xref: /openbmc/linux/include/linux/netdevice.h (revision b03afaa8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void netdev_set_default_ethtool_ops(struct net_device *dev,
74 				    const struct ethtool_ops *ops);
75 
76 /* Backlog congestion levels */
77 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
78 #define NET_RX_DROP		1	/* packet dropped */
79 
80 #define MAX_NEST_DEV 8
81 
82 /*
83  * Transmit return codes: transmit return codes originate from three different
84  * namespaces:
85  *
86  * - qdisc return codes
87  * - driver transmit return codes
88  * - errno values
89  *
90  * Drivers are allowed to return any one of those in their hard_start_xmit()
91  * function. Real network devices commonly used with qdiscs should only return
92  * the driver transmit return codes though - when qdiscs are used, the actual
93  * transmission happens asynchronously, so the value is not propagated to
94  * higher layers. Virtual network devices transmit synchronously; in this case
95  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
96  * others are propagated to higher layers.
97  */
98 
99 /* qdisc ->enqueue() return codes. */
100 #define NET_XMIT_SUCCESS	0x00
101 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
102 #define NET_XMIT_CN		0x02	/* congestion notification	*/
103 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
104 
105 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
106  * indicates that the device will soon be dropping packets, or already drops
107  * some packets of the same priority; prompting us to send less aggressively. */
108 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
109 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
110 
111 /* Driver transmit return codes */
112 #define NETDEV_TX_MASK		0xf0
113 
114 enum netdev_tx {
115 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
116 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
117 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
118 };
119 typedef enum netdev_tx netdev_tx_t;
120 
121 /*
122  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
123  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
124  */
125 static inline bool dev_xmit_complete(int rc)
126 {
127 	/*
128 	 * Positive cases with an skb consumed by a driver:
129 	 * - successful transmission (rc == NETDEV_TX_OK)
130 	 * - error while transmitting (rc < 0)
131 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
132 	 */
133 	if (likely(rc < NET_XMIT_MASK))
134 		return true;
135 
136 	return false;
137 }
138 
139 /*
140  *	Compute the worst-case header length according to the protocols
141  *	used.
142  */
143 
144 #if defined(CONFIG_HYPERV_NET)
145 # define LL_MAX_HEADER 128
146 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
147 # if defined(CONFIG_MAC80211_MESH)
148 #  define LL_MAX_HEADER 128
149 # else
150 #  define LL_MAX_HEADER 96
151 # endif
152 #else
153 # define LL_MAX_HEADER 32
154 #endif
155 
156 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
157     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
158 #define MAX_HEADER LL_MAX_HEADER
159 #else
160 #define MAX_HEADER (LL_MAX_HEADER + 48)
161 #endif
162 
163 /*
164  *	Old network device statistics. Fields are native words
165  *	(unsigned long) so they can be read and written atomically.
166  */
167 
168 struct net_device_stats {
169 	unsigned long	rx_packets;
170 	unsigned long	tx_packets;
171 	unsigned long	rx_bytes;
172 	unsigned long	tx_bytes;
173 	unsigned long	rx_errors;
174 	unsigned long	tx_errors;
175 	unsigned long	rx_dropped;
176 	unsigned long	tx_dropped;
177 	unsigned long	multicast;
178 	unsigned long	collisions;
179 	unsigned long	rx_length_errors;
180 	unsigned long	rx_over_errors;
181 	unsigned long	rx_crc_errors;
182 	unsigned long	rx_frame_errors;
183 	unsigned long	rx_fifo_errors;
184 	unsigned long	rx_missed_errors;
185 	unsigned long	tx_aborted_errors;
186 	unsigned long	tx_carrier_errors;
187 	unsigned long	tx_fifo_errors;
188 	unsigned long	tx_heartbeat_errors;
189 	unsigned long	tx_window_errors;
190 	unsigned long	rx_compressed;
191 	unsigned long	tx_compressed;
192 };
193 
194 
195 #include <linux/cache.h>
196 #include <linux/skbuff.h>
197 
198 #ifdef CONFIG_RPS
199 #include <linux/static_key.h>
200 extern struct static_key_false rps_needed;
201 extern struct static_key_false rfs_needed;
202 #endif
203 
204 struct neighbour;
205 struct neigh_parms;
206 struct sk_buff;
207 
208 struct netdev_hw_addr {
209 	struct list_head	list;
210 	unsigned char		addr[MAX_ADDR_LEN];
211 	unsigned char		type;
212 #define NETDEV_HW_ADDR_T_LAN		1
213 #define NETDEV_HW_ADDR_T_SAN		2
214 #define NETDEV_HW_ADDR_T_SLAVE		3
215 #define NETDEV_HW_ADDR_T_UNICAST	4
216 #define NETDEV_HW_ADDR_T_MULTICAST	5
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,	/* Poll is scheduled */
354 	NAPI_STATE_MISSED,	/* reschedule a napi */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
358 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361 
362 enum {
363 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
364 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
365 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
366 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
367 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
368 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_DROP,
378 	GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381 
382 /*
383  * enum rx_handler_result - Possible return values for rx_handlers.
384  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385  * further.
386  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387  * case skb->dev was changed by rx_handler.
388  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390  *
391  * rx_handlers are functions called from inside __netif_receive_skb(), to do
392  * special processing of the skb, prior to delivery to protocol handlers.
393  *
394  * Currently, a net_device can only have a single rx_handler registered. Trying
395  * to register a second rx_handler will return -EBUSY.
396  *
397  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398  * To unregister a rx_handler on a net_device, use
399  * netdev_rx_handler_unregister().
400  *
401  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402  * do with the skb.
403  *
404  * If the rx_handler consumed the skb in some way, it should return
405  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406  * the skb to be delivered in some other way.
407  *
408  * If the rx_handler changed skb->dev, to divert the skb to another
409  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410  * new device will be called if it exists.
411  *
412  * If the rx_handler decides the skb should be ignored, it should return
413  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414  * are registered on exact device (ptype->dev == skb->dev).
415  *
416  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417  * delivered, it should return RX_HANDLER_PASS.
418  *
419  * A device without a registered rx_handler will behave as if rx_handler
420  * returned RX_HANDLER_PASS.
421  */
422 
423 enum rx_handler_result {
424 	RX_HANDLER_CONSUMED,
425 	RX_HANDLER_ANOTHER,
426 	RX_HANDLER_EXACT,
427 	RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431 
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434 
435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 	return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439 
440 bool napi_schedule_prep(struct napi_struct *n);
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /**
456  *	napi_schedule_irqoff - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Variant of napi_schedule(), assuming hard irqs are masked.
460  */
461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 	if (napi_schedule_prep(n))
464 		__napi_schedule_irqoff(n);
465 }
466 
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 	if (napi_schedule_prep(napi)) {
471 		__napi_schedule(napi);
472 		return true;
473 	}
474 	return false;
475 }
476 
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479  *	napi_complete - NAPI processing complete
480  *	@n: NAPI context
481  *
482  * Mark NAPI processing as complete.
483  * Consider using napi_complete_done() instead.
484  * Return false if device should avoid rearming interrupts.
485  */
486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 	return napi_complete_done(n, 0);
489 }
490 
491 /**
492  *	napi_hash_del - remove a NAPI from global table
493  *	@napi: NAPI context
494  *
495  * Warning: caller must observe RCU grace period
496  * before freeing memory containing @napi, if
497  * this function returns true.
498  * Note: core networking stack automatically calls it
499  * from netif_napi_del().
500  * Drivers might want to call this helper to combine all
501  * the needed RCU grace periods into a single one.
502  */
503 bool napi_hash_del(struct napi_struct *napi);
504 
505 /**
506  *	napi_disable - prevent NAPI from scheduling
507  *	@n: NAPI context
508  *
509  * Stop NAPI from being scheduled on this context.
510  * Waits till any outstanding processing completes.
511  */
512 void napi_disable(struct napi_struct *n);
513 
514 /**
515  *	napi_enable - enable NAPI scheduling
516  *	@n: NAPI context
517  *
518  * Resume NAPI from being scheduled on this context.
519  * Must be paired with napi_disable.
520  */
521 static inline void napi_enable(struct napi_struct *n)
522 {
523 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
524 	smp_mb__before_atomic();
525 	clear_bit(NAPI_STATE_SCHED, &n->state);
526 	clear_bit(NAPI_STATE_NPSVC, &n->state);
527 }
528 
529 /**
530  *	napi_synchronize - wait until NAPI is not running
531  *	@n: NAPI context
532  *
533  * Wait until NAPI is done being scheduled on this context.
534  * Waits till any outstanding processing completes but
535  * does not disable future activations.
536  */
537 static inline void napi_synchronize(const struct napi_struct *n)
538 {
539 	if (IS_ENABLED(CONFIG_SMP))
540 		while (test_bit(NAPI_STATE_SCHED, &n->state))
541 			msleep(1);
542 	else
543 		barrier();
544 }
545 
546 /**
547  *	napi_if_scheduled_mark_missed - if napi is running, set the
548  *	NAPIF_STATE_MISSED
549  *	@n: NAPI context
550  *
551  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
552  * NAPI is scheduled.
553  **/
554 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
555 {
556 	unsigned long val, new;
557 
558 	do {
559 		val = READ_ONCE(n->state);
560 		if (val & NAPIF_STATE_DISABLE)
561 			return true;
562 
563 		if (!(val & NAPIF_STATE_SCHED))
564 			return false;
565 
566 		new = val | NAPIF_STATE_MISSED;
567 	} while (cmpxchg(&n->state, val, new) != val);
568 
569 	return true;
570 }
571 
572 enum netdev_queue_state_t {
573 	__QUEUE_STATE_DRV_XOFF,
574 	__QUEUE_STATE_STACK_XOFF,
575 	__QUEUE_STATE_FROZEN,
576 };
577 
578 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
579 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
581 
582 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
583 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
584 					QUEUE_STATE_FROZEN)
585 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
586 					QUEUE_STATE_FROZEN)
587 
588 /*
589  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
590  * netif_tx_* functions below are used to manipulate this flag.  The
591  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
592  * queue independently.  The netif_xmit_*stopped functions below are called
593  * to check if the queue has been stopped by the driver or stack (either
594  * of the XOFF bits are set in the state).  Drivers should not need to call
595  * netif_xmit*stopped functions, they should only be using netif_tx_*.
596  */
597 
598 struct netdev_queue {
599 /*
600  * read-mostly part
601  */
602 	struct net_device	*dev;
603 	struct Qdisc __rcu	*qdisc;
604 	struct Qdisc		*qdisc_sleeping;
605 #ifdef CONFIG_SYSFS
606 	struct kobject		kobj;
607 #endif
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 	int			numa_node;
610 #endif
611 	unsigned long		tx_maxrate;
612 	/*
613 	 * Number of TX timeouts for this queue
614 	 * (/sys/class/net/DEV/Q/trans_timeout)
615 	 */
616 	unsigned long		trans_timeout;
617 
618 	/* Subordinate device that the queue has been assigned to */
619 	struct net_device	*sb_dev;
620 #ifdef CONFIG_XDP_SOCKETS
621 	struct xdp_umem         *umem;
622 #endif
623 /*
624  * write-mostly part
625  */
626 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
627 	int			xmit_lock_owner;
628 	/*
629 	 * Time (in jiffies) of last Tx
630 	 */
631 	unsigned long		trans_start;
632 
633 	unsigned long		state;
634 
635 #ifdef CONFIG_BQL
636 	struct dql		dql;
637 #endif
638 } ____cacheline_aligned_in_smp;
639 
640 extern int sysctl_fb_tunnels_only_for_init_net;
641 extern int sysctl_devconf_inherit_init_net;
642 
643 static inline bool net_has_fallback_tunnels(const struct net *net)
644 {
645 	return net == &init_net ||
646 	       !IS_ENABLED(CONFIG_SYSCTL) ||
647 	       !sysctl_fb_tunnels_only_for_init_net;
648 }
649 
650 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	return q->numa_node;
654 #else
655 	return NUMA_NO_NODE;
656 #endif
657 }
658 
659 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
660 {
661 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
662 	q->numa_node = node;
663 #endif
664 }
665 
666 #ifdef CONFIG_RPS
667 /*
668  * This structure holds an RPS map which can be of variable length.  The
669  * map is an array of CPUs.
670  */
671 struct rps_map {
672 	unsigned int len;
673 	struct rcu_head rcu;
674 	u16 cpus[];
675 };
676 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
677 
678 /*
679  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
680  * tail pointer for that CPU's input queue at the time of last enqueue, and
681  * a hardware filter index.
682  */
683 struct rps_dev_flow {
684 	u16 cpu;
685 	u16 filter;
686 	unsigned int last_qtail;
687 };
688 #define RPS_NO_FILTER 0xffff
689 
690 /*
691  * The rps_dev_flow_table structure contains a table of flow mappings.
692  */
693 struct rps_dev_flow_table {
694 	unsigned int mask;
695 	struct rcu_head rcu;
696 	struct rps_dev_flow flows[];
697 };
698 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
699     ((_num) * sizeof(struct rps_dev_flow)))
700 
701 /*
702  * The rps_sock_flow_table contains mappings of flows to the last CPU
703  * on which they were processed by the application (set in recvmsg).
704  * Each entry is a 32bit value. Upper part is the high-order bits
705  * of flow hash, lower part is CPU number.
706  * rps_cpu_mask is used to partition the space, depending on number of
707  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
708  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
709  * meaning we use 32-6=26 bits for the hash.
710  */
711 struct rps_sock_flow_table {
712 	u32	mask;
713 
714 	u32	ents[] ____cacheline_aligned_in_smp;
715 };
716 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
717 
718 #define RPS_NO_CPU 0xffff
719 
720 extern u32 rps_cpu_mask;
721 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
722 
723 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
724 					u32 hash)
725 {
726 	if (table && hash) {
727 		unsigned int index = hash & table->mask;
728 		u32 val = hash & ~rps_cpu_mask;
729 
730 		/* We only give a hint, preemption can change CPU under us */
731 		val |= raw_smp_processor_id();
732 
733 		if (table->ents[index] != val)
734 			table->ents[index] = val;
735 	}
736 }
737 
738 #ifdef CONFIG_RFS_ACCEL
739 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
740 			 u16 filter_id);
741 #endif
742 #endif /* CONFIG_RPS */
743 
744 /* This structure contains an instance of an RX queue. */
745 struct netdev_rx_queue {
746 #ifdef CONFIG_RPS
747 	struct rps_map __rcu		*rps_map;
748 	struct rps_dev_flow_table __rcu	*rps_flow_table;
749 #endif
750 	struct kobject			kobj;
751 	struct net_device		*dev;
752 	struct xdp_rxq_info		xdp_rxq;
753 #ifdef CONFIG_XDP_SOCKETS
754 	struct xdp_umem                 *umem;
755 #endif
756 } ____cacheline_aligned_in_smp;
757 
758 /*
759  * RX queue sysfs structures and functions.
760  */
761 struct rx_queue_attribute {
762 	struct attribute attr;
763 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 	ssize_t (*store)(struct netdev_rx_queue *queue,
765 			 const char *buf, size_t len);
766 };
767 
768 #ifdef CONFIG_XPS
769 /*
770  * This structure holds an XPS map which can be of variable length.  The
771  * map is an array of queues.
772  */
773 struct xps_map {
774 	unsigned int len;
775 	unsigned int alloc_len;
776 	struct rcu_head rcu;
777 	u16 queues[];
778 };
779 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
780 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
781        - sizeof(struct xps_map)) / sizeof(u16))
782 
783 /*
784  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
785  */
786 struct xps_dev_maps {
787 	struct rcu_head rcu;
788 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
789 };
790 
791 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
792 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
793 
794 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
795 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
796 
797 #endif /* CONFIG_XPS */
798 
799 #define TC_MAX_QUEUE	16
800 #define TC_BITMASK	15
801 /* HW offloaded queuing disciplines txq count and offset maps */
802 struct netdev_tc_txq {
803 	u16 count;
804 	u16 offset;
805 };
806 
807 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
808 /*
809  * This structure is to hold information about the device
810  * configured to run FCoE protocol stack.
811  */
812 struct netdev_fcoe_hbainfo {
813 	char	manufacturer[64];
814 	char	serial_number[64];
815 	char	hardware_version[64];
816 	char	driver_version[64];
817 	char	optionrom_version[64];
818 	char	firmware_version[64];
819 	char	model[256];
820 	char	model_description[256];
821 };
822 #endif
823 
824 #define MAX_PHYS_ITEM_ID_LEN 32
825 
826 /* This structure holds a unique identifier to identify some
827  * physical item (port for example) used by a netdevice.
828  */
829 struct netdev_phys_item_id {
830 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
831 	unsigned char id_len;
832 };
833 
834 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
835 					    struct netdev_phys_item_id *b)
836 {
837 	return a->id_len == b->id_len &&
838 	       memcmp(a->id, b->id, a->id_len) == 0;
839 }
840 
841 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
842 				       struct sk_buff *skb,
843 				       struct net_device *sb_dev);
844 
845 enum tc_setup_type {
846 	TC_SETUP_QDISC_MQPRIO,
847 	TC_SETUP_CLSU32,
848 	TC_SETUP_CLSFLOWER,
849 	TC_SETUP_CLSMATCHALL,
850 	TC_SETUP_CLSBPF,
851 	TC_SETUP_BLOCK,
852 	TC_SETUP_QDISC_CBS,
853 	TC_SETUP_QDISC_RED,
854 	TC_SETUP_QDISC_PRIO,
855 	TC_SETUP_QDISC_MQ,
856 	TC_SETUP_QDISC_ETF,
857 	TC_SETUP_ROOT_QDISC,
858 	TC_SETUP_QDISC_GRED,
859 	TC_SETUP_QDISC_TAPRIO,
860 	TC_SETUP_FT,
861 	TC_SETUP_QDISC_ETS,
862 	TC_SETUP_QDISC_TBF,
863 	TC_SETUP_QDISC_FIFO,
864 };
865 
866 /* These structures hold the attributes of bpf state that are being passed
867  * to the netdevice through the bpf op.
868  */
869 enum bpf_netdev_command {
870 	/* Set or clear a bpf program used in the earliest stages of packet
871 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
872 	 * is responsible for calling bpf_prog_put on any old progs that are
873 	 * stored. In case of error, the callee need not release the new prog
874 	 * reference, but on success it takes ownership and must bpf_prog_put
875 	 * when it is no longer used.
876 	 */
877 	XDP_SETUP_PROG,
878 	XDP_SETUP_PROG_HW,
879 	XDP_QUERY_PROG,
880 	XDP_QUERY_PROG_HW,
881 	/* BPF program for offload callbacks, invoked at program load time. */
882 	BPF_OFFLOAD_MAP_ALLOC,
883 	BPF_OFFLOAD_MAP_FREE,
884 	XDP_SETUP_XSK_UMEM,
885 };
886 
887 struct bpf_prog_offload_ops;
888 struct netlink_ext_ack;
889 struct xdp_umem;
890 struct xdp_dev_bulk_queue;
891 
892 struct netdev_bpf {
893 	enum bpf_netdev_command command;
894 	union {
895 		/* XDP_SETUP_PROG */
896 		struct {
897 			u32 flags;
898 			struct bpf_prog *prog;
899 			struct netlink_ext_ack *extack;
900 		};
901 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
902 		struct {
903 			u32 prog_id;
904 			/* flags with which program was installed */
905 			u32 prog_flags;
906 		};
907 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
908 		struct {
909 			struct bpf_offloaded_map *offmap;
910 		};
911 		/* XDP_SETUP_XSK_UMEM */
912 		struct {
913 			struct xdp_umem *umem;
914 			u16 queue_id;
915 		} xsk;
916 	};
917 };
918 
919 /* Flags for ndo_xsk_wakeup. */
920 #define XDP_WAKEUP_RX (1 << 0)
921 #define XDP_WAKEUP_TX (1 << 1)
922 
923 #ifdef CONFIG_XFRM_OFFLOAD
924 struct xfrmdev_ops {
925 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
926 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
927 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
928 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
929 				       struct xfrm_state *x);
930 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
931 };
932 #endif
933 
934 struct dev_ifalias {
935 	struct rcu_head rcuhead;
936 	char ifalias[];
937 };
938 
939 struct devlink;
940 struct tlsdev_ops;
941 
942 struct netdev_name_node {
943 	struct hlist_node hlist;
944 	struct list_head list;
945 	struct net_device *dev;
946 	const char *name;
947 };
948 
949 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
950 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
951 
952 struct netdev_net_notifier {
953 	struct list_head list;
954 	struct notifier_block *nb;
955 };
956 
957 /*
958  * This structure defines the management hooks for network devices.
959  * The following hooks can be defined; unless noted otherwise, they are
960  * optional and can be filled with a null pointer.
961  *
962  * int (*ndo_init)(struct net_device *dev);
963  *     This function is called once when a network device is registered.
964  *     The network device can use this for any late stage initialization
965  *     or semantic validation. It can fail with an error code which will
966  *     be propagated back to register_netdev.
967  *
968  * void (*ndo_uninit)(struct net_device *dev);
969  *     This function is called when device is unregistered or when registration
970  *     fails. It is not called if init fails.
971  *
972  * int (*ndo_open)(struct net_device *dev);
973  *     This function is called when a network device transitions to the up
974  *     state.
975  *
976  * int (*ndo_stop)(struct net_device *dev);
977  *     This function is called when a network device transitions to the down
978  *     state.
979  *
980  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
981  *                               struct net_device *dev);
982  *	Called when a packet needs to be transmitted.
983  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
984  *	the queue before that can happen; it's for obsolete devices and weird
985  *	corner cases, but the stack really does a non-trivial amount
986  *	of useless work if you return NETDEV_TX_BUSY.
987  *	Required; cannot be NULL.
988  *
989  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
990  *					   struct net_device *dev
991  *					   netdev_features_t features);
992  *	Called by core transmit path to determine if device is capable of
993  *	performing offload operations on a given packet. This is to give
994  *	the device an opportunity to implement any restrictions that cannot
995  *	be otherwise expressed by feature flags. The check is called with
996  *	the set of features that the stack has calculated and it returns
997  *	those the driver believes to be appropriate.
998  *
999  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1000  *                         struct net_device *sb_dev);
1001  *	Called to decide which queue to use when device supports multiple
1002  *	transmit queues.
1003  *
1004  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1005  *	This function is called to allow device receiver to make
1006  *	changes to configuration when multicast or promiscuous is enabled.
1007  *
1008  * void (*ndo_set_rx_mode)(struct net_device *dev);
1009  *	This function is called device changes address list filtering.
1010  *	If driver handles unicast address filtering, it should set
1011  *	IFF_UNICAST_FLT in its priv_flags.
1012  *
1013  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1014  *	This function  is called when the Media Access Control address
1015  *	needs to be changed. If this interface is not defined, the
1016  *	MAC address can not be changed.
1017  *
1018  * int (*ndo_validate_addr)(struct net_device *dev);
1019  *	Test if Media Access Control address is valid for the device.
1020  *
1021  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1022  *	Called when a user requests an ioctl which can't be handled by
1023  *	the generic interface code. If not defined ioctls return
1024  *	not supported error code.
1025  *
1026  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1027  *	Used to set network devices bus interface parameters. This interface
1028  *	is retained for legacy reasons; new devices should use the bus
1029  *	interface (PCI) for low level management.
1030  *
1031  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1032  *	Called when a user wants to change the Maximum Transfer Unit
1033  *	of a device.
1034  *
1035  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1036  *	Callback used when the transmitter has not made any progress
1037  *	for dev->watchdog ticks.
1038  *
1039  * void (*ndo_get_stats64)(struct net_device *dev,
1040  *                         struct rtnl_link_stats64 *storage);
1041  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1042  *	Called when a user wants to get the network device usage
1043  *	statistics. Drivers must do one of the following:
1044  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1045  *	   rtnl_link_stats64 structure passed by the caller.
1046  *	2. Define @ndo_get_stats to update a net_device_stats structure
1047  *	   (which should normally be dev->stats) and return a pointer to
1048  *	   it. The structure may be changed asynchronously only if each
1049  *	   field is written atomically.
1050  *	3. Update dev->stats asynchronously and atomically, and define
1051  *	   neither operation.
1052  *
1053  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1054  *	Return true if this device supports offload stats of this attr_id.
1055  *
1056  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1057  *	void *attr_data)
1058  *	Get statistics for offload operations by attr_id. Write it into the
1059  *	attr_data pointer.
1060  *
1061  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062  *	If device supports VLAN filtering this function is called when a
1063  *	VLAN id is registered.
1064  *
1065  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1066  *	If device supports VLAN filtering this function is called when a
1067  *	VLAN id is unregistered.
1068  *
1069  * void (*ndo_poll_controller)(struct net_device *dev);
1070  *
1071  *	SR-IOV management functions.
1072  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1073  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1074  *			  u8 qos, __be16 proto);
1075  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1076  *			  int max_tx_rate);
1077  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1078  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1079  * int (*ndo_get_vf_config)(struct net_device *dev,
1080  *			    int vf, struct ifla_vf_info *ivf);
1081  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1082  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1083  *			  struct nlattr *port[]);
1084  *
1085  *      Enable or disable the VF ability to query its RSS Redirection Table and
1086  *      Hash Key. This is needed since on some devices VF share this information
1087  *      with PF and querying it may introduce a theoretical security risk.
1088  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1089  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1090  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1091  *		       void *type_data);
1092  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1093  *	This is always called from the stack with the rtnl lock held and netif
1094  *	tx queues stopped. This allows the netdevice to perform queue
1095  *	management safely.
1096  *
1097  *	Fiber Channel over Ethernet (FCoE) offload functions.
1098  * int (*ndo_fcoe_enable)(struct net_device *dev);
1099  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1100  *	so the underlying device can perform whatever needed configuration or
1101  *	initialization to support acceleration of FCoE traffic.
1102  *
1103  * int (*ndo_fcoe_disable)(struct net_device *dev);
1104  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1105  *	so the underlying device can perform whatever needed clean-ups to
1106  *	stop supporting acceleration of FCoE traffic.
1107  *
1108  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1109  *			     struct scatterlist *sgl, unsigned int sgc);
1110  *	Called when the FCoE Initiator wants to initialize an I/O that
1111  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1112  *	perform necessary setup and returns 1 to indicate the device is set up
1113  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1114  *
1115  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1116  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1117  *	indicated by the FC exchange id 'xid', so the underlying device can
1118  *	clean up and reuse resources for later DDP requests.
1119  *
1120  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1121  *			      struct scatterlist *sgl, unsigned int sgc);
1122  *	Called when the FCoE Target wants to initialize an I/O that
1123  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1124  *	perform necessary setup and returns 1 to indicate the device is set up
1125  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1126  *
1127  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1128  *			       struct netdev_fcoe_hbainfo *hbainfo);
1129  *	Called when the FCoE Protocol stack wants information on the underlying
1130  *	device. This information is utilized by the FCoE protocol stack to
1131  *	register attributes with Fiber Channel management service as per the
1132  *	FC-GS Fabric Device Management Information(FDMI) specification.
1133  *
1134  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1135  *	Called when the underlying device wants to override default World Wide
1136  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1137  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1138  *	protocol stack to use.
1139  *
1140  *	RFS acceleration.
1141  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1142  *			    u16 rxq_index, u32 flow_id);
1143  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1144  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1145  *	Return the filter ID on success, or a negative error code.
1146  *
1147  *	Slave management functions (for bridge, bonding, etc).
1148  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1149  *	Called to make another netdev an underling.
1150  *
1151  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1152  *	Called to release previously enslaved netdev.
1153  *
1154  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1155  *					    struct sk_buff *skb,
1156  *					    bool all_slaves);
1157  *	Get the xmit slave of master device. If all_slaves is true, function
1158  *	assume all the slaves can transmit.
1159  *
1160  *      Feature/offload setting functions.
1161  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1162  *		netdev_features_t features);
1163  *	Adjusts the requested feature flags according to device-specific
1164  *	constraints, and returns the resulting flags. Must not modify
1165  *	the device state.
1166  *
1167  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1168  *	Called to update device configuration to new features. Passed
1169  *	feature set might be less than what was returned by ndo_fix_features()).
1170  *	Must return >0 or -errno if it changed dev->features itself.
1171  *
1172  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1173  *		      struct net_device *dev,
1174  *		      const unsigned char *addr, u16 vid, u16 flags,
1175  *		      struct netlink_ext_ack *extack);
1176  *	Adds an FDB entry to dev for addr.
1177  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1178  *		      struct net_device *dev,
1179  *		      const unsigned char *addr, u16 vid)
1180  *	Deletes the FDB entry from dev coresponding to addr.
1181  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1182  *		       struct net_device *dev, struct net_device *filter_dev,
1183  *		       int *idx)
1184  *	Used to add FDB entries to dump requests. Implementers should add
1185  *	entries to skb and update idx with the number of entries.
1186  *
1187  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1188  *			     u16 flags, struct netlink_ext_ack *extack)
1189  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1190  *			     struct net_device *dev, u32 filter_mask,
1191  *			     int nlflags)
1192  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1193  *			     u16 flags);
1194  *
1195  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1196  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1197  *	which do not represent real hardware may define this to allow their
1198  *	userspace components to manage their virtual carrier state. Devices
1199  *	that determine carrier state from physical hardware properties (eg
1200  *	network cables) or protocol-dependent mechanisms (eg
1201  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1202  *
1203  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1204  *			       struct netdev_phys_item_id *ppid);
1205  *	Called to get ID of physical port of this device. If driver does
1206  *	not implement this, it is assumed that the hw is not able to have
1207  *	multiple net devices on single physical port.
1208  *
1209  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1210  *				 struct netdev_phys_item_id *ppid)
1211  *	Called to get the parent ID of the physical port of this device.
1212  *
1213  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1214  *			      struct udp_tunnel_info *ti);
1215  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1216  *	address family that a UDP tunnel is listnening to. It is called only
1217  *	when a new port starts listening. The operation is protected by the
1218  *	RTNL.
1219  *
1220  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1221  *			      struct udp_tunnel_info *ti);
1222  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1223  *	address family that the UDP tunnel is not listening to anymore. The
1224  *	operation is protected by the RTNL.
1225  *
1226  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1227  *				 struct net_device *dev)
1228  *	Called by upper layer devices to accelerate switching or other
1229  *	station functionality into hardware. 'pdev is the lowerdev
1230  *	to use for the offload and 'dev' is the net device that will
1231  *	back the offload. Returns a pointer to the private structure
1232  *	the upper layer will maintain.
1233  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1234  *	Called by upper layer device to delete the station created
1235  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1236  *	the station and priv is the structure returned by the add
1237  *	operation.
1238  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1239  *			     int queue_index, u32 maxrate);
1240  *	Called when a user wants to set a max-rate limitation of specific
1241  *	TX queue.
1242  * int (*ndo_get_iflink)(const struct net_device *dev);
1243  *	Called to get the iflink value of this device.
1244  * void (*ndo_change_proto_down)(struct net_device *dev,
1245  *				 bool proto_down);
1246  *	This function is used to pass protocol port error state information
1247  *	to the switch driver. The switch driver can react to the proto_down
1248  *      by doing a phys down on the associated switch port.
1249  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1250  *	This function is used to get egress tunnel information for given skb.
1251  *	This is useful for retrieving outer tunnel header parameters while
1252  *	sampling packet.
1253  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1254  *	This function is used to specify the headroom that the skb must
1255  *	consider when allocation skb during packet reception. Setting
1256  *	appropriate rx headroom value allows avoiding skb head copy on
1257  *	forward. Setting a negative value resets the rx headroom to the
1258  *	default value.
1259  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1260  *	This function is used to set or query state related to XDP on the
1261  *	netdevice and manage BPF offload. See definition of
1262  *	enum bpf_netdev_command for details.
1263  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1264  *			u32 flags);
1265  *	This function is used to submit @n XDP packets for transmit on a
1266  *	netdevice. Returns number of frames successfully transmitted, frames
1267  *	that got dropped are freed/returned via xdp_return_frame().
1268  *	Returns negative number, means general error invoking ndo, meaning
1269  *	no frames were xmit'ed and core-caller will free all frames.
1270  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1271  *      This function is used to wake up the softirq, ksoftirqd or kthread
1272  *	responsible for sending and/or receiving packets on a specific
1273  *	queue id bound to an AF_XDP socket. The flags field specifies if
1274  *	only RX, only Tx, or both should be woken up using the flags
1275  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1276  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1277  *	Get devlink port instance associated with a given netdev.
1278  *	Called with a reference on the netdevice and devlink locks only,
1279  *	rtnl_lock is not held.
1280  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1281  *			 int cmd);
1282  *	Add, change, delete or get information on an IPv4 tunnel.
1283  */
1284 struct net_device_ops {
1285 	int			(*ndo_init)(struct net_device *dev);
1286 	void			(*ndo_uninit)(struct net_device *dev);
1287 	int			(*ndo_open)(struct net_device *dev);
1288 	int			(*ndo_stop)(struct net_device *dev);
1289 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1290 						  struct net_device *dev);
1291 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1292 						      struct net_device *dev,
1293 						      netdev_features_t features);
1294 	u16			(*ndo_select_queue)(struct net_device *dev,
1295 						    struct sk_buff *skb,
1296 						    struct net_device *sb_dev);
1297 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1298 						       int flags);
1299 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1300 	int			(*ndo_set_mac_address)(struct net_device *dev,
1301 						       void *addr);
1302 	int			(*ndo_validate_addr)(struct net_device *dev);
1303 	int			(*ndo_do_ioctl)(struct net_device *dev,
1304 					        struct ifreq *ifr, int cmd);
1305 	int			(*ndo_set_config)(struct net_device *dev,
1306 					          struct ifmap *map);
1307 	int			(*ndo_change_mtu)(struct net_device *dev,
1308 						  int new_mtu);
1309 	int			(*ndo_neigh_setup)(struct net_device *dev,
1310 						   struct neigh_parms *);
1311 	void			(*ndo_tx_timeout) (struct net_device *dev,
1312 						   unsigned int txqueue);
1313 
1314 	void			(*ndo_get_stats64)(struct net_device *dev,
1315 						   struct rtnl_link_stats64 *storage);
1316 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1317 	int			(*ndo_get_offload_stats)(int attr_id,
1318 							 const struct net_device *dev,
1319 							 void *attr_data);
1320 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1321 
1322 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1323 						       __be16 proto, u16 vid);
1324 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1325 						        __be16 proto, u16 vid);
1326 #ifdef CONFIG_NET_POLL_CONTROLLER
1327 	void                    (*ndo_poll_controller)(struct net_device *dev);
1328 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1329 						     struct netpoll_info *info);
1330 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1331 #endif
1332 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1333 						  int queue, u8 *mac);
1334 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1335 						   int queue, u16 vlan,
1336 						   u8 qos, __be16 proto);
1337 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1338 						   int vf, int min_tx_rate,
1339 						   int max_tx_rate);
1340 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1341 						       int vf, bool setting);
1342 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1343 						    int vf, bool setting);
1344 	int			(*ndo_get_vf_config)(struct net_device *dev,
1345 						     int vf,
1346 						     struct ifla_vf_info *ivf);
1347 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1348 							 int vf, int link_state);
1349 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1350 						    int vf,
1351 						    struct ifla_vf_stats
1352 						    *vf_stats);
1353 	int			(*ndo_set_vf_port)(struct net_device *dev,
1354 						   int vf,
1355 						   struct nlattr *port[]);
1356 	int			(*ndo_get_vf_port)(struct net_device *dev,
1357 						   int vf, struct sk_buff *skb);
1358 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1359 						   int vf,
1360 						   struct ifla_vf_guid *node_guid,
1361 						   struct ifla_vf_guid *port_guid);
1362 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1363 						   int vf, u64 guid,
1364 						   int guid_type);
1365 	int			(*ndo_set_vf_rss_query_en)(
1366 						   struct net_device *dev,
1367 						   int vf, bool setting);
1368 	int			(*ndo_setup_tc)(struct net_device *dev,
1369 						enum tc_setup_type type,
1370 						void *type_data);
1371 #if IS_ENABLED(CONFIG_FCOE)
1372 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1373 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1374 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1375 						      u16 xid,
1376 						      struct scatterlist *sgl,
1377 						      unsigned int sgc);
1378 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1379 						     u16 xid);
1380 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1381 						       u16 xid,
1382 						       struct scatterlist *sgl,
1383 						       unsigned int sgc);
1384 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1385 							struct netdev_fcoe_hbainfo *hbainfo);
1386 #endif
1387 
1388 #if IS_ENABLED(CONFIG_LIBFCOE)
1389 #define NETDEV_FCOE_WWNN 0
1390 #define NETDEV_FCOE_WWPN 1
1391 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1392 						    u64 *wwn, int type);
1393 #endif
1394 
1395 #ifdef CONFIG_RFS_ACCEL
1396 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1397 						     const struct sk_buff *skb,
1398 						     u16 rxq_index,
1399 						     u32 flow_id);
1400 #endif
1401 	int			(*ndo_add_slave)(struct net_device *dev,
1402 						 struct net_device *slave_dev,
1403 						 struct netlink_ext_ack *extack);
1404 	int			(*ndo_del_slave)(struct net_device *dev,
1405 						 struct net_device *slave_dev);
1406 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1407 						      struct sk_buff *skb,
1408 						      bool all_slaves);
1409 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1410 						    netdev_features_t features);
1411 	int			(*ndo_set_features)(struct net_device *dev,
1412 						    netdev_features_t features);
1413 	int			(*ndo_neigh_construct)(struct net_device *dev,
1414 						       struct neighbour *n);
1415 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1416 						     struct neighbour *n);
1417 
1418 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1419 					       struct nlattr *tb[],
1420 					       struct net_device *dev,
1421 					       const unsigned char *addr,
1422 					       u16 vid,
1423 					       u16 flags,
1424 					       struct netlink_ext_ack *extack);
1425 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1426 					       struct nlattr *tb[],
1427 					       struct net_device *dev,
1428 					       const unsigned char *addr,
1429 					       u16 vid);
1430 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1431 						struct netlink_callback *cb,
1432 						struct net_device *dev,
1433 						struct net_device *filter_dev,
1434 						int *idx);
1435 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1436 					       struct nlattr *tb[],
1437 					       struct net_device *dev,
1438 					       const unsigned char *addr,
1439 					       u16 vid, u32 portid, u32 seq,
1440 					       struct netlink_ext_ack *extack);
1441 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1442 						      struct nlmsghdr *nlh,
1443 						      u16 flags,
1444 						      struct netlink_ext_ack *extack);
1445 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1446 						      u32 pid, u32 seq,
1447 						      struct net_device *dev,
1448 						      u32 filter_mask,
1449 						      int nlflags);
1450 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1451 						      struct nlmsghdr *nlh,
1452 						      u16 flags);
1453 	int			(*ndo_change_carrier)(struct net_device *dev,
1454 						      bool new_carrier);
1455 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1456 							struct netdev_phys_item_id *ppid);
1457 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1458 							  struct netdev_phys_item_id *ppid);
1459 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1460 							  char *name, size_t len);
1461 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1462 						      struct udp_tunnel_info *ti);
1463 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1464 						      struct udp_tunnel_info *ti);
1465 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1466 							struct net_device *dev);
1467 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1468 							void *priv);
1469 
1470 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1471 						      int queue_index,
1472 						      u32 maxrate);
1473 	int			(*ndo_get_iflink)(const struct net_device *dev);
1474 	int			(*ndo_change_proto_down)(struct net_device *dev,
1475 							 bool proto_down);
1476 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1477 						       struct sk_buff *skb);
1478 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1479 						       int needed_headroom);
1480 	int			(*ndo_bpf)(struct net_device *dev,
1481 					   struct netdev_bpf *bpf);
1482 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1483 						struct xdp_frame **xdp,
1484 						u32 flags);
1485 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1486 						  u32 queue_id, u32 flags);
1487 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1488 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1489 						  struct ip_tunnel_parm *p, int cmd);
1490 };
1491 
1492 /**
1493  * enum net_device_priv_flags - &struct net_device priv_flags
1494  *
1495  * These are the &struct net_device, they are only set internally
1496  * by drivers and used in the kernel. These flags are invisible to
1497  * userspace; this means that the order of these flags can change
1498  * during any kernel release.
1499  *
1500  * You should have a pretty good reason to be extending these flags.
1501  *
1502  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1503  * @IFF_EBRIDGE: Ethernet bridging device
1504  * @IFF_BONDING: bonding master or slave
1505  * @IFF_ISATAP: ISATAP interface (RFC4214)
1506  * @IFF_WAN_HDLC: WAN HDLC device
1507  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1508  *	release skb->dst
1509  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1510  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1511  * @IFF_MACVLAN_PORT: device used as macvlan port
1512  * @IFF_BRIDGE_PORT: device used as bridge port
1513  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1514  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1515  * @IFF_UNICAST_FLT: Supports unicast filtering
1516  * @IFF_TEAM_PORT: device used as team port
1517  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1518  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1519  *	change when it's running
1520  * @IFF_MACVLAN: Macvlan device
1521  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1522  *	underlying stacked devices
1523  * @IFF_L3MDEV_MASTER: device is an L3 master device
1524  * @IFF_NO_QUEUE: device can run without qdisc attached
1525  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1526  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1527  * @IFF_TEAM: device is a team device
1528  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1529  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1530  *	entity (i.e. the master device for bridged veth)
1531  * @IFF_MACSEC: device is a MACsec device
1532  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1533  * @IFF_FAILOVER: device is a failover master device
1534  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1535  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1536  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1537  */
1538 enum netdev_priv_flags {
1539 	IFF_802_1Q_VLAN			= 1<<0,
1540 	IFF_EBRIDGE			= 1<<1,
1541 	IFF_BONDING			= 1<<2,
1542 	IFF_ISATAP			= 1<<3,
1543 	IFF_WAN_HDLC			= 1<<4,
1544 	IFF_XMIT_DST_RELEASE		= 1<<5,
1545 	IFF_DONT_BRIDGE			= 1<<6,
1546 	IFF_DISABLE_NETPOLL		= 1<<7,
1547 	IFF_MACVLAN_PORT		= 1<<8,
1548 	IFF_BRIDGE_PORT			= 1<<9,
1549 	IFF_OVS_DATAPATH		= 1<<10,
1550 	IFF_TX_SKB_SHARING		= 1<<11,
1551 	IFF_UNICAST_FLT			= 1<<12,
1552 	IFF_TEAM_PORT			= 1<<13,
1553 	IFF_SUPP_NOFCS			= 1<<14,
1554 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1555 	IFF_MACVLAN			= 1<<16,
1556 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1557 	IFF_L3MDEV_MASTER		= 1<<18,
1558 	IFF_NO_QUEUE			= 1<<19,
1559 	IFF_OPENVSWITCH			= 1<<20,
1560 	IFF_L3MDEV_SLAVE		= 1<<21,
1561 	IFF_TEAM			= 1<<22,
1562 	IFF_RXFH_CONFIGURED		= 1<<23,
1563 	IFF_PHONY_HEADROOM		= 1<<24,
1564 	IFF_MACSEC			= 1<<25,
1565 	IFF_NO_RX_HANDLER		= 1<<26,
1566 	IFF_FAILOVER			= 1<<27,
1567 	IFF_FAILOVER_SLAVE		= 1<<28,
1568 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1569 	IFF_LIVE_RENAME_OK		= 1<<30,
1570 };
1571 
1572 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1573 #define IFF_EBRIDGE			IFF_EBRIDGE
1574 #define IFF_BONDING			IFF_BONDING
1575 #define IFF_ISATAP			IFF_ISATAP
1576 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1577 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1578 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1579 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1580 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1581 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1582 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1583 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1584 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1585 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1586 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1587 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1588 #define IFF_MACVLAN			IFF_MACVLAN
1589 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1590 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1591 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1592 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1593 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1594 #define IFF_TEAM			IFF_TEAM
1595 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1596 #define IFF_MACSEC			IFF_MACSEC
1597 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1598 #define IFF_FAILOVER			IFF_FAILOVER
1599 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1600 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1601 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1602 
1603 /**
1604  *	struct net_device - The DEVICE structure.
1605  *
1606  *	Actually, this whole structure is a big mistake.  It mixes I/O
1607  *	data with strictly "high-level" data, and it has to know about
1608  *	almost every data structure used in the INET module.
1609  *
1610  *	@name:	This is the first field of the "visible" part of this structure
1611  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1612  *		of the interface.
1613  *
1614  *	@name_node:	Name hashlist node
1615  *	@ifalias:	SNMP alias
1616  *	@mem_end:	Shared memory end
1617  *	@mem_start:	Shared memory start
1618  *	@base_addr:	Device I/O address
1619  *	@irq:		Device IRQ number
1620  *
1621  *	@state:		Generic network queuing layer state, see netdev_state_t
1622  *	@dev_list:	The global list of network devices
1623  *	@napi_list:	List entry used for polling NAPI devices
1624  *	@unreg_list:	List entry  when we are unregistering the
1625  *			device; see the function unregister_netdev
1626  *	@close_list:	List entry used when we are closing the device
1627  *	@ptype_all:     Device-specific packet handlers for all protocols
1628  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1629  *
1630  *	@adj_list:	Directly linked devices, like slaves for bonding
1631  *	@features:	Currently active device features
1632  *	@hw_features:	User-changeable features
1633  *
1634  *	@wanted_features:	User-requested features
1635  *	@vlan_features:		Mask of features inheritable by VLAN devices
1636  *
1637  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1638  *				This field indicates what encapsulation
1639  *				offloads the hardware is capable of doing,
1640  *				and drivers will need to set them appropriately.
1641  *
1642  *	@mpls_features:	Mask of features inheritable by MPLS
1643  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1644  *
1645  *	@ifindex:	interface index
1646  *	@group:		The group the device belongs to
1647  *
1648  *	@stats:		Statistics struct, which was left as a legacy, use
1649  *			rtnl_link_stats64 instead
1650  *
1651  *	@rx_dropped:	Dropped packets by core network,
1652  *			do not use this in drivers
1653  *	@tx_dropped:	Dropped packets by core network,
1654  *			do not use this in drivers
1655  *	@rx_nohandler:	nohandler dropped packets by core network on
1656  *			inactive devices, do not use this in drivers
1657  *	@carrier_up_count:	Number of times the carrier has been up
1658  *	@carrier_down_count:	Number of times the carrier has been down
1659  *
1660  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1661  *				instead of ioctl,
1662  *				see <net/iw_handler.h> for details.
1663  *	@wireless_data:	Instance data managed by the core of wireless extensions
1664  *
1665  *	@netdev_ops:	Includes several pointers to callbacks,
1666  *			if one wants to override the ndo_*() functions
1667  *	@ethtool_ops:	Management operations
1668  *	@l3mdev_ops:	Layer 3 master device operations
1669  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1670  *			discovery handling. Necessary for e.g. 6LoWPAN.
1671  *	@xfrmdev_ops:	Transformation offload operations
1672  *	@tlsdev_ops:	Transport Layer Security offload operations
1673  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1674  *			of Layer 2 headers.
1675  *
1676  *	@flags:		Interface flags (a la BSD)
1677  *	@priv_flags:	Like 'flags' but invisible to userspace,
1678  *			see if.h for the definitions
1679  *	@gflags:	Global flags ( kept as legacy )
1680  *	@padded:	How much padding added by alloc_netdev()
1681  *	@operstate:	RFC2863 operstate
1682  *	@link_mode:	Mapping policy to operstate
1683  *	@if_port:	Selectable AUI, TP, ...
1684  *	@dma:		DMA channel
1685  *	@mtu:		Interface MTU value
1686  *	@min_mtu:	Interface Minimum MTU value
1687  *	@max_mtu:	Interface Maximum MTU value
1688  *	@type:		Interface hardware type
1689  *	@hard_header_len: Maximum hardware header length.
1690  *	@min_header_len:  Minimum hardware header length
1691  *
1692  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1693  *			  cases can this be guaranteed
1694  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1695  *			  cases can this be guaranteed. Some cases also use
1696  *			  LL_MAX_HEADER instead to allocate the skb
1697  *
1698  *	interface address info:
1699  *
1700  * 	@perm_addr:		Permanent hw address
1701  * 	@addr_assign_type:	Hw address assignment type
1702  * 	@addr_len:		Hardware address length
1703  *	@upper_level:		Maximum depth level of upper devices.
1704  *	@lower_level:		Maximum depth level of lower devices.
1705  *	@neigh_priv_len:	Used in neigh_alloc()
1706  * 	@dev_id:		Used to differentiate devices that share
1707  * 				the same link layer address
1708  * 	@dev_port:		Used to differentiate devices that share
1709  * 				the same function
1710  *	@addr_list_lock:	XXX: need comments on this one
1711  *	@name_assign_type:	network interface name assignment type
1712  *	@uc_promisc:		Counter that indicates promiscuous mode
1713  *				has been enabled due to the need to listen to
1714  *				additional unicast addresses in a device that
1715  *				does not implement ndo_set_rx_mode()
1716  *	@uc:			unicast mac addresses
1717  *	@mc:			multicast mac addresses
1718  *	@dev_addrs:		list of device hw addresses
1719  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1720  *	@promiscuity:		Number of times the NIC is told to work in
1721  *				promiscuous mode; if it becomes 0 the NIC will
1722  *				exit promiscuous mode
1723  *	@allmulti:		Counter, enables or disables allmulticast mode
1724  *
1725  *	@vlan_info:	VLAN info
1726  *	@dsa_ptr:	dsa specific data
1727  *	@tipc_ptr:	TIPC specific data
1728  *	@atalk_ptr:	AppleTalk link
1729  *	@ip_ptr:	IPv4 specific data
1730  *	@dn_ptr:	DECnet specific data
1731  *	@ip6_ptr:	IPv6 specific data
1732  *	@ax25_ptr:	AX.25 specific data
1733  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1734  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1735  *			 device struct
1736  *	@mpls_ptr:	mpls_dev struct pointer
1737  *
1738  *	@dev_addr:	Hw address (before bcast,
1739  *			because most packets are unicast)
1740  *
1741  *	@_rx:			Array of RX queues
1742  *	@num_rx_queues:		Number of RX queues
1743  *				allocated at register_netdev() time
1744  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1745  *	@xdp_prog:		XDP sockets filter program pointer
1746  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1747  *
1748  *	@rx_handler:		handler for received packets
1749  *	@rx_handler_data: 	XXX: need comments on this one
1750  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1751  *				ingress processing
1752  *	@ingress_queue:		XXX: need comments on this one
1753  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1754  *	@broadcast:		hw bcast address
1755  *
1756  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1757  *			indexed by RX queue number. Assigned by driver.
1758  *			This must only be set if the ndo_rx_flow_steer
1759  *			operation is defined
1760  *	@index_hlist:		Device index hash chain
1761  *
1762  *	@_tx:			Array of TX queues
1763  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1764  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1765  *	@qdisc:			Root qdisc from userspace point of view
1766  *	@tx_queue_len:		Max frames per queue allowed
1767  *	@tx_global_lock: 	XXX: need comments on this one
1768  *	@xdp_bulkq:		XDP device bulk queue
1769  *	@xps_cpus_map:		all CPUs map for XPS device
1770  *	@xps_rxqs_map:		all RXQs map for XPS device
1771  *
1772  *	@xps_maps:	XXX: need comments on this one
1773  *	@miniq_egress:		clsact qdisc specific data for
1774  *				egress processing
1775  *	@qdisc_hash:		qdisc hash table
1776  *	@watchdog_timeo:	Represents the timeout that is used by
1777  *				the watchdog (see dev_watchdog())
1778  *	@watchdog_timer:	List of timers
1779  *
1780  *	@pcpu_refcnt:		Number of references to this device
1781  *	@todo_list:		Delayed register/unregister
1782  *	@link_watch_list:	XXX: need comments on this one
1783  *
1784  *	@reg_state:		Register/unregister state machine
1785  *	@dismantle:		Device is going to be freed
1786  *	@rtnl_link_state:	This enum represents the phases of creating
1787  *				a new link
1788  *
1789  *	@needs_free_netdev:	Should unregister perform free_netdev?
1790  *	@priv_destructor:	Called from unregister
1791  *	@npinfo:		XXX: need comments on this one
1792  * 	@nd_net:		Network namespace this network device is inside
1793  *
1794  * 	@ml_priv:	Mid-layer private
1795  * 	@lstats:	Loopback statistics
1796  * 	@tstats:	Tunnel statistics
1797  * 	@dstats:	Dummy statistics
1798  * 	@vstats:	Virtual ethernet statistics
1799  *
1800  *	@garp_port:	GARP
1801  *	@mrp_port:	MRP
1802  *
1803  *	@dev:		Class/net/name entry
1804  *	@sysfs_groups:	Space for optional device, statistics and wireless
1805  *			sysfs groups
1806  *
1807  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1808  *	@rtnl_link_ops:	Rtnl_link_ops
1809  *
1810  *	@gso_max_size:	Maximum size of generic segmentation offload
1811  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1812  *			NIC for GSO
1813  *
1814  *	@dcbnl_ops:	Data Center Bridging netlink ops
1815  *	@num_tc:	Number of traffic classes in the net device
1816  *	@tc_to_txq:	XXX: need comments on this one
1817  *	@prio_tc_map:	XXX: need comments on this one
1818  *
1819  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1820  *
1821  *	@priomap:	XXX: need comments on this one
1822  *	@phydev:	Physical device may attach itself
1823  *			for hardware timestamping
1824  *	@sfp_bus:	attached &struct sfp_bus structure.
1825  *
1826  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1827  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1828  *
1829  *	@proto_down:	protocol port state information can be sent to the
1830  *			switch driver and used to set the phys state of the
1831  *			switch port.
1832  *
1833  *	@wol_enabled:	Wake-on-LAN is enabled
1834  *
1835  *	@net_notifier_list:	List of per-net netdev notifier block
1836  *				that follow this device when it is moved
1837  *				to another network namespace.
1838  *
1839  *	@macsec_ops:    MACsec offloading ops
1840  *
1841  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1842  *				offload capabilities of the device
1843  *	@udp_tunnel_nic:	UDP tunnel offload state
1844  *
1845  *	FIXME: cleanup struct net_device such that network protocol info
1846  *	moves out.
1847  */
1848 
1849 struct net_device {
1850 	char			name[IFNAMSIZ];
1851 	struct netdev_name_node	*name_node;
1852 	struct dev_ifalias	__rcu *ifalias;
1853 	/*
1854 	 *	I/O specific fields
1855 	 *	FIXME: Merge these and struct ifmap into one
1856 	 */
1857 	unsigned long		mem_end;
1858 	unsigned long		mem_start;
1859 	unsigned long		base_addr;
1860 	int			irq;
1861 
1862 	/*
1863 	 *	Some hardware also needs these fields (state,dev_list,
1864 	 *	napi_list,unreg_list,close_list) but they are not
1865 	 *	part of the usual set specified in Space.c.
1866 	 */
1867 
1868 	unsigned long		state;
1869 
1870 	struct list_head	dev_list;
1871 	struct list_head	napi_list;
1872 	struct list_head	unreg_list;
1873 	struct list_head	close_list;
1874 	struct list_head	ptype_all;
1875 	struct list_head	ptype_specific;
1876 
1877 	struct {
1878 		struct list_head upper;
1879 		struct list_head lower;
1880 	} adj_list;
1881 
1882 	netdev_features_t	features;
1883 	netdev_features_t	hw_features;
1884 	netdev_features_t	wanted_features;
1885 	netdev_features_t	vlan_features;
1886 	netdev_features_t	hw_enc_features;
1887 	netdev_features_t	mpls_features;
1888 	netdev_features_t	gso_partial_features;
1889 
1890 	int			ifindex;
1891 	int			group;
1892 
1893 	struct net_device_stats	stats;
1894 
1895 	atomic_long_t		rx_dropped;
1896 	atomic_long_t		tx_dropped;
1897 	atomic_long_t		rx_nohandler;
1898 
1899 	/* Stats to monitor link on/off, flapping */
1900 	atomic_t		carrier_up_count;
1901 	atomic_t		carrier_down_count;
1902 
1903 #ifdef CONFIG_WIRELESS_EXT
1904 	const struct iw_handler_def *wireless_handlers;
1905 	struct iw_public_data	*wireless_data;
1906 #endif
1907 	const struct net_device_ops *netdev_ops;
1908 	const struct ethtool_ops *ethtool_ops;
1909 #ifdef CONFIG_NET_L3_MASTER_DEV
1910 	const struct l3mdev_ops	*l3mdev_ops;
1911 #endif
1912 #if IS_ENABLED(CONFIG_IPV6)
1913 	const struct ndisc_ops *ndisc_ops;
1914 #endif
1915 
1916 #ifdef CONFIG_XFRM_OFFLOAD
1917 	const struct xfrmdev_ops *xfrmdev_ops;
1918 #endif
1919 
1920 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1921 	const struct tlsdev_ops *tlsdev_ops;
1922 #endif
1923 
1924 	const struct header_ops *header_ops;
1925 
1926 	unsigned int		flags;
1927 	unsigned int		priv_flags;
1928 
1929 	unsigned short		gflags;
1930 	unsigned short		padded;
1931 
1932 	unsigned char		operstate;
1933 	unsigned char		link_mode;
1934 
1935 	unsigned char		if_port;
1936 	unsigned char		dma;
1937 
1938 	/* Note : dev->mtu is often read without holding a lock.
1939 	 * Writers usually hold RTNL.
1940 	 * It is recommended to use READ_ONCE() to annotate the reads,
1941 	 * and to use WRITE_ONCE() to annotate the writes.
1942 	 */
1943 	unsigned int		mtu;
1944 	unsigned int		min_mtu;
1945 	unsigned int		max_mtu;
1946 	unsigned short		type;
1947 	unsigned short		hard_header_len;
1948 	unsigned char		min_header_len;
1949 
1950 	unsigned short		needed_headroom;
1951 	unsigned short		needed_tailroom;
1952 
1953 	/* Interface address info. */
1954 	unsigned char		perm_addr[MAX_ADDR_LEN];
1955 	unsigned char		addr_assign_type;
1956 	unsigned char		addr_len;
1957 	unsigned char		upper_level;
1958 	unsigned char		lower_level;
1959 	unsigned short		neigh_priv_len;
1960 	unsigned short          dev_id;
1961 	unsigned short          dev_port;
1962 	spinlock_t		addr_list_lock;
1963 	unsigned char		name_assign_type;
1964 	bool			uc_promisc;
1965 	struct netdev_hw_addr_list	uc;
1966 	struct netdev_hw_addr_list	mc;
1967 	struct netdev_hw_addr_list	dev_addrs;
1968 
1969 #ifdef CONFIG_SYSFS
1970 	struct kset		*queues_kset;
1971 #endif
1972 	unsigned int		promiscuity;
1973 	unsigned int		allmulti;
1974 
1975 
1976 	/* Protocol-specific pointers */
1977 
1978 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1979 	struct vlan_info __rcu	*vlan_info;
1980 #endif
1981 #if IS_ENABLED(CONFIG_NET_DSA)
1982 	struct dsa_port		*dsa_ptr;
1983 #endif
1984 #if IS_ENABLED(CONFIG_TIPC)
1985 	struct tipc_bearer __rcu *tipc_ptr;
1986 #endif
1987 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1988 	void 			*atalk_ptr;
1989 #endif
1990 	struct in_device __rcu	*ip_ptr;
1991 #if IS_ENABLED(CONFIG_DECNET)
1992 	struct dn_dev __rcu     *dn_ptr;
1993 #endif
1994 	struct inet6_dev __rcu	*ip6_ptr;
1995 #if IS_ENABLED(CONFIG_AX25)
1996 	void			*ax25_ptr;
1997 #endif
1998 	struct wireless_dev	*ieee80211_ptr;
1999 	struct wpan_dev		*ieee802154_ptr;
2000 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2001 	struct mpls_dev __rcu	*mpls_ptr;
2002 #endif
2003 
2004 /*
2005  * Cache lines mostly used on receive path (including eth_type_trans())
2006  */
2007 	/* Interface address info used in eth_type_trans() */
2008 	unsigned char		*dev_addr;
2009 
2010 	struct netdev_rx_queue	*_rx;
2011 	unsigned int		num_rx_queues;
2012 	unsigned int		real_num_rx_queues;
2013 
2014 	struct bpf_prog __rcu	*xdp_prog;
2015 	unsigned long		gro_flush_timeout;
2016 	int			napi_defer_hard_irqs;
2017 	rx_handler_func_t __rcu	*rx_handler;
2018 	void __rcu		*rx_handler_data;
2019 
2020 #ifdef CONFIG_NET_CLS_ACT
2021 	struct mini_Qdisc __rcu	*miniq_ingress;
2022 #endif
2023 	struct netdev_queue __rcu *ingress_queue;
2024 #ifdef CONFIG_NETFILTER_INGRESS
2025 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2026 #endif
2027 
2028 	unsigned char		broadcast[MAX_ADDR_LEN];
2029 #ifdef CONFIG_RFS_ACCEL
2030 	struct cpu_rmap		*rx_cpu_rmap;
2031 #endif
2032 	struct hlist_node	index_hlist;
2033 
2034 /*
2035  * Cache lines mostly used on transmit path
2036  */
2037 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2038 	unsigned int		num_tx_queues;
2039 	unsigned int		real_num_tx_queues;
2040 	struct Qdisc		*qdisc;
2041 	unsigned int		tx_queue_len;
2042 	spinlock_t		tx_global_lock;
2043 
2044 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2045 
2046 #ifdef CONFIG_XPS
2047 	struct xps_dev_maps __rcu *xps_cpus_map;
2048 	struct xps_dev_maps __rcu *xps_rxqs_map;
2049 #endif
2050 #ifdef CONFIG_NET_CLS_ACT
2051 	struct mini_Qdisc __rcu	*miniq_egress;
2052 #endif
2053 
2054 #ifdef CONFIG_NET_SCHED
2055 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2056 #endif
2057 	/* These may be needed for future network-power-down code. */
2058 	struct timer_list	watchdog_timer;
2059 	int			watchdog_timeo;
2060 
2061 	struct list_head	todo_list;
2062 	int __percpu		*pcpu_refcnt;
2063 
2064 	struct list_head	link_watch_list;
2065 
2066 	enum { NETREG_UNINITIALIZED=0,
2067 	       NETREG_REGISTERED,	/* completed register_netdevice */
2068 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2069 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2070 	       NETREG_RELEASED,		/* called free_netdev */
2071 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2072 	} reg_state:8;
2073 
2074 	bool dismantle;
2075 
2076 	enum {
2077 		RTNL_LINK_INITIALIZED,
2078 		RTNL_LINK_INITIALIZING,
2079 	} rtnl_link_state:16;
2080 
2081 	bool needs_free_netdev;
2082 	void (*priv_destructor)(struct net_device *dev);
2083 
2084 #ifdef CONFIG_NETPOLL
2085 	struct netpoll_info __rcu	*npinfo;
2086 #endif
2087 
2088 	possible_net_t			nd_net;
2089 
2090 	/* mid-layer private */
2091 	union {
2092 		void					*ml_priv;
2093 		struct pcpu_lstats __percpu		*lstats;
2094 		struct pcpu_sw_netstats __percpu	*tstats;
2095 		struct pcpu_dstats __percpu		*dstats;
2096 	};
2097 
2098 #if IS_ENABLED(CONFIG_GARP)
2099 	struct garp_port __rcu	*garp_port;
2100 #endif
2101 #if IS_ENABLED(CONFIG_MRP)
2102 	struct mrp_port __rcu	*mrp_port;
2103 #endif
2104 
2105 	struct device		dev;
2106 	const struct attribute_group *sysfs_groups[4];
2107 	const struct attribute_group *sysfs_rx_queue_group;
2108 
2109 	const struct rtnl_link_ops *rtnl_link_ops;
2110 
2111 	/* for setting kernel sock attribute on TCP connection setup */
2112 #define GSO_MAX_SIZE		65536
2113 	unsigned int		gso_max_size;
2114 #define GSO_MAX_SEGS		65535
2115 	u16			gso_max_segs;
2116 
2117 #ifdef CONFIG_DCB
2118 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2119 #endif
2120 	s16			num_tc;
2121 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2122 	u8			prio_tc_map[TC_BITMASK + 1];
2123 
2124 #if IS_ENABLED(CONFIG_FCOE)
2125 	unsigned int		fcoe_ddp_xid;
2126 #endif
2127 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2128 	struct netprio_map __rcu *priomap;
2129 #endif
2130 	struct phy_device	*phydev;
2131 	struct sfp_bus		*sfp_bus;
2132 	struct lock_class_key	*qdisc_tx_busylock;
2133 	struct lock_class_key	*qdisc_running_key;
2134 	bool			proto_down;
2135 	unsigned		wol_enabled:1;
2136 
2137 	struct list_head	net_notifier_list;
2138 
2139 #if IS_ENABLED(CONFIG_MACSEC)
2140 	/* MACsec management functions */
2141 	const struct macsec_ops *macsec_ops;
2142 #endif
2143 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2144 	struct udp_tunnel_nic	*udp_tunnel_nic;
2145 };
2146 #define to_net_dev(d) container_of(d, struct net_device, dev)
2147 
2148 static inline bool netif_elide_gro(const struct net_device *dev)
2149 {
2150 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2151 		return true;
2152 	return false;
2153 }
2154 
2155 #define	NETDEV_ALIGN		32
2156 
2157 static inline
2158 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2159 {
2160 	return dev->prio_tc_map[prio & TC_BITMASK];
2161 }
2162 
2163 static inline
2164 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2165 {
2166 	if (tc >= dev->num_tc)
2167 		return -EINVAL;
2168 
2169 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2170 	return 0;
2171 }
2172 
2173 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2174 void netdev_reset_tc(struct net_device *dev);
2175 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2176 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2177 
2178 static inline
2179 int netdev_get_num_tc(struct net_device *dev)
2180 {
2181 	return dev->num_tc;
2182 }
2183 
2184 void netdev_unbind_sb_channel(struct net_device *dev,
2185 			      struct net_device *sb_dev);
2186 int netdev_bind_sb_channel_queue(struct net_device *dev,
2187 				 struct net_device *sb_dev,
2188 				 u8 tc, u16 count, u16 offset);
2189 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2190 static inline int netdev_get_sb_channel(struct net_device *dev)
2191 {
2192 	return max_t(int, -dev->num_tc, 0);
2193 }
2194 
2195 static inline
2196 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2197 					 unsigned int index)
2198 {
2199 	return &dev->_tx[index];
2200 }
2201 
2202 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2203 						    const struct sk_buff *skb)
2204 {
2205 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2206 }
2207 
2208 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2209 					    void (*f)(struct net_device *,
2210 						      struct netdev_queue *,
2211 						      void *),
2212 					    void *arg)
2213 {
2214 	unsigned int i;
2215 
2216 	for (i = 0; i < dev->num_tx_queues; i++)
2217 		f(dev, &dev->_tx[i], arg);
2218 }
2219 
2220 #define netdev_lockdep_set_classes(dev)				\
2221 {								\
2222 	static struct lock_class_key qdisc_tx_busylock_key;	\
2223 	static struct lock_class_key qdisc_running_key;		\
2224 	static struct lock_class_key qdisc_xmit_lock_key;	\
2225 	static struct lock_class_key dev_addr_list_lock_key;	\
2226 	unsigned int i;						\
2227 								\
2228 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2229 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2230 	lockdep_set_class(&(dev)->addr_list_lock,		\
2231 			  &dev_addr_list_lock_key);		\
2232 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2233 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2234 				  &qdisc_xmit_lock_key);	\
2235 }
2236 
2237 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2238 		     struct net_device *sb_dev);
2239 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2240 					 struct sk_buff *skb,
2241 					 struct net_device *sb_dev);
2242 
2243 /* returns the headroom that the master device needs to take in account
2244  * when forwarding to this dev
2245  */
2246 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2247 {
2248 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2249 }
2250 
2251 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2252 {
2253 	if (dev->netdev_ops->ndo_set_rx_headroom)
2254 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2255 }
2256 
2257 /* set the device rx headroom to the dev's default */
2258 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2259 {
2260 	netdev_set_rx_headroom(dev, -1);
2261 }
2262 
2263 /*
2264  * Net namespace inlines
2265  */
2266 static inline
2267 struct net *dev_net(const struct net_device *dev)
2268 {
2269 	return read_pnet(&dev->nd_net);
2270 }
2271 
2272 static inline
2273 void dev_net_set(struct net_device *dev, struct net *net)
2274 {
2275 	write_pnet(&dev->nd_net, net);
2276 }
2277 
2278 /**
2279  *	netdev_priv - access network device private data
2280  *	@dev: network device
2281  *
2282  * Get network device private data
2283  */
2284 static inline void *netdev_priv(const struct net_device *dev)
2285 {
2286 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2287 }
2288 
2289 /* Set the sysfs physical device reference for the network logical device
2290  * if set prior to registration will cause a symlink during initialization.
2291  */
2292 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2293 
2294 /* Set the sysfs device type for the network logical device to allow
2295  * fine-grained identification of different network device types. For
2296  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2297  */
2298 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2299 
2300 /* Default NAPI poll() weight
2301  * Device drivers are strongly advised to not use bigger value
2302  */
2303 #define NAPI_POLL_WEIGHT 64
2304 
2305 /**
2306  *	netif_napi_add - initialize a NAPI context
2307  *	@dev:  network device
2308  *	@napi: NAPI context
2309  *	@poll: polling function
2310  *	@weight: default weight
2311  *
2312  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2313  * *any* of the other NAPI-related functions.
2314  */
2315 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2316 		    int (*poll)(struct napi_struct *, int), int weight);
2317 
2318 /**
2319  *	netif_tx_napi_add - initialize a NAPI context
2320  *	@dev:  network device
2321  *	@napi: NAPI context
2322  *	@poll: polling function
2323  *	@weight: default weight
2324  *
2325  * This variant of netif_napi_add() should be used from drivers using NAPI
2326  * to exclusively poll a TX queue.
2327  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2328  */
2329 static inline void netif_tx_napi_add(struct net_device *dev,
2330 				     struct napi_struct *napi,
2331 				     int (*poll)(struct napi_struct *, int),
2332 				     int weight)
2333 {
2334 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2335 	netif_napi_add(dev, napi, poll, weight);
2336 }
2337 
2338 /**
2339  *  netif_napi_del - remove a NAPI context
2340  *  @napi: NAPI context
2341  *
2342  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2343  */
2344 void netif_napi_del(struct napi_struct *napi);
2345 
2346 struct napi_gro_cb {
2347 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2348 	void	*frag0;
2349 
2350 	/* Length of frag0. */
2351 	unsigned int frag0_len;
2352 
2353 	/* This indicates where we are processing relative to skb->data. */
2354 	int	data_offset;
2355 
2356 	/* This is non-zero if the packet cannot be merged with the new skb. */
2357 	u16	flush;
2358 
2359 	/* Save the IP ID here and check when we get to the transport layer */
2360 	u16	flush_id;
2361 
2362 	/* Number of segments aggregated. */
2363 	u16	count;
2364 
2365 	/* Start offset for remote checksum offload */
2366 	u16	gro_remcsum_start;
2367 
2368 	/* jiffies when first packet was created/queued */
2369 	unsigned long age;
2370 
2371 	/* Used in ipv6_gro_receive() and foo-over-udp */
2372 	u16	proto;
2373 
2374 	/* This is non-zero if the packet may be of the same flow. */
2375 	u8	same_flow:1;
2376 
2377 	/* Used in tunnel GRO receive */
2378 	u8	encap_mark:1;
2379 
2380 	/* GRO checksum is valid */
2381 	u8	csum_valid:1;
2382 
2383 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2384 	u8	csum_cnt:3;
2385 
2386 	/* Free the skb? */
2387 	u8	free:2;
2388 #define NAPI_GRO_FREE		  1
2389 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2390 
2391 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2392 	u8	is_ipv6:1;
2393 
2394 	/* Used in GRE, set in fou/gue_gro_receive */
2395 	u8	is_fou:1;
2396 
2397 	/* Used to determine if flush_id can be ignored */
2398 	u8	is_atomic:1;
2399 
2400 	/* Number of gro_receive callbacks this packet already went through */
2401 	u8 recursion_counter:4;
2402 
2403 	/* GRO is done by frag_list pointer chaining. */
2404 	u8	is_flist:1;
2405 
2406 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2407 	__wsum	csum;
2408 
2409 	/* used in skb_gro_receive() slow path */
2410 	struct sk_buff *last;
2411 };
2412 
2413 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2414 
2415 #define GRO_RECURSION_LIMIT 15
2416 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2417 {
2418 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2419 }
2420 
2421 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2422 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2423 					       struct list_head *head,
2424 					       struct sk_buff *skb)
2425 {
2426 	if (unlikely(gro_recursion_inc_test(skb))) {
2427 		NAPI_GRO_CB(skb)->flush |= 1;
2428 		return NULL;
2429 	}
2430 
2431 	return cb(head, skb);
2432 }
2433 
2434 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2435 					    struct sk_buff *);
2436 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2437 						  struct sock *sk,
2438 						  struct list_head *head,
2439 						  struct sk_buff *skb)
2440 {
2441 	if (unlikely(gro_recursion_inc_test(skb))) {
2442 		NAPI_GRO_CB(skb)->flush |= 1;
2443 		return NULL;
2444 	}
2445 
2446 	return cb(sk, head, skb);
2447 }
2448 
2449 struct packet_type {
2450 	__be16			type;	/* This is really htons(ether_type). */
2451 	bool			ignore_outgoing;
2452 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2453 	int			(*func) (struct sk_buff *,
2454 					 struct net_device *,
2455 					 struct packet_type *,
2456 					 struct net_device *);
2457 	void			(*list_func) (struct list_head *,
2458 					      struct packet_type *,
2459 					      struct net_device *);
2460 	bool			(*id_match)(struct packet_type *ptype,
2461 					    struct sock *sk);
2462 	void			*af_packet_priv;
2463 	struct list_head	list;
2464 };
2465 
2466 struct offload_callbacks {
2467 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2468 						netdev_features_t features);
2469 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2470 						struct sk_buff *skb);
2471 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2472 };
2473 
2474 struct packet_offload {
2475 	__be16			 type;	/* This is really htons(ether_type). */
2476 	u16			 priority;
2477 	struct offload_callbacks callbacks;
2478 	struct list_head	 list;
2479 };
2480 
2481 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2482 struct pcpu_sw_netstats {
2483 	u64     rx_packets;
2484 	u64     rx_bytes;
2485 	u64     tx_packets;
2486 	u64     tx_bytes;
2487 	struct u64_stats_sync   syncp;
2488 } __aligned(4 * sizeof(u64));
2489 
2490 struct pcpu_lstats {
2491 	u64_stats_t packets;
2492 	u64_stats_t bytes;
2493 	struct u64_stats_sync syncp;
2494 } __aligned(2 * sizeof(u64));
2495 
2496 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2497 
2498 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2499 {
2500 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2501 
2502 	u64_stats_update_begin(&lstats->syncp);
2503 	u64_stats_add(&lstats->bytes, len);
2504 	u64_stats_inc(&lstats->packets);
2505 	u64_stats_update_end(&lstats->syncp);
2506 }
2507 
2508 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2509 ({									\
2510 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2511 	if (pcpu_stats)	{						\
2512 		int __cpu;						\
2513 		for_each_possible_cpu(__cpu) {				\
2514 			typeof(type) *stat;				\
2515 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2516 			u64_stats_init(&stat->syncp);			\
2517 		}							\
2518 	}								\
2519 	pcpu_stats;							\
2520 })
2521 
2522 #define netdev_alloc_pcpu_stats(type)					\
2523 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2524 
2525 enum netdev_lag_tx_type {
2526 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2527 	NETDEV_LAG_TX_TYPE_RANDOM,
2528 	NETDEV_LAG_TX_TYPE_BROADCAST,
2529 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2530 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2531 	NETDEV_LAG_TX_TYPE_HASH,
2532 };
2533 
2534 enum netdev_lag_hash {
2535 	NETDEV_LAG_HASH_NONE,
2536 	NETDEV_LAG_HASH_L2,
2537 	NETDEV_LAG_HASH_L34,
2538 	NETDEV_LAG_HASH_L23,
2539 	NETDEV_LAG_HASH_E23,
2540 	NETDEV_LAG_HASH_E34,
2541 	NETDEV_LAG_HASH_UNKNOWN,
2542 };
2543 
2544 struct netdev_lag_upper_info {
2545 	enum netdev_lag_tx_type tx_type;
2546 	enum netdev_lag_hash hash_type;
2547 };
2548 
2549 struct netdev_lag_lower_state_info {
2550 	u8 link_up : 1,
2551 	   tx_enabled : 1;
2552 };
2553 
2554 #include <linux/notifier.h>
2555 
2556 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2557  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2558  * adding new types.
2559  */
2560 enum netdev_cmd {
2561 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2562 	NETDEV_DOWN,
2563 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2564 				   detected a hardware crash and restarted
2565 				   - we can use this eg to kick tcp sessions
2566 				   once done */
2567 	NETDEV_CHANGE,		/* Notify device state change */
2568 	NETDEV_REGISTER,
2569 	NETDEV_UNREGISTER,
2570 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2571 	NETDEV_CHANGEADDR,	/* notify after the address change */
2572 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2573 	NETDEV_GOING_DOWN,
2574 	NETDEV_CHANGENAME,
2575 	NETDEV_FEAT_CHANGE,
2576 	NETDEV_BONDING_FAILOVER,
2577 	NETDEV_PRE_UP,
2578 	NETDEV_PRE_TYPE_CHANGE,
2579 	NETDEV_POST_TYPE_CHANGE,
2580 	NETDEV_POST_INIT,
2581 	NETDEV_RELEASE,
2582 	NETDEV_NOTIFY_PEERS,
2583 	NETDEV_JOIN,
2584 	NETDEV_CHANGEUPPER,
2585 	NETDEV_RESEND_IGMP,
2586 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2587 	NETDEV_CHANGEINFODATA,
2588 	NETDEV_BONDING_INFO,
2589 	NETDEV_PRECHANGEUPPER,
2590 	NETDEV_CHANGELOWERSTATE,
2591 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2592 	NETDEV_UDP_TUNNEL_DROP_INFO,
2593 	NETDEV_CHANGE_TX_QUEUE_LEN,
2594 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2595 	NETDEV_CVLAN_FILTER_DROP_INFO,
2596 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2597 	NETDEV_SVLAN_FILTER_DROP_INFO,
2598 };
2599 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2600 
2601 int register_netdevice_notifier(struct notifier_block *nb);
2602 int unregister_netdevice_notifier(struct notifier_block *nb);
2603 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2604 int unregister_netdevice_notifier_net(struct net *net,
2605 				      struct notifier_block *nb);
2606 int register_netdevice_notifier_dev_net(struct net_device *dev,
2607 					struct notifier_block *nb,
2608 					struct netdev_net_notifier *nn);
2609 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2610 					  struct notifier_block *nb,
2611 					  struct netdev_net_notifier *nn);
2612 
2613 struct netdev_notifier_info {
2614 	struct net_device	*dev;
2615 	struct netlink_ext_ack	*extack;
2616 };
2617 
2618 struct netdev_notifier_info_ext {
2619 	struct netdev_notifier_info info; /* must be first */
2620 	union {
2621 		u32 mtu;
2622 	} ext;
2623 };
2624 
2625 struct netdev_notifier_change_info {
2626 	struct netdev_notifier_info info; /* must be first */
2627 	unsigned int flags_changed;
2628 };
2629 
2630 struct netdev_notifier_changeupper_info {
2631 	struct netdev_notifier_info info; /* must be first */
2632 	struct net_device *upper_dev; /* new upper dev */
2633 	bool master; /* is upper dev master */
2634 	bool linking; /* is the notification for link or unlink */
2635 	void *upper_info; /* upper dev info */
2636 };
2637 
2638 struct netdev_notifier_changelowerstate_info {
2639 	struct netdev_notifier_info info; /* must be first */
2640 	void *lower_state_info; /* is lower dev state */
2641 };
2642 
2643 struct netdev_notifier_pre_changeaddr_info {
2644 	struct netdev_notifier_info info; /* must be first */
2645 	const unsigned char *dev_addr;
2646 };
2647 
2648 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2649 					     struct net_device *dev)
2650 {
2651 	info->dev = dev;
2652 	info->extack = NULL;
2653 }
2654 
2655 static inline struct net_device *
2656 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2657 {
2658 	return info->dev;
2659 }
2660 
2661 static inline struct netlink_ext_ack *
2662 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2663 {
2664 	return info->extack;
2665 }
2666 
2667 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2668 
2669 
2670 extern rwlock_t				dev_base_lock;		/* Device list lock */
2671 
2672 #define for_each_netdev(net, d)		\
2673 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2674 #define for_each_netdev_reverse(net, d)	\
2675 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2676 #define for_each_netdev_rcu(net, d)		\
2677 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2678 #define for_each_netdev_safe(net, d, n)	\
2679 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2680 #define for_each_netdev_continue(net, d)		\
2681 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2682 #define for_each_netdev_continue_reverse(net, d)		\
2683 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2684 						     dev_list)
2685 #define for_each_netdev_continue_rcu(net, d)		\
2686 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2687 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2688 		for_each_netdev_rcu(&init_net, slave)	\
2689 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2690 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2691 
2692 static inline struct net_device *next_net_device(struct net_device *dev)
2693 {
2694 	struct list_head *lh;
2695 	struct net *net;
2696 
2697 	net = dev_net(dev);
2698 	lh = dev->dev_list.next;
2699 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2700 }
2701 
2702 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2703 {
2704 	struct list_head *lh;
2705 	struct net *net;
2706 
2707 	net = dev_net(dev);
2708 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2709 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2710 }
2711 
2712 static inline struct net_device *first_net_device(struct net *net)
2713 {
2714 	return list_empty(&net->dev_base_head) ? NULL :
2715 		net_device_entry(net->dev_base_head.next);
2716 }
2717 
2718 static inline struct net_device *first_net_device_rcu(struct net *net)
2719 {
2720 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2721 
2722 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2723 }
2724 
2725 int netdev_boot_setup_check(struct net_device *dev);
2726 unsigned long netdev_boot_base(const char *prefix, int unit);
2727 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2728 				       const char *hwaddr);
2729 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2730 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2731 void dev_add_pack(struct packet_type *pt);
2732 void dev_remove_pack(struct packet_type *pt);
2733 void __dev_remove_pack(struct packet_type *pt);
2734 void dev_add_offload(struct packet_offload *po);
2735 void dev_remove_offload(struct packet_offload *po);
2736 
2737 int dev_get_iflink(const struct net_device *dev);
2738 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2739 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2740 				      unsigned short mask);
2741 struct net_device *dev_get_by_name(struct net *net, const char *name);
2742 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2743 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2744 int dev_alloc_name(struct net_device *dev, const char *name);
2745 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2746 void dev_close(struct net_device *dev);
2747 void dev_close_many(struct list_head *head, bool unlink);
2748 void dev_disable_lro(struct net_device *dev);
2749 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2750 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2751 		     struct net_device *sb_dev);
2752 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2753 		       struct net_device *sb_dev);
2754 int dev_queue_xmit(struct sk_buff *skb);
2755 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2756 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2757 int register_netdevice(struct net_device *dev);
2758 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2759 void unregister_netdevice_many(struct list_head *head);
2760 static inline void unregister_netdevice(struct net_device *dev)
2761 {
2762 	unregister_netdevice_queue(dev, NULL);
2763 }
2764 
2765 int netdev_refcnt_read(const struct net_device *dev);
2766 void free_netdev(struct net_device *dev);
2767 void netdev_freemem(struct net_device *dev);
2768 void synchronize_net(void);
2769 int init_dummy_netdev(struct net_device *dev);
2770 
2771 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2772 					 struct sk_buff *skb,
2773 					 bool all_slaves);
2774 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2775 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2776 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2777 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2778 int netdev_get_name(struct net *net, char *name, int ifindex);
2779 int dev_restart(struct net_device *dev);
2780 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2781 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2782 
2783 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2784 {
2785 	return NAPI_GRO_CB(skb)->data_offset;
2786 }
2787 
2788 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2789 {
2790 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2791 }
2792 
2793 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2794 {
2795 	NAPI_GRO_CB(skb)->data_offset += len;
2796 }
2797 
2798 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2799 					unsigned int offset)
2800 {
2801 	return NAPI_GRO_CB(skb)->frag0 + offset;
2802 }
2803 
2804 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2805 {
2806 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2807 }
2808 
2809 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2810 {
2811 	NAPI_GRO_CB(skb)->frag0 = NULL;
2812 	NAPI_GRO_CB(skb)->frag0_len = 0;
2813 }
2814 
2815 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2816 					unsigned int offset)
2817 {
2818 	if (!pskb_may_pull(skb, hlen))
2819 		return NULL;
2820 
2821 	skb_gro_frag0_invalidate(skb);
2822 	return skb->data + offset;
2823 }
2824 
2825 static inline void *skb_gro_network_header(struct sk_buff *skb)
2826 {
2827 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2828 	       skb_network_offset(skb);
2829 }
2830 
2831 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2832 					const void *start, unsigned int len)
2833 {
2834 	if (NAPI_GRO_CB(skb)->csum_valid)
2835 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2836 						  csum_partial(start, len, 0));
2837 }
2838 
2839 /* GRO checksum functions. These are logical equivalents of the normal
2840  * checksum functions (in skbuff.h) except that they operate on the GRO
2841  * offsets and fields in sk_buff.
2842  */
2843 
2844 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2845 
2846 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2847 {
2848 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2849 }
2850 
2851 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2852 						      bool zero_okay,
2853 						      __sum16 check)
2854 {
2855 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2856 		skb_checksum_start_offset(skb) <
2857 		 skb_gro_offset(skb)) &&
2858 		!skb_at_gro_remcsum_start(skb) &&
2859 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2860 		(!zero_okay || check));
2861 }
2862 
2863 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2864 							   __wsum psum)
2865 {
2866 	if (NAPI_GRO_CB(skb)->csum_valid &&
2867 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2868 		return 0;
2869 
2870 	NAPI_GRO_CB(skb)->csum = psum;
2871 
2872 	return __skb_gro_checksum_complete(skb);
2873 }
2874 
2875 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2876 {
2877 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2878 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2879 		NAPI_GRO_CB(skb)->csum_cnt--;
2880 	} else {
2881 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2882 		 * verified a new top level checksum or an encapsulated one
2883 		 * during GRO. This saves work if we fallback to normal path.
2884 		 */
2885 		__skb_incr_checksum_unnecessary(skb);
2886 	}
2887 }
2888 
2889 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2890 				    compute_pseudo)			\
2891 ({									\
2892 	__sum16 __ret = 0;						\
2893 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2894 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2895 				compute_pseudo(skb, proto));		\
2896 	if (!__ret)							\
2897 		skb_gro_incr_csum_unnecessary(skb);			\
2898 	__ret;								\
2899 })
2900 
2901 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2902 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2903 
2904 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2905 					     compute_pseudo)		\
2906 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2907 
2908 #define skb_gro_checksum_simple_validate(skb)				\
2909 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2910 
2911 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2912 {
2913 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2914 		!NAPI_GRO_CB(skb)->csum_valid);
2915 }
2916 
2917 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2918 					      __wsum pseudo)
2919 {
2920 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2921 	NAPI_GRO_CB(skb)->csum_valid = 1;
2922 }
2923 
2924 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2925 do {									\
2926 	if (__skb_gro_checksum_convert_check(skb))			\
2927 		__skb_gro_checksum_convert(skb, 			\
2928 					   compute_pseudo(skb, proto));	\
2929 } while (0)
2930 
2931 struct gro_remcsum {
2932 	int offset;
2933 	__wsum delta;
2934 };
2935 
2936 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2937 {
2938 	grc->offset = 0;
2939 	grc->delta = 0;
2940 }
2941 
2942 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2943 					    unsigned int off, size_t hdrlen,
2944 					    int start, int offset,
2945 					    struct gro_remcsum *grc,
2946 					    bool nopartial)
2947 {
2948 	__wsum delta;
2949 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2950 
2951 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2952 
2953 	if (!nopartial) {
2954 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2955 		return ptr;
2956 	}
2957 
2958 	ptr = skb_gro_header_fast(skb, off);
2959 	if (skb_gro_header_hard(skb, off + plen)) {
2960 		ptr = skb_gro_header_slow(skb, off + plen, off);
2961 		if (!ptr)
2962 			return NULL;
2963 	}
2964 
2965 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2966 			       start, offset);
2967 
2968 	/* Adjust skb->csum since we changed the packet */
2969 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2970 
2971 	grc->offset = off + hdrlen + offset;
2972 	grc->delta = delta;
2973 
2974 	return ptr;
2975 }
2976 
2977 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2978 					   struct gro_remcsum *grc)
2979 {
2980 	void *ptr;
2981 	size_t plen = grc->offset + sizeof(u16);
2982 
2983 	if (!grc->delta)
2984 		return;
2985 
2986 	ptr = skb_gro_header_fast(skb, grc->offset);
2987 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2988 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2989 		if (!ptr)
2990 			return;
2991 	}
2992 
2993 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2994 }
2995 
2996 #ifdef CONFIG_XFRM_OFFLOAD
2997 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2998 {
2999 	if (PTR_ERR(pp) != -EINPROGRESS)
3000 		NAPI_GRO_CB(skb)->flush |= flush;
3001 }
3002 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3003 					       struct sk_buff *pp,
3004 					       int flush,
3005 					       struct gro_remcsum *grc)
3006 {
3007 	if (PTR_ERR(pp) != -EINPROGRESS) {
3008 		NAPI_GRO_CB(skb)->flush |= flush;
3009 		skb_gro_remcsum_cleanup(skb, grc);
3010 		skb->remcsum_offload = 0;
3011 	}
3012 }
3013 #else
3014 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3015 {
3016 	NAPI_GRO_CB(skb)->flush |= flush;
3017 }
3018 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3019 					       struct sk_buff *pp,
3020 					       int flush,
3021 					       struct gro_remcsum *grc)
3022 {
3023 	NAPI_GRO_CB(skb)->flush |= flush;
3024 	skb_gro_remcsum_cleanup(skb, grc);
3025 	skb->remcsum_offload = 0;
3026 }
3027 #endif
3028 
3029 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3030 				  unsigned short type,
3031 				  const void *daddr, const void *saddr,
3032 				  unsigned int len)
3033 {
3034 	if (!dev->header_ops || !dev->header_ops->create)
3035 		return 0;
3036 
3037 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3038 }
3039 
3040 static inline int dev_parse_header(const struct sk_buff *skb,
3041 				   unsigned char *haddr)
3042 {
3043 	const struct net_device *dev = skb->dev;
3044 
3045 	if (!dev->header_ops || !dev->header_ops->parse)
3046 		return 0;
3047 	return dev->header_ops->parse(skb, haddr);
3048 }
3049 
3050 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3051 {
3052 	const struct net_device *dev = skb->dev;
3053 
3054 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3055 		return 0;
3056 	return dev->header_ops->parse_protocol(skb);
3057 }
3058 
3059 /* ll_header must have at least hard_header_len allocated */
3060 static inline bool dev_validate_header(const struct net_device *dev,
3061 				       char *ll_header, int len)
3062 {
3063 	if (likely(len >= dev->hard_header_len))
3064 		return true;
3065 	if (len < dev->min_header_len)
3066 		return false;
3067 
3068 	if (capable(CAP_SYS_RAWIO)) {
3069 		memset(ll_header + len, 0, dev->hard_header_len - len);
3070 		return true;
3071 	}
3072 
3073 	if (dev->header_ops && dev->header_ops->validate)
3074 		return dev->header_ops->validate(ll_header, len);
3075 
3076 	return false;
3077 }
3078 
3079 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3080 			   int len, int size);
3081 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3082 static inline int unregister_gifconf(unsigned int family)
3083 {
3084 	return register_gifconf(family, NULL);
3085 }
3086 
3087 #ifdef CONFIG_NET_FLOW_LIMIT
3088 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3089 struct sd_flow_limit {
3090 	u64			count;
3091 	unsigned int		num_buckets;
3092 	unsigned int		history_head;
3093 	u16			history[FLOW_LIMIT_HISTORY];
3094 	u8			buckets[];
3095 };
3096 
3097 extern int netdev_flow_limit_table_len;
3098 #endif /* CONFIG_NET_FLOW_LIMIT */
3099 
3100 /*
3101  * Incoming packets are placed on per-CPU queues
3102  */
3103 struct softnet_data {
3104 	struct list_head	poll_list;
3105 	struct sk_buff_head	process_queue;
3106 
3107 	/* stats */
3108 	unsigned int		processed;
3109 	unsigned int		time_squeeze;
3110 	unsigned int		received_rps;
3111 #ifdef CONFIG_RPS
3112 	struct softnet_data	*rps_ipi_list;
3113 #endif
3114 #ifdef CONFIG_NET_FLOW_LIMIT
3115 	struct sd_flow_limit __rcu *flow_limit;
3116 #endif
3117 	struct Qdisc		*output_queue;
3118 	struct Qdisc		**output_queue_tailp;
3119 	struct sk_buff		*completion_queue;
3120 #ifdef CONFIG_XFRM_OFFLOAD
3121 	struct sk_buff_head	xfrm_backlog;
3122 #endif
3123 	/* written and read only by owning cpu: */
3124 	struct {
3125 		u16 recursion;
3126 		u8  more;
3127 	} xmit;
3128 #ifdef CONFIG_RPS
3129 	/* input_queue_head should be written by cpu owning this struct,
3130 	 * and only read by other cpus. Worth using a cache line.
3131 	 */
3132 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3133 
3134 	/* Elements below can be accessed between CPUs for RPS/RFS */
3135 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3136 	struct softnet_data	*rps_ipi_next;
3137 	unsigned int		cpu;
3138 	unsigned int		input_queue_tail;
3139 #endif
3140 	unsigned int		dropped;
3141 	struct sk_buff_head	input_pkt_queue;
3142 	struct napi_struct	backlog;
3143 
3144 };
3145 
3146 static inline void input_queue_head_incr(struct softnet_data *sd)
3147 {
3148 #ifdef CONFIG_RPS
3149 	sd->input_queue_head++;
3150 #endif
3151 }
3152 
3153 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3154 					      unsigned int *qtail)
3155 {
3156 #ifdef CONFIG_RPS
3157 	*qtail = ++sd->input_queue_tail;
3158 #endif
3159 }
3160 
3161 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3162 
3163 static inline int dev_recursion_level(void)
3164 {
3165 	return this_cpu_read(softnet_data.xmit.recursion);
3166 }
3167 
3168 #define XMIT_RECURSION_LIMIT	8
3169 static inline bool dev_xmit_recursion(void)
3170 {
3171 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3172 			XMIT_RECURSION_LIMIT);
3173 }
3174 
3175 static inline void dev_xmit_recursion_inc(void)
3176 {
3177 	__this_cpu_inc(softnet_data.xmit.recursion);
3178 }
3179 
3180 static inline void dev_xmit_recursion_dec(void)
3181 {
3182 	__this_cpu_dec(softnet_data.xmit.recursion);
3183 }
3184 
3185 void __netif_schedule(struct Qdisc *q);
3186 void netif_schedule_queue(struct netdev_queue *txq);
3187 
3188 static inline void netif_tx_schedule_all(struct net_device *dev)
3189 {
3190 	unsigned int i;
3191 
3192 	for (i = 0; i < dev->num_tx_queues; i++)
3193 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3194 }
3195 
3196 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3197 {
3198 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3199 }
3200 
3201 /**
3202  *	netif_start_queue - allow transmit
3203  *	@dev: network device
3204  *
3205  *	Allow upper layers to call the device hard_start_xmit routine.
3206  */
3207 static inline void netif_start_queue(struct net_device *dev)
3208 {
3209 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3210 }
3211 
3212 static inline void netif_tx_start_all_queues(struct net_device *dev)
3213 {
3214 	unsigned int i;
3215 
3216 	for (i = 0; i < dev->num_tx_queues; i++) {
3217 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3218 		netif_tx_start_queue(txq);
3219 	}
3220 }
3221 
3222 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3223 
3224 /**
3225  *	netif_wake_queue - restart transmit
3226  *	@dev: network device
3227  *
3228  *	Allow upper layers to call the device hard_start_xmit routine.
3229  *	Used for flow control when transmit resources are available.
3230  */
3231 static inline void netif_wake_queue(struct net_device *dev)
3232 {
3233 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3234 }
3235 
3236 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3237 {
3238 	unsigned int i;
3239 
3240 	for (i = 0; i < dev->num_tx_queues; i++) {
3241 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3242 		netif_tx_wake_queue(txq);
3243 	}
3244 }
3245 
3246 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3247 {
3248 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3249 }
3250 
3251 /**
3252  *	netif_stop_queue - stop transmitted packets
3253  *	@dev: network device
3254  *
3255  *	Stop upper layers calling the device hard_start_xmit routine.
3256  *	Used for flow control when transmit resources are unavailable.
3257  */
3258 static inline void netif_stop_queue(struct net_device *dev)
3259 {
3260 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3261 }
3262 
3263 void netif_tx_stop_all_queues(struct net_device *dev);
3264 
3265 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3266 {
3267 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3268 }
3269 
3270 /**
3271  *	netif_queue_stopped - test if transmit queue is flowblocked
3272  *	@dev: network device
3273  *
3274  *	Test if transmit queue on device is currently unable to send.
3275  */
3276 static inline bool netif_queue_stopped(const struct net_device *dev)
3277 {
3278 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3279 }
3280 
3281 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3282 {
3283 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3284 }
3285 
3286 static inline bool
3287 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3288 {
3289 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3290 }
3291 
3292 static inline bool
3293 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3294 {
3295 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3296 }
3297 
3298 /**
3299  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3300  *	@dev_queue: pointer to transmit queue
3301  *
3302  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3303  * to give appropriate hint to the CPU.
3304  */
3305 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3306 {
3307 #ifdef CONFIG_BQL
3308 	prefetchw(&dev_queue->dql.num_queued);
3309 #endif
3310 }
3311 
3312 /**
3313  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3314  *	@dev_queue: pointer to transmit queue
3315  *
3316  * BQL enabled drivers might use this helper in their TX completion path,
3317  * to give appropriate hint to the CPU.
3318  */
3319 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3320 {
3321 #ifdef CONFIG_BQL
3322 	prefetchw(&dev_queue->dql.limit);
3323 #endif
3324 }
3325 
3326 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3327 					unsigned int bytes)
3328 {
3329 #ifdef CONFIG_BQL
3330 	dql_queued(&dev_queue->dql, bytes);
3331 
3332 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3333 		return;
3334 
3335 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3336 
3337 	/*
3338 	 * The XOFF flag must be set before checking the dql_avail below,
3339 	 * because in netdev_tx_completed_queue we update the dql_completed
3340 	 * before checking the XOFF flag.
3341 	 */
3342 	smp_mb();
3343 
3344 	/* check again in case another CPU has just made room avail */
3345 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3346 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3347 #endif
3348 }
3349 
3350 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3351  * that they should not test BQL status themselves.
3352  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3353  * skb of a batch.
3354  * Returns true if the doorbell must be used to kick the NIC.
3355  */
3356 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3357 					  unsigned int bytes,
3358 					  bool xmit_more)
3359 {
3360 	if (xmit_more) {
3361 #ifdef CONFIG_BQL
3362 		dql_queued(&dev_queue->dql, bytes);
3363 #endif
3364 		return netif_tx_queue_stopped(dev_queue);
3365 	}
3366 	netdev_tx_sent_queue(dev_queue, bytes);
3367 	return true;
3368 }
3369 
3370 /**
3371  * 	netdev_sent_queue - report the number of bytes queued to hardware
3372  * 	@dev: network device
3373  * 	@bytes: number of bytes queued to the hardware device queue
3374  *
3375  * 	Report the number of bytes queued for sending/completion to the network
3376  * 	device hardware queue. @bytes should be a good approximation and should
3377  * 	exactly match netdev_completed_queue() @bytes
3378  */
3379 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3380 {
3381 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3382 }
3383 
3384 static inline bool __netdev_sent_queue(struct net_device *dev,
3385 				       unsigned int bytes,
3386 				       bool xmit_more)
3387 {
3388 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3389 				      xmit_more);
3390 }
3391 
3392 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3393 					     unsigned int pkts, unsigned int bytes)
3394 {
3395 #ifdef CONFIG_BQL
3396 	if (unlikely(!bytes))
3397 		return;
3398 
3399 	dql_completed(&dev_queue->dql, bytes);
3400 
3401 	/*
3402 	 * Without the memory barrier there is a small possiblity that
3403 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3404 	 * be stopped forever
3405 	 */
3406 	smp_mb();
3407 
3408 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3409 		return;
3410 
3411 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3412 		netif_schedule_queue(dev_queue);
3413 #endif
3414 }
3415 
3416 /**
3417  * 	netdev_completed_queue - report bytes and packets completed by device
3418  * 	@dev: network device
3419  * 	@pkts: actual number of packets sent over the medium
3420  * 	@bytes: actual number of bytes sent over the medium
3421  *
3422  * 	Report the number of bytes and packets transmitted by the network device
3423  * 	hardware queue over the physical medium, @bytes must exactly match the
3424  * 	@bytes amount passed to netdev_sent_queue()
3425  */
3426 static inline void netdev_completed_queue(struct net_device *dev,
3427 					  unsigned int pkts, unsigned int bytes)
3428 {
3429 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3430 }
3431 
3432 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3433 {
3434 #ifdef CONFIG_BQL
3435 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3436 	dql_reset(&q->dql);
3437 #endif
3438 }
3439 
3440 /**
3441  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3442  * 	@dev_queue: network device
3443  *
3444  * 	Reset the bytes and packet count of a network device and clear the
3445  * 	software flow control OFF bit for this network device
3446  */
3447 static inline void netdev_reset_queue(struct net_device *dev_queue)
3448 {
3449 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3450 }
3451 
3452 /**
3453  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3454  * 	@dev: network device
3455  * 	@queue_index: given tx queue index
3456  *
3457  * 	Returns 0 if given tx queue index >= number of device tx queues,
3458  * 	otherwise returns the originally passed tx queue index.
3459  */
3460 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3461 {
3462 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3463 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3464 				     dev->name, queue_index,
3465 				     dev->real_num_tx_queues);
3466 		return 0;
3467 	}
3468 
3469 	return queue_index;
3470 }
3471 
3472 /**
3473  *	netif_running - test if up
3474  *	@dev: network device
3475  *
3476  *	Test if the device has been brought up.
3477  */
3478 static inline bool netif_running(const struct net_device *dev)
3479 {
3480 	return test_bit(__LINK_STATE_START, &dev->state);
3481 }
3482 
3483 /*
3484  * Routines to manage the subqueues on a device.  We only need start,
3485  * stop, and a check if it's stopped.  All other device management is
3486  * done at the overall netdevice level.
3487  * Also test the device if we're multiqueue.
3488  */
3489 
3490 /**
3491  *	netif_start_subqueue - allow sending packets on subqueue
3492  *	@dev: network device
3493  *	@queue_index: sub queue index
3494  *
3495  * Start individual transmit queue of a device with multiple transmit queues.
3496  */
3497 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3498 {
3499 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3500 
3501 	netif_tx_start_queue(txq);
3502 }
3503 
3504 /**
3505  *	netif_stop_subqueue - stop sending packets on subqueue
3506  *	@dev: network device
3507  *	@queue_index: sub queue index
3508  *
3509  * Stop individual transmit queue of a device with multiple transmit queues.
3510  */
3511 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3512 {
3513 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3514 	netif_tx_stop_queue(txq);
3515 }
3516 
3517 /**
3518  *	netif_subqueue_stopped - test status of subqueue
3519  *	@dev: network device
3520  *	@queue_index: sub queue index
3521  *
3522  * Check individual transmit queue of a device with multiple transmit queues.
3523  */
3524 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3525 					    u16 queue_index)
3526 {
3527 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3528 
3529 	return netif_tx_queue_stopped(txq);
3530 }
3531 
3532 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3533 					  struct sk_buff *skb)
3534 {
3535 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3536 }
3537 
3538 /**
3539  *	netif_wake_subqueue - allow sending packets on subqueue
3540  *	@dev: network device
3541  *	@queue_index: sub queue index
3542  *
3543  * Resume individual transmit queue of a device with multiple transmit queues.
3544  */
3545 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3546 {
3547 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3548 
3549 	netif_tx_wake_queue(txq);
3550 }
3551 
3552 #ifdef CONFIG_XPS
3553 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3554 			u16 index);
3555 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3556 			  u16 index, bool is_rxqs_map);
3557 
3558 /**
3559  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3560  *	@j: CPU/Rx queue index
3561  *	@mask: bitmask of all cpus/rx queues
3562  *	@nr_bits: number of bits in the bitmask
3563  *
3564  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3565  */
3566 static inline bool netif_attr_test_mask(unsigned long j,
3567 					const unsigned long *mask,
3568 					unsigned int nr_bits)
3569 {
3570 	cpu_max_bits_warn(j, nr_bits);
3571 	return test_bit(j, mask);
3572 }
3573 
3574 /**
3575  *	netif_attr_test_online - Test for online CPU/Rx queue
3576  *	@j: CPU/Rx queue index
3577  *	@online_mask: bitmask for CPUs/Rx queues that are online
3578  *	@nr_bits: number of bits in the bitmask
3579  *
3580  * Returns true if a CPU/Rx queue is online.
3581  */
3582 static inline bool netif_attr_test_online(unsigned long j,
3583 					  const unsigned long *online_mask,
3584 					  unsigned int nr_bits)
3585 {
3586 	cpu_max_bits_warn(j, nr_bits);
3587 
3588 	if (online_mask)
3589 		return test_bit(j, online_mask);
3590 
3591 	return (j < nr_bits);
3592 }
3593 
3594 /**
3595  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3596  *	@n: CPU/Rx queue index
3597  *	@srcp: the cpumask/Rx queue mask pointer
3598  *	@nr_bits: number of bits in the bitmask
3599  *
3600  * Returns >= nr_bits if no further CPUs/Rx queues set.
3601  */
3602 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3603 					       unsigned int nr_bits)
3604 {
3605 	/* -1 is a legal arg here. */
3606 	if (n != -1)
3607 		cpu_max_bits_warn(n, nr_bits);
3608 
3609 	if (srcp)
3610 		return find_next_bit(srcp, nr_bits, n + 1);
3611 
3612 	return n + 1;
3613 }
3614 
3615 /**
3616  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3617  *	@n: CPU/Rx queue index
3618  *	@src1p: the first CPUs/Rx queues mask pointer
3619  *	@src2p: the second CPUs/Rx queues mask pointer
3620  *	@nr_bits: number of bits in the bitmask
3621  *
3622  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3623  */
3624 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3625 					  const unsigned long *src2p,
3626 					  unsigned int nr_bits)
3627 {
3628 	/* -1 is a legal arg here. */
3629 	if (n != -1)
3630 		cpu_max_bits_warn(n, nr_bits);
3631 
3632 	if (src1p && src2p)
3633 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3634 	else if (src1p)
3635 		return find_next_bit(src1p, nr_bits, n + 1);
3636 	else if (src2p)
3637 		return find_next_bit(src2p, nr_bits, n + 1);
3638 
3639 	return n + 1;
3640 }
3641 #else
3642 static inline int netif_set_xps_queue(struct net_device *dev,
3643 				      const struct cpumask *mask,
3644 				      u16 index)
3645 {
3646 	return 0;
3647 }
3648 
3649 static inline int __netif_set_xps_queue(struct net_device *dev,
3650 					const unsigned long *mask,
3651 					u16 index, bool is_rxqs_map)
3652 {
3653 	return 0;
3654 }
3655 #endif
3656 
3657 /**
3658  *	netif_is_multiqueue - test if device has multiple transmit queues
3659  *	@dev: network device
3660  *
3661  * Check if device has multiple transmit queues
3662  */
3663 static inline bool netif_is_multiqueue(const struct net_device *dev)
3664 {
3665 	return dev->num_tx_queues > 1;
3666 }
3667 
3668 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3669 
3670 #ifdef CONFIG_SYSFS
3671 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3672 #else
3673 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3674 						unsigned int rxqs)
3675 {
3676 	dev->real_num_rx_queues = rxqs;
3677 	return 0;
3678 }
3679 #endif
3680 
3681 static inline struct netdev_rx_queue *
3682 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3683 {
3684 	return dev->_rx + rxq;
3685 }
3686 
3687 #ifdef CONFIG_SYSFS
3688 static inline unsigned int get_netdev_rx_queue_index(
3689 		struct netdev_rx_queue *queue)
3690 {
3691 	struct net_device *dev = queue->dev;
3692 	int index = queue - dev->_rx;
3693 
3694 	BUG_ON(index >= dev->num_rx_queues);
3695 	return index;
3696 }
3697 #endif
3698 
3699 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3700 int netif_get_num_default_rss_queues(void);
3701 
3702 enum skb_free_reason {
3703 	SKB_REASON_CONSUMED,
3704 	SKB_REASON_DROPPED,
3705 };
3706 
3707 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3708 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3709 
3710 /*
3711  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3712  * interrupt context or with hardware interrupts being disabled.
3713  * (in_irq() || irqs_disabled())
3714  *
3715  * We provide four helpers that can be used in following contexts :
3716  *
3717  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3718  *  replacing kfree_skb(skb)
3719  *
3720  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3721  *  Typically used in place of consume_skb(skb) in TX completion path
3722  *
3723  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3724  *  replacing kfree_skb(skb)
3725  *
3726  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3727  *  and consumed a packet. Used in place of consume_skb(skb)
3728  */
3729 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3730 {
3731 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3732 }
3733 
3734 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3735 {
3736 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3737 }
3738 
3739 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3740 {
3741 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3742 }
3743 
3744 static inline void dev_consume_skb_any(struct sk_buff *skb)
3745 {
3746 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3747 }
3748 
3749 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3750 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3751 int netif_rx(struct sk_buff *skb);
3752 int netif_rx_ni(struct sk_buff *skb);
3753 int netif_receive_skb(struct sk_buff *skb);
3754 int netif_receive_skb_core(struct sk_buff *skb);
3755 void netif_receive_skb_list(struct list_head *head);
3756 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3757 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3758 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3759 gro_result_t napi_gro_frags(struct napi_struct *napi);
3760 struct packet_offload *gro_find_receive_by_type(__be16 type);
3761 struct packet_offload *gro_find_complete_by_type(__be16 type);
3762 
3763 static inline void napi_free_frags(struct napi_struct *napi)
3764 {
3765 	kfree_skb(napi->skb);
3766 	napi->skb = NULL;
3767 }
3768 
3769 bool netdev_is_rx_handler_busy(struct net_device *dev);
3770 int netdev_rx_handler_register(struct net_device *dev,
3771 			       rx_handler_func_t *rx_handler,
3772 			       void *rx_handler_data);
3773 void netdev_rx_handler_unregister(struct net_device *dev);
3774 
3775 bool dev_valid_name(const char *name);
3776 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3777 		bool *need_copyout);
3778 int dev_ifconf(struct net *net, struct ifconf *, int);
3779 int dev_ethtool(struct net *net, struct ifreq *);
3780 unsigned int dev_get_flags(const struct net_device *);
3781 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3782 		       struct netlink_ext_ack *extack);
3783 int dev_change_flags(struct net_device *dev, unsigned int flags,
3784 		     struct netlink_ext_ack *extack);
3785 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3786 			unsigned int gchanges);
3787 int dev_change_name(struct net_device *, const char *);
3788 int dev_set_alias(struct net_device *, const char *, size_t);
3789 int dev_get_alias(const struct net_device *, char *, size_t);
3790 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3791 int __dev_set_mtu(struct net_device *, int);
3792 int dev_validate_mtu(struct net_device *dev, int mtu,
3793 		     struct netlink_ext_ack *extack);
3794 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3795 		    struct netlink_ext_ack *extack);
3796 int dev_set_mtu(struct net_device *, int);
3797 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3798 void dev_set_group(struct net_device *, int);
3799 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3800 			      struct netlink_ext_ack *extack);
3801 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3802 			struct netlink_ext_ack *extack);
3803 int dev_change_carrier(struct net_device *, bool new_carrier);
3804 int dev_get_phys_port_id(struct net_device *dev,
3805 			 struct netdev_phys_item_id *ppid);
3806 int dev_get_phys_port_name(struct net_device *dev,
3807 			   char *name, size_t len);
3808 int dev_get_port_parent_id(struct net_device *dev,
3809 			   struct netdev_phys_item_id *ppid, bool recurse);
3810 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3811 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3812 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3813 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3814 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3815 				    struct netdev_queue *txq, int *ret);
3816 
3817 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3818 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3819 		      int fd, int expected_fd, u32 flags);
3820 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3821 		    enum bpf_netdev_command cmd);
3822 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3823 
3824 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3825 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3826 bool is_skb_forwardable(const struct net_device *dev,
3827 			const struct sk_buff *skb);
3828 
3829 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3830 					       struct sk_buff *skb)
3831 {
3832 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3833 	    unlikely(!is_skb_forwardable(dev, skb))) {
3834 		atomic_long_inc(&dev->rx_dropped);
3835 		kfree_skb(skb);
3836 		return NET_RX_DROP;
3837 	}
3838 
3839 	skb_scrub_packet(skb, true);
3840 	skb->priority = 0;
3841 	return 0;
3842 }
3843 
3844 bool dev_nit_active(struct net_device *dev);
3845 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3846 
3847 extern int		netdev_budget;
3848 extern unsigned int	netdev_budget_usecs;
3849 
3850 /* Called by rtnetlink.c:rtnl_unlock() */
3851 void netdev_run_todo(void);
3852 
3853 /**
3854  *	dev_put - release reference to device
3855  *	@dev: network device
3856  *
3857  * Release reference to device to allow it to be freed.
3858  */
3859 static inline void dev_put(struct net_device *dev)
3860 {
3861 	this_cpu_dec(*dev->pcpu_refcnt);
3862 }
3863 
3864 /**
3865  *	dev_hold - get reference to device
3866  *	@dev: network device
3867  *
3868  * Hold reference to device to keep it from being freed.
3869  */
3870 static inline void dev_hold(struct net_device *dev)
3871 {
3872 	this_cpu_inc(*dev->pcpu_refcnt);
3873 }
3874 
3875 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3876  * and _off may be called from IRQ context, but it is caller
3877  * who is responsible for serialization of these calls.
3878  *
3879  * The name carrier is inappropriate, these functions should really be
3880  * called netif_lowerlayer_*() because they represent the state of any
3881  * kind of lower layer not just hardware media.
3882  */
3883 
3884 void linkwatch_init_dev(struct net_device *dev);
3885 void linkwatch_fire_event(struct net_device *dev);
3886 void linkwatch_forget_dev(struct net_device *dev);
3887 
3888 /**
3889  *	netif_carrier_ok - test if carrier present
3890  *	@dev: network device
3891  *
3892  * Check if carrier is present on device
3893  */
3894 static inline bool netif_carrier_ok(const struct net_device *dev)
3895 {
3896 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3897 }
3898 
3899 unsigned long dev_trans_start(struct net_device *dev);
3900 
3901 void __netdev_watchdog_up(struct net_device *dev);
3902 
3903 void netif_carrier_on(struct net_device *dev);
3904 
3905 void netif_carrier_off(struct net_device *dev);
3906 
3907 /**
3908  *	netif_dormant_on - mark device as dormant.
3909  *	@dev: network device
3910  *
3911  * Mark device as dormant (as per RFC2863).
3912  *
3913  * The dormant state indicates that the relevant interface is not
3914  * actually in a condition to pass packets (i.e., it is not 'up') but is
3915  * in a "pending" state, waiting for some external event.  For "on-
3916  * demand" interfaces, this new state identifies the situation where the
3917  * interface is waiting for events to place it in the up state.
3918  */
3919 static inline void netif_dormant_on(struct net_device *dev)
3920 {
3921 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3922 		linkwatch_fire_event(dev);
3923 }
3924 
3925 /**
3926  *	netif_dormant_off - set device as not dormant.
3927  *	@dev: network device
3928  *
3929  * Device is not in dormant state.
3930  */
3931 static inline void netif_dormant_off(struct net_device *dev)
3932 {
3933 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3934 		linkwatch_fire_event(dev);
3935 }
3936 
3937 /**
3938  *	netif_dormant - test if device is dormant
3939  *	@dev: network device
3940  *
3941  * Check if device is dormant.
3942  */
3943 static inline bool netif_dormant(const struct net_device *dev)
3944 {
3945 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3946 }
3947 
3948 
3949 /**
3950  *	netif_testing_on - mark device as under test.
3951  *	@dev: network device
3952  *
3953  * Mark device as under test (as per RFC2863).
3954  *
3955  * The testing state indicates that some test(s) must be performed on
3956  * the interface. After completion, of the test, the interface state
3957  * will change to up, dormant, or down, as appropriate.
3958  */
3959 static inline void netif_testing_on(struct net_device *dev)
3960 {
3961 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3962 		linkwatch_fire_event(dev);
3963 }
3964 
3965 /**
3966  *	netif_testing_off - set device as not under test.
3967  *	@dev: network device
3968  *
3969  * Device is not in testing state.
3970  */
3971 static inline void netif_testing_off(struct net_device *dev)
3972 {
3973 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3974 		linkwatch_fire_event(dev);
3975 }
3976 
3977 /**
3978  *	netif_testing - test if device is under test
3979  *	@dev: network device
3980  *
3981  * Check if device is under test
3982  */
3983 static inline bool netif_testing(const struct net_device *dev)
3984 {
3985 	return test_bit(__LINK_STATE_TESTING, &dev->state);
3986 }
3987 
3988 
3989 /**
3990  *	netif_oper_up - test if device is operational
3991  *	@dev: network device
3992  *
3993  * Check if carrier is operational
3994  */
3995 static inline bool netif_oper_up(const struct net_device *dev)
3996 {
3997 	return (dev->operstate == IF_OPER_UP ||
3998 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3999 }
4000 
4001 /**
4002  *	netif_device_present - is device available or removed
4003  *	@dev: network device
4004  *
4005  * Check if device has not been removed from system.
4006  */
4007 static inline bool netif_device_present(struct net_device *dev)
4008 {
4009 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4010 }
4011 
4012 void netif_device_detach(struct net_device *dev);
4013 
4014 void netif_device_attach(struct net_device *dev);
4015 
4016 /*
4017  * Network interface message level settings
4018  */
4019 
4020 enum {
4021 	NETIF_MSG_DRV_BIT,
4022 	NETIF_MSG_PROBE_BIT,
4023 	NETIF_MSG_LINK_BIT,
4024 	NETIF_MSG_TIMER_BIT,
4025 	NETIF_MSG_IFDOWN_BIT,
4026 	NETIF_MSG_IFUP_BIT,
4027 	NETIF_MSG_RX_ERR_BIT,
4028 	NETIF_MSG_TX_ERR_BIT,
4029 	NETIF_MSG_TX_QUEUED_BIT,
4030 	NETIF_MSG_INTR_BIT,
4031 	NETIF_MSG_TX_DONE_BIT,
4032 	NETIF_MSG_RX_STATUS_BIT,
4033 	NETIF_MSG_PKTDATA_BIT,
4034 	NETIF_MSG_HW_BIT,
4035 	NETIF_MSG_WOL_BIT,
4036 
4037 	/* When you add a new bit above, update netif_msg_class_names array
4038 	 * in net/ethtool/common.c
4039 	 */
4040 	NETIF_MSG_CLASS_COUNT,
4041 };
4042 /* Both ethtool_ops interface and internal driver implementation use u32 */
4043 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4044 
4045 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4046 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4047 
4048 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4049 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4050 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4051 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4052 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4053 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4054 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4055 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4056 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4057 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4058 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4059 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4060 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4061 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4062 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4063 
4064 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4065 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4066 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4067 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4068 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4069 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4070 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4071 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4072 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4073 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4074 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4075 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4076 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4077 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4078 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4079 
4080 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4081 {
4082 	/* use default */
4083 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4084 		return default_msg_enable_bits;
4085 	if (debug_value == 0)	/* no output */
4086 		return 0;
4087 	/* set low N bits */
4088 	return (1U << debug_value) - 1;
4089 }
4090 
4091 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4092 {
4093 	spin_lock(&txq->_xmit_lock);
4094 	txq->xmit_lock_owner = cpu;
4095 }
4096 
4097 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4098 {
4099 	__acquire(&txq->_xmit_lock);
4100 	return true;
4101 }
4102 
4103 static inline void __netif_tx_release(struct netdev_queue *txq)
4104 {
4105 	__release(&txq->_xmit_lock);
4106 }
4107 
4108 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4109 {
4110 	spin_lock_bh(&txq->_xmit_lock);
4111 	txq->xmit_lock_owner = smp_processor_id();
4112 }
4113 
4114 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4115 {
4116 	bool ok = spin_trylock(&txq->_xmit_lock);
4117 	if (likely(ok))
4118 		txq->xmit_lock_owner = smp_processor_id();
4119 	return ok;
4120 }
4121 
4122 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4123 {
4124 	txq->xmit_lock_owner = -1;
4125 	spin_unlock(&txq->_xmit_lock);
4126 }
4127 
4128 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4129 {
4130 	txq->xmit_lock_owner = -1;
4131 	spin_unlock_bh(&txq->_xmit_lock);
4132 }
4133 
4134 static inline void txq_trans_update(struct netdev_queue *txq)
4135 {
4136 	if (txq->xmit_lock_owner != -1)
4137 		txq->trans_start = jiffies;
4138 }
4139 
4140 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4141 static inline void netif_trans_update(struct net_device *dev)
4142 {
4143 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4144 
4145 	if (txq->trans_start != jiffies)
4146 		txq->trans_start = jiffies;
4147 }
4148 
4149 /**
4150  *	netif_tx_lock - grab network device transmit lock
4151  *	@dev: network device
4152  *
4153  * Get network device transmit lock
4154  */
4155 static inline void netif_tx_lock(struct net_device *dev)
4156 {
4157 	unsigned int i;
4158 	int cpu;
4159 
4160 	spin_lock(&dev->tx_global_lock);
4161 	cpu = smp_processor_id();
4162 	for (i = 0; i < dev->num_tx_queues; i++) {
4163 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4164 
4165 		/* We are the only thread of execution doing a
4166 		 * freeze, but we have to grab the _xmit_lock in
4167 		 * order to synchronize with threads which are in
4168 		 * the ->hard_start_xmit() handler and already
4169 		 * checked the frozen bit.
4170 		 */
4171 		__netif_tx_lock(txq, cpu);
4172 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4173 		__netif_tx_unlock(txq);
4174 	}
4175 }
4176 
4177 static inline void netif_tx_lock_bh(struct net_device *dev)
4178 {
4179 	local_bh_disable();
4180 	netif_tx_lock(dev);
4181 }
4182 
4183 static inline void netif_tx_unlock(struct net_device *dev)
4184 {
4185 	unsigned int i;
4186 
4187 	for (i = 0; i < dev->num_tx_queues; i++) {
4188 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4189 
4190 		/* No need to grab the _xmit_lock here.  If the
4191 		 * queue is not stopped for another reason, we
4192 		 * force a schedule.
4193 		 */
4194 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4195 		netif_schedule_queue(txq);
4196 	}
4197 	spin_unlock(&dev->tx_global_lock);
4198 }
4199 
4200 static inline void netif_tx_unlock_bh(struct net_device *dev)
4201 {
4202 	netif_tx_unlock(dev);
4203 	local_bh_enable();
4204 }
4205 
4206 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4207 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4208 		__netif_tx_lock(txq, cpu);		\
4209 	} else {					\
4210 		__netif_tx_acquire(txq);		\
4211 	}						\
4212 }
4213 
4214 #define HARD_TX_TRYLOCK(dev, txq)			\
4215 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4216 		__netif_tx_trylock(txq) :		\
4217 		__netif_tx_acquire(txq))
4218 
4219 #define HARD_TX_UNLOCK(dev, txq) {			\
4220 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4221 		__netif_tx_unlock(txq);			\
4222 	} else {					\
4223 		__netif_tx_release(txq);		\
4224 	}						\
4225 }
4226 
4227 static inline void netif_tx_disable(struct net_device *dev)
4228 {
4229 	unsigned int i;
4230 	int cpu;
4231 
4232 	local_bh_disable();
4233 	cpu = smp_processor_id();
4234 	for (i = 0; i < dev->num_tx_queues; i++) {
4235 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4236 
4237 		__netif_tx_lock(txq, cpu);
4238 		netif_tx_stop_queue(txq);
4239 		__netif_tx_unlock(txq);
4240 	}
4241 	local_bh_enable();
4242 }
4243 
4244 static inline void netif_addr_lock(struct net_device *dev)
4245 {
4246 	spin_lock(&dev->addr_list_lock);
4247 }
4248 
4249 static inline void netif_addr_lock_nested(struct net_device *dev)
4250 {
4251 	spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4252 }
4253 
4254 static inline void netif_addr_lock_bh(struct net_device *dev)
4255 {
4256 	spin_lock_bh(&dev->addr_list_lock);
4257 }
4258 
4259 static inline void netif_addr_unlock(struct net_device *dev)
4260 {
4261 	spin_unlock(&dev->addr_list_lock);
4262 }
4263 
4264 static inline void netif_addr_unlock_bh(struct net_device *dev)
4265 {
4266 	spin_unlock_bh(&dev->addr_list_lock);
4267 }
4268 
4269 /*
4270  * dev_addrs walker. Should be used only for read access. Call with
4271  * rcu_read_lock held.
4272  */
4273 #define for_each_dev_addr(dev, ha) \
4274 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4275 
4276 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4277 
4278 void ether_setup(struct net_device *dev);
4279 
4280 /* Support for loadable net-drivers */
4281 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4282 				    unsigned char name_assign_type,
4283 				    void (*setup)(struct net_device *),
4284 				    unsigned int txqs, unsigned int rxqs);
4285 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4286 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4287 
4288 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4289 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4290 			 count)
4291 
4292 int register_netdev(struct net_device *dev);
4293 void unregister_netdev(struct net_device *dev);
4294 
4295 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4296 
4297 /* General hardware address lists handling functions */
4298 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4299 		   struct netdev_hw_addr_list *from_list, int addr_len);
4300 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4301 		      struct netdev_hw_addr_list *from_list, int addr_len);
4302 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4303 		       struct net_device *dev,
4304 		       int (*sync)(struct net_device *, const unsigned char *),
4305 		       int (*unsync)(struct net_device *,
4306 				     const unsigned char *));
4307 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4308 			   struct net_device *dev,
4309 			   int (*sync)(struct net_device *,
4310 				       const unsigned char *, int),
4311 			   int (*unsync)(struct net_device *,
4312 					 const unsigned char *, int));
4313 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4314 			      struct net_device *dev,
4315 			      int (*unsync)(struct net_device *,
4316 					    const unsigned char *, int));
4317 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4318 			  struct net_device *dev,
4319 			  int (*unsync)(struct net_device *,
4320 					const unsigned char *));
4321 void __hw_addr_init(struct netdev_hw_addr_list *list);
4322 
4323 /* Functions used for device addresses handling */
4324 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4325 		 unsigned char addr_type);
4326 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4327 		 unsigned char addr_type);
4328 void dev_addr_flush(struct net_device *dev);
4329 int dev_addr_init(struct net_device *dev);
4330 
4331 /* Functions used for unicast addresses handling */
4332 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4333 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4334 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4335 int dev_uc_sync(struct net_device *to, struct net_device *from);
4336 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4337 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4338 void dev_uc_flush(struct net_device *dev);
4339 void dev_uc_init(struct net_device *dev);
4340 
4341 /**
4342  *  __dev_uc_sync - Synchonize device's unicast list
4343  *  @dev:  device to sync
4344  *  @sync: function to call if address should be added
4345  *  @unsync: function to call if address should be removed
4346  *
4347  *  Add newly added addresses to the interface, and release
4348  *  addresses that have been deleted.
4349  */
4350 static inline int __dev_uc_sync(struct net_device *dev,
4351 				int (*sync)(struct net_device *,
4352 					    const unsigned char *),
4353 				int (*unsync)(struct net_device *,
4354 					      const unsigned char *))
4355 {
4356 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4357 }
4358 
4359 /**
4360  *  __dev_uc_unsync - Remove synchronized addresses from device
4361  *  @dev:  device to sync
4362  *  @unsync: function to call if address should be removed
4363  *
4364  *  Remove all addresses that were added to the device by dev_uc_sync().
4365  */
4366 static inline void __dev_uc_unsync(struct net_device *dev,
4367 				   int (*unsync)(struct net_device *,
4368 						 const unsigned char *))
4369 {
4370 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4371 }
4372 
4373 /* Functions used for multicast addresses handling */
4374 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4375 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4376 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4377 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4378 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4379 int dev_mc_sync(struct net_device *to, struct net_device *from);
4380 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4381 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4382 void dev_mc_flush(struct net_device *dev);
4383 void dev_mc_init(struct net_device *dev);
4384 
4385 /**
4386  *  __dev_mc_sync - Synchonize device's multicast list
4387  *  @dev:  device to sync
4388  *  @sync: function to call if address should be added
4389  *  @unsync: function to call if address should be removed
4390  *
4391  *  Add newly added addresses to the interface, and release
4392  *  addresses that have been deleted.
4393  */
4394 static inline int __dev_mc_sync(struct net_device *dev,
4395 				int (*sync)(struct net_device *,
4396 					    const unsigned char *),
4397 				int (*unsync)(struct net_device *,
4398 					      const unsigned char *))
4399 {
4400 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4401 }
4402 
4403 /**
4404  *  __dev_mc_unsync - Remove synchronized addresses from device
4405  *  @dev:  device to sync
4406  *  @unsync: function to call if address should be removed
4407  *
4408  *  Remove all addresses that were added to the device by dev_mc_sync().
4409  */
4410 static inline void __dev_mc_unsync(struct net_device *dev,
4411 				   int (*unsync)(struct net_device *,
4412 						 const unsigned char *))
4413 {
4414 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4415 }
4416 
4417 /* Functions used for secondary unicast and multicast support */
4418 void dev_set_rx_mode(struct net_device *dev);
4419 void __dev_set_rx_mode(struct net_device *dev);
4420 int dev_set_promiscuity(struct net_device *dev, int inc);
4421 int dev_set_allmulti(struct net_device *dev, int inc);
4422 void netdev_state_change(struct net_device *dev);
4423 void netdev_notify_peers(struct net_device *dev);
4424 void netdev_features_change(struct net_device *dev);
4425 /* Load a device via the kmod */
4426 void dev_load(struct net *net, const char *name);
4427 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4428 					struct rtnl_link_stats64 *storage);
4429 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4430 			     const struct net_device_stats *netdev_stats);
4431 
4432 extern int		netdev_max_backlog;
4433 extern int		netdev_tstamp_prequeue;
4434 extern int		weight_p;
4435 extern int		dev_weight_rx_bias;
4436 extern int		dev_weight_tx_bias;
4437 extern int		dev_rx_weight;
4438 extern int		dev_tx_weight;
4439 extern int		gro_normal_batch;
4440 
4441 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4442 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4443 						     struct list_head **iter);
4444 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4445 						     struct list_head **iter);
4446 
4447 /* iterate through upper list, must be called under RCU read lock */
4448 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4449 	for (iter = &(dev)->adj_list.upper, \
4450 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4451 	     updev; \
4452 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4453 
4454 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4455 				  int (*fn)(struct net_device *upper_dev,
4456 					    void *data),
4457 				  void *data);
4458 
4459 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4460 				  struct net_device *upper_dev);
4461 
4462 bool netdev_has_any_upper_dev(struct net_device *dev);
4463 
4464 void *netdev_lower_get_next_private(struct net_device *dev,
4465 				    struct list_head **iter);
4466 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4467 					struct list_head **iter);
4468 
4469 #define netdev_for_each_lower_private(dev, priv, iter) \
4470 	for (iter = (dev)->adj_list.lower.next, \
4471 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4472 	     priv; \
4473 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4474 
4475 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4476 	for (iter = &(dev)->adj_list.lower, \
4477 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4478 	     priv; \
4479 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4480 
4481 void *netdev_lower_get_next(struct net_device *dev,
4482 				struct list_head **iter);
4483 
4484 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4485 	for (iter = (dev)->adj_list.lower.next, \
4486 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4487 	     ldev; \
4488 	     ldev = netdev_lower_get_next(dev, &(iter)))
4489 
4490 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4491 					     struct list_head **iter);
4492 int netdev_walk_all_lower_dev(struct net_device *dev,
4493 			      int (*fn)(struct net_device *lower_dev,
4494 					void *data),
4495 			      void *data);
4496 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4497 				  int (*fn)(struct net_device *lower_dev,
4498 					    void *data),
4499 				  void *data);
4500 
4501 void *netdev_adjacent_get_private(struct list_head *adj_list);
4502 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4503 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4504 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4505 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4506 			  struct netlink_ext_ack *extack);
4507 int netdev_master_upper_dev_link(struct net_device *dev,
4508 				 struct net_device *upper_dev,
4509 				 void *upper_priv, void *upper_info,
4510 				 struct netlink_ext_ack *extack);
4511 void netdev_upper_dev_unlink(struct net_device *dev,
4512 			     struct net_device *upper_dev);
4513 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4514 				   struct net_device *new_dev,
4515 				   struct net_device *dev,
4516 				   struct netlink_ext_ack *extack);
4517 void netdev_adjacent_change_commit(struct net_device *old_dev,
4518 				   struct net_device *new_dev,
4519 				   struct net_device *dev);
4520 void netdev_adjacent_change_abort(struct net_device *old_dev,
4521 				  struct net_device *new_dev,
4522 				  struct net_device *dev);
4523 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4524 void *netdev_lower_dev_get_private(struct net_device *dev,
4525 				   struct net_device *lower_dev);
4526 void netdev_lower_state_changed(struct net_device *lower_dev,
4527 				void *lower_state_info);
4528 
4529 /* RSS keys are 40 or 52 bytes long */
4530 #define NETDEV_RSS_KEY_LEN 52
4531 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4532 void netdev_rss_key_fill(void *buffer, size_t len);
4533 
4534 int skb_checksum_help(struct sk_buff *skb);
4535 int skb_crc32c_csum_help(struct sk_buff *skb);
4536 int skb_csum_hwoffload_help(struct sk_buff *skb,
4537 			    const netdev_features_t features);
4538 
4539 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4540 				  netdev_features_t features, bool tx_path);
4541 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4542 				    netdev_features_t features);
4543 
4544 struct netdev_bonding_info {
4545 	ifslave	slave;
4546 	ifbond	master;
4547 };
4548 
4549 struct netdev_notifier_bonding_info {
4550 	struct netdev_notifier_info info; /* must be first */
4551 	struct netdev_bonding_info  bonding_info;
4552 };
4553 
4554 void netdev_bonding_info_change(struct net_device *dev,
4555 				struct netdev_bonding_info *bonding_info);
4556 
4557 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4558 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4559 #else
4560 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4561 				  const void *data)
4562 {
4563 }
4564 #endif
4565 
4566 static inline
4567 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4568 {
4569 	return __skb_gso_segment(skb, features, true);
4570 }
4571 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4572 
4573 static inline bool can_checksum_protocol(netdev_features_t features,
4574 					 __be16 protocol)
4575 {
4576 	if (protocol == htons(ETH_P_FCOE))
4577 		return !!(features & NETIF_F_FCOE_CRC);
4578 
4579 	/* Assume this is an IP checksum (not SCTP CRC) */
4580 
4581 	if (features & NETIF_F_HW_CSUM) {
4582 		/* Can checksum everything */
4583 		return true;
4584 	}
4585 
4586 	switch (protocol) {
4587 	case htons(ETH_P_IP):
4588 		return !!(features & NETIF_F_IP_CSUM);
4589 	case htons(ETH_P_IPV6):
4590 		return !!(features & NETIF_F_IPV6_CSUM);
4591 	default:
4592 		return false;
4593 	}
4594 }
4595 
4596 #ifdef CONFIG_BUG
4597 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4598 #else
4599 static inline void netdev_rx_csum_fault(struct net_device *dev,
4600 					struct sk_buff *skb)
4601 {
4602 }
4603 #endif
4604 /* rx skb timestamps */
4605 void net_enable_timestamp(void);
4606 void net_disable_timestamp(void);
4607 
4608 #ifdef CONFIG_PROC_FS
4609 int __init dev_proc_init(void);
4610 #else
4611 #define dev_proc_init() 0
4612 #endif
4613 
4614 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4615 					      struct sk_buff *skb, struct net_device *dev,
4616 					      bool more)
4617 {
4618 	__this_cpu_write(softnet_data.xmit.more, more);
4619 	return ops->ndo_start_xmit(skb, dev);
4620 }
4621 
4622 static inline bool netdev_xmit_more(void)
4623 {
4624 	return __this_cpu_read(softnet_data.xmit.more);
4625 }
4626 
4627 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4628 					    struct netdev_queue *txq, bool more)
4629 {
4630 	const struct net_device_ops *ops = dev->netdev_ops;
4631 	netdev_tx_t rc;
4632 
4633 	rc = __netdev_start_xmit(ops, skb, dev, more);
4634 	if (rc == NETDEV_TX_OK)
4635 		txq_trans_update(txq);
4636 
4637 	return rc;
4638 }
4639 
4640 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4641 				const void *ns);
4642 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4643 				 const void *ns);
4644 
4645 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4646 {
4647 	return netdev_class_create_file_ns(class_attr, NULL);
4648 }
4649 
4650 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4651 {
4652 	netdev_class_remove_file_ns(class_attr, NULL);
4653 }
4654 
4655 extern const struct kobj_ns_type_operations net_ns_type_operations;
4656 
4657 const char *netdev_drivername(const struct net_device *dev);
4658 
4659 void linkwatch_run_queue(void);
4660 
4661 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4662 							  netdev_features_t f2)
4663 {
4664 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4665 		if (f1 & NETIF_F_HW_CSUM)
4666 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4667 		else
4668 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4669 	}
4670 
4671 	return f1 & f2;
4672 }
4673 
4674 static inline netdev_features_t netdev_get_wanted_features(
4675 	struct net_device *dev)
4676 {
4677 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4678 }
4679 netdev_features_t netdev_increment_features(netdev_features_t all,
4680 	netdev_features_t one, netdev_features_t mask);
4681 
4682 /* Allow TSO being used on stacked device :
4683  * Performing the GSO segmentation before last device
4684  * is a performance improvement.
4685  */
4686 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4687 							netdev_features_t mask)
4688 {
4689 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4690 }
4691 
4692 int __netdev_update_features(struct net_device *dev);
4693 void netdev_update_features(struct net_device *dev);
4694 void netdev_change_features(struct net_device *dev);
4695 
4696 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4697 					struct net_device *dev);
4698 
4699 netdev_features_t passthru_features_check(struct sk_buff *skb,
4700 					  struct net_device *dev,
4701 					  netdev_features_t features);
4702 netdev_features_t netif_skb_features(struct sk_buff *skb);
4703 
4704 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4705 {
4706 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4707 
4708 	/* check flags correspondence */
4709 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4710 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4711 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4712 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4713 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4714 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4715 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4716 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4717 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4718 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4719 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4720 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4721 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4722 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4723 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4724 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4725 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4726 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4727 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4728 
4729 	return (features & feature) == feature;
4730 }
4731 
4732 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4733 {
4734 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4735 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4736 }
4737 
4738 static inline bool netif_needs_gso(struct sk_buff *skb,
4739 				   netdev_features_t features)
4740 {
4741 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4742 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4743 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4744 }
4745 
4746 static inline void netif_set_gso_max_size(struct net_device *dev,
4747 					  unsigned int size)
4748 {
4749 	dev->gso_max_size = size;
4750 }
4751 
4752 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4753 					int pulled_hlen, u16 mac_offset,
4754 					int mac_len)
4755 {
4756 	skb->protocol = protocol;
4757 	skb->encapsulation = 1;
4758 	skb_push(skb, pulled_hlen);
4759 	skb_reset_transport_header(skb);
4760 	skb->mac_header = mac_offset;
4761 	skb->network_header = skb->mac_header + mac_len;
4762 	skb->mac_len = mac_len;
4763 }
4764 
4765 static inline bool netif_is_macsec(const struct net_device *dev)
4766 {
4767 	return dev->priv_flags & IFF_MACSEC;
4768 }
4769 
4770 static inline bool netif_is_macvlan(const struct net_device *dev)
4771 {
4772 	return dev->priv_flags & IFF_MACVLAN;
4773 }
4774 
4775 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4776 {
4777 	return dev->priv_flags & IFF_MACVLAN_PORT;
4778 }
4779 
4780 static inline bool netif_is_bond_master(const struct net_device *dev)
4781 {
4782 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4783 }
4784 
4785 static inline bool netif_is_bond_slave(const struct net_device *dev)
4786 {
4787 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4788 }
4789 
4790 static inline bool netif_supports_nofcs(struct net_device *dev)
4791 {
4792 	return dev->priv_flags & IFF_SUPP_NOFCS;
4793 }
4794 
4795 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4796 {
4797 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4798 }
4799 
4800 static inline bool netif_is_l3_master(const struct net_device *dev)
4801 {
4802 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4803 }
4804 
4805 static inline bool netif_is_l3_slave(const struct net_device *dev)
4806 {
4807 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4808 }
4809 
4810 static inline bool netif_is_bridge_master(const struct net_device *dev)
4811 {
4812 	return dev->priv_flags & IFF_EBRIDGE;
4813 }
4814 
4815 static inline bool netif_is_bridge_port(const struct net_device *dev)
4816 {
4817 	return dev->priv_flags & IFF_BRIDGE_PORT;
4818 }
4819 
4820 static inline bool netif_is_ovs_master(const struct net_device *dev)
4821 {
4822 	return dev->priv_flags & IFF_OPENVSWITCH;
4823 }
4824 
4825 static inline bool netif_is_ovs_port(const struct net_device *dev)
4826 {
4827 	return dev->priv_flags & IFF_OVS_DATAPATH;
4828 }
4829 
4830 static inline bool netif_is_team_master(const struct net_device *dev)
4831 {
4832 	return dev->priv_flags & IFF_TEAM;
4833 }
4834 
4835 static inline bool netif_is_team_port(const struct net_device *dev)
4836 {
4837 	return dev->priv_flags & IFF_TEAM_PORT;
4838 }
4839 
4840 static inline bool netif_is_lag_master(const struct net_device *dev)
4841 {
4842 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4843 }
4844 
4845 static inline bool netif_is_lag_port(const struct net_device *dev)
4846 {
4847 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4848 }
4849 
4850 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4851 {
4852 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4853 }
4854 
4855 static inline bool netif_is_failover(const struct net_device *dev)
4856 {
4857 	return dev->priv_flags & IFF_FAILOVER;
4858 }
4859 
4860 static inline bool netif_is_failover_slave(const struct net_device *dev)
4861 {
4862 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4863 }
4864 
4865 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4866 static inline void netif_keep_dst(struct net_device *dev)
4867 {
4868 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4869 }
4870 
4871 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4872 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4873 {
4874 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4875 	return dev->priv_flags & IFF_MACSEC;
4876 }
4877 
4878 extern struct pernet_operations __net_initdata loopback_net_ops;
4879 
4880 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4881 
4882 /* netdev_printk helpers, similar to dev_printk */
4883 
4884 static inline const char *netdev_name(const struct net_device *dev)
4885 {
4886 	if (!dev->name[0] || strchr(dev->name, '%'))
4887 		return "(unnamed net_device)";
4888 	return dev->name;
4889 }
4890 
4891 static inline bool netdev_unregistering(const struct net_device *dev)
4892 {
4893 	return dev->reg_state == NETREG_UNREGISTERING;
4894 }
4895 
4896 static inline const char *netdev_reg_state(const struct net_device *dev)
4897 {
4898 	switch (dev->reg_state) {
4899 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4900 	case NETREG_REGISTERED: return "";
4901 	case NETREG_UNREGISTERING: return " (unregistering)";
4902 	case NETREG_UNREGISTERED: return " (unregistered)";
4903 	case NETREG_RELEASED: return " (released)";
4904 	case NETREG_DUMMY: return " (dummy)";
4905 	}
4906 
4907 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4908 	return " (unknown)";
4909 }
4910 
4911 __printf(3, 4) __cold
4912 void netdev_printk(const char *level, const struct net_device *dev,
4913 		   const char *format, ...);
4914 __printf(2, 3) __cold
4915 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4916 __printf(2, 3) __cold
4917 void netdev_alert(const struct net_device *dev, const char *format, ...);
4918 __printf(2, 3) __cold
4919 void netdev_crit(const struct net_device *dev, const char *format, ...);
4920 __printf(2, 3) __cold
4921 void netdev_err(const struct net_device *dev, const char *format, ...);
4922 __printf(2, 3) __cold
4923 void netdev_warn(const struct net_device *dev, const char *format, ...);
4924 __printf(2, 3) __cold
4925 void netdev_notice(const struct net_device *dev, const char *format, ...);
4926 __printf(2, 3) __cold
4927 void netdev_info(const struct net_device *dev, const char *format, ...);
4928 
4929 #define netdev_level_once(level, dev, fmt, ...)			\
4930 do {								\
4931 	static bool __print_once __read_mostly;			\
4932 								\
4933 	if (!__print_once) {					\
4934 		__print_once = true;				\
4935 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4936 	}							\
4937 } while (0)
4938 
4939 #define netdev_emerg_once(dev, fmt, ...) \
4940 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4941 #define netdev_alert_once(dev, fmt, ...) \
4942 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4943 #define netdev_crit_once(dev, fmt, ...) \
4944 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4945 #define netdev_err_once(dev, fmt, ...) \
4946 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4947 #define netdev_warn_once(dev, fmt, ...) \
4948 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4949 #define netdev_notice_once(dev, fmt, ...) \
4950 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4951 #define netdev_info_once(dev, fmt, ...) \
4952 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4953 
4954 #define MODULE_ALIAS_NETDEV(device) \
4955 	MODULE_ALIAS("netdev-" device)
4956 
4957 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4958 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4959 #define netdev_dbg(__dev, format, args...)			\
4960 do {								\
4961 	dynamic_netdev_dbg(__dev, format, ##args);		\
4962 } while (0)
4963 #elif defined(DEBUG)
4964 #define netdev_dbg(__dev, format, args...)			\
4965 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4966 #else
4967 #define netdev_dbg(__dev, format, args...)			\
4968 ({								\
4969 	if (0)							\
4970 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4971 })
4972 #endif
4973 
4974 #if defined(VERBOSE_DEBUG)
4975 #define netdev_vdbg	netdev_dbg
4976 #else
4977 
4978 #define netdev_vdbg(dev, format, args...)			\
4979 ({								\
4980 	if (0)							\
4981 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4982 	0;							\
4983 })
4984 #endif
4985 
4986 /*
4987  * netdev_WARN() acts like dev_printk(), but with the key difference
4988  * of using a WARN/WARN_ON to get the message out, including the
4989  * file/line information and a backtrace.
4990  */
4991 #define netdev_WARN(dev, format, args...)			\
4992 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4993 	     netdev_reg_state(dev), ##args)
4994 
4995 #define netdev_WARN_ONCE(dev, format, args...)				\
4996 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4997 		  netdev_reg_state(dev), ##args)
4998 
4999 /* netif printk helpers, similar to netdev_printk */
5000 
5001 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5002 do {					  			\
5003 	if (netif_msg_##type(priv))				\
5004 		netdev_printk(level, (dev), fmt, ##args);	\
5005 } while (0)
5006 
5007 #define netif_level(level, priv, type, dev, fmt, args...)	\
5008 do {								\
5009 	if (netif_msg_##type(priv))				\
5010 		netdev_##level(dev, fmt, ##args);		\
5011 } while (0)
5012 
5013 #define netif_emerg(priv, type, dev, fmt, args...)		\
5014 	netif_level(emerg, priv, type, dev, fmt, ##args)
5015 #define netif_alert(priv, type, dev, fmt, args...)		\
5016 	netif_level(alert, priv, type, dev, fmt, ##args)
5017 #define netif_crit(priv, type, dev, fmt, args...)		\
5018 	netif_level(crit, priv, type, dev, fmt, ##args)
5019 #define netif_err(priv, type, dev, fmt, args...)		\
5020 	netif_level(err, priv, type, dev, fmt, ##args)
5021 #define netif_warn(priv, type, dev, fmt, args...)		\
5022 	netif_level(warn, priv, type, dev, fmt, ##args)
5023 #define netif_notice(priv, type, dev, fmt, args...)		\
5024 	netif_level(notice, priv, type, dev, fmt, ##args)
5025 #define netif_info(priv, type, dev, fmt, args...)		\
5026 	netif_level(info, priv, type, dev, fmt, ##args)
5027 
5028 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5029 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5030 #define netif_dbg(priv, type, netdev, format, args...)		\
5031 do {								\
5032 	if (netif_msg_##type(priv))				\
5033 		dynamic_netdev_dbg(netdev, format, ##args);	\
5034 } while (0)
5035 #elif defined(DEBUG)
5036 #define netif_dbg(priv, type, dev, format, args...)		\
5037 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5038 #else
5039 #define netif_dbg(priv, type, dev, format, args...)			\
5040 ({									\
5041 	if (0)								\
5042 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5043 	0;								\
5044 })
5045 #endif
5046 
5047 /* if @cond then downgrade to debug, else print at @level */
5048 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5049 	do {                                                              \
5050 		if (cond)                                                 \
5051 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5052 		else                                                      \
5053 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5054 	} while (0)
5055 
5056 #if defined(VERBOSE_DEBUG)
5057 #define netif_vdbg	netif_dbg
5058 #else
5059 #define netif_vdbg(priv, type, dev, format, args...)		\
5060 ({								\
5061 	if (0)							\
5062 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5063 	0;							\
5064 })
5065 #endif
5066 
5067 /*
5068  *	The list of packet types we will receive (as opposed to discard)
5069  *	and the routines to invoke.
5070  *
5071  *	Why 16. Because with 16 the only overlap we get on a hash of the
5072  *	low nibble of the protocol value is RARP/SNAP/X.25.
5073  *
5074  *		0800	IP
5075  *		0001	802.3
5076  *		0002	AX.25
5077  *		0004	802.2
5078  *		8035	RARP
5079  *		0005	SNAP
5080  *		0805	X.25
5081  *		0806	ARP
5082  *		8137	IPX
5083  *		0009	Localtalk
5084  *		86DD	IPv6
5085  */
5086 #define PTYPE_HASH_SIZE	(16)
5087 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5088 
5089 extern struct net_device *blackhole_netdev;
5090 
5091 #endif	/* _LINUX_NETDEVICE_H */
5092