xref: /openbmc/linux/include/linux/netdevice.h (revision ae3473231e77a3f1909d48cd144cebe5e1d049b3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 				    const struct ethtool_ops *ops);
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously; in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90  * others are propagated to higher layers.
91  */
92 
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS	0x00
95 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
96 #define NET_XMIT_CN		0x02	/* congestion notification	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 	/*
122 	 * Positive cases with an skb consumed by a driver:
123 	 * - successful transmission (rc == NETDEV_TX_OK)
124 	 * - error while transmitting (rc < 0)
125 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 	 */
127 	if (likely(rc < NET_XMIT_MASK))
128 		return true;
129 
130 	return false;
131 }
132 
133 /*
134  *	Compute the worst-case header length according to the protocols
135  *	used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *	Old network device statistics. Fields are native words
159  *	(unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163 	unsigned long	rx_packets;
164 	unsigned long	tx_packets;
165 	unsigned long	rx_bytes;
166 	unsigned long	tx_bytes;
167 	unsigned long	rx_errors;
168 	unsigned long	tx_errors;
169 	unsigned long	rx_dropped;
170 	unsigned long	tx_dropped;
171 	unsigned long	multicast;
172 	unsigned long	collisions;
173 	unsigned long	rx_length_errors;
174 	unsigned long	rx_over_errors;
175 	unsigned long	rx_crc_errors;
176 	unsigned long	rx_frame_errors;
177 	unsigned long	rx_fifo_errors;
178 	unsigned long	rx_missed_errors;
179 	unsigned long	tx_aborted_errors;
180 	unsigned long	tx_carrier_errors;
181 	unsigned long	tx_fifo_errors;
182 	unsigned long	tx_heartbeat_errors;
183 	unsigned long	tx_window_errors;
184 	unsigned long	rx_compressed;
185 	unsigned long	tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 extern struct static_key rfs_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			global_use;
212 	int			sync_cnt;
213 	int			refcount;
214 	int			synced;
215 	struct rcu_head		rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219 	struct list_head	list;
220 	int			count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 	list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239 	u16		hh_len;
240 	u16		__pad;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-CPU poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
336 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
338 };
339 
340 enum {
341 	NAPIF_STATE_SCHED	 = (1UL << NAPI_STATE_SCHED),
342 	NAPIF_STATE_DISABLE	 = (1UL << NAPI_STATE_DISABLE),
343 	NAPIF_STATE_NPSVC	 = (1UL << NAPI_STATE_NPSVC),
344 	NAPIF_STATE_HASHED	 = (1UL << NAPI_STATE_HASHED),
345 	NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL),
346 	NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL),
347 };
348 
349 enum gro_result {
350 	GRO_MERGED,
351 	GRO_MERGED_FREE,
352 	GRO_HELD,
353 	GRO_NORMAL,
354 	GRO_DROP,
355 };
356 typedef enum gro_result gro_result_t;
357 
358 /*
359  * enum rx_handler_result - Possible return values for rx_handlers.
360  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
361  * further.
362  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
363  * case skb->dev was changed by rx_handler.
364  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
365  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
366  *
367  * rx_handlers are functions called from inside __netif_receive_skb(), to do
368  * special processing of the skb, prior to delivery to protocol handlers.
369  *
370  * Currently, a net_device can only have a single rx_handler registered. Trying
371  * to register a second rx_handler will return -EBUSY.
372  *
373  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
374  * To unregister a rx_handler on a net_device, use
375  * netdev_rx_handler_unregister().
376  *
377  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
378  * do with the skb.
379  *
380  * If the rx_handler consumed the skb in some way, it should return
381  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
382  * the skb to be delivered in some other way.
383  *
384  * If the rx_handler changed skb->dev, to divert the skb to another
385  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
386  * new device will be called if it exists.
387  *
388  * If the rx_handler decides the skb should be ignored, it should return
389  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
390  * are registered on exact device (ptype->dev == skb->dev).
391  *
392  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
393  * delivered, it should return RX_HANDLER_PASS.
394  *
395  * A device without a registered rx_handler will behave as if rx_handler
396  * returned RX_HANDLER_PASS.
397  */
398 
399 enum rx_handler_result {
400 	RX_HANDLER_CONSUMED,
401 	RX_HANDLER_ANOTHER,
402 	RX_HANDLER_EXACT,
403 	RX_HANDLER_PASS,
404 };
405 typedef enum rx_handler_result rx_handler_result_t;
406 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
407 
408 void __napi_schedule(struct napi_struct *n);
409 void __napi_schedule_irqoff(struct napi_struct *n);
410 
411 static inline bool napi_disable_pending(struct napi_struct *n)
412 {
413 	return test_bit(NAPI_STATE_DISABLE, &n->state);
414 }
415 
416 /**
417  *	napi_schedule_prep - check if NAPI can be scheduled
418  *	@n: NAPI context
419  *
420  * Test if NAPI routine is already running, and if not mark
421  * it as running.  This is used as a condition variable to
422  * insure only one NAPI poll instance runs.  We also make
423  * sure there is no pending NAPI disable.
424  */
425 static inline bool napi_schedule_prep(struct napi_struct *n)
426 {
427 	return !napi_disable_pending(n) &&
428 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
429 }
430 
431 /**
432  *	napi_schedule - schedule NAPI poll
433  *	@n: NAPI context
434  *
435  * Schedule NAPI poll routine to be called if it is not already
436  * running.
437  */
438 static inline void napi_schedule(struct napi_struct *n)
439 {
440 	if (napi_schedule_prep(n))
441 		__napi_schedule(n);
442 }
443 
444 /**
445  *	napi_schedule_irqoff - schedule NAPI poll
446  *	@n: NAPI context
447  *
448  * Variant of napi_schedule(), assuming hard irqs are masked.
449  */
450 static inline void napi_schedule_irqoff(struct napi_struct *n)
451 {
452 	if (napi_schedule_prep(n))
453 		__napi_schedule_irqoff(n);
454 }
455 
456 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
457 static inline bool napi_reschedule(struct napi_struct *napi)
458 {
459 	if (napi_schedule_prep(napi)) {
460 		__napi_schedule(napi);
461 		return true;
462 	}
463 	return false;
464 }
465 
466 bool __napi_complete(struct napi_struct *n);
467 bool napi_complete_done(struct napi_struct *n, int work_done);
468 /**
469  *	napi_complete - NAPI processing complete
470  *	@n: NAPI context
471  *
472  * Mark NAPI processing as complete.
473  * Consider using napi_complete_done() instead.
474  * Return false if device should avoid rearming interrupts.
475  */
476 static inline bool napi_complete(struct napi_struct *n)
477 {
478 	return napi_complete_done(n, 0);
479 }
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: NAPI context
484  *
485  * Warning: caller must observe RCU grace period
486  * before freeing memory containing @napi, if
487  * this function returns true.
488  * Note: core networking stack automatically calls it
489  * from netif_napi_del().
490  * Drivers might want to call this helper to combine all
491  * the needed RCU grace periods into a single one.
492  */
493 bool napi_hash_del(struct napi_struct *napi);
494 
495 /**
496  *	napi_disable - prevent NAPI from scheduling
497  *	@n: NAPI context
498  *
499  * Stop NAPI from being scheduled on this context.
500  * Waits till any outstanding processing completes.
501  */
502 void napi_disable(struct napi_struct *n);
503 
504 /**
505  *	napi_enable - enable NAPI scheduling
506  *	@n: NAPI context
507  *
508  * Resume NAPI from being scheduled on this context.
509  * Must be paired with napi_disable.
510  */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 	smp_mb__before_atomic();
515 	clear_bit(NAPI_STATE_SCHED, &n->state);
516 	clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518 
519 /**
520  *	napi_synchronize - wait until NAPI is not running
521  *	@n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 	if (IS_ENABLED(CONFIG_SMP))
530 		while (test_bit(NAPI_STATE_SCHED, &n->state))
531 			msleep(1);
532 	else
533 		barrier();
534 }
535 
536 enum netdev_queue_state_t {
537 	__QUEUE_STATE_DRV_XOFF,
538 	__QUEUE_STATE_STACK_XOFF,
539 	__QUEUE_STATE_FROZEN,
540 };
541 
542 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
545 
546 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 					QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 					QUEUE_STATE_FROZEN)
551 
552 /*
553  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
554  * netif_tx_* functions below are used to manipulate this flag.  The
555  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556  * queue independently.  The netif_xmit_*stopped functions below are called
557  * to check if the queue has been stopped by the driver or stack (either
558  * of the XOFF bits are set in the state).  Drivers should not need to call
559  * netif_xmit*stopped functions, they should only be using netif_tx_*.
560  */
561 
562 struct netdev_queue {
563 /*
564  * read-mostly part
565  */
566 	struct net_device	*dev;
567 	struct Qdisc __rcu	*qdisc;
568 	struct Qdisc		*qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 	struct kobject		kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 	int			numa_node;
574 #endif
575 	unsigned long		tx_maxrate;
576 	/*
577 	 * Number of TX timeouts for this queue
578 	 * (/sys/class/net/DEV/Q/trans_timeout)
579 	 */
580 	unsigned long		trans_timeout;
581 /*
582  * write-mostly part
583  */
584 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
585 	int			xmit_lock_owner;
586 	/*
587 	 * Time (in jiffies) of last Tx
588 	 */
589 	unsigned long		trans_start;
590 
591 	unsigned long		state;
592 
593 #ifdef CONFIG_BQL
594 	struct dql		dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 } ____cacheline_aligned_in_smp;
701 
702 /*
703  * RX queue sysfs structures and functions.
704  */
705 struct rx_queue_attribute {
706 	struct attribute attr;
707 	ssize_t (*show)(struct netdev_rx_queue *queue,
708 	    struct rx_queue_attribute *attr, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
736 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 /* These structures hold the attributes of qdisc and classifiers
785  * that are being passed to the netdevice through the setup_tc op.
786  */
787 enum {
788 	TC_SETUP_MQPRIO,
789 	TC_SETUP_CLSU32,
790 	TC_SETUP_CLSFLOWER,
791 	TC_SETUP_MATCHALL,
792 	TC_SETUP_CLSBPF,
793 };
794 
795 struct tc_cls_u32_offload;
796 
797 struct tc_to_netdev {
798 	unsigned int type;
799 	union {
800 		u8 tc;
801 		struct tc_cls_u32_offload *cls_u32;
802 		struct tc_cls_flower_offload *cls_flower;
803 		struct tc_cls_matchall_offload *cls_mall;
804 		struct tc_cls_bpf_offload *cls_bpf;
805 	};
806 	bool egress_dev;
807 };
808 
809 /* These structures hold the attributes of xdp state that are being passed
810  * to the netdevice through the xdp op.
811  */
812 enum xdp_netdev_command {
813 	/* Set or clear a bpf program used in the earliest stages of packet
814 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
815 	 * is responsible for calling bpf_prog_put on any old progs that are
816 	 * stored. In case of error, the callee need not release the new prog
817 	 * reference, but on success it takes ownership and must bpf_prog_put
818 	 * when it is no longer used.
819 	 */
820 	XDP_SETUP_PROG,
821 	/* Check if a bpf program is set on the device.  The callee should
822 	 * return true if a program is currently attached and running.
823 	 */
824 	XDP_QUERY_PROG,
825 };
826 
827 struct netdev_xdp {
828 	enum xdp_netdev_command command;
829 	union {
830 		/* XDP_SETUP_PROG */
831 		struct bpf_prog *prog;
832 		/* XDP_QUERY_PROG */
833 		bool prog_attached;
834 	};
835 };
836 
837 /*
838  * This structure defines the management hooks for network devices.
839  * The following hooks can be defined; unless noted otherwise, they are
840  * optional and can be filled with a null pointer.
841  *
842  * int (*ndo_init)(struct net_device *dev);
843  *     This function is called once when a network device is registered.
844  *     The network device can use this for any late stage initialization
845  *     or semantic validation. It can fail with an error code which will
846  *     be propagated back to register_netdev.
847  *
848  * void (*ndo_uninit)(struct net_device *dev);
849  *     This function is called when device is unregistered or when registration
850  *     fails. It is not called if init fails.
851  *
852  * int (*ndo_open)(struct net_device *dev);
853  *     This function is called when a network device transitions to the up
854  *     state.
855  *
856  * int (*ndo_stop)(struct net_device *dev);
857  *     This function is called when a network device transitions to the down
858  *     state.
859  *
860  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
861  *                               struct net_device *dev);
862  *	Called when a packet needs to be transmitted.
863  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
864  *	the queue before that can happen; it's for obsolete devices and weird
865  *	corner cases, but the stack really does a non-trivial amount
866  *	of useless work if you return NETDEV_TX_BUSY.
867  *	Required; cannot be NULL.
868  *
869  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
870  *		netdev_features_t features);
871  *	Adjusts the requested feature flags according to device-specific
872  *	constraints, and returns the resulting flags. Must not modify
873  *	the device state.
874  *
875  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
876  *                         void *accel_priv, select_queue_fallback_t fallback);
877  *	Called to decide which queue to use when device supports multiple
878  *	transmit queues.
879  *
880  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
881  *	This function is called to allow device receiver to make
882  *	changes to configuration when multicast or promiscuous is enabled.
883  *
884  * void (*ndo_set_rx_mode)(struct net_device *dev);
885  *	This function is called device changes address list filtering.
886  *	If driver handles unicast address filtering, it should set
887  *	IFF_UNICAST_FLT in its priv_flags.
888  *
889  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
890  *	This function  is called when the Media Access Control address
891  *	needs to be changed. If this interface is not defined, the
892  *	MAC address can not be changed.
893  *
894  * int (*ndo_validate_addr)(struct net_device *dev);
895  *	Test if Media Access Control address is valid for the device.
896  *
897  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
898  *	Called when a user requests an ioctl which can't be handled by
899  *	the generic interface code. If not defined ioctls return
900  *	not supported error code.
901  *
902  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
903  *	Used to set network devices bus interface parameters. This interface
904  *	is retained for legacy reasons; new devices should use the bus
905  *	interface (PCI) for low level management.
906  *
907  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
908  *	Called when a user wants to change the Maximum Transfer Unit
909  *	of a device. If not defined, any request to change MTU will
910  *	will return an error.
911  *
912  * void (*ndo_tx_timeout)(struct net_device *dev);
913  *	Callback used when the transmitter has not made any progress
914  *	for dev->watchdog ticks.
915  *
916  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
917  *                      struct rtnl_link_stats64 *storage);
918  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
919  *	Called when a user wants to get the network device usage
920  *	statistics. Drivers must do one of the following:
921  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
922  *	   rtnl_link_stats64 structure passed by the caller.
923  *	2. Define @ndo_get_stats to update a net_device_stats structure
924  *	   (which should normally be dev->stats) and return a pointer to
925  *	   it. The structure may be changed asynchronously only if each
926  *	   field is written atomically.
927  *	3. Update dev->stats asynchronously and atomically, and define
928  *	   neither operation.
929  *
930  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
931  *	Return true if this device supports offload stats of this attr_id.
932  *
933  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
934  *	void *attr_data)
935  *	Get statistics for offload operations by attr_id. Write it into the
936  *	attr_data pointer.
937  *
938  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
939  *	If device supports VLAN filtering this function is called when a
940  *	VLAN id is registered.
941  *
942  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
943  *	If device supports VLAN filtering this function is called when a
944  *	VLAN id is unregistered.
945  *
946  * void (*ndo_poll_controller)(struct net_device *dev);
947  *
948  *	SR-IOV management functions.
949  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
950  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
951  *			  u8 qos, __be16 proto);
952  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
953  *			  int max_tx_rate);
954  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
955  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
956  * int (*ndo_get_vf_config)(struct net_device *dev,
957  *			    int vf, struct ifla_vf_info *ivf);
958  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
959  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
960  *			  struct nlattr *port[]);
961  *
962  *      Enable or disable the VF ability to query its RSS Redirection Table and
963  *      Hash Key. This is needed since on some devices VF share this information
964  *      with PF and querying it may introduce a theoretical security risk.
965  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
966  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
967  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
968  * 	Called to setup 'tc' number of traffic classes in the net device. This
969  * 	is always called from the stack with the rtnl lock held and netif tx
970  * 	queues stopped. This allows the netdevice to perform queue management
971  * 	safely.
972  *
973  *	Fiber Channel over Ethernet (FCoE) offload functions.
974  * int (*ndo_fcoe_enable)(struct net_device *dev);
975  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
976  *	so the underlying device can perform whatever needed configuration or
977  *	initialization to support acceleration of FCoE traffic.
978  *
979  * int (*ndo_fcoe_disable)(struct net_device *dev);
980  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
981  *	so the underlying device can perform whatever needed clean-ups to
982  *	stop supporting acceleration of FCoE traffic.
983  *
984  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
985  *			     struct scatterlist *sgl, unsigned int sgc);
986  *	Called when the FCoE Initiator wants to initialize an I/O that
987  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
988  *	perform necessary setup and returns 1 to indicate the device is set up
989  *	successfully to perform DDP on this I/O, otherwise this returns 0.
990  *
991  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
992  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
993  *	indicated by the FC exchange id 'xid', so the underlying device can
994  *	clean up and reuse resources for later DDP requests.
995  *
996  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
997  *			      struct scatterlist *sgl, unsigned int sgc);
998  *	Called when the FCoE Target wants to initialize an I/O that
999  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1000  *	perform necessary setup and returns 1 to indicate the device is set up
1001  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1002  *
1003  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1004  *			       struct netdev_fcoe_hbainfo *hbainfo);
1005  *	Called when the FCoE Protocol stack wants information on the underlying
1006  *	device. This information is utilized by the FCoE protocol stack to
1007  *	register attributes with Fiber Channel management service as per the
1008  *	FC-GS Fabric Device Management Information(FDMI) specification.
1009  *
1010  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1011  *	Called when the underlying device wants to override default World Wide
1012  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1013  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1014  *	protocol stack to use.
1015  *
1016  *	RFS acceleration.
1017  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1018  *			    u16 rxq_index, u32 flow_id);
1019  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1020  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1021  *	Return the filter ID on success, or a negative error code.
1022  *
1023  *	Slave management functions (for bridge, bonding, etc).
1024  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1025  *	Called to make another netdev an underling.
1026  *
1027  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1028  *	Called to release previously enslaved netdev.
1029  *
1030  *      Feature/offload setting functions.
1031  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1032  *	Called to update device configuration to new features. Passed
1033  *	feature set might be less than what was returned by ndo_fix_features()).
1034  *	Must return >0 or -errno if it changed dev->features itself.
1035  *
1036  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1037  *		      struct net_device *dev,
1038  *		      const unsigned char *addr, u16 vid, u16 flags)
1039  *	Adds an FDB entry to dev for addr.
1040  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1041  *		      struct net_device *dev,
1042  *		      const unsigned char *addr, u16 vid)
1043  *	Deletes the FDB entry from dev coresponding to addr.
1044  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1045  *		       struct net_device *dev, struct net_device *filter_dev,
1046  *		       int *idx)
1047  *	Used to add FDB entries to dump requests. Implementers should add
1048  *	entries to skb and update idx with the number of entries.
1049  *
1050  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1051  *			     u16 flags)
1052  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1053  *			     struct net_device *dev, u32 filter_mask,
1054  *			     int nlflags)
1055  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1056  *			     u16 flags);
1057  *
1058  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1059  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1060  *	which do not represent real hardware may define this to allow their
1061  *	userspace components to manage their virtual carrier state. Devices
1062  *	that determine carrier state from physical hardware properties (eg
1063  *	network cables) or protocol-dependent mechanisms (eg
1064  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1065  *
1066  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1067  *			       struct netdev_phys_item_id *ppid);
1068  *	Called to get ID of physical port of this device. If driver does
1069  *	not implement this, it is assumed that the hw is not able to have
1070  *	multiple net devices on single physical port.
1071  *
1072  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1073  *			      struct udp_tunnel_info *ti);
1074  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1075  *	address family that a UDP tunnel is listnening to. It is called only
1076  *	when a new port starts listening. The operation is protected by the
1077  *	RTNL.
1078  *
1079  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1080  *			      struct udp_tunnel_info *ti);
1081  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1082  *	address family that the UDP tunnel is not listening to anymore. The
1083  *	operation is protected by the RTNL.
1084  *
1085  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1086  *				 struct net_device *dev)
1087  *	Called by upper layer devices to accelerate switching or other
1088  *	station functionality into hardware. 'pdev is the lowerdev
1089  *	to use for the offload and 'dev' is the net device that will
1090  *	back the offload. Returns a pointer to the private structure
1091  *	the upper layer will maintain.
1092  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1093  *	Called by upper layer device to delete the station created
1094  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1095  *	the station and priv is the structure returned by the add
1096  *	operation.
1097  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1098  *				      struct net_device *dev,
1099  *				      void *priv);
1100  *	Callback to use for xmit over the accelerated station. This
1101  *	is used in place of ndo_start_xmit on accelerated net
1102  *	devices.
1103  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1104  *					   struct net_device *dev
1105  *					   netdev_features_t features);
1106  *	Called by core transmit path to determine if device is capable of
1107  *	performing offload operations on a given packet. This is to give
1108  *	the device an opportunity to implement any restrictions that cannot
1109  *	be otherwise expressed by feature flags. The check is called with
1110  *	the set of features that the stack has calculated and it returns
1111  *	those the driver believes to be appropriate.
1112  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1113  *			     int queue_index, u32 maxrate);
1114  *	Called when a user wants to set a max-rate limitation of specific
1115  *	TX queue.
1116  * int (*ndo_get_iflink)(const struct net_device *dev);
1117  *	Called to get the iflink value of this device.
1118  * void (*ndo_change_proto_down)(struct net_device *dev,
1119  *				 bool proto_down);
1120  *	This function is used to pass protocol port error state information
1121  *	to the switch driver. The switch driver can react to the proto_down
1122  *      by doing a phys down on the associated switch port.
1123  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1124  *	This function is used to get egress tunnel information for given skb.
1125  *	This is useful for retrieving outer tunnel header parameters while
1126  *	sampling packet.
1127  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1128  *	This function is used to specify the headroom that the skb must
1129  *	consider when allocation skb during packet reception. Setting
1130  *	appropriate rx headroom value allows avoiding skb head copy on
1131  *	forward. Setting a negative value resets the rx headroom to the
1132  *	default value.
1133  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1134  *	This function is used to set or query state related to XDP on the
1135  *	netdevice. See definition of enum xdp_netdev_command for details.
1136  *
1137  */
1138 struct net_device_ops {
1139 	int			(*ndo_init)(struct net_device *dev);
1140 	void			(*ndo_uninit)(struct net_device *dev);
1141 	int			(*ndo_open)(struct net_device *dev);
1142 	int			(*ndo_stop)(struct net_device *dev);
1143 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1144 						  struct net_device *dev);
1145 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1146 						      struct net_device *dev,
1147 						      netdev_features_t features);
1148 	u16			(*ndo_select_queue)(struct net_device *dev,
1149 						    struct sk_buff *skb,
1150 						    void *accel_priv,
1151 						    select_queue_fallback_t fallback);
1152 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1153 						       int flags);
1154 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1155 	int			(*ndo_set_mac_address)(struct net_device *dev,
1156 						       void *addr);
1157 	int			(*ndo_validate_addr)(struct net_device *dev);
1158 	int			(*ndo_do_ioctl)(struct net_device *dev,
1159 					        struct ifreq *ifr, int cmd);
1160 	int			(*ndo_set_config)(struct net_device *dev,
1161 					          struct ifmap *map);
1162 	int			(*ndo_change_mtu)(struct net_device *dev,
1163 						  int new_mtu);
1164 	int			(*ndo_neigh_setup)(struct net_device *dev,
1165 						   struct neigh_parms *);
1166 	void			(*ndo_tx_timeout) (struct net_device *dev);
1167 
1168 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1169 						     struct rtnl_link_stats64 *storage);
1170 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1171 	int			(*ndo_get_offload_stats)(int attr_id,
1172 							 const struct net_device *dev,
1173 							 void *attr_data);
1174 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1175 
1176 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1177 						       __be16 proto, u16 vid);
1178 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1179 						        __be16 proto, u16 vid);
1180 #ifdef CONFIG_NET_POLL_CONTROLLER
1181 	void                    (*ndo_poll_controller)(struct net_device *dev);
1182 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1183 						     struct netpoll_info *info);
1184 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1185 #endif
1186 #ifdef CONFIG_NET_RX_BUSY_POLL
1187 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1188 #endif
1189 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1190 						  int queue, u8 *mac);
1191 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1192 						   int queue, u16 vlan,
1193 						   u8 qos, __be16 proto);
1194 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1195 						   int vf, int min_tx_rate,
1196 						   int max_tx_rate);
1197 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1198 						       int vf, bool setting);
1199 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1200 						    int vf, bool setting);
1201 	int			(*ndo_get_vf_config)(struct net_device *dev,
1202 						     int vf,
1203 						     struct ifla_vf_info *ivf);
1204 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1205 							 int vf, int link_state);
1206 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1207 						    int vf,
1208 						    struct ifla_vf_stats
1209 						    *vf_stats);
1210 	int			(*ndo_set_vf_port)(struct net_device *dev,
1211 						   int vf,
1212 						   struct nlattr *port[]);
1213 	int			(*ndo_get_vf_port)(struct net_device *dev,
1214 						   int vf, struct sk_buff *skb);
1215 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1216 						   int vf, u64 guid,
1217 						   int guid_type);
1218 	int			(*ndo_set_vf_rss_query_en)(
1219 						   struct net_device *dev,
1220 						   int vf, bool setting);
1221 	int			(*ndo_setup_tc)(struct net_device *dev,
1222 						u32 handle,
1223 						__be16 protocol,
1224 						struct tc_to_netdev *tc);
1225 #if IS_ENABLED(CONFIG_FCOE)
1226 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1227 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1228 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1229 						      u16 xid,
1230 						      struct scatterlist *sgl,
1231 						      unsigned int sgc);
1232 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1233 						     u16 xid);
1234 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1235 						       u16 xid,
1236 						       struct scatterlist *sgl,
1237 						       unsigned int sgc);
1238 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1239 							struct netdev_fcoe_hbainfo *hbainfo);
1240 #endif
1241 
1242 #if IS_ENABLED(CONFIG_LIBFCOE)
1243 #define NETDEV_FCOE_WWNN 0
1244 #define NETDEV_FCOE_WWPN 1
1245 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1246 						    u64 *wwn, int type);
1247 #endif
1248 
1249 #ifdef CONFIG_RFS_ACCEL
1250 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1251 						     const struct sk_buff *skb,
1252 						     u16 rxq_index,
1253 						     u32 flow_id);
1254 #endif
1255 	int			(*ndo_add_slave)(struct net_device *dev,
1256 						 struct net_device *slave_dev);
1257 	int			(*ndo_del_slave)(struct net_device *dev,
1258 						 struct net_device *slave_dev);
1259 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1260 						    netdev_features_t features);
1261 	int			(*ndo_set_features)(struct net_device *dev,
1262 						    netdev_features_t features);
1263 	int			(*ndo_neigh_construct)(struct net_device *dev,
1264 						       struct neighbour *n);
1265 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1266 						     struct neighbour *n);
1267 
1268 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1269 					       struct nlattr *tb[],
1270 					       struct net_device *dev,
1271 					       const unsigned char *addr,
1272 					       u16 vid,
1273 					       u16 flags);
1274 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1275 					       struct nlattr *tb[],
1276 					       struct net_device *dev,
1277 					       const unsigned char *addr,
1278 					       u16 vid);
1279 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1280 						struct netlink_callback *cb,
1281 						struct net_device *dev,
1282 						struct net_device *filter_dev,
1283 						int *idx);
1284 
1285 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1286 						      struct nlmsghdr *nlh,
1287 						      u16 flags);
1288 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1289 						      u32 pid, u32 seq,
1290 						      struct net_device *dev,
1291 						      u32 filter_mask,
1292 						      int nlflags);
1293 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1294 						      struct nlmsghdr *nlh,
1295 						      u16 flags);
1296 	int			(*ndo_change_carrier)(struct net_device *dev,
1297 						      bool new_carrier);
1298 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1299 							struct netdev_phys_item_id *ppid);
1300 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1301 							  char *name, size_t len);
1302 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1303 						      struct udp_tunnel_info *ti);
1304 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1305 						      struct udp_tunnel_info *ti);
1306 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1307 							struct net_device *dev);
1308 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1309 							void *priv);
1310 
1311 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1312 							struct net_device *dev,
1313 							void *priv);
1314 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1315 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1316 						      int queue_index,
1317 						      u32 maxrate);
1318 	int			(*ndo_get_iflink)(const struct net_device *dev);
1319 	int			(*ndo_change_proto_down)(struct net_device *dev,
1320 							 bool proto_down);
1321 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1322 						       struct sk_buff *skb);
1323 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1324 						       int needed_headroom);
1325 	int			(*ndo_xdp)(struct net_device *dev,
1326 					   struct netdev_xdp *xdp);
1327 };
1328 
1329 /**
1330  * enum net_device_priv_flags - &struct net_device priv_flags
1331  *
1332  * These are the &struct net_device, they are only set internally
1333  * by drivers and used in the kernel. These flags are invisible to
1334  * userspace; this means that the order of these flags can change
1335  * during any kernel release.
1336  *
1337  * You should have a pretty good reason to be extending these flags.
1338  *
1339  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1340  * @IFF_EBRIDGE: Ethernet bridging device
1341  * @IFF_BONDING: bonding master or slave
1342  * @IFF_ISATAP: ISATAP interface (RFC4214)
1343  * @IFF_WAN_HDLC: WAN HDLC device
1344  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1345  *	release skb->dst
1346  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1347  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1348  * @IFF_MACVLAN_PORT: device used as macvlan port
1349  * @IFF_BRIDGE_PORT: device used as bridge port
1350  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1351  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1352  * @IFF_UNICAST_FLT: Supports unicast filtering
1353  * @IFF_TEAM_PORT: device used as team port
1354  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1355  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1356  *	change when it's running
1357  * @IFF_MACVLAN: Macvlan device
1358  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1359  *	underlying stacked devices
1360  * @IFF_IPVLAN_MASTER: IPvlan master device
1361  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1362  * @IFF_L3MDEV_MASTER: device is an L3 master device
1363  * @IFF_NO_QUEUE: device can run without qdisc attached
1364  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1365  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1366  * @IFF_TEAM: device is a team device
1367  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1368  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1369  *	entity (i.e. the master device for bridged veth)
1370  * @IFF_MACSEC: device is a MACsec device
1371  */
1372 enum netdev_priv_flags {
1373 	IFF_802_1Q_VLAN			= 1<<0,
1374 	IFF_EBRIDGE			= 1<<1,
1375 	IFF_BONDING			= 1<<2,
1376 	IFF_ISATAP			= 1<<3,
1377 	IFF_WAN_HDLC			= 1<<4,
1378 	IFF_XMIT_DST_RELEASE		= 1<<5,
1379 	IFF_DONT_BRIDGE			= 1<<6,
1380 	IFF_DISABLE_NETPOLL		= 1<<7,
1381 	IFF_MACVLAN_PORT		= 1<<8,
1382 	IFF_BRIDGE_PORT			= 1<<9,
1383 	IFF_OVS_DATAPATH		= 1<<10,
1384 	IFF_TX_SKB_SHARING		= 1<<11,
1385 	IFF_UNICAST_FLT			= 1<<12,
1386 	IFF_TEAM_PORT			= 1<<13,
1387 	IFF_SUPP_NOFCS			= 1<<14,
1388 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1389 	IFF_MACVLAN			= 1<<16,
1390 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1391 	IFF_IPVLAN_MASTER		= 1<<18,
1392 	IFF_IPVLAN_SLAVE		= 1<<19,
1393 	IFF_L3MDEV_MASTER		= 1<<20,
1394 	IFF_NO_QUEUE			= 1<<21,
1395 	IFF_OPENVSWITCH			= 1<<22,
1396 	IFF_L3MDEV_SLAVE		= 1<<23,
1397 	IFF_TEAM			= 1<<24,
1398 	IFF_RXFH_CONFIGURED		= 1<<25,
1399 	IFF_PHONY_HEADROOM		= 1<<26,
1400 	IFF_MACSEC			= 1<<27,
1401 };
1402 
1403 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1404 #define IFF_EBRIDGE			IFF_EBRIDGE
1405 #define IFF_BONDING			IFF_BONDING
1406 #define IFF_ISATAP			IFF_ISATAP
1407 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1408 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1409 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1410 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1411 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1412 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1413 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1414 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1415 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1416 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1417 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1418 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1419 #define IFF_MACVLAN			IFF_MACVLAN
1420 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1421 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1422 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1423 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1424 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1425 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1426 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1427 #define IFF_TEAM			IFF_TEAM
1428 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1429 #define IFF_MACSEC			IFF_MACSEC
1430 
1431 /**
1432  *	struct net_device - The DEVICE structure.
1433  *		Actually, this whole structure is a big mistake.  It mixes I/O
1434  *		data with strictly "high-level" data, and it has to know about
1435  *		almost every data structure used in the INET module.
1436  *
1437  *	@name:	This is the first field of the "visible" part of this structure
1438  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1439  *	 	of the interface.
1440  *
1441  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1442  *	@ifalias:	SNMP alias
1443  *	@mem_end:	Shared memory end
1444  *	@mem_start:	Shared memory start
1445  *	@base_addr:	Device I/O address
1446  *	@irq:		Device IRQ number
1447  *
1448  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1449  *
1450  *	@state:		Generic network queuing layer state, see netdev_state_t
1451  *	@dev_list:	The global list of network devices
1452  *	@napi_list:	List entry used for polling NAPI devices
1453  *	@unreg_list:	List entry  when we are unregistering the
1454  *			device; see the function unregister_netdev
1455  *	@close_list:	List entry used when we are closing the device
1456  *	@ptype_all:     Device-specific packet handlers for all protocols
1457  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1458  *
1459  *	@adj_list:	Directly linked devices, like slaves for bonding
1460  *	@features:	Currently active device features
1461  *	@hw_features:	User-changeable features
1462  *
1463  *	@wanted_features:	User-requested features
1464  *	@vlan_features:		Mask of features inheritable by VLAN devices
1465  *
1466  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1467  *				This field indicates what encapsulation
1468  *				offloads the hardware is capable of doing,
1469  *				and drivers will need to set them appropriately.
1470  *
1471  *	@mpls_features:	Mask of features inheritable by MPLS
1472  *
1473  *	@ifindex:	interface index
1474  *	@group:		The group the device belongs to
1475  *
1476  *	@stats:		Statistics struct, which was left as a legacy, use
1477  *			rtnl_link_stats64 instead
1478  *
1479  *	@rx_dropped:	Dropped packets by core network,
1480  *			do not use this in drivers
1481  *	@tx_dropped:	Dropped packets by core network,
1482  *			do not use this in drivers
1483  *	@rx_nohandler:	nohandler dropped packets by core network on
1484  *			inactive devices, do not use this in drivers
1485  *
1486  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1487  *				instead of ioctl,
1488  *				see <net/iw_handler.h> for details.
1489  *	@wireless_data:	Instance data managed by the core of wireless extensions
1490  *
1491  *	@netdev_ops:	Includes several pointers to callbacks,
1492  *			if one wants to override the ndo_*() functions
1493  *	@ethtool_ops:	Management operations
1494  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1495  *			discovery handling. Necessary for e.g. 6LoWPAN.
1496  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1497  *			of Layer 2 headers.
1498  *
1499  *	@flags:		Interface flags (a la BSD)
1500  *	@priv_flags:	Like 'flags' but invisible to userspace,
1501  *			see if.h for the definitions
1502  *	@gflags:	Global flags ( kept as legacy )
1503  *	@padded:	How much padding added by alloc_netdev()
1504  *	@operstate:	RFC2863 operstate
1505  *	@link_mode:	Mapping policy to operstate
1506  *	@if_port:	Selectable AUI, TP, ...
1507  *	@dma:		DMA channel
1508  *	@mtu:		Interface MTU value
1509  *	@min_mtu:	Interface Minimum MTU value
1510  *	@max_mtu:	Interface Maximum MTU value
1511  *	@type:		Interface hardware type
1512  *	@hard_header_len: Maximum hardware header length.
1513  *
1514  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1515  *			  cases can this be guaranteed
1516  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1517  *			  cases can this be guaranteed. Some cases also use
1518  *			  LL_MAX_HEADER instead to allocate the skb
1519  *
1520  *	interface address info:
1521  *
1522  * 	@perm_addr:		Permanent hw address
1523  * 	@addr_assign_type:	Hw address assignment type
1524  * 	@addr_len:		Hardware address length
1525  *	@neigh_priv_len:	Used in neigh_alloc()
1526  * 	@dev_id:		Used to differentiate devices that share
1527  * 				the same link layer address
1528  * 	@dev_port:		Used to differentiate devices that share
1529  * 				the same function
1530  *	@addr_list_lock:	XXX: need comments on this one
1531  *	@uc_promisc:		Counter that indicates promiscuous mode
1532  *				has been enabled due to the need to listen to
1533  *				additional unicast addresses in a device that
1534  *				does not implement ndo_set_rx_mode()
1535  *	@uc:			unicast mac addresses
1536  *	@mc:			multicast mac addresses
1537  *	@dev_addrs:		list of device hw addresses
1538  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1539  *	@promiscuity:		Number of times the NIC is told to work in
1540  *				promiscuous mode; if it becomes 0 the NIC will
1541  *				exit promiscuous mode
1542  *	@allmulti:		Counter, enables or disables allmulticast mode
1543  *
1544  *	@vlan_info:	VLAN info
1545  *	@dsa_ptr:	dsa specific data
1546  *	@tipc_ptr:	TIPC specific data
1547  *	@atalk_ptr:	AppleTalk link
1548  *	@ip_ptr:	IPv4 specific data
1549  *	@dn_ptr:	DECnet specific data
1550  *	@ip6_ptr:	IPv6 specific data
1551  *	@ax25_ptr:	AX.25 specific data
1552  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1553  *
1554  *	@last_rx:	Time of last Rx
1555  *	@dev_addr:	Hw address (before bcast,
1556  *			because most packets are unicast)
1557  *
1558  *	@_rx:			Array of RX queues
1559  *	@num_rx_queues:		Number of RX queues
1560  *				allocated at register_netdev() time
1561  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1562  *
1563  *	@rx_handler:		handler for received packets
1564  *	@rx_handler_data: 	XXX: need comments on this one
1565  *	@ingress_queue:		XXX: need comments on this one
1566  *	@broadcast:		hw bcast address
1567  *
1568  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1569  *			indexed by RX queue number. Assigned by driver.
1570  *			This must only be set if the ndo_rx_flow_steer
1571  *			operation is defined
1572  *	@index_hlist:		Device index hash chain
1573  *
1574  *	@_tx:			Array of TX queues
1575  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1576  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1577  *	@qdisc:			Root qdisc from userspace point of view
1578  *	@tx_queue_len:		Max frames per queue allowed
1579  *	@tx_global_lock: 	XXX: need comments on this one
1580  *
1581  *	@xps_maps:	XXX: need comments on this one
1582  *
1583  *	@watchdog_timeo:	Represents the timeout that is used by
1584  *				the watchdog (see dev_watchdog())
1585  *	@watchdog_timer:	List of timers
1586  *
1587  *	@pcpu_refcnt:		Number of references to this device
1588  *	@todo_list:		Delayed register/unregister
1589  *	@link_watch_list:	XXX: need comments on this one
1590  *
1591  *	@reg_state:		Register/unregister state machine
1592  *	@dismantle:		Device is going to be freed
1593  *	@rtnl_link_state:	This enum represents the phases of creating
1594  *				a new link
1595  *
1596  *	@destructor:		Called from unregister,
1597  *				can be used to call free_netdev
1598  *	@npinfo:		XXX: need comments on this one
1599  * 	@nd_net:		Network namespace this network device is inside
1600  *
1601  * 	@ml_priv:	Mid-layer private
1602  * 	@lstats:	Loopback statistics
1603  * 	@tstats:	Tunnel statistics
1604  * 	@dstats:	Dummy statistics
1605  * 	@vstats:	Virtual ethernet statistics
1606  *
1607  *	@garp_port:	GARP
1608  *	@mrp_port:	MRP
1609  *
1610  *	@dev:		Class/net/name entry
1611  *	@sysfs_groups:	Space for optional device, statistics and wireless
1612  *			sysfs groups
1613  *
1614  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1615  *	@rtnl_link_ops:	Rtnl_link_ops
1616  *
1617  *	@gso_max_size:	Maximum size of generic segmentation offload
1618  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1619  *			NIC for GSO
1620  *
1621  *	@dcbnl_ops:	Data Center Bridging netlink ops
1622  *	@num_tc:	Number of traffic classes in the net device
1623  *	@tc_to_txq:	XXX: need comments on this one
1624  *	@prio_tc_map:	XXX: need comments on this one
1625  *
1626  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1627  *
1628  *	@priomap:	XXX: need comments on this one
1629  *	@phydev:	Physical device may attach itself
1630  *			for hardware timestamping
1631  *
1632  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1633  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1634  *
1635  *	@proto_down:	protocol port state information can be sent to the
1636  *			switch driver and used to set the phys state of the
1637  *			switch port.
1638  *
1639  *	FIXME: cleanup struct net_device such that network protocol info
1640  *	moves out.
1641  */
1642 
1643 struct net_device {
1644 	char			name[IFNAMSIZ];
1645 	struct hlist_node	name_hlist;
1646 	char 			*ifalias;
1647 	/*
1648 	 *	I/O specific fields
1649 	 *	FIXME: Merge these and struct ifmap into one
1650 	 */
1651 	unsigned long		mem_end;
1652 	unsigned long		mem_start;
1653 	unsigned long		base_addr;
1654 	int			irq;
1655 
1656 	atomic_t		carrier_changes;
1657 
1658 	/*
1659 	 *	Some hardware also needs these fields (state,dev_list,
1660 	 *	napi_list,unreg_list,close_list) but they are not
1661 	 *	part of the usual set specified in Space.c.
1662 	 */
1663 
1664 	unsigned long		state;
1665 
1666 	struct list_head	dev_list;
1667 	struct list_head	napi_list;
1668 	struct list_head	unreg_list;
1669 	struct list_head	close_list;
1670 	struct list_head	ptype_all;
1671 	struct list_head	ptype_specific;
1672 
1673 	struct {
1674 		struct list_head upper;
1675 		struct list_head lower;
1676 	} adj_list;
1677 
1678 	netdev_features_t	features;
1679 	netdev_features_t	hw_features;
1680 	netdev_features_t	wanted_features;
1681 	netdev_features_t	vlan_features;
1682 	netdev_features_t	hw_enc_features;
1683 	netdev_features_t	mpls_features;
1684 	netdev_features_t	gso_partial_features;
1685 
1686 	int			ifindex;
1687 	int			group;
1688 
1689 	struct net_device_stats	stats;
1690 
1691 	atomic_long_t		rx_dropped;
1692 	atomic_long_t		tx_dropped;
1693 	atomic_long_t		rx_nohandler;
1694 
1695 #ifdef CONFIG_WIRELESS_EXT
1696 	const struct iw_handler_def *wireless_handlers;
1697 	struct iw_public_data	*wireless_data;
1698 #endif
1699 	const struct net_device_ops *netdev_ops;
1700 	const struct ethtool_ops *ethtool_ops;
1701 #ifdef CONFIG_NET_SWITCHDEV
1702 	const struct switchdev_ops *switchdev_ops;
1703 #endif
1704 #ifdef CONFIG_NET_L3_MASTER_DEV
1705 	const struct l3mdev_ops	*l3mdev_ops;
1706 #endif
1707 #if IS_ENABLED(CONFIG_IPV6)
1708 	const struct ndisc_ops *ndisc_ops;
1709 #endif
1710 
1711 	const struct header_ops *header_ops;
1712 
1713 	unsigned int		flags;
1714 	unsigned int		priv_flags;
1715 
1716 	unsigned short		gflags;
1717 	unsigned short		padded;
1718 
1719 	unsigned char		operstate;
1720 	unsigned char		link_mode;
1721 
1722 	unsigned char		if_port;
1723 	unsigned char		dma;
1724 
1725 	unsigned int		mtu;
1726 	unsigned int		min_mtu;
1727 	unsigned int		max_mtu;
1728 	unsigned short		type;
1729 	unsigned short		hard_header_len;
1730 
1731 	unsigned short		needed_headroom;
1732 	unsigned short		needed_tailroom;
1733 
1734 	/* Interface address info. */
1735 	unsigned char		perm_addr[MAX_ADDR_LEN];
1736 	unsigned char		addr_assign_type;
1737 	unsigned char		addr_len;
1738 	unsigned short		neigh_priv_len;
1739 	unsigned short          dev_id;
1740 	unsigned short          dev_port;
1741 	spinlock_t		addr_list_lock;
1742 	unsigned char		name_assign_type;
1743 	bool			uc_promisc;
1744 	struct netdev_hw_addr_list	uc;
1745 	struct netdev_hw_addr_list	mc;
1746 	struct netdev_hw_addr_list	dev_addrs;
1747 
1748 #ifdef CONFIG_SYSFS
1749 	struct kset		*queues_kset;
1750 #endif
1751 	unsigned int		promiscuity;
1752 	unsigned int		allmulti;
1753 
1754 
1755 	/* Protocol-specific pointers */
1756 
1757 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1758 	struct vlan_info __rcu	*vlan_info;
1759 #endif
1760 #if IS_ENABLED(CONFIG_NET_DSA)
1761 	struct dsa_switch_tree	*dsa_ptr;
1762 #endif
1763 #if IS_ENABLED(CONFIG_TIPC)
1764 	struct tipc_bearer __rcu *tipc_ptr;
1765 #endif
1766 	void 			*atalk_ptr;
1767 	struct in_device __rcu	*ip_ptr;
1768 	struct dn_dev __rcu     *dn_ptr;
1769 	struct inet6_dev __rcu	*ip6_ptr;
1770 	void			*ax25_ptr;
1771 	struct wireless_dev	*ieee80211_ptr;
1772 	struct wpan_dev		*ieee802154_ptr;
1773 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1774 	struct mpls_dev __rcu	*mpls_ptr;
1775 #endif
1776 
1777 /*
1778  * Cache lines mostly used on receive path (including eth_type_trans())
1779  */
1780 	unsigned long		last_rx;
1781 
1782 	/* Interface address info used in eth_type_trans() */
1783 	unsigned char		*dev_addr;
1784 
1785 #ifdef CONFIG_SYSFS
1786 	struct netdev_rx_queue	*_rx;
1787 
1788 	unsigned int		num_rx_queues;
1789 	unsigned int		real_num_rx_queues;
1790 #endif
1791 
1792 	unsigned long		gro_flush_timeout;
1793 	rx_handler_func_t __rcu	*rx_handler;
1794 	void __rcu		*rx_handler_data;
1795 
1796 #ifdef CONFIG_NET_CLS_ACT
1797 	struct tcf_proto __rcu  *ingress_cl_list;
1798 #endif
1799 	struct netdev_queue __rcu *ingress_queue;
1800 #ifdef CONFIG_NETFILTER_INGRESS
1801 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1802 #endif
1803 
1804 	unsigned char		broadcast[MAX_ADDR_LEN];
1805 #ifdef CONFIG_RFS_ACCEL
1806 	struct cpu_rmap		*rx_cpu_rmap;
1807 #endif
1808 	struct hlist_node	index_hlist;
1809 
1810 /*
1811  * Cache lines mostly used on transmit path
1812  */
1813 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1814 	unsigned int		num_tx_queues;
1815 	unsigned int		real_num_tx_queues;
1816 	struct Qdisc		*qdisc;
1817 #ifdef CONFIG_NET_SCHED
1818 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1819 #endif
1820 	unsigned long		tx_queue_len;
1821 	spinlock_t		tx_global_lock;
1822 	int			watchdog_timeo;
1823 
1824 #ifdef CONFIG_XPS
1825 	struct xps_dev_maps __rcu *xps_maps;
1826 #endif
1827 #ifdef CONFIG_NET_CLS_ACT
1828 	struct tcf_proto __rcu  *egress_cl_list;
1829 #endif
1830 
1831 	/* These may be needed for future network-power-down code. */
1832 	struct timer_list	watchdog_timer;
1833 
1834 	int __percpu		*pcpu_refcnt;
1835 	struct list_head	todo_list;
1836 
1837 	struct list_head	link_watch_list;
1838 
1839 	enum { NETREG_UNINITIALIZED=0,
1840 	       NETREG_REGISTERED,	/* completed register_netdevice */
1841 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1842 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1843 	       NETREG_RELEASED,		/* called free_netdev */
1844 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1845 	} reg_state:8;
1846 
1847 	bool dismantle;
1848 
1849 	enum {
1850 		RTNL_LINK_INITIALIZED,
1851 		RTNL_LINK_INITIALIZING,
1852 	} rtnl_link_state:16;
1853 
1854 	void (*destructor)(struct net_device *dev);
1855 
1856 #ifdef CONFIG_NETPOLL
1857 	struct netpoll_info __rcu	*npinfo;
1858 #endif
1859 
1860 	possible_net_t			nd_net;
1861 
1862 	/* mid-layer private */
1863 	union {
1864 		void					*ml_priv;
1865 		struct pcpu_lstats __percpu		*lstats;
1866 		struct pcpu_sw_netstats __percpu	*tstats;
1867 		struct pcpu_dstats __percpu		*dstats;
1868 		struct pcpu_vstats __percpu		*vstats;
1869 	};
1870 
1871 	struct garp_port __rcu	*garp_port;
1872 	struct mrp_port __rcu	*mrp_port;
1873 
1874 	struct device		dev;
1875 	const struct attribute_group *sysfs_groups[4];
1876 	const struct attribute_group *sysfs_rx_queue_group;
1877 
1878 	const struct rtnl_link_ops *rtnl_link_ops;
1879 
1880 	/* for setting kernel sock attribute on TCP connection setup */
1881 #define GSO_MAX_SIZE		65536
1882 	unsigned int		gso_max_size;
1883 #define GSO_MAX_SEGS		65535
1884 	u16			gso_max_segs;
1885 
1886 #ifdef CONFIG_DCB
1887 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1888 #endif
1889 	u8			num_tc;
1890 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1891 	u8			prio_tc_map[TC_BITMASK + 1];
1892 
1893 #if IS_ENABLED(CONFIG_FCOE)
1894 	unsigned int		fcoe_ddp_xid;
1895 #endif
1896 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1897 	struct netprio_map __rcu *priomap;
1898 #endif
1899 	struct phy_device	*phydev;
1900 	struct lock_class_key	*qdisc_tx_busylock;
1901 	struct lock_class_key	*qdisc_running_key;
1902 	bool			proto_down;
1903 };
1904 #define to_net_dev(d) container_of(d, struct net_device, dev)
1905 
1906 #define	NETDEV_ALIGN		32
1907 
1908 static inline
1909 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1910 {
1911 	return dev->prio_tc_map[prio & TC_BITMASK];
1912 }
1913 
1914 static inline
1915 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1916 {
1917 	if (tc >= dev->num_tc)
1918 		return -EINVAL;
1919 
1920 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1921 	return 0;
1922 }
1923 
1924 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1925 void netdev_reset_tc(struct net_device *dev);
1926 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1927 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1928 
1929 static inline
1930 int netdev_get_num_tc(struct net_device *dev)
1931 {
1932 	return dev->num_tc;
1933 }
1934 
1935 static inline
1936 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1937 					 unsigned int index)
1938 {
1939 	return &dev->_tx[index];
1940 }
1941 
1942 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1943 						    const struct sk_buff *skb)
1944 {
1945 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1946 }
1947 
1948 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1949 					    void (*f)(struct net_device *,
1950 						      struct netdev_queue *,
1951 						      void *),
1952 					    void *arg)
1953 {
1954 	unsigned int i;
1955 
1956 	for (i = 0; i < dev->num_tx_queues; i++)
1957 		f(dev, &dev->_tx[i], arg);
1958 }
1959 
1960 #define netdev_lockdep_set_classes(dev)				\
1961 {								\
1962 	static struct lock_class_key qdisc_tx_busylock_key;	\
1963 	static struct lock_class_key qdisc_running_key;		\
1964 	static struct lock_class_key qdisc_xmit_lock_key;	\
1965 	static struct lock_class_key dev_addr_list_lock_key;	\
1966 	unsigned int i;						\
1967 								\
1968 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1969 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1970 	lockdep_set_class(&(dev)->addr_list_lock,		\
1971 			  &dev_addr_list_lock_key); 		\
1972 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1973 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1974 				  &qdisc_xmit_lock_key);	\
1975 }
1976 
1977 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1978 				    struct sk_buff *skb,
1979 				    void *accel_priv);
1980 
1981 /* returns the headroom that the master device needs to take in account
1982  * when forwarding to this dev
1983  */
1984 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1985 {
1986 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1987 }
1988 
1989 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1990 {
1991 	if (dev->netdev_ops->ndo_set_rx_headroom)
1992 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1993 }
1994 
1995 /* set the device rx headroom to the dev's default */
1996 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1997 {
1998 	netdev_set_rx_headroom(dev, -1);
1999 }
2000 
2001 /*
2002  * Net namespace inlines
2003  */
2004 static inline
2005 struct net *dev_net(const struct net_device *dev)
2006 {
2007 	return read_pnet(&dev->nd_net);
2008 }
2009 
2010 static inline
2011 void dev_net_set(struct net_device *dev, struct net *net)
2012 {
2013 	write_pnet(&dev->nd_net, net);
2014 }
2015 
2016 static inline bool netdev_uses_dsa(struct net_device *dev)
2017 {
2018 #if IS_ENABLED(CONFIG_NET_DSA)
2019 	if (dev->dsa_ptr != NULL)
2020 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2021 #endif
2022 	return false;
2023 }
2024 
2025 /**
2026  *	netdev_priv - access network device private data
2027  *	@dev: network device
2028  *
2029  * Get network device private data
2030  */
2031 static inline void *netdev_priv(const struct net_device *dev)
2032 {
2033 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2034 }
2035 
2036 /* Set the sysfs physical device reference for the network logical device
2037  * if set prior to registration will cause a symlink during initialization.
2038  */
2039 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2040 
2041 /* Set the sysfs device type for the network logical device to allow
2042  * fine-grained identification of different network device types. For
2043  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2044  */
2045 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2046 
2047 /* Default NAPI poll() weight
2048  * Device drivers are strongly advised to not use bigger value
2049  */
2050 #define NAPI_POLL_WEIGHT 64
2051 
2052 /**
2053  *	netif_napi_add - initialize a NAPI context
2054  *	@dev:  network device
2055  *	@napi: NAPI context
2056  *	@poll: polling function
2057  *	@weight: default weight
2058  *
2059  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2060  * *any* of the other NAPI-related functions.
2061  */
2062 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2063 		    int (*poll)(struct napi_struct *, int), int weight);
2064 
2065 /**
2066  *	netif_tx_napi_add - initialize a NAPI context
2067  *	@dev:  network device
2068  *	@napi: NAPI context
2069  *	@poll: polling function
2070  *	@weight: default weight
2071  *
2072  * This variant of netif_napi_add() should be used from drivers using NAPI
2073  * to exclusively poll a TX queue.
2074  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2075  */
2076 static inline void netif_tx_napi_add(struct net_device *dev,
2077 				     struct napi_struct *napi,
2078 				     int (*poll)(struct napi_struct *, int),
2079 				     int weight)
2080 {
2081 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2082 	netif_napi_add(dev, napi, poll, weight);
2083 }
2084 
2085 /**
2086  *  netif_napi_del - remove a NAPI context
2087  *  @napi: NAPI context
2088  *
2089  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2090  */
2091 void netif_napi_del(struct napi_struct *napi);
2092 
2093 struct napi_gro_cb {
2094 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2095 	void	*frag0;
2096 
2097 	/* Length of frag0. */
2098 	unsigned int frag0_len;
2099 
2100 	/* This indicates where we are processing relative to skb->data. */
2101 	int	data_offset;
2102 
2103 	/* This is non-zero if the packet cannot be merged with the new skb. */
2104 	u16	flush;
2105 
2106 	/* Save the IP ID here and check when we get to the transport layer */
2107 	u16	flush_id;
2108 
2109 	/* Number of segments aggregated. */
2110 	u16	count;
2111 
2112 	/* Start offset for remote checksum offload */
2113 	u16	gro_remcsum_start;
2114 
2115 	/* jiffies when first packet was created/queued */
2116 	unsigned long age;
2117 
2118 	/* Used in ipv6_gro_receive() and foo-over-udp */
2119 	u16	proto;
2120 
2121 	/* This is non-zero if the packet may be of the same flow. */
2122 	u8	same_flow:1;
2123 
2124 	/* Used in tunnel GRO receive */
2125 	u8	encap_mark:1;
2126 
2127 	/* GRO checksum is valid */
2128 	u8	csum_valid:1;
2129 
2130 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2131 	u8	csum_cnt:3;
2132 
2133 	/* Free the skb? */
2134 	u8	free:2;
2135 #define NAPI_GRO_FREE		  1
2136 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2137 
2138 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2139 	u8	is_ipv6:1;
2140 
2141 	/* Used in GRE, set in fou/gue_gro_receive */
2142 	u8	is_fou:1;
2143 
2144 	/* Used to determine if flush_id can be ignored */
2145 	u8	is_atomic:1;
2146 
2147 	/* Number of gro_receive callbacks this packet already went through */
2148 	u8 recursion_counter:4;
2149 
2150 	/* 1 bit hole */
2151 
2152 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2153 	__wsum	csum;
2154 
2155 	/* used in skb_gro_receive() slow path */
2156 	struct sk_buff *last;
2157 };
2158 
2159 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2160 
2161 #define GRO_RECURSION_LIMIT 15
2162 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2163 {
2164 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2165 }
2166 
2167 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2168 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2169 						struct sk_buff **head,
2170 						struct sk_buff *skb)
2171 {
2172 	if (unlikely(gro_recursion_inc_test(skb))) {
2173 		NAPI_GRO_CB(skb)->flush |= 1;
2174 		return NULL;
2175 	}
2176 
2177 	return cb(head, skb);
2178 }
2179 
2180 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2181 					     struct sk_buff *);
2182 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2183 						   struct sock *sk,
2184 						   struct sk_buff **head,
2185 						   struct sk_buff *skb)
2186 {
2187 	if (unlikely(gro_recursion_inc_test(skb))) {
2188 		NAPI_GRO_CB(skb)->flush |= 1;
2189 		return NULL;
2190 	}
2191 
2192 	return cb(sk, head, skb);
2193 }
2194 
2195 struct packet_type {
2196 	__be16			type;	/* This is really htons(ether_type). */
2197 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2198 	int			(*func) (struct sk_buff *,
2199 					 struct net_device *,
2200 					 struct packet_type *,
2201 					 struct net_device *);
2202 	bool			(*id_match)(struct packet_type *ptype,
2203 					    struct sock *sk);
2204 	void			*af_packet_priv;
2205 	struct list_head	list;
2206 };
2207 
2208 struct offload_callbacks {
2209 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2210 						netdev_features_t features);
2211 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2212 						 struct sk_buff *skb);
2213 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2214 };
2215 
2216 struct packet_offload {
2217 	__be16			 type;	/* This is really htons(ether_type). */
2218 	u16			 priority;
2219 	struct offload_callbacks callbacks;
2220 	struct list_head	 list;
2221 };
2222 
2223 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2224 struct pcpu_sw_netstats {
2225 	u64     rx_packets;
2226 	u64     rx_bytes;
2227 	u64     tx_packets;
2228 	u64     tx_bytes;
2229 	struct u64_stats_sync   syncp;
2230 };
2231 
2232 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2233 ({									\
2234 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2235 	if (pcpu_stats)	{						\
2236 		int __cpu;						\
2237 		for_each_possible_cpu(__cpu) {				\
2238 			typeof(type) *stat;				\
2239 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2240 			u64_stats_init(&stat->syncp);			\
2241 		}							\
2242 	}								\
2243 	pcpu_stats;							\
2244 })
2245 
2246 #define netdev_alloc_pcpu_stats(type)					\
2247 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2248 
2249 enum netdev_lag_tx_type {
2250 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2251 	NETDEV_LAG_TX_TYPE_RANDOM,
2252 	NETDEV_LAG_TX_TYPE_BROADCAST,
2253 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2254 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2255 	NETDEV_LAG_TX_TYPE_HASH,
2256 };
2257 
2258 struct netdev_lag_upper_info {
2259 	enum netdev_lag_tx_type tx_type;
2260 };
2261 
2262 struct netdev_lag_lower_state_info {
2263 	u8 link_up : 1,
2264 	   tx_enabled : 1;
2265 };
2266 
2267 #include <linux/notifier.h>
2268 
2269 /* netdevice notifier chain. Please remember to update the rtnetlink
2270  * notification exclusion list in rtnetlink_event() when adding new
2271  * types.
2272  */
2273 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2274 #define NETDEV_DOWN	0x0002
2275 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2276 				   detected a hardware crash and restarted
2277 				   - we can use this eg to kick tcp sessions
2278 				   once done */
2279 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2280 #define NETDEV_REGISTER 0x0005
2281 #define NETDEV_UNREGISTER	0x0006
2282 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2283 #define NETDEV_CHANGEADDR	0x0008
2284 #define NETDEV_GOING_DOWN	0x0009
2285 #define NETDEV_CHANGENAME	0x000A
2286 #define NETDEV_FEAT_CHANGE	0x000B
2287 #define NETDEV_BONDING_FAILOVER 0x000C
2288 #define NETDEV_PRE_UP		0x000D
2289 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2290 #define NETDEV_POST_TYPE_CHANGE	0x000F
2291 #define NETDEV_POST_INIT	0x0010
2292 #define NETDEV_UNREGISTER_FINAL 0x0011
2293 #define NETDEV_RELEASE		0x0012
2294 #define NETDEV_NOTIFY_PEERS	0x0013
2295 #define NETDEV_JOIN		0x0014
2296 #define NETDEV_CHANGEUPPER	0x0015
2297 #define NETDEV_RESEND_IGMP	0x0016
2298 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2299 #define NETDEV_CHANGEINFODATA	0x0018
2300 #define NETDEV_BONDING_INFO	0x0019
2301 #define NETDEV_PRECHANGEUPPER	0x001A
2302 #define NETDEV_CHANGELOWERSTATE	0x001B
2303 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2304 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2305 
2306 int register_netdevice_notifier(struct notifier_block *nb);
2307 int unregister_netdevice_notifier(struct notifier_block *nb);
2308 
2309 struct netdev_notifier_info {
2310 	struct net_device *dev;
2311 };
2312 
2313 struct netdev_notifier_change_info {
2314 	struct netdev_notifier_info info; /* must be first */
2315 	unsigned int flags_changed;
2316 };
2317 
2318 struct netdev_notifier_changeupper_info {
2319 	struct netdev_notifier_info info; /* must be first */
2320 	struct net_device *upper_dev; /* new upper dev */
2321 	bool master; /* is upper dev master */
2322 	bool linking; /* is the notification for link or unlink */
2323 	void *upper_info; /* upper dev info */
2324 };
2325 
2326 struct netdev_notifier_changelowerstate_info {
2327 	struct netdev_notifier_info info; /* must be first */
2328 	void *lower_state_info; /* is lower dev state */
2329 };
2330 
2331 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2332 					     struct net_device *dev)
2333 {
2334 	info->dev = dev;
2335 }
2336 
2337 static inline struct net_device *
2338 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2339 {
2340 	return info->dev;
2341 }
2342 
2343 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2344 
2345 
2346 extern rwlock_t				dev_base_lock;		/* Device list lock */
2347 
2348 #define for_each_netdev(net, d)		\
2349 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2350 #define for_each_netdev_reverse(net, d)	\
2351 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2352 #define for_each_netdev_rcu(net, d)		\
2353 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2354 #define for_each_netdev_safe(net, d, n)	\
2355 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2356 #define for_each_netdev_continue(net, d)		\
2357 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2358 #define for_each_netdev_continue_rcu(net, d)		\
2359 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2360 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2361 		for_each_netdev_rcu(&init_net, slave)	\
2362 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2363 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2364 
2365 static inline struct net_device *next_net_device(struct net_device *dev)
2366 {
2367 	struct list_head *lh;
2368 	struct net *net;
2369 
2370 	net = dev_net(dev);
2371 	lh = dev->dev_list.next;
2372 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2373 }
2374 
2375 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2376 {
2377 	struct list_head *lh;
2378 	struct net *net;
2379 
2380 	net = dev_net(dev);
2381 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2382 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2383 }
2384 
2385 static inline struct net_device *first_net_device(struct net *net)
2386 {
2387 	return list_empty(&net->dev_base_head) ? NULL :
2388 		net_device_entry(net->dev_base_head.next);
2389 }
2390 
2391 static inline struct net_device *first_net_device_rcu(struct net *net)
2392 {
2393 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2394 
2395 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2396 }
2397 
2398 int netdev_boot_setup_check(struct net_device *dev);
2399 unsigned long netdev_boot_base(const char *prefix, int unit);
2400 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2401 				       const char *hwaddr);
2402 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2403 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2404 void dev_add_pack(struct packet_type *pt);
2405 void dev_remove_pack(struct packet_type *pt);
2406 void __dev_remove_pack(struct packet_type *pt);
2407 void dev_add_offload(struct packet_offload *po);
2408 void dev_remove_offload(struct packet_offload *po);
2409 
2410 int dev_get_iflink(const struct net_device *dev);
2411 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2412 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2413 				      unsigned short mask);
2414 struct net_device *dev_get_by_name(struct net *net, const char *name);
2415 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2416 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2417 int dev_alloc_name(struct net_device *dev, const char *name);
2418 int dev_open(struct net_device *dev);
2419 int dev_close(struct net_device *dev);
2420 int dev_close_many(struct list_head *head, bool unlink);
2421 void dev_disable_lro(struct net_device *dev);
2422 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2423 int dev_queue_xmit(struct sk_buff *skb);
2424 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2425 int register_netdevice(struct net_device *dev);
2426 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2427 void unregister_netdevice_many(struct list_head *head);
2428 static inline void unregister_netdevice(struct net_device *dev)
2429 {
2430 	unregister_netdevice_queue(dev, NULL);
2431 }
2432 
2433 int netdev_refcnt_read(const struct net_device *dev);
2434 void free_netdev(struct net_device *dev);
2435 void netdev_freemem(struct net_device *dev);
2436 void synchronize_net(void);
2437 int init_dummy_netdev(struct net_device *dev);
2438 
2439 DECLARE_PER_CPU(int, xmit_recursion);
2440 #define XMIT_RECURSION_LIMIT	10
2441 
2442 static inline int dev_recursion_level(void)
2443 {
2444 	return this_cpu_read(xmit_recursion);
2445 }
2446 
2447 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2448 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2449 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2450 int netdev_get_name(struct net *net, char *name, int ifindex);
2451 int dev_restart(struct net_device *dev);
2452 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2453 
2454 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2455 {
2456 	return NAPI_GRO_CB(skb)->data_offset;
2457 }
2458 
2459 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2460 {
2461 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2462 }
2463 
2464 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2465 {
2466 	NAPI_GRO_CB(skb)->data_offset += len;
2467 }
2468 
2469 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2470 					unsigned int offset)
2471 {
2472 	return NAPI_GRO_CB(skb)->frag0 + offset;
2473 }
2474 
2475 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2476 {
2477 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2478 }
2479 
2480 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2481 					unsigned int offset)
2482 {
2483 	if (!pskb_may_pull(skb, hlen))
2484 		return NULL;
2485 
2486 	NAPI_GRO_CB(skb)->frag0 = NULL;
2487 	NAPI_GRO_CB(skb)->frag0_len = 0;
2488 	return skb->data + offset;
2489 }
2490 
2491 static inline void *skb_gro_network_header(struct sk_buff *skb)
2492 {
2493 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2494 	       skb_network_offset(skb);
2495 }
2496 
2497 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2498 					const void *start, unsigned int len)
2499 {
2500 	if (NAPI_GRO_CB(skb)->csum_valid)
2501 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2502 						  csum_partial(start, len, 0));
2503 }
2504 
2505 /* GRO checksum functions. These are logical equivalents of the normal
2506  * checksum functions (in skbuff.h) except that they operate on the GRO
2507  * offsets and fields in sk_buff.
2508  */
2509 
2510 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2511 
2512 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2513 {
2514 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2515 }
2516 
2517 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2518 						      bool zero_okay,
2519 						      __sum16 check)
2520 {
2521 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2522 		skb_checksum_start_offset(skb) <
2523 		 skb_gro_offset(skb)) &&
2524 		!skb_at_gro_remcsum_start(skb) &&
2525 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2526 		(!zero_okay || check));
2527 }
2528 
2529 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2530 							   __wsum psum)
2531 {
2532 	if (NAPI_GRO_CB(skb)->csum_valid &&
2533 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2534 		return 0;
2535 
2536 	NAPI_GRO_CB(skb)->csum = psum;
2537 
2538 	return __skb_gro_checksum_complete(skb);
2539 }
2540 
2541 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2542 {
2543 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2544 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2545 		NAPI_GRO_CB(skb)->csum_cnt--;
2546 	} else {
2547 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2548 		 * verified a new top level checksum or an encapsulated one
2549 		 * during GRO. This saves work if we fallback to normal path.
2550 		 */
2551 		__skb_incr_checksum_unnecessary(skb);
2552 	}
2553 }
2554 
2555 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2556 				    compute_pseudo)			\
2557 ({									\
2558 	__sum16 __ret = 0;						\
2559 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2560 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2561 				compute_pseudo(skb, proto));		\
2562 	if (__ret)							\
2563 		__skb_mark_checksum_bad(skb);				\
2564 	else								\
2565 		skb_gro_incr_csum_unnecessary(skb);			\
2566 	__ret;								\
2567 })
2568 
2569 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2570 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2571 
2572 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2573 					     compute_pseudo)		\
2574 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2575 
2576 #define skb_gro_checksum_simple_validate(skb)				\
2577 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2578 
2579 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2580 {
2581 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2582 		!NAPI_GRO_CB(skb)->csum_valid);
2583 }
2584 
2585 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2586 					      __sum16 check, __wsum pseudo)
2587 {
2588 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2589 	NAPI_GRO_CB(skb)->csum_valid = 1;
2590 }
2591 
2592 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2593 do {									\
2594 	if (__skb_gro_checksum_convert_check(skb))			\
2595 		__skb_gro_checksum_convert(skb, check,			\
2596 					   compute_pseudo(skb, proto));	\
2597 } while (0)
2598 
2599 struct gro_remcsum {
2600 	int offset;
2601 	__wsum delta;
2602 };
2603 
2604 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2605 {
2606 	grc->offset = 0;
2607 	grc->delta = 0;
2608 }
2609 
2610 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2611 					    unsigned int off, size_t hdrlen,
2612 					    int start, int offset,
2613 					    struct gro_remcsum *grc,
2614 					    bool nopartial)
2615 {
2616 	__wsum delta;
2617 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2618 
2619 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2620 
2621 	if (!nopartial) {
2622 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2623 		return ptr;
2624 	}
2625 
2626 	ptr = skb_gro_header_fast(skb, off);
2627 	if (skb_gro_header_hard(skb, off + plen)) {
2628 		ptr = skb_gro_header_slow(skb, off + plen, off);
2629 		if (!ptr)
2630 			return NULL;
2631 	}
2632 
2633 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2634 			       start, offset);
2635 
2636 	/* Adjust skb->csum since we changed the packet */
2637 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2638 
2639 	grc->offset = off + hdrlen + offset;
2640 	grc->delta = delta;
2641 
2642 	return ptr;
2643 }
2644 
2645 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2646 					   struct gro_remcsum *grc)
2647 {
2648 	void *ptr;
2649 	size_t plen = grc->offset + sizeof(u16);
2650 
2651 	if (!grc->delta)
2652 		return;
2653 
2654 	ptr = skb_gro_header_fast(skb, grc->offset);
2655 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2656 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2657 		if (!ptr)
2658 			return;
2659 	}
2660 
2661 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2662 }
2663 
2664 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2665 				  unsigned short type,
2666 				  const void *daddr, const void *saddr,
2667 				  unsigned int len)
2668 {
2669 	if (!dev->header_ops || !dev->header_ops->create)
2670 		return 0;
2671 
2672 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2673 }
2674 
2675 static inline int dev_parse_header(const struct sk_buff *skb,
2676 				   unsigned char *haddr)
2677 {
2678 	const struct net_device *dev = skb->dev;
2679 
2680 	if (!dev->header_ops || !dev->header_ops->parse)
2681 		return 0;
2682 	return dev->header_ops->parse(skb, haddr);
2683 }
2684 
2685 /* ll_header must have at least hard_header_len allocated */
2686 static inline bool dev_validate_header(const struct net_device *dev,
2687 				       char *ll_header, int len)
2688 {
2689 	if (likely(len >= dev->hard_header_len))
2690 		return true;
2691 
2692 	if (capable(CAP_SYS_RAWIO)) {
2693 		memset(ll_header + len, 0, dev->hard_header_len - len);
2694 		return true;
2695 	}
2696 
2697 	if (dev->header_ops && dev->header_ops->validate)
2698 		return dev->header_ops->validate(ll_header, len);
2699 
2700 	return false;
2701 }
2702 
2703 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2704 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2705 static inline int unregister_gifconf(unsigned int family)
2706 {
2707 	return register_gifconf(family, NULL);
2708 }
2709 
2710 #ifdef CONFIG_NET_FLOW_LIMIT
2711 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2712 struct sd_flow_limit {
2713 	u64			count;
2714 	unsigned int		num_buckets;
2715 	unsigned int		history_head;
2716 	u16			history[FLOW_LIMIT_HISTORY];
2717 	u8			buckets[];
2718 };
2719 
2720 extern int netdev_flow_limit_table_len;
2721 #endif /* CONFIG_NET_FLOW_LIMIT */
2722 
2723 /*
2724  * Incoming packets are placed on per-CPU queues
2725  */
2726 struct softnet_data {
2727 	struct list_head	poll_list;
2728 	struct sk_buff_head	process_queue;
2729 
2730 	/* stats */
2731 	unsigned int		processed;
2732 	unsigned int		time_squeeze;
2733 	unsigned int		received_rps;
2734 #ifdef CONFIG_RPS
2735 	struct softnet_data	*rps_ipi_list;
2736 #endif
2737 #ifdef CONFIG_NET_FLOW_LIMIT
2738 	struct sd_flow_limit __rcu *flow_limit;
2739 #endif
2740 	struct Qdisc		*output_queue;
2741 	struct Qdisc		**output_queue_tailp;
2742 	struct sk_buff		*completion_queue;
2743 
2744 #ifdef CONFIG_RPS
2745 	/* input_queue_head should be written by cpu owning this struct,
2746 	 * and only read by other cpus. Worth using a cache line.
2747 	 */
2748 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2749 
2750 	/* Elements below can be accessed between CPUs for RPS/RFS */
2751 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2752 	struct softnet_data	*rps_ipi_next;
2753 	unsigned int		cpu;
2754 	unsigned int		input_queue_tail;
2755 #endif
2756 	unsigned int		dropped;
2757 	struct sk_buff_head	input_pkt_queue;
2758 	struct napi_struct	backlog;
2759 
2760 };
2761 
2762 static inline void input_queue_head_incr(struct softnet_data *sd)
2763 {
2764 #ifdef CONFIG_RPS
2765 	sd->input_queue_head++;
2766 #endif
2767 }
2768 
2769 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2770 					      unsigned int *qtail)
2771 {
2772 #ifdef CONFIG_RPS
2773 	*qtail = ++sd->input_queue_tail;
2774 #endif
2775 }
2776 
2777 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2778 
2779 void __netif_schedule(struct Qdisc *q);
2780 void netif_schedule_queue(struct netdev_queue *txq);
2781 
2782 static inline void netif_tx_schedule_all(struct net_device *dev)
2783 {
2784 	unsigned int i;
2785 
2786 	for (i = 0; i < dev->num_tx_queues; i++)
2787 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2788 }
2789 
2790 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2791 {
2792 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2793 }
2794 
2795 /**
2796  *	netif_start_queue - allow transmit
2797  *	@dev: network device
2798  *
2799  *	Allow upper layers to call the device hard_start_xmit routine.
2800  */
2801 static inline void netif_start_queue(struct net_device *dev)
2802 {
2803 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2804 }
2805 
2806 static inline void netif_tx_start_all_queues(struct net_device *dev)
2807 {
2808 	unsigned int i;
2809 
2810 	for (i = 0; i < dev->num_tx_queues; i++) {
2811 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2812 		netif_tx_start_queue(txq);
2813 	}
2814 }
2815 
2816 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2817 
2818 /**
2819  *	netif_wake_queue - restart transmit
2820  *	@dev: network device
2821  *
2822  *	Allow upper layers to call the device hard_start_xmit routine.
2823  *	Used for flow control when transmit resources are available.
2824  */
2825 static inline void netif_wake_queue(struct net_device *dev)
2826 {
2827 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2828 }
2829 
2830 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2831 {
2832 	unsigned int i;
2833 
2834 	for (i = 0; i < dev->num_tx_queues; i++) {
2835 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2836 		netif_tx_wake_queue(txq);
2837 	}
2838 }
2839 
2840 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2841 {
2842 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2843 }
2844 
2845 /**
2846  *	netif_stop_queue - stop transmitted packets
2847  *	@dev: network device
2848  *
2849  *	Stop upper layers calling the device hard_start_xmit routine.
2850  *	Used for flow control when transmit resources are unavailable.
2851  */
2852 static inline void netif_stop_queue(struct net_device *dev)
2853 {
2854 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2855 }
2856 
2857 void netif_tx_stop_all_queues(struct net_device *dev);
2858 
2859 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2860 {
2861 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2862 }
2863 
2864 /**
2865  *	netif_queue_stopped - test if transmit queue is flowblocked
2866  *	@dev: network device
2867  *
2868  *	Test if transmit queue on device is currently unable to send.
2869  */
2870 static inline bool netif_queue_stopped(const struct net_device *dev)
2871 {
2872 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2873 }
2874 
2875 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2876 {
2877 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2878 }
2879 
2880 static inline bool
2881 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2882 {
2883 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2884 }
2885 
2886 static inline bool
2887 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2888 {
2889 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2890 }
2891 
2892 /**
2893  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2894  *	@dev_queue: pointer to transmit queue
2895  *
2896  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2897  * to give appropriate hint to the CPU.
2898  */
2899 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2900 {
2901 #ifdef CONFIG_BQL
2902 	prefetchw(&dev_queue->dql.num_queued);
2903 #endif
2904 }
2905 
2906 /**
2907  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2908  *	@dev_queue: pointer to transmit queue
2909  *
2910  * BQL enabled drivers might use this helper in their TX completion path,
2911  * to give appropriate hint to the CPU.
2912  */
2913 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2914 {
2915 #ifdef CONFIG_BQL
2916 	prefetchw(&dev_queue->dql.limit);
2917 #endif
2918 }
2919 
2920 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2921 					unsigned int bytes)
2922 {
2923 #ifdef CONFIG_BQL
2924 	dql_queued(&dev_queue->dql, bytes);
2925 
2926 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2927 		return;
2928 
2929 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2930 
2931 	/*
2932 	 * The XOFF flag must be set before checking the dql_avail below,
2933 	 * because in netdev_tx_completed_queue we update the dql_completed
2934 	 * before checking the XOFF flag.
2935 	 */
2936 	smp_mb();
2937 
2938 	/* check again in case another CPU has just made room avail */
2939 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2940 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2941 #endif
2942 }
2943 
2944 /**
2945  * 	netdev_sent_queue - report the number of bytes queued to hardware
2946  * 	@dev: network device
2947  * 	@bytes: number of bytes queued to the hardware device queue
2948  *
2949  * 	Report the number of bytes queued for sending/completion to the network
2950  * 	device hardware queue. @bytes should be a good approximation and should
2951  * 	exactly match netdev_completed_queue() @bytes
2952  */
2953 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2954 {
2955 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2956 }
2957 
2958 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2959 					     unsigned int pkts, unsigned int bytes)
2960 {
2961 #ifdef CONFIG_BQL
2962 	if (unlikely(!bytes))
2963 		return;
2964 
2965 	dql_completed(&dev_queue->dql, bytes);
2966 
2967 	/*
2968 	 * Without the memory barrier there is a small possiblity that
2969 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2970 	 * be stopped forever
2971 	 */
2972 	smp_mb();
2973 
2974 	if (dql_avail(&dev_queue->dql) < 0)
2975 		return;
2976 
2977 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2978 		netif_schedule_queue(dev_queue);
2979 #endif
2980 }
2981 
2982 /**
2983  * 	netdev_completed_queue - report bytes and packets completed by device
2984  * 	@dev: network device
2985  * 	@pkts: actual number of packets sent over the medium
2986  * 	@bytes: actual number of bytes sent over the medium
2987  *
2988  * 	Report the number of bytes and packets transmitted by the network device
2989  * 	hardware queue over the physical medium, @bytes must exactly match the
2990  * 	@bytes amount passed to netdev_sent_queue()
2991  */
2992 static inline void netdev_completed_queue(struct net_device *dev,
2993 					  unsigned int pkts, unsigned int bytes)
2994 {
2995 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2996 }
2997 
2998 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2999 {
3000 #ifdef CONFIG_BQL
3001 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3002 	dql_reset(&q->dql);
3003 #endif
3004 }
3005 
3006 /**
3007  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3008  * 	@dev_queue: network device
3009  *
3010  * 	Reset the bytes and packet count of a network device and clear the
3011  * 	software flow control OFF bit for this network device
3012  */
3013 static inline void netdev_reset_queue(struct net_device *dev_queue)
3014 {
3015 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3016 }
3017 
3018 /**
3019  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3020  * 	@dev: network device
3021  * 	@queue_index: given tx queue index
3022  *
3023  * 	Returns 0 if given tx queue index >= number of device tx queues,
3024  * 	otherwise returns the originally passed tx queue index.
3025  */
3026 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3027 {
3028 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3029 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3030 				     dev->name, queue_index,
3031 				     dev->real_num_tx_queues);
3032 		return 0;
3033 	}
3034 
3035 	return queue_index;
3036 }
3037 
3038 /**
3039  *	netif_running - test if up
3040  *	@dev: network device
3041  *
3042  *	Test if the device has been brought up.
3043  */
3044 static inline bool netif_running(const struct net_device *dev)
3045 {
3046 	return test_bit(__LINK_STATE_START, &dev->state);
3047 }
3048 
3049 /*
3050  * Routines to manage the subqueues on a device.  We only need start,
3051  * stop, and a check if it's stopped.  All other device management is
3052  * done at the overall netdevice level.
3053  * Also test the device if we're multiqueue.
3054  */
3055 
3056 /**
3057  *	netif_start_subqueue - allow sending packets on subqueue
3058  *	@dev: network device
3059  *	@queue_index: sub queue index
3060  *
3061  * Start individual transmit queue of a device with multiple transmit queues.
3062  */
3063 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3064 {
3065 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3066 
3067 	netif_tx_start_queue(txq);
3068 }
3069 
3070 /**
3071  *	netif_stop_subqueue - stop sending packets on subqueue
3072  *	@dev: network device
3073  *	@queue_index: sub queue index
3074  *
3075  * Stop individual transmit queue of a device with multiple transmit queues.
3076  */
3077 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3078 {
3079 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3080 	netif_tx_stop_queue(txq);
3081 }
3082 
3083 /**
3084  *	netif_subqueue_stopped - test status of subqueue
3085  *	@dev: network device
3086  *	@queue_index: sub queue index
3087  *
3088  * Check individual transmit queue of a device with multiple transmit queues.
3089  */
3090 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3091 					    u16 queue_index)
3092 {
3093 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3094 
3095 	return netif_tx_queue_stopped(txq);
3096 }
3097 
3098 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3099 					  struct sk_buff *skb)
3100 {
3101 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3102 }
3103 
3104 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3105 
3106 #ifdef CONFIG_XPS
3107 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3108 			u16 index);
3109 #else
3110 static inline int netif_set_xps_queue(struct net_device *dev,
3111 				      const struct cpumask *mask,
3112 				      u16 index)
3113 {
3114 	return 0;
3115 }
3116 #endif
3117 
3118 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3119 		  unsigned int num_tx_queues);
3120 
3121 /*
3122  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3123  * as a distribution range limit for the returned value.
3124  */
3125 static inline u16 skb_tx_hash(const struct net_device *dev,
3126 			      struct sk_buff *skb)
3127 {
3128 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3129 }
3130 
3131 /**
3132  *	netif_is_multiqueue - test if device has multiple transmit queues
3133  *	@dev: network device
3134  *
3135  * Check if device has multiple transmit queues
3136  */
3137 static inline bool netif_is_multiqueue(const struct net_device *dev)
3138 {
3139 	return dev->num_tx_queues > 1;
3140 }
3141 
3142 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3143 
3144 #ifdef CONFIG_SYSFS
3145 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3146 #else
3147 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3148 						unsigned int rxq)
3149 {
3150 	return 0;
3151 }
3152 #endif
3153 
3154 #ifdef CONFIG_SYSFS
3155 static inline unsigned int get_netdev_rx_queue_index(
3156 		struct netdev_rx_queue *queue)
3157 {
3158 	struct net_device *dev = queue->dev;
3159 	int index = queue - dev->_rx;
3160 
3161 	BUG_ON(index >= dev->num_rx_queues);
3162 	return index;
3163 }
3164 #endif
3165 
3166 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3167 int netif_get_num_default_rss_queues(void);
3168 
3169 enum skb_free_reason {
3170 	SKB_REASON_CONSUMED,
3171 	SKB_REASON_DROPPED,
3172 };
3173 
3174 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3176 
3177 /*
3178  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3179  * interrupt context or with hardware interrupts being disabled.
3180  * (in_irq() || irqs_disabled())
3181  *
3182  * We provide four helpers that can be used in following contexts :
3183  *
3184  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3185  *  replacing kfree_skb(skb)
3186  *
3187  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3188  *  Typically used in place of consume_skb(skb) in TX completion path
3189  *
3190  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3191  *  replacing kfree_skb(skb)
3192  *
3193  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3194  *  and consumed a packet. Used in place of consume_skb(skb)
3195  */
3196 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3197 {
3198 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3199 }
3200 
3201 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3202 {
3203 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3204 }
3205 
3206 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3207 {
3208 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3209 }
3210 
3211 static inline void dev_consume_skb_any(struct sk_buff *skb)
3212 {
3213 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3214 }
3215 
3216 int netif_rx(struct sk_buff *skb);
3217 int netif_rx_ni(struct sk_buff *skb);
3218 int netif_receive_skb(struct sk_buff *skb);
3219 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3220 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3221 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3222 gro_result_t napi_gro_frags(struct napi_struct *napi);
3223 struct packet_offload *gro_find_receive_by_type(__be16 type);
3224 struct packet_offload *gro_find_complete_by_type(__be16 type);
3225 
3226 static inline void napi_free_frags(struct napi_struct *napi)
3227 {
3228 	kfree_skb(napi->skb);
3229 	napi->skb = NULL;
3230 }
3231 
3232 bool netdev_is_rx_handler_busy(struct net_device *dev);
3233 int netdev_rx_handler_register(struct net_device *dev,
3234 			       rx_handler_func_t *rx_handler,
3235 			       void *rx_handler_data);
3236 void netdev_rx_handler_unregister(struct net_device *dev);
3237 
3238 bool dev_valid_name(const char *name);
3239 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3240 int dev_ethtool(struct net *net, struct ifreq *);
3241 unsigned int dev_get_flags(const struct net_device *);
3242 int __dev_change_flags(struct net_device *, unsigned int flags);
3243 int dev_change_flags(struct net_device *, unsigned int);
3244 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3245 			unsigned int gchanges);
3246 int dev_change_name(struct net_device *, const char *);
3247 int dev_set_alias(struct net_device *, const char *, size_t);
3248 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3249 int dev_set_mtu(struct net_device *, int);
3250 void dev_set_group(struct net_device *, int);
3251 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3252 int dev_change_carrier(struct net_device *, bool new_carrier);
3253 int dev_get_phys_port_id(struct net_device *dev,
3254 			 struct netdev_phys_item_id *ppid);
3255 int dev_get_phys_port_name(struct net_device *dev,
3256 			   char *name, size_t len);
3257 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3258 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3259 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3260 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3261 				    struct netdev_queue *txq, int *ret);
3262 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3263 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3264 bool is_skb_forwardable(const struct net_device *dev,
3265 			const struct sk_buff *skb);
3266 
3267 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3268 					       struct sk_buff *skb)
3269 {
3270 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3271 	    unlikely(!is_skb_forwardable(dev, skb))) {
3272 		atomic_long_inc(&dev->rx_dropped);
3273 		kfree_skb(skb);
3274 		return NET_RX_DROP;
3275 	}
3276 
3277 	skb_scrub_packet(skb, true);
3278 	skb->priority = 0;
3279 	return 0;
3280 }
3281 
3282 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3283 
3284 extern int		netdev_budget;
3285 
3286 /* Called by rtnetlink.c:rtnl_unlock() */
3287 void netdev_run_todo(void);
3288 
3289 /**
3290  *	dev_put - release reference to device
3291  *	@dev: network device
3292  *
3293  * Release reference to device to allow it to be freed.
3294  */
3295 static inline void dev_put(struct net_device *dev)
3296 {
3297 	this_cpu_dec(*dev->pcpu_refcnt);
3298 }
3299 
3300 /**
3301  *	dev_hold - get reference to device
3302  *	@dev: network device
3303  *
3304  * Hold reference to device to keep it from being freed.
3305  */
3306 static inline void dev_hold(struct net_device *dev)
3307 {
3308 	this_cpu_inc(*dev->pcpu_refcnt);
3309 }
3310 
3311 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3312  * and _off may be called from IRQ context, but it is caller
3313  * who is responsible for serialization of these calls.
3314  *
3315  * The name carrier is inappropriate, these functions should really be
3316  * called netif_lowerlayer_*() because they represent the state of any
3317  * kind of lower layer not just hardware media.
3318  */
3319 
3320 void linkwatch_init_dev(struct net_device *dev);
3321 void linkwatch_fire_event(struct net_device *dev);
3322 void linkwatch_forget_dev(struct net_device *dev);
3323 
3324 /**
3325  *	netif_carrier_ok - test if carrier present
3326  *	@dev: network device
3327  *
3328  * Check if carrier is present on device
3329  */
3330 static inline bool netif_carrier_ok(const struct net_device *dev)
3331 {
3332 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3333 }
3334 
3335 unsigned long dev_trans_start(struct net_device *dev);
3336 
3337 void __netdev_watchdog_up(struct net_device *dev);
3338 
3339 void netif_carrier_on(struct net_device *dev);
3340 
3341 void netif_carrier_off(struct net_device *dev);
3342 
3343 /**
3344  *	netif_dormant_on - mark device as dormant.
3345  *	@dev: network device
3346  *
3347  * Mark device as dormant (as per RFC2863).
3348  *
3349  * The dormant state indicates that the relevant interface is not
3350  * actually in a condition to pass packets (i.e., it is not 'up') but is
3351  * in a "pending" state, waiting for some external event.  For "on-
3352  * demand" interfaces, this new state identifies the situation where the
3353  * interface is waiting for events to place it in the up state.
3354  */
3355 static inline void netif_dormant_on(struct net_device *dev)
3356 {
3357 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3358 		linkwatch_fire_event(dev);
3359 }
3360 
3361 /**
3362  *	netif_dormant_off - set device as not dormant.
3363  *	@dev: network device
3364  *
3365  * Device is not in dormant state.
3366  */
3367 static inline void netif_dormant_off(struct net_device *dev)
3368 {
3369 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3370 		linkwatch_fire_event(dev);
3371 }
3372 
3373 /**
3374  *	netif_dormant - test if carrier present
3375  *	@dev: network device
3376  *
3377  * Check if carrier is present on device
3378  */
3379 static inline bool netif_dormant(const struct net_device *dev)
3380 {
3381 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3382 }
3383 
3384 
3385 /**
3386  *	netif_oper_up - test if device is operational
3387  *	@dev: network device
3388  *
3389  * Check if carrier is operational
3390  */
3391 static inline bool netif_oper_up(const struct net_device *dev)
3392 {
3393 	return (dev->operstate == IF_OPER_UP ||
3394 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3395 }
3396 
3397 /**
3398  *	netif_device_present - is device available or removed
3399  *	@dev: network device
3400  *
3401  * Check if device has not been removed from system.
3402  */
3403 static inline bool netif_device_present(struct net_device *dev)
3404 {
3405 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3406 }
3407 
3408 void netif_device_detach(struct net_device *dev);
3409 
3410 void netif_device_attach(struct net_device *dev);
3411 
3412 /*
3413  * Network interface message level settings
3414  */
3415 
3416 enum {
3417 	NETIF_MSG_DRV		= 0x0001,
3418 	NETIF_MSG_PROBE		= 0x0002,
3419 	NETIF_MSG_LINK		= 0x0004,
3420 	NETIF_MSG_TIMER		= 0x0008,
3421 	NETIF_MSG_IFDOWN	= 0x0010,
3422 	NETIF_MSG_IFUP		= 0x0020,
3423 	NETIF_MSG_RX_ERR	= 0x0040,
3424 	NETIF_MSG_TX_ERR	= 0x0080,
3425 	NETIF_MSG_TX_QUEUED	= 0x0100,
3426 	NETIF_MSG_INTR		= 0x0200,
3427 	NETIF_MSG_TX_DONE	= 0x0400,
3428 	NETIF_MSG_RX_STATUS	= 0x0800,
3429 	NETIF_MSG_PKTDATA	= 0x1000,
3430 	NETIF_MSG_HW		= 0x2000,
3431 	NETIF_MSG_WOL		= 0x4000,
3432 };
3433 
3434 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3435 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3436 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3437 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3438 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3439 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3440 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3441 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3442 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3443 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3444 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3445 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3446 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3447 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3448 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3449 
3450 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3451 {
3452 	/* use default */
3453 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3454 		return default_msg_enable_bits;
3455 	if (debug_value == 0)	/* no output */
3456 		return 0;
3457 	/* set low N bits */
3458 	return (1 << debug_value) - 1;
3459 }
3460 
3461 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3462 {
3463 	spin_lock(&txq->_xmit_lock);
3464 	txq->xmit_lock_owner = cpu;
3465 }
3466 
3467 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3468 {
3469 	__acquire(&txq->_xmit_lock);
3470 	return true;
3471 }
3472 
3473 static inline void __netif_tx_release(struct netdev_queue *txq)
3474 {
3475 	__release(&txq->_xmit_lock);
3476 }
3477 
3478 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3479 {
3480 	spin_lock_bh(&txq->_xmit_lock);
3481 	txq->xmit_lock_owner = smp_processor_id();
3482 }
3483 
3484 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3485 {
3486 	bool ok = spin_trylock(&txq->_xmit_lock);
3487 	if (likely(ok))
3488 		txq->xmit_lock_owner = smp_processor_id();
3489 	return ok;
3490 }
3491 
3492 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3493 {
3494 	txq->xmit_lock_owner = -1;
3495 	spin_unlock(&txq->_xmit_lock);
3496 }
3497 
3498 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3499 {
3500 	txq->xmit_lock_owner = -1;
3501 	spin_unlock_bh(&txq->_xmit_lock);
3502 }
3503 
3504 static inline void txq_trans_update(struct netdev_queue *txq)
3505 {
3506 	if (txq->xmit_lock_owner != -1)
3507 		txq->trans_start = jiffies;
3508 }
3509 
3510 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3511 static inline void netif_trans_update(struct net_device *dev)
3512 {
3513 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3514 
3515 	if (txq->trans_start != jiffies)
3516 		txq->trans_start = jiffies;
3517 }
3518 
3519 /**
3520  *	netif_tx_lock - grab network device transmit lock
3521  *	@dev: network device
3522  *
3523  * Get network device transmit lock
3524  */
3525 static inline void netif_tx_lock(struct net_device *dev)
3526 {
3527 	unsigned int i;
3528 	int cpu;
3529 
3530 	spin_lock(&dev->tx_global_lock);
3531 	cpu = smp_processor_id();
3532 	for (i = 0; i < dev->num_tx_queues; i++) {
3533 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3534 
3535 		/* We are the only thread of execution doing a
3536 		 * freeze, but we have to grab the _xmit_lock in
3537 		 * order to synchronize with threads which are in
3538 		 * the ->hard_start_xmit() handler and already
3539 		 * checked the frozen bit.
3540 		 */
3541 		__netif_tx_lock(txq, cpu);
3542 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3543 		__netif_tx_unlock(txq);
3544 	}
3545 }
3546 
3547 static inline void netif_tx_lock_bh(struct net_device *dev)
3548 {
3549 	local_bh_disable();
3550 	netif_tx_lock(dev);
3551 }
3552 
3553 static inline void netif_tx_unlock(struct net_device *dev)
3554 {
3555 	unsigned int i;
3556 
3557 	for (i = 0; i < dev->num_tx_queues; i++) {
3558 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3559 
3560 		/* No need to grab the _xmit_lock here.  If the
3561 		 * queue is not stopped for another reason, we
3562 		 * force a schedule.
3563 		 */
3564 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3565 		netif_schedule_queue(txq);
3566 	}
3567 	spin_unlock(&dev->tx_global_lock);
3568 }
3569 
3570 static inline void netif_tx_unlock_bh(struct net_device *dev)
3571 {
3572 	netif_tx_unlock(dev);
3573 	local_bh_enable();
3574 }
3575 
3576 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3577 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3578 		__netif_tx_lock(txq, cpu);		\
3579 	} else {					\
3580 		__netif_tx_acquire(txq);		\
3581 	}						\
3582 }
3583 
3584 #define HARD_TX_TRYLOCK(dev, txq)			\
3585 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3586 		__netif_tx_trylock(txq) :		\
3587 		__netif_tx_acquire(txq))
3588 
3589 #define HARD_TX_UNLOCK(dev, txq) {			\
3590 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3591 		__netif_tx_unlock(txq);			\
3592 	} else {					\
3593 		__netif_tx_release(txq);		\
3594 	}						\
3595 }
3596 
3597 static inline void netif_tx_disable(struct net_device *dev)
3598 {
3599 	unsigned int i;
3600 	int cpu;
3601 
3602 	local_bh_disable();
3603 	cpu = smp_processor_id();
3604 	for (i = 0; i < dev->num_tx_queues; i++) {
3605 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3606 
3607 		__netif_tx_lock(txq, cpu);
3608 		netif_tx_stop_queue(txq);
3609 		__netif_tx_unlock(txq);
3610 	}
3611 	local_bh_enable();
3612 }
3613 
3614 static inline void netif_addr_lock(struct net_device *dev)
3615 {
3616 	spin_lock(&dev->addr_list_lock);
3617 }
3618 
3619 static inline void netif_addr_lock_nested(struct net_device *dev)
3620 {
3621 	int subclass = SINGLE_DEPTH_NESTING;
3622 
3623 	if (dev->netdev_ops->ndo_get_lock_subclass)
3624 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3625 
3626 	spin_lock_nested(&dev->addr_list_lock, subclass);
3627 }
3628 
3629 static inline void netif_addr_lock_bh(struct net_device *dev)
3630 {
3631 	spin_lock_bh(&dev->addr_list_lock);
3632 }
3633 
3634 static inline void netif_addr_unlock(struct net_device *dev)
3635 {
3636 	spin_unlock(&dev->addr_list_lock);
3637 }
3638 
3639 static inline void netif_addr_unlock_bh(struct net_device *dev)
3640 {
3641 	spin_unlock_bh(&dev->addr_list_lock);
3642 }
3643 
3644 /*
3645  * dev_addrs walker. Should be used only for read access. Call with
3646  * rcu_read_lock held.
3647  */
3648 #define for_each_dev_addr(dev, ha) \
3649 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3650 
3651 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3652 
3653 void ether_setup(struct net_device *dev);
3654 
3655 /* Support for loadable net-drivers */
3656 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3657 				    unsigned char name_assign_type,
3658 				    void (*setup)(struct net_device *),
3659 				    unsigned int txqs, unsigned int rxqs);
3660 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3661 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3662 
3663 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3664 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3665 			 count)
3666 
3667 int register_netdev(struct net_device *dev);
3668 void unregister_netdev(struct net_device *dev);
3669 
3670 /* General hardware address lists handling functions */
3671 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3672 		   struct netdev_hw_addr_list *from_list, int addr_len);
3673 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3674 		      struct netdev_hw_addr_list *from_list, int addr_len);
3675 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3676 		       struct net_device *dev,
3677 		       int (*sync)(struct net_device *, const unsigned char *),
3678 		       int (*unsync)(struct net_device *,
3679 				     const unsigned char *));
3680 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3681 			  struct net_device *dev,
3682 			  int (*unsync)(struct net_device *,
3683 					const unsigned char *));
3684 void __hw_addr_init(struct netdev_hw_addr_list *list);
3685 
3686 /* Functions used for device addresses handling */
3687 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3688 		 unsigned char addr_type);
3689 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3690 		 unsigned char addr_type);
3691 void dev_addr_flush(struct net_device *dev);
3692 int dev_addr_init(struct net_device *dev);
3693 
3694 /* Functions used for unicast addresses handling */
3695 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3696 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3697 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3698 int dev_uc_sync(struct net_device *to, struct net_device *from);
3699 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3700 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3701 void dev_uc_flush(struct net_device *dev);
3702 void dev_uc_init(struct net_device *dev);
3703 
3704 /**
3705  *  __dev_uc_sync - Synchonize device's unicast list
3706  *  @dev:  device to sync
3707  *  @sync: function to call if address should be added
3708  *  @unsync: function to call if address should be removed
3709  *
3710  *  Add newly added addresses to the interface, and release
3711  *  addresses that have been deleted.
3712  */
3713 static inline int __dev_uc_sync(struct net_device *dev,
3714 				int (*sync)(struct net_device *,
3715 					    const unsigned char *),
3716 				int (*unsync)(struct net_device *,
3717 					      const unsigned char *))
3718 {
3719 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3720 }
3721 
3722 /**
3723  *  __dev_uc_unsync - Remove synchronized addresses from device
3724  *  @dev:  device to sync
3725  *  @unsync: function to call if address should be removed
3726  *
3727  *  Remove all addresses that were added to the device by dev_uc_sync().
3728  */
3729 static inline void __dev_uc_unsync(struct net_device *dev,
3730 				   int (*unsync)(struct net_device *,
3731 						 const unsigned char *))
3732 {
3733 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3734 }
3735 
3736 /* Functions used for multicast addresses handling */
3737 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3738 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3739 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3740 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3741 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3742 int dev_mc_sync(struct net_device *to, struct net_device *from);
3743 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3744 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3745 void dev_mc_flush(struct net_device *dev);
3746 void dev_mc_init(struct net_device *dev);
3747 
3748 /**
3749  *  __dev_mc_sync - Synchonize device's multicast list
3750  *  @dev:  device to sync
3751  *  @sync: function to call if address should be added
3752  *  @unsync: function to call if address should be removed
3753  *
3754  *  Add newly added addresses to the interface, and release
3755  *  addresses that have been deleted.
3756  */
3757 static inline int __dev_mc_sync(struct net_device *dev,
3758 				int (*sync)(struct net_device *,
3759 					    const unsigned char *),
3760 				int (*unsync)(struct net_device *,
3761 					      const unsigned char *))
3762 {
3763 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3764 }
3765 
3766 /**
3767  *  __dev_mc_unsync - Remove synchronized addresses from device
3768  *  @dev:  device to sync
3769  *  @unsync: function to call if address should be removed
3770  *
3771  *  Remove all addresses that were added to the device by dev_mc_sync().
3772  */
3773 static inline void __dev_mc_unsync(struct net_device *dev,
3774 				   int (*unsync)(struct net_device *,
3775 						 const unsigned char *))
3776 {
3777 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3778 }
3779 
3780 /* Functions used for secondary unicast and multicast support */
3781 void dev_set_rx_mode(struct net_device *dev);
3782 void __dev_set_rx_mode(struct net_device *dev);
3783 int dev_set_promiscuity(struct net_device *dev, int inc);
3784 int dev_set_allmulti(struct net_device *dev, int inc);
3785 void netdev_state_change(struct net_device *dev);
3786 void netdev_notify_peers(struct net_device *dev);
3787 void netdev_features_change(struct net_device *dev);
3788 /* Load a device via the kmod */
3789 void dev_load(struct net *net, const char *name);
3790 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3791 					struct rtnl_link_stats64 *storage);
3792 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3793 			     const struct net_device_stats *netdev_stats);
3794 
3795 extern int		netdev_max_backlog;
3796 extern int		netdev_tstamp_prequeue;
3797 extern int		weight_p;
3798 
3799 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3800 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3801 						     struct list_head **iter);
3802 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3803 						     struct list_head **iter);
3804 
3805 /* iterate through upper list, must be called under RCU read lock */
3806 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3807 	for (iter = &(dev)->adj_list.upper, \
3808 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3809 	     updev; \
3810 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3811 
3812 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3813 				  int (*fn)(struct net_device *upper_dev,
3814 					    void *data),
3815 				  void *data);
3816 
3817 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3818 				  struct net_device *upper_dev);
3819 
3820 void *netdev_lower_get_next_private(struct net_device *dev,
3821 				    struct list_head **iter);
3822 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3823 					struct list_head **iter);
3824 
3825 #define netdev_for_each_lower_private(dev, priv, iter) \
3826 	for (iter = (dev)->adj_list.lower.next, \
3827 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3828 	     priv; \
3829 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3830 
3831 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3832 	for (iter = &(dev)->adj_list.lower, \
3833 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3834 	     priv; \
3835 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3836 
3837 void *netdev_lower_get_next(struct net_device *dev,
3838 				struct list_head **iter);
3839 
3840 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3841 	for (iter = (dev)->adj_list.lower.next, \
3842 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3843 	     ldev; \
3844 	     ldev = netdev_lower_get_next(dev, &(iter)))
3845 
3846 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3847 					     struct list_head **iter);
3848 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3849 						 struct list_head **iter);
3850 
3851 int netdev_walk_all_lower_dev(struct net_device *dev,
3852 			      int (*fn)(struct net_device *lower_dev,
3853 					void *data),
3854 			      void *data);
3855 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3856 				  int (*fn)(struct net_device *lower_dev,
3857 					    void *data),
3858 				  void *data);
3859 
3860 void *netdev_adjacent_get_private(struct list_head *adj_list);
3861 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3862 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3863 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3864 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3865 int netdev_master_upper_dev_link(struct net_device *dev,
3866 				 struct net_device *upper_dev,
3867 				 void *upper_priv, void *upper_info);
3868 void netdev_upper_dev_unlink(struct net_device *dev,
3869 			     struct net_device *upper_dev);
3870 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3871 void *netdev_lower_dev_get_private(struct net_device *dev,
3872 				   struct net_device *lower_dev);
3873 void netdev_lower_state_changed(struct net_device *lower_dev,
3874 				void *lower_state_info);
3875 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3876 					   struct neighbour *n);
3877 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3878 					  struct neighbour *n);
3879 
3880 /* RSS keys are 40 or 52 bytes long */
3881 #define NETDEV_RSS_KEY_LEN 52
3882 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3883 void netdev_rss_key_fill(void *buffer, size_t len);
3884 
3885 int dev_get_nest_level(struct net_device *dev);
3886 int skb_checksum_help(struct sk_buff *skb);
3887 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3888 				  netdev_features_t features, bool tx_path);
3889 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3890 				    netdev_features_t features);
3891 
3892 struct netdev_bonding_info {
3893 	ifslave	slave;
3894 	ifbond	master;
3895 };
3896 
3897 struct netdev_notifier_bonding_info {
3898 	struct netdev_notifier_info info; /* must be first */
3899 	struct netdev_bonding_info  bonding_info;
3900 };
3901 
3902 void netdev_bonding_info_change(struct net_device *dev,
3903 				struct netdev_bonding_info *bonding_info);
3904 
3905 static inline
3906 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3907 {
3908 	return __skb_gso_segment(skb, features, true);
3909 }
3910 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3911 
3912 static inline bool can_checksum_protocol(netdev_features_t features,
3913 					 __be16 protocol)
3914 {
3915 	if (protocol == htons(ETH_P_FCOE))
3916 		return !!(features & NETIF_F_FCOE_CRC);
3917 
3918 	/* Assume this is an IP checksum (not SCTP CRC) */
3919 
3920 	if (features & NETIF_F_HW_CSUM) {
3921 		/* Can checksum everything */
3922 		return true;
3923 	}
3924 
3925 	switch (protocol) {
3926 	case htons(ETH_P_IP):
3927 		return !!(features & NETIF_F_IP_CSUM);
3928 	case htons(ETH_P_IPV6):
3929 		return !!(features & NETIF_F_IPV6_CSUM);
3930 	default:
3931 		return false;
3932 	}
3933 }
3934 
3935 #ifdef CONFIG_BUG
3936 void netdev_rx_csum_fault(struct net_device *dev);
3937 #else
3938 static inline void netdev_rx_csum_fault(struct net_device *dev)
3939 {
3940 }
3941 #endif
3942 /* rx skb timestamps */
3943 void net_enable_timestamp(void);
3944 void net_disable_timestamp(void);
3945 
3946 #ifdef CONFIG_PROC_FS
3947 int __init dev_proc_init(void);
3948 #else
3949 #define dev_proc_init() 0
3950 #endif
3951 
3952 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3953 					      struct sk_buff *skb, struct net_device *dev,
3954 					      bool more)
3955 {
3956 	skb->xmit_more = more ? 1 : 0;
3957 	return ops->ndo_start_xmit(skb, dev);
3958 }
3959 
3960 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3961 					    struct netdev_queue *txq, bool more)
3962 {
3963 	const struct net_device_ops *ops = dev->netdev_ops;
3964 	int rc;
3965 
3966 	rc = __netdev_start_xmit(ops, skb, dev, more);
3967 	if (rc == NETDEV_TX_OK)
3968 		txq_trans_update(txq);
3969 
3970 	return rc;
3971 }
3972 
3973 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3974 				const void *ns);
3975 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3976 				 const void *ns);
3977 
3978 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3979 {
3980 	return netdev_class_create_file_ns(class_attr, NULL);
3981 }
3982 
3983 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3984 {
3985 	netdev_class_remove_file_ns(class_attr, NULL);
3986 }
3987 
3988 extern struct kobj_ns_type_operations net_ns_type_operations;
3989 
3990 const char *netdev_drivername(const struct net_device *dev);
3991 
3992 void linkwatch_run_queue(void);
3993 
3994 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3995 							  netdev_features_t f2)
3996 {
3997 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3998 		if (f1 & NETIF_F_HW_CSUM)
3999 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4000 		else
4001 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4002 	}
4003 
4004 	return f1 & f2;
4005 }
4006 
4007 static inline netdev_features_t netdev_get_wanted_features(
4008 	struct net_device *dev)
4009 {
4010 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4011 }
4012 netdev_features_t netdev_increment_features(netdev_features_t all,
4013 	netdev_features_t one, netdev_features_t mask);
4014 
4015 /* Allow TSO being used on stacked device :
4016  * Performing the GSO segmentation before last device
4017  * is a performance improvement.
4018  */
4019 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4020 							netdev_features_t mask)
4021 {
4022 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4023 }
4024 
4025 int __netdev_update_features(struct net_device *dev);
4026 void netdev_update_features(struct net_device *dev);
4027 void netdev_change_features(struct net_device *dev);
4028 
4029 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4030 					struct net_device *dev);
4031 
4032 netdev_features_t passthru_features_check(struct sk_buff *skb,
4033 					  struct net_device *dev,
4034 					  netdev_features_t features);
4035 netdev_features_t netif_skb_features(struct sk_buff *skb);
4036 
4037 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4038 {
4039 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4040 
4041 	/* check flags correspondence */
4042 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4043 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4044 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4045 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4046 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4047 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4048 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4049 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4050 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4051 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4052 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4053 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4054 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4055 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4056 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4057 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4058 
4059 	return (features & feature) == feature;
4060 }
4061 
4062 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4063 {
4064 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4065 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4066 }
4067 
4068 static inline bool netif_needs_gso(struct sk_buff *skb,
4069 				   netdev_features_t features)
4070 {
4071 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4072 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4073 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4074 }
4075 
4076 static inline void netif_set_gso_max_size(struct net_device *dev,
4077 					  unsigned int size)
4078 {
4079 	dev->gso_max_size = size;
4080 }
4081 
4082 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4083 					int pulled_hlen, u16 mac_offset,
4084 					int mac_len)
4085 {
4086 	skb->protocol = protocol;
4087 	skb->encapsulation = 1;
4088 	skb_push(skb, pulled_hlen);
4089 	skb_reset_transport_header(skb);
4090 	skb->mac_header = mac_offset;
4091 	skb->network_header = skb->mac_header + mac_len;
4092 	skb->mac_len = mac_len;
4093 }
4094 
4095 static inline bool netif_is_macsec(const struct net_device *dev)
4096 {
4097 	return dev->priv_flags & IFF_MACSEC;
4098 }
4099 
4100 static inline bool netif_is_macvlan(const struct net_device *dev)
4101 {
4102 	return dev->priv_flags & IFF_MACVLAN;
4103 }
4104 
4105 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4106 {
4107 	return dev->priv_flags & IFF_MACVLAN_PORT;
4108 }
4109 
4110 static inline bool netif_is_ipvlan(const struct net_device *dev)
4111 {
4112 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4113 }
4114 
4115 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4116 {
4117 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4118 }
4119 
4120 static inline bool netif_is_bond_master(const struct net_device *dev)
4121 {
4122 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4123 }
4124 
4125 static inline bool netif_is_bond_slave(const struct net_device *dev)
4126 {
4127 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4128 }
4129 
4130 static inline bool netif_supports_nofcs(struct net_device *dev)
4131 {
4132 	return dev->priv_flags & IFF_SUPP_NOFCS;
4133 }
4134 
4135 static inline bool netif_is_l3_master(const struct net_device *dev)
4136 {
4137 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4138 }
4139 
4140 static inline bool netif_is_l3_slave(const struct net_device *dev)
4141 {
4142 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4143 }
4144 
4145 static inline bool netif_is_bridge_master(const struct net_device *dev)
4146 {
4147 	return dev->priv_flags & IFF_EBRIDGE;
4148 }
4149 
4150 static inline bool netif_is_bridge_port(const struct net_device *dev)
4151 {
4152 	return dev->priv_flags & IFF_BRIDGE_PORT;
4153 }
4154 
4155 static inline bool netif_is_ovs_master(const struct net_device *dev)
4156 {
4157 	return dev->priv_flags & IFF_OPENVSWITCH;
4158 }
4159 
4160 static inline bool netif_is_team_master(const struct net_device *dev)
4161 {
4162 	return dev->priv_flags & IFF_TEAM;
4163 }
4164 
4165 static inline bool netif_is_team_port(const struct net_device *dev)
4166 {
4167 	return dev->priv_flags & IFF_TEAM_PORT;
4168 }
4169 
4170 static inline bool netif_is_lag_master(const struct net_device *dev)
4171 {
4172 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4173 }
4174 
4175 static inline bool netif_is_lag_port(const struct net_device *dev)
4176 {
4177 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4178 }
4179 
4180 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4181 {
4182 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4183 }
4184 
4185 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4186 static inline void netif_keep_dst(struct net_device *dev)
4187 {
4188 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4189 }
4190 
4191 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4192 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4193 {
4194 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4195 	return dev->priv_flags & IFF_MACSEC;
4196 }
4197 
4198 extern struct pernet_operations __net_initdata loopback_net_ops;
4199 
4200 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4201 
4202 /* netdev_printk helpers, similar to dev_printk */
4203 
4204 static inline const char *netdev_name(const struct net_device *dev)
4205 {
4206 	if (!dev->name[0] || strchr(dev->name, '%'))
4207 		return "(unnamed net_device)";
4208 	return dev->name;
4209 }
4210 
4211 static inline const char *netdev_reg_state(const struct net_device *dev)
4212 {
4213 	switch (dev->reg_state) {
4214 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4215 	case NETREG_REGISTERED: return "";
4216 	case NETREG_UNREGISTERING: return " (unregistering)";
4217 	case NETREG_UNREGISTERED: return " (unregistered)";
4218 	case NETREG_RELEASED: return " (released)";
4219 	case NETREG_DUMMY: return " (dummy)";
4220 	}
4221 
4222 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4223 	return " (unknown)";
4224 }
4225 
4226 __printf(3, 4)
4227 void netdev_printk(const char *level, const struct net_device *dev,
4228 		   const char *format, ...);
4229 __printf(2, 3)
4230 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4231 __printf(2, 3)
4232 void netdev_alert(const struct net_device *dev, const char *format, ...);
4233 __printf(2, 3)
4234 void netdev_crit(const struct net_device *dev, const char *format, ...);
4235 __printf(2, 3)
4236 void netdev_err(const struct net_device *dev, const char *format, ...);
4237 __printf(2, 3)
4238 void netdev_warn(const struct net_device *dev, const char *format, ...);
4239 __printf(2, 3)
4240 void netdev_notice(const struct net_device *dev, const char *format, ...);
4241 __printf(2, 3)
4242 void netdev_info(const struct net_device *dev, const char *format, ...);
4243 
4244 #define MODULE_ALIAS_NETDEV(device) \
4245 	MODULE_ALIAS("netdev-" device)
4246 
4247 #if defined(CONFIG_DYNAMIC_DEBUG)
4248 #define netdev_dbg(__dev, format, args...)			\
4249 do {								\
4250 	dynamic_netdev_dbg(__dev, format, ##args);		\
4251 } while (0)
4252 #elif defined(DEBUG)
4253 #define netdev_dbg(__dev, format, args...)			\
4254 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4255 #else
4256 #define netdev_dbg(__dev, format, args...)			\
4257 ({								\
4258 	if (0)							\
4259 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4260 })
4261 #endif
4262 
4263 #if defined(VERBOSE_DEBUG)
4264 #define netdev_vdbg	netdev_dbg
4265 #else
4266 
4267 #define netdev_vdbg(dev, format, args...)			\
4268 ({								\
4269 	if (0)							\
4270 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4271 	0;							\
4272 })
4273 #endif
4274 
4275 /*
4276  * netdev_WARN() acts like dev_printk(), but with the key difference
4277  * of using a WARN/WARN_ON to get the message out, including the
4278  * file/line information and a backtrace.
4279  */
4280 #define netdev_WARN(dev, format, args...)			\
4281 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4282 	     netdev_reg_state(dev), ##args)
4283 
4284 /* netif printk helpers, similar to netdev_printk */
4285 
4286 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4287 do {					  			\
4288 	if (netif_msg_##type(priv))				\
4289 		netdev_printk(level, (dev), fmt, ##args);	\
4290 } while (0)
4291 
4292 #define netif_level(level, priv, type, dev, fmt, args...)	\
4293 do {								\
4294 	if (netif_msg_##type(priv))				\
4295 		netdev_##level(dev, fmt, ##args);		\
4296 } while (0)
4297 
4298 #define netif_emerg(priv, type, dev, fmt, args...)		\
4299 	netif_level(emerg, priv, type, dev, fmt, ##args)
4300 #define netif_alert(priv, type, dev, fmt, args...)		\
4301 	netif_level(alert, priv, type, dev, fmt, ##args)
4302 #define netif_crit(priv, type, dev, fmt, args...)		\
4303 	netif_level(crit, priv, type, dev, fmt, ##args)
4304 #define netif_err(priv, type, dev, fmt, args...)		\
4305 	netif_level(err, priv, type, dev, fmt, ##args)
4306 #define netif_warn(priv, type, dev, fmt, args...)		\
4307 	netif_level(warn, priv, type, dev, fmt, ##args)
4308 #define netif_notice(priv, type, dev, fmt, args...)		\
4309 	netif_level(notice, priv, type, dev, fmt, ##args)
4310 #define netif_info(priv, type, dev, fmt, args...)		\
4311 	netif_level(info, priv, type, dev, fmt, ##args)
4312 
4313 #if defined(CONFIG_DYNAMIC_DEBUG)
4314 #define netif_dbg(priv, type, netdev, format, args...)		\
4315 do {								\
4316 	if (netif_msg_##type(priv))				\
4317 		dynamic_netdev_dbg(netdev, format, ##args);	\
4318 } while (0)
4319 #elif defined(DEBUG)
4320 #define netif_dbg(priv, type, dev, format, args...)		\
4321 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4322 #else
4323 #define netif_dbg(priv, type, dev, format, args...)			\
4324 ({									\
4325 	if (0)								\
4326 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4327 	0;								\
4328 })
4329 #endif
4330 
4331 #if defined(VERBOSE_DEBUG)
4332 #define netif_vdbg	netif_dbg
4333 #else
4334 #define netif_vdbg(priv, type, dev, format, args...)		\
4335 ({								\
4336 	if (0)							\
4337 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4338 	0;							\
4339 })
4340 #endif
4341 
4342 /*
4343  *	The list of packet types we will receive (as opposed to discard)
4344  *	and the routines to invoke.
4345  *
4346  *	Why 16. Because with 16 the only overlap we get on a hash of the
4347  *	low nibble of the protocol value is RARP/SNAP/X.25.
4348  *
4349  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4350  *             sure which should go first, but I bet it won't make much
4351  *             difference if we are running VLANs.  The good news is that
4352  *             this protocol won't be in the list unless compiled in, so
4353  *             the average user (w/out VLANs) will not be adversely affected.
4354  *             --BLG
4355  *
4356  *		0800	IP
4357  *		8100    802.1Q VLAN
4358  *		0001	802.3
4359  *		0002	AX.25
4360  *		0004	802.2
4361  *		8035	RARP
4362  *		0005	SNAP
4363  *		0805	X.25
4364  *		0806	ARP
4365  *		8137	IPX
4366  *		0009	Localtalk
4367  *		86DD	IPv6
4368  */
4369 #define PTYPE_HASH_SIZE	(16)
4370 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4371 
4372 #endif	/* _LINUX_NETDEVICE_H */
4373