xref: /openbmc/linux/include/linux/netdevice.h (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key_false rps_needed;
198 extern struct static_key_false rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 	__be16	(*parse_protocol)(const struct sk_buff *skb);
278 };
279 
280 /* These flag bits are private to the generic network queueing
281  * layer; they may not be explicitly referenced by any other
282  * code.
283  */
284 
285 enum netdev_state_t {
286 	__LINK_STATE_START,
287 	__LINK_STATE_PRESENT,
288 	__LINK_STATE_NOCARRIER,
289 	__LINK_STATE_LINKWATCH_PENDING,
290 	__LINK_STATE_DORMANT,
291 };
292 
293 
294 /*
295  * This structure holds boot-time configured netdevice settings. They
296  * are then used in the device probing.
297  */
298 struct netdev_boot_setup {
299 	char name[IFNAMSIZ];
300 	struct ifmap map;
301 };
302 #define NETDEV_BOOT_SETUP_MAX 8
303 
304 int __init netdev_boot_setup(char *str);
305 
306 struct gro_list {
307 	struct list_head	list;
308 	int			count;
309 };
310 
311 /*
312  * size of gro hash buckets, must less than bit number of
313  * napi_struct::gro_bitmask
314  */
315 #define GRO_HASH_BUCKETS	8
316 
317 /*
318  * Structure for NAPI scheduling similar to tasklet but with weighting
319  */
320 struct napi_struct {
321 	/* The poll_list must only be managed by the entity which
322 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
323 	 * whoever atomically sets that bit can add this napi_struct
324 	 * to the per-CPU poll_list, and whoever clears that bit
325 	 * can remove from the list right before clearing the bit.
326 	 */
327 	struct list_head	poll_list;
328 
329 	unsigned long		state;
330 	int			weight;
331 	unsigned long		gro_bitmask;
332 	int			(*poll)(struct napi_struct *, int);
333 #ifdef CONFIG_NETPOLL
334 	int			poll_owner;
335 #endif
336 	struct net_device	*dev;
337 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
338 	struct sk_buff		*skb;
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 };
344 
345 enum {
346 	NAPI_STATE_SCHED,	/* Poll is scheduled */
347 	NAPI_STATE_MISSED,	/* reschedule a napi */
348 	NAPI_STATE_DISABLE,	/* Disable pending */
349 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
350 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
351 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
352 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
353 };
354 
355 enum {
356 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
357 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
358 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
359 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
360 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
361 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
362 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
363 };
364 
365 enum gro_result {
366 	GRO_MERGED,
367 	GRO_MERGED_FREE,
368 	GRO_HELD,
369 	GRO_NORMAL,
370 	GRO_DROP,
371 	GRO_CONSUMED,
372 };
373 typedef enum gro_result gro_result_t;
374 
375 /*
376  * enum rx_handler_result - Possible return values for rx_handlers.
377  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
378  * further.
379  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
380  * case skb->dev was changed by rx_handler.
381  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
382  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
383  *
384  * rx_handlers are functions called from inside __netif_receive_skb(), to do
385  * special processing of the skb, prior to delivery to protocol handlers.
386  *
387  * Currently, a net_device can only have a single rx_handler registered. Trying
388  * to register a second rx_handler will return -EBUSY.
389  *
390  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
391  * To unregister a rx_handler on a net_device, use
392  * netdev_rx_handler_unregister().
393  *
394  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
395  * do with the skb.
396  *
397  * If the rx_handler consumed the skb in some way, it should return
398  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
399  * the skb to be delivered in some other way.
400  *
401  * If the rx_handler changed skb->dev, to divert the skb to another
402  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
403  * new device will be called if it exists.
404  *
405  * If the rx_handler decides the skb should be ignored, it should return
406  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
407  * are registered on exact device (ptype->dev == skb->dev).
408  *
409  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
410  * delivered, it should return RX_HANDLER_PASS.
411  *
412  * A device without a registered rx_handler will behave as if rx_handler
413  * returned RX_HANDLER_PASS.
414  */
415 
416 enum rx_handler_result {
417 	RX_HANDLER_CONSUMED,
418 	RX_HANDLER_ANOTHER,
419 	RX_HANDLER_EXACT,
420 	RX_HANDLER_PASS,
421 };
422 typedef enum rx_handler_result rx_handler_result_t;
423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
424 
425 void __napi_schedule(struct napi_struct *n);
426 void __napi_schedule_irqoff(struct napi_struct *n);
427 
428 static inline bool napi_disable_pending(struct napi_struct *n)
429 {
430 	return test_bit(NAPI_STATE_DISABLE, &n->state);
431 }
432 
433 bool napi_schedule_prep(struct napi_struct *n);
434 
435 /**
436  *	napi_schedule - schedule NAPI poll
437  *	@n: NAPI context
438  *
439  * Schedule NAPI poll routine to be called if it is not already
440  * running.
441  */
442 static inline void napi_schedule(struct napi_struct *n)
443 {
444 	if (napi_schedule_prep(n))
445 		__napi_schedule(n);
446 }
447 
448 /**
449  *	napi_schedule_irqoff - schedule NAPI poll
450  *	@n: NAPI context
451  *
452  * Variant of napi_schedule(), assuming hard irqs are masked.
453  */
454 static inline void napi_schedule_irqoff(struct napi_struct *n)
455 {
456 	if (napi_schedule_prep(n))
457 		__napi_schedule_irqoff(n);
458 }
459 
460 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
461 static inline bool napi_reschedule(struct napi_struct *napi)
462 {
463 	if (napi_schedule_prep(napi)) {
464 		__napi_schedule(napi);
465 		return true;
466 	}
467 	return false;
468 }
469 
470 bool napi_complete_done(struct napi_struct *n, int work_done);
471 /**
472  *	napi_complete - NAPI processing complete
473  *	@n: NAPI context
474  *
475  * Mark NAPI processing as complete.
476  * Consider using napi_complete_done() instead.
477  * Return false if device should avoid rearming interrupts.
478  */
479 static inline bool napi_complete(struct napi_struct *n)
480 {
481 	return napi_complete_done(n, 0);
482 }
483 
484 /**
485  *	napi_hash_del - remove a NAPI from global table
486  *	@napi: NAPI context
487  *
488  * Warning: caller must observe RCU grace period
489  * before freeing memory containing @napi, if
490  * this function returns true.
491  * Note: core networking stack automatically calls it
492  * from netif_napi_del().
493  * Drivers might want to call this helper to combine all
494  * the needed RCU grace periods into a single one.
495  */
496 bool napi_hash_del(struct napi_struct *napi);
497 
498 /**
499  *	napi_disable - prevent NAPI from scheduling
500  *	@n: NAPI context
501  *
502  * Stop NAPI from being scheduled on this context.
503  * Waits till any outstanding processing completes.
504  */
505 void napi_disable(struct napi_struct *n);
506 
507 /**
508  *	napi_enable - enable NAPI scheduling
509  *	@n: NAPI context
510  *
511  * Resume NAPI from being scheduled on this context.
512  * Must be paired with napi_disable.
513  */
514 static inline void napi_enable(struct napi_struct *n)
515 {
516 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 	smp_mb__before_atomic();
518 	clear_bit(NAPI_STATE_SCHED, &n->state);
519 	clear_bit(NAPI_STATE_NPSVC, &n->state);
520 }
521 
522 /**
523  *	napi_synchronize - wait until NAPI is not running
524  *	@n: NAPI context
525  *
526  * Wait until NAPI is done being scheduled on this context.
527  * Waits till any outstanding processing completes but
528  * does not disable future activations.
529  */
530 static inline void napi_synchronize(const struct napi_struct *n)
531 {
532 	if (IS_ENABLED(CONFIG_SMP))
533 		while (test_bit(NAPI_STATE_SCHED, &n->state))
534 			msleep(1);
535 	else
536 		barrier();
537 }
538 
539 /**
540  *	napi_if_scheduled_mark_missed - if napi is running, set the
541  *	NAPIF_STATE_MISSED
542  *	@n: NAPI context
543  *
544  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545  * NAPI is scheduled.
546  **/
547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548 {
549 	unsigned long val, new;
550 
551 	do {
552 		val = READ_ONCE(n->state);
553 		if (val & NAPIF_STATE_DISABLE)
554 			return true;
555 
556 		if (!(val & NAPIF_STATE_SCHED))
557 			return false;
558 
559 		new = val | NAPIF_STATE_MISSED;
560 	} while (cmpxchg(&n->state, val, new) != val);
561 
562 	return true;
563 }
564 
565 enum netdev_queue_state_t {
566 	__QUEUE_STATE_DRV_XOFF,
567 	__QUEUE_STATE_STACK_XOFF,
568 	__QUEUE_STATE_FROZEN,
569 };
570 
571 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
572 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
574 
575 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 
581 /*
582  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
583  * netif_tx_* functions below are used to manipulate this flag.  The
584  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585  * queue independently.  The netif_xmit_*stopped functions below are called
586  * to check if the queue has been stopped by the driver or stack (either
587  * of the XOFF bits are set in the state).  Drivers should not need to call
588  * netif_xmit*stopped functions, they should only be using netif_tx_*.
589  */
590 
591 struct netdev_queue {
592 /*
593  * read-mostly part
594  */
595 	struct net_device	*dev;
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	unsigned long		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xdp_umem         *umem;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 static inline bool net_has_fallback_tunnels(const struct net *net)
637 {
638 	return net == &init_net ||
639 	       !IS_ENABLED(CONFIG_SYSCTL) ||
640 	       !sysctl_fb_tunnels_only_for_init_net;
641 }
642 
643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
644 {
645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 	return q->numa_node;
647 #else
648 	return NUMA_NO_NODE;
649 #endif
650 }
651 
652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
653 {
654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
655 	q->numa_node = node;
656 #endif
657 }
658 
659 #ifdef CONFIG_RPS
660 /*
661  * This structure holds an RPS map which can be of variable length.  The
662  * map is an array of CPUs.
663  */
664 struct rps_map {
665 	unsigned int len;
666 	struct rcu_head rcu;
667 	u16 cpus[0];
668 };
669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
670 
671 /*
672  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
673  * tail pointer for that CPU's input queue at the time of last enqueue, and
674  * a hardware filter index.
675  */
676 struct rps_dev_flow {
677 	u16 cpu;
678 	u16 filter;
679 	unsigned int last_qtail;
680 };
681 #define RPS_NO_FILTER 0xffff
682 
683 /*
684  * The rps_dev_flow_table structure contains a table of flow mappings.
685  */
686 struct rps_dev_flow_table {
687 	unsigned int mask;
688 	struct rcu_head rcu;
689 	struct rps_dev_flow flows[0];
690 };
691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
692     ((_num) * sizeof(struct rps_dev_flow)))
693 
694 /*
695  * The rps_sock_flow_table contains mappings of flows to the last CPU
696  * on which they were processed by the application (set in recvmsg).
697  * Each entry is a 32bit value. Upper part is the high-order bits
698  * of flow hash, lower part is CPU number.
699  * rps_cpu_mask is used to partition the space, depending on number of
700  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
701  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
702  * meaning we use 32-6=26 bits for the hash.
703  */
704 struct rps_sock_flow_table {
705 	u32	mask;
706 
707 	u32	ents[0] ____cacheline_aligned_in_smp;
708 };
709 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
710 
711 #define RPS_NO_CPU 0xffff
712 
713 extern u32 rps_cpu_mask;
714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
715 
716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
717 					u32 hash)
718 {
719 	if (table && hash) {
720 		unsigned int index = hash & table->mask;
721 		u32 val = hash & ~rps_cpu_mask;
722 
723 		/* We only give a hint, preemption can change CPU under us */
724 		val |= raw_smp_processor_id();
725 
726 		if (table->ents[index] != val)
727 			table->ents[index] = val;
728 	}
729 }
730 
731 #ifdef CONFIG_RFS_ACCEL
732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
733 			 u16 filter_id);
734 #endif
735 #endif /* CONFIG_RPS */
736 
737 /* This structure contains an instance of an RX queue. */
738 struct netdev_rx_queue {
739 #ifdef CONFIG_RPS
740 	struct rps_map __rcu		*rps_map;
741 	struct rps_dev_flow_table __rcu	*rps_flow_table;
742 #endif
743 	struct kobject			kobj;
744 	struct net_device		*dev;
745 	struct xdp_rxq_info		xdp_rxq;
746 #ifdef CONFIG_XDP_SOCKETS
747 	struct xdp_umem                 *umem;
748 #endif
749 } ____cacheline_aligned_in_smp;
750 
751 /*
752  * RX queue sysfs structures and functions.
753  */
754 struct rx_queue_attribute {
755 	struct attribute attr;
756 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
757 	ssize_t (*store)(struct netdev_rx_queue *queue,
758 			 const char *buf, size_t len);
759 };
760 
761 #ifdef CONFIG_XPS
762 /*
763  * This structure holds an XPS map which can be of variable length.  The
764  * map is an array of queues.
765  */
766 struct xps_map {
767 	unsigned int len;
768 	unsigned int alloc_len;
769 	struct rcu_head rcu;
770 	u16 queues[0];
771 };
772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
774        - sizeof(struct xps_map)) / sizeof(u16))
775 
776 /*
777  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
778  */
779 struct xps_dev_maps {
780 	struct rcu_head rcu;
781 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
782 };
783 
784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
785 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
786 
787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
788 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
789 
790 #endif /* CONFIG_XPS */
791 
792 #define TC_MAX_QUEUE	16
793 #define TC_BITMASK	15
794 /* HW offloaded queuing disciplines txq count and offset maps */
795 struct netdev_tc_txq {
796 	u16 count;
797 	u16 offset;
798 };
799 
800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
801 /*
802  * This structure is to hold information about the device
803  * configured to run FCoE protocol stack.
804  */
805 struct netdev_fcoe_hbainfo {
806 	char	manufacturer[64];
807 	char	serial_number[64];
808 	char	hardware_version[64];
809 	char	driver_version[64];
810 	char	optionrom_version[64];
811 	char	firmware_version[64];
812 	char	model[256];
813 	char	model_description[256];
814 };
815 #endif
816 
817 #define MAX_PHYS_ITEM_ID_LEN 32
818 
819 /* This structure holds a unique identifier to identify some
820  * physical item (port for example) used by a netdevice.
821  */
822 struct netdev_phys_item_id {
823 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
824 	unsigned char id_len;
825 };
826 
827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
828 					    struct netdev_phys_item_id *b)
829 {
830 	return a->id_len == b->id_len &&
831 	       memcmp(a->id, b->id, a->id_len) == 0;
832 }
833 
834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
835 				       struct sk_buff *skb,
836 				       struct net_device *sb_dev);
837 
838 enum tc_setup_type {
839 	TC_SETUP_QDISC_MQPRIO,
840 	TC_SETUP_CLSU32,
841 	TC_SETUP_CLSFLOWER,
842 	TC_SETUP_CLSMATCHALL,
843 	TC_SETUP_CLSBPF,
844 	TC_SETUP_BLOCK,
845 	TC_SETUP_QDISC_CBS,
846 	TC_SETUP_QDISC_RED,
847 	TC_SETUP_QDISC_PRIO,
848 	TC_SETUP_QDISC_MQ,
849 	TC_SETUP_QDISC_ETF,
850 	TC_SETUP_ROOT_QDISC,
851 	TC_SETUP_QDISC_GRED,
852 };
853 
854 /* These structures hold the attributes of bpf state that are being passed
855  * to the netdevice through the bpf op.
856  */
857 enum bpf_netdev_command {
858 	/* Set or clear a bpf program used in the earliest stages of packet
859 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
860 	 * is responsible for calling bpf_prog_put on any old progs that are
861 	 * stored. In case of error, the callee need not release the new prog
862 	 * reference, but on success it takes ownership and must bpf_prog_put
863 	 * when it is no longer used.
864 	 */
865 	XDP_SETUP_PROG,
866 	XDP_SETUP_PROG_HW,
867 	XDP_QUERY_PROG,
868 	XDP_QUERY_PROG_HW,
869 	/* BPF program for offload callbacks, invoked at program load time. */
870 	BPF_OFFLOAD_MAP_ALLOC,
871 	BPF_OFFLOAD_MAP_FREE,
872 	XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880 	enum bpf_netdev_command command;
881 	union {
882 		/* XDP_SETUP_PROG */
883 		struct {
884 			u32 flags;
885 			struct bpf_prog *prog;
886 			struct netlink_ext_ack *extack;
887 		};
888 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 		struct {
890 			u32 prog_id;
891 			/* flags with which program was installed */
892 			u32 prog_flags;
893 		};
894 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
895 		struct {
896 			struct bpf_offloaded_map *offmap;
897 		};
898 		/* XDP_SETUP_XSK_UMEM */
899 		struct {
900 			struct xdp_umem *umem;
901 			u16 queue_id;
902 		} xsk;
903 	};
904 };
905 
906 #ifdef CONFIG_XFRM_OFFLOAD
907 struct xfrmdev_ops {
908 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
909 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
910 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
911 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
912 				       struct xfrm_state *x);
913 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
914 };
915 #endif
916 
917 struct dev_ifalias {
918 	struct rcu_head rcuhead;
919 	char ifalias[];
920 };
921 
922 struct devlink;
923 struct tlsdev_ops;
924 
925 /*
926  * This structure defines the management hooks for network devices.
927  * The following hooks can be defined; unless noted otherwise, they are
928  * optional and can be filled with a null pointer.
929  *
930  * int (*ndo_init)(struct net_device *dev);
931  *     This function is called once when a network device is registered.
932  *     The network device can use this for any late stage initialization
933  *     or semantic validation. It can fail with an error code which will
934  *     be propagated back to register_netdev.
935  *
936  * void (*ndo_uninit)(struct net_device *dev);
937  *     This function is called when device is unregistered or when registration
938  *     fails. It is not called if init fails.
939  *
940  * int (*ndo_open)(struct net_device *dev);
941  *     This function is called when a network device transitions to the up
942  *     state.
943  *
944  * int (*ndo_stop)(struct net_device *dev);
945  *     This function is called when a network device transitions to the down
946  *     state.
947  *
948  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
949  *                               struct net_device *dev);
950  *	Called when a packet needs to be transmitted.
951  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
952  *	the queue before that can happen; it's for obsolete devices and weird
953  *	corner cases, but the stack really does a non-trivial amount
954  *	of useless work if you return NETDEV_TX_BUSY.
955  *	Required; cannot be NULL.
956  *
957  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
958  *					   struct net_device *dev
959  *					   netdev_features_t features);
960  *	Called by core transmit path to determine if device is capable of
961  *	performing offload operations on a given packet. This is to give
962  *	the device an opportunity to implement any restrictions that cannot
963  *	be otherwise expressed by feature flags. The check is called with
964  *	the set of features that the stack has calculated and it returns
965  *	those the driver believes to be appropriate.
966  *
967  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
968  *                         struct net_device *sb_dev);
969  *	Called to decide which queue to use when device supports multiple
970  *	transmit queues.
971  *
972  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
973  *	This function is called to allow device receiver to make
974  *	changes to configuration when multicast or promiscuous is enabled.
975  *
976  * void (*ndo_set_rx_mode)(struct net_device *dev);
977  *	This function is called device changes address list filtering.
978  *	If driver handles unicast address filtering, it should set
979  *	IFF_UNICAST_FLT in its priv_flags.
980  *
981  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
982  *	This function  is called when the Media Access Control address
983  *	needs to be changed. If this interface is not defined, the
984  *	MAC address can not be changed.
985  *
986  * int (*ndo_validate_addr)(struct net_device *dev);
987  *	Test if Media Access Control address is valid for the device.
988  *
989  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
990  *	Called when a user requests an ioctl which can't be handled by
991  *	the generic interface code. If not defined ioctls return
992  *	not supported error code.
993  *
994  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
995  *	Used to set network devices bus interface parameters. This interface
996  *	is retained for legacy reasons; new devices should use the bus
997  *	interface (PCI) for low level management.
998  *
999  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1000  *	Called when a user wants to change the Maximum Transfer Unit
1001  *	of a device.
1002  *
1003  * void (*ndo_tx_timeout)(struct net_device *dev);
1004  *	Callback used when the transmitter has not made any progress
1005  *	for dev->watchdog ticks.
1006  *
1007  * void (*ndo_get_stats64)(struct net_device *dev,
1008  *                         struct rtnl_link_stats64 *storage);
1009  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1010  *	Called when a user wants to get the network device usage
1011  *	statistics. Drivers must do one of the following:
1012  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1013  *	   rtnl_link_stats64 structure passed by the caller.
1014  *	2. Define @ndo_get_stats to update a net_device_stats structure
1015  *	   (which should normally be dev->stats) and return a pointer to
1016  *	   it. The structure may be changed asynchronously only if each
1017  *	   field is written atomically.
1018  *	3. Update dev->stats asynchronously and atomically, and define
1019  *	   neither operation.
1020  *
1021  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1022  *	Return true if this device supports offload stats of this attr_id.
1023  *
1024  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1025  *	void *attr_data)
1026  *	Get statistics for offload operations by attr_id. Write it into the
1027  *	attr_data pointer.
1028  *
1029  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1030  *	If device supports VLAN filtering this function is called when a
1031  *	VLAN id is registered.
1032  *
1033  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1034  *	If device supports VLAN filtering this function is called when a
1035  *	VLAN id is unregistered.
1036  *
1037  * void (*ndo_poll_controller)(struct net_device *dev);
1038  *
1039  *	SR-IOV management functions.
1040  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1041  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1042  *			  u8 qos, __be16 proto);
1043  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1044  *			  int max_tx_rate);
1045  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1046  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1047  * int (*ndo_get_vf_config)(struct net_device *dev,
1048  *			    int vf, struct ifla_vf_info *ivf);
1049  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1050  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1051  *			  struct nlattr *port[]);
1052  *
1053  *      Enable or disable the VF ability to query its RSS Redirection Table and
1054  *      Hash Key. This is needed since on some devices VF share this information
1055  *      with PF and querying it may introduce a theoretical security risk.
1056  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1057  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1058  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1059  *		       void *type_data);
1060  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1061  *	This is always called from the stack with the rtnl lock held and netif
1062  *	tx queues stopped. This allows the netdevice to perform queue
1063  *	management safely.
1064  *
1065  *	Fiber Channel over Ethernet (FCoE) offload functions.
1066  * int (*ndo_fcoe_enable)(struct net_device *dev);
1067  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1068  *	so the underlying device can perform whatever needed configuration or
1069  *	initialization to support acceleration of FCoE traffic.
1070  *
1071  * int (*ndo_fcoe_disable)(struct net_device *dev);
1072  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1073  *	so the underlying device can perform whatever needed clean-ups to
1074  *	stop supporting acceleration of FCoE traffic.
1075  *
1076  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1077  *			     struct scatterlist *sgl, unsigned int sgc);
1078  *	Called when the FCoE Initiator wants to initialize an I/O that
1079  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1080  *	perform necessary setup and returns 1 to indicate the device is set up
1081  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1082  *
1083  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1084  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1085  *	indicated by the FC exchange id 'xid', so the underlying device can
1086  *	clean up and reuse resources for later DDP requests.
1087  *
1088  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1089  *			      struct scatterlist *sgl, unsigned int sgc);
1090  *	Called when the FCoE Target wants to initialize an I/O that
1091  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1092  *	perform necessary setup and returns 1 to indicate the device is set up
1093  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1094  *
1095  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1096  *			       struct netdev_fcoe_hbainfo *hbainfo);
1097  *	Called when the FCoE Protocol stack wants information on the underlying
1098  *	device. This information is utilized by the FCoE protocol stack to
1099  *	register attributes with Fiber Channel management service as per the
1100  *	FC-GS Fabric Device Management Information(FDMI) specification.
1101  *
1102  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1103  *	Called when the underlying device wants to override default World Wide
1104  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1105  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1106  *	protocol stack to use.
1107  *
1108  *	RFS acceleration.
1109  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1110  *			    u16 rxq_index, u32 flow_id);
1111  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1112  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1113  *	Return the filter ID on success, or a negative error code.
1114  *
1115  *	Slave management functions (for bridge, bonding, etc).
1116  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1117  *	Called to make another netdev an underling.
1118  *
1119  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1120  *	Called to release previously enslaved netdev.
1121  *
1122  *      Feature/offload setting functions.
1123  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1124  *		netdev_features_t features);
1125  *	Adjusts the requested feature flags according to device-specific
1126  *	constraints, and returns the resulting flags. Must not modify
1127  *	the device state.
1128  *
1129  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1130  *	Called to update device configuration to new features. Passed
1131  *	feature set might be less than what was returned by ndo_fix_features()).
1132  *	Must return >0 or -errno if it changed dev->features itself.
1133  *
1134  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1135  *		      struct net_device *dev,
1136  *		      const unsigned char *addr, u16 vid, u16 flags,
1137  *		      struct netlink_ext_ack *extack);
1138  *	Adds an FDB entry to dev for addr.
1139  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1140  *		      struct net_device *dev,
1141  *		      const unsigned char *addr, u16 vid)
1142  *	Deletes the FDB entry from dev coresponding to addr.
1143  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1144  *		       struct net_device *dev, struct net_device *filter_dev,
1145  *		       int *idx)
1146  *	Used to add FDB entries to dump requests. Implementers should add
1147  *	entries to skb and update idx with the number of entries.
1148  *
1149  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1150  *			     u16 flags, struct netlink_ext_ack *extack)
1151  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1152  *			     struct net_device *dev, u32 filter_mask,
1153  *			     int nlflags)
1154  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1155  *			     u16 flags);
1156  *
1157  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1158  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1159  *	which do not represent real hardware may define this to allow their
1160  *	userspace components to manage their virtual carrier state. Devices
1161  *	that determine carrier state from physical hardware properties (eg
1162  *	network cables) or protocol-dependent mechanisms (eg
1163  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1164  *
1165  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1166  *			       struct netdev_phys_item_id *ppid);
1167  *	Called to get ID of physical port of this device. If driver does
1168  *	not implement this, it is assumed that the hw is not able to have
1169  *	multiple net devices on single physical port.
1170  *
1171  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1172  *				 struct netdev_phys_item_id *ppid)
1173  *	Called to get the parent ID of the physical port of this device.
1174  *
1175  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1176  *			      struct udp_tunnel_info *ti);
1177  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1178  *	address family that a UDP tunnel is listnening to. It is called only
1179  *	when a new port starts listening. The operation is protected by the
1180  *	RTNL.
1181  *
1182  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1183  *			      struct udp_tunnel_info *ti);
1184  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1185  *	address family that the UDP tunnel is not listening to anymore. The
1186  *	operation is protected by the RTNL.
1187  *
1188  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1189  *				 struct net_device *dev)
1190  *	Called by upper layer devices to accelerate switching or other
1191  *	station functionality into hardware. 'pdev is the lowerdev
1192  *	to use for the offload and 'dev' is the net device that will
1193  *	back the offload. Returns a pointer to the private structure
1194  *	the upper layer will maintain.
1195  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1196  *	Called by upper layer device to delete the station created
1197  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1198  *	the station and priv is the structure returned by the add
1199  *	operation.
1200  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1201  *			     int queue_index, u32 maxrate);
1202  *	Called when a user wants to set a max-rate limitation of specific
1203  *	TX queue.
1204  * int (*ndo_get_iflink)(const struct net_device *dev);
1205  *	Called to get the iflink value of this device.
1206  * void (*ndo_change_proto_down)(struct net_device *dev,
1207  *				 bool proto_down);
1208  *	This function is used to pass protocol port error state information
1209  *	to the switch driver. The switch driver can react to the proto_down
1210  *      by doing a phys down on the associated switch port.
1211  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1212  *	This function is used to get egress tunnel information for given skb.
1213  *	This is useful for retrieving outer tunnel header parameters while
1214  *	sampling packet.
1215  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1216  *	This function is used to specify the headroom that the skb must
1217  *	consider when allocation skb during packet reception. Setting
1218  *	appropriate rx headroom value allows avoiding skb head copy on
1219  *	forward. Setting a negative value resets the rx headroom to the
1220  *	default value.
1221  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1222  *	This function is used to set or query state related to XDP on the
1223  *	netdevice and manage BPF offload. See definition of
1224  *	enum bpf_netdev_command for details.
1225  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1226  *			u32 flags);
1227  *	This function is used to submit @n XDP packets for transmit on a
1228  *	netdevice. Returns number of frames successfully transmitted, frames
1229  *	that got dropped are freed/returned via xdp_return_frame().
1230  *	Returns negative number, means general error invoking ndo, meaning
1231  *	no frames were xmit'ed and core-caller will free all frames.
1232  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1233  *	Get devlink port instance associated with a given netdev.
1234  *	Called with a reference on the netdevice and devlink locks only,
1235  *	rtnl_lock is not held.
1236  */
1237 struct net_device_ops {
1238 	int			(*ndo_init)(struct net_device *dev);
1239 	void			(*ndo_uninit)(struct net_device *dev);
1240 	int			(*ndo_open)(struct net_device *dev);
1241 	int			(*ndo_stop)(struct net_device *dev);
1242 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1243 						  struct net_device *dev);
1244 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1245 						      struct net_device *dev,
1246 						      netdev_features_t features);
1247 	u16			(*ndo_select_queue)(struct net_device *dev,
1248 						    struct sk_buff *skb,
1249 						    struct net_device *sb_dev);
1250 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1251 						       int flags);
1252 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1253 	int			(*ndo_set_mac_address)(struct net_device *dev,
1254 						       void *addr);
1255 	int			(*ndo_validate_addr)(struct net_device *dev);
1256 	int			(*ndo_do_ioctl)(struct net_device *dev,
1257 					        struct ifreq *ifr, int cmd);
1258 	int			(*ndo_set_config)(struct net_device *dev,
1259 					          struct ifmap *map);
1260 	int			(*ndo_change_mtu)(struct net_device *dev,
1261 						  int new_mtu);
1262 	int			(*ndo_neigh_setup)(struct net_device *dev,
1263 						   struct neigh_parms *);
1264 	void			(*ndo_tx_timeout) (struct net_device *dev);
1265 
1266 	void			(*ndo_get_stats64)(struct net_device *dev,
1267 						   struct rtnl_link_stats64 *storage);
1268 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1269 	int			(*ndo_get_offload_stats)(int attr_id,
1270 							 const struct net_device *dev,
1271 							 void *attr_data);
1272 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1273 
1274 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1275 						       __be16 proto, u16 vid);
1276 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1277 						        __be16 proto, u16 vid);
1278 #ifdef CONFIG_NET_POLL_CONTROLLER
1279 	void                    (*ndo_poll_controller)(struct net_device *dev);
1280 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1281 						     struct netpoll_info *info);
1282 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1283 #endif
1284 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1285 						  int queue, u8 *mac);
1286 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1287 						   int queue, u16 vlan,
1288 						   u8 qos, __be16 proto);
1289 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1290 						   int vf, int min_tx_rate,
1291 						   int max_tx_rate);
1292 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1293 						       int vf, bool setting);
1294 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1295 						    int vf, bool setting);
1296 	int			(*ndo_get_vf_config)(struct net_device *dev,
1297 						     int vf,
1298 						     struct ifla_vf_info *ivf);
1299 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1300 							 int vf, int link_state);
1301 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1302 						    int vf,
1303 						    struct ifla_vf_stats
1304 						    *vf_stats);
1305 	int			(*ndo_set_vf_port)(struct net_device *dev,
1306 						   int vf,
1307 						   struct nlattr *port[]);
1308 	int			(*ndo_get_vf_port)(struct net_device *dev,
1309 						   int vf, struct sk_buff *skb);
1310 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1311 						   int vf, u64 guid,
1312 						   int guid_type);
1313 	int			(*ndo_set_vf_rss_query_en)(
1314 						   struct net_device *dev,
1315 						   int vf, bool setting);
1316 	int			(*ndo_setup_tc)(struct net_device *dev,
1317 						enum tc_setup_type type,
1318 						void *type_data);
1319 #if IS_ENABLED(CONFIG_FCOE)
1320 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1321 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1322 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1323 						      u16 xid,
1324 						      struct scatterlist *sgl,
1325 						      unsigned int sgc);
1326 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1327 						     u16 xid);
1328 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1329 						       u16 xid,
1330 						       struct scatterlist *sgl,
1331 						       unsigned int sgc);
1332 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1333 							struct netdev_fcoe_hbainfo *hbainfo);
1334 #endif
1335 
1336 #if IS_ENABLED(CONFIG_LIBFCOE)
1337 #define NETDEV_FCOE_WWNN 0
1338 #define NETDEV_FCOE_WWPN 1
1339 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1340 						    u64 *wwn, int type);
1341 #endif
1342 
1343 #ifdef CONFIG_RFS_ACCEL
1344 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1345 						     const struct sk_buff *skb,
1346 						     u16 rxq_index,
1347 						     u32 flow_id);
1348 #endif
1349 	int			(*ndo_add_slave)(struct net_device *dev,
1350 						 struct net_device *slave_dev,
1351 						 struct netlink_ext_ack *extack);
1352 	int			(*ndo_del_slave)(struct net_device *dev,
1353 						 struct net_device *slave_dev);
1354 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1355 						    netdev_features_t features);
1356 	int			(*ndo_set_features)(struct net_device *dev,
1357 						    netdev_features_t features);
1358 	int			(*ndo_neigh_construct)(struct net_device *dev,
1359 						       struct neighbour *n);
1360 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1361 						     struct neighbour *n);
1362 
1363 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1364 					       struct nlattr *tb[],
1365 					       struct net_device *dev,
1366 					       const unsigned char *addr,
1367 					       u16 vid,
1368 					       u16 flags,
1369 					       struct netlink_ext_ack *extack);
1370 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1371 					       struct nlattr *tb[],
1372 					       struct net_device *dev,
1373 					       const unsigned char *addr,
1374 					       u16 vid);
1375 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1376 						struct netlink_callback *cb,
1377 						struct net_device *dev,
1378 						struct net_device *filter_dev,
1379 						int *idx);
1380 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1381 					       struct nlattr *tb[],
1382 					       struct net_device *dev,
1383 					       const unsigned char *addr,
1384 					       u16 vid, u32 portid, u32 seq,
1385 					       struct netlink_ext_ack *extack);
1386 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1387 						      struct nlmsghdr *nlh,
1388 						      u16 flags,
1389 						      struct netlink_ext_ack *extack);
1390 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1391 						      u32 pid, u32 seq,
1392 						      struct net_device *dev,
1393 						      u32 filter_mask,
1394 						      int nlflags);
1395 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1396 						      struct nlmsghdr *nlh,
1397 						      u16 flags);
1398 	int			(*ndo_change_carrier)(struct net_device *dev,
1399 						      bool new_carrier);
1400 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1401 							struct netdev_phys_item_id *ppid);
1402 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1403 							  struct netdev_phys_item_id *ppid);
1404 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1405 							  char *name, size_t len);
1406 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1407 						      struct udp_tunnel_info *ti);
1408 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1409 						      struct udp_tunnel_info *ti);
1410 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1411 							struct net_device *dev);
1412 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1413 							void *priv);
1414 
1415 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1416 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1417 						      int queue_index,
1418 						      u32 maxrate);
1419 	int			(*ndo_get_iflink)(const struct net_device *dev);
1420 	int			(*ndo_change_proto_down)(struct net_device *dev,
1421 							 bool proto_down);
1422 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1423 						       struct sk_buff *skb);
1424 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1425 						       int needed_headroom);
1426 	int			(*ndo_bpf)(struct net_device *dev,
1427 					   struct netdev_bpf *bpf);
1428 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1429 						struct xdp_frame **xdp,
1430 						u32 flags);
1431 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1432 						      u32 queue_id);
1433 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1434 };
1435 
1436 /**
1437  * enum net_device_priv_flags - &struct net_device priv_flags
1438  *
1439  * These are the &struct net_device, they are only set internally
1440  * by drivers and used in the kernel. These flags are invisible to
1441  * userspace; this means that the order of these flags can change
1442  * during any kernel release.
1443  *
1444  * You should have a pretty good reason to be extending these flags.
1445  *
1446  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1447  * @IFF_EBRIDGE: Ethernet bridging device
1448  * @IFF_BONDING: bonding master or slave
1449  * @IFF_ISATAP: ISATAP interface (RFC4214)
1450  * @IFF_WAN_HDLC: WAN HDLC device
1451  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1452  *	release skb->dst
1453  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1454  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1455  * @IFF_MACVLAN_PORT: device used as macvlan port
1456  * @IFF_BRIDGE_PORT: device used as bridge port
1457  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1458  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1459  * @IFF_UNICAST_FLT: Supports unicast filtering
1460  * @IFF_TEAM_PORT: device used as team port
1461  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1462  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1463  *	change when it's running
1464  * @IFF_MACVLAN: Macvlan device
1465  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1466  *	underlying stacked devices
1467  * @IFF_L3MDEV_MASTER: device is an L3 master device
1468  * @IFF_NO_QUEUE: device can run without qdisc attached
1469  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1470  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1471  * @IFF_TEAM: device is a team device
1472  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1473  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1474  *	entity (i.e. the master device for bridged veth)
1475  * @IFF_MACSEC: device is a MACsec device
1476  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1477  * @IFF_FAILOVER: device is a failover master device
1478  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1479  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1480  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1481  */
1482 enum netdev_priv_flags {
1483 	IFF_802_1Q_VLAN			= 1<<0,
1484 	IFF_EBRIDGE			= 1<<1,
1485 	IFF_BONDING			= 1<<2,
1486 	IFF_ISATAP			= 1<<3,
1487 	IFF_WAN_HDLC			= 1<<4,
1488 	IFF_XMIT_DST_RELEASE		= 1<<5,
1489 	IFF_DONT_BRIDGE			= 1<<6,
1490 	IFF_DISABLE_NETPOLL		= 1<<7,
1491 	IFF_MACVLAN_PORT		= 1<<8,
1492 	IFF_BRIDGE_PORT			= 1<<9,
1493 	IFF_OVS_DATAPATH		= 1<<10,
1494 	IFF_TX_SKB_SHARING		= 1<<11,
1495 	IFF_UNICAST_FLT			= 1<<12,
1496 	IFF_TEAM_PORT			= 1<<13,
1497 	IFF_SUPP_NOFCS			= 1<<14,
1498 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1499 	IFF_MACVLAN			= 1<<16,
1500 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1501 	IFF_L3MDEV_MASTER		= 1<<18,
1502 	IFF_NO_QUEUE			= 1<<19,
1503 	IFF_OPENVSWITCH			= 1<<20,
1504 	IFF_L3MDEV_SLAVE		= 1<<21,
1505 	IFF_TEAM			= 1<<22,
1506 	IFF_RXFH_CONFIGURED		= 1<<23,
1507 	IFF_PHONY_HEADROOM		= 1<<24,
1508 	IFF_MACSEC			= 1<<25,
1509 	IFF_NO_RX_HANDLER		= 1<<26,
1510 	IFF_FAILOVER			= 1<<27,
1511 	IFF_FAILOVER_SLAVE		= 1<<28,
1512 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1513 	IFF_LIVE_RENAME_OK		= 1<<30,
1514 };
1515 
1516 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1517 #define IFF_EBRIDGE			IFF_EBRIDGE
1518 #define IFF_BONDING			IFF_BONDING
1519 #define IFF_ISATAP			IFF_ISATAP
1520 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1521 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1522 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1523 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1524 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1525 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1526 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1527 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1528 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1529 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1530 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1531 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1532 #define IFF_MACVLAN			IFF_MACVLAN
1533 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1534 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1535 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1536 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1537 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1538 #define IFF_TEAM			IFF_TEAM
1539 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1540 #define IFF_MACSEC			IFF_MACSEC
1541 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1542 #define IFF_FAILOVER			IFF_FAILOVER
1543 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1544 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1545 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1546 
1547 /**
1548  *	struct net_device - The DEVICE structure.
1549  *
1550  *	Actually, this whole structure is a big mistake.  It mixes I/O
1551  *	data with strictly "high-level" data, and it has to know about
1552  *	almost every data structure used in the INET module.
1553  *
1554  *	@name:	This is the first field of the "visible" part of this structure
1555  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1556  *		of the interface.
1557  *
1558  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1559  *	@ifalias:	SNMP alias
1560  *	@mem_end:	Shared memory end
1561  *	@mem_start:	Shared memory start
1562  *	@base_addr:	Device I/O address
1563  *	@irq:		Device IRQ number
1564  *
1565  *	@state:		Generic network queuing layer state, see netdev_state_t
1566  *	@dev_list:	The global list of network devices
1567  *	@napi_list:	List entry used for polling NAPI devices
1568  *	@unreg_list:	List entry  when we are unregistering the
1569  *			device; see the function unregister_netdev
1570  *	@close_list:	List entry used when we are closing the device
1571  *	@ptype_all:     Device-specific packet handlers for all protocols
1572  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1573  *
1574  *	@adj_list:	Directly linked devices, like slaves for bonding
1575  *	@features:	Currently active device features
1576  *	@hw_features:	User-changeable features
1577  *
1578  *	@wanted_features:	User-requested features
1579  *	@vlan_features:		Mask of features inheritable by VLAN devices
1580  *
1581  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1582  *				This field indicates what encapsulation
1583  *				offloads the hardware is capable of doing,
1584  *				and drivers will need to set them appropriately.
1585  *
1586  *	@mpls_features:	Mask of features inheritable by MPLS
1587  *
1588  *	@ifindex:	interface index
1589  *	@group:		The group the device belongs to
1590  *
1591  *	@stats:		Statistics struct, which was left as a legacy, use
1592  *			rtnl_link_stats64 instead
1593  *
1594  *	@rx_dropped:	Dropped packets by core network,
1595  *			do not use this in drivers
1596  *	@tx_dropped:	Dropped packets by core network,
1597  *			do not use this in drivers
1598  *	@rx_nohandler:	nohandler dropped packets by core network on
1599  *			inactive devices, do not use this in drivers
1600  *	@carrier_up_count:	Number of times the carrier has been up
1601  *	@carrier_down_count:	Number of times the carrier has been down
1602  *
1603  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1604  *				instead of ioctl,
1605  *				see <net/iw_handler.h> for details.
1606  *	@wireless_data:	Instance data managed by the core of wireless extensions
1607  *
1608  *	@netdev_ops:	Includes several pointers to callbacks,
1609  *			if one wants to override the ndo_*() functions
1610  *	@ethtool_ops:	Management operations
1611  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1612  *			discovery handling. Necessary for e.g. 6LoWPAN.
1613  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1614  *			of Layer 2 headers.
1615  *
1616  *	@flags:		Interface flags (a la BSD)
1617  *	@priv_flags:	Like 'flags' but invisible to userspace,
1618  *			see if.h for the definitions
1619  *	@gflags:	Global flags ( kept as legacy )
1620  *	@padded:	How much padding added by alloc_netdev()
1621  *	@operstate:	RFC2863 operstate
1622  *	@link_mode:	Mapping policy to operstate
1623  *	@if_port:	Selectable AUI, TP, ...
1624  *	@dma:		DMA channel
1625  *	@mtu:		Interface MTU value
1626  *	@min_mtu:	Interface Minimum MTU value
1627  *	@max_mtu:	Interface Maximum MTU value
1628  *	@type:		Interface hardware type
1629  *	@hard_header_len: Maximum hardware header length.
1630  *	@min_header_len:  Minimum hardware header length
1631  *
1632  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1633  *			  cases can this be guaranteed
1634  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1635  *			  cases can this be guaranteed. Some cases also use
1636  *			  LL_MAX_HEADER instead to allocate the skb
1637  *
1638  *	interface address info:
1639  *
1640  * 	@perm_addr:		Permanent hw address
1641  * 	@addr_assign_type:	Hw address assignment type
1642  * 	@addr_len:		Hardware address length
1643  *	@neigh_priv_len:	Used in neigh_alloc()
1644  * 	@dev_id:		Used to differentiate devices that share
1645  * 				the same link layer address
1646  * 	@dev_port:		Used to differentiate devices that share
1647  * 				the same function
1648  *	@addr_list_lock:	XXX: need comments on this one
1649  *	@uc_promisc:		Counter that indicates promiscuous mode
1650  *				has been enabled due to the need to listen to
1651  *				additional unicast addresses in a device that
1652  *				does not implement ndo_set_rx_mode()
1653  *	@uc:			unicast mac addresses
1654  *	@mc:			multicast mac addresses
1655  *	@dev_addrs:		list of device hw addresses
1656  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1657  *	@promiscuity:		Number of times the NIC is told to work in
1658  *				promiscuous mode; if it becomes 0 the NIC will
1659  *				exit promiscuous mode
1660  *	@allmulti:		Counter, enables or disables allmulticast mode
1661  *
1662  *	@vlan_info:	VLAN info
1663  *	@dsa_ptr:	dsa specific data
1664  *	@tipc_ptr:	TIPC specific data
1665  *	@atalk_ptr:	AppleTalk link
1666  *	@ip_ptr:	IPv4 specific data
1667  *	@dn_ptr:	DECnet specific data
1668  *	@ip6_ptr:	IPv6 specific data
1669  *	@ax25_ptr:	AX.25 specific data
1670  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1671  *
1672  *	@dev_addr:	Hw address (before bcast,
1673  *			because most packets are unicast)
1674  *
1675  *	@_rx:			Array of RX queues
1676  *	@num_rx_queues:		Number of RX queues
1677  *				allocated at register_netdev() time
1678  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1679  *
1680  *	@rx_handler:		handler for received packets
1681  *	@rx_handler_data: 	XXX: need comments on this one
1682  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1683  *				ingress processing
1684  *	@ingress_queue:		XXX: need comments on this one
1685  *	@broadcast:		hw bcast address
1686  *
1687  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1688  *			indexed by RX queue number. Assigned by driver.
1689  *			This must only be set if the ndo_rx_flow_steer
1690  *			operation is defined
1691  *	@index_hlist:		Device index hash chain
1692  *
1693  *	@_tx:			Array of TX queues
1694  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1695  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1696  *	@qdisc:			Root qdisc from userspace point of view
1697  *	@tx_queue_len:		Max frames per queue allowed
1698  *	@tx_global_lock: 	XXX: need comments on this one
1699  *
1700  *	@xps_maps:	XXX: need comments on this one
1701  *	@miniq_egress:		clsact qdisc specific data for
1702  *				egress processing
1703  *	@watchdog_timeo:	Represents the timeout that is used by
1704  *				the watchdog (see dev_watchdog())
1705  *	@watchdog_timer:	List of timers
1706  *
1707  *	@pcpu_refcnt:		Number of references to this device
1708  *	@todo_list:		Delayed register/unregister
1709  *	@link_watch_list:	XXX: need comments on this one
1710  *
1711  *	@reg_state:		Register/unregister state machine
1712  *	@dismantle:		Device is going to be freed
1713  *	@rtnl_link_state:	This enum represents the phases of creating
1714  *				a new link
1715  *
1716  *	@needs_free_netdev:	Should unregister perform free_netdev?
1717  *	@priv_destructor:	Called from unregister
1718  *	@npinfo:		XXX: need comments on this one
1719  * 	@nd_net:		Network namespace this network device is inside
1720  *
1721  * 	@ml_priv:	Mid-layer private
1722  * 	@lstats:	Loopback statistics
1723  * 	@tstats:	Tunnel statistics
1724  * 	@dstats:	Dummy statistics
1725  * 	@vstats:	Virtual ethernet statistics
1726  *
1727  *	@garp_port:	GARP
1728  *	@mrp_port:	MRP
1729  *
1730  *	@dev:		Class/net/name entry
1731  *	@sysfs_groups:	Space for optional device, statistics and wireless
1732  *			sysfs groups
1733  *
1734  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1735  *	@rtnl_link_ops:	Rtnl_link_ops
1736  *
1737  *	@gso_max_size:	Maximum size of generic segmentation offload
1738  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1739  *			NIC for GSO
1740  *
1741  *	@dcbnl_ops:	Data Center Bridging netlink ops
1742  *	@num_tc:	Number of traffic classes in the net device
1743  *	@tc_to_txq:	XXX: need comments on this one
1744  *	@prio_tc_map:	XXX: need comments on this one
1745  *
1746  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1747  *
1748  *	@priomap:	XXX: need comments on this one
1749  *	@phydev:	Physical device may attach itself
1750  *			for hardware timestamping
1751  *	@sfp_bus:	attached &struct sfp_bus structure.
1752  *
1753  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1754  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1755  *
1756  *	@proto_down:	protocol port state information can be sent to the
1757  *			switch driver and used to set the phys state of the
1758  *			switch port.
1759  *
1760  *	@wol_enabled:	Wake-on-LAN is enabled
1761  *
1762  *	FIXME: cleanup struct net_device such that network protocol info
1763  *	moves out.
1764  */
1765 
1766 struct net_device {
1767 	char			name[IFNAMSIZ];
1768 	struct hlist_node	name_hlist;
1769 	struct dev_ifalias	__rcu *ifalias;
1770 	/*
1771 	 *	I/O specific fields
1772 	 *	FIXME: Merge these and struct ifmap into one
1773 	 */
1774 	unsigned long		mem_end;
1775 	unsigned long		mem_start;
1776 	unsigned long		base_addr;
1777 	int			irq;
1778 
1779 	/*
1780 	 *	Some hardware also needs these fields (state,dev_list,
1781 	 *	napi_list,unreg_list,close_list) but they are not
1782 	 *	part of the usual set specified in Space.c.
1783 	 */
1784 
1785 	unsigned long		state;
1786 
1787 	struct list_head	dev_list;
1788 	struct list_head	napi_list;
1789 	struct list_head	unreg_list;
1790 	struct list_head	close_list;
1791 	struct list_head	ptype_all;
1792 	struct list_head	ptype_specific;
1793 
1794 	struct {
1795 		struct list_head upper;
1796 		struct list_head lower;
1797 	} adj_list;
1798 
1799 	netdev_features_t	features;
1800 	netdev_features_t	hw_features;
1801 	netdev_features_t	wanted_features;
1802 	netdev_features_t	vlan_features;
1803 	netdev_features_t	hw_enc_features;
1804 	netdev_features_t	mpls_features;
1805 	netdev_features_t	gso_partial_features;
1806 
1807 	int			ifindex;
1808 	int			group;
1809 
1810 	struct net_device_stats	stats;
1811 
1812 	atomic_long_t		rx_dropped;
1813 	atomic_long_t		tx_dropped;
1814 	atomic_long_t		rx_nohandler;
1815 
1816 	/* Stats to monitor link on/off, flapping */
1817 	atomic_t		carrier_up_count;
1818 	atomic_t		carrier_down_count;
1819 
1820 #ifdef CONFIG_WIRELESS_EXT
1821 	const struct iw_handler_def *wireless_handlers;
1822 	struct iw_public_data	*wireless_data;
1823 #endif
1824 	const struct net_device_ops *netdev_ops;
1825 	const struct ethtool_ops *ethtool_ops;
1826 #ifdef CONFIG_NET_L3_MASTER_DEV
1827 	const struct l3mdev_ops	*l3mdev_ops;
1828 #endif
1829 #if IS_ENABLED(CONFIG_IPV6)
1830 	const struct ndisc_ops *ndisc_ops;
1831 #endif
1832 
1833 #ifdef CONFIG_XFRM_OFFLOAD
1834 	const struct xfrmdev_ops *xfrmdev_ops;
1835 #endif
1836 
1837 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1838 	const struct tlsdev_ops *tlsdev_ops;
1839 #endif
1840 
1841 	const struct header_ops *header_ops;
1842 
1843 	unsigned int		flags;
1844 	unsigned int		priv_flags;
1845 
1846 	unsigned short		gflags;
1847 	unsigned short		padded;
1848 
1849 	unsigned char		operstate;
1850 	unsigned char		link_mode;
1851 
1852 	unsigned char		if_port;
1853 	unsigned char		dma;
1854 
1855 	unsigned int		mtu;
1856 	unsigned int		min_mtu;
1857 	unsigned int		max_mtu;
1858 	unsigned short		type;
1859 	unsigned short		hard_header_len;
1860 	unsigned char		min_header_len;
1861 
1862 	unsigned short		needed_headroom;
1863 	unsigned short		needed_tailroom;
1864 
1865 	/* Interface address info. */
1866 	unsigned char		perm_addr[MAX_ADDR_LEN];
1867 	unsigned char		addr_assign_type;
1868 	unsigned char		addr_len;
1869 	unsigned short		neigh_priv_len;
1870 	unsigned short          dev_id;
1871 	unsigned short          dev_port;
1872 	spinlock_t		addr_list_lock;
1873 	unsigned char		name_assign_type;
1874 	bool			uc_promisc;
1875 	struct netdev_hw_addr_list	uc;
1876 	struct netdev_hw_addr_list	mc;
1877 	struct netdev_hw_addr_list	dev_addrs;
1878 
1879 #ifdef CONFIG_SYSFS
1880 	struct kset		*queues_kset;
1881 #endif
1882 	unsigned int		promiscuity;
1883 	unsigned int		allmulti;
1884 
1885 
1886 	/* Protocol-specific pointers */
1887 
1888 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1889 	struct vlan_info __rcu	*vlan_info;
1890 #endif
1891 #if IS_ENABLED(CONFIG_NET_DSA)
1892 	struct dsa_port		*dsa_ptr;
1893 #endif
1894 #if IS_ENABLED(CONFIG_TIPC)
1895 	struct tipc_bearer __rcu *tipc_ptr;
1896 #endif
1897 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1898 	void 			*atalk_ptr;
1899 #endif
1900 	struct in_device __rcu	*ip_ptr;
1901 #if IS_ENABLED(CONFIG_DECNET)
1902 	struct dn_dev __rcu     *dn_ptr;
1903 #endif
1904 	struct inet6_dev __rcu	*ip6_ptr;
1905 #if IS_ENABLED(CONFIG_AX25)
1906 	void			*ax25_ptr;
1907 #endif
1908 	struct wireless_dev	*ieee80211_ptr;
1909 	struct wpan_dev		*ieee802154_ptr;
1910 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1911 	struct mpls_dev __rcu	*mpls_ptr;
1912 #endif
1913 
1914 /*
1915  * Cache lines mostly used on receive path (including eth_type_trans())
1916  */
1917 	/* Interface address info used in eth_type_trans() */
1918 	unsigned char		*dev_addr;
1919 
1920 	struct netdev_rx_queue	*_rx;
1921 	unsigned int		num_rx_queues;
1922 	unsigned int		real_num_rx_queues;
1923 
1924 	struct bpf_prog __rcu	*xdp_prog;
1925 	unsigned long		gro_flush_timeout;
1926 	rx_handler_func_t __rcu	*rx_handler;
1927 	void __rcu		*rx_handler_data;
1928 
1929 #ifdef CONFIG_NET_CLS_ACT
1930 	struct mini_Qdisc __rcu	*miniq_ingress;
1931 #endif
1932 	struct netdev_queue __rcu *ingress_queue;
1933 #ifdef CONFIG_NETFILTER_INGRESS
1934 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1935 #endif
1936 
1937 	unsigned char		broadcast[MAX_ADDR_LEN];
1938 #ifdef CONFIG_RFS_ACCEL
1939 	struct cpu_rmap		*rx_cpu_rmap;
1940 #endif
1941 	struct hlist_node	index_hlist;
1942 
1943 /*
1944  * Cache lines mostly used on transmit path
1945  */
1946 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1947 	unsigned int		num_tx_queues;
1948 	unsigned int		real_num_tx_queues;
1949 	struct Qdisc		*qdisc;
1950 #ifdef CONFIG_NET_SCHED
1951 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1952 #endif
1953 	unsigned int		tx_queue_len;
1954 	spinlock_t		tx_global_lock;
1955 	int			watchdog_timeo;
1956 
1957 #ifdef CONFIG_XPS
1958 	struct xps_dev_maps __rcu *xps_cpus_map;
1959 	struct xps_dev_maps __rcu *xps_rxqs_map;
1960 #endif
1961 #ifdef CONFIG_NET_CLS_ACT
1962 	struct mini_Qdisc __rcu	*miniq_egress;
1963 #endif
1964 
1965 	/* These may be needed for future network-power-down code. */
1966 	struct timer_list	watchdog_timer;
1967 
1968 	int __percpu		*pcpu_refcnt;
1969 	struct list_head	todo_list;
1970 
1971 	struct list_head	link_watch_list;
1972 
1973 	enum { NETREG_UNINITIALIZED=0,
1974 	       NETREG_REGISTERED,	/* completed register_netdevice */
1975 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1976 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1977 	       NETREG_RELEASED,		/* called free_netdev */
1978 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1979 	} reg_state:8;
1980 
1981 	bool dismantle;
1982 
1983 	enum {
1984 		RTNL_LINK_INITIALIZED,
1985 		RTNL_LINK_INITIALIZING,
1986 	} rtnl_link_state:16;
1987 
1988 	bool needs_free_netdev;
1989 	void (*priv_destructor)(struct net_device *dev);
1990 
1991 #ifdef CONFIG_NETPOLL
1992 	struct netpoll_info __rcu	*npinfo;
1993 #endif
1994 
1995 	possible_net_t			nd_net;
1996 
1997 	/* mid-layer private */
1998 	union {
1999 		void					*ml_priv;
2000 		struct pcpu_lstats __percpu		*lstats;
2001 		struct pcpu_sw_netstats __percpu	*tstats;
2002 		struct pcpu_dstats __percpu		*dstats;
2003 	};
2004 
2005 #if IS_ENABLED(CONFIG_GARP)
2006 	struct garp_port __rcu	*garp_port;
2007 #endif
2008 #if IS_ENABLED(CONFIG_MRP)
2009 	struct mrp_port __rcu	*mrp_port;
2010 #endif
2011 
2012 	struct device		dev;
2013 	const struct attribute_group *sysfs_groups[4];
2014 	const struct attribute_group *sysfs_rx_queue_group;
2015 
2016 	const struct rtnl_link_ops *rtnl_link_ops;
2017 
2018 	/* for setting kernel sock attribute on TCP connection setup */
2019 #define GSO_MAX_SIZE		65536
2020 	unsigned int		gso_max_size;
2021 #define GSO_MAX_SEGS		65535
2022 	u16			gso_max_segs;
2023 
2024 #ifdef CONFIG_DCB
2025 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2026 #endif
2027 	s16			num_tc;
2028 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2029 	u8			prio_tc_map[TC_BITMASK + 1];
2030 
2031 #if IS_ENABLED(CONFIG_FCOE)
2032 	unsigned int		fcoe_ddp_xid;
2033 #endif
2034 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2035 	struct netprio_map __rcu *priomap;
2036 #endif
2037 	struct phy_device	*phydev;
2038 	struct sfp_bus		*sfp_bus;
2039 	struct lock_class_key	*qdisc_tx_busylock;
2040 	struct lock_class_key	*qdisc_running_key;
2041 	bool			proto_down;
2042 	unsigned		wol_enabled:1;
2043 };
2044 #define to_net_dev(d) container_of(d, struct net_device, dev)
2045 
2046 static inline bool netif_elide_gro(const struct net_device *dev)
2047 {
2048 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2049 		return true;
2050 	return false;
2051 }
2052 
2053 #define	NETDEV_ALIGN		32
2054 
2055 static inline
2056 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2057 {
2058 	return dev->prio_tc_map[prio & TC_BITMASK];
2059 }
2060 
2061 static inline
2062 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2063 {
2064 	if (tc >= dev->num_tc)
2065 		return -EINVAL;
2066 
2067 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2068 	return 0;
2069 }
2070 
2071 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2072 void netdev_reset_tc(struct net_device *dev);
2073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2074 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2075 
2076 static inline
2077 int netdev_get_num_tc(struct net_device *dev)
2078 {
2079 	return dev->num_tc;
2080 }
2081 
2082 void netdev_unbind_sb_channel(struct net_device *dev,
2083 			      struct net_device *sb_dev);
2084 int netdev_bind_sb_channel_queue(struct net_device *dev,
2085 				 struct net_device *sb_dev,
2086 				 u8 tc, u16 count, u16 offset);
2087 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2088 static inline int netdev_get_sb_channel(struct net_device *dev)
2089 {
2090 	return max_t(int, -dev->num_tc, 0);
2091 }
2092 
2093 static inline
2094 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2095 					 unsigned int index)
2096 {
2097 	return &dev->_tx[index];
2098 }
2099 
2100 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2101 						    const struct sk_buff *skb)
2102 {
2103 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2104 }
2105 
2106 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2107 					    void (*f)(struct net_device *,
2108 						      struct netdev_queue *,
2109 						      void *),
2110 					    void *arg)
2111 {
2112 	unsigned int i;
2113 
2114 	for (i = 0; i < dev->num_tx_queues; i++)
2115 		f(dev, &dev->_tx[i], arg);
2116 }
2117 
2118 #define netdev_lockdep_set_classes(dev)				\
2119 {								\
2120 	static struct lock_class_key qdisc_tx_busylock_key;	\
2121 	static struct lock_class_key qdisc_running_key;		\
2122 	static struct lock_class_key qdisc_xmit_lock_key;	\
2123 	static struct lock_class_key dev_addr_list_lock_key;	\
2124 	unsigned int i;						\
2125 								\
2126 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2127 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2128 	lockdep_set_class(&(dev)->addr_list_lock,		\
2129 			  &dev_addr_list_lock_key); 		\
2130 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2131 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2132 				  &qdisc_xmit_lock_key);	\
2133 }
2134 
2135 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2136 		     struct net_device *sb_dev);
2137 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2138 					 struct sk_buff *skb,
2139 					 struct net_device *sb_dev);
2140 
2141 /* returns the headroom that the master device needs to take in account
2142  * when forwarding to this dev
2143  */
2144 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2145 {
2146 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2147 }
2148 
2149 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2150 {
2151 	if (dev->netdev_ops->ndo_set_rx_headroom)
2152 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2153 }
2154 
2155 /* set the device rx headroom to the dev's default */
2156 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2157 {
2158 	netdev_set_rx_headroom(dev, -1);
2159 }
2160 
2161 /*
2162  * Net namespace inlines
2163  */
2164 static inline
2165 struct net *dev_net(const struct net_device *dev)
2166 {
2167 	return read_pnet(&dev->nd_net);
2168 }
2169 
2170 static inline
2171 void dev_net_set(struct net_device *dev, struct net *net)
2172 {
2173 	write_pnet(&dev->nd_net, net);
2174 }
2175 
2176 /**
2177  *	netdev_priv - access network device private data
2178  *	@dev: network device
2179  *
2180  * Get network device private data
2181  */
2182 static inline void *netdev_priv(const struct net_device *dev)
2183 {
2184 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2185 }
2186 
2187 /* Set the sysfs physical device reference for the network logical device
2188  * if set prior to registration will cause a symlink during initialization.
2189  */
2190 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2191 
2192 /* Set the sysfs device type for the network logical device to allow
2193  * fine-grained identification of different network device types. For
2194  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2195  */
2196 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2197 
2198 /* Default NAPI poll() weight
2199  * Device drivers are strongly advised to not use bigger value
2200  */
2201 #define NAPI_POLL_WEIGHT 64
2202 
2203 /**
2204  *	netif_napi_add - initialize a NAPI context
2205  *	@dev:  network device
2206  *	@napi: NAPI context
2207  *	@poll: polling function
2208  *	@weight: default weight
2209  *
2210  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2211  * *any* of the other NAPI-related functions.
2212  */
2213 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2214 		    int (*poll)(struct napi_struct *, int), int weight);
2215 
2216 /**
2217  *	netif_tx_napi_add - initialize a NAPI context
2218  *	@dev:  network device
2219  *	@napi: NAPI context
2220  *	@poll: polling function
2221  *	@weight: default weight
2222  *
2223  * This variant of netif_napi_add() should be used from drivers using NAPI
2224  * to exclusively poll a TX queue.
2225  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2226  */
2227 static inline void netif_tx_napi_add(struct net_device *dev,
2228 				     struct napi_struct *napi,
2229 				     int (*poll)(struct napi_struct *, int),
2230 				     int weight)
2231 {
2232 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2233 	netif_napi_add(dev, napi, poll, weight);
2234 }
2235 
2236 /**
2237  *  netif_napi_del - remove a NAPI context
2238  *  @napi: NAPI context
2239  *
2240  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2241  */
2242 void netif_napi_del(struct napi_struct *napi);
2243 
2244 struct napi_gro_cb {
2245 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2246 	void	*frag0;
2247 
2248 	/* Length of frag0. */
2249 	unsigned int frag0_len;
2250 
2251 	/* This indicates where we are processing relative to skb->data. */
2252 	int	data_offset;
2253 
2254 	/* This is non-zero if the packet cannot be merged with the new skb. */
2255 	u16	flush;
2256 
2257 	/* Save the IP ID here and check when we get to the transport layer */
2258 	u16	flush_id;
2259 
2260 	/* Number of segments aggregated. */
2261 	u16	count;
2262 
2263 	/* Start offset for remote checksum offload */
2264 	u16	gro_remcsum_start;
2265 
2266 	/* jiffies when first packet was created/queued */
2267 	unsigned long age;
2268 
2269 	/* Used in ipv6_gro_receive() and foo-over-udp */
2270 	u16	proto;
2271 
2272 	/* This is non-zero if the packet may be of the same flow. */
2273 	u8	same_flow:1;
2274 
2275 	/* Used in tunnel GRO receive */
2276 	u8	encap_mark:1;
2277 
2278 	/* GRO checksum is valid */
2279 	u8	csum_valid:1;
2280 
2281 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2282 	u8	csum_cnt:3;
2283 
2284 	/* Free the skb? */
2285 	u8	free:2;
2286 #define NAPI_GRO_FREE		  1
2287 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2288 
2289 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2290 	u8	is_ipv6:1;
2291 
2292 	/* Used in GRE, set in fou/gue_gro_receive */
2293 	u8	is_fou:1;
2294 
2295 	/* Used to determine if flush_id can be ignored */
2296 	u8	is_atomic:1;
2297 
2298 	/* Number of gro_receive callbacks this packet already went through */
2299 	u8 recursion_counter:4;
2300 
2301 	/* 1 bit hole */
2302 
2303 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2304 	__wsum	csum;
2305 
2306 	/* used in skb_gro_receive() slow path */
2307 	struct sk_buff *last;
2308 };
2309 
2310 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2311 
2312 #define GRO_RECURSION_LIMIT 15
2313 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2314 {
2315 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2316 }
2317 
2318 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2319 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2320 					       struct list_head *head,
2321 					       struct sk_buff *skb)
2322 {
2323 	if (unlikely(gro_recursion_inc_test(skb))) {
2324 		NAPI_GRO_CB(skb)->flush |= 1;
2325 		return NULL;
2326 	}
2327 
2328 	return cb(head, skb);
2329 }
2330 
2331 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2332 					    struct sk_buff *);
2333 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2334 						  struct sock *sk,
2335 						  struct list_head *head,
2336 						  struct sk_buff *skb)
2337 {
2338 	if (unlikely(gro_recursion_inc_test(skb))) {
2339 		NAPI_GRO_CB(skb)->flush |= 1;
2340 		return NULL;
2341 	}
2342 
2343 	return cb(sk, head, skb);
2344 }
2345 
2346 struct packet_type {
2347 	__be16			type;	/* This is really htons(ether_type). */
2348 	bool			ignore_outgoing;
2349 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2350 	int			(*func) (struct sk_buff *,
2351 					 struct net_device *,
2352 					 struct packet_type *,
2353 					 struct net_device *);
2354 	void			(*list_func) (struct list_head *,
2355 					      struct packet_type *,
2356 					      struct net_device *);
2357 	bool			(*id_match)(struct packet_type *ptype,
2358 					    struct sock *sk);
2359 	void			*af_packet_priv;
2360 	struct list_head	list;
2361 };
2362 
2363 struct offload_callbacks {
2364 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2365 						netdev_features_t features);
2366 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2367 						struct sk_buff *skb);
2368 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2369 };
2370 
2371 struct packet_offload {
2372 	__be16			 type;	/* This is really htons(ether_type). */
2373 	u16			 priority;
2374 	struct offload_callbacks callbacks;
2375 	struct list_head	 list;
2376 };
2377 
2378 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2379 struct pcpu_sw_netstats {
2380 	u64     rx_packets;
2381 	u64     rx_bytes;
2382 	u64     tx_packets;
2383 	u64     tx_bytes;
2384 	struct u64_stats_sync   syncp;
2385 } __aligned(4 * sizeof(u64));
2386 
2387 struct pcpu_lstats {
2388 	u64 packets;
2389 	u64 bytes;
2390 	struct u64_stats_sync syncp;
2391 } __aligned(2 * sizeof(u64));
2392 
2393 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2394 ({									\
2395 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2396 	if (pcpu_stats)	{						\
2397 		int __cpu;						\
2398 		for_each_possible_cpu(__cpu) {				\
2399 			typeof(type) *stat;				\
2400 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2401 			u64_stats_init(&stat->syncp);			\
2402 		}							\
2403 	}								\
2404 	pcpu_stats;							\
2405 })
2406 
2407 #define netdev_alloc_pcpu_stats(type)					\
2408 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2409 
2410 enum netdev_lag_tx_type {
2411 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2412 	NETDEV_LAG_TX_TYPE_RANDOM,
2413 	NETDEV_LAG_TX_TYPE_BROADCAST,
2414 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2415 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2416 	NETDEV_LAG_TX_TYPE_HASH,
2417 };
2418 
2419 enum netdev_lag_hash {
2420 	NETDEV_LAG_HASH_NONE,
2421 	NETDEV_LAG_HASH_L2,
2422 	NETDEV_LAG_HASH_L34,
2423 	NETDEV_LAG_HASH_L23,
2424 	NETDEV_LAG_HASH_E23,
2425 	NETDEV_LAG_HASH_E34,
2426 	NETDEV_LAG_HASH_UNKNOWN,
2427 };
2428 
2429 struct netdev_lag_upper_info {
2430 	enum netdev_lag_tx_type tx_type;
2431 	enum netdev_lag_hash hash_type;
2432 };
2433 
2434 struct netdev_lag_lower_state_info {
2435 	u8 link_up : 1,
2436 	   tx_enabled : 1;
2437 };
2438 
2439 #include <linux/notifier.h>
2440 
2441 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2442  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2443  * adding new types.
2444  */
2445 enum netdev_cmd {
2446 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2447 	NETDEV_DOWN,
2448 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2449 				   detected a hardware crash and restarted
2450 				   - we can use this eg to kick tcp sessions
2451 				   once done */
2452 	NETDEV_CHANGE,		/* Notify device state change */
2453 	NETDEV_REGISTER,
2454 	NETDEV_UNREGISTER,
2455 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2456 	NETDEV_CHANGEADDR,	/* notify after the address change */
2457 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2458 	NETDEV_GOING_DOWN,
2459 	NETDEV_CHANGENAME,
2460 	NETDEV_FEAT_CHANGE,
2461 	NETDEV_BONDING_FAILOVER,
2462 	NETDEV_PRE_UP,
2463 	NETDEV_PRE_TYPE_CHANGE,
2464 	NETDEV_POST_TYPE_CHANGE,
2465 	NETDEV_POST_INIT,
2466 	NETDEV_RELEASE,
2467 	NETDEV_NOTIFY_PEERS,
2468 	NETDEV_JOIN,
2469 	NETDEV_CHANGEUPPER,
2470 	NETDEV_RESEND_IGMP,
2471 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2472 	NETDEV_CHANGEINFODATA,
2473 	NETDEV_BONDING_INFO,
2474 	NETDEV_PRECHANGEUPPER,
2475 	NETDEV_CHANGELOWERSTATE,
2476 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2477 	NETDEV_UDP_TUNNEL_DROP_INFO,
2478 	NETDEV_CHANGE_TX_QUEUE_LEN,
2479 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2480 	NETDEV_CVLAN_FILTER_DROP_INFO,
2481 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2482 	NETDEV_SVLAN_FILTER_DROP_INFO,
2483 };
2484 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2485 
2486 int register_netdevice_notifier(struct notifier_block *nb);
2487 int unregister_netdevice_notifier(struct notifier_block *nb);
2488 
2489 struct netdev_notifier_info {
2490 	struct net_device	*dev;
2491 	struct netlink_ext_ack	*extack;
2492 };
2493 
2494 struct netdev_notifier_info_ext {
2495 	struct netdev_notifier_info info; /* must be first */
2496 	union {
2497 		u32 mtu;
2498 	} ext;
2499 };
2500 
2501 struct netdev_notifier_change_info {
2502 	struct netdev_notifier_info info; /* must be first */
2503 	unsigned int flags_changed;
2504 };
2505 
2506 struct netdev_notifier_changeupper_info {
2507 	struct netdev_notifier_info info; /* must be first */
2508 	struct net_device *upper_dev; /* new upper dev */
2509 	bool master; /* is upper dev master */
2510 	bool linking; /* is the notification for link or unlink */
2511 	void *upper_info; /* upper dev info */
2512 };
2513 
2514 struct netdev_notifier_changelowerstate_info {
2515 	struct netdev_notifier_info info; /* must be first */
2516 	void *lower_state_info; /* is lower dev state */
2517 };
2518 
2519 struct netdev_notifier_pre_changeaddr_info {
2520 	struct netdev_notifier_info info; /* must be first */
2521 	const unsigned char *dev_addr;
2522 };
2523 
2524 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2525 					     struct net_device *dev)
2526 {
2527 	info->dev = dev;
2528 	info->extack = NULL;
2529 }
2530 
2531 static inline struct net_device *
2532 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2533 {
2534 	return info->dev;
2535 }
2536 
2537 static inline struct netlink_ext_ack *
2538 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2539 {
2540 	return info->extack;
2541 }
2542 
2543 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2544 
2545 
2546 extern rwlock_t				dev_base_lock;		/* Device list lock */
2547 
2548 #define for_each_netdev(net, d)		\
2549 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2550 #define for_each_netdev_reverse(net, d)	\
2551 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2552 #define for_each_netdev_rcu(net, d)		\
2553 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2554 #define for_each_netdev_safe(net, d, n)	\
2555 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2556 #define for_each_netdev_continue(net, d)		\
2557 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2558 #define for_each_netdev_continue_rcu(net, d)		\
2559 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2560 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2561 		for_each_netdev_rcu(&init_net, slave)	\
2562 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2563 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2564 
2565 static inline struct net_device *next_net_device(struct net_device *dev)
2566 {
2567 	struct list_head *lh;
2568 	struct net *net;
2569 
2570 	net = dev_net(dev);
2571 	lh = dev->dev_list.next;
2572 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2573 }
2574 
2575 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2576 {
2577 	struct list_head *lh;
2578 	struct net *net;
2579 
2580 	net = dev_net(dev);
2581 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2582 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2583 }
2584 
2585 static inline struct net_device *first_net_device(struct net *net)
2586 {
2587 	return list_empty(&net->dev_base_head) ? NULL :
2588 		net_device_entry(net->dev_base_head.next);
2589 }
2590 
2591 static inline struct net_device *first_net_device_rcu(struct net *net)
2592 {
2593 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2594 
2595 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2596 }
2597 
2598 int netdev_boot_setup_check(struct net_device *dev);
2599 unsigned long netdev_boot_base(const char *prefix, int unit);
2600 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2601 				       const char *hwaddr);
2602 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2603 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2604 void dev_add_pack(struct packet_type *pt);
2605 void dev_remove_pack(struct packet_type *pt);
2606 void __dev_remove_pack(struct packet_type *pt);
2607 void dev_add_offload(struct packet_offload *po);
2608 void dev_remove_offload(struct packet_offload *po);
2609 
2610 int dev_get_iflink(const struct net_device *dev);
2611 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2612 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2613 				      unsigned short mask);
2614 struct net_device *dev_get_by_name(struct net *net, const char *name);
2615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2616 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2617 int dev_alloc_name(struct net_device *dev, const char *name);
2618 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2619 void dev_close(struct net_device *dev);
2620 void dev_close_many(struct list_head *head, bool unlink);
2621 void dev_disable_lro(struct net_device *dev);
2622 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2623 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2624 		     struct net_device *sb_dev);
2625 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2626 		       struct net_device *sb_dev);
2627 int dev_queue_xmit(struct sk_buff *skb);
2628 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2629 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2630 int register_netdevice(struct net_device *dev);
2631 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2632 void unregister_netdevice_many(struct list_head *head);
2633 static inline void unregister_netdevice(struct net_device *dev)
2634 {
2635 	unregister_netdevice_queue(dev, NULL);
2636 }
2637 
2638 int netdev_refcnt_read(const struct net_device *dev);
2639 void free_netdev(struct net_device *dev);
2640 void netdev_freemem(struct net_device *dev);
2641 void synchronize_net(void);
2642 int init_dummy_netdev(struct net_device *dev);
2643 
2644 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2645 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2646 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2647 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2648 int netdev_get_name(struct net *net, char *name, int ifindex);
2649 int dev_restart(struct net_device *dev);
2650 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2651 
2652 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2653 {
2654 	return NAPI_GRO_CB(skb)->data_offset;
2655 }
2656 
2657 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2658 {
2659 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2660 }
2661 
2662 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2663 {
2664 	NAPI_GRO_CB(skb)->data_offset += len;
2665 }
2666 
2667 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2668 					unsigned int offset)
2669 {
2670 	return NAPI_GRO_CB(skb)->frag0 + offset;
2671 }
2672 
2673 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2674 {
2675 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2676 }
2677 
2678 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2679 {
2680 	NAPI_GRO_CB(skb)->frag0 = NULL;
2681 	NAPI_GRO_CB(skb)->frag0_len = 0;
2682 }
2683 
2684 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2685 					unsigned int offset)
2686 {
2687 	if (!pskb_may_pull(skb, hlen))
2688 		return NULL;
2689 
2690 	skb_gro_frag0_invalidate(skb);
2691 	return skb->data + offset;
2692 }
2693 
2694 static inline void *skb_gro_network_header(struct sk_buff *skb)
2695 {
2696 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2697 	       skb_network_offset(skb);
2698 }
2699 
2700 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2701 					const void *start, unsigned int len)
2702 {
2703 	if (NAPI_GRO_CB(skb)->csum_valid)
2704 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2705 						  csum_partial(start, len, 0));
2706 }
2707 
2708 /* GRO checksum functions. These are logical equivalents of the normal
2709  * checksum functions (in skbuff.h) except that they operate on the GRO
2710  * offsets and fields in sk_buff.
2711  */
2712 
2713 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2714 
2715 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2716 {
2717 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2718 }
2719 
2720 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2721 						      bool zero_okay,
2722 						      __sum16 check)
2723 {
2724 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2725 		skb_checksum_start_offset(skb) <
2726 		 skb_gro_offset(skb)) &&
2727 		!skb_at_gro_remcsum_start(skb) &&
2728 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2729 		(!zero_okay || check));
2730 }
2731 
2732 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2733 							   __wsum psum)
2734 {
2735 	if (NAPI_GRO_CB(skb)->csum_valid &&
2736 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2737 		return 0;
2738 
2739 	NAPI_GRO_CB(skb)->csum = psum;
2740 
2741 	return __skb_gro_checksum_complete(skb);
2742 }
2743 
2744 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2745 {
2746 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2747 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2748 		NAPI_GRO_CB(skb)->csum_cnt--;
2749 	} else {
2750 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2751 		 * verified a new top level checksum or an encapsulated one
2752 		 * during GRO. This saves work if we fallback to normal path.
2753 		 */
2754 		__skb_incr_checksum_unnecessary(skb);
2755 	}
2756 }
2757 
2758 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2759 				    compute_pseudo)			\
2760 ({									\
2761 	__sum16 __ret = 0;						\
2762 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2763 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2764 				compute_pseudo(skb, proto));		\
2765 	if (!__ret)							\
2766 		skb_gro_incr_csum_unnecessary(skb);			\
2767 	__ret;								\
2768 })
2769 
2770 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2771 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2772 
2773 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2774 					     compute_pseudo)		\
2775 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2776 
2777 #define skb_gro_checksum_simple_validate(skb)				\
2778 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2779 
2780 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2781 {
2782 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2783 		!NAPI_GRO_CB(skb)->csum_valid);
2784 }
2785 
2786 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2787 					      __sum16 check, __wsum pseudo)
2788 {
2789 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2790 	NAPI_GRO_CB(skb)->csum_valid = 1;
2791 }
2792 
2793 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2794 do {									\
2795 	if (__skb_gro_checksum_convert_check(skb))			\
2796 		__skb_gro_checksum_convert(skb, check,			\
2797 					   compute_pseudo(skb, proto));	\
2798 } while (0)
2799 
2800 struct gro_remcsum {
2801 	int offset;
2802 	__wsum delta;
2803 };
2804 
2805 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2806 {
2807 	grc->offset = 0;
2808 	grc->delta = 0;
2809 }
2810 
2811 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2812 					    unsigned int off, size_t hdrlen,
2813 					    int start, int offset,
2814 					    struct gro_remcsum *grc,
2815 					    bool nopartial)
2816 {
2817 	__wsum delta;
2818 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2819 
2820 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2821 
2822 	if (!nopartial) {
2823 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2824 		return ptr;
2825 	}
2826 
2827 	ptr = skb_gro_header_fast(skb, off);
2828 	if (skb_gro_header_hard(skb, off + plen)) {
2829 		ptr = skb_gro_header_slow(skb, off + plen, off);
2830 		if (!ptr)
2831 			return NULL;
2832 	}
2833 
2834 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2835 			       start, offset);
2836 
2837 	/* Adjust skb->csum since we changed the packet */
2838 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2839 
2840 	grc->offset = off + hdrlen + offset;
2841 	grc->delta = delta;
2842 
2843 	return ptr;
2844 }
2845 
2846 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2847 					   struct gro_remcsum *grc)
2848 {
2849 	void *ptr;
2850 	size_t plen = grc->offset + sizeof(u16);
2851 
2852 	if (!grc->delta)
2853 		return;
2854 
2855 	ptr = skb_gro_header_fast(skb, grc->offset);
2856 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2857 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2858 		if (!ptr)
2859 			return;
2860 	}
2861 
2862 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2863 }
2864 
2865 #ifdef CONFIG_XFRM_OFFLOAD
2866 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2867 {
2868 	if (PTR_ERR(pp) != -EINPROGRESS)
2869 		NAPI_GRO_CB(skb)->flush |= flush;
2870 }
2871 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2872 					       struct sk_buff *pp,
2873 					       int flush,
2874 					       struct gro_remcsum *grc)
2875 {
2876 	if (PTR_ERR(pp) != -EINPROGRESS) {
2877 		NAPI_GRO_CB(skb)->flush |= flush;
2878 		skb_gro_remcsum_cleanup(skb, grc);
2879 		skb->remcsum_offload = 0;
2880 	}
2881 }
2882 #else
2883 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2884 {
2885 	NAPI_GRO_CB(skb)->flush |= flush;
2886 }
2887 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2888 					       struct sk_buff *pp,
2889 					       int flush,
2890 					       struct gro_remcsum *grc)
2891 {
2892 	NAPI_GRO_CB(skb)->flush |= flush;
2893 	skb_gro_remcsum_cleanup(skb, grc);
2894 	skb->remcsum_offload = 0;
2895 }
2896 #endif
2897 
2898 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2899 				  unsigned short type,
2900 				  const void *daddr, const void *saddr,
2901 				  unsigned int len)
2902 {
2903 	if (!dev->header_ops || !dev->header_ops->create)
2904 		return 0;
2905 
2906 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2907 }
2908 
2909 static inline int dev_parse_header(const struct sk_buff *skb,
2910 				   unsigned char *haddr)
2911 {
2912 	const struct net_device *dev = skb->dev;
2913 
2914 	if (!dev->header_ops || !dev->header_ops->parse)
2915 		return 0;
2916 	return dev->header_ops->parse(skb, haddr);
2917 }
2918 
2919 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2920 {
2921 	const struct net_device *dev = skb->dev;
2922 
2923 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2924 		return 0;
2925 	return dev->header_ops->parse_protocol(skb);
2926 }
2927 
2928 /* ll_header must have at least hard_header_len allocated */
2929 static inline bool dev_validate_header(const struct net_device *dev,
2930 				       char *ll_header, int len)
2931 {
2932 	if (likely(len >= dev->hard_header_len))
2933 		return true;
2934 	if (len < dev->min_header_len)
2935 		return false;
2936 
2937 	if (capable(CAP_SYS_RAWIO)) {
2938 		memset(ll_header + len, 0, dev->hard_header_len - len);
2939 		return true;
2940 	}
2941 
2942 	if (dev->header_ops && dev->header_ops->validate)
2943 		return dev->header_ops->validate(ll_header, len);
2944 
2945 	return false;
2946 }
2947 
2948 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2949 			   int len, int size);
2950 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2951 static inline int unregister_gifconf(unsigned int family)
2952 {
2953 	return register_gifconf(family, NULL);
2954 }
2955 
2956 #ifdef CONFIG_NET_FLOW_LIMIT
2957 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2958 struct sd_flow_limit {
2959 	u64			count;
2960 	unsigned int		num_buckets;
2961 	unsigned int		history_head;
2962 	u16			history[FLOW_LIMIT_HISTORY];
2963 	u8			buckets[];
2964 };
2965 
2966 extern int netdev_flow_limit_table_len;
2967 #endif /* CONFIG_NET_FLOW_LIMIT */
2968 
2969 /*
2970  * Incoming packets are placed on per-CPU queues
2971  */
2972 struct softnet_data {
2973 	struct list_head	poll_list;
2974 	struct sk_buff_head	process_queue;
2975 
2976 	/* stats */
2977 	unsigned int		processed;
2978 	unsigned int		time_squeeze;
2979 	unsigned int		received_rps;
2980 #ifdef CONFIG_RPS
2981 	struct softnet_data	*rps_ipi_list;
2982 #endif
2983 #ifdef CONFIG_NET_FLOW_LIMIT
2984 	struct sd_flow_limit __rcu *flow_limit;
2985 #endif
2986 	struct Qdisc		*output_queue;
2987 	struct Qdisc		**output_queue_tailp;
2988 	struct sk_buff		*completion_queue;
2989 #ifdef CONFIG_XFRM_OFFLOAD
2990 	struct sk_buff_head	xfrm_backlog;
2991 #endif
2992 	/* written and read only by owning cpu: */
2993 	struct {
2994 		u16 recursion;
2995 		u8  more;
2996 	} xmit;
2997 #ifdef CONFIG_RPS
2998 	/* input_queue_head should be written by cpu owning this struct,
2999 	 * and only read by other cpus. Worth using a cache line.
3000 	 */
3001 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3002 
3003 	/* Elements below can be accessed between CPUs for RPS/RFS */
3004 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3005 	struct softnet_data	*rps_ipi_next;
3006 	unsigned int		cpu;
3007 	unsigned int		input_queue_tail;
3008 #endif
3009 	unsigned int		dropped;
3010 	struct sk_buff_head	input_pkt_queue;
3011 	struct napi_struct	backlog;
3012 
3013 };
3014 
3015 static inline void input_queue_head_incr(struct softnet_data *sd)
3016 {
3017 #ifdef CONFIG_RPS
3018 	sd->input_queue_head++;
3019 #endif
3020 }
3021 
3022 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3023 					      unsigned int *qtail)
3024 {
3025 #ifdef CONFIG_RPS
3026 	*qtail = ++sd->input_queue_tail;
3027 #endif
3028 }
3029 
3030 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3031 
3032 static inline int dev_recursion_level(void)
3033 {
3034 	return this_cpu_read(softnet_data.xmit.recursion);
3035 }
3036 
3037 #define XMIT_RECURSION_LIMIT	10
3038 static inline bool dev_xmit_recursion(void)
3039 {
3040 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3041 			XMIT_RECURSION_LIMIT);
3042 }
3043 
3044 static inline void dev_xmit_recursion_inc(void)
3045 {
3046 	__this_cpu_inc(softnet_data.xmit.recursion);
3047 }
3048 
3049 static inline void dev_xmit_recursion_dec(void)
3050 {
3051 	__this_cpu_dec(softnet_data.xmit.recursion);
3052 }
3053 
3054 void __netif_schedule(struct Qdisc *q);
3055 void netif_schedule_queue(struct netdev_queue *txq);
3056 
3057 static inline void netif_tx_schedule_all(struct net_device *dev)
3058 {
3059 	unsigned int i;
3060 
3061 	for (i = 0; i < dev->num_tx_queues; i++)
3062 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3063 }
3064 
3065 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3066 {
3067 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3068 }
3069 
3070 /**
3071  *	netif_start_queue - allow transmit
3072  *	@dev: network device
3073  *
3074  *	Allow upper layers to call the device hard_start_xmit routine.
3075  */
3076 static inline void netif_start_queue(struct net_device *dev)
3077 {
3078 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3079 }
3080 
3081 static inline void netif_tx_start_all_queues(struct net_device *dev)
3082 {
3083 	unsigned int i;
3084 
3085 	for (i = 0; i < dev->num_tx_queues; i++) {
3086 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3087 		netif_tx_start_queue(txq);
3088 	}
3089 }
3090 
3091 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3092 
3093 /**
3094  *	netif_wake_queue - restart transmit
3095  *	@dev: network device
3096  *
3097  *	Allow upper layers to call the device hard_start_xmit routine.
3098  *	Used for flow control when transmit resources are available.
3099  */
3100 static inline void netif_wake_queue(struct net_device *dev)
3101 {
3102 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3103 }
3104 
3105 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3106 {
3107 	unsigned int i;
3108 
3109 	for (i = 0; i < dev->num_tx_queues; i++) {
3110 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3111 		netif_tx_wake_queue(txq);
3112 	}
3113 }
3114 
3115 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3116 {
3117 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3118 }
3119 
3120 /**
3121  *	netif_stop_queue - stop transmitted packets
3122  *	@dev: network device
3123  *
3124  *	Stop upper layers calling the device hard_start_xmit routine.
3125  *	Used for flow control when transmit resources are unavailable.
3126  */
3127 static inline void netif_stop_queue(struct net_device *dev)
3128 {
3129 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3130 }
3131 
3132 void netif_tx_stop_all_queues(struct net_device *dev);
3133 
3134 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3135 {
3136 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3137 }
3138 
3139 /**
3140  *	netif_queue_stopped - test if transmit queue is flowblocked
3141  *	@dev: network device
3142  *
3143  *	Test if transmit queue on device is currently unable to send.
3144  */
3145 static inline bool netif_queue_stopped(const struct net_device *dev)
3146 {
3147 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3148 }
3149 
3150 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3151 {
3152 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3153 }
3154 
3155 static inline bool
3156 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3157 {
3158 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3159 }
3160 
3161 static inline bool
3162 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3163 {
3164 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3165 }
3166 
3167 /**
3168  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3169  *	@dev_queue: pointer to transmit queue
3170  *
3171  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3172  * to give appropriate hint to the CPU.
3173  */
3174 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3175 {
3176 #ifdef CONFIG_BQL
3177 	prefetchw(&dev_queue->dql.num_queued);
3178 #endif
3179 }
3180 
3181 /**
3182  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3183  *	@dev_queue: pointer to transmit queue
3184  *
3185  * BQL enabled drivers might use this helper in their TX completion path,
3186  * to give appropriate hint to the CPU.
3187  */
3188 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3189 {
3190 #ifdef CONFIG_BQL
3191 	prefetchw(&dev_queue->dql.limit);
3192 #endif
3193 }
3194 
3195 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3196 					unsigned int bytes)
3197 {
3198 #ifdef CONFIG_BQL
3199 	dql_queued(&dev_queue->dql, bytes);
3200 
3201 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3202 		return;
3203 
3204 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3205 
3206 	/*
3207 	 * The XOFF flag must be set before checking the dql_avail below,
3208 	 * because in netdev_tx_completed_queue we update the dql_completed
3209 	 * before checking the XOFF flag.
3210 	 */
3211 	smp_mb();
3212 
3213 	/* check again in case another CPU has just made room avail */
3214 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3215 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3216 #endif
3217 }
3218 
3219 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3220  * that they should not test BQL status themselves.
3221  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3222  * skb of a batch.
3223  * Returns true if the doorbell must be used to kick the NIC.
3224  */
3225 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3226 					  unsigned int bytes,
3227 					  bool xmit_more)
3228 {
3229 	if (xmit_more) {
3230 #ifdef CONFIG_BQL
3231 		dql_queued(&dev_queue->dql, bytes);
3232 #endif
3233 		return netif_tx_queue_stopped(dev_queue);
3234 	}
3235 	netdev_tx_sent_queue(dev_queue, bytes);
3236 	return true;
3237 }
3238 
3239 /**
3240  * 	netdev_sent_queue - report the number of bytes queued to hardware
3241  * 	@dev: network device
3242  * 	@bytes: number of bytes queued to the hardware device queue
3243  *
3244  * 	Report the number of bytes queued for sending/completion to the network
3245  * 	device hardware queue. @bytes should be a good approximation and should
3246  * 	exactly match netdev_completed_queue() @bytes
3247  */
3248 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3249 {
3250 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3251 }
3252 
3253 static inline bool __netdev_sent_queue(struct net_device *dev,
3254 				       unsigned int bytes,
3255 				       bool xmit_more)
3256 {
3257 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3258 				      xmit_more);
3259 }
3260 
3261 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3262 					     unsigned int pkts, unsigned int bytes)
3263 {
3264 #ifdef CONFIG_BQL
3265 	if (unlikely(!bytes))
3266 		return;
3267 
3268 	dql_completed(&dev_queue->dql, bytes);
3269 
3270 	/*
3271 	 * Without the memory barrier there is a small possiblity that
3272 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3273 	 * be stopped forever
3274 	 */
3275 	smp_mb();
3276 
3277 	if (dql_avail(&dev_queue->dql) < 0)
3278 		return;
3279 
3280 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3281 		netif_schedule_queue(dev_queue);
3282 #endif
3283 }
3284 
3285 /**
3286  * 	netdev_completed_queue - report bytes and packets completed by device
3287  * 	@dev: network device
3288  * 	@pkts: actual number of packets sent over the medium
3289  * 	@bytes: actual number of bytes sent over the medium
3290  *
3291  * 	Report the number of bytes and packets transmitted by the network device
3292  * 	hardware queue over the physical medium, @bytes must exactly match the
3293  * 	@bytes amount passed to netdev_sent_queue()
3294  */
3295 static inline void netdev_completed_queue(struct net_device *dev,
3296 					  unsigned int pkts, unsigned int bytes)
3297 {
3298 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3299 }
3300 
3301 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3302 {
3303 #ifdef CONFIG_BQL
3304 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3305 	dql_reset(&q->dql);
3306 #endif
3307 }
3308 
3309 /**
3310  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3311  * 	@dev_queue: network device
3312  *
3313  * 	Reset the bytes and packet count of a network device and clear the
3314  * 	software flow control OFF bit for this network device
3315  */
3316 static inline void netdev_reset_queue(struct net_device *dev_queue)
3317 {
3318 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3319 }
3320 
3321 /**
3322  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3323  * 	@dev: network device
3324  * 	@queue_index: given tx queue index
3325  *
3326  * 	Returns 0 if given tx queue index >= number of device tx queues,
3327  * 	otherwise returns the originally passed tx queue index.
3328  */
3329 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3330 {
3331 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3332 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3333 				     dev->name, queue_index,
3334 				     dev->real_num_tx_queues);
3335 		return 0;
3336 	}
3337 
3338 	return queue_index;
3339 }
3340 
3341 /**
3342  *	netif_running - test if up
3343  *	@dev: network device
3344  *
3345  *	Test if the device has been brought up.
3346  */
3347 static inline bool netif_running(const struct net_device *dev)
3348 {
3349 	return test_bit(__LINK_STATE_START, &dev->state);
3350 }
3351 
3352 /*
3353  * Routines to manage the subqueues on a device.  We only need start,
3354  * stop, and a check if it's stopped.  All other device management is
3355  * done at the overall netdevice level.
3356  * Also test the device if we're multiqueue.
3357  */
3358 
3359 /**
3360  *	netif_start_subqueue - allow sending packets on subqueue
3361  *	@dev: network device
3362  *	@queue_index: sub queue index
3363  *
3364  * Start individual transmit queue of a device with multiple transmit queues.
3365  */
3366 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3367 {
3368 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3369 
3370 	netif_tx_start_queue(txq);
3371 }
3372 
3373 /**
3374  *	netif_stop_subqueue - stop sending packets on subqueue
3375  *	@dev: network device
3376  *	@queue_index: sub queue index
3377  *
3378  * Stop individual transmit queue of a device with multiple transmit queues.
3379  */
3380 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3381 {
3382 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3383 	netif_tx_stop_queue(txq);
3384 }
3385 
3386 /**
3387  *	netif_subqueue_stopped - test status of subqueue
3388  *	@dev: network device
3389  *	@queue_index: sub queue index
3390  *
3391  * Check individual transmit queue of a device with multiple transmit queues.
3392  */
3393 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3394 					    u16 queue_index)
3395 {
3396 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3397 
3398 	return netif_tx_queue_stopped(txq);
3399 }
3400 
3401 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3402 					  struct sk_buff *skb)
3403 {
3404 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3405 }
3406 
3407 /**
3408  *	netif_wake_subqueue - allow sending packets on subqueue
3409  *	@dev: network device
3410  *	@queue_index: sub queue index
3411  *
3412  * Resume individual transmit queue of a device with multiple transmit queues.
3413  */
3414 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3415 {
3416 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3417 
3418 	netif_tx_wake_queue(txq);
3419 }
3420 
3421 #ifdef CONFIG_XPS
3422 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3423 			u16 index);
3424 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3425 			  u16 index, bool is_rxqs_map);
3426 
3427 /**
3428  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3429  *	@j: CPU/Rx queue index
3430  *	@mask: bitmask of all cpus/rx queues
3431  *	@nr_bits: number of bits in the bitmask
3432  *
3433  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3434  */
3435 static inline bool netif_attr_test_mask(unsigned long j,
3436 					const unsigned long *mask,
3437 					unsigned int nr_bits)
3438 {
3439 	cpu_max_bits_warn(j, nr_bits);
3440 	return test_bit(j, mask);
3441 }
3442 
3443 /**
3444  *	netif_attr_test_online - Test for online CPU/Rx queue
3445  *	@j: CPU/Rx queue index
3446  *	@online_mask: bitmask for CPUs/Rx queues that are online
3447  *	@nr_bits: number of bits in the bitmask
3448  *
3449  * Returns true if a CPU/Rx queue is online.
3450  */
3451 static inline bool netif_attr_test_online(unsigned long j,
3452 					  const unsigned long *online_mask,
3453 					  unsigned int nr_bits)
3454 {
3455 	cpu_max_bits_warn(j, nr_bits);
3456 
3457 	if (online_mask)
3458 		return test_bit(j, online_mask);
3459 
3460 	return (j < nr_bits);
3461 }
3462 
3463 /**
3464  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3465  *	@n: CPU/Rx queue index
3466  *	@srcp: the cpumask/Rx queue mask pointer
3467  *	@nr_bits: number of bits in the bitmask
3468  *
3469  * Returns >= nr_bits if no further CPUs/Rx queues set.
3470  */
3471 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3472 					       unsigned int nr_bits)
3473 {
3474 	/* -1 is a legal arg here. */
3475 	if (n != -1)
3476 		cpu_max_bits_warn(n, nr_bits);
3477 
3478 	if (srcp)
3479 		return find_next_bit(srcp, nr_bits, n + 1);
3480 
3481 	return n + 1;
3482 }
3483 
3484 /**
3485  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3486  *	@n: CPU/Rx queue index
3487  *	@src1p: the first CPUs/Rx queues mask pointer
3488  *	@src2p: the second CPUs/Rx queues mask pointer
3489  *	@nr_bits: number of bits in the bitmask
3490  *
3491  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3492  */
3493 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3494 					  const unsigned long *src2p,
3495 					  unsigned int nr_bits)
3496 {
3497 	/* -1 is a legal arg here. */
3498 	if (n != -1)
3499 		cpu_max_bits_warn(n, nr_bits);
3500 
3501 	if (src1p && src2p)
3502 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3503 	else if (src1p)
3504 		return find_next_bit(src1p, nr_bits, n + 1);
3505 	else if (src2p)
3506 		return find_next_bit(src2p, nr_bits, n + 1);
3507 
3508 	return n + 1;
3509 }
3510 #else
3511 static inline int netif_set_xps_queue(struct net_device *dev,
3512 				      const struct cpumask *mask,
3513 				      u16 index)
3514 {
3515 	return 0;
3516 }
3517 
3518 static inline int __netif_set_xps_queue(struct net_device *dev,
3519 					const unsigned long *mask,
3520 					u16 index, bool is_rxqs_map)
3521 {
3522 	return 0;
3523 }
3524 #endif
3525 
3526 /**
3527  *	netif_is_multiqueue - test if device has multiple transmit queues
3528  *	@dev: network device
3529  *
3530  * Check if device has multiple transmit queues
3531  */
3532 static inline bool netif_is_multiqueue(const struct net_device *dev)
3533 {
3534 	return dev->num_tx_queues > 1;
3535 }
3536 
3537 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3538 
3539 #ifdef CONFIG_SYSFS
3540 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3541 #else
3542 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3543 						unsigned int rxqs)
3544 {
3545 	dev->real_num_rx_queues = rxqs;
3546 	return 0;
3547 }
3548 #endif
3549 
3550 static inline struct netdev_rx_queue *
3551 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3552 {
3553 	return dev->_rx + rxq;
3554 }
3555 
3556 #ifdef CONFIG_SYSFS
3557 static inline unsigned int get_netdev_rx_queue_index(
3558 		struct netdev_rx_queue *queue)
3559 {
3560 	struct net_device *dev = queue->dev;
3561 	int index = queue - dev->_rx;
3562 
3563 	BUG_ON(index >= dev->num_rx_queues);
3564 	return index;
3565 }
3566 #endif
3567 
3568 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3569 int netif_get_num_default_rss_queues(void);
3570 
3571 enum skb_free_reason {
3572 	SKB_REASON_CONSUMED,
3573 	SKB_REASON_DROPPED,
3574 };
3575 
3576 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3577 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3578 
3579 /*
3580  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3581  * interrupt context or with hardware interrupts being disabled.
3582  * (in_irq() || irqs_disabled())
3583  *
3584  * We provide four helpers that can be used in following contexts :
3585  *
3586  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3587  *  replacing kfree_skb(skb)
3588  *
3589  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3590  *  Typically used in place of consume_skb(skb) in TX completion path
3591  *
3592  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3593  *  replacing kfree_skb(skb)
3594  *
3595  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3596  *  and consumed a packet. Used in place of consume_skb(skb)
3597  */
3598 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3599 {
3600 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3601 }
3602 
3603 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3604 {
3605 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3606 }
3607 
3608 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3609 {
3610 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3611 }
3612 
3613 static inline void dev_consume_skb_any(struct sk_buff *skb)
3614 {
3615 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3616 }
3617 
3618 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3619 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3620 int netif_rx(struct sk_buff *skb);
3621 int netif_rx_ni(struct sk_buff *skb);
3622 int netif_receive_skb(struct sk_buff *skb);
3623 int netif_receive_skb_core(struct sk_buff *skb);
3624 void netif_receive_skb_list(struct list_head *head);
3625 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3626 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3627 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3628 gro_result_t napi_gro_frags(struct napi_struct *napi);
3629 struct packet_offload *gro_find_receive_by_type(__be16 type);
3630 struct packet_offload *gro_find_complete_by_type(__be16 type);
3631 
3632 static inline void napi_free_frags(struct napi_struct *napi)
3633 {
3634 	kfree_skb(napi->skb);
3635 	napi->skb = NULL;
3636 }
3637 
3638 bool netdev_is_rx_handler_busy(struct net_device *dev);
3639 int netdev_rx_handler_register(struct net_device *dev,
3640 			       rx_handler_func_t *rx_handler,
3641 			       void *rx_handler_data);
3642 void netdev_rx_handler_unregister(struct net_device *dev);
3643 
3644 bool dev_valid_name(const char *name);
3645 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3646 		bool *need_copyout);
3647 int dev_ifconf(struct net *net, struct ifconf *, int);
3648 int dev_ethtool(struct net *net, struct ifreq *);
3649 unsigned int dev_get_flags(const struct net_device *);
3650 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3651 		       struct netlink_ext_ack *extack);
3652 int dev_change_flags(struct net_device *dev, unsigned int flags,
3653 		     struct netlink_ext_ack *extack);
3654 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3655 			unsigned int gchanges);
3656 int dev_change_name(struct net_device *, const char *);
3657 int dev_set_alias(struct net_device *, const char *, size_t);
3658 int dev_get_alias(const struct net_device *, char *, size_t);
3659 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3660 int __dev_set_mtu(struct net_device *, int);
3661 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3662 		    struct netlink_ext_ack *extack);
3663 int dev_set_mtu(struct net_device *, int);
3664 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3665 void dev_set_group(struct net_device *, int);
3666 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3667 			      struct netlink_ext_ack *extack);
3668 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3669 			struct netlink_ext_ack *extack);
3670 int dev_change_carrier(struct net_device *, bool new_carrier);
3671 int dev_get_phys_port_id(struct net_device *dev,
3672 			 struct netdev_phys_item_id *ppid);
3673 int dev_get_phys_port_name(struct net_device *dev,
3674 			   char *name, size_t len);
3675 int dev_get_port_parent_id(struct net_device *dev,
3676 			   struct netdev_phys_item_id *ppid, bool recurse);
3677 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3678 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3679 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3680 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3681 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3682 				    struct netdev_queue *txq, int *ret);
3683 
3684 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3685 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3686 		      int fd, u32 flags);
3687 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3688 		    enum bpf_netdev_command cmd);
3689 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3690 
3691 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3692 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3693 bool is_skb_forwardable(const struct net_device *dev,
3694 			const struct sk_buff *skb);
3695 
3696 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3697 					       struct sk_buff *skb)
3698 {
3699 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3700 	    unlikely(!is_skb_forwardable(dev, skb))) {
3701 		atomic_long_inc(&dev->rx_dropped);
3702 		kfree_skb(skb);
3703 		return NET_RX_DROP;
3704 	}
3705 
3706 	skb_scrub_packet(skb, true);
3707 	skb->priority = 0;
3708 	return 0;
3709 }
3710 
3711 bool dev_nit_active(struct net_device *dev);
3712 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3713 
3714 extern int		netdev_budget;
3715 extern unsigned int	netdev_budget_usecs;
3716 
3717 /* Called by rtnetlink.c:rtnl_unlock() */
3718 void netdev_run_todo(void);
3719 
3720 /**
3721  *	dev_put - release reference to device
3722  *	@dev: network device
3723  *
3724  * Release reference to device to allow it to be freed.
3725  */
3726 static inline void dev_put(struct net_device *dev)
3727 {
3728 	this_cpu_dec(*dev->pcpu_refcnt);
3729 }
3730 
3731 /**
3732  *	dev_hold - get reference to device
3733  *	@dev: network device
3734  *
3735  * Hold reference to device to keep it from being freed.
3736  */
3737 static inline void dev_hold(struct net_device *dev)
3738 {
3739 	this_cpu_inc(*dev->pcpu_refcnt);
3740 }
3741 
3742 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3743  * and _off may be called from IRQ context, but it is caller
3744  * who is responsible for serialization of these calls.
3745  *
3746  * The name carrier is inappropriate, these functions should really be
3747  * called netif_lowerlayer_*() because they represent the state of any
3748  * kind of lower layer not just hardware media.
3749  */
3750 
3751 void linkwatch_init_dev(struct net_device *dev);
3752 void linkwatch_fire_event(struct net_device *dev);
3753 void linkwatch_forget_dev(struct net_device *dev);
3754 
3755 /**
3756  *	netif_carrier_ok - test if carrier present
3757  *	@dev: network device
3758  *
3759  * Check if carrier is present on device
3760  */
3761 static inline bool netif_carrier_ok(const struct net_device *dev)
3762 {
3763 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3764 }
3765 
3766 unsigned long dev_trans_start(struct net_device *dev);
3767 
3768 void __netdev_watchdog_up(struct net_device *dev);
3769 
3770 void netif_carrier_on(struct net_device *dev);
3771 
3772 void netif_carrier_off(struct net_device *dev);
3773 
3774 /**
3775  *	netif_dormant_on - mark device as dormant.
3776  *	@dev: network device
3777  *
3778  * Mark device as dormant (as per RFC2863).
3779  *
3780  * The dormant state indicates that the relevant interface is not
3781  * actually in a condition to pass packets (i.e., it is not 'up') but is
3782  * in a "pending" state, waiting for some external event.  For "on-
3783  * demand" interfaces, this new state identifies the situation where the
3784  * interface is waiting for events to place it in the up state.
3785  */
3786 static inline void netif_dormant_on(struct net_device *dev)
3787 {
3788 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3789 		linkwatch_fire_event(dev);
3790 }
3791 
3792 /**
3793  *	netif_dormant_off - set device as not dormant.
3794  *	@dev: network device
3795  *
3796  * Device is not in dormant state.
3797  */
3798 static inline void netif_dormant_off(struct net_device *dev)
3799 {
3800 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3801 		linkwatch_fire_event(dev);
3802 }
3803 
3804 /**
3805  *	netif_dormant - test if device is dormant
3806  *	@dev: network device
3807  *
3808  * Check if device is dormant.
3809  */
3810 static inline bool netif_dormant(const struct net_device *dev)
3811 {
3812 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3813 }
3814 
3815 
3816 /**
3817  *	netif_oper_up - test if device is operational
3818  *	@dev: network device
3819  *
3820  * Check if carrier is operational
3821  */
3822 static inline bool netif_oper_up(const struct net_device *dev)
3823 {
3824 	return (dev->operstate == IF_OPER_UP ||
3825 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3826 }
3827 
3828 /**
3829  *	netif_device_present - is device available or removed
3830  *	@dev: network device
3831  *
3832  * Check if device has not been removed from system.
3833  */
3834 static inline bool netif_device_present(struct net_device *dev)
3835 {
3836 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3837 }
3838 
3839 void netif_device_detach(struct net_device *dev);
3840 
3841 void netif_device_attach(struct net_device *dev);
3842 
3843 /*
3844  * Network interface message level settings
3845  */
3846 
3847 enum {
3848 	NETIF_MSG_DRV		= 0x0001,
3849 	NETIF_MSG_PROBE		= 0x0002,
3850 	NETIF_MSG_LINK		= 0x0004,
3851 	NETIF_MSG_TIMER		= 0x0008,
3852 	NETIF_MSG_IFDOWN	= 0x0010,
3853 	NETIF_MSG_IFUP		= 0x0020,
3854 	NETIF_MSG_RX_ERR	= 0x0040,
3855 	NETIF_MSG_TX_ERR	= 0x0080,
3856 	NETIF_MSG_TX_QUEUED	= 0x0100,
3857 	NETIF_MSG_INTR		= 0x0200,
3858 	NETIF_MSG_TX_DONE	= 0x0400,
3859 	NETIF_MSG_RX_STATUS	= 0x0800,
3860 	NETIF_MSG_PKTDATA	= 0x1000,
3861 	NETIF_MSG_HW		= 0x2000,
3862 	NETIF_MSG_WOL		= 0x4000,
3863 };
3864 
3865 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3866 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3867 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3868 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3869 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3870 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3871 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3872 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3873 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3874 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3875 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3876 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3877 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3878 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3879 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3880 
3881 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3882 {
3883 	/* use default */
3884 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3885 		return default_msg_enable_bits;
3886 	if (debug_value == 0)	/* no output */
3887 		return 0;
3888 	/* set low N bits */
3889 	return (1U << debug_value) - 1;
3890 }
3891 
3892 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3893 {
3894 	spin_lock(&txq->_xmit_lock);
3895 	txq->xmit_lock_owner = cpu;
3896 }
3897 
3898 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3899 {
3900 	__acquire(&txq->_xmit_lock);
3901 	return true;
3902 }
3903 
3904 static inline void __netif_tx_release(struct netdev_queue *txq)
3905 {
3906 	__release(&txq->_xmit_lock);
3907 }
3908 
3909 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3910 {
3911 	spin_lock_bh(&txq->_xmit_lock);
3912 	txq->xmit_lock_owner = smp_processor_id();
3913 }
3914 
3915 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3916 {
3917 	bool ok = spin_trylock(&txq->_xmit_lock);
3918 	if (likely(ok))
3919 		txq->xmit_lock_owner = smp_processor_id();
3920 	return ok;
3921 }
3922 
3923 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3924 {
3925 	txq->xmit_lock_owner = -1;
3926 	spin_unlock(&txq->_xmit_lock);
3927 }
3928 
3929 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3930 {
3931 	txq->xmit_lock_owner = -1;
3932 	spin_unlock_bh(&txq->_xmit_lock);
3933 }
3934 
3935 static inline void txq_trans_update(struct netdev_queue *txq)
3936 {
3937 	if (txq->xmit_lock_owner != -1)
3938 		txq->trans_start = jiffies;
3939 }
3940 
3941 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3942 static inline void netif_trans_update(struct net_device *dev)
3943 {
3944 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3945 
3946 	if (txq->trans_start != jiffies)
3947 		txq->trans_start = jiffies;
3948 }
3949 
3950 /**
3951  *	netif_tx_lock - grab network device transmit lock
3952  *	@dev: network device
3953  *
3954  * Get network device transmit lock
3955  */
3956 static inline void netif_tx_lock(struct net_device *dev)
3957 {
3958 	unsigned int i;
3959 	int cpu;
3960 
3961 	spin_lock(&dev->tx_global_lock);
3962 	cpu = smp_processor_id();
3963 	for (i = 0; i < dev->num_tx_queues; i++) {
3964 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3965 
3966 		/* We are the only thread of execution doing a
3967 		 * freeze, but we have to grab the _xmit_lock in
3968 		 * order to synchronize with threads which are in
3969 		 * the ->hard_start_xmit() handler and already
3970 		 * checked the frozen bit.
3971 		 */
3972 		__netif_tx_lock(txq, cpu);
3973 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3974 		__netif_tx_unlock(txq);
3975 	}
3976 }
3977 
3978 static inline void netif_tx_lock_bh(struct net_device *dev)
3979 {
3980 	local_bh_disable();
3981 	netif_tx_lock(dev);
3982 }
3983 
3984 static inline void netif_tx_unlock(struct net_device *dev)
3985 {
3986 	unsigned int i;
3987 
3988 	for (i = 0; i < dev->num_tx_queues; i++) {
3989 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3990 
3991 		/* No need to grab the _xmit_lock here.  If the
3992 		 * queue is not stopped for another reason, we
3993 		 * force a schedule.
3994 		 */
3995 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3996 		netif_schedule_queue(txq);
3997 	}
3998 	spin_unlock(&dev->tx_global_lock);
3999 }
4000 
4001 static inline void netif_tx_unlock_bh(struct net_device *dev)
4002 {
4003 	netif_tx_unlock(dev);
4004 	local_bh_enable();
4005 }
4006 
4007 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4008 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4009 		__netif_tx_lock(txq, cpu);		\
4010 	} else {					\
4011 		__netif_tx_acquire(txq);		\
4012 	}						\
4013 }
4014 
4015 #define HARD_TX_TRYLOCK(dev, txq)			\
4016 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4017 		__netif_tx_trylock(txq) :		\
4018 		__netif_tx_acquire(txq))
4019 
4020 #define HARD_TX_UNLOCK(dev, txq) {			\
4021 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4022 		__netif_tx_unlock(txq);			\
4023 	} else {					\
4024 		__netif_tx_release(txq);		\
4025 	}						\
4026 }
4027 
4028 static inline void netif_tx_disable(struct net_device *dev)
4029 {
4030 	unsigned int i;
4031 	int cpu;
4032 
4033 	local_bh_disable();
4034 	cpu = smp_processor_id();
4035 	for (i = 0; i < dev->num_tx_queues; i++) {
4036 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4037 
4038 		__netif_tx_lock(txq, cpu);
4039 		netif_tx_stop_queue(txq);
4040 		__netif_tx_unlock(txq);
4041 	}
4042 	local_bh_enable();
4043 }
4044 
4045 static inline void netif_addr_lock(struct net_device *dev)
4046 {
4047 	spin_lock(&dev->addr_list_lock);
4048 }
4049 
4050 static inline void netif_addr_lock_nested(struct net_device *dev)
4051 {
4052 	int subclass = SINGLE_DEPTH_NESTING;
4053 
4054 	if (dev->netdev_ops->ndo_get_lock_subclass)
4055 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4056 
4057 	spin_lock_nested(&dev->addr_list_lock, subclass);
4058 }
4059 
4060 static inline void netif_addr_lock_bh(struct net_device *dev)
4061 {
4062 	spin_lock_bh(&dev->addr_list_lock);
4063 }
4064 
4065 static inline void netif_addr_unlock(struct net_device *dev)
4066 {
4067 	spin_unlock(&dev->addr_list_lock);
4068 }
4069 
4070 static inline void netif_addr_unlock_bh(struct net_device *dev)
4071 {
4072 	spin_unlock_bh(&dev->addr_list_lock);
4073 }
4074 
4075 /*
4076  * dev_addrs walker. Should be used only for read access. Call with
4077  * rcu_read_lock held.
4078  */
4079 #define for_each_dev_addr(dev, ha) \
4080 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4081 
4082 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4083 
4084 void ether_setup(struct net_device *dev);
4085 
4086 /* Support for loadable net-drivers */
4087 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4088 				    unsigned char name_assign_type,
4089 				    void (*setup)(struct net_device *),
4090 				    unsigned int txqs, unsigned int rxqs);
4091 int dev_get_valid_name(struct net *net, struct net_device *dev,
4092 		       const char *name);
4093 
4094 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4095 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4096 
4097 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4098 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4099 			 count)
4100 
4101 int register_netdev(struct net_device *dev);
4102 void unregister_netdev(struct net_device *dev);
4103 
4104 /* General hardware address lists handling functions */
4105 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4106 		   struct netdev_hw_addr_list *from_list, int addr_len);
4107 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4108 		      struct netdev_hw_addr_list *from_list, int addr_len);
4109 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4110 		       struct net_device *dev,
4111 		       int (*sync)(struct net_device *, const unsigned char *),
4112 		       int (*unsync)(struct net_device *,
4113 				     const unsigned char *));
4114 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4115 			   struct net_device *dev,
4116 			   int (*sync)(struct net_device *,
4117 				       const unsigned char *, int),
4118 			   int (*unsync)(struct net_device *,
4119 					 const unsigned char *, int));
4120 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4121 			      struct net_device *dev,
4122 			      int (*unsync)(struct net_device *,
4123 					    const unsigned char *, int));
4124 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4125 			  struct net_device *dev,
4126 			  int (*unsync)(struct net_device *,
4127 					const unsigned char *));
4128 void __hw_addr_init(struct netdev_hw_addr_list *list);
4129 
4130 /* Functions used for device addresses handling */
4131 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4132 		 unsigned char addr_type);
4133 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4134 		 unsigned char addr_type);
4135 void dev_addr_flush(struct net_device *dev);
4136 int dev_addr_init(struct net_device *dev);
4137 
4138 /* Functions used for unicast addresses handling */
4139 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4140 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4141 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4142 int dev_uc_sync(struct net_device *to, struct net_device *from);
4143 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4144 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4145 void dev_uc_flush(struct net_device *dev);
4146 void dev_uc_init(struct net_device *dev);
4147 
4148 /**
4149  *  __dev_uc_sync - Synchonize device's unicast list
4150  *  @dev:  device to sync
4151  *  @sync: function to call if address should be added
4152  *  @unsync: function to call if address should be removed
4153  *
4154  *  Add newly added addresses to the interface, and release
4155  *  addresses that have been deleted.
4156  */
4157 static inline int __dev_uc_sync(struct net_device *dev,
4158 				int (*sync)(struct net_device *,
4159 					    const unsigned char *),
4160 				int (*unsync)(struct net_device *,
4161 					      const unsigned char *))
4162 {
4163 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4164 }
4165 
4166 /**
4167  *  __dev_uc_unsync - Remove synchronized addresses from device
4168  *  @dev:  device to sync
4169  *  @unsync: function to call if address should be removed
4170  *
4171  *  Remove all addresses that were added to the device by dev_uc_sync().
4172  */
4173 static inline void __dev_uc_unsync(struct net_device *dev,
4174 				   int (*unsync)(struct net_device *,
4175 						 const unsigned char *))
4176 {
4177 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4178 }
4179 
4180 /* Functions used for multicast addresses handling */
4181 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4182 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4183 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4184 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4185 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4186 int dev_mc_sync(struct net_device *to, struct net_device *from);
4187 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4188 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4189 void dev_mc_flush(struct net_device *dev);
4190 void dev_mc_init(struct net_device *dev);
4191 
4192 /**
4193  *  __dev_mc_sync - Synchonize device's multicast list
4194  *  @dev:  device to sync
4195  *  @sync: function to call if address should be added
4196  *  @unsync: function to call if address should be removed
4197  *
4198  *  Add newly added addresses to the interface, and release
4199  *  addresses that have been deleted.
4200  */
4201 static inline int __dev_mc_sync(struct net_device *dev,
4202 				int (*sync)(struct net_device *,
4203 					    const unsigned char *),
4204 				int (*unsync)(struct net_device *,
4205 					      const unsigned char *))
4206 {
4207 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4208 }
4209 
4210 /**
4211  *  __dev_mc_unsync - Remove synchronized addresses from device
4212  *  @dev:  device to sync
4213  *  @unsync: function to call if address should be removed
4214  *
4215  *  Remove all addresses that were added to the device by dev_mc_sync().
4216  */
4217 static inline void __dev_mc_unsync(struct net_device *dev,
4218 				   int (*unsync)(struct net_device *,
4219 						 const unsigned char *))
4220 {
4221 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4222 }
4223 
4224 /* Functions used for secondary unicast and multicast support */
4225 void dev_set_rx_mode(struct net_device *dev);
4226 void __dev_set_rx_mode(struct net_device *dev);
4227 int dev_set_promiscuity(struct net_device *dev, int inc);
4228 int dev_set_allmulti(struct net_device *dev, int inc);
4229 void netdev_state_change(struct net_device *dev);
4230 void netdev_notify_peers(struct net_device *dev);
4231 void netdev_features_change(struct net_device *dev);
4232 /* Load a device via the kmod */
4233 void dev_load(struct net *net, const char *name);
4234 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4235 					struct rtnl_link_stats64 *storage);
4236 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4237 			     const struct net_device_stats *netdev_stats);
4238 
4239 extern int		netdev_max_backlog;
4240 extern int		netdev_tstamp_prequeue;
4241 extern int		weight_p;
4242 extern int		dev_weight_rx_bias;
4243 extern int		dev_weight_tx_bias;
4244 extern int		dev_rx_weight;
4245 extern int		dev_tx_weight;
4246 
4247 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4248 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4249 						     struct list_head **iter);
4250 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4251 						     struct list_head **iter);
4252 
4253 /* iterate through upper list, must be called under RCU read lock */
4254 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4255 	for (iter = &(dev)->adj_list.upper, \
4256 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4257 	     updev; \
4258 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4259 
4260 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4261 				  int (*fn)(struct net_device *upper_dev,
4262 					    void *data),
4263 				  void *data);
4264 
4265 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4266 				  struct net_device *upper_dev);
4267 
4268 bool netdev_has_any_upper_dev(struct net_device *dev);
4269 
4270 void *netdev_lower_get_next_private(struct net_device *dev,
4271 				    struct list_head **iter);
4272 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4273 					struct list_head **iter);
4274 
4275 #define netdev_for_each_lower_private(dev, priv, iter) \
4276 	for (iter = (dev)->adj_list.lower.next, \
4277 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4278 	     priv; \
4279 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4280 
4281 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4282 	for (iter = &(dev)->adj_list.lower, \
4283 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4284 	     priv; \
4285 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4286 
4287 void *netdev_lower_get_next(struct net_device *dev,
4288 				struct list_head **iter);
4289 
4290 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4291 	for (iter = (dev)->adj_list.lower.next, \
4292 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4293 	     ldev; \
4294 	     ldev = netdev_lower_get_next(dev, &(iter)))
4295 
4296 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4297 					     struct list_head **iter);
4298 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4299 						 struct list_head **iter);
4300 
4301 int netdev_walk_all_lower_dev(struct net_device *dev,
4302 			      int (*fn)(struct net_device *lower_dev,
4303 					void *data),
4304 			      void *data);
4305 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4306 				  int (*fn)(struct net_device *lower_dev,
4307 					    void *data),
4308 				  void *data);
4309 
4310 void *netdev_adjacent_get_private(struct list_head *adj_list);
4311 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4312 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4313 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4314 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4315 			  struct netlink_ext_ack *extack);
4316 int netdev_master_upper_dev_link(struct net_device *dev,
4317 				 struct net_device *upper_dev,
4318 				 void *upper_priv, void *upper_info,
4319 				 struct netlink_ext_ack *extack);
4320 void netdev_upper_dev_unlink(struct net_device *dev,
4321 			     struct net_device *upper_dev);
4322 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4323 void *netdev_lower_dev_get_private(struct net_device *dev,
4324 				   struct net_device *lower_dev);
4325 void netdev_lower_state_changed(struct net_device *lower_dev,
4326 				void *lower_state_info);
4327 
4328 /* RSS keys are 40 or 52 bytes long */
4329 #define NETDEV_RSS_KEY_LEN 52
4330 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4331 void netdev_rss_key_fill(void *buffer, size_t len);
4332 
4333 int dev_get_nest_level(struct net_device *dev);
4334 int skb_checksum_help(struct sk_buff *skb);
4335 int skb_crc32c_csum_help(struct sk_buff *skb);
4336 int skb_csum_hwoffload_help(struct sk_buff *skb,
4337 			    const netdev_features_t features);
4338 
4339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4340 				  netdev_features_t features, bool tx_path);
4341 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4342 				    netdev_features_t features);
4343 
4344 struct netdev_bonding_info {
4345 	ifslave	slave;
4346 	ifbond	master;
4347 };
4348 
4349 struct netdev_notifier_bonding_info {
4350 	struct netdev_notifier_info info; /* must be first */
4351 	struct netdev_bonding_info  bonding_info;
4352 };
4353 
4354 void netdev_bonding_info_change(struct net_device *dev,
4355 				struct netdev_bonding_info *bonding_info);
4356 
4357 static inline
4358 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4359 {
4360 	return __skb_gso_segment(skb, features, true);
4361 }
4362 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4363 
4364 static inline bool can_checksum_protocol(netdev_features_t features,
4365 					 __be16 protocol)
4366 {
4367 	if (protocol == htons(ETH_P_FCOE))
4368 		return !!(features & NETIF_F_FCOE_CRC);
4369 
4370 	/* Assume this is an IP checksum (not SCTP CRC) */
4371 
4372 	if (features & NETIF_F_HW_CSUM) {
4373 		/* Can checksum everything */
4374 		return true;
4375 	}
4376 
4377 	switch (protocol) {
4378 	case htons(ETH_P_IP):
4379 		return !!(features & NETIF_F_IP_CSUM);
4380 	case htons(ETH_P_IPV6):
4381 		return !!(features & NETIF_F_IPV6_CSUM);
4382 	default:
4383 		return false;
4384 	}
4385 }
4386 
4387 #ifdef CONFIG_BUG
4388 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4389 #else
4390 static inline void netdev_rx_csum_fault(struct net_device *dev,
4391 					struct sk_buff *skb)
4392 {
4393 }
4394 #endif
4395 /* rx skb timestamps */
4396 void net_enable_timestamp(void);
4397 void net_disable_timestamp(void);
4398 
4399 #ifdef CONFIG_PROC_FS
4400 int __init dev_proc_init(void);
4401 #else
4402 #define dev_proc_init() 0
4403 #endif
4404 
4405 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4406 					      struct sk_buff *skb, struct net_device *dev,
4407 					      bool more)
4408 {
4409 	__this_cpu_write(softnet_data.xmit.more, more);
4410 	return ops->ndo_start_xmit(skb, dev);
4411 }
4412 
4413 static inline bool netdev_xmit_more(void)
4414 {
4415 	return __this_cpu_read(softnet_data.xmit.more);
4416 }
4417 
4418 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4419 					    struct netdev_queue *txq, bool more)
4420 {
4421 	const struct net_device_ops *ops = dev->netdev_ops;
4422 	netdev_tx_t rc;
4423 
4424 	rc = __netdev_start_xmit(ops, skb, dev, more);
4425 	if (rc == NETDEV_TX_OK)
4426 		txq_trans_update(txq);
4427 
4428 	return rc;
4429 }
4430 
4431 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4432 				const void *ns);
4433 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4434 				 const void *ns);
4435 
4436 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4437 {
4438 	return netdev_class_create_file_ns(class_attr, NULL);
4439 }
4440 
4441 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4442 {
4443 	netdev_class_remove_file_ns(class_attr, NULL);
4444 }
4445 
4446 extern const struct kobj_ns_type_operations net_ns_type_operations;
4447 
4448 const char *netdev_drivername(const struct net_device *dev);
4449 
4450 void linkwatch_run_queue(void);
4451 
4452 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4453 							  netdev_features_t f2)
4454 {
4455 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4456 		if (f1 & NETIF_F_HW_CSUM)
4457 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4458 		else
4459 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4460 	}
4461 
4462 	return f1 & f2;
4463 }
4464 
4465 static inline netdev_features_t netdev_get_wanted_features(
4466 	struct net_device *dev)
4467 {
4468 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4469 }
4470 netdev_features_t netdev_increment_features(netdev_features_t all,
4471 	netdev_features_t one, netdev_features_t mask);
4472 
4473 /* Allow TSO being used on stacked device :
4474  * Performing the GSO segmentation before last device
4475  * is a performance improvement.
4476  */
4477 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4478 							netdev_features_t mask)
4479 {
4480 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4481 }
4482 
4483 int __netdev_update_features(struct net_device *dev);
4484 void netdev_update_features(struct net_device *dev);
4485 void netdev_change_features(struct net_device *dev);
4486 
4487 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4488 					struct net_device *dev);
4489 
4490 netdev_features_t passthru_features_check(struct sk_buff *skb,
4491 					  struct net_device *dev,
4492 					  netdev_features_t features);
4493 netdev_features_t netif_skb_features(struct sk_buff *skb);
4494 
4495 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4496 {
4497 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4498 
4499 	/* check flags correspondence */
4500 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4501 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4502 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4503 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4504 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4505 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4506 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4507 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4508 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4509 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4510 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4511 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4512 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4513 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4514 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4515 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4516 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4517 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4518 
4519 	return (features & feature) == feature;
4520 }
4521 
4522 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4523 {
4524 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4525 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4526 }
4527 
4528 static inline bool netif_needs_gso(struct sk_buff *skb,
4529 				   netdev_features_t features)
4530 {
4531 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4532 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4533 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4534 }
4535 
4536 static inline void netif_set_gso_max_size(struct net_device *dev,
4537 					  unsigned int size)
4538 {
4539 	dev->gso_max_size = size;
4540 }
4541 
4542 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4543 					int pulled_hlen, u16 mac_offset,
4544 					int mac_len)
4545 {
4546 	skb->protocol = protocol;
4547 	skb->encapsulation = 1;
4548 	skb_push(skb, pulled_hlen);
4549 	skb_reset_transport_header(skb);
4550 	skb->mac_header = mac_offset;
4551 	skb->network_header = skb->mac_header + mac_len;
4552 	skb->mac_len = mac_len;
4553 }
4554 
4555 static inline bool netif_is_macsec(const struct net_device *dev)
4556 {
4557 	return dev->priv_flags & IFF_MACSEC;
4558 }
4559 
4560 static inline bool netif_is_macvlan(const struct net_device *dev)
4561 {
4562 	return dev->priv_flags & IFF_MACVLAN;
4563 }
4564 
4565 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4566 {
4567 	return dev->priv_flags & IFF_MACVLAN_PORT;
4568 }
4569 
4570 static inline bool netif_is_bond_master(const struct net_device *dev)
4571 {
4572 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4573 }
4574 
4575 static inline bool netif_is_bond_slave(const struct net_device *dev)
4576 {
4577 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4578 }
4579 
4580 static inline bool netif_supports_nofcs(struct net_device *dev)
4581 {
4582 	return dev->priv_flags & IFF_SUPP_NOFCS;
4583 }
4584 
4585 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4586 {
4587 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4588 }
4589 
4590 static inline bool netif_is_l3_master(const struct net_device *dev)
4591 {
4592 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4593 }
4594 
4595 static inline bool netif_is_l3_slave(const struct net_device *dev)
4596 {
4597 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4598 }
4599 
4600 static inline bool netif_is_bridge_master(const struct net_device *dev)
4601 {
4602 	return dev->priv_flags & IFF_EBRIDGE;
4603 }
4604 
4605 static inline bool netif_is_bridge_port(const struct net_device *dev)
4606 {
4607 	return dev->priv_flags & IFF_BRIDGE_PORT;
4608 }
4609 
4610 static inline bool netif_is_ovs_master(const struct net_device *dev)
4611 {
4612 	return dev->priv_flags & IFF_OPENVSWITCH;
4613 }
4614 
4615 static inline bool netif_is_ovs_port(const struct net_device *dev)
4616 {
4617 	return dev->priv_flags & IFF_OVS_DATAPATH;
4618 }
4619 
4620 static inline bool netif_is_team_master(const struct net_device *dev)
4621 {
4622 	return dev->priv_flags & IFF_TEAM;
4623 }
4624 
4625 static inline bool netif_is_team_port(const struct net_device *dev)
4626 {
4627 	return dev->priv_flags & IFF_TEAM_PORT;
4628 }
4629 
4630 static inline bool netif_is_lag_master(const struct net_device *dev)
4631 {
4632 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4633 }
4634 
4635 static inline bool netif_is_lag_port(const struct net_device *dev)
4636 {
4637 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4638 }
4639 
4640 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4641 {
4642 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4643 }
4644 
4645 static inline bool netif_is_failover(const struct net_device *dev)
4646 {
4647 	return dev->priv_flags & IFF_FAILOVER;
4648 }
4649 
4650 static inline bool netif_is_failover_slave(const struct net_device *dev)
4651 {
4652 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4653 }
4654 
4655 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4656 static inline void netif_keep_dst(struct net_device *dev)
4657 {
4658 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4659 }
4660 
4661 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4662 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4663 {
4664 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4665 	return dev->priv_flags & IFF_MACSEC;
4666 }
4667 
4668 extern struct pernet_operations __net_initdata loopback_net_ops;
4669 
4670 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4671 
4672 /* netdev_printk helpers, similar to dev_printk */
4673 
4674 static inline const char *netdev_name(const struct net_device *dev)
4675 {
4676 	if (!dev->name[0] || strchr(dev->name, '%'))
4677 		return "(unnamed net_device)";
4678 	return dev->name;
4679 }
4680 
4681 static inline bool netdev_unregistering(const struct net_device *dev)
4682 {
4683 	return dev->reg_state == NETREG_UNREGISTERING;
4684 }
4685 
4686 static inline const char *netdev_reg_state(const struct net_device *dev)
4687 {
4688 	switch (dev->reg_state) {
4689 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4690 	case NETREG_REGISTERED: return "";
4691 	case NETREG_UNREGISTERING: return " (unregistering)";
4692 	case NETREG_UNREGISTERED: return " (unregistered)";
4693 	case NETREG_RELEASED: return " (released)";
4694 	case NETREG_DUMMY: return " (dummy)";
4695 	}
4696 
4697 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4698 	return " (unknown)";
4699 }
4700 
4701 __printf(3, 4) __cold
4702 void netdev_printk(const char *level, const struct net_device *dev,
4703 		   const char *format, ...);
4704 __printf(2, 3) __cold
4705 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4706 __printf(2, 3) __cold
4707 void netdev_alert(const struct net_device *dev, const char *format, ...);
4708 __printf(2, 3) __cold
4709 void netdev_crit(const struct net_device *dev, const char *format, ...);
4710 __printf(2, 3) __cold
4711 void netdev_err(const struct net_device *dev, const char *format, ...);
4712 __printf(2, 3) __cold
4713 void netdev_warn(const struct net_device *dev, const char *format, ...);
4714 __printf(2, 3) __cold
4715 void netdev_notice(const struct net_device *dev, const char *format, ...);
4716 __printf(2, 3) __cold
4717 void netdev_info(const struct net_device *dev, const char *format, ...);
4718 
4719 #define netdev_level_once(level, dev, fmt, ...)			\
4720 do {								\
4721 	static bool __print_once __read_mostly;			\
4722 								\
4723 	if (!__print_once) {					\
4724 		__print_once = true;				\
4725 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4726 	}							\
4727 } while (0)
4728 
4729 #define netdev_emerg_once(dev, fmt, ...) \
4730 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4731 #define netdev_alert_once(dev, fmt, ...) \
4732 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4733 #define netdev_crit_once(dev, fmt, ...) \
4734 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4735 #define netdev_err_once(dev, fmt, ...) \
4736 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4737 #define netdev_warn_once(dev, fmt, ...) \
4738 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4739 #define netdev_notice_once(dev, fmt, ...) \
4740 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4741 #define netdev_info_once(dev, fmt, ...) \
4742 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4743 
4744 #define MODULE_ALIAS_NETDEV(device) \
4745 	MODULE_ALIAS("netdev-" device)
4746 
4747 #if defined(CONFIG_DYNAMIC_DEBUG)
4748 #define netdev_dbg(__dev, format, args...)			\
4749 do {								\
4750 	dynamic_netdev_dbg(__dev, format, ##args);		\
4751 } while (0)
4752 #elif defined(DEBUG)
4753 #define netdev_dbg(__dev, format, args...)			\
4754 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4755 #else
4756 #define netdev_dbg(__dev, format, args...)			\
4757 ({								\
4758 	if (0)							\
4759 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4760 })
4761 #endif
4762 
4763 #if defined(VERBOSE_DEBUG)
4764 #define netdev_vdbg	netdev_dbg
4765 #else
4766 
4767 #define netdev_vdbg(dev, format, args...)			\
4768 ({								\
4769 	if (0)							\
4770 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4771 	0;							\
4772 })
4773 #endif
4774 
4775 /*
4776  * netdev_WARN() acts like dev_printk(), but with the key difference
4777  * of using a WARN/WARN_ON to get the message out, including the
4778  * file/line information and a backtrace.
4779  */
4780 #define netdev_WARN(dev, format, args...)			\
4781 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4782 	     netdev_reg_state(dev), ##args)
4783 
4784 #define netdev_WARN_ONCE(dev, format, args...)				\
4785 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4786 		  netdev_reg_state(dev), ##args)
4787 
4788 /* netif printk helpers, similar to netdev_printk */
4789 
4790 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4791 do {					  			\
4792 	if (netif_msg_##type(priv))				\
4793 		netdev_printk(level, (dev), fmt, ##args);	\
4794 } while (0)
4795 
4796 #define netif_level(level, priv, type, dev, fmt, args...)	\
4797 do {								\
4798 	if (netif_msg_##type(priv))				\
4799 		netdev_##level(dev, fmt, ##args);		\
4800 } while (0)
4801 
4802 #define netif_emerg(priv, type, dev, fmt, args...)		\
4803 	netif_level(emerg, priv, type, dev, fmt, ##args)
4804 #define netif_alert(priv, type, dev, fmt, args...)		\
4805 	netif_level(alert, priv, type, dev, fmt, ##args)
4806 #define netif_crit(priv, type, dev, fmt, args...)		\
4807 	netif_level(crit, priv, type, dev, fmt, ##args)
4808 #define netif_err(priv, type, dev, fmt, args...)		\
4809 	netif_level(err, priv, type, dev, fmt, ##args)
4810 #define netif_warn(priv, type, dev, fmt, args...)		\
4811 	netif_level(warn, priv, type, dev, fmt, ##args)
4812 #define netif_notice(priv, type, dev, fmt, args...)		\
4813 	netif_level(notice, priv, type, dev, fmt, ##args)
4814 #define netif_info(priv, type, dev, fmt, args...)		\
4815 	netif_level(info, priv, type, dev, fmt, ##args)
4816 
4817 #if defined(CONFIG_DYNAMIC_DEBUG)
4818 #define netif_dbg(priv, type, netdev, format, args...)		\
4819 do {								\
4820 	if (netif_msg_##type(priv))				\
4821 		dynamic_netdev_dbg(netdev, format, ##args);	\
4822 } while (0)
4823 #elif defined(DEBUG)
4824 #define netif_dbg(priv, type, dev, format, args...)		\
4825 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4826 #else
4827 #define netif_dbg(priv, type, dev, format, args...)			\
4828 ({									\
4829 	if (0)								\
4830 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4831 	0;								\
4832 })
4833 #endif
4834 
4835 /* if @cond then downgrade to debug, else print at @level */
4836 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4837 	do {                                                              \
4838 		if (cond)                                                 \
4839 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4840 		else                                                      \
4841 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4842 	} while (0)
4843 
4844 #if defined(VERBOSE_DEBUG)
4845 #define netif_vdbg	netif_dbg
4846 #else
4847 #define netif_vdbg(priv, type, dev, format, args...)		\
4848 ({								\
4849 	if (0)							\
4850 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4851 	0;							\
4852 })
4853 #endif
4854 
4855 /*
4856  *	The list of packet types we will receive (as opposed to discard)
4857  *	and the routines to invoke.
4858  *
4859  *	Why 16. Because with 16 the only overlap we get on a hash of the
4860  *	low nibble of the protocol value is RARP/SNAP/X.25.
4861  *
4862  *		0800	IP
4863  *		0001	802.3
4864  *		0002	AX.25
4865  *		0004	802.2
4866  *		8035	RARP
4867  *		0005	SNAP
4868  *		0805	X.25
4869  *		0806	ARP
4870  *		8137	IPX
4871  *		0009	Localtalk
4872  *		86DD	IPv6
4873  */
4874 #define PTYPE_HASH_SIZE	(16)
4875 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4876 
4877 #endif	/* _LINUX_NETDEVICE_H */
4878