1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 48 #include <linux/netdev_features.h> 49 #include <linux/neighbour.h> 50 #include <uapi/linux/netdevice.h> 51 #include <uapi/linux/if_bonding.h> 52 #include <uapi/linux/pkt_cls.h> 53 #include <linux/hashtable.h> 54 55 struct netpoll_info; 56 struct device; 57 struct phy_device; 58 struct dsa_switch_tree; 59 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* 802.15.4 specific */ 63 struct wpan_dev; 64 struct mpls_dev; 65 /* UDP Tunnel offloads */ 66 struct udp_tunnel_info; 67 struct bpf_prog; 68 struct xdp_buff; 69 70 void netdev_set_default_ethtool_ops(struct net_device *dev, 71 const struct ethtool_ops *ops); 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously; in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106 /* Driver transmit return codes */ 107 #define NETDEV_TX_MASK 0xf0 108 109 enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 /* 135 * Compute the worst-case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_HYPERV_NET) 140 # define LL_MAX_HEADER 128 141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 extern struct static_key rfs_needed; 197 #endif 198 199 struct neighbour; 200 struct neigh_parms; 201 struct sk_buff; 202 203 struct netdev_hw_addr { 204 struct list_head list; 205 unsigned char addr[MAX_ADDR_LEN]; 206 unsigned char type; 207 #define NETDEV_HW_ADDR_T_LAN 1 208 #define NETDEV_HW_ADDR_T_SAN 2 209 #define NETDEV_HW_ADDR_T_SLAVE 3 210 #define NETDEV_HW_ADDR_T_UNICAST 4 211 #define NETDEV_HW_ADDR_T_MULTICAST 5 212 bool global_use; 213 int sync_cnt; 214 int refcount; 215 int synced; 216 struct rcu_head rcu_head; 217 }; 218 219 struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222 }; 223 224 #define netdev_hw_addr_list_count(l) ((l)->count) 225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226 #define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231 #define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236 #define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239 struct hh_cache { 240 unsigned int hh_len; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 int poll_owner; 321 #endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329 }; 330 331 enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_MISSED, /* reschedule a napi */ 334 NAPI_STATE_DISABLE, /* Disable pending */ 335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 339 }; 340 341 enum { 342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 349 }; 350 351 enum gro_result { 352 GRO_MERGED, 353 GRO_MERGED_FREE, 354 GRO_HELD, 355 GRO_NORMAL, 356 GRO_DROP, 357 GRO_CONSUMED, 358 }; 359 typedef enum gro_result gro_result_t; 360 361 /* 362 * enum rx_handler_result - Possible return values for rx_handlers. 363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 364 * further. 365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 366 * case skb->dev was changed by rx_handler. 367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 369 * 370 * rx_handlers are functions called from inside __netif_receive_skb(), to do 371 * special processing of the skb, prior to delivery to protocol handlers. 372 * 373 * Currently, a net_device can only have a single rx_handler registered. Trying 374 * to register a second rx_handler will return -EBUSY. 375 * 376 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 377 * To unregister a rx_handler on a net_device, use 378 * netdev_rx_handler_unregister(). 379 * 380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 381 * do with the skb. 382 * 383 * If the rx_handler consumed the skb in some way, it should return 384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 385 * the skb to be delivered in some other way. 386 * 387 * If the rx_handler changed skb->dev, to divert the skb to another 388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 389 * new device will be called if it exists. 390 * 391 * If the rx_handler decides the skb should be ignored, it should return 392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 393 * are registered on exact device (ptype->dev == skb->dev). 394 * 395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 396 * delivered, it should return RX_HANDLER_PASS. 397 * 398 * A device without a registered rx_handler will behave as if rx_handler 399 * returned RX_HANDLER_PASS. 400 */ 401 402 enum rx_handler_result { 403 RX_HANDLER_CONSUMED, 404 RX_HANDLER_ANOTHER, 405 RX_HANDLER_EXACT, 406 RX_HANDLER_PASS, 407 }; 408 typedef enum rx_handler_result rx_handler_result_t; 409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 410 411 void __napi_schedule(struct napi_struct *n); 412 void __napi_schedule_irqoff(struct napi_struct *n); 413 414 static inline bool napi_disable_pending(struct napi_struct *n) 415 { 416 return test_bit(NAPI_STATE_DISABLE, &n->state); 417 } 418 419 bool napi_schedule_prep(struct napi_struct *n); 420 421 /** 422 * napi_schedule - schedule NAPI poll 423 * @n: NAPI context 424 * 425 * Schedule NAPI poll routine to be called if it is not already 426 * running. 427 */ 428 static inline void napi_schedule(struct napi_struct *n) 429 { 430 if (napi_schedule_prep(n)) 431 __napi_schedule(n); 432 } 433 434 /** 435 * napi_schedule_irqoff - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Variant of napi_schedule(), assuming hard irqs are masked. 439 */ 440 static inline void napi_schedule_irqoff(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule_irqoff(n); 444 } 445 446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 447 static inline bool napi_reschedule(struct napi_struct *napi) 448 { 449 if (napi_schedule_prep(napi)) { 450 __napi_schedule(napi); 451 return true; 452 } 453 return false; 454 } 455 456 bool napi_complete_done(struct napi_struct *n, int work_done); 457 /** 458 * napi_complete - NAPI processing complete 459 * @n: NAPI context 460 * 461 * Mark NAPI processing as complete. 462 * Consider using napi_complete_done() instead. 463 * Return false if device should avoid rearming interrupts. 464 */ 465 static inline bool napi_complete(struct napi_struct *n) 466 { 467 return napi_complete_done(n, 0); 468 } 469 470 /** 471 * napi_hash_del - remove a NAPI from global table 472 * @napi: NAPI context 473 * 474 * Warning: caller must observe RCU grace period 475 * before freeing memory containing @napi, if 476 * this function returns true. 477 * Note: core networking stack automatically calls it 478 * from netif_napi_del(). 479 * Drivers might want to call this helper to combine all 480 * the needed RCU grace periods into a single one. 481 */ 482 bool napi_hash_del(struct napi_struct *napi); 483 484 /** 485 * napi_disable - prevent NAPI from scheduling 486 * @n: NAPI context 487 * 488 * Stop NAPI from being scheduled on this context. 489 * Waits till any outstanding processing completes. 490 */ 491 void napi_disable(struct napi_struct *n); 492 493 /** 494 * napi_enable - enable NAPI scheduling 495 * @n: NAPI context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500 static inline void napi_enable(struct napi_struct *n) 501 { 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_atomic(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505 clear_bit(NAPI_STATE_NPSVC, &n->state); 506 } 507 508 /** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: NAPI context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516 static inline void napi_synchronize(const struct napi_struct *n) 517 { 518 if (IS_ENABLED(CONFIG_SMP)) 519 while (test_bit(NAPI_STATE_SCHED, &n->state)) 520 msleep(1); 521 else 522 barrier(); 523 } 524 525 enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529 }; 530 531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 534 535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 537 QUEUE_STATE_FROZEN) 538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 541 /* 542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 543 * netif_tx_* functions below are used to manipulate this flag. The 544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 545 * queue independently. The netif_xmit_*stopped functions below are called 546 * to check if the queue has been stopped by the driver or stack (either 547 * of the XOFF bits are set in the state). Drivers should not need to call 548 * netif_xmit*stopped functions, they should only be using netif_tx_*. 549 */ 550 551 struct netdev_queue { 552 /* 553 * read-mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc __rcu *qdisc; 557 struct Qdisc *qdisc_sleeping; 558 #ifdef CONFIG_SYSFS 559 struct kobject kobj; 560 #endif 561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 int numa_node; 563 #endif 564 unsigned long tx_maxrate; 565 /* 566 * Number of TX timeouts for this queue 567 * (/sys/class/net/DEV/Q/trans_timeout) 568 */ 569 unsigned long trans_timeout; 570 /* 571 * write-mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * Time (in jiffies) of last Tx 577 */ 578 unsigned long trans_start; 579 580 unsigned long state; 581 582 #ifdef CONFIG_BQL 583 struct dql dql; 584 #endif 585 } ____cacheline_aligned_in_smp; 586 587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 588 { 589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 590 return q->numa_node; 591 #else 592 return NUMA_NO_NODE; 593 #endif 594 } 595 596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 q->numa_node = node; 600 #endif 601 } 602 603 #ifdef CONFIG_RPS 604 /* 605 * This structure holds an RPS map which can be of variable length. The 606 * map is an array of CPUs. 607 */ 608 struct rps_map { 609 unsigned int len; 610 struct rcu_head rcu; 611 u16 cpus[0]; 612 }; 613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 614 615 /* 616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 617 * tail pointer for that CPU's input queue at the time of last enqueue, and 618 * a hardware filter index. 619 */ 620 struct rps_dev_flow { 621 u16 cpu; 622 u16 filter; 623 unsigned int last_qtail; 624 }; 625 #define RPS_NO_FILTER 0xffff 626 627 /* 628 * The rps_dev_flow_table structure contains a table of flow mappings. 629 */ 630 struct rps_dev_flow_table { 631 unsigned int mask; 632 struct rcu_head rcu; 633 struct rps_dev_flow flows[0]; 634 }; 635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 636 ((_num) * sizeof(struct rps_dev_flow))) 637 638 /* 639 * The rps_sock_flow_table contains mappings of flows to the last CPU 640 * on which they were processed by the application (set in recvmsg). 641 * Each entry is a 32bit value. Upper part is the high-order bits 642 * of flow hash, lower part is CPU number. 643 * rps_cpu_mask is used to partition the space, depending on number of 644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 646 * meaning we use 32-6=26 bits for the hash. 647 */ 648 struct rps_sock_flow_table { 649 u32 mask; 650 651 u32 ents[0] ____cacheline_aligned_in_smp; 652 }; 653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 654 655 #define RPS_NO_CPU 0xffff 656 657 extern u32 rps_cpu_mask; 658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 659 660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 661 u32 hash) 662 { 663 if (table && hash) { 664 unsigned int index = hash & table->mask; 665 u32 val = hash & ~rps_cpu_mask; 666 667 /* We only give a hint, preemption can change CPU under us */ 668 val |= raw_smp_processor_id(); 669 670 if (table->ents[index] != val) 671 table->ents[index] = val; 672 } 673 } 674 675 #ifdef CONFIG_RFS_ACCEL 676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 677 u16 filter_id); 678 #endif 679 #endif /* CONFIG_RPS */ 680 681 /* This structure contains an instance of an RX queue. */ 682 struct netdev_rx_queue { 683 #ifdef CONFIG_RPS 684 struct rps_map __rcu *rps_map; 685 struct rps_dev_flow_table __rcu *rps_flow_table; 686 #endif 687 struct kobject kobj; 688 struct net_device *dev; 689 } ____cacheline_aligned_in_smp; 690 691 /* 692 * RX queue sysfs structures and functions. 693 */ 694 struct rx_queue_attribute { 695 struct attribute attr; 696 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 697 ssize_t (*store)(struct netdev_rx_queue *queue, 698 const char *buf, size_t len); 699 }; 700 701 #ifdef CONFIG_XPS 702 /* 703 * This structure holds an XPS map which can be of variable length. The 704 * map is an array of queues. 705 */ 706 struct xps_map { 707 unsigned int len; 708 unsigned int alloc_len; 709 struct rcu_head rcu; 710 u16 queues[0]; 711 }; 712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 714 - sizeof(struct xps_map)) / sizeof(u16)) 715 716 /* 717 * This structure holds all XPS maps for device. Maps are indexed by CPU. 718 */ 719 struct xps_dev_maps { 720 struct rcu_head rcu; 721 struct xps_map __rcu *cpu_map[0]; 722 }; 723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 724 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 725 #endif /* CONFIG_XPS */ 726 727 #define TC_MAX_QUEUE 16 728 #define TC_BITMASK 15 729 /* HW offloaded queuing disciplines txq count and offset maps */ 730 struct netdev_tc_txq { 731 u16 count; 732 u16 offset; 733 }; 734 735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 736 /* 737 * This structure is to hold information about the device 738 * configured to run FCoE protocol stack. 739 */ 740 struct netdev_fcoe_hbainfo { 741 char manufacturer[64]; 742 char serial_number[64]; 743 char hardware_version[64]; 744 char driver_version[64]; 745 char optionrom_version[64]; 746 char firmware_version[64]; 747 char model[256]; 748 char model_description[256]; 749 }; 750 #endif 751 752 #define MAX_PHYS_ITEM_ID_LEN 32 753 754 /* This structure holds a unique identifier to identify some 755 * physical item (port for example) used by a netdevice. 756 */ 757 struct netdev_phys_item_id { 758 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 759 unsigned char id_len; 760 }; 761 762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 763 struct netdev_phys_item_id *b) 764 { 765 return a->id_len == b->id_len && 766 memcmp(a->id, b->id, a->id_len) == 0; 767 } 768 769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 770 struct sk_buff *skb); 771 772 enum tc_setup_type { 773 TC_SETUP_MQPRIO, 774 TC_SETUP_CLSU32, 775 TC_SETUP_CLSFLOWER, 776 TC_SETUP_CLSMATCHALL, 777 TC_SETUP_CLSBPF, 778 }; 779 780 /* These structures hold the attributes of xdp state that are being passed 781 * to the netdevice through the xdp op. 782 */ 783 enum xdp_netdev_command { 784 /* Set or clear a bpf program used in the earliest stages of packet 785 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 786 * is responsible for calling bpf_prog_put on any old progs that are 787 * stored. In case of error, the callee need not release the new prog 788 * reference, but on success it takes ownership and must bpf_prog_put 789 * when it is no longer used. 790 */ 791 XDP_SETUP_PROG, 792 XDP_SETUP_PROG_HW, 793 /* Check if a bpf program is set on the device. The callee should 794 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 795 * is equivalent to XDP_ATTACHED_DRV. 796 */ 797 XDP_QUERY_PROG, 798 }; 799 800 struct netlink_ext_ack; 801 802 struct netdev_xdp { 803 enum xdp_netdev_command command; 804 union { 805 /* XDP_SETUP_PROG */ 806 struct { 807 u32 flags; 808 struct bpf_prog *prog; 809 struct netlink_ext_ack *extack; 810 }; 811 /* XDP_QUERY_PROG */ 812 struct { 813 u8 prog_attached; 814 u32 prog_id; 815 }; 816 }; 817 }; 818 819 #ifdef CONFIG_XFRM_OFFLOAD 820 struct xfrmdev_ops { 821 int (*xdo_dev_state_add) (struct xfrm_state *x); 822 void (*xdo_dev_state_delete) (struct xfrm_state *x); 823 void (*xdo_dev_state_free) (struct xfrm_state *x); 824 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 825 struct xfrm_state *x); 826 }; 827 #endif 828 829 /* 830 * This structure defines the management hooks for network devices. 831 * The following hooks can be defined; unless noted otherwise, they are 832 * optional and can be filled with a null pointer. 833 * 834 * int (*ndo_init)(struct net_device *dev); 835 * This function is called once when a network device is registered. 836 * The network device can use this for any late stage initialization 837 * or semantic validation. It can fail with an error code which will 838 * be propagated back to register_netdev. 839 * 840 * void (*ndo_uninit)(struct net_device *dev); 841 * This function is called when device is unregistered or when registration 842 * fails. It is not called if init fails. 843 * 844 * int (*ndo_open)(struct net_device *dev); 845 * This function is called when a network device transitions to the up 846 * state. 847 * 848 * int (*ndo_stop)(struct net_device *dev); 849 * This function is called when a network device transitions to the down 850 * state. 851 * 852 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 853 * struct net_device *dev); 854 * Called when a packet needs to be transmitted. 855 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 856 * the queue before that can happen; it's for obsolete devices and weird 857 * corner cases, but the stack really does a non-trivial amount 858 * of useless work if you return NETDEV_TX_BUSY. 859 * Required; cannot be NULL. 860 * 861 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 862 * struct net_device *dev 863 * netdev_features_t features); 864 * Called by core transmit path to determine if device is capable of 865 * performing offload operations on a given packet. This is to give 866 * the device an opportunity to implement any restrictions that cannot 867 * be otherwise expressed by feature flags. The check is called with 868 * the set of features that the stack has calculated and it returns 869 * those the driver believes to be appropriate. 870 * 871 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 872 * void *accel_priv, select_queue_fallback_t fallback); 873 * Called to decide which queue to use when device supports multiple 874 * transmit queues. 875 * 876 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 877 * This function is called to allow device receiver to make 878 * changes to configuration when multicast or promiscuous is enabled. 879 * 880 * void (*ndo_set_rx_mode)(struct net_device *dev); 881 * This function is called device changes address list filtering. 882 * If driver handles unicast address filtering, it should set 883 * IFF_UNICAST_FLT in its priv_flags. 884 * 885 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 886 * This function is called when the Media Access Control address 887 * needs to be changed. If this interface is not defined, the 888 * MAC address can not be changed. 889 * 890 * int (*ndo_validate_addr)(struct net_device *dev); 891 * Test if Media Access Control address is valid for the device. 892 * 893 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 894 * Called when a user requests an ioctl which can't be handled by 895 * the generic interface code. If not defined ioctls return 896 * not supported error code. 897 * 898 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 899 * Used to set network devices bus interface parameters. This interface 900 * is retained for legacy reasons; new devices should use the bus 901 * interface (PCI) for low level management. 902 * 903 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 904 * Called when a user wants to change the Maximum Transfer Unit 905 * of a device. 906 * 907 * void (*ndo_tx_timeout)(struct net_device *dev); 908 * Callback used when the transmitter has not made any progress 909 * for dev->watchdog ticks. 910 * 911 * void (*ndo_get_stats64)(struct net_device *dev, 912 * struct rtnl_link_stats64 *storage); 913 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 914 * Called when a user wants to get the network device usage 915 * statistics. Drivers must do one of the following: 916 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 917 * rtnl_link_stats64 structure passed by the caller. 918 * 2. Define @ndo_get_stats to update a net_device_stats structure 919 * (which should normally be dev->stats) and return a pointer to 920 * it. The structure may be changed asynchronously only if each 921 * field is written atomically. 922 * 3. Update dev->stats asynchronously and atomically, and define 923 * neither operation. 924 * 925 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 926 * Return true if this device supports offload stats of this attr_id. 927 * 928 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 929 * void *attr_data) 930 * Get statistics for offload operations by attr_id. Write it into the 931 * attr_data pointer. 932 * 933 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 934 * If device supports VLAN filtering this function is called when a 935 * VLAN id is registered. 936 * 937 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 938 * If device supports VLAN filtering this function is called when a 939 * VLAN id is unregistered. 940 * 941 * void (*ndo_poll_controller)(struct net_device *dev); 942 * 943 * SR-IOV management functions. 944 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 945 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 946 * u8 qos, __be16 proto); 947 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 948 * int max_tx_rate); 949 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 950 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 951 * int (*ndo_get_vf_config)(struct net_device *dev, 952 * int vf, struct ifla_vf_info *ivf); 953 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 954 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 955 * struct nlattr *port[]); 956 * 957 * Enable or disable the VF ability to query its RSS Redirection Table and 958 * Hash Key. This is needed since on some devices VF share this information 959 * with PF and querying it may introduce a theoretical security risk. 960 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 961 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 962 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 963 * void *type_data); 964 * Called to setup any 'tc' scheduler, classifier or action on @dev. 965 * This is always called from the stack with the rtnl lock held and netif 966 * tx queues stopped. This allows the netdevice to perform queue 967 * management safely. 968 * 969 * Fiber Channel over Ethernet (FCoE) offload functions. 970 * int (*ndo_fcoe_enable)(struct net_device *dev); 971 * Called when the FCoE protocol stack wants to start using LLD for FCoE 972 * so the underlying device can perform whatever needed configuration or 973 * initialization to support acceleration of FCoE traffic. 974 * 975 * int (*ndo_fcoe_disable)(struct net_device *dev); 976 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 977 * so the underlying device can perform whatever needed clean-ups to 978 * stop supporting acceleration of FCoE traffic. 979 * 980 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 981 * struct scatterlist *sgl, unsigned int sgc); 982 * Called when the FCoE Initiator wants to initialize an I/O that 983 * is a possible candidate for Direct Data Placement (DDP). The LLD can 984 * perform necessary setup and returns 1 to indicate the device is set up 985 * successfully to perform DDP on this I/O, otherwise this returns 0. 986 * 987 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 988 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 989 * indicated by the FC exchange id 'xid', so the underlying device can 990 * clean up and reuse resources for later DDP requests. 991 * 992 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 993 * struct scatterlist *sgl, unsigned int sgc); 994 * Called when the FCoE Target wants to initialize an I/O that 995 * is a possible candidate for Direct Data Placement (DDP). The LLD can 996 * perform necessary setup and returns 1 to indicate the device is set up 997 * successfully to perform DDP on this I/O, otherwise this returns 0. 998 * 999 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1000 * struct netdev_fcoe_hbainfo *hbainfo); 1001 * Called when the FCoE Protocol stack wants information on the underlying 1002 * device. This information is utilized by the FCoE protocol stack to 1003 * register attributes with Fiber Channel management service as per the 1004 * FC-GS Fabric Device Management Information(FDMI) specification. 1005 * 1006 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1007 * Called when the underlying device wants to override default World Wide 1008 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1009 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1010 * protocol stack to use. 1011 * 1012 * RFS acceleration. 1013 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1014 * u16 rxq_index, u32 flow_id); 1015 * Set hardware filter for RFS. rxq_index is the target queue index; 1016 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1017 * Return the filter ID on success, or a negative error code. 1018 * 1019 * Slave management functions (for bridge, bonding, etc). 1020 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1021 * Called to make another netdev an underling. 1022 * 1023 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1024 * Called to release previously enslaved netdev. 1025 * 1026 * Feature/offload setting functions. 1027 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1028 * netdev_features_t features); 1029 * Adjusts the requested feature flags according to device-specific 1030 * constraints, and returns the resulting flags. Must not modify 1031 * the device state. 1032 * 1033 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1034 * Called to update device configuration to new features. Passed 1035 * feature set might be less than what was returned by ndo_fix_features()). 1036 * Must return >0 or -errno if it changed dev->features itself. 1037 * 1038 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1039 * struct net_device *dev, 1040 * const unsigned char *addr, u16 vid, u16 flags) 1041 * Adds an FDB entry to dev for addr. 1042 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1043 * struct net_device *dev, 1044 * const unsigned char *addr, u16 vid) 1045 * Deletes the FDB entry from dev coresponding to addr. 1046 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1047 * struct net_device *dev, struct net_device *filter_dev, 1048 * int *idx) 1049 * Used to add FDB entries to dump requests. Implementers should add 1050 * entries to skb and update idx with the number of entries. 1051 * 1052 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1053 * u16 flags) 1054 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1055 * struct net_device *dev, u32 filter_mask, 1056 * int nlflags) 1057 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1058 * u16 flags); 1059 * 1060 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1061 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1062 * which do not represent real hardware may define this to allow their 1063 * userspace components to manage their virtual carrier state. Devices 1064 * that determine carrier state from physical hardware properties (eg 1065 * network cables) or protocol-dependent mechanisms (eg 1066 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1067 * 1068 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1069 * struct netdev_phys_item_id *ppid); 1070 * Called to get ID of physical port of this device. If driver does 1071 * not implement this, it is assumed that the hw is not able to have 1072 * multiple net devices on single physical port. 1073 * 1074 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1075 * struct udp_tunnel_info *ti); 1076 * Called by UDP tunnel to notify a driver about the UDP port and socket 1077 * address family that a UDP tunnel is listnening to. It is called only 1078 * when a new port starts listening. The operation is protected by the 1079 * RTNL. 1080 * 1081 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1082 * struct udp_tunnel_info *ti); 1083 * Called by UDP tunnel to notify the driver about a UDP port and socket 1084 * address family that the UDP tunnel is not listening to anymore. The 1085 * operation is protected by the RTNL. 1086 * 1087 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1088 * struct net_device *dev) 1089 * Called by upper layer devices to accelerate switching or other 1090 * station functionality into hardware. 'pdev is the lowerdev 1091 * to use for the offload and 'dev' is the net device that will 1092 * back the offload. Returns a pointer to the private structure 1093 * the upper layer will maintain. 1094 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1095 * Called by upper layer device to delete the station created 1096 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1097 * the station and priv is the structure returned by the add 1098 * operation. 1099 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1100 * int queue_index, u32 maxrate); 1101 * Called when a user wants to set a max-rate limitation of specific 1102 * TX queue. 1103 * int (*ndo_get_iflink)(const struct net_device *dev); 1104 * Called to get the iflink value of this device. 1105 * void (*ndo_change_proto_down)(struct net_device *dev, 1106 * bool proto_down); 1107 * This function is used to pass protocol port error state information 1108 * to the switch driver. The switch driver can react to the proto_down 1109 * by doing a phys down on the associated switch port. 1110 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1111 * This function is used to get egress tunnel information for given skb. 1112 * This is useful for retrieving outer tunnel header parameters while 1113 * sampling packet. 1114 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1115 * This function is used to specify the headroom that the skb must 1116 * consider when allocation skb during packet reception. Setting 1117 * appropriate rx headroom value allows avoiding skb head copy on 1118 * forward. Setting a negative value resets the rx headroom to the 1119 * default value. 1120 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1121 * This function is used to set or query state related to XDP on the 1122 * netdevice. See definition of enum xdp_netdev_command for details. 1123 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1124 * This function is used to submit a XDP packet for transmit on a 1125 * netdevice. 1126 * void (*ndo_xdp_flush)(struct net_device *dev); 1127 * This function is used to inform the driver to flush a particular 1128 * xdp tx queue. Must be called on same CPU as xdp_xmit. 1129 */ 1130 struct net_device_ops { 1131 int (*ndo_init)(struct net_device *dev); 1132 void (*ndo_uninit)(struct net_device *dev); 1133 int (*ndo_open)(struct net_device *dev); 1134 int (*ndo_stop)(struct net_device *dev); 1135 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1136 struct net_device *dev); 1137 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1138 struct net_device *dev, 1139 netdev_features_t features); 1140 u16 (*ndo_select_queue)(struct net_device *dev, 1141 struct sk_buff *skb, 1142 void *accel_priv, 1143 select_queue_fallback_t fallback); 1144 void (*ndo_change_rx_flags)(struct net_device *dev, 1145 int flags); 1146 void (*ndo_set_rx_mode)(struct net_device *dev); 1147 int (*ndo_set_mac_address)(struct net_device *dev, 1148 void *addr); 1149 int (*ndo_validate_addr)(struct net_device *dev); 1150 int (*ndo_do_ioctl)(struct net_device *dev, 1151 struct ifreq *ifr, int cmd); 1152 int (*ndo_set_config)(struct net_device *dev, 1153 struct ifmap *map); 1154 int (*ndo_change_mtu)(struct net_device *dev, 1155 int new_mtu); 1156 int (*ndo_neigh_setup)(struct net_device *dev, 1157 struct neigh_parms *); 1158 void (*ndo_tx_timeout) (struct net_device *dev); 1159 1160 void (*ndo_get_stats64)(struct net_device *dev, 1161 struct rtnl_link_stats64 *storage); 1162 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1163 int (*ndo_get_offload_stats)(int attr_id, 1164 const struct net_device *dev, 1165 void *attr_data); 1166 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1167 1168 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1169 __be16 proto, u16 vid); 1170 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1171 __be16 proto, u16 vid); 1172 #ifdef CONFIG_NET_POLL_CONTROLLER 1173 void (*ndo_poll_controller)(struct net_device *dev); 1174 int (*ndo_netpoll_setup)(struct net_device *dev, 1175 struct netpoll_info *info); 1176 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1177 #endif 1178 int (*ndo_set_vf_mac)(struct net_device *dev, 1179 int queue, u8 *mac); 1180 int (*ndo_set_vf_vlan)(struct net_device *dev, 1181 int queue, u16 vlan, 1182 u8 qos, __be16 proto); 1183 int (*ndo_set_vf_rate)(struct net_device *dev, 1184 int vf, int min_tx_rate, 1185 int max_tx_rate); 1186 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1187 int vf, bool setting); 1188 int (*ndo_set_vf_trust)(struct net_device *dev, 1189 int vf, bool setting); 1190 int (*ndo_get_vf_config)(struct net_device *dev, 1191 int vf, 1192 struct ifla_vf_info *ivf); 1193 int (*ndo_set_vf_link_state)(struct net_device *dev, 1194 int vf, int link_state); 1195 int (*ndo_get_vf_stats)(struct net_device *dev, 1196 int vf, 1197 struct ifla_vf_stats 1198 *vf_stats); 1199 int (*ndo_set_vf_port)(struct net_device *dev, 1200 int vf, 1201 struct nlattr *port[]); 1202 int (*ndo_get_vf_port)(struct net_device *dev, 1203 int vf, struct sk_buff *skb); 1204 int (*ndo_set_vf_guid)(struct net_device *dev, 1205 int vf, u64 guid, 1206 int guid_type); 1207 int (*ndo_set_vf_rss_query_en)( 1208 struct net_device *dev, 1209 int vf, bool setting); 1210 int (*ndo_setup_tc)(struct net_device *dev, 1211 enum tc_setup_type type, 1212 void *type_data); 1213 #if IS_ENABLED(CONFIG_FCOE) 1214 int (*ndo_fcoe_enable)(struct net_device *dev); 1215 int (*ndo_fcoe_disable)(struct net_device *dev); 1216 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1217 u16 xid, 1218 struct scatterlist *sgl, 1219 unsigned int sgc); 1220 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1221 u16 xid); 1222 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1223 u16 xid, 1224 struct scatterlist *sgl, 1225 unsigned int sgc); 1226 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1227 struct netdev_fcoe_hbainfo *hbainfo); 1228 #endif 1229 1230 #if IS_ENABLED(CONFIG_LIBFCOE) 1231 #define NETDEV_FCOE_WWNN 0 1232 #define NETDEV_FCOE_WWPN 1 1233 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1234 u64 *wwn, int type); 1235 #endif 1236 1237 #ifdef CONFIG_RFS_ACCEL 1238 int (*ndo_rx_flow_steer)(struct net_device *dev, 1239 const struct sk_buff *skb, 1240 u16 rxq_index, 1241 u32 flow_id); 1242 #endif 1243 int (*ndo_add_slave)(struct net_device *dev, 1244 struct net_device *slave_dev); 1245 int (*ndo_del_slave)(struct net_device *dev, 1246 struct net_device *slave_dev); 1247 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1248 netdev_features_t features); 1249 int (*ndo_set_features)(struct net_device *dev, 1250 netdev_features_t features); 1251 int (*ndo_neigh_construct)(struct net_device *dev, 1252 struct neighbour *n); 1253 void (*ndo_neigh_destroy)(struct net_device *dev, 1254 struct neighbour *n); 1255 1256 int (*ndo_fdb_add)(struct ndmsg *ndm, 1257 struct nlattr *tb[], 1258 struct net_device *dev, 1259 const unsigned char *addr, 1260 u16 vid, 1261 u16 flags); 1262 int (*ndo_fdb_del)(struct ndmsg *ndm, 1263 struct nlattr *tb[], 1264 struct net_device *dev, 1265 const unsigned char *addr, 1266 u16 vid); 1267 int (*ndo_fdb_dump)(struct sk_buff *skb, 1268 struct netlink_callback *cb, 1269 struct net_device *dev, 1270 struct net_device *filter_dev, 1271 int *idx); 1272 1273 int (*ndo_bridge_setlink)(struct net_device *dev, 1274 struct nlmsghdr *nlh, 1275 u16 flags); 1276 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1277 u32 pid, u32 seq, 1278 struct net_device *dev, 1279 u32 filter_mask, 1280 int nlflags); 1281 int (*ndo_bridge_dellink)(struct net_device *dev, 1282 struct nlmsghdr *nlh, 1283 u16 flags); 1284 int (*ndo_change_carrier)(struct net_device *dev, 1285 bool new_carrier); 1286 int (*ndo_get_phys_port_id)(struct net_device *dev, 1287 struct netdev_phys_item_id *ppid); 1288 int (*ndo_get_phys_port_name)(struct net_device *dev, 1289 char *name, size_t len); 1290 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1291 struct udp_tunnel_info *ti); 1292 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1293 struct udp_tunnel_info *ti); 1294 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1295 struct net_device *dev); 1296 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1297 void *priv); 1298 1299 int (*ndo_get_lock_subclass)(struct net_device *dev); 1300 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1301 int queue_index, 1302 u32 maxrate); 1303 int (*ndo_get_iflink)(const struct net_device *dev); 1304 int (*ndo_change_proto_down)(struct net_device *dev, 1305 bool proto_down); 1306 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1307 struct sk_buff *skb); 1308 void (*ndo_set_rx_headroom)(struct net_device *dev, 1309 int needed_headroom); 1310 int (*ndo_xdp)(struct net_device *dev, 1311 struct netdev_xdp *xdp); 1312 int (*ndo_xdp_xmit)(struct net_device *dev, 1313 struct xdp_buff *xdp); 1314 void (*ndo_xdp_flush)(struct net_device *dev); 1315 }; 1316 1317 /** 1318 * enum net_device_priv_flags - &struct net_device priv_flags 1319 * 1320 * These are the &struct net_device, they are only set internally 1321 * by drivers and used in the kernel. These flags are invisible to 1322 * userspace; this means that the order of these flags can change 1323 * during any kernel release. 1324 * 1325 * You should have a pretty good reason to be extending these flags. 1326 * 1327 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1328 * @IFF_EBRIDGE: Ethernet bridging device 1329 * @IFF_BONDING: bonding master or slave 1330 * @IFF_ISATAP: ISATAP interface (RFC4214) 1331 * @IFF_WAN_HDLC: WAN HDLC device 1332 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1333 * release skb->dst 1334 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1335 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1336 * @IFF_MACVLAN_PORT: device used as macvlan port 1337 * @IFF_BRIDGE_PORT: device used as bridge port 1338 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1339 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1340 * @IFF_UNICAST_FLT: Supports unicast filtering 1341 * @IFF_TEAM_PORT: device used as team port 1342 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1343 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1344 * change when it's running 1345 * @IFF_MACVLAN: Macvlan device 1346 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1347 * underlying stacked devices 1348 * @IFF_IPVLAN_MASTER: IPvlan master device 1349 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1350 * @IFF_L3MDEV_MASTER: device is an L3 master device 1351 * @IFF_NO_QUEUE: device can run without qdisc attached 1352 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1353 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1354 * @IFF_TEAM: device is a team device 1355 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1356 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1357 * entity (i.e. the master device for bridged veth) 1358 * @IFF_MACSEC: device is a MACsec device 1359 */ 1360 enum netdev_priv_flags { 1361 IFF_802_1Q_VLAN = 1<<0, 1362 IFF_EBRIDGE = 1<<1, 1363 IFF_BONDING = 1<<2, 1364 IFF_ISATAP = 1<<3, 1365 IFF_WAN_HDLC = 1<<4, 1366 IFF_XMIT_DST_RELEASE = 1<<5, 1367 IFF_DONT_BRIDGE = 1<<6, 1368 IFF_DISABLE_NETPOLL = 1<<7, 1369 IFF_MACVLAN_PORT = 1<<8, 1370 IFF_BRIDGE_PORT = 1<<9, 1371 IFF_OVS_DATAPATH = 1<<10, 1372 IFF_TX_SKB_SHARING = 1<<11, 1373 IFF_UNICAST_FLT = 1<<12, 1374 IFF_TEAM_PORT = 1<<13, 1375 IFF_SUPP_NOFCS = 1<<14, 1376 IFF_LIVE_ADDR_CHANGE = 1<<15, 1377 IFF_MACVLAN = 1<<16, 1378 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1379 IFF_IPVLAN_MASTER = 1<<18, 1380 IFF_IPVLAN_SLAVE = 1<<19, 1381 IFF_L3MDEV_MASTER = 1<<20, 1382 IFF_NO_QUEUE = 1<<21, 1383 IFF_OPENVSWITCH = 1<<22, 1384 IFF_L3MDEV_SLAVE = 1<<23, 1385 IFF_TEAM = 1<<24, 1386 IFF_RXFH_CONFIGURED = 1<<25, 1387 IFF_PHONY_HEADROOM = 1<<26, 1388 IFF_MACSEC = 1<<27, 1389 }; 1390 1391 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1392 #define IFF_EBRIDGE IFF_EBRIDGE 1393 #define IFF_BONDING IFF_BONDING 1394 #define IFF_ISATAP IFF_ISATAP 1395 #define IFF_WAN_HDLC IFF_WAN_HDLC 1396 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1397 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1398 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1399 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1400 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1401 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1402 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1403 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1404 #define IFF_TEAM_PORT IFF_TEAM_PORT 1405 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1406 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1407 #define IFF_MACVLAN IFF_MACVLAN 1408 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1409 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1410 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1411 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1412 #define IFF_NO_QUEUE IFF_NO_QUEUE 1413 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1414 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1415 #define IFF_TEAM IFF_TEAM 1416 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1417 #define IFF_MACSEC IFF_MACSEC 1418 1419 /** 1420 * struct net_device - The DEVICE structure. 1421 * 1422 * Actually, this whole structure is a big mistake. It mixes I/O 1423 * data with strictly "high-level" data, and it has to know about 1424 * almost every data structure used in the INET module. 1425 * 1426 * @name: This is the first field of the "visible" part of this structure 1427 * (i.e. as seen by users in the "Space.c" file). It is the name 1428 * of the interface. 1429 * 1430 * @name_hlist: Device name hash chain, please keep it close to name[] 1431 * @ifalias: SNMP alias 1432 * @mem_end: Shared memory end 1433 * @mem_start: Shared memory start 1434 * @base_addr: Device I/O address 1435 * @irq: Device IRQ number 1436 * 1437 * @carrier_changes: Stats to monitor carrier on<->off transitions 1438 * 1439 * @state: Generic network queuing layer state, see netdev_state_t 1440 * @dev_list: The global list of network devices 1441 * @napi_list: List entry used for polling NAPI devices 1442 * @unreg_list: List entry when we are unregistering the 1443 * device; see the function unregister_netdev 1444 * @close_list: List entry used when we are closing the device 1445 * @ptype_all: Device-specific packet handlers for all protocols 1446 * @ptype_specific: Device-specific, protocol-specific packet handlers 1447 * 1448 * @adj_list: Directly linked devices, like slaves for bonding 1449 * @features: Currently active device features 1450 * @hw_features: User-changeable features 1451 * 1452 * @wanted_features: User-requested features 1453 * @vlan_features: Mask of features inheritable by VLAN devices 1454 * 1455 * @hw_enc_features: Mask of features inherited by encapsulating devices 1456 * This field indicates what encapsulation 1457 * offloads the hardware is capable of doing, 1458 * and drivers will need to set them appropriately. 1459 * 1460 * @mpls_features: Mask of features inheritable by MPLS 1461 * 1462 * @ifindex: interface index 1463 * @group: The group the device belongs to 1464 * 1465 * @stats: Statistics struct, which was left as a legacy, use 1466 * rtnl_link_stats64 instead 1467 * 1468 * @rx_dropped: Dropped packets by core network, 1469 * do not use this in drivers 1470 * @tx_dropped: Dropped packets by core network, 1471 * do not use this in drivers 1472 * @rx_nohandler: nohandler dropped packets by core network on 1473 * inactive devices, do not use this in drivers 1474 * 1475 * @wireless_handlers: List of functions to handle Wireless Extensions, 1476 * instead of ioctl, 1477 * see <net/iw_handler.h> for details. 1478 * @wireless_data: Instance data managed by the core of wireless extensions 1479 * 1480 * @netdev_ops: Includes several pointers to callbacks, 1481 * if one wants to override the ndo_*() functions 1482 * @ethtool_ops: Management operations 1483 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1484 * discovery handling. Necessary for e.g. 6LoWPAN. 1485 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1486 * of Layer 2 headers. 1487 * 1488 * @flags: Interface flags (a la BSD) 1489 * @priv_flags: Like 'flags' but invisible to userspace, 1490 * see if.h for the definitions 1491 * @gflags: Global flags ( kept as legacy ) 1492 * @padded: How much padding added by alloc_netdev() 1493 * @operstate: RFC2863 operstate 1494 * @link_mode: Mapping policy to operstate 1495 * @if_port: Selectable AUI, TP, ... 1496 * @dma: DMA channel 1497 * @mtu: Interface MTU value 1498 * @min_mtu: Interface Minimum MTU value 1499 * @max_mtu: Interface Maximum MTU value 1500 * @type: Interface hardware type 1501 * @hard_header_len: Maximum hardware header length. 1502 * @min_header_len: Minimum hardware header length 1503 * 1504 * @needed_headroom: Extra headroom the hardware may need, but not in all 1505 * cases can this be guaranteed 1506 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1507 * cases can this be guaranteed. Some cases also use 1508 * LL_MAX_HEADER instead to allocate the skb 1509 * 1510 * interface address info: 1511 * 1512 * @perm_addr: Permanent hw address 1513 * @addr_assign_type: Hw address assignment type 1514 * @addr_len: Hardware address length 1515 * @neigh_priv_len: Used in neigh_alloc() 1516 * @dev_id: Used to differentiate devices that share 1517 * the same link layer address 1518 * @dev_port: Used to differentiate devices that share 1519 * the same function 1520 * @addr_list_lock: XXX: need comments on this one 1521 * @uc_promisc: Counter that indicates promiscuous mode 1522 * has been enabled due to the need to listen to 1523 * additional unicast addresses in a device that 1524 * does not implement ndo_set_rx_mode() 1525 * @uc: unicast mac addresses 1526 * @mc: multicast mac addresses 1527 * @dev_addrs: list of device hw addresses 1528 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1529 * @promiscuity: Number of times the NIC is told to work in 1530 * promiscuous mode; if it becomes 0 the NIC will 1531 * exit promiscuous mode 1532 * @allmulti: Counter, enables or disables allmulticast mode 1533 * 1534 * @vlan_info: VLAN info 1535 * @dsa_ptr: dsa specific data 1536 * @tipc_ptr: TIPC specific data 1537 * @atalk_ptr: AppleTalk link 1538 * @ip_ptr: IPv4 specific data 1539 * @dn_ptr: DECnet specific data 1540 * @ip6_ptr: IPv6 specific data 1541 * @ax25_ptr: AX.25 specific data 1542 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1543 * 1544 * @dev_addr: Hw address (before bcast, 1545 * because most packets are unicast) 1546 * 1547 * @_rx: Array of RX queues 1548 * @num_rx_queues: Number of RX queues 1549 * allocated at register_netdev() time 1550 * @real_num_rx_queues: Number of RX queues currently active in device 1551 * 1552 * @rx_handler: handler for received packets 1553 * @rx_handler_data: XXX: need comments on this one 1554 * @ingress_queue: XXX: need comments on this one 1555 * @broadcast: hw bcast address 1556 * 1557 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1558 * indexed by RX queue number. Assigned by driver. 1559 * This must only be set if the ndo_rx_flow_steer 1560 * operation is defined 1561 * @index_hlist: Device index hash chain 1562 * 1563 * @_tx: Array of TX queues 1564 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1565 * @real_num_tx_queues: Number of TX queues currently active in device 1566 * @qdisc: Root qdisc from userspace point of view 1567 * @tx_queue_len: Max frames per queue allowed 1568 * @tx_global_lock: XXX: need comments on this one 1569 * 1570 * @xps_maps: XXX: need comments on this one 1571 * 1572 * @watchdog_timeo: Represents the timeout that is used by 1573 * the watchdog (see dev_watchdog()) 1574 * @watchdog_timer: List of timers 1575 * 1576 * @pcpu_refcnt: Number of references to this device 1577 * @todo_list: Delayed register/unregister 1578 * @link_watch_list: XXX: need comments on this one 1579 * 1580 * @reg_state: Register/unregister state machine 1581 * @dismantle: Device is going to be freed 1582 * @rtnl_link_state: This enum represents the phases of creating 1583 * a new link 1584 * 1585 * @needs_free_netdev: Should unregister perform free_netdev? 1586 * @priv_destructor: Called from unregister 1587 * @npinfo: XXX: need comments on this one 1588 * @nd_net: Network namespace this network device is inside 1589 * 1590 * @ml_priv: Mid-layer private 1591 * @lstats: Loopback statistics 1592 * @tstats: Tunnel statistics 1593 * @dstats: Dummy statistics 1594 * @vstats: Virtual ethernet statistics 1595 * 1596 * @garp_port: GARP 1597 * @mrp_port: MRP 1598 * 1599 * @dev: Class/net/name entry 1600 * @sysfs_groups: Space for optional device, statistics and wireless 1601 * sysfs groups 1602 * 1603 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1604 * @rtnl_link_ops: Rtnl_link_ops 1605 * 1606 * @gso_max_size: Maximum size of generic segmentation offload 1607 * @gso_max_segs: Maximum number of segments that can be passed to the 1608 * NIC for GSO 1609 * 1610 * @dcbnl_ops: Data Center Bridging netlink ops 1611 * @num_tc: Number of traffic classes in the net device 1612 * @tc_to_txq: XXX: need comments on this one 1613 * @prio_tc_map: XXX: need comments on this one 1614 * 1615 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1616 * 1617 * @priomap: XXX: need comments on this one 1618 * @phydev: Physical device may attach itself 1619 * for hardware timestamping 1620 * 1621 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1622 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1623 * 1624 * @proto_down: protocol port state information can be sent to the 1625 * switch driver and used to set the phys state of the 1626 * switch port. 1627 * 1628 * FIXME: cleanup struct net_device such that network protocol info 1629 * moves out. 1630 */ 1631 1632 struct net_device { 1633 char name[IFNAMSIZ]; 1634 struct hlist_node name_hlist; 1635 char *ifalias; 1636 /* 1637 * I/O specific fields 1638 * FIXME: Merge these and struct ifmap into one 1639 */ 1640 unsigned long mem_end; 1641 unsigned long mem_start; 1642 unsigned long base_addr; 1643 int irq; 1644 1645 atomic_t carrier_changes; 1646 1647 /* 1648 * Some hardware also needs these fields (state,dev_list, 1649 * napi_list,unreg_list,close_list) but they are not 1650 * part of the usual set specified in Space.c. 1651 */ 1652 1653 unsigned long state; 1654 1655 struct list_head dev_list; 1656 struct list_head napi_list; 1657 struct list_head unreg_list; 1658 struct list_head close_list; 1659 struct list_head ptype_all; 1660 struct list_head ptype_specific; 1661 1662 struct { 1663 struct list_head upper; 1664 struct list_head lower; 1665 } adj_list; 1666 1667 netdev_features_t features; 1668 netdev_features_t hw_features; 1669 netdev_features_t wanted_features; 1670 netdev_features_t vlan_features; 1671 netdev_features_t hw_enc_features; 1672 netdev_features_t mpls_features; 1673 netdev_features_t gso_partial_features; 1674 1675 int ifindex; 1676 int group; 1677 1678 struct net_device_stats stats; 1679 1680 atomic_long_t rx_dropped; 1681 atomic_long_t tx_dropped; 1682 atomic_long_t rx_nohandler; 1683 1684 #ifdef CONFIG_WIRELESS_EXT 1685 const struct iw_handler_def *wireless_handlers; 1686 struct iw_public_data *wireless_data; 1687 #endif 1688 const struct net_device_ops *netdev_ops; 1689 const struct ethtool_ops *ethtool_ops; 1690 #ifdef CONFIG_NET_SWITCHDEV 1691 const struct switchdev_ops *switchdev_ops; 1692 #endif 1693 #ifdef CONFIG_NET_L3_MASTER_DEV 1694 const struct l3mdev_ops *l3mdev_ops; 1695 #endif 1696 #if IS_ENABLED(CONFIG_IPV6) 1697 const struct ndisc_ops *ndisc_ops; 1698 #endif 1699 1700 #ifdef CONFIG_XFRM 1701 const struct xfrmdev_ops *xfrmdev_ops; 1702 #endif 1703 1704 const struct header_ops *header_ops; 1705 1706 unsigned int flags; 1707 unsigned int priv_flags; 1708 1709 unsigned short gflags; 1710 unsigned short padded; 1711 1712 unsigned char operstate; 1713 unsigned char link_mode; 1714 1715 unsigned char if_port; 1716 unsigned char dma; 1717 1718 unsigned int mtu; 1719 unsigned int min_mtu; 1720 unsigned int max_mtu; 1721 unsigned short type; 1722 unsigned short hard_header_len; 1723 unsigned char min_header_len; 1724 1725 unsigned short needed_headroom; 1726 unsigned short needed_tailroom; 1727 1728 /* Interface address info. */ 1729 unsigned char perm_addr[MAX_ADDR_LEN]; 1730 unsigned char addr_assign_type; 1731 unsigned char addr_len; 1732 unsigned short neigh_priv_len; 1733 unsigned short dev_id; 1734 unsigned short dev_port; 1735 spinlock_t addr_list_lock; 1736 unsigned char name_assign_type; 1737 bool uc_promisc; 1738 struct netdev_hw_addr_list uc; 1739 struct netdev_hw_addr_list mc; 1740 struct netdev_hw_addr_list dev_addrs; 1741 1742 #ifdef CONFIG_SYSFS 1743 struct kset *queues_kset; 1744 #endif 1745 unsigned int promiscuity; 1746 unsigned int allmulti; 1747 1748 1749 /* Protocol-specific pointers */ 1750 1751 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1752 struct vlan_info __rcu *vlan_info; 1753 #endif 1754 #if IS_ENABLED(CONFIG_NET_DSA) 1755 struct dsa_switch_tree *dsa_ptr; 1756 #endif 1757 #if IS_ENABLED(CONFIG_TIPC) 1758 struct tipc_bearer __rcu *tipc_ptr; 1759 #endif 1760 void *atalk_ptr; 1761 struct in_device __rcu *ip_ptr; 1762 struct dn_dev __rcu *dn_ptr; 1763 struct inet6_dev __rcu *ip6_ptr; 1764 void *ax25_ptr; 1765 struct wireless_dev *ieee80211_ptr; 1766 struct wpan_dev *ieee802154_ptr; 1767 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1768 struct mpls_dev __rcu *mpls_ptr; 1769 #endif 1770 1771 /* 1772 * Cache lines mostly used on receive path (including eth_type_trans()) 1773 */ 1774 /* Interface address info used in eth_type_trans() */ 1775 unsigned char *dev_addr; 1776 1777 #ifdef CONFIG_SYSFS 1778 struct netdev_rx_queue *_rx; 1779 1780 unsigned int num_rx_queues; 1781 unsigned int real_num_rx_queues; 1782 #endif 1783 1784 struct bpf_prog __rcu *xdp_prog; 1785 unsigned long gro_flush_timeout; 1786 rx_handler_func_t __rcu *rx_handler; 1787 void __rcu *rx_handler_data; 1788 1789 #ifdef CONFIG_NET_CLS_ACT 1790 struct tcf_proto __rcu *ingress_cl_list; 1791 #endif 1792 struct netdev_queue __rcu *ingress_queue; 1793 #ifdef CONFIG_NETFILTER_INGRESS 1794 struct nf_hook_entries __rcu *nf_hooks_ingress; 1795 #endif 1796 1797 unsigned char broadcast[MAX_ADDR_LEN]; 1798 #ifdef CONFIG_RFS_ACCEL 1799 struct cpu_rmap *rx_cpu_rmap; 1800 #endif 1801 struct hlist_node index_hlist; 1802 1803 /* 1804 * Cache lines mostly used on transmit path 1805 */ 1806 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1807 unsigned int num_tx_queues; 1808 unsigned int real_num_tx_queues; 1809 struct Qdisc *qdisc; 1810 #ifdef CONFIG_NET_SCHED 1811 DECLARE_HASHTABLE (qdisc_hash, 4); 1812 #endif 1813 unsigned int tx_queue_len; 1814 spinlock_t tx_global_lock; 1815 int watchdog_timeo; 1816 1817 #ifdef CONFIG_XPS 1818 struct xps_dev_maps __rcu *xps_maps; 1819 #endif 1820 #ifdef CONFIG_NET_CLS_ACT 1821 struct tcf_proto __rcu *egress_cl_list; 1822 #endif 1823 1824 /* These may be needed for future network-power-down code. */ 1825 struct timer_list watchdog_timer; 1826 1827 int __percpu *pcpu_refcnt; 1828 struct list_head todo_list; 1829 1830 struct list_head link_watch_list; 1831 1832 enum { NETREG_UNINITIALIZED=0, 1833 NETREG_REGISTERED, /* completed register_netdevice */ 1834 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1835 NETREG_UNREGISTERED, /* completed unregister todo */ 1836 NETREG_RELEASED, /* called free_netdev */ 1837 NETREG_DUMMY, /* dummy device for NAPI poll */ 1838 } reg_state:8; 1839 1840 bool dismantle; 1841 1842 enum { 1843 RTNL_LINK_INITIALIZED, 1844 RTNL_LINK_INITIALIZING, 1845 } rtnl_link_state:16; 1846 1847 bool needs_free_netdev; 1848 void (*priv_destructor)(struct net_device *dev); 1849 1850 #ifdef CONFIG_NETPOLL 1851 struct netpoll_info __rcu *npinfo; 1852 #endif 1853 1854 possible_net_t nd_net; 1855 1856 /* mid-layer private */ 1857 union { 1858 void *ml_priv; 1859 struct pcpu_lstats __percpu *lstats; 1860 struct pcpu_sw_netstats __percpu *tstats; 1861 struct pcpu_dstats __percpu *dstats; 1862 struct pcpu_vstats __percpu *vstats; 1863 }; 1864 1865 #if IS_ENABLED(CONFIG_GARP) 1866 struct garp_port __rcu *garp_port; 1867 #endif 1868 #if IS_ENABLED(CONFIG_MRP) 1869 struct mrp_port __rcu *mrp_port; 1870 #endif 1871 1872 struct device dev; 1873 const struct attribute_group *sysfs_groups[4]; 1874 const struct attribute_group *sysfs_rx_queue_group; 1875 1876 const struct rtnl_link_ops *rtnl_link_ops; 1877 1878 /* for setting kernel sock attribute on TCP connection setup */ 1879 #define GSO_MAX_SIZE 65536 1880 unsigned int gso_max_size; 1881 #define GSO_MAX_SEGS 65535 1882 u16 gso_max_segs; 1883 1884 #ifdef CONFIG_DCB 1885 const struct dcbnl_rtnl_ops *dcbnl_ops; 1886 #endif 1887 u8 num_tc; 1888 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1889 u8 prio_tc_map[TC_BITMASK + 1]; 1890 1891 #if IS_ENABLED(CONFIG_FCOE) 1892 unsigned int fcoe_ddp_xid; 1893 #endif 1894 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1895 struct netprio_map __rcu *priomap; 1896 #endif 1897 struct phy_device *phydev; 1898 struct lock_class_key *qdisc_tx_busylock; 1899 struct lock_class_key *qdisc_running_key; 1900 bool proto_down; 1901 }; 1902 #define to_net_dev(d) container_of(d, struct net_device, dev) 1903 1904 static inline bool netif_elide_gro(const struct net_device *dev) 1905 { 1906 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1907 return true; 1908 return false; 1909 } 1910 1911 #define NETDEV_ALIGN 32 1912 1913 static inline 1914 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1915 { 1916 return dev->prio_tc_map[prio & TC_BITMASK]; 1917 } 1918 1919 static inline 1920 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1921 { 1922 if (tc >= dev->num_tc) 1923 return -EINVAL; 1924 1925 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1926 return 0; 1927 } 1928 1929 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1930 void netdev_reset_tc(struct net_device *dev); 1931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1932 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1933 1934 static inline 1935 int netdev_get_num_tc(struct net_device *dev) 1936 { 1937 return dev->num_tc; 1938 } 1939 1940 static inline 1941 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1942 unsigned int index) 1943 { 1944 return &dev->_tx[index]; 1945 } 1946 1947 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1948 const struct sk_buff *skb) 1949 { 1950 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1951 } 1952 1953 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1954 void (*f)(struct net_device *, 1955 struct netdev_queue *, 1956 void *), 1957 void *arg) 1958 { 1959 unsigned int i; 1960 1961 for (i = 0; i < dev->num_tx_queues; i++) 1962 f(dev, &dev->_tx[i], arg); 1963 } 1964 1965 #define netdev_lockdep_set_classes(dev) \ 1966 { \ 1967 static struct lock_class_key qdisc_tx_busylock_key; \ 1968 static struct lock_class_key qdisc_running_key; \ 1969 static struct lock_class_key qdisc_xmit_lock_key; \ 1970 static struct lock_class_key dev_addr_list_lock_key; \ 1971 unsigned int i; \ 1972 \ 1973 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1974 (dev)->qdisc_running_key = &qdisc_running_key; \ 1975 lockdep_set_class(&(dev)->addr_list_lock, \ 1976 &dev_addr_list_lock_key); \ 1977 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1978 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1979 &qdisc_xmit_lock_key); \ 1980 } 1981 1982 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1983 struct sk_buff *skb, 1984 void *accel_priv); 1985 1986 /* returns the headroom that the master device needs to take in account 1987 * when forwarding to this dev 1988 */ 1989 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1990 { 1991 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1992 } 1993 1994 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1995 { 1996 if (dev->netdev_ops->ndo_set_rx_headroom) 1997 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1998 } 1999 2000 /* set the device rx headroom to the dev's default */ 2001 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2002 { 2003 netdev_set_rx_headroom(dev, -1); 2004 } 2005 2006 /* 2007 * Net namespace inlines 2008 */ 2009 static inline 2010 struct net *dev_net(const struct net_device *dev) 2011 { 2012 return read_pnet(&dev->nd_net); 2013 } 2014 2015 static inline 2016 void dev_net_set(struct net_device *dev, struct net *net) 2017 { 2018 write_pnet(&dev->nd_net, net); 2019 } 2020 2021 /** 2022 * netdev_priv - access network device private data 2023 * @dev: network device 2024 * 2025 * Get network device private data 2026 */ 2027 static inline void *netdev_priv(const struct net_device *dev) 2028 { 2029 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2030 } 2031 2032 /* Set the sysfs physical device reference for the network logical device 2033 * if set prior to registration will cause a symlink during initialization. 2034 */ 2035 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2036 2037 /* Set the sysfs device type for the network logical device to allow 2038 * fine-grained identification of different network device types. For 2039 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2040 */ 2041 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2042 2043 /* Default NAPI poll() weight 2044 * Device drivers are strongly advised to not use bigger value 2045 */ 2046 #define NAPI_POLL_WEIGHT 64 2047 2048 /** 2049 * netif_napi_add - initialize a NAPI context 2050 * @dev: network device 2051 * @napi: NAPI context 2052 * @poll: polling function 2053 * @weight: default weight 2054 * 2055 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2056 * *any* of the other NAPI-related functions. 2057 */ 2058 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2059 int (*poll)(struct napi_struct *, int), int weight); 2060 2061 /** 2062 * netif_tx_napi_add - initialize a NAPI context 2063 * @dev: network device 2064 * @napi: NAPI context 2065 * @poll: polling function 2066 * @weight: default weight 2067 * 2068 * This variant of netif_napi_add() should be used from drivers using NAPI 2069 * to exclusively poll a TX queue. 2070 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2071 */ 2072 static inline void netif_tx_napi_add(struct net_device *dev, 2073 struct napi_struct *napi, 2074 int (*poll)(struct napi_struct *, int), 2075 int weight) 2076 { 2077 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2078 netif_napi_add(dev, napi, poll, weight); 2079 } 2080 2081 /** 2082 * netif_napi_del - remove a NAPI context 2083 * @napi: NAPI context 2084 * 2085 * netif_napi_del() removes a NAPI context from the network device NAPI list 2086 */ 2087 void netif_napi_del(struct napi_struct *napi); 2088 2089 struct napi_gro_cb { 2090 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2091 void *frag0; 2092 2093 /* Length of frag0. */ 2094 unsigned int frag0_len; 2095 2096 /* This indicates where we are processing relative to skb->data. */ 2097 int data_offset; 2098 2099 /* This is non-zero if the packet cannot be merged with the new skb. */ 2100 u16 flush; 2101 2102 /* Save the IP ID here and check when we get to the transport layer */ 2103 u16 flush_id; 2104 2105 /* Number of segments aggregated. */ 2106 u16 count; 2107 2108 /* Start offset for remote checksum offload */ 2109 u16 gro_remcsum_start; 2110 2111 /* jiffies when first packet was created/queued */ 2112 unsigned long age; 2113 2114 /* Used in ipv6_gro_receive() and foo-over-udp */ 2115 u16 proto; 2116 2117 /* This is non-zero if the packet may be of the same flow. */ 2118 u8 same_flow:1; 2119 2120 /* Used in tunnel GRO receive */ 2121 u8 encap_mark:1; 2122 2123 /* GRO checksum is valid */ 2124 u8 csum_valid:1; 2125 2126 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2127 u8 csum_cnt:3; 2128 2129 /* Free the skb? */ 2130 u8 free:2; 2131 #define NAPI_GRO_FREE 1 2132 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2133 2134 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2135 u8 is_ipv6:1; 2136 2137 /* Used in GRE, set in fou/gue_gro_receive */ 2138 u8 is_fou:1; 2139 2140 /* Used to determine if flush_id can be ignored */ 2141 u8 is_atomic:1; 2142 2143 /* Number of gro_receive callbacks this packet already went through */ 2144 u8 recursion_counter:4; 2145 2146 /* 1 bit hole */ 2147 2148 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2149 __wsum csum; 2150 2151 /* used in skb_gro_receive() slow path */ 2152 struct sk_buff *last; 2153 }; 2154 2155 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2156 2157 #define GRO_RECURSION_LIMIT 15 2158 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2159 { 2160 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2161 } 2162 2163 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2164 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2165 struct sk_buff **head, 2166 struct sk_buff *skb) 2167 { 2168 if (unlikely(gro_recursion_inc_test(skb))) { 2169 NAPI_GRO_CB(skb)->flush |= 1; 2170 return NULL; 2171 } 2172 2173 return cb(head, skb); 2174 } 2175 2176 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2177 struct sk_buff *); 2178 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2179 struct sock *sk, 2180 struct sk_buff **head, 2181 struct sk_buff *skb) 2182 { 2183 if (unlikely(gro_recursion_inc_test(skb))) { 2184 NAPI_GRO_CB(skb)->flush |= 1; 2185 return NULL; 2186 } 2187 2188 return cb(sk, head, skb); 2189 } 2190 2191 struct packet_type { 2192 __be16 type; /* This is really htons(ether_type). */ 2193 struct net_device *dev; /* NULL is wildcarded here */ 2194 int (*func) (struct sk_buff *, 2195 struct net_device *, 2196 struct packet_type *, 2197 struct net_device *); 2198 bool (*id_match)(struct packet_type *ptype, 2199 struct sock *sk); 2200 void *af_packet_priv; 2201 struct list_head list; 2202 }; 2203 2204 struct offload_callbacks { 2205 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2206 netdev_features_t features); 2207 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2208 struct sk_buff *skb); 2209 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2210 }; 2211 2212 struct packet_offload { 2213 __be16 type; /* This is really htons(ether_type). */ 2214 u16 priority; 2215 struct offload_callbacks callbacks; 2216 struct list_head list; 2217 }; 2218 2219 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2220 struct pcpu_sw_netstats { 2221 u64 rx_packets; 2222 u64 rx_bytes; 2223 u64 tx_packets; 2224 u64 tx_bytes; 2225 struct u64_stats_sync syncp; 2226 }; 2227 2228 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2229 ({ \ 2230 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2231 if (pcpu_stats) { \ 2232 int __cpu; \ 2233 for_each_possible_cpu(__cpu) { \ 2234 typeof(type) *stat; \ 2235 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2236 u64_stats_init(&stat->syncp); \ 2237 } \ 2238 } \ 2239 pcpu_stats; \ 2240 }) 2241 2242 #define netdev_alloc_pcpu_stats(type) \ 2243 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2244 2245 enum netdev_lag_tx_type { 2246 NETDEV_LAG_TX_TYPE_UNKNOWN, 2247 NETDEV_LAG_TX_TYPE_RANDOM, 2248 NETDEV_LAG_TX_TYPE_BROADCAST, 2249 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2250 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2251 NETDEV_LAG_TX_TYPE_HASH, 2252 }; 2253 2254 struct netdev_lag_upper_info { 2255 enum netdev_lag_tx_type tx_type; 2256 }; 2257 2258 struct netdev_lag_lower_state_info { 2259 u8 link_up : 1, 2260 tx_enabled : 1; 2261 }; 2262 2263 #include <linux/notifier.h> 2264 2265 /* netdevice notifier chain. Please remember to update the rtnetlink 2266 * notification exclusion list in rtnetlink_event() when adding new 2267 * types. 2268 */ 2269 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2270 #define NETDEV_DOWN 0x0002 2271 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2272 detected a hardware crash and restarted 2273 - we can use this eg to kick tcp sessions 2274 once done */ 2275 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2276 #define NETDEV_REGISTER 0x0005 2277 #define NETDEV_UNREGISTER 0x0006 2278 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2279 #define NETDEV_CHANGEADDR 0x0008 2280 #define NETDEV_GOING_DOWN 0x0009 2281 #define NETDEV_CHANGENAME 0x000A 2282 #define NETDEV_FEAT_CHANGE 0x000B 2283 #define NETDEV_BONDING_FAILOVER 0x000C 2284 #define NETDEV_PRE_UP 0x000D 2285 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2286 #define NETDEV_POST_TYPE_CHANGE 0x000F 2287 #define NETDEV_POST_INIT 0x0010 2288 #define NETDEV_UNREGISTER_FINAL 0x0011 2289 #define NETDEV_RELEASE 0x0012 2290 #define NETDEV_NOTIFY_PEERS 0x0013 2291 #define NETDEV_JOIN 0x0014 2292 #define NETDEV_CHANGEUPPER 0x0015 2293 #define NETDEV_RESEND_IGMP 0x0016 2294 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2295 #define NETDEV_CHANGEINFODATA 0x0018 2296 #define NETDEV_BONDING_INFO 0x0019 2297 #define NETDEV_PRECHANGEUPPER 0x001A 2298 #define NETDEV_CHANGELOWERSTATE 0x001B 2299 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2300 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D 2301 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2302 2303 int register_netdevice_notifier(struct notifier_block *nb); 2304 int unregister_netdevice_notifier(struct notifier_block *nb); 2305 2306 struct netdev_notifier_info { 2307 struct net_device *dev; 2308 }; 2309 2310 struct netdev_notifier_change_info { 2311 struct netdev_notifier_info info; /* must be first */ 2312 unsigned int flags_changed; 2313 }; 2314 2315 struct netdev_notifier_changeupper_info { 2316 struct netdev_notifier_info info; /* must be first */ 2317 struct net_device *upper_dev; /* new upper dev */ 2318 bool master; /* is upper dev master */ 2319 bool linking; /* is the notification for link or unlink */ 2320 void *upper_info; /* upper dev info */ 2321 }; 2322 2323 struct netdev_notifier_changelowerstate_info { 2324 struct netdev_notifier_info info; /* must be first */ 2325 void *lower_state_info; /* is lower dev state */ 2326 }; 2327 2328 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2329 struct net_device *dev) 2330 { 2331 info->dev = dev; 2332 } 2333 2334 static inline struct net_device * 2335 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2336 { 2337 return info->dev; 2338 } 2339 2340 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2341 2342 2343 extern rwlock_t dev_base_lock; /* Device list lock */ 2344 2345 #define for_each_netdev(net, d) \ 2346 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2347 #define for_each_netdev_reverse(net, d) \ 2348 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2349 #define for_each_netdev_rcu(net, d) \ 2350 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2351 #define for_each_netdev_safe(net, d, n) \ 2352 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2353 #define for_each_netdev_continue(net, d) \ 2354 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2355 #define for_each_netdev_continue_rcu(net, d) \ 2356 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2357 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2358 for_each_netdev_rcu(&init_net, slave) \ 2359 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2360 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2361 2362 static inline struct net_device *next_net_device(struct net_device *dev) 2363 { 2364 struct list_head *lh; 2365 struct net *net; 2366 2367 net = dev_net(dev); 2368 lh = dev->dev_list.next; 2369 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2370 } 2371 2372 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2373 { 2374 struct list_head *lh; 2375 struct net *net; 2376 2377 net = dev_net(dev); 2378 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2379 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2380 } 2381 2382 static inline struct net_device *first_net_device(struct net *net) 2383 { 2384 return list_empty(&net->dev_base_head) ? NULL : 2385 net_device_entry(net->dev_base_head.next); 2386 } 2387 2388 static inline struct net_device *first_net_device_rcu(struct net *net) 2389 { 2390 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2391 2392 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2393 } 2394 2395 int netdev_boot_setup_check(struct net_device *dev); 2396 unsigned long netdev_boot_base(const char *prefix, int unit); 2397 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2398 const char *hwaddr); 2399 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2400 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2401 void dev_add_pack(struct packet_type *pt); 2402 void dev_remove_pack(struct packet_type *pt); 2403 void __dev_remove_pack(struct packet_type *pt); 2404 void dev_add_offload(struct packet_offload *po); 2405 void dev_remove_offload(struct packet_offload *po); 2406 2407 int dev_get_iflink(const struct net_device *dev); 2408 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2409 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2410 unsigned short mask); 2411 struct net_device *dev_get_by_name(struct net *net, const char *name); 2412 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2413 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2414 int dev_alloc_name(struct net_device *dev, const char *name); 2415 int dev_open(struct net_device *dev); 2416 void dev_close(struct net_device *dev); 2417 void dev_close_many(struct list_head *head, bool unlink); 2418 void dev_disable_lro(struct net_device *dev); 2419 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2420 int dev_queue_xmit(struct sk_buff *skb); 2421 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2422 int register_netdevice(struct net_device *dev); 2423 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2424 void unregister_netdevice_many(struct list_head *head); 2425 static inline void unregister_netdevice(struct net_device *dev) 2426 { 2427 unregister_netdevice_queue(dev, NULL); 2428 } 2429 2430 int netdev_refcnt_read(const struct net_device *dev); 2431 void free_netdev(struct net_device *dev); 2432 void netdev_freemem(struct net_device *dev); 2433 void synchronize_net(void); 2434 int init_dummy_netdev(struct net_device *dev); 2435 2436 DECLARE_PER_CPU(int, xmit_recursion); 2437 #define XMIT_RECURSION_LIMIT 10 2438 2439 static inline int dev_recursion_level(void) 2440 { 2441 return this_cpu_read(xmit_recursion); 2442 } 2443 2444 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2445 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2446 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2447 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2448 int netdev_get_name(struct net *net, char *name, int ifindex); 2449 int dev_restart(struct net_device *dev); 2450 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2451 2452 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2453 { 2454 return NAPI_GRO_CB(skb)->data_offset; 2455 } 2456 2457 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2458 { 2459 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2460 } 2461 2462 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2463 { 2464 NAPI_GRO_CB(skb)->data_offset += len; 2465 } 2466 2467 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2468 unsigned int offset) 2469 { 2470 return NAPI_GRO_CB(skb)->frag0 + offset; 2471 } 2472 2473 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2474 { 2475 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2476 } 2477 2478 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2479 { 2480 NAPI_GRO_CB(skb)->frag0 = NULL; 2481 NAPI_GRO_CB(skb)->frag0_len = 0; 2482 } 2483 2484 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2485 unsigned int offset) 2486 { 2487 if (!pskb_may_pull(skb, hlen)) 2488 return NULL; 2489 2490 skb_gro_frag0_invalidate(skb); 2491 return skb->data + offset; 2492 } 2493 2494 static inline void *skb_gro_network_header(struct sk_buff *skb) 2495 { 2496 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2497 skb_network_offset(skb); 2498 } 2499 2500 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2501 const void *start, unsigned int len) 2502 { 2503 if (NAPI_GRO_CB(skb)->csum_valid) 2504 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2505 csum_partial(start, len, 0)); 2506 } 2507 2508 /* GRO checksum functions. These are logical equivalents of the normal 2509 * checksum functions (in skbuff.h) except that they operate on the GRO 2510 * offsets and fields in sk_buff. 2511 */ 2512 2513 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2514 2515 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2516 { 2517 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2518 } 2519 2520 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2521 bool zero_okay, 2522 __sum16 check) 2523 { 2524 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2525 skb_checksum_start_offset(skb) < 2526 skb_gro_offset(skb)) && 2527 !skb_at_gro_remcsum_start(skb) && 2528 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2529 (!zero_okay || check)); 2530 } 2531 2532 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2533 __wsum psum) 2534 { 2535 if (NAPI_GRO_CB(skb)->csum_valid && 2536 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2537 return 0; 2538 2539 NAPI_GRO_CB(skb)->csum = psum; 2540 2541 return __skb_gro_checksum_complete(skb); 2542 } 2543 2544 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2545 { 2546 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2547 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2548 NAPI_GRO_CB(skb)->csum_cnt--; 2549 } else { 2550 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2551 * verified a new top level checksum or an encapsulated one 2552 * during GRO. This saves work if we fallback to normal path. 2553 */ 2554 __skb_incr_checksum_unnecessary(skb); 2555 } 2556 } 2557 2558 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2559 compute_pseudo) \ 2560 ({ \ 2561 __sum16 __ret = 0; \ 2562 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2563 __ret = __skb_gro_checksum_validate_complete(skb, \ 2564 compute_pseudo(skb, proto)); \ 2565 if (!__ret) \ 2566 skb_gro_incr_csum_unnecessary(skb); \ 2567 __ret; \ 2568 }) 2569 2570 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2571 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2572 2573 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2574 compute_pseudo) \ 2575 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2576 2577 #define skb_gro_checksum_simple_validate(skb) \ 2578 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2579 2580 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2581 { 2582 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2583 !NAPI_GRO_CB(skb)->csum_valid); 2584 } 2585 2586 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2587 __sum16 check, __wsum pseudo) 2588 { 2589 NAPI_GRO_CB(skb)->csum = ~pseudo; 2590 NAPI_GRO_CB(skb)->csum_valid = 1; 2591 } 2592 2593 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2594 do { \ 2595 if (__skb_gro_checksum_convert_check(skb)) \ 2596 __skb_gro_checksum_convert(skb, check, \ 2597 compute_pseudo(skb, proto)); \ 2598 } while (0) 2599 2600 struct gro_remcsum { 2601 int offset; 2602 __wsum delta; 2603 }; 2604 2605 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2606 { 2607 grc->offset = 0; 2608 grc->delta = 0; 2609 } 2610 2611 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2612 unsigned int off, size_t hdrlen, 2613 int start, int offset, 2614 struct gro_remcsum *grc, 2615 bool nopartial) 2616 { 2617 __wsum delta; 2618 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2619 2620 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2621 2622 if (!nopartial) { 2623 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2624 return ptr; 2625 } 2626 2627 ptr = skb_gro_header_fast(skb, off); 2628 if (skb_gro_header_hard(skb, off + plen)) { 2629 ptr = skb_gro_header_slow(skb, off + plen, off); 2630 if (!ptr) 2631 return NULL; 2632 } 2633 2634 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2635 start, offset); 2636 2637 /* Adjust skb->csum since we changed the packet */ 2638 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2639 2640 grc->offset = off + hdrlen + offset; 2641 grc->delta = delta; 2642 2643 return ptr; 2644 } 2645 2646 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2647 struct gro_remcsum *grc) 2648 { 2649 void *ptr; 2650 size_t plen = grc->offset + sizeof(u16); 2651 2652 if (!grc->delta) 2653 return; 2654 2655 ptr = skb_gro_header_fast(skb, grc->offset); 2656 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2657 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2658 if (!ptr) 2659 return; 2660 } 2661 2662 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2663 } 2664 2665 #ifdef CONFIG_XFRM_OFFLOAD 2666 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2667 { 2668 if (PTR_ERR(pp) != -EINPROGRESS) 2669 NAPI_GRO_CB(skb)->flush |= flush; 2670 } 2671 #else 2672 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2673 { 2674 NAPI_GRO_CB(skb)->flush |= flush; 2675 } 2676 #endif 2677 2678 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2679 unsigned short type, 2680 const void *daddr, const void *saddr, 2681 unsigned int len) 2682 { 2683 if (!dev->header_ops || !dev->header_ops->create) 2684 return 0; 2685 2686 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2687 } 2688 2689 static inline int dev_parse_header(const struct sk_buff *skb, 2690 unsigned char *haddr) 2691 { 2692 const struct net_device *dev = skb->dev; 2693 2694 if (!dev->header_ops || !dev->header_ops->parse) 2695 return 0; 2696 return dev->header_ops->parse(skb, haddr); 2697 } 2698 2699 /* ll_header must have at least hard_header_len allocated */ 2700 static inline bool dev_validate_header(const struct net_device *dev, 2701 char *ll_header, int len) 2702 { 2703 if (likely(len >= dev->hard_header_len)) 2704 return true; 2705 if (len < dev->min_header_len) 2706 return false; 2707 2708 if (capable(CAP_SYS_RAWIO)) { 2709 memset(ll_header + len, 0, dev->hard_header_len - len); 2710 return true; 2711 } 2712 2713 if (dev->header_ops && dev->header_ops->validate) 2714 return dev->header_ops->validate(ll_header, len); 2715 2716 return false; 2717 } 2718 2719 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2720 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2721 static inline int unregister_gifconf(unsigned int family) 2722 { 2723 return register_gifconf(family, NULL); 2724 } 2725 2726 #ifdef CONFIG_NET_FLOW_LIMIT 2727 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2728 struct sd_flow_limit { 2729 u64 count; 2730 unsigned int num_buckets; 2731 unsigned int history_head; 2732 u16 history[FLOW_LIMIT_HISTORY]; 2733 u8 buckets[]; 2734 }; 2735 2736 extern int netdev_flow_limit_table_len; 2737 #endif /* CONFIG_NET_FLOW_LIMIT */ 2738 2739 /* 2740 * Incoming packets are placed on per-CPU queues 2741 */ 2742 struct softnet_data { 2743 struct list_head poll_list; 2744 struct sk_buff_head process_queue; 2745 2746 /* stats */ 2747 unsigned int processed; 2748 unsigned int time_squeeze; 2749 unsigned int received_rps; 2750 #ifdef CONFIG_RPS 2751 struct softnet_data *rps_ipi_list; 2752 #endif 2753 #ifdef CONFIG_NET_FLOW_LIMIT 2754 struct sd_flow_limit __rcu *flow_limit; 2755 #endif 2756 struct Qdisc *output_queue; 2757 struct Qdisc **output_queue_tailp; 2758 struct sk_buff *completion_queue; 2759 2760 #ifdef CONFIG_RPS 2761 /* input_queue_head should be written by cpu owning this struct, 2762 * and only read by other cpus. Worth using a cache line. 2763 */ 2764 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2765 2766 /* Elements below can be accessed between CPUs for RPS/RFS */ 2767 call_single_data_t csd ____cacheline_aligned_in_smp; 2768 struct softnet_data *rps_ipi_next; 2769 unsigned int cpu; 2770 unsigned int input_queue_tail; 2771 #endif 2772 unsigned int dropped; 2773 struct sk_buff_head input_pkt_queue; 2774 struct napi_struct backlog; 2775 2776 }; 2777 2778 static inline void input_queue_head_incr(struct softnet_data *sd) 2779 { 2780 #ifdef CONFIG_RPS 2781 sd->input_queue_head++; 2782 #endif 2783 } 2784 2785 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2786 unsigned int *qtail) 2787 { 2788 #ifdef CONFIG_RPS 2789 *qtail = ++sd->input_queue_tail; 2790 #endif 2791 } 2792 2793 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2794 2795 void __netif_schedule(struct Qdisc *q); 2796 void netif_schedule_queue(struct netdev_queue *txq); 2797 2798 static inline void netif_tx_schedule_all(struct net_device *dev) 2799 { 2800 unsigned int i; 2801 2802 for (i = 0; i < dev->num_tx_queues; i++) 2803 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2804 } 2805 2806 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2807 { 2808 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2809 } 2810 2811 /** 2812 * netif_start_queue - allow transmit 2813 * @dev: network device 2814 * 2815 * Allow upper layers to call the device hard_start_xmit routine. 2816 */ 2817 static inline void netif_start_queue(struct net_device *dev) 2818 { 2819 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2820 } 2821 2822 static inline void netif_tx_start_all_queues(struct net_device *dev) 2823 { 2824 unsigned int i; 2825 2826 for (i = 0; i < dev->num_tx_queues; i++) { 2827 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2828 netif_tx_start_queue(txq); 2829 } 2830 } 2831 2832 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2833 2834 /** 2835 * netif_wake_queue - restart transmit 2836 * @dev: network device 2837 * 2838 * Allow upper layers to call the device hard_start_xmit routine. 2839 * Used for flow control when transmit resources are available. 2840 */ 2841 static inline void netif_wake_queue(struct net_device *dev) 2842 { 2843 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2844 } 2845 2846 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2847 { 2848 unsigned int i; 2849 2850 for (i = 0; i < dev->num_tx_queues; i++) { 2851 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2852 netif_tx_wake_queue(txq); 2853 } 2854 } 2855 2856 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2857 { 2858 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2859 } 2860 2861 /** 2862 * netif_stop_queue - stop transmitted packets 2863 * @dev: network device 2864 * 2865 * Stop upper layers calling the device hard_start_xmit routine. 2866 * Used for flow control when transmit resources are unavailable. 2867 */ 2868 static inline void netif_stop_queue(struct net_device *dev) 2869 { 2870 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2871 } 2872 2873 void netif_tx_stop_all_queues(struct net_device *dev); 2874 2875 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2876 { 2877 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2878 } 2879 2880 /** 2881 * netif_queue_stopped - test if transmit queue is flowblocked 2882 * @dev: network device 2883 * 2884 * Test if transmit queue on device is currently unable to send. 2885 */ 2886 static inline bool netif_queue_stopped(const struct net_device *dev) 2887 { 2888 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2889 } 2890 2891 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2892 { 2893 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2894 } 2895 2896 static inline bool 2897 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2898 { 2899 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2900 } 2901 2902 static inline bool 2903 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2904 { 2905 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2906 } 2907 2908 /** 2909 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2910 * @dev_queue: pointer to transmit queue 2911 * 2912 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2913 * to give appropriate hint to the CPU. 2914 */ 2915 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2916 { 2917 #ifdef CONFIG_BQL 2918 prefetchw(&dev_queue->dql.num_queued); 2919 #endif 2920 } 2921 2922 /** 2923 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2924 * @dev_queue: pointer to transmit queue 2925 * 2926 * BQL enabled drivers might use this helper in their TX completion path, 2927 * to give appropriate hint to the CPU. 2928 */ 2929 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2930 { 2931 #ifdef CONFIG_BQL 2932 prefetchw(&dev_queue->dql.limit); 2933 #endif 2934 } 2935 2936 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2937 unsigned int bytes) 2938 { 2939 #ifdef CONFIG_BQL 2940 dql_queued(&dev_queue->dql, bytes); 2941 2942 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2943 return; 2944 2945 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2946 2947 /* 2948 * The XOFF flag must be set before checking the dql_avail below, 2949 * because in netdev_tx_completed_queue we update the dql_completed 2950 * before checking the XOFF flag. 2951 */ 2952 smp_mb(); 2953 2954 /* check again in case another CPU has just made room avail */ 2955 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2956 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2957 #endif 2958 } 2959 2960 /** 2961 * netdev_sent_queue - report the number of bytes queued to hardware 2962 * @dev: network device 2963 * @bytes: number of bytes queued to the hardware device queue 2964 * 2965 * Report the number of bytes queued for sending/completion to the network 2966 * device hardware queue. @bytes should be a good approximation and should 2967 * exactly match netdev_completed_queue() @bytes 2968 */ 2969 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2970 { 2971 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2972 } 2973 2974 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2975 unsigned int pkts, unsigned int bytes) 2976 { 2977 #ifdef CONFIG_BQL 2978 if (unlikely(!bytes)) 2979 return; 2980 2981 dql_completed(&dev_queue->dql, bytes); 2982 2983 /* 2984 * Without the memory barrier there is a small possiblity that 2985 * netdev_tx_sent_queue will miss the update and cause the queue to 2986 * be stopped forever 2987 */ 2988 smp_mb(); 2989 2990 if (dql_avail(&dev_queue->dql) < 0) 2991 return; 2992 2993 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2994 netif_schedule_queue(dev_queue); 2995 #endif 2996 } 2997 2998 /** 2999 * netdev_completed_queue - report bytes and packets completed by device 3000 * @dev: network device 3001 * @pkts: actual number of packets sent over the medium 3002 * @bytes: actual number of bytes sent over the medium 3003 * 3004 * Report the number of bytes and packets transmitted by the network device 3005 * hardware queue over the physical medium, @bytes must exactly match the 3006 * @bytes amount passed to netdev_sent_queue() 3007 */ 3008 static inline void netdev_completed_queue(struct net_device *dev, 3009 unsigned int pkts, unsigned int bytes) 3010 { 3011 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3012 } 3013 3014 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3015 { 3016 #ifdef CONFIG_BQL 3017 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3018 dql_reset(&q->dql); 3019 #endif 3020 } 3021 3022 /** 3023 * netdev_reset_queue - reset the packets and bytes count of a network device 3024 * @dev_queue: network device 3025 * 3026 * Reset the bytes and packet count of a network device and clear the 3027 * software flow control OFF bit for this network device 3028 */ 3029 static inline void netdev_reset_queue(struct net_device *dev_queue) 3030 { 3031 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3032 } 3033 3034 /** 3035 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3036 * @dev: network device 3037 * @queue_index: given tx queue index 3038 * 3039 * Returns 0 if given tx queue index >= number of device tx queues, 3040 * otherwise returns the originally passed tx queue index. 3041 */ 3042 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3043 { 3044 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3045 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3046 dev->name, queue_index, 3047 dev->real_num_tx_queues); 3048 return 0; 3049 } 3050 3051 return queue_index; 3052 } 3053 3054 /** 3055 * netif_running - test if up 3056 * @dev: network device 3057 * 3058 * Test if the device has been brought up. 3059 */ 3060 static inline bool netif_running(const struct net_device *dev) 3061 { 3062 return test_bit(__LINK_STATE_START, &dev->state); 3063 } 3064 3065 /* 3066 * Routines to manage the subqueues on a device. We only need start, 3067 * stop, and a check if it's stopped. All other device management is 3068 * done at the overall netdevice level. 3069 * Also test the device if we're multiqueue. 3070 */ 3071 3072 /** 3073 * netif_start_subqueue - allow sending packets on subqueue 3074 * @dev: network device 3075 * @queue_index: sub queue index 3076 * 3077 * Start individual transmit queue of a device with multiple transmit queues. 3078 */ 3079 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3080 { 3081 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3082 3083 netif_tx_start_queue(txq); 3084 } 3085 3086 /** 3087 * netif_stop_subqueue - stop sending packets on subqueue 3088 * @dev: network device 3089 * @queue_index: sub queue index 3090 * 3091 * Stop individual transmit queue of a device with multiple transmit queues. 3092 */ 3093 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3094 { 3095 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3096 netif_tx_stop_queue(txq); 3097 } 3098 3099 /** 3100 * netif_subqueue_stopped - test status of subqueue 3101 * @dev: network device 3102 * @queue_index: sub queue index 3103 * 3104 * Check individual transmit queue of a device with multiple transmit queues. 3105 */ 3106 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3107 u16 queue_index) 3108 { 3109 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3110 3111 return netif_tx_queue_stopped(txq); 3112 } 3113 3114 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3115 struct sk_buff *skb) 3116 { 3117 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3118 } 3119 3120 /** 3121 * netif_wake_subqueue - allow sending packets on subqueue 3122 * @dev: network device 3123 * @queue_index: sub queue index 3124 * 3125 * Resume individual transmit queue of a device with multiple transmit queues. 3126 */ 3127 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3128 { 3129 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3130 3131 netif_tx_wake_queue(txq); 3132 } 3133 3134 #ifdef CONFIG_XPS 3135 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3136 u16 index); 3137 #else 3138 static inline int netif_set_xps_queue(struct net_device *dev, 3139 const struct cpumask *mask, 3140 u16 index) 3141 { 3142 return 0; 3143 } 3144 #endif 3145 3146 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3147 unsigned int num_tx_queues); 3148 3149 /* 3150 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3151 * as a distribution range limit for the returned value. 3152 */ 3153 static inline u16 skb_tx_hash(const struct net_device *dev, 3154 struct sk_buff *skb) 3155 { 3156 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3157 } 3158 3159 /** 3160 * netif_is_multiqueue - test if device has multiple transmit queues 3161 * @dev: network device 3162 * 3163 * Check if device has multiple transmit queues 3164 */ 3165 static inline bool netif_is_multiqueue(const struct net_device *dev) 3166 { 3167 return dev->num_tx_queues > 1; 3168 } 3169 3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3171 3172 #ifdef CONFIG_SYSFS 3173 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3174 #else 3175 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3176 unsigned int rxq) 3177 { 3178 return 0; 3179 } 3180 #endif 3181 3182 #ifdef CONFIG_SYSFS 3183 static inline unsigned int get_netdev_rx_queue_index( 3184 struct netdev_rx_queue *queue) 3185 { 3186 struct net_device *dev = queue->dev; 3187 int index = queue - dev->_rx; 3188 3189 BUG_ON(index >= dev->num_rx_queues); 3190 return index; 3191 } 3192 #endif 3193 3194 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3195 int netif_get_num_default_rss_queues(void); 3196 3197 enum skb_free_reason { 3198 SKB_REASON_CONSUMED, 3199 SKB_REASON_DROPPED, 3200 }; 3201 3202 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3203 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3204 3205 /* 3206 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3207 * interrupt context or with hardware interrupts being disabled. 3208 * (in_irq() || irqs_disabled()) 3209 * 3210 * We provide four helpers that can be used in following contexts : 3211 * 3212 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3213 * replacing kfree_skb(skb) 3214 * 3215 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3216 * Typically used in place of consume_skb(skb) in TX completion path 3217 * 3218 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3219 * replacing kfree_skb(skb) 3220 * 3221 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3222 * and consumed a packet. Used in place of consume_skb(skb) 3223 */ 3224 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3225 { 3226 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3227 } 3228 3229 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3230 { 3231 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3232 } 3233 3234 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3235 { 3236 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3237 } 3238 3239 static inline void dev_consume_skb_any(struct sk_buff *skb) 3240 { 3241 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3242 } 3243 3244 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3245 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3246 int netif_rx(struct sk_buff *skb); 3247 int netif_rx_ni(struct sk_buff *skb); 3248 int netif_receive_skb(struct sk_buff *skb); 3249 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3250 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3251 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3252 gro_result_t napi_gro_frags(struct napi_struct *napi); 3253 struct packet_offload *gro_find_receive_by_type(__be16 type); 3254 struct packet_offload *gro_find_complete_by_type(__be16 type); 3255 3256 static inline void napi_free_frags(struct napi_struct *napi) 3257 { 3258 kfree_skb(napi->skb); 3259 napi->skb = NULL; 3260 } 3261 3262 bool netdev_is_rx_handler_busy(struct net_device *dev); 3263 int netdev_rx_handler_register(struct net_device *dev, 3264 rx_handler_func_t *rx_handler, 3265 void *rx_handler_data); 3266 void netdev_rx_handler_unregister(struct net_device *dev); 3267 3268 bool dev_valid_name(const char *name); 3269 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3270 int dev_ethtool(struct net *net, struct ifreq *); 3271 unsigned int dev_get_flags(const struct net_device *); 3272 int __dev_change_flags(struct net_device *, unsigned int flags); 3273 int dev_change_flags(struct net_device *, unsigned int); 3274 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3275 unsigned int gchanges); 3276 int dev_change_name(struct net_device *, const char *); 3277 int dev_set_alias(struct net_device *, const char *, size_t); 3278 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3279 int __dev_set_mtu(struct net_device *, int); 3280 int dev_set_mtu(struct net_device *, int); 3281 void dev_set_group(struct net_device *, int); 3282 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3283 int dev_change_carrier(struct net_device *, bool new_carrier); 3284 int dev_get_phys_port_id(struct net_device *dev, 3285 struct netdev_phys_item_id *ppid); 3286 int dev_get_phys_port_name(struct net_device *dev, 3287 char *name, size_t len); 3288 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3289 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3290 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3291 struct netdev_queue *txq, int *ret); 3292 3293 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp); 3294 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3295 int fd, u32 flags); 3296 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id); 3297 3298 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3299 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3300 bool is_skb_forwardable(const struct net_device *dev, 3301 const struct sk_buff *skb); 3302 3303 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3304 struct sk_buff *skb) 3305 { 3306 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3307 unlikely(!is_skb_forwardable(dev, skb))) { 3308 atomic_long_inc(&dev->rx_dropped); 3309 kfree_skb(skb); 3310 return NET_RX_DROP; 3311 } 3312 3313 skb_scrub_packet(skb, true); 3314 skb->priority = 0; 3315 return 0; 3316 } 3317 3318 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3319 3320 extern int netdev_budget; 3321 extern unsigned int netdev_budget_usecs; 3322 3323 /* Called by rtnetlink.c:rtnl_unlock() */ 3324 void netdev_run_todo(void); 3325 3326 /** 3327 * dev_put - release reference to device 3328 * @dev: network device 3329 * 3330 * Release reference to device to allow it to be freed. 3331 */ 3332 static inline void dev_put(struct net_device *dev) 3333 { 3334 this_cpu_dec(*dev->pcpu_refcnt); 3335 } 3336 3337 /** 3338 * dev_hold - get reference to device 3339 * @dev: network device 3340 * 3341 * Hold reference to device to keep it from being freed. 3342 */ 3343 static inline void dev_hold(struct net_device *dev) 3344 { 3345 this_cpu_inc(*dev->pcpu_refcnt); 3346 } 3347 3348 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3349 * and _off may be called from IRQ context, but it is caller 3350 * who is responsible for serialization of these calls. 3351 * 3352 * The name carrier is inappropriate, these functions should really be 3353 * called netif_lowerlayer_*() because they represent the state of any 3354 * kind of lower layer not just hardware media. 3355 */ 3356 3357 void linkwatch_init_dev(struct net_device *dev); 3358 void linkwatch_fire_event(struct net_device *dev); 3359 void linkwatch_forget_dev(struct net_device *dev); 3360 3361 /** 3362 * netif_carrier_ok - test if carrier present 3363 * @dev: network device 3364 * 3365 * Check if carrier is present on device 3366 */ 3367 static inline bool netif_carrier_ok(const struct net_device *dev) 3368 { 3369 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3370 } 3371 3372 unsigned long dev_trans_start(struct net_device *dev); 3373 3374 void __netdev_watchdog_up(struct net_device *dev); 3375 3376 void netif_carrier_on(struct net_device *dev); 3377 3378 void netif_carrier_off(struct net_device *dev); 3379 3380 /** 3381 * netif_dormant_on - mark device as dormant. 3382 * @dev: network device 3383 * 3384 * Mark device as dormant (as per RFC2863). 3385 * 3386 * The dormant state indicates that the relevant interface is not 3387 * actually in a condition to pass packets (i.e., it is not 'up') but is 3388 * in a "pending" state, waiting for some external event. For "on- 3389 * demand" interfaces, this new state identifies the situation where the 3390 * interface is waiting for events to place it in the up state. 3391 */ 3392 static inline void netif_dormant_on(struct net_device *dev) 3393 { 3394 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3395 linkwatch_fire_event(dev); 3396 } 3397 3398 /** 3399 * netif_dormant_off - set device as not dormant. 3400 * @dev: network device 3401 * 3402 * Device is not in dormant state. 3403 */ 3404 static inline void netif_dormant_off(struct net_device *dev) 3405 { 3406 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3407 linkwatch_fire_event(dev); 3408 } 3409 3410 /** 3411 * netif_dormant - test if device is dormant 3412 * @dev: network device 3413 * 3414 * Check if device is dormant. 3415 */ 3416 static inline bool netif_dormant(const struct net_device *dev) 3417 { 3418 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3419 } 3420 3421 3422 /** 3423 * netif_oper_up - test if device is operational 3424 * @dev: network device 3425 * 3426 * Check if carrier is operational 3427 */ 3428 static inline bool netif_oper_up(const struct net_device *dev) 3429 { 3430 return (dev->operstate == IF_OPER_UP || 3431 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3432 } 3433 3434 /** 3435 * netif_device_present - is device available or removed 3436 * @dev: network device 3437 * 3438 * Check if device has not been removed from system. 3439 */ 3440 static inline bool netif_device_present(struct net_device *dev) 3441 { 3442 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3443 } 3444 3445 void netif_device_detach(struct net_device *dev); 3446 3447 void netif_device_attach(struct net_device *dev); 3448 3449 /* 3450 * Network interface message level settings 3451 */ 3452 3453 enum { 3454 NETIF_MSG_DRV = 0x0001, 3455 NETIF_MSG_PROBE = 0x0002, 3456 NETIF_MSG_LINK = 0x0004, 3457 NETIF_MSG_TIMER = 0x0008, 3458 NETIF_MSG_IFDOWN = 0x0010, 3459 NETIF_MSG_IFUP = 0x0020, 3460 NETIF_MSG_RX_ERR = 0x0040, 3461 NETIF_MSG_TX_ERR = 0x0080, 3462 NETIF_MSG_TX_QUEUED = 0x0100, 3463 NETIF_MSG_INTR = 0x0200, 3464 NETIF_MSG_TX_DONE = 0x0400, 3465 NETIF_MSG_RX_STATUS = 0x0800, 3466 NETIF_MSG_PKTDATA = 0x1000, 3467 NETIF_MSG_HW = 0x2000, 3468 NETIF_MSG_WOL = 0x4000, 3469 }; 3470 3471 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3472 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3473 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3474 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3475 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3476 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3477 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3478 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3479 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3480 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3481 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3482 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3483 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3484 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3485 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3486 3487 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3488 { 3489 /* use default */ 3490 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3491 return default_msg_enable_bits; 3492 if (debug_value == 0) /* no output */ 3493 return 0; 3494 /* set low N bits */ 3495 return (1 << debug_value) - 1; 3496 } 3497 3498 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3499 { 3500 spin_lock(&txq->_xmit_lock); 3501 txq->xmit_lock_owner = cpu; 3502 } 3503 3504 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3505 { 3506 __acquire(&txq->_xmit_lock); 3507 return true; 3508 } 3509 3510 static inline void __netif_tx_release(struct netdev_queue *txq) 3511 { 3512 __release(&txq->_xmit_lock); 3513 } 3514 3515 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3516 { 3517 spin_lock_bh(&txq->_xmit_lock); 3518 txq->xmit_lock_owner = smp_processor_id(); 3519 } 3520 3521 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3522 { 3523 bool ok = spin_trylock(&txq->_xmit_lock); 3524 if (likely(ok)) 3525 txq->xmit_lock_owner = smp_processor_id(); 3526 return ok; 3527 } 3528 3529 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3530 { 3531 txq->xmit_lock_owner = -1; 3532 spin_unlock(&txq->_xmit_lock); 3533 } 3534 3535 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3536 { 3537 txq->xmit_lock_owner = -1; 3538 spin_unlock_bh(&txq->_xmit_lock); 3539 } 3540 3541 static inline void txq_trans_update(struct netdev_queue *txq) 3542 { 3543 if (txq->xmit_lock_owner != -1) 3544 txq->trans_start = jiffies; 3545 } 3546 3547 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3548 static inline void netif_trans_update(struct net_device *dev) 3549 { 3550 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3551 3552 if (txq->trans_start != jiffies) 3553 txq->trans_start = jiffies; 3554 } 3555 3556 /** 3557 * netif_tx_lock - grab network device transmit lock 3558 * @dev: network device 3559 * 3560 * Get network device transmit lock 3561 */ 3562 static inline void netif_tx_lock(struct net_device *dev) 3563 { 3564 unsigned int i; 3565 int cpu; 3566 3567 spin_lock(&dev->tx_global_lock); 3568 cpu = smp_processor_id(); 3569 for (i = 0; i < dev->num_tx_queues; i++) { 3570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3571 3572 /* We are the only thread of execution doing a 3573 * freeze, but we have to grab the _xmit_lock in 3574 * order to synchronize with threads which are in 3575 * the ->hard_start_xmit() handler and already 3576 * checked the frozen bit. 3577 */ 3578 __netif_tx_lock(txq, cpu); 3579 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3580 __netif_tx_unlock(txq); 3581 } 3582 } 3583 3584 static inline void netif_tx_lock_bh(struct net_device *dev) 3585 { 3586 local_bh_disable(); 3587 netif_tx_lock(dev); 3588 } 3589 3590 static inline void netif_tx_unlock(struct net_device *dev) 3591 { 3592 unsigned int i; 3593 3594 for (i = 0; i < dev->num_tx_queues; i++) { 3595 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3596 3597 /* No need to grab the _xmit_lock here. If the 3598 * queue is not stopped for another reason, we 3599 * force a schedule. 3600 */ 3601 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3602 netif_schedule_queue(txq); 3603 } 3604 spin_unlock(&dev->tx_global_lock); 3605 } 3606 3607 static inline void netif_tx_unlock_bh(struct net_device *dev) 3608 { 3609 netif_tx_unlock(dev); 3610 local_bh_enable(); 3611 } 3612 3613 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3614 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3615 __netif_tx_lock(txq, cpu); \ 3616 } else { \ 3617 __netif_tx_acquire(txq); \ 3618 } \ 3619 } 3620 3621 #define HARD_TX_TRYLOCK(dev, txq) \ 3622 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3623 __netif_tx_trylock(txq) : \ 3624 __netif_tx_acquire(txq)) 3625 3626 #define HARD_TX_UNLOCK(dev, txq) { \ 3627 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3628 __netif_tx_unlock(txq); \ 3629 } else { \ 3630 __netif_tx_release(txq); \ 3631 } \ 3632 } 3633 3634 static inline void netif_tx_disable(struct net_device *dev) 3635 { 3636 unsigned int i; 3637 int cpu; 3638 3639 local_bh_disable(); 3640 cpu = smp_processor_id(); 3641 for (i = 0; i < dev->num_tx_queues; i++) { 3642 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3643 3644 __netif_tx_lock(txq, cpu); 3645 netif_tx_stop_queue(txq); 3646 __netif_tx_unlock(txq); 3647 } 3648 local_bh_enable(); 3649 } 3650 3651 static inline void netif_addr_lock(struct net_device *dev) 3652 { 3653 spin_lock(&dev->addr_list_lock); 3654 } 3655 3656 static inline void netif_addr_lock_nested(struct net_device *dev) 3657 { 3658 int subclass = SINGLE_DEPTH_NESTING; 3659 3660 if (dev->netdev_ops->ndo_get_lock_subclass) 3661 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3662 3663 spin_lock_nested(&dev->addr_list_lock, subclass); 3664 } 3665 3666 static inline void netif_addr_lock_bh(struct net_device *dev) 3667 { 3668 spin_lock_bh(&dev->addr_list_lock); 3669 } 3670 3671 static inline void netif_addr_unlock(struct net_device *dev) 3672 { 3673 spin_unlock(&dev->addr_list_lock); 3674 } 3675 3676 static inline void netif_addr_unlock_bh(struct net_device *dev) 3677 { 3678 spin_unlock_bh(&dev->addr_list_lock); 3679 } 3680 3681 /* 3682 * dev_addrs walker. Should be used only for read access. Call with 3683 * rcu_read_lock held. 3684 */ 3685 #define for_each_dev_addr(dev, ha) \ 3686 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3687 3688 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3689 3690 void ether_setup(struct net_device *dev); 3691 3692 /* Support for loadable net-drivers */ 3693 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3694 unsigned char name_assign_type, 3695 void (*setup)(struct net_device *), 3696 unsigned int txqs, unsigned int rxqs); 3697 int dev_get_valid_name(struct net *net, struct net_device *dev, 3698 const char *name); 3699 3700 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3701 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3702 3703 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3704 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3705 count) 3706 3707 int register_netdev(struct net_device *dev); 3708 void unregister_netdev(struct net_device *dev); 3709 3710 /* General hardware address lists handling functions */ 3711 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3712 struct netdev_hw_addr_list *from_list, int addr_len); 3713 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3714 struct netdev_hw_addr_list *from_list, int addr_len); 3715 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3716 struct net_device *dev, 3717 int (*sync)(struct net_device *, const unsigned char *), 3718 int (*unsync)(struct net_device *, 3719 const unsigned char *)); 3720 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3721 struct net_device *dev, 3722 int (*unsync)(struct net_device *, 3723 const unsigned char *)); 3724 void __hw_addr_init(struct netdev_hw_addr_list *list); 3725 3726 /* Functions used for device addresses handling */ 3727 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3728 unsigned char addr_type); 3729 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3730 unsigned char addr_type); 3731 void dev_addr_flush(struct net_device *dev); 3732 int dev_addr_init(struct net_device *dev); 3733 3734 /* Functions used for unicast addresses handling */ 3735 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3736 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3737 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3738 int dev_uc_sync(struct net_device *to, struct net_device *from); 3739 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3740 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3741 void dev_uc_flush(struct net_device *dev); 3742 void dev_uc_init(struct net_device *dev); 3743 3744 /** 3745 * __dev_uc_sync - Synchonize device's unicast list 3746 * @dev: device to sync 3747 * @sync: function to call if address should be added 3748 * @unsync: function to call if address should be removed 3749 * 3750 * Add newly added addresses to the interface, and release 3751 * addresses that have been deleted. 3752 */ 3753 static inline int __dev_uc_sync(struct net_device *dev, 3754 int (*sync)(struct net_device *, 3755 const unsigned char *), 3756 int (*unsync)(struct net_device *, 3757 const unsigned char *)) 3758 { 3759 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3760 } 3761 3762 /** 3763 * __dev_uc_unsync - Remove synchronized addresses from device 3764 * @dev: device to sync 3765 * @unsync: function to call if address should be removed 3766 * 3767 * Remove all addresses that were added to the device by dev_uc_sync(). 3768 */ 3769 static inline void __dev_uc_unsync(struct net_device *dev, 3770 int (*unsync)(struct net_device *, 3771 const unsigned char *)) 3772 { 3773 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3774 } 3775 3776 /* Functions used for multicast addresses handling */ 3777 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3778 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3779 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3780 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3781 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3782 int dev_mc_sync(struct net_device *to, struct net_device *from); 3783 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3784 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3785 void dev_mc_flush(struct net_device *dev); 3786 void dev_mc_init(struct net_device *dev); 3787 3788 /** 3789 * __dev_mc_sync - Synchonize device's multicast list 3790 * @dev: device to sync 3791 * @sync: function to call if address should be added 3792 * @unsync: function to call if address should be removed 3793 * 3794 * Add newly added addresses to the interface, and release 3795 * addresses that have been deleted. 3796 */ 3797 static inline int __dev_mc_sync(struct net_device *dev, 3798 int (*sync)(struct net_device *, 3799 const unsigned char *), 3800 int (*unsync)(struct net_device *, 3801 const unsigned char *)) 3802 { 3803 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3804 } 3805 3806 /** 3807 * __dev_mc_unsync - Remove synchronized addresses from device 3808 * @dev: device to sync 3809 * @unsync: function to call if address should be removed 3810 * 3811 * Remove all addresses that were added to the device by dev_mc_sync(). 3812 */ 3813 static inline void __dev_mc_unsync(struct net_device *dev, 3814 int (*unsync)(struct net_device *, 3815 const unsigned char *)) 3816 { 3817 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3818 } 3819 3820 /* Functions used for secondary unicast and multicast support */ 3821 void dev_set_rx_mode(struct net_device *dev); 3822 void __dev_set_rx_mode(struct net_device *dev); 3823 int dev_set_promiscuity(struct net_device *dev, int inc); 3824 int dev_set_allmulti(struct net_device *dev, int inc); 3825 void netdev_state_change(struct net_device *dev); 3826 void netdev_notify_peers(struct net_device *dev); 3827 void netdev_features_change(struct net_device *dev); 3828 /* Load a device via the kmod */ 3829 void dev_load(struct net *net, const char *name); 3830 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3831 struct rtnl_link_stats64 *storage); 3832 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3833 const struct net_device_stats *netdev_stats); 3834 3835 extern int netdev_max_backlog; 3836 extern int netdev_tstamp_prequeue; 3837 extern int weight_p; 3838 extern int dev_weight_rx_bias; 3839 extern int dev_weight_tx_bias; 3840 extern int dev_rx_weight; 3841 extern int dev_tx_weight; 3842 3843 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3844 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3845 struct list_head **iter); 3846 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3847 struct list_head **iter); 3848 3849 /* iterate through upper list, must be called under RCU read lock */ 3850 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3851 for (iter = &(dev)->adj_list.upper, \ 3852 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3853 updev; \ 3854 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3855 3856 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3857 int (*fn)(struct net_device *upper_dev, 3858 void *data), 3859 void *data); 3860 3861 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3862 struct net_device *upper_dev); 3863 3864 bool netdev_has_any_upper_dev(struct net_device *dev); 3865 3866 void *netdev_lower_get_next_private(struct net_device *dev, 3867 struct list_head **iter); 3868 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3869 struct list_head **iter); 3870 3871 #define netdev_for_each_lower_private(dev, priv, iter) \ 3872 for (iter = (dev)->adj_list.lower.next, \ 3873 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3874 priv; \ 3875 priv = netdev_lower_get_next_private(dev, &(iter))) 3876 3877 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3878 for (iter = &(dev)->adj_list.lower, \ 3879 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3880 priv; \ 3881 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3882 3883 void *netdev_lower_get_next(struct net_device *dev, 3884 struct list_head **iter); 3885 3886 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3887 for (iter = (dev)->adj_list.lower.next, \ 3888 ldev = netdev_lower_get_next(dev, &(iter)); \ 3889 ldev; \ 3890 ldev = netdev_lower_get_next(dev, &(iter))) 3891 3892 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3893 struct list_head **iter); 3894 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3895 struct list_head **iter); 3896 3897 int netdev_walk_all_lower_dev(struct net_device *dev, 3898 int (*fn)(struct net_device *lower_dev, 3899 void *data), 3900 void *data); 3901 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3902 int (*fn)(struct net_device *lower_dev, 3903 void *data), 3904 void *data); 3905 3906 void *netdev_adjacent_get_private(struct list_head *adj_list); 3907 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3908 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3909 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3910 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3911 int netdev_master_upper_dev_link(struct net_device *dev, 3912 struct net_device *upper_dev, 3913 void *upper_priv, void *upper_info); 3914 void netdev_upper_dev_unlink(struct net_device *dev, 3915 struct net_device *upper_dev); 3916 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3917 void *netdev_lower_dev_get_private(struct net_device *dev, 3918 struct net_device *lower_dev); 3919 void netdev_lower_state_changed(struct net_device *lower_dev, 3920 void *lower_state_info); 3921 3922 /* RSS keys are 40 or 52 bytes long */ 3923 #define NETDEV_RSS_KEY_LEN 52 3924 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3925 void netdev_rss_key_fill(void *buffer, size_t len); 3926 3927 int dev_get_nest_level(struct net_device *dev); 3928 int skb_checksum_help(struct sk_buff *skb); 3929 int skb_crc32c_csum_help(struct sk_buff *skb); 3930 int skb_csum_hwoffload_help(struct sk_buff *skb, 3931 const netdev_features_t features); 3932 3933 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3934 netdev_features_t features, bool tx_path); 3935 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3936 netdev_features_t features); 3937 3938 struct netdev_bonding_info { 3939 ifslave slave; 3940 ifbond master; 3941 }; 3942 3943 struct netdev_notifier_bonding_info { 3944 struct netdev_notifier_info info; /* must be first */ 3945 struct netdev_bonding_info bonding_info; 3946 }; 3947 3948 void netdev_bonding_info_change(struct net_device *dev, 3949 struct netdev_bonding_info *bonding_info); 3950 3951 static inline 3952 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3953 { 3954 return __skb_gso_segment(skb, features, true); 3955 } 3956 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3957 3958 static inline bool can_checksum_protocol(netdev_features_t features, 3959 __be16 protocol) 3960 { 3961 if (protocol == htons(ETH_P_FCOE)) 3962 return !!(features & NETIF_F_FCOE_CRC); 3963 3964 /* Assume this is an IP checksum (not SCTP CRC) */ 3965 3966 if (features & NETIF_F_HW_CSUM) { 3967 /* Can checksum everything */ 3968 return true; 3969 } 3970 3971 switch (protocol) { 3972 case htons(ETH_P_IP): 3973 return !!(features & NETIF_F_IP_CSUM); 3974 case htons(ETH_P_IPV6): 3975 return !!(features & NETIF_F_IPV6_CSUM); 3976 default: 3977 return false; 3978 } 3979 } 3980 3981 #ifdef CONFIG_BUG 3982 void netdev_rx_csum_fault(struct net_device *dev); 3983 #else 3984 static inline void netdev_rx_csum_fault(struct net_device *dev) 3985 { 3986 } 3987 #endif 3988 /* rx skb timestamps */ 3989 void net_enable_timestamp(void); 3990 void net_disable_timestamp(void); 3991 3992 #ifdef CONFIG_PROC_FS 3993 int __init dev_proc_init(void); 3994 #else 3995 #define dev_proc_init() 0 3996 #endif 3997 3998 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3999 struct sk_buff *skb, struct net_device *dev, 4000 bool more) 4001 { 4002 skb->xmit_more = more ? 1 : 0; 4003 return ops->ndo_start_xmit(skb, dev); 4004 } 4005 4006 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4007 struct netdev_queue *txq, bool more) 4008 { 4009 const struct net_device_ops *ops = dev->netdev_ops; 4010 int rc; 4011 4012 rc = __netdev_start_xmit(ops, skb, dev, more); 4013 if (rc == NETDEV_TX_OK) 4014 txq_trans_update(txq); 4015 4016 return rc; 4017 } 4018 4019 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4020 const void *ns); 4021 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4022 const void *ns); 4023 4024 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4025 { 4026 return netdev_class_create_file_ns(class_attr, NULL); 4027 } 4028 4029 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4030 { 4031 netdev_class_remove_file_ns(class_attr, NULL); 4032 } 4033 4034 extern const struct kobj_ns_type_operations net_ns_type_operations; 4035 4036 const char *netdev_drivername(const struct net_device *dev); 4037 4038 void linkwatch_run_queue(void); 4039 4040 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4041 netdev_features_t f2) 4042 { 4043 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4044 if (f1 & NETIF_F_HW_CSUM) 4045 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4046 else 4047 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4048 } 4049 4050 return f1 & f2; 4051 } 4052 4053 static inline netdev_features_t netdev_get_wanted_features( 4054 struct net_device *dev) 4055 { 4056 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4057 } 4058 netdev_features_t netdev_increment_features(netdev_features_t all, 4059 netdev_features_t one, netdev_features_t mask); 4060 4061 /* Allow TSO being used on stacked device : 4062 * Performing the GSO segmentation before last device 4063 * is a performance improvement. 4064 */ 4065 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4066 netdev_features_t mask) 4067 { 4068 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4069 } 4070 4071 int __netdev_update_features(struct net_device *dev); 4072 void netdev_update_features(struct net_device *dev); 4073 void netdev_change_features(struct net_device *dev); 4074 4075 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4076 struct net_device *dev); 4077 4078 netdev_features_t passthru_features_check(struct sk_buff *skb, 4079 struct net_device *dev, 4080 netdev_features_t features); 4081 netdev_features_t netif_skb_features(struct sk_buff *skb); 4082 4083 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4084 { 4085 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4086 4087 /* check flags correspondence */ 4088 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4089 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4090 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4091 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4092 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4093 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4094 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4095 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4096 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4097 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4098 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4099 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4100 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4101 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4102 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4103 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4104 4105 return (features & feature) == feature; 4106 } 4107 4108 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4109 { 4110 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4111 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4112 } 4113 4114 static inline bool netif_needs_gso(struct sk_buff *skb, 4115 netdev_features_t features) 4116 { 4117 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4118 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4119 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4120 } 4121 4122 static inline void netif_set_gso_max_size(struct net_device *dev, 4123 unsigned int size) 4124 { 4125 dev->gso_max_size = size; 4126 } 4127 4128 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4129 int pulled_hlen, u16 mac_offset, 4130 int mac_len) 4131 { 4132 skb->protocol = protocol; 4133 skb->encapsulation = 1; 4134 skb_push(skb, pulled_hlen); 4135 skb_reset_transport_header(skb); 4136 skb->mac_header = mac_offset; 4137 skb->network_header = skb->mac_header + mac_len; 4138 skb->mac_len = mac_len; 4139 } 4140 4141 static inline bool netif_is_macsec(const struct net_device *dev) 4142 { 4143 return dev->priv_flags & IFF_MACSEC; 4144 } 4145 4146 static inline bool netif_is_macvlan(const struct net_device *dev) 4147 { 4148 return dev->priv_flags & IFF_MACVLAN; 4149 } 4150 4151 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4152 { 4153 return dev->priv_flags & IFF_MACVLAN_PORT; 4154 } 4155 4156 static inline bool netif_is_ipvlan(const struct net_device *dev) 4157 { 4158 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4159 } 4160 4161 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4162 { 4163 return dev->priv_flags & IFF_IPVLAN_MASTER; 4164 } 4165 4166 static inline bool netif_is_bond_master(const struct net_device *dev) 4167 { 4168 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4169 } 4170 4171 static inline bool netif_is_bond_slave(const struct net_device *dev) 4172 { 4173 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4174 } 4175 4176 static inline bool netif_supports_nofcs(struct net_device *dev) 4177 { 4178 return dev->priv_flags & IFF_SUPP_NOFCS; 4179 } 4180 4181 static inline bool netif_is_l3_master(const struct net_device *dev) 4182 { 4183 return dev->priv_flags & IFF_L3MDEV_MASTER; 4184 } 4185 4186 static inline bool netif_is_l3_slave(const struct net_device *dev) 4187 { 4188 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4189 } 4190 4191 static inline bool netif_is_bridge_master(const struct net_device *dev) 4192 { 4193 return dev->priv_flags & IFF_EBRIDGE; 4194 } 4195 4196 static inline bool netif_is_bridge_port(const struct net_device *dev) 4197 { 4198 return dev->priv_flags & IFF_BRIDGE_PORT; 4199 } 4200 4201 static inline bool netif_is_ovs_master(const struct net_device *dev) 4202 { 4203 return dev->priv_flags & IFF_OPENVSWITCH; 4204 } 4205 4206 static inline bool netif_is_ovs_port(const struct net_device *dev) 4207 { 4208 return dev->priv_flags & IFF_OVS_DATAPATH; 4209 } 4210 4211 static inline bool netif_is_team_master(const struct net_device *dev) 4212 { 4213 return dev->priv_flags & IFF_TEAM; 4214 } 4215 4216 static inline bool netif_is_team_port(const struct net_device *dev) 4217 { 4218 return dev->priv_flags & IFF_TEAM_PORT; 4219 } 4220 4221 static inline bool netif_is_lag_master(const struct net_device *dev) 4222 { 4223 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4224 } 4225 4226 static inline bool netif_is_lag_port(const struct net_device *dev) 4227 { 4228 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4229 } 4230 4231 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4232 { 4233 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4234 } 4235 4236 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4237 static inline void netif_keep_dst(struct net_device *dev) 4238 { 4239 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4240 } 4241 4242 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4243 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4244 { 4245 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4246 return dev->priv_flags & IFF_MACSEC; 4247 } 4248 4249 extern struct pernet_operations __net_initdata loopback_net_ops; 4250 4251 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4252 4253 /* netdev_printk helpers, similar to dev_printk */ 4254 4255 static inline const char *netdev_name(const struct net_device *dev) 4256 { 4257 if (!dev->name[0] || strchr(dev->name, '%')) 4258 return "(unnamed net_device)"; 4259 return dev->name; 4260 } 4261 4262 static inline bool netdev_unregistering(const struct net_device *dev) 4263 { 4264 return dev->reg_state == NETREG_UNREGISTERING; 4265 } 4266 4267 static inline const char *netdev_reg_state(const struct net_device *dev) 4268 { 4269 switch (dev->reg_state) { 4270 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4271 case NETREG_REGISTERED: return ""; 4272 case NETREG_UNREGISTERING: return " (unregistering)"; 4273 case NETREG_UNREGISTERED: return " (unregistered)"; 4274 case NETREG_RELEASED: return " (released)"; 4275 case NETREG_DUMMY: return " (dummy)"; 4276 } 4277 4278 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4279 return " (unknown)"; 4280 } 4281 4282 __printf(3, 4) 4283 void netdev_printk(const char *level, const struct net_device *dev, 4284 const char *format, ...); 4285 __printf(2, 3) 4286 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4287 __printf(2, 3) 4288 void netdev_alert(const struct net_device *dev, const char *format, ...); 4289 __printf(2, 3) 4290 void netdev_crit(const struct net_device *dev, const char *format, ...); 4291 __printf(2, 3) 4292 void netdev_err(const struct net_device *dev, const char *format, ...); 4293 __printf(2, 3) 4294 void netdev_warn(const struct net_device *dev, const char *format, ...); 4295 __printf(2, 3) 4296 void netdev_notice(const struct net_device *dev, const char *format, ...); 4297 __printf(2, 3) 4298 void netdev_info(const struct net_device *dev, const char *format, ...); 4299 4300 #define MODULE_ALIAS_NETDEV(device) \ 4301 MODULE_ALIAS("netdev-" device) 4302 4303 #if defined(CONFIG_DYNAMIC_DEBUG) 4304 #define netdev_dbg(__dev, format, args...) \ 4305 do { \ 4306 dynamic_netdev_dbg(__dev, format, ##args); \ 4307 } while (0) 4308 #elif defined(DEBUG) 4309 #define netdev_dbg(__dev, format, args...) \ 4310 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4311 #else 4312 #define netdev_dbg(__dev, format, args...) \ 4313 ({ \ 4314 if (0) \ 4315 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4316 }) 4317 #endif 4318 4319 #if defined(VERBOSE_DEBUG) 4320 #define netdev_vdbg netdev_dbg 4321 #else 4322 4323 #define netdev_vdbg(dev, format, args...) \ 4324 ({ \ 4325 if (0) \ 4326 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4327 0; \ 4328 }) 4329 #endif 4330 4331 /* 4332 * netdev_WARN() acts like dev_printk(), but with the key difference 4333 * of using a WARN/WARN_ON to get the message out, including the 4334 * file/line information and a backtrace. 4335 */ 4336 #define netdev_WARN(dev, format, args...) \ 4337 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4338 netdev_reg_state(dev), ##args) 4339 4340 /* netif printk helpers, similar to netdev_printk */ 4341 4342 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4343 do { \ 4344 if (netif_msg_##type(priv)) \ 4345 netdev_printk(level, (dev), fmt, ##args); \ 4346 } while (0) 4347 4348 #define netif_level(level, priv, type, dev, fmt, args...) \ 4349 do { \ 4350 if (netif_msg_##type(priv)) \ 4351 netdev_##level(dev, fmt, ##args); \ 4352 } while (0) 4353 4354 #define netif_emerg(priv, type, dev, fmt, args...) \ 4355 netif_level(emerg, priv, type, dev, fmt, ##args) 4356 #define netif_alert(priv, type, dev, fmt, args...) \ 4357 netif_level(alert, priv, type, dev, fmt, ##args) 4358 #define netif_crit(priv, type, dev, fmt, args...) \ 4359 netif_level(crit, priv, type, dev, fmt, ##args) 4360 #define netif_err(priv, type, dev, fmt, args...) \ 4361 netif_level(err, priv, type, dev, fmt, ##args) 4362 #define netif_warn(priv, type, dev, fmt, args...) \ 4363 netif_level(warn, priv, type, dev, fmt, ##args) 4364 #define netif_notice(priv, type, dev, fmt, args...) \ 4365 netif_level(notice, priv, type, dev, fmt, ##args) 4366 #define netif_info(priv, type, dev, fmt, args...) \ 4367 netif_level(info, priv, type, dev, fmt, ##args) 4368 4369 #if defined(CONFIG_DYNAMIC_DEBUG) 4370 #define netif_dbg(priv, type, netdev, format, args...) \ 4371 do { \ 4372 if (netif_msg_##type(priv)) \ 4373 dynamic_netdev_dbg(netdev, format, ##args); \ 4374 } while (0) 4375 #elif defined(DEBUG) 4376 #define netif_dbg(priv, type, dev, format, args...) \ 4377 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4378 #else 4379 #define netif_dbg(priv, type, dev, format, args...) \ 4380 ({ \ 4381 if (0) \ 4382 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4383 0; \ 4384 }) 4385 #endif 4386 4387 /* if @cond then downgrade to debug, else print at @level */ 4388 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4389 do { \ 4390 if (cond) \ 4391 netif_dbg(priv, type, netdev, fmt, ##args); \ 4392 else \ 4393 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4394 } while (0) 4395 4396 #if defined(VERBOSE_DEBUG) 4397 #define netif_vdbg netif_dbg 4398 #else 4399 #define netif_vdbg(priv, type, dev, format, args...) \ 4400 ({ \ 4401 if (0) \ 4402 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4403 0; \ 4404 }) 4405 #endif 4406 4407 /* 4408 * The list of packet types we will receive (as opposed to discard) 4409 * and the routines to invoke. 4410 * 4411 * Why 16. Because with 16 the only overlap we get on a hash of the 4412 * low nibble of the protocol value is RARP/SNAP/X.25. 4413 * 4414 * NOTE: That is no longer true with the addition of VLAN tags. Not 4415 * sure which should go first, but I bet it won't make much 4416 * difference if we are running VLANs. The good news is that 4417 * this protocol won't be in the list unless compiled in, so 4418 * the average user (w/out VLANs) will not be adversely affected. 4419 * --BLG 4420 * 4421 * 0800 IP 4422 * 8100 802.1Q VLAN 4423 * 0001 802.3 4424 * 0002 AX.25 4425 * 0004 802.2 4426 * 8035 RARP 4427 * 0005 SNAP 4428 * 0805 X.25 4429 * 0806 ARP 4430 * 8137 IPX 4431 * 0009 Localtalk 4432 * 86DD IPv6 4433 */ 4434 #define PTYPE_HASH_SIZE (16) 4435 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4436 4437 #endif /* _LINUX_NETDEVICE_H */ 4438