1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 57 struct sfp_bus; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 /* UDP Tunnel offloads */ 64 struct udp_tunnel_info; 65 struct bpf_prog; 66 struct xdp_buff; 67 68 void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously; in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 97 98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 99 * indicates that the device will soon be dropping packets, or already drops 100 * some packets of the same priority; prompting us to send less aggressively. */ 101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 103 104 /* Driver transmit return codes */ 105 #define NETDEV_TX_MASK 0xf0 106 107 enum netdev_tx { 108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 109 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 111 }; 112 typedef enum netdev_tx netdev_tx_t; 113 114 /* 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 117 */ 118 static inline bool dev_xmit_complete(int rc) 119 { 120 /* 121 * Positive cases with an skb consumed by a driver: 122 * - successful transmission (rc == NETDEV_TX_OK) 123 * - error while transmitting (rc < 0) 124 * - error while queueing to a different device (rc & NET_XMIT_MASK) 125 */ 126 if (likely(rc < NET_XMIT_MASK)) 127 return true; 128 129 return false; 130 } 131 132 /* 133 * Compute the worst-case header length according to the protocols 134 * used. 135 */ 136 137 #if defined(CONFIG_HYPERV_NET) 138 # define LL_MAX_HEADER 128 139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140 # if defined(CONFIG_MAC80211_MESH) 141 # define LL_MAX_HEADER 128 142 # else 143 # define LL_MAX_HEADER 96 144 # endif 145 #else 146 # define LL_MAX_HEADER 32 147 #endif 148 149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 151 #define MAX_HEADER LL_MAX_HEADER 152 #else 153 #define MAX_HEADER (LL_MAX_HEADER + 48) 154 #endif 155 156 /* 157 * Old network device statistics. Fields are native words 158 * (unsigned long) so they can be read and written atomically. 159 */ 160 161 struct net_device_stats { 162 unsigned long rx_packets; 163 unsigned long tx_packets; 164 unsigned long rx_bytes; 165 unsigned long tx_bytes; 166 unsigned long rx_errors; 167 unsigned long tx_errors; 168 unsigned long rx_dropped; 169 unsigned long tx_dropped; 170 unsigned long multicast; 171 unsigned long collisions; 172 unsigned long rx_length_errors; 173 unsigned long rx_over_errors; 174 unsigned long rx_crc_errors; 175 unsigned long rx_frame_errors; 176 unsigned long rx_fifo_errors; 177 unsigned long rx_missed_errors; 178 unsigned long tx_aborted_errors; 179 unsigned long tx_carrier_errors; 180 unsigned long tx_fifo_errors; 181 unsigned long tx_heartbeat_errors; 182 unsigned long tx_window_errors; 183 unsigned long rx_compressed; 184 unsigned long tx_compressed; 185 }; 186 187 188 #include <linux/cache.h> 189 #include <linux/skbuff.h> 190 191 #ifdef CONFIG_RPS 192 #include <linux/static_key.h> 193 extern struct static_key_false rps_needed; 194 extern struct static_key_false rfs_needed; 195 #endif 196 197 struct neighbour; 198 struct neigh_parms; 199 struct sk_buff; 200 201 struct netdev_hw_addr { 202 struct list_head list; 203 unsigned char addr[MAX_ADDR_LEN]; 204 unsigned char type; 205 #define NETDEV_HW_ADDR_T_LAN 1 206 #define NETDEV_HW_ADDR_T_SAN 2 207 #define NETDEV_HW_ADDR_T_SLAVE 3 208 #define NETDEV_HW_ADDR_T_UNICAST 4 209 #define NETDEV_HW_ADDR_T_MULTICAST 5 210 bool global_use; 211 int sync_cnt; 212 int refcount; 213 int synced; 214 struct rcu_head rcu_head; 215 }; 216 217 struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220 }; 221 222 #define netdev_hw_addr_list_count(l) ((l)->count) 223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224 #define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229 #define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234 #define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237 struct hh_cache { 238 unsigned int hh_len; 239 seqlock_t hh_lock; 240 241 /* cached hardware header; allow for machine alignment needs. */ 242 #define HH_DATA_MOD 16 243 #define HH_DATA_OFF(__len) \ 244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 245 #define HH_DATA_ALIGN(__len) \ 246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 248 }; 249 250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 251 * Alternative is: 252 * dev->hard_header_len ? (dev->hard_header_len + 253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 254 * 255 * We could use other alignment values, but we must maintain the 256 * relationship HH alignment <= LL alignment. 257 */ 258 #define LL_RESERVED_SPACE(dev) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 263 struct header_ops { 264 int (*create) (struct sk_buff *skb, struct net_device *dev, 265 unsigned short type, const void *daddr, 266 const void *saddr, unsigned int len); 267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 269 void (*cache_update)(struct hh_cache *hh, 270 const struct net_device *dev, 271 const unsigned char *haddr); 272 bool (*validate)(const char *ll_header, unsigned int len); 273 __be16 (*parse_protocol)(const struct sk_buff *skb); 274 }; 275 276 /* These flag bits are private to the generic network queueing 277 * layer; they may not be explicitly referenced by any other 278 * code. 279 */ 280 281 enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287 }; 288 289 290 /* 291 * This structure holds boot-time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294 struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297 }; 298 #define NETDEV_BOOT_SETUP_MAX 8 299 300 int __init netdev_boot_setup(char *str); 301 302 struct gro_list { 303 struct list_head list; 304 int count; 305 }; 306 307 /* 308 * size of gro hash buckets, must less than bit number of 309 * napi_struct::gro_bitmask 310 */ 311 #define GRO_HASH_BUCKETS 8 312 313 /* 314 * Structure for NAPI scheduling similar to tasklet but with weighting 315 */ 316 struct napi_struct { 317 /* The poll_list must only be managed by the entity which 318 * changes the state of the NAPI_STATE_SCHED bit. This means 319 * whoever atomically sets that bit can add this napi_struct 320 * to the per-CPU poll_list, and whoever clears that bit 321 * can remove from the list right before clearing the bit. 322 */ 323 struct list_head poll_list; 324 325 unsigned long state; 326 int weight; 327 unsigned long gro_bitmask; 328 int (*poll)(struct napi_struct *, int); 329 #ifdef CONFIG_NETPOLL 330 int poll_owner; 331 #endif 332 struct net_device *dev; 333 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 334 struct sk_buff *skb; 335 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 336 int rx_count; /* length of rx_list */ 337 struct hrtimer timer; 338 struct list_head dev_list; 339 struct hlist_node napi_hash_node; 340 unsigned int napi_id; 341 }; 342 343 enum { 344 NAPI_STATE_SCHED, /* Poll is scheduled */ 345 NAPI_STATE_MISSED, /* reschedule a napi */ 346 NAPI_STATE_DISABLE, /* Disable pending */ 347 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 348 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 349 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 350 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 351 }; 352 353 enum { 354 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 355 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 356 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 357 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 358 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 359 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 360 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 361 }; 362 363 enum gro_result { 364 GRO_MERGED, 365 GRO_MERGED_FREE, 366 GRO_HELD, 367 GRO_NORMAL, 368 GRO_DROP, 369 GRO_CONSUMED, 370 }; 371 typedef enum gro_result gro_result_t; 372 373 /* 374 * enum rx_handler_result - Possible return values for rx_handlers. 375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 376 * further. 377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 378 * case skb->dev was changed by rx_handler. 379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 381 * 382 * rx_handlers are functions called from inside __netif_receive_skb(), to do 383 * special processing of the skb, prior to delivery to protocol handlers. 384 * 385 * Currently, a net_device can only have a single rx_handler registered. Trying 386 * to register a second rx_handler will return -EBUSY. 387 * 388 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 389 * To unregister a rx_handler on a net_device, use 390 * netdev_rx_handler_unregister(). 391 * 392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 393 * do with the skb. 394 * 395 * If the rx_handler consumed the skb in some way, it should return 396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 397 * the skb to be delivered in some other way. 398 * 399 * If the rx_handler changed skb->dev, to divert the skb to another 400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 401 * new device will be called if it exists. 402 * 403 * If the rx_handler decides the skb should be ignored, it should return 404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 405 * are registered on exact device (ptype->dev == skb->dev). 406 * 407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 408 * delivered, it should return RX_HANDLER_PASS. 409 * 410 * A device without a registered rx_handler will behave as if rx_handler 411 * returned RX_HANDLER_PASS. 412 */ 413 414 enum rx_handler_result { 415 RX_HANDLER_CONSUMED, 416 RX_HANDLER_ANOTHER, 417 RX_HANDLER_EXACT, 418 RX_HANDLER_PASS, 419 }; 420 typedef enum rx_handler_result rx_handler_result_t; 421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 422 423 void __napi_schedule(struct napi_struct *n); 424 void __napi_schedule_irqoff(struct napi_struct *n); 425 426 static inline bool napi_disable_pending(struct napi_struct *n) 427 { 428 return test_bit(NAPI_STATE_DISABLE, &n->state); 429 } 430 431 bool napi_schedule_prep(struct napi_struct *n); 432 433 /** 434 * napi_schedule - schedule NAPI poll 435 * @n: NAPI context 436 * 437 * Schedule NAPI poll routine to be called if it is not already 438 * running. 439 */ 440 static inline void napi_schedule(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule(n); 444 } 445 446 /** 447 * napi_schedule_irqoff - schedule NAPI poll 448 * @n: NAPI context 449 * 450 * Variant of napi_schedule(), assuming hard irqs are masked. 451 */ 452 static inline void napi_schedule_irqoff(struct napi_struct *n) 453 { 454 if (napi_schedule_prep(n)) 455 __napi_schedule_irqoff(n); 456 } 457 458 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 459 static inline bool napi_reschedule(struct napi_struct *napi) 460 { 461 if (napi_schedule_prep(napi)) { 462 __napi_schedule(napi); 463 return true; 464 } 465 return false; 466 } 467 468 bool napi_complete_done(struct napi_struct *n, int work_done); 469 /** 470 * napi_complete - NAPI processing complete 471 * @n: NAPI context 472 * 473 * Mark NAPI processing as complete. 474 * Consider using napi_complete_done() instead. 475 * Return false if device should avoid rearming interrupts. 476 */ 477 static inline bool napi_complete(struct napi_struct *n) 478 { 479 return napi_complete_done(n, 0); 480 } 481 482 /** 483 * napi_hash_del - remove a NAPI from global table 484 * @napi: NAPI context 485 * 486 * Warning: caller must observe RCU grace period 487 * before freeing memory containing @napi, if 488 * this function returns true. 489 * Note: core networking stack automatically calls it 490 * from netif_napi_del(). 491 * Drivers might want to call this helper to combine all 492 * the needed RCU grace periods into a single one. 493 */ 494 bool napi_hash_del(struct napi_struct *napi); 495 496 /** 497 * napi_disable - prevent NAPI from scheduling 498 * @n: NAPI context 499 * 500 * Stop NAPI from being scheduled on this context. 501 * Waits till any outstanding processing completes. 502 */ 503 void napi_disable(struct napi_struct *n); 504 505 /** 506 * napi_enable - enable NAPI scheduling 507 * @n: NAPI context 508 * 509 * Resume NAPI from being scheduled on this context. 510 * Must be paired with napi_disable. 511 */ 512 static inline void napi_enable(struct napi_struct *n) 513 { 514 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 515 smp_mb__before_atomic(); 516 clear_bit(NAPI_STATE_SCHED, &n->state); 517 clear_bit(NAPI_STATE_NPSVC, &n->state); 518 } 519 520 /** 521 * napi_synchronize - wait until NAPI is not running 522 * @n: NAPI context 523 * 524 * Wait until NAPI is done being scheduled on this context. 525 * Waits till any outstanding processing completes but 526 * does not disable future activations. 527 */ 528 static inline void napi_synchronize(const struct napi_struct *n) 529 { 530 if (IS_ENABLED(CONFIG_SMP)) 531 while (test_bit(NAPI_STATE_SCHED, &n->state)) 532 msleep(1); 533 else 534 barrier(); 535 } 536 537 /** 538 * napi_if_scheduled_mark_missed - if napi is running, set the 539 * NAPIF_STATE_MISSED 540 * @n: NAPI context 541 * 542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 543 * NAPI is scheduled. 544 **/ 545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 546 { 547 unsigned long val, new; 548 549 do { 550 val = READ_ONCE(n->state); 551 if (val & NAPIF_STATE_DISABLE) 552 return true; 553 554 if (!(val & NAPIF_STATE_SCHED)) 555 return false; 556 557 new = val | NAPIF_STATE_MISSED; 558 } while (cmpxchg(&n->state, val, new) != val); 559 560 return true; 561 } 562 563 enum netdev_queue_state_t { 564 __QUEUE_STATE_DRV_XOFF, 565 __QUEUE_STATE_STACK_XOFF, 566 __QUEUE_STATE_FROZEN, 567 }; 568 569 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 570 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 571 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 572 573 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 575 QUEUE_STATE_FROZEN) 576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 579 /* 580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 581 * netif_tx_* functions below are used to manipulate this flag. The 582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 583 * queue independently. The netif_xmit_*stopped functions below are called 584 * to check if the queue has been stopped by the driver or stack (either 585 * of the XOFF bits are set in the state). Drivers should not need to call 586 * netif_xmit*stopped functions, they should only be using netif_tx_*. 587 */ 588 589 struct netdev_queue { 590 /* 591 * read-mostly part 592 */ 593 struct net_device *dev; 594 struct Qdisc __rcu *qdisc; 595 struct Qdisc *qdisc_sleeping; 596 #ifdef CONFIG_SYSFS 597 struct kobject kobj; 598 #endif 599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 int numa_node; 601 #endif 602 unsigned long tx_maxrate; 603 /* 604 * Number of TX timeouts for this queue 605 * (/sys/class/net/DEV/Q/trans_timeout) 606 */ 607 unsigned long trans_timeout; 608 609 /* Subordinate device that the queue has been assigned to */ 610 struct net_device *sb_dev; 611 #ifdef CONFIG_XDP_SOCKETS 612 struct xdp_umem *umem; 613 #endif 614 /* 615 * write-mostly part 616 */ 617 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 618 int xmit_lock_owner; 619 /* 620 * Time (in jiffies) of last Tx 621 */ 622 unsigned long trans_start; 623 624 unsigned long state; 625 626 #ifdef CONFIG_BQL 627 struct dql dql; 628 #endif 629 } ____cacheline_aligned_in_smp; 630 631 extern int sysctl_fb_tunnels_only_for_init_net; 632 extern int sysctl_devconf_inherit_init_net; 633 634 static inline bool net_has_fallback_tunnels(const struct net *net) 635 { 636 return net == &init_net || 637 !IS_ENABLED(CONFIG_SYSCTL) || 638 !sysctl_fb_tunnels_only_for_init_net; 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[0]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[0]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[0] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xdp_umem *umem; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[0]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 TC_SETUP_QDISC_TAPRIO, 851 TC_SETUP_FT, 852 }; 853 854 /* These structures hold the attributes of bpf state that are being passed 855 * to the netdevice through the bpf op. 856 */ 857 enum bpf_netdev_command { 858 /* Set or clear a bpf program used in the earliest stages of packet 859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 860 * is responsible for calling bpf_prog_put on any old progs that are 861 * stored. In case of error, the callee need not release the new prog 862 * reference, but on success it takes ownership and must bpf_prog_put 863 * when it is no longer used. 864 */ 865 XDP_SETUP_PROG, 866 XDP_SETUP_PROG_HW, 867 XDP_QUERY_PROG, 868 XDP_QUERY_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_UMEM, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 879 struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 895 struct { 896 struct bpf_offloaded_map *offmap; 897 }; 898 /* XDP_SETUP_XSK_UMEM */ 899 struct { 900 struct xdp_umem *umem; 901 u16 queue_id; 902 } xsk; 903 }; 904 }; 905 906 /* Flags for ndo_xsk_wakeup. */ 907 #define XDP_WAKEUP_RX (1 << 0) 908 #define XDP_WAKEUP_TX (1 << 1) 909 910 #ifdef CONFIG_XFRM_OFFLOAD 911 struct xfrmdev_ops { 912 int (*xdo_dev_state_add) (struct xfrm_state *x); 913 void (*xdo_dev_state_delete) (struct xfrm_state *x); 914 void (*xdo_dev_state_free) (struct xfrm_state *x); 915 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 916 struct xfrm_state *x); 917 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 918 }; 919 #endif 920 921 struct dev_ifalias { 922 struct rcu_head rcuhead; 923 char ifalias[]; 924 }; 925 926 struct devlink; 927 struct tlsdev_ops; 928 929 struct netdev_name_node { 930 struct hlist_node hlist; 931 struct list_head list; 932 struct net_device *dev; 933 const char *name; 934 }; 935 936 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 937 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 938 939 /* 940 * This structure defines the management hooks for network devices. 941 * The following hooks can be defined; unless noted otherwise, they are 942 * optional and can be filled with a null pointer. 943 * 944 * int (*ndo_init)(struct net_device *dev); 945 * This function is called once when a network device is registered. 946 * The network device can use this for any late stage initialization 947 * or semantic validation. It can fail with an error code which will 948 * be propagated back to register_netdev. 949 * 950 * void (*ndo_uninit)(struct net_device *dev); 951 * This function is called when device is unregistered or when registration 952 * fails. It is not called if init fails. 953 * 954 * int (*ndo_open)(struct net_device *dev); 955 * This function is called when a network device transitions to the up 956 * state. 957 * 958 * int (*ndo_stop)(struct net_device *dev); 959 * This function is called when a network device transitions to the down 960 * state. 961 * 962 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 963 * struct net_device *dev); 964 * Called when a packet needs to be transmitted. 965 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 966 * the queue before that can happen; it's for obsolete devices and weird 967 * corner cases, but the stack really does a non-trivial amount 968 * of useless work if you return NETDEV_TX_BUSY. 969 * Required; cannot be NULL. 970 * 971 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 972 * struct net_device *dev 973 * netdev_features_t features); 974 * Called by core transmit path to determine if device is capable of 975 * performing offload operations on a given packet. This is to give 976 * the device an opportunity to implement any restrictions that cannot 977 * be otherwise expressed by feature flags. The check is called with 978 * the set of features that the stack has calculated and it returns 979 * those the driver believes to be appropriate. 980 * 981 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 982 * struct net_device *sb_dev); 983 * Called to decide which queue to use when device supports multiple 984 * transmit queues. 985 * 986 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 987 * This function is called to allow device receiver to make 988 * changes to configuration when multicast or promiscuous is enabled. 989 * 990 * void (*ndo_set_rx_mode)(struct net_device *dev); 991 * This function is called device changes address list filtering. 992 * If driver handles unicast address filtering, it should set 993 * IFF_UNICAST_FLT in its priv_flags. 994 * 995 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 996 * This function is called when the Media Access Control address 997 * needs to be changed. If this interface is not defined, the 998 * MAC address can not be changed. 999 * 1000 * int (*ndo_validate_addr)(struct net_device *dev); 1001 * Test if Media Access Control address is valid for the device. 1002 * 1003 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1004 * Called when a user requests an ioctl which can't be handled by 1005 * the generic interface code. If not defined ioctls return 1006 * not supported error code. 1007 * 1008 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1009 * Used to set network devices bus interface parameters. This interface 1010 * is retained for legacy reasons; new devices should use the bus 1011 * interface (PCI) for low level management. 1012 * 1013 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1014 * Called when a user wants to change the Maximum Transfer Unit 1015 * of a device. 1016 * 1017 * void (*ndo_tx_timeout)(struct net_device *dev); 1018 * Callback used when the transmitter has not made any progress 1019 * for dev->watchdog ticks. 1020 * 1021 * void (*ndo_get_stats64)(struct net_device *dev, 1022 * struct rtnl_link_stats64 *storage); 1023 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1024 * Called when a user wants to get the network device usage 1025 * statistics. Drivers must do one of the following: 1026 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1027 * rtnl_link_stats64 structure passed by the caller. 1028 * 2. Define @ndo_get_stats to update a net_device_stats structure 1029 * (which should normally be dev->stats) and return a pointer to 1030 * it. The structure may be changed asynchronously only if each 1031 * field is written atomically. 1032 * 3. Update dev->stats asynchronously and atomically, and define 1033 * neither operation. 1034 * 1035 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1036 * Return true if this device supports offload stats of this attr_id. 1037 * 1038 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1039 * void *attr_data) 1040 * Get statistics for offload operations by attr_id. Write it into the 1041 * attr_data pointer. 1042 * 1043 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1044 * If device supports VLAN filtering this function is called when a 1045 * VLAN id is registered. 1046 * 1047 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1048 * If device supports VLAN filtering this function is called when a 1049 * VLAN id is unregistered. 1050 * 1051 * void (*ndo_poll_controller)(struct net_device *dev); 1052 * 1053 * SR-IOV management functions. 1054 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1055 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1056 * u8 qos, __be16 proto); 1057 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1058 * int max_tx_rate); 1059 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1060 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1061 * int (*ndo_get_vf_config)(struct net_device *dev, 1062 * int vf, struct ifla_vf_info *ivf); 1063 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1064 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1065 * struct nlattr *port[]); 1066 * 1067 * Enable or disable the VF ability to query its RSS Redirection Table and 1068 * Hash Key. This is needed since on some devices VF share this information 1069 * with PF and querying it may introduce a theoretical security risk. 1070 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1071 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1072 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1073 * void *type_data); 1074 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1075 * This is always called from the stack with the rtnl lock held and netif 1076 * tx queues stopped. This allows the netdevice to perform queue 1077 * management safely. 1078 * 1079 * Fiber Channel over Ethernet (FCoE) offload functions. 1080 * int (*ndo_fcoe_enable)(struct net_device *dev); 1081 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1082 * so the underlying device can perform whatever needed configuration or 1083 * initialization to support acceleration of FCoE traffic. 1084 * 1085 * int (*ndo_fcoe_disable)(struct net_device *dev); 1086 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1087 * so the underlying device can perform whatever needed clean-ups to 1088 * stop supporting acceleration of FCoE traffic. 1089 * 1090 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1091 * struct scatterlist *sgl, unsigned int sgc); 1092 * Called when the FCoE Initiator wants to initialize an I/O that 1093 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1094 * perform necessary setup and returns 1 to indicate the device is set up 1095 * successfully to perform DDP on this I/O, otherwise this returns 0. 1096 * 1097 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1098 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1099 * indicated by the FC exchange id 'xid', so the underlying device can 1100 * clean up and reuse resources for later DDP requests. 1101 * 1102 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1103 * struct scatterlist *sgl, unsigned int sgc); 1104 * Called when the FCoE Target wants to initialize an I/O that 1105 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1106 * perform necessary setup and returns 1 to indicate the device is set up 1107 * successfully to perform DDP on this I/O, otherwise this returns 0. 1108 * 1109 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1110 * struct netdev_fcoe_hbainfo *hbainfo); 1111 * Called when the FCoE Protocol stack wants information on the underlying 1112 * device. This information is utilized by the FCoE protocol stack to 1113 * register attributes with Fiber Channel management service as per the 1114 * FC-GS Fabric Device Management Information(FDMI) specification. 1115 * 1116 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1117 * Called when the underlying device wants to override default World Wide 1118 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1119 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1120 * protocol stack to use. 1121 * 1122 * RFS acceleration. 1123 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1124 * u16 rxq_index, u32 flow_id); 1125 * Set hardware filter for RFS. rxq_index is the target queue index; 1126 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1127 * Return the filter ID on success, or a negative error code. 1128 * 1129 * Slave management functions (for bridge, bonding, etc). 1130 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1131 * Called to make another netdev an underling. 1132 * 1133 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1134 * Called to release previously enslaved netdev. 1135 * 1136 * Feature/offload setting functions. 1137 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1138 * netdev_features_t features); 1139 * Adjusts the requested feature flags according to device-specific 1140 * constraints, and returns the resulting flags. Must not modify 1141 * the device state. 1142 * 1143 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1144 * Called to update device configuration to new features. Passed 1145 * feature set might be less than what was returned by ndo_fix_features()). 1146 * Must return >0 or -errno if it changed dev->features itself. 1147 * 1148 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1149 * struct net_device *dev, 1150 * const unsigned char *addr, u16 vid, u16 flags, 1151 * struct netlink_ext_ack *extack); 1152 * Adds an FDB entry to dev for addr. 1153 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1154 * struct net_device *dev, 1155 * const unsigned char *addr, u16 vid) 1156 * Deletes the FDB entry from dev coresponding to addr. 1157 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1158 * struct net_device *dev, struct net_device *filter_dev, 1159 * int *idx) 1160 * Used to add FDB entries to dump requests. Implementers should add 1161 * entries to skb and update idx with the number of entries. 1162 * 1163 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1164 * u16 flags, struct netlink_ext_ack *extack) 1165 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1166 * struct net_device *dev, u32 filter_mask, 1167 * int nlflags) 1168 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1169 * u16 flags); 1170 * 1171 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1172 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1173 * which do not represent real hardware may define this to allow their 1174 * userspace components to manage their virtual carrier state. Devices 1175 * that determine carrier state from physical hardware properties (eg 1176 * network cables) or protocol-dependent mechanisms (eg 1177 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1178 * 1179 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1180 * struct netdev_phys_item_id *ppid); 1181 * Called to get ID of physical port of this device. If driver does 1182 * not implement this, it is assumed that the hw is not able to have 1183 * multiple net devices on single physical port. 1184 * 1185 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1186 * struct netdev_phys_item_id *ppid) 1187 * Called to get the parent ID of the physical port of this device. 1188 * 1189 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1190 * struct udp_tunnel_info *ti); 1191 * Called by UDP tunnel to notify a driver about the UDP port and socket 1192 * address family that a UDP tunnel is listnening to. It is called only 1193 * when a new port starts listening. The operation is protected by the 1194 * RTNL. 1195 * 1196 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1197 * struct udp_tunnel_info *ti); 1198 * Called by UDP tunnel to notify the driver about a UDP port and socket 1199 * address family that the UDP tunnel is not listening to anymore. The 1200 * operation is protected by the RTNL. 1201 * 1202 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1203 * struct net_device *dev) 1204 * Called by upper layer devices to accelerate switching or other 1205 * station functionality into hardware. 'pdev is the lowerdev 1206 * to use for the offload and 'dev' is the net device that will 1207 * back the offload. Returns a pointer to the private structure 1208 * the upper layer will maintain. 1209 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1210 * Called by upper layer device to delete the station created 1211 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1212 * the station and priv is the structure returned by the add 1213 * operation. 1214 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1215 * int queue_index, u32 maxrate); 1216 * Called when a user wants to set a max-rate limitation of specific 1217 * TX queue. 1218 * int (*ndo_get_iflink)(const struct net_device *dev); 1219 * Called to get the iflink value of this device. 1220 * void (*ndo_change_proto_down)(struct net_device *dev, 1221 * bool proto_down); 1222 * This function is used to pass protocol port error state information 1223 * to the switch driver. The switch driver can react to the proto_down 1224 * by doing a phys down on the associated switch port. 1225 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1226 * This function is used to get egress tunnel information for given skb. 1227 * This is useful for retrieving outer tunnel header parameters while 1228 * sampling packet. 1229 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1230 * This function is used to specify the headroom that the skb must 1231 * consider when allocation skb during packet reception. Setting 1232 * appropriate rx headroom value allows avoiding skb head copy on 1233 * forward. Setting a negative value resets the rx headroom to the 1234 * default value. 1235 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1236 * This function is used to set or query state related to XDP on the 1237 * netdevice and manage BPF offload. See definition of 1238 * enum bpf_netdev_command for details. 1239 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1240 * u32 flags); 1241 * This function is used to submit @n XDP packets for transmit on a 1242 * netdevice. Returns number of frames successfully transmitted, frames 1243 * that got dropped are freed/returned via xdp_return_frame(). 1244 * Returns negative number, means general error invoking ndo, meaning 1245 * no frames were xmit'ed and core-caller will free all frames. 1246 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1247 * This function is used to wake up the softirq, ksoftirqd or kthread 1248 * responsible for sending and/or receiving packets on a specific 1249 * queue id bound to an AF_XDP socket. The flags field specifies if 1250 * only RX, only Tx, or both should be woken up using the flags 1251 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1252 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1253 * Get devlink port instance associated with a given netdev. 1254 * Called with a reference on the netdevice and devlink locks only, 1255 * rtnl_lock is not held. 1256 */ 1257 struct net_device_ops { 1258 int (*ndo_init)(struct net_device *dev); 1259 void (*ndo_uninit)(struct net_device *dev); 1260 int (*ndo_open)(struct net_device *dev); 1261 int (*ndo_stop)(struct net_device *dev); 1262 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1263 struct net_device *dev); 1264 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1265 struct net_device *dev, 1266 netdev_features_t features); 1267 u16 (*ndo_select_queue)(struct net_device *dev, 1268 struct sk_buff *skb, 1269 struct net_device *sb_dev); 1270 void (*ndo_change_rx_flags)(struct net_device *dev, 1271 int flags); 1272 void (*ndo_set_rx_mode)(struct net_device *dev); 1273 int (*ndo_set_mac_address)(struct net_device *dev, 1274 void *addr); 1275 int (*ndo_validate_addr)(struct net_device *dev); 1276 int (*ndo_do_ioctl)(struct net_device *dev, 1277 struct ifreq *ifr, int cmd); 1278 int (*ndo_set_config)(struct net_device *dev, 1279 struct ifmap *map); 1280 int (*ndo_change_mtu)(struct net_device *dev, 1281 int new_mtu); 1282 int (*ndo_neigh_setup)(struct net_device *dev, 1283 struct neigh_parms *); 1284 void (*ndo_tx_timeout) (struct net_device *dev); 1285 1286 void (*ndo_get_stats64)(struct net_device *dev, 1287 struct rtnl_link_stats64 *storage); 1288 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1289 int (*ndo_get_offload_stats)(int attr_id, 1290 const struct net_device *dev, 1291 void *attr_data); 1292 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1293 1294 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1295 __be16 proto, u16 vid); 1296 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1297 __be16 proto, u16 vid); 1298 #ifdef CONFIG_NET_POLL_CONTROLLER 1299 void (*ndo_poll_controller)(struct net_device *dev); 1300 int (*ndo_netpoll_setup)(struct net_device *dev, 1301 struct netpoll_info *info); 1302 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1303 #endif 1304 int (*ndo_set_vf_mac)(struct net_device *dev, 1305 int queue, u8 *mac); 1306 int (*ndo_set_vf_vlan)(struct net_device *dev, 1307 int queue, u16 vlan, 1308 u8 qos, __be16 proto); 1309 int (*ndo_set_vf_rate)(struct net_device *dev, 1310 int vf, int min_tx_rate, 1311 int max_tx_rate); 1312 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1313 int vf, bool setting); 1314 int (*ndo_set_vf_trust)(struct net_device *dev, 1315 int vf, bool setting); 1316 int (*ndo_get_vf_config)(struct net_device *dev, 1317 int vf, 1318 struct ifla_vf_info *ivf); 1319 int (*ndo_set_vf_link_state)(struct net_device *dev, 1320 int vf, int link_state); 1321 int (*ndo_get_vf_stats)(struct net_device *dev, 1322 int vf, 1323 struct ifla_vf_stats 1324 *vf_stats); 1325 int (*ndo_set_vf_port)(struct net_device *dev, 1326 int vf, 1327 struct nlattr *port[]); 1328 int (*ndo_get_vf_port)(struct net_device *dev, 1329 int vf, struct sk_buff *skb); 1330 int (*ndo_get_vf_guid)(struct net_device *dev, 1331 int vf, 1332 struct ifla_vf_guid *node_guid, 1333 struct ifla_vf_guid *port_guid); 1334 int (*ndo_set_vf_guid)(struct net_device *dev, 1335 int vf, u64 guid, 1336 int guid_type); 1337 int (*ndo_set_vf_rss_query_en)( 1338 struct net_device *dev, 1339 int vf, bool setting); 1340 int (*ndo_setup_tc)(struct net_device *dev, 1341 enum tc_setup_type type, 1342 void *type_data); 1343 #if IS_ENABLED(CONFIG_FCOE) 1344 int (*ndo_fcoe_enable)(struct net_device *dev); 1345 int (*ndo_fcoe_disable)(struct net_device *dev); 1346 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1347 u16 xid, 1348 struct scatterlist *sgl, 1349 unsigned int sgc); 1350 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1351 u16 xid); 1352 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1353 u16 xid, 1354 struct scatterlist *sgl, 1355 unsigned int sgc); 1356 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1357 struct netdev_fcoe_hbainfo *hbainfo); 1358 #endif 1359 1360 #if IS_ENABLED(CONFIG_LIBFCOE) 1361 #define NETDEV_FCOE_WWNN 0 1362 #define NETDEV_FCOE_WWPN 1 1363 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1364 u64 *wwn, int type); 1365 #endif 1366 1367 #ifdef CONFIG_RFS_ACCEL 1368 int (*ndo_rx_flow_steer)(struct net_device *dev, 1369 const struct sk_buff *skb, 1370 u16 rxq_index, 1371 u32 flow_id); 1372 #endif 1373 int (*ndo_add_slave)(struct net_device *dev, 1374 struct net_device *slave_dev, 1375 struct netlink_ext_ack *extack); 1376 int (*ndo_del_slave)(struct net_device *dev, 1377 struct net_device *slave_dev); 1378 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1379 netdev_features_t features); 1380 int (*ndo_set_features)(struct net_device *dev, 1381 netdev_features_t features); 1382 int (*ndo_neigh_construct)(struct net_device *dev, 1383 struct neighbour *n); 1384 void (*ndo_neigh_destroy)(struct net_device *dev, 1385 struct neighbour *n); 1386 1387 int (*ndo_fdb_add)(struct ndmsg *ndm, 1388 struct nlattr *tb[], 1389 struct net_device *dev, 1390 const unsigned char *addr, 1391 u16 vid, 1392 u16 flags, 1393 struct netlink_ext_ack *extack); 1394 int (*ndo_fdb_del)(struct ndmsg *ndm, 1395 struct nlattr *tb[], 1396 struct net_device *dev, 1397 const unsigned char *addr, 1398 u16 vid); 1399 int (*ndo_fdb_dump)(struct sk_buff *skb, 1400 struct netlink_callback *cb, 1401 struct net_device *dev, 1402 struct net_device *filter_dev, 1403 int *idx); 1404 int (*ndo_fdb_get)(struct sk_buff *skb, 1405 struct nlattr *tb[], 1406 struct net_device *dev, 1407 const unsigned char *addr, 1408 u16 vid, u32 portid, u32 seq, 1409 struct netlink_ext_ack *extack); 1410 int (*ndo_bridge_setlink)(struct net_device *dev, 1411 struct nlmsghdr *nlh, 1412 u16 flags, 1413 struct netlink_ext_ack *extack); 1414 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1415 u32 pid, u32 seq, 1416 struct net_device *dev, 1417 u32 filter_mask, 1418 int nlflags); 1419 int (*ndo_bridge_dellink)(struct net_device *dev, 1420 struct nlmsghdr *nlh, 1421 u16 flags); 1422 int (*ndo_change_carrier)(struct net_device *dev, 1423 bool new_carrier); 1424 int (*ndo_get_phys_port_id)(struct net_device *dev, 1425 struct netdev_phys_item_id *ppid); 1426 int (*ndo_get_port_parent_id)(struct net_device *dev, 1427 struct netdev_phys_item_id *ppid); 1428 int (*ndo_get_phys_port_name)(struct net_device *dev, 1429 char *name, size_t len); 1430 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1431 struct udp_tunnel_info *ti); 1432 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1433 struct udp_tunnel_info *ti); 1434 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1435 struct net_device *dev); 1436 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1437 void *priv); 1438 1439 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1440 int queue_index, 1441 u32 maxrate); 1442 int (*ndo_get_iflink)(const struct net_device *dev); 1443 int (*ndo_change_proto_down)(struct net_device *dev, 1444 bool proto_down); 1445 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1446 struct sk_buff *skb); 1447 void (*ndo_set_rx_headroom)(struct net_device *dev, 1448 int needed_headroom); 1449 int (*ndo_bpf)(struct net_device *dev, 1450 struct netdev_bpf *bpf); 1451 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1452 struct xdp_frame **xdp, 1453 u32 flags); 1454 int (*ndo_xsk_wakeup)(struct net_device *dev, 1455 u32 queue_id, u32 flags); 1456 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1457 }; 1458 1459 /** 1460 * enum net_device_priv_flags - &struct net_device priv_flags 1461 * 1462 * These are the &struct net_device, they are only set internally 1463 * by drivers and used in the kernel. These flags are invisible to 1464 * userspace; this means that the order of these flags can change 1465 * during any kernel release. 1466 * 1467 * You should have a pretty good reason to be extending these flags. 1468 * 1469 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1470 * @IFF_EBRIDGE: Ethernet bridging device 1471 * @IFF_BONDING: bonding master or slave 1472 * @IFF_ISATAP: ISATAP interface (RFC4214) 1473 * @IFF_WAN_HDLC: WAN HDLC device 1474 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1475 * release skb->dst 1476 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1477 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1478 * @IFF_MACVLAN_PORT: device used as macvlan port 1479 * @IFF_BRIDGE_PORT: device used as bridge port 1480 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1481 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1482 * @IFF_UNICAST_FLT: Supports unicast filtering 1483 * @IFF_TEAM_PORT: device used as team port 1484 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1485 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1486 * change when it's running 1487 * @IFF_MACVLAN: Macvlan device 1488 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1489 * underlying stacked devices 1490 * @IFF_L3MDEV_MASTER: device is an L3 master device 1491 * @IFF_NO_QUEUE: device can run without qdisc attached 1492 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1493 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1494 * @IFF_TEAM: device is a team device 1495 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1496 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1497 * entity (i.e. the master device for bridged veth) 1498 * @IFF_MACSEC: device is a MACsec device 1499 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1500 * @IFF_FAILOVER: device is a failover master device 1501 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1502 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1503 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1504 */ 1505 enum netdev_priv_flags { 1506 IFF_802_1Q_VLAN = 1<<0, 1507 IFF_EBRIDGE = 1<<1, 1508 IFF_BONDING = 1<<2, 1509 IFF_ISATAP = 1<<3, 1510 IFF_WAN_HDLC = 1<<4, 1511 IFF_XMIT_DST_RELEASE = 1<<5, 1512 IFF_DONT_BRIDGE = 1<<6, 1513 IFF_DISABLE_NETPOLL = 1<<7, 1514 IFF_MACVLAN_PORT = 1<<8, 1515 IFF_BRIDGE_PORT = 1<<9, 1516 IFF_OVS_DATAPATH = 1<<10, 1517 IFF_TX_SKB_SHARING = 1<<11, 1518 IFF_UNICAST_FLT = 1<<12, 1519 IFF_TEAM_PORT = 1<<13, 1520 IFF_SUPP_NOFCS = 1<<14, 1521 IFF_LIVE_ADDR_CHANGE = 1<<15, 1522 IFF_MACVLAN = 1<<16, 1523 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1524 IFF_L3MDEV_MASTER = 1<<18, 1525 IFF_NO_QUEUE = 1<<19, 1526 IFF_OPENVSWITCH = 1<<20, 1527 IFF_L3MDEV_SLAVE = 1<<21, 1528 IFF_TEAM = 1<<22, 1529 IFF_RXFH_CONFIGURED = 1<<23, 1530 IFF_PHONY_HEADROOM = 1<<24, 1531 IFF_MACSEC = 1<<25, 1532 IFF_NO_RX_HANDLER = 1<<26, 1533 IFF_FAILOVER = 1<<27, 1534 IFF_FAILOVER_SLAVE = 1<<28, 1535 IFF_L3MDEV_RX_HANDLER = 1<<29, 1536 IFF_LIVE_RENAME_OK = 1<<30, 1537 }; 1538 1539 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1540 #define IFF_EBRIDGE IFF_EBRIDGE 1541 #define IFF_BONDING IFF_BONDING 1542 #define IFF_ISATAP IFF_ISATAP 1543 #define IFF_WAN_HDLC IFF_WAN_HDLC 1544 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1545 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1546 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1547 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1548 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1549 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1550 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1551 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1552 #define IFF_TEAM_PORT IFF_TEAM_PORT 1553 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1554 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1555 #define IFF_MACVLAN IFF_MACVLAN 1556 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1557 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1558 #define IFF_NO_QUEUE IFF_NO_QUEUE 1559 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1560 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1561 #define IFF_TEAM IFF_TEAM 1562 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1563 #define IFF_MACSEC IFF_MACSEC 1564 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1565 #define IFF_FAILOVER IFF_FAILOVER 1566 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1567 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1568 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1569 1570 /** 1571 * struct net_device - The DEVICE structure. 1572 * 1573 * Actually, this whole structure is a big mistake. It mixes I/O 1574 * data with strictly "high-level" data, and it has to know about 1575 * almost every data structure used in the INET module. 1576 * 1577 * @name: This is the first field of the "visible" part of this structure 1578 * (i.e. as seen by users in the "Space.c" file). It is the name 1579 * of the interface. 1580 * 1581 * @name_node: Name hashlist node 1582 * @ifalias: SNMP alias 1583 * @mem_end: Shared memory end 1584 * @mem_start: Shared memory start 1585 * @base_addr: Device I/O address 1586 * @irq: Device IRQ number 1587 * 1588 * @state: Generic network queuing layer state, see netdev_state_t 1589 * @dev_list: The global list of network devices 1590 * @napi_list: List entry used for polling NAPI devices 1591 * @unreg_list: List entry when we are unregistering the 1592 * device; see the function unregister_netdev 1593 * @close_list: List entry used when we are closing the device 1594 * @ptype_all: Device-specific packet handlers for all protocols 1595 * @ptype_specific: Device-specific, protocol-specific packet handlers 1596 * 1597 * @adj_list: Directly linked devices, like slaves for bonding 1598 * @features: Currently active device features 1599 * @hw_features: User-changeable features 1600 * 1601 * @wanted_features: User-requested features 1602 * @vlan_features: Mask of features inheritable by VLAN devices 1603 * 1604 * @hw_enc_features: Mask of features inherited by encapsulating devices 1605 * This field indicates what encapsulation 1606 * offloads the hardware is capable of doing, 1607 * and drivers will need to set them appropriately. 1608 * 1609 * @mpls_features: Mask of features inheritable by MPLS 1610 * 1611 * @ifindex: interface index 1612 * @group: The group the device belongs to 1613 * 1614 * @stats: Statistics struct, which was left as a legacy, use 1615 * rtnl_link_stats64 instead 1616 * 1617 * @rx_dropped: Dropped packets by core network, 1618 * do not use this in drivers 1619 * @tx_dropped: Dropped packets by core network, 1620 * do not use this in drivers 1621 * @rx_nohandler: nohandler dropped packets by core network on 1622 * inactive devices, do not use this in drivers 1623 * @carrier_up_count: Number of times the carrier has been up 1624 * @carrier_down_count: Number of times the carrier has been down 1625 * 1626 * @wireless_handlers: List of functions to handle Wireless Extensions, 1627 * instead of ioctl, 1628 * see <net/iw_handler.h> for details. 1629 * @wireless_data: Instance data managed by the core of wireless extensions 1630 * 1631 * @netdev_ops: Includes several pointers to callbacks, 1632 * if one wants to override the ndo_*() functions 1633 * @ethtool_ops: Management operations 1634 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1635 * discovery handling. Necessary for e.g. 6LoWPAN. 1636 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1637 * of Layer 2 headers. 1638 * 1639 * @flags: Interface flags (a la BSD) 1640 * @priv_flags: Like 'flags' but invisible to userspace, 1641 * see if.h for the definitions 1642 * @gflags: Global flags ( kept as legacy ) 1643 * @padded: How much padding added by alloc_netdev() 1644 * @operstate: RFC2863 operstate 1645 * @link_mode: Mapping policy to operstate 1646 * @if_port: Selectable AUI, TP, ... 1647 * @dma: DMA channel 1648 * @mtu: Interface MTU value 1649 * @min_mtu: Interface Minimum MTU value 1650 * @max_mtu: Interface Maximum MTU value 1651 * @type: Interface hardware type 1652 * @hard_header_len: Maximum hardware header length. 1653 * @min_header_len: Minimum hardware header length 1654 * 1655 * @needed_headroom: Extra headroom the hardware may need, but not in all 1656 * cases can this be guaranteed 1657 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1658 * cases can this be guaranteed. Some cases also use 1659 * LL_MAX_HEADER instead to allocate the skb 1660 * 1661 * interface address info: 1662 * 1663 * @perm_addr: Permanent hw address 1664 * @addr_assign_type: Hw address assignment type 1665 * @addr_len: Hardware address length 1666 * @upper_level: Maximum depth level of upper devices. 1667 * @lower_level: Maximum depth level of lower devices. 1668 * @neigh_priv_len: Used in neigh_alloc() 1669 * @dev_id: Used to differentiate devices that share 1670 * the same link layer address 1671 * @dev_port: Used to differentiate devices that share 1672 * the same function 1673 * @addr_list_lock: XXX: need comments on this one 1674 * @uc_promisc: Counter that indicates promiscuous mode 1675 * has been enabled due to the need to listen to 1676 * additional unicast addresses in a device that 1677 * does not implement ndo_set_rx_mode() 1678 * @uc: unicast mac addresses 1679 * @mc: multicast mac addresses 1680 * @dev_addrs: list of device hw addresses 1681 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1682 * @promiscuity: Number of times the NIC is told to work in 1683 * promiscuous mode; if it becomes 0 the NIC will 1684 * exit promiscuous mode 1685 * @allmulti: Counter, enables or disables allmulticast mode 1686 * 1687 * @vlan_info: VLAN info 1688 * @dsa_ptr: dsa specific data 1689 * @tipc_ptr: TIPC specific data 1690 * @atalk_ptr: AppleTalk link 1691 * @ip_ptr: IPv4 specific data 1692 * @dn_ptr: DECnet specific data 1693 * @ip6_ptr: IPv6 specific data 1694 * @ax25_ptr: AX.25 specific data 1695 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1696 * 1697 * @dev_addr: Hw address (before bcast, 1698 * because most packets are unicast) 1699 * 1700 * @_rx: Array of RX queues 1701 * @num_rx_queues: Number of RX queues 1702 * allocated at register_netdev() time 1703 * @real_num_rx_queues: Number of RX queues currently active in device 1704 * 1705 * @rx_handler: handler for received packets 1706 * @rx_handler_data: XXX: need comments on this one 1707 * @miniq_ingress: ingress/clsact qdisc specific data for 1708 * ingress processing 1709 * @ingress_queue: XXX: need comments on this one 1710 * @broadcast: hw bcast address 1711 * 1712 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1713 * indexed by RX queue number. Assigned by driver. 1714 * This must only be set if the ndo_rx_flow_steer 1715 * operation is defined 1716 * @index_hlist: Device index hash chain 1717 * 1718 * @_tx: Array of TX queues 1719 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1720 * @real_num_tx_queues: Number of TX queues currently active in device 1721 * @qdisc: Root qdisc from userspace point of view 1722 * @tx_queue_len: Max frames per queue allowed 1723 * @tx_global_lock: XXX: need comments on this one 1724 * 1725 * @xps_maps: XXX: need comments on this one 1726 * @miniq_egress: clsact qdisc specific data for 1727 * egress processing 1728 * @watchdog_timeo: Represents the timeout that is used by 1729 * the watchdog (see dev_watchdog()) 1730 * @watchdog_timer: List of timers 1731 * 1732 * @pcpu_refcnt: Number of references to this device 1733 * @todo_list: Delayed register/unregister 1734 * @link_watch_list: XXX: need comments on this one 1735 * 1736 * @reg_state: Register/unregister state machine 1737 * @dismantle: Device is going to be freed 1738 * @rtnl_link_state: This enum represents the phases of creating 1739 * a new link 1740 * 1741 * @needs_free_netdev: Should unregister perform free_netdev? 1742 * @priv_destructor: Called from unregister 1743 * @npinfo: XXX: need comments on this one 1744 * @nd_net: Network namespace this network device is inside 1745 * 1746 * @ml_priv: Mid-layer private 1747 * @lstats: Loopback statistics 1748 * @tstats: Tunnel statistics 1749 * @dstats: Dummy statistics 1750 * @vstats: Virtual ethernet statistics 1751 * 1752 * @garp_port: GARP 1753 * @mrp_port: MRP 1754 * 1755 * @dev: Class/net/name entry 1756 * @sysfs_groups: Space for optional device, statistics and wireless 1757 * sysfs groups 1758 * 1759 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1760 * @rtnl_link_ops: Rtnl_link_ops 1761 * 1762 * @gso_max_size: Maximum size of generic segmentation offload 1763 * @gso_max_segs: Maximum number of segments that can be passed to the 1764 * NIC for GSO 1765 * 1766 * @dcbnl_ops: Data Center Bridging netlink ops 1767 * @num_tc: Number of traffic classes in the net device 1768 * @tc_to_txq: XXX: need comments on this one 1769 * @prio_tc_map: XXX: need comments on this one 1770 * 1771 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1772 * 1773 * @priomap: XXX: need comments on this one 1774 * @phydev: Physical device may attach itself 1775 * for hardware timestamping 1776 * @sfp_bus: attached &struct sfp_bus structure. 1777 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock 1778 spinlock 1779 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1780 * @qdisc_xmit_lock_key: lockdep class annotating 1781 * netdev_queue->_xmit_lock spinlock 1782 * @addr_list_lock_key: lockdep class annotating 1783 * net_device->addr_list_lock spinlock 1784 * 1785 * @proto_down: protocol port state information can be sent to the 1786 * switch driver and used to set the phys state of the 1787 * switch port. 1788 * 1789 * @wol_enabled: Wake-on-LAN is enabled 1790 * 1791 * FIXME: cleanup struct net_device such that network protocol info 1792 * moves out. 1793 */ 1794 1795 struct net_device { 1796 char name[IFNAMSIZ]; 1797 struct netdev_name_node *name_node; 1798 struct dev_ifalias __rcu *ifalias; 1799 /* 1800 * I/O specific fields 1801 * FIXME: Merge these and struct ifmap into one 1802 */ 1803 unsigned long mem_end; 1804 unsigned long mem_start; 1805 unsigned long base_addr; 1806 int irq; 1807 1808 /* 1809 * Some hardware also needs these fields (state,dev_list, 1810 * napi_list,unreg_list,close_list) but they are not 1811 * part of the usual set specified in Space.c. 1812 */ 1813 1814 unsigned long state; 1815 1816 struct list_head dev_list; 1817 struct list_head napi_list; 1818 struct list_head unreg_list; 1819 struct list_head close_list; 1820 struct list_head ptype_all; 1821 struct list_head ptype_specific; 1822 1823 struct { 1824 struct list_head upper; 1825 struct list_head lower; 1826 } adj_list; 1827 1828 netdev_features_t features; 1829 netdev_features_t hw_features; 1830 netdev_features_t wanted_features; 1831 netdev_features_t vlan_features; 1832 netdev_features_t hw_enc_features; 1833 netdev_features_t mpls_features; 1834 netdev_features_t gso_partial_features; 1835 1836 int ifindex; 1837 int group; 1838 1839 struct net_device_stats stats; 1840 1841 atomic_long_t rx_dropped; 1842 atomic_long_t tx_dropped; 1843 atomic_long_t rx_nohandler; 1844 1845 /* Stats to monitor link on/off, flapping */ 1846 atomic_t carrier_up_count; 1847 atomic_t carrier_down_count; 1848 1849 #ifdef CONFIG_WIRELESS_EXT 1850 const struct iw_handler_def *wireless_handlers; 1851 struct iw_public_data *wireless_data; 1852 #endif 1853 const struct net_device_ops *netdev_ops; 1854 const struct ethtool_ops *ethtool_ops; 1855 #ifdef CONFIG_NET_L3_MASTER_DEV 1856 const struct l3mdev_ops *l3mdev_ops; 1857 #endif 1858 #if IS_ENABLED(CONFIG_IPV6) 1859 const struct ndisc_ops *ndisc_ops; 1860 #endif 1861 1862 #ifdef CONFIG_XFRM_OFFLOAD 1863 const struct xfrmdev_ops *xfrmdev_ops; 1864 #endif 1865 1866 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1867 const struct tlsdev_ops *tlsdev_ops; 1868 #endif 1869 1870 const struct header_ops *header_ops; 1871 1872 unsigned int flags; 1873 unsigned int priv_flags; 1874 1875 unsigned short gflags; 1876 unsigned short padded; 1877 1878 unsigned char operstate; 1879 unsigned char link_mode; 1880 1881 unsigned char if_port; 1882 unsigned char dma; 1883 1884 /* Note : dev->mtu is often read without holding a lock. 1885 * Writers usually hold RTNL. 1886 * It is recommended to use READ_ONCE() to annotate the reads, 1887 * and to use WRITE_ONCE() to annotate the writes. 1888 */ 1889 unsigned int mtu; 1890 unsigned int min_mtu; 1891 unsigned int max_mtu; 1892 unsigned short type; 1893 unsigned short hard_header_len; 1894 unsigned char min_header_len; 1895 1896 unsigned short needed_headroom; 1897 unsigned short needed_tailroom; 1898 1899 /* Interface address info. */ 1900 unsigned char perm_addr[MAX_ADDR_LEN]; 1901 unsigned char addr_assign_type; 1902 unsigned char addr_len; 1903 unsigned char upper_level; 1904 unsigned char lower_level; 1905 unsigned short neigh_priv_len; 1906 unsigned short dev_id; 1907 unsigned short dev_port; 1908 spinlock_t addr_list_lock; 1909 unsigned char name_assign_type; 1910 bool uc_promisc; 1911 struct netdev_hw_addr_list uc; 1912 struct netdev_hw_addr_list mc; 1913 struct netdev_hw_addr_list dev_addrs; 1914 1915 #ifdef CONFIG_SYSFS 1916 struct kset *queues_kset; 1917 #endif 1918 unsigned int promiscuity; 1919 unsigned int allmulti; 1920 1921 1922 /* Protocol-specific pointers */ 1923 1924 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1925 struct vlan_info __rcu *vlan_info; 1926 #endif 1927 #if IS_ENABLED(CONFIG_NET_DSA) 1928 struct dsa_port *dsa_ptr; 1929 #endif 1930 #if IS_ENABLED(CONFIG_TIPC) 1931 struct tipc_bearer __rcu *tipc_ptr; 1932 #endif 1933 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1934 void *atalk_ptr; 1935 #endif 1936 struct in_device __rcu *ip_ptr; 1937 #if IS_ENABLED(CONFIG_DECNET) 1938 struct dn_dev __rcu *dn_ptr; 1939 #endif 1940 struct inet6_dev __rcu *ip6_ptr; 1941 #if IS_ENABLED(CONFIG_AX25) 1942 void *ax25_ptr; 1943 #endif 1944 struct wireless_dev *ieee80211_ptr; 1945 struct wpan_dev *ieee802154_ptr; 1946 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1947 struct mpls_dev __rcu *mpls_ptr; 1948 #endif 1949 1950 /* 1951 * Cache lines mostly used on receive path (including eth_type_trans()) 1952 */ 1953 /* Interface address info used in eth_type_trans() */ 1954 unsigned char *dev_addr; 1955 1956 struct netdev_rx_queue *_rx; 1957 unsigned int num_rx_queues; 1958 unsigned int real_num_rx_queues; 1959 1960 struct bpf_prog __rcu *xdp_prog; 1961 unsigned long gro_flush_timeout; 1962 rx_handler_func_t __rcu *rx_handler; 1963 void __rcu *rx_handler_data; 1964 1965 #ifdef CONFIG_NET_CLS_ACT 1966 struct mini_Qdisc __rcu *miniq_ingress; 1967 #endif 1968 struct netdev_queue __rcu *ingress_queue; 1969 #ifdef CONFIG_NETFILTER_INGRESS 1970 struct nf_hook_entries __rcu *nf_hooks_ingress; 1971 #endif 1972 1973 unsigned char broadcast[MAX_ADDR_LEN]; 1974 #ifdef CONFIG_RFS_ACCEL 1975 struct cpu_rmap *rx_cpu_rmap; 1976 #endif 1977 struct hlist_node index_hlist; 1978 1979 /* 1980 * Cache lines mostly used on transmit path 1981 */ 1982 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1983 unsigned int num_tx_queues; 1984 unsigned int real_num_tx_queues; 1985 struct Qdisc *qdisc; 1986 #ifdef CONFIG_NET_SCHED 1987 DECLARE_HASHTABLE (qdisc_hash, 4); 1988 #endif 1989 unsigned int tx_queue_len; 1990 spinlock_t tx_global_lock; 1991 int watchdog_timeo; 1992 1993 #ifdef CONFIG_XPS 1994 struct xps_dev_maps __rcu *xps_cpus_map; 1995 struct xps_dev_maps __rcu *xps_rxqs_map; 1996 #endif 1997 #ifdef CONFIG_NET_CLS_ACT 1998 struct mini_Qdisc __rcu *miniq_egress; 1999 #endif 2000 2001 /* These may be needed for future network-power-down code. */ 2002 struct timer_list watchdog_timer; 2003 2004 int __percpu *pcpu_refcnt; 2005 struct list_head todo_list; 2006 2007 struct list_head link_watch_list; 2008 2009 enum { NETREG_UNINITIALIZED=0, 2010 NETREG_REGISTERED, /* completed register_netdevice */ 2011 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2012 NETREG_UNREGISTERED, /* completed unregister todo */ 2013 NETREG_RELEASED, /* called free_netdev */ 2014 NETREG_DUMMY, /* dummy device for NAPI poll */ 2015 } reg_state:8; 2016 2017 bool dismantle; 2018 2019 enum { 2020 RTNL_LINK_INITIALIZED, 2021 RTNL_LINK_INITIALIZING, 2022 } rtnl_link_state:16; 2023 2024 bool needs_free_netdev; 2025 void (*priv_destructor)(struct net_device *dev); 2026 2027 #ifdef CONFIG_NETPOLL 2028 struct netpoll_info __rcu *npinfo; 2029 #endif 2030 2031 possible_net_t nd_net; 2032 2033 /* mid-layer private */ 2034 union { 2035 void *ml_priv; 2036 struct pcpu_lstats __percpu *lstats; 2037 struct pcpu_sw_netstats __percpu *tstats; 2038 struct pcpu_dstats __percpu *dstats; 2039 }; 2040 2041 #if IS_ENABLED(CONFIG_GARP) 2042 struct garp_port __rcu *garp_port; 2043 #endif 2044 #if IS_ENABLED(CONFIG_MRP) 2045 struct mrp_port __rcu *mrp_port; 2046 #endif 2047 2048 struct device dev; 2049 const struct attribute_group *sysfs_groups[4]; 2050 const struct attribute_group *sysfs_rx_queue_group; 2051 2052 const struct rtnl_link_ops *rtnl_link_ops; 2053 2054 /* for setting kernel sock attribute on TCP connection setup */ 2055 #define GSO_MAX_SIZE 65536 2056 unsigned int gso_max_size; 2057 #define GSO_MAX_SEGS 65535 2058 u16 gso_max_segs; 2059 2060 #ifdef CONFIG_DCB 2061 const struct dcbnl_rtnl_ops *dcbnl_ops; 2062 #endif 2063 s16 num_tc; 2064 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2065 u8 prio_tc_map[TC_BITMASK + 1]; 2066 2067 #if IS_ENABLED(CONFIG_FCOE) 2068 unsigned int fcoe_ddp_xid; 2069 #endif 2070 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2071 struct netprio_map __rcu *priomap; 2072 #endif 2073 struct phy_device *phydev; 2074 struct sfp_bus *sfp_bus; 2075 struct lock_class_key qdisc_tx_busylock_key; 2076 struct lock_class_key qdisc_running_key; 2077 struct lock_class_key qdisc_xmit_lock_key; 2078 struct lock_class_key addr_list_lock_key; 2079 bool proto_down; 2080 unsigned wol_enabled:1; 2081 }; 2082 #define to_net_dev(d) container_of(d, struct net_device, dev) 2083 2084 static inline bool netif_elide_gro(const struct net_device *dev) 2085 { 2086 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2087 return true; 2088 return false; 2089 } 2090 2091 #define NETDEV_ALIGN 32 2092 2093 static inline 2094 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2095 { 2096 return dev->prio_tc_map[prio & TC_BITMASK]; 2097 } 2098 2099 static inline 2100 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2101 { 2102 if (tc >= dev->num_tc) 2103 return -EINVAL; 2104 2105 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2106 return 0; 2107 } 2108 2109 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2110 void netdev_reset_tc(struct net_device *dev); 2111 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2112 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2113 2114 static inline 2115 int netdev_get_num_tc(struct net_device *dev) 2116 { 2117 return dev->num_tc; 2118 } 2119 2120 void netdev_unbind_sb_channel(struct net_device *dev, 2121 struct net_device *sb_dev); 2122 int netdev_bind_sb_channel_queue(struct net_device *dev, 2123 struct net_device *sb_dev, 2124 u8 tc, u16 count, u16 offset); 2125 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2126 static inline int netdev_get_sb_channel(struct net_device *dev) 2127 { 2128 return max_t(int, -dev->num_tc, 0); 2129 } 2130 2131 static inline 2132 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2133 unsigned int index) 2134 { 2135 return &dev->_tx[index]; 2136 } 2137 2138 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2139 const struct sk_buff *skb) 2140 { 2141 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2142 } 2143 2144 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2145 void (*f)(struct net_device *, 2146 struct netdev_queue *, 2147 void *), 2148 void *arg) 2149 { 2150 unsigned int i; 2151 2152 for (i = 0; i < dev->num_tx_queues; i++) 2153 f(dev, &dev->_tx[i], arg); 2154 } 2155 2156 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2157 struct net_device *sb_dev); 2158 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2159 struct sk_buff *skb, 2160 struct net_device *sb_dev); 2161 2162 /* returns the headroom that the master device needs to take in account 2163 * when forwarding to this dev 2164 */ 2165 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2166 { 2167 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2168 } 2169 2170 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2171 { 2172 if (dev->netdev_ops->ndo_set_rx_headroom) 2173 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2174 } 2175 2176 /* set the device rx headroom to the dev's default */ 2177 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2178 { 2179 netdev_set_rx_headroom(dev, -1); 2180 } 2181 2182 /* 2183 * Net namespace inlines 2184 */ 2185 static inline 2186 struct net *dev_net(const struct net_device *dev) 2187 { 2188 return read_pnet(&dev->nd_net); 2189 } 2190 2191 static inline 2192 void dev_net_set(struct net_device *dev, struct net *net) 2193 { 2194 write_pnet(&dev->nd_net, net); 2195 } 2196 2197 /** 2198 * netdev_priv - access network device private data 2199 * @dev: network device 2200 * 2201 * Get network device private data 2202 */ 2203 static inline void *netdev_priv(const struct net_device *dev) 2204 { 2205 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2206 } 2207 2208 /* Set the sysfs physical device reference for the network logical device 2209 * if set prior to registration will cause a symlink during initialization. 2210 */ 2211 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2212 2213 /* Set the sysfs device type for the network logical device to allow 2214 * fine-grained identification of different network device types. For 2215 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2216 */ 2217 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2218 2219 /* Default NAPI poll() weight 2220 * Device drivers are strongly advised to not use bigger value 2221 */ 2222 #define NAPI_POLL_WEIGHT 64 2223 2224 /** 2225 * netif_napi_add - initialize a NAPI context 2226 * @dev: network device 2227 * @napi: NAPI context 2228 * @poll: polling function 2229 * @weight: default weight 2230 * 2231 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2232 * *any* of the other NAPI-related functions. 2233 */ 2234 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2235 int (*poll)(struct napi_struct *, int), int weight); 2236 2237 /** 2238 * netif_tx_napi_add - initialize a NAPI context 2239 * @dev: network device 2240 * @napi: NAPI context 2241 * @poll: polling function 2242 * @weight: default weight 2243 * 2244 * This variant of netif_napi_add() should be used from drivers using NAPI 2245 * to exclusively poll a TX queue. 2246 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2247 */ 2248 static inline void netif_tx_napi_add(struct net_device *dev, 2249 struct napi_struct *napi, 2250 int (*poll)(struct napi_struct *, int), 2251 int weight) 2252 { 2253 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2254 netif_napi_add(dev, napi, poll, weight); 2255 } 2256 2257 /** 2258 * netif_napi_del - remove a NAPI context 2259 * @napi: NAPI context 2260 * 2261 * netif_napi_del() removes a NAPI context from the network device NAPI list 2262 */ 2263 void netif_napi_del(struct napi_struct *napi); 2264 2265 struct napi_gro_cb { 2266 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2267 void *frag0; 2268 2269 /* Length of frag0. */ 2270 unsigned int frag0_len; 2271 2272 /* This indicates where we are processing relative to skb->data. */ 2273 int data_offset; 2274 2275 /* This is non-zero if the packet cannot be merged with the new skb. */ 2276 u16 flush; 2277 2278 /* Save the IP ID here and check when we get to the transport layer */ 2279 u16 flush_id; 2280 2281 /* Number of segments aggregated. */ 2282 u16 count; 2283 2284 /* Start offset for remote checksum offload */ 2285 u16 gro_remcsum_start; 2286 2287 /* jiffies when first packet was created/queued */ 2288 unsigned long age; 2289 2290 /* Used in ipv6_gro_receive() and foo-over-udp */ 2291 u16 proto; 2292 2293 /* This is non-zero if the packet may be of the same flow. */ 2294 u8 same_flow:1; 2295 2296 /* Used in tunnel GRO receive */ 2297 u8 encap_mark:1; 2298 2299 /* GRO checksum is valid */ 2300 u8 csum_valid:1; 2301 2302 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2303 u8 csum_cnt:3; 2304 2305 /* Free the skb? */ 2306 u8 free:2; 2307 #define NAPI_GRO_FREE 1 2308 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2309 2310 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2311 u8 is_ipv6:1; 2312 2313 /* Used in GRE, set in fou/gue_gro_receive */ 2314 u8 is_fou:1; 2315 2316 /* Used to determine if flush_id can be ignored */ 2317 u8 is_atomic:1; 2318 2319 /* Number of gro_receive callbacks this packet already went through */ 2320 u8 recursion_counter:4; 2321 2322 /* 1 bit hole */ 2323 2324 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2325 __wsum csum; 2326 2327 /* used in skb_gro_receive() slow path */ 2328 struct sk_buff *last; 2329 }; 2330 2331 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2332 2333 #define GRO_RECURSION_LIMIT 15 2334 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2335 { 2336 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2337 } 2338 2339 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2340 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2341 struct list_head *head, 2342 struct sk_buff *skb) 2343 { 2344 if (unlikely(gro_recursion_inc_test(skb))) { 2345 NAPI_GRO_CB(skb)->flush |= 1; 2346 return NULL; 2347 } 2348 2349 return cb(head, skb); 2350 } 2351 2352 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2353 struct sk_buff *); 2354 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2355 struct sock *sk, 2356 struct list_head *head, 2357 struct sk_buff *skb) 2358 { 2359 if (unlikely(gro_recursion_inc_test(skb))) { 2360 NAPI_GRO_CB(skb)->flush |= 1; 2361 return NULL; 2362 } 2363 2364 return cb(sk, head, skb); 2365 } 2366 2367 struct packet_type { 2368 __be16 type; /* This is really htons(ether_type). */ 2369 bool ignore_outgoing; 2370 struct net_device *dev; /* NULL is wildcarded here */ 2371 int (*func) (struct sk_buff *, 2372 struct net_device *, 2373 struct packet_type *, 2374 struct net_device *); 2375 void (*list_func) (struct list_head *, 2376 struct packet_type *, 2377 struct net_device *); 2378 bool (*id_match)(struct packet_type *ptype, 2379 struct sock *sk); 2380 void *af_packet_priv; 2381 struct list_head list; 2382 }; 2383 2384 struct offload_callbacks { 2385 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2386 netdev_features_t features); 2387 struct sk_buff *(*gro_receive)(struct list_head *head, 2388 struct sk_buff *skb); 2389 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2390 }; 2391 2392 struct packet_offload { 2393 __be16 type; /* This is really htons(ether_type). */ 2394 u16 priority; 2395 struct offload_callbacks callbacks; 2396 struct list_head list; 2397 }; 2398 2399 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2400 struct pcpu_sw_netstats { 2401 u64 rx_packets; 2402 u64 rx_bytes; 2403 u64 tx_packets; 2404 u64 tx_bytes; 2405 struct u64_stats_sync syncp; 2406 } __aligned(4 * sizeof(u64)); 2407 2408 struct pcpu_lstats { 2409 u64_stats_t packets; 2410 u64_stats_t bytes; 2411 struct u64_stats_sync syncp; 2412 } __aligned(2 * sizeof(u64)); 2413 2414 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2415 2416 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2417 { 2418 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2419 2420 u64_stats_update_begin(&lstats->syncp); 2421 u64_stats_add(&lstats->bytes, len); 2422 u64_stats_inc(&lstats->packets); 2423 u64_stats_update_end(&lstats->syncp); 2424 } 2425 2426 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2427 ({ \ 2428 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2429 if (pcpu_stats) { \ 2430 int __cpu; \ 2431 for_each_possible_cpu(__cpu) { \ 2432 typeof(type) *stat; \ 2433 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2434 u64_stats_init(&stat->syncp); \ 2435 } \ 2436 } \ 2437 pcpu_stats; \ 2438 }) 2439 2440 #define netdev_alloc_pcpu_stats(type) \ 2441 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2442 2443 enum netdev_lag_tx_type { 2444 NETDEV_LAG_TX_TYPE_UNKNOWN, 2445 NETDEV_LAG_TX_TYPE_RANDOM, 2446 NETDEV_LAG_TX_TYPE_BROADCAST, 2447 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2448 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2449 NETDEV_LAG_TX_TYPE_HASH, 2450 }; 2451 2452 enum netdev_lag_hash { 2453 NETDEV_LAG_HASH_NONE, 2454 NETDEV_LAG_HASH_L2, 2455 NETDEV_LAG_HASH_L34, 2456 NETDEV_LAG_HASH_L23, 2457 NETDEV_LAG_HASH_E23, 2458 NETDEV_LAG_HASH_E34, 2459 NETDEV_LAG_HASH_UNKNOWN, 2460 }; 2461 2462 struct netdev_lag_upper_info { 2463 enum netdev_lag_tx_type tx_type; 2464 enum netdev_lag_hash hash_type; 2465 }; 2466 2467 struct netdev_lag_lower_state_info { 2468 u8 link_up : 1, 2469 tx_enabled : 1; 2470 }; 2471 2472 #include <linux/notifier.h> 2473 2474 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2475 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2476 * adding new types. 2477 */ 2478 enum netdev_cmd { 2479 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2480 NETDEV_DOWN, 2481 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2482 detected a hardware crash and restarted 2483 - we can use this eg to kick tcp sessions 2484 once done */ 2485 NETDEV_CHANGE, /* Notify device state change */ 2486 NETDEV_REGISTER, 2487 NETDEV_UNREGISTER, 2488 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2489 NETDEV_CHANGEADDR, /* notify after the address change */ 2490 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2491 NETDEV_GOING_DOWN, 2492 NETDEV_CHANGENAME, 2493 NETDEV_FEAT_CHANGE, 2494 NETDEV_BONDING_FAILOVER, 2495 NETDEV_PRE_UP, 2496 NETDEV_PRE_TYPE_CHANGE, 2497 NETDEV_POST_TYPE_CHANGE, 2498 NETDEV_POST_INIT, 2499 NETDEV_RELEASE, 2500 NETDEV_NOTIFY_PEERS, 2501 NETDEV_JOIN, 2502 NETDEV_CHANGEUPPER, 2503 NETDEV_RESEND_IGMP, 2504 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2505 NETDEV_CHANGEINFODATA, 2506 NETDEV_BONDING_INFO, 2507 NETDEV_PRECHANGEUPPER, 2508 NETDEV_CHANGELOWERSTATE, 2509 NETDEV_UDP_TUNNEL_PUSH_INFO, 2510 NETDEV_UDP_TUNNEL_DROP_INFO, 2511 NETDEV_CHANGE_TX_QUEUE_LEN, 2512 NETDEV_CVLAN_FILTER_PUSH_INFO, 2513 NETDEV_CVLAN_FILTER_DROP_INFO, 2514 NETDEV_SVLAN_FILTER_PUSH_INFO, 2515 NETDEV_SVLAN_FILTER_DROP_INFO, 2516 }; 2517 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2518 2519 int register_netdevice_notifier(struct notifier_block *nb); 2520 int unregister_netdevice_notifier(struct notifier_block *nb); 2521 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2522 int unregister_netdevice_notifier_net(struct net *net, 2523 struct notifier_block *nb); 2524 2525 struct netdev_notifier_info { 2526 struct net_device *dev; 2527 struct netlink_ext_ack *extack; 2528 }; 2529 2530 struct netdev_notifier_info_ext { 2531 struct netdev_notifier_info info; /* must be first */ 2532 union { 2533 u32 mtu; 2534 } ext; 2535 }; 2536 2537 struct netdev_notifier_change_info { 2538 struct netdev_notifier_info info; /* must be first */ 2539 unsigned int flags_changed; 2540 }; 2541 2542 struct netdev_notifier_changeupper_info { 2543 struct netdev_notifier_info info; /* must be first */ 2544 struct net_device *upper_dev; /* new upper dev */ 2545 bool master; /* is upper dev master */ 2546 bool linking; /* is the notification for link or unlink */ 2547 void *upper_info; /* upper dev info */ 2548 }; 2549 2550 struct netdev_notifier_changelowerstate_info { 2551 struct netdev_notifier_info info; /* must be first */ 2552 void *lower_state_info; /* is lower dev state */ 2553 }; 2554 2555 struct netdev_notifier_pre_changeaddr_info { 2556 struct netdev_notifier_info info; /* must be first */ 2557 const unsigned char *dev_addr; 2558 }; 2559 2560 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2561 struct net_device *dev) 2562 { 2563 info->dev = dev; 2564 info->extack = NULL; 2565 } 2566 2567 static inline struct net_device * 2568 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2569 { 2570 return info->dev; 2571 } 2572 2573 static inline struct netlink_ext_ack * 2574 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2575 { 2576 return info->extack; 2577 } 2578 2579 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2580 2581 2582 extern rwlock_t dev_base_lock; /* Device list lock */ 2583 2584 #define for_each_netdev(net, d) \ 2585 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2586 #define for_each_netdev_reverse(net, d) \ 2587 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2588 #define for_each_netdev_rcu(net, d) \ 2589 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2590 #define for_each_netdev_safe(net, d, n) \ 2591 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2592 #define for_each_netdev_continue(net, d) \ 2593 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2594 #define for_each_netdev_continue_reverse(net, d) \ 2595 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2596 dev_list) 2597 #define for_each_netdev_continue_rcu(net, d) \ 2598 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2599 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2600 for_each_netdev_rcu(&init_net, slave) \ 2601 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2602 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2603 2604 static inline struct net_device *next_net_device(struct net_device *dev) 2605 { 2606 struct list_head *lh; 2607 struct net *net; 2608 2609 net = dev_net(dev); 2610 lh = dev->dev_list.next; 2611 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2612 } 2613 2614 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2615 { 2616 struct list_head *lh; 2617 struct net *net; 2618 2619 net = dev_net(dev); 2620 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2621 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2622 } 2623 2624 static inline struct net_device *first_net_device(struct net *net) 2625 { 2626 return list_empty(&net->dev_base_head) ? NULL : 2627 net_device_entry(net->dev_base_head.next); 2628 } 2629 2630 static inline struct net_device *first_net_device_rcu(struct net *net) 2631 { 2632 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2633 2634 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2635 } 2636 2637 int netdev_boot_setup_check(struct net_device *dev); 2638 unsigned long netdev_boot_base(const char *prefix, int unit); 2639 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2640 const char *hwaddr); 2641 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2642 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2643 void dev_add_pack(struct packet_type *pt); 2644 void dev_remove_pack(struct packet_type *pt); 2645 void __dev_remove_pack(struct packet_type *pt); 2646 void dev_add_offload(struct packet_offload *po); 2647 void dev_remove_offload(struct packet_offload *po); 2648 2649 int dev_get_iflink(const struct net_device *dev); 2650 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2651 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2652 unsigned short mask); 2653 struct net_device *dev_get_by_name(struct net *net, const char *name); 2654 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2655 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2656 int dev_alloc_name(struct net_device *dev, const char *name); 2657 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2658 void dev_close(struct net_device *dev); 2659 void dev_close_many(struct list_head *head, bool unlink); 2660 void dev_disable_lro(struct net_device *dev); 2661 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2662 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2663 struct net_device *sb_dev); 2664 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2665 struct net_device *sb_dev); 2666 int dev_queue_xmit(struct sk_buff *skb); 2667 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2668 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2669 int register_netdevice(struct net_device *dev); 2670 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2671 void unregister_netdevice_many(struct list_head *head); 2672 static inline void unregister_netdevice(struct net_device *dev) 2673 { 2674 unregister_netdevice_queue(dev, NULL); 2675 } 2676 2677 int netdev_refcnt_read(const struct net_device *dev); 2678 void free_netdev(struct net_device *dev); 2679 void netdev_freemem(struct net_device *dev); 2680 void synchronize_net(void); 2681 int init_dummy_netdev(struct net_device *dev); 2682 2683 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2684 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2685 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2686 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2687 int netdev_get_name(struct net *net, char *name, int ifindex); 2688 int dev_restart(struct net_device *dev); 2689 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2690 2691 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2692 { 2693 return NAPI_GRO_CB(skb)->data_offset; 2694 } 2695 2696 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2697 { 2698 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2699 } 2700 2701 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2702 { 2703 NAPI_GRO_CB(skb)->data_offset += len; 2704 } 2705 2706 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2707 unsigned int offset) 2708 { 2709 return NAPI_GRO_CB(skb)->frag0 + offset; 2710 } 2711 2712 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2713 { 2714 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2715 } 2716 2717 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2718 { 2719 NAPI_GRO_CB(skb)->frag0 = NULL; 2720 NAPI_GRO_CB(skb)->frag0_len = 0; 2721 } 2722 2723 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2724 unsigned int offset) 2725 { 2726 if (!pskb_may_pull(skb, hlen)) 2727 return NULL; 2728 2729 skb_gro_frag0_invalidate(skb); 2730 return skb->data + offset; 2731 } 2732 2733 static inline void *skb_gro_network_header(struct sk_buff *skb) 2734 { 2735 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2736 skb_network_offset(skb); 2737 } 2738 2739 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2740 const void *start, unsigned int len) 2741 { 2742 if (NAPI_GRO_CB(skb)->csum_valid) 2743 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2744 csum_partial(start, len, 0)); 2745 } 2746 2747 /* GRO checksum functions. These are logical equivalents of the normal 2748 * checksum functions (in skbuff.h) except that they operate on the GRO 2749 * offsets and fields in sk_buff. 2750 */ 2751 2752 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2753 2754 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2755 { 2756 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2757 } 2758 2759 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2760 bool zero_okay, 2761 __sum16 check) 2762 { 2763 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2764 skb_checksum_start_offset(skb) < 2765 skb_gro_offset(skb)) && 2766 !skb_at_gro_remcsum_start(skb) && 2767 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2768 (!zero_okay || check)); 2769 } 2770 2771 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2772 __wsum psum) 2773 { 2774 if (NAPI_GRO_CB(skb)->csum_valid && 2775 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2776 return 0; 2777 2778 NAPI_GRO_CB(skb)->csum = psum; 2779 2780 return __skb_gro_checksum_complete(skb); 2781 } 2782 2783 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2784 { 2785 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2786 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2787 NAPI_GRO_CB(skb)->csum_cnt--; 2788 } else { 2789 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2790 * verified a new top level checksum or an encapsulated one 2791 * during GRO. This saves work if we fallback to normal path. 2792 */ 2793 __skb_incr_checksum_unnecessary(skb); 2794 } 2795 } 2796 2797 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2798 compute_pseudo) \ 2799 ({ \ 2800 __sum16 __ret = 0; \ 2801 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2802 __ret = __skb_gro_checksum_validate_complete(skb, \ 2803 compute_pseudo(skb, proto)); \ 2804 if (!__ret) \ 2805 skb_gro_incr_csum_unnecessary(skb); \ 2806 __ret; \ 2807 }) 2808 2809 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2810 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2811 2812 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2813 compute_pseudo) \ 2814 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2815 2816 #define skb_gro_checksum_simple_validate(skb) \ 2817 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2818 2819 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2820 { 2821 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2822 !NAPI_GRO_CB(skb)->csum_valid); 2823 } 2824 2825 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2826 __sum16 check, __wsum pseudo) 2827 { 2828 NAPI_GRO_CB(skb)->csum = ~pseudo; 2829 NAPI_GRO_CB(skb)->csum_valid = 1; 2830 } 2831 2832 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2833 do { \ 2834 if (__skb_gro_checksum_convert_check(skb)) \ 2835 __skb_gro_checksum_convert(skb, check, \ 2836 compute_pseudo(skb, proto)); \ 2837 } while (0) 2838 2839 struct gro_remcsum { 2840 int offset; 2841 __wsum delta; 2842 }; 2843 2844 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2845 { 2846 grc->offset = 0; 2847 grc->delta = 0; 2848 } 2849 2850 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2851 unsigned int off, size_t hdrlen, 2852 int start, int offset, 2853 struct gro_remcsum *grc, 2854 bool nopartial) 2855 { 2856 __wsum delta; 2857 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2858 2859 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2860 2861 if (!nopartial) { 2862 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2863 return ptr; 2864 } 2865 2866 ptr = skb_gro_header_fast(skb, off); 2867 if (skb_gro_header_hard(skb, off + plen)) { 2868 ptr = skb_gro_header_slow(skb, off + plen, off); 2869 if (!ptr) 2870 return NULL; 2871 } 2872 2873 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2874 start, offset); 2875 2876 /* Adjust skb->csum since we changed the packet */ 2877 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2878 2879 grc->offset = off + hdrlen + offset; 2880 grc->delta = delta; 2881 2882 return ptr; 2883 } 2884 2885 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2886 struct gro_remcsum *grc) 2887 { 2888 void *ptr; 2889 size_t plen = grc->offset + sizeof(u16); 2890 2891 if (!grc->delta) 2892 return; 2893 2894 ptr = skb_gro_header_fast(skb, grc->offset); 2895 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2896 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2897 if (!ptr) 2898 return; 2899 } 2900 2901 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2902 } 2903 2904 #ifdef CONFIG_XFRM_OFFLOAD 2905 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2906 { 2907 if (PTR_ERR(pp) != -EINPROGRESS) 2908 NAPI_GRO_CB(skb)->flush |= flush; 2909 } 2910 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2911 struct sk_buff *pp, 2912 int flush, 2913 struct gro_remcsum *grc) 2914 { 2915 if (PTR_ERR(pp) != -EINPROGRESS) { 2916 NAPI_GRO_CB(skb)->flush |= flush; 2917 skb_gro_remcsum_cleanup(skb, grc); 2918 skb->remcsum_offload = 0; 2919 } 2920 } 2921 #else 2922 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2923 { 2924 NAPI_GRO_CB(skb)->flush |= flush; 2925 } 2926 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2927 struct sk_buff *pp, 2928 int flush, 2929 struct gro_remcsum *grc) 2930 { 2931 NAPI_GRO_CB(skb)->flush |= flush; 2932 skb_gro_remcsum_cleanup(skb, grc); 2933 skb->remcsum_offload = 0; 2934 } 2935 #endif 2936 2937 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2938 unsigned short type, 2939 const void *daddr, const void *saddr, 2940 unsigned int len) 2941 { 2942 if (!dev->header_ops || !dev->header_ops->create) 2943 return 0; 2944 2945 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2946 } 2947 2948 static inline int dev_parse_header(const struct sk_buff *skb, 2949 unsigned char *haddr) 2950 { 2951 const struct net_device *dev = skb->dev; 2952 2953 if (!dev->header_ops || !dev->header_ops->parse) 2954 return 0; 2955 return dev->header_ops->parse(skb, haddr); 2956 } 2957 2958 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2959 { 2960 const struct net_device *dev = skb->dev; 2961 2962 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2963 return 0; 2964 return dev->header_ops->parse_protocol(skb); 2965 } 2966 2967 /* ll_header must have at least hard_header_len allocated */ 2968 static inline bool dev_validate_header(const struct net_device *dev, 2969 char *ll_header, int len) 2970 { 2971 if (likely(len >= dev->hard_header_len)) 2972 return true; 2973 if (len < dev->min_header_len) 2974 return false; 2975 2976 if (capable(CAP_SYS_RAWIO)) { 2977 memset(ll_header + len, 0, dev->hard_header_len - len); 2978 return true; 2979 } 2980 2981 if (dev->header_ops && dev->header_ops->validate) 2982 return dev->header_ops->validate(ll_header, len); 2983 2984 return false; 2985 } 2986 2987 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2988 int len, int size); 2989 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2990 static inline int unregister_gifconf(unsigned int family) 2991 { 2992 return register_gifconf(family, NULL); 2993 } 2994 2995 #ifdef CONFIG_NET_FLOW_LIMIT 2996 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2997 struct sd_flow_limit { 2998 u64 count; 2999 unsigned int num_buckets; 3000 unsigned int history_head; 3001 u16 history[FLOW_LIMIT_HISTORY]; 3002 u8 buckets[]; 3003 }; 3004 3005 extern int netdev_flow_limit_table_len; 3006 #endif /* CONFIG_NET_FLOW_LIMIT */ 3007 3008 /* 3009 * Incoming packets are placed on per-CPU queues 3010 */ 3011 struct softnet_data { 3012 struct list_head poll_list; 3013 struct sk_buff_head process_queue; 3014 3015 /* stats */ 3016 unsigned int processed; 3017 unsigned int time_squeeze; 3018 unsigned int received_rps; 3019 #ifdef CONFIG_RPS 3020 struct softnet_data *rps_ipi_list; 3021 #endif 3022 #ifdef CONFIG_NET_FLOW_LIMIT 3023 struct sd_flow_limit __rcu *flow_limit; 3024 #endif 3025 struct Qdisc *output_queue; 3026 struct Qdisc **output_queue_tailp; 3027 struct sk_buff *completion_queue; 3028 #ifdef CONFIG_XFRM_OFFLOAD 3029 struct sk_buff_head xfrm_backlog; 3030 #endif 3031 /* written and read only by owning cpu: */ 3032 struct { 3033 u16 recursion; 3034 u8 more; 3035 } xmit; 3036 #ifdef CONFIG_RPS 3037 /* input_queue_head should be written by cpu owning this struct, 3038 * and only read by other cpus. Worth using a cache line. 3039 */ 3040 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3041 3042 /* Elements below can be accessed between CPUs for RPS/RFS */ 3043 call_single_data_t csd ____cacheline_aligned_in_smp; 3044 struct softnet_data *rps_ipi_next; 3045 unsigned int cpu; 3046 unsigned int input_queue_tail; 3047 #endif 3048 unsigned int dropped; 3049 struct sk_buff_head input_pkt_queue; 3050 struct napi_struct backlog; 3051 3052 }; 3053 3054 static inline void input_queue_head_incr(struct softnet_data *sd) 3055 { 3056 #ifdef CONFIG_RPS 3057 sd->input_queue_head++; 3058 #endif 3059 } 3060 3061 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3062 unsigned int *qtail) 3063 { 3064 #ifdef CONFIG_RPS 3065 *qtail = ++sd->input_queue_tail; 3066 #endif 3067 } 3068 3069 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3070 3071 static inline int dev_recursion_level(void) 3072 { 3073 return this_cpu_read(softnet_data.xmit.recursion); 3074 } 3075 3076 #define XMIT_RECURSION_LIMIT 10 3077 static inline bool dev_xmit_recursion(void) 3078 { 3079 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3080 XMIT_RECURSION_LIMIT); 3081 } 3082 3083 static inline void dev_xmit_recursion_inc(void) 3084 { 3085 __this_cpu_inc(softnet_data.xmit.recursion); 3086 } 3087 3088 static inline void dev_xmit_recursion_dec(void) 3089 { 3090 __this_cpu_dec(softnet_data.xmit.recursion); 3091 } 3092 3093 void __netif_schedule(struct Qdisc *q); 3094 void netif_schedule_queue(struct netdev_queue *txq); 3095 3096 static inline void netif_tx_schedule_all(struct net_device *dev) 3097 { 3098 unsigned int i; 3099 3100 for (i = 0; i < dev->num_tx_queues; i++) 3101 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3102 } 3103 3104 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3105 { 3106 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3107 } 3108 3109 /** 3110 * netif_start_queue - allow transmit 3111 * @dev: network device 3112 * 3113 * Allow upper layers to call the device hard_start_xmit routine. 3114 */ 3115 static inline void netif_start_queue(struct net_device *dev) 3116 { 3117 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3118 } 3119 3120 static inline void netif_tx_start_all_queues(struct net_device *dev) 3121 { 3122 unsigned int i; 3123 3124 for (i = 0; i < dev->num_tx_queues; i++) { 3125 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3126 netif_tx_start_queue(txq); 3127 } 3128 } 3129 3130 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3131 3132 /** 3133 * netif_wake_queue - restart transmit 3134 * @dev: network device 3135 * 3136 * Allow upper layers to call the device hard_start_xmit routine. 3137 * Used for flow control when transmit resources are available. 3138 */ 3139 static inline void netif_wake_queue(struct net_device *dev) 3140 { 3141 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3142 } 3143 3144 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3145 { 3146 unsigned int i; 3147 3148 for (i = 0; i < dev->num_tx_queues; i++) { 3149 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3150 netif_tx_wake_queue(txq); 3151 } 3152 } 3153 3154 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3155 { 3156 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3157 } 3158 3159 /** 3160 * netif_stop_queue - stop transmitted packets 3161 * @dev: network device 3162 * 3163 * Stop upper layers calling the device hard_start_xmit routine. 3164 * Used for flow control when transmit resources are unavailable. 3165 */ 3166 static inline void netif_stop_queue(struct net_device *dev) 3167 { 3168 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3169 } 3170 3171 void netif_tx_stop_all_queues(struct net_device *dev); 3172 void netdev_update_lockdep_key(struct net_device *dev); 3173 3174 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3175 { 3176 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3177 } 3178 3179 /** 3180 * netif_queue_stopped - test if transmit queue is flowblocked 3181 * @dev: network device 3182 * 3183 * Test if transmit queue on device is currently unable to send. 3184 */ 3185 static inline bool netif_queue_stopped(const struct net_device *dev) 3186 { 3187 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3188 } 3189 3190 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3191 { 3192 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3193 } 3194 3195 static inline bool 3196 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3197 { 3198 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3199 } 3200 3201 static inline bool 3202 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3203 { 3204 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3205 } 3206 3207 /** 3208 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3209 * @dev_queue: pointer to transmit queue 3210 * 3211 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3212 * to give appropriate hint to the CPU. 3213 */ 3214 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3215 { 3216 #ifdef CONFIG_BQL 3217 prefetchw(&dev_queue->dql.num_queued); 3218 #endif 3219 } 3220 3221 /** 3222 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3223 * @dev_queue: pointer to transmit queue 3224 * 3225 * BQL enabled drivers might use this helper in their TX completion path, 3226 * to give appropriate hint to the CPU. 3227 */ 3228 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3229 { 3230 #ifdef CONFIG_BQL 3231 prefetchw(&dev_queue->dql.limit); 3232 #endif 3233 } 3234 3235 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3236 unsigned int bytes) 3237 { 3238 #ifdef CONFIG_BQL 3239 dql_queued(&dev_queue->dql, bytes); 3240 3241 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3242 return; 3243 3244 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3245 3246 /* 3247 * The XOFF flag must be set before checking the dql_avail below, 3248 * because in netdev_tx_completed_queue we update the dql_completed 3249 * before checking the XOFF flag. 3250 */ 3251 smp_mb(); 3252 3253 /* check again in case another CPU has just made room avail */ 3254 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3255 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3256 #endif 3257 } 3258 3259 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3260 * that they should not test BQL status themselves. 3261 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3262 * skb of a batch. 3263 * Returns true if the doorbell must be used to kick the NIC. 3264 */ 3265 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3266 unsigned int bytes, 3267 bool xmit_more) 3268 { 3269 if (xmit_more) { 3270 #ifdef CONFIG_BQL 3271 dql_queued(&dev_queue->dql, bytes); 3272 #endif 3273 return netif_tx_queue_stopped(dev_queue); 3274 } 3275 netdev_tx_sent_queue(dev_queue, bytes); 3276 return true; 3277 } 3278 3279 /** 3280 * netdev_sent_queue - report the number of bytes queued to hardware 3281 * @dev: network device 3282 * @bytes: number of bytes queued to the hardware device queue 3283 * 3284 * Report the number of bytes queued for sending/completion to the network 3285 * device hardware queue. @bytes should be a good approximation and should 3286 * exactly match netdev_completed_queue() @bytes 3287 */ 3288 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3289 { 3290 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3291 } 3292 3293 static inline bool __netdev_sent_queue(struct net_device *dev, 3294 unsigned int bytes, 3295 bool xmit_more) 3296 { 3297 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3298 xmit_more); 3299 } 3300 3301 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3302 unsigned int pkts, unsigned int bytes) 3303 { 3304 #ifdef CONFIG_BQL 3305 if (unlikely(!bytes)) 3306 return; 3307 3308 dql_completed(&dev_queue->dql, bytes); 3309 3310 /* 3311 * Without the memory barrier there is a small possiblity that 3312 * netdev_tx_sent_queue will miss the update and cause the queue to 3313 * be stopped forever 3314 */ 3315 smp_mb(); 3316 3317 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3318 return; 3319 3320 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3321 netif_schedule_queue(dev_queue); 3322 #endif 3323 } 3324 3325 /** 3326 * netdev_completed_queue - report bytes and packets completed by device 3327 * @dev: network device 3328 * @pkts: actual number of packets sent over the medium 3329 * @bytes: actual number of bytes sent over the medium 3330 * 3331 * Report the number of bytes and packets transmitted by the network device 3332 * hardware queue over the physical medium, @bytes must exactly match the 3333 * @bytes amount passed to netdev_sent_queue() 3334 */ 3335 static inline void netdev_completed_queue(struct net_device *dev, 3336 unsigned int pkts, unsigned int bytes) 3337 { 3338 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3339 } 3340 3341 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3342 { 3343 #ifdef CONFIG_BQL 3344 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3345 dql_reset(&q->dql); 3346 #endif 3347 } 3348 3349 /** 3350 * netdev_reset_queue - reset the packets and bytes count of a network device 3351 * @dev_queue: network device 3352 * 3353 * Reset the bytes and packet count of a network device and clear the 3354 * software flow control OFF bit for this network device 3355 */ 3356 static inline void netdev_reset_queue(struct net_device *dev_queue) 3357 { 3358 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3359 } 3360 3361 /** 3362 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3363 * @dev: network device 3364 * @queue_index: given tx queue index 3365 * 3366 * Returns 0 if given tx queue index >= number of device tx queues, 3367 * otherwise returns the originally passed tx queue index. 3368 */ 3369 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3370 { 3371 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3372 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3373 dev->name, queue_index, 3374 dev->real_num_tx_queues); 3375 return 0; 3376 } 3377 3378 return queue_index; 3379 } 3380 3381 /** 3382 * netif_running - test if up 3383 * @dev: network device 3384 * 3385 * Test if the device has been brought up. 3386 */ 3387 static inline bool netif_running(const struct net_device *dev) 3388 { 3389 return test_bit(__LINK_STATE_START, &dev->state); 3390 } 3391 3392 /* 3393 * Routines to manage the subqueues on a device. We only need start, 3394 * stop, and a check if it's stopped. All other device management is 3395 * done at the overall netdevice level. 3396 * Also test the device if we're multiqueue. 3397 */ 3398 3399 /** 3400 * netif_start_subqueue - allow sending packets on subqueue 3401 * @dev: network device 3402 * @queue_index: sub queue index 3403 * 3404 * Start individual transmit queue of a device with multiple transmit queues. 3405 */ 3406 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3407 { 3408 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3409 3410 netif_tx_start_queue(txq); 3411 } 3412 3413 /** 3414 * netif_stop_subqueue - stop sending packets on subqueue 3415 * @dev: network device 3416 * @queue_index: sub queue index 3417 * 3418 * Stop individual transmit queue of a device with multiple transmit queues. 3419 */ 3420 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3421 { 3422 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3423 netif_tx_stop_queue(txq); 3424 } 3425 3426 /** 3427 * netif_subqueue_stopped - test status of subqueue 3428 * @dev: network device 3429 * @queue_index: sub queue index 3430 * 3431 * Check individual transmit queue of a device with multiple transmit queues. 3432 */ 3433 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3434 u16 queue_index) 3435 { 3436 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3437 3438 return netif_tx_queue_stopped(txq); 3439 } 3440 3441 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3442 struct sk_buff *skb) 3443 { 3444 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3445 } 3446 3447 /** 3448 * netif_wake_subqueue - allow sending packets on subqueue 3449 * @dev: network device 3450 * @queue_index: sub queue index 3451 * 3452 * Resume individual transmit queue of a device with multiple transmit queues. 3453 */ 3454 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3455 { 3456 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3457 3458 netif_tx_wake_queue(txq); 3459 } 3460 3461 #ifdef CONFIG_XPS 3462 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3463 u16 index); 3464 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3465 u16 index, bool is_rxqs_map); 3466 3467 /** 3468 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3469 * @j: CPU/Rx queue index 3470 * @mask: bitmask of all cpus/rx queues 3471 * @nr_bits: number of bits in the bitmask 3472 * 3473 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3474 */ 3475 static inline bool netif_attr_test_mask(unsigned long j, 3476 const unsigned long *mask, 3477 unsigned int nr_bits) 3478 { 3479 cpu_max_bits_warn(j, nr_bits); 3480 return test_bit(j, mask); 3481 } 3482 3483 /** 3484 * netif_attr_test_online - Test for online CPU/Rx queue 3485 * @j: CPU/Rx queue index 3486 * @online_mask: bitmask for CPUs/Rx queues that are online 3487 * @nr_bits: number of bits in the bitmask 3488 * 3489 * Returns true if a CPU/Rx queue is online. 3490 */ 3491 static inline bool netif_attr_test_online(unsigned long j, 3492 const unsigned long *online_mask, 3493 unsigned int nr_bits) 3494 { 3495 cpu_max_bits_warn(j, nr_bits); 3496 3497 if (online_mask) 3498 return test_bit(j, online_mask); 3499 3500 return (j < nr_bits); 3501 } 3502 3503 /** 3504 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3505 * @n: CPU/Rx queue index 3506 * @srcp: the cpumask/Rx queue mask pointer 3507 * @nr_bits: number of bits in the bitmask 3508 * 3509 * Returns >= nr_bits if no further CPUs/Rx queues set. 3510 */ 3511 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3512 unsigned int nr_bits) 3513 { 3514 /* -1 is a legal arg here. */ 3515 if (n != -1) 3516 cpu_max_bits_warn(n, nr_bits); 3517 3518 if (srcp) 3519 return find_next_bit(srcp, nr_bits, n + 1); 3520 3521 return n + 1; 3522 } 3523 3524 /** 3525 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3526 * @n: CPU/Rx queue index 3527 * @src1p: the first CPUs/Rx queues mask pointer 3528 * @src2p: the second CPUs/Rx queues mask pointer 3529 * @nr_bits: number of bits in the bitmask 3530 * 3531 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3532 */ 3533 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3534 const unsigned long *src2p, 3535 unsigned int nr_bits) 3536 { 3537 /* -1 is a legal arg here. */ 3538 if (n != -1) 3539 cpu_max_bits_warn(n, nr_bits); 3540 3541 if (src1p && src2p) 3542 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3543 else if (src1p) 3544 return find_next_bit(src1p, nr_bits, n + 1); 3545 else if (src2p) 3546 return find_next_bit(src2p, nr_bits, n + 1); 3547 3548 return n + 1; 3549 } 3550 #else 3551 static inline int netif_set_xps_queue(struct net_device *dev, 3552 const struct cpumask *mask, 3553 u16 index) 3554 { 3555 return 0; 3556 } 3557 3558 static inline int __netif_set_xps_queue(struct net_device *dev, 3559 const unsigned long *mask, 3560 u16 index, bool is_rxqs_map) 3561 { 3562 return 0; 3563 } 3564 #endif 3565 3566 /** 3567 * netif_is_multiqueue - test if device has multiple transmit queues 3568 * @dev: network device 3569 * 3570 * Check if device has multiple transmit queues 3571 */ 3572 static inline bool netif_is_multiqueue(const struct net_device *dev) 3573 { 3574 return dev->num_tx_queues > 1; 3575 } 3576 3577 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3578 3579 #ifdef CONFIG_SYSFS 3580 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3581 #else 3582 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3583 unsigned int rxqs) 3584 { 3585 dev->real_num_rx_queues = rxqs; 3586 return 0; 3587 } 3588 #endif 3589 3590 static inline struct netdev_rx_queue * 3591 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3592 { 3593 return dev->_rx + rxq; 3594 } 3595 3596 #ifdef CONFIG_SYSFS 3597 static inline unsigned int get_netdev_rx_queue_index( 3598 struct netdev_rx_queue *queue) 3599 { 3600 struct net_device *dev = queue->dev; 3601 int index = queue - dev->_rx; 3602 3603 BUG_ON(index >= dev->num_rx_queues); 3604 return index; 3605 } 3606 #endif 3607 3608 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3609 int netif_get_num_default_rss_queues(void); 3610 3611 enum skb_free_reason { 3612 SKB_REASON_CONSUMED, 3613 SKB_REASON_DROPPED, 3614 }; 3615 3616 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3617 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3618 3619 /* 3620 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3621 * interrupt context or with hardware interrupts being disabled. 3622 * (in_irq() || irqs_disabled()) 3623 * 3624 * We provide four helpers that can be used in following contexts : 3625 * 3626 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3627 * replacing kfree_skb(skb) 3628 * 3629 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3630 * Typically used in place of consume_skb(skb) in TX completion path 3631 * 3632 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3633 * replacing kfree_skb(skb) 3634 * 3635 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3636 * and consumed a packet. Used in place of consume_skb(skb) 3637 */ 3638 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3639 { 3640 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3641 } 3642 3643 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3644 { 3645 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3646 } 3647 3648 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3649 { 3650 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3651 } 3652 3653 static inline void dev_consume_skb_any(struct sk_buff *skb) 3654 { 3655 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3656 } 3657 3658 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3659 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3660 int netif_rx(struct sk_buff *skb); 3661 int netif_rx_ni(struct sk_buff *skb); 3662 int netif_receive_skb(struct sk_buff *skb); 3663 int netif_receive_skb_core(struct sk_buff *skb); 3664 void netif_receive_skb_list(struct list_head *head); 3665 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3666 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3667 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3668 gro_result_t napi_gro_frags(struct napi_struct *napi); 3669 struct packet_offload *gro_find_receive_by_type(__be16 type); 3670 struct packet_offload *gro_find_complete_by_type(__be16 type); 3671 3672 static inline void napi_free_frags(struct napi_struct *napi) 3673 { 3674 kfree_skb(napi->skb); 3675 napi->skb = NULL; 3676 } 3677 3678 bool netdev_is_rx_handler_busy(struct net_device *dev); 3679 int netdev_rx_handler_register(struct net_device *dev, 3680 rx_handler_func_t *rx_handler, 3681 void *rx_handler_data); 3682 void netdev_rx_handler_unregister(struct net_device *dev); 3683 3684 bool dev_valid_name(const char *name); 3685 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3686 bool *need_copyout); 3687 int dev_ifconf(struct net *net, struct ifconf *, int); 3688 int dev_ethtool(struct net *net, struct ifreq *); 3689 unsigned int dev_get_flags(const struct net_device *); 3690 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3691 struct netlink_ext_ack *extack); 3692 int dev_change_flags(struct net_device *dev, unsigned int flags, 3693 struct netlink_ext_ack *extack); 3694 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3695 unsigned int gchanges); 3696 int dev_change_name(struct net_device *, const char *); 3697 int dev_set_alias(struct net_device *, const char *, size_t); 3698 int dev_get_alias(const struct net_device *, char *, size_t); 3699 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3700 int __dev_set_mtu(struct net_device *, int); 3701 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3702 struct netlink_ext_ack *extack); 3703 int dev_set_mtu(struct net_device *, int); 3704 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3705 void dev_set_group(struct net_device *, int); 3706 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3707 struct netlink_ext_ack *extack); 3708 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3709 struct netlink_ext_ack *extack); 3710 int dev_change_carrier(struct net_device *, bool new_carrier); 3711 int dev_get_phys_port_id(struct net_device *dev, 3712 struct netdev_phys_item_id *ppid); 3713 int dev_get_phys_port_name(struct net_device *dev, 3714 char *name, size_t len); 3715 int dev_get_port_parent_id(struct net_device *dev, 3716 struct netdev_phys_item_id *ppid, bool recurse); 3717 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3718 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3719 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3720 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3721 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3722 struct netdev_queue *txq, int *ret); 3723 3724 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3725 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3726 int fd, u32 flags); 3727 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3728 enum bpf_netdev_command cmd); 3729 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3730 3731 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3732 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3733 bool is_skb_forwardable(const struct net_device *dev, 3734 const struct sk_buff *skb); 3735 3736 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3737 struct sk_buff *skb) 3738 { 3739 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3740 unlikely(!is_skb_forwardable(dev, skb))) { 3741 atomic_long_inc(&dev->rx_dropped); 3742 kfree_skb(skb); 3743 return NET_RX_DROP; 3744 } 3745 3746 skb_scrub_packet(skb, true); 3747 skb->priority = 0; 3748 return 0; 3749 } 3750 3751 bool dev_nit_active(struct net_device *dev); 3752 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3753 3754 extern int netdev_budget; 3755 extern unsigned int netdev_budget_usecs; 3756 3757 /* Called by rtnetlink.c:rtnl_unlock() */ 3758 void netdev_run_todo(void); 3759 3760 /** 3761 * dev_put - release reference to device 3762 * @dev: network device 3763 * 3764 * Release reference to device to allow it to be freed. 3765 */ 3766 static inline void dev_put(struct net_device *dev) 3767 { 3768 this_cpu_dec(*dev->pcpu_refcnt); 3769 } 3770 3771 /** 3772 * dev_hold - get reference to device 3773 * @dev: network device 3774 * 3775 * Hold reference to device to keep it from being freed. 3776 */ 3777 static inline void dev_hold(struct net_device *dev) 3778 { 3779 this_cpu_inc(*dev->pcpu_refcnt); 3780 } 3781 3782 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3783 * and _off may be called from IRQ context, but it is caller 3784 * who is responsible for serialization of these calls. 3785 * 3786 * The name carrier is inappropriate, these functions should really be 3787 * called netif_lowerlayer_*() because they represent the state of any 3788 * kind of lower layer not just hardware media. 3789 */ 3790 3791 void linkwatch_init_dev(struct net_device *dev); 3792 void linkwatch_fire_event(struct net_device *dev); 3793 void linkwatch_forget_dev(struct net_device *dev); 3794 3795 /** 3796 * netif_carrier_ok - test if carrier present 3797 * @dev: network device 3798 * 3799 * Check if carrier is present on device 3800 */ 3801 static inline bool netif_carrier_ok(const struct net_device *dev) 3802 { 3803 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3804 } 3805 3806 unsigned long dev_trans_start(struct net_device *dev); 3807 3808 void __netdev_watchdog_up(struct net_device *dev); 3809 3810 void netif_carrier_on(struct net_device *dev); 3811 3812 void netif_carrier_off(struct net_device *dev); 3813 3814 /** 3815 * netif_dormant_on - mark device as dormant. 3816 * @dev: network device 3817 * 3818 * Mark device as dormant (as per RFC2863). 3819 * 3820 * The dormant state indicates that the relevant interface is not 3821 * actually in a condition to pass packets (i.e., it is not 'up') but is 3822 * in a "pending" state, waiting for some external event. For "on- 3823 * demand" interfaces, this new state identifies the situation where the 3824 * interface is waiting for events to place it in the up state. 3825 */ 3826 static inline void netif_dormant_on(struct net_device *dev) 3827 { 3828 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3829 linkwatch_fire_event(dev); 3830 } 3831 3832 /** 3833 * netif_dormant_off - set device as not dormant. 3834 * @dev: network device 3835 * 3836 * Device is not in dormant state. 3837 */ 3838 static inline void netif_dormant_off(struct net_device *dev) 3839 { 3840 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3841 linkwatch_fire_event(dev); 3842 } 3843 3844 /** 3845 * netif_dormant - test if device is dormant 3846 * @dev: network device 3847 * 3848 * Check if device is dormant. 3849 */ 3850 static inline bool netif_dormant(const struct net_device *dev) 3851 { 3852 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3853 } 3854 3855 3856 /** 3857 * netif_oper_up - test if device is operational 3858 * @dev: network device 3859 * 3860 * Check if carrier is operational 3861 */ 3862 static inline bool netif_oper_up(const struct net_device *dev) 3863 { 3864 return (dev->operstate == IF_OPER_UP || 3865 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3866 } 3867 3868 /** 3869 * netif_device_present - is device available or removed 3870 * @dev: network device 3871 * 3872 * Check if device has not been removed from system. 3873 */ 3874 static inline bool netif_device_present(struct net_device *dev) 3875 { 3876 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3877 } 3878 3879 void netif_device_detach(struct net_device *dev); 3880 3881 void netif_device_attach(struct net_device *dev); 3882 3883 /* 3884 * Network interface message level settings 3885 */ 3886 3887 enum { 3888 NETIF_MSG_DRV = 0x0001, 3889 NETIF_MSG_PROBE = 0x0002, 3890 NETIF_MSG_LINK = 0x0004, 3891 NETIF_MSG_TIMER = 0x0008, 3892 NETIF_MSG_IFDOWN = 0x0010, 3893 NETIF_MSG_IFUP = 0x0020, 3894 NETIF_MSG_RX_ERR = 0x0040, 3895 NETIF_MSG_TX_ERR = 0x0080, 3896 NETIF_MSG_TX_QUEUED = 0x0100, 3897 NETIF_MSG_INTR = 0x0200, 3898 NETIF_MSG_TX_DONE = 0x0400, 3899 NETIF_MSG_RX_STATUS = 0x0800, 3900 NETIF_MSG_PKTDATA = 0x1000, 3901 NETIF_MSG_HW = 0x2000, 3902 NETIF_MSG_WOL = 0x4000, 3903 }; 3904 3905 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3906 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3907 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3908 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3909 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3910 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3911 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3912 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3913 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3914 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3915 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3916 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3917 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3918 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3919 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3920 3921 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3922 { 3923 /* use default */ 3924 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3925 return default_msg_enable_bits; 3926 if (debug_value == 0) /* no output */ 3927 return 0; 3928 /* set low N bits */ 3929 return (1U << debug_value) - 1; 3930 } 3931 3932 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3933 { 3934 spin_lock(&txq->_xmit_lock); 3935 txq->xmit_lock_owner = cpu; 3936 } 3937 3938 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3939 { 3940 __acquire(&txq->_xmit_lock); 3941 return true; 3942 } 3943 3944 static inline void __netif_tx_release(struct netdev_queue *txq) 3945 { 3946 __release(&txq->_xmit_lock); 3947 } 3948 3949 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3950 { 3951 spin_lock_bh(&txq->_xmit_lock); 3952 txq->xmit_lock_owner = smp_processor_id(); 3953 } 3954 3955 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3956 { 3957 bool ok = spin_trylock(&txq->_xmit_lock); 3958 if (likely(ok)) 3959 txq->xmit_lock_owner = smp_processor_id(); 3960 return ok; 3961 } 3962 3963 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3964 { 3965 txq->xmit_lock_owner = -1; 3966 spin_unlock(&txq->_xmit_lock); 3967 } 3968 3969 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3970 { 3971 txq->xmit_lock_owner = -1; 3972 spin_unlock_bh(&txq->_xmit_lock); 3973 } 3974 3975 static inline void txq_trans_update(struct netdev_queue *txq) 3976 { 3977 if (txq->xmit_lock_owner != -1) 3978 txq->trans_start = jiffies; 3979 } 3980 3981 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3982 static inline void netif_trans_update(struct net_device *dev) 3983 { 3984 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3985 3986 if (txq->trans_start != jiffies) 3987 txq->trans_start = jiffies; 3988 } 3989 3990 /** 3991 * netif_tx_lock - grab network device transmit lock 3992 * @dev: network device 3993 * 3994 * Get network device transmit lock 3995 */ 3996 static inline void netif_tx_lock(struct net_device *dev) 3997 { 3998 unsigned int i; 3999 int cpu; 4000 4001 spin_lock(&dev->tx_global_lock); 4002 cpu = smp_processor_id(); 4003 for (i = 0; i < dev->num_tx_queues; i++) { 4004 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4005 4006 /* We are the only thread of execution doing a 4007 * freeze, but we have to grab the _xmit_lock in 4008 * order to synchronize with threads which are in 4009 * the ->hard_start_xmit() handler and already 4010 * checked the frozen bit. 4011 */ 4012 __netif_tx_lock(txq, cpu); 4013 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4014 __netif_tx_unlock(txq); 4015 } 4016 } 4017 4018 static inline void netif_tx_lock_bh(struct net_device *dev) 4019 { 4020 local_bh_disable(); 4021 netif_tx_lock(dev); 4022 } 4023 4024 static inline void netif_tx_unlock(struct net_device *dev) 4025 { 4026 unsigned int i; 4027 4028 for (i = 0; i < dev->num_tx_queues; i++) { 4029 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4030 4031 /* No need to grab the _xmit_lock here. If the 4032 * queue is not stopped for another reason, we 4033 * force a schedule. 4034 */ 4035 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4036 netif_schedule_queue(txq); 4037 } 4038 spin_unlock(&dev->tx_global_lock); 4039 } 4040 4041 static inline void netif_tx_unlock_bh(struct net_device *dev) 4042 { 4043 netif_tx_unlock(dev); 4044 local_bh_enable(); 4045 } 4046 4047 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4048 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4049 __netif_tx_lock(txq, cpu); \ 4050 } else { \ 4051 __netif_tx_acquire(txq); \ 4052 } \ 4053 } 4054 4055 #define HARD_TX_TRYLOCK(dev, txq) \ 4056 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4057 __netif_tx_trylock(txq) : \ 4058 __netif_tx_acquire(txq)) 4059 4060 #define HARD_TX_UNLOCK(dev, txq) { \ 4061 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4062 __netif_tx_unlock(txq); \ 4063 } else { \ 4064 __netif_tx_release(txq); \ 4065 } \ 4066 } 4067 4068 static inline void netif_tx_disable(struct net_device *dev) 4069 { 4070 unsigned int i; 4071 int cpu; 4072 4073 local_bh_disable(); 4074 cpu = smp_processor_id(); 4075 for (i = 0; i < dev->num_tx_queues; i++) { 4076 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4077 4078 __netif_tx_lock(txq, cpu); 4079 netif_tx_stop_queue(txq); 4080 __netif_tx_unlock(txq); 4081 } 4082 local_bh_enable(); 4083 } 4084 4085 static inline void netif_addr_lock(struct net_device *dev) 4086 { 4087 spin_lock(&dev->addr_list_lock); 4088 } 4089 4090 static inline void netif_addr_lock_bh(struct net_device *dev) 4091 { 4092 spin_lock_bh(&dev->addr_list_lock); 4093 } 4094 4095 static inline void netif_addr_unlock(struct net_device *dev) 4096 { 4097 spin_unlock(&dev->addr_list_lock); 4098 } 4099 4100 static inline void netif_addr_unlock_bh(struct net_device *dev) 4101 { 4102 spin_unlock_bh(&dev->addr_list_lock); 4103 } 4104 4105 /* 4106 * dev_addrs walker. Should be used only for read access. Call with 4107 * rcu_read_lock held. 4108 */ 4109 #define for_each_dev_addr(dev, ha) \ 4110 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4111 4112 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4113 4114 void ether_setup(struct net_device *dev); 4115 4116 /* Support for loadable net-drivers */ 4117 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4118 unsigned char name_assign_type, 4119 void (*setup)(struct net_device *), 4120 unsigned int txqs, unsigned int rxqs); 4121 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4122 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4123 4124 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4125 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4126 count) 4127 4128 int register_netdev(struct net_device *dev); 4129 void unregister_netdev(struct net_device *dev); 4130 4131 /* General hardware address lists handling functions */ 4132 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4133 struct netdev_hw_addr_list *from_list, int addr_len); 4134 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4135 struct netdev_hw_addr_list *from_list, int addr_len); 4136 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4137 struct net_device *dev, 4138 int (*sync)(struct net_device *, const unsigned char *), 4139 int (*unsync)(struct net_device *, 4140 const unsigned char *)); 4141 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4142 struct net_device *dev, 4143 int (*sync)(struct net_device *, 4144 const unsigned char *, int), 4145 int (*unsync)(struct net_device *, 4146 const unsigned char *, int)); 4147 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4148 struct net_device *dev, 4149 int (*unsync)(struct net_device *, 4150 const unsigned char *, int)); 4151 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4152 struct net_device *dev, 4153 int (*unsync)(struct net_device *, 4154 const unsigned char *)); 4155 void __hw_addr_init(struct netdev_hw_addr_list *list); 4156 4157 /* Functions used for device addresses handling */ 4158 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4159 unsigned char addr_type); 4160 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4161 unsigned char addr_type); 4162 void dev_addr_flush(struct net_device *dev); 4163 int dev_addr_init(struct net_device *dev); 4164 4165 /* Functions used for unicast addresses handling */ 4166 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4167 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4168 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4169 int dev_uc_sync(struct net_device *to, struct net_device *from); 4170 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4171 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4172 void dev_uc_flush(struct net_device *dev); 4173 void dev_uc_init(struct net_device *dev); 4174 4175 /** 4176 * __dev_uc_sync - Synchonize device's unicast list 4177 * @dev: device to sync 4178 * @sync: function to call if address should be added 4179 * @unsync: function to call if address should be removed 4180 * 4181 * Add newly added addresses to the interface, and release 4182 * addresses that have been deleted. 4183 */ 4184 static inline int __dev_uc_sync(struct net_device *dev, 4185 int (*sync)(struct net_device *, 4186 const unsigned char *), 4187 int (*unsync)(struct net_device *, 4188 const unsigned char *)) 4189 { 4190 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4191 } 4192 4193 /** 4194 * __dev_uc_unsync - Remove synchronized addresses from device 4195 * @dev: device to sync 4196 * @unsync: function to call if address should be removed 4197 * 4198 * Remove all addresses that were added to the device by dev_uc_sync(). 4199 */ 4200 static inline void __dev_uc_unsync(struct net_device *dev, 4201 int (*unsync)(struct net_device *, 4202 const unsigned char *)) 4203 { 4204 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4205 } 4206 4207 /* Functions used for multicast addresses handling */ 4208 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4209 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4210 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4211 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4212 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4213 int dev_mc_sync(struct net_device *to, struct net_device *from); 4214 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4215 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4216 void dev_mc_flush(struct net_device *dev); 4217 void dev_mc_init(struct net_device *dev); 4218 4219 /** 4220 * __dev_mc_sync - Synchonize device's multicast list 4221 * @dev: device to sync 4222 * @sync: function to call if address should be added 4223 * @unsync: function to call if address should be removed 4224 * 4225 * Add newly added addresses to the interface, and release 4226 * addresses that have been deleted. 4227 */ 4228 static inline int __dev_mc_sync(struct net_device *dev, 4229 int (*sync)(struct net_device *, 4230 const unsigned char *), 4231 int (*unsync)(struct net_device *, 4232 const unsigned char *)) 4233 { 4234 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4235 } 4236 4237 /** 4238 * __dev_mc_unsync - Remove synchronized addresses from device 4239 * @dev: device to sync 4240 * @unsync: function to call if address should be removed 4241 * 4242 * Remove all addresses that were added to the device by dev_mc_sync(). 4243 */ 4244 static inline void __dev_mc_unsync(struct net_device *dev, 4245 int (*unsync)(struct net_device *, 4246 const unsigned char *)) 4247 { 4248 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4249 } 4250 4251 /* Functions used for secondary unicast and multicast support */ 4252 void dev_set_rx_mode(struct net_device *dev); 4253 void __dev_set_rx_mode(struct net_device *dev); 4254 int dev_set_promiscuity(struct net_device *dev, int inc); 4255 int dev_set_allmulti(struct net_device *dev, int inc); 4256 void netdev_state_change(struct net_device *dev); 4257 void netdev_notify_peers(struct net_device *dev); 4258 void netdev_features_change(struct net_device *dev); 4259 /* Load a device via the kmod */ 4260 void dev_load(struct net *net, const char *name); 4261 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4262 struct rtnl_link_stats64 *storage); 4263 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4264 const struct net_device_stats *netdev_stats); 4265 4266 extern int netdev_max_backlog; 4267 extern int netdev_tstamp_prequeue; 4268 extern int weight_p; 4269 extern int dev_weight_rx_bias; 4270 extern int dev_weight_tx_bias; 4271 extern int dev_rx_weight; 4272 extern int dev_tx_weight; 4273 extern int gro_normal_batch; 4274 4275 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4276 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4277 struct list_head **iter); 4278 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4279 struct list_head **iter); 4280 4281 /* iterate through upper list, must be called under RCU read lock */ 4282 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4283 for (iter = &(dev)->adj_list.upper, \ 4284 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4285 updev; \ 4286 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4287 4288 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4289 int (*fn)(struct net_device *upper_dev, 4290 void *data), 4291 void *data); 4292 4293 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4294 struct net_device *upper_dev); 4295 4296 bool netdev_has_any_upper_dev(struct net_device *dev); 4297 4298 void *netdev_lower_get_next_private(struct net_device *dev, 4299 struct list_head **iter); 4300 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4301 struct list_head **iter); 4302 4303 #define netdev_for_each_lower_private(dev, priv, iter) \ 4304 for (iter = (dev)->adj_list.lower.next, \ 4305 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4306 priv; \ 4307 priv = netdev_lower_get_next_private(dev, &(iter))) 4308 4309 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4310 for (iter = &(dev)->adj_list.lower, \ 4311 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4312 priv; \ 4313 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4314 4315 void *netdev_lower_get_next(struct net_device *dev, 4316 struct list_head **iter); 4317 4318 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4319 for (iter = (dev)->adj_list.lower.next, \ 4320 ldev = netdev_lower_get_next(dev, &(iter)); \ 4321 ldev; \ 4322 ldev = netdev_lower_get_next(dev, &(iter))) 4323 4324 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4325 struct list_head **iter); 4326 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4327 struct list_head **iter); 4328 4329 int netdev_walk_all_lower_dev(struct net_device *dev, 4330 int (*fn)(struct net_device *lower_dev, 4331 void *data), 4332 void *data); 4333 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4334 int (*fn)(struct net_device *lower_dev, 4335 void *data), 4336 void *data); 4337 4338 void *netdev_adjacent_get_private(struct list_head *adj_list); 4339 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4340 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4341 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4342 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4343 struct netlink_ext_ack *extack); 4344 int netdev_master_upper_dev_link(struct net_device *dev, 4345 struct net_device *upper_dev, 4346 void *upper_priv, void *upper_info, 4347 struct netlink_ext_ack *extack); 4348 void netdev_upper_dev_unlink(struct net_device *dev, 4349 struct net_device *upper_dev); 4350 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4351 struct net_device *new_dev, 4352 struct net_device *dev, 4353 struct netlink_ext_ack *extack); 4354 void netdev_adjacent_change_commit(struct net_device *old_dev, 4355 struct net_device *new_dev, 4356 struct net_device *dev); 4357 void netdev_adjacent_change_abort(struct net_device *old_dev, 4358 struct net_device *new_dev, 4359 struct net_device *dev); 4360 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4361 void *netdev_lower_dev_get_private(struct net_device *dev, 4362 struct net_device *lower_dev); 4363 void netdev_lower_state_changed(struct net_device *lower_dev, 4364 void *lower_state_info); 4365 4366 /* RSS keys are 40 or 52 bytes long */ 4367 #define NETDEV_RSS_KEY_LEN 52 4368 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4369 void netdev_rss_key_fill(void *buffer, size_t len); 4370 4371 int skb_checksum_help(struct sk_buff *skb); 4372 int skb_crc32c_csum_help(struct sk_buff *skb); 4373 int skb_csum_hwoffload_help(struct sk_buff *skb, 4374 const netdev_features_t features); 4375 4376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4377 netdev_features_t features, bool tx_path); 4378 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4379 netdev_features_t features); 4380 4381 struct netdev_bonding_info { 4382 ifslave slave; 4383 ifbond master; 4384 }; 4385 4386 struct netdev_notifier_bonding_info { 4387 struct netdev_notifier_info info; /* must be first */ 4388 struct netdev_bonding_info bonding_info; 4389 }; 4390 4391 void netdev_bonding_info_change(struct net_device *dev, 4392 struct netdev_bonding_info *bonding_info); 4393 4394 static inline 4395 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4396 { 4397 return __skb_gso_segment(skb, features, true); 4398 } 4399 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4400 4401 static inline bool can_checksum_protocol(netdev_features_t features, 4402 __be16 protocol) 4403 { 4404 if (protocol == htons(ETH_P_FCOE)) 4405 return !!(features & NETIF_F_FCOE_CRC); 4406 4407 /* Assume this is an IP checksum (not SCTP CRC) */ 4408 4409 if (features & NETIF_F_HW_CSUM) { 4410 /* Can checksum everything */ 4411 return true; 4412 } 4413 4414 switch (protocol) { 4415 case htons(ETH_P_IP): 4416 return !!(features & NETIF_F_IP_CSUM); 4417 case htons(ETH_P_IPV6): 4418 return !!(features & NETIF_F_IPV6_CSUM); 4419 default: 4420 return false; 4421 } 4422 } 4423 4424 #ifdef CONFIG_BUG 4425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4426 #else 4427 static inline void netdev_rx_csum_fault(struct net_device *dev, 4428 struct sk_buff *skb) 4429 { 4430 } 4431 #endif 4432 /* rx skb timestamps */ 4433 void net_enable_timestamp(void); 4434 void net_disable_timestamp(void); 4435 4436 #ifdef CONFIG_PROC_FS 4437 int __init dev_proc_init(void); 4438 #else 4439 #define dev_proc_init() 0 4440 #endif 4441 4442 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4443 struct sk_buff *skb, struct net_device *dev, 4444 bool more) 4445 { 4446 __this_cpu_write(softnet_data.xmit.more, more); 4447 return ops->ndo_start_xmit(skb, dev); 4448 } 4449 4450 static inline bool netdev_xmit_more(void) 4451 { 4452 return __this_cpu_read(softnet_data.xmit.more); 4453 } 4454 4455 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4456 struct netdev_queue *txq, bool more) 4457 { 4458 const struct net_device_ops *ops = dev->netdev_ops; 4459 netdev_tx_t rc; 4460 4461 rc = __netdev_start_xmit(ops, skb, dev, more); 4462 if (rc == NETDEV_TX_OK) 4463 txq_trans_update(txq); 4464 4465 return rc; 4466 } 4467 4468 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4469 const void *ns); 4470 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4471 const void *ns); 4472 4473 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4474 { 4475 return netdev_class_create_file_ns(class_attr, NULL); 4476 } 4477 4478 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4479 { 4480 netdev_class_remove_file_ns(class_attr, NULL); 4481 } 4482 4483 extern const struct kobj_ns_type_operations net_ns_type_operations; 4484 4485 const char *netdev_drivername(const struct net_device *dev); 4486 4487 void linkwatch_run_queue(void); 4488 4489 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4490 netdev_features_t f2) 4491 { 4492 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4493 if (f1 & NETIF_F_HW_CSUM) 4494 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4495 else 4496 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4497 } 4498 4499 return f1 & f2; 4500 } 4501 4502 static inline netdev_features_t netdev_get_wanted_features( 4503 struct net_device *dev) 4504 { 4505 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4506 } 4507 netdev_features_t netdev_increment_features(netdev_features_t all, 4508 netdev_features_t one, netdev_features_t mask); 4509 4510 /* Allow TSO being used on stacked device : 4511 * Performing the GSO segmentation before last device 4512 * is a performance improvement. 4513 */ 4514 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4515 netdev_features_t mask) 4516 { 4517 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4518 } 4519 4520 int __netdev_update_features(struct net_device *dev); 4521 void netdev_update_features(struct net_device *dev); 4522 void netdev_change_features(struct net_device *dev); 4523 4524 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4525 struct net_device *dev); 4526 4527 netdev_features_t passthru_features_check(struct sk_buff *skb, 4528 struct net_device *dev, 4529 netdev_features_t features); 4530 netdev_features_t netif_skb_features(struct sk_buff *skb); 4531 4532 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4533 { 4534 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4535 4536 /* check flags correspondence */ 4537 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4538 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4539 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4540 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4541 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4542 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4543 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4544 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4545 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4546 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4547 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4548 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4549 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4550 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4551 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4552 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4553 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4554 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4555 4556 return (features & feature) == feature; 4557 } 4558 4559 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4560 { 4561 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4562 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4563 } 4564 4565 static inline bool netif_needs_gso(struct sk_buff *skb, 4566 netdev_features_t features) 4567 { 4568 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4569 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4570 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4571 } 4572 4573 static inline void netif_set_gso_max_size(struct net_device *dev, 4574 unsigned int size) 4575 { 4576 dev->gso_max_size = size; 4577 } 4578 4579 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4580 int pulled_hlen, u16 mac_offset, 4581 int mac_len) 4582 { 4583 skb->protocol = protocol; 4584 skb->encapsulation = 1; 4585 skb_push(skb, pulled_hlen); 4586 skb_reset_transport_header(skb); 4587 skb->mac_header = mac_offset; 4588 skb->network_header = skb->mac_header + mac_len; 4589 skb->mac_len = mac_len; 4590 } 4591 4592 static inline bool netif_is_macsec(const struct net_device *dev) 4593 { 4594 return dev->priv_flags & IFF_MACSEC; 4595 } 4596 4597 static inline bool netif_is_macvlan(const struct net_device *dev) 4598 { 4599 return dev->priv_flags & IFF_MACVLAN; 4600 } 4601 4602 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4603 { 4604 return dev->priv_flags & IFF_MACVLAN_PORT; 4605 } 4606 4607 static inline bool netif_is_bond_master(const struct net_device *dev) 4608 { 4609 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4610 } 4611 4612 static inline bool netif_is_bond_slave(const struct net_device *dev) 4613 { 4614 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4615 } 4616 4617 static inline bool netif_supports_nofcs(struct net_device *dev) 4618 { 4619 return dev->priv_flags & IFF_SUPP_NOFCS; 4620 } 4621 4622 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4623 { 4624 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4625 } 4626 4627 static inline bool netif_is_l3_master(const struct net_device *dev) 4628 { 4629 return dev->priv_flags & IFF_L3MDEV_MASTER; 4630 } 4631 4632 static inline bool netif_is_l3_slave(const struct net_device *dev) 4633 { 4634 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4635 } 4636 4637 static inline bool netif_is_bridge_master(const struct net_device *dev) 4638 { 4639 return dev->priv_flags & IFF_EBRIDGE; 4640 } 4641 4642 static inline bool netif_is_bridge_port(const struct net_device *dev) 4643 { 4644 return dev->priv_flags & IFF_BRIDGE_PORT; 4645 } 4646 4647 static inline bool netif_is_ovs_master(const struct net_device *dev) 4648 { 4649 return dev->priv_flags & IFF_OPENVSWITCH; 4650 } 4651 4652 static inline bool netif_is_ovs_port(const struct net_device *dev) 4653 { 4654 return dev->priv_flags & IFF_OVS_DATAPATH; 4655 } 4656 4657 static inline bool netif_is_team_master(const struct net_device *dev) 4658 { 4659 return dev->priv_flags & IFF_TEAM; 4660 } 4661 4662 static inline bool netif_is_team_port(const struct net_device *dev) 4663 { 4664 return dev->priv_flags & IFF_TEAM_PORT; 4665 } 4666 4667 static inline bool netif_is_lag_master(const struct net_device *dev) 4668 { 4669 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4670 } 4671 4672 static inline bool netif_is_lag_port(const struct net_device *dev) 4673 { 4674 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4675 } 4676 4677 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4678 { 4679 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4680 } 4681 4682 static inline bool netif_is_failover(const struct net_device *dev) 4683 { 4684 return dev->priv_flags & IFF_FAILOVER; 4685 } 4686 4687 static inline bool netif_is_failover_slave(const struct net_device *dev) 4688 { 4689 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4690 } 4691 4692 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4693 static inline void netif_keep_dst(struct net_device *dev) 4694 { 4695 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4696 } 4697 4698 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4699 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4700 { 4701 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4702 return dev->priv_flags & IFF_MACSEC; 4703 } 4704 4705 extern struct pernet_operations __net_initdata loopback_net_ops; 4706 4707 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4708 4709 /* netdev_printk helpers, similar to dev_printk */ 4710 4711 static inline const char *netdev_name(const struct net_device *dev) 4712 { 4713 if (!dev->name[0] || strchr(dev->name, '%')) 4714 return "(unnamed net_device)"; 4715 return dev->name; 4716 } 4717 4718 static inline bool netdev_unregistering(const struct net_device *dev) 4719 { 4720 return dev->reg_state == NETREG_UNREGISTERING; 4721 } 4722 4723 static inline const char *netdev_reg_state(const struct net_device *dev) 4724 { 4725 switch (dev->reg_state) { 4726 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4727 case NETREG_REGISTERED: return ""; 4728 case NETREG_UNREGISTERING: return " (unregistering)"; 4729 case NETREG_UNREGISTERED: return " (unregistered)"; 4730 case NETREG_RELEASED: return " (released)"; 4731 case NETREG_DUMMY: return " (dummy)"; 4732 } 4733 4734 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4735 return " (unknown)"; 4736 } 4737 4738 __printf(3, 4) __cold 4739 void netdev_printk(const char *level, const struct net_device *dev, 4740 const char *format, ...); 4741 __printf(2, 3) __cold 4742 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4743 __printf(2, 3) __cold 4744 void netdev_alert(const struct net_device *dev, const char *format, ...); 4745 __printf(2, 3) __cold 4746 void netdev_crit(const struct net_device *dev, const char *format, ...); 4747 __printf(2, 3) __cold 4748 void netdev_err(const struct net_device *dev, const char *format, ...); 4749 __printf(2, 3) __cold 4750 void netdev_warn(const struct net_device *dev, const char *format, ...); 4751 __printf(2, 3) __cold 4752 void netdev_notice(const struct net_device *dev, const char *format, ...); 4753 __printf(2, 3) __cold 4754 void netdev_info(const struct net_device *dev, const char *format, ...); 4755 4756 #define netdev_level_once(level, dev, fmt, ...) \ 4757 do { \ 4758 static bool __print_once __read_mostly; \ 4759 \ 4760 if (!__print_once) { \ 4761 __print_once = true; \ 4762 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4763 } \ 4764 } while (0) 4765 4766 #define netdev_emerg_once(dev, fmt, ...) \ 4767 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4768 #define netdev_alert_once(dev, fmt, ...) \ 4769 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4770 #define netdev_crit_once(dev, fmt, ...) \ 4771 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4772 #define netdev_err_once(dev, fmt, ...) \ 4773 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4774 #define netdev_warn_once(dev, fmt, ...) \ 4775 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4776 #define netdev_notice_once(dev, fmt, ...) \ 4777 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4778 #define netdev_info_once(dev, fmt, ...) \ 4779 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4780 4781 #define MODULE_ALIAS_NETDEV(device) \ 4782 MODULE_ALIAS("netdev-" device) 4783 4784 #if defined(CONFIG_DYNAMIC_DEBUG) 4785 #define netdev_dbg(__dev, format, args...) \ 4786 do { \ 4787 dynamic_netdev_dbg(__dev, format, ##args); \ 4788 } while (0) 4789 #elif defined(DEBUG) 4790 #define netdev_dbg(__dev, format, args...) \ 4791 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4792 #else 4793 #define netdev_dbg(__dev, format, args...) \ 4794 ({ \ 4795 if (0) \ 4796 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4797 }) 4798 #endif 4799 4800 #if defined(VERBOSE_DEBUG) 4801 #define netdev_vdbg netdev_dbg 4802 #else 4803 4804 #define netdev_vdbg(dev, format, args...) \ 4805 ({ \ 4806 if (0) \ 4807 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4808 0; \ 4809 }) 4810 #endif 4811 4812 /* 4813 * netdev_WARN() acts like dev_printk(), but with the key difference 4814 * of using a WARN/WARN_ON to get the message out, including the 4815 * file/line information and a backtrace. 4816 */ 4817 #define netdev_WARN(dev, format, args...) \ 4818 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4819 netdev_reg_state(dev), ##args) 4820 4821 #define netdev_WARN_ONCE(dev, format, args...) \ 4822 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4823 netdev_reg_state(dev), ##args) 4824 4825 /* netif printk helpers, similar to netdev_printk */ 4826 4827 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4828 do { \ 4829 if (netif_msg_##type(priv)) \ 4830 netdev_printk(level, (dev), fmt, ##args); \ 4831 } while (0) 4832 4833 #define netif_level(level, priv, type, dev, fmt, args...) \ 4834 do { \ 4835 if (netif_msg_##type(priv)) \ 4836 netdev_##level(dev, fmt, ##args); \ 4837 } while (0) 4838 4839 #define netif_emerg(priv, type, dev, fmt, args...) \ 4840 netif_level(emerg, priv, type, dev, fmt, ##args) 4841 #define netif_alert(priv, type, dev, fmt, args...) \ 4842 netif_level(alert, priv, type, dev, fmt, ##args) 4843 #define netif_crit(priv, type, dev, fmt, args...) \ 4844 netif_level(crit, priv, type, dev, fmt, ##args) 4845 #define netif_err(priv, type, dev, fmt, args...) \ 4846 netif_level(err, priv, type, dev, fmt, ##args) 4847 #define netif_warn(priv, type, dev, fmt, args...) \ 4848 netif_level(warn, priv, type, dev, fmt, ##args) 4849 #define netif_notice(priv, type, dev, fmt, args...) \ 4850 netif_level(notice, priv, type, dev, fmt, ##args) 4851 #define netif_info(priv, type, dev, fmt, args...) \ 4852 netif_level(info, priv, type, dev, fmt, ##args) 4853 4854 #if defined(CONFIG_DYNAMIC_DEBUG) 4855 #define netif_dbg(priv, type, netdev, format, args...) \ 4856 do { \ 4857 if (netif_msg_##type(priv)) \ 4858 dynamic_netdev_dbg(netdev, format, ##args); \ 4859 } while (0) 4860 #elif defined(DEBUG) 4861 #define netif_dbg(priv, type, dev, format, args...) \ 4862 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4863 #else 4864 #define netif_dbg(priv, type, dev, format, args...) \ 4865 ({ \ 4866 if (0) \ 4867 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4868 0; \ 4869 }) 4870 #endif 4871 4872 /* if @cond then downgrade to debug, else print at @level */ 4873 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4874 do { \ 4875 if (cond) \ 4876 netif_dbg(priv, type, netdev, fmt, ##args); \ 4877 else \ 4878 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4879 } while (0) 4880 4881 #if defined(VERBOSE_DEBUG) 4882 #define netif_vdbg netif_dbg 4883 #else 4884 #define netif_vdbg(priv, type, dev, format, args...) \ 4885 ({ \ 4886 if (0) \ 4887 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4888 0; \ 4889 }) 4890 #endif 4891 4892 /* 4893 * The list of packet types we will receive (as opposed to discard) 4894 * and the routines to invoke. 4895 * 4896 * Why 16. Because with 16 the only overlap we get on a hash of the 4897 * low nibble of the protocol value is RARP/SNAP/X.25. 4898 * 4899 * 0800 IP 4900 * 0001 802.3 4901 * 0002 AX.25 4902 * 0004 802.2 4903 * 8035 RARP 4904 * 0005 SNAP 4905 * 0805 X.25 4906 * 0806 ARP 4907 * 8137 IPX 4908 * 0009 Localtalk 4909 * 86DD IPv6 4910 */ 4911 #define PTYPE_HASH_SIZE (16) 4912 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4913 4914 extern struct net_device *blackhole_netdev; 4915 4916 #endif /* _LINUX_NETDEVICE_H */ 4917