xref: /openbmc/linux/include/linux/netdevice.h (revision aad7ebb5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	unsigned int	hh_len;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 	__be16	(*parse_protocol)(const struct sk_buff *skb);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 struct gro_list {
303 	struct list_head	list;
304 	int			count;
305 };
306 
307 /*
308  * size of gro hash buckets, must less than bit number of
309  * napi_struct::gro_bitmask
310  */
311 #define GRO_HASH_BUCKETS	8
312 
313 /*
314  * Structure for NAPI scheduling similar to tasklet but with weighting
315  */
316 struct napi_struct {
317 	/* The poll_list must only be managed by the entity which
318 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
319 	 * whoever atomically sets that bit can add this napi_struct
320 	 * to the per-CPU poll_list, and whoever clears that bit
321 	 * can remove from the list right before clearing the bit.
322 	 */
323 	struct list_head	poll_list;
324 
325 	unsigned long		state;
326 	int			weight;
327 	unsigned long		gro_bitmask;
328 	int			(*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 	int			poll_owner;
331 #endif
332 	struct net_device	*dev;
333 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
334 	struct sk_buff		*skb;
335 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
336 	int			rx_count; /* length of rx_list */
337 	struct hrtimer		timer;
338 	struct list_head	dev_list;
339 	struct hlist_node	napi_hash_node;
340 	unsigned int		napi_id;
341 };
342 
343 enum {
344 	NAPI_STATE_SCHED,	/* Poll is scheduled */
345 	NAPI_STATE_MISSED,	/* reschedule a napi */
346 	NAPI_STATE_DISABLE,	/* Disable pending */
347 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
348 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
349 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351 };
352 
353 enum {
354 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
355 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
356 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
357 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
358 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
359 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361 };
362 
363 enum gro_result {
364 	GRO_MERGED,
365 	GRO_MERGED_FREE,
366 	GRO_HELD,
367 	GRO_NORMAL,
368 	GRO_DROP,
369 	GRO_CONSUMED,
370 };
371 typedef enum gro_result gro_result_t;
372 
373 /*
374  * enum rx_handler_result - Possible return values for rx_handlers.
375  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376  * further.
377  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378  * case skb->dev was changed by rx_handler.
379  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381  *
382  * rx_handlers are functions called from inside __netif_receive_skb(), to do
383  * special processing of the skb, prior to delivery to protocol handlers.
384  *
385  * Currently, a net_device can only have a single rx_handler registered. Trying
386  * to register a second rx_handler will return -EBUSY.
387  *
388  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389  * To unregister a rx_handler on a net_device, use
390  * netdev_rx_handler_unregister().
391  *
392  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393  * do with the skb.
394  *
395  * If the rx_handler consumed the skb in some way, it should return
396  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397  * the skb to be delivered in some other way.
398  *
399  * If the rx_handler changed skb->dev, to divert the skb to another
400  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401  * new device will be called if it exists.
402  *
403  * If the rx_handler decides the skb should be ignored, it should return
404  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405  * are registered on exact device (ptype->dev == skb->dev).
406  *
407  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408  * delivered, it should return RX_HANDLER_PASS.
409  *
410  * A device without a registered rx_handler will behave as if rx_handler
411  * returned RX_HANDLER_PASS.
412  */
413 
414 enum rx_handler_result {
415 	RX_HANDLER_CONSUMED,
416 	RX_HANDLER_ANOTHER,
417 	RX_HANDLER_EXACT,
418 	RX_HANDLER_PASS,
419 };
420 typedef enum rx_handler_result rx_handler_result_t;
421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422 
423 void __napi_schedule(struct napi_struct *n);
424 void __napi_schedule_irqoff(struct napi_struct *n);
425 
426 static inline bool napi_disable_pending(struct napi_struct *n)
427 {
428 	return test_bit(NAPI_STATE_DISABLE, &n->state);
429 }
430 
431 bool napi_schedule_prep(struct napi_struct *n);
432 
433 /**
434  *	napi_schedule - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Schedule NAPI poll routine to be called if it is not already
438  * running.
439  */
440 static inline void napi_schedule(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule(n);
444 }
445 
446 /**
447  *	napi_schedule_irqoff - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Variant of napi_schedule(), assuming hard irqs are masked.
451  */
452 static inline void napi_schedule_irqoff(struct napi_struct *n)
453 {
454 	if (napi_schedule_prep(n))
455 		__napi_schedule_irqoff(n);
456 }
457 
458 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
459 static inline bool napi_reschedule(struct napi_struct *napi)
460 {
461 	if (napi_schedule_prep(napi)) {
462 		__napi_schedule(napi);
463 		return true;
464 	}
465 	return false;
466 }
467 
468 bool napi_complete_done(struct napi_struct *n, int work_done);
469 /**
470  *	napi_complete - NAPI processing complete
471  *	@n: NAPI context
472  *
473  * Mark NAPI processing as complete.
474  * Consider using napi_complete_done() instead.
475  * Return false if device should avoid rearming interrupts.
476  */
477 static inline bool napi_complete(struct napi_struct *n)
478 {
479 	return napi_complete_done(n, 0);
480 }
481 
482 /**
483  *	napi_hash_del - remove a NAPI from global table
484  *	@napi: NAPI context
485  *
486  * Warning: caller must observe RCU grace period
487  * before freeing memory containing @napi, if
488  * this function returns true.
489  * Note: core networking stack automatically calls it
490  * from netif_napi_del().
491  * Drivers might want to call this helper to combine all
492  * the needed RCU grace periods into a single one.
493  */
494 bool napi_hash_del(struct napi_struct *napi);
495 
496 /**
497  *	napi_disable - prevent NAPI from scheduling
498  *	@n: NAPI context
499  *
500  * Stop NAPI from being scheduled on this context.
501  * Waits till any outstanding processing completes.
502  */
503 void napi_disable(struct napi_struct *n);
504 
505 /**
506  *	napi_enable - enable NAPI scheduling
507  *	@n: NAPI context
508  *
509  * Resume NAPI from being scheduled on this context.
510  * Must be paired with napi_disable.
511  */
512 static inline void napi_enable(struct napi_struct *n)
513 {
514 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 	smp_mb__before_atomic();
516 	clear_bit(NAPI_STATE_SCHED, &n->state);
517 	clear_bit(NAPI_STATE_NPSVC, &n->state);
518 }
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	struct Qdisc __rcu	*qdisc;
595 	struct Qdisc		*qdisc_sleeping;
596 #ifdef CONFIG_SYSFS
597 	struct kobject		kobj;
598 #endif
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	int			numa_node;
601 #endif
602 	unsigned long		tx_maxrate;
603 	/*
604 	 * Number of TX timeouts for this queue
605 	 * (/sys/class/net/DEV/Q/trans_timeout)
606 	 */
607 	unsigned long		trans_timeout;
608 
609 	/* Subordinate device that the queue has been assigned to */
610 	struct net_device	*sb_dev;
611 #ifdef CONFIG_XDP_SOCKETS
612 	struct xdp_umem         *umem;
613 #endif
614 /*
615  * write-mostly part
616  */
617 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
618 	int			xmit_lock_owner;
619 	/*
620 	 * Time (in jiffies) of last Tx
621 	 */
622 	unsigned long		trans_start;
623 
624 	unsigned long		state;
625 
626 #ifdef CONFIG_BQL
627 	struct dql		dql;
628 #endif
629 } ____cacheline_aligned_in_smp;
630 
631 extern int sysctl_fb_tunnels_only_for_init_net;
632 extern int sysctl_devconf_inherit_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 };
853 
854 /* These structures hold the attributes of bpf state that are being passed
855  * to the netdevice through the bpf op.
856  */
857 enum bpf_netdev_command {
858 	/* Set or clear a bpf program used in the earliest stages of packet
859 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
860 	 * is responsible for calling bpf_prog_put on any old progs that are
861 	 * stored. In case of error, the callee need not release the new prog
862 	 * reference, but on success it takes ownership and must bpf_prog_put
863 	 * when it is no longer used.
864 	 */
865 	XDP_SETUP_PROG,
866 	XDP_SETUP_PROG_HW,
867 	XDP_QUERY_PROG,
868 	XDP_QUERY_PROG_HW,
869 	/* BPF program for offload callbacks, invoked at program load time. */
870 	BPF_OFFLOAD_MAP_ALLOC,
871 	BPF_OFFLOAD_MAP_FREE,
872 	XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880 	enum bpf_netdev_command command;
881 	union {
882 		/* XDP_SETUP_PROG */
883 		struct {
884 			u32 flags;
885 			struct bpf_prog *prog;
886 			struct netlink_ext_ack *extack;
887 		};
888 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 		struct {
890 			u32 prog_id;
891 			/* flags with which program was installed */
892 			u32 prog_flags;
893 		};
894 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
895 		struct {
896 			struct bpf_offloaded_map *offmap;
897 		};
898 		/* XDP_SETUP_XSK_UMEM */
899 		struct {
900 			struct xdp_umem *umem;
901 			u16 queue_id;
902 		} xsk;
903 	};
904 };
905 
906 /* Flags for ndo_xsk_wakeup. */
907 #define XDP_WAKEUP_RX (1 << 0)
908 #define XDP_WAKEUP_TX (1 << 1)
909 
910 #ifdef CONFIG_XFRM_OFFLOAD
911 struct xfrmdev_ops {
912 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
913 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
914 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
915 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
916 				       struct xfrm_state *x);
917 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
918 };
919 #endif
920 
921 struct dev_ifalias {
922 	struct rcu_head rcuhead;
923 	char ifalias[];
924 };
925 
926 struct devlink;
927 struct tlsdev_ops;
928 
929 struct netdev_name_node {
930 	struct hlist_node hlist;
931 	struct list_head list;
932 	struct net_device *dev;
933 	const char *name;
934 };
935 
936 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
937 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
938 
939 /*
940  * This structure defines the management hooks for network devices.
941  * The following hooks can be defined; unless noted otherwise, they are
942  * optional and can be filled with a null pointer.
943  *
944  * int (*ndo_init)(struct net_device *dev);
945  *     This function is called once when a network device is registered.
946  *     The network device can use this for any late stage initialization
947  *     or semantic validation. It can fail with an error code which will
948  *     be propagated back to register_netdev.
949  *
950  * void (*ndo_uninit)(struct net_device *dev);
951  *     This function is called when device is unregistered or when registration
952  *     fails. It is not called if init fails.
953  *
954  * int (*ndo_open)(struct net_device *dev);
955  *     This function is called when a network device transitions to the up
956  *     state.
957  *
958  * int (*ndo_stop)(struct net_device *dev);
959  *     This function is called when a network device transitions to the down
960  *     state.
961  *
962  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
963  *                               struct net_device *dev);
964  *	Called when a packet needs to be transmitted.
965  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
966  *	the queue before that can happen; it's for obsolete devices and weird
967  *	corner cases, but the stack really does a non-trivial amount
968  *	of useless work if you return NETDEV_TX_BUSY.
969  *	Required; cannot be NULL.
970  *
971  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
972  *					   struct net_device *dev
973  *					   netdev_features_t features);
974  *	Called by core transmit path to determine if device is capable of
975  *	performing offload operations on a given packet. This is to give
976  *	the device an opportunity to implement any restrictions that cannot
977  *	be otherwise expressed by feature flags. The check is called with
978  *	the set of features that the stack has calculated and it returns
979  *	those the driver believes to be appropriate.
980  *
981  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
982  *                         struct net_device *sb_dev);
983  *	Called to decide which queue to use when device supports multiple
984  *	transmit queues.
985  *
986  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
987  *	This function is called to allow device receiver to make
988  *	changes to configuration when multicast or promiscuous is enabled.
989  *
990  * void (*ndo_set_rx_mode)(struct net_device *dev);
991  *	This function is called device changes address list filtering.
992  *	If driver handles unicast address filtering, it should set
993  *	IFF_UNICAST_FLT in its priv_flags.
994  *
995  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
996  *	This function  is called when the Media Access Control address
997  *	needs to be changed. If this interface is not defined, the
998  *	MAC address can not be changed.
999  *
1000  * int (*ndo_validate_addr)(struct net_device *dev);
1001  *	Test if Media Access Control address is valid for the device.
1002  *
1003  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1004  *	Called when a user requests an ioctl which can't be handled by
1005  *	the generic interface code. If not defined ioctls return
1006  *	not supported error code.
1007  *
1008  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1009  *	Used to set network devices bus interface parameters. This interface
1010  *	is retained for legacy reasons; new devices should use the bus
1011  *	interface (PCI) for low level management.
1012  *
1013  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1014  *	Called when a user wants to change the Maximum Transfer Unit
1015  *	of a device.
1016  *
1017  * void (*ndo_tx_timeout)(struct net_device *dev);
1018  *	Callback used when the transmitter has not made any progress
1019  *	for dev->watchdog ticks.
1020  *
1021  * void (*ndo_get_stats64)(struct net_device *dev,
1022  *                         struct rtnl_link_stats64 *storage);
1023  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1024  *	Called when a user wants to get the network device usage
1025  *	statistics. Drivers must do one of the following:
1026  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1027  *	   rtnl_link_stats64 structure passed by the caller.
1028  *	2. Define @ndo_get_stats to update a net_device_stats structure
1029  *	   (which should normally be dev->stats) and return a pointer to
1030  *	   it. The structure may be changed asynchronously only if each
1031  *	   field is written atomically.
1032  *	3. Update dev->stats asynchronously and atomically, and define
1033  *	   neither operation.
1034  *
1035  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1036  *	Return true if this device supports offload stats of this attr_id.
1037  *
1038  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1039  *	void *attr_data)
1040  *	Get statistics for offload operations by attr_id. Write it into the
1041  *	attr_data pointer.
1042  *
1043  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1044  *	If device supports VLAN filtering this function is called when a
1045  *	VLAN id is registered.
1046  *
1047  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1048  *	If device supports VLAN filtering this function is called when a
1049  *	VLAN id is unregistered.
1050  *
1051  * void (*ndo_poll_controller)(struct net_device *dev);
1052  *
1053  *	SR-IOV management functions.
1054  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1055  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1056  *			  u8 qos, __be16 proto);
1057  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1058  *			  int max_tx_rate);
1059  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1060  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1061  * int (*ndo_get_vf_config)(struct net_device *dev,
1062  *			    int vf, struct ifla_vf_info *ivf);
1063  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1064  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1065  *			  struct nlattr *port[]);
1066  *
1067  *      Enable or disable the VF ability to query its RSS Redirection Table and
1068  *      Hash Key. This is needed since on some devices VF share this information
1069  *      with PF and querying it may introduce a theoretical security risk.
1070  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1071  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1072  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1073  *		       void *type_data);
1074  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1075  *	This is always called from the stack with the rtnl lock held and netif
1076  *	tx queues stopped. This allows the netdevice to perform queue
1077  *	management safely.
1078  *
1079  *	Fiber Channel over Ethernet (FCoE) offload functions.
1080  * int (*ndo_fcoe_enable)(struct net_device *dev);
1081  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1082  *	so the underlying device can perform whatever needed configuration or
1083  *	initialization to support acceleration of FCoE traffic.
1084  *
1085  * int (*ndo_fcoe_disable)(struct net_device *dev);
1086  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1087  *	so the underlying device can perform whatever needed clean-ups to
1088  *	stop supporting acceleration of FCoE traffic.
1089  *
1090  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1091  *			     struct scatterlist *sgl, unsigned int sgc);
1092  *	Called when the FCoE Initiator wants to initialize an I/O that
1093  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1094  *	perform necessary setup and returns 1 to indicate the device is set up
1095  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1096  *
1097  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1098  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1099  *	indicated by the FC exchange id 'xid', so the underlying device can
1100  *	clean up and reuse resources for later DDP requests.
1101  *
1102  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1103  *			      struct scatterlist *sgl, unsigned int sgc);
1104  *	Called when the FCoE Target wants to initialize an I/O that
1105  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1106  *	perform necessary setup and returns 1 to indicate the device is set up
1107  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1108  *
1109  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1110  *			       struct netdev_fcoe_hbainfo *hbainfo);
1111  *	Called when the FCoE Protocol stack wants information on the underlying
1112  *	device. This information is utilized by the FCoE protocol stack to
1113  *	register attributes with Fiber Channel management service as per the
1114  *	FC-GS Fabric Device Management Information(FDMI) specification.
1115  *
1116  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1117  *	Called when the underlying device wants to override default World Wide
1118  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1119  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1120  *	protocol stack to use.
1121  *
1122  *	RFS acceleration.
1123  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1124  *			    u16 rxq_index, u32 flow_id);
1125  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1126  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1127  *	Return the filter ID on success, or a negative error code.
1128  *
1129  *	Slave management functions (for bridge, bonding, etc).
1130  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1131  *	Called to make another netdev an underling.
1132  *
1133  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1134  *	Called to release previously enslaved netdev.
1135  *
1136  *      Feature/offload setting functions.
1137  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1138  *		netdev_features_t features);
1139  *	Adjusts the requested feature flags according to device-specific
1140  *	constraints, and returns the resulting flags. Must not modify
1141  *	the device state.
1142  *
1143  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1144  *	Called to update device configuration to new features. Passed
1145  *	feature set might be less than what was returned by ndo_fix_features()).
1146  *	Must return >0 or -errno if it changed dev->features itself.
1147  *
1148  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1149  *		      struct net_device *dev,
1150  *		      const unsigned char *addr, u16 vid, u16 flags,
1151  *		      struct netlink_ext_ack *extack);
1152  *	Adds an FDB entry to dev for addr.
1153  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1154  *		      struct net_device *dev,
1155  *		      const unsigned char *addr, u16 vid)
1156  *	Deletes the FDB entry from dev coresponding to addr.
1157  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1158  *		       struct net_device *dev, struct net_device *filter_dev,
1159  *		       int *idx)
1160  *	Used to add FDB entries to dump requests. Implementers should add
1161  *	entries to skb and update idx with the number of entries.
1162  *
1163  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1164  *			     u16 flags, struct netlink_ext_ack *extack)
1165  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1166  *			     struct net_device *dev, u32 filter_mask,
1167  *			     int nlflags)
1168  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1169  *			     u16 flags);
1170  *
1171  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1172  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1173  *	which do not represent real hardware may define this to allow their
1174  *	userspace components to manage their virtual carrier state. Devices
1175  *	that determine carrier state from physical hardware properties (eg
1176  *	network cables) or protocol-dependent mechanisms (eg
1177  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1178  *
1179  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1180  *			       struct netdev_phys_item_id *ppid);
1181  *	Called to get ID of physical port of this device. If driver does
1182  *	not implement this, it is assumed that the hw is not able to have
1183  *	multiple net devices on single physical port.
1184  *
1185  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1186  *				 struct netdev_phys_item_id *ppid)
1187  *	Called to get the parent ID of the physical port of this device.
1188  *
1189  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1190  *			      struct udp_tunnel_info *ti);
1191  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1192  *	address family that a UDP tunnel is listnening to. It is called only
1193  *	when a new port starts listening. The operation is protected by the
1194  *	RTNL.
1195  *
1196  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1197  *			      struct udp_tunnel_info *ti);
1198  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1199  *	address family that the UDP tunnel is not listening to anymore. The
1200  *	operation is protected by the RTNL.
1201  *
1202  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1203  *				 struct net_device *dev)
1204  *	Called by upper layer devices to accelerate switching or other
1205  *	station functionality into hardware. 'pdev is the lowerdev
1206  *	to use for the offload and 'dev' is the net device that will
1207  *	back the offload. Returns a pointer to the private structure
1208  *	the upper layer will maintain.
1209  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1210  *	Called by upper layer device to delete the station created
1211  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1212  *	the station and priv is the structure returned by the add
1213  *	operation.
1214  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1215  *			     int queue_index, u32 maxrate);
1216  *	Called when a user wants to set a max-rate limitation of specific
1217  *	TX queue.
1218  * int (*ndo_get_iflink)(const struct net_device *dev);
1219  *	Called to get the iflink value of this device.
1220  * void (*ndo_change_proto_down)(struct net_device *dev,
1221  *				 bool proto_down);
1222  *	This function is used to pass protocol port error state information
1223  *	to the switch driver. The switch driver can react to the proto_down
1224  *      by doing a phys down on the associated switch port.
1225  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1226  *	This function is used to get egress tunnel information for given skb.
1227  *	This is useful for retrieving outer tunnel header parameters while
1228  *	sampling packet.
1229  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1230  *	This function is used to specify the headroom that the skb must
1231  *	consider when allocation skb during packet reception. Setting
1232  *	appropriate rx headroom value allows avoiding skb head copy on
1233  *	forward. Setting a negative value resets the rx headroom to the
1234  *	default value.
1235  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1236  *	This function is used to set or query state related to XDP on the
1237  *	netdevice and manage BPF offload. See definition of
1238  *	enum bpf_netdev_command for details.
1239  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1240  *			u32 flags);
1241  *	This function is used to submit @n XDP packets for transmit on a
1242  *	netdevice. Returns number of frames successfully transmitted, frames
1243  *	that got dropped are freed/returned via xdp_return_frame().
1244  *	Returns negative number, means general error invoking ndo, meaning
1245  *	no frames were xmit'ed and core-caller will free all frames.
1246  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1247  *      This function is used to wake up the softirq, ksoftirqd or kthread
1248  *	responsible for sending and/or receiving packets on a specific
1249  *	queue id bound to an AF_XDP socket. The flags field specifies if
1250  *	only RX, only Tx, or both should be woken up using the flags
1251  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1252  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1253  *	Get devlink port instance associated with a given netdev.
1254  *	Called with a reference on the netdevice and devlink locks only,
1255  *	rtnl_lock is not held.
1256  */
1257 struct net_device_ops {
1258 	int			(*ndo_init)(struct net_device *dev);
1259 	void			(*ndo_uninit)(struct net_device *dev);
1260 	int			(*ndo_open)(struct net_device *dev);
1261 	int			(*ndo_stop)(struct net_device *dev);
1262 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1263 						  struct net_device *dev);
1264 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1265 						      struct net_device *dev,
1266 						      netdev_features_t features);
1267 	u16			(*ndo_select_queue)(struct net_device *dev,
1268 						    struct sk_buff *skb,
1269 						    struct net_device *sb_dev);
1270 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1271 						       int flags);
1272 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1273 	int			(*ndo_set_mac_address)(struct net_device *dev,
1274 						       void *addr);
1275 	int			(*ndo_validate_addr)(struct net_device *dev);
1276 	int			(*ndo_do_ioctl)(struct net_device *dev,
1277 					        struct ifreq *ifr, int cmd);
1278 	int			(*ndo_set_config)(struct net_device *dev,
1279 					          struct ifmap *map);
1280 	int			(*ndo_change_mtu)(struct net_device *dev,
1281 						  int new_mtu);
1282 	int			(*ndo_neigh_setup)(struct net_device *dev,
1283 						   struct neigh_parms *);
1284 	void			(*ndo_tx_timeout) (struct net_device *dev);
1285 
1286 	void			(*ndo_get_stats64)(struct net_device *dev,
1287 						   struct rtnl_link_stats64 *storage);
1288 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1289 	int			(*ndo_get_offload_stats)(int attr_id,
1290 							 const struct net_device *dev,
1291 							 void *attr_data);
1292 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1293 
1294 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1295 						       __be16 proto, u16 vid);
1296 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1297 						        __be16 proto, u16 vid);
1298 #ifdef CONFIG_NET_POLL_CONTROLLER
1299 	void                    (*ndo_poll_controller)(struct net_device *dev);
1300 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1301 						     struct netpoll_info *info);
1302 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1303 #endif
1304 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1305 						  int queue, u8 *mac);
1306 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1307 						   int queue, u16 vlan,
1308 						   u8 qos, __be16 proto);
1309 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1310 						   int vf, int min_tx_rate,
1311 						   int max_tx_rate);
1312 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1313 						       int vf, bool setting);
1314 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1315 						    int vf, bool setting);
1316 	int			(*ndo_get_vf_config)(struct net_device *dev,
1317 						     int vf,
1318 						     struct ifla_vf_info *ivf);
1319 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1320 							 int vf, int link_state);
1321 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1322 						    int vf,
1323 						    struct ifla_vf_stats
1324 						    *vf_stats);
1325 	int			(*ndo_set_vf_port)(struct net_device *dev,
1326 						   int vf,
1327 						   struct nlattr *port[]);
1328 	int			(*ndo_get_vf_port)(struct net_device *dev,
1329 						   int vf, struct sk_buff *skb);
1330 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1331 						   int vf,
1332 						   struct ifla_vf_guid *node_guid,
1333 						   struct ifla_vf_guid *port_guid);
1334 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1335 						   int vf, u64 guid,
1336 						   int guid_type);
1337 	int			(*ndo_set_vf_rss_query_en)(
1338 						   struct net_device *dev,
1339 						   int vf, bool setting);
1340 	int			(*ndo_setup_tc)(struct net_device *dev,
1341 						enum tc_setup_type type,
1342 						void *type_data);
1343 #if IS_ENABLED(CONFIG_FCOE)
1344 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1345 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1346 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1347 						      u16 xid,
1348 						      struct scatterlist *sgl,
1349 						      unsigned int sgc);
1350 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1351 						     u16 xid);
1352 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1353 						       u16 xid,
1354 						       struct scatterlist *sgl,
1355 						       unsigned int sgc);
1356 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1357 							struct netdev_fcoe_hbainfo *hbainfo);
1358 #endif
1359 
1360 #if IS_ENABLED(CONFIG_LIBFCOE)
1361 #define NETDEV_FCOE_WWNN 0
1362 #define NETDEV_FCOE_WWPN 1
1363 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1364 						    u64 *wwn, int type);
1365 #endif
1366 
1367 #ifdef CONFIG_RFS_ACCEL
1368 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1369 						     const struct sk_buff *skb,
1370 						     u16 rxq_index,
1371 						     u32 flow_id);
1372 #endif
1373 	int			(*ndo_add_slave)(struct net_device *dev,
1374 						 struct net_device *slave_dev,
1375 						 struct netlink_ext_ack *extack);
1376 	int			(*ndo_del_slave)(struct net_device *dev,
1377 						 struct net_device *slave_dev);
1378 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1379 						    netdev_features_t features);
1380 	int			(*ndo_set_features)(struct net_device *dev,
1381 						    netdev_features_t features);
1382 	int			(*ndo_neigh_construct)(struct net_device *dev,
1383 						       struct neighbour *n);
1384 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1385 						     struct neighbour *n);
1386 
1387 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1388 					       struct nlattr *tb[],
1389 					       struct net_device *dev,
1390 					       const unsigned char *addr,
1391 					       u16 vid,
1392 					       u16 flags,
1393 					       struct netlink_ext_ack *extack);
1394 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1395 					       struct nlattr *tb[],
1396 					       struct net_device *dev,
1397 					       const unsigned char *addr,
1398 					       u16 vid);
1399 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1400 						struct netlink_callback *cb,
1401 						struct net_device *dev,
1402 						struct net_device *filter_dev,
1403 						int *idx);
1404 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1405 					       struct nlattr *tb[],
1406 					       struct net_device *dev,
1407 					       const unsigned char *addr,
1408 					       u16 vid, u32 portid, u32 seq,
1409 					       struct netlink_ext_ack *extack);
1410 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1411 						      struct nlmsghdr *nlh,
1412 						      u16 flags,
1413 						      struct netlink_ext_ack *extack);
1414 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1415 						      u32 pid, u32 seq,
1416 						      struct net_device *dev,
1417 						      u32 filter_mask,
1418 						      int nlflags);
1419 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1420 						      struct nlmsghdr *nlh,
1421 						      u16 flags);
1422 	int			(*ndo_change_carrier)(struct net_device *dev,
1423 						      bool new_carrier);
1424 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1425 							struct netdev_phys_item_id *ppid);
1426 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1427 							  struct netdev_phys_item_id *ppid);
1428 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1429 							  char *name, size_t len);
1430 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1431 						      struct udp_tunnel_info *ti);
1432 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1433 						      struct udp_tunnel_info *ti);
1434 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1435 							struct net_device *dev);
1436 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1437 							void *priv);
1438 
1439 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1440 						      int queue_index,
1441 						      u32 maxrate);
1442 	int			(*ndo_get_iflink)(const struct net_device *dev);
1443 	int			(*ndo_change_proto_down)(struct net_device *dev,
1444 							 bool proto_down);
1445 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1446 						       struct sk_buff *skb);
1447 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1448 						       int needed_headroom);
1449 	int			(*ndo_bpf)(struct net_device *dev,
1450 					   struct netdev_bpf *bpf);
1451 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1452 						struct xdp_frame **xdp,
1453 						u32 flags);
1454 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1455 						  u32 queue_id, u32 flags);
1456 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1457 };
1458 
1459 /**
1460  * enum net_device_priv_flags - &struct net_device priv_flags
1461  *
1462  * These are the &struct net_device, they are only set internally
1463  * by drivers and used in the kernel. These flags are invisible to
1464  * userspace; this means that the order of these flags can change
1465  * during any kernel release.
1466  *
1467  * You should have a pretty good reason to be extending these flags.
1468  *
1469  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1470  * @IFF_EBRIDGE: Ethernet bridging device
1471  * @IFF_BONDING: bonding master or slave
1472  * @IFF_ISATAP: ISATAP interface (RFC4214)
1473  * @IFF_WAN_HDLC: WAN HDLC device
1474  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1475  *	release skb->dst
1476  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1477  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1478  * @IFF_MACVLAN_PORT: device used as macvlan port
1479  * @IFF_BRIDGE_PORT: device used as bridge port
1480  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1481  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1482  * @IFF_UNICAST_FLT: Supports unicast filtering
1483  * @IFF_TEAM_PORT: device used as team port
1484  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1485  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1486  *	change when it's running
1487  * @IFF_MACVLAN: Macvlan device
1488  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1489  *	underlying stacked devices
1490  * @IFF_L3MDEV_MASTER: device is an L3 master device
1491  * @IFF_NO_QUEUE: device can run without qdisc attached
1492  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1493  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1494  * @IFF_TEAM: device is a team device
1495  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1496  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1497  *	entity (i.e. the master device for bridged veth)
1498  * @IFF_MACSEC: device is a MACsec device
1499  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1500  * @IFF_FAILOVER: device is a failover master device
1501  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1502  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1503  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1504  */
1505 enum netdev_priv_flags {
1506 	IFF_802_1Q_VLAN			= 1<<0,
1507 	IFF_EBRIDGE			= 1<<1,
1508 	IFF_BONDING			= 1<<2,
1509 	IFF_ISATAP			= 1<<3,
1510 	IFF_WAN_HDLC			= 1<<4,
1511 	IFF_XMIT_DST_RELEASE		= 1<<5,
1512 	IFF_DONT_BRIDGE			= 1<<6,
1513 	IFF_DISABLE_NETPOLL		= 1<<7,
1514 	IFF_MACVLAN_PORT		= 1<<8,
1515 	IFF_BRIDGE_PORT			= 1<<9,
1516 	IFF_OVS_DATAPATH		= 1<<10,
1517 	IFF_TX_SKB_SHARING		= 1<<11,
1518 	IFF_UNICAST_FLT			= 1<<12,
1519 	IFF_TEAM_PORT			= 1<<13,
1520 	IFF_SUPP_NOFCS			= 1<<14,
1521 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1522 	IFF_MACVLAN			= 1<<16,
1523 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1524 	IFF_L3MDEV_MASTER		= 1<<18,
1525 	IFF_NO_QUEUE			= 1<<19,
1526 	IFF_OPENVSWITCH			= 1<<20,
1527 	IFF_L3MDEV_SLAVE		= 1<<21,
1528 	IFF_TEAM			= 1<<22,
1529 	IFF_RXFH_CONFIGURED		= 1<<23,
1530 	IFF_PHONY_HEADROOM		= 1<<24,
1531 	IFF_MACSEC			= 1<<25,
1532 	IFF_NO_RX_HANDLER		= 1<<26,
1533 	IFF_FAILOVER			= 1<<27,
1534 	IFF_FAILOVER_SLAVE		= 1<<28,
1535 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1536 	IFF_LIVE_RENAME_OK		= 1<<30,
1537 };
1538 
1539 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1540 #define IFF_EBRIDGE			IFF_EBRIDGE
1541 #define IFF_BONDING			IFF_BONDING
1542 #define IFF_ISATAP			IFF_ISATAP
1543 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1544 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1545 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1546 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1547 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1548 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1549 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1550 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1551 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1552 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1553 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1554 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1555 #define IFF_MACVLAN			IFF_MACVLAN
1556 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1557 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1558 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1559 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1560 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1561 #define IFF_TEAM			IFF_TEAM
1562 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1563 #define IFF_MACSEC			IFF_MACSEC
1564 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1565 #define IFF_FAILOVER			IFF_FAILOVER
1566 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1567 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1568 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1569 
1570 /**
1571  *	struct net_device - The DEVICE structure.
1572  *
1573  *	Actually, this whole structure is a big mistake.  It mixes I/O
1574  *	data with strictly "high-level" data, and it has to know about
1575  *	almost every data structure used in the INET module.
1576  *
1577  *	@name:	This is the first field of the "visible" part of this structure
1578  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1579  *		of the interface.
1580  *
1581  *	@name_node:	Name hashlist node
1582  *	@ifalias:	SNMP alias
1583  *	@mem_end:	Shared memory end
1584  *	@mem_start:	Shared memory start
1585  *	@base_addr:	Device I/O address
1586  *	@irq:		Device IRQ number
1587  *
1588  *	@state:		Generic network queuing layer state, see netdev_state_t
1589  *	@dev_list:	The global list of network devices
1590  *	@napi_list:	List entry used for polling NAPI devices
1591  *	@unreg_list:	List entry  when we are unregistering the
1592  *			device; see the function unregister_netdev
1593  *	@close_list:	List entry used when we are closing the device
1594  *	@ptype_all:     Device-specific packet handlers for all protocols
1595  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1596  *
1597  *	@adj_list:	Directly linked devices, like slaves for bonding
1598  *	@features:	Currently active device features
1599  *	@hw_features:	User-changeable features
1600  *
1601  *	@wanted_features:	User-requested features
1602  *	@vlan_features:		Mask of features inheritable by VLAN devices
1603  *
1604  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1605  *				This field indicates what encapsulation
1606  *				offloads the hardware is capable of doing,
1607  *				and drivers will need to set them appropriately.
1608  *
1609  *	@mpls_features:	Mask of features inheritable by MPLS
1610  *
1611  *	@ifindex:	interface index
1612  *	@group:		The group the device belongs to
1613  *
1614  *	@stats:		Statistics struct, which was left as a legacy, use
1615  *			rtnl_link_stats64 instead
1616  *
1617  *	@rx_dropped:	Dropped packets by core network,
1618  *			do not use this in drivers
1619  *	@tx_dropped:	Dropped packets by core network,
1620  *			do not use this in drivers
1621  *	@rx_nohandler:	nohandler dropped packets by core network on
1622  *			inactive devices, do not use this in drivers
1623  *	@carrier_up_count:	Number of times the carrier has been up
1624  *	@carrier_down_count:	Number of times the carrier has been down
1625  *
1626  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1627  *				instead of ioctl,
1628  *				see <net/iw_handler.h> for details.
1629  *	@wireless_data:	Instance data managed by the core of wireless extensions
1630  *
1631  *	@netdev_ops:	Includes several pointers to callbacks,
1632  *			if one wants to override the ndo_*() functions
1633  *	@ethtool_ops:	Management operations
1634  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1635  *			discovery handling. Necessary for e.g. 6LoWPAN.
1636  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1637  *			of Layer 2 headers.
1638  *
1639  *	@flags:		Interface flags (a la BSD)
1640  *	@priv_flags:	Like 'flags' but invisible to userspace,
1641  *			see if.h for the definitions
1642  *	@gflags:	Global flags ( kept as legacy )
1643  *	@padded:	How much padding added by alloc_netdev()
1644  *	@operstate:	RFC2863 operstate
1645  *	@link_mode:	Mapping policy to operstate
1646  *	@if_port:	Selectable AUI, TP, ...
1647  *	@dma:		DMA channel
1648  *	@mtu:		Interface MTU value
1649  *	@min_mtu:	Interface Minimum MTU value
1650  *	@max_mtu:	Interface Maximum MTU value
1651  *	@type:		Interface hardware type
1652  *	@hard_header_len: Maximum hardware header length.
1653  *	@min_header_len:  Minimum hardware header length
1654  *
1655  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1656  *			  cases can this be guaranteed
1657  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1658  *			  cases can this be guaranteed. Some cases also use
1659  *			  LL_MAX_HEADER instead to allocate the skb
1660  *
1661  *	interface address info:
1662  *
1663  * 	@perm_addr:		Permanent hw address
1664  * 	@addr_assign_type:	Hw address assignment type
1665  * 	@addr_len:		Hardware address length
1666  *	@upper_level:		Maximum depth level of upper devices.
1667  *	@lower_level:		Maximum depth level of lower devices.
1668  *	@neigh_priv_len:	Used in neigh_alloc()
1669  * 	@dev_id:		Used to differentiate devices that share
1670  * 				the same link layer address
1671  * 	@dev_port:		Used to differentiate devices that share
1672  * 				the same function
1673  *	@addr_list_lock:	XXX: need comments on this one
1674  *	@uc_promisc:		Counter that indicates promiscuous mode
1675  *				has been enabled due to the need to listen to
1676  *				additional unicast addresses in a device that
1677  *				does not implement ndo_set_rx_mode()
1678  *	@uc:			unicast mac addresses
1679  *	@mc:			multicast mac addresses
1680  *	@dev_addrs:		list of device hw addresses
1681  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1682  *	@promiscuity:		Number of times the NIC is told to work in
1683  *				promiscuous mode; if it becomes 0 the NIC will
1684  *				exit promiscuous mode
1685  *	@allmulti:		Counter, enables or disables allmulticast mode
1686  *
1687  *	@vlan_info:	VLAN info
1688  *	@dsa_ptr:	dsa specific data
1689  *	@tipc_ptr:	TIPC specific data
1690  *	@atalk_ptr:	AppleTalk link
1691  *	@ip_ptr:	IPv4 specific data
1692  *	@dn_ptr:	DECnet specific data
1693  *	@ip6_ptr:	IPv6 specific data
1694  *	@ax25_ptr:	AX.25 specific data
1695  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1696  *
1697  *	@dev_addr:	Hw address (before bcast,
1698  *			because most packets are unicast)
1699  *
1700  *	@_rx:			Array of RX queues
1701  *	@num_rx_queues:		Number of RX queues
1702  *				allocated at register_netdev() time
1703  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1704  *
1705  *	@rx_handler:		handler for received packets
1706  *	@rx_handler_data: 	XXX: need comments on this one
1707  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1708  *				ingress processing
1709  *	@ingress_queue:		XXX: need comments on this one
1710  *	@broadcast:		hw bcast address
1711  *
1712  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1713  *			indexed by RX queue number. Assigned by driver.
1714  *			This must only be set if the ndo_rx_flow_steer
1715  *			operation is defined
1716  *	@index_hlist:		Device index hash chain
1717  *
1718  *	@_tx:			Array of TX queues
1719  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1720  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1721  *	@qdisc:			Root qdisc from userspace point of view
1722  *	@tx_queue_len:		Max frames per queue allowed
1723  *	@tx_global_lock: 	XXX: need comments on this one
1724  *
1725  *	@xps_maps:	XXX: need comments on this one
1726  *	@miniq_egress:		clsact qdisc specific data for
1727  *				egress processing
1728  *	@watchdog_timeo:	Represents the timeout that is used by
1729  *				the watchdog (see dev_watchdog())
1730  *	@watchdog_timer:	List of timers
1731  *
1732  *	@pcpu_refcnt:		Number of references to this device
1733  *	@todo_list:		Delayed register/unregister
1734  *	@link_watch_list:	XXX: need comments on this one
1735  *
1736  *	@reg_state:		Register/unregister state machine
1737  *	@dismantle:		Device is going to be freed
1738  *	@rtnl_link_state:	This enum represents the phases of creating
1739  *				a new link
1740  *
1741  *	@needs_free_netdev:	Should unregister perform free_netdev?
1742  *	@priv_destructor:	Called from unregister
1743  *	@npinfo:		XXX: need comments on this one
1744  * 	@nd_net:		Network namespace this network device is inside
1745  *
1746  * 	@ml_priv:	Mid-layer private
1747  * 	@lstats:	Loopback statistics
1748  * 	@tstats:	Tunnel statistics
1749  * 	@dstats:	Dummy statistics
1750  * 	@vstats:	Virtual ethernet statistics
1751  *
1752  *	@garp_port:	GARP
1753  *	@mrp_port:	MRP
1754  *
1755  *	@dev:		Class/net/name entry
1756  *	@sysfs_groups:	Space for optional device, statistics and wireless
1757  *			sysfs groups
1758  *
1759  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1760  *	@rtnl_link_ops:	Rtnl_link_ops
1761  *
1762  *	@gso_max_size:	Maximum size of generic segmentation offload
1763  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1764  *			NIC for GSO
1765  *
1766  *	@dcbnl_ops:	Data Center Bridging netlink ops
1767  *	@num_tc:	Number of traffic classes in the net device
1768  *	@tc_to_txq:	XXX: need comments on this one
1769  *	@prio_tc_map:	XXX: need comments on this one
1770  *
1771  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1772  *
1773  *	@priomap:	XXX: need comments on this one
1774  *	@phydev:	Physical device may attach itself
1775  *			for hardware timestamping
1776  *	@sfp_bus:	attached &struct sfp_bus structure.
1777  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1778 				spinlock
1779  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1780  *	@qdisc_xmit_lock_key:	lockdep class annotating
1781  *				netdev_queue->_xmit_lock spinlock
1782  *	@addr_list_lock_key:	lockdep class annotating
1783  *				net_device->addr_list_lock spinlock
1784  *
1785  *	@proto_down:	protocol port state information can be sent to the
1786  *			switch driver and used to set the phys state of the
1787  *			switch port.
1788  *
1789  *	@wol_enabled:	Wake-on-LAN is enabled
1790  *
1791  *	FIXME: cleanup struct net_device such that network protocol info
1792  *	moves out.
1793  */
1794 
1795 struct net_device {
1796 	char			name[IFNAMSIZ];
1797 	struct netdev_name_node	*name_node;
1798 	struct dev_ifalias	__rcu *ifalias;
1799 	/*
1800 	 *	I/O specific fields
1801 	 *	FIXME: Merge these and struct ifmap into one
1802 	 */
1803 	unsigned long		mem_end;
1804 	unsigned long		mem_start;
1805 	unsigned long		base_addr;
1806 	int			irq;
1807 
1808 	/*
1809 	 *	Some hardware also needs these fields (state,dev_list,
1810 	 *	napi_list,unreg_list,close_list) but they are not
1811 	 *	part of the usual set specified in Space.c.
1812 	 */
1813 
1814 	unsigned long		state;
1815 
1816 	struct list_head	dev_list;
1817 	struct list_head	napi_list;
1818 	struct list_head	unreg_list;
1819 	struct list_head	close_list;
1820 	struct list_head	ptype_all;
1821 	struct list_head	ptype_specific;
1822 
1823 	struct {
1824 		struct list_head upper;
1825 		struct list_head lower;
1826 	} adj_list;
1827 
1828 	netdev_features_t	features;
1829 	netdev_features_t	hw_features;
1830 	netdev_features_t	wanted_features;
1831 	netdev_features_t	vlan_features;
1832 	netdev_features_t	hw_enc_features;
1833 	netdev_features_t	mpls_features;
1834 	netdev_features_t	gso_partial_features;
1835 
1836 	int			ifindex;
1837 	int			group;
1838 
1839 	struct net_device_stats	stats;
1840 
1841 	atomic_long_t		rx_dropped;
1842 	atomic_long_t		tx_dropped;
1843 	atomic_long_t		rx_nohandler;
1844 
1845 	/* Stats to monitor link on/off, flapping */
1846 	atomic_t		carrier_up_count;
1847 	atomic_t		carrier_down_count;
1848 
1849 #ifdef CONFIG_WIRELESS_EXT
1850 	const struct iw_handler_def *wireless_handlers;
1851 	struct iw_public_data	*wireless_data;
1852 #endif
1853 	const struct net_device_ops *netdev_ops;
1854 	const struct ethtool_ops *ethtool_ops;
1855 #ifdef CONFIG_NET_L3_MASTER_DEV
1856 	const struct l3mdev_ops	*l3mdev_ops;
1857 #endif
1858 #if IS_ENABLED(CONFIG_IPV6)
1859 	const struct ndisc_ops *ndisc_ops;
1860 #endif
1861 
1862 #ifdef CONFIG_XFRM_OFFLOAD
1863 	const struct xfrmdev_ops *xfrmdev_ops;
1864 #endif
1865 
1866 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1867 	const struct tlsdev_ops *tlsdev_ops;
1868 #endif
1869 
1870 	const struct header_ops *header_ops;
1871 
1872 	unsigned int		flags;
1873 	unsigned int		priv_flags;
1874 
1875 	unsigned short		gflags;
1876 	unsigned short		padded;
1877 
1878 	unsigned char		operstate;
1879 	unsigned char		link_mode;
1880 
1881 	unsigned char		if_port;
1882 	unsigned char		dma;
1883 
1884 	/* Note : dev->mtu is often read without holding a lock.
1885 	 * Writers usually hold RTNL.
1886 	 * It is recommended to use READ_ONCE() to annotate the reads,
1887 	 * and to use WRITE_ONCE() to annotate the writes.
1888 	 */
1889 	unsigned int		mtu;
1890 	unsigned int		min_mtu;
1891 	unsigned int		max_mtu;
1892 	unsigned short		type;
1893 	unsigned short		hard_header_len;
1894 	unsigned char		min_header_len;
1895 
1896 	unsigned short		needed_headroom;
1897 	unsigned short		needed_tailroom;
1898 
1899 	/* Interface address info. */
1900 	unsigned char		perm_addr[MAX_ADDR_LEN];
1901 	unsigned char		addr_assign_type;
1902 	unsigned char		addr_len;
1903 	unsigned char		upper_level;
1904 	unsigned char		lower_level;
1905 	unsigned short		neigh_priv_len;
1906 	unsigned short          dev_id;
1907 	unsigned short          dev_port;
1908 	spinlock_t		addr_list_lock;
1909 	unsigned char		name_assign_type;
1910 	bool			uc_promisc;
1911 	struct netdev_hw_addr_list	uc;
1912 	struct netdev_hw_addr_list	mc;
1913 	struct netdev_hw_addr_list	dev_addrs;
1914 
1915 #ifdef CONFIG_SYSFS
1916 	struct kset		*queues_kset;
1917 #endif
1918 	unsigned int		promiscuity;
1919 	unsigned int		allmulti;
1920 
1921 
1922 	/* Protocol-specific pointers */
1923 
1924 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1925 	struct vlan_info __rcu	*vlan_info;
1926 #endif
1927 #if IS_ENABLED(CONFIG_NET_DSA)
1928 	struct dsa_port		*dsa_ptr;
1929 #endif
1930 #if IS_ENABLED(CONFIG_TIPC)
1931 	struct tipc_bearer __rcu *tipc_ptr;
1932 #endif
1933 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1934 	void 			*atalk_ptr;
1935 #endif
1936 	struct in_device __rcu	*ip_ptr;
1937 #if IS_ENABLED(CONFIG_DECNET)
1938 	struct dn_dev __rcu     *dn_ptr;
1939 #endif
1940 	struct inet6_dev __rcu	*ip6_ptr;
1941 #if IS_ENABLED(CONFIG_AX25)
1942 	void			*ax25_ptr;
1943 #endif
1944 	struct wireless_dev	*ieee80211_ptr;
1945 	struct wpan_dev		*ieee802154_ptr;
1946 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1947 	struct mpls_dev __rcu	*mpls_ptr;
1948 #endif
1949 
1950 /*
1951  * Cache lines mostly used on receive path (including eth_type_trans())
1952  */
1953 	/* Interface address info used in eth_type_trans() */
1954 	unsigned char		*dev_addr;
1955 
1956 	struct netdev_rx_queue	*_rx;
1957 	unsigned int		num_rx_queues;
1958 	unsigned int		real_num_rx_queues;
1959 
1960 	struct bpf_prog __rcu	*xdp_prog;
1961 	unsigned long		gro_flush_timeout;
1962 	rx_handler_func_t __rcu	*rx_handler;
1963 	void __rcu		*rx_handler_data;
1964 
1965 #ifdef CONFIG_NET_CLS_ACT
1966 	struct mini_Qdisc __rcu	*miniq_ingress;
1967 #endif
1968 	struct netdev_queue __rcu *ingress_queue;
1969 #ifdef CONFIG_NETFILTER_INGRESS
1970 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1971 #endif
1972 
1973 	unsigned char		broadcast[MAX_ADDR_LEN];
1974 #ifdef CONFIG_RFS_ACCEL
1975 	struct cpu_rmap		*rx_cpu_rmap;
1976 #endif
1977 	struct hlist_node	index_hlist;
1978 
1979 /*
1980  * Cache lines mostly used on transmit path
1981  */
1982 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1983 	unsigned int		num_tx_queues;
1984 	unsigned int		real_num_tx_queues;
1985 	struct Qdisc		*qdisc;
1986 #ifdef CONFIG_NET_SCHED
1987 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1988 #endif
1989 	unsigned int		tx_queue_len;
1990 	spinlock_t		tx_global_lock;
1991 	int			watchdog_timeo;
1992 
1993 #ifdef CONFIG_XPS
1994 	struct xps_dev_maps __rcu *xps_cpus_map;
1995 	struct xps_dev_maps __rcu *xps_rxqs_map;
1996 #endif
1997 #ifdef CONFIG_NET_CLS_ACT
1998 	struct mini_Qdisc __rcu	*miniq_egress;
1999 #endif
2000 
2001 	/* These may be needed for future network-power-down code. */
2002 	struct timer_list	watchdog_timer;
2003 
2004 	int __percpu		*pcpu_refcnt;
2005 	struct list_head	todo_list;
2006 
2007 	struct list_head	link_watch_list;
2008 
2009 	enum { NETREG_UNINITIALIZED=0,
2010 	       NETREG_REGISTERED,	/* completed register_netdevice */
2011 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2012 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2013 	       NETREG_RELEASED,		/* called free_netdev */
2014 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2015 	} reg_state:8;
2016 
2017 	bool dismantle;
2018 
2019 	enum {
2020 		RTNL_LINK_INITIALIZED,
2021 		RTNL_LINK_INITIALIZING,
2022 	} rtnl_link_state:16;
2023 
2024 	bool needs_free_netdev;
2025 	void (*priv_destructor)(struct net_device *dev);
2026 
2027 #ifdef CONFIG_NETPOLL
2028 	struct netpoll_info __rcu	*npinfo;
2029 #endif
2030 
2031 	possible_net_t			nd_net;
2032 
2033 	/* mid-layer private */
2034 	union {
2035 		void					*ml_priv;
2036 		struct pcpu_lstats __percpu		*lstats;
2037 		struct pcpu_sw_netstats __percpu	*tstats;
2038 		struct pcpu_dstats __percpu		*dstats;
2039 	};
2040 
2041 #if IS_ENABLED(CONFIG_GARP)
2042 	struct garp_port __rcu	*garp_port;
2043 #endif
2044 #if IS_ENABLED(CONFIG_MRP)
2045 	struct mrp_port __rcu	*mrp_port;
2046 #endif
2047 
2048 	struct device		dev;
2049 	const struct attribute_group *sysfs_groups[4];
2050 	const struct attribute_group *sysfs_rx_queue_group;
2051 
2052 	const struct rtnl_link_ops *rtnl_link_ops;
2053 
2054 	/* for setting kernel sock attribute on TCP connection setup */
2055 #define GSO_MAX_SIZE		65536
2056 	unsigned int		gso_max_size;
2057 #define GSO_MAX_SEGS		65535
2058 	u16			gso_max_segs;
2059 
2060 #ifdef CONFIG_DCB
2061 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2062 #endif
2063 	s16			num_tc;
2064 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2065 	u8			prio_tc_map[TC_BITMASK + 1];
2066 
2067 #if IS_ENABLED(CONFIG_FCOE)
2068 	unsigned int		fcoe_ddp_xid;
2069 #endif
2070 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2071 	struct netprio_map __rcu *priomap;
2072 #endif
2073 	struct phy_device	*phydev;
2074 	struct sfp_bus		*sfp_bus;
2075 	struct lock_class_key	qdisc_tx_busylock_key;
2076 	struct lock_class_key	qdisc_running_key;
2077 	struct lock_class_key	qdisc_xmit_lock_key;
2078 	struct lock_class_key	addr_list_lock_key;
2079 	bool			proto_down;
2080 	unsigned		wol_enabled:1;
2081 };
2082 #define to_net_dev(d) container_of(d, struct net_device, dev)
2083 
2084 static inline bool netif_elide_gro(const struct net_device *dev)
2085 {
2086 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2087 		return true;
2088 	return false;
2089 }
2090 
2091 #define	NETDEV_ALIGN		32
2092 
2093 static inline
2094 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2095 {
2096 	return dev->prio_tc_map[prio & TC_BITMASK];
2097 }
2098 
2099 static inline
2100 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2101 {
2102 	if (tc >= dev->num_tc)
2103 		return -EINVAL;
2104 
2105 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2106 	return 0;
2107 }
2108 
2109 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2110 void netdev_reset_tc(struct net_device *dev);
2111 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2112 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2113 
2114 static inline
2115 int netdev_get_num_tc(struct net_device *dev)
2116 {
2117 	return dev->num_tc;
2118 }
2119 
2120 void netdev_unbind_sb_channel(struct net_device *dev,
2121 			      struct net_device *sb_dev);
2122 int netdev_bind_sb_channel_queue(struct net_device *dev,
2123 				 struct net_device *sb_dev,
2124 				 u8 tc, u16 count, u16 offset);
2125 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2126 static inline int netdev_get_sb_channel(struct net_device *dev)
2127 {
2128 	return max_t(int, -dev->num_tc, 0);
2129 }
2130 
2131 static inline
2132 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2133 					 unsigned int index)
2134 {
2135 	return &dev->_tx[index];
2136 }
2137 
2138 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2139 						    const struct sk_buff *skb)
2140 {
2141 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2142 }
2143 
2144 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2145 					    void (*f)(struct net_device *,
2146 						      struct netdev_queue *,
2147 						      void *),
2148 					    void *arg)
2149 {
2150 	unsigned int i;
2151 
2152 	for (i = 0; i < dev->num_tx_queues; i++)
2153 		f(dev, &dev->_tx[i], arg);
2154 }
2155 
2156 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2157 		     struct net_device *sb_dev);
2158 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2159 					 struct sk_buff *skb,
2160 					 struct net_device *sb_dev);
2161 
2162 /* returns the headroom that the master device needs to take in account
2163  * when forwarding to this dev
2164  */
2165 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2166 {
2167 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2168 }
2169 
2170 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2171 {
2172 	if (dev->netdev_ops->ndo_set_rx_headroom)
2173 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2174 }
2175 
2176 /* set the device rx headroom to the dev's default */
2177 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2178 {
2179 	netdev_set_rx_headroom(dev, -1);
2180 }
2181 
2182 /*
2183  * Net namespace inlines
2184  */
2185 static inline
2186 struct net *dev_net(const struct net_device *dev)
2187 {
2188 	return read_pnet(&dev->nd_net);
2189 }
2190 
2191 static inline
2192 void dev_net_set(struct net_device *dev, struct net *net)
2193 {
2194 	write_pnet(&dev->nd_net, net);
2195 }
2196 
2197 /**
2198  *	netdev_priv - access network device private data
2199  *	@dev: network device
2200  *
2201  * Get network device private data
2202  */
2203 static inline void *netdev_priv(const struct net_device *dev)
2204 {
2205 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2206 }
2207 
2208 /* Set the sysfs physical device reference for the network logical device
2209  * if set prior to registration will cause a symlink during initialization.
2210  */
2211 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2212 
2213 /* Set the sysfs device type for the network logical device to allow
2214  * fine-grained identification of different network device types. For
2215  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2216  */
2217 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2218 
2219 /* Default NAPI poll() weight
2220  * Device drivers are strongly advised to not use bigger value
2221  */
2222 #define NAPI_POLL_WEIGHT 64
2223 
2224 /**
2225  *	netif_napi_add - initialize a NAPI context
2226  *	@dev:  network device
2227  *	@napi: NAPI context
2228  *	@poll: polling function
2229  *	@weight: default weight
2230  *
2231  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2232  * *any* of the other NAPI-related functions.
2233  */
2234 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2235 		    int (*poll)(struct napi_struct *, int), int weight);
2236 
2237 /**
2238  *	netif_tx_napi_add - initialize a NAPI context
2239  *	@dev:  network device
2240  *	@napi: NAPI context
2241  *	@poll: polling function
2242  *	@weight: default weight
2243  *
2244  * This variant of netif_napi_add() should be used from drivers using NAPI
2245  * to exclusively poll a TX queue.
2246  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2247  */
2248 static inline void netif_tx_napi_add(struct net_device *dev,
2249 				     struct napi_struct *napi,
2250 				     int (*poll)(struct napi_struct *, int),
2251 				     int weight)
2252 {
2253 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2254 	netif_napi_add(dev, napi, poll, weight);
2255 }
2256 
2257 /**
2258  *  netif_napi_del - remove a NAPI context
2259  *  @napi: NAPI context
2260  *
2261  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2262  */
2263 void netif_napi_del(struct napi_struct *napi);
2264 
2265 struct napi_gro_cb {
2266 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2267 	void	*frag0;
2268 
2269 	/* Length of frag0. */
2270 	unsigned int frag0_len;
2271 
2272 	/* This indicates where we are processing relative to skb->data. */
2273 	int	data_offset;
2274 
2275 	/* This is non-zero if the packet cannot be merged with the new skb. */
2276 	u16	flush;
2277 
2278 	/* Save the IP ID here and check when we get to the transport layer */
2279 	u16	flush_id;
2280 
2281 	/* Number of segments aggregated. */
2282 	u16	count;
2283 
2284 	/* Start offset for remote checksum offload */
2285 	u16	gro_remcsum_start;
2286 
2287 	/* jiffies when first packet was created/queued */
2288 	unsigned long age;
2289 
2290 	/* Used in ipv6_gro_receive() and foo-over-udp */
2291 	u16	proto;
2292 
2293 	/* This is non-zero if the packet may be of the same flow. */
2294 	u8	same_flow:1;
2295 
2296 	/* Used in tunnel GRO receive */
2297 	u8	encap_mark:1;
2298 
2299 	/* GRO checksum is valid */
2300 	u8	csum_valid:1;
2301 
2302 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2303 	u8	csum_cnt:3;
2304 
2305 	/* Free the skb? */
2306 	u8	free:2;
2307 #define NAPI_GRO_FREE		  1
2308 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2309 
2310 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2311 	u8	is_ipv6:1;
2312 
2313 	/* Used in GRE, set in fou/gue_gro_receive */
2314 	u8	is_fou:1;
2315 
2316 	/* Used to determine if flush_id can be ignored */
2317 	u8	is_atomic:1;
2318 
2319 	/* Number of gro_receive callbacks this packet already went through */
2320 	u8 recursion_counter:4;
2321 
2322 	/* 1 bit hole */
2323 
2324 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2325 	__wsum	csum;
2326 
2327 	/* used in skb_gro_receive() slow path */
2328 	struct sk_buff *last;
2329 };
2330 
2331 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2332 
2333 #define GRO_RECURSION_LIMIT 15
2334 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2335 {
2336 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2337 }
2338 
2339 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2340 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2341 					       struct list_head *head,
2342 					       struct sk_buff *skb)
2343 {
2344 	if (unlikely(gro_recursion_inc_test(skb))) {
2345 		NAPI_GRO_CB(skb)->flush |= 1;
2346 		return NULL;
2347 	}
2348 
2349 	return cb(head, skb);
2350 }
2351 
2352 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2353 					    struct sk_buff *);
2354 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2355 						  struct sock *sk,
2356 						  struct list_head *head,
2357 						  struct sk_buff *skb)
2358 {
2359 	if (unlikely(gro_recursion_inc_test(skb))) {
2360 		NAPI_GRO_CB(skb)->flush |= 1;
2361 		return NULL;
2362 	}
2363 
2364 	return cb(sk, head, skb);
2365 }
2366 
2367 struct packet_type {
2368 	__be16			type;	/* This is really htons(ether_type). */
2369 	bool			ignore_outgoing;
2370 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2371 	int			(*func) (struct sk_buff *,
2372 					 struct net_device *,
2373 					 struct packet_type *,
2374 					 struct net_device *);
2375 	void			(*list_func) (struct list_head *,
2376 					      struct packet_type *,
2377 					      struct net_device *);
2378 	bool			(*id_match)(struct packet_type *ptype,
2379 					    struct sock *sk);
2380 	void			*af_packet_priv;
2381 	struct list_head	list;
2382 };
2383 
2384 struct offload_callbacks {
2385 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2386 						netdev_features_t features);
2387 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2388 						struct sk_buff *skb);
2389 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2390 };
2391 
2392 struct packet_offload {
2393 	__be16			 type;	/* This is really htons(ether_type). */
2394 	u16			 priority;
2395 	struct offload_callbacks callbacks;
2396 	struct list_head	 list;
2397 };
2398 
2399 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2400 struct pcpu_sw_netstats {
2401 	u64     rx_packets;
2402 	u64     rx_bytes;
2403 	u64     tx_packets;
2404 	u64     tx_bytes;
2405 	struct u64_stats_sync   syncp;
2406 } __aligned(4 * sizeof(u64));
2407 
2408 struct pcpu_lstats {
2409 	u64_stats_t packets;
2410 	u64_stats_t bytes;
2411 	struct u64_stats_sync syncp;
2412 } __aligned(2 * sizeof(u64));
2413 
2414 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2415 
2416 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2417 {
2418 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2419 
2420 	u64_stats_update_begin(&lstats->syncp);
2421 	u64_stats_add(&lstats->bytes, len);
2422 	u64_stats_inc(&lstats->packets);
2423 	u64_stats_update_end(&lstats->syncp);
2424 }
2425 
2426 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2427 ({									\
2428 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2429 	if (pcpu_stats)	{						\
2430 		int __cpu;						\
2431 		for_each_possible_cpu(__cpu) {				\
2432 			typeof(type) *stat;				\
2433 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2434 			u64_stats_init(&stat->syncp);			\
2435 		}							\
2436 	}								\
2437 	pcpu_stats;							\
2438 })
2439 
2440 #define netdev_alloc_pcpu_stats(type)					\
2441 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2442 
2443 enum netdev_lag_tx_type {
2444 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2445 	NETDEV_LAG_TX_TYPE_RANDOM,
2446 	NETDEV_LAG_TX_TYPE_BROADCAST,
2447 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2448 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2449 	NETDEV_LAG_TX_TYPE_HASH,
2450 };
2451 
2452 enum netdev_lag_hash {
2453 	NETDEV_LAG_HASH_NONE,
2454 	NETDEV_LAG_HASH_L2,
2455 	NETDEV_LAG_HASH_L34,
2456 	NETDEV_LAG_HASH_L23,
2457 	NETDEV_LAG_HASH_E23,
2458 	NETDEV_LAG_HASH_E34,
2459 	NETDEV_LAG_HASH_UNKNOWN,
2460 };
2461 
2462 struct netdev_lag_upper_info {
2463 	enum netdev_lag_tx_type tx_type;
2464 	enum netdev_lag_hash hash_type;
2465 };
2466 
2467 struct netdev_lag_lower_state_info {
2468 	u8 link_up : 1,
2469 	   tx_enabled : 1;
2470 };
2471 
2472 #include <linux/notifier.h>
2473 
2474 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2475  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2476  * adding new types.
2477  */
2478 enum netdev_cmd {
2479 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2480 	NETDEV_DOWN,
2481 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2482 				   detected a hardware crash and restarted
2483 				   - we can use this eg to kick tcp sessions
2484 				   once done */
2485 	NETDEV_CHANGE,		/* Notify device state change */
2486 	NETDEV_REGISTER,
2487 	NETDEV_UNREGISTER,
2488 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2489 	NETDEV_CHANGEADDR,	/* notify after the address change */
2490 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2491 	NETDEV_GOING_DOWN,
2492 	NETDEV_CHANGENAME,
2493 	NETDEV_FEAT_CHANGE,
2494 	NETDEV_BONDING_FAILOVER,
2495 	NETDEV_PRE_UP,
2496 	NETDEV_PRE_TYPE_CHANGE,
2497 	NETDEV_POST_TYPE_CHANGE,
2498 	NETDEV_POST_INIT,
2499 	NETDEV_RELEASE,
2500 	NETDEV_NOTIFY_PEERS,
2501 	NETDEV_JOIN,
2502 	NETDEV_CHANGEUPPER,
2503 	NETDEV_RESEND_IGMP,
2504 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2505 	NETDEV_CHANGEINFODATA,
2506 	NETDEV_BONDING_INFO,
2507 	NETDEV_PRECHANGEUPPER,
2508 	NETDEV_CHANGELOWERSTATE,
2509 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2510 	NETDEV_UDP_TUNNEL_DROP_INFO,
2511 	NETDEV_CHANGE_TX_QUEUE_LEN,
2512 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2513 	NETDEV_CVLAN_FILTER_DROP_INFO,
2514 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2515 	NETDEV_SVLAN_FILTER_DROP_INFO,
2516 };
2517 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2518 
2519 int register_netdevice_notifier(struct notifier_block *nb);
2520 int unregister_netdevice_notifier(struct notifier_block *nb);
2521 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2522 int unregister_netdevice_notifier_net(struct net *net,
2523 				      struct notifier_block *nb);
2524 
2525 struct netdev_notifier_info {
2526 	struct net_device	*dev;
2527 	struct netlink_ext_ack	*extack;
2528 };
2529 
2530 struct netdev_notifier_info_ext {
2531 	struct netdev_notifier_info info; /* must be first */
2532 	union {
2533 		u32 mtu;
2534 	} ext;
2535 };
2536 
2537 struct netdev_notifier_change_info {
2538 	struct netdev_notifier_info info; /* must be first */
2539 	unsigned int flags_changed;
2540 };
2541 
2542 struct netdev_notifier_changeupper_info {
2543 	struct netdev_notifier_info info; /* must be first */
2544 	struct net_device *upper_dev; /* new upper dev */
2545 	bool master; /* is upper dev master */
2546 	bool linking; /* is the notification for link or unlink */
2547 	void *upper_info; /* upper dev info */
2548 };
2549 
2550 struct netdev_notifier_changelowerstate_info {
2551 	struct netdev_notifier_info info; /* must be first */
2552 	void *lower_state_info; /* is lower dev state */
2553 };
2554 
2555 struct netdev_notifier_pre_changeaddr_info {
2556 	struct netdev_notifier_info info; /* must be first */
2557 	const unsigned char *dev_addr;
2558 };
2559 
2560 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2561 					     struct net_device *dev)
2562 {
2563 	info->dev = dev;
2564 	info->extack = NULL;
2565 }
2566 
2567 static inline struct net_device *
2568 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2569 {
2570 	return info->dev;
2571 }
2572 
2573 static inline struct netlink_ext_ack *
2574 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2575 {
2576 	return info->extack;
2577 }
2578 
2579 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2580 
2581 
2582 extern rwlock_t				dev_base_lock;		/* Device list lock */
2583 
2584 #define for_each_netdev(net, d)		\
2585 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2586 #define for_each_netdev_reverse(net, d)	\
2587 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2588 #define for_each_netdev_rcu(net, d)		\
2589 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2590 #define for_each_netdev_safe(net, d, n)	\
2591 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2592 #define for_each_netdev_continue(net, d)		\
2593 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2594 #define for_each_netdev_continue_reverse(net, d)		\
2595 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2596 						     dev_list)
2597 #define for_each_netdev_continue_rcu(net, d)		\
2598 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2599 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2600 		for_each_netdev_rcu(&init_net, slave)	\
2601 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2602 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2603 
2604 static inline struct net_device *next_net_device(struct net_device *dev)
2605 {
2606 	struct list_head *lh;
2607 	struct net *net;
2608 
2609 	net = dev_net(dev);
2610 	lh = dev->dev_list.next;
2611 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2612 }
2613 
2614 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2615 {
2616 	struct list_head *lh;
2617 	struct net *net;
2618 
2619 	net = dev_net(dev);
2620 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2621 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2622 }
2623 
2624 static inline struct net_device *first_net_device(struct net *net)
2625 {
2626 	return list_empty(&net->dev_base_head) ? NULL :
2627 		net_device_entry(net->dev_base_head.next);
2628 }
2629 
2630 static inline struct net_device *first_net_device_rcu(struct net *net)
2631 {
2632 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2633 
2634 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2635 }
2636 
2637 int netdev_boot_setup_check(struct net_device *dev);
2638 unsigned long netdev_boot_base(const char *prefix, int unit);
2639 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2640 				       const char *hwaddr);
2641 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2642 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2643 void dev_add_pack(struct packet_type *pt);
2644 void dev_remove_pack(struct packet_type *pt);
2645 void __dev_remove_pack(struct packet_type *pt);
2646 void dev_add_offload(struct packet_offload *po);
2647 void dev_remove_offload(struct packet_offload *po);
2648 
2649 int dev_get_iflink(const struct net_device *dev);
2650 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2651 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2652 				      unsigned short mask);
2653 struct net_device *dev_get_by_name(struct net *net, const char *name);
2654 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2655 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2656 int dev_alloc_name(struct net_device *dev, const char *name);
2657 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2658 void dev_close(struct net_device *dev);
2659 void dev_close_many(struct list_head *head, bool unlink);
2660 void dev_disable_lro(struct net_device *dev);
2661 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2662 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2663 		     struct net_device *sb_dev);
2664 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2665 		       struct net_device *sb_dev);
2666 int dev_queue_xmit(struct sk_buff *skb);
2667 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2668 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2669 int register_netdevice(struct net_device *dev);
2670 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2671 void unregister_netdevice_many(struct list_head *head);
2672 static inline void unregister_netdevice(struct net_device *dev)
2673 {
2674 	unregister_netdevice_queue(dev, NULL);
2675 }
2676 
2677 int netdev_refcnt_read(const struct net_device *dev);
2678 void free_netdev(struct net_device *dev);
2679 void netdev_freemem(struct net_device *dev);
2680 void synchronize_net(void);
2681 int init_dummy_netdev(struct net_device *dev);
2682 
2683 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2684 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2685 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2686 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2687 int netdev_get_name(struct net *net, char *name, int ifindex);
2688 int dev_restart(struct net_device *dev);
2689 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2690 
2691 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2692 {
2693 	return NAPI_GRO_CB(skb)->data_offset;
2694 }
2695 
2696 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2697 {
2698 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2699 }
2700 
2701 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2702 {
2703 	NAPI_GRO_CB(skb)->data_offset += len;
2704 }
2705 
2706 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2707 					unsigned int offset)
2708 {
2709 	return NAPI_GRO_CB(skb)->frag0 + offset;
2710 }
2711 
2712 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2713 {
2714 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2715 }
2716 
2717 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2718 {
2719 	NAPI_GRO_CB(skb)->frag0 = NULL;
2720 	NAPI_GRO_CB(skb)->frag0_len = 0;
2721 }
2722 
2723 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2724 					unsigned int offset)
2725 {
2726 	if (!pskb_may_pull(skb, hlen))
2727 		return NULL;
2728 
2729 	skb_gro_frag0_invalidate(skb);
2730 	return skb->data + offset;
2731 }
2732 
2733 static inline void *skb_gro_network_header(struct sk_buff *skb)
2734 {
2735 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2736 	       skb_network_offset(skb);
2737 }
2738 
2739 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2740 					const void *start, unsigned int len)
2741 {
2742 	if (NAPI_GRO_CB(skb)->csum_valid)
2743 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2744 						  csum_partial(start, len, 0));
2745 }
2746 
2747 /* GRO checksum functions. These are logical equivalents of the normal
2748  * checksum functions (in skbuff.h) except that they operate on the GRO
2749  * offsets and fields in sk_buff.
2750  */
2751 
2752 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2753 
2754 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2755 {
2756 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2757 }
2758 
2759 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2760 						      bool zero_okay,
2761 						      __sum16 check)
2762 {
2763 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2764 		skb_checksum_start_offset(skb) <
2765 		 skb_gro_offset(skb)) &&
2766 		!skb_at_gro_remcsum_start(skb) &&
2767 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2768 		(!zero_okay || check));
2769 }
2770 
2771 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2772 							   __wsum psum)
2773 {
2774 	if (NAPI_GRO_CB(skb)->csum_valid &&
2775 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2776 		return 0;
2777 
2778 	NAPI_GRO_CB(skb)->csum = psum;
2779 
2780 	return __skb_gro_checksum_complete(skb);
2781 }
2782 
2783 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2784 {
2785 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2786 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2787 		NAPI_GRO_CB(skb)->csum_cnt--;
2788 	} else {
2789 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2790 		 * verified a new top level checksum or an encapsulated one
2791 		 * during GRO. This saves work if we fallback to normal path.
2792 		 */
2793 		__skb_incr_checksum_unnecessary(skb);
2794 	}
2795 }
2796 
2797 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2798 				    compute_pseudo)			\
2799 ({									\
2800 	__sum16 __ret = 0;						\
2801 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2802 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2803 				compute_pseudo(skb, proto));		\
2804 	if (!__ret)							\
2805 		skb_gro_incr_csum_unnecessary(skb);			\
2806 	__ret;								\
2807 })
2808 
2809 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2810 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2811 
2812 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2813 					     compute_pseudo)		\
2814 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2815 
2816 #define skb_gro_checksum_simple_validate(skb)				\
2817 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2818 
2819 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2820 {
2821 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2822 		!NAPI_GRO_CB(skb)->csum_valid);
2823 }
2824 
2825 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2826 					      __sum16 check, __wsum pseudo)
2827 {
2828 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2829 	NAPI_GRO_CB(skb)->csum_valid = 1;
2830 }
2831 
2832 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2833 do {									\
2834 	if (__skb_gro_checksum_convert_check(skb))			\
2835 		__skb_gro_checksum_convert(skb, check,			\
2836 					   compute_pseudo(skb, proto));	\
2837 } while (0)
2838 
2839 struct gro_remcsum {
2840 	int offset;
2841 	__wsum delta;
2842 };
2843 
2844 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2845 {
2846 	grc->offset = 0;
2847 	grc->delta = 0;
2848 }
2849 
2850 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2851 					    unsigned int off, size_t hdrlen,
2852 					    int start, int offset,
2853 					    struct gro_remcsum *grc,
2854 					    bool nopartial)
2855 {
2856 	__wsum delta;
2857 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2858 
2859 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2860 
2861 	if (!nopartial) {
2862 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2863 		return ptr;
2864 	}
2865 
2866 	ptr = skb_gro_header_fast(skb, off);
2867 	if (skb_gro_header_hard(skb, off + plen)) {
2868 		ptr = skb_gro_header_slow(skb, off + plen, off);
2869 		if (!ptr)
2870 			return NULL;
2871 	}
2872 
2873 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2874 			       start, offset);
2875 
2876 	/* Adjust skb->csum since we changed the packet */
2877 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2878 
2879 	grc->offset = off + hdrlen + offset;
2880 	grc->delta = delta;
2881 
2882 	return ptr;
2883 }
2884 
2885 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2886 					   struct gro_remcsum *grc)
2887 {
2888 	void *ptr;
2889 	size_t plen = grc->offset + sizeof(u16);
2890 
2891 	if (!grc->delta)
2892 		return;
2893 
2894 	ptr = skb_gro_header_fast(skb, grc->offset);
2895 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2896 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2897 		if (!ptr)
2898 			return;
2899 	}
2900 
2901 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2902 }
2903 
2904 #ifdef CONFIG_XFRM_OFFLOAD
2905 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2906 {
2907 	if (PTR_ERR(pp) != -EINPROGRESS)
2908 		NAPI_GRO_CB(skb)->flush |= flush;
2909 }
2910 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2911 					       struct sk_buff *pp,
2912 					       int flush,
2913 					       struct gro_remcsum *grc)
2914 {
2915 	if (PTR_ERR(pp) != -EINPROGRESS) {
2916 		NAPI_GRO_CB(skb)->flush |= flush;
2917 		skb_gro_remcsum_cleanup(skb, grc);
2918 		skb->remcsum_offload = 0;
2919 	}
2920 }
2921 #else
2922 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2923 {
2924 	NAPI_GRO_CB(skb)->flush |= flush;
2925 }
2926 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2927 					       struct sk_buff *pp,
2928 					       int flush,
2929 					       struct gro_remcsum *grc)
2930 {
2931 	NAPI_GRO_CB(skb)->flush |= flush;
2932 	skb_gro_remcsum_cleanup(skb, grc);
2933 	skb->remcsum_offload = 0;
2934 }
2935 #endif
2936 
2937 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2938 				  unsigned short type,
2939 				  const void *daddr, const void *saddr,
2940 				  unsigned int len)
2941 {
2942 	if (!dev->header_ops || !dev->header_ops->create)
2943 		return 0;
2944 
2945 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2946 }
2947 
2948 static inline int dev_parse_header(const struct sk_buff *skb,
2949 				   unsigned char *haddr)
2950 {
2951 	const struct net_device *dev = skb->dev;
2952 
2953 	if (!dev->header_ops || !dev->header_ops->parse)
2954 		return 0;
2955 	return dev->header_ops->parse(skb, haddr);
2956 }
2957 
2958 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2959 {
2960 	const struct net_device *dev = skb->dev;
2961 
2962 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2963 		return 0;
2964 	return dev->header_ops->parse_protocol(skb);
2965 }
2966 
2967 /* ll_header must have at least hard_header_len allocated */
2968 static inline bool dev_validate_header(const struct net_device *dev,
2969 				       char *ll_header, int len)
2970 {
2971 	if (likely(len >= dev->hard_header_len))
2972 		return true;
2973 	if (len < dev->min_header_len)
2974 		return false;
2975 
2976 	if (capable(CAP_SYS_RAWIO)) {
2977 		memset(ll_header + len, 0, dev->hard_header_len - len);
2978 		return true;
2979 	}
2980 
2981 	if (dev->header_ops && dev->header_ops->validate)
2982 		return dev->header_ops->validate(ll_header, len);
2983 
2984 	return false;
2985 }
2986 
2987 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2988 			   int len, int size);
2989 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2990 static inline int unregister_gifconf(unsigned int family)
2991 {
2992 	return register_gifconf(family, NULL);
2993 }
2994 
2995 #ifdef CONFIG_NET_FLOW_LIMIT
2996 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2997 struct sd_flow_limit {
2998 	u64			count;
2999 	unsigned int		num_buckets;
3000 	unsigned int		history_head;
3001 	u16			history[FLOW_LIMIT_HISTORY];
3002 	u8			buckets[];
3003 };
3004 
3005 extern int netdev_flow_limit_table_len;
3006 #endif /* CONFIG_NET_FLOW_LIMIT */
3007 
3008 /*
3009  * Incoming packets are placed on per-CPU queues
3010  */
3011 struct softnet_data {
3012 	struct list_head	poll_list;
3013 	struct sk_buff_head	process_queue;
3014 
3015 	/* stats */
3016 	unsigned int		processed;
3017 	unsigned int		time_squeeze;
3018 	unsigned int		received_rps;
3019 #ifdef CONFIG_RPS
3020 	struct softnet_data	*rps_ipi_list;
3021 #endif
3022 #ifdef CONFIG_NET_FLOW_LIMIT
3023 	struct sd_flow_limit __rcu *flow_limit;
3024 #endif
3025 	struct Qdisc		*output_queue;
3026 	struct Qdisc		**output_queue_tailp;
3027 	struct sk_buff		*completion_queue;
3028 #ifdef CONFIG_XFRM_OFFLOAD
3029 	struct sk_buff_head	xfrm_backlog;
3030 #endif
3031 	/* written and read only by owning cpu: */
3032 	struct {
3033 		u16 recursion;
3034 		u8  more;
3035 	} xmit;
3036 #ifdef CONFIG_RPS
3037 	/* input_queue_head should be written by cpu owning this struct,
3038 	 * and only read by other cpus. Worth using a cache line.
3039 	 */
3040 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3041 
3042 	/* Elements below can be accessed between CPUs for RPS/RFS */
3043 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3044 	struct softnet_data	*rps_ipi_next;
3045 	unsigned int		cpu;
3046 	unsigned int		input_queue_tail;
3047 #endif
3048 	unsigned int		dropped;
3049 	struct sk_buff_head	input_pkt_queue;
3050 	struct napi_struct	backlog;
3051 
3052 };
3053 
3054 static inline void input_queue_head_incr(struct softnet_data *sd)
3055 {
3056 #ifdef CONFIG_RPS
3057 	sd->input_queue_head++;
3058 #endif
3059 }
3060 
3061 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3062 					      unsigned int *qtail)
3063 {
3064 #ifdef CONFIG_RPS
3065 	*qtail = ++sd->input_queue_tail;
3066 #endif
3067 }
3068 
3069 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3070 
3071 static inline int dev_recursion_level(void)
3072 {
3073 	return this_cpu_read(softnet_data.xmit.recursion);
3074 }
3075 
3076 #define XMIT_RECURSION_LIMIT	10
3077 static inline bool dev_xmit_recursion(void)
3078 {
3079 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3080 			XMIT_RECURSION_LIMIT);
3081 }
3082 
3083 static inline void dev_xmit_recursion_inc(void)
3084 {
3085 	__this_cpu_inc(softnet_data.xmit.recursion);
3086 }
3087 
3088 static inline void dev_xmit_recursion_dec(void)
3089 {
3090 	__this_cpu_dec(softnet_data.xmit.recursion);
3091 }
3092 
3093 void __netif_schedule(struct Qdisc *q);
3094 void netif_schedule_queue(struct netdev_queue *txq);
3095 
3096 static inline void netif_tx_schedule_all(struct net_device *dev)
3097 {
3098 	unsigned int i;
3099 
3100 	for (i = 0; i < dev->num_tx_queues; i++)
3101 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3102 }
3103 
3104 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3105 {
3106 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3107 }
3108 
3109 /**
3110  *	netif_start_queue - allow transmit
3111  *	@dev: network device
3112  *
3113  *	Allow upper layers to call the device hard_start_xmit routine.
3114  */
3115 static inline void netif_start_queue(struct net_device *dev)
3116 {
3117 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3118 }
3119 
3120 static inline void netif_tx_start_all_queues(struct net_device *dev)
3121 {
3122 	unsigned int i;
3123 
3124 	for (i = 0; i < dev->num_tx_queues; i++) {
3125 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3126 		netif_tx_start_queue(txq);
3127 	}
3128 }
3129 
3130 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3131 
3132 /**
3133  *	netif_wake_queue - restart transmit
3134  *	@dev: network device
3135  *
3136  *	Allow upper layers to call the device hard_start_xmit routine.
3137  *	Used for flow control when transmit resources are available.
3138  */
3139 static inline void netif_wake_queue(struct net_device *dev)
3140 {
3141 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3142 }
3143 
3144 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3145 {
3146 	unsigned int i;
3147 
3148 	for (i = 0; i < dev->num_tx_queues; i++) {
3149 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3150 		netif_tx_wake_queue(txq);
3151 	}
3152 }
3153 
3154 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3155 {
3156 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3157 }
3158 
3159 /**
3160  *	netif_stop_queue - stop transmitted packets
3161  *	@dev: network device
3162  *
3163  *	Stop upper layers calling the device hard_start_xmit routine.
3164  *	Used for flow control when transmit resources are unavailable.
3165  */
3166 static inline void netif_stop_queue(struct net_device *dev)
3167 {
3168 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3169 }
3170 
3171 void netif_tx_stop_all_queues(struct net_device *dev);
3172 void netdev_update_lockdep_key(struct net_device *dev);
3173 
3174 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3175 {
3176 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3177 }
3178 
3179 /**
3180  *	netif_queue_stopped - test if transmit queue is flowblocked
3181  *	@dev: network device
3182  *
3183  *	Test if transmit queue on device is currently unable to send.
3184  */
3185 static inline bool netif_queue_stopped(const struct net_device *dev)
3186 {
3187 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3188 }
3189 
3190 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3191 {
3192 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3193 }
3194 
3195 static inline bool
3196 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3197 {
3198 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3199 }
3200 
3201 static inline bool
3202 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3203 {
3204 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3205 }
3206 
3207 /**
3208  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3209  *	@dev_queue: pointer to transmit queue
3210  *
3211  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3212  * to give appropriate hint to the CPU.
3213  */
3214 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3215 {
3216 #ifdef CONFIG_BQL
3217 	prefetchw(&dev_queue->dql.num_queued);
3218 #endif
3219 }
3220 
3221 /**
3222  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3223  *	@dev_queue: pointer to transmit queue
3224  *
3225  * BQL enabled drivers might use this helper in their TX completion path,
3226  * to give appropriate hint to the CPU.
3227  */
3228 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3229 {
3230 #ifdef CONFIG_BQL
3231 	prefetchw(&dev_queue->dql.limit);
3232 #endif
3233 }
3234 
3235 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3236 					unsigned int bytes)
3237 {
3238 #ifdef CONFIG_BQL
3239 	dql_queued(&dev_queue->dql, bytes);
3240 
3241 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3242 		return;
3243 
3244 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3245 
3246 	/*
3247 	 * The XOFF flag must be set before checking the dql_avail below,
3248 	 * because in netdev_tx_completed_queue we update the dql_completed
3249 	 * before checking the XOFF flag.
3250 	 */
3251 	smp_mb();
3252 
3253 	/* check again in case another CPU has just made room avail */
3254 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3255 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3256 #endif
3257 }
3258 
3259 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3260  * that they should not test BQL status themselves.
3261  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3262  * skb of a batch.
3263  * Returns true if the doorbell must be used to kick the NIC.
3264  */
3265 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3266 					  unsigned int bytes,
3267 					  bool xmit_more)
3268 {
3269 	if (xmit_more) {
3270 #ifdef CONFIG_BQL
3271 		dql_queued(&dev_queue->dql, bytes);
3272 #endif
3273 		return netif_tx_queue_stopped(dev_queue);
3274 	}
3275 	netdev_tx_sent_queue(dev_queue, bytes);
3276 	return true;
3277 }
3278 
3279 /**
3280  * 	netdev_sent_queue - report the number of bytes queued to hardware
3281  * 	@dev: network device
3282  * 	@bytes: number of bytes queued to the hardware device queue
3283  *
3284  * 	Report the number of bytes queued for sending/completion to the network
3285  * 	device hardware queue. @bytes should be a good approximation and should
3286  * 	exactly match netdev_completed_queue() @bytes
3287  */
3288 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3289 {
3290 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3291 }
3292 
3293 static inline bool __netdev_sent_queue(struct net_device *dev,
3294 				       unsigned int bytes,
3295 				       bool xmit_more)
3296 {
3297 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3298 				      xmit_more);
3299 }
3300 
3301 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3302 					     unsigned int pkts, unsigned int bytes)
3303 {
3304 #ifdef CONFIG_BQL
3305 	if (unlikely(!bytes))
3306 		return;
3307 
3308 	dql_completed(&dev_queue->dql, bytes);
3309 
3310 	/*
3311 	 * Without the memory barrier there is a small possiblity that
3312 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3313 	 * be stopped forever
3314 	 */
3315 	smp_mb();
3316 
3317 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3318 		return;
3319 
3320 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3321 		netif_schedule_queue(dev_queue);
3322 #endif
3323 }
3324 
3325 /**
3326  * 	netdev_completed_queue - report bytes and packets completed by device
3327  * 	@dev: network device
3328  * 	@pkts: actual number of packets sent over the medium
3329  * 	@bytes: actual number of bytes sent over the medium
3330  *
3331  * 	Report the number of bytes and packets transmitted by the network device
3332  * 	hardware queue over the physical medium, @bytes must exactly match the
3333  * 	@bytes amount passed to netdev_sent_queue()
3334  */
3335 static inline void netdev_completed_queue(struct net_device *dev,
3336 					  unsigned int pkts, unsigned int bytes)
3337 {
3338 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3339 }
3340 
3341 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3342 {
3343 #ifdef CONFIG_BQL
3344 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3345 	dql_reset(&q->dql);
3346 #endif
3347 }
3348 
3349 /**
3350  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3351  * 	@dev_queue: network device
3352  *
3353  * 	Reset the bytes and packet count of a network device and clear the
3354  * 	software flow control OFF bit for this network device
3355  */
3356 static inline void netdev_reset_queue(struct net_device *dev_queue)
3357 {
3358 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3359 }
3360 
3361 /**
3362  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3363  * 	@dev: network device
3364  * 	@queue_index: given tx queue index
3365  *
3366  * 	Returns 0 if given tx queue index >= number of device tx queues,
3367  * 	otherwise returns the originally passed tx queue index.
3368  */
3369 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3370 {
3371 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3372 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3373 				     dev->name, queue_index,
3374 				     dev->real_num_tx_queues);
3375 		return 0;
3376 	}
3377 
3378 	return queue_index;
3379 }
3380 
3381 /**
3382  *	netif_running - test if up
3383  *	@dev: network device
3384  *
3385  *	Test if the device has been brought up.
3386  */
3387 static inline bool netif_running(const struct net_device *dev)
3388 {
3389 	return test_bit(__LINK_STATE_START, &dev->state);
3390 }
3391 
3392 /*
3393  * Routines to manage the subqueues on a device.  We only need start,
3394  * stop, and a check if it's stopped.  All other device management is
3395  * done at the overall netdevice level.
3396  * Also test the device if we're multiqueue.
3397  */
3398 
3399 /**
3400  *	netif_start_subqueue - allow sending packets on subqueue
3401  *	@dev: network device
3402  *	@queue_index: sub queue index
3403  *
3404  * Start individual transmit queue of a device with multiple transmit queues.
3405  */
3406 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3407 {
3408 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3409 
3410 	netif_tx_start_queue(txq);
3411 }
3412 
3413 /**
3414  *	netif_stop_subqueue - stop sending packets on subqueue
3415  *	@dev: network device
3416  *	@queue_index: sub queue index
3417  *
3418  * Stop individual transmit queue of a device with multiple transmit queues.
3419  */
3420 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3421 {
3422 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3423 	netif_tx_stop_queue(txq);
3424 }
3425 
3426 /**
3427  *	netif_subqueue_stopped - test status of subqueue
3428  *	@dev: network device
3429  *	@queue_index: sub queue index
3430  *
3431  * Check individual transmit queue of a device with multiple transmit queues.
3432  */
3433 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3434 					    u16 queue_index)
3435 {
3436 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3437 
3438 	return netif_tx_queue_stopped(txq);
3439 }
3440 
3441 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3442 					  struct sk_buff *skb)
3443 {
3444 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3445 }
3446 
3447 /**
3448  *	netif_wake_subqueue - allow sending packets on subqueue
3449  *	@dev: network device
3450  *	@queue_index: sub queue index
3451  *
3452  * Resume individual transmit queue of a device with multiple transmit queues.
3453  */
3454 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3455 {
3456 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3457 
3458 	netif_tx_wake_queue(txq);
3459 }
3460 
3461 #ifdef CONFIG_XPS
3462 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3463 			u16 index);
3464 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3465 			  u16 index, bool is_rxqs_map);
3466 
3467 /**
3468  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3469  *	@j: CPU/Rx queue index
3470  *	@mask: bitmask of all cpus/rx queues
3471  *	@nr_bits: number of bits in the bitmask
3472  *
3473  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3474  */
3475 static inline bool netif_attr_test_mask(unsigned long j,
3476 					const unsigned long *mask,
3477 					unsigned int nr_bits)
3478 {
3479 	cpu_max_bits_warn(j, nr_bits);
3480 	return test_bit(j, mask);
3481 }
3482 
3483 /**
3484  *	netif_attr_test_online - Test for online CPU/Rx queue
3485  *	@j: CPU/Rx queue index
3486  *	@online_mask: bitmask for CPUs/Rx queues that are online
3487  *	@nr_bits: number of bits in the bitmask
3488  *
3489  * Returns true if a CPU/Rx queue is online.
3490  */
3491 static inline bool netif_attr_test_online(unsigned long j,
3492 					  const unsigned long *online_mask,
3493 					  unsigned int nr_bits)
3494 {
3495 	cpu_max_bits_warn(j, nr_bits);
3496 
3497 	if (online_mask)
3498 		return test_bit(j, online_mask);
3499 
3500 	return (j < nr_bits);
3501 }
3502 
3503 /**
3504  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3505  *	@n: CPU/Rx queue index
3506  *	@srcp: the cpumask/Rx queue mask pointer
3507  *	@nr_bits: number of bits in the bitmask
3508  *
3509  * Returns >= nr_bits if no further CPUs/Rx queues set.
3510  */
3511 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3512 					       unsigned int nr_bits)
3513 {
3514 	/* -1 is a legal arg here. */
3515 	if (n != -1)
3516 		cpu_max_bits_warn(n, nr_bits);
3517 
3518 	if (srcp)
3519 		return find_next_bit(srcp, nr_bits, n + 1);
3520 
3521 	return n + 1;
3522 }
3523 
3524 /**
3525  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3526  *	@n: CPU/Rx queue index
3527  *	@src1p: the first CPUs/Rx queues mask pointer
3528  *	@src2p: the second CPUs/Rx queues mask pointer
3529  *	@nr_bits: number of bits in the bitmask
3530  *
3531  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3532  */
3533 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3534 					  const unsigned long *src2p,
3535 					  unsigned int nr_bits)
3536 {
3537 	/* -1 is a legal arg here. */
3538 	if (n != -1)
3539 		cpu_max_bits_warn(n, nr_bits);
3540 
3541 	if (src1p && src2p)
3542 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3543 	else if (src1p)
3544 		return find_next_bit(src1p, nr_bits, n + 1);
3545 	else if (src2p)
3546 		return find_next_bit(src2p, nr_bits, n + 1);
3547 
3548 	return n + 1;
3549 }
3550 #else
3551 static inline int netif_set_xps_queue(struct net_device *dev,
3552 				      const struct cpumask *mask,
3553 				      u16 index)
3554 {
3555 	return 0;
3556 }
3557 
3558 static inline int __netif_set_xps_queue(struct net_device *dev,
3559 					const unsigned long *mask,
3560 					u16 index, bool is_rxqs_map)
3561 {
3562 	return 0;
3563 }
3564 #endif
3565 
3566 /**
3567  *	netif_is_multiqueue - test if device has multiple transmit queues
3568  *	@dev: network device
3569  *
3570  * Check if device has multiple transmit queues
3571  */
3572 static inline bool netif_is_multiqueue(const struct net_device *dev)
3573 {
3574 	return dev->num_tx_queues > 1;
3575 }
3576 
3577 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3578 
3579 #ifdef CONFIG_SYSFS
3580 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3581 #else
3582 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3583 						unsigned int rxqs)
3584 {
3585 	dev->real_num_rx_queues = rxqs;
3586 	return 0;
3587 }
3588 #endif
3589 
3590 static inline struct netdev_rx_queue *
3591 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3592 {
3593 	return dev->_rx + rxq;
3594 }
3595 
3596 #ifdef CONFIG_SYSFS
3597 static inline unsigned int get_netdev_rx_queue_index(
3598 		struct netdev_rx_queue *queue)
3599 {
3600 	struct net_device *dev = queue->dev;
3601 	int index = queue - dev->_rx;
3602 
3603 	BUG_ON(index >= dev->num_rx_queues);
3604 	return index;
3605 }
3606 #endif
3607 
3608 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3609 int netif_get_num_default_rss_queues(void);
3610 
3611 enum skb_free_reason {
3612 	SKB_REASON_CONSUMED,
3613 	SKB_REASON_DROPPED,
3614 };
3615 
3616 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3617 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3618 
3619 /*
3620  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3621  * interrupt context or with hardware interrupts being disabled.
3622  * (in_irq() || irqs_disabled())
3623  *
3624  * We provide four helpers that can be used in following contexts :
3625  *
3626  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3627  *  replacing kfree_skb(skb)
3628  *
3629  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3630  *  Typically used in place of consume_skb(skb) in TX completion path
3631  *
3632  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3633  *  replacing kfree_skb(skb)
3634  *
3635  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3636  *  and consumed a packet. Used in place of consume_skb(skb)
3637  */
3638 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3639 {
3640 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3641 }
3642 
3643 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3644 {
3645 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3646 }
3647 
3648 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3649 {
3650 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3651 }
3652 
3653 static inline void dev_consume_skb_any(struct sk_buff *skb)
3654 {
3655 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3656 }
3657 
3658 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3659 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3660 int netif_rx(struct sk_buff *skb);
3661 int netif_rx_ni(struct sk_buff *skb);
3662 int netif_receive_skb(struct sk_buff *skb);
3663 int netif_receive_skb_core(struct sk_buff *skb);
3664 void netif_receive_skb_list(struct list_head *head);
3665 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3666 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3667 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3668 gro_result_t napi_gro_frags(struct napi_struct *napi);
3669 struct packet_offload *gro_find_receive_by_type(__be16 type);
3670 struct packet_offload *gro_find_complete_by_type(__be16 type);
3671 
3672 static inline void napi_free_frags(struct napi_struct *napi)
3673 {
3674 	kfree_skb(napi->skb);
3675 	napi->skb = NULL;
3676 }
3677 
3678 bool netdev_is_rx_handler_busy(struct net_device *dev);
3679 int netdev_rx_handler_register(struct net_device *dev,
3680 			       rx_handler_func_t *rx_handler,
3681 			       void *rx_handler_data);
3682 void netdev_rx_handler_unregister(struct net_device *dev);
3683 
3684 bool dev_valid_name(const char *name);
3685 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3686 		bool *need_copyout);
3687 int dev_ifconf(struct net *net, struct ifconf *, int);
3688 int dev_ethtool(struct net *net, struct ifreq *);
3689 unsigned int dev_get_flags(const struct net_device *);
3690 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3691 		       struct netlink_ext_ack *extack);
3692 int dev_change_flags(struct net_device *dev, unsigned int flags,
3693 		     struct netlink_ext_ack *extack);
3694 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3695 			unsigned int gchanges);
3696 int dev_change_name(struct net_device *, const char *);
3697 int dev_set_alias(struct net_device *, const char *, size_t);
3698 int dev_get_alias(const struct net_device *, char *, size_t);
3699 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3700 int __dev_set_mtu(struct net_device *, int);
3701 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3702 		    struct netlink_ext_ack *extack);
3703 int dev_set_mtu(struct net_device *, int);
3704 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3705 void dev_set_group(struct net_device *, int);
3706 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3707 			      struct netlink_ext_ack *extack);
3708 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3709 			struct netlink_ext_ack *extack);
3710 int dev_change_carrier(struct net_device *, bool new_carrier);
3711 int dev_get_phys_port_id(struct net_device *dev,
3712 			 struct netdev_phys_item_id *ppid);
3713 int dev_get_phys_port_name(struct net_device *dev,
3714 			   char *name, size_t len);
3715 int dev_get_port_parent_id(struct net_device *dev,
3716 			   struct netdev_phys_item_id *ppid, bool recurse);
3717 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3718 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3719 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3720 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3721 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3722 				    struct netdev_queue *txq, int *ret);
3723 
3724 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3725 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3726 		      int fd, u32 flags);
3727 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3728 		    enum bpf_netdev_command cmd);
3729 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3730 
3731 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3732 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3733 bool is_skb_forwardable(const struct net_device *dev,
3734 			const struct sk_buff *skb);
3735 
3736 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3737 					       struct sk_buff *skb)
3738 {
3739 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3740 	    unlikely(!is_skb_forwardable(dev, skb))) {
3741 		atomic_long_inc(&dev->rx_dropped);
3742 		kfree_skb(skb);
3743 		return NET_RX_DROP;
3744 	}
3745 
3746 	skb_scrub_packet(skb, true);
3747 	skb->priority = 0;
3748 	return 0;
3749 }
3750 
3751 bool dev_nit_active(struct net_device *dev);
3752 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3753 
3754 extern int		netdev_budget;
3755 extern unsigned int	netdev_budget_usecs;
3756 
3757 /* Called by rtnetlink.c:rtnl_unlock() */
3758 void netdev_run_todo(void);
3759 
3760 /**
3761  *	dev_put - release reference to device
3762  *	@dev: network device
3763  *
3764  * Release reference to device to allow it to be freed.
3765  */
3766 static inline void dev_put(struct net_device *dev)
3767 {
3768 	this_cpu_dec(*dev->pcpu_refcnt);
3769 }
3770 
3771 /**
3772  *	dev_hold - get reference to device
3773  *	@dev: network device
3774  *
3775  * Hold reference to device to keep it from being freed.
3776  */
3777 static inline void dev_hold(struct net_device *dev)
3778 {
3779 	this_cpu_inc(*dev->pcpu_refcnt);
3780 }
3781 
3782 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3783  * and _off may be called from IRQ context, but it is caller
3784  * who is responsible for serialization of these calls.
3785  *
3786  * The name carrier is inappropriate, these functions should really be
3787  * called netif_lowerlayer_*() because they represent the state of any
3788  * kind of lower layer not just hardware media.
3789  */
3790 
3791 void linkwatch_init_dev(struct net_device *dev);
3792 void linkwatch_fire_event(struct net_device *dev);
3793 void linkwatch_forget_dev(struct net_device *dev);
3794 
3795 /**
3796  *	netif_carrier_ok - test if carrier present
3797  *	@dev: network device
3798  *
3799  * Check if carrier is present on device
3800  */
3801 static inline bool netif_carrier_ok(const struct net_device *dev)
3802 {
3803 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3804 }
3805 
3806 unsigned long dev_trans_start(struct net_device *dev);
3807 
3808 void __netdev_watchdog_up(struct net_device *dev);
3809 
3810 void netif_carrier_on(struct net_device *dev);
3811 
3812 void netif_carrier_off(struct net_device *dev);
3813 
3814 /**
3815  *	netif_dormant_on - mark device as dormant.
3816  *	@dev: network device
3817  *
3818  * Mark device as dormant (as per RFC2863).
3819  *
3820  * The dormant state indicates that the relevant interface is not
3821  * actually in a condition to pass packets (i.e., it is not 'up') but is
3822  * in a "pending" state, waiting for some external event.  For "on-
3823  * demand" interfaces, this new state identifies the situation where the
3824  * interface is waiting for events to place it in the up state.
3825  */
3826 static inline void netif_dormant_on(struct net_device *dev)
3827 {
3828 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3829 		linkwatch_fire_event(dev);
3830 }
3831 
3832 /**
3833  *	netif_dormant_off - set device as not dormant.
3834  *	@dev: network device
3835  *
3836  * Device is not in dormant state.
3837  */
3838 static inline void netif_dormant_off(struct net_device *dev)
3839 {
3840 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3841 		linkwatch_fire_event(dev);
3842 }
3843 
3844 /**
3845  *	netif_dormant - test if device is dormant
3846  *	@dev: network device
3847  *
3848  * Check if device is dormant.
3849  */
3850 static inline bool netif_dormant(const struct net_device *dev)
3851 {
3852 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3853 }
3854 
3855 
3856 /**
3857  *	netif_oper_up - test if device is operational
3858  *	@dev: network device
3859  *
3860  * Check if carrier is operational
3861  */
3862 static inline bool netif_oper_up(const struct net_device *dev)
3863 {
3864 	return (dev->operstate == IF_OPER_UP ||
3865 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3866 }
3867 
3868 /**
3869  *	netif_device_present - is device available or removed
3870  *	@dev: network device
3871  *
3872  * Check if device has not been removed from system.
3873  */
3874 static inline bool netif_device_present(struct net_device *dev)
3875 {
3876 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3877 }
3878 
3879 void netif_device_detach(struct net_device *dev);
3880 
3881 void netif_device_attach(struct net_device *dev);
3882 
3883 /*
3884  * Network interface message level settings
3885  */
3886 
3887 enum {
3888 	NETIF_MSG_DRV		= 0x0001,
3889 	NETIF_MSG_PROBE		= 0x0002,
3890 	NETIF_MSG_LINK		= 0x0004,
3891 	NETIF_MSG_TIMER		= 0x0008,
3892 	NETIF_MSG_IFDOWN	= 0x0010,
3893 	NETIF_MSG_IFUP		= 0x0020,
3894 	NETIF_MSG_RX_ERR	= 0x0040,
3895 	NETIF_MSG_TX_ERR	= 0x0080,
3896 	NETIF_MSG_TX_QUEUED	= 0x0100,
3897 	NETIF_MSG_INTR		= 0x0200,
3898 	NETIF_MSG_TX_DONE	= 0x0400,
3899 	NETIF_MSG_RX_STATUS	= 0x0800,
3900 	NETIF_MSG_PKTDATA	= 0x1000,
3901 	NETIF_MSG_HW		= 0x2000,
3902 	NETIF_MSG_WOL		= 0x4000,
3903 };
3904 
3905 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3906 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3907 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3908 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3909 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3910 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3911 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3912 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3913 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3914 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3915 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3916 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3917 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3918 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3919 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3920 
3921 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3922 {
3923 	/* use default */
3924 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3925 		return default_msg_enable_bits;
3926 	if (debug_value == 0)	/* no output */
3927 		return 0;
3928 	/* set low N bits */
3929 	return (1U << debug_value) - 1;
3930 }
3931 
3932 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3933 {
3934 	spin_lock(&txq->_xmit_lock);
3935 	txq->xmit_lock_owner = cpu;
3936 }
3937 
3938 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3939 {
3940 	__acquire(&txq->_xmit_lock);
3941 	return true;
3942 }
3943 
3944 static inline void __netif_tx_release(struct netdev_queue *txq)
3945 {
3946 	__release(&txq->_xmit_lock);
3947 }
3948 
3949 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3950 {
3951 	spin_lock_bh(&txq->_xmit_lock);
3952 	txq->xmit_lock_owner = smp_processor_id();
3953 }
3954 
3955 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3956 {
3957 	bool ok = spin_trylock(&txq->_xmit_lock);
3958 	if (likely(ok))
3959 		txq->xmit_lock_owner = smp_processor_id();
3960 	return ok;
3961 }
3962 
3963 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3964 {
3965 	txq->xmit_lock_owner = -1;
3966 	spin_unlock(&txq->_xmit_lock);
3967 }
3968 
3969 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3970 {
3971 	txq->xmit_lock_owner = -1;
3972 	spin_unlock_bh(&txq->_xmit_lock);
3973 }
3974 
3975 static inline void txq_trans_update(struct netdev_queue *txq)
3976 {
3977 	if (txq->xmit_lock_owner != -1)
3978 		txq->trans_start = jiffies;
3979 }
3980 
3981 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3982 static inline void netif_trans_update(struct net_device *dev)
3983 {
3984 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3985 
3986 	if (txq->trans_start != jiffies)
3987 		txq->trans_start = jiffies;
3988 }
3989 
3990 /**
3991  *	netif_tx_lock - grab network device transmit lock
3992  *	@dev: network device
3993  *
3994  * Get network device transmit lock
3995  */
3996 static inline void netif_tx_lock(struct net_device *dev)
3997 {
3998 	unsigned int i;
3999 	int cpu;
4000 
4001 	spin_lock(&dev->tx_global_lock);
4002 	cpu = smp_processor_id();
4003 	for (i = 0; i < dev->num_tx_queues; i++) {
4004 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4005 
4006 		/* We are the only thread of execution doing a
4007 		 * freeze, but we have to grab the _xmit_lock in
4008 		 * order to synchronize with threads which are in
4009 		 * the ->hard_start_xmit() handler and already
4010 		 * checked the frozen bit.
4011 		 */
4012 		__netif_tx_lock(txq, cpu);
4013 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4014 		__netif_tx_unlock(txq);
4015 	}
4016 }
4017 
4018 static inline void netif_tx_lock_bh(struct net_device *dev)
4019 {
4020 	local_bh_disable();
4021 	netif_tx_lock(dev);
4022 }
4023 
4024 static inline void netif_tx_unlock(struct net_device *dev)
4025 {
4026 	unsigned int i;
4027 
4028 	for (i = 0; i < dev->num_tx_queues; i++) {
4029 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4030 
4031 		/* No need to grab the _xmit_lock here.  If the
4032 		 * queue is not stopped for another reason, we
4033 		 * force a schedule.
4034 		 */
4035 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4036 		netif_schedule_queue(txq);
4037 	}
4038 	spin_unlock(&dev->tx_global_lock);
4039 }
4040 
4041 static inline void netif_tx_unlock_bh(struct net_device *dev)
4042 {
4043 	netif_tx_unlock(dev);
4044 	local_bh_enable();
4045 }
4046 
4047 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4048 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4049 		__netif_tx_lock(txq, cpu);		\
4050 	} else {					\
4051 		__netif_tx_acquire(txq);		\
4052 	}						\
4053 }
4054 
4055 #define HARD_TX_TRYLOCK(dev, txq)			\
4056 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4057 		__netif_tx_trylock(txq) :		\
4058 		__netif_tx_acquire(txq))
4059 
4060 #define HARD_TX_UNLOCK(dev, txq) {			\
4061 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4062 		__netif_tx_unlock(txq);			\
4063 	} else {					\
4064 		__netif_tx_release(txq);		\
4065 	}						\
4066 }
4067 
4068 static inline void netif_tx_disable(struct net_device *dev)
4069 {
4070 	unsigned int i;
4071 	int cpu;
4072 
4073 	local_bh_disable();
4074 	cpu = smp_processor_id();
4075 	for (i = 0; i < dev->num_tx_queues; i++) {
4076 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4077 
4078 		__netif_tx_lock(txq, cpu);
4079 		netif_tx_stop_queue(txq);
4080 		__netif_tx_unlock(txq);
4081 	}
4082 	local_bh_enable();
4083 }
4084 
4085 static inline void netif_addr_lock(struct net_device *dev)
4086 {
4087 	spin_lock(&dev->addr_list_lock);
4088 }
4089 
4090 static inline void netif_addr_lock_bh(struct net_device *dev)
4091 {
4092 	spin_lock_bh(&dev->addr_list_lock);
4093 }
4094 
4095 static inline void netif_addr_unlock(struct net_device *dev)
4096 {
4097 	spin_unlock(&dev->addr_list_lock);
4098 }
4099 
4100 static inline void netif_addr_unlock_bh(struct net_device *dev)
4101 {
4102 	spin_unlock_bh(&dev->addr_list_lock);
4103 }
4104 
4105 /*
4106  * dev_addrs walker. Should be used only for read access. Call with
4107  * rcu_read_lock held.
4108  */
4109 #define for_each_dev_addr(dev, ha) \
4110 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4111 
4112 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4113 
4114 void ether_setup(struct net_device *dev);
4115 
4116 /* Support for loadable net-drivers */
4117 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4118 				    unsigned char name_assign_type,
4119 				    void (*setup)(struct net_device *),
4120 				    unsigned int txqs, unsigned int rxqs);
4121 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4122 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4123 
4124 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4125 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4126 			 count)
4127 
4128 int register_netdev(struct net_device *dev);
4129 void unregister_netdev(struct net_device *dev);
4130 
4131 /* General hardware address lists handling functions */
4132 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4133 		   struct netdev_hw_addr_list *from_list, int addr_len);
4134 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4135 		      struct netdev_hw_addr_list *from_list, int addr_len);
4136 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4137 		       struct net_device *dev,
4138 		       int (*sync)(struct net_device *, const unsigned char *),
4139 		       int (*unsync)(struct net_device *,
4140 				     const unsigned char *));
4141 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4142 			   struct net_device *dev,
4143 			   int (*sync)(struct net_device *,
4144 				       const unsigned char *, int),
4145 			   int (*unsync)(struct net_device *,
4146 					 const unsigned char *, int));
4147 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4148 			      struct net_device *dev,
4149 			      int (*unsync)(struct net_device *,
4150 					    const unsigned char *, int));
4151 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4152 			  struct net_device *dev,
4153 			  int (*unsync)(struct net_device *,
4154 					const unsigned char *));
4155 void __hw_addr_init(struct netdev_hw_addr_list *list);
4156 
4157 /* Functions used for device addresses handling */
4158 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4159 		 unsigned char addr_type);
4160 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4161 		 unsigned char addr_type);
4162 void dev_addr_flush(struct net_device *dev);
4163 int dev_addr_init(struct net_device *dev);
4164 
4165 /* Functions used for unicast addresses handling */
4166 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4167 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4168 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4169 int dev_uc_sync(struct net_device *to, struct net_device *from);
4170 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4171 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4172 void dev_uc_flush(struct net_device *dev);
4173 void dev_uc_init(struct net_device *dev);
4174 
4175 /**
4176  *  __dev_uc_sync - Synchonize device's unicast list
4177  *  @dev:  device to sync
4178  *  @sync: function to call if address should be added
4179  *  @unsync: function to call if address should be removed
4180  *
4181  *  Add newly added addresses to the interface, and release
4182  *  addresses that have been deleted.
4183  */
4184 static inline int __dev_uc_sync(struct net_device *dev,
4185 				int (*sync)(struct net_device *,
4186 					    const unsigned char *),
4187 				int (*unsync)(struct net_device *,
4188 					      const unsigned char *))
4189 {
4190 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4191 }
4192 
4193 /**
4194  *  __dev_uc_unsync - Remove synchronized addresses from device
4195  *  @dev:  device to sync
4196  *  @unsync: function to call if address should be removed
4197  *
4198  *  Remove all addresses that were added to the device by dev_uc_sync().
4199  */
4200 static inline void __dev_uc_unsync(struct net_device *dev,
4201 				   int (*unsync)(struct net_device *,
4202 						 const unsigned char *))
4203 {
4204 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4205 }
4206 
4207 /* Functions used for multicast addresses handling */
4208 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4209 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4210 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4211 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4212 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4213 int dev_mc_sync(struct net_device *to, struct net_device *from);
4214 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4215 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4216 void dev_mc_flush(struct net_device *dev);
4217 void dev_mc_init(struct net_device *dev);
4218 
4219 /**
4220  *  __dev_mc_sync - Synchonize device's multicast list
4221  *  @dev:  device to sync
4222  *  @sync: function to call if address should be added
4223  *  @unsync: function to call if address should be removed
4224  *
4225  *  Add newly added addresses to the interface, and release
4226  *  addresses that have been deleted.
4227  */
4228 static inline int __dev_mc_sync(struct net_device *dev,
4229 				int (*sync)(struct net_device *,
4230 					    const unsigned char *),
4231 				int (*unsync)(struct net_device *,
4232 					      const unsigned char *))
4233 {
4234 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4235 }
4236 
4237 /**
4238  *  __dev_mc_unsync - Remove synchronized addresses from device
4239  *  @dev:  device to sync
4240  *  @unsync: function to call if address should be removed
4241  *
4242  *  Remove all addresses that were added to the device by dev_mc_sync().
4243  */
4244 static inline void __dev_mc_unsync(struct net_device *dev,
4245 				   int (*unsync)(struct net_device *,
4246 						 const unsigned char *))
4247 {
4248 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4249 }
4250 
4251 /* Functions used for secondary unicast and multicast support */
4252 void dev_set_rx_mode(struct net_device *dev);
4253 void __dev_set_rx_mode(struct net_device *dev);
4254 int dev_set_promiscuity(struct net_device *dev, int inc);
4255 int dev_set_allmulti(struct net_device *dev, int inc);
4256 void netdev_state_change(struct net_device *dev);
4257 void netdev_notify_peers(struct net_device *dev);
4258 void netdev_features_change(struct net_device *dev);
4259 /* Load a device via the kmod */
4260 void dev_load(struct net *net, const char *name);
4261 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4262 					struct rtnl_link_stats64 *storage);
4263 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4264 			     const struct net_device_stats *netdev_stats);
4265 
4266 extern int		netdev_max_backlog;
4267 extern int		netdev_tstamp_prequeue;
4268 extern int		weight_p;
4269 extern int		dev_weight_rx_bias;
4270 extern int		dev_weight_tx_bias;
4271 extern int		dev_rx_weight;
4272 extern int		dev_tx_weight;
4273 extern int		gro_normal_batch;
4274 
4275 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4276 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4277 						     struct list_head **iter);
4278 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4279 						     struct list_head **iter);
4280 
4281 /* iterate through upper list, must be called under RCU read lock */
4282 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4283 	for (iter = &(dev)->adj_list.upper, \
4284 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4285 	     updev; \
4286 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4287 
4288 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4289 				  int (*fn)(struct net_device *upper_dev,
4290 					    void *data),
4291 				  void *data);
4292 
4293 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4294 				  struct net_device *upper_dev);
4295 
4296 bool netdev_has_any_upper_dev(struct net_device *dev);
4297 
4298 void *netdev_lower_get_next_private(struct net_device *dev,
4299 				    struct list_head **iter);
4300 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4301 					struct list_head **iter);
4302 
4303 #define netdev_for_each_lower_private(dev, priv, iter) \
4304 	for (iter = (dev)->adj_list.lower.next, \
4305 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4306 	     priv; \
4307 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4308 
4309 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4310 	for (iter = &(dev)->adj_list.lower, \
4311 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4312 	     priv; \
4313 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4314 
4315 void *netdev_lower_get_next(struct net_device *dev,
4316 				struct list_head **iter);
4317 
4318 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4319 	for (iter = (dev)->adj_list.lower.next, \
4320 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4321 	     ldev; \
4322 	     ldev = netdev_lower_get_next(dev, &(iter)))
4323 
4324 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4325 					     struct list_head **iter);
4326 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4327 						 struct list_head **iter);
4328 
4329 int netdev_walk_all_lower_dev(struct net_device *dev,
4330 			      int (*fn)(struct net_device *lower_dev,
4331 					void *data),
4332 			      void *data);
4333 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4334 				  int (*fn)(struct net_device *lower_dev,
4335 					    void *data),
4336 				  void *data);
4337 
4338 void *netdev_adjacent_get_private(struct list_head *adj_list);
4339 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4340 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4341 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4342 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4343 			  struct netlink_ext_ack *extack);
4344 int netdev_master_upper_dev_link(struct net_device *dev,
4345 				 struct net_device *upper_dev,
4346 				 void *upper_priv, void *upper_info,
4347 				 struct netlink_ext_ack *extack);
4348 void netdev_upper_dev_unlink(struct net_device *dev,
4349 			     struct net_device *upper_dev);
4350 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4351 				   struct net_device *new_dev,
4352 				   struct net_device *dev,
4353 				   struct netlink_ext_ack *extack);
4354 void netdev_adjacent_change_commit(struct net_device *old_dev,
4355 				   struct net_device *new_dev,
4356 				   struct net_device *dev);
4357 void netdev_adjacent_change_abort(struct net_device *old_dev,
4358 				  struct net_device *new_dev,
4359 				  struct net_device *dev);
4360 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4361 void *netdev_lower_dev_get_private(struct net_device *dev,
4362 				   struct net_device *lower_dev);
4363 void netdev_lower_state_changed(struct net_device *lower_dev,
4364 				void *lower_state_info);
4365 
4366 /* RSS keys are 40 or 52 bytes long */
4367 #define NETDEV_RSS_KEY_LEN 52
4368 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4369 void netdev_rss_key_fill(void *buffer, size_t len);
4370 
4371 int skb_checksum_help(struct sk_buff *skb);
4372 int skb_crc32c_csum_help(struct sk_buff *skb);
4373 int skb_csum_hwoffload_help(struct sk_buff *skb,
4374 			    const netdev_features_t features);
4375 
4376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4377 				  netdev_features_t features, bool tx_path);
4378 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4379 				    netdev_features_t features);
4380 
4381 struct netdev_bonding_info {
4382 	ifslave	slave;
4383 	ifbond	master;
4384 };
4385 
4386 struct netdev_notifier_bonding_info {
4387 	struct netdev_notifier_info info; /* must be first */
4388 	struct netdev_bonding_info  bonding_info;
4389 };
4390 
4391 void netdev_bonding_info_change(struct net_device *dev,
4392 				struct netdev_bonding_info *bonding_info);
4393 
4394 static inline
4395 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4396 {
4397 	return __skb_gso_segment(skb, features, true);
4398 }
4399 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4400 
4401 static inline bool can_checksum_protocol(netdev_features_t features,
4402 					 __be16 protocol)
4403 {
4404 	if (protocol == htons(ETH_P_FCOE))
4405 		return !!(features & NETIF_F_FCOE_CRC);
4406 
4407 	/* Assume this is an IP checksum (not SCTP CRC) */
4408 
4409 	if (features & NETIF_F_HW_CSUM) {
4410 		/* Can checksum everything */
4411 		return true;
4412 	}
4413 
4414 	switch (protocol) {
4415 	case htons(ETH_P_IP):
4416 		return !!(features & NETIF_F_IP_CSUM);
4417 	case htons(ETH_P_IPV6):
4418 		return !!(features & NETIF_F_IPV6_CSUM);
4419 	default:
4420 		return false;
4421 	}
4422 }
4423 
4424 #ifdef CONFIG_BUG
4425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4426 #else
4427 static inline void netdev_rx_csum_fault(struct net_device *dev,
4428 					struct sk_buff *skb)
4429 {
4430 }
4431 #endif
4432 /* rx skb timestamps */
4433 void net_enable_timestamp(void);
4434 void net_disable_timestamp(void);
4435 
4436 #ifdef CONFIG_PROC_FS
4437 int __init dev_proc_init(void);
4438 #else
4439 #define dev_proc_init() 0
4440 #endif
4441 
4442 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4443 					      struct sk_buff *skb, struct net_device *dev,
4444 					      bool more)
4445 {
4446 	__this_cpu_write(softnet_data.xmit.more, more);
4447 	return ops->ndo_start_xmit(skb, dev);
4448 }
4449 
4450 static inline bool netdev_xmit_more(void)
4451 {
4452 	return __this_cpu_read(softnet_data.xmit.more);
4453 }
4454 
4455 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4456 					    struct netdev_queue *txq, bool more)
4457 {
4458 	const struct net_device_ops *ops = dev->netdev_ops;
4459 	netdev_tx_t rc;
4460 
4461 	rc = __netdev_start_xmit(ops, skb, dev, more);
4462 	if (rc == NETDEV_TX_OK)
4463 		txq_trans_update(txq);
4464 
4465 	return rc;
4466 }
4467 
4468 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4469 				const void *ns);
4470 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4471 				 const void *ns);
4472 
4473 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4474 {
4475 	return netdev_class_create_file_ns(class_attr, NULL);
4476 }
4477 
4478 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4479 {
4480 	netdev_class_remove_file_ns(class_attr, NULL);
4481 }
4482 
4483 extern const struct kobj_ns_type_operations net_ns_type_operations;
4484 
4485 const char *netdev_drivername(const struct net_device *dev);
4486 
4487 void linkwatch_run_queue(void);
4488 
4489 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4490 							  netdev_features_t f2)
4491 {
4492 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4493 		if (f1 & NETIF_F_HW_CSUM)
4494 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4495 		else
4496 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4497 	}
4498 
4499 	return f1 & f2;
4500 }
4501 
4502 static inline netdev_features_t netdev_get_wanted_features(
4503 	struct net_device *dev)
4504 {
4505 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4506 }
4507 netdev_features_t netdev_increment_features(netdev_features_t all,
4508 	netdev_features_t one, netdev_features_t mask);
4509 
4510 /* Allow TSO being used on stacked device :
4511  * Performing the GSO segmentation before last device
4512  * is a performance improvement.
4513  */
4514 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4515 							netdev_features_t mask)
4516 {
4517 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4518 }
4519 
4520 int __netdev_update_features(struct net_device *dev);
4521 void netdev_update_features(struct net_device *dev);
4522 void netdev_change_features(struct net_device *dev);
4523 
4524 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4525 					struct net_device *dev);
4526 
4527 netdev_features_t passthru_features_check(struct sk_buff *skb,
4528 					  struct net_device *dev,
4529 					  netdev_features_t features);
4530 netdev_features_t netif_skb_features(struct sk_buff *skb);
4531 
4532 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4533 {
4534 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4535 
4536 	/* check flags correspondence */
4537 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4538 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4539 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4540 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4541 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4542 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4543 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4544 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4545 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4546 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4547 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4548 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4549 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4550 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4551 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4552 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4553 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4554 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4555 
4556 	return (features & feature) == feature;
4557 }
4558 
4559 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4560 {
4561 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4562 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4563 }
4564 
4565 static inline bool netif_needs_gso(struct sk_buff *skb,
4566 				   netdev_features_t features)
4567 {
4568 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4569 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4570 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4571 }
4572 
4573 static inline void netif_set_gso_max_size(struct net_device *dev,
4574 					  unsigned int size)
4575 {
4576 	dev->gso_max_size = size;
4577 }
4578 
4579 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4580 					int pulled_hlen, u16 mac_offset,
4581 					int mac_len)
4582 {
4583 	skb->protocol = protocol;
4584 	skb->encapsulation = 1;
4585 	skb_push(skb, pulled_hlen);
4586 	skb_reset_transport_header(skb);
4587 	skb->mac_header = mac_offset;
4588 	skb->network_header = skb->mac_header + mac_len;
4589 	skb->mac_len = mac_len;
4590 }
4591 
4592 static inline bool netif_is_macsec(const struct net_device *dev)
4593 {
4594 	return dev->priv_flags & IFF_MACSEC;
4595 }
4596 
4597 static inline bool netif_is_macvlan(const struct net_device *dev)
4598 {
4599 	return dev->priv_flags & IFF_MACVLAN;
4600 }
4601 
4602 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4603 {
4604 	return dev->priv_flags & IFF_MACVLAN_PORT;
4605 }
4606 
4607 static inline bool netif_is_bond_master(const struct net_device *dev)
4608 {
4609 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4610 }
4611 
4612 static inline bool netif_is_bond_slave(const struct net_device *dev)
4613 {
4614 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4615 }
4616 
4617 static inline bool netif_supports_nofcs(struct net_device *dev)
4618 {
4619 	return dev->priv_flags & IFF_SUPP_NOFCS;
4620 }
4621 
4622 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4623 {
4624 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4625 }
4626 
4627 static inline bool netif_is_l3_master(const struct net_device *dev)
4628 {
4629 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4630 }
4631 
4632 static inline bool netif_is_l3_slave(const struct net_device *dev)
4633 {
4634 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4635 }
4636 
4637 static inline bool netif_is_bridge_master(const struct net_device *dev)
4638 {
4639 	return dev->priv_flags & IFF_EBRIDGE;
4640 }
4641 
4642 static inline bool netif_is_bridge_port(const struct net_device *dev)
4643 {
4644 	return dev->priv_flags & IFF_BRIDGE_PORT;
4645 }
4646 
4647 static inline bool netif_is_ovs_master(const struct net_device *dev)
4648 {
4649 	return dev->priv_flags & IFF_OPENVSWITCH;
4650 }
4651 
4652 static inline bool netif_is_ovs_port(const struct net_device *dev)
4653 {
4654 	return dev->priv_flags & IFF_OVS_DATAPATH;
4655 }
4656 
4657 static inline bool netif_is_team_master(const struct net_device *dev)
4658 {
4659 	return dev->priv_flags & IFF_TEAM;
4660 }
4661 
4662 static inline bool netif_is_team_port(const struct net_device *dev)
4663 {
4664 	return dev->priv_flags & IFF_TEAM_PORT;
4665 }
4666 
4667 static inline bool netif_is_lag_master(const struct net_device *dev)
4668 {
4669 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4670 }
4671 
4672 static inline bool netif_is_lag_port(const struct net_device *dev)
4673 {
4674 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4675 }
4676 
4677 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4678 {
4679 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4680 }
4681 
4682 static inline bool netif_is_failover(const struct net_device *dev)
4683 {
4684 	return dev->priv_flags & IFF_FAILOVER;
4685 }
4686 
4687 static inline bool netif_is_failover_slave(const struct net_device *dev)
4688 {
4689 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4690 }
4691 
4692 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4693 static inline void netif_keep_dst(struct net_device *dev)
4694 {
4695 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4696 }
4697 
4698 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4699 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4700 {
4701 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4702 	return dev->priv_flags & IFF_MACSEC;
4703 }
4704 
4705 extern struct pernet_operations __net_initdata loopback_net_ops;
4706 
4707 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4708 
4709 /* netdev_printk helpers, similar to dev_printk */
4710 
4711 static inline const char *netdev_name(const struct net_device *dev)
4712 {
4713 	if (!dev->name[0] || strchr(dev->name, '%'))
4714 		return "(unnamed net_device)";
4715 	return dev->name;
4716 }
4717 
4718 static inline bool netdev_unregistering(const struct net_device *dev)
4719 {
4720 	return dev->reg_state == NETREG_UNREGISTERING;
4721 }
4722 
4723 static inline const char *netdev_reg_state(const struct net_device *dev)
4724 {
4725 	switch (dev->reg_state) {
4726 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4727 	case NETREG_REGISTERED: return "";
4728 	case NETREG_UNREGISTERING: return " (unregistering)";
4729 	case NETREG_UNREGISTERED: return " (unregistered)";
4730 	case NETREG_RELEASED: return " (released)";
4731 	case NETREG_DUMMY: return " (dummy)";
4732 	}
4733 
4734 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4735 	return " (unknown)";
4736 }
4737 
4738 __printf(3, 4) __cold
4739 void netdev_printk(const char *level, const struct net_device *dev,
4740 		   const char *format, ...);
4741 __printf(2, 3) __cold
4742 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4743 __printf(2, 3) __cold
4744 void netdev_alert(const struct net_device *dev, const char *format, ...);
4745 __printf(2, 3) __cold
4746 void netdev_crit(const struct net_device *dev, const char *format, ...);
4747 __printf(2, 3) __cold
4748 void netdev_err(const struct net_device *dev, const char *format, ...);
4749 __printf(2, 3) __cold
4750 void netdev_warn(const struct net_device *dev, const char *format, ...);
4751 __printf(2, 3) __cold
4752 void netdev_notice(const struct net_device *dev, const char *format, ...);
4753 __printf(2, 3) __cold
4754 void netdev_info(const struct net_device *dev, const char *format, ...);
4755 
4756 #define netdev_level_once(level, dev, fmt, ...)			\
4757 do {								\
4758 	static bool __print_once __read_mostly;			\
4759 								\
4760 	if (!__print_once) {					\
4761 		__print_once = true;				\
4762 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4763 	}							\
4764 } while (0)
4765 
4766 #define netdev_emerg_once(dev, fmt, ...) \
4767 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4768 #define netdev_alert_once(dev, fmt, ...) \
4769 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4770 #define netdev_crit_once(dev, fmt, ...) \
4771 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4772 #define netdev_err_once(dev, fmt, ...) \
4773 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4774 #define netdev_warn_once(dev, fmt, ...) \
4775 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4776 #define netdev_notice_once(dev, fmt, ...) \
4777 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4778 #define netdev_info_once(dev, fmt, ...) \
4779 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4780 
4781 #define MODULE_ALIAS_NETDEV(device) \
4782 	MODULE_ALIAS("netdev-" device)
4783 
4784 #if defined(CONFIG_DYNAMIC_DEBUG)
4785 #define netdev_dbg(__dev, format, args...)			\
4786 do {								\
4787 	dynamic_netdev_dbg(__dev, format, ##args);		\
4788 } while (0)
4789 #elif defined(DEBUG)
4790 #define netdev_dbg(__dev, format, args...)			\
4791 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4792 #else
4793 #define netdev_dbg(__dev, format, args...)			\
4794 ({								\
4795 	if (0)							\
4796 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4797 })
4798 #endif
4799 
4800 #if defined(VERBOSE_DEBUG)
4801 #define netdev_vdbg	netdev_dbg
4802 #else
4803 
4804 #define netdev_vdbg(dev, format, args...)			\
4805 ({								\
4806 	if (0)							\
4807 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4808 	0;							\
4809 })
4810 #endif
4811 
4812 /*
4813  * netdev_WARN() acts like dev_printk(), but with the key difference
4814  * of using a WARN/WARN_ON to get the message out, including the
4815  * file/line information and a backtrace.
4816  */
4817 #define netdev_WARN(dev, format, args...)			\
4818 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4819 	     netdev_reg_state(dev), ##args)
4820 
4821 #define netdev_WARN_ONCE(dev, format, args...)				\
4822 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4823 		  netdev_reg_state(dev), ##args)
4824 
4825 /* netif printk helpers, similar to netdev_printk */
4826 
4827 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4828 do {					  			\
4829 	if (netif_msg_##type(priv))				\
4830 		netdev_printk(level, (dev), fmt, ##args);	\
4831 } while (0)
4832 
4833 #define netif_level(level, priv, type, dev, fmt, args...)	\
4834 do {								\
4835 	if (netif_msg_##type(priv))				\
4836 		netdev_##level(dev, fmt, ##args);		\
4837 } while (0)
4838 
4839 #define netif_emerg(priv, type, dev, fmt, args...)		\
4840 	netif_level(emerg, priv, type, dev, fmt, ##args)
4841 #define netif_alert(priv, type, dev, fmt, args...)		\
4842 	netif_level(alert, priv, type, dev, fmt, ##args)
4843 #define netif_crit(priv, type, dev, fmt, args...)		\
4844 	netif_level(crit, priv, type, dev, fmt, ##args)
4845 #define netif_err(priv, type, dev, fmt, args...)		\
4846 	netif_level(err, priv, type, dev, fmt, ##args)
4847 #define netif_warn(priv, type, dev, fmt, args...)		\
4848 	netif_level(warn, priv, type, dev, fmt, ##args)
4849 #define netif_notice(priv, type, dev, fmt, args...)		\
4850 	netif_level(notice, priv, type, dev, fmt, ##args)
4851 #define netif_info(priv, type, dev, fmt, args...)		\
4852 	netif_level(info, priv, type, dev, fmt, ##args)
4853 
4854 #if defined(CONFIG_DYNAMIC_DEBUG)
4855 #define netif_dbg(priv, type, netdev, format, args...)		\
4856 do {								\
4857 	if (netif_msg_##type(priv))				\
4858 		dynamic_netdev_dbg(netdev, format, ##args);	\
4859 } while (0)
4860 #elif defined(DEBUG)
4861 #define netif_dbg(priv, type, dev, format, args...)		\
4862 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4863 #else
4864 #define netif_dbg(priv, type, dev, format, args...)			\
4865 ({									\
4866 	if (0)								\
4867 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4868 	0;								\
4869 })
4870 #endif
4871 
4872 /* if @cond then downgrade to debug, else print at @level */
4873 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4874 	do {                                                              \
4875 		if (cond)                                                 \
4876 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4877 		else                                                      \
4878 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4879 	} while (0)
4880 
4881 #if defined(VERBOSE_DEBUG)
4882 #define netif_vdbg	netif_dbg
4883 #else
4884 #define netif_vdbg(priv, type, dev, format, args...)		\
4885 ({								\
4886 	if (0)							\
4887 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4888 	0;							\
4889 })
4890 #endif
4891 
4892 /*
4893  *	The list of packet types we will receive (as opposed to discard)
4894  *	and the routines to invoke.
4895  *
4896  *	Why 16. Because with 16 the only overlap we get on a hash of the
4897  *	low nibble of the protocol value is RARP/SNAP/X.25.
4898  *
4899  *		0800	IP
4900  *		0001	802.3
4901  *		0002	AX.25
4902  *		0004	802.2
4903  *		8035	RARP
4904  *		0005	SNAP
4905  *		0805	X.25
4906  *		0806	ARP
4907  *		8137	IPX
4908  *		0009	Localtalk
4909  *		86DD	IPv6
4910  */
4911 #define PTYPE_HASH_SIZE	(16)
4912 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4913 
4914 extern struct net_device *blackhole_netdev;
4915 
4916 #endif	/* _LINUX_NETDEVICE_H */
4917