk(), but with the key difference
5055  * of using a WARN/WARN_ON to get the message out, including the
5056  * file/line information and a backtrace.
5057  */
5058 #define netdev_WARN(dev, format, args...)			\
5059 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5060 	     netdev_reg_state(dev), ##args)
5061 
5062 #define netdev_WARN_ONCE(dev, format, args...)				\
5063 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5064 		  netdev_reg_state(dev), ##args)
5065 
5066 /* netif printk helpers, similar to netdev_printk */
5067 
5068 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5069 do {					  			\
5070 	if (netif_msg_##type(priv))				\
5071 		netdev_printk(level, (dev), fmt, ##args);	\
5072 } while (0)
5073 
5074 #define netif_level(level, priv, type, dev, fmt, args...)	\
5075 do {								\
5076 	if (netif_msg_##type(priv))				\
5077 		netdev_##level(dev, fmt, ##args);		\
5078 } while (0)
5079 
5080 #define netif_emerg(priv, type, dev, fmt, args...)		\
5081 	netif_level(emerg, priv, type, dev, fmt, ##args)
5082 #define netif_alert(priv, type, dev, fmt, args...)		\
5083 	netif_level(alert, priv, type, dev, fmt, ##args)
5084 #define netif_crit(priv, type, dev, fmt, args...)		\
5085 	netif_level(crit, priv, type, dev, fmt, ##args)
5086 #define netif_err(priv, type, dev, fmt, args...)		\
5087 	netif_level(err, priv, type, dev, fmt, ##args)
5088 #define netif_warn(priv, type, dev, fmt, args...)		\
5089 	netif_level(warn, priv, type, dev, fmt, ##args)
5090 #define netif_notice(priv, type, dev, fmt, args...)		\
5091 	netif_level(notice, priv, type, dev, fmt, ##args)
5092 #define netif_info(priv, type, dev, fmt, args...)		\
5093 	netif_level(info, priv, type, dev, fmt, ##args)
5094 
5095 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5096 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5097 #define netif_dbg(priv, type, netdev, format, args...)		\
5098 do {								\
5099 	if (netif_msg_##type(priv))				\
5100 		dynamic_netdev_dbg(netdev, format, ##args);	\
5101 } while (0)
5102 #elif defined(DEBUG)
5103 #define netif_dbg(priv, type, dev, format, args...)		\
5104 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5105 #else
5106 #define netif_dbg(priv, type, dev, format, args...)			\
5107 ({									\
5108 	if (0)								\
5109 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5110 	0;								\
5111 })
5112 #endif
5113 
5114 /* if @cond then downgrade to debug, else print at @level */
5115 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5116 	do {                                                              \
5117 		if (cond)                                                 \
5118 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5119 		else                                                      \
5120 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5121 	} while (0)
5122 
5123 #if defined(VERBOSE_DEBUG)
5124 #define netif_vdbg	netif_dbg
5125 #else
5126 #define netif_vdbg(priv, type, dev, format, args...)		\
5127 ({								\
5128 	if (0)							\
5129 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5130 	0;							\
5131 })
5132 #endif
5133 
5134 /*
5135  *	The list of packet types we will receive (as opposed to discard)
5136  *	and the routines to invoke.
5137  *
5138  *	Why 16. Because with 16 the only overlap we get on a hash of the
5139  *	low nibble of the protocol value is RARP/SNAP/X.25.
5140  *
5141  *		0800	IP
5142  *		0001	802.3
5143  *		0002	AX.25
5144  *		0004	802.2
5145  *		8035	RARP
5146  *		0005	SNAP
5147  *		0805	X.25
5148  *		0806	ARP
5149  *		8137	IPX
5150  *		0009	Localtalk
5151  *		86DD	IPv6
5152  */
5153 #define PTYPE_HASH_SIZE	(16)
5154 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5155 
5156 extern struct net_device *blackhole_netdev;
5157 
5158 #endif	/* _LINUX_NETDEVICE_H */
5159