1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 55 struct netpoll_info; 56 struct device; 57 struct ethtool_ops; 58 struct phy_device; 59 struct dsa_port; 60 struct ip_tunnel_parm; 61 struct macsec_context; 62 struct macsec_ops; 63 struct netdev_name_node; 64 struct sd_flow_limit; 65 struct sfp_bus; 66 /* 802.11 specific */ 67 struct wireless_dev; 68 /* 802.15.4 specific */ 69 struct wpan_dev; 70 struct mpls_dev; 71 /* UDP Tunnel offloads */ 72 struct udp_tunnel_info; 73 struct udp_tunnel_nic_info; 74 struct udp_tunnel_nic; 75 struct bpf_prog; 76 struct xdp_buff; 77 78 void synchronize_net(void); 79 void netdev_set_default_ethtool_ops(struct net_device *dev, 80 const struct ethtool_ops *ops); 81 82 /* Backlog congestion levels */ 83 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 84 #define NET_RX_DROP 1 /* packet dropped */ 85 86 #define MAX_NEST_DEV 8 87 88 /* 89 * Transmit return codes: transmit return codes originate from three different 90 * namespaces: 91 * 92 * - qdisc return codes 93 * - driver transmit return codes 94 * - errno values 95 * 96 * Drivers are allowed to return any one of those in their hard_start_xmit() 97 * function. Real network devices commonly used with qdiscs should only return 98 * the driver transmit return codes though - when qdiscs are used, the actual 99 * transmission happens asynchronously, so the value is not propagated to 100 * higher layers. Virtual network devices transmit synchronously; in this case 101 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 102 * others are propagated to higher layers. 103 */ 104 105 /* qdisc ->enqueue() return codes. */ 106 #define NET_XMIT_SUCCESS 0x00 107 #define NET_XMIT_DROP 0x01 /* skb dropped */ 108 #define NET_XMIT_CN 0x02 /* congestion notification */ 109 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 110 111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 112 * indicates that the device will soon be dropping packets, or already drops 113 * some packets of the same priority; prompting us to send less aggressively. */ 114 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 115 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 116 117 /* Driver transmit return codes */ 118 #define NETDEV_TX_MASK 0xf0 119 120 enum netdev_tx { 121 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 122 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 123 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 124 }; 125 typedef enum netdev_tx netdev_tx_t; 126 127 /* 128 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 129 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 130 */ 131 static inline bool dev_xmit_complete(int rc) 132 { 133 /* 134 * Positive cases with an skb consumed by a driver: 135 * - successful transmission (rc == NETDEV_TX_OK) 136 * - error while transmitting (rc < 0) 137 * - error while queueing to a different device (rc & NET_XMIT_MASK) 138 */ 139 if (likely(rc < NET_XMIT_MASK)) 140 return true; 141 142 return false; 143 } 144 145 /* 146 * Compute the worst-case header length according to the protocols 147 * used. 148 */ 149 150 #if defined(CONFIG_HYPERV_NET) 151 # define LL_MAX_HEADER 128 152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 153 # if defined(CONFIG_MAC80211_MESH) 154 # define LL_MAX_HEADER 128 155 # else 156 # define LL_MAX_HEADER 96 157 # endif 158 #else 159 # define LL_MAX_HEADER 32 160 #endif 161 162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 163 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 164 #define MAX_HEADER LL_MAX_HEADER 165 #else 166 #define MAX_HEADER (LL_MAX_HEADER + 48) 167 #endif 168 169 /* 170 * Old network device statistics. Fields are native words 171 * (unsigned long) so they can be read and written atomically. 172 */ 173 174 struct net_device_stats { 175 unsigned long rx_packets; 176 unsigned long tx_packets; 177 unsigned long rx_bytes; 178 unsigned long tx_bytes; 179 unsigned long rx_errors; 180 unsigned long tx_errors; 181 unsigned long rx_dropped; 182 unsigned long tx_dropped; 183 unsigned long multicast; 184 unsigned long collisions; 185 unsigned long rx_length_errors; 186 unsigned long rx_over_errors; 187 unsigned long rx_crc_errors; 188 unsigned long rx_frame_errors; 189 unsigned long rx_fifo_errors; 190 unsigned long rx_missed_errors; 191 unsigned long tx_aborted_errors; 192 unsigned long tx_carrier_errors; 193 unsigned long tx_fifo_errors; 194 unsigned long tx_heartbeat_errors; 195 unsigned long tx_window_errors; 196 unsigned long rx_compressed; 197 unsigned long tx_compressed; 198 }; 199 200 /* per-cpu stats, allocated on demand. 201 * Try to fit them in a single cache line, for dev_get_stats() sake. 202 */ 203 struct net_device_core_stats { 204 unsigned long rx_dropped; 205 unsigned long tx_dropped; 206 unsigned long rx_nohandler; 207 unsigned long rx_otherhost_dropped; 208 } __aligned(4 * sizeof(unsigned long)); 209 210 #include <linux/cache.h> 211 #include <linux/skbuff.h> 212 213 #ifdef CONFIG_RPS 214 #include <linux/static_key.h> 215 extern struct static_key_false rps_needed; 216 extern struct static_key_false rfs_needed; 217 #endif 218 219 struct neighbour; 220 struct neigh_parms; 221 struct sk_buff; 222 223 struct netdev_hw_addr { 224 struct list_head list; 225 struct rb_node node; 226 unsigned char addr[MAX_ADDR_LEN]; 227 unsigned char type; 228 #define NETDEV_HW_ADDR_T_LAN 1 229 #define NETDEV_HW_ADDR_T_SAN 2 230 #define NETDEV_HW_ADDR_T_UNICAST 3 231 #define NETDEV_HW_ADDR_T_MULTICAST 4 232 bool global_use; 233 int sync_cnt; 234 int refcount; 235 int synced; 236 struct rcu_head rcu_head; 237 }; 238 239 struct netdev_hw_addr_list { 240 struct list_head list; 241 int count; 242 243 /* Auxiliary tree for faster lookup on addition and deletion */ 244 struct rb_root tree; 245 }; 246 247 #define netdev_hw_addr_list_count(l) ((l)->count) 248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 249 #define netdev_hw_addr_list_for_each(ha, l) \ 250 list_for_each_entry(ha, &(l)->list, list) 251 252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 254 #define netdev_for_each_uc_addr(ha, dev) \ 255 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 256 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 257 netdev_for_each_uc_addr((_ha), (_dev)) \ 258 if ((_ha)->sync_cnt) 259 260 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 261 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 262 #define netdev_for_each_mc_addr(ha, dev) \ 263 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 264 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 265 netdev_for_each_mc_addr((_ha), (_dev)) \ 266 if ((_ha)->sync_cnt) 267 268 struct hh_cache { 269 unsigned int hh_len; 270 seqlock_t hh_lock; 271 272 /* cached hardware header; allow for machine alignment needs. */ 273 #define HH_DATA_MOD 16 274 #define HH_DATA_OFF(__len) \ 275 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 276 #define HH_DATA_ALIGN(__len) \ 277 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 278 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 279 }; 280 281 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 282 * Alternative is: 283 * dev->hard_header_len ? (dev->hard_header_len + 284 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 285 * 286 * We could use other alignment values, but we must maintain the 287 * relationship HH alignment <= LL alignment. 288 */ 289 #define LL_RESERVED_SPACE(dev) \ 290 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 291 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 292 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 293 294 struct header_ops { 295 int (*create) (struct sk_buff *skb, struct net_device *dev, 296 unsigned short type, const void *daddr, 297 const void *saddr, unsigned int len); 298 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 299 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 300 void (*cache_update)(struct hh_cache *hh, 301 const struct net_device *dev, 302 const unsigned char *haddr); 303 bool (*validate)(const char *ll_header, unsigned int len); 304 __be16 (*parse_protocol)(const struct sk_buff *skb); 305 }; 306 307 /* These flag bits are private to the generic network queueing 308 * layer; they may not be explicitly referenced by any other 309 * code. 310 */ 311 312 enum netdev_state_t { 313 __LINK_STATE_START, 314 __LINK_STATE_PRESENT, 315 __LINK_STATE_NOCARRIER, 316 __LINK_STATE_LINKWATCH_PENDING, 317 __LINK_STATE_DORMANT, 318 __LINK_STATE_TESTING, 319 }; 320 321 struct gro_list { 322 struct list_head list; 323 int count; 324 }; 325 326 /* 327 * size of gro hash buckets, must less than bit number of 328 * napi_struct::gro_bitmask 329 */ 330 #define GRO_HASH_BUCKETS 8 331 332 /* 333 * Structure for NAPI scheduling similar to tasklet but with weighting 334 */ 335 struct napi_struct { 336 /* The poll_list must only be managed by the entity which 337 * changes the state of the NAPI_STATE_SCHED bit. This means 338 * whoever atomically sets that bit can add this napi_struct 339 * to the per-CPU poll_list, and whoever clears that bit 340 * can remove from the list right before clearing the bit. 341 */ 342 struct list_head poll_list; 343 344 unsigned long state; 345 int weight; 346 int defer_hard_irqs_count; 347 unsigned long gro_bitmask; 348 int (*poll)(struct napi_struct *, int); 349 #ifdef CONFIG_NETPOLL 350 int poll_owner; 351 #endif 352 struct net_device *dev; 353 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 354 struct sk_buff *skb; 355 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 356 int rx_count; /* length of rx_list */ 357 struct hrtimer timer; 358 struct list_head dev_list; 359 struct hlist_node napi_hash_node; 360 unsigned int napi_id; 361 struct task_struct *thread; 362 }; 363 364 enum { 365 NAPI_STATE_SCHED, /* Poll is scheduled */ 366 NAPI_STATE_MISSED, /* reschedule a napi */ 367 NAPI_STATE_DISABLE, /* Disable pending */ 368 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 369 NAPI_STATE_LISTED, /* NAPI added to system lists */ 370 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 371 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 372 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 373 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 374 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 375 }; 376 377 enum { 378 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 379 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 380 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 381 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 382 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 383 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 384 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 385 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 386 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 387 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 388 }; 389 390 enum gro_result { 391 GRO_MERGED, 392 GRO_MERGED_FREE, 393 GRO_HELD, 394 GRO_NORMAL, 395 GRO_CONSUMED, 396 }; 397 typedef enum gro_result gro_result_t; 398 399 /* 400 * enum rx_handler_result - Possible return values for rx_handlers. 401 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 402 * further. 403 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 404 * case skb->dev was changed by rx_handler. 405 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 406 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 407 * 408 * rx_handlers are functions called from inside __netif_receive_skb(), to do 409 * special processing of the skb, prior to delivery to protocol handlers. 410 * 411 * Currently, a net_device can only have a single rx_handler registered. Trying 412 * to register a second rx_handler will return -EBUSY. 413 * 414 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 415 * To unregister a rx_handler on a net_device, use 416 * netdev_rx_handler_unregister(). 417 * 418 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 419 * do with the skb. 420 * 421 * If the rx_handler consumed the skb in some way, it should return 422 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 423 * the skb to be delivered in some other way. 424 * 425 * If the rx_handler changed skb->dev, to divert the skb to another 426 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 427 * new device will be called if it exists. 428 * 429 * If the rx_handler decides the skb should be ignored, it should return 430 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 431 * are registered on exact device (ptype->dev == skb->dev). 432 * 433 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 434 * delivered, it should return RX_HANDLER_PASS. 435 * 436 * A device without a registered rx_handler will behave as if rx_handler 437 * returned RX_HANDLER_PASS. 438 */ 439 440 enum rx_handler_result { 441 RX_HANDLER_CONSUMED, 442 RX_HANDLER_ANOTHER, 443 RX_HANDLER_EXACT, 444 RX_HANDLER_PASS, 445 }; 446 typedef enum rx_handler_result rx_handler_result_t; 447 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 448 449 void __napi_schedule(struct napi_struct *n); 450 void __napi_schedule_irqoff(struct napi_struct *n); 451 452 static inline bool napi_disable_pending(struct napi_struct *n) 453 { 454 return test_bit(NAPI_STATE_DISABLE, &n->state); 455 } 456 457 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 458 { 459 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 460 } 461 462 bool napi_schedule_prep(struct napi_struct *n); 463 464 /** 465 * napi_schedule - schedule NAPI poll 466 * @n: NAPI context 467 * 468 * Schedule NAPI poll routine to be called if it is not already 469 * running. 470 */ 471 static inline void napi_schedule(struct napi_struct *n) 472 { 473 if (napi_schedule_prep(n)) 474 __napi_schedule(n); 475 } 476 477 /** 478 * napi_schedule_irqoff - schedule NAPI poll 479 * @n: NAPI context 480 * 481 * Variant of napi_schedule(), assuming hard irqs are masked. 482 */ 483 static inline void napi_schedule_irqoff(struct napi_struct *n) 484 { 485 if (napi_schedule_prep(n)) 486 __napi_schedule_irqoff(n); 487 } 488 489 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 490 static inline bool napi_reschedule(struct napi_struct *napi) 491 { 492 if (napi_schedule_prep(napi)) { 493 __napi_schedule(napi); 494 return true; 495 } 496 return false; 497 } 498 499 bool napi_complete_done(struct napi_struct *n, int work_done); 500 /** 501 * napi_complete - NAPI processing complete 502 * @n: NAPI context 503 * 504 * Mark NAPI processing as complete. 505 * Consider using napi_complete_done() instead. 506 * Return false if device should avoid rearming interrupts. 507 */ 508 static inline bool napi_complete(struct napi_struct *n) 509 { 510 return napi_complete_done(n, 0); 511 } 512 513 int dev_set_threaded(struct net_device *dev, bool threaded); 514 515 /** 516 * napi_disable - prevent NAPI from scheduling 517 * @n: NAPI context 518 * 519 * Stop NAPI from being scheduled on this context. 520 * Waits till any outstanding processing completes. 521 */ 522 void napi_disable(struct napi_struct *n); 523 524 void napi_enable(struct napi_struct *n); 525 526 /** 527 * napi_synchronize - wait until NAPI is not running 528 * @n: NAPI context 529 * 530 * Wait until NAPI is done being scheduled on this context. 531 * Waits till any outstanding processing completes but 532 * does not disable future activations. 533 */ 534 static inline void napi_synchronize(const struct napi_struct *n) 535 { 536 if (IS_ENABLED(CONFIG_SMP)) 537 while (test_bit(NAPI_STATE_SCHED, &n->state)) 538 msleep(1); 539 else 540 barrier(); 541 } 542 543 /** 544 * napi_if_scheduled_mark_missed - if napi is running, set the 545 * NAPIF_STATE_MISSED 546 * @n: NAPI context 547 * 548 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 549 * NAPI is scheduled. 550 **/ 551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 552 { 553 unsigned long val, new; 554 555 val = READ_ONCE(n->state); 556 do { 557 if (val & NAPIF_STATE_DISABLE) 558 return true; 559 560 if (!(val & NAPIF_STATE_SCHED)) 561 return false; 562 563 new = val | NAPIF_STATE_MISSED; 564 } while (!try_cmpxchg(&n->state, &val, new)); 565 566 return true; 567 } 568 569 enum netdev_queue_state_t { 570 __QUEUE_STATE_DRV_XOFF, 571 __QUEUE_STATE_STACK_XOFF, 572 __QUEUE_STATE_FROZEN, 573 }; 574 575 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 576 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 577 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 578 579 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 581 QUEUE_STATE_FROZEN) 582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 583 QUEUE_STATE_FROZEN) 584 585 /* 586 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 587 * netif_tx_* functions below are used to manipulate this flag. The 588 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 589 * queue independently. The netif_xmit_*stopped functions below are called 590 * to check if the queue has been stopped by the driver or stack (either 591 * of the XOFF bits are set in the state). Drivers should not need to call 592 * netif_xmit*stopped functions, they should only be using netif_tx_*. 593 */ 594 595 struct netdev_queue { 596 /* 597 * read-mostly part 598 */ 599 struct net_device *dev; 600 netdevice_tracker dev_tracker; 601 602 struct Qdisc __rcu *qdisc; 603 struct Qdisc *qdisc_sleeping; 604 #ifdef CONFIG_SYSFS 605 struct kobject kobj; 606 #endif 607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 608 int numa_node; 609 #endif 610 unsigned long tx_maxrate; 611 /* 612 * Number of TX timeouts for this queue 613 * (/sys/class/net/DEV/Q/trans_timeout) 614 */ 615 atomic_long_t trans_timeout; 616 617 /* Subordinate device that the queue has been assigned to */ 618 struct net_device *sb_dev; 619 #ifdef CONFIG_XDP_SOCKETS 620 struct xsk_buff_pool *pool; 621 #endif 622 /* 623 * write-mostly part 624 */ 625 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 626 int xmit_lock_owner; 627 /* 628 * Time (in jiffies) of last Tx 629 */ 630 unsigned long trans_start; 631 632 unsigned long state; 633 634 #ifdef CONFIG_BQL 635 struct dql dql; 636 #endif 637 } ____cacheline_aligned_in_smp; 638 639 extern int sysctl_fb_tunnels_only_for_init_net; 640 extern int sysctl_devconf_inherit_init_net; 641 642 /* 643 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 644 * == 1 : For initns only 645 * == 2 : For none. 646 */ 647 static inline bool net_has_fallback_tunnels(const struct net *net) 648 { 649 #if IS_ENABLED(CONFIG_SYSCTL) 650 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 651 652 return !fb_tunnels_only_for_init_net || 653 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 654 #else 655 return true; 656 #endif 657 } 658 659 static inline int net_inherit_devconf(void) 660 { 661 #if IS_ENABLED(CONFIG_SYSCTL) 662 return READ_ONCE(sysctl_devconf_inherit_init_net); 663 #else 664 return 0; 665 #endif 666 } 667 668 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 669 { 670 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 671 return q->numa_node; 672 #else 673 return NUMA_NO_NODE; 674 #endif 675 } 676 677 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 678 { 679 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 680 q->numa_node = node; 681 #endif 682 } 683 684 #ifdef CONFIG_RPS 685 /* 686 * This structure holds an RPS map which can be of variable length. The 687 * map is an array of CPUs. 688 */ 689 struct rps_map { 690 unsigned int len; 691 struct rcu_head rcu; 692 u16 cpus[]; 693 }; 694 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 695 696 /* 697 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 698 * tail pointer for that CPU's input queue at the time of last enqueue, and 699 * a hardware filter index. 700 */ 701 struct rps_dev_flow { 702 u16 cpu; 703 u16 filter; 704 unsigned int last_qtail; 705 }; 706 #define RPS_NO_FILTER 0xffff 707 708 /* 709 * The rps_dev_flow_table structure contains a table of flow mappings. 710 */ 711 struct rps_dev_flow_table { 712 unsigned int mask; 713 struct rcu_head rcu; 714 struct rps_dev_flow flows[]; 715 }; 716 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 717 ((_num) * sizeof(struct rps_dev_flow))) 718 719 /* 720 * The rps_sock_flow_table contains mappings of flows to the last CPU 721 * on which they were processed by the application (set in recvmsg). 722 * Each entry is a 32bit value. Upper part is the high-order bits 723 * of flow hash, lower part is CPU number. 724 * rps_cpu_mask is used to partition the space, depending on number of 725 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 726 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 727 * meaning we use 32-6=26 bits for the hash. 728 */ 729 struct rps_sock_flow_table { 730 u32 mask; 731 732 u32 ents[] ____cacheline_aligned_in_smp; 733 }; 734 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 735 736 #define RPS_NO_CPU 0xffff 737 738 extern u32 rps_cpu_mask; 739 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 740 741 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 742 u32 hash) 743 { 744 if (table && hash) { 745 unsigned int index = hash & table->mask; 746 u32 val = hash & ~rps_cpu_mask; 747 748 /* We only give a hint, preemption can change CPU under us */ 749 val |= raw_smp_processor_id(); 750 751 if (table->ents[index] != val) 752 table->ents[index] = val; 753 } 754 } 755 756 #ifdef CONFIG_RFS_ACCEL 757 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 758 u16 filter_id); 759 #endif 760 #endif /* CONFIG_RPS */ 761 762 /* This structure contains an instance of an RX queue. */ 763 struct netdev_rx_queue { 764 struct xdp_rxq_info xdp_rxq; 765 #ifdef CONFIG_RPS 766 struct rps_map __rcu *rps_map; 767 struct rps_dev_flow_table __rcu *rps_flow_table; 768 #endif 769 struct kobject kobj; 770 struct net_device *dev; 771 netdevice_tracker dev_tracker; 772 773 #ifdef CONFIG_XDP_SOCKETS 774 struct xsk_buff_pool *pool; 775 #endif 776 } ____cacheline_aligned_in_smp; 777 778 /* 779 * RX queue sysfs structures and functions. 780 */ 781 struct rx_queue_attribute { 782 struct attribute attr; 783 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 784 ssize_t (*store)(struct netdev_rx_queue *queue, 785 const char *buf, size_t len); 786 }; 787 788 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 789 enum xps_map_type { 790 XPS_CPUS = 0, 791 XPS_RXQS, 792 XPS_MAPS_MAX, 793 }; 794 795 #ifdef CONFIG_XPS 796 /* 797 * This structure holds an XPS map which can be of variable length. The 798 * map is an array of queues. 799 */ 800 struct xps_map { 801 unsigned int len; 802 unsigned int alloc_len; 803 struct rcu_head rcu; 804 u16 queues[]; 805 }; 806 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 807 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 808 - sizeof(struct xps_map)) / sizeof(u16)) 809 810 /* 811 * This structure holds all XPS maps for device. Maps are indexed by CPU. 812 * 813 * We keep track of the number of cpus/rxqs used when the struct is allocated, 814 * in nr_ids. This will help not accessing out-of-bound memory. 815 * 816 * We keep track of the number of traffic classes used when the struct is 817 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 818 * not crossing its upper bound, as the original dev->num_tc can be updated in 819 * the meantime. 820 */ 821 struct xps_dev_maps { 822 struct rcu_head rcu; 823 unsigned int nr_ids; 824 s16 num_tc; 825 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 826 }; 827 828 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 829 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 830 831 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 832 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 833 834 #endif /* CONFIG_XPS */ 835 836 #define TC_MAX_QUEUE 16 837 #define TC_BITMASK 15 838 /* HW offloaded queuing disciplines txq count and offset maps */ 839 struct netdev_tc_txq { 840 u16 count; 841 u16 offset; 842 }; 843 844 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 845 /* 846 * This structure is to hold information about the device 847 * configured to run FCoE protocol stack. 848 */ 849 struct netdev_fcoe_hbainfo { 850 char manufacturer[64]; 851 char serial_number[64]; 852 char hardware_version[64]; 853 char driver_version[64]; 854 char optionrom_version[64]; 855 char firmware_version[64]; 856 char model[256]; 857 char model_description[256]; 858 }; 859 #endif 860 861 #define MAX_PHYS_ITEM_ID_LEN 32 862 863 /* This structure holds a unique identifier to identify some 864 * physical item (port for example) used by a netdevice. 865 */ 866 struct netdev_phys_item_id { 867 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 868 unsigned char id_len; 869 }; 870 871 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 872 struct netdev_phys_item_id *b) 873 { 874 return a->id_len == b->id_len && 875 memcmp(a->id, b->id, a->id_len) == 0; 876 } 877 878 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 879 struct sk_buff *skb, 880 struct net_device *sb_dev); 881 882 enum net_device_path_type { 883 DEV_PATH_ETHERNET = 0, 884 DEV_PATH_VLAN, 885 DEV_PATH_BRIDGE, 886 DEV_PATH_PPPOE, 887 DEV_PATH_DSA, 888 DEV_PATH_MTK_WDMA, 889 }; 890 891 struct net_device_path { 892 enum net_device_path_type type; 893 const struct net_device *dev; 894 union { 895 struct { 896 u16 id; 897 __be16 proto; 898 u8 h_dest[ETH_ALEN]; 899 } encap; 900 struct { 901 enum { 902 DEV_PATH_BR_VLAN_KEEP, 903 DEV_PATH_BR_VLAN_TAG, 904 DEV_PATH_BR_VLAN_UNTAG, 905 DEV_PATH_BR_VLAN_UNTAG_HW, 906 } vlan_mode; 907 u16 vlan_id; 908 __be16 vlan_proto; 909 } bridge; 910 struct { 911 int port; 912 u16 proto; 913 } dsa; 914 struct { 915 u8 wdma_idx; 916 u8 queue; 917 u16 wcid; 918 u8 bss; 919 } mtk_wdma; 920 }; 921 }; 922 923 #define NET_DEVICE_PATH_STACK_MAX 5 924 #define NET_DEVICE_PATH_VLAN_MAX 2 925 926 struct net_device_path_stack { 927 int num_paths; 928 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 929 }; 930 931 struct net_device_path_ctx { 932 const struct net_device *dev; 933 u8 daddr[ETH_ALEN]; 934 935 int num_vlans; 936 struct { 937 u16 id; 938 __be16 proto; 939 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 940 }; 941 942 enum tc_setup_type { 943 TC_QUERY_CAPS, 944 TC_SETUP_QDISC_MQPRIO, 945 TC_SETUP_CLSU32, 946 TC_SETUP_CLSFLOWER, 947 TC_SETUP_CLSMATCHALL, 948 TC_SETUP_CLSBPF, 949 TC_SETUP_BLOCK, 950 TC_SETUP_QDISC_CBS, 951 TC_SETUP_QDISC_RED, 952 TC_SETUP_QDISC_PRIO, 953 TC_SETUP_QDISC_MQ, 954 TC_SETUP_QDISC_ETF, 955 TC_SETUP_ROOT_QDISC, 956 TC_SETUP_QDISC_GRED, 957 TC_SETUP_QDISC_TAPRIO, 958 TC_SETUP_FT, 959 TC_SETUP_QDISC_ETS, 960 TC_SETUP_QDISC_TBF, 961 TC_SETUP_QDISC_FIFO, 962 TC_SETUP_QDISC_HTB, 963 TC_SETUP_ACT, 964 }; 965 966 /* These structures hold the attributes of bpf state that are being passed 967 * to the netdevice through the bpf op. 968 */ 969 enum bpf_netdev_command { 970 /* Set or clear a bpf program used in the earliest stages of packet 971 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 972 * is responsible for calling bpf_prog_put on any old progs that are 973 * stored. In case of error, the callee need not release the new prog 974 * reference, but on success it takes ownership and must bpf_prog_put 975 * when it is no longer used. 976 */ 977 XDP_SETUP_PROG, 978 XDP_SETUP_PROG_HW, 979 /* BPF program for offload callbacks, invoked at program load time. */ 980 BPF_OFFLOAD_MAP_ALLOC, 981 BPF_OFFLOAD_MAP_FREE, 982 XDP_SETUP_XSK_POOL, 983 }; 984 985 struct bpf_prog_offload_ops; 986 struct netlink_ext_ack; 987 struct xdp_umem; 988 struct xdp_dev_bulk_queue; 989 struct bpf_xdp_link; 990 991 enum bpf_xdp_mode { 992 XDP_MODE_SKB = 0, 993 XDP_MODE_DRV = 1, 994 XDP_MODE_HW = 2, 995 __MAX_XDP_MODE 996 }; 997 998 struct bpf_xdp_entity { 999 struct bpf_prog *prog; 1000 struct bpf_xdp_link *link; 1001 }; 1002 1003 struct netdev_bpf { 1004 enum bpf_netdev_command command; 1005 union { 1006 /* XDP_SETUP_PROG */ 1007 struct { 1008 u32 flags; 1009 struct bpf_prog *prog; 1010 struct netlink_ext_ack *extack; 1011 }; 1012 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1013 struct { 1014 struct bpf_offloaded_map *offmap; 1015 }; 1016 /* XDP_SETUP_XSK_POOL */ 1017 struct { 1018 struct xsk_buff_pool *pool; 1019 u16 queue_id; 1020 } xsk; 1021 }; 1022 }; 1023 1024 /* Flags for ndo_xsk_wakeup. */ 1025 #define XDP_WAKEUP_RX (1 << 0) 1026 #define XDP_WAKEUP_TX (1 << 1) 1027 1028 #ifdef CONFIG_XFRM_OFFLOAD 1029 struct xfrmdev_ops { 1030 int (*xdo_dev_state_add) (struct xfrm_state *x); 1031 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1032 void (*xdo_dev_state_free) (struct xfrm_state *x); 1033 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1034 struct xfrm_state *x); 1035 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1036 }; 1037 #endif 1038 1039 struct dev_ifalias { 1040 struct rcu_head rcuhead; 1041 char ifalias[]; 1042 }; 1043 1044 struct devlink; 1045 struct tlsdev_ops; 1046 1047 struct netdev_net_notifier { 1048 struct list_head list; 1049 struct notifier_block *nb; 1050 }; 1051 1052 /* 1053 * This structure defines the management hooks for network devices. 1054 * The following hooks can be defined; unless noted otherwise, they are 1055 * optional and can be filled with a null pointer. 1056 * 1057 * int (*ndo_init)(struct net_device *dev); 1058 * This function is called once when a network device is registered. 1059 * The network device can use this for any late stage initialization 1060 * or semantic validation. It can fail with an error code which will 1061 * be propagated back to register_netdev. 1062 * 1063 * void (*ndo_uninit)(struct net_device *dev); 1064 * This function is called when device is unregistered or when registration 1065 * fails. It is not called if init fails. 1066 * 1067 * int (*ndo_open)(struct net_device *dev); 1068 * This function is called when a network device transitions to the up 1069 * state. 1070 * 1071 * int (*ndo_stop)(struct net_device *dev); 1072 * This function is called when a network device transitions to the down 1073 * state. 1074 * 1075 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1076 * struct net_device *dev); 1077 * Called when a packet needs to be transmitted. 1078 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1079 * the queue before that can happen; it's for obsolete devices and weird 1080 * corner cases, but the stack really does a non-trivial amount 1081 * of useless work if you return NETDEV_TX_BUSY. 1082 * Required; cannot be NULL. 1083 * 1084 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1085 * struct net_device *dev 1086 * netdev_features_t features); 1087 * Called by core transmit path to determine if device is capable of 1088 * performing offload operations on a given packet. This is to give 1089 * the device an opportunity to implement any restrictions that cannot 1090 * be otherwise expressed by feature flags. The check is called with 1091 * the set of features that the stack has calculated and it returns 1092 * those the driver believes to be appropriate. 1093 * 1094 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1095 * struct net_device *sb_dev); 1096 * Called to decide which queue to use when device supports multiple 1097 * transmit queues. 1098 * 1099 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1100 * This function is called to allow device receiver to make 1101 * changes to configuration when multicast or promiscuous is enabled. 1102 * 1103 * void (*ndo_set_rx_mode)(struct net_device *dev); 1104 * This function is called device changes address list filtering. 1105 * If driver handles unicast address filtering, it should set 1106 * IFF_UNICAST_FLT in its priv_flags. 1107 * 1108 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1109 * This function is called when the Media Access Control address 1110 * needs to be changed. If this interface is not defined, the 1111 * MAC address can not be changed. 1112 * 1113 * int (*ndo_validate_addr)(struct net_device *dev); 1114 * Test if Media Access Control address is valid for the device. 1115 * 1116 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1117 * Old-style ioctl entry point. This is used internally by the 1118 * appletalk and ieee802154 subsystems but is no longer called by 1119 * the device ioctl handler. 1120 * 1121 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1122 * Used by the bonding driver for its device specific ioctls: 1123 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1124 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1125 * 1126 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1127 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1128 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1129 * 1130 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1131 * Used to set network devices bus interface parameters. This interface 1132 * is retained for legacy reasons; new devices should use the bus 1133 * interface (PCI) for low level management. 1134 * 1135 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1136 * Called when a user wants to change the Maximum Transfer Unit 1137 * of a device. 1138 * 1139 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1140 * Callback used when the transmitter has not made any progress 1141 * for dev->watchdog ticks. 1142 * 1143 * void (*ndo_get_stats64)(struct net_device *dev, 1144 * struct rtnl_link_stats64 *storage); 1145 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1146 * Called when a user wants to get the network device usage 1147 * statistics. Drivers must do one of the following: 1148 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1149 * rtnl_link_stats64 structure passed by the caller. 1150 * 2. Define @ndo_get_stats to update a net_device_stats structure 1151 * (which should normally be dev->stats) and return a pointer to 1152 * it. The structure may be changed asynchronously only if each 1153 * field is written atomically. 1154 * 3. Update dev->stats asynchronously and atomically, and define 1155 * neither operation. 1156 * 1157 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1158 * Return true if this device supports offload stats of this attr_id. 1159 * 1160 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1161 * void *attr_data) 1162 * Get statistics for offload operations by attr_id. Write it into the 1163 * attr_data pointer. 1164 * 1165 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1166 * If device supports VLAN filtering this function is called when a 1167 * VLAN id is registered. 1168 * 1169 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1170 * If device supports VLAN filtering this function is called when a 1171 * VLAN id is unregistered. 1172 * 1173 * void (*ndo_poll_controller)(struct net_device *dev); 1174 * 1175 * SR-IOV management functions. 1176 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1177 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1178 * u8 qos, __be16 proto); 1179 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1180 * int max_tx_rate); 1181 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1182 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1183 * int (*ndo_get_vf_config)(struct net_device *dev, 1184 * int vf, struct ifla_vf_info *ivf); 1185 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1186 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1187 * struct nlattr *port[]); 1188 * 1189 * Enable or disable the VF ability to query its RSS Redirection Table and 1190 * Hash Key. This is needed since on some devices VF share this information 1191 * with PF and querying it may introduce a theoretical security risk. 1192 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1193 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1194 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1195 * void *type_data); 1196 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1197 * This is always called from the stack with the rtnl lock held and netif 1198 * tx queues stopped. This allows the netdevice to perform queue 1199 * management safely. 1200 * 1201 * Fiber Channel over Ethernet (FCoE) offload functions. 1202 * int (*ndo_fcoe_enable)(struct net_device *dev); 1203 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1204 * so the underlying device can perform whatever needed configuration or 1205 * initialization to support acceleration of FCoE traffic. 1206 * 1207 * int (*ndo_fcoe_disable)(struct net_device *dev); 1208 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1209 * so the underlying device can perform whatever needed clean-ups to 1210 * stop supporting acceleration of FCoE traffic. 1211 * 1212 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1213 * struct scatterlist *sgl, unsigned int sgc); 1214 * Called when the FCoE Initiator wants to initialize an I/O that 1215 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1216 * perform necessary setup and returns 1 to indicate the device is set up 1217 * successfully to perform DDP on this I/O, otherwise this returns 0. 1218 * 1219 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1220 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1221 * indicated by the FC exchange id 'xid', so the underlying device can 1222 * clean up and reuse resources for later DDP requests. 1223 * 1224 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1225 * struct scatterlist *sgl, unsigned int sgc); 1226 * Called when the FCoE Target wants to initialize an I/O that 1227 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1228 * perform necessary setup and returns 1 to indicate the device is set up 1229 * successfully to perform DDP on this I/O, otherwise this returns 0. 1230 * 1231 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1232 * struct netdev_fcoe_hbainfo *hbainfo); 1233 * Called when the FCoE Protocol stack wants information on the underlying 1234 * device. This information is utilized by the FCoE protocol stack to 1235 * register attributes with Fiber Channel management service as per the 1236 * FC-GS Fabric Device Management Information(FDMI) specification. 1237 * 1238 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1239 * Called when the underlying device wants to override default World Wide 1240 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1241 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1242 * protocol stack to use. 1243 * 1244 * RFS acceleration. 1245 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1246 * u16 rxq_index, u32 flow_id); 1247 * Set hardware filter for RFS. rxq_index is the target queue index; 1248 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1249 * Return the filter ID on success, or a negative error code. 1250 * 1251 * Slave management functions (for bridge, bonding, etc). 1252 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1253 * Called to make another netdev an underling. 1254 * 1255 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1256 * Called to release previously enslaved netdev. 1257 * 1258 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1259 * struct sk_buff *skb, 1260 * bool all_slaves); 1261 * Get the xmit slave of master device. If all_slaves is true, function 1262 * assume all the slaves can transmit. 1263 * 1264 * Feature/offload setting functions. 1265 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1266 * netdev_features_t features); 1267 * Adjusts the requested feature flags according to device-specific 1268 * constraints, and returns the resulting flags. Must not modify 1269 * the device state. 1270 * 1271 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1272 * Called to update device configuration to new features. Passed 1273 * feature set might be less than what was returned by ndo_fix_features()). 1274 * Must return >0 or -errno if it changed dev->features itself. 1275 * 1276 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1277 * struct net_device *dev, 1278 * const unsigned char *addr, u16 vid, u16 flags, 1279 * struct netlink_ext_ack *extack); 1280 * Adds an FDB entry to dev for addr. 1281 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1282 * struct net_device *dev, 1283 * const unsigned char *addr, u16 vid) 1284 * Deletes the FDB entry from dev coresponding to addr. 1285 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1286 * struct net_device *dev, 1287 * u16 vid, 1288 * struct netlink_ext_ack *extack); 1289 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1290 * struct net_device *dev, struct net_device *filter_dev, 1291 * int *idx) 1292 * Used to add FDB entries to dump requests. Implementers should add 1293 * entries to skb and update idx with the number of entries. 1294 * 1295 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1296 * u16 flags, struct netlink_ext_ack *extack) 1297 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1298 * struct net_device *dev, u32 filter_mask, 1299 * int nlflags) 1300 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1301 * u16 flags); 1302 * 1303 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1304 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1305 * which do not represent real hardware may define this to allow their 1306 * userspace components to manage their virtual carrier state. Devices 1307 * that determine carrier state from physical hardware properties (eg 1308 * network cables) or protocol-dependent mechanisms (eg 1309 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1310 * 1311 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1312 * struct netdev_phys_item_id *ppid); 1313 * Called to get ID of physical port of this device. If driver does 1314 * not implement this, it is assumed that the hw is not able to have 1315 * multiple net devices on single physical port. 1316 * 1317 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1318 * struct netdev_phys_item_id *ppid) 1319 * Called to get the parent ID of the physical port of this device. 1320 * 1321 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1322 * struct net_device *dev) 1323 * Called by upper layer devices to accelerate switching or other 1324 * station functionality into hardware. 'pdev is the lowerdev 1325 * to use for the offload and 'dev' is the net device that will 1326 * back the offload. Returns a pointer to the private structure 1327 * the upper layer will maintain. 1328 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1329 * Called by upper layer device to delete the station created 1330 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1331 * the station and priv is the structure returned by the add 1332 * operation. 1333 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1334 * int queue_index, u32 maxrate); 1335 * Called when a user wants to set a max-rate limitation of specific 1336 * TX queue. 1337 * int (*ndo_get_iflink)(const struct net_device *dev); 1338 * Called to get the iflink value of this device. 1339 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1340 * This function is used to get egress tunnel information for given skb. 1341 * This is useful for retrieving outer tunnel header parameters while 1342 * sampling packet. 1343 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1344 * This function is used to specify the headroom that the skb must 1345 * consider when allocation skb during packet reception. Setting 1346 * appropriate rx headroom value allows avoiding skb head copy on 1347 * forward. Setting a negative value resets the rx headroom to the 1348 * default value. 1349 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1350 * This function is used to set or query state related to XDP on the 1351 * netdevice and manage BPF offload. See definition of 1352 * enum bpf_netdev_command for details. 1353 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1354 * u32 flags); 1355 * This function is used to submit @n XDP packets for transmit on a 1356 * netdevice. Returns number of frames successfully transmitted, frames 1357 * that got dropped are freed/returned via xdp_return_frame(). 1358 * Returns negative number, means general error invoking ndo, meaning 1359 * no frames were xmit'ed and core-caller will free all frames. 1360 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1361 * struct xdp_buff *xdp); 1362 * Get the xmit slave of master device based on the xdp_buff. 1363 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1364 * This function is used to wake up the softirq, ksoftirqd or kthread 1365 * responsible for sending and/or receiving packets on a specific 1366 * queue id bound to an AF_XDP socket. The flags field specifies if 1367 * only RX, only Tx, or both should be woken up using the flags 1368 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1369 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1370 * Get devlink port instance associated with a given netdev. 1371 * Called with a reference on the netdevice and devlink locks only, 1372 * rtnl_lock is not held. 1373 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1374 * int cmd); 1375 * Add, change, delete or get information on an IPv4 tunnel. 1376 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1377 * If a device is paired with a peer device, return the peer instance. 1378 * The caller must be under RCU read context. 1379 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1380 * Get the forwarding path to reach the real device from the HW destination address 1381 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1382 * const struct skb_shared_hwtstamps *hwtstamps, 1383 * bool cycles); 1384 * Get hardware timestamp based on normal/adjustable time or free running 1385 * cycle counter. This function is required if physical clock supports a 1386 * free running cycle counter. 1387 */ 1388 struct net_device_ops { 1389 int (*ndo_init)(struct net_device *dev); 1390 void (*ndo_uninit)(struct net_device *dev); 1391 int (*ndo_open)(struct net_device *dev); 1392 int (*ndo_stop)(struct net_device *dev); 1393 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1394 struct net_device *dev); 1395 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1396 struct net_device *dev, 1397 netdev_features_t features); 1398 u16 (*ndo_select_queue)(struct net_device *dev, 1399 struct sk_buff *skb, 1400 struct net_device *sb_dev); 1401 void (*ndo_change_rx_flags)(struct net_device *dev, 1402 int flags); 1403 void (*ndo_set_rx_mode)(struct net_device *dev); 1404 int (*ndo_set_mac_address)(struct net_device *dev, 1405 void *addr); 1406 int (*ndo_validate_addr)(struct net_device *dev); 1407 int (*ndo_do_ioctl)(struct net_device *dev, 1408 struct ifreq *ifr, int cmd); 1409 int (*ndo_eth_ioctl)(struct net_device *dev, 1410 struct ifreq *ifr, int cmd); 1411 int (*ndo_siocbond)(struct net_device *dev, 1412 struct ifreq *ifr, int cmd); 1413 int (*ndo_siocwandev)(struct net_device *dev, 1414 struct if_settings *ifs); 1415 int (*ndo_siocdevprivate)(struct net_device *dev, 1416 struct ifreq *ifr, 1417 void __user *data, int cmd); 1418 int (*ndo_set_config)(struct net_device *dev, 1419 struct ifmap *map); 1420 int (*ndo_change_mtu)(struct net_device *dev, 1421 int new_mtu); 1422 int (*ndo_neigh_setup)(struct net_device *dev, 1423 struct neigh_parms *); 1424 void (*ndo_tx_timeout) (struct net_device *dev, 1425 unsigned int txqueue); 1426 1427 void (*ndo_get_stats64)(struct net_device *dev, 1428 struct rtnl_link_stats64 *storage); 1429 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1430 int (*ndo_get_offload_stats)(int attr_id, 1431 const struct net_device *dev, 1432 void *attr_data); 1433 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1434 1435 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1436 __be16 proto, u16 vid); 1437 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1438 __be16 proto, u16 vid); 1439 #ifdef CONFIG_NET_POLL_CONTROLLER 1440 void (*ndo_poll_controller)(struct net_device *dev); 1441 int (*ndo_netpoll_setup)(struct net_device *dev, 1442 struct netpoll_info *info); 1443 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1444 #endif 1445 int (*ndo_set_vf_mac)(struct net_device *dev, 1446 int queue, u8 *mac); 1447 int (*ndo_set_vf_vlan)(struct net_device *dev, 1448 int queue, u16 vlan, 1449 u8 qos, __be16 proto); 1450 int (*ndo_set_vf_rate)(struct net_device *dev, 1451 int vf, int min_tx_rate, 1452 int max_tx_rate); 1453 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1454 int vf, bool setting); 1455 int (*ndo_set_vf_trust)(struct net_device *dev, 1456 int vf, bool setting); 1457 int (*ndo_get_vf_config)(struct net_device *dev, 1458 int vf, 1459 struct ifla_vf_info *ivf); 1460 int (*ndo_set_vf_link_state)(struct net_device *dev, 1461 int vf, int link_state); 1462 int (*ndo_get_vf_stats)(struct net_device *dev, 1463 int vf, 1464 struct ifla_vf_stats 1465 *vf_stats); 1466 int (*ndo_set_vf_port)(struct net_device *dev, 1467 int vf, 1468 struct nlattr *port[]); 1469 int (*ndo_get_vf_port)(struct net_device *dev, 1470 int vf, struct sk_buff *skb); 1471 int (*ndo_get_vf_guid)(struct net_device *dev, 1472 int vf, 1473 struct ifla_vf_guid *node_guid, 1474 struct ifla_vf_guid *port_guid); 1475 int (*ndo_set_vf_guid)(struct net_device *dev, 1476 int vf, u64 guid, 1477 int guid_type); 1478 int (*ndo_set_vf_rss_query_en)( 1479 struct net_device *dev, 1480 int vf, bool setting); 1481 int (*ndo_setup_tc)(struct net_device *dev, 1482 enum tc_setup_type type, 1483 void *type_data); 1484 #if IS_ENABLED(CONFIG_FCOE) 1485 int (*ndo_fcoe_enable)(struct net_device *dev); 1486 int (*ndo_fcoe_disable)(struct net_device *dev); 1487 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1488 u16 xid, 1489 struct scatterlist *sgl, 1490 unsigned int sgc); 1491 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1492 u16 xid); 1493 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1494 u16 xid, 1495 struct scatterlist *sgl, 1496 unsigned int sgc); 1497 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1498 struct netdev_fcoe_hbainfo *hbainfo); 1499 #endif 1500 1501 #if IS_ENABLED(CONFIG_LIBFCOE) 1502 #define NETDEV_FCOE_WWNN 0 1503 #define NETDEV_FCOE_WWPN 1 1504 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1505 u64 *wwn, int type); 1506 #endif 1507 1508 #ifdef CONFIG_RFS_ACCEL 1509 int (*ndo_rx_flow_steer)(struct net_device *dev, 1510 const struct sk_buff *skb, 1511 u16 rxq_index, 1512 u32 flow_id); 1513 #endif 1514 int (*ndo_add_slave)(struct net_device *dev, 1515 struct net_device *slave_dev, 1516 struct netlink_ext_ack *extack); 1517 int (*ndo_del_slave)(struct net_device *dev, 1518 struct net_device *slave_dev); 1519 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1520 struct sk_buff *skb, 1521 bool all_slaves); 1522 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1523 struct sock *sk); 1524 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1525 netdev_features_t features); 1526 int (*ndo_set_features)(struct net_device *dev, 1527 netdev_features_t features); 1528 int (*ndo_neigh_construct)(struct net_device *dev, 1529 struct neighbour *n); 1530 void (*ndo_neigh_destroy)(struct net_device *dev, 1531 struct neighbour *n); 1532 1533 int (*ndo_fdb_add)(struct ndmsg *ndm, 1534 struct nlattr *tb[], 1535 struct net_device *dev, 1536 const unsigned char *addr, 1537 u16 vid, 1538 u16 flags, 1539 struct netlink_ext_ack *extack); 1540 int (*ndo_fdb_del)(struct ndmsg *ndm, 1541 struct nlattr *tb[], 1542 struct net_device *dev, 1543 const unsigned char *addr, 1544 u16 vid, struct netlink_ext_ack *extack); 1545 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1546 struct nlattr *tb[], 1547 struct net_device *dev, 1548 u16 vid, 1549 struct netlink_ext_ack *extack); 1550 int (*ndo_fdb_dump)(struct sk_buff *skb, 1551 struct netlink_callback *cb, 1552 struct net_device *dev, 1553 struct net_device *filter_dev, 1554 int *idx); 1555 int (*ndo_fdb_get)(struct sk_buff *skb, 1556 struct nlattr *tb[], 1557 struct net_device *dev, 1558 const unsigned char *addr, 1559 u16 vid, u32 portid, u32 seq, 1560 struct netlink_ext_ack *extack); 1561 int (*ndo_bridge_setlink)(struct net_device *dev, 1562 struct nlmsghdr *nlh, 1563 u16 flags, 1564 struct netlink_ext_ack *extack); 1565 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1566 u32 pid, u32 seq, 1567 struct net_device *dev, 1568 u32 filter_mask, 1569 int nlflags); 1570 int (*ndo_bridge_dellink)(struct net_device *dev, 1571 struct nlmsghdr *nlh, 1572 u16 flags); 1573 int (*ndo_change_carrier)(struct net_device *dev, 1574 bool new_carrier); 1575 int (*ndo_get_phys_port_id)(struct net_device *dev, 1576 struct netdev_phys_item_id *ppid); 1577 int (*ndo_get_port_parent_id)(struct net_device *dev, 1578 struct netdev_phys_item_id *ppid); 1579 int (*ndo_get_phys_port_name)(struct net_device *dev, 1580 char *name, size_t len); 1581 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1582 struct net_device *dev); 1583 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1584 void *priv); 1585 1586 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1587 int queue_index, 1588 u32 maxrate); 1589 int (*ndo_get_iflink)(const struct net_device *dev); 1590 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1591 struct sk_buff *skb); 1592 void (*ndo_set_rx_headroom)(struct net_device *dev, 1593 int needed_headroom); 1594 int (*ndo_bpf)(struct net_device *dev, 1595 struct netdev_bpf *bpf); 1596 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1597 struct xdp_frame **xdp, 1598 u32 flags); 1599 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1600 struct xdp_buff *xdp); 1601 int (*ndo_xsk_wakeup)(struct net_device *dev, 1602 u32 queue_id, u32 flags); 1603 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1604 int (*ndo_tunnel_ctl)(struct net_device *dev, 1605 struct ip_tunnel_parm *p, int cmd); 1606 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1607 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1608 struct net_device_path *path); 1609 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1610 const struct skb_shared_hwtstamps *hwtstamps, 1611 bool cycles); 1612 }; 1613 1614 /** 1615 * enum netdev_priv_flags - &struct net_device priv_flags 1616 * 1617 * These are the &struct net_device, they are only set internally 1618 * by drivers and used in the kernel. These flags are invisible to 1619 * userspace; this means that the order of these flags can change 1620 * during any kernel release. 1621 * 1622 * You should have a pretty good reason to be extending these flags. 1623 * 1624 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1625 * @IFF_EBRIDGE: Ethernet bridging device 1626 * @IFF_BONDING: bonding master or slave 1627 * @IFF_ISATAP: ISATAP interface (RFC4214) 1628 * @IFF_WAN_HDLC: WAN HDLC device 1629 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1630 * release skb->dst 1631 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1632 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1633 * @IFF_MACVLAN_PORT: device used as macvlan port 1634 * @IFF_BRIDGE_PORT: device used as bridge port 1635 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1636 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1637 * @IFF_UNICAST_FLT: Supports unicast filtering 1638 * @IFF_TEAM_PORT: device used as team port 1639 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1640 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1641 * change when it's running 1642 * @IFF_MACVLAN: Macvlan device 1643 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1644 * underlying stacked devices 1645 * @IFF_L3MDEV_MASTER: device is an L3 master device 1646 * @IFF_NO_QUEUE: device can run without qdisc attached 1647 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1648 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1649 * @IFF_TEAM: device is a team device 1650 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1651 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1652 * entity (i.e. the master device for bridged veth) 1653 * @IFF_MACSEC: device is a MACsec device 1654 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1655 * @IFF_FAILOVER: device is a failover master device 1656 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1657 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1658 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1659 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1660 * skb_headlen(skb) == 0 (data starts from frag0) 1661 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1662 */ 1663 enum netdev_priv_flags { 1664 IFF_802_1Q_VLAN = 1<<0, 1665 IFF_EBRIDGE = 1<<1, 1666 IFF_BONDING = 1<<2, 1667 IFF_ISATAP = 1<<3, 1668 IFF_WAN_HDLC = 1<<4, 1669 IFF_XMIT_DST_RELEASE = 1<<5, 1670 IFF_DONT_BRIDGE = 1<<6, 1671 IFF_DISABLE_NETPOLL = 1<<7, 1672 IFF_MACVLAN_PORT = 1<<8, 1673 IFF_BRIDGE_PORT = 1<<9, 1674 IFF_OVS_DATAPATH = 1<<10, 1675 IFF_TX_SKB_SHARING = 1<<11, 1676 IFF_UNICAST_FLT = 1<<12, 1677 IFF_TEAM_PORT = 1<<13, 1678 IFF_SUPP_NOFCS = 1<<14, 1679 IFF_LIVE_ADDR_CHANGE = 1<<15, 1680 IFF_MACVLAN = 1<<16, 1681 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1682 IFF_L3MDEV_MASTER = 1<<18, 1683 IFF_NO_QUEUE = 1<<19, 1684 IFF_OPENVSWITCH = 1<<20, 1685 IFF_L3MDEV_SLAVE = 1<<21, 1686 IFF_TEAM = 1<<22, 1687 IFF_RXFH_CONFIGURED = 1<<23, 1688 IFF_PHONY_HEADROOM = 1<<24, 1689 IFF_MACSEC = 1<<25, 1690 IFF_NO_RX_HANDLER = 1<<26, 1691 IFF_FAILOVER = 1<<27, 1692 IFF_FAILOVER_SLAVE = 1<<28, 1693 IFF_L3MDEV_RX_HANDLER = 1<<29, 1694 IFF_LIVE_RENAME_OK = 1<<30, 1695 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1696 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1697 }; 1698 1699 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1700 #define IFF_EBRIDGE IFF_EBRIDGE 1701 #define IFF_BONDING IFF_BONDING 1702 #define IFF_ISATAP IFF_ISATAP 1703 #define IFF_WAN_HDLC IFF_WAN_HDLC 1704 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1705 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1706 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1707 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1708 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1709 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1710 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1711 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1712 #define IFF_TEAM_PORT IFF_TEAM_PORT 1713 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1714 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1715 #define IFF_MACVLAN IFF_MACVLAN 1716 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1717 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1718 #define IFF_NO_QUEUE IFF_NO_QUEUE 1719 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1720 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1721 #define IFF_TEAM IFF_TEAM 1722 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1723 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1724 #define IFF_MACSEC IFF_MACSEC 1725 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1726 #define IFF_FAILOVER IFF_FAILOVER 1727 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1728 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1729 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1730 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1731 1732 /* Specifies the type of the struct net_device::ml_priv pointer */ 1733 enum netdev_ml_priv_type { 1734 ML_PRIV_NONE, 1735 ML_PRIV_CAN, 1736 }; 1737 1738 /** 1739 * struct net_device - The DEVICE structure. 1740 * 1741 * Actually, this whole structure is a big mistake. It mixes I/O 1742 * data with strictly "high-level" data, and it has to know about 1743 * almost every data structure used in the INET module. 1744 * 1745 * @name: This is the first field of the "visible" part of this structure 1746 * (i.e. as seen by users in the "Space.c" file). It is the name 1747 * of the interface. 1748 * 1749 * @name_node: Name hashlist node 1750 * @ifalias: SNMP alias 1751 * @mem_end: Shared memory end 1752 * @mem_start: Shared memory start 1753 * @base_addr: Device I/O address 1754 * @irq: Device IRQ number 1755 * 1756 * @state: Generic network queuing layer state, see netdev_state_t 1757 * @dev_list: The global list of network devices 1758 * @napi_list: List entry used for polling NAPI devices 1759 * @unreg_list: List entry when we are unregistering the 1760 * device; see the function unregister_netdev 1761 * @close_list: List entry used when we are closing the device 1762 * @ptype_all: Device-specific packet handlers for all protocols 1763 * @ptype_specific: Device-specific, protocol-specific packet handlers 1764 * 1765 * @adj_list: Directly linked devices, like slaves for bonding 1766 * @features: Currently active device features 1767 * @hw_features: User-changeable features 1768 * 1769 * @wanted_features: User-requested features 1770 * @vlan_features: Mask of features inheritable by VLAN devices 1771 * 1772 * @hw_enc_features: Mask of features inherited by encapsulating devices 1773 * This field indicates what encapsulation 1774 * offloads the hardware is capable of doing, 1775 * and drivers will need to set them appropriately. 1776 * 1777 * @mpls_features: Mask of features inheritable by MPLS 1778 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1779 * 1780 * @ifindex: interface index 1781 * @group: The group the device belongs to 1782 * 1783 * @stats: Statistics struct, which was left as a legacy, use 1784 * rtnl_link_stats64 instead 1785 * 1786 * @core_stats: core networking counters, 1787 * do not use this in drivers 1788 * @carrier_up_count: Number of times the carrier has been up 1789 * @carrier_down_count: Number of times the carrier has been down 1790 * 1791 * @wireless_handlers: List of functions to handle Wireless Extensions, 1792 * instead of ioctl, 1793 * see <net/iw_handler.h> for details. 1794 * @wireless_data: Instance data managed by the core of wireless extensions 1795 * 1796 * @netdev_ops: Includes several pointers to callbacks, 1797 * if one wants to override the ndo_*() functions 1798 * @ethtool_ops: Management operations 1799 * @l3mdev_ops: Layer 3 master device operations 1800 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1801 * discovery handling. Necessary for e.g. 6LoWPAN. 1802 * @xfrmdev_ops: Transformation offload operations 1803 * @tlsdev_ops: Transport Layer Security offload operations 1804 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1805 * of Layer 2 headers. 1806 * 1807 * @flags: Interface flags (a la BSD) 1808 * @priv_flags: Like 'flags' but invisible to userspace, 1809 * see if.h for the definitions 1810 * @gflags: Global flags ( kept as legacy ) 1811 * @padded: How much padding added by alloc_netdev() 1812 * @operstate: RFC2863 operstate 1813 * @link_mode: Mapping policy to operstate 1814 * @if_port: Selectable AUI, TP, ... 1815 * @dma: DMA channel 1816 * @mtu: Interface MTU value 1817 * @min_mtu: Interface Minimum MTU value 1818 * @max_mtu: Interface Maximum MTU value 1819 * @type: Interface hardware type 1820 * @hard_header_len: Maximum hardware header length. 1821 * @min_header_len: Minimum hardware header length 1822 * 1823 * @needed_headroom: Extra headroom the hardware may need, but not in all 1824 * cases can this be guaranteed 1825 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1826 * cases can this be guaranteed. Some cases also use 1827 * LL_MAX_HEADER instead to allocate the skb 1828 * 1829 * interface address info: 1830 * 1831 * @perm_addr: Permanent hw address 1832 * @addr_assign_type: Hw address assignment type 1833 * @addr_len: Hardware address length 1834 * @upper_level: Maximum depth level of upper devices. 1835 * @lower_level: Maximum depth level of lower devices. 1836 * @neigh_priv_len: Used in neigh_alloc() 1837 * @dev_id: Used to differentiate devices that share 1838 * the same link layer address 1839 * @dev_port: Used to differentiate devices that share 1840 * the same function 1841 * @addr_list_lock: XXX: need comments on this one 1842 * @name_assign_type: network interface name assignment type 1843 * @uc_promisc: Counter that indicates promiscuous mode 1844 * has been enabled due to the need to listen to 1845 * additional unicast addresses in a device that 1846 * does not implement ndo_set_rx_mode() 1847 * @uc: unicast mac addresses 1848 * @mc: multicast mac addresses 1849 * @dev_addrs: list of device hw addresses 1850 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1851 * @promiscuity: Number of times the NIC is told to work in 1852 * promiscuous mode; if it becomes 0 the NIC will 1853 * exit promiscuous mode 1854 * @allmulti: Counter, enables or disables allmulticast mode 1855 * 1856 * @vlan_info: VLAN info 1857 * @dsa_ptr: dsa specific data 1858 * @tipc_ptr: TIPC specific data 1859 * @atalk_ptr: AppleTalk link 1860 * @ip_ptr: IPv4 specific data 1861 * @ip6_ptr: IPv6 specific data 1862 * @ax25_ptr: AX.25 specific data 1863 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1864 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1865 * device struct 1866 * @mpls_ptr: mpls_dev struct pointer 1867 * @mctp_ptr: MCTP specific data 1868 * 1869 * @dev_addr: Hw address (before bcast, 1870 * because most packets are unicast) 1871 * 1872 * @_rx: Array of RX queues 1873 * @num_rx_queues: Number of RX queues 1874 * allocated at register_netdev() time 1875 * @real_num_rx_queues: Number of RX queues currently active in device 1876 * @xdp_prog: XDP sockets filter program pointer 1877 * @gro_flush_timeout: timeout for GRO layer in NAPI 1878 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1879 * allow to avoid NIC hard IRQ, on busy queues. 1880 * 1881 * @rx_handler: handler for received packets 1882 * @rx_handler_data: XXX: need comments on this one 1883 * @miniq_ingress: ingress/clsact qdisc specific data for 1884 * ingress processing 1885 * @ingress_queue: XXX: need comments on this one 1886 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1887 * @broadcast: hw bcast address 1888 * 1889 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1890 * indexed by RX queue number. Assigned by driver. 1891 * This must only be set if the ndo_rx_flow_steer 1892 * operation is defined 1893 * @index_hlist: Device index hash chain 1894 * 1895 * @_tx: Array of TX queues 1896 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1897 * @real_num_tx_queues: Number of TX queues currently active in device 1898 * @qdisc: Root qdisc from userspace point of view 1899 * @tx_queue_len: Max frames per queue allowed 1900 * @tx_global_lock: XXX: need comments on this one 1901 * @xdp_bulkq: XDP device bulk queue 1902 * @xps_maps: all CPUs/RXQs maps for XPS device 1903 * 1904 * @xps_maps: XXX: need comments on this one 1905 * @miniq_egress: clsact qdisc specific data for 1906 * egress processing 1907 * @nf_hooks_egress: netfilter hooks executed for egress packets 1908 * @qdisc_hash: qdisc hash table 1909 * @watchdog_timeo: Represents the timeout that is used by 1910 * the watchdog (see dev_watchdog()) 1911 * @watchdog_timer: List of timers 1912 * 1913 * @proto_down_reason: reason a netdev interface is held down 1914 * @pcpu_refcnt: Number of references to this device 1915 * @dev_refcnt: Number of references to this device 1916 * @refcnt_tracker: Tracker directory for tracked references to this device 1917 * @todo_list: Delayed register/unregister 1918 * @link_watch_list: XXX: need comments on this one 1919 * 1920 * @reg_state: Register/unregister state machine 1921 * @dismantle: Device is going to be freed 1922 * @rtnl_link_state: This enum represents the phases of creating 1923 * a new link 1924 * 1925 * @needs_free_netdev: Should unregister perform free_netdev? 1926 * @priv_destructor: Called from unregister 1927 * @npinfo: XXX: need comments on this one 1928 * @nd_net: Network namespace this network device is inside 1929 * 1930 * @ml_priv: Mid-layer private 1931 * @ml_priv_type: Mid-layer private type 1932 * @lstats: Loopback statistics 1933 * @tstats: Tunnel statistics 1934 * @dstats: Dummy statistics 1935 * @vstats: Virtual ethernet statistics 1936 * 1937 * @garp_port: GARP 1938 * @mrp_port: MRP 1939 * 1940 * @dm_private: Drop monitor private 1941 * 1942 * @dev: Class/net/name entry 1943 * @sysfs_groups: Space for optional device, statistics and wireless 1944 * sysfs groups 1945 * 1946 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1947 * @rtnl_link_ops: Rtnl_link_ops 1948 * 1949 * @gso_max_size: Maximum size of generic segmentation offload 1950 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1951 * @gso_max_segs: Maximum number of segments that can be passed to the 1952 * NIC for GSO 1953 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1954 * 1955 * @dcbnl_ops: Data Center Bridging netlink ops 1956 * @num_tc: Number of traffic classes in the net device 1957 * @tc_to_txq: XXX: need comments on this one 1958 * @prio_tc_map: XXX: need comments on this one 1959 * 1960 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1961 * 1962 * @priomap: XXX: need comments on this one 1963 * @phydev: Physical device may attach itself 1964 * for hardware timestamping 1965 * @sfp_bus: attached &struct sfp_bus structure. 1966 * 1967 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1968 * 1969 * @proto_down: protocol port state information can be sent to the 1970 * switch driver and used to set the phys state of the 1971 * switch port. 1972 * 1973 * @wol_enabled: Wake-on-LAN is enabled 1974 * 1975 * @threaded: napi threaded mode is enabled 1976 * 1977 * @net_notifier_list: List of per-net netdev notifier block 1978 * that follow this device when it is moved 1979 * to another network namespace. 1980 * 1981 * @macsec_ops: MACsec offloading ops 1982 * 1983 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1984 * offload capabilities of the device 1985 * @udp_tunnel_nic: UDP tunnel offload state 1986 * @xdp_state: stores info on attached XDP BPF programs 1987 * 1988 * @nested_level: Used as a parameter of spin_lock_nested() of 1989 * dev->addr_list_lock. 1990 * @unlink_list: As netif_addr_lock() can be called recursively, 1991 * keep a list of interfaces to be deleted. 1992 * @gro_max_size: Maximum size of aggregated packet in generic 1993 * receive offload (GRO) 1994 * 1995 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 1996 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 1997 * @watchdog_dev_tracker: refcount tracker used by watchdog. 1998 * @dev_registered_tracker: tracker for reference held while 1999 * registered 2000 * @offload_xstats_l3: L3 HW stats for this netdevice. 2001 * 2002 * @devlink_port: Pointer to related devlink port structure. 2003 * Assigned by a driver before netdev registration using 2004 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2005 * during the time netdevice is registered. 2006 * 2007 * FIXME: cleanup struct net_device such that network protocol info 2008 * moves out. 2009 */ 2010 2011 struct net_device { 2012 char name[IFNAMSIZ]; 2013 struct netdev_name_node *name_node; 2014 struct dev_ifalias __rcu *ifalias; 2015 /* 2016 * I/O specific fields 2017 * FIXME: Merge these and struct ifmap into one 2018 */ 2019 unsigned long mem_end; 2020 unsigned long mem_start; 2021 unsigned long base_addr; 2022 2023 /* 2024 * Some hardware also needs these fields (state,dev_list, 2025 * napi_list,unreg_list,close_list) but they are not 2026 * part of the usual set specified in Space.c. 2027 */ 2028 2029 unsigned long state; 2030 2031 struct list_head dev_list; 2032 struct list_head napi_list; 2033 struct list_head unreg_list; 2034 struct list_head close_list; 2035 struct list_head ptype_all; 2036 struct list_head ptype_specific; 2037 2038 struct { 2039 struct list_head upper; 2040 struct list_head lower; 2041 } adj_list; 2042 2043 /* Read-mostly cache-line for fast-path access */ 2044 unsigned int flags; 2045 unsigned long long priv_flags; 2046 const struct net_device_ops *netdev_ops; 2047 int ifindex; 2048 unsigned short gflags; 2049 unsigned short hard_header_len; 2050 2051 /* Note : dev->mtu is often read without holding a lock. 2052 * Writers usually hold RTNL. 2053 * It is recommended to use READ_ONCE() to annotate the reads, 2054 * and to use WRITE_ONCE() to annotate the writes. 2055 */ 2056 unsigned int mtu; 2057 unsigned short needed_headroom; 2058 unsigned short needed_tailroom; 2059 2060 netdev_features_t features; 2061 netdev_features_t hw_features; 2062 netdev_features_t wanted_features; 2063 netdev_features_t vlan_features; 2064 netdev_features_t hw_enc_features; 2065 netdev_features_t mpls_features; 2066 netdev_features_t gso_partial_features; 2067 2068 unsigned int min_mtu; 2069 unsigned int max_mtu; 2070 unsigned short type; 2071 unsigned char min_header_len; 2072 unsigned char name_assign_type; 2073 2074 int group; 2075 2076 struct net_device_stats stats; /* not used by modern drivers */ 2077 2078 struct net_device_core_stats __percpu *core_stats; 2079 2080 /* Stats to monitor link on/off, flapping */ 2081 atomic_t carrier_up_count; 2082 atomic_t carrier_down_count; 2083 2084 #ifdef CONFIG_WIRELESS_EXT 2085 const struct iw_handler_def *wireless_handlers; 2086 struct iw_public_data *wireless_data; 2087 #endif 2088 const struct ethtool_ops *ethtool_ops; 2089 #ifdef CONFIG_NET_L3_MASTER_DEV 2090 const struct l3mdev_ops *l3mdev_ops; 2091 #endif 2092 #if IS_ENABLED(CONFIG_IPV6) 2093 const struct ndisc_ops *ndisc_ops; 2094 #endif 2095 2096 #ifdef CONFIG_XFRM_OFFLOAD 2097 const struct xfrmdev_ops *xfrmdev_ops; 2098 #endif 2099 2100 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2101 const struct tlsdev_ops *tlsdev_ops; 2102 #endif 2103 2104 const struct header_ops *header_ops; 2105 2106 unsigned char operstate; 2107 unsigned char link_mode; 2108 2109 unsigned char if_port; 2110 unsigned char dma; 2111 2112 /* Interface address info. */ 2113 unsigned char perm_addr[MAX_ADDR_LEN]; 2114 unsigned char addr_assign_type; 2115 unsigned char addr_len; 2116 unsigned char upper_level; 2117 unsigned char lower_level; 2118 2119 unsigned short neigh_priv_len; 2120 unsigned short dev_id; 2121 unsigned short dev_port; 2122 unsigned short padded; 2123 2124 spinlock_t addr_list_lock; 2125 int irq; 2126 2127 struct netdev_hw_addr_list uc; 2128 struct netdev_hw_addr_list mc; 2129 struct netdev_hw_addr_list dev_addrs; 2130 2131 #ifdef CONFIG_SYSFS 2132 struct kset *queues_kset; 2133 #endif 2134 #ifdef CONFIG_LOCKDEP 2135 struct list_head unlink_list; 2136 #endif 2137 unsigned int promiscuity; 2138 unsigned int allmulti; 2139 bool uc_promisc; 2140 #ifdef CONFIG_LOCKDEP 2141 unsigned char nested_level; 2142 #endif 2143 2144 2145 /* Protocol-specific pointers */ 2146 2147 struct in_device __rcu *ip_ptr; 2148 struct inet6_dev __rcu *ip6_ptr; 2149 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2150 struct vlan_info __rcu *vlan_info; 2151 #endif 2152 #if IS_ENABLED(CONFIG_NET_DSA) 2153 struct dsa_port *dsa_ptr; 2154 #endif 2155 #if IS_ENABLED(CONFIG_TIPC) 2156 struct tipc_bearer __rcu *tipc_ptr; 2157 #endif 2158 #if IS_ENABLED(CONFIG_ATALK) 2159 void *atalk_ptr; 2160 #endif 2161 #if IS_ENABLED(CONFIG_AX25) 2162 void *ax25_ptr; 2163 #endif 2164 #if IS_ENABLED(CONFIG_CFG80211) 2165 struct wireless_dev *ieee80211_ptr; 2166 #endif 2167 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2168 struct wpan_dev *ieee802154_ptr; 2169 #endif 2170 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2171 struct mpls_dev __rcu *mpls_ptr; 2172 #endif 2173 #if IS_ENABLED(CONFIG_MCTP) 2174 struct mctp_dev __rcu *mctp_ptr; 2175 #endif 2176 2177 /* 2178 * Cache lines mostly used on receive path (including eth_type_trans()) 2179 */ 2180 /* Interface address info used in eth_type_trans() */ 2181 const unsigned char *dev_addr; 2182 2183 struct netdev_rx_queue *_rx; 2184 unsigned int num_rx_queues; 2185 unsigned int real_num_rx_queues; 2186 2187 struct bpf_prog __rcu *xdp_prog; 2188 unsigned long gro_flush_timeout; 2189 int napi_defer_hard_irqs; 2190 #define GRO_LEGACY_MAX_SIZE 65536u 2191 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2192 * and shinfo->gso_segs is a 16bit field. 2193 */ 2194 #define GRO_MAX_SIZE (8 * 65535u) 2195 unsigned int gro_max_size; 2196 rx_handler_func_t __rcu *rx_handler; 2197 void __rcu *rx_handler_data; 2198 2199 #ifdef CONFIG_NET_CLS_ACT 2200 struct mini_Qdisc __rcu *miniq_ingress; 2201 #endif 2202 struct netdev_queue __rcu *ingress_queue; 2203 #ifdef CONFIG_NETFILTER_INGRESS 2204 struct nf_hook_entries __rcu *nf_hooks_ingress; 2205 #endif 2206 2207 unsigned char broadcast[MAX_ADDR_LEN]; 2208 #ifdef CONFIG_RFS_ACCEL 2209 struct cpu_rmap *rx_cpu_rmap; 2210 #endif 2211 struct hlist_node index_hlist; 2212 2213 /* 2214 * Cache lines mostly used on transmit path 2215 */ 2216 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2217 unsigned int num_tx_queues; 2218 unsigned int real_num_tx_queues; 2219 struct Qdisc __rcu *qdisc; 2220 unsigned int tx_queue_len; 2221 spinlock_t tx_global_lock; 2222 2223 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2224 2225 #ifdef CONFIG_XPS 2226 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2227 #endif 2228 #ifdef CONFIG_NET_CLS_ACT 2229 struct mini_Qdisc __rcu *miniq_egress; 2230 #endif 2231 #ifdef CONFIG_NETFILTER_EGRESS 2232 struct nf_hook_entries __rcu *nf_hooks_egress; 2233 #endif 2234 2235 #ifdef CONFIG_NET_SCHED 2236 DECLARE_HASHTABLE (qdisc_hash, 4); 2237 #endif 2238 /* These may be needed for future network-power-down code. */ 2239 struct timer_list watchdog_timer; 2240 int watchdog_timeo; 2241 2242 u32 proto_down_reason; 2243 2244 struct list_head todo_list; 2245 2246 #ifdef CONFIG_PCPU_DEV_REFCNT 2247 int __percpu *pcpu_refcnt; 2248 #else 2249 refcount_t dev_refcnt; 2250 #endif 2251 struct ref_tracker_dir refcnt_tracker; 2252 2253 struct list_head link_watch_list; 2254 2255 enum { NETREG_UNINITIALIZED=0, 2256 NETREG_REGISTERED, /* completed register_netdevice */ 2257 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2258 NETREG_UNREGISTERED, /* completed unregister todo */ 2259 NETREG_RELEASED, /* called free_netdev */ 2260 NETREG_DUMMY, /* dummy device for NAPI poll */ 2261 } reg_state:8; 2262 2263 bool dismantle; 2264 2265 enum { 2266 RTNL_LINK_INITIALIZED, 2267 RTNL_LINK_INITIALIZING, 2268 } rtnl_link_state:16; 2269 2270 bool needs_free_netdev; 2271 void (*priv_destructor)(struct net_device *dev); 2272 2273 #ifdef CONFIG_NETPOLL 2274 struct netpoll_info __rcu *npinfo; 2275 #endif 2276 2277 possible_net_t nd_net; 2278 2279 /* mid-layer private */ 2280 void *ml_priv; 2281 enum netdev_ml_priv_type ml_priv_type; 2282 2283 union { 2284 struct pcpu_lstats __percpu *lstats; 2285 struct pcpu_sw_netstats __percpu *tstats; 2286 struct pcpu_dstats __percpu *dstats; 2287 }; 2288 2289 #if IS_ENABLED(CONFIG_GARP) 2290 struct garp_port __rcu *garp_port; 2291 #endif 2292 #if IS_ENABLED(CONFIG_MRP) 2293 struct mrp_port __rcu *mrp_port; 2294 #endif 2295 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2296 struct dm_hw_stat_delta __rcu *dm_private; 2297 #endif 2298 struct device dev; 2299 const struct attribute_group *sysfs_groups[4]; 2300 const struct attribute_group *sysfs_rx_queue_group; 2301 2302 const struct rtnl_link_ops *rtnl_link_ops; 2303 2304 /* for setting kernel sock attribute on TCP connection setup */ 2305 #define GSO_MAX_SEGS 65535u 2306 #define GSO_LEGACY_MAX_SIZE 65536u 2307 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2308 * and shinfo->gso_segs is a 16bit field. 2309 */ 2310 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2311 2312 unsigned int gso_max_size; 2313 #define TSO_LEGACY_MAX_SIZE 65536 2314 #define TSO_MAX_SIZE UINT_MAX 2315 unsigned int tso_max_size; 2316 u16 gso_max_segs; 2317 #define TSO_MAX_SEGS U16_MAX 2318 u16 tso_max_segs; 2319 2320 #ifdef CONFIG_DCB 2321 const struct dcbnl_rtnl_ops *dcbnl_ops; 2322 #endif 2323 s16 num_tc; 2324 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2325 u8 prio_tc_map[TC_BITMASK + 1]; 2326 2327 #if IS_ENABLED(CONFIG_FCOE) 2328 unsigned int fcoe_ddp_xid; 2329 #endif 2330 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2331 struct netprio_map __rcu *priomap; 2332 #endif 2333 struct phy_device *phydev; 2334 struct sfp_bus *sfp_bus; 2335 struct lock_class_key *qdisc_tx_busylock; 2336 bool proto_down; 2337 unsigned wol_enabled:1; 2338 unsigned threaded:1; 2339 2340 struct list_head net_notifier_list; 2341 2342 #if IS_ENABLED(CONFIG_MACSEC) 2343 /* MACsec management functions */ 2344 const struct macsec_ops *macsec_ops; 2345 #endif 2346 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2347 struct udp_tunnel_nic *udp_tunnel_nic; 2348 2349 /* protected by rtnl_lock */ 2350 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2351 2352 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2353 netdevice_tracker linkwatch_dev_tracker; 2354 netdevice_tracker watchdog_dev_tracker; 2355 netdevice_tracker dev_registered_tracker; 2356 struct rtnl_hw_stats64 *offload_xstats_l3; 2357 2358 struct devlink_port *devlink_port; 2359 }; 2360 #define to_net_dev(d) container_of(d, struct net_device, dev) 2361 2362 /* 2363 * Driver should use this to assign devlink port instance to a netdevice 2364 * before it registers the netdevice. Therefore devlink_port is static 2365 * during the netdev lifetime after it is registered. 2366 */ 2367 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2368 ({ \ 2369 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2370 ((dev)->devlink_port = (port)); \ 2371 }) 2372 2373 static inline bool netif_elide_gro(const struct net_device *dev) 2374 { 2375 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2376 return true; 2377 return false; 2378 } 2379 2380 #define NETDEV_ALIGN 32 2381 2382 static inline 2383 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2384 { 2385 return dev->prio_tc_map[prio & TC_BITMASK]; 2386 } 2387 2388 static inline 2389 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2390 { 2391 if (tc >= dev->num_tc) 2392 return -EINVAL; 2393 2394 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2395 return 0; 2396 } 2397 2398 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2399 void netdev_reset_tc(struct net_device *dev); 2400 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2401 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2402 2403 static inline 2404 int netdev_get_num_tc(struct net_device *dev) 2405 { 2406 return dev->num_tc; 2407 } 2408 2409 static inline void net_prefetch(void *p) 2410 { 2411 prefetch(p); 2412 #if L1_CACHE_BYTES < 128 2413 prefetch((u8 *)p + L1_CACHE_BYTES); 2414 #endif 2415 } 2416 2417 static inline void net_prefetchw(void *p) 2418 { 2419 prefetchw(p); 2420 #if L1_CACHE_BYTES < 128 2421 prefetchw((u8 *)p + L1_CACHE_BYTES); 2422 #endif 2423 } 2424 2425 void netdev_unbind_sb_channel(struct net_device *dev, 2426 struct net_device *sb_dev); 2427 int netdev_bind_sb_channel_queue(struct net_device *dev, 2428 struct net_device *sb_dev, 2429 u8 tc, u16 count, u16 offset); 2430 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2431 static inline int netdev_get_sb_channel(struct net_device *dev) 2432 { 2433 return max_t(int, -dev->num_tc, 0); 2434 } 2435 2436 static inline 2437 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2438 unsigned int index) 2439 { 2440 return &dev->_tx[index]; 2441 } 2442 2443 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2444 const struct sk_buff *skb) 2445 { 2446 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2447 } 2448 2449 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2450 void (*f)(struct net_device *, 2451 struct netdev_queue *, 2452 void *), 2453 void *arg) 2454 { 2455 unsigned int i; 2456 2457 for (i = 0; i < dev->num_tx_queues; i++) 2458 f(dev, &dev->_tx[i], arg); 2459 } 2460 2461 #define netdev_lockdep_set_classes(dev) \ 2462 { \ 2463 static struct lock_class_key qdisc_tx_busylock_key; \ 2464 static struct lock_class_key qdisc_xmit_lock_key; \ 2465 static struct lock_class_key dev_addr_list_lock_key; \ 2466 unsigned int i; \ 2467 \ 2468 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2469 lockdep_set_class(&(dev)->addr_list_lock, \ 2470 &dev_addr_list_lock_key); \ 2471 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2472 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2473 &qdisc_xmit_lock_key); \ 2474 } 2475 2476 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2477 struct net_device *sb_dev); 2478 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2479 struct sk_buff *skb, 2480 struct net_device *sb_dev); 2481 2482 /* returns the headroom that the master device needs to take in account 2483 * when forwarding to this dev 2484 */ 2485 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2486 { 2487 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2488 } 2489 2490 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2491 { 2492 if (dev->netdev_ops->ndo_set_rx_headroom) 2493 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2494 } 2495 2496 /* set the device rx headroom to the dev's default */ 2497 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2498 { 2499 netdev_set_rx_headroom(dev, -1); 2500 } 2501 2502 static inline void *netdev_get_ml_priv(struct net_device *dev, 2503 enum netdev_ml_priv_type type) 2504 { 2505 if (dev->ml_priv_type != type) 2506 return NULL; 2507 2508 return dev->ml_priv; 2509 } 2510 2511 static inline void netdev_set_ml_priv(struct net_device *dev, 2512 void *ml_priv, 2513 enum netdev_ml_priv_type type) 2514 { 2515 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2516 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2517 dev->ml_priv_type, type); 2518 WARN(!dev->ml_priv_type && dev->ml_priv, 2519 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2520 2521 dev->ml_priv = ml_priv; 2522 dev->ml_priv_type = type; 2523 } 2524 2525 /* 2526 * Net namespace inlines 2527 */ 2528 static inline 2529 struct net *dev_net(const struct net_device *dev) 2530 { 2531 return read_pnet(&dev->nd_net); 2532 } 2533 2534 static inline 2535 void dev_net_set(struct net_device *dev, struct net *net) 2536 { 2537 write_pnet(&dev->nd_net, net); 2538 } 2539 2540 /** 2541 * netdev_priv - access network device private data 2542 * @dev: network device 2543 * 2544 * Get network device private data 2545 */ 2546 static inline void *netdev_priv(const struct net_device *dev) 2547 { 2548 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2549 } 2550 2551 /* Set the sysfs physical device reference for the network logical device 2552 * if set prior to registration will cause a symlink during initialization. 2553 */ 2554 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2555 2556 /* Set the sysfs device type for the network logical device to allow 2557 * fine-grained identification of different network device types. For 2558 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2559 */ 2560 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2561 2562 /* Default NAPI poll() weight 2563 * Device drivers are strongly advised to not use bigger value 2564 */ 2565 #define NAPI_POLL_WEIGHT 64 2566 2567 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2568 int (*poll)(struct napi_struct *, int), int weight); 2569 2570 /** 2571 * netif_napi_add() - initialize a NAPI context 2572 * @dev: network device 2573 * @napi: NAPI context 2574 * @poll: polling function 2575 * 2576 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2577 * *any* of the other NAPI-related functions. 2578 */ 2579 static inline void 2580 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2581 int (*poll)(struct napi_struct *, int)) 2582 { 2583 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2584 } 2585 2586 static inline void 2587 netif_napi_add_tx_weight(struct net_device *dev, 2588 struct napi_struct *napi, 2589 int (*poll)(struct napi_struct *, int), 2590 int weight) 2591 { 2592 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2593 netif_napi_add_weight(dev, napi, poll, weight); 2594 } 2595 2596 /** 2597 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2598 * @dev: network device 2599 * @napi: NAPI context 2600 * @poll: polling function 2601 * 2602 * This variant of netif_napi_add() should be used from drivers using NAPI 2603 * to exclusively poll a TX queue. 2604 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2605 */ 2606 static inline void netif_napi_add_tx(struct net_device *dev, 2607 struct napi_struct *napi, 2608 int (*poll)(struct napi_struct *, int)) 2609 { 2610 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2611 } 2612 2613 /** 2614 * __netif_napi_del - remove a NAPI context 2615 * @napi: NAPI context 2616 * 2617 * Warning: caller must observe RCU grace period before freeing memory 2618 * containing @napi. Drivers might want to call this helper to combine 2619 * all the needed RCU grace periods into a single one. 2620 */ 2621 void __netif_napi_del(struct napi_struct *napi); 2622 2623 /** 2624 * netif_napi_del - remove a NAPI context 2625 * @napi: NAPI context 2626 * 2627 * netif_napi_del() removes a NAPI context from the network device NAPI list 2628 */ 2629 static inline void netif_napi_del(struct napi_struct *napi) 2630 { 2631 __netif_napi_del(napi); 2632 synchronize_net(); 2633 } 2634 2635 struct packet_type { 2636 __be16 type; /* This is really htons(ether_type). */ 2637 bool ignore_outgoing; 2638 struct net_device *dev; /* NULL is wildcarded here */ 2639 netdevice_tracker dev_tracker; 2640 int (*func) (struct sk_buff *, 2641 struct net_device *, 2642 struct packet_type *, 2643 struct net_device *); 2644 void (*list_func) (struct list_head *, 2645 struct packet_type *, 2646 struct net_device *); 2647 bool (*id_match)(struct packet_type *ptype, 2648 struct sock *sk); 2649 struct net *af_packet_net; 2650 void *af_packet_priv; 2651 struct list_head list; 2652 }; 2653 2654 struct offload_callbacks { 2655 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2656 netdev_features_t features); 2657 struct sk_buff *(*gro_receive)(struct list_head *head, 2658 struct sk_buff *skb); 2659 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2660 }; 2661 2662 struct packet_offload { 2663 __be16 type; /* This is really htons(ether_type). */ 2664 u16 priority; 2665 struct offload_callbacks callbacks; 2666 struct list_head list; 2667 }; 2668 2669 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2670 struct pcpu_sw_netstats { 2671 u64_stats_t rx_packets; 2672 u64_stats_t rx_bytes; 2673 u64_stats_t tx_packets; 2674 u64_stats_t tx_bytes; 2675 struct u64_stats_sync syncp; 2676 } __aligned(4 * sizeof(u64)); 2677 2678 struct pcpu_lstats { 2679 u64_stats_t packets; 2680 u64_stats_t bytes; 2681 struct u64_stats_sync syncp; 2682 } __aligned(2 * sizeof(u64)); 2683 2684 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2685 2686 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2687 { 2688 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2689 2690 u64_stats_update_begin(&tstats->syncp); 2691 u64_stats_add(&tstats->rx_bytes, len); 2692 u64_stats_inc(&tstats->rx_packets); 2693 u64_stats_update_end(&tstats->syncp); 2694 } 2695 2696 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2697 unsigned int packets, 2698 unsigned int len) 2699 { 2700 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2701 2702 u64_stats_update_begin(&tstats->syncp); 2703 u64_stats_add(&tstats->tx_bytes, len); 2704 u64_stats_add(&tstats->tx_packets, packets); 2705 u64_stats_update_end(&tstats->syncp); 2706 } 2707 2708 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2709 { 2710 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2711 2712 u64_stats_update_begin(&lstats->syncp); 2713 u64_stats_add(&lstats->bytes, len); 2714 u64_stats_inc(&lstats->packets); 2715 u64_stats_update_end(&lstats->syncp); 2716 } 2717 2718 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2719 ({ \ 2720 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2721 if (pcpu_stats) { \ 2722 int __cpu; \ 2723 for_each_possible_cpu(__cpu) { \ 2724 typeof(type) *stat; \ 2725 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2726 u64_stats_init(&stat->syncp); \ 2727 } \ 2728 } \ 2729 pcpu_stats; \ 2730 }) 2731 2732 #define netdev_alloc_pcpu_stats(type) \ 2733 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2734 2735 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2736 ({ \ 2737 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2738 if (pcpu_stats) { \ 2739 int __cpu; \ 2740 for_each_possible_cpu(__cpu) { \ 2741 typeof(type) *stat; \ 2742 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2743 u64_stats_init(&stat->syncp); \ 2744 } \ 2745 } \ 2746 pcpu_stats; \ 2747 }) 2748 2749 enum netdev_lag_tx_type { 2750 NETDEV_LAG_TX_TYPE_UNKNOWN, 2751 NETDEV_LAG_TX_TYPE_RANDOM, 2752 NETDEV_LAG_TX_TYPE_BROADCAST, 2753 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2754 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2755 NETDEV_LAG_TX_TYPE_HASH, 2756 }; 2757 2758 enum netdev_lag_hash { 2759 NETDEV_LAG_HASH_NONE, 2760 NETDEV_LAG_HASH_L2, 2761 NETDEV_LAG_HASH_L34, 2762 NETDEV_LAG_HASH_L23, 2763 NETDEV_LAG_HASH_E23, 2764 NETDEV_LAG_HASH_E34, 2765 NETDEV_LAG_HASH_VLAN_SRCMAC, 2766 NETDEV_LAG_HASH_UNKNOWN, 2767 }; 2768 2769 struct netdev_lag_upper_info { 2770 enum netdev_lag_tx_type tx_type; 2771 enum netdev_lag_hash hash_type; 2772 }; 2773 2774 struct netdev_lag_lower_state_info { 2775 u8 link_up : 1, 2776 tx_enabled : 1; 2777 }; 2778 2779 #include <linux/notifier.h> 2780 2781 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2782 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2783 * adding new types. 2784 */ 2785 enum netdev_cmd { 2786 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2787 NETDEV_DOWN, 2788 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2789 detected a hardware crash and restarted 2790 - we can use this eg to kick tcp sessions 2791 once done */ 2792 NETDEV_CHANGE, /* Notify device state change */ 2793 NETDEV_REGISTER, 2794 NETDEV_UNREGISTER, 2795 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2796 NETDEV_CHANGEADDR, /* notify after the address change */ 2797 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2798 NETDEV_GOING_DOWN, 2799 NETDEV_CHANGENAME, 2800 NETDEV_FEAT_CHANGE, 2801 NETDEV_BONDING_FAILOVER, 2802 NETDEV_PRE_UP, 2803 NETDEV_PRE_TYPE_CHANGE, 2804 NETDEV_POST_TYPE_CHANGE, 2805 NETDEV_POST_INIT, 2806 NETDEV_PRE_UNINIT, 2807 NETDEV_RELEASE, 2808 NETDEV_NOTIFY_PEERS, 2809 NETDEV_JOIN, 2810 NETDEV_CHANGEUPPER, 2811 NETDEV_RESEND_IGMP, 2812 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2813 NETDEV_CHANGEINFODATA, 2814 NETDEV_BONDING_INFO, 2815 NETDEV_PRECHANGEUPPER, 2816 NETDEV_CHANGELOWERSTATE, 2817 NETDEV_UDP_TUNNEL_PUSH_INFO, 2818 NETDEV_UDP_TUNNEL_DROP_INFO, 2819 NETDEV_CHANGE_TX_QUEUE_LEN, 2820 NETDEV_CVLAN_FILTER_PUSH_INFO, 2821 NETDEV_CVLAN_FILTER_DROP_INFO, 2822 NETDEV_SVLAN_FILTER_PUSH_INFO, 2823 NETDEV_SVLAN_FILTER_DROP_INFO, 2824 NETDEV_OFFLOAD_XSTATS_ENABLE, 2825 NETDEV_OFFLOAD_XSTATS_DISABLE, 2826 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2827 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2828 }; 2829 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2830 2831 int register_netdevice_notifier(struct notifier_block *nb); 2832 int unregister_netdevice_notifier(struct notifier_block *nb); 2833 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2834 int unregister_netdevice_notifier_net(struct net *net, 2835 struct notifier_block *nb); 2836 int register_netdevice_notifier_dev_net(struct net_device *dev, 2837 struct notifier_block *nb, 2838 struct netdev_net_notifier *nn); 2839 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2840 struct notifier_block *nb, 2841 struct netdev_net_notifier *nn); 2842 2843 struct netdev_notifier_info { 2844 struct net_device *dev; 2845 struct netlink_ext_ack *extack; 2846 }; 2847 2848 struct netdev_notifier_info_ext { 2849 struct netdev_notifier_info info; /* must be first */ 2850 union { 2851 u32 mtu; 2852 } ext; 2853 }; 2854 2855 struct netdev_notifier_change_info { 2856 struct netdev_notifier_info info; /* must be first */ 2857 unsigned int flags_changed; 2858 }; 2859 2860 struct netdev_notifier_changeupper_info { 2861 struct netdev_notifier_info info; /* must be first */ 2862 struct net_device *upper_dev; /* new upper dev */ 2863 bool master; /* is upper dev master */ 2864 bool linking; /* is the notification for link or unlink */ 2865 void *upper_info; /* upper dev info */ 2866 }; 2867 2868 struct netdev_notifier_changelowerstate_info { 2869 struct netdev_notifier_info info; /* must be first */ 2870 void *lower_state_info; /* is lower dev state */ 2871 }; 2872 2873 struct netdev_notifier_pre_changeaddr_info { 2874 struct netdev_notifier_info info; /* must be first */ 2875 const unsigned char *dev_addr; 2876 }; 2877 2878 enum netdev_offload_xstats_type { 2879 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2880 }; 2881 2882 struct netdev_notifier_offload_xstats_info { 2883 struct netdev_notifier_info info; /* must be first */ 2884 enum netdev_offload_xstats_type type; 2885 2886 union { 2887 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2888 struct netdev_notifier_offload_xstats_rd *report_delta; 2889 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2890 struct netdev_notifier_offload_xstats_ru *report_used; 2891 }; 2892 }; 2893 2894 int netdev_offload_xstats_enable(struct net_device *dev, 2895 enum netdev_offload_xstats_type type, 2896 struct netlink_ext_ack *extack); 2897 int netdev_offload_xstats_disable(struct net_device *dev, 2898 enum netdev_offload_xstats_type type); 2899 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2900 enum netdev_offload_xstats_type type); 2901 int netdev_offload_xstats_get(struct net_device *dev, 2902 enum netdev_offload_xstats_type type, 2903 struct rtnl_hw_stats64 *stats, bool *used, 2904 struct netlink_ext_ack *extack); 2905 void 2906 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2907 const struct rtnl_hw_stats64 *stats); 2908 void 2909 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2910 void netdev_offload_xstats_push_delta(struct net_device *dev, 2911 enum netdev_offload_xstats_type type, 2912 const struct rtnl_hw_stats64 *stats); 2913 2914 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2915 struct net_device *dev) 2916 { 2917 info->dev = dev; 2918 info->extack = NULL; 2919 } 2920 2921 static inline struct net_device * 2922 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2923 { 2924 return info->dev; 2925 } 2926 2927 static inline struct netlink_ext_ack * 2928 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2929 { 2930 return info->extack; 2931 } 2932 2933 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2934 2935 2936 extern rwlock_t dev_base_lock; /* Device list lock */ 2937 2938 #define for_each_netdev(net, d) \ 2939 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2940 #define for_each_netdev_reverse(net, d) \ 2941 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2942 #define for_each_netdev_rcu(net, d) \ 2943 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2944 #define for_each_netdev_safe(net, d, n) \ 2945 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2946 #define for_each_netdev_continue(net, d) \ 2947 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2948 #define for_each_netdev_continue_reverse(net, d) \ 2949 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2950 dev_list) 2951 #define for_each_netdev_continue_rcu(net, d) \ 2952 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2953 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2954 for_each_netdev_rcu(&init_net, slave) \ 2955 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2956 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2957 2958 static inline struct net_device *next_net_device(struct net_device *dev) 2959 { 2960 struct list_head *lh; 2961 struct net *net; 2962 2963 net = dev_net(dev); 2964 lh = dev->dev_list.next; 2965 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2966 } 2967 2968 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2969 { 2970 struct list_head *lh; 2971 struct net *net; 2972 2973 net = dev_net(dev); 2974 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2975 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2976 } 2977 2978 static inline struct net_device *first_net_device(struct net *net) 2979 { 2980 return list_empty(&net->dev_base_head) ? NULL : 2981 net_device_entry(net->dev_base_head.next); 2982 } 2983 2984 static inline struct net_device *first_net_device_rcu(struct net *net) 2985 { 2986 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2987 2988 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2989 } 2990 2991 int netdev_boot_setup_check(struct net_device *dev); 2992 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2993 const char *hwaddr); 2994 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2995 void dev_add_pack(struct packet_type *pt); 2996 void dev_remove_pack(struct packet_type *pt); 2997 void __dev_remove_pack(struct packet_type *pt); 2998 void dev_add_offload(struct packet_offload *po); 2999 void dev_remove_offload(struct packet_offload *po); 3000 3001 int dev_get_iflink(const struct net_device *dev); 3002 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3003 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3004 struct net_device_path_stack *stack); 3005 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3006 unsigned short mask); 3007 struct net_device *dev_get_by_name(struct net *net, const char *name); 3008 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3009 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3010 bool netdev_name_in_use(struct net *net, const char *name); 3011 int dev_alloc_name(struct net_device *dev, const char *name); 3012 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3013 void dev_close(struct net_device *dev); 3014 void dev_close_many(struct list_head *head, bool unlink); 3015 void dev_disable_lro(struct net_device *dev); 3016 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3017 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3018 struct net_device *sb_dev); 3019 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3020 struct net_device *sb_dev); 3021 3022 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3023 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3024 3025 static inline int dev_queue_xmit(struct sk_buff *skb) 3026 { 3027 return __dev_queue_xmit(skb, NULL); 3028 } 3029 3030 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3031 struct net_device *sb_dev) 3032 { 3033 return __dev_queue_xmit(skb, sb_dev); 3034 } 3035 3036 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3037 { 3038 int ret; 3039 3040 ret = __dev_direct_xmit(skb, queue_id); 3041 if (!dev_xmit_complete(ret)) 3042 kfree_skb(skb); 3043 return ret; 3044 } 3045 3046 int register_netdevice(struct net_device *dev); 3047 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3048 void unregister_netdevice_many(struct list_head *head); 3049 static inline void unregister_netdevice(struct net_device *dev) 3050 { 3051 unregister_netdevice_queue(dev, NULL); 3052 } 3053 3054 int netdev_refcnt_read(const struct net_device *dev); 3055 void free_netdev(struct net_device *dev); 3056 void netdev_freemem(struct net_device *dev); 3057 int init_dummy_netdev(struct net_device *dev); 3058 3059 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3060 struct sk_buff *skb, 3061 bool all_slaves); 3062 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3063 struct sock *sk); 3064 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3065 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3066 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3067 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3068 int dev_restart(struct net_device *dev); 3069 3070 3071 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3072 unsigned short type, 3073 const void *daddr, const void *saddr, 3074 unsigned int len) 3075 { 3076 if (!dev->header_ops || !dev->header_ops->create) 3077 return 0; 3078 3079 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3080 } 3081 3082 static inline int dev_parse_header(const struct sk_buff *skb, 3083 unsigned char *haddr) 3084 { 3085 const struct net_device *dev = skb->dev; 3086 3087 if (!dev->header_ops || !dev->header_ops->parse) 3088 return 0; 3089 return dev->header_ops->parse(skb, haddr); 3090 } 3091 3092 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3093 { 3094 const struct net_device *dev = skb->dev; 3095 3096 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3097 return 0; 3098 return dev->header_ops->parse_protocol(skb); 3099 } 3100 3101 /* ll_header must have at least hard_header_len allocated */ 3102 static inline bool dev_validate_header(const struct net_device *dev, 3103 char *ll_header, int len) 3104 { 3105 if (likely(len >= dev->hard_header_len)) 3106 return true; 3107 if (len < dev->min_header_len) 3108 return false; 3109 3110 if (capable(CAP_SYS_RAWIO)) { 3111 memset(ll_header + len, 0, dev->hard_header_len - len); 3112 return true; 3113 } 3114 3115 if (dev->header_ops && dev->header_ops->validate) 3116 return dev->header_ops->validate(ll_header, len); 3117 3118 return false; 3119 } 3120 3121 static inline bool dev_has_header(const struct net_device *dev) 3122 { 3123 return dev->header_ops && dev->header_ops->create; 3124 } 3125 3126 /* 3127 * Incoming packets are placed on per-CPU queues 3128 */ 3129 struct softnet_data { 3130 struct list_head poll_list; 3131 struct sk_buff_head process_queue; 3132 3133 /* stats */ 3134 unsigned int processed; 3135 unsigned int time_squeeze; 3136 unsigned int received_rps; 3137 #ifdef CONFIG_RPS 3138 struct softnet_data *rps_ipi_list; 3139 #endif 3140 #ifdef CONFIG_NET_FLOW_LIMIT 3141 struct sd_flow_limit __rcu *flow_limit; 3142 #endif 3143 struct Qdisc *output_queue; 3144 struct Qdisc **output_queue_tailp; 3145 struct sk_buff *completion_queue; 3146 #ifdef CONFIG_XFRM_OFFLOAD 3147 struct sk_buff_head xfrm_backlog; 3148 #endif 3149 /* written and read only by owning cpu: */ 3150 struct { 3151 u16 recursion; 3152 u8 more; 3153 #ifdef CONFIG_NET_EGRESS 3154 u8 skip_txqueue; 3155 #endif 3156 } xmit; 3157 #ifdef CONFIG_RPS 3158 /* input_queue_head should be written by cpu owning this struct, 3159 * and only read by other cpus. Worth using a cache line. 3160 */ 3161 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3162 3163 /* Elements below can be accessed between CPUs for RPS/RFS */ 3164 call_single_data_t csd ____cacheline_aligned_in_smp; 3165 struct softnet_data *rps_ipi_next; 3166 unsigned int cpu; 3167 unsigned int input_queue_tail; 3168 #endif 3169 unsigned int dropped; 3170 struct sk_buff_head input_pkt_queue; 3171 struct napi_struct backlog; 3172 3173 /* Another possibly contended cache line */ 3174 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3175 int defer_count; 3176 int defer_ipi_scheduled; 3177 struct sk_buff *defer_list; 3178 call_single_data_t defer_csd; 3179 }; 3180 3181 static inline void input_queue_head_incr(struct softnet_data *sd) 3182 { 3183 #ifdef CONFIG_RPS 3184 sd->input_queue_head++; 3185 #endif 3186 } 3187 3188 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3189 unsigned int *qtail) 3190 { 3191 #ifdef CONFIG_RPS 3192 *qtail = ++sd->input_queue_tail; 3193 #endif 3194 } 3195 3196 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3197 3198 static inline int dev_recursion_level(void) 3199 { 3200 return this_cpu_read(softnet_data.xmit.recursion); 3201 } 3202 3203 #define XMIT_RECURSION_LIMIT 8 3204 static inline bool dev_xmit_recursion(void) 3205 { 3206 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3207 XMIT_RECURSION_LIMIT); 3208 } 3209 3210 static inline void dev_xmit_recursion_inc(void) 3211 { 3212 __this_cpu_inc(softnet_data.xmit.recursion); 3213 } 3214 3215 static inline void dev_xmit_recursion_dec(void) 3216 { 3217 __this_cpu_dec(softnet_data.xmit.recursion); 3218 } 3219 3220 void __netif_schedule(struct Qdisc *q); 3221 void netif_schedule_queue(struct netdev_queue *txq); 3222 3223 static inline void netif_tx_schedule_all(struct net_device *dev) 3224 { 3225 unsigned int i; 3226 3227 for (i = 0; i < dev->num_tx_queues; i++) 3228 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3229 } 3230 3231 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3232 { 3233 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3234 } 3235 3236 /** 3237 * netif_start_queue - allow transmit 3238 * @dev: network device 3239 * 3240 * Allow upper layers to call the device hard_start_xmit routine. 3241 */ 3242 static inline void netif_start_queue(struct net_device *dev) 3243 { 3244 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3245 } 3246 3247 static inline void netif_tx_start_all_queues(struct net_device *dev) 3248 { 3249 unsigned int i; 3250 3251 for (i = 0; i < dev->num_tx_queues; i++) { 3252 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3253 netif_tx_start_queue(txq); 3254 } 3255 } 3256 3257 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3258 3259 /** 3260 * netif_wake_queue - restart transmit 3261 * @dev: network device 3262 * 3263 * Allow upper layers to call the device hard_start_xmit routine. 3264 * Used for flow control when transmit resources are available. 3265 */ 3266 static inline void netif_wake_queue(struct net_device *dev) 3267 { 3268 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3269 } 3270 3271 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3272 { 3273 unsigned int i; 3274 3275 for (i = 0; i < dev->num_tx_queues; i++) { 3276 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3277 netif_tx_wake_queue(txq); 3278 } 3279 } 3280 3281 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3282 { 3283 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3284 } 3285 3286 /** 3287 * netif_stop_queue - stop transmitted packets 3288 * @dev: network device 3289 * 3290 * Stop upper layers calling the device hard_start_xmit routine. 3291 * Used for flow control when transmit resources are unavailable. 3292 */ 3293 static inline void netif_stop_queue(struct net_device *dev) 3294 { 3295 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3296 } 3297 3298 void netif_tx_stop_all_queues(struct net_device *dev); 3299 3300 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3301 { 3302 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3303 } 3304 3305 /** 3306 * netif_queue_stopped - test if transmit queue is flowblocked 3307 * @dev: network device 3308 * 3309 * Test if transmit queue on device is currently unable to send. 3310 */ 3311 static inline bool netif_queue_stopped(const struct net_device *dev) 3312 { 3313 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3314 } 3315 3316 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3317 { 3318 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3319 } 3320 3321 static inline bool 3322 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3323 { 3324 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3325 } 3326 3327 static inline bool 3328 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3329 { 3330 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3331 } 3332 3333 /** 3334 * netdev_queue_set_dql_min_limit - set dql minimum limit 3335 * @dev_queue: pointer to transmit queue 3336 * @min_limit: dql minimum limit 3337 * 3338 * Forces xmit_more() to return true until the minimum threshold 3339 * defined by @min_limit is reached (or until the tx queue is 3340 * empty). Warning: to be use with care, misuse will impact the 3341 * latency. 3342 */ 3343 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3344 unsigned int min_limit) 3345 { 3346 #ifdef CONFIG_BQL 3347 dev_queue->dql.min_limit = min_limit; 3348 #endif 3349 } 3350 3351 /** 3352 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3353 * @dev_queue: pointer to transmit queue 3354 * 3355 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3356 * to give appropriate hint to the CPU. 3357 */ 3358 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3359 { 3360 #ifdef CONFIG_BQL 3361 prefetchw(&dev_queue->dql.num_queued); 3362 #endif 3363 } 3364 3365 /** 3366 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3367 * @dev_queue: pointer to transmit queue 3368 * 3369 * BQL enabled drivers might use this helper in their TX completion path, 3370 * to give appropriate hint to the CPU. 3371 */ 3372 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3373 { 3374 #ifdef CONFIG_BQL 3375 prefetchw(&dev_queue->dql.limit); 3376 #endif 3377 } 3378 3379 /** 3380 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3381 * @dev_queue: network device queue 3382 * @bytes: number of bytes queued to the device queue 3383 * 3384 * Report the number of bytes queued for sending/completion to the network 3385 * device hardware queue. @bytes should be a good approximation and should 3386 * exactly match netdev_completed_queue() @bytes. 3387 * This is typically called once per packet, from ndo_start_xmit(). 3388 */ 3389 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3390 unsigned int bytes) 3391 { 3392 #ifdef CONFIG_BQL 3393 dql_queued(&dev_queue->dql, bytes); 3394 3395 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3396 return; 3397 3398 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3399 3400 /* 3401 * The XOFF flag must be set before checking the dql_avail below, 3402 * because in netdev_tx_completed_queue we update the dql_completed 3403 * before checking the XOFF flag. 3404 */ 3405 smp_mb(); 3406 3407 /* check again in case another CPU has just made room avail */ 3408 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3409 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3410 #endif 3411 } 3412 3413 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3414 * that they should not test BQL status themselves. 3415 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3416 * skb of a batch. 3417 * Returns true if the doorbell must be used to kick the NIC. 3418 */ 3419 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3420 unsigned int bytes, 3421 bool xmit_more) 3422 { 3423 if (xmit_more) { 3424 #ifdef CONFIG_BQL 3425 dql_queued(&dev_queue->dql, bytes); 3426 #endif 3427 return netif_tx_queue_stopped(dev_queue); 3428 } 3429 netdev_tx_sent_queue(dev_queue, bytes); 3430 return true; 3431 } 3432 3433 /** 3434 * netdev_sent_queue - report the number of bytes queued to hardware 3435 * @dev: network device 3436 * @bytes: number of bytes queued to the hardware device queue 3437 * 3438 * Report the number of bytes queued for sending/completion to the network 3439 * device hardware queue#0. @bytes should be a good approximation and should 3440 * exactly match netdev_completed_queue() @bytes. 3441 * This is typically called once per packet, from ndo_start_xmit(). 3442 */ 3443 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3444 { 3445 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3446 } 3447 3448 static inline bool __netdev_sent_queue(struct net_device *dev, 3449 unsigned int bytes, 3450 bool xmit_more) 3451 { 3452 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3453 xmit_more); 3454 } 3455 3456 /** 3457 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3458 * @dev_queue: network device queue 3459 * @pkts: number of packets (currently ignored) 3460 * @bytes: number of bytes dequeued from the device queue 3461 * 3462 * Must be called at most once per TX completion round (and not per 3463 * individual packet), so that BQL can adjust its limits appropriately. 3464 */ 3465 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3466 unsigned int pkts, unsigned int bytes) 3467 { 3468 #ifdef CONFIG_BQL 3469 if (unlikely(!bytes)) 3470 return; 3471 3472 dql_completed(&dev_queue->dql, bytes); 3473 3474 /* 3475 * Without the memory barrier there is a small possiblity that 3476 * netdev_tx_sent_queue will miss the update and cause the queue to 3477 * be stopped forever 3478 */ 3479 smp_mb(); 3480 3481 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3482 return; 3483 3484 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3485 netif_schedule_queue(dev_queue); 3486 #endif 3487 } 3488 3489 /** 3490 * netdev_completed_queue - report bytes and packets completed by device 3491 * @dev: network device 3492 * @pkts: actual number of packets sent over the medium 3493 * @bytes: actual number of bytes sent over the medium 3494 * 3495 * Report the number of bytes and packets transmitted by the network device 3496 * hardware queue over the physical medium, @bytes must exactly match the 3497 * @bytes amount passed to netdev_sent_queue() 3498 */ 3499 static inline void netdev_completed_queue(struct net_device *dev, 3500 unsigned int pkts, unsigned int bytes) 3501 { 3502 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3503 } 3504 3505 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3506 { 3507 #ifdef CONFIG_BQL 3508 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3509 dql_reset(&q->dql); 3510 #endif 3511 } 3512 3513 /** 3514 * netdev_reset_queue - reset the packets and bytes count of a network device 3515 * @dev_queue: network device 3516 * 3517 * Reset the bytes and packet count of a network device and clear the 3518 * software flow control OFF bit for this network device 3519 */ 3520 static inline void netdev_reset_queue(struct net_device *dev_queue) 3521 { 3522 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3523 } 3524 3525 /** 3526 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3527 * @dev: network device 3528 * @queue_index: given tx queue index 3529 * 3530 * Returns 0 if given tx queue index >= number of device tx queues, 3531 * otherwise returns the originally passed tx queue index. 3532 */ 3533 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3534 { 3535 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3536 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3537 dev->name, queue_index, 3538 dev->real_num_tx_queues); 3539 return 0; 3540 } 3541 3542 return queue_index; 3543 } 3544 3545 /** 3546 * netif_running - test if up 3547 * @dev: network device 3548 * 3549 * Test if the device has been brought up. 3550 */ 3551 static inline bool netif_running(const struct net_device *dev) 3552 { 3553 return test_bit(__LINK_STATE_START, &dev->state); 3554 } 3555 3556 /* 3557 * Routines to manage the subqueues on a device. We only need start, 3558 * stop, and a check if it's stopped. All other device management is 3559 * done at the overall netdevice level. 3560 * Also test the device if we're multiqueue. 3561 */ 3562 3563 /** 3564 * netif_start_subqueue - allow sending packets on subqueue 3565 * @dev: network device 3566 * @queue_index: sub queue index 3567 * 3568 * Start individual transmit queue of a device with multiple transmit queues. 3569 */ 3570 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3571 { 3572 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3573 3574 netif_tx_start_queue(txq); 3575 } 3576 3577 /** 3578 * netif_stop_subqueue - stop sending packets on subqueue 3579 * @dev: network device 3580 * @queue_index: sub queue index 3581 * 3582 * Stop individual transmit queue of a device with multiple transmit queues. 3583 */ 3584 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3585 { 3586 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3587 netif_tx_stop_queue(txq); 3588 } 3589 3590 /** 3591 * __netif_subqueue_stopped - test status of subqueue 3592 * @dev: network device 3593 * @queue_index: sub queue index 3594 * 3595 * Check individual transmit queue of a device with multiple transmit queues. 3596 */ 3597 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3598 u16 queue_index) 3599 { 3600 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3601 3602 return netif_tx_queue_stopped(txq); 3603 } 3604 3605 /** 3606 * netif_subqueue_stopped - test status of subqueue 3607 * @dev: network device 3608 * @skb: sub queue buffer pointer 3609 * 3610 * Check individual transmit queue of a device with multiple transmit queues. 3611 */ 3612 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3613 struct sk_buff *skb) 3614 { 3615 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3616 } 3617 3618 /** 3619 * netif_wake_subqueue - allow sending packets on subqueue 3620 * @dev: network device 3621 * @queue_index: sub queue index 3622 * 3623 * Resume individual transmit queue of a device with multiple transmit queues. 3624 */ 3625 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3626 { 3627 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3628 3629 netif_tx_wake_queue(txq); 3630 } 3631 3632 #ifdef CONFIG_XPS 3633 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3634 u16 index); 3635 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3636 u16 index, enum xps_map_type type); 3637 3638 /** 3639 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3640 * @j: CPU/Rx queue index 3641 * @mask: bitmask of all cpus/rx queues 3642 * @nr_bits: number of bits in the bitmask 3643 * 3644 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3645 */ 3646 static inline bool netif_attr_test_mask(unsigned long j, 3647 const unsigned long *mask, 3648 unsigned int nr_bits) 3649 { 3650 cpu_max_bits_warn(j, nr_bits); 3651 return test_bit(j, mask); 3652 } 3653 3654 /** 3655 * netif_attr_test_online - Test for online CPU/Rx queue 3656 * @j: CPU/Rx queue index 3657 * @online_mask: bitmask for CPUs/Rx queues that are online 3658 * @nr_bits: number of bits in the bitmask 3659 * 3660 * Returns true if a CPU/Rx queue is online. 3661 */ 3662 static inline bool netif_attr_test_online(unsigned long j, 3663 const unsigned long *online_mask, 3664 unsigned int nr_bits) 3665 { 3666 cpu_max_bits_warn(j, nr_bits); 3667 3668 if (online_mask) 3669 return test_bit(j, online_mask); 3670 3671 return (j < nr_bits); 3672 } 3673 3674 /** 3675 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3676 * @n: CPU/Rx queue index 3677 * @srcp: the cpumask/Rx queue mask pointer 3678 * @nr_bits: number of bits in the bitmask 3679 * 3680 * Returns >= nr_bits if no further CPUs/Rx queues set. 3681 */ 3682 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3683 unsigned int nr_bits) 3684 { 3685 /* -1 is a legal arg here. */ 3686 if (n != -1) 3687 cpu_max_bits_warn(n, nr_bits); 3688 3689 if (srcp) 3690 return find_next_bit(srcp, nr_bits, n + 1); 3691 3692 return n + 1; 3693 } 3694 3695 /** 3696 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3697 * @n: CPU/Rx queue index 3698 * @src1p: the first CPUs/Rx queues mask pointer 3699 * @src2p: the second CPUs/Rx queues mask pointer 3700 * @nr_bits: number of bits in the bitmask 3701 * 3702 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3703 */ 3704 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3705 const unsigned long *src2p, 3706 unsigned int nr_bits) 3707 { 3708 /* -1 is a legal arg here. */ 3709 if (n != -1) 3710 cpu_max_bits_warn(n, nr_bits); 3711 3712 if (src1p && src2p) 3713 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3714 else if (src1p) 3715 return find_next_bit(src1p, nr_bits, n + 1); 3716 else if (src2p) 3717 return find_next_bit(src2p, nr_bits, n + 1); 3718 3719 return n + 1; 3720 } 3721 #else 3722 static inline int netif_set_xps_queue(struct net_device *dev, 3723 const struct cpumask *mask, 3724 u16 index) 3725 { 3726 return 0; 3727 } 3728 3729 static inline int __netif_set_xps_queue(struct net_device *dev, 3730 const unsigned long *mask, 3731 u16 index, enum xps_map_type type) 3732 { 3733 return 0; 3734 } 3735 #endif 3736 3737 /** 3738 * netif_is_multiqueue - test if device has multiple transmit queues 3739 * @dev: network device 3740 * 3741 * Check if device has multiple transmit queues 3742 */ 3743 static inline bool netif_is_multiqueue(const struct net_device *dev) 3744 { 3745 return dev->num_tx_queues > 1; 3746 } 3747 3748 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3749 3750 #ifdef CONFIG_SYSFS 3751 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3752 #else 3753 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3754 unsigned int rxqs) 3755 { 3756 dev->real_num_rx_queues = rxqs; 3757 return 0; 3758 } 3759 #endif 3760 int netif_set_real_num_queues(struct net_device *dev, 3761 unsigned int txq, unsigned int rxq); 3762 3763 static inline struct netdev_rx_queue * 3764 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3765 { 3766 return dev->_rx + rxq; 3767 } 3768 3769 #ifdef CONFIG_SYSFS 3770 static inline unsigned int get_netdev_rx_queue_index( 3771 struct netdev_rx_queue *queue) 3772 { 3773 struct net_device *dev = queue->dev; 3774 int index = queue - dev->_rx; 3775 3776 BUG_ON(index >= dev->num_rx_queues); 3777 return index; 3778 } 3779 #endif 3780 3781 int netif_get_num_default_rss_queues(void); 3782 3783 enum skb_free_reason { 3784 SKB_REASON_CONSUMED, 3785 SKB_REASON_DROPPED, 3786 }; 3787 3788 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3790 3791 /* 3792 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3793 * interrupt context or with hardware interrupts being disabled. 3794 * (in_hardirq() || irqs_disabled()) 3795 * 3796 * We provide four helpers that can be used in following contexts : 3797 * 3798 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3799 * replacing kfree_skb(skb) 3800 * 3801 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3802 * Typically used in place of consume_skb(skb) in TX completion path 3803 * 3804 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3805 * replacing kfree_skb(skb) 3806 * 3807 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3808 * and consumed a packet. Used in place of consume_skb(skb) 3809 */ 3810 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3811 { 3812 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3813 } 3814 3815 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3816 { 3817 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3818 } 3819 3820 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3821 { 3822 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3823 } 3824 3825 static inline void dev_consume_skb_any(struct sk_buff *skb) 3826 { 3827 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3828 } 3829 3830 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3831 struct bpf_prog *xdp_prog); 3832 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3833 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3834 int netif_rx(struct sk_buff *skb); 3835 int __netif_rx(struct sk_buff *skb); 3836 3837 int netif_receive_skb(struct sk_buff *skb); 3838 int netif_receive_skb_core(struct sk_buff *skb); 3839 void netif_receive_skb_list_internal(struct list_head *head); 3840 void netif_receive_skb_list(struct list_head *head); 3841 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3842 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3843 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3844 void napi_get_frags_check(struct napi_struct *napi); 3845 gro_result_t napi_gro_frags(struct napi_struct *napi); 3846 struct packet_offload *gro_find_receive_by_type(__be16 type); 3847 struct packet_offload *gro_find_complete_by_type(__be16 type); 3848 3849 static inline void napi_free_frags(struct napi_struct *napi) 3850 { 3851 kfree_skb(napi->skb); 3852 napi->skb = NULL; 3853 } 3854 3855 bool netdev_is_rx_handler_busy(struct net_device *dev); 3856 int netdev_rx_handler_register(struct net_device *dev, 3857 rx_handler_func_t *rx_handler, 3858 void *rx_handler_data); 3859 void netdev_rx_handler_unregister(struct net_device *dev); 3860 3861 bool dev_valid_name(const char *name); 3862 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3863 { 3864 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3865 } 3866 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3867 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3868 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3869 void __user *data, bool *need_copyout); 3870 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3871 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3872 unsigned int dev_get_flags(const struct net_device *); 3873 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3874 struct netlink_ext_ack *extack); 3875 int dev_change_flags(struct net_device *dev, unsigned int flags, 3876 struct netlink_ext_ack *extack); 3877 int dev_set_alias(struct net_device *, const char *, size_t); 3878 int dev_get_alias(const struct net_device *, char *, size_t); 3879 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3880 const char *pat, int new_ifindex); 3881 static inline 3882 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3883 const char *pat) 3884 { 3885 return __dev_change_net_namespace(dev, net, pat, 0); 3886 } 3887 int __dev_set_mtu(struct net_device *, int); 3888 int dev_set_mtu(struct net_device *, int); 3889 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3890 struct netlink_ext_ack *extack); 3891 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3892 struct netlink_ext_ack *extack); 3893 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3894 struct netlink_ext_ack *extack); 3895 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3896 int dev_get_port_parent_id(struct net_device *dev, 3897 struct netdev_phys_item_id *ppid, bool recurse); 3898 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3899 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3901 struct netdev_queue *txq, int *ret); 3902 3903 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3904 u8 dev_xdp_prog_count(struct net_device *dev); 3905 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3906 3907 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3908 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3909 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3910 bool is_skb_forwardable(const struct net_device *dev, 3911 const struct sk_buff *skb); 3912 3913 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3914 const struct sk_buff *skb, 3915 const bool check_mtu) 3916 { 3917 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3918 unsigned int len; 3919 3920 if (!(dev->flags & IFF_UP)) 3921 return false; 3922 3923 if (!check_mtu) 3924 return true; 3925 3926 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3927 if (skb->len <= len) 3928 return true; 3929 3930 /* if TSO is enabled, we don't care about the length as the packet 3931 * could be forwarded without being segmented before 3932 */ 3933 if (skb_is_gso(skb)) 3934 return true; 3935 3936 return false; 3937 } 3938 3939 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3940 3941 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 3942 { 3943 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 3944 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 3945 3946 if (likely(p)) 3947 return p; 3948 3949 return netdev_core_stats_alloc(dev); 3950 } 3951 3952 #define DEV_CORE_STATS_INC(FIELD) \ 3953 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3954 { \ 3955 struct net_device_core_stats __percpu *p; \ 3956 \ 3957 p = dev_core_stats(dev); \ 3958 if (p) \ 3959 this_cpu_inc(p->FIELD); \ 3960 } 3961 DEV_CORE_STATS_INC(rx_dropped) 3962 DEV_CORE_STATS_INC(tx_dropped) 3963 DEV_CORE_STATS_INC(rx_nohandler) 3964 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3965 3966 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3967 struct sk_buff *skb, 3968 const bool check_mtu) 3969 { 3970 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3971 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3972 dev_core_stats_rx_dropped_inc(dev); 3973 kfree_skb(skb); 3974 return NET_RX_DROP; 3975 } 3976 3977 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 3978 skb->priority = 0; 3979 return 0; 3980 } 3981 3982 bool dev_nit_active(struct net_device *dev); 3983 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3984 3985 static inline void __dev_put(struct net_device *dev) 3986 { 3987 if (dev) { 3988 #ifdef CONFIG_PCPU_DEV_REFCNT 3989 this_cpu_dec(*dev->pcpu_refcnt); 3990 #else 3991 refcount_dec(&dev->dev_refcnt); 3992 #endif 3993 } 3994 } 3995 3996 static inline void __dev_hold(struct net_device *dev) 3997 { 3998 if (dev) { 3999 #ifdef CONFIG_PCPU_DEV_REFCNT 4000 this_cpu_inc(*dev->pcpu_refcnt); 4001 #else 4002 refcount_inc(&dev->dev_refcnt); 4003 #endif 4004 } 4005 } 4006 4007 static inline void __netdev_tracker_alloc(struct net_device *dev, 4008 netdevice_tracker *tracker, 4009 gfp_t gfp) 4010 { 4011 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4012 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4013 #endif 4014 } 4015 4016 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4017 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4018 */ 4019 static inline void netdev_tracker_alloc(struct net_device *dev, 4020 netdevice_tracker *tracker, gfp_t gfp) 4021 { 4022 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4023 refcount_dec(&dev->refcnt_tracker.no_tracker); 4024 __netdev_tracker_alloc(dev, tracker, gfp); 4025 #endif 4026 } 4027 4028 static inline void netdev_tracker_free(struct net_device *dev, 4029 netdevice_tracker *tracker) 4030 { 4031 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4032 ref_tracker_free(&dev->refcnt_tracker, tracker); 4033 #endif 4034 } 4035 4036 static inline void netdev_hold(struct net_device *dev, 4037 netdevice_tracker *tracker, gfp_t gfp) 4038 { 4039 if (dev) { 4040 __dev_hold(dev); 4041 __netdev_tracker_alloc(dev, tracker, gfp); 4042 } 4043 } 4044 4045 static inline void netdev_put(struct net_device *dev, 4046 netdevice_tracker *tracker) 4047 { 4048 if (dev) { 4049 netdev_tracker_free(dev, tracker); 4050 __dev_put(dev); 4051 } 4052 } 4053 4054 /** 4055 * dev_hold - get reference to device 4056 * @dev: network device 4057 * 4058 * Hold reference to device to keep it from being freed. 4059 * Try using netdev_hold() instead. 4060 */ 4061 static inline void dev_hold(struct net_device *dev) 4062 { 4063 netdev_hold(dev, NULL, GFP_ATOMIC); 4064 } 4065 4066 /** 4067 * dev_put - release reference to device 4068 * @dev: network device 4069 * 4070 * Release reference to device to allow it to be freed. 4071 * Try using netdev_put() instead. 4072 */ 4073 static inline void dev_put(struct net_device *dev) 4074 { 4075 netdev_put(dev, NULL); 4076 } 4077 4078 static inline void netdev_ref_replace(struct net_device *odev, 4079 struct net_device *ndev, 4080 netdevice_tracker *tracker, 4081 gfp_t gfp) 4082 { 4083 if (odev) 4084 netdev_tracker_free(odev, tracker); 4085 4086 __dev_hold(ndev); 4087 __dev_put(odev); 4088 4089 if (ndev) 4090 __netdev_tracker_alloc(ndev, tracker, gfp); 4091 } 4092 4093 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4094 * and _off may be called from IRQ context, but it is caller 4095 * who is responsible for serialization of these calls. 4096 * 4097 * The name carrier is inappropriate, these functions should really be 4098 * called netif_lowerlayer_*() because they represent the state of any 4099 * kind of lower layer not just hardware media. 4100 */ 4101 void linkwatch_fire_event(struct net_device *dev); 4102 4103 /** 4104 * netif_carrier_ok - test if carrier present 4105 * @dev: network device 4106 * 4107 * Check if carrier is present on device 4108 */ 4109 static inline bool netif_carrier_ok(const struct net_device *dev) 4110 { 4111 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4112 } 4113 4114 unsigned long dev_trans_start(struct net_device *dev); 4115 4116 void __netdev_watchdog_up(struct net_device *dev); 4117 4118 void netif_carrier_on(struct net_device *dev); 4119 void netif_carrier_off(struct net_device *dev); 4120 void netif_carrier_event(struct net_device *dev); 4121 4122 /** 4123 * netif_dormant_on - mark device as dormant. 4124 * @dev: network device 4125 * 4126 * Mark device as dormant (as per RFC2863). 4127 * 4128 * The dormant state indicates that the relevant interface is not 4129 * actually in a condition to pass packets (i.e., it is not 'up') but is 4130 * in a "pending" state, waiting for some external event. For "on- 4131 * demand" interfaces, this new state identifies the situation where the 4132 * interface is waiting for events to place it in the up state. 4133 */ 4134 static inline void netif_dormant_on(struct net_device *dev) 4135 { 4136 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4137 linkwatch_fire_event(dev); 4138 } 4139 4140 /** 4141 * netif_dormant_off - set device as not dormant. 4142 * @dev: network device 4143 * 4144 * Device is not in dormant state. 4145 */ 4146 static inline void netif_dormant_off(struct net_device *dev) 4147 { 4148 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4149 linkwatch_fire_event(dev); 4150 } 4151 4152 /** 4153 * netif_dormant - test if device is dormant 4154 * @dev: network device 4155 * 4156 * Check if device is dormant. 4157 */ 4158 static inline bool netif_dormant(const struct net_device *dev) 4159 { 4160 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4161 } 4162 4163 4164 /** 4165 * netif_testing_on - mark device as under test. 4166 * @dev: network device 4167 * 4168 * Mark device as under test (as per RFC2863). 4169 * 4170 * The testing state indicates that some test(s) must be performed on 4171 * the interface. After completion, of the test, the interface state 4172 * will change to up, dormant, or down, as appropriate. 4173 */ 4174 static inline void netif_testing_on(struct net_device *dev) 4175 { 4176 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4177 linkwatch_fire_event(dev); 4178 } 4179 4180 /** 4181 * netif_testing_off - set device as not under test. 4182 * @dev: network device 4183 * 4184 * Device is not in testing state. 4185 */ 4186 static inline void netif_testing_off(struct net_device *dev) 4187 { 4188 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4189 linkwatch_fire_event(dev); 4190 } 4191 4192 /** 4193 * netif_testing - test if device is under test 4194 * @dev: network device 4195 * 4196 * Check if device is under test 4197 */ 4198 static inline bool netif_testing(const struct net_device *dev) 4199 { 4200 return test_bit(__LINK_STATE_TESTING, &dev->state); 4201 } 4202 4203 4204 /** 4205 * netif_oper_up - test if device is operational 4206 * @dev: network device 4207 * 4208 * Check if carrier is operational 4209 */ 4210 static inline bool netif_oper_up(const struct net_device *dev) 4211 { 4212 return (dev->operstate == IF_OPER_UP || 4213 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4214 } 4215 4216 /** 4217 * netif_device_present - is device available or removed 4218 * @dev: network device 4219 * 4220 * Check if device has not been removed from system. 4221 */ 4222 static inline bool netif_device_present(const struct net_device *dev) 4223 { 4224 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4225 } 4226 4227 void netif_device_detach(struct net_device *dev); 4228 4229 void netif_device_attach(struct net_device *dev); 4230 4231 /* 4232 * Network interface message level settings 4233 */ 4234 4235 enum { 4236 NETIF_MSG_DRV_BIT, 4237 NETIF_MSG_PROBE_BIT, 4238 NETIF_MSG_LINK_BIT, 4239 NETIF_MSG_TIMER_BIT, 4240 NETIF_MSG_IFDOWN_BIT, 4241 NETIF_MSG_IFUP_BIT, 4242 NETIF_MSG_RX_ERR_BIT, 4243 NETIF_MSG_TX_ERR_BIT, 4244 NETIF_MSG_TX_QUEUED_BIT, 4245 NETIF_MSG_INTR_BIT, 4246 NETIF_MSG_TX_DONE_BIT, 4247 NETIF_MSG_RX_STATUS_BIT, 4248 NETIF_MSG_PKTDATA_BIT, 4249 NETIF_MSG_HW_BIT, 4250 NETIF_MSG_WOL_BIT, 4251 4252 /* When you add a new bit above, update netif_msg_class_names array 4253 * in net/ethtool/common.c 4254 */ 4255 NETIF_MSG_CLASS_COUNT, 4256 }; 4257 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4258 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4259 4260 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4261 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4262 4263 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4264 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4265 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4266 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4267 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4268 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4269 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4270 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4271 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4272 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4273 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4274 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4275 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4276 #define NETIF_MSG_HW __NETIF_MSG(HW) 4277 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4278 4279 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4280 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4281 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4282 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4283 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4284 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4285 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4286 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4287 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4288 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4289 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4290 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4291 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4292 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4293 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4294 4295 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4296 { 4297 /* use default */ 4298 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4299 return default_msg_enable_bits; 4300 if (debug_value == 0) /* no output */ 4301 return 0; 4302 /* set low N bits */ 4303 return (1U << debug_value) - 1; 4304 } 4305 4306 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4307 { 4308 spin_lock(&txq->_xmit_lock); 4309 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4310 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4311 } 4312 4313 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4314 { 4315 __acquire(&txq->_xmit_lock); 4316 return true; 4317 } 4318 4319 static inline void __netif_tx_release(struct netdev_queue *txq) 4320 { 4321 __release(&txq->_xmit_lock); 4322 } 4323 4324 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4325 { 4326 spin_lock_bh(&txq->_xmit_lock); 4327 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4328 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4329 } 4330 4331 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4332 { 4333 bool ok = spin_trylock(&txq->_xmit_lock); 4334 4335 if (likely(ok)) { 4336 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4337 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4338 } 4339 return ok; 4340 } 4341 4342 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4343 { 4344 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4345 WRITE_ONCE(txq->xmit_lock_owner, -1); 4346 spin_unlock(&txq->_xmit_lock); 4347 } 4348 4349 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4350 { 4351 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4352 WRITE_ONCE(txq->xmit_lock_owner, -1); 4353 spin_unlock_bh(&txq->_xmit_lock); 4354 } 4355 4356 /* 4357 * txq->trans_start can be read locklessly from dev_watchdog() 4358 */ 4359 static inline void txq_trans_update(struct netdev_queue *txq) 4360 { 4361 if (txq->xmit_lock_owner != -1) 4362 WRITE_ONCE(txq->trans_start, jiffies); 4363 } 4364 4365 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4366 { 4367 unsigned long now = jiffies; 4368 4369 if (READ_ONCE(txq->trans_start) != now) 4370 WRITE_ONCE(txq->trans_start, now); 4371 } 4372 4373 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4374 static inline void netif_trans_update(struct net_device *dev) 4375 { 4376 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4377 4378 txq_trans_cond_update(txq); 4379 } 4380 4381 /** 4382 * netif_tx_lock - grab network device transmit lock 4383 * @dev: network device 4384 * 4385 * Get network device transmit lock 4386 */ 4387 void netif_tx_lock(struct net_device *dev); 4388 4389 static inline void netif_tx_lock_bh(struct net_device *dev) 4390 { 4391 local_bh_disable(); 4392 netif_tx_lock(dev); 4393 } 4394 4395 void netif_tx_unlock(struct net_device *dev); 4396 4397 static inline void netif_tx_unlock_bh(struct net_device *dev) 4398 { 4399 netif_tx_unlock(dev); 4400 local_bh_enable(); 4401 } 4402 4403 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4404 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4405 __netif_tx_lock(txq, cpu); \ 4406 } else { \ 4407 __netif_tx_acquire(txq); \ 4408 } \ 4409 } 4410 4411 #define HARD_TX_TRYLOCK(dev, txq) \ 4412 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4413 __netif_tx_trylock(txq) : \ 4414 __netif_tx_acquire(txq)) 4415 4416 #define HARD_TX_UNLOCK(dev, txq) { \ 4417 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4418 __netif_tx_unlock(txq); \ 4419 } else { \ 4420 __netif_tx_release(txq); \ 4421 } \ 4422 } 4423 4424 static inline void netif_tx_disable(struct net_device *dev) 4425 { 4426 unsigned int i; 4427 int cpu; 4428 4429 local_bh_disable(); 4430 cpu = smp_processor_id(); 4431 spin_lock(&dev->tx_global_lock); 4432 for (i = 0; i < dev->num_tx_queues; i++) { 4433 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4434 4435 __netif_tx_lock(txq, cpu); 4436 netif_tx_stop_queue(txq); 4437 __netif_tx_unlock(txq); 4438 } 4439 spin_unlock(&dev->tx_global_lock); 4440 local_bh_enable(); 4441 } 4442 4443 static inline void netif_addr_lock(struct net_device *dev) 4444 { 4445 unsigned char nest_level = 0; 4446 4447 #ifdef CONFIG_LOCKDEP 4448 nest_level = dev->nested_level; 4449 #endif 4450 spin_lock_nested(&dev->addr_list_lock, nest_level); 4451 } 4452 4453 static inline void netif_addr_lock_bh(struct net_device *dev) 4454 { 4455 unsigned char nest_level = 0; 4456 4457 #ifdef CONFIG_LOCKDEP 4458 nest_level = dev->nested_level; 4459 #endif 4460 local_bh_disable(); 4461 spin_lock_nested(&dev->addr_list_lock, nest_level); 4462 } 4463 4464 static inline void netif_addr_unlock(struct net_device *dev) 4465 { 4466 spin_unlock(&dev->addr_list_lock); 4467 } 4468 4469 static inline void netif_addr_unlock_bh(struct net_device *dev) 4470 { 4471 spin_unlock_bh(&dev->addr_list_lock); 4472 } 4473 4474 /* 4475 * dev_addrs walker. Should be used only for read access. Call with 4476 * rcu_read_lock held. 4477 */ 4478 #define for_each_dev_addr(dev, ha) \ 4479 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4480 4481 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4482 4483 void ether_setup(struct net_device *dev); 4484 4485 /* Support for loadable net-drivers */ 4486 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4487 unsigned char name_assign_type, 4488 void (*setup)(struct net_device *), 4489 unsigned int txqs, unsigned int rxqs); 4490 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4491 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4492 4493 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4494 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4495 count) 4496 4497 int register_netdev(struct net_device *dev); 4498 void unregister_netdev(struct net_device *dev); 4499 4500 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4501 4502 /* General hardware address lists handling functions */ 4503 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4504 struct netdev_hw_addr_list *from_list, int addr_len); 4505 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4506 struct netdev_hw_addr_list *from_list, int addr_len); 4507 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4508 struct net_device *dev, 4509 int (*sync)(struct net_device *, const unsigned char *), 4510 int (*unsync)(struct net_device *, 4511 const unsigned char *)); 4512 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4513 struct net_device *dev, 4514 int (*sync)(struct net_device *, 4515 const unsigned char *, int), 4516 int (*unsync)(struct net_device *, 4517 const unsigned char *, int)); 4518 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4519 struct net_device *dev, 4520 int (*unsync)(struct net_device *, 4521 const unsigned char *, int)); 4522 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4523 struct net_device *dev, 4524 int (*unsync)(struct net_device *, 4525 const unsigned char *)); 4526 void __hw_addr_init(struct netdev_hw_addr_list *list); 4527 4528 /* Functions used for device addresses handling */ 4529 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4530 const void *addr, size_t len); 4531 4532 static inline void 4533 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4534 { 4535 dev_addr_mod(dev, 0, addr, len); 4536 } 4537 4538 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4539 { 4540 __dev_addr_set(dev, addr, dev->addr_len); 4541 } 4542 4543 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4544 unsigned char addr_type); 4545 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4546 unsigned char addr_type); 4547 4548 /* Functions used for unicast addresses handling */ 4549 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4550 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4551 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4552 int dev_uc_sync(struct net_device *to, struct net_device *from); 4553 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4554 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4555 void dev_uc_flush(struct net_device *dev); 4556 void dev_uc_init(struct net_device *dev); 4557 4558 /** 4559 * __dev_uc_sync - Synchonize device's unicast list 4560 * @dev: device to sync 4561 * @sync: function to call if address should be added 4562 * @unsync: function to call if address should be removed 4563 * 4564 * Add newly added addresses to the interface, and release 4565 * addresses that have been deleted. 4566 */ 4567 static inline int __dev_uc_sync(struct net_device *dev, 4568 int (*sync)(struct net_device *, 4569 const unsigned char *), 4570 int (*unsync)(struct net_device *, 4571 const unsigned char *)) 4572 { 4573 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4574 } 4575 4576 /** 4577 * __dev_uc_unsync - Remove synchronized addresses from device 4578 * @dev: device to sync 4579 * @unsync: function to call if address should be removed 4580 * 4581 * Remove all addresses that were added to the device by dev_uc_sync(). 4582 */ 4583 static inline void __dev_uc_unsync(struct net_device *dev, 4584 int (*unsync)(struct net_device *, 4585 const unsigned char *)) 4586 { 4587 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4588 } 4589 4590 /* Functions used for multicast addresses handling */ 4591 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4592 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4593 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4594 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4595 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4596 int dev_mc_sync(struct net_device *to, struct net_device *from); 4597 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4598 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4599 void dev_mc_flush(struct net_device *dev); 4600 void dev_mc_init(struct net_device *dev); 4601 4602 /** 4603 * __dev_mc_sync - Synchonize device's multicast list 4604 * @dev: device to sync 4605 * @sync: function to call if address should be added 4606 * @unsync: function to call if address should be removed 4607 * 4608 * Add newly added addresses to the interface, and release 4609 * addresses that have been deleted. 4610 */ 4611 static inline int __dev_mc_sync(struct net_device *dev, 4612 int (*sync)(struct net_device *, 4613 const unsigned char *), 4614 int (*unsync)(struct net_device *, 4615 const unsigned char *)) 4616 { 4617 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4618 } 4619 4620 /** 4621 * __dev_mc_unsync - Remove synchronized addresses from device 4622 * @dev: device to sync 4623 * @unsync: function to call if address should be removed 4624 * 4625 * Remove all addresses that were added to the device by dev_mc_sync(). 4626 */ 4627 static inline void __dev_mc_unsync(struct net_device *dev, 4628 int (*unsync)(struct net_device *, 4629 const unsigned char *)) 4630 { 4631 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4632 } 4633 4634 /* Functions used for secondary unicast and multicast support */ 4635 void dev_set_rx_mode(struct net_device *dev); 4636 int dev_set_promiscuity(struct net_device *dev, int inc); 4637 int dev_set_allmulti(struct net_device *dev, int inc); 4638 void netdev_state_change(struct net_device *dev); 4639 void __netdev_notify_peers(struct net_device *dev); 4640 void netdev_notify_peers(struct net_device *dev); 4641 void netdev_features_change(struct net_device *dev); 4642 /* Load a device via the kmod */ 4643 void dev_load(struct net *net, const char *name); 4644 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4645 struct rtnl_link_stats64 *storage); 4646 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4647 const struct net_device_stats *netdev_stats); 4648 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4649 const struct pcpu_sw_netstats __percpu *netstats); 4650 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4651 4652 extern int netdev_max_backlog; 4653 extern int dev_rx_weight; 4654 extern int dev_tx_weight; 4655 extern int gro_normal_batch; 4656 4657 enum { 4658 NESTED_SYNC_IMM_BIT, 4659 NESTED_SYNC_TODO_BIT, 4660 }; 4661 4662 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4663 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4664 4665 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4666 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4667 4668 struct netdev_nested_priv { 4669 unsigned char flags; 4670 void *data; 4671 }; 4672 4673 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4674 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4675 struct list_head **iter); 4676 4677 /* iterate through upper list, must be called under RCU read lock */ 4678 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4679 for (iter = &(dev)->adj_list.upper, \ 4680 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4681 updev; \ 4682 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4683 4684 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4685 int (*fn)(struct net_device *upper_dev, 4686 struct netdev_nested_priv *priv), 4687 struct netdev_nested_priv *priv); 4688 4689 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4690 struct net_device *upper_dev); 4691 4692 bool netdev_has_any_upper_dev(struct net_device *dev); 4693 4694 void *netdev_lower_get_next_private(struct net_device *dev, 4695 struct list_head **iter); 4696 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4697 struct list_head **iter); 4698 4699 #define netdev_for_each_lower_private(dev, priv, iter) \ 4700 for (iter = (dev)->adj_list.lower.next, \ 4701 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4702 priv; \ 4703 priv = netdev_lower_get_next_private(dev, &(iter))) 4704 4705 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4706 for (iter = &(dev)->adj_list.lower, \ 4707 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4708 priv; \ 4709 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4710 4711 void *netdev_lower_get_next(struct net_device *dev, 4712 struct list_head **iter); 4713 4714 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4715 for (iter = (dev)->adj_list.lower.next, \ 4716 ldev = netdev_lower_get_next(dev, &(iter)); \ 4717 ldev; \ 4718 ldev = netdev_lower_get_next(dev, &(iter))) 4719 4720 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4721 struct list_head **iter); 4722 int netdev_walk_all_lower_dev(struct net_device *dev, 4723 int (*fn)(struct net_device *lower_dev, 4724 struct netdev_nested_priv *priv), 4725 struct netdev_nested_priv *priv); 4726 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4727 int (*fn)(struct net_device *lower_dev, 4728 struct netdev_nested_priv *priv), 4729 struct netdev_nested_priv *priv); 4730 4731 void *netdev_adjacent_get_private(struct list_head *adj_list); 4732 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4733 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4734 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4735 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4736 struct netlink_ext_ack *extack); 4737 int netdev_master_upper_dev_link(struct net_device *dev, 4738 struct net_device *upper_dev, 4739 void *upper_priv, void *upper_info, 4740 struct netlink_ext_ack *extack); 4741 void netdev_upper_dev_unlink(struct net_device *dev, 4742 struct net_device *upper_dev); 4743 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4744 struct net_device *new_dev, 4745 struct net_device *dev, 4746 struct netlink_ext_ack *extack); 4747 void netdev_adjacent_change_commit(struct net_device *old_dev, 4748 struct net_device *new_dev, 4749 struct net_device *dev); 4750 void netdev_adjacent_change_abort(struct net_device *old_dev, 4751 struct net_device *new_dev, 4752 struct net_device *dev); 4753 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4754 void *netdev_lower_dev_get_private(struct net_device *dev, 4755 struct net_device *lower_dev); 4756 void netdev_lower_state_changed(struct net_device *lower_dev, 4757 void *lower_state_info); 4758 4759 /* RSS keys are 40 or 52 bytes long */ 4760 #define NETDEV_RSS_KEY_LEN 52 4761 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4762 void netdev_rss_key_fill(void *buffer, size_t len); 4763 4764 int skb_checksum_help(struct sk_buff *skb); 4765 int skb_crc32c_csum_help(struct sk_buff *skb); 4766 int skb_csum_hwoffload_help(struct sk_buff *skb, 4767 const netdev_features_t features); 4768 4769 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4770 netdev_features_t features, bool tx_path); 4771 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4772 netdev_features_t features, __be16 type); 4773 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4774 netdev_features_t features); 4775 4776 struct netdev_bonding_info { 4777 ifslave slave; 4778 ifbond master; 4779 }; 4780 4781 struct netdev_notifier_bonding_info { 4782 struct netdev_notifier_info info; /* must be first */ 4783 struct netdev_bonding_info bonding_info; 4784 }; 4785 4786 void netdev_bonding_info_change(struct net_device *dev, 4787 struct netdev_bonding_info *bonding_info); 4788 4789 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4790 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4791 #else 4792 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4793 const void *data) 4794 { 4795 } 4796 #endif 4797 4798 static inline 4799 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4800 { 4801 return __skb_gso_segment(skb, features, true); 4802 } 4803 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4804 4805 static inline bool can_checksum_protocol(netdev_features_t features, 4806 __be16 protocol) 4807 { 4808 if (protocol == htons(ETH_P_FCOE)) 4809 return !!(features & NETIF_F_FCOE_CRC); 4810 4811 /* Assume this is an IP checksum (not SCTP CRC) */ 4812 4813 if (features & NETIF_F_HW_CSUM) { 4814 /* Can checksum everything */ 4815 return true; 4816 } 4817 4818 switch (protocol) { 4819 case htons(ETH_P_IP): 4820 return !!(features & NETIF_F_IP_CSUM); 4821 case htons(ETH_P_IPV6): 4822 return !!(features & NETIF_F_IPV6_CSUM); 4823 default: 4824 return false; 4825 } 4826 } 4827 4828 #ifdef CONFIG_BUG 4829 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4830 #else 4831 static inline void netdev_rx_csum_fault(struct net_device *dev, 4832 struct sk_buff *skb) 4833 { 4834 } 4835 #endif 4836 /* rx skb timestamps */ 4837 void net_enable_timestamp(void); 4838 void net_disable_timestamp(void); 4839 4840 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4841 const struct skb_shared_hwtstamps *hwtstamps, 4842 bool cycles) 4843 { 4844 const struct net_device_ops *ops = dev->netdev_ops; 4845 4846 if (ops->ndo_get_tstamp) 4847 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4848 4849 return hwtstamps->hwtstamp; 4850 } 4851 4852 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4853 struct sk_buff *skb, struct net_device *dev, 4854 bool more) 4855 { 4856 __this_cpu_write(softnet_data.xmit.more, more); 4857 return ops->ndo_start_xmit(skb, dev); 4858 } 4859 4860 static inline bool netdev_xmit_more(void) 4861 { 4862 return __this_cpu_read(softnet_data.xmit.more); 4863 } 4864 4865 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4866 struct netdev_queue *txq, bool more) 4867 { 4868 const struct net_device_ops *ops = dev->netdev_ops; 4869 netdev_tx_t rc; 4870 4871 rc = __netdev_start_xmit(ops, skb, dev, more); 4872 if (rc == NETDEV_TX_OK) 4873 txq_trans_update(txq); 4874 4875 return rc; 4876 } 4877 4878 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4879 const void *ns); 4880 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4881 const void *ns); 4882 4883 extern const struct kobj_ns_type_operations net_ns_type_operations; 4884 4885 const char *netdev_drivername(const struct net_device *dev); 4886 4887 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4888 netdev_features_t f2) 4889 { 4890 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4891 if (f1 & NETIF_F_HW_CSUM) 4892 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4893 else 4894 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4895 } 4896 4897 return f1 & f2; 4898 } 4899 4900 static inline netdev_features_t netdev_get_wanted_features( 4901 struct net_device *dev) 4902 { 4903 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4904 } 4905 netdev_features_t netdev_increment_features(netdev_features_t all, 4906 netdev_features_t one, netdev_features_t mask); 4907 4908 /* Allow TSO being used on stacked device : 4909 * Performing the GSO segmentation before last device 4910 * is a performance improvement. 4911 */ 4912 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4913 netdev_features_t mask) 4914 { 4915 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4916 } 4917 4918 int __netdev_update_features(struct net_device *dev); 4919 void netdev_update_features(struct net_device *dev); 4920 void netdev_change_features(struct net_device *dev); 4921 4922 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4923 struct net_device *dev); 4924 4925 netdev_features_t passthru_features_check(struct sk_buff *skb, 4926 struct net_device *dev, 4927 netdev_features_t features); 4928 netdev_features_t netif_skb_features(struct sk_buff *skb); 4929 4930 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4931 { 4932 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4933 4934 /* check flags correspondence */ 4935 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4936 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4937 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4938 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4939 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4940 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4941 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4942 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4943 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4944 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4945 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4946 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4947 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4948 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4949 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4950 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4951 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4952 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4953 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4954 4955 return (features & feature) == feature; 4956 } 4957 4958 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4959 { 4960 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4961 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4962 } 4963 4964 static inline bool netif_needs_gso(struct sk_buff *skb, 4965 netdev_features_t features) 4966 { 4967 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4968 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4969 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4970 } 4971 4972 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 4973 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 4974 void netif_inherit_tso_max(struct net_device *to, 4975 const struct net_device *from); 4976 4977 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4978 int pulled_hlen, u16 mac_offset, 4979 int mac_len) 4980 { 4981 skb->protocol = protocol; 4982 skb->encapsulation = 1; 4983 skb_push(skb, pulled_hlen); 4984 skb_reset_transport_header(skb); 4985 skb->mac_header = mac_offset; 4986 skb->network_header = skb->mac_header + mac_len; 4987 skb->mac_len = mac_len; 4988 } 4989 4990 static inline bool netif_is_macsec(const struct net_device *dev) 4991 { 4992 return dev->priv_flags & IFF_MACSEC; 4993 } 4994 4995 static inline bool netif_is_macvlan(const struct net_device *dev) 4996 { 4997 return dev->priv_flags & IFF_MACVLAN; 4998 } 4999 5000 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5001 { 5002 return dev->priv_flags & IFF_MACVLAN_PORT; 5003 } 5004 5005 static inline bool netif_is_bond_master(const struct net_device *dev) 5006 { 5007 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5008 } 5009 5010 static inline bool netif_is_bond_slave(const struct net_device *dev) 5011 { 5012 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5013 } 5014 5015 static inline bool netif_supports_nofcs(struct net_device *dev) 5016 { 5017 return dev->priv_flags & IFF_SUPP_NOFCS; 5018 } 5019 5020 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5021 { 5022 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5023 } 5024 5025 static inline bool netif_is_l3_master(const struct net_device *dev) 5026 { 5027 return dev->priv_flags & IFF_L3MDEV_MASTER; 5028 } 5029 5030 static inline bool netif_is_l3_slave(const struct net_device *dev) 5031 { 5032 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5033 } 5034 5035 static inline bool netif_is_bridge_master(const struct net_device *dev) 5036 { 5037 return dev->priv_flags & IFF_EBRIDGE; 5038 } 5039 5040 static inline bool netif_is_bridge_port(const struct net_device *dev) 5041 { 5042 return dev->priv_flags & IFF_BRIDGE_PORT; 5043 } 5044 5045 static inline bool netif_is_ovs_master(const struct net_device *dev) 5046 { 5047 return dev->priv_flags & IFF_OPENVSWITCH; 5048 } 5049 5050 static inline bool netif_is_ovs_port(const struct net_device *dev) 5051 { 5052 return dev->priv_flags & IFF_OVS_DATAPATH; 5053 } 5054 5055 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5056 { 5057 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5058 } 5059 5060 static inline bool netif_is_team_master(const struct net_device *dev) 5061 { 5062 return dev->priv_flags & IFF_TEAM; 5063 } 5064 5065 static inline bool netif_is_team_port(const struct net_device *dev) 5066 { 5067 return dev->priv_flags & IFF_TEAM_PORT; 5068 } 5069 5070 static inline bool netif_is_lag_master(const struct net_device *dev) 5071 { 5072 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5073 } 5074 5075 static inline bool netif_is_lag_port(const struct net_device *dev) 5076 { 5077 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5078 } 5079 5080 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5081 { 5082 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5083 } 5084 5085 static inline bool netif_is_failover(const struct net_device *dev) 5086 { 5087 return dev->priv_flags & IFF_FAILOVER; 5088 } 5089 5090 static inline bool netif_is_failover_slave(const struct net_device *dev) 5091 { 5092 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5093 } 5094 5095 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5096 static inline void netif_keep_dst(struct net_device *dev) 5097 { 5098 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5099 } 5100 5101 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5102 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5103 { 5104 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5105 return netif_is_macsec(dev); 5106 } 5107 5108 extern struct pernet_operations __net_initdata loopback_net_ops; 5109 5110 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5111 5112 /* netdev_printk helpers, similar to dev_printk */ 5113 5114 static inline const char *netdev_name(const struct net_device *dev) 5115 { 5116 if (!dev->name[0] || strchr(dev->name, '%')) 5117 return "(unnamed net_device)"; 5118 return dev->name; 5119 } 5120 5121 static inline const char *netdev_reg_state(const struct net_device *dev) 5122 { 5123 switch (dev->reg_state) { 5124 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5125 case NETREG_REGISTERED: return ""; 5126 case NETREG_UNREGISTERING: return " (unregistering)"; 5127 case NETREG_UNREGISTERED: return " (unregistered)"; 5128 case NETREG_RELEASED: return " (released)"; 5129 case NETREG_DUMMY: return " (dummy)"; 5130 } 5131 5132 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5133 return " (unknown)"; 5134 } 5135 5136 #define MODULE_ALIAS_NETDEV(device) \ 5137 MODULE_ALIAS("netdev-" device) 5138 5139 /* 5140 * netdev_WARN() acts like dev_printk(), but with the key difference 5141 * of using a WARN/WARN_ON to get the message out, including the 5142 * file/line information and a backtrace. 5143 */ 5144 #define netdev_WARN(dev, format, args...) \ 5145 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5146 netdev_reg_state(dev), ##args) 5147 5148 #define netdev_WARN_ONCE(dev, format, args...) \ 5149 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5150 netdev_reg_state(dev), ##args) 5151 5152 /* 5153 * The list of packet types we will receive (as opposed to discard) 5154 * and the routines to invoke. 5155 * 5156 * Why 16. Because with 16 the only overlap we get on a hash of the 5157 * low nibble of the protocol value is RARP/SNAP/X.25. 5158 * 5159 * 0800 IP 5160 * 0001 802.3 5161 * 0002 AX.25 5162 * 0004 802.2 5163 * 8035 RARP 5164 * 0005 SNAP 5165 * 0805 X.25 5166 * 0806 ARP 5167 * 8137 IPX 5168 * 0009 Localtalk 5169 * 86DD IPv6 5170 */ 5171 #define PTYPE_HASH_SIZE (16) 5172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5173 5174 extern struct list_head ptype_all __read_mostly; 5175 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5176 5177 extern struct net_device *blackhole_netdev; 5178 5179 #endif /* _LINUX_NETDEVICE_H */ 5180