xref: /openbmc/linux/include/linux/netdevice.h (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
257 	netdev_for_each_uc_addr((_ha), (_dev)) \
258 		if ((_ha)->sync_cnt)
259 
260 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
261 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
262 #define netdev_for_each_mc_addr(ha, dev) \
263 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
264 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
265 	netdev_for_each_mc_addr((_ha), (_dev)) \
266 		if ((_ha)->sync_cnt)
267 
268 struct hh_cache {
269 	unsigned int	hh_len;
270 	seqlock_t	hh_lock;
271 
272 	/* cached hardware header; allow for machine alignment needs.        */
273 #define HH_DATA_MOD	16
274 #define HH_DATA_OFF(__len) \
275 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
276 #define HH_DATA_ALIGN(__len) \
277 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
278 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
279 };
280 
281 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
282  * Alternative is:
283  *   dev->hard_header_len ? (dev->hard_header_len +
284  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
285  *
286  * We could use other alignment values, but we must maintain the
287  * relationship HH alignment <= LL alignment.
288  */
289 #define LL_RESERVED_SPACE(dev) \
290 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
291 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
292 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
293 
294 struct header_ops {
295 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
296 			   unsigned short type, const void *daddr,
297 			   const void *saddr, unsigned int len);
298 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
299 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
300 	void	(*cache_update)(struct hh_cache *hh,
301 				const struct net_device *dev,
302 				const unsigned char *haddr);
303 	bool	(*validate)(const char *ll_header, unsigned int len);
304 	__be16	(*parse_protocol)(const struct sk_buff *skb);
305 };
306 
307 /* These flag bits are private to the generic network queueing
308  * layer; they may not be explicitly referenced by any other
309  * code.
310  */
311 
312 enum netdev_state_t {
313 	__LINK_STATE_START,
314 	__LINK_STATE_PRESENT,
315 	__LINK_STATE_NOCARRIER,
316 	__LINK_STATE_LINKWATCH_PENDING,
317 	__LINK_STATE_DORMANT,
318 	__LINK_STATE_TESTING,
319 };
320 
321 struct gro_list {
322 	struct list_head	list;
323 	int			count;
324 };
325 
326 /*
327  * size of gro hash buckets, must less than bit number of
328  * napi_struct::gro_bitmask
329  */
330 #define GRO_HASH_BUCKETS	8
331 
332 /*
333  * Structure for NAPI scheduling similar to tasklet but with weighting
334  */
335 struct napi_struct {
336 	/* The poll_list must only be managed by the entity which
337 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
338 	 * whoever atomically sets that bit can add this napi_struct
339 	 * to the per-CPU poll_list, and whoever clears that bit
340 	 * can remove from the list right before clearing the bit.
341 	 */
342 	struct list_head	poll_list;
343 
344 	unsigned long		state;
345 	int			weight;
346 	int			defer_hard_irqs_count;
347 	unsigned long		gro_bitmask;
348 	int			(*poll)(struct napi_struct *, int);
349 #ifdef CONFIG_NETPOLL
350 	int			poll_owner;
351 #endif
352 	struct net_device	*dev;
353 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
354 	struct sk_buff		*skb;
355 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
356 	int			rx_count; /* length of rx_list */
357 	struct hrtimer		timer;
358 	struct list_head	dev_list;
359 	struct hlist_node	napi_hash_node;
360 	unsigned int		napi_id;
361 	struct task_struct	*thread;
362 };
363 
364 enum {
365 	NAPI_STATE_SCHED,		/* Poll is scheduled */
366 	NAPI_STATE_MISSED,		/* reschedule a napi */
367 	NAPI_STATE_DISABLE,		/* Disable pending */
368 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
369 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
370 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
371 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
372 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
373 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
374 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
375 };
376 
377 enum {
378 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
379 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
380 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
381 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
382 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
383 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
384 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
385 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
386 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
387 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
388 };
389 
390 enum gro_result {
391 	GRO_MERGED,
392 	GRO_MERGED_FREE,
393 	GRO_HELD,
394 	GRO_NORMAL,
395 	GRO_CONSUMED,
396 };
397 typedef enum gro_result gro_result_t;
398 
399 /*
400  * enum rx_handler_result - Possible return values for rx_handlers.
401  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
402  * further.
403  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
404  * case skb->dev was changed by rx_handler.
405  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
406  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
407  *
408  * rx_handlers are functions called from inside __netif_receive_skb(), to do
409  * special processing of the skb, prior to delivery to protocol handlers.
410  *
411  * Currently, a net_device can only have a single rx_handler registered. Trying
412  * to register a second rx_handler will return -EBUSY.
413  *
414  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
415  * To unregister a rx_handler on a net_device, use
416  * netdev_rx_handler_unregister().
417  *
418  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
419  * do with the skb.
420  *
421  * If the rx_handler consumed the skb in some way, it should return
422  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
423  * the skb to be delivered in some other way.
424  *
425  * If the rx_handler changed skb->dev, to divert the skb to another
426  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
427  * new device will be called if it exists.
428  *
429  * If the rx_handler decides the skb should be ignored, it should return
430  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
431  * are registered on exact device (ptype->dev == skb->dev).
432  *
433  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
434  * delivered, it should return RX_HANDLER_PASS.
435  *
436  * A device without a registered rx_handler will behave as if rx_handler
437  * returned RX_HANDLER_PASS.
438  */
439 
440 enum rx_handler_result {
441 	RX_HANDLER_CONSUMED,
442 	RX_HANDLER_ANOTHER,
443 	RX_HANDLER_EXACT,
444 	RX_HANDLER_PASS,
445 };
446 typedef enum rx_handler_result rx_handler_result_t;
447 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
448 
449 void __napi_schedule(struct napi_struct *n);
450 void __napi_schedule_irqoff(struct napi_struct *n);
451 
452 static inline bool napi_disable_pending(struct napi_struct *n)
453 {
454 	return test_bit(NAPI_STATE_DISABLE, &n->state);
455 }
456 
457 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
458 {
459 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
460 }
461 
462 bool napi_schedule_prep(struct napi_struct *n);
463 
464 /**
465  *	napi_schedule - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Schedule NAPI poll routine to be called if it is not already
469  * running.
470  */
471 static inline void napi_schedule(struct napi_struct *n)
472 {
473 	if (napi_schedule_prep(n))
474 		__napi_schedule(n);
475 }
476 
477 /**
478  *	napi_schedule_irqoff - schedule NAPI poll
479  *	@n: NAPI context
480  *
481  * Variant of napi_schedule(), assuming hard irqs are masked.
482  */
483 static inline void napi_schedule_irqoff(struct napi_struct *n)
484 {
485 	if (napi_schedule_prep(n))
486 		__napi_schedule_irqoff(n);
487 }
488 
489 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
490 static inline bool napi_reschedule(struct napi_struct *napi)
491 {
492 	if (napi_schedule_prep(napi)) {
493 		__napi_schedule(napi);
494 		return true;
495 	}
496 	return false;
497 }
498 
499 bool napi_complete_done(struct napi_struct *n, int work_done);
500 /**
501  *	napi_complete - NAPI processing complete
502  *	@n: NAPI context
503  *
504  * Mark NAPI processing as complete.
505  * Consider using napi_complete_done() instead.
506  * Return false if device should avoid rearming interrupts.
507  */
508 static inline bool napi_complete(struct napi_struct *n)
509 {
510 	return napi_complete_done(n, 0);
511 }
512 
513 int dev_set_threaded(struct net_device *dev, bool threaded);
514 
515 /**
516  *	napi_disable - prevent NAPI from scheduling
517  *	@n: NAPI context
518  *
519  * Stop NAPI from being scheduled on this context.
520  * Waits till any outstanding processing completes.
521  */
522 void napi_disable(struct napi_struct *n);
523 
524 void napi_enable(struct napi_struct *n);
525 
526 /**
527  *	napi_synchronize - wait until NAPI is not running
528  *	@n: NAPI context
529  *
530  * Wait until NAPI is done being scheduled on this context.
531  * Waits till any outstanding processing completes but
532  * does not disable future activations.
533  */
534 static inline void napi_synchronize(const struct napi_struct *n)
535 {
536 	if (IS_ENABLED(CONFIG_SMP))
537 		while (test_bit(NAPI_STATE_SCHED, &n->state))
538 			msleep(1);
539 	else
540 		barrier();
541 }
542 
543 /**
544  *	napi_if_scheduled_mark_missed - if napi is running, set the
545  *	NAPIF_STATE_MISSED
546  *	@n: NAPI context
547  *
548  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
549  * NAPI is scheduled.
550  **/
551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
552 {
553 	unsigned long val, new;
554 
555 	val = READ_ONCE(n->state);
556 	do {
557 		if (val & NAPIF_STATE_DISABLE)
558 			return true;
559 
560 		if (!(val & NAPIF_STATE_SCHED))
561 			return false;
562 
563 		new = val | NAPIF_STATE_MISSED;
564 	} while (!try_cmpxchg(&n->state, &val, new));
565 
566 	return true;
567 }
568 
569 enum netdev_queue_state_t {
570 	__QUEUE_STATE_DRV_XOFF,
571 	__QUEUE_STATE_STACK_XOFF,
572 	__QUEUE_STATE_FROZEN,
573 };
574 
575 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
576 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
577 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
578 
579 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
583 					QUEUE_STATE_FROZEN)
584 
585 /*
586  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
587  * netif_tx_* functions below are used to manipulate this flag.  The
588  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
589  * queue independently.  The netif_xmit_*stopped functions below are called
590  * to check if the queue has been stopped by the driver or stack (either
591  * of the XOFF bits are set in the state).  Drivers should not need to call
592  * netif_xmit*stopped functions, they should only be using netif_tx_*.
593  */
594 
595 struct netdev_queue {
596 /*
597  * read-mostly part
598  */
599 	struct net_device	*dev;
600 	netdevice_tracker	dev_tracker;
601 
602 	struct Qdisc __rcu	*qdisc;
603 	struct Qdisc		*qdisc_sleeping;
604 #ifdef CONFIG_SYSFS
605 	struct kobject		kobj;
606 #endif
607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 	int			numa_node;
609 #endif
610 	unsigned long		tx_maxrate;
611 	/*
612 	 * Number of TX timeouts for this queue
613 	 * (/sys/class/net/DEV/Q/trans_timeout)
614 	 */
615 	atomic_long_t		trans_timeout;
616 
617 	/* Subordinate device that the queue has been assigned to */
618 	struct net_device	*sb_dev;
619 #ifdef CONFIG_XDP_SOCKETS
620 	struct xsk_buff_pool    *pool;
621 #endif
622 /*
623  * write-mostly part
624  */
625 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
626 	int			xmit_lock_owner;
627 	/*
628 	 * Time (in jiffies) of last Tx
629 	 */
630 	unsigned long		trans_start;
631 
632 	unsigned long		state;
633 
634 #ifdef CONFIG_BQL
635 	struct dql		dql;
636 #endif
637 } ____cacheline_aligned_in_smp;
638 
639 extern int sysctl_fb_tunnels_only_for_init_net;
640 extern int sysctl_devconf_inherit_init_net;
641 
642 /*
643  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
644  *                                     == 1 : For initns only
645  *                                     == 2 : For none.
646  */
647 static inline bool net_has_fallback_tunnels(const struct net *net)
648 {
649 #if IS_ENABLED(CONFIG_SYSCTL)
650 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
651 
652 	return !fb_tunnels_only_for_init_net ||
653 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
654 #else
655 	return true;
656 #endif
657 }
658 
659 static inline int net_inherit_devconf(void)
660 {
661 #if IS_ENABLED(CONFIG_SYSCTL)
662 	return READ_ONCE(sysctl_devconf_inherit_init_net);
663 #else
664 	return 0;
665 #endif
666 }
667 
668 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
669 {
670 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
671 	return q->numa_node;
672 #else
673 	return NUMA_NO_NODE;
674 #endif
675 }
676 
677 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
678 {
679 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
680 	q->numa_node = node;
681 #endif
682 }
683 
684 #ifdef CONFIG_RPS
685 /*
686  * This structure holds an RPS map which can be of variable length.  The
687  * map is an array of CPUs.
688  */
689 struct rps_map {
690 	unsigned int len;
691 	struct rcu_head rcu;
692 	u16 cpus[];
693 };
694 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
695 
696 /*
697  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
698  * tail pointer for that CPU's input queue at the time of last enqueue, and
699  * a hardware filter index.
700  */
701 struct rps_dev_flow {
702 	u16 cpu;
703 	u16 filter;
704 	unsigned int last_qtail;
705 };
706 #define RPS_NO_FILTER 0xffff
707 
708 /*
709  * The rps_dev_flow_table structure contains a table of flow mappings.
710  */
711 struct rps_dev_flow_table {
712 	unsigned int mask;
713 	struct rcu_head rcu;
714 	struct rps_dev_flow flows[];
715 };
716 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
717     ((_num) * sizeof(struct rps_dev_flow)))
718 
719 /*
720  * The rps_sock_flow_table contains mappings of flows to the last CPU
721  * on which they were processed by the application (set in recvmsg).
722  * Each entry is a 32bit value. Upper part is the high-order bits
723  * of flow hash, lower part is CPU number.
724  * rps_cpu_mask is used to partition the space, depending on number of
725  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
726  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
727  * meaning we use 32-6=26 bits for the hash.
728  */
729 struct rps_sock_flow_table {
730 	u32	mask;
731 
732 	u32	ents[] ____cacheline_aligned_in_smp;
733 };
734 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
735 
736 #define RPS_NO_CPU 0xffff
737 
738 extern u32 rps_cpu_mask;
739 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
740 
741 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
742 					u32 hash)
743 {
744 	if (table && hash) {
745 		unsigned int index = hash & table->mask;
746 		u32 val = hash & ~rps_cpu_mask;
747 
748 		/* We only give a hint, preemption can change CPU under us */
749 		val |= raw_smp_processor_id();
750 
751 		if (table->ents[index] != val)
752 			table->ents[index] = val;
753 	}
754 }
755 
756 #ifdef CONFIG_RFS_ACCEL
757 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
758 			 u16 filter_id);
759 #endif
760 #endif /* CONFIG_RPS */
761 
762 /* This structure contains an instance of an RX queue. */
763 struct netdev_rx_queue {
764 	struct xdp_rxq_info		xdp_rxq;
765 #ifdef CONFIG_RPS
766 	struct rps_map __rcu		*rps_map;
767 	struct rps_dev_flow_table __rcu	*rps_flow_table;
768 #endif
769 	struct kobject			kobj;
770 	struct net_device		*dev;
771 	netdevice_tracker		dev_tracker;
772 
773 #ifdef CONFIG_XDP_SOCKETS
774 	struct xsk_buff_pool            *pool;
775 #endif
776 } ____cacheline_aligned_in_smp;
777 
778 /*
779  * RX queue sysfs structures and functions.
780  */
781 struct rx_queue_attribute {
782 	struct attribute attr;
783 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
784 	ssize_t (*store)(struct netdev_rx_queue *queue,
785 			 const char *buf, size_t len);
786 };
787 
788 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
789 enum xps_map_type {
790 	XPS_CPUS = 0,
791 	XPS_RXQS,
792 	XPS_MAPS_MAX,
793 };
794 
795 #ifdef CONFIG_XPS
796 /*
797  * This structure holds an XPS map which can be of variable length.  The
798  * map is an array of queues.
799  */
800 struct xps_map {
801 	unsigned int len;
802 	unsigned int alloc_len;
803 	struct rcu_head rcu;
804 	u16 queues[];
805 };
806 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
807 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
808        - sizeof(struct xps_map)) / sizeof(u16))
809 
810 /*
811  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
812  *
813  * We keep track of the number of cpus/rxqs used when the struct is allocated,
814  * in nr_ids. This will help not accessing out-of-bound memory.
815  *
816  * We keep track of the number of traffic classes used when the struct is
817  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
818  * not crossing its upper bound, as the original dev->num_tc can be updated in
819  * the meantime.
820  */
821 struct xps_dev_maps {
822 	struct rcu_head rcu;
823 	unsigned int nr_ids;
824 	s16 num_tc;
825 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
826 };
827 
828 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
829 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
830 
831 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
832 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
833 
834 #endif /* CONFIG_XPS */
835 
836 #define TC_MAX_QUEUE	16
837 #define TC_BITMASK	15
838 /* HW offloaded queuing disciplines txq count and offset maps */
839 struct netdev_tc_txq {
840 	u16 count;
841 	u16 offset;
842 };
843 
844 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
845 /*
846  * This structure is to hold information about the device
847  * configured to run FCoE protocol stack.
848  */
849 struct netdev_fcoe_hbainfo {
850 	char	manufacturer[64];
851 	char	serial_number[64];
852 	char	hardware_version[64];
853 	char	driver_version[64];
854 	char	optionrom_version[64];
855 	char	firmware_version[64];
856 	char	model[256];
857 	char	model_description[256];
858 };
859 #endif
860 
861 #define MAX_PHYS_ITEM_ID_LEN 32
862 
863 /* This structure holds a unique identifier to identify some
864  * physical item (port for example) used by a netdevice.
865  */
866 struct netdev_phys_item_id {
867 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
868 	unsigned char id_len;
869 };
870 
871 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
872 					    struct netdev_phys_item_id *b)
873 {
874 	return a->id_len == b->id_len &&
875 	       memcmp(a->id, b->id, a->id_len) == 0;
876 }
877 
878 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
879 				       struct sk_buff *skb,
880 				       struct net_device *sb_dev);
881 
882 enum net_device_path_type {
883 	DEV_PATH_ETHERNET = 0,
884 	DEV_PATH_VLAN,
885 	DEV_PATH_BRIDGE,
886 	DEV_PATH_PPPOE,
887 	DEV_PATH_DSA,
888 	DEV_PATH_MTK_WDMA,
889 };
890 
891 struct net_device_path {
892 	enum net_device_path_type	type;
893 	const struct net_device		*dev;
894 	union {
895 		struct {
896 			u16		id;
897 			__be16		proto;
898 			u8		h_dest[ETH_ALEN];
899 		} encap;
900 		struct {
901 			enum {
902 				DEV_PATH_BR_VLAN_KEEP,
903 				DEV_PATH_BR_VLAN_TAG,
904 				DEV_PATH_BR_VLAN_UNTAG,
905 				DEV_PATH_BR_VLAN_UNTAG_HW,
906 			}		vlan_mode;
907 			u16		vlan_id;
908 			__be16		vlan_proto;
909 		} bridge;
910 		struct {
911 			int port;
912 			u16 proto;
913 		} dsa;
914 		struct {
915 			u8 wdma_idx;
916 			u8 queue;
917 			u16 wcid;
918 			u8 bss;
919 		} mtk_wdma;
920 	};
921 };
922 
923 #define NET_DEVICE_PATH_STACK_MAX	5
924 #define NET_DEVICE_PATH_VLAN_MAX	2
925 
926 struct net_device_path_stack {
927 	int			num_paths;
928 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
929 };
930 
931 struct net_device_path_ctx {
932 	const struct net_device *dev;
933 	u8			daddr[ETH_ALEN];
934 
935 	int			num_vlans;
936 	struct {
937 		u16		id;
938 		__be16		proto;
939 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
940 };
941 
942 enum tc_setup_type {
943 	TC_QUERY_CAPS,
944 	TC_SETUP_QDISC_MQPRIO,
945 	TC_SETUP_CLSU32,
946 	TC_SETUP_CLSFLOWER,
947 	TC_SETUP_CLSMATCHALL,
948 	TC_SETUP_CLSBPF,
949 	TC_SETUP_BLOCK,
950 	TC_SETUP_QDISC_CBS,
951 	TC_SETUP_QDISC_RED,
952 	TC_SETUP_QDISC_PRIO,
953 	TC_SETUP_QDISC_MQ,
954 	TC_SETUP_QDISC_ETF,
955 	TC_SETUP_ROOT_QDISC,
956 	TC_SETUP_QDISC_GRED,
957 	TC_SETUP_QDISC_TAPRIO,
958 	TC_SETUP_FT,
959 	TC_SETUP_QDISC_ETS,
960 	TC_SETUP_QDISC_TBF,
961 	TC_SETUP_QDISC_FIFO,
962 	TC_SETUP_QDISC_HTB,
963 	TC_SETUP_ACT,
964 };
965 
966 /* These structures hold the attributes of bpf state that are being passed
967  * to the netdevice through the bpf op.
968  */
969 enum bpf_netdev_command {
970 	/* Set or clear a bpf program used in the earliest stages of packet
971 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
972 	 * is responsible for calling bpf_prog_put on any old progs that are
973 	 * stored. In case of error, the callee need not release the new prog
974 	 * reference, but on success it takes ownership and must bpf_prog_put
975 	 * when it is no longer used.
976 	 */
977 	XDP_SETUP_PROG,
978 	XDP_SETUP_PROG_HW,
979 	/* BPF program for offload callbacks, invoked at program load time. */
980 	BPF_OFFLOAD_MAP_ALLOC,
981 	BPF_OFFLOAD_MAP_FREE,
982 	XDP_SETUP_XSK_POOL,
983 };
984 
985 struct bpf_prog_offload_ops;
986 struct netlink_ext_ack;
987 struct xdp_umem;
988 struct xdp_dev_bulk_queue;
989 struct bpf_xdp_link;
990 
991 enum bpf_xdp_mode {
992 	XDP_MODE_SKB = 0,
993 	XDP_MODE_DRV = 1,
994 	XDP_MODE_HW = 2,
995 	__MAX_XDP_MODE
996 };
997 
998 struct bpf_xdp_entity {
999 	struct bpf_prog *prog;
1000 	struct bpf_xdp_link *link;
1001 };
1002 
1003 struct netdev_bpf {
1004 	enum bpf_netdev_command command;
1005 	union {
1006 		/* XDP_SETUP_PROG */
1007 		struct {
1008 			u32 flags;
1009 			struct bpf_prog *prog;
1010 			struct netlink_ext_ack *extack;
1011 		};
1012 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1013 		struct {
1014 			struct bpf_offloaded_map *offmap;
1015 		};
1016 		/* XDP_SETUP_XSK_POOL */
1017 		struct {
1018 			struct xsk_buff_pool *pool;
1019 			u16 queue_id;
1020 		} xsk;
1021 	};
1022 };
1023 
1024 /* Flags for ndo_xsk_wakeup. */
1025 #define XDP_WAKEUP_RX (1 << 0)
1026 #define XDP_WAKEUP_TX (1 << 1)
1027 
1028 #ifdef CONFIG_XFRM_OFFLOAD
1029 struct xfrmdev_ops {
1030 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1031 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1032 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1033 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1034 				       struct xfrm_state *x);
1035 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1036 };
1037 #endif
1038 
1039 struct dev_ifalias {
1040 	struct rcu_head rcuhead;
1041 	char ifalias[];
1042 };
1043 
1044 struct devlink;
1045 struct tlsdev_ops;
1046 
1047 struct netdev_net_notifier {
1048 	struct list_head list;
1049 	struct notifier_block *nb;
1050 };
1051 
1052 /*
1053  * This structure defines the management hooks for network devices.
1054  * The following hooks can be defined; unless noted otherwise, they are
1055  * optional and can be filled with a null pointer.
1056  *
1057  * int (*ndo_init)(struct net_device *dev);
1058  *     This function is called once when a network device is registered.
1059  *     The network device can use this for any late stage initialization
1060  *     or semantic validation. It can fail with an error code which will
1061  *     be propagated back to register_netdev.
1062  *
1063  * void (*ndo_uninit)(struct net_device *dev);
1064  *     This function is called when device is unregistered or when registration
1065  *     fails. It is not called if init fails.
1066  *
1067  * int (*ndo_open)(struct net_device *dev);
1068  *     This function is called when a network device transitions to the up
1069  *     state.
1070  *
1071  * int (*ndo_stop)(struct net_device *dev);
1072  *     This function is called when a network device transitions to the down
1073  *     state.
1074  *
1075  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1076  *                               struct net_device *dev);
1077  *	Called when a packet needs to be transmitted.
1078  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1079  *	the queue before that can happen; it's for obsolete devices and weird
1080  *	corner cases, but the stack really does a non-trivial amount
1081  *	of useless work if you return NETDEV_TX_BUSY.
1082  *	Required; cannot be NULL.
1083  *
1084  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1085  *					   struct net_device *dev
1086  *					   netdev_features_t features);
1087  *	Called by core transmit path to determine if device is capable of
1088  *	performing offload operations on a given packet. This is to give
1089  *	the device an opportunity to implement any restrictions that cannot
1090  *	be otherwise expressed by feature flags. The check is called with
1091  *	the set of features that the stack has calculated and it returns
1092  *	those the driver believes to be appropriate.
1093  *
1094  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1095  *                         struct net_device *sb_dev);
1096  *	Called to decide which queue to use when device supports multiple
1097  *	transmit queues.
1098  *
1099  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1100  *	This function is called to allow device receiver to make
1101  *	changes to configuration when multicast or promiscuous is enabled.
1102  *
1103  * void (*ndo_set_rx_mode)(struct net_device *dev);
1104  *	This function is called device changes address list filtering.
1105  *	If driver handles unicast address filtering, it should set
1106  *	IFF_UNICAST_FLT in its priv_flags.
1107  *
1108  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1109  *	This function  is called when the Media Access Control address
1110  *	needs to be changed. If this interface is not defined, the
1111  *	MAC address can not be changed.
1112  *
1113  * int (*ndo_validate_addr)(struct net_device *dev);
1114  *	Test if Media Access Control address is valid for the device.
1115  *
1116  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1117  *	Old-style ioctl entry point. This is used internally by the
1118  *	appletalk and ieee802154 subsystems but is no longer called by
1119  *	the device ioctl handler.
1120  *
1121  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1122  *	Used by the bonding driver for its device specific ioctls:
1123  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1124  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1125  *
1126  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1127  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1128  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1129  *
1130  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1131  *	Used to set network devices bus interface parameters. This interface
1132  *	is retained for legacy reasons; new devices should use the bus
1133  *	interface (PCI) for low level management.
1134  *
1135  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1136  *	Called when a user wants to change the Maximum Transfer Unit
1137  *	of a device.
1138  *
1139  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1140  *	Callback used when the transmitter has not made any progress
1141  *	for dev->watchdog ticks.
1142  *
1143  * void (*ndo_get_stats64)(struct net_device *dev,
1144  *                         struct rtnl_link_stats64 *storage);
1145  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1146  *	Called when a user wants to get the network device usage
1147  *	statistics. Drivers must do one of the following:
1148  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1149  *	   rtnl_link_stats64 structure passed by the caller.
1150  *	2. Define @ndo_get_stats to update a net_device_stats structure
1151  *	   (which should normally be dev->stats) and return a pointer to
1152  *	   it. The structure may be changed asynchronously only if each
1153  *	   field is written atomically.
1154  *	3. Update dev->stats asynchronously and atomically, and define
1155  *	   neither operation.
1156  *
1157  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1158  *	Return true if this device supports offload stats of this attr_id.
1159  *
1160  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1161  *	void *attr_data)
1162  *	Get statistics for offload operations by attr_id. Write it into the
1163  *	attr_data pointer.
1164  *
1165  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1166  *	If device supports VLAN filtering this function is called when a
1167  *	VLAN id is registered.
1168  *
1169  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1170  *	If device supports VLAN filtering this function is called when a
1171  *	VLAN id is unregistered.
1172  *
1173  * void (*ndo_poll_controller)(struct net_device *dev);
1174  *
1175  *	SR-IOV management functions.
1176  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1177  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1178  *			  u8 qos, __be16 proto);
1179  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1180  *			  int max_tx_rate);
1181  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1182  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1183  * int (*ndo_get_vf_config)(struct net_device *dev,
1184  *			    int vf, struct ifla_vf_info *ivf);
1185  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1186  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1187  *			  struct nlattr *port[]);
1188  *
1189  *      Enable or disable the VF ability to query its RSS Redirection Table and
1190  *      Hash Key. This is needed since on some devices VF share this information
1191  *      with PF and querying it may introduce a theoretical security risk.
1192  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1193  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1194  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1195  *		       void *type_data);
1196  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1197  *	This is always called from the stack with the rtnl lock held and netif
1198  *	tx queues stopped. This allows the netdevice to perform queue
1199  *	management safely.
1200  *
1201  *	Fiber Channel over Ethernet (FCoE) offload functions.
1202  * int (*ndo_fcoe_enable)(struct net_device *dev);
1203  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1204  *	so the underlying device can perform whatever needed configuration or
1205  *	initialization to support acceleration of FCoE traffic.
1206  *
1207  * int (*ndo_fcoe_disable)(struct net_device *dev);
1208  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1209  *	so the underlying device can perform whatever needed clean-ups to
1210  *	stop supporting acceleration of FCoE traffic.
1211  *
1212  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1213  *			     struct scatterlist *sgl, unsigned int sgc);
1214  *	Called when the FCoE Initiator wants to initialize an I/O that
1215  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1216  *	perform necessary setup and returns 1 to indicate the device is set up
1217  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1218  *
1219  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1220  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1221  *	indicated by the FC exchange id 'xid', so the underlying device can
1222  *	clean up and reuse resources for later DDP requests.
1223  *
1224  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1225  *			      struct scatterlist *sgl, unsigned int sgc);
1226  *	Called when the FCoE Target wants to initialize an I/O that
1227  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1228  *	perform necessary setup and returns 1 to indicate the device is set up
1229  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1230  *
1231  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1232  *			       struct netdev_fcoe_hbainfo *hbainfo);
1233  *	Called when the FCoE Protocol stack wants information on the underlying
1234  *	device. This information is utilized by the FCoE protocol stack to
1235  *	register attributes with Fiber Channel management service as per the
1236  *	FC-GS Fabric Device Management Information(FDMI) specification.
1237  *
1238  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1239  *	Called when the underlying device wants to override default World Wide
1240  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1241  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1242  *	protocol stack to use.
1243  *
1244  *	RFS acceleration.
1245  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1246  *			    u16 rxq_index, u32 flow_id);
1247  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1248  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1249  *	Return the filter ID on success, or a negative error code.
1250  *
1251  *	Slave management functions (for bridge, bonding, etc).
1252  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1253  *	Called to make another netdev an underling.
1254  *
1255  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1256  *	Called to release previously enslaved netdev.
1257  *
1258  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1259  *					    struct sk_buff *skb,
1260  *					    bool all_slaves);
1261  *	Get the xmit slave of master device. If all_slaves is true, function
1262  *	assume all the slaves can transmit.
1263  *
1264  *      Feature/offload setting functions.
1265  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1266  *		netdev_features_t features);
1267  *	Adjusts the requested feature flags according to device-specific
1268  *	constraints, and returns the resulting flags. Must not modify
1269  *	the device state.
1270  *
1271  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1272  *	Called to update device configuration to new features. Passed
1273  *	feature set might be less than what was returned by ndo_fix_features()).
1274  *	Must return >0 or -errno if it changed dev->features itself.
1275  *
1276  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1277  *		      struct net_device *dev,
1278  *		      const unsigned char *addr, u16 vid, u16 flags,
1279  *		      struct netlink_ext_ack *extack);
1280  *	Adds an FDB entry to dev for addr.
1281  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1282  *		      struct net_device *dev,
1283  *		      const unsigned char *addr, u16 vid)
1284  *	Deletes the FDB entry from dev coresponding to addr.
1285  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1286  *			   struct net_device *dev,
1287  *			   u16 vid,
1288  *			   struct netlink_ext_ack *extack);
1289  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1290  *		       struct net_device *dev, struct net_device *filter_dev,
1291  *		       int *idx)
1292  *	Used to add FDB entries to dump requests. Implementers should add
1293  *	entries to skb and update idx with the number of entries.
1294  *
1295  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1296  *			     u16 flags, struct netlink_ext_ack *extack)
1297  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1298  *			     struct net_device *dev, u32 filter_mask,
1299  *			     int nlflags)
1300  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1301  *			     u16 flags);
1302  *
1303  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1304  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1305  *	which do not represent real hardware may define this to allow their
1306  *	userspace components to manage their virtual carrier state. Devices
1307  *	that determine carrier state from physical hardware properties (eg
1308  *	network cables) or protocol-dependent mechanisms (eg
1309  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1310  *
1311  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1312  *			       struct netdev_phys_item_id *ppid);
1313  *	Called to get ID of physical port of this device. If driver does
1314  *	not implement this, it is assumed that the hw is not able to have
1315  *	multiple net devices on single physical port.
1316  *
1317  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1318  *				 struct netdev_phys_item_id *ppid)
1319  *	Called to get the parent ID of the physical port of this device.
1320  *
1321  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1322  *				 struct net_device *dev)
1323  *	Called by upper layer devices to accelerate switching or other
1324  *	station functionality into hardware. 'pdev is the lowerdev
1325  *	to use for the offload and 'dev' is the net device that will
1326  *	back the offload. Returns a pointer to the private structure
1327  *	the upper layer will maintain.
1328  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1329  *	Called by upper layer device to delete the station created
1330  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1331  *	the station and priv is the structure returned by the add
1332  *	operation.
1333  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1334  *			     int queue_index, u32 maxrate);
1335  *	Called when a user wants to set a max-rate limitation of specific
1336  *	TX queue.
1337  * int (*ndo_get_iflink)(const struct net_device *dev);
1338  *	Called to get the iflink value of this device.
1339  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1340  *	This function is used to get egress tunnel information for given skb.
1341  *	This is useful for retrieving outer tunnel header parameters while
1342  *	sampling packet.
1343  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1344  *	This function is used to specify the headroom that the skb must
1345  *	consider when allocation skb during packet reception. Setting
1346  *	appropriate rx headroom value allows avoiding skb head copy on
1347  *	forward. Setting a negative value resets the rx headroom to the
1348  *	default value.
1349  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1350  *	This function is used to set or query state related to XDP on the
1351  *	netdevice and manage BPF offload. See definition of
1352  *	enum bpf_netdev_command for details.
1353  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1354  *			u32 flags);
1355  *	This function is used to submit @n XDP packets for transmit on a
1356  *	netdevice. Returns number of frames successfully transmitted, frames
1357  *	that got dropped are freed/returned via xdp_return_frame().
1358  *	Returns negative number, means general error invoking ndo, meaning
1359  *	no frames were xmit'ed and core-caller will free all frames.
1360  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1361  *					        struct xdp_buff *xdp);
1362  *      Get the xmit slave of master device based on the xdp_buff.
1363  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1364  *      This function is used to wake up the softirq, ksoftirqd or kthread
1365  *	responsible for sending and/or receiving packets on a specific
1366  *	queue id bound to an AF_XDP socket. The flags field specifies if
1367  *	only RX, only Tx, or both should be woken up using the flags
1368  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1369  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1370  *	Get devlink port instance associated with a given netdev.
1371  *	Called with a reference on the netdevice and devlink locks only,
1372  *	rtnl_lock is not held.
1373  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1374  *			 int cmd);
1375  *	Add, change, delete or get information on an IPv4 tunnel.
1376  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1377  *	If a device is paired with a peer device, return the peer instance.
1378  *	The caller must be under RCU read context.
1379  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1380  *     Get the forwarding path to reach the real device from the HW destination address
1381  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1382  *			     const struct skb_shared_hwtstamps *hwtstamps,
1383  *			     bool cycles);
1384  *	Get hardware timestamp based on normal/adjustable time or free running
1385  *	cycle counter. This function is required if physical clock supports a
1386  *	free running cycle counter.
1387  */
1388 struct net_device_ops {
1389 	int			(*ndo_init)(struct net_device *dev);
1390 	void			(*ndo_uninit)(struct net_device *dev);
1391 	int			(*ndo_open)(struct net_device *dev);
1392 	int			(*ndo_stop)(struct net_device *dev);
1393 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1394 						  struct net_device *dev);
1395 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1396 						      struct net_device *dev,
1397 						      netdev_features_t features);
1398 	u16			(*ndo_select_queue)(struct net_device *dev,
1399 						    struct sk_buff *skb,
1400 						    struct net_device *sb_dev);
1401 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1402 						       int flags);
1403 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1404 	int			(*ndo_set_mac_address)(struct net_device *dev,
1405 						       void *addr);
1406 	int			(*ndo_validate_addr)(struct net_device *dev);
1407 	int			(*ndo_do_ioctl)(struct net_device *dev,
1408 					        struct ifreq *ifr, int cmd);
1409 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1410 						 struct ifreq *ifr, int cmd);
1411 	int			(*ndo_siocbond)(struct net_device *dev,
1412 						struct ifreq *ifr, int cmd);
1413 	int			(*ndo_siocwandev)(struct net_device *dev,
1414 						  struct if_settings *ifs);
1415 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1416 						      struct ifreq *ifr,
1417 						      void __user *data, int cmd);
1418 	int			(*ndo_set_config)(struct net_device *dev,
1419 					          struct ifmap *map);
1420 	int			(*ndo_change_mtu)(struct net_device *dev,
1421 						  int new_mtu);
1422 	int			(*ndo_neigh_setup)(struct net_device *dev,
1423 						   struct neigh_parms *);
1424 	void			(*ndo_tx_timeout) (struct net_device *dev,
1425 						   unsigned int txqueue);
1426 
1427 	void			(*ndo_get_stats64)(struct net_device *dev,
1428 						   struct rtnl_link_stats64 *storage);
1429 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1430 	int			(*ndo_get_offload_stats)(int attr_id,
1431 							 const struct net_device *dev,
1432 							 void *attr_data);
1433 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1434 
1435 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1436 						       __be16 proto, u16 vid);
1437 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1438 						        __be16 proto, u16 vid);
1439 #ifdef CONFIG_NET_POLL_CONTROLLER
1440 	void                    (*ndo_poll_controller)(struct net_device *dev);
1441 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1442 						     struct netpoll_info *info);
1443 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1444 #endif
1445 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1446 						  int queue, u8 *mac);
1447 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1448 						   int queue, u16 vlan,
1449 						   u8 qos, __be16 proto);
1450 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1451 						   int vf, int min_tx_rate,
1452 						   int max_tx_rate);
1453 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1454 						       int vf, bool setting);
1455 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1456 						    int vf, bool setting);
1457 	int			(*ndo_get_vf_config)(struct net_device *dev,
1458 						     int vf,
1459 						     struct ifla_vf_info *ivf);
1460 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1461 							 int vf, int link_state);
1462 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1463 						    int vf,
1464 						    struct ifla_vf_stats
1465 						    *vf_stats);
1466 	int			(*ndo_set_vf_port)(struct net_device *dev,
1467 						   int vf,
1468 						   struct nlattr *port[]);
1469 	int			(*ndo_get_vf_port)(struct net_device *dev,
1470 						   int vf, struct sk_buff *skb);
1471 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1472 						   int vf,
1473 						   struct ifla_vf_guid *node_guid,
1474 						   struct ifla_vf_guid *port_guid);
1475 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1476 						   int vf, u64 guid,
1477 						   int guid_type);
1478 	int			(*ndo_set_vf_rss_query_en)(
1479 						   struct net_device *dev,
1480 						   int vf, bool setting);
1481 	int			(*ndo_setup_tc)(struct net_device *dev,
1482 						enum tc_setup_type type,
1483 						void *type_data);
1484 #if IS_ENABLED(CONFIG_FCOE)
1485 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1486 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1487 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1488 						      u16 xid,
1489 						      struct scatterlist *sgl,
1490 						      unsigned int sgc);
1491 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1492 						     u16 xid);
1493 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1494 						       u16 xid,
1495 						       struct scatterlist *sgl,
1496 						       unsigned int sgc);
1497 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1498 							struct netdev_fcoe_hbainfo *hbainfo);
1499 #endif
1500 
1501 #if IS_ENABLED(CONFIG_LIBFCOE)
1502 #define NETDEV_FCOE_WWNN 0
1503 #define NETDEV_FCOE_WWPN 1
1504 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1505 						    u64 *wwn, int type);
1506 #endif
1507 
1508 #ifdef CONFIG_RFS_ACCEL
1509 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1510 						     const struct sk_buff *skb,
1511 						     u16 rxq_index,
1512 						     u32 flow_id);
1513 #endif
1514 	int			(*ndo_add_slave)(struct net_device *dev,
1515 						 struct net_device *slave_dev,
1516 						 struct netlink_ext_ack *extack);
1517 	int			(*ndo_del_slave)(struct net_device *dev,
1518 						 struct net_device *slave_dev);
1519 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1520 						      struct sk_buff *skb,
1521 						      bool all_slaves);
1522 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1523 							struct sock *sk);
1524 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1525 						    netdev_features_t features);
1526 	int			(*ndo_set_features)(struct net_device *dev,
1527 						    netdev_features_t features);
1528 	int			(*ndo_neigh_construct)(struct net_device *dev,
1529 						       struct neighbour *n);
1530 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1531 						     struct neighbour *n);
1532 
1533 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1534 					       struct nlattr *tb[],
1535 					       struct net_device *dev,
1536 					       const unsigned char *addr,
1537 					       u16 vid,
1538 					       u16 flags,
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1541 					       struct nlattr *tb[],
1542 					       struct net_device *dev,
1543 					       const unsigned char *addr,
1544 					       u16 vid, struct netlink_ext_ack *extack);
1545 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1546 						    struct nlattr *tb[],
1547 						    struct net_device *dev,
1548 						    u16 vid,
1549 						    struct netlink_ext_ack *extack);
1550 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1551 						struct netlink_callback *cb,
1552 						struct net_device *dev,
1553 						struct net_device *filter_dev,
1554 						int *idx);
1555 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1556 					       struct nlattr *tb[],
1557 					       struct net_device *dev,
1558 					       const unsigned char *addr,
1559 					       u16 vid, u32 portid, u32 seq,
1560 					       struct netlink_ext_ack *extack);
1561 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1562 						      struct nlmsghdr *nlh,
1563 						      u16 flags,
1564 						      struct netlink_ext_ack *extack);
1565 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1566 						      u32 pid, u32 seq,
1567 						      struct net_device *dev,
1568 						      u32 filter_mask,
1569 						      int nlflags);
1570 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1571 						      struct nlmsghdr *nlh,
1572 						      u16 flags);
1573 	int			(*ndo_change_carrier)(struct net_device *dev,
1574 						      bool new_carrier);
1575 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1576 							struct netdev_phys_item_id *ppid);
1577 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1578 							  struct netdev_phys_item_id *ppid);
1579 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1580 							  char *name, size_t len);
1581 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1582 							struct net_device *dev);
1583 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1584 							void *priv);
1585 
1586 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1587 						      int queue_index,
1588 						      u32 maxrate);
1589 	int			(*ndo_get_iflink)(const struct net_device *dev);
1590 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1591 						       struct sk_buff *skb);
1592 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1593 						       int needed_headroom);
1594 	int			(*ndo_bpf)(struct net_device *dev,
1595 					   struct netdev_bpf *bpf);
1596 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1597 						struct xdp_frame **xdp,
1598 						u32 flags);
1599 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1600 							  struct xdp_buff *xdp);
1601 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1602 						  u32 queue_id, u32 flags);
1603 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1604 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1605 						  struct ip_tunnel_parm *p, int cmd);
1606 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1607 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1608                                                          struct net_device_path *path);
1609 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1610 						  const struct skb_shared_hwtstamps *hwtstamps,
1611 						  bool cycles);
1612 };
1613 
1614 /**
1615  * enum netdev_priv_flags - &struct net_device priv_flags
1616  *
1617  * These are the &struct net_device, they are only set internally
1618  * by drivers and used in the kernel. These flags are invisible to
1619  * userspace; this means that the order of these flags can change
1620  * during any kernel release.
1621  *
1622  * You should have a pretty good reason to be extending these flags.
1623  *
1624  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1625  * @IFF_EBRIDGE: Ethernet bridging device
1626  * @IFF_BONDING: bonding master or slave
1627  * @IFF_ISATAP: ISATAP interface (RFC4214)
1628  * @IFF_WAN_HDLC: WAN HDLC device
1629  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1630  *	release skb->dst
1631  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1632  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1633  * @IFF_MACVLAN_PORT: device used as macvlan port
1634  * @IFF_BRIDGE_PORT: device used as bridge port
1635  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1636  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1637  * @IFF_UNICAST_FLT: Supports unicast filtering
1638  * @IFF_TEAM_PORT: device used as team port
1639  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1640  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1641  *	change when it's running
1642  * @IFF_MACVLAN: Macvlan device
1643  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1644  *	underlying stacked devices
1645  * @IFF_L3MDEV_MASTER: device is an L3 master device
1646  * @IFF_NO_QUEUE: device can run without qdisc attached
1647  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1648  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1649  * @IFF_TEAM: device is a team device
1650  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1651  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1652  *	entity (i.e. the master device for bridged veth)
1653  * @IFF_MACSEC: device is a MACsec device
1654  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1655  * @IFF_FAILOVER: device is a failover master device
1656  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1657  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1658  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1659  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1660  *	skb_headlen(skb) == 0 (data starts from frag0)
1661  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1662  */
1663 enum netdev_priv_flags {
1664 	IFF_802_1Q_VLAN			= 1<<0,
1665 	IFF_EBRIDGE			= 1<<1,
1666 	IFF_BONDING			= 1<<2,
1667 	IFF_ISATAP			= 1<<3,
1668 	IFF_WAN_HDLC			= 1<<4,
1669 	IFF_XMIT_DST_RELEASE		= 1<<5,
1670 	IFF_DONT_BRIDGE			= 1<<6,
1671 	IFF_DISABLE_NETPOLL		= 1<<7,
1672 	IFF_MACVLAN_PORT		= 1<<8,
1673 	IFF_BRIDGE_PORT			= 1<<9,
1674 	IFF_OVS_DATAPATH		= 1<<10,
1675 	IFF_TX_SKB_SHARING		= 1<<11,
1676 	IFF_UNICAST_FLT			= 1<<12,
1677 	IFF_TEAM_PORT			= 1<<13,
1678 	IFF_SUPP_NOFCS			= 1<<14,
1679 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1680 	IFF_MACVLAN			= 1<<16,
1681 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1682 	IFF_L3MDEV_MASTER		= 1<<18,
1683 	IFF_NO_QUEUE			= 1<<19,
1684 	IFF_OPENVSWITCH			= 1<<20,
1685 	IFF_L3MDEV_SLAVE		= 1<<21,
1686 	IFF_TEAM			= 1<<22,
1687 	IFF_RXFH_CONFIGURED		= 1<<23,
1688 	IFF_PHONY_HEADROOM		= 1<<24,
1689 	IFF_MACSEC			= 1<<25,
1690 	IFF_NO_RX_HANDLER		= 1<<26,
1691 	IFF_FAILOVER			= 1<<27,
1692 	IFF_FAILOVER_SLAVE		= 1<<28,
1693 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1694 	IFF_LIVE_RENAME_OK		= 1<<30,
1695 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1696 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1697 };
1698 
1699 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1700 #define IFF_EBRIDGE			IFF_EBRIDGE
1701 #define IFF_BONDING			IFF_BONDING
1702 #define IFF_ISATAP			IFF_ISATAP
1703 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1704 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1705 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1706 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1707 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1708 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1709 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1710 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1711 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1712 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1713 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1714 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1715 #define IFF_MACVLAN			IFF_MACVLAN
1716 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1717 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1718 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1719 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1720 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1721 #define IFF_TEAM			IFF_TEAM
1722 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1723 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1724 #define IFF_MACSEC			IFF_MACSEC
1725 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1726 #define IFF_FAILOVER			IFF_FAILOVER
1727 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1728 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1729 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1730 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1731 
1732 /* Specifies the type of the struct net_device::ml_priv pointer */
1733 enum netdev_ml_priv_type {
1734 	ML_PRIV_NONE,
1735 	ML_PRIV_CAN,
1736 };
1737 
1738 /**
1739  *	struct net_device - The DEVICE structure.
1740  *
1741  *	Actually, this whole structure is a big mistake.  It mixes I/O
1742  *	data with strictly "high-level" data, and it has to know about
1743  *	almost every data structure used in the INET module.
1744  *
1745  *	@name:	This is the first field of the "visible" part of this structure
1746  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1747  *		of the interface.
1748  *
1749  *	@name_node:	Name hashlist node
1750  *	@ifalias:	SNMP alias
1751  *	@mem_end:	Shared memory end
1752  *	@mem_start:	Shared memory start
1753  *	@base_addr:	Device I/O address
1754  *	@irq:		Device IRQ number
1755  *
1756  *	@state:		Generic network queuing layer state, see netdev_state_t
1757  *	@dev_list:	The global list of network devices
1758  *	@napi_list:	List entry used for polling NAPI devices
1759  *	@unreg_list:	List entry  when we are unregistering the
1760  *			device; see the function unregister_netdev
1761  *	@close_list:	List entry used when we are closing the device
1762  *	@ptype_all:     Device-specific packet handlers for all protocols
1763  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1764  *
1765  *	@adj_list:	Directly linked devices, like slaves for bonding
1766  *	@features:	Currently active device features
1767  *	@hw_features:	User-changeable features
1768  *
1769  *	@wanted_features:	User-requested features
1770  *	@vlan_features:		Mask of features inheritable by VLAN devices
1771  *
1772  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1773  *				This field indicates what encapsulation
1774  *				offloads the hardware is capable of doing,
1775  *				and drivers will need to set them appropriately.
1776  *
1777  *	@mpls_features:	Mask of features inheritable by MPLS
1778  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1779  *
1780  *	@ifindex:	interface index
1781  *	@group:		The group the device belongs to
1782  *
1783  *	@stats:		Statistics struct, which was left as a legacy, use
1784  *			rtnl_link_stats64 instead
1785  *
1786  *	@core_stats:	core networking counters,
1787  *			do not use this in drivers
1788  *	@carrier_up_count:	Number of times the carrier has been up
1789  *	@carrier_down_count:	Number of times the carrier has been down
1790  *
1791  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1792  *				instead of ioctl,
1793  *				see <net/iw_handler.h> for details.
1794  *	@wireless_data:	Instance data managed by the core of wireless extensions
1795  *
1796  *	@netdev_ops:	Includes several pointers to callbacks,
1797  *			if one wants to override the ndo_*() functions
1798  *	@ethtool_ops:	Management operations
1799  *	@l3mdev_ops:	Layer 3 master device operations
1800  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1801  *			discovery handling. Necessary for e.g. 6LoWPAN.
1802  *	@xfrmdev_ops:	Transformation offload operations
1803  *	@tlsdev_ops:	Transport Layer Security offload operations
1804  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1805  *			of Layer 2 headers.
1806  *
1807  *	@flags:		Interface flags (a la BSD)
1808  *	@priv_flags:	Like 'flags' but invisible to userspace,
1809  *			see if.h for the definitions
1810  *	@gflags:	Global flags ( kept as legacy )
1811  *	@padded:	How much padding added by alloc_netdev()
1812  *	@operstate:	RFC2863 operstate
1813  *	@link_mode:	Mapping policy to operstate
1814  *	@if_port:	Selectable AUI, TP, ...
1815  *	@dma:		DMA channel
1816  *	@mtu:		Interface MTU value
1817  *	@min_mtu:	Interface Minimum MTU value
1818  *	@max_mtu:	Interface Maximum MTU value
1819  *	@type:		Interface hardware type
1820  *	@hard_header_len: Maximum hardware header length.
1821  *	@min_header_len:  Minimum hardware header length
1822  *
1823  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1824  *			  cases can this be guaranteed
1825  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1826  *			  cases can this be guaranteed. Some cases also use
1827  *			  LL_MAX_HEADER instead to allocate the skb
1828  *
1829  *	interface address info:
1830  *
1831  * 	@perm_addr:		Permanent hw address
1832  * 	@addr_assign_type:	Hw address assignment type
1833  * 	@addr_len:		Hardware address length
1834  *	@upper_level:		Maximum depth level of upper devices.
1835  *	@lower_level:		Maximum depth level of lower devices.
1836  *	@neigh_priv_len:	Used in neigh_alloc()
1837  * 	@dev_id:		Used to differentiate devices that share
1838  * 				the same link layer address
1839  * 	@dev_port:		Used to differentiate devices that share
1840  * 				the same function
1841  *	@addr_list_lock:	XXX: need comments on this one
1842  *	@name_assign_type:	network interface name assignment type
1843  *	@uc_promisc:		Counter that indicates promiscuous mode
1844  *				has been enabled due to the need to listen to
1845  *				additional unicast addresses in a device that
1846  *				does not implement ndo_set_rx_mode()
1847  *	@uc:			unicast mac addresses
1848  *	@mc:			multicast mac addresses
1849  *	@dev_addrs:		list of device hw addresses
1850  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1851  *	@promiscuity:		Number of times the NIC is told to work in
1852  *				promiscuous mode; if it becomes 0 the NIC will
1853  *				exit promiscuous mode
1854  *	@allmulti:		Counter, enables or disables allmulticast mode
1855  *
1856  *	@vlan_info:	VLAN info
1857  *	@dsa_ptr:	dsa specific data
1858  *	@tipc_ptr:	TIPC specific data
1859  *	@atalk_ptr:	AppleTalk link
1860  *	@ip_ptr:	IPv4 specific data
1861  *	@ip6_ptr:	IPv6 specific data
1862  *	@ax25_ptr:	AX.25 specific data
1863  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1864  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1865  *			 device struct
1866  *	@mpls_ptr:	mpls_dev struct pointer
1867  *	@mctp_ptr:	MCTP specific data
1868  *
1869  *	@dev_addr:	Hw address (before bcast,
1870  *			because most packets are unicast)
1871  *
1872  *	@_rx:			Array of RX queues
1873  *	@num_rx_queues:		Number of RX queues
1874  *				allocated at register_netdev() time
1875  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1876  *	@xdp_prog:		XDP sockets filter program pointer
1877  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1878  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1879  *				allow to avoid NIC hard IRQ, on busy queues.
1880  *
1881  *	@rx_handler:		handler for received packets
1882  *	@rx_handler_data: 	XXX: need comments on this one
1883  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1884  *				ingress processing
1885  *	@ingress_queue:		XXX: need comments on this one
1886  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1887  *	@broadcast:		hw bcast address
1888  *
1889  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1890  *			indexed by RX queue number. Assigned by driver.
1891  *			This must only be set if the ndo_rx_flow_steer
1892  *			operation is defined
1893  *	@index_hlist:		Device index hash chain
1894  *
1895  *	@_tx:			Array of TX queues
1896  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1897  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1898  *	@qdisc:			Root qdisc from userspace point of view
1899  *	@tx_queue_len:		Max frames per queue allowed
1900  *	@tx_global_lock: 	XXX: need comments on this one
1901  *	@xdp_bulkq:		XDP device bulk queue
1902  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1903  *
1904  *	@xps_maps:	XXX: need comments on this one
1905  *	@miniq_egress:		clsact qdisc specific data for
1906  *				egress processing
1907  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1908  *	@qdisc_hash:		qdisc hash table
1909  *	@watchdog_timeo:	Represents the timeout that is used by
1910  *				the watchdog (see dev_watchdog())
1911  *	@watchdog_timer:	List of timers
1912  *
1913  *	@proto_down_reason:	reason a netdev interface is held down
1914  *	@pcpu_refcnt:		Number of references to this device
1915  *	@dev_refcnt:		Number of references to this device
1916  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1917  *	@todo_list:		Delayed register/unregister
1918  *	@link_watch_list:	XXX: need comments on this one
1919  *
1920  *	@reg_state:		Register/unregister state machine
1921  *	@dismantle:		Device is going to be freed
1922  *	@rtnl_link_state:	This enum represents the phases of creating
1923  *				a new link
1924  *
1925  *	@needs_free_netdev:	Should unregister perform free_netdev?
1926  *	@priv_destructor:	Called from unregister
1927  *	@npinfo:		XXX: need comments on this one
1928  * 	@nd_net:		Network namespace this network device is inside
1929  *
1930  * 	@ml_priv:	Mid-layer private
1931  *	@ml_priv_type:  Mid-layer private type
1932  * 	@lstats:	Loopback statistics
1933  * 	@tstats:	Tunnel statistics
1934  * 	@dstats:	Dummy statistics
1935  * 	@vstats:	Virtual ethernet statistics
1936  *
1937  *	@garp_port:	GARP
1938  *	@mrp_port:	MRP
1939  *
1940  *	@dm_private:	Drop monitor private
1941  *
1942  *	@dev:		Class/net/name entry
1943  *	@sysfs_groups:	Space for optional device, statistics and wireless
1944  *			sysfs groups
1945  *
1946  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1947  *	@rtnl_link_ops:	Rtnl_link_ops
1948  *
1949  *	@gso_max_size:	Maximum size of generic segmentation offload
1950  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1951  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1952  *			NIC for GSO
1953  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1954  *
1955  *	@dcbnl_ops:	Data Center Bridging netlink ops
1956  *	@num_tc:	Number of traffic classes in the net device
1957  *	@tc_to_txq:	XXX: need comments on this one
1958  *	@prio_tc_map:	XXX: need comments on this one
1959  *
1960  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1961  *
1962  *	@priomap:	XXX: need comments on this one
1963  *	@phydev:	Physical device may attach itself
1964  *			for hardware timestamping
1965  *	@sfp_bus:	attached &struct sfp_bus structure.
1966  *
1967  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1968  *
1969  *	@proto_down:	protocol port state information can be sent to the
1970  *			switch driver and used to set the phys state of the
1971  *			switch port.
1972  *
1973  *	@wol_enabled:	Wake-on-LAN is enabled
1974  *
1975  *	@threaded:	napi threaded mode is enabled
1976  *
1977  *	@net_notifier_list:	List of per-net netdev notifier block
1978  *				that follow this device when it is moved
1979  *				to another network namespace.
1980  *
1981  *	@macsec_ops:    MACsec offloading ops
1982  *
1983  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1984  *				offload capabilities of the device
1985  *	@udp_tunnel_nic:	UDP tunnel offload state
1986  *	@xdp_state:		stores info on attached XDP BPF programs
1987  *
1988  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1989  *			dev->addr_list_lock.
1990  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1991  *			keep a list of interfaces to be deleted.
1992  *	@gro_max_size:	Maximum size of aggregated packet in generic
1993  *			receive offload (GRO)
1994  *
1995  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1996  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1997  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1998  *	@dev_registered_tracker:	tracker for reference held while
1999  *					registered
2000  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2001  *
2002  *	@devlink_port:	Pointer to related devlink port structure.
2003  *			Assigned by a driver before netdev registration using
2004  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2005  *			during the time netdevice is registered.
2006  *
2007  *	FIXME: cleanup struct net_device such that network protocol info
2008  *	moves out.
2009  */
2010 
2011 struct net_device {
2012 	char			name[IFNAMSIZ];
2013 	struct netdev_name_node	*name_node;
2014 	struct dev_ifalias	__rcu *ifalias;
2015 	/*
2016 	 *	I/O specific fields
2017 	 *	FIXME: Merge these and struct ifmap into one
2018 	 */
2019 	unsigned long		mem_end;
2020 	unsigned long		mem_start;
2021 	unsigned long		base_addr;
2022 
2023 	/*
2024 	 *	Some hardware also needs these fields (state,dev_list,
2025 	 *	napi_list,unreg_list,close_list) but they are not
2026 	 *	part of the usual set specified in Space.c.
2027 	 */
2028 
2029 	unsigned long		state;
2030 
2031 	struct list_head	dev_list;
2032 	struct list_head	napi_list;
2033 	struct list_head	unreg_list;
2034 	struct list_head	close_list;
2035 	struct list_head	ptype_all;
2036 	struct list_head	ptype_specific;
2037 
2038 	struct {
2039 		struct list_head upper;
2040 		struct list_head lower;
2041 	} adj_list;
2042 
2043 	/* Read-mostly cache-line for fast-path access */
2044 	unsigned int		flags;
2045 	unsigned long long	priv_flags;
2046 	const struct net_device_ops *netdev_ops;
2047 	int			ifindex;
2048 	unsigned short		gflags;
2049 	unsigned short		hard_header_len;
2050 
2051 	/* Note : dev->mtu is often read without holding a lock.
2052 	 * Writers usually hold RTNL.
2053 	 * It is recommended to use READ_ONCE() to annotate the reads,
2054 	 * and to use WRITE_ONCE() to annotate the writes.
2055 	 */
2056 	unsigned int		mtu;
2057 	unsigned short		needed_headroom;
2058 	unsigned short		needed_tailroom;
2059 
2060 	netdev_features_t	features;
2061 	netdev_features_t	hw_features;
2062 	netdev_features_t	wanted_features;
2063 	netdev_features_t	vlan_features;
2064 	netdev_features_t	hw_enc_features;
2065 	netdev_features_t	mpls_features;
2066 	netdev_features_t	gso_partial_features;
2067 
2068 	unsigned int		min_mtu;
2069 	unsigned int		max_mtu;
2070 	unsigned short		type;
2071 	unsigned char		min_header_len;
2072 	unsigned char		name_assign_type;
2073 
2074 	int			group;
2075 
2076 	struct net_device_stats	stats; /* not used by modern drivers */
2077 
2078 	struct net_device_core_stats __percpu *core_stats;
2079 
2080 	/* Stats to monitor link on/off, flapping */
2081 	atomic_t		carrier_up_count;
2082 	atomic_t		carrier_down_count;
2083 
2084 #ifdef CONFIG_WIRELESS_EXT
2085 	const struct iw_handler_def *wireless_handlers;
2086 	struct iw_public_data	*wireless_data;
2087 #endif
2088 	const struct ethtool_ops *ethtool_ops;
2089 #ifdef CONFIG_NET_L3_MASTER_DEV
2090 	const struct l3mdev_ops	*l3mdev_ops;
2091 #endif
2092 #if IS_ENABLED(CONFIG_IPV6)
2093 	const struct ndisc_ops *ndisc_ops;
2094 #endif
2095 
2096 #ifdef CONFIG_XFRM_OFFLOAD
2097 	const struct xfrmdev_ops *xfrmdev_ops;
2098 #endif
2099 
2100 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2101 	const struct tlsdev_ops *tlsdev_ops;
2102 #endif
2103 
2104 	const struct header_ops *header_ops;
2105 
2106 	unsigned char		operstate;
2107 	unsigned char		link_mode;
2108 
2109 	unsigned char		if_port;
2110 	unsigned char		dma;
2111 
2112 	/* Interface address info. */
2113 	unsigned char		perm_addr[MAX_ADDR_LEN];
2114 	unsigned char		addr_assign_type;
2115 	unsigned char		addr_len;
2116 	unsigned char		upper_level;
2117 	unsigned char		lower_level;
2118 
2119 	unsigned short		neigh_priv_len;
2120 	unsigned short          dev_id;
2121 	unsigned short          dev_port;
2122 	unsigned short		padded;
2123 
2124 	spinlock_t		addr_list_lock;
2125 	int			irq;
2126 
2127 	struct netdev_hw_addr_list	uc;
2128 	struct netdev_hw_addr_list	mc;
2129 	struct netdev_hw_addr_list	dev_addrs;
2130 
2131 #ifdef CONFIG_SYSFS
2132 	struct kset		*queues_kset;
2133 #endif
2134 #ifdef CONFIG_LOCKDEP
2135 	struct list_head	unlink_list;
2136 #endif
2137 	unsigned int		promiscuity;
2138 	unsigned int		allmulti;
2139 	bool			uc_promisc;
2140 #ifdef CONFIG_LOCKDEP
2141 	unsigned char		nested_level;
2142 #endif
2143 
2144 
2145 	/* Protocol-specific pointers */
2146 
2147 	struct in_device __rcu	*ip_ptr;
2148 	struct inet6_dev __rcu	*ip6_ptr;
2149 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2150 	struct vlan_info __rcu	*vlan_info;
2151 #endif
2152 #if IS_ENABLED(CONFIG_NET_DSA)
2153 	struct dsa_port		*dsa_ptr;
2154 #endif
2155 #if IS_ENABLED(CONFIG_TIPC)
2156 	struct tipc_bearer __rcu *tipc_ptr;
2157 #endif
2158 #if IS_ENABLED(CONFIG_ATALK)
2159 	void 			*atalk_ptr;
2160 #endif
2161 #if IS_ENABLED(CONFIG_AX25)
2162 	void			*ax25_ptr;
2163 #endif
2164 #if IS_ENABLED(CONFIG_CFG80211)
2165 	struct wireless_dev	*ieee80211_ptr;
2166 #endif
2167 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2168 	struct wpan_dev		*ieee802154_ptr;
2169 #endif
2170 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2171 	struct mpls_dev __rcu	*mpls_ptr;
2172 #endif
2173 #if IS_ENABLED(CONFIG_MCTP)
2174 	struct mctp_dev __rcu	*mctp_ptr;
2175 #endif
2176 
2177 /*
2178  * Cache lines mostly used on receive path (including eth_type_trans())
2179  */
2180 	/* Interface address info used in eth_type_trans() */
2181 	const unsigned char	*dev_addr;
2182 
2183 	struct netdev_rx_queue	*_rx;
2184 	unsigned int		num_rx_queues;
2185 	unsigned int		real_num_rx_queues;
2186 
2187 	struct bpf_prog __rcu	*xdp_prog;
2188 	unsigned long		gro_flush_timeout;
2189 	int			napi_defer_hard_irqs;
2190 #define GRO_LEGACY_MAX_SIZE	65536u
2191 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2192  * and shinfo->gso_segs is a 16bit field.
2193  */
2194 #define GRO_MAX_SIZE		(8 * 65535u)
2195 	unsigned int		gro_max_size;
2196 	rx_handler_func_t __rcu	*rx_handler;
2197 	void __rcu		*rx_handler_data;
2198 
2199 #ifdef CONFIG_NET_CLS_ACT
2200 	struct mini_Qdisc __rcu	*miniq_ingress;
2201 #endif
2202 	struct netdev_queue __rcu *ingress_queue;
2203 #ifdef CONFIG_NETFILTER_INGRESS
2204 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2205 #endif
2206 
2207 	unsigned char		broadcast[MAX_ADDR_LEN];
2208 #ifdef CONFIG_RFS_ACCEL
2209 	struct cpu_rmap		*rx_cpu_rmap;
2210 #endif
2211 	struct hlist_node	index_hlist;
2212 
2213 /*
2214  * Cache lines mostly used on transmit path
2215  */
2216 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2217 	unsigned int		num_tx_queues;
2218 	unsigned int		real_num_tx_queues;
2219 	struct Qdisc __rcu	*qdisc;
2220 	unsigned int		tx_queue_len;
2221 	spinlock_t		tx_global_lock;
2222 
2223 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2224 
2225 #ifdef CONFIG_XPS
2226 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2227 #endif
2228 #ifdef CONFIG_NET_CLS_ACT
2229 	struct mini_Qdisc __rcu	*miniq_egress;
2230 #endif
2231 #ifdef CONFIG_NETFILTER_EGRESS
2232 	struct nf_hook_entries __rcu *nf_hooks_egress;
2233 #endif
2234 
2235 #ifdef CONFIG_NET_SCHED
2236 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2237 #endif
2238 	/* These may be needed for future network-power-down code. */
2239 	struct timer_list	watchdog_timer;
2240 	int			watchdog_timeo;
2241 
2242 	u32                     proto_down_reason;
2243 
2244 	struct list_head	todo_list;
2245 
2246 #ifdef CONFIG_PCPU_DEV_REFCNT
2247 	int __percpu		*pcpu_refcnt;
2248 #else
2249 	refcount_t		dev_refcnt;
2250 #endif
2251 	struct ref_tracker_dir	refcnt_tracker;
2252 
2253 	struct list_head	link_watch_list;
2254 
2255 	enum { NETREG_UNINITIALIZED=0,
2256 	       NETREG_REGISTERED,	/* completed register_netdevice */
2257 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2258 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2259 	       NETREG_RELEASED,		/* called free_netdev */
2260 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2261 	} reg_state:8;
2262 
2263 	bool dismantle;
2264 
2265 	enum {
2266 		RTNL_LINK_INITIALIZED,
2267 		RTNL_LINK_INITIALIZING,
2268 	} rtnl_link_state:16;
2269 
2270 	bool needs_free_netdev;
2271 	void (*priv_destructor)(struct net_device *dev);
2272 
2273 #ifdef CONFIG_NETPOLL
2274 	struct netpoll_info __rcu	*npinfo;
2275 #endif
2276 
2277 	possible_net_t			nd_net;
2278 
2279 	/* mid-layer private */
2280 	void				*ml_priv;
2281 	enum netdev_ml_priv_type	ml_priv_type;
2282 
2283 	union {
2284 		struct pcpu_lstats __percpu		*lstats;
2285 		struct pcpu_sw_netstats __percpu	*tstats;
2286 		struct pcpu_dstats __percpu		*dstats;
2287 	};
2288 
2289 #if IS_ENABLED(CONFIG_GARP)
2290 	struct garp_port __rcu	*garp_port;
2291 #endif
2292 #if IS_ENABLED(CONFIG_MRP)
2293 	struct mrp_port __rcu	*mrp_port;
2294 #endif
2295 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2296 	struct dm_hw_stat_delta __rcu *dm_private;
2297 #endif
2298 	struct device		dev;
2299 	const struct attribute_group *sysfs_groups[4];
2300 	const struct attribute_group *sysfs_rx_queue_group;
2301 
2302 	const struct rtnl_link_ops *rtnl_link_ops;
2303 
2304 	/* for setting kernel sock attribute on TCP connection setup */
2305 #define GSO_MAX_SEGS		65535u
2306 #define GSO_LEGACY_MAX_SIZE	65536u
2307 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2308  * and shinfo->gso_segs is a 16bit field.
2309  */
2310 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2311 
2312 	unsigned int		gso_max_size;
2313 #define TSO_LEGACY_MAX_SIZE	65536
2314 #define TSO_MAX_SIZE		UINT_MAX
2315 	unsigned int		tso_max_size;
2316 	u16			gso_max_segs;
2317 #define TSO_MAX_SEGS		U16_MAX
2318 	u16			tso_max_segs;
2319 
2320 #ifdef CONFIG_DCB
2321 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2322 #endif
2323 	s16			num_tc;
2324 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2325 	u8			prio_tc_map[TC_BITMASK + 1];
2326 
2327 #if IS_ENABLED(CONFIG_FCOE)
2328 	unsigned int		fcoe_ddp_xid;
2329 #endif
2330 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2331 	struct netprio_map __rcu *priomap;
2332 #endif
2333 	struct phy_device	*phydev;
2334 	struct sfp_bus		*sfp_bus;
2335 	struct lock_class_key	*qdisc_tx_busylock;
2336 	bool			proto_down;
2337 	unsigned		wol_enabled:1;
2338 	unsigned		threaded:1;
2339 
2340 	struct list_head	net_notifier_list;
2341 
2342 #if IS_ENABLED(CONFIG_MACSEC)
2343 	/* MACsec management functions */
2344 	const struct macsec_ops *macsec_ops;
2345 #endif
2346 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2347 	struct udp_tunnel_nic	*udp_tunnel_nic;
2348 
2349 	/* protected by rtnl_lock */
2350 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2351 
2352 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2353 	netdevice_tracker	linkwatch_dev_tracker;
2354 	netdevice_tracker	watchdog_dev_tracker;
2355 	netdevice_tracker	dev_registered_tracker;
2356 	struct rtnl_hw_stats64	*offload_xstats_l3;
2357 
2358 	struct devlink_port	*devlink_port;
2359 };
2360 #define to_net_dev(d) container_of(d, struct net_device, dev)
2361 
2362 /*
2363  * Driver should use this to assign devlink port instance to a netdevice
2364  * before it registers the netdevice. Therefore devlink_port is static
2365  * during the netdev lifetime after it is registered.
2366  */
2367 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2368 ({								\
2369 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2370 	((dev)->devlink_port = (port));				\
2371 })
2372 
2373 static inline bool netif_elide_gro(const struct net_device *dev)
2374 {
2375 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2376 		return true;
2377 	return false;
2378 }
2379 
2380 #define	NETDEV_ALIGN		32
2381 
2382 static inline
2383 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2384 {
2385 	return dev->prio_tc_map[prio & TC_BITMASK];
2386 }
2387 
2388 static inline
2389 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2390 {
2391 	if (tc >= dev->num_tc)
2392 		return -EINVAL;
2393 
2394 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2395 	return 0;
2396 }
2397 
2398 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2399 void netdev_reset_tc(struct net_device *dev);
2400 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2401 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2402 
2403 static inline
2404 int netdev_get_num_tc(struct net_device *dev)
2405 {
2406 	return dev->num_tc;
2407 }
2408 
2409 static inline void net_prefetch(void *p)
2410 {
2411 	prefetch(p);
2412 #if L1_CACHE_BYTES < 128
2413 	prefetch((u8 *)p + L1_CACHE_BYTES);
2414 #endif
2415 }
2416 
2417 static inline void net_prefetchw(void *p)
2418 {
2419 	prefetchw(p);
2420 #if L1_CACHE_BYTES < 128
2421 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2422 #endif
2423 }
2424 
2425 void netdev_unbind_sb_channel(struct net_device *dev,
2426 			      struct net_device *sb_dev);
2427 int netdev_bind_sb_channel_queue(struct net_device *dev,
2428 				 struct net_device *sb_dev,
2429 				 u8 tc, u16 count, u16 offset);
2430 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2431 static inline int netdev_get_sb_channel(struct net_device *dev)
2432 {
2433 	return max_t(int, -dev->num_tc, 0);
2434 }
2435 
2436 static inline
2437 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2438 					 unsigned int index)
2439 {
2440 	return &dev->_tx[index];
2441 }
2442 
2443 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2444 						    const struct sk_buff *skb)
2445 {
2446 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2447 }
2448 
2449 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2450 					    void (*f)(struct net_device *,
2451 						      struct netdev_queue *,
2452 						      void *),
2453 					    void *arg)
2454 {
2455 	unsigned int i;
2456 
2457 	for (i = 0; i < dev->num_tx_queues; i++)
2458 		f(dev, &dev->_tx[i], arg);
2459 }
2460 
2461 #define netdev_lockdep_set_classes(dev)				\
2462 {								\
2463 	static struct lock_class_key qdisc_tx_busylock_key;	\
2464 	static struct lock_class_key qdisc_xmit_lock_key;	\
2465 	static struct lock_class_key dev_addr_list_lock_key;	\
2466 	unsigned int i;						\
2467 								\
2468 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2469 	lockdep_set_class(&(dev)->addr_list_lock,		\
2470 			  &dev_addr_list_lock_key);		\
2471 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2472 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2473 				  &qdisc_xmit_lock_key);	\
2474 }
2475 
2476 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2477 		     struct net_device *sb_dev);
2478 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2479 					 struct sk_buff *skb,
2480 					 struct net_device *sb_dev);
2481 
2482 /* returns the headroom that the master device needs to take in account
2483  * when forwarding to this dev
2484  */
2485 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2486 {
2487 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2488 }
2489 
2490 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2491 {
2492 	if (dev->netdev_ops->ndo_set_rx_headroom)
2493 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2494 }
2495 
2496 /* set the device rx headroom to the dev's default */
2497 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2498 {
2499 	netdev_set_rx_headroom(dev, -1);
2500 }
2501 
2502 static inline void *netdev_get_ml_priv(struct net_device *dev,
2503 				       enum netdev_ml_priv_type type)
2504 {
2505 	if (dev->ml_priv_type != type)
2506 		return NULL;
2507 
2508 	return dev->ml_priv;
2509 }
2510 
2511 static inline void netdev_set_ml_priv(struct net_device *dev,
2512 				      void *ml_priv,
2513 				      enum netdev_ml_priv_type type)
2514 {
2515 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2516 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2517 	     dev->ml_priv_type, type);
2518 	WARN(!dev->ml_priv_type && dev->ml_priv,
2519 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2520 
2521 	dev->ml_priv = ml_priv;
2522 	dev->ml_priv_type = type;
2523 }
2524 
2525 /*
2526  * Net namespace inlines
2527  */
2528 static inline
2529 struct net *dev_net(const struct net_device *dev)
2530 {
2531 	return read_pnet(&dev->nd_net);
2532 }
2533 
2534 static inline
2535 void dev_net_set(struct net_device *dev, struct net *net)
2536 {
2537 	write_pnet(&dev->nd_net, net);
2538 }
2539 
2540 /**
2541  *	netdev_priv - access network device private data
2542  *	@dev: network device
2543  *
2544  * Get network device private data
2545  */
2546 static inline void *netdev_priv(const struct net_device *dev)
2547 {
2548 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2549 }
2550 
2551 /* Set the sysfs physical device reference for the network logical device
2552  * if set prior to registration will cause a symlink during initialization.
2553  */
2554 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2555 
2556 /* Set the sysfs device type for the network logical device to allow
2557  * fine-grained identification of different network device types. For
2558  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2559  */
2560 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2561 
2562 /* Default NAPI poll() weight
2563  * Device drivers are strongly advised to not use bigger value
2564  */
2565 #define NAPI_POLL_WEIGHT 64
2566 
2567 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2568 			   int (*poll)(struct napi_struct *, int), int weight);
2569 
2570 /**
2571  * netif_napi_add() - initialize a NAPI context
2572  * @dev:  network device
2573  * @napi: NAPI context
2574  * @poll: polling function
2575  *
2576  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2577  * *any* of the other NAPI-related functions.
2578  */
2579 static inline void
2580 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2581 	       int (*poll)(struct napi_struct *, int))
2582 {
2583 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2584 }
2585 
2586 static inline void
2587 netif_napi_add_tx_weight(struct net_device *dev,
2588 			 struct napi_struct *napi,
2589 			 int (*poll)(struct napi_struct *, int),
2590 			 int weight)
2591 {
2592 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2593 	netif_napi_add_weight(dev, napi, poll, weight);
2594 }
2595 
2596 /**
2597  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2598  * @dev:  network device
2599  * @napi: NAPI context
2600  * @poll: polling function
2601  *
2602  * This variant of netif_napi_add() should be used from drivers using NAPI
2603  * to exclusively poll a TX queue.
2604  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2605  */
2606 static inline void netif_napi_add_tx(struct net_device *dev,
2607 				     struct napi_struct *napi,
2608 				     int (*poll)(struct napi_struct *, int))
2609 {
2610 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2611 }
2612 
2613 /**
2614  *  __netif_napi_del - remove a NAPI context
2615  *  @napi: NAPI context
2616  *
2617  * Warning: caller must observe RCU grace period before freeing memory
2618  * containing @napi. Drivers might want to call this helper to combine
2619  * all the needed RCU grace periods into a single one.
2620  */
2621 void __netif_napi_del(struct napi_struct *napi);
2622 
2623 /**
2624  *  netif_napi_del - remove a NAPI context
2625  *  @napi: NAPI context
2626  *
2627  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2628  */
2629 static inline void netif_napi_del(struct napi_struct *napi)
2630 {
2631 	__netif_napi_del(napi);
2632 	synchronize_net();
2633 }
2634 
2635 struct packet_type {
2636 	__be16			type;	/* This is really htons(ether_type). */
2637 	bool			ignore_outgoing;
2638 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2639 	netdevice_tracker	dev_tracker;
2640 	int			(*func) (struct sk_buff *,
2641 					 struct net_device *,
2642 					 struct packet_type *,
2643 					 struct net_device *);
2644 	void			(*list_func) (struct list_head *,
2645 					      struct packet_type *,
2646 					      struct net_device *);
2647 	bool			(*id_match)(struct packet_type *ptype,
2648 					    struct sock *sk);
2649 	struct net		*af_packet_net;
2650 	void			*af_packet_priv;
2651 	struct list_head	list;
2652 };
2653 
2654 struct offload_callbacks {
2655 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2656 						netdev_features_t features);
2657 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2658 						struct sk_buff *skb);
2659 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2660 };
2661 
2662 struct packet_offload {
2663 	__be16			 type;	/* This is really htons(ether_type). */
2664 	u16			 priority;
2665 	struct offload_callbacks callbacks;
2666 	struct list_head	 list;
2667 };
2668 
2669 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2670 struct pcpu_sw_netstats {
2671 	u64_stats_t		rx_packets;
2672 	u64_stats_t		rx_bytes;
2673 	u64_stats_t		tx_packets;
2674 	u64_stats_t		tx_bytes;
2675 	struct u64_stats_sync   syncp;
2676 } __aligned(4 * sizeof(u64));
2677 
2678 struct pcpu_lstats {
2679 	u64_stats_t packets;
2680 	u64_stats_t bytes;
2681 	struct u64_stats_sync syncp;
2682 } __aligned(2 * sizeof(u64));
2683 
2684 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2685 
2686 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2687 {
2688 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2689 
2690 	u64_stats_update_begin(&tstats->syncp);
2691 	u64_stats_add(&tstats->rx_bytes, len);
2692 	u64_stats_inc(&tstats->rx_packets);
2693 	u64_stats_update_end(&tstats->syncp);
2694 }
2695 
2696 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2697 					  unsigned int packets,
2698 					  unsigned int len)
2699 {
2700 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2701 
2702 	u64_stats_update_begin(&tstats->syncp);
2703 	u64_stats_add(&tstats->tx_bytes, len);
2704 	u64_stats_add(&tstats->tx_packets, packets);
2705 	u64_stats_update_end(&tstats->syncp);
2706 }
2707 
2708 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2709 {
2710 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2711 
2712 	u64_stats_update_begin(&lstats->syncp);
2713 	u64_stats_add(&lstats->bytes, len);
2714 	u64_stats_inc(&lstats->packets);
2715 	u64_stats_update_end(&lstats->syncp);
2716 }
2717 
2718 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2719 ({									\
2720 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2721 	if (pcpu_stats)	{						\
2722 		int __cpu;						\
2723 		for_each_possible_cpu(__cpu) {				\
2724 			typeof(type) *stat;				\
2725 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2726 			u64_stats_init(&stat->syncp);			\
2727 		}							\
2728 	}								\
2729 	pcpu_stats;							\
2730 })
2731 
2732 #define netdev_alloc_pcpu_stats(type)					\
2733 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2734 
2735 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2736 ({									\
2737 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2738 	if (pcpu_stats) {						\
2739 		int __cpu;						\
2740 		for_each_possible_cpu(__cpu) {				\
2741 			typeof(type) *stat;				\
2742 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2743 			u64_stats_init(&stat->syncp);			\
2744 		}							\
2745 	}								\
2746 	pcpu_stats;							\
2747 })
2748 
2749 enum netdev_lag_tx_type {
2750 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2751 	NETDEV_LAG_TX_TYPE_RANDOM,
2752 	NETDEV_LAG_TX_TYPE_BROADCAST,
2753 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2754 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2755 	NETDEV_LAG_TX_TYPE_HASH,
2756 };
2757 
2758 enum netdev_lag_hash {
2759 	NETDEV_LAG_HASH_NONE,
2760 	NETDEV_LAG_HASH_L2,
2761 	NETDEV_LAG_HASH_L34,
2762 	NETDEV_LAG_HASH_L23,
2763 	NETDEV_LAG_HASH_E23,
2764 	NETDEV_LAG_HASH_E34,
2765 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2766 	NETDEV_LAG_HASH_UNKNOWN,
2767 };
2768 
2769 struct netdev_lag_upper_info {
2770 	enum netdev_lag_tx_type tx_type;
2771 	enum netdev_lag_hash hash_type;
2772 };
2773 
2774 struct netdev_lag_lower_state_info {
2775 	u8 link_up : 1,
2776 	   tx_enabled : 1;
2777 };
2778 
2779 #include <linux/notifier.h>
2780 
2781 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2782  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2783  * adding new types.
2784  */
2785 enum netdev_cmd {
2786 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2787 	NETDEV_DOWN,
2788 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2789 				   detected a hardware crash and restarted
2790 				   - we can use this eg to kick tcp sessions
2791 				   once done */
2792 	NETDEV_CHANGE,		/* Notify device state change */
2793 	NETDEV_REGISTER,
2794 	NETDEV_UNREGISTER,
2795 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2796 	NETDEV_CHANGEADDR,	/* notify after the address change */
2797 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2798 	NETDEV_GOING_DOWN,
2799 	NETDEV_CHANGENAME,
2800 	NETDEV_FEAT_CHANGE,
2801 	NETDEV_BONDING_FAILOVER,
2802 	NETDEV_PRE_UP,
2803 	NETDEV_PRE_TYPE_CHANGE,
2804 	NETDEV_POST_TYPE_CHANGE,
2805 	NETDEV_POST_INIT,
2806 	NETDEV_PRE_UNINIT,
2807 	NETDEV_RELEASE,
2808 	NETDEV_NOTIFY_PEERS,
2809 	NETDEV_JOIN,
2810 	NETDEV_CHANGEUPPER,
2811 	NETDEV_RESEND_IGMP,
2812 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2813 	NETDEV_CHANGEINFODATA,
2814 	NETDEV_BONDING_INFO,
2815 	NETDEV_PRECHANGEUPPER,
2816 	NETDEV_CHANGELOWERSTATE,
2817 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2818 	NETDEV_UDP_TUNNEL_DROP_INFO,
2819 	NETDEV_CHANGE_TX_QUEUE_LEN,
2820 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2821 	NETDEV_CVLAN_FILTER_DROP_INFO,
2822 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2823 	NETDEV_SVLAN_FILTER_DROP_INFO,
2824 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2825 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2826 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2827 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2828 };
2829 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2830 
2831 int register_netdevice_notifier(struct notifier_block *nb);
2832 int unregister_netdevice_notifier(struct notifier_block *nb);
2833 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2834 int unregister_netdevice_notifier_net(struct net *net,
2835 				      struct notifier_block *nb);
2836 int register_netdevice_notifier_dev_net(struct net_device *dev,
2837 					struct notifier_block *nb,
2838 					struct netdev_net_notifier *nn);
2839 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2840 					  struct notifier_block *nb,
2841 					  struct netdev_net_notifier *nn);
2842 
2843 struct netdev_notifier_info {
2844 	struct net_device	*dev;
2845 	struct netlink_ext_ack	*extack;
2846 };
2847 
2848 struct netdev_notifier_info_ext {
2849 	struct netdev_notifier_info info; /* must be first */
2850 	union {
2851 		u32 mtu;
2852 	} ext;
2853 };
2854 
2855 struct netdev_notifier_change_info {
2856 	struct netdev_notifier_info info; /* must be first */
2857 	unsigned int flags_changed;
2858 };
2859 
2860 struct netdev_notifier_changeupper_info {
2861 	struct netdev_notifier_info info; /* must be first */
2862 	struct net_device *upper_dev; /* new upper dev */
2863 	bool master; /* is upper dev master */
2864 	bool linking; /* is the notification for link or unlink */
2865 	void *upper_info; /* upper dev info */
2866 };
2867 
2868 struct netdev_notifier_changelowerstate_info {
2869 	struct netdev_notifier_info info; /* must be first */
2870 	void *lower_state_info; /* is lower dev state */
2871 };
2872 
2873 struct netdev_notifier_pre_changeaddr_info {
2874 	struct netdev_notifier_info info; /* must be first */
2875 	const unsigned char *dev_addr;
2876 };
2877 
2878 enum netdev_offload_xstats_type {
2879 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2880 };
2881 
2882 struct netdev_notifier_offload_xstats_info {
2883 	struct netdev_notifier_info info; /* must be first */
2884 	enum netdev_offload_xstats_type type;
2885 
2886 	union {
2887 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2888 		struct netdev_notifier_offload_xstats_rd *report_delta;
2889 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2890 		struct netdev_notifier_offload_xstats_ru *report_used;
2891 	};
2892 };
2893 
2894 int netdev_offload_xstats_enable(struct net_device *dev,
2895 				 enum netdev_offload_xstats_type type,
2896 				 struct netlink_ext_ack *extack);
2897 int netdev_offload_xstats_disable(struct net_device *dev,
2898 				  enum netdev_offload_xstats_type type);
2899 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2900 				   enum netdev_offload_xstats_type type);
2901 int netdev_offload_xstats_get(struct net_device *dev,
2902 			      enum netdev_offload_xstats_type type,
2903 			      struct rtnl_hw_stats64 *stats, bool *used,
2904 			      struct netlink_ext_ack *extack);
2905 void
2906 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2907 				   const struct rtnl_hw_stats64 *stats);
2908 void
2909 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2910 void netdev_offload_xstats_push_delta(struct net_device *dev,
2911 				      enum netdev_offload_xstats_type type,
2912 				      const struct rtnl_hw_stats64 *stats);
2913 
2914 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2915 					     struct net_device *dev)
2916 {
2917 	info->dev = dev;
2918 	info->extack = NULL;
2919 }
2920 
2921 static inline struct net_device *
2922 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2923 {
2924 	return info->dev;
2925 }
2926 
2927 static inline struct netlink_ext_ack *
2928 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2929 {
2930 	return info->extack;
2931 }
2932 
2933 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2934 
2935 
2936 extern rwlock_t				dev_base_lock;		/* Device list lock */
2937 
2938 #define for_each_netdev(net, d)		\
2939 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2940 #define for_each_netdev_reverse(net, d)	\
2941 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2942 #define for_each_netdev_rcu(net, d)		\
2943 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2944 #define for_each_netdev_safe(net, d, n)	\
2945 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2946 #define for_each_netdev_continue(net, d)		\
2947 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2948 #define for_each_netdev_continue_reverse(net, d)		\
2949 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2950 						     dev_list)
2951 #define for_each_netdev_continue_rcu(net, d)		\
2952 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2953 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2954 		for_each_netdev_rcu(&init_net, slave)	\
2955 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2956 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2957 
2958 static inline struct net_device *next_net_device(struct net_device *dev)
2959 {
2960 	struct list_head *lh;
2961 	struct net *net;
2962 
2963 	net = dev_net(dev);
2964 	lh = dev->dev_list.next;
2965 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2966 }
2967 
2968 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2969 {
2970 	struct list_head *lh;
2971 	struct net *net;
2972 
2973 	net = dev_net(dev);
2974 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2975 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2976 }
2977 
2978 static inline struct net_device *first_net_device(struct net *net)
2979 {
2980 	return list_empty(&net->dev_base_head) ? NULL :
2981 		net_device_entry(net->dev_base_head.next);
2982 }
2983 
2984 static inline struct net_device *first_net_device_rcu(struct net *net)
2985 {
2986 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2987 
2988 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2989 }
2990 
2991 int netdev_boot_setup_check(struct net_device *dev);
2992 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2993 				       const char *hwaddr);
2994 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2995 void dev_add_pack(struct packet_type *pt);
2996 void dev_remove_pack(struct packet_type *pt);
2997 void __dev_remove_pack(struct packet_type *pt);
2998 void dev_add_offload(struct packet_offload *po);
2999 void dev_remove_offload(struct packet_offload *po);
3000 
3001 int dev_get_iflink(const struct net_device *dev);
3002 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3003 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3004 			  struct net_device_path_stack *stack);
3005 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3006 				      unsigned short mask);
3007 struct net_device *dev_get_by_name(struct net *net, const char *name);
3008 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3009 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3010 bool netdev_name_in_use(struct net *net, const char *name);
3011 int dev_alloc_name(struct net_device *dev, const char *name);
3012 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3013 void dev_close(struct net_device *dev);
3014 void dev_close_many(struct list_head *head, bool unlink);
3015 void dev_disable_lro(struct net_device *dev);
3016 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3017 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3018 		     struct net_device *sb_dev);
3019 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3020 		       struct net_device *sb_dev);
3021 
3022 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3023 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3024 
3025 static inline int dev_queue_xmit(struct sk_buff *skb)
3026 {
3027 	return __dev_queue_xmit(skb, NULL);
3028 }
3029 
3030 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3031 				       struct net_device *sb_dev)
3032 {
3033 	return __dev_queue_xmit(skb, sb_dev);
3034 }
3035 
3036 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3037 {
3038 	int ret;
3039 
3040 	ret = __dev_direct_xmit(skb, queue_id);
3041 	if (!dev_xmit_complete(ret))
3042 		kfree_skb(skb);
3043 	return ret;
3044 }
3045 
3046 int register_netdevice(struct net_device *dev);
3047 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3048 void unregister_netdevice_many(struct list_head *head);
3049 static inline void unregister_netdevice(struct net_device *dev)
3050 {
3051 	unregister_netdevice_queue(dev, NULL);
3052 }
3053 
3054 int netdev_refcnt_read(const struct net_device *dev);
3055 void free_netdev(struct net_device *dev);
3056 void netdev_freemem(struct net_device *dev);
3057 int init_dummy_netdev(struct net_device *dev);
3058 
3059 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3060 					 struct sk_buff *skb,
3061 					 bool all_slaves);
3062 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3063 					    struct sock *sk);
3064 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3065 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3066 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3067 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3068 int dev_restart(struct net_device *dev);
3069 
3070 
3071 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3072 				  unsigned short type,
3073 				  const void *daddr, const void *saddr,
3074 				  unsigned int len)
3075 {
3076 	if (!dev->header_ops || !dev->header_ops->create)
3077 		return 0;
3078 
3079 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3080 }
3081 
3082 static inline int dev_parse_header(const struct sk_buff *skb,
3083 				   unsigned char *haddr)
3084 {
3085 	const struct net_device *dev = skb->dev;
3086 
3087 	if (!dev->header_ops || !dev->header_ops->parse)
3088 		return 0;
3089 	return dev->header_ops->parse(skb, haddr);
3090 }
3091 
3092 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3093 {
3094 	const struct net_device *dev = skb->dev;
3095 
3096 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3097 		return 0;
3098 	return dev->header_ops->parse_protocol(skb);
3099 }
3100 
3101 /* ll_header must have at least hard_header_len allocated */
3102 static inline bool dev_validate_header(const struct net_device *dev,
3103 				       char *ll_header, int len)
3104 {
3105 	if (likely(len >= dev->hard_header_len))
3106 		return true;
3107 	if (len < dev->min_header_len)
3108 		return false;
3109 
3110 	if (capable(CAP_SYS_RAWIO)) {
3111 		memset(ll_header + len, 0, dev->hard_header_len - len);
3112 		return true;
3113 	}
3114 
3115 	if (dev->header_ops && dev->header_ops->validate)
3116 		return dev->header_ops->validate(ll_header, len);
3117 
3118 	return false;
3119 }
3120 
3121 static inline bool dev_has_header(const struct net_device *dev)
3122 {
3123 	return dev->header_ops && dev->header_ops->create;
3124 }
3125 
3126 /*
3127  * Incoming packets are placed on per-CPU queues
3128  */
3129 struct softnet_data {
3130 	struct list_head	poll_list;
3131 	struct sk_buff_head	process_queue;
3132 
3133 	/* stats */
3134 	unsigned int		processed;
3135 	unsigned int		time_squeeze;
3136 	unsigned int		received_rps;
3137 #ifdef CONFIG_RPS
3138 	struct softnet_data	*rps_ipi_list;
3139 #endif
3140 #ifdef CONFIG_NET_FLOW_LIMIT
3141 	struct sd_flow_limit __rcu *flow_limit;
3142 #endif
3143 	struct Qdisc		*output_queue;
3144 	struct Qdisc		**output_queue_tailp;
3145 	struct sk_buff		*completion_queue;
3146 #ifdef CONFIG_XFRM_OFFLOAD
3147 	struct sk_buff_head	xfrm_backlog;
3148 #endif
3149 	/* written and read only by owning cpu: */
3150 	struct {
3151 		u16 recursion;
3152 		u8  more;
3153 #ifdef CONFIG_NET_EGRESS
3154 		u8  skip_txqueue;
3155 #endif
3156 	} xmit;
3157 #ifdef CONFIG_RPS
3158 	/* input_queue_head should be written by cpu owning this struct,
3159 	 * and only read by other cpus. Worth using a cache line.
3160 	 */
3161 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3162 
3163 	/* Elements below can be accessed between CPUs for RPS/RFS */
3164 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3165 	struct softnet_data	*rps_ipi_next;
3166 	unsigned int		cpu;
3167 	unsigned int		input_queue_tail;
3168 #endif
3169 	unsigned int		dropped;
3170 	struct sk_buff_head	input_pkt_queue;
3171 	struct napi_struct	backlog;
3172 
3173 	/* Another possibly contended cache line */
3174 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3175 	int			defer_count;
3176 	int			defer_ipi_scheduled;
3177 	struct sk_buff		*defer_list;
3178 	call_single_data_t	defer_csd;
3179 };
3180 
3181 static inline void input_queue_head_incr(struct softnet_data *sd)
3182 {
3183 #ifdef CONFIG_RPS
3184 	sd->input_queue_head++;
3185 #endif
3186 }
3187 
3188 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3189 					      unsigned int *qtail)
3190 {
3191 #ifdef CONFIG_RPS
3192 	*qtail = ++sd->input_queue_tail;
3193 #endif
3194 }
3195 
3196 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3197 
3198 static inline int dev_recursion_level(void)
3199 {
3200 	return this_cpu_read(softnet_data.xmit.recursion);
3201 }
3202 
3203 #define XMIT_RECURSION_LIMIT	8
3204 static inline bool dev_xmit_recursion(void)
3205 {
3206 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3207 			XMIT_RECURSION_LIMIT);
3208 }
3209 
3210 static inline void dev_xmit_recursion_inc(void)
3211 {
3212 	__this_cpu_inc(softnet_data.xmit.recursion);
3213 }
3214 
3215 static inline void dev_xmit_recursion_dec(void)
3216 {
3217 	__this_cpu_dec(softnet_data.xmit.recursion);
3218 }
3219 
3220 void __netif_schedule(struct Qdisc *q);
3221 void netif_schedule_queue(struct netdev_queue *txq);
3222 
3223 static inline void netif_tx_schedule_all(struct net_device *dev)
3224 {
3225 	unsigned int i;
3226 
3227 	for (i = 0; i < dev->num_tx_queues; i++)
3228 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3229 }
3230 
3231 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3232 {
3233 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3234 }
3235 
3236 /**
3237  *	netif_start_queue - allow transmit
3238  *	@dev: network device
3239  *
3240  *	Allow upper layers to call the device hard_start_xmit routine.
3241  */
3242 static inline void netif_start_queue(struct net_device *dev)
3243 {
3244 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3245 }
3246 
3247 static inline void netif_tx_start_all_queues(struct net_device *dev)
3248 {
3249 	unsigned int i;
3250 
3251 	for (i = 0; i < dev->num_tx_queues; i++) {
3252 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3253 		netif_tx_start_queue(txq);
3254 	}
3255 }
3256 
3257 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3258 
3259 /**
3260  *	netif_wake_queue - restart transmit
3261  *	@dev: network device
3262  *
3263  *	Allow upper layers to call the device hard_start_xmit routine.
3264  *	Used for flow control when transmit resources are available.
3265  */
3266 static inline void netif_wake_queue(struct net_device *dev)
3267 {
3268 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3269 }
3270 
3271 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3272 {
3273 	unsigned int i;
3274 
3275 	for (i = 0; i < dev->num_tx_queues; i++) {
3276 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3277 		netif_tx_wake_queue(txq);
3278 	}
3279 }
3280 
3281 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3282 {
3283 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3284 }
3285 
3286 /**
3287  *	netif_stop_queue - stop transmitted packets
3288  *	@dev: network device
3289  *
3290  *	Stop upper layers calling the device hard_start_xmit routine.
3291  *	Used for flow control when transmit resources are unavailable.
3292  */
3293 static inline void netif_stop_queue(struct net_device *dev)
3294 {
3295 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3296 }
3297 
3298 void netif_tx_stop_all_queues(struct net_device *dev);
3299 
3300 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3301 {
3302 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3303 }
3304 
3305 /**
3306  *	netif_queue_stopped - test if transmit queue is flowblocked
3307  *	@dev: network device
3308  *
3309  *	Test if transmit queue on device is currently unable to send.
3310  */
3311 static inline bool netif_queue_stopped(const struct net_device *dev)
3312 {
3313 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3314 }
3315 
3316 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3317 {
3318 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3319 }
3320 
3321 static inline bool
3322 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3323 {
3324 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3325 }
3326 
3327 static inline bool
3328 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3329 {
3330 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3331 }
3332 
3333 /**
3334  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3335  *	@dev_queue: pointer to transmit queue
3336  *	@min_limit: dql minimum limit
3337  *
3338  * Forces xmit_more() to return true until the minimum threshold
3339  * defined by @min_limit is reached (or until the tx queue is
3340  * empty). Warning: to be use with care, misuse will impact the
3341  * latency.
3342  */
3343 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3344 						  unsigned int min_limit)
3345 {
3346 #ifdef CONFIG_BQL
3347 	dev_queue->dql.min_limit = min_limit;
3348 #endif
3349 }
3350 
3351 /**
3352  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3353  *	@dev_queue: pointer to transmit queue
3354  *
3355  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3356  * to give appropriate hint to the CPU.
3357  */
3358 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3359 {
3360 #ifdef CONFIG_BQL
3361 	prefetchw(&dev_queue->dql.num_queued);
3362 #endif
3363 }
3364 
3365 /**
3366  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3367  *	@dev_queue: pointer to transmit queue
3368  *
3369  * BQL enabled drivers might use this helper in their TX completion path,
3370  * to give appropriate hint to the CPU.
3371  */
3372 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3373 {
3374 #ifdef CONFIG_BQL
3375 	prefetchw(&dev_queue->dql.limit);
3376 #endif
3377 }
3378 
3379 /**
3380  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3381  *	@dev_queue: network device queue
3382  *	@bytes: number of bytes queued to the device queue
3383  *
3384  *	Report the number of bytes queued for sending/completion to the network
3385  *	device hardware queue. @bytes should be a good approximation and should
3386  *	exactly match netdev_completed_queue() @bytes.
3387  *	This is typically called once per packet, from ndo_start_xmit().
3388  */
3389 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3390 					unsigned int bytes)
3391 {
3392 #ifdef CONFIG_BQL
3393 	dql_queued(&dev_queue->dql, bytes);
3394 
3395 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3396 		return;
3397 
3398 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3399 
3400 	/*
3401 	 * The XOFF flag must be set before checking the dql_avail below,
3402 	 * because in netdev_tx_completed_queue we update the dql_completed
3403 	 * before checking the XOFF flag.
3404 	 */
3405 	smp_mb();
3406 
3407 	/* check again in case another CPU has just made room avail */
3408 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3409 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3410 #endif
3411 }
3412 
3413 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3414  * that they should not test BQL status themselves.
3415  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3416  * skb of a batch.
3417  * Returns true if the doorbell must be used to kick the NIC.
3418  */
3419 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3420 					  unsigned int bytes,
3421 					  bool xmit_more)
3422 {
3423 	if (xmit_more) {
3424 #ifdef CONFIG_BQL
3425 		dql_queued(&dev_queue->dql, bytes);
3426 #endif
3427 		return netif_tx_queue_stopped(dev_queue);
3428 	}
3429 	netdev_tx_sent_queue(dev_queue, bytes);
3430 	return true;
3431 }
3432 
3433 /**
3434  *	netdev_sent_queue - report the number of bytes queued to hardware
3435  *	@dev: network device
3436  *	@bytes: number of bytes queued to the hardware device queue
3437  *
3438  *	Report the number of bytes queued for sending/completion to the network
3439  *	device hardware queue#0. @bytes should be a good approximation and should
3440  *	exactly match netdev_completed_queue() @bytes.
3441  *	This is typically called once per packet, from ndo_start_xmit().
3442  */
3443 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3444 {
3445 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3446 }
3447 
3448 static inline bool __netdev_sent_queue(struct net_device *dev,
3449 				       unsigned int bytes,
3450 				       bool xmit_more)
3451 {
3452 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3453 				      xmit_more);
3454 }
3455 
3456 /**
3457  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3458  *	@dev_queue: network device queue
3459  *	@pkts: number of packets (currently ignored)
3460  *	@bytes: number of bytes dequeued from the device queue
3461  *
3462  *	Must be called at most once per TX completion round (and not per
3463  *	individual packet), so that BQL can adjust its limits appropriately.
3464  */
3465 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3466 					     unsigned int pkts, unsigned int bytes)
3467 {
3468 #ifdef CONFIG_BQL
3469 	if (unlikely(!bytes))
3470 		return;
3471 
3472 	dql_completed(&dev_queue->dql, bytes);
3473 
3474 	/*
3475 	 * Without the memory barrier there is a small possiblity that
3476 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3477 	 * be stopped forever
3478 	 */
3479 	smp_mb();
3480 
3481 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3482 		return;
3483 
3484 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3485 		netif_schedule_queue(dev_queue);
3486 #endif
3487 }
3488 
3489 /**
3490  * 	netdev_completed_queue - report bytes and packets completed by device
3491  * 	@dev: network device
3492  * 	@pkts: actual number of packets sent over the medium
3493  * 	@bytes: actual number of bytes sent over the medium
3494  *
3495  * 	Report the number of bytes and packets transmitted by the network device
3496  * 	hardware queue over the physical medium, @bytes must exactly match the
3497  * 	@bytes amount passed to netdev_sent_queue()
3498  */
3499 static inline void netdev_completed_queue(struct net_device *dev,
3500 					  unsigned int pkts, unsigned int bytes)
3501 {
3502 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3503 }
3504 
3505 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3506 {
3507 #ifdef CONFIG_BQL
3508 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3509 	dql_reset(&q->dql);
3510 #endif
3511 }
3512 
3513 /**
3514  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3515  * 	@dev_queue: network device
3516  *
3517  * 	Reset the bytes and packet count of a network device and clear the
3518  * 	software flow control OFF bit for this network device
3519  */
3520 static inline void netdev_reset_queue(struct net_device *dev_queue)
3521 {
3522 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3523 }
3524 
3525 /**
3526  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3527  * 	@dev: network device
3528  * 	@queue_index: given tx queue index
3529  *
3530  * 	Returns 0 if given tx queue index >= number of device tx queues,
3531  * 	otherwise returns the originally passed tx queue index.
3532  */
3533 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3534 {
3535 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3536 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3537 				     dev->name, queue_index,
3538 				     dev->real_num_tx_queues);
3539 		return 0;
3540 	}
3541 
3542 	return queue_index;
3543 }
3544 
3545 /**
3546  *	netif_running - test if up
3547  *	@dev: network device
3548  *
3549  *	Test if the device has been brought up.
3550  */
3551 static inline bool netif_running(const struct net_device *dev)
3552 {
3553 	return test_bit(__LINK_STATE_START, &dev->state);
3554 }
3555 
3556 /*
3557  * Routines to manage the subqueues on a device.  We only need start,
3558  * stop, and a check if it's stopped.  All other device management is
3559  * done at the overall netdevice level.
3560  * Also test the device if we're multiqueue.
3561  */
3562 
3563 /**
3564  *	netif_start_subqueue - allow sending packets on subqueue
3565  *	@dev: network device
3566  *	@queue_index: sub queue index
3567  *
3568  * Start individual transmit queue of a device with multiple transmit queues.
3569  */
3570 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3571 {
3572 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3573 
3574 	netif_tx_start_queue(txq);
3575 }
3576 
3577 /**
3578  *	netif_stop_subqueue - stop sending packets on subqueue
3579  *	@dev: network device
3580  *	@queue_index: sub queue index
3581  *
3582  * Stop individual transmit queue of a device with multiple transmit queues.
3583  */
3584 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3585 {
3586 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3587 	netif_tx_stop_queue(txq);
3588 }
3589 
3590 /**
3591  *	__netif_subqueue_stopped - test status of subqueue
3592  *	@dev: network device
3593  *	@queue_index: sub queue index
3594  *
3595  * Check individual transmit queue of a device with multiple transmit queues.
3596  */
3597 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3598 					    u16 queue_index)
3599 {
3600 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3601 
3602 	return netif_tx_queue_stopped(txq);
3603 }
3604 
3605 /**
3606  *	netif_subqueue_stopped - test status of subqueue
3607  *	@dev: network device
3608  *	@skb: sub queue buffer pointer
3609  *
3610  * Check individual transmit queue of a device with multiple transmit queues.
3611  */
3612 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3613 					  struct sk_buff *skb)
3614 {
3615 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3616 }
3617 
3618 /**
3619  *	netif_wake_subqueue - allow sending packets on subqueue
3620  *	@dev: network device
3621  *	@queue_index: sub queue index
3622  *
3623  * Resume individual transmit queue of a device with multiple transmit queues.
3624  */
3625 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3626 {
3627 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3628 
3629 	netif_tx_wake_queue(txq);
3630 }
3631 
3632 #ifdef CONFIG_XPS
3633 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3634 			u16 index);
3635 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3636 			  u16 index, enum xps_map_type type);
3637 
3638 /**
3639  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3640  *	@j: CPU/Rx queue index
3641  *	@mask: bitmask of all cpus/rx queues
3642  *	@nr_bits: number of bits in the bitmask
3643  *
3644  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3645  */
3646 static inline bool netif_attr_test_mask(unsigned long j,
3647 					const unsigned long *mask,
3648 					unsigned int nr_bits)
3649 {
3650 	cpu_max_bits_warn(j, nr_bits);
3651 	return test_bit(j, mask);
3652 }
3653 
3654 /**
3655  *	netif_attr_test_online - Test for online CPU/Rx queue
3656  *	@j: CPU/Rx queue index
3657  *	@online_mask: bitmask for CPUs/Rx queues that are online
3658  *	@nr_bits: number of bits in the bitmask
3659  *
3660  * Returns true if a CPU/Rx queue is online.
3661  */
3662 static inline bool netif_attr_test_online(unsigned long j,
3663 					  const unsigned long *online_mask,
3664 					  unsigned int nr_bits)
3665 {
3666 	cpu_max_bits_warn(j, nr_bits);
3667 
3668 	if (online_mask)
3669 		return test_bit(j, online_mask);
3670 
3671 	return (j < nr_bits);
3672 }
3673 
3674 /**
3675  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3676  *	@n: CPU/Rx queue index
3677  *	@srcp: the cpumask/Rx queue mask pointer
3678  *	@nr_bits: number of bits in the bitmask
3679  *
3680  * Returns >= nr_bits if no further CPUs/Rx queues set.
3681  */
3682 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3683 					       unsigned int nr_bits)
3684 {
3685 	/* -1 is a legal arg here. */
3686 	if (n != -1)
3687 		cpu_max_bits_warn(n, nr_bits);
3688 
3689 	if (srcp)
3690 		return find_next_bit(srcp, nr_bits, n + 1);
3691 
3692 	return n + 1;
3693 }
3694 
3695 /**
3696  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3697  *	@n: CPU/Rx queue index
3698  *	@src1p: the first CPUs/Rx queues mask pointer
3699  *	@src2p: the second CPUs/Rx queues mask pointer
3700  *	@nr_bits: number of bits in the bitmask
3701  *
3702  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3703  */
3704 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3705 					  const unsigned long *src2p,
3706 					  unsigned int nr_bits)
3707 {
3708 	/* -1 is a legal arg here. */
3709 	if (n != -1)
3710 		cpu_max_bits_warn(n, nr_bits);
3711 
3712 	if (src1p && src2p)
3713 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3714 	else if (src1p)
3715 		return find_next_bit(src1p, nr_bits, n + 1);
3716 	else if (src2p)
3717 		return find_next_bit(src2p, nr_bits, n + 1);
3718 
3719 	return n + 1;
3720 }
3721 #else
3722 static inline int netif_set_xps_queue(struct net_device *dev,
3723 				      const struct cpumask *mask,
3724 				      u16 index)
3725 {
3726 	return 0;
3727 }
3728 
3729 static inline int __netif_set_xps_queue(struct net_device *dev,
3730 					const unsigned long *mask,
3731 					u16 index, enum xps_map_type type)
3732 {
3733 	return 0;
3734 }
3735 #endif
3736 
3737 /**
3738  *	netif_is_multiqueue - test if device has multiple transmit queues
3739  *	@dev: network device
3740  *
3741  * Check if device has multiple transmit queues
3742  */
3743 static inline bool netif_is_multiqueue(const struct net_device *dev)
3744 {
3745 	return dev->num_tx_queues > 1;
3746 }
3747 
3748 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3749 
3750 #ifdef CONFIG_SYSFS
3751 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3752 #else
3753 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3754 						unsigned int rxqs)
3755 {
3756 	dev->real_num_rx_queues = rxqs;
3757 	return 0;
3758 }
3759 #endif
3760 int netif_set_real_num_queues(struct net_device *dev,
3761 			      unsigned int txq, unsigned int rxq);
3762 
3763 static inline struct netdev_rx_queue *
3764 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3765 {
3766 	return dev->_rx + rxq;
3767 }
3768 
3769 #ifdef CONFIG_SYSFS
3770 static inline unsigned int get_netdev_rx_queue_index(
3771 		struct netdev_rx_queue *queue)
3772 {
3773 	struct net_device *dev = queue->dev;
3774 	int index = queue - dev->_rx;
3775 
3776 	BUG_ON(index >= dev->num_rx_queues);
3777 	return index;
3778 }
3779 #endif
3780 
3781 int netif_get_num_default_rss_queues(void);
3782 
3783 enum skb_free_reason {
3784 	SKB_REASON_CONSUMED,
3785 	SKB_REASON_DROPPED,
3786 };
3787 
3788 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3790 
3791 /*
3792  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3793  * interrupt context or with hardware interrupts being disabled.
3794  * (in_hardirq() || irqs_disabled())
3795  *
3796  * We provide four helpers that can be used in following contexts :
3797  *
3798  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3799  *  replacing kfree_skb(skb)
3800  *
3801  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3802  *  Typically used in place of consume_skb(skb) in TX completion path
3803  *
3804  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3805  *  replacing kfree_skb(skb)
3806  *
3807  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3808  *  and consumed a packet. Used in place of consume_skb(skb)
3809  */
3810 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3811 {
3812 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3813 }
3814 
3815 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3816 {
3817 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3818 }
3819 
3820 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3821 {
3822 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3823 }
3824 
3825 static inline void dev_consume_skb_any(struct sk_buff *skb)
3826 {
3827 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3828 }
3829 
3830 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3831 			     struct bpf_prog *xdp_prog);
3832 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3833 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3834 int netif_rx(struct sk_buff *skb);
3835 int __netif_rx(struct sk_buff *skb);
3836 
3837 int netif_receive_skb(struct sk_buff *skb);
3838 int netif_receive_skb_core(struct sk_buff *skb);
3839 void netif_receive_skb_list_internal(struct list_head *head);
3840 void netif_receive_skb_list(struct list_head *head);
3841 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3842 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3843 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3844 void napi_get_frags_check(struct napi_struct *napi);
3845 gro_result_t napi_gro_frags(struct napi_struct *napi);
3846 struct packet_offload *gro_find_receive_by_type(__be16 type);
3847 struct packet_offload *gro_find_complete_by_type(__be16 type);
3848 
3849 static inline void napi_free_frags(struct napi_struct *napi)
3850 {
3851 	kfree_skb(napi->skb);
3852 	napi->skb = NULL;
3853 }
3854 
3855 bool netdev_is_rx_handler_busy(struct net_device *dev);
3856 int netdev_rx_handler_register(struct net_device *dev,
3857 			       rx_handler_func_t *rx_handler,
3858 			       void *rx_handler_data);
3859 void netdev_rx_handler_unregister(struct net_device *dev);
3860 
3861 bool dev_valid_name(const char *name);
3862 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3863 {
3864 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3865 }
3866 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3867 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3868 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3869 		void __user *data, bool *need_copyout);
3870 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3871 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3872 unsigned int dev_get_flags(const struct net_device *);
3873 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3874 		       struct netlink_ext_ack *extack);
3875 int dev_change_flags(struct net_device *dev, unsigned int flags,
3876 		     struct netlink_ext_ack *extack);
3877 int dev_set_alias(struct net_device *, const char *, size_t);
3878 int dev_get_alias(const struct net_device *, char *, size_t);
3879 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3880 			       const char *pat, int new_ifindex);
3881 static inline
3882 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3883 			     const char *pat)
3884 {
3885 	return __dev_change_net_namespace(dev, net, pat, 0);
3886 }
3887 int __dev_set_mtu(struct net_device *, int);
3888 int dev_set_mtu(struct net_device *, int);
3889 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3890 			      struct netlink_ext_ack *extack);
3891 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3892 			struct netlink_ext_ack *extack);
3893 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3894 			     struct netlink_ext_ack *extack);
3895 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3896 int dev_get_port_parent_id(struct net_device *dev,
3897 			   struct netdev_phys_item_id *ppid, bool recurse);
3898 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3899 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3901 				    struct netdev_queue *txq, int *ret);
3902 
3903 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3904 u8 dev_xdp_prog_count(struct net_device *dev);
3905 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3906 
3907 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3908 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3909 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3910 bool is_skb_forwardable(const struct net_device *dev,
3911 			const struct sk_buff *skb);
3912 
3913 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3914 						 const struct sk_buff *skb,
3915 						 const bool check_mtu)
3916 {
3917 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3918 	unsigned int len;
3919 
3920 	if (!(dev->flags & IFF_UP))
3921 		return false;
3922 
3923 	if (!check_mtu)
3924 		return true;
3925 
3926 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3927 	if (skb->len <= len)
3928 		return true;
3929 
3930 	/* if TSO is enabled, we don't care about the length as the packet
3931 	 * could be forwarded without being segmented before
3932 	 */
3933 	if (skb_is_gso(skb))
3934 		return true;
3935 
3936 	return false;
3937 }
3938 
3939 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3940 
3941 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3942 {
3943 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3944 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3945 
3946 	if (likely(p))
3947 		return p;
3948 
3949 	return netdev_core_stats_alloc(dev);
3950 }
3951 
3952 #define DEV_CORE_STATS_INC(FIELD)						\
3953 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3954 {										\
3955 	struct net_device_core_stats __percpu *p;				\
3956 										\
3957 	p = dev_core_stats(dev);						\
3958 	if (p)									\
3959 		this_cpu_inc(p->FIELD);						\
3960 }
3961 DEV_CORE_STATS_INC(rx_dropped)
3962 DEV_CORE_STATS_INC(tx_dropped)
3963 DEV_CORE_STATS_INC(rx_nohandler)
3964 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3965 
3966 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3967 					       struct sk_buff *skb,
3968 					       const bool check_mtu)
3969 {
3970 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3971 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3972 		dev_core_stats_rx_dropped_inc(dev);
3973 		kfree_skb(skb);
3974 		return NET_RX_DROP;
3975 	}
3976 
3977 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3978 	skb->priority = 0;
3979 	return 0;
3980 }
3981 
3982 bool dev_nit_active(struct net_device *dev);
3983 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3984 
3985 static inline void __dev_put(struct net_device *dev)
3986 {
3987 	if (dev) {
3988 #ifdef CONFIG_PCPU_DEV_REFCNT
3989 		this_cpu_dec(*dev->pcpu_refcnt);
3990 #else
3991 		refcount_dec(&dev->dev_refcnt);
3992 #endif
3993 	}
3994 }
3995 
3996 static inline void __dev_hold(struct net_device *dev)
3997 {
3998 	if (dev) {
3999 #ifdef CONFIG_PCPU_DEV_REFCNT
4000 		this_cpu_inc(*dev->pcpu_refcnt);
4001 #else
4002 		refcount_inc(&dev->dev_refcnt);
4003 #endif
4004 	}
4005 }
4006 
4007 static inline void __netdev_tracker_alloc(struct net_device *dev,
4008 					  netdevice_tracker *tracker,
4009 					  gfp_t gfp)
4010 {
4011 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4012 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4013 #endif
4014 }
4015 
4016 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4017  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4018  */
4019 static inline void netdev_tracker_alloc(struct net_device *dev,
4020 					netdevice_tracker *tracker, gfp_t gfp)
4021 {
4022 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4023 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4024 	__netdev_tracker_alloc(dev, tracker, gfp);
4025 #endif
4026 }
4027 
4028 static inline void netdev_tracker_free(struct net_device *dev,
4029 				       netdevice_tracker *tracker)
4030 {
4031 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4032 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4033 #endif
4034 }
4035 
4036 static inline void netdev_hold(struct net_device *dev,
4037 			       netdevice_tracker *tracker, gfp_t gfp)
4038 {
4039 	if (dev) {
4040 		__dev_hold(dev);
4041 		__netdev_tracker_alloc(dev, tracker, gfp);
4042 	}
4043 }
4044 
4045 static inline void netdev_put(struct net_device *dev,
4046 			      netdevice_tracker *tracker)
4047 {
4048 	if (dev) {
4049 		netdev_tracker_free(dev, tracker);
4050 		__dev_put(dev);
4051 	}
4052 }
4053 
4054 /**
4055  *	dev_hold - get reference to device
4056  *	@dev: network device
4057  *
4058  * Hold reference to device to keep it from being freed.
4059  * Try using netdev_hold() instead.
4060  */
4061 static inline void dev_hold(struct net_device *dev)
4062 {
4063 	netdev_hold(dev, NULL, GFP_ATOMIC);
4064 }
4065 
4066 /**
4067  *	dev_put - release reference to device
4068  *	@dev: network device
4069  *
4070  * Release reference to device to allow it to be freed.
4071  * Try using netdev_put() instead.
4072  */
4073 static inline void dev_put(struct net_device *dev)
4074 {
4075 	netdev_put(dev, NULL);
4076 }
4077 
4078 static inline void netdev_ref_replace(struct net_device *odev,
4079 				      struct net_device *ndev,
4080 				      netdevice_tracker *tracker,
4081 				      gfp_t gfp)
4082 {
4083 	if (odev)
4084 		netdev_tracker_free(odev, tracker);
4085 
4086 	__dev_hold(ndev);
4087 	__dev_put(odev);
4088 
4089 	if (ndev)
4090 		__netdev_tracker_alloc(ndev, tracker, gfp);
4091 }
4092 
4093 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4094  * and _off may be called from IRQ context, but it is caller
4095  * who is responsible for serialization of these calls.
4096  *
4097  * The name carrier is inappropriate, these functions should really be
4098  * called netif_lowerlayer_*() because they represent the state of any
4099  * kind of lower layer not just hardware media.
4100  */
4101 void linkwatch_fire_event(struct net_device *dev);
4102 
4103 /**
4104  *	netif_carrier_ok - test if carrier present
4105  *	@dev: network device
4106  *
4107  * Check if carrier is present on device
4108  */
4109 static inline bool netif_carrier_ok(const struct net_device *dev)
4110 {
4111 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4112 }
4113 
4114 unsigned long dev_trans_start(struct net_device *dev);
4115 
4116 void __netdev_watchdog_up(struct net_device *dev);
4117 
4118 void netif_carrier_on(struct net_device *dev);
4119 void netif_carrier_off(struct net_device *dev);
4120 void netif_carrier_event(struct net_device *dev);
4121 
4122 /**
4123  *	netif_dormant_on - mark device as dormant.
4124  *	@dev: network device
4125  *
4126  * Mark device as dormant (as per RFC2863).
4127  *
4128  * The dormant state indicates that the relevant interface is not
4129  * actually in a condition to pass packets (i.e., it is not 'up') but is
4130  * in a "pending" state, waiting for some external event.  For "on-
4131  * demand" interfaces, this new state identifies the situation where the
4132  * interface is waiting for events to place it in the up state.
4133  */
4134 static inline void netif_dormant_on(struct net_device *dev)
4135 {
4136 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4137 		linkwatch_fire_event(dev);
4138 }
4139 
4140 /**
4141  *	netif_dormant_off - set device as not dormant.
4142  *	@dev: network device
4143  *
4144  * Device is not in dormant state.
4145  */
4146 static inline void netif_dormant_off(struct net_device *dev)
4147 {
4148 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4149 		linkwatch_fire_event(dev);
4150 }
4151 
4152 /**
4153  *	netif_dormant - test if device is dormant
4154  *	@dev: network device
4155  *
4156  * Check if device is dormant.
4157  */
4158 static inline bool netif_dormant(const struct net_device *dev)
4159 {
4160 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4161 }
4162 
4163 
4164 /**
4165  *	netif_testing_on - mark device as under test.
4166  *	@dev: network device
4167  *
4168  * Mark device as under test (as per RFC2863).
4169  *
4170  * The testing state indicates that some test(s) must be performed on
4171  * the interface. After completion, of the test, the interface state
4172  * will change to up, dormant, or down, as appropriate.
4173  */
4174 static inline void netif_testing_on(struct net_device *dev)
4175 {
4176 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4177 		linkwatch_fire_event(dev);
4178 }
4179 
4180 /**
4181  *	netif_testing_off - set device as not under test.
4182  *	@dev: network device
4183  *
4184  * Device is not in testing state.
4185  */
4186 static inline void netif_testing_off(struct net_device *dev)
4187 {
4188 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4189 		linkwatch_fire_event(dev);
4190 }
4191 
4192 /**
4193  *	netif_testing - test if device is under test
4194  *	@dev: network device
4195  *
4196  * Check if device is under test
4197  */
4198 static inline bool netif_testing(const struct net_device *dev)
4199 {
4200 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4201 }
4202 
4203 
4204 /**
4205  *	netif_oper_up - test if device is operational
4206  *	@dev: network device
4207  *
4208  * Check if carrier is operational
4209  */
4210 static inline bool netif_oper_up(const struct net_device *dev)
4211 {
4212 	return (dev->operstate == IF_OPER_UP ||
4213 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4214 }
4215 
4216 /**
4217  *	netif_device_present - is device available or removed
4218  *	@dev: network device
4219  *
4220  * Check if device has not been removed from system.
4221  */
4222 static inline bool netif_device_present(const struct net_device *dev)
4223 {
4224 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4225 }
4226 
4227 void netif_device_detach(struct net_device *dev);
4228 
4229 void netif_device_attach(struct net_device *dev);
4230 
4231 /*
4232  * Network interface message level settings
4233  */
4234 
4235 enum {
4236 	NETIF_MSG_DRV_BIT,
4237 	NETIF_MSG_PROBE_BIT,
4238 	NETIF_MSG_LINK_BIT,
4239 	NETIF_MSG_TIMER_BIT,
4240 	NETIF_MSG_IFDOWN_BIT,
4241 	NETIF_MSG_IFUP_BIT,
4242 	NETIF_MSG_RX_ERR_BIT,
4243 	NETIF_MSG_TX_ERR_BIT,
4244 	NETIF_MSG_TX_QUEUED_BIT,
4245 	NETIF_MSG_INTR_BIT,
4246 	NETIF_MSG_TX_DONE_BIT,
4247 	NETIF_MSG_RX_STATUS_BIT,
4248 	NETIF_MSG_PKTDATA_BIT,
4249 	NETIF_MSG_HW_BIT,
4250 	NETIF_MSG_WOL_BIT,
4251 
4252 	/* When you add a new bit above, update netif_msg_class_names array
4253 	 * in net/ethtool/common.c
4254 	 */
4255 	NETIF_MSG_CLASS_COUNT,
4256 };
4257 /* Both ethtool_ops interface and internal driver implementation use u32 */
4258 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4259 
4260 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4261 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4262 
4263 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4264 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4265 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4266 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4267 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4268 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4269 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4270 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4271 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4272 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4273 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4274 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4275 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4276 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4277 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4278 
4279 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4280 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4281 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4282 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4283 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4284 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4285 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4286 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4287 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4288 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4289 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4290 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4291 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4292 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4293 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4294 
4295 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4296 {
4297 	/* use default */
4298 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4299 		return default_msg_enable_bits;
4300 	if (debug_value == 0)	/* no output */
4301 		return 0;
4302 	/* set low N bits */
4303 	return (1U << debug_value) - 1;
4304 }
4305 
4306 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4307 {
4308 	spin_lock(&txq->_xmit_lock);
4309 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4310 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4311 }
4312 
4313 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4314 {
4315 	__acquire(&txq->_xmit_lock);
4316 	return true;
4317 }
4318 
4319 static inline void __netif_tx_release(struct netdev_queue *txq)
4320 {
4321 	__release(&txq->_xmit_lock);
4322 }
4323 
4324 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4325 {
4326 	spin_lock_bh(&txq->_xmit_lock);
4327 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4328 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4329 }
4330 
4331 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4332 {
4333 	bool ok = spin_trylock(&txq->_xmit_lock);
4334 
4335 	if (likely(ok)) {
4336 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4337 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4338 	}
4339 	return ok;
4340 }
4341 
4342 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4343 {
4344 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4345 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4346 	spin_unlock(&txq->_xmit_lock);
4347 }
4348 
4349 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4350 {
4351 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4352 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4353 	spin_unlock_bh(&txq->_xmit_lock);
4354 }
4355 
4356 /*
4357  * txq->trans_start can be read locklessly from dev_watchdog()
4358  */
4359 static inline void txq_trans_update(struct netdev_queue *txq)
4360 {
4361 	if (txq->xmit_lock_owner != -1)
4362 		WRITE_ONCE(txq->trans_start, jiffies);
4363 }
4364 
4365 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4366 {
4367 	unsigned long now = jiffies;
4368 
4369 	if (READ_ONCE(txq->trans_start) != now)
4370 		WRITE_ONCE(txq->trans_start, now);
4371 }
4372 
4373 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4374 static inline void netif_trans_update(struct net_device *dev)
4375 {
4376 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4377 
4378 	txq_trans_cond_update(txq);
4379 }
4380 
4381 /**
4382  *	netif_tx_lock - grab network device transmit lock
4383  *	@dev: network device
4384  *
4385  * Get network device transmit lock
4386  */
4387 void netif_tx_lock(struct net_device *dev);
4388 
4389 static inline void netif_tx_lock_bh(struct net_device *dev)
4390 {
4391 	local_bh_disable();
4392 	netif_tx_lock(dev);
4393 }
4394 
4395 void netif_tx_unlock(struct net_device *dev);
4396 
4397 static inline void netif_tx_unlock_bh(struct net_device *dev)
4398 {
4399 	netif_tx_unlock(dev);
4400 	local_bh_enable();
4401 }
4402 
4403 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4404 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4405 		__netif_tx_lock(txq, cpu);		\
4406 	} else {					\
4407 		__netif_tx_acquire(txq);		\
4408 	}						\
4409 }
4410 
4411 #define HARD_TX_TRYLOCK(dev, txq)			\
4412 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4413 		__netif_tx_trylock(txq) :		\
4414 		__netif_tx_acquire(txq))
4415 
4416 #define HARD_TX_UNLOCK(dev, txq) {			\
4417 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4418 		__netif_tx_unlock(txq);			\
4419 	} else {					\
4420 		__netif_tx_release(txq);		\
4421 	}						\
4422 }
4423 
4424 static inline void netif_tx_disable(struct net_device *dev)
4425 {
4426 	unsigned int i;
4427 	int cpu;
4428 
4429 	local_bh_disable();
4430 	cpu = smp_processor_id();
4431 	spin_lock(&dev->tx_global_lock);
4432 	for (i = 0; i < dev->num_tx_queues; i++) {
4433 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4434 
4435 		__netif_tx_lock(txq, cpu);
4436 		netif_tx_stop_queue(txq);
4437 		__netif_tx_unlock(txq);
4438 	}
4439 	spin_unlock(&dev->tx_global_lock);
4440 	local_bh_enable();
4441 }
4442 
4443 static inline void netif_addr_lock(struct net_device *dev)
4444 {
4445 	unsigned char nest_level = 0;
4446 
4447 #ifdef CONFIG_LOCKDEP
4448 	nest_level = dev->nested_level;
4449 #endif
4450 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4451 }
4452 
4453 static inline void netif_addr_lock_bh(struct net_device *dev)
4454 {
4455 	unsigned char nest_level = 0;
4456 
4457 #ifdef CONFIG_LOCKDEP
4458 	nest_level = dev->nested_level;
4459 #endif
4460 	local_bh_disable();
4461 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4462 }
4463 
4464 static inline void netif_addr_unlock(struct net_device *dev)
4465 {
4466 	spin_unlock(&dev->addr_list_lock);
4467 }
4468 
4469 static inline void netif_addr_unlock_bh(struct net_device *dev)
4470 {
4471 	spin_unlock_bh(&dev->addr_list_lock);
4472 }
4473 
4474 /*
4475  * dev_addrs walker. Should be used only for read access. Call with
4476  * rcu_read_lock held.
4477  */
4478 #define for_each_dev_addr(dev, ha) \
4479 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4480 
4481 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4482 
4483 void ether_setup(struct net_device *dev);
4484 
4485 /* Support for loadable net-drivers */
4486 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4487 				    unsigned char name_assign_type,
4488 				    void (*setup)(struct net_device *),
4489 				    unsigned int txqs, unsigned int rxqs);
4490 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4491 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4492 
4493 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4494 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4495 			 count)
4496 
4497 int register_netdev(struct net_device *dev);
4498 void unregister_netdev(struct net_device *dev);
4499 
4500 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4501 
4502 /* General hardware address lists handling functions */
4503 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4504 		   struct netdev_hw_addr_list *from_list, int addr_len);
4505 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4506 		      struct netdev_hw_addr_list *from_list, int addr_len);
4507 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4508 		       struct net_device *dev,
4509 		       int (*sync)(struct net_device *, const unsigned char *),
4510 		       int (*unsync)(struct net_device *,
4511 				     const unsigned char *));
4512 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4513 			   struct net_device *dev,
4514 			   int (*sync)(struct net_device *,
4515 				       const unsigned char *, int),
4516 			   int (*unsync)(struct net_device *,
4517 					 const unsigned char *, int));
4518 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4519 			      struct net_device *dev,
4520 			      int (*unsync)(struct net_device *,
4521 					    const unsigned char *, int));
4522 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4523 			  struct net_device *dev,
4524 			  int (*unsync)(struct net_device *,
4525 					const unsigned char *));
4526 void __hw_addr_init(struct netdev_hw_addr_list *list);
4527 
4528 /* Functions used for device addresses handling */
4529 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4530 		  const void *addr, size_t len);
4531 
4532 static inline void
4533 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4534 {
4535 	dev_addr_mod(dev, 0, addr, len);
4536 }
4537 
4538 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4539 {
4540 	__dev_addr_set(dev, addr, dev->addr_len);
4541 }
4542 
4543 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4544 		 unsigned char addr_type);
4545 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4546 		 unsigned char addr_type);
4547 
4548 /* Functions used for unicast addresses handling */
4549 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4550 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4551 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4552 int dev_uc_sync(struct net_device *to, struct net_device *from);
4553 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4554 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4555 void dev_uc_flush(struct net_device *dev);
4556 void dev_uc_init(struct net_device *dev);
4557 
4558 /**
4559  *  __dev_uc_sync - Synchonize device's unicast list
4560  *  @dev:  device to sync
4561  *  @sync: function to call if address should be added
4562  *  @unsync: function to call if address should be removed
4563  *
4564  *  Add newly added addresses to the interface, and release
4565  *  addresses that have been deleted.
4566  */
4567 static inline int __dev_uc_sync(struct net_device *dev,
4568 				int (*sync)(struct net_device *,
4569 					    const unsigned char *),
4570 				int (*unsync)(struct net_device *,
4571 					      const unsigned char *))
4572 {
4573 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4574 }
4575 
4576 /**
4577  *  __dev_uc_unsync - Remove synchronized addresses from device
4578  *  @dev:  device to sync
4579  *  @unsync: function to call if address should be removed
4580  *
4581  *  Remove all addresses that were added to the device by dev_uc_sync().
4582  */
4583 static inline void __dev_uc_unsync(struct net_device *dev,
4584 				   int (*unsync)(struct net_device *,
4585 						 const unsigned char *))
4586 {
4587 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4588 }
4589 
4590 /* Functions used for multicast addresses handling */
4591 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4592 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4593 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4594 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4595 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4596 int dev_mc_sync(struct net_device *to, struct net_device *from);
4597 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4598 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4599 void dev_mc_flush(struct net_device *dev);
4600 void dev_mc_init(struct net_device *dev);
4601 
4602 /**
4603  *  __dev_mc_sync - Synchonize device's multicast list
4604  *  @dev:  device to sync
4605  *  @sync: function to call if address should be added
4606  *  @unsync: function to call if address should be removed
4607  *
4608  *  Add newly added addresses to the interface, and release
4609  *  addresses that have been deleted.
4610  */
4611 static inline int __dev_mc_sync(struct net_device *dev,
4612 				int (*sync)(struct net_device *,
4613 					    const unsigned char *),
4614 				int (*unsync)(struct net_device *,
4615 					      const unsigned char *))
4616 {
4617 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4618 }
4619 
4620 /**
4621  *  __dev_mc_unsync - Remove synchronized addresses from device
4622  *  @dev:  device to sync
4623  *  @unsync: function to call if address should be removed
4624  *
4625  *  Remove all addresses that were added to the device by dev_mc_sync().
4626  */
4627 static inline void __dev_mc_unsync(struct net_device *dev,
4628 				   int (*unsync)(struct net_device *,
4629 						 const unsigned char *))
4630 {
4631 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4632 }
4633 
4634 /* Functions used for secondary unicast and multicast support */
4635 void dev_set_rx_mode(struct net_device *dev);
4636 int dev_set_promiscuity(struct net_device *dev, int inc);
4637 int dev_set_allmulti(struct net_device *dev, int inc);
4638 void netdev_state_change(struct net_device *dev);
4639 void __netdev_notify_peers(struct net_device *dev);
4640 void netdev_notify_peers(struct net_device *dev);
4641 void netdev_features_change(struct net_device *dev);
4642 /* Load a device via the kmod */
4643 void dev_load(struct net *net, const char *name);
4644 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4645 					struct rtnl_link_stats64 *storage);
4646 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4647 			     const struct net_device_stats *netdev_stats);
4648 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4649 			   const struct pcpu_sw_netstats __percpu *netstats);
4650 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4651 
4652 extern int		netdev_max_backlog;
4653 extern int		dev_rx_weight;
4654 extern int		dev_tx_weight;
4655 extern int		gro_normal_batch;
4656 
4657 enum {
4658 	NESTED_SYNC_IMM_BIT,
4659 	NESTED_SYNC_TODO_BIT,
4660 };
4661 
4662 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4663 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4664 
4665 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4666 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4667 
4668 struct netdev_nested_priv {
4669 	unsigned char flags;
4670 	void *data;
4671 };
4672 
4673 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4674 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4675 						     struct list_head **iter);
4676 
4677 /* iterate through upper list, must be called under RCU read lock */
4678 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4679 	for (iter = &(dev)->adj_list.upper, \
4680 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4681 	     updev; \
4682 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4683 
4684 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4685 				  int (*fn)(struct net_device *upper_dev,
4686 					    struct netdev_nested_priv *priv),
4687 				  struct netdev_nested_priv *priv);
4688 
4689 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4690 				  struct net_device *upper_dev);
4691 
4692 bool netdev_has_any_upper_dev(struct net_device *dev);
4693 
4694 void *netdev_lower_get_next_private(struct net_device *dev,
4695 				    struct list_head **iter);
4696 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4697 					struct list_head **iter);
4698 
4699 #define netdev_for_each_lower_private(dev, priv, iter) \
4700 	for (iter = (dev)->adj_list.lower.next, \
4701 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4702 	     priv; \
4703 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4704 
4705 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4706 	for (iter = &(dev)->adj_list.lower, \
4707 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4708 	     priv; \
4709 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4710 
4711 void *netdev_lower_get_next(struct net_device *dev,
4712 				struct list_head **iter);
4713 
4714 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4715 	for (iter = (dev)->adj_list.lower.next, \
4716 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4717 	     ldev; \
4718 	     ldev = netdev_lower_get_next(dev, &(iter)))
4719 
4720 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4721 					     struct list_head **iter);
4722 int netdev_walk_all_lower_dev(struct net_device *dev,
4723 			      int (*fn)(struct net_device *lower_dev,
4724 					struct netdev_nested_priv *priv),
4725 			      struct netdev_nested_priv *priv);
4726 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4727 				  int (*fn)(struct net_device *lower_dev,
4728 					    struct netdev_nested_priv *priv),
4729 				  struct netdev_nested_priv *priv);
4730 
4731 void *netdev_adjacent_get_private(struct list_head *adj_list);
4732 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4733 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4734 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4735 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4736 			  struct netlink_ext_ack *extack);
4737 int netdev_master_upper_dev_link(struct net_device *dev,
4738 				 struct net_device *upper_dev,
4739 				 void *upper_priv, void *upper_info,
4740 				 struct netlink_ext_ack *extack);
4741 void netdev_upper_dev_unlink(struct net_device *dev,
4742 			     struct net_device *upper_dev);
4743 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4744 				   struct net_device *new_dev,
4745 				   struct net_device *dev,
4746 				   struct netlink_ext_ack *extack);
4747 void netdev_adjacent_change_commit(struct net_device *old_dev,
4748 				   struct net_device *new_dev,
4749 				   struct net_device *dev);
4750 void netdev_adjacent_change_abort(struct net_device *old_dev,
4751 				  struct net_device *new_dev,
4752 				  struct net_device *dev);
4753 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4754 void *netdev_lower_dev_get_private(struct net_device *dev,
4755 				   struct net_device *lower_dev);
4756 void netdev_lower_state_changed(struct net_device *lower_dev,
4757 				void *lower_state_info);
4758 
4759 /* RSS keys are 40 or 52 bytes long */
4760 #define NETDEV_RSS_KEY_LEN 52
4761 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4762 void netdev_rss_key_fill(void *buffer, size_t len);
4763 
4764 int skb_checksum_help(struct sk_buff *skb);
4765 int skb_crc32c_csum_help(struct sk_buff *skb);
4766 int skb_csum_hwoffload_help(struct sk_buff *skb,
4767 			    const netdev_features_t features);
4768 
4769 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4770 				  netdev_features_t features, bool tx_path);
4771 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4772 				    netdev_features_t features, __be16 type);
4773 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4774 				    netdev_features_t features);
4775 
4776 struct netdev_bonding_info {
4777 	ifslave	slave;
4778 	ifbond	master;
4779 };
4780 
4781 struct netdev_notifier_bonding_info {
4782 	struct netdev_notifier_info info; /* must be first */
4783 	struct netdev_bonding_info  bonding_info;
4784 };
4785 
4786 void netdev_bonding_info_change(struct net_device *dev,
4787 				struct netdev_bonding_info *bonding_info);
4788 
4789 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4790 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4791 #else
4792 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4793 				  const void *data)
4794 {
4795 }
4796 #endif
4797 
4798 static inline
4799 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4800 {
4801 	return __skb_gso_segment(skb, features, true);
4802 }
4803 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4804 
4805 static inline bool can_checksum_protocol(netdev_features_t features,
4806 					 __be16 protocol)
4807 {
4808 	if (protocol == htons(ETH_P_FCOE))
4809 		return !!(features & NETIF_F_FCOE_CRC);
4810 
4811 	/* Assume this is an IP checksum (not SCTP CRC) */
4812 
4813 	if (features & NETIF_F_HW_CSUM) {
4814 		/* Can checksum everything */
4815 		return true;
4816 	}
4817 
4818 	switch (protocol) {
4819 	case htons(ETH_P_IP):
4820 		return !!(features & NETIF_F_IP_CSUM);
4821 	case htons(ETH_P_IPV6):
4822 		return !!(features & NETIF_F_IPV6_CSUM);
4823 	default:
4824 		return false;
4825 	}
4826 }
4827 
4828 #ifdef CONFIG_BUG
4829 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4830 #else
4831 static inline void netdev_rx_csum_fault(struct net_device *dev,
4832 					struct sk_buff *skb)
4833 {
4834 }
4835 #endif
4836 /* rx skb timestamps */
4837 void net_enable_timestamp(void);
4838 void net_disable_timestamp(void);
4839 
4840 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4841 					const struct skb_shared_hwtstamps *hwtstamps,
4842 					bool cycles)
4843 {
4844 	const struct net_device_ops *ops = dev->netdev_ops;
4845 
4846 	if (ops->ndo_get_tstamp)
4847 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4848 
4849 	return hwtstamps->hwtstamp;
4850 }
4851 
4852 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4853 					      struct sk_buff *skb, struct net_device *dev,
4854 					      bool more)
4855 {
4856 	__this_cpu_write(softnet_data.xmit.more, more);
4857 	return ops->ndo_start_xmit(skb, dev);
4858 }
4859 
4860 static inline bool netdev_xmit_more(void)
4861 {
4862 	return __this_cpu_read(softnet_data.xmit.more);
4863 }
4864 
4865 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4866 					    struct netdev_queue *txq, bool more)
4867 {
4868 	const struct net_device_ops *ops = dev->netdev_ops;
4869 	netdev_tx_t rc;
4870 
4871 	rc = __netdev_start_xmit(ops, skb, dev, more);
4872 	if (rc == NETDEV_TX_OK)
4873 		txq_trans_update(txq);
4874 
4875 	return rc;
4876 }
4877 
4878 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4879 				const void *ns);
4880 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4881 				 const void *ns);
4882 
4883 extern const struct kobj_ns_type_operations net_ns_type_operations;
4884 
4885 const char *netdev_drivername(const struct net_device *dev);
4886 
4887 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4888 							  netdev_features_t f2)
4889 {
4890 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4891 		if (f1 & NETIF_F_HW_CSUM)
4892 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4893 		else
4894 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4895 	}
4896 
4897 	return f1 & f2;
4898 }
4899 
4900 static inline netdev_features_t netdev_get_wanted_features(
4901 	struct net_device *dev)
4902 {
4903 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4904 }
4905 netdev_features_t netdev_increment_features(netdev_features_t all,
4906 	netdev_features_t one, netdev_features_t mask);
4907 
4908 /* Allow TSO being used on stacked device :
4909  * Performing the GSO segmentation before last device
4910  * is a performance improvement.
4911  */
4912 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4913 							netdev_features_t mask)
4914 {
4915 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4916 }
4917 
4918 int __netdev_update_features(struct net_device *dev);
4919 void netdev_update_features(struct net_device *dev);
4920 void netdev_change_features(struct net_device *dev);
4921 
4922 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4923 					struct net_device *dev);
4924 
4925 netdev_features_t passthru_features_check(struct sk_buff *skb,
4926 					  struct net_device *dev,
4927 					  netdev_features_t features);
4928 netdev_features_t netif_skb_features(struct sk_buff *skb);
4929 
4930 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4931 {
4932 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4933 
4934 	/* check flags correspondence */
4935 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4936 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4937 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4938 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4939 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4940 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4941 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4942 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4943 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4944 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4945 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4946 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4947 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4948 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4949 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4950 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4951 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4952 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4953 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4954 
4955 	return (features & feature) == feature;
4956 }
4957 
4958 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4959 {
4960 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4961 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4962 }
4963 
4964 static inline bool netif_needs_gso(struct sk_buff *skb,
4965 				   netdev_features_t features)
4966 {
4967 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4968 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4969 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4970 }
4971 
4972 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4973 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4974 void netif_inherit_tso_max(struct net_device *to,
4975 			   const struct net_device *from);
4976 
4977 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4978 					int pulled_hlen, u16 mac_offset,
4979 					int mac_len)
4980 {
4981 	skb->protocol = protocol;
4982 	skb->encapsulation = 1;
4983 	skb_push(skb, pulled_hlen);
4984 	skb_reset_transport_header(skb);
4985 	skb->mac_header = mac_offset;
4986 	skb->network_header = skb->mac_header + mac_len;
4987 	skb->mac_len = mac_len;
4988 }
4989 
4990 static inline bool netif_is_macsec(const struct net_device *dev)
4991 {
4992 	return dev->priv_flags & IFF_MACSEC;
4993 }
4994 
4995 static inline bool netif_is_macvlan(const struct net_device *dev)
4996 {
4997 	return dev->priv_flags & IFF_MACVLAN;
4998 }
4999 
5000 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5001 {
5002 	return dev->priv_flags & IFF_MACVLAN_PORT;
5003 }
5004 
5005 static inline bool netif_is_bond_master(const struct net_device *dev)
5006 {
5007 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5008 }
5009 
5010 static inline bool netif_is_bond_slave(const struct net_device *dev)
5011 {
5012 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5013 }
5014 
5015 static inline bool netif_supports_nofcs(struct net_device *dev)
5016 {
5017 	return dev->priv_flags & IFF_SUPP_NOFCS;
5018 }
5019 
5020 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5021 {
5022 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5023 }
5024 
5025 static inline bool netif_is_l3_master(const struct net_device *dev)
5026 {
5027 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5028 }
5029 
5030 static inline bool netif_is_l3_slave(const struct net_device *dev)
5031 {
5032 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5033 }
5034 
5035 static inline bool netif_is_bridge_master(const struct net_device *dev)
5036 {
5037 	return dev->priv_flags & IFF_EBRIDGE;
5038 }
5039 
5040 static inline bool netif_is_bridge_port(const struct net_device *dev)
5041 {
5042 	return dev->priv_flags & IFF_BRIDGE_PORT;
5043 }
5044 
5045 static inline bool netif_is_ovs_master(const struct net_device *dev)
5046 {
5047 	return dev->priv_flags & IFF_OPENVSWITCH;
5048 }
5049 
5050 static inline bool netif_is_ovs_port(const struct net_device *dev)
5051 {
5052 	return dev->priv_flags & IFF_OVS_DATAPATH;
5053 }
5054 
5055 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5056 {
5057 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5058 }
5059 
5060 static inline bool netif_is_team_master(const struct net_device *dev)
5061 {
5062 	return dev->priv_flags & IFF_TEAM;
5063 }
5064 
5065 static inline bool netif_is_team_port(const struct net_device *dev)
5066 {
5067 	return dev->priv_flags & IFF_TEAM_PORT;
5068 }
5069 
5070 static inline bool netif_is_lag_master(const struct net_device *dev)
5071 {
5072 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5073 }
5074 
5075 static inline bool netif_is_lag_port(const struct net_device *dev)
5076 {
5077 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5078 }
5079 
5080 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5081 {
5082 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5083 }
5084 
5085 static inline bool netif_is_failover(const struct net_device *dev)
5086 {
5087 	return dev->priv_flags & IFF_FAILOVER;
5088 }
5089 
5090 static inline bool netif_is_failover_slave(const struct net_device *dev)
5091 {
5092 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5093 }
5094 
5095 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5096 static inline void netif_keep_dst(struct net_device *dev)
5097 {
5098 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5099 }
5100 
5101 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5102 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5103 {
5104 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5105 	return netif_is_macsec(dev);
5106 }
5107 
5108 extern struct pernet_operations __net_initdata loopback_net_ops;
5109 
5110 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5111 
5112 /* netdev_printk helpers, similar to dev_printk */
5113 
5114 static inline const char *netdev_name(const struct net_device *dev)
5115 {
5116 	if (!dev->name[0] || strchr(dev->name, '%'))
5117 		return "(unnamed net_device)";
5118 	return dev->name;
5119 }
5120 
5121 static inline const char *netdev_reg_state(const struct net_device *dev)
5122 {
5123 	switch (dev->reg_state) {
5124 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5125 	case NETREG_REGISTERED: return "";
5126 	case NETREG_UNREGISTERING: return " (unregistering)";
5127 	case NETREG_UNREGISTERED: return " (unregistered)";
5128 	case NETREG_RELEASED: return " (released)";
5129 	case NETREG_DUMMY: return " (dummy)";
5130 	}
5131 
5132 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5133 	return " (unknown)";
5134 }
5135 
5136 #define MODULE_ALIAS_NETDEV(device) \
5137 	MODULE_ALIAS("netdev-" device)
5138 
5139 /*
5140  * netdev_WARN() acts like dev_printk(), but with the key difference
5141  * of using a WARN/WARN_ON to get the message out, including the
5142  * file/line information and a backtrace.
5143  */
5144 #define netdev_WARN(dev, format, args...)			\
5145 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5146 	     netdev_reg_state(dev), ##args)
5147 
5148 #define netdev_WARN_ONCE(dev, format, args...)				\
5149 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5150 		  netdev_reg_state(dev), ##args)
5151 
5152 /*
5153  *	The list of packet types we will receive (as opposed to discard)
5154  *	and the routines to invoke.
5155  *
5156  *	Why 16. Because with 16 the only overlap we get on a hash of the
5157  *	low nibble of the protocol value is RARP/SNAP/X.25.
5158  *
5159  *		0800	IP
5160  *		0001	802.3
5161  *		0002	AX.25
5162  *		0004	802.2
5163  *		8035	RARP
5164  *		0005	SNAP
5165  *		0805	X.25
5166  *		0806	ARP
5167  *		8137	IPX
5168  *		0009	Localtalk
5169  *		86DD	IPv6
5170  */
5171 #define PTYPE_HASH_SIZE	(16)
5172 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5173 
5174 extern struct list_head ptype_all __read_mostly;
5175 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5176 
5177 extern struct net_device *blackhole_netdev;
5178 
5179 #endif	/* _LINUX_NETDEVICE_H */
5180