xref: /openbmc/linux/include/linux/netdevice.h (revision aa0dc6a7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 	struct task_struct	*thread;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,		/* Poll is scheduled */
355 	NAPI_STATE_MISSED,		/* reschedule a napi */
356 	NAPI_STATE_DISABLE,		/* Disable pending */
357 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
358 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
359 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
360 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
361 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
362 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
363 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
364 };
365 
366 enum {
367 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
368 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
369 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
370 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
371 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
372 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
373 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
374 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
375 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
376 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
377 };
378 
379 enum gro_result {
380 	GRO_MERGED,
381 	GRO_MERGED_FREE,
382 	GRO_HELD,
383 	GRO_NORMAL,
384 	GRO_CONSUMED,
385 };
386 typedef enum gro_result gro_result_t;
387 
388 /*
389  * enum rx_handler_result - Possible return values for rx_handlers.
390  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
391  * further.
392  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
393  * case skb->dev was changed by rx_handler.
394  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
395  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
396  *
397  * rx_handlers are functions called from inside __netif_receive_skb(), to do
398  * special processing of the skb, prior to delivery to protocol handlers.
399  *
400  * Currently, a net_device can only have a single rx_handler registered. Trying
401  * to register a second rx_handler will return -EBUSY.
402  *
403  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
404  * To unregister a rx_handler on a net_device, use
405  * netdev_rx_handler_unregister().
406  *
407  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
408  * do with the skb.
409  *
410  * If the rx_handler consumed the skb in some way, it should return
411  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
412  * the skb to be delivered in some other way.
413  *
414  * If the rx_handler changed skb->dev, to divert the skb to another
415  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
416  * new device will be called if it exists.
417  *
418  * If the rx_handler decides the skb should be ignored, it should return
419  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
420  * are registered on exact device (ptype->dev == skb->dev).
421  *
422  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
423  * delivered, it should return RX_HANDLER_PASS.
424  *
425  * A device without a registered rx_handler will behave as if rx_handler
426  * returned RX_HANDLER_PASS.
427  */
428 
429 enum rx_handler_result {
430 	RX_HANDLER_CONSUMED,
431 	RX_HANDLER_ANOTHER,
432 	RX_HANDLER_EXACT,
433 	RX_HANDLER_PASS,
434 };
435 typedef enum rx_handler_result rx_handler_result_t;
436 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
437 
438 void __napi_schedule(struct napi_struct *n);
439 void __napi_schedule_irqoff(struct napi_struct *n);
440 
441 static inline bool napi_disable_pending(struct napi_struct *n)
442 {
443 	return test_bit(NAPI_STATE_DISABLE, &n->state);
444 }
445 
446 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
449 }
450 
451 bool napi_schedule_prep(struct napi_struct *n);
452 
453 /**
454  *	napi_schedule - schedule NAPI poll
455  *	@n: NAPI context
456  *
457  * Schedule NAPI poll routine to be called if it is not already
458  * running.
459  */
460 static inline void napi_schedule(struct napi_struct *n)
461 {
462 	if (napi_schedule_prep(n))
463 		__napi_schedule(n);
464 }
465 
466 /**
467  *	napi_schedule_irqoff - schedule NAPI poll
468  *	@n: NAPI context
469  *
470  * Variant of napi_schedule(), assuming hard irqs are masked.
471  */
472 static inline void napi_schedule_irqoff(struct napi_struct *n)
473 {
474 	if (napi_schedule_prep(n))
475 		__napi_schedule_irqoff(n);
476 }
477 
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
479 static inline bool napi_reschedule(struct napi_struct *napi)
480 {
481 	if (napi_schedule_prep(napi)) {
482 		__napi_schedule(napi);
483 		return true;
484 	}
485 	return false;
486 }
487 
488 bool napi_complete_done(struct napi_struct *n, int work_done);
489 /**
490  *	napi_complete - NAPI processing complete
491  *	@n: NAPI context
492  *
493  * Mark NAPI processing as complete.
494  * Consider using napi_complete_done() instead.
495  * Return false if device should avoid rearming interrupts.
496  */
497 static inline bool napi_complete(struct napi_struct *n)
498 {
499 	return napi_complete_done(n, 0);
500 }
501 
502 int dev_set_threaded(struct net_device *dev, bool threaded);
503 
504 /**
505  *	napi_disable - prevent NAPI from scheduling
506  *	@n: NAPI context
507  *
508  * Stop NAPI from being scheduled on this context.
509  * Waits till any outstanding processing completes.
510  */
511 void napi_disable(struct napi_struct *n);
512 
513 void napi_enable(struct napi_struct *n);
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: NAPI context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 /**
533  *	napi_if_scheduled_mark_missed - if napi is running, set the
534  *	NAPIF_STATE_MISSED
535  *	@n: NAPI context
536  *
537  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538  * NAPI is scheduled.
539  **/
540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 	unsigned long val, new;
543 
544 	do {
545 		val = READ_ONCE(n->state);
546 		if (val & NAPIF_STATE_DISABLE)
547 			return true;
548 
549 		if (!(val & NAPIF_STATE_SCHED))
550 			return false;
551 
552 		new = val | NAPIF_STATE_MISSED;
553 	} while (cmpxchg(&n->state, val, new) != val);
554 
555 	return true;
556 }
557 
558 enum netdev_queue_state_t {
559 	__QUEUE_STATE_DRV_XOFF,
560 	__QUEUE_STATE_STACK_XOFF,
561 	__QUEUE_STATE_FROZEN,
562 };
563 
564 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
567 
568 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 					QUEUE_STATE_FROZEN)
573 
574 /*
575  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
576  * netif_tx_* functions below are used to manipulate this flag.  The
577  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578  * queue independently.  The netif_xmit_*stopped functions below are called
579  * to check if the queue has been stopped by the driver or stack (either
580  * of the XOFF bits are set in the state).  Drivers should not need to call
581  * netif_xmit*stopped functions, they should only be using netif_tx_*.
582  */
583 
584 struct netdev_queue {
585 /*
586  * read-mostly part
587  */
588 	struct net_device	*dev;
589 	struct Qdisc __rcu	*qdisc;
590 	struct Qdisc		*qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 	struct kobject		kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	int			numa_node;
596 #endif
597 	unsigned long		tx_maxrate;
598 	/*
599 	 * Number of TX timeouts for this queue
600 	 * (/sys/class/net/DEV/Q/trans_timeout)
601 	 */
602 	unsigned long		trans_timeout;
603 
604 	/* Subordinate device that the queue has been assigned to */
605 	struct net_device	*sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 	struct xsk_buff_pool    *pool;
608 #endif
609 /*
610  * write-mostly part
611  */
612 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
613 	int			xmit_lock_owner;
614 	/*
615 	 * Time (in jiffies) of last Tx
616 	 */
617 	unsigned long		trans_start;
618 
619 	unsigned long		state;
620 
621 #ifdef CONFIG_BQL
622 	struct dql		dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625 
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628 
629 /*
630  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631  *                                     == 1 : For initns only
632  *                                     == 2 : For none.
633  */
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return !IS_ENABLED(CONFIG_SYSCTL) ||
637 	       !sysctl_fb_tunnels_only_for_init_net ||
638 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xsk_buff_pool            *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
760 enum xps_map_type {
761 	XPS_CPUS = 0,
762 	XPS_RXQS,
763 	XPS_MAPS_MAX,
764 };
765 
766 #ifdef CONFIG_XPS
767 /*
768  * This structure holds an XPS map which can be of variable length.  The
769  * map is an array of queues.
770  */
771 struct xps_map {
772 	unsigned int len;
773 	unsigned int alloc_len;
774 	struct rcu_head rcu;
775 	u16 queues[];
776 };
777 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779        - sizeof(struct xps_map)) / sizeof(u16))
780 
781 /*
782  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
783  *
784  * We keep track of the number of cpus/rxqs used when the struct is allocated,
785  * in nr_ids. This will help not accessing out-of-bound memory.
786  *
787  * We keep track of the number of traffic classes used when the struct is
788  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
789  * not crossing its upper bound, as the original dev->num_tc can be updated in
790  * the meantime.
791  */
792 struct xps_dev_maps {
793 	struct rcu_head rcu;
794 	unsigned int nr_ids;
795 	s16 num_tc;
796 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
797 };
798 
799 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
800 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
801 
802 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
803 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
804 
805 #endif /* CONFIG_XPS */
806 
807 #define TC_MAX_QUEUE	16
808 #define TC_BITMASK	15
809 /* HW offloaded queuing disciplines txq count and offset maps */
810 struct netdev_tc_txq {
811 	u16 count;
812 	u16 offset;
813 };
814 
815 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
816 /*
817  * This structure is to hold information about the device
818  * configured to run FCoE protocol stack.
819  */
820 struct netdev_fcoe_hbainfo {
821 	char	manufacturer[64];
822 	char	serial_number[64];
823 	char	hardware_version[64];
824 	char	driver_version[64];
825 	char	optionrom_version[64];
826 	char	firmware_version[64];
827 	char	model[256];
828 	char	model_description[256];
829 };
830 #endif
831 
832 #define MAX_PHYS_ITEM_ID_LEN 32
833 
834 /* This structure holds a unique identifier to identify some
835  * physical item (port for example) used by a netdevice.
836  */
837 struct netdev_phys_item_id {
838 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
839 	unsigned char id_len;
840 };
841 
842 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
843 					    struct netdev_phys_item_id *b)
844 {
845 	return a->id_len == b->id_len &&
846 	       memcmp(a->id, b->id, a->id_len) == 0;
847 }
848 
849 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
850 				       struct sk_buff *skb,
851 				       struct net_device *sb_dev);
852 
853 enum net_device_path_type {
854 	DEV_PATH_ETHERNET = 0,
855 	DEV_PATH_VLAN,
856 	DEV_PATH_BRIDGE,
857 	DEV_PATH_PPPOE,
858 	DEV_PATH_DSA,
859 };
860 
861 struct net_device_path {
862 	enum net_device_path_type	type;
863 	const struct net_device		*dev;
864 	union {
865 		struct {
866 			u16		id;
867 			__be16		proto;
868 			u8		h_dest[ETH_ALEN];
869 		} encap;
870 		struct {
871 			enum {
872 				DEV_PATH_BR_VLAN_KEEP,
873 				DEV_PATH_BR_VLAN_TAG,
874 				DEV_PATH_BR_VLAN_UNTAG,
875 				DEV_PATH_BR_VLAN_UNTAG_HW,
876 			}		vlan_mode;
877 			u16		vlan_id;
878 			__be16		vlan_proto;
879 		} bridge;
880 		struct {
881 			int port;
882 			u16 proto;
883 		} dsa;
884 	};
885 };
886 
887 #define NET_DEVICE_PATH_STACK_MAX	5
888 #define NET_DEVICE_PATH_VLAN_MAX	2
889 
890 struct net_device_path_stack {
891 	int			num_paths;
892 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
893 };
894 
895 struct net_device_path_ctx {
896 	const struct net_device *dev;
897 	const u8		*daddr;
898 
899 	int			num_vlans;
900 	struct {
901 		u16		id;
902 		__be16		proto;
903 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
904 };
905 
906 enum tc_setup_type {
907 	TC_SETUP_QDISC_MQPRIO,
908 	TC_SETUP_CLSU32,
909 	TC_SETUP_CLSFLOWER,
910 	TC_SETUP_CLSMATCHALL,
911 	TC_SETUP_CLSBPF,
912 	TC_SETUP_BLOCK,
913 	TC_SETUP_QDISC_CBS,
914 	TC_SETUP_QDISC_RED,
915 	TC_SETUP_QDISC_PRIO,
916 	TC_SETUP_QDISC_MQ,
917 	TC_SETUP_QDISC_ETF,
918 	TC_SETUP_ROOT_QDISC,
919 	TC_SETUP_QDISC_GRED,
920 	TC_SETUP_QDISC_TAPRIO,
921 	TC_SETUP_FT,
922 	TC_SETUP_QDISC_ETS,
923 	TC_SETUP_QDISC_TBF,
924 	TC_SETUP_QDISC_FIFO,
925 	TC_SETUP_QDISC_HTB,
926 };
927 
928 /* These structures hold the attributes of bpf state that are being passed
929  * to the netdevice through the bpf op.
930  */
931 enum bpf_netdev_command {
932 	/* Set or clear a bpf program used in the earliest stages of packet
933 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
934 	 * is responsible for calling bpf_prog_put on any old progs that are
935 	 * stored. In case of error, the callee need not release the new prog
936 	 * reference, but on success it takes ownership and must bpf_prog_put
937 	 * when it is no longer used.
938 	 */
939 	XDP_SETUP_PROG,
940 	XDP_SETUP_PROG_HW,
941 	/* BPF program for offload callbacks, invoked at program load time. */
942 	BPF_OFFLOAD_MAP_ALLOC,
943 	BPF_OFFLOAD_MAP_FREE,
944 	XDP_SETUP_XSK_POOL,
945 };
946 
947 struct bpf_prog_offload_ops;
948 struct netlink_ext_ack;
949 struct xdp_umem;
950 struct xdp_dev_bulk_queue;
951 struct bpf_xdp_link;
952 
953 enum bpf_xdp_mode {
954 	XDP_MODE_SKB = 0,
955 	XDP_MODE_DRV = 1,
956 	XDP_MODE_HW = 2,
957 	__MAX_XDP_MODE
958 };
959 
960 struct bpf_xdp_entity {
961 	struct bpf_prog *prog;
962 	struct bpf_xdp_link *link;
963 };
964 
965 struct netdev_bpf {
966 	enum bpf_netdev_command command;
967 	union {
968 		/* XDP_SETUP_PROG */
969 		struct {
970 			u32 flags;
971 			struct bpf_prog *prog;
972 			struct netlink_ext_ack *extack;
973 		};
974 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
975 		struct {
976 			struct bpf_offloaded_map *offmap;
977 		};
978 		/* XDP_SETUP_XSK_POOL */
979 		struct {
980 			struct xsk_buff_pool *pool;
981 			u16 queue_id;
982 		} xsk;
983 	};
984 };
985 
986 /* Flags for ndo_xsk_wakeup. */
987 #define XDP_WAKEUP_RX (1 << 0)
988 #define XDP_WAKEUP_TX (1 << 1)
989 
990 #ifdef CONFIG_XFRM_OFFLOAD
991 struct xfrmdev_ops {
992 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
993 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
994 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
995 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
996 				       struct xfrm_state *x);
997 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
998 };
999 #endif
1000 
1001 struct dev_ifalias {
1002 	struct rcu_head rcuhead;
1003 	char ifalias[];
1004 };
1005 
1006 struct devlink;
1007 struct tlsdev_ops;
1008 
1009 struct netdev_name_node {
1010 	struct hlist_node hlist;
1011 	struct list_head list;
1012 	struct net_device *dev;
1013 	const char *name;
1014 };
1015 
1016 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1017 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1018 
1019 struct netdev_net_notifier {
1020 	struct list_head list;
1021 	struct notifier_block *nb;
1022 };
1023 
1024 /*
1025  * This structure defines the management hooks for network devices.
1026  * The following hooks can be defined; unless noted otherwise, they are
1027  * optional and can be filled with a null pointer.
1028  *
1029  * int (*ndo_init)(struct net_device *dev);
1030  *     This function is called once when a network device is registered.
1031  *     The network device can use this for any late stage initialization
1032  *     or semantic validation. It can fail with an error code which will
1033  *     be propagated back to register_netdev.
1034  *
1035  * void (*ndo_uninit)(struct net_device *dev);
1036  *     This function is called when device is unregistered or when registration
1037  *     fails. It is not called if init fails.
1038  *
1039  * int (*ndo_open)(struct net_device *dev);
1040  *     This function is called when a network device transitions to the up
1041  *     state.
1042  *
1043  * int (*ndo_stop)(struct net_device *dev);
1044  *     This function is called when a network device transitions to the down
1045  *     state.
1046  *
1047  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1048  *                               struct net_device *dev);
1049  *	Called when a packet needs to be transmitted.
1050  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1051  *	the queue before that can happen; it's for obsolete devices and weird
1052  *	corner cases, but the stack really does a non-trivial amount
1053  *	of useless work if you return NETDEV_TX_BUSY.
1054  *	Required; cannot be NULL.
1055  *
1056  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1057  *					   struct net_device *dev
1058  *					   netdev_features_t features);
1059  *	Called by core transmit path to determine if device is capable of
1060  *	performing offload operations on a given packet. This is to give
1061  *	the device an opportunity to implement any restrictions that cannot
1062  *	be otherwise expressed by feature flags. The check is called with
1063  *	the set of features that the stack has calculated and it returns
1064  *	those the driver believes to be appropriate.
1065  *
1066  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1067  *                         struct net_device *sb_dev);
1068  *	Called to decide which queue to use when device supports multiple
1069  *	transmit queues.
1070  *
1071  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1072  *	This function is called to allow device receiver to make
1073  *	changes to configuration when multicast or promiscuous is enabled.
1074  *
1075  * void (*ndo_set_rx_mode)(struct net_device *dev);
1076  *	This function is called device changes address list filtering.
1077  *	If driver handles unicast address filtering, it should set
1078  *	IFF_UNICAST_FLT in its priv_flags.
1079  *
1080  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1081  *	This function  is called when the Media Access Control address
1082  *	needs to be changed. If this interface is not defined, the
1083  *	MAC address can not be changed.
1084  *
1085  * int (*ndo_validate_addr)(struct net_device *dev);
1086  *	Test if Media Access Control address is valid for the device.
1087  *
1088  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1089  *	Called when a user requests an ioctl which can't be handled by
1090  *	the generic interface code. If not defined ioctls return
1091  *	not supported error code.
1092  *
1093  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1094  *	Used to set network devices bus interface parameters. This interface
1095  *	is retained for legacy reasons; new devices should use the bus
1096  *	interface (PCI) for low level management.
1097  *
1098  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1099  *	Called when a user wants to change the Maximum Transfer Unit
1100  *	of a device.
1101  *
1102  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1103  *	Callback used when the transmitter has not made any progress
1104  *	for dev->watchdog ticks.
1105  *
1106  * void (*ndo_get_stats64)(struct net_device *dev,
1107  *                         struct rtnl_link_stats64 *storage);
1108  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1109  *	Called when a user wants to get the network device usage
1110  *	statistics. Drivers must do one of the following:
1111  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1112  *	   rtnl_link_stats64 structure passed by the caller.
1113  *	2. Define @ndo_get_stats to update a net_device_stats structure
1114  *	   (which should normally be dev->stats) and return a pointer to
1115  *	   it. The structure may be changed asynchronously only if each
1116  *	   field is written atomically.
1117  *	3. Update dev->stats asynchronously and atomically, and define
1118  *	   neither operation.
1119  *
1120  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1121  *	Return true if this device supports offload stats of this attr_id.
1122  *
1123  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1124  *	void *attr_data)
1125  *	Get statistics for offload operations by attr_id. Write it into the
1126  *	attr_data pointer.
1127  *
1128  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1129  *	If device supports VLAN filtering this function is called when a
1130  *	VLAN id is registered.
1131  *
1132  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1133  *	If device supports VLAN filtering this function is called when a
1134  *	VLAN id is unregistered.
1135  *
1136  * void (*ndo_poll_controller)(struct net_device *dev);
1137  *
1138  *	SR-IOV management functions.
1139  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1140  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1141  *			  u8 qos, __be16 proto);
1142  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1143  *			  int max_tx_rate);
1144  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1145  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1146  * int (*ndo_get_vf_config)(struct net_device *dev,
1147  *			    int vf, struct ifla_vf_info *ivf);
1148  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1149  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1150  *			  struct nlattr *port[]);
1151  *
1152  *      Enable or disable the VF ability to query its RSS Redirection Table and
1153  *      Hash Key. This is needed since on some devices VF share this information
1154  *      with PF and querying it may introduce a theoretical security risk.
1155  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1156  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1157  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1158  *		       void *type_data);
1159  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1160  *	This is always called from the stack with the rtnl lock held and netif
1161  *	tx queues stopped. This allows the netdevice to perform queue
1162  *	management safely.
1163  *
1164  *	Fiber Channel over Ethernet (FCoE) offload functions.
1165  * int (*ndo_fcoe_enable)(struct net_device *dev);
1166  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1167  *	so the underlying device can perform whatever needed configuration or
1168  *	initialization to support acceleration of FCoE traffic.
1169  *
1170  * int (*ndo_fcoe_disable)(struct net_device *dev);
1171  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1172  *	so the underlying device can perform whatever needed clean-ups to
1173  *	stop supporting acceleration of FCoE traffic.
1174  *
1175  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1176  *			     struct scatterlist *sgl, unsigned int sgc);
1177  *	Called when the FCoE Initiator wants to initialize an I/O that
1178  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1179  *	perform necessary setup and returns 1 to indicate the device is set up
1180  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1181  *
1182  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1183  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1184  *	indicated by the FC exchange id 'xid', so the underlying device can
1185  *	clean up and reuse resources for later DDP requests.
1186  *
1187  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1188  *			      struct scatterlist *sgl, unsigned int sgc);
1189  *	Called when the FCoE Target wants to initialize an I/O that
1190  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1191  *	perform necessary setup and returns 1 to indicate the device is set up
1192  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1193  *
1194  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1195  *			       struct netdev_fcoe_hbainfo *hbainfo);
1196  *	Called when the FCoE Protocol stack wants information on the underlying
1197  *	device. This information is utilized by the FCoE protocol stack to
1198  *	register attributes with Fiber Channel management service as per the
1199  *	FC-GS Fabric Device Management Information(FDMI) specification.
1200  *
1201  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1202  *	Called when the underlying device wants to override default World Wide
1203  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1204  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1205  *	protocol stack to use.
1206  *
1207  *	RFS acceleration.
1208  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1209  *			    u16 rxq_index, u32 flow_id);
1210  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1211  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1212  *	Return the filter ID on success, or a negative error code.
1213  *
1214  *	Slave management functions (for bridge, bonding, etc).
1215  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1216  *	Called to make another netdev an underling.
1217  *
1218  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1219  *	Called to release previously enslaved netdev.
1220  *
1221  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1222  *					    struct sk_buff *skb,
1223  *					    bool all_slaves);
1224  *	Get the xmit slave of master device. If all_slaves is true, function
1225  *	assume all the slaves can transmit.
1226  *
1227  *      Feature/offload setting functions.
1228  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1229  *		netdev_features_t features);
1230  *	Adjusts the requested feature flags according to device-specific
1231  *	constraints, and returns the resulting flags. Must not modify
1232  *	the device state.
1233  *
1234  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1235  *	Called to update device configuration to new features. Passed
1236  *	feature set might be less than what was returned by ndo_fix_features()).
1237  *	Must return >0 or -errno if it changed dev->features itself.
1238  *
1239  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1240  *		      struct net_device *dev,
1241  *		      const unsigned char *addr, u16 vid, u16 flags,
1242  *		      struct netlink_ext_ack *extack);
1243  *	Adds an FDB entry to dev for addr.
1244  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1245  *		      struct net_device *dev,
1246  *		      const unsigned char *addr, u16 vid)
1247  *	Deletes the FDB entry from dev coresponding to addr.
1248  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1249  *		       struct net_device *dev, struct net_device *filter_dev,
1250  *		       int *idx)
1251  *	Used to add FDB entries to dump requests. Implementers should add
1252  *	entries to skb and update idx with the number of entries.
1253  *
1254  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1255  *			     u16 flags, struct netlink_ext_ack *extack)
1256  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1257  *			     struct net_device *dev, u32 filter_mask,
1258  *			     int nlflags)
1259  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1260  *			     u16 flags);
1261  *
1262  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1263  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1264  *	which do not represent real hardware may define this to allow their
1265  *	userspace components to manage their virtual carrier state. Devices
1266  *	that determine carrier state from physical hardware properties (eg
1267  *	network cables) or protocol-dependent mechanisms (eg
1268  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1269  *
1270  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1271  *			       struct netdev_phys_item_id *ppid);
1272  *	Called to get ID of physical port of this device. If driver does
1273  *	not implement this, it is assumed that the hw is not able to have
1274  *	multiple net devices on single physical port.
1275  *
1276  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1277  *				 struct netdev_phys_item_id *ppid)
1278  *	Called to get the parent ID of the physical port of this device.
1279  *
1280  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1281  *				 struct net_device *dev)
1282  *	Called by upper layer devices to accelerate switching or other
1283  *	station functionality into hardware. 'pdev is the lowerdev
1284  *	to use for the offload and 'dev' is the net device that will
1285  *	back the offload. Returns a pointer to the private structure
1286  *	the upper layer will maintain.
1287  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1288  *	Called by upper layer device to delete the station created
1289  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1290  *	the station and priv is the structure returned by the add
1291  *	operation.
1292  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1293  *			     int queue_index, u32 maxrate);
1294  *	Called when a user wants to set a max-rate limitation of specific
1295  *	TX queue.
1296  * int (*ndo_get_iflink)(const struct net_device *dev);
1297  *	Called to get the iflink value of this device.
1298  * void (*ndo_change_proto_down)(struct net_device *dev,
1299  *				 bool proto_down);
1300  *	This function is used to pass protocol port error state information
1301  *	to the switch driver. The switch driver can react to the proto_down
1302  *      by doing a phys down on the associated switch port.
1303  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1304  *	This function is used to get egress tunnel information for given skb.
1305  *	This is useful for retrieving outer tunnel header parameters while
1306  *	sampling packet.
1307  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1308  *	This function is used to specify the headroom that the skb must
1309  *	consider when allocation skb during packet reception. Setting
1310  *	appropriate rx headroom value allows avoiding skb head copy on
1311  *	forward. Setting a negative value resets the rx headroom to the
1312  *	default value.
1313  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1314  *	This function is used to set or query state related to XDP on the
1315  *	netdevice and manage BPF offload. See definition of
1316  *	enum bpf_netdev_command for details.
1317  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1318  *			u32 flags);
1319  *	This function is used to submit @n XDP packets for transmit on a
1320  *	netdevice. Returns number of frames successfully transmitted, frames
1321  *	that got dropped are freed/returned via xdp_return_frame().
1322  *	Returns negative number, means general error invoking ndo, meaning
1323  *	no frames were xmit'ed and core-caller will free all frames.
1324  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1325  *      This function is used to wake up the softirq, ksoftirqd or kthread
1326  *	responsible for sending and/or receiving packets on a specific
1327  *	queue id bound to an AF_XDP socket. The flags field specifies if
1328  *	only RX, only Tx, or both should be woken up using the flags
1329  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1330  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1331  *	Get devlink port instance associated with a given netdev.
1332  *	Called with a reference on the netdevice and devlink locks only,
1333  *	rtnl_lock is not held.
1334  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1335  *			 int cmd);
1336  *	Add, change, delete or get information on an IPv4 tunnel.
1337  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1338  *	If a device is paired with a peer device, return the peer instance.
1339  *	The caller must be under RCU read context.
1340  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1341  *     Get the forwarding path to reach the real device from the HW destination address
1342  */
1343 struct net_device_ops {
1344 	int			(*ndo_init)(struct net_device *dev);
1345 	void			(*ndo_uninit)(struct net_device *dev);
1346 	int			(*ndo_open)(struct net_device *dev);
1347 	int			(*ndo_stop)(struct net_device *dev);
1348 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1349 						  struct net_device *dev);
1350 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1351 						      struct net_device *dev,
1352 						      netdev_features_t features);
1353 	u16			(*ndo_select_queue)(struct net_device *dev,
1354 						    struct sk_buff *skb,
1355 						    struct net_device *sb_dev);
1356 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1357 						       int flags);
1358 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1359 	int			(*ndo_set_mac_address)(struct net_device *dev,
1360 						       void *addr);
1361 	int			(*ndo_validate_addr)(struct net_device *dev);
1362 	int			(*ndo_do_ioctl)(struct net_device *dev,
1363 					        struct ifreq *ifr, int cmd);
1364 	int			(*ndo_set_config)(struct net_device *dev,
1365 					          struct ifmap *map);
1366 	int			(*ndo_change_mtu)(struct net_device *dev,
1367 						  int new_mtu);
1368 	int			(*ndo_neigh_setup)(struct net_device *dev,
1369 						   struct neigh_parms *);
1370 	void			(*ndo_tx_timeout) (struct net_device *dev,
1371 						   unsigned int txqueue);
1372 
1373 	void			(*ndo_get_stats64)(struct net_device *dev,
1374 						   struct rtnl_link_stats64 *storage);
1375 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1376 	int			(*ndo_get_offload_stats)(int attr_id,
1377 							 const struct net_device *dev,
1378 							 void *attr_data);
1379 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1380 
1381 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1382 						       __be16 proto, u16 vid);
1383 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1384 						        __be16 proto, u16 vid);
1385 #ifdef CONFIG_NET_POLL_CONTROLLER
1386 	void                    (*ndo_poll_controller)(struct net_device *dev);
1387 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1388 						     struct netpoll_info *info);
1389 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1390 #endif
1391 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1392 						  int queue, u8 *mac);
1393 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1394 						   int queue, u16 vlan,
1395 						   u8 qos, __be16 proto);
1396 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1397 						   int vf, int min_tx_rate,
1398 						   int max_tx_rate);
1399 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1400 						       int vf, bool setting);
1401 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1402 						    int vf, bool setting);
1403 	int			(*ndo_get_vf_config)(struct net_device *dev,
1404 						     int vf,
1405 						     struct ifla_vf_info *ivf);
1406 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1407 							 int vf, int link_state);
1408 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1409 						    int vf,
1410 						    struct ifla_vf_stats
1411 						    *vf_stats);
1412 	int			(*ndo_set_vf_port)(struct net_device *dev,
1413 						   int vf,
1414 						   struct nlattr *port[]);
1415 	int			(*ndo_get_vf_port)(struct net_device *dev,
1416 						   int vf, struct sk_buff *skb);
1417 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1418 						   int vf,
1419 						   struct ifla_vf_guid *node_guid,
1420 						   struct ifla_vf_guid *port_guid);
1421 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1422 						   int vf, u64 guid,
1423 						   int guid_type);
1424 	int			(*ndo_set_vf_rss_query_en)(
1425 						   struct net_device *dev,
1426 						   int vf, bool setting);
1427 	int			(*ndo_setup_tc)(struct net_device *dev,
1428 						enum tc_setup_type type,
1429 						void *type_data);
1430 #if IS_ENABLED(CONFIG_FCOE)
1431 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1432 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1433 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1434 						      u16 xid,
1435 						      struct scatterlist *sgl,
1436 						      unsigned int sgc);
1437 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1438 						     u16 xid);
1439 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1440 						       u16 xid,
1441 						       struct scatterlist *sgl,
1442 						       unsigned int sgc);
1443 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1444 							struct netdev_fcoe_hbainfo *hbainfo);
1445 #endif
1446 
1447 #if IS_ENABLED(CONFIG_LIBFCOE)
1448 #define NETDEV_FCOE_WWNN 0
1449 #define NETDEV_FCOE_WWPN 1
1450 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1451 						    u64 *wwn, int type);
1452 #endif
1453 
1454 #ifdef CONFIG_RFS_ACCEL
1455 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1456 						     const struct sk_buff *skb,
1457 						     u16 rxq_index,
1458 						     u32 flow_id);
1459 #endif
1460 	int			(*ndo_add_slave)(struct net_device *dev,
1461 						 struct net_device *slave_dev,
1462 						 struct netlink_ext_ack *extack);
1463 	int			(*ndo_del_slave)(struct net_device *dev,
1464 						 struct net_device *slave_dev);
1465 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1466 						      struct sk_buff *skb,
1467 						      bool all_slaves);
1468 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1469 							struct sock *sk);
1470 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1471 						    netdev_features_t features);
1472 	int			(*ndo_set_features)(struct net_device *dev,
1473 						    netdev_features_t features);
1474 	int			(*ndo_neigh_construct)(struct net_device *dev,
1475 						       struct neighbour *n);
1476 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1477 						     struct neighbour *n);
1478 
1479 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1480 					       struct nlattr *tb[],
1481 					       struct net_device *dev,
1482 					       const unsigned char *addr,
1483 					       u16 vid,
1484 					       u16 flags,
1485 					       struct netlink_ext_ack *extack);
1486 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1487 					       struct nlattr *tb[],
1488 					       struct net_device *dev,
1489 					       const unsigned char *addr,
1490 					       u16 vid);
1491 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1492 						struct netlink_callback *cb,
1493 						struct net_device *dev,
1494 						struct net_device *filter_dev,
1495 						int *idx);
1496 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1497 					       struct nlattr *tb[],
1498 					       struct net_device *dev,
1499 					       const unsigned char *addr,
1500 					       u16 vid, u32 portid, u32 seq,
1501 					       struct netlink_ext_ack *extack);
1502 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1503 						      struct nlmsghdr *nlh,
1504 						      u16 flags,
1505 						      struct netlink_ext_ack *extack);
1506 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1507 						      u32 pid, u32 seq,
1508 						      struct net_device *dev,
1509 						      u32 filter_mask,
1510 						      int nlflags);
1511 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1512 						      struct nlmsghdr *nlh,
1513 						      u16 flags);
1514 	int			(*ndo_change_carrier)(struct net_device *dev,
1515 						      bool new_carrier);
1516 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1517 							struct netdev_phys_item_id *ppid);
1518 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1519 							  struct netdev_phys_item_id *ppid);
1520 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1521 							  char *name, size_t len);
1522 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1523 							struct net_device *dev);
1524 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1525 							void *priv);
1526 
1527 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1528 						      int queue_index,
1529 						      u32 maxrate);
1530 	int			(*ndo_get_iflink)(const struct net_device *dev);
1531 	int			(*ndo_change_proto_down)(struct net_device *dev,
1532 							 bool proto_down);
1533 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1534 						       struct sk_buff *skb);
1535 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1536 						       int needed_headroom);
1537 	int			(*ndo_bpf)(struct net_device *dev,
1538 					   struct netdev_bpf *bpf);
1539 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1540 						struct xdp_frame **xdp,
1541 						u32 flags);
1542 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1543 						  u32 queue_id, u32 flags);
1544 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1545 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1546 						  struct ip_tunnel_parm *p, int cmd);
1547 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1548 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1549                                                          struct net_device_path *path);
1550 };
1551 
1552 /**
1553  * enum netdev_priv_flags - &struct net_device priv_flags
1554  *
1555  * These are the &struct net_device, they are only set internally
1556  * by drivers and used in the kernel. These flags are invisible to
1557  * userspace; this means that the order of these flags can change
1558  * during any kernel release.
1559  *
1560  * You should have a pretty good reason to be extending these flags.
1561  *
1562  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1563  * @IFF_EBRIDGE: Ethernet bridging device
1564  * @IFF_BONDING: bonding master or slave
1565  * @IFF_ISATAP: ISATAP interface (RFC4214)
1566  * @IFF_WAN_HDLC: WAN HDLC device
1567  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1568  *	release skb->dst
1569  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1570  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1571  * @IFF_MACVLAN_PORT: device used as macvlan port
1572  * @IFF_BRIDGE_PORT: device used as bridge port
1573  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1574  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1575  * @IFF_UNICAST_FLT: Supports unicast filtering
1576  * @IFF_TEAM_PORT: device used as team port
1577  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1578  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1579  *	change when it's running
1580  * @IFF_MACVLAN: Macvlan device
1581  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1582  *	underlying stacked devices
1583  * @IFF_L3MDEV_MASTER: device is an L3 master device
1584  * @IFF_NO_QUEUE: device can run without qdisc attached
1585  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1586  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1587  * @IFF_TEAM: device is a team device
1588  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1589  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1590  *	entity (i.e. the master device for bridged veth)
1591  * @IFF_MACSEC: device is a MACsec device
1592  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1593  * @IFF_FAILOVER: device is a failover master device
1594  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1595  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1596  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1597  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1598  *	skb_headlen(skb) == 0 (data starts from frag0)
1599  */
1600 enum netdev_priv_flags {
1601 	IFF_802_1Q_VLAN			= 1<<0,
1602 	IFF_EBRIDGE			= 1<<1,
1603 	IFF_BONDING			= 1<<2,
1604 	IFF_ISATAP			= 1<<3,
1605 	IFF_WAN_HDLC			= 1<<4,
1606 	IFF_XMIT_DST_RELEASE		= 1<<5,
1607 	IFF_DONT_BRIDGE			= 1<<6,
1608 	IFF_DISABLE_NETPOLL		= 1<<7,
1609 	IFF_MACVLAN_PORT		= 1<<8,
1610 	IFF_BRIDGE_PORT			= 1<<9,
1611 	IFF_OVS_DATAPATH		= 1<<10,
1612 	IFF_TX_SKB_SHARING		= 1<<11,
1613 	IFF_UNICAST_FLT			= 1<<12,
1614 	IFF_TEAM_PORT			= 1<<13,
1615 	IFF_SUPP_NOFCS			= 1<<14,
1616 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1617 	IFF_MACVLAN			= 1<<16,
1618 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1619 	IFF_L3MDEV_MASTER		= 1<<18,
1620 	IFF_NO_QUEUE			= 1<<19,
1621 	IFF_OPENVSWITCH			= 1<<20,
1622 	IFF_L3MDEV_SLAVE		= 1<<21,
1623 	IFF_TEAM			= 1<<22,
1624 	IFF_RXFH_CONFIGURED		= 1<<23,
1625 	IFF_PHONY_HEADROOM		= 1<<24,
1626 	IFF_MACSEC			= 1<<25,
1627 	IFF_NO_RX_HANDLER		= 1<<26,
1628 	IFF_FAILOVER			= 1<<27,
1629 	IFF_FAILOVER_SLAVE		= 1<<28,
1630 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1631 	IFF_LIVE_RENAME_OK		= 1<<30,
1632 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1633 };
1634 
1635 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1636 #define IFF_EBRIDGE			IFF_EBRIDGE
1637 #define IFF_BONDING			IFF_BONDING
1638 #define IFF_ISATAP			IFF_ISATAP
1639 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1640 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1641 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1642 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1643 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1644 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1645 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1646 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1647 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1648 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1649 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1650 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1651 #define IFF_MACVLAN			IFF_MACVLAN
1652 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1653 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1654 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1655 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1656 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1657 #define IFF_TEAM			IFF_TEAM
1658 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1659 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1660 #define IFF_MACSEC			IFF_MACSEC
1661 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1662 #define IFF_FAILOVER			IFF_FAILOVER
1663 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1664 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1665 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1666 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1667 
1668 /* Specifies the type of the struct net_device::ml_priv pointer */
1669 enum netdev_ml_priv_type {
1670 	ML_PRIV_NONE,
1671 	ML_PRIV_CAN,
1672 };
1673 
1674 /**
1675  *	struct net_device - The DEVICE structure.
1676  *
1677  *	Actually, this whole structure is a big mistake.  It mixes I/O
1678  *	data with strictly "high-level" data, and it has to know about
1679  *	almost every data structure used in the INET module.
1680  *
1681  *	@name:	This is the first field of the "visible" part of this structure
1682  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1683  *		of the interface.
1684  *
1685  *	@name_node:	Name hashlist node
1686  *	@ifalias:	SNMP alias
1687  *	@mem_end:	Shared memory end
1688  *	@mem_start:	Shared memory start
1689  *	@base_addr:	Device I/O address
1690  *	@irq:		Device IRQ number
1691  *
1692  *	@state:		Generic network queuing layer state, see netdev_state_t
1693  *	@dev_list:	The global list of network devices
1694  *	@napi_list:	List entry used for polling NAPI devices
1695  *	@unreg_list:	List entry  when we are unregistering the
1696  *			device; see the function unregister_netdev
1697  *	@close_list:	List entry used when we are closing the device
1698  *	@ptype_all:     Device-specific packet handlers for all protocols
1699  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1700  *
1701  *	@adj_list:	Directly linked devices, like slaves for bonding
1702  *	@features:	Currently active device features
1703  *	@hw_features:	User-changeable features
1704  *
1705  *	@wanted_features:	User-requested features
1706  *	@vlan_features:		Mask of features inheritable by VLAN devices
1707  *
1708  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1709  *				This field indicates what encapsulation
1710  *				offloads the hardware is capable of doing,
1711  *				and drivers will need to set them appropriately.
1712  *
1713  *	@mpls_features:	Mask of features inheritable by MPLS
1714  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1715  *
1716  *	@ifindex:	interface index
1717  *	@group:		The group the device belongs to
1718  *
1719  *	@stats:		Statistics struct, which was left as a legacy, use
1720  *			rtnl_link_stats64 instead
1721  *
1722  *	@rx_dropped:	Dropped packets by core network,
1723  *			do not use this in drivers
1724  *	@tx_dropped:	Dropped packets by core network,
1725  *			do not use this in drivers
1726  *	@rx_nohandler:	nohandler dropped packets by core network on
1727  *			inactive devices, do not use this in drivers
1728  *	@carrier_up_count:	Number of times the carrier has been up
1729  *	@carrier_down_count:	Number of times the carrier has been down
1730  *
1731  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1732  *				instead of ioctl,
1733  *				see <net/iw_handler.h> for details.
1734  *	@wireless_data:	Instance data managed by the core of wireless extensions
1735  *
1736  *	@netdev_ops:	Includes several pointers to callbacks,
1737  *			if one wants to override the ndo_*() functions
1738  *	@ethtool_ops:	Management operations
1739  *	@l3mdev_ops:	Layer 3 master device operations
1740  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1741  *			discovery handling. Necessary for e.g. 6LoWPAN.
1742  *	@xfrmdev_ops:	Transformation offload operations
1743  *	@tlsdev_ops:	Transport Layer Security offload operations
1744  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1745  *			of Layer 2 headers.
1746  *
1747  *	@flags:		Interface flags (a la BSD)
1748  *	@priv_flags:	Like 'flags' but invisible to userspace,
1749  *			see if.h for the definitions
1750  *	@gflags:	Global flags ( kept as legacy )
1751  *	@padded:	How much padding added by alloc_netdev()
1752  *	@operstate:	RFC2863 operstate
1753  *	@link_mode:	Mapping policy to operstate
1754  *	@if_port:	Selectable AUI, TP, ...
1755  *	@dma:		DMA channel
1756  *	@mtu:		Interface MTU value
1757  *	@min_mtu:	Interface Minimum MTU value
1758  *	@max_mtu:	Interface Maximum MTU value
1759  *	@type:		Interface hardware type
1760  *	@hard_header_len: Maximum hardware header length.
1761  *	@min_header_len:  Minimum hardware header length
1762  *
1763  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1764  *			  cases can this be guaranteed
1765  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1766  *			  cases can this be guaranteed. Some cases also use
1767  *			  LL_MAX_HEADER instead to allocate the skb
1768  *
1769  *	interface address info:
1770  *
1771  * 	@perm_addr:		Permanent hw address
1772  * 	@addr_assign_type:	Hw address assignment type
1773  * 	@addr_len:		Hardware address length
1774  *	@upper_level:		Maximum depth level of upper devices.
1775  *	@lower_level:		Maximum depth level of lower devices.
1776  *	@neigh_priv_len:	Used in neigh_alloc()
1777  * 	@dev_id:		Used to differentiate devices that share
1778  * 				the same link layer address
1779  * 	@dev_port:		Used to differentiate devices that share
1780  * 				the same function
1781  *	@addr_list_lock:	XXX: need comments on this one
1782  *	@name_assign_type:	network interface name assignment type
1783  *	@uc_promisc:		Counter that indicates promiscuous mode
1784  *				has been enabled due to the need to listen to
1785  *				additional unicast addresses in a device that
1786  *				does not implement ndo_set_rx_mode()
1787  *	@uc:			unicast mac addresses
1788  *	@mc:			multicast mac addresses
1789  *	@dev_addrs:		list of device hw addresses
1790  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1791  *	@promiscuity:		Number of times the NIC is told to work in
1792  *				promiscuous mode; if it becomes 0 the NIC will
1793  *				exit promiscuous mode
1794  *	@allmulti:		Counter, enables or disables allmulticast mode
1795  *
1796  *	@vlan_info:	VLAN info
1797  *	@dsa_ptr:	dsa specific data
1798  *	@tipc_ptr:	TIPC specific data
1799  *	@atalk_ptr:	AppleTalk link
1800  *	@ip_ptr:	IPv4 specific data
1801  *	@dn_ptr:	DECnet specific data
1802  *	@ip6_ptr:	IPv6 specific data
1803  *	@ax25_ptr:	AX.25 specific data
1804  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1805  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1806  *			 device struct
1807  *	@mpls_ptr:	mpls_dev struct pointer
1808  *
1809  *	@dev_addr:	Hw address (before bcast,
1810  *			because most packets are unicast)
1811  *
1812  *	@_rx:			Array of RX queues
1813  *	@num_rx_queues:		Number of RX queues
1814  *				allocated at register_netdev() time
1815  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1816  *	@xdp_prog:		XDP sockets filter program pointer
1817  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1818  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1819  *				allow to avoid NIC hard IRQ, on busy queues.
1820  *
1821  *	@rx_handler:		handler for received packets
1822  *	@rx_handler_data: 	XXX: need comments on this one
1823  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1824  *				ingress processing
1825  *	@ingress_queue:		XXX: need comments on this one
1826  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1827  *	@broadcast:		hw bcast address
1828  *
1829  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1830  *			indexed by RX queue number. Assigned by driver.
1831  *			This must only be set if the ndo_rx_flow_steer
1832  *			operation is defined
1833  *	@index_hlist:		Device index hash chain
1834  *
1835  *	@_tx:			Array of TX queues
1836  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1837  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1838  *	@qdisc:			Root qdisc from userspace point of view
1839  *	@tx_queue_len:		Max frames per queue allowed
1840  *	@tx_global_lock: 	XXX: need comments on this one
1841  *	@xdp_bulkq:		XDP device bulk queue
1842  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1843  *
1844  *	@xps_maps:	XXX: need comments on this one
1845  *	@miniq_egress:		clsact qdisc specific data for
1846  *				egress processing
1847  *	@qdisc_hash:		qdisc hash table
1848  *	@watchdog_timeo:	Represents the timeout that is used by
1849  *				the watchdog (see dev_watchdog())
1850  *	@watchdog_timer:	List of timers
1851  *
1852  *	@proto_down_reason:	reason a netdev interface is held down
1853  *	@pcpu_refcnt:		Number of references to this device
1854  *	@dev_refcnt:		Number of references to this device
1855  *	@todo_list:		Delayed register/unregister
1856  *	@link_watch_list:	XXX: need comments on this one
1857  *
1858  *	@reg_state:		Register/unregister state machine
1859  *	@dismantle:		Device is going to be freed
1860  *	@rtnl_link_state:	This enum represents the phases of creating
1861  *				a new link
1862  *
1863  *	@needs_free_netdev:	Should unregister perform free_netdev?
1864  *	@priv_destructor:	Called from unregister
1865  *	@npinfo:		XXX: need comments on this one
1866  * 	@nd_net:		Network namespace this network device is inside
1867  *
1868  * 	@ml_priv:	Mid-layer private
1869  *	@ml_priv_type:  Mid-layer private type
1870  * 	@lstats:	Loopback statistics
1871  * 	@tstats:	Tunnel statistics
1872  * 	@dstats:	Dummy statistics
1873  * 	@vstats:	Virtual ethernet statistics
1874  *
1875  *	@garp_port:	GARP
1876  *	@mrp_port:	MRP
1877  *
1878  *	@dev:		Class/net/name entry
1879  *	@sysfs_groups:	Space for optional device, statistics and wireless
1880  *			sysfs groups
1881  *
1882  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1883  *	@rtnl_link_ops:	Rtnl_link_ops
1884  *
1885  *	@gso_max_size:	Maximum size of generic segmentation offload
1886  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1887  *			NIC for GSO
1888  *
1889  *	@dcbnl_ops:	Data Center Bridging netlink ops
1890  *	@num_tc:	Number of traffic classes in the net device
1891  *	@tc_to_txq:	XXX: need comments on this one
1892  *	@prio_tc_map:	XXX: need comments on this one
1893  *
1894  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1895  *
1896  *	@priomap:	XXX: need comments on this one
1897  *	@phydev:	Physical device may attach itself
1898  *			for hardware timestamping
1899  *	@sfp_bus:	attached &struct sfp_bus structure.
1900  *
1901  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1902  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1903  *
1904  *	@proto_down:	protocol port state information can be sent to the
1905  *			switch driver and used to set the phys state of the
1906  *			switch port.
1907  *
1908  *	@wol_enabled:	Wake-on-LAN is enabled
1909  *
1910  *	@threaded:	napi threaded mode is enabled
1911  *
1912  *	@net_notifier_list:	List of per-net netdev notifier block
1913  *				that follow this device when it is moved
1914  *				to another network namespace.
1915  *
1916  *	@macsec_ops:    MACsec offloading ops
1917  *
1918  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1919  *				offload capabilities of the device
1920  *	@udp_tunnel_nic:	UDP tunnel offload state
1921  *	@xdp_state:		stores info on attached XDP BPF programs
1922  *
1923  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1924  *			dev->addr_list_lock.
1925  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1926  *			keep a list of interfaces to be deleted.
1927  *
1928  *	FIXME: cleanup struct net_device such that network protocol info
1929  *	moves out.
1930  */
1931 
1932 struct net_device {
1933 	char			name[IFNAMSIZ];
1934 	struct netdev_name_node	*name_node;
1935 	struct dev_ifalias	__rcu *ifalias;
1936 	/*
1937 	 *	I/O specific fields
1938 	 *	FIXME: Merge these and struct ifmap into one
1939 	 */
1940 	unsigned long		mem_end;
1941 	unsigned long		mem_start;
1942 	unsigned long		base_addr;
1943 
1944 	/*
1945 	 *	Some hardware also needs these fields (state,dev_list,
1946 	 *	napi_list,unreg_list,close_list) but they are not
1947 	 *	part of the usual set specified in Space.c.
1948 	 */
1949 
1950 	unsigned long		state;
1951 
1952 	struct list_head	dev_list;
1953 	struct list_head	napi_list;
1954 	struct list_head	unreg_list;
1955 	struct list_head	close_list;
1956 	struct list_head	ptype_all;
1957 	struct list_head	ptype_specific;
1958 
1959 	struct {
1960 		struct list_head upper;
1961 		struct list_head lower;
1962 	} adj_list;
1963 
1964 	/* Read-mostly cache-line for fast-path access */
1965 	unsigned int		flags;
1966 	unsigned int		priv_flags;
1967 	const struct net_device_ops *netdev_ops;
1968 	int			ifindex;
1969 	unsigned short		gflags;
1970 	unsigned short		hard_header_len;
1971 
1972 	/* Note : dev->mtu is often read without holding a lock.
1973 	 * Writers usually hold RTNL.
1974 	 * It is recommended to use READ_ONCE() to annotate the reads,
1975 	 * and to use WRITE_ONCE() to annotate the writes.
1976 	 */
1977 	unsigned int		mtu;
1978 	unsigned short		needed_headroom;
1979 	unsigned short		needed_tailroom;
1980 
1981 	netdev_features_t	features;
1982 	netdev_features_t	hw_features;
1983 	netdev_features_t	wanted_features;
1984 	netdev_features_t	vlan_features;
1985 	netdev_features_t	hw_enc_features;
1986 	netdev_features_t	mpls_features;
1987 	netdev_features_t	gso_partial_features;
1988 
1989 	unsigned int		min_mtu;
1990 	unsigned int		max_mtu;
1991 	unsigned short		type;
1992 	unsigned char		min_header_len;
1993 	unsigned char		name_assign_type;
1994 
1995 	int			group;
1996 
1997 	struct net_device_stats	stats; /* not used by modern drivers */
1998 
1999 	atomic_long_t		rx_dropped;
2000 	atomic_long_t		tx_dropped;
2001 	atomic_long_t		rx_nohandler;
2002 
2003 	/* Stats to monitor link on/off, flapping */
2004 	atomic_t		carrier_up_count;
2005 	atomic_t		carrier_down_count;
2006 
2007 #ifdef CONFIG_WIRELESS_EXT
2008 	const struct iw_handler_def *wireless_handlers;
2009 	struct iw_public_data	*wireless_data;
2010 #endif
2011 	const struct ethtool_ops *ethtool_ops;
2012 #ifdef CONFIG_NET_L3_MASTER_DEV
2013 	const struct l3mdev_ops	*l3mdev_ops;
2014 #endif
2015 #if IS_ENABLED(CONFIG_IPV6)
2016 	const struct ndisc_ops *ndisc_ops;
2017 #endif
2018 
2019 #ifdef CONFIG_XFRM_OFFLOAD
2020 	const struct xfrmdev_ops *xfrmdev_ops;
2021 #endif
2022 
2023 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2024 	const struct tlsdev_ops *tlsdev_ops;
2025 #endif
2026 
2027 	const struct header_ops *header_ops;
2028 
2029 	unsigned char		operstate;
2030 	unsigned char		link_mode;
2031 
2032 	unsigned char		if_port;
2033 	unsigned char		dma;
2034 
2035 	/* Interface address info. */
2036 	unsigned char		perm_addr[MAX_ADDR_LEN];
2037 	unsigned char		addr_assign_type;
2038 	unsigned char		addr_len;
2039 	unsigned char		upper_level;
2040 	unsigned char		lower_level;
2041 
2042 	unsigned short		neigh_priv_len;
2043 	unsigned short          dev_id;
2044 	unsigned short          dev_port;
2045 	unsigned short		padded;
2046 
2047 	spinlock_t		addr_list_lock;
2048 	int			irq;
2049 
2050 	struct netdev_hw_addr_list	uc;
2051 	struct netdev_hw_addr_list	mc;
2052 	struct netdev_hw_addr_list	dev_addrs;
2053 
2054 #ifdef CONFIG_SYSFS
2055 	struct kset		*queues_kset;
2056 #endif
2057 #ifdef CONFIG_LOCKDEP
2058 	struct list_head	unlink_list;
2059 #endif
2060 	unsigned int		promiscuity;
2061 	unsigned int		allmulti;
2062 	bool			uc_promisc;
2063 #ifdef CONFIG_LOCKDEP
2064 	unsigned char		nested_level;
2065 #endif
2066 
2067 
2068 	/* Protocol-specific pointers */
2069 
2070 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2071 	struct vlan_info __rcu	*vlan_info;
2072 #endif
2073 #if IS_ENABLED(CONFIG_NET_DSA)
2074 	struct dsa_port		*dsa_ptr;
2075 #endif
2076 #if IS_ENABLED(CONFIG_TIPC)
2077 	struct tipc_bearer __rcu *tipc_ptr;
2078 #endif
2079 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2080 	void 			*atalk_ptr;
2081 #endif
2082 	struct in_device __rcu	*ip_ptr;
2083 #if IS_ENABLED(CONFIG_DECNET)
2084 	struct dn_dev __rcu     *dn_ptr;
2085 #endif
2086 	struct inet6_dev __rcu	*ip6_ptr;
2087 #if IS_ENABLED(CONFIG_AX25)
2088 	void			*ax25_ptr;
2089 #endif
2090 	struct wireless_dev	*ieee80211_ptr;
2091 	struct wpan_dev		*ieee802154_ptr;
2092 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2093 	struct mpls_dev __rcu	*mpls_ptr;
2094 #endif
2095 
2096 /*
2097  * Cache lines mostly used on receive path (including eth_type_trans())
2098  */
2099 	/* Interface address info used in eth_type_trans() */
2100 	unsigned char		*dev_addr;
2101 
2102 	struct netdev_rx_queue	*_rx;
2103 	unsigned int		num_rx_queues;
2104 	unsigned int		real_num_rx_queues;
2105 
2106 	struct bpf_prog __rcu	*xdp_prog;
2107 	unsigned long		gro_flush_timeout;
2108 	int			napi_defer_hard_irqs;
2109 	rx_handler_func_t __rcu	*rx_handler;
2110 	void __rcu		*rx_handler_data;
2111 
2112 #ifdef CONFIG_NET_CLS_ACT
2113 	struct mini_Qdisc __rcu	*miniq_ingress;
2114 #endif
2115 	struct netdev_queue __rcu *ingress_queue;
2116 #ifdef CONFIG_NETFILTER_INGRESS
2117 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2118 #endif
2119 
2120 	unsigned char		broadcast[MAX_ADDR_LEN];
2121 #ifdef CONFIG_RFS_ACCEL
2122 	struct cpu_rmap		*rx_cpu_rmap;
2123 #endif
2124 	struct hlist_node	index_hlist;
2125 
2126 /*
2127  * Cache lines mostly used on transmit path
2128  */
2129 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2130 	unsigned int		num_tx_queues;
2131 	unsigned int		real_num_tx_queues;
2132 	struct Qdisc		*qdisc;
2133 	unsigned int		tx_queue_len;
2134 	spinlock_t		tx_global_lock;
2135 
2136 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2137 
2138 #ifdef CONFIG_XPS
2139 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2140 #endif
2141 #ifdef CONFIG_NET_CLS_ACT
2142 	struct mini_Qdisc __rcu	*miniq_egress;
2143 #endif
2144 
2145 #ifdef CONFIG_NET_SCHED
2146 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2147 #endif
2148 	/* These may be needed for future network-power-down code. */
2149 	struct timer_list	watchdog_timer;
2150 	int			watchdog_timeo;
2151 
2152 	u32                     proto_down_reason;
2153 
2154 	struct list_head	todo_list;
2155 
2156 #ifdef CONFIG_PCPU_DEV_REFCNT
2157 	int __percpu		*pcpu_refcnt;
2158 #else
2159 	refcount_t		dev_refcnt;
2160 #endif
2161 
2162 	struct list_head	link_watch_list;
2163 
2164 	enum { NETREG_UNINITIALIZED=0,
2165 	       NETREG_REGISTERED,	/* completed register_netdevice */
2166 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2167 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2168 	       NETREG_RELEASED,		/* called free_netdev */
2169 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2170 	} reg_state:8;
2171 
2172 	bool dismantle;
2173 
2174 	enum {
2175 		RTNL_LINK_INITIALIZED,
2176 		RTNL_LINK_INITIALIZING,
2177 	} rtnl_link_state:16;
2178 
2179 	bool needs_free_netdev;
2180 	void (*priv_destructor)(struct net_device *dev);
2181 
2182 #ifdef CONFIG_NETPOLL
2183 	struct netpoll_info __rcu	*npinfo;
2184 #endif
2185 
2186 	possible_net_t			nd_net;
2187 
2188 	/* mid-layer private */
2189 	void				*ml_priv;
2190 	enum netdev_ml_priv_type	ml_priv_type;
2191 
2192 	union {
2193 		struct pcpu_lstats __percpu		*lstats;
2194 		struct pcpu_sw_netstats __percpu	*tstats;
2195 		struct pcpu_dstats __percpu		*dstats;
2196 	};
2197 
2198 #if IS_ENABLED(CONFIG_GARP)
2199 	struct garp_port __rcu	*garp_port;
2200 #endif
2201 #if IS_ENABLED(CONFIG_MRP)
2202 	struct mrp_port __rcu	*mrp_port;
2203 #endif
2204 
2205 	struct device		dev;
2206 	const struct attribute_group *sysfs_groups[4];
2207 	const struct attribute_group *sysfs_rx_queue_group;
2208 
2209 	const struct rtnl_link_ops *rtnl_link_ops;
2210 
2211 	/* for setting kernel sock attribute on TCP connection setup */
2212 #define GSO_MAX_SIZE		65536
2213 	unsigned int		gso_max_size;
2214 #define GSO_MAX_SEGS		65535
2215 	u16			gso_max_segs;
2216 
2217 #ifdef CONFIG_DCB
2218 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2219 #endif
2220 	s16			num_tc;
2221 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2222 	u8			prio_tc_map[TC_BITMASK + 1];
2223 
2224 #if IS_ENABLED(CONFIG_FCOE)
2225 	unsigned int		fcoe_ddp_xid;
2226 #endif
2227 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2228 	struct netprio_map __rcu *priomap;
2229 #endif
2230 	struct phy_device	*phydev;
2231 	struct sfp_bus		*sfp_bus;
2232 	struct lock_class_key	*qdisc_tx_busylock;
2233 	struct lock_class_key	*qdisc_running_key;
2234 	bool			proto_down;
2235 	unsigned		wol_enabled:1;
2236 	unsigned		threaded:1;
2237 
2238 	struct list_head	net_notifier_list;
2239 
2240 #if IS_ENABLED(CONFIG_MACSEC)
2241 	/* MACsec management functions */
2242 	const struct macsec_ops *macsec_ops;
2243 #endif
2244 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2245 	struct udp_tunnel_nic	*udp_tunnel_nic;
2246 
2247 	/* protected by rtnl_lock */
2248 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2249 };
2250 #define to_net_dev(d) container_of(d, struct net_device, dev)
2251 
2252 static inline bool netif_elide_gro(const struct net_device *dev)
2253 {
2254 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2255 		return true;
2256 	return false;
2257 }
2258 
2259 #define	NETDEV_ALIGN		32
2260 
2261 static inline
2262 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2263 {
2264 	return dev->prio_tc_map[prio & TC_BITMASK];
2265 }
2266 
2267 static inline
2268 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2269 {
2270 	if (tc >= dev->num_tc)
2271 		return -EINVAL;
2272 
2273 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2274 	return 0;
2275 }
2276 
2277 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2278 void netdev_reset_tc(struct net_device *dev);
2279 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2280 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2281 
2282 static inline
2283 int netdev_get_num_tc(struct net_device *dev)
2284 {
2285 	return dev->num_tc;
2286 }
2287 
2288 static inline void net_prefetch(void *p)
2289 {
2290 	prefetch(p);
2291 #if L1_CACHE_BYTES < 128
2292 	prefetch((u8 *)p + L1_CACHE_BYTES);
2293 #endif
2294 }
2295 
2296 static inline void net_prefetchw(void *p)
2297 {
2298 	prefetchw(p);
2299 #if L1_CACHE_BYTES < 128
2300 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2301 #endif
2302 }
2303 
2304 void netdev_unbind_sb_channel(struct net_device *dev,
2305 			      struct net_device *sb_dev);
2306 int netdev_bind_sb_channel_queue(struct net_device *dev,
2307 				 struct net_device *sb_dev,
2308 				 u8 tc, u16 count, u16 offset);
2309 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2310 static inline int netdev_get_sb_channel(struct net_device *dev)
2311 {
2312 	return max_t(int, -dev->num_tc, 0);
2313 }
2314 
2315 static inline
2316 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2317 					 unsigned int index)
2318 {
2319 	return &dev->_tx[index];
2320 }
2321 
2322 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2323 						    const struct sk_buff *skb)
2324 {
2325 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2326 }
2327 
2328 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2329 					    void (*f)(struct net_device *,
2330 						      struct netdev_queue *,
2331 						      void *),
2332 					    void *arg)
2333 {
2334 	unsigned int i;
2335 
2336 	for (i = 0; i < dev->num_tx_queues; i++)
2337 		f(dev, &dev->_tx[i], arg);
2338 }
2339 
2340 #define netdev_lockdep_set_classes(dev)				\
2341 {								\
2342 	static struct lock_class_key qdisc_tx_busylock_key;	\
2343 	static struct lock_class_key qdisc_running_key;		\
2344 	static struct lock_class_key qdisc_xmit_lock_key;	\
2345 	static struct lock_class_key dev_addr_list_lock_key;	\
2346 	unsigned int i;						\
2347 								\
2348 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2349 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2350 	lockdep_set_class(&(dev)->addr_list_lock,		\
2351 			  &dev_addr_list_lock_key);		\
2352 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2353 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2354 				  &qdisc_xmit_lock_key);	\
2355 }
2356 
2357 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2358 		     struct net_device *sb_dev);
2359 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2360 					 struct sk_buff *skb,
2361 					 struct net_device *sb_dev);
2362 
2363 /* returns the headroom that the master device needs to take in account
2364  * when forwarding to this dev
2365  */
2366 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2367 {
2368 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2369 }
2370 
2371 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2372 {
2373 	if (dev->netdev_ops->ndo_set_rx_headroom)
2374 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2375 }
2376 
2377 /* set the device rx headroom to the dev's default */
2378 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2379 {
2380 	netdev_set_rx_headroom(dev, -1);
2381 }
2382 
2383 static inline void *netdev_get_ml_priv(struct net_device *dev,
2384 				       enum netdev_ml_priv_type type)
2385 {
2386 	if (dev->ml_priv_type != type)
2387 		return NULL;
2388 
2389 	return dev->ml_priv;
2390 }
2391 
2392 static inline void netdev_set_ml_priv(struct net_device *dev,
2393 				      void *ml_priv,
2394 				      enum netdev_ml_priv_type type)
2395 {
2396 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2397 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2398 	     dev->ml_priv_type, type);
2399 	WARN(!dev->ml_priv_type && dev->ml_priv,
2400 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2401 
2402 	dev->ml_priv = ml_priv;
2403 	dev->ml_priv_type = type;
2404 }
2405 
2406 /*
2407  * Net namespace inlines
2408  */
2409 static inline
2410 struct net *dev_net(const struct net_device *dev)
2411 {
2412 	return read_pnet(&dev->nd_net);
2413 }
2414 
2415 static inline
2416 void dev_net_set(struct net_device *dev, struct net *net)
2417 {
2418 	write_pnet(&dev->nd_net, net);
2419 }
2420 
2421 /**
2422  *	netdev_priv - access network device private data
2423  *	@dev: network device
2424  *
2425  * Get network device private data
2426  */
2427 static inline void *netdev_priv(const struct net_device *dev)
2428 {
2429 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2430 }
2431 
2432 /* Set the sysfs physical device reference for the network logical device
2433  * if set prior to registration will cause a symlink during initialization.
2434  */
2435 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2436 
2437 /* Set the sysfs device type for the network logical device to allow
2438  * fine-grained identification of different network device types. For
2439  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2440  */
2441 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2442 
2443 /* Default NAPI poll() weight
2444  * Device drivers are strongly advised to not use bigger value
2445  */
2446 #define NAPI_POLL_WEIGHT 64
2447 
2448 /**
2449  *	netif_napi_add - initialize a NAPI context
2450  *	@dev:  network device
2451  *	@napi: NAPI context
2452  *	@poll: polling function
2453  *	@weight: default weight
2454  *
2455  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2456  * *any* of the other NAPI-related functions.
2457  */
2458 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2459 		    int (*poll)(struct napi_struct *, int), int weight);
2460 
2461 /**
2462  *	netif_tx_napi_add - initialize a NAPI context
2463  *	@dev:  network device
2464  *	@napi: NAPI context
2465  *	@poll: polling function
2466  *	@weight: default weight
2467  *
2468  * This variant of netif_napi_add() should be used from drivers using NAPI
2469  * to exclusively poll a TX queue.
2470  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2471  */
2472 static inline void netif_tx_napi_add(struct net_device *dev,
2473 				     struct napi_struct *napi,
2474 				     int (*poll)(struct napi_struct *, int),
2475 				     int weight)
2476 {
2477 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2478 	netif_napi_add(dev, napi, poll, weight);
2479 }
2480 
2481 /**
2482  *  __netif_napi_del - remove a NAPI context
2483  *  @napi: NAPI context
2484  *
2485  * Warning: caller must observe RCU grace period before freeing memory
2486  * containing @napi. Drivers might want to call this helper to combine
2487  * all the needed RCU grace periods into a single one.
2488  */
2489 void __netif_napi_del(struct napi_struct *napi);
2490 
2491 /**
2492  *  netif_napi_del - remove a NAPI context
2493  *  @napi: NAPI context
2494  *
2495  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2496  */
2497 static inline void netif_napi_del(struct napi_struct *napi)
2498 {
2499 	__netif_napi_del(napi);
2500 	synchronize_net();
2501 }
2502 
2503 struct napi_gro_cb {
2504 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2505 	void	*frag0;
2506 
2507 	/* Length of frag0. */
2508 	unsigned int frag0_len;
2509 
2510 	/* This indicates where we are processing relative to skb->data. */
2511 	int	data_offset;
2512 
2513 	/* This is non-zero if the packet cannot be merged with the new skb. */
2514 	u16	flush;
2515 
2516 	/* Save the IP ID here and check when we get to the transport layer */
2517 	u16	flush_id;
2518 
2519 	/* Number of segments aggregated. */
2520 	u16	count;
2521 
2522 	/* Start offset for remote checksum offload */
2523 	u16	gro_remcsum_start;
2524 
2525 	/* jiffies when first packet was created/queued */
2526 	unsigned long age;
2527 
2528 	/* Used in ipv6_gro_receive() and foo-over-udp */
2529 	u16	proto;
2530 
2531 	/* This is non-zero if the packet may be of the same flow. */
2532 	u8	same_flow:1;
2533 
2534 	/* Used in tunnel GRO receive */
2535 	u8	encap_mark:1;
2536 
2537 	/* GRO checksum is valid */
2538 	u8	csum_valid:1;
2539 
2540 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2541 	u8	csum_cnt:3;
2542 
2543 	/* Free the skb? */
2544 	u8	free:2;
2545 #define NAPI_GRO_FREE		  1
2546 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2547 
2548 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2549 	u8	is_ipv6:1;
2550 
2551 	/* Used in GRE, set in fou/gue_gro_receive */
2552 	u8	is_fou:1;
2553 
2554 	/* Used to determine if flush_id can be ignored */
2555 	u8	is_atomic:1;
2556 
2557 	/* Number of gro_receive callbacks this packet already went through */
2558 	u8 recursion_counter:4;
2559 
2560 	/* GRO is done by frag_list pointer chaining. */
2561 	u8	is_flist:1;
2562 
2563 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2564 	__wsum	csum;
2565 
2566 	/* used in skb_gro_receive() slow path */
2567 	struct sk_buff *last;
2568 };
2569 
2570 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2571 
2572 #define GRO_RECURSION_LIMIT 15
2573 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2574 {
2575 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2576 }
2577 
2578 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2579 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2580 					       struct list_head *head,
2581 					       struct sk_buff *skb)
2582 {
2583 	if (unlikely(gro_recursion_inc_test(skb))) {
2584 		NAPI_GRO_CB(skb)->flush |= 1;
2585 		return NULL;
2586 	}
2587 
2588 	return cb(head, skb);
2589 }
2590 
2591 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2592 					    struct sk_buff *);
2593 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2594 						  struct sock *sk,
2595 						  struct list_head *head,
2596 						  struct sk_buff *skb)
2597 {
2598 	if (unlikely(gro_recursion_inc_test(skb))) {
2599 		NAPI_GRO_CB(skb)->flush |= 1;
2600 		return NULL;
2601 	}
2602 
2603 	return cb(sk, head, skb);
2604 }
2605 
2606 struct packet_type {
2607 	__be16			type;	/* This is really htons(ether_type). */
2608 	bool			ignore_outgoing;
2609 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2610 	int			(*func) (struct sk_buff *,
2611 					 struct net_device *,
2612 					 struct packet_type *,
2613 					 struct net_device *);
2614 	void			(*list_func) (struct list_head *,
2615 					      struct packet_type *,
2616 					      struct net_device *);
2617 	bool			(*id_match)(struct packet_type *ptype,
2618 					    struct sock *sk);
2619 	void			*af_packet_priv;
2620 	struct list_head	list;
2621 };
2622 
2623 struct offload_callbacks {
2624 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2625 						netdev_features_t features);
2626 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2627 						struct sk_buff *skb);
2628 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2629 };
2630 
2631 struct packet_offload {
2632 	__be16			 type;	/* This is really htons(ether_type). */
2633 	u16			 priority;
2634 	struct offload_callbacks callbacks;
2635 	struct list_head	 list;
2636 };
2637 
2638 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2639 struct pcpu_sw_netstats {
2640 	u64     rx_packets;
2641 	u64     rx_bytes;
2642 	u64     tx_packets;
2643 	u64     tx_bytes;
2644 	struct u64_stats_sync   syncp;
2645 } __aligned(4 * sizeof(u64));
2646 
2647 struct pcpu_lstats {
2648 	u64_stats_t packets;
2649 	u64_stats_t bytes;
2650 	struct u64_stats_sync syncp;
2651 } __aligned(2 * sizeof(u64));
2652 
2653 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2654 
2655 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2656 {
2657 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2658 
2659 	u64_stats_update_begin(&tstats->syncp);
2660 	tstats->rx_bytes += len;
2661 	tstats->rx_packets++;
2662 	u64_stats_update_end(&tstats->syncp);
2663 }
2664 
2665 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2666 					  unsigned int packets,
2667 					  unsigned int len)
2668 {
2669 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2670 
2671 	u64_stats_update_begin(&tstats->syncp);
2672 	tstats->tx_bytes += len;
2673 	tstats->tx_packets += packets;
2674 	u64_stats_update_end(&tstats->syncp);
2675 }
2676 
2677 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2678 {
2679 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2680 
2681 	u64_stats_update_begin(&lstats->syncp);
2682 	u64_stats_add(&lstats->bytes, len);
2683 	u64_stats_inc(&lstats->packets);
2684 	u64_stats_update_end(&lstats->syncp);
2685 }
2686 
2687 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2688 ({									\
2689 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2690 	if (pcpu_stats)	{						\
2691 		int __cpu;						\
2692 		for_each_possible_cpu(__cpu) {				\
2693 			typeof(type) *stat;				\
2694 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2695 			u64_stats_init(&stat->syncp);			\
2696 		}							\
2697 	}								\
2698 	pcpu_stats;							\
2699 })
2700 
2701 #define netdev_alloc_pcpu_stats(type)					\
2702 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2703 
2704 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2705 ({									\
2706 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2707 	if (pcpu_stats) {						\
2708 		int __cpu;						\
2709 		for_each_possible_cpu(__cpu) {				\
2710 			typeof(type) *stat;				\
2711 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2712 			u64_stats_init(&stat->syncp);			\
2713 		}							\
2714 	}								\
2715 	pcpu_stats;							\
2716 })
2717 
2718 enum netdev_lag_tx_type {
2719 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2720 	NETDEV_LAG_TX_TYPE_RANDOM,
2721 	NETDEV_LAG_TX_TYPE_BROADCAST,
2722 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2723 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2724 	NETDEV_LAG_TX_TYPE_HASH,
2725 };
2726 
2727 enum netdev_lag_hash {
2728 	NETDEV_LAG_HASH_NONE,
2729 	NETDEV_LAG_HASH_L2,
2730 	NETDEV_LAG_HASH_L34,
2731 	NETDEV_LAG_HASH_L23,
2732 	NETDEV_LAG_HASH_E23,
2733 	NETDEV_LAG_HASH_E34,
2734 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2735 	NETDEV_LAG_HASH_UNKNOWN,
2736 };
2737 
2738 struct netdev_lag_upper_info {
2739 	enum netdev_lag_tx_type tx_type;
2740 	enum netdev_lag_hash hash_type;
2741 };
2742 
2743 struct netdev_lag_lower_state_info {
2744 	u8 link_up : 1,
2745 	   tx_enabled : 1;
2746 };
2747 
2748 #include <linux/notifier.h>
2749 
2750 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2751  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2752  * adding new types.
2753  */
2754 enum netdev_cmd {
2755 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2756 	NETDEV_DOWN,
2757 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2758 				   detected a hardware crash and restarted
2759 				   - we can use this eg to kick tcp sessions
2760 				   once done */
2761 	NETDEV_CHANGE,		/* Notify device state change */
2762 	NETDEV_REGISTER,
2763 	NETDEV_UNREGISTER,
2764 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2765 	NETDEV_CHANGEADDR,	/* notify after the address change */
2766 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2767 	NETDEV_GOING_DOWN,
2768 	NETDEV_CHANGENAME,
2769 	NETDEV_FEAT_CHANGE,
2770 	NETDEV_BONDING_FAILOVER,
2771 	NETDEV_PRE_UP,
2772 	NETDEV_PRE_TYPE_CHANGE,
2773 	NETDEV_POST_TYPE_CHANGE,
2774 	NETDEV_POST_INIT,
2775 	NETDEV_RELEASE,
2776 	NETDEV_NOTIFY_PEERS,
2777 	NETDEV_JOIN,
2778 	NETDEV_CHANGEUPPER,
2779 	NETDEV_RESEND_IGMP,
2780 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2781 	NETDEV_CHANGEINFODATA,
2782 	NETDEV_BONDING_INFO,
2783 	NETDEV_PRECHANGEUPPER,
2784 	NETDEV_CHANGELOWERSTATE,
2785 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2786 	NETDEV_UDP_TUNNEL_DROP_INFO,
2787 	NETDEV_CHANGE_TX_QUEUE_LEN,
2788 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2789 	NETDEV_CVLAN_FILTER_DROP_INFO,
2790 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2791 	NETDEV_SVLAN_FILTER_DROP_INFO,
2792 };
2793 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2794 
2795 int register_netdevice_notifier(struct notifier_block *nb);
2796 int unregister_netdevice_notifier(struct notifier_block *nb);
2797 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2798 int unregister_netdevice_notifier_net(struct net *net,
2799 				      struct notifier_block *nb);
2800 int register_netdevice_notifier_dev_net(struct net_device *dev,
2801 					struct notifier_block *nb,
2802 					struct netdev_net_notifier *nn);
2803 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2804 					  struct notifier_block *nb,
2805 					  struct netdev_net_notifier *nn);
2806 
2807 struct netdev_notifier_info {
2808 	struct net_device	*dev;
2809 	struct netlink_ext_ack	*extack;
2810 };
2811 
2812 struct netdev_notifier_info_ext {
2813 	struct netdev_notifier_info info; /* must be first */
2814 	union {
2815 		u32 mtu;
2816 	} ext;
2817 };
2818 
2819 struct netdev_notifier_change_info {
2820 	struct netdev_notifier_info info; /* must be first */
2821 	unsigned int flags_changed;
2822 };
2823 
2824 struct netdev_notifier_changeupper_info {
2825 	struct netdev_notifier_info info; /* must be first */
2826 	struct net_device *upper_dev; /* new upper dev */
2827 	bool master; /* is upper dev master */
2828 	bool linking; /* is the notification for link or unlink */
2829 	void *upper_info; /* upper dev info */
2830 };
2831 
2832 struct netdev_notifier_changelowerstate_info {
2833 	struct netdev_notifier_info info; /* must be first */
2834 	void *lower_state_info; /* is lower dev state */
2835 };
2836 
2837 struct netdev_notifier_pre_changeaddr_info {
2838 	struct netdev_notifier_info info; /* must be first */
2839 	const unsigned char *dev_addr;
2840 };
2841 
2842 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2843 					     struct net_device *dev)
2844 {
2845 	info->dev = dev;
2846 	info->extack = NULL;
2847 }
2848 
2849 static inline struct net_device *
2850 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2851 {
2852 	return info->dev;
2853 }
2854 
2855 static inline struct netlink_ext_ack *
2856 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2857 {
2858 	return info->extack;
2859 }
2860 
2861 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2862 
2863 
2864 extern rwlock_t				dev_base_lock;		/* Device list lock */
2865 
2866 #define for_each_netdev(net, d)		\
2867 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2868 #define for_each_netdev_reverse(net, d)	\
2869 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2870 #define for_each_netdev_rcu(net, d)		\
2871 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2872 #define for_each_netdev_safe(net, d, n)	\
2873 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2874 #define for_each_netdev_continue(net, d)		\
2875 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2876 #define for_each_netdev_continue_reverse(net, d)		\
2877 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2878 						     dev_list)
2879 #define for_each_netdev_continue_rcu(net, d)		\
2880 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2881 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2882 		for_each_netdev_rcu(&init_net, slave)	\
2883 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2884 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2885 
2886 static inline struct net_device *next_net_device(struct net_device *dev)
2887 {
2888 	struct list_head *lh;
2889 	struct net *net;
2890 
2891 	net = dev_net(dev);
2892 	lh = dev->dev_list.next;
2893 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2894 }
2895 
2896 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2897 {
2898 	struct list_head *lh;
2899 	struct net *net;
2900 
2901 	net = dev_net(dev);
2902 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2903 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2904 }
2905 
2906 static inline struct net_device *first_net_device(struct net *net)
2907 {
2908 	return list_empty(&net->dev_base_head) ? NULL :
2909 		net_device_entry(net->dev_base_head.next);
2910 }
2911 
2912 static inline struct net_device *first_net_device_rcu(struct net *net)
2913 {
2914 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2915 
2916 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2917 }
2918 
2919 int netdev_boot_setup_check(struct net_device *dev);
2920 unsigned long netdev_boot_base(const char *prefix, int unit);
2921 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2922 				       const char *hwaddr);
2923 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2924 void dev_add_pack(struct packet_type *pt);
2925 void dev_remove_pack(struct packet_type *pt);
2926 void __dev_remove_pack(struct packet_type *pt);
2927 void dev_add_offload(struct packet_offload *po);
2928 void dev_remove_offload(struct packet_offload *po);
2929 
2930 int dev_get_iflink(const struct net_device *dev);
2931 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2932 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2933 			  struct net_device_path_stack *stack);
2934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2935 				      unsigned short mask);
2936 struct net_device *dev_get_by_name(struct net *net, const char *name);
2937 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2938 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2939 int dev_alloc_name(struct net_device *dev, const char *name);
2940 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2941 void dev_close(struct net_device *dev);
2942 void dev_close_many(struct list_head *head, bool unlink);
2943 void dev_disable_lro(struct net_device *dev);
2944 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2945 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2946 		     struct net_device *sb_dev);
2947 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2948 		       struct net_device *sb_dev);
2949 
2950 int dev_queue_xmit(struct sk_buff *skb);
2951 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2952 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2953 
2954 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2955 {
2956 	int ret;
2957 
2958 	ret = __dev_direct_xmit(skb, queue_id);
2959 	if (!dev_xmit_complete(ret))
2960 		kfree_skb(skb);
2961 	return ret;
2962 }
2963 
2964 int register_netdevice(struct net_device *dev);
2965 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2966 void unregister_netdevice_many(struct list_head *head);
2967 static inline void unregister_netdevice(struct net_device *dev)
2968 {
2969 	unregister_netdevice_queue(dev, NULL);
2970 }
2971 
2972 int netdev_refcnt_read(const struct net_device *dev);
2973 void free_netdev(struct net_device *dev);
2974 void netdev_freemem(struct net_device *dev);
2975 int init_dummy_netdev(struct net_device *dev);
2976 
2977 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2978 					 struct sk_buff *skb,
2979 					 bool all_slaves);
2980 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2981 					    struct sock *sk);
2982 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2983 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2984 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2985 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2986 int netdev_get_name(struct net *net, char *name, int ifindex);
2987 int dev_restart(struct net_device *dev);
2988 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2989 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2990 
2991 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2992 {
2993 	return NAPI_GRO_CB(skb)->data_offset;
2994 }
2995 
2996 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2997 {
2998 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2999 }
3000 
3001 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
3002 {
3003 	NAPI_GRO_CB(skb)->data_offset += len;
3004 }
3005 
3006 static inline void *skb_gro_header_fast(struct sk_buff *skb,
3007 					unsigned int offset)
3008 {
3009 	return NAPI_GRO_CB(skb)->frag0 + offset;
3010 }
3011 
3012 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
3013 {
3014 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
3015 }
3016 
3017 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
3018 {
3019 	NAPI_GRO_CB(skb)->frag0 = NULL;
3020 	NAPI_GRO_CB(skb)->frag0_len = 0;
3021 }
3022 
3023 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
3024 					unsigned int offset)
3025 {
3026 	if (!pskb_may_pull(skb, hlen))
3027 		return NULL;
3028 
3029 	skb_gro_frag0_invalidate(skb);
3030 	return skb->data + offset;
3031 }
3032 
3033 static inline void *skb_gro_network_header(struct sk_buff *skb)
3034 {
3035 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
3036 	       skb_network_offset(skb);
3037 }
3038 
3039 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3040 					const void *start, unsigned int len)
3041 {
3042 	if (NAPI_GRO_CB(skb)->csum_valid)
3043 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3044 						  csum_partial(start, len, 0));
3045 }
3046 
3047 /* GRO checksum functions. These are logical equivalents of the normal
3048  * checksum functions (in skbuff.h) except that they operate on the GRO
3049  * offsets and fields in sk_buff.
3050  */
3051 
3052 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3053 
3054 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3055 {
3056 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3057 }
3058 
3059 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3060 						      bool zero_okay,
3061 						      __sum16 check)
3062 {
3063 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3064 		skb_checksum_start_offset(skb) <
3065 		 skb_gro_offset(skb)) &&
3066 		!skb_at_gro_remcsum_start(skb) &&
3067 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3068 		(!zero_okay || check));
3069 }
3070 
3071 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3072 							   __wsum psum)
3073 {
3074 	if (NAPI_GRO_CB(skb)->csum_valid &&
3075 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3076 		return 0;
3077 
3078 	NAPI_GRO_CB(skb)->csum = psum;
3079 
3080 	return __skb_gro_checksum_complete(skb);
3081 }
3082 
3083 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3084 {
3085 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3086 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3087 		NAPI_GRO_CB(skb)->csum_cnt--;
3088 	} else {
3089 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3090 		 * verified a new top level checksum or an encapsulated one
3091 		 * during GRO. This saves work if we fallback to normal path.
3092 		 */
3093 		__skb_incr_checksum_unnecessary(skb);
3094 	}
3095 }
3096 
3097 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3098 				    compute_pseudo)			\
3099 ({									\
3100 	__sum16 __ret = 0;						\
3101 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3102 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3103 				compute_pseudo(skb, proto));		\
3104 	if (!__ret)							\
3105 		skb_gro_incr_csum_unnecessary(skb);			\
3106 	__ret;								\
3107 })
3108 
3109 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3110 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3111 
3112 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3113 					     compute_pseudo)		\
3114 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3115 
3116 #define skb_gro_checksum_simple_validate(skb)				\
3117 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3118 
3119 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3120 {
3121 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3122 		!NAPI_GRO_CB(skb)->csum_valid);
3123 }
3124 
3125 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3126 					      __wsum pseudo)
3127 {
3128 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3129 	NAPI_GRO_CB(skb)->csum_valid = 1;
3130 }
3131 
3132 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3133 do {									\
3134 	if (__skb_gro_checksum_convert_check(skb))			\
3135 		__skb_gro_checksum_convert(skb, 			\
3136 					   compute_pseudo(skb, proto));	\
3137 } while (0)
3138 
3139 struct gro_remcsum {
3140 	int offset;
3141 	__wsum delta;
3142 };
3143 
3144 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3145 {
3146 	grc->offset = 0;
3147 	grc->delta = 0;
3148 }
3149 
3150 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3151 					    unsigned int off, size_t hdrlen,
3152 					    int start, int offset,
3153 					    struct gro_remcsum *grc,
3154 					    bool nopartial)
3155 {
3156 	__wsum delta;
3157 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3158 
3159 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3160 
3161 	if (!nopartial) {
3162 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3163 		return ptr;
3164 	}
3165 
3166 	ptr = skb_gro_header_fast(skb, off);
3167 	if (skb_gro_header_hard(skb, off + plen)) {
3168 		ptr = skb_gro_header_slow(skb, off + plen, off);
3169 		if (!ptr)
3170 			return NULL;
3171 	}
3172 
3173 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3174 			       start, offset);
3175 
3176 	/* Adjust skb->csum since we changed the packet */
3177 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3178 
3179 	grc->offset = off + hdrlen + offset;
3180 	grc->delta = delta;
3181 
3182 	return ptr;
3183 }
3184 
3185 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3186 					   struct gro_remcsum *grc)
3187 {
3188 	void *ptr;
3189 	size_t plen = grc->offset + sizeof(u16);
3190 
3191 	if (!grc->delta)
3192 		return;
3193 
3194 	ptr = skb_gro_header_fast(skb, grc->offset);
3195 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3196 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3197 		if (!ptr)
3198 			return;
3199 	}
3200 
3201 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3202 }
3203 
3204 #ifdef CONFIG_XFRM_OFFLOAD
3205 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3206 {
3207 	if (PTR_ERR(pp) != -EINPROGRESS)
3208 		NAPI_GRO_CB(skb)->flush |= flush;
3209 }
3210 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3211 					       struct sk_buff *pp,
3212 					       int flush,
3213 					       struct gro_remcsum *grc)
3214 {
3215 	if (PTR_ERR(pp) != -EINPROGRESS) {
3216 		NAPI_GRO_CB(skb)->flush |= flush;
3217 		skb_gro_remcsum_cleanup(skb, grc);
3218 		skb->remcsum_offload = 0;
3219 	}
3220 }
3221 #else
3222 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3223 {
3224 	NAPI_GRO_CB(skb)->flush |= flush;
3225 }
3226 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3227 					       struct sk_buff *pp,
3228 					       int flush,
3229 					       struct gro_remcsum *grc)
3230 {
3231 	NAPI_GRO_CB(skb)->flush |= flush;
3232 	skb_gro_remcsum_cleanup(skb, grc);
3233 	skb->remcsum_offload = 0;
3234 }
3235 #endif
3236 
3237 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3238 				  unsigned short type,
3239 				  const void *daddr, const void *saddr,
3240 				  unsigned int len)
3241 {
3242 	if (!dev->header_ops || !dev->header_ops->create)
3243 		return 0;
3244 
3245 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3246 }
3247 
3248 static inline int dev_parse_header(const struct sk_buff *skb,
3249 				   unsigned char *haddr)
3250 {
3251 	const struct net_device *dev = skb->dev;
3252 
3253 	if (!dev->header_ops || !dev->header_ops->parse)
3254 		return 0;
3255 	return dev->header_ops->parse(skb, haddr);
3256 }
3257 
3258 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3259 {
3260 	const struct net_device *dev = skb->dev;
3261 
3262 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3263 		return 0;
3264 	return dev->header_ops->parse_protocol(skb);
3265 }
3266 
3267 /* ll_header must have at least hard_header_len allocated */
3268 static inline bool dev_validate_header(const struct net_device *dev,
3269 				       char *ll_header, int len)
3270 {
3271 	if (likely(len >= dev->hard_header_len))
3272 		return true;
3273 	if (len < dev->min_header_len)
3274 		return false;
3275 
3276 	if (capable(CAP_SYS_RAWIO)) {
3277 		memset(ll_header + len, 0, dev->hard_header_len - len);
3278 		return true;
3279 	}
3280 
3281 	if (dev->header_ops && dev->header_ops->validate)
3282 		return dev->header_ops->validate(ll_header, len);
3283 
3284 	return false;
3285 }
3286 
3287 static inline bool dev_has_header(const struct net_device *dev)
3288 {
3289 	return dev->header_ops && dev->header_ops->create;
3290 }
3291 
3292 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3293 			   int len, int size);
3294 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3295 static inline int unregister_gifconf(unsigned int family)
3296 {
3297 	return register_gifconf(family, NULL);
3298 }
3299 
3300 #ifdef CONFIG_NET_FLOW_LIMIT
3301 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3302 struct sd_flow_limit {
3303 	u64			count;
3304 	unsigned int		num_buckets;
3305 	unsigned int		history_head;
3306 	u16			history[FLOW_LIMIT_HISTORY];
3307 	u8			buckets[];
3308 };
3309 
3310 extern int netdev_flow_limit_table_len;
3311 #endif /* CONFIG_NET_FLOW_LIMIT */
3312 
3313 /*
3314  * Incoming packets are placed on per-CPU queues
3315  */
3316 struct softnet_data {
3317 	struct list_head	poll_list;
3318 	struct sk_buff_head	process_queue;
3319 
3320 	/* stats */
3321 	unsigned int		processed;
3322 	unsigned int		time_squeeze;
3323 	unsigned int		received_rps;
3324 #ifdef CONFIG_RPS
3325 	struct softnet_data	*rps_ipi_list;
3326 #endif
3327 #ifdef CONFIG_NET_FLOW_LIMIT
3328 	struct sd_flow_limit __rcu *flow_limit;
3329 #endif
3330 	struct Qdisc		*output_queue;
3331 	struct Qdisc		**output_queue_tailp;
3332 	struct sk_buff		*completion_queue;
3333 #ifdef CONFIG_XFRM_OFFLOAD
3334 	struct sk_buff_head	xfrm_backlog;
3335 #endif
3336 	/* written and read only by owning cpu: */
3337 	struct {
3338 		u16 recursion;
3339 		u8  more;
3340 	} xmit;
3341 #ifdef CONFIG_RPS
3342 	/* input_queue_head should be written by cpu owning this struct,
3343 	 * and only read by other cpus. Worth using a cache line.
3344 	 */
3345 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3346 
3347 	/* Elements below can be accessed between CPUs for RPS/RFS */
3348 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3349 	struct softnet_data	*rps_ipi_next;
3350 	unsigned int		cpu;
3351 	unsigned int		input_queue_tail;
3352 #endif
3353 	unsigned int		dropped;
3354 	struct sk_buff_head	input_pkt_queue;
3355 	struct napi_struct	backlog;
3356 
3357 };
3358 
3359 static inline void input_queue_head_incr(struct softnet_data *sd)
3360 {
3361 #ifdef CONFIG_RPS
3362 	sd->input_queue_head++;
3363 #endif
3364 }
3365 
3366 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3367 					      unsigned int *qtail)
3368 {
3369 #ifdef CONFIG_RPS
3370 	*qtail = ++sd->input_queue_tail;
3371 #endif
3372 }
3373 
3374 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3375 
3376 static inline int dev_recursion_level(void)
3377 {
3378 	return this_cpu_read(softnet_data.xmit.recursion);
3379 }
3380 
3381 #define XMIT_RECURSION_LIMIT	8
3382 static inline bool dev_xmit_recursion(void)
3383 {
3384 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3385 			XMIT_RECURSION_LIMIT);
3386 }
3387 
3388 static inline void dev_xmit_recursion_inc(void)
3389 {
3390 	__this_cpu_inc(softnet_data.xmit.recursion);
3391 }
3392 
3393 static inline void dev_xmit_recursion_dec(void)
3394 {
3395 	__this_cpu_dec(softnet_data.xmit.recursion);
3396 }
3397 
3398 void __netif_schedule(struct Qdisc *q);
3399 void netif_schedule_queue(struct netdev_queue *txq);
3400 
3401 static inline void netif_tx_schedule_all(struct net_device *dev)
3402 {
3403 	unsigned int i;
3404 
3405 	for (i = 0; i < dev->num_tx_queues; i++)
3406 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3407 }
3408 
3409 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3410 {
3411 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3412 }
3413 
3414 /**
3415  *	netif_start_queue - allow transmit
3416  *	@dev: network device
3417  *
3418  *	Allow upper layers to call the device hard_start_xmit routine.
3419  */
3420 static inline void netif_start_queue(struct net_device *dev)
3421 {
3422 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3423 }
3424 
3425 static inline void netif_tx_start_all_queues(struct net_device *dev)
3426 {
3427 	unsigned int i;
3428 
3429 	for (i = 0; i < dev->num_tx_queues; i++) {
3430 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3431 		netif_tx_start_queue(txq);
3432 	}
3433 }
3434 
3435 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3436 
3437 /**
3438  *	netif_wake_queue - restart transmit
3439  *	@dev: network device
3440  *
3441  *	Allow upper layers to call the device hard_start_xmit routine.
3442  *	Used for flow control when transmit resources are available.
3443  */
3444 static inline void netif_wake_queue(struct net_device *dev)
3445 {
3446 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3447 }
3448 
3449 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3450 {
3451 	unsigned int i;
3452 
3453 	for (i = 0; i < dev->num_tx_queues; i++) {
3454 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3455 		netif_tx_wake_queue(txq);
3456 	}
3457 }
3458 
3459 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3460 {
3461 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3462 }
3463 
3464 /**
3465  *	netif_stop_queue - stop transmitted packets
3466  *	@dev: network device
3467  *
3468  *	Stop upper layers calling the device hard_start_xmit routine.
3469  *	Used for flow control when transmit resources are unavailable.
3470  */
3471 static inline void netif_stop_queue(struct net_device *dev)
3472 {
3473 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3474 }
3475 
3476 void netif_tx_stop_all_queues(struct net_device *dev);
3477 
3478 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3479 {
3480 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3481 }
3482 
3483 /**
3484  *	netif_queue_stopped - test if transmit queue is flowblocked
3485  *	@dev: network device
3486  *
3487  *	Test if transmit queue on device is currently unable to send.
3488  */
3489 static inline bool netif_queue_stopped(const struct net_device *dev)
3490 {
3491 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3492 }
3493 
3494 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3495 {
3496 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3497 }
3498 
3499 static inline bool
3500 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3501 {
3502 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3503 }
3504 
3505 static inline bool
3506 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3507 {
3508 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3509 }
3510 
3511 /**
3512  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3513  *	@dev_queue: pointer to transmit queue
3514  *	@min_limit: dql minimum limit
3515  *
3516  * Forces xmit_more() to return true until the minimum threshold
3517  * defined by @min_limit is reached (or until the tx queue is
3518  * empty). Warning: to be use with care, misuse will impact the
3519  * latency.
3520  */
3521 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3522 						  unsigned int min_limit)
3523 {
3524 #ifdef CONFIG_BQL
3525 	dev_queue->dql.min_limit = min_limit;
3526 #endif
3527 }
3528 
3529 /**
3530  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3531  *	@dev_queue: pointer to transmit queue
3532  *
3533  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3534  * to give appropriate hint to the CPU.
3535  */
3536 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3537 {
3538 #ifdef CONFIG_BQL
3539 	prefetchw(&dev_queue->dql.num_queued);
3540 #endif
3541 }
3542 
3543 /**
3544  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3545  *	@dev_queue: pointer to transmit queue
3546  *
3547  * BQL enabled drivers might use this helper in their TX completion path,
3548  * to give appropriate hint to the CPU.
3549  */
3550 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3551 {
3552 #ifdef CONFIG_BQL
3553 	prefetchw(&dev_queue->dql.limit);
3554 #endif
3555 }
3556 
3557 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3558 					unsigned int bytes)
3559 {
3560 #ifdef CONFIG_BQL
3561 	dql_queued(&dev_queue->dql, bytes);
3562 
3563 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3564 		return;
3565 
3566 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3567 
3568 	/*
3569 	 * The XOFF flag must be set before checking the dql_avail below,
3570 	 * because in netdev_tx_completed_queue we update the dql_completed
3571 	 * before checking the XOFF flag.
3572 	 */
3573 	smp_mb();
3574 
3575 	/* check again in case another CPU has just made room avail */
3576 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3577 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3578 #endif
3579 }
3580 
3581 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3582  * that they should not test BQL status themselves.
3583  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3584  * skb of a batch.
3585  * Returns true if the doorbell must be used to kick the NIC.
3586  */
3587 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3588 					  unsigned int bytes,
3589 					  bool xmit_more)
3590 {
3591 	if (xmit_more) {
3592 #ifdef CONFIG_BQL
3593 		dql_queued(&dev_queue->dql, bytes);
3594 #endif
3595 		return netif_tx_queue_stopped(dev_queue);
3596 	}
3597 	netdev_tx_sent_queue(dev_queue, bytes);
3598 	return true;
3599 }
3600 
3601 /**
3602  * 	netdev_sent_queue - report the number of bytes queued to hardware
3603  * 	@dev: network device
3604  * 	@bytes: number of bytes queued to the hardware device queue
3605  *
3606  * 	Report the number of bytes queued for sending/completion to the network
3607  * 	device hardware queue. @bytes should be a good approximation and should
3608  * 	exactly match netdev_completed_queue() @bytes
3609  */
3610 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3611 {
3612 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3613 }
3614 
3615 static inline bool __netdev_sent_queue(struct net_device *dev,
3616 				       unsigned int bytes,
3617 				       bool xmit_more)
3618 {
3619 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3620 				      xmit_more);
3621 }
3622 
3623 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3624 					     unsigned int pkts, unsigned int bytes)
3625 {
3626 #ifdef CONFIG_BQL
3627 	if (unlikely(!bytes))
3628 		return;
3629 
3630 	dql_completed(&dev_queue->dql, bytes);
3631 
3632 	/*
3633 	 * Without the memory barrier there is a small possiblity that
3634 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3635 	 * be stopped forever
3636 	 */
3637 	smp_mb();
3638 
3639 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3640 		return;
3641 
3642 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3643 		netif_schedule_queue(dev_queue);
3644 #endif
3645 }
3646 
3647 /**
3648  * 	netdev_completed_queue - report bytes and packets completed by device
3649  * 	@dev: network device
3650  * 	@pkts: actual number of packets sent over the medium
3651  * 	@bytes: actual number of bytes sent over the medium
3652  *
3653  * 	Report the number of bytes and packets transmitted by the network device
3654  * 	hardware queue over the physical medium, @bytes must exactly match the
3655  * 	@bytes amount passed to netdev_sent_queue()
3656  */
3657 static inline void netdev_completed_queue(struct net_device *dev,
3658 					  unsigned int pkts, unsigned int bytes)
3659 {
3660 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3661 }
3662 
3663 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3664 {
3665 #ifdef CONFIG_BQL
3666 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3667 	dql_reset(&q->dql);
3668 #endif
3669 }
3670 
3671 /**
3672  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3673  * 	@dev_queue: network device
3674  *
3675  * 	Reset the bytes and packet count of a network device and clear the
3676  * 	software flow control OFF bit for this network device
3677  */
3678 static inline void netdev_reset_queue(struct net_device *dev_queue)
3679 {
3680 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3681 }
3682 
3683 /**
3684  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3685  * 	@dev: network device
3686  * 	@queue_index: given tx queue index
3687  *
3688  * 	Returns 0 if given tx queue index >= number of device tx queues,
3689  * 	otherwise returns the originally passed tx queue index.
3690  */
3691 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3692 {
3693 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3694 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3695 				     dev->name, queue_index,
3696 				     dev->real_num_tx_queues);
3697 		return 0;
3698 	}
3699 
3700 	return queue_index;
3701 }
3702 
3703 /**
3704  *	netif_running - test if up
3705  *	@dev: network device
3706  *
3707  *	Test if the device has been brought up.
3708  */
3709 static inline bool netif_running(const struct net_device *dev)
3710 {
3711 	return test_bit(__LINK_STATE_START, &dev->state);
3712 }
3713 
3714 /*
3715  * Routines to manage the subqueues on a device.  We only need start,
3716  * stop, and a check if it's stopped.  All other device management is
3717  * done at the overall netdevice level.
3718  * Also test the device if we're multiqueue.
3719  */
3720 
3721 /**
3722  *	netif_start_subqueue - allow sending packets on subqueue
3723  *	@dev: network device
3724  *	@queue_index: sub queue index
3725  *
3726  * Start individual transmit queue of a device with multiple transmit queues.
3727  */
3728 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3729 {
3730 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3731 
3732 	netif_tx_start_queue(txq);
3733 }
3734 
3735 /**
3736  *	netif_stop_subqueue - stop sending packets on subqueue
3737  *	@dev: network device
3738  *	@queue_index: sub queue index
3739  *
3740  * Stop individual transmit queue of a device with multiple transmit queues.
3741  */
3742 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3743 {
3744 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3745 	netif_tx_stop_queue(txq);
3746 }
3747 
3748 /**
3749  *	__netif_subqueue_stopped - test status of subqueue
3750  *	@dev: network device
3751  *	@queue_index: sub queue index
3752  *
3753  * Check individual transmit queue of a device with multiple transmit queues.
3754  */
3755 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3756 					    u16 queue_index)
3757 {
3758 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3759 
3760 	return netif_tx_queue_stopped(txq);
3761 }
3762 
3763 /**
3764  *	netif_subqueue_stopped - test status of subqueue
3765  *	@dev: network device
3766  *	@skb: sub queue buffer pointer
3767  *
3768  * Check individual transmit queue of a device with multiple transmit queues.
3769  */
3770 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3771 					  struct sk_buff *skb)
3772 {
3773 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3774 }
3775 
3776 /**
3777  *	netif_wake_subqueue - allow sending packets on subqueue
3778  *	@dev: network device
3779  *	@queue_index: sub queue index
3780  *
3781  * Resume individual transmit queue of a device with multiple transmit queues.
3782  */
3783 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3784 {
3785 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3786 
3787 	netif_tx_wake_queue(txq);
3788 }
3789 
3790 #ifdef CONFIG_XPS
3791 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3792 			u16 index);
3793 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3794 			  u16 index, enum xps_map_type type);
3795 
3796 /**
3797  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3798  *	@j: CPU/Rx queue index
3799  *	@mask: bitmask of all cpus/rx queues
3800  *	@nr_bits: number of bits in the bitmask
3801  *
3802  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3803  */
3804 static inline bool netif_attr_test_mask(unsigned long j,
3805 					const unsigned long *mask,
3806 					unsigned int nr_bits)
3807 {
3808 	cpu_max_bits_warn(j, nr_bits);
3809 	return test_bit(j, mask);
3810 }
3811 
3812 /**
3813  *	netif_attr_test_online - Test for online CPU/Rx queue
3814  *	@j: CPU/Rx queue index
3815  *	@online_mask: bitmask for CPUs/Rx queues that are online
3816  *	@nr_bits: number of bits in the bitmask
3817  *
3818  * Returns true if a CPU/Rx queue is online.
3819  */
3820 static inline bool netif_attr_test_online(unsigned long j,
3821 					  const unsigned long *online_mask,
3822 					  unsigned int nr_bits)
3823 {
3824 	cpu_max_bits_warn(j, nr_bits);
3825 
3826 	if (online_mask)
3827 		return test_bit(j, online_mask);
3828 
3829 	return (j < nr_bits);
3830 }
3831 
3832 /**
3833  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3834  *	@n: CPU/Rx queue index
3835  *	@srcp: the cpumask/Rx queue mask pointer
3836  *	@nr_bits: number of bits in the bitmask
3837  *
3838  * Returns >= nr_bits if no further CPUs/Rx queues set.
3839  */
3840 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3841 					       unsigned int nr_bits)
3842 {
3843 	/* -1 is a legal arg here. */
3844 	if (n != -1)
3845 		cpu_max_bits_warn(n, nr_bits);
3846 
3847 	if (srcp)
3848 		return find_next_bit(srcp, nr_bits, n + 1);
3849 
3850 	return n + 1;
3851 }
3852 
3853 /**
3854  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3855  *	@n: CPU/Rx queue index
3856  *	@src1p: the first CPUs/Rx queues mask pointer
3857  *	@src2p: the second CPUs/Rx queues mask pointer
3858  *	@nr_bits: number of bits in the bitmask
3859  *
3860  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3861  */
3862 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3863 					  const unsigned long *src2p,
3864 					  unsigned int nr_bits)
3865 {
3866 	/* -1 is a legal arg here. */
3867 	if (n != -1)
3868 		cpu_max_bits_warn(n, nr_bits);
3869 
3870 	if (src1p && src2p)
3871 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3872 	else if (src1p)
3873 		return find_next_bit(src1p, nr_bits, n + 1);
3874 	else if (src2p)
3875 		return find_next_bit(src2p, nr_bits, n + 1);
3876 
3877 	return n + 1;
3878 }
3879 #else
3880 static inline int netif_set_xps_queue(struct net_device *dev,
3881 				      const struct cpumask *mask,
3882 				      u16 index)
3883 {
3884 	return 0;
3885 }
3886 
3887 static inline int __netif_set_xps_queue(struct net_device *dev,
3888 					const unsigned long *mask,
3889 					u16 index, enum xps_map_type type)
3890 {
3891 	return 0;
3892 }
3893 #endif
3894 
3895 /**
3896  *	netif_is_multiqueue - test if device has multiple transmit queues
3897  *	@dev: network device
3898  *
3899  * Check if device has multiple transmit queues
3900  */
3901 static inline bool netif_is_multiqueue(const struct net_device *dev)
3902 {
3903 	return dev->num_tx_queues > 1;
3904 }
3905 
3906 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3907 
3908 #ifdef CONFIG_SYSFS
3909 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3910 #else
3911 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3912 						unsigned int rxqs)
3913 {
3914 	dev->real_num_rx_queues = rxqs;
3915 	return 0;
3916 }
3917 #endif
3918 
3919 static inline struct netdev_rx_queue *
3920 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3921 {
3922 	return dev->_rx + rxq;
3923 }
3924 
3925 #ifdef CONFIG_SYSFS
3926 static inline unsigned int get_netdev_rx_queue_index(
3927 		struct netdev_rx_queue *queue)
3928 {
3929 	struct net_device *dev = queue->dev;
3930 	int index = queue - dev->_rx;
3931 
3932 	BUG_ON(index >= dev->num_rx_queues);
3933 	return index;
3934 }
3935 #endif
3936 
3937 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3938 int netif_get_num_default_rss_queues(void);
3939 
3940 enum skb_free_reason {
3941 	SKB_REASON_CONSUMED,
3942 	SKB_REASON_DROPPED,
3943 };
3944 
3945 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3946 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3947 
3948 /*
3949  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3950  * interrupt context or with hardware interrupts being disabled.
3951  * (in_irq() || irqs_disabled())
3952  *
3953  * We provide four helpers that can be used in following contexts :
3954  *
3955  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3956  *  replacing kfree_skb(skb)
3957  *
3958  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3959  *  Typically used in place of consume_skb(skb) in TX completion path
3960  *
3961  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3962  *  replacing kfree_skb(skb)
3963  *
3964  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3965  *  and consumed a packet. Used in place of consume_skb(skb)
3966  */
3967 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3968 {
3969 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3970 }
3971 
3972 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3973 {
3974 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3975 }
3976 
3977 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3978 {
3979 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3980 }
3981 
3982 static inline void dev_consume_skb_any(struct sk_buff *skb)
3983 {
3984 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3985 }
3986 
3987 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3988 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3989 int netif_rx(struct sk_buff *skb);
3990 int netif_rx_ni(struct sk_buff *skb);
3991 int netif_rx_any_context(struct sk_buff *skb);
3992 int netif_receive_skb(struct sk_buff *skb);
3993 int netif_receive_skb_core(struct sk_buff *skb);
3994 void netif_receive_skb_list(struct list_head *head);
3995 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3996 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3997 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3998 gro_result_t napi_gro_frags(struct napi_struct *napi);
3999 struct packet_offload *gro_find_receive_by_type(__be16 type);
4000 struct packet_offload *gro_find_complete_by_type(__be16 type);
4001 
4002 static inline void napi_free_frags(struct napi_struct *napi)
4003 {
4004 	kfree_skb(napi->skb);
4005 	napi->skb = NULL;
4006 }
4007 
4008 bool netdev_is_rx_handler_busy(struct net_device *dev);
4009 int netdev_rx_handler_register(struct net_device *dev,
4010 			       rx_handler_func_t *rx_handler,
4011 			       void *rx_handler_data);
4012 void netdev_rx_handler_unregister(struct net_device *dev);
4013 
4014 bool dev_valid_name(const char *name);
4015 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4016 		bool *need_copyout);
4017 int dev_ifconf(struct net *net, struct ifconf *, int);
4018 int dev_ethtool(struct net *net, struct ifreq *);
4019 unsigned int dev_get_flags(const struct net_device *);
4020 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4021 		       struct netlink_ext_ack *extack);
4022 int dev_change_flags(struct net_device *dev, unsigned int flags,
4023 		     struct netlink_ext_ack *extack);
4024 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
4025 			unsigned int gchanges);
4026 int dev_change_name(struct net_device *, const char *);
4027 int dev_set_alias(struct net_device *, const char *, size_t);
4028 int dev_get_alias(const struct net_device *, char *, size_t);
4029 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4030 			       const char *pat, int new_ifindex);
4031 static inline
4032 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4033 			     const char *pat)
4034 {
4035 	return __dev_change_net_namespace(dev, net, pat, 0);
4036 }
4037 int __dev_set_mtu(struct net_device *, int);
4038 int dev_validate_mtu(struct net_device *dev, int mtu,
4039 		     struct netlink_ext_ack *extack);
4040 int dev_set_mtu_ext(struct net_device *dev, int mtu,
4041 		    struct netlink_ext_ack *extack);
4042 int dev_set_mtu(struct net_device *, int);
4043 int dev_change_tx_queue_len(struct net_device *, unsigned long);
4044 void dev_set_group(struct net_device *, int);
4045 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4046 			      struct netlink_ext_ack *extack);
4047 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4048 			struct netlink_ext_ack *extack);
4049 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4050 			     struct netlink_ext_ack *extack);
4051 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4052 int dev_change_carrier(struct net_device *, bool new_carrier);
4053 int dev_get_phys_port_id(struct net_device *dev,
4054 			 struct netdev_phys_item_id *ppid);
4055 int dev_get_phys_port_name(struct net_device *dev,
4056 			   char *name, size_t len);
4057 int dev_get_port_parent_id(struct net_device *dev,
4058 			   struct netdev_phys_item_id *ppid, bool recurse);
4059 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4060 int dev_change_proto_down(struct net_device *dev, bool proto_down);
4061 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
4062 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
4063 				  u32 value);
4064 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4065 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4066 				    struct netdev_queue *txq, int *ret);
4067 
4068 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
4069 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
4070 		      int fd, int expected_fd, u32 flags);
4071 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4072 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4073 
4074 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4075 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4076 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4077 bool is_skb_forwardable(const struct net_device *dev,
4078 			const struct sk_buff *skb);
4079 
4080 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4081 						 const struct sk_buff *skb,
4082 						 const bool check_mtu)
4083 {
4084 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4085 	unsigned int len;
4086 
4087 	if (!(dev->flags & IFF_UP))
4088 		return false;
4089 
4090 	if (!check_mtu)
4091 		return true;
4092 
4093 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4094 	if (skb->len <= len)
4095 		return true;
4096 
4097 	/* if TSO is enabled, we don't care about the length as the packet
4098 	 * could be forwarded without being segmented before
4099 	 */
4100 	if (skb_is_gso(skb))
4101 		return true;
4102 
4103 	return false;
4104 }
4105 
4106 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4107 					       struct sk_buff *skb,
4108 					       const bool check_mtu)
4109 {
4110 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4111 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4112 		atomic_long_inc(&dev->rx_dropped);
4113 		kfree_skb(skb);
4114 		return NET_RX_DROP;
4115 	}
4116 
4117 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4118 	skb->priority = 0;
4119 	return 0;
4120 }
4121 
4122 bool dev_nit_active(struct net_device *dev);
4123 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4124 
4125 extern int		netdev_budget;
4126 extern unsigned int	netdev_budget_usecs;
4127 
4128 /* Called by rtnetlink.c:rtnl_unlock() */
4129 void netdev_run_todo(void);
4130 
4131 /**
4132  *	dev_put - release reference to device
4133  *	@dev: network device
4134  *
4135  * Release reference to device to allow it to be freed.
4136  */
4137 static inline void dev_put(struct net_device *dev)
4138 {
4139 #ifdef CONFIG_PCPU_DEV_REFCNT
4140 	this_cpu_dec(*dev->pcpu_refcnt);
4141 #else
4142 	refcount_dec(&dev->dev_refcnt);
4143 #endif
4144 }
4145 
4146 /**
4147  *	dev_hold - get reference to device
4148  *	@dev: network device
4149  *
4150  * Hold reference to device to keep it from being freed.
4151  */
4152 static inline void dev_hold(struct net_device *dev)
4153 {
4154 #ifdef CONFIG_PCPU_DEV_REFCNT
4155 	this_cpu_inc(*dev->pcpu_refcnt);
4156 #else
4157 	refcount_inc(&dev->dev_refcnt);
4158 #endif
4159 }
4160 
4161 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4162  * and _off may be called from IRQ context, but it is caller
4163  * who is responsible for serialization of these calls.
4164  *
4165  * The name carrier is inappropriate, these functions should really be
4166  * called netif_lowerlayer_*() because they represent the state of any
4167  * kind of lower layer not just hardware media.
4168  */
4169 
4170 void linkwatch_init_dev(struct net_device *dev);
4171 void linkwatch_fire_event(struct net_device *dev);
4172 void linkwatch_forget_dev(struct net_device *dev);
4173 
4174 /**
4175  *	netif_carrier_ok - test if carrier present
4176  *	@dev: network device
4177  *
4178  * Check if carrier is present on device
4179  */
4180 static inline bool netif_carrier_ok(const struct net_device *dev)
4181 {
4182 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4183 }
4184 
4185 unsigned long dev_trans_start(struct net_device *dev);
4186 
4187 void __netdev_watchdog_up(struct net_device *dev);
4188 
4189 void netif_carrier_on(struct net_device *dev);
4190 void netif_carrier_off(struct net_device *dev);
4191 void netif_carrier_event(struct net_device *dev);
4192 
4193 /**
4194  *	netif_dormant_on - mark device as dormant.
4195  *	@dev: network device
4196  *
4197  * Mark device as dormant (as per RFC2863).
4198  *
4199  * The dormant state indicates that the relevant interface is not
4200  * actually in a condition to pass packets (i.e., it is not 'up') but is
4201  * in a "pending" state, waiting for some external event.  For "on-
4202  * demand" interfaces, this new state identifies the situation where the
4203  * interface is waiting for events to place it in the up state.
4204  */
4205 static inline void netif_dormant_on(struct net_device *dev)
4206 {
4207 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4208 		linkwatch_fire_event(dev);
4209 }
4210 
4211 /**
4212  *	netif_dormant_off - set device as not dormant.
4213  *	@dev: network device
4214  *
4215  * Device is not in dormant state.
4216  */
4217 static inline void netif_dormant_off(struct net_device *dev)
4218 {
4219 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4220 		linkwatch_fire_event(dev);
4221 }
4222 
4223 /**
4224  *	netif_dormant - test if device is dormant
4225  *	@dev: network device
4226  *
4227  * Check if device is dormant.
4228  */
4229 static inline bool netif_dormant(const struct net_device *dev)
4230 {
4231 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4232 }
4233 
4234 
4235 /**
4236  *	netif_testing_on - mark device as under test.
4237  *	@dev: network device
4238  *
4239  * Mark device as under test (as per RFC2863).
4240  *
4241  * The testing state indicates that some test(s) must be performed on
4242  * the interface. After completion, of the test, the interface state
4243  * will change to up, dormant, or down, as appropriate.
4244  */
4245 static inline void netif_testing_on(struct net_device *dev)
4246 {
4247 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4248 		linkwatch_fire_event(dev);
4249 }
4250 
4251 /**
4252  *	netif_testing_off - set device as not under test.
4253  *	@dev: network device
4254  *
4255  * Device is not in testing state.
4256  */
4257 static inline void netif_testing_off(struct net_device *dev)
4258 {
4259 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4260 		linkwatch_fire_event(dev);
4261 }
4262 
4263 /**
4264  *	netif_testing - test if device is under test
4265  *	@dev: network device
4266  *
4267  * Check if device is under test
4268  */
4269 static inline bool netif_testing(const struct net_device *dev)
4270 {
4271 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4272 }
4273 
4274 
4275 /**
4276  *	netif_oper_up - test if device is operational
4277  *	@dev: network device
4278  *
4279  * Check if carrier is operational
4280  */
4281 static inline bool netif_oper_up(const struct net_device *dev)
4282 {
4283 	return (dev->operstate == IF_OPER_UP ||
4284 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4285 }
4286 
4287 /**
4288  *	netif_device_present - is device available or removed
4289  *	@dev: network device
4290  *
4291  * Check if device has not been removed from system.
4292  */
4293 static inline bool netif_device_present(const struct net_device *dev)
4294 {
4295 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4296 }
4297 
4298 void netif_device_detach(struct net_device *dev);
4299 
4300 void netif_device_attach(struct net_device *dev);
4301 
4302 /*
4303  * Network interface message level settings
4304  */
4305 
4306 enum {
4307 	NETIF_MSG_DRV_BIT,
4308 	NETIF_MSG_PROBE_BIT,
4309 	NETIF_MSG_LINK_BIT,
4310 	NETIF_MSG_TIMER_BIT,
4311 	NETIF_MSG_IFDOWN_BIT,
4312 	NETIF_MSG_IFUP_BIT,
4313 	NETIF_MSG_RX_ERR_BIT,
4314 	NETIF_MSG_TX_ERR_BIT,
4315 	NETIF_MSG_TX_QUEUED_BIT,
4316 	NETIF_MSG_INTR_BIT,
4317 	NETIF_MSG_TX_DONE_BIT,
4318 	NETIF_MSG_RX_STATUS_BIT,
4319 	NETIF_MSG_PKTDATA_BIT,
4320 	NETIF_MSG_HW_BIT,
4321 	NETIF_MSG_WOL_BIT,
4322 
4323 	/* When you add a new bit above, update netif_msg_class_names array
4324 	 * in net/ethtool/common.c
4325 	 */
4326 	NETIF_MSG_CLASS_COUNT,
4327 };
4328 /* Both ethtool_ops interface and internal driver implementation use u32 */
4329 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4330 
4331 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4332 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4333 
4334 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4335 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4336 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4337 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4338 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4339 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4340 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4341 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4342 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4343 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4344 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4345 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4346 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4347 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4348 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4349 
4350 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4351 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4352 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4353 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4354 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4355 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4356 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4357 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4358 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4359 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4360 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4361 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4362 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4363 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4364 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4365 
4366 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4367 {
4368 	/* use default */
4369 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4370 		return default_msg_enable_bits;
4371 	if (debug_value == 0)	/* no output */
4372 		return 0;
4373 	/* set low N bits */
4374 	return (1U << debug_value) - 1;
4375 }
4376 
4377 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4378 {
4379 	spin_lock(&txq->_xmit_lock);
4380 	txq->xmit_lock_owner = cpu;
4381 }
4382 
4383 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4384 {
4385 	__acquire(&txq->_xmit_lock);
4386 	return true;
4387 }
4388 
4389 static inline void __netif_tx_release(struct netdev_queue *txq)
4390 {
4391 	__release(&txq->_xmit_lock);
4392 }
4393 
4394 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4395 {
4396 	spin_lock_bh(&txq->_xmit_lock);
4397 	txq->xmit_lock_owner = smp_processor_id();
4398 }
4399 
4400 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4401 {
4402 	bool ok = spin_trylock(&txq->_xmit_lock);
4403 	if (likely(ok))
4404 		txq->xmit_lock_owner = smp_processor_id();
4405 	return ok;
4406 }
4407 
4408 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4409 {
4410 	txq->xmit_lock_owner = -1;
4411 	spin_unlock(&txq->_xmit_lock);
4412 }
4413 
4414 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4415 {
4416 	txq->xmit_lock_owner = -1;
4417 	spin_unlock_bh(&txq->_xmit_lock);
4418 }
4419 
4420 static inline void txq_trans_update(struct netdev_queue *txq)
4421 {
4422 	if (txq->xmit_lock_owner != -1)
4423 		txq->trans_start = jiffies;
4424 }
4425 
4426 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4427 static inline void netif_trans_update(struct net_device *dev)
4428 {
4429 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4430 
4431 	if (txq->trans_start != jiffies)
4432 		txq->trans_start = jiffies;
4433 }
4434 
4435 /**
4436  *	netif_tx_lock - grab network device transmit lock
4437  *	@dev: network device
4438  *
4439  * Get network device transmit lock
4440  */
4441 static inline void netif_tx_lock(struct net_device *dev)
4442 {
4443 	unsigned int i;
4444 	int cpu;
4445 
4446 	spin_lock(&dev->tx_global_lock);
4447 	cpu = smp_processor_id();
4448 	for (i = 0; i < dev->num_tx_queues; i++) {
4449 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4450 
4451 		/* We are the only thread of execution doing a
4452 		 * freeze, but we have to grab the _xmit_lock in
4453 		 * order to synchronize with threads which are in
4454 		 * the ->hard_start_xmit() handler and already
4455 		 * checked the frozen bit.
4456 		 */
4457 		__netif_tx_lock(txq, cpu);
4458 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4459 		__netif_tx_unlock(txq);
4460 	}
4461 }
4462 
4463 static inline void netif_tx_lock_bh(struct net_device *dev)
4464 {
4465 	local_bh_disable();
4466 	netif_tx_lock(dev);
4467 }
4468 
4469 static inline void netif_tx_unlock(struct net_device *dev)
4470 {
4471 	unsigned int i;
4472 
4473 	for (i = 0; i < dev->num_tx_queues; i++) {
4474 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4475 
4476 		/* No need to grab the _xmit_lock here.  If the
4477 		 * queue is not stopped for another reason, we
4478 		 * force a schedule.
4479 		 */
4480 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4481 		netif_schedule_queue(txq);
4482 	}
4483 	spin_unlock(&dev->tx_global_lock);
4484 }
4485 
4486 static inline void netif_tx_unlock_bh(struct net_device *dev)
4487 {
4488 	netif_tx_unlock(dev);
4489 	local_bh_enable();
4490 }
4491 
4492 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4493 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4494 		__netif_tx_lock(txq, cpu);		\
4495 	} else {					\
4496 		__netif_tx_acquire(txq);		\
4497 	}						\
4498 }
4499 
4500 #define HARD_TX_TRYLOCK(dev, txq)			\
4501 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4502 		__netif_tx_trylock(txq) :		\
4503 		__netif_tx_acquire(txq))
4504 
4505 #define HARD_TX_UNLOCK(dev, txq) {			\
4506 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4507 		__netif_tx_unlock(txq);			\
4508 	} else {					\
4509 		__netif_tx_release(txq);		\
4510 	}						\
4511 }
4512 
4513 static inline void netif_tx_disable(struct net_device *dev)
4514 {
4515 	unsigned int i;
4516 	int cpu;
4517 
4518 	local_bh_disable();
4519 	cpu = smp_processor_id();
4520 	spin_lock(&dev->tx_global_lock);
4521 	for (i = 0; i < dev->num_tx_queues; i++) {
4522 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4523 
4524 		__netif_tx_lock(txq, cpu);
4525 		netif_tx_stop_queue(txq);
4526 		__netif_tx_unlock(txq);
4527 	}
4528 	spin_unlock(&dev->tx_global_lock);
4529 	local_bh_enable();
4530 }
4531 
4532 static inline void netif_addr_lock(struct net_device *dev)
4533 {
4534 	unsigned char nest_level = 0;
4535 
4536 #ifdef CONFIG_LOCKDEP
4537 	nest_level = dev->nested_level;
4538 #endif
4539 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4540 }
4541 
4542 static inline void netif_addr_lock_bh(struct net_device *dev)
4543 {
4544 	unsigned char nest_level = 0;
4545 
4546 #ifdef CONFIG_LOCKDEP
4547 	nest_level = dev->nested_level;
4548 #endif
4549 	local_bh_disable();
4550 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4551 }
4552 
4553 static inline void netif_addr_unlock(struct net_device *dev)
4554 {
4555 	spin_unlock(&dev->addr_list_lock);
4556 }
4557 
4558 static inline void netif_addr_unlock_bh(struct net_device *dev)
4559 {
4560 	spin_unlock_bh(&dev->addr_list_lock);
4561 }
4562 
4563 /*
4564  * dev_addrs walker. Should be used only for read access. Call with
4565  * rcu_read_lock held.
4566  */
4567 #define for_each_dev_addr(dev, ha) \
4568 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4569 
4570 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4571 
4572 void ether_setup(struct net_device *dev);
4573 
4574 /* Support for loadable net-drivers */
4575 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4576 				    unsigned char name_assign_type,
4577 				    void (*setup)(struct net_device *),
4578 				    unsigned int txqs, unsigned int rxqs);
4579 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4580 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4581 
4582 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4583 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4584 			 count)
4585 
4586 int register_netdev(struct net_device *dev);
4587 void unregister_netdev(struct net_device *dev);
4588 
4589 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4590 
4591 /* General hardware address lists handling functions */
4592 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4593 		   struct netdev_hw_addr_list *from_list, int addr_len);
4594 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4595 		      struct netdev_hw_addr_list *from_list, int addr_len);
4596 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4597 		       struct net_device *dev,
4598 		       int (*sync)(struct net_device *, const unsigned char *),
4599 		       int (*unsync)(struct net_device *,
4600 				     const unsigned char *));
4601 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4602 			   struct net_device *dev,
4603 			   int (*sync)(struct net_device *,
4604 				       const unsigned char *, int),
4605 			   int (*unsync)(struct net_device *,
4606 					 const unsigned char *, int));
4607 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4608 			      struct net_device *dev,
4609 			      int (*unsync)(struct net_device *,
4610 					    const unsigned char *, int));
4611 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4612 			  struct net_device *dev,
4613 			  int (*unsync)(struct net_device *,
4614 					const unsigned char *));
4615 void __hw_addr_init(struct netdev_hw_addr_list *list);
4616 
4617 /* Functions used for device addresses handling */
4618 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4619 		 unsigned char addr_type);
4620 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4621 		 unsigned char addr_type);
4622 void dev_addr_flush(struct net_device *dev);
4623 int dev_addr_init(struct net_device *dev);
4624 
4625 /* Functions used for unicast addresses handling */
4626 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4627 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4628 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4629 int dev_uc_sync(struct net_device *to, struct net_device *from);
4630 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4631 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4632 void dev_uc_flush(struct net_device *dev);
4633 void dev_uc_init(struct net_device *dev);
4634 
4635 /**
4636  *  __dev_uc_sync - Synchonize device's unicast list
4637  *  @dev:  device to sync
4638  *  @sync: function to call if address should be added
4639  *  @unsync: function to call if address should be removed
4640  *
4641  *  Add newly added addresses to the interface, and release
4642  *  addresses that have been deleted.
4643  */
4644 static inline int __dev_uc_sync(struct net_device *dev,
4645 				int (*sync)(struct net_device *,
4646 					    const unsigned char *),
4647 				int (*unsync)(struct net_device *,
4648 					      const unsigned char *))
4649 {
4650 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4651 }
4652 
4653 /**
4654  *  __dev_uc_unsync - Remove synchronized addresses from device
4655  *  @dev:  device to sync
4656  *  @unsync: function to call if address should be removed
4657  *
4658  *  Remove all addresses that were added to the device by dev_uc_sync().
4659  */
4660 static inline void __dev_uc_unsync(struct net_device *dev,
4661 				   int (*unsync)(struct net_device *,
4662 						 const unsigned char *))
4663 {
4664 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4665 }
4666 
4667 /* Functions used for multicast addresses handling */
4668 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4669 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4670 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4671 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4672 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4673 int dev_mc_sync(struct net_device *to, struct net_device *from);
4674 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4675 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4676 void dev_mc_flush(struct net_device *dev);
4677 void dev_mc_init(struct net_device *dev);
4678 
4679 /**
4680  *  __dev_mc_sync - Synchonize device's multicast list
4681  *  @dev:  device to sync
4682  *  @sync: function to call if address should be added
4683  *  @unsync: function to call if address should be removed
4684  *
4685  *  Add newly added addresses to the interface, and release
4686  *  addresses that have been deleted.
4687  */
4688 static inline int __dev_mc_sync(struct net_device *dev,
4689 				int (*sync)(struct net_device *,
4690 					    const unsigned char *),
4691 				int (*unsync)(struct net_device *,
4692 					      const unsigned char *))
4693 {
4694 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4695 }
4696 
4697 /**
4698  *  __dev_mc_unsync - Remove synchronized addresses from device
4699  *  @dev:  device to sync
4700  *  @unsync: function to call if address should be removed
4701  *
4702  *  Remove all addresses that were added to the device by dev_mc_sync().
4703  */
4704 static inline void __dev_mc_unsync(struct net_device *dev,
4705 				   int (*unsync)(struct net_device *,
4706 						 const unsigned char *))
4707 {
4708 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4709 }
4710 
4711 /* Functions used for secondary unicast and multicast support */
4712 void dev_set_rx_mode(struct net_device *dev);
4713 void __dev_set_rx_mode(struct net_device *dev);
4714 int dev_set_promiscuity(struct net_device *dev, int inc);
4715 int dev_set_allmulti(struct net_device *dev, int inc);
4716 void netdev_state_change(struct net_device *dev);
4717 void __netdev_notify_peers(struct net_device *dev);
4718 void netdev_notify_peers(struct net_device *dev);
4719 void netdev_features_change(struct net_device *dev);
4720 /* Load a device via the kmod */
4721 void dev_load(struct net *net, const char *name);
4722 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4723 					struct rtnl_link_stats64 *storage);
4724 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4725 			     const struct net_device_stats *netdev_stats);
4726 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4727 			   const struct pcpu_sw_netstats __percpu *netstats);
4728 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4729 
4730 extern int		netdev_max_backlog;
4731 extern int		netdev_tstamp_prequeue;
4732 extern int		netdev_unregister_timeout_secs;
4733 extern int		weight_p;
4734 extern int		dev_weight_rx_bias;
4735 extern int		dev_weight_tx_bias;
4736 extern int		dev_rx_weight;
4737 extern int		dev_tx_weight;
4738 extern int		gro_normal_batch;
4739 
4740 enum {
4741 	NESTED_SYNC_IMM_BIT,
4742 	NESTED_SYNC_TODO_BIT,
4743 };
4744 
4745 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4746 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4747 
4748 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4749 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4750 
4751 struct netdev_nested_priv {
4752 	unsigned char flags;
4753 	void *data;
4754 };
4755 
4756 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4757 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4758 						     struct list_head **iter);
4759 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4760 						     struct list_head **iter);
4761 
4762 #ifdef CONFIG_LOCKDEP
4763 static LIST_HEAD(net_unlink_list);
4764 
4765 static inline void net_unlink_todo(struct net_device *dev)
4766 {
4767 	if (list_empty(&dev->unlink_list))
4768 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4769 }
4770 #endif
4771 
4772 /* iterate through upper list, must be called under RCU read lock */
4773 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4774 	for (iter = &(dev)->adj_list.upper, \
4775 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4776 	     updev; \
4777 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4778 
4779 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4780 				  int (*fn)(struct net_device *upper_dev,
4781 					    struct netdev_nested_priv *priv),
4782 				  struct netdev_nested_priv *priv);
4783 
4784 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4785 				  struct net_device *upper_dev);
4786 
4787 bool netdev_has_any_upper_dev(struct net_device *dev);
4788 
4789 void *netdev_lower_get_next_private(struct net_device *dev,
4790 				    struct list_head **iter);
4791 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4792 					struct list_head **iter);
4793 
4794 #define netdev_for_each_lower_private(dev, priv, iter) \
4795 	for (iter = (dev)->adj_list.lower.next, \
4796 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4797 	     priv; \
4798 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4799 
4800 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4801 	for (iter = &(dev)->adj_list.lower, \
4802 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4803 	     priv; \
4804 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4805 
4806 void *netdev_lower_get_next(struct net_device *dev,
4807 				struct list_head **iter);
4808 
4809 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4810 	for (iter = (dev)->adj_list.lower.next, \
4811 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4812 	     ldev; \
4813 	     ldev = netdev_lower_get_next(dev, &(iter)))
4814 
4815 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4816 					     struct list_head **iter);
4817 int netdev_walk_all_lower_dev(struct net_device *dev,
4818 			      int (*fn)(struct net_device *lower_dev,
4819 					struct netdev_nested_priv *priv),
4820 			      struct netdev_nested_priv *priv);
4821 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4822 				  int (*fn)(struct net_device *lower_dev,
4823 					    struct netdev_nested_priv *priv),
4824 				  struct netdev_nested_priv *priv);
4825 
4826 void *netdev_adjacent_get_private(struct list_head *adj_list);
4827 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4828 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4829 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4830 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4831 			  struct netlink_ext_ack *extack);
4832 int netdev_master_upper_dev_link(struct net_device *dev,
4833 				 struct net_device *upper_dev,
4834 				 void *upper_priv, void *upper_info,
4835 				 struct netlink_ext_ack *extack);
4836 void netdev_upper_dev_unlink(struct net_device *dev,
4837 			     struct net_device *upper_dev);
4838 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4839 				   struct net_device *new_dev,
4840 				   struct net_device *dev,
4841 				   struct netlink_ext_ack *extack);
4842 void netdev_adjacent_change_commit(struct net_device *old_dev,
4843 				   struct net_device *new_dev,
4844 				   struct net_device *dev);
4845 void netdev_adjacent_change_abort(struct net_device *old_dev,
4846 				  struct net_device *new_dev,
4847 				  struct net_device *dev);
4848 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4849 void *netdev_lower_dev_get_private(struct net_device *dev,
4850 				   struct net_device *lower_dev);
4851 void netdev_lower_state_changed(struct net_device *lower_dev,
4852 				void *lower_state_info);
4853 
4854 /* RSS keys are 40 or 52 bytes long */
4855 #define NETDEV_RSS_KEY_LEN 52
4856 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4857 void netdev_rss_key_fill(void *buffer, size_t len);
4858 
4859 int skb_checksum_help(struct sk_buff *skb);
4860 int skb_crc32c_csum_help(struct sk_buff *skb);
4861 int skb_csum_hwoffload_help(struct sk_buff *skb,
4862 			    const netdev_features_t features);
4863 
4864 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4865 				  netdev_features_t features, bool tx_path);
4866 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4867 				    netdev_features_t features);
4868 
4869 struct netdev_bonding_info {
4870 	ifslave	slave;
4871 	ifbond	master;
4872 };
4873 
4874 struct netdev_notifier_bonding_info {
4875 	struct netdev_notifier_info info; /* must be first */
4876 	struct netdev_bonding_info  bonding_info;
4877 };
4878 
4879 void netdev_bonding_info_change(struct net_device *dev,
4880 				struct netdev_bonding_info *bonding_info);
4881 
4882 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4883 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4884 #else
4885 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4886 				  const void *data)
4887 {
4888 }
4889 #endif
4890 
4891 static inline
4892 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4893 {
4894 	return __skb_gso_segment(skb, features, true);
4895 }
4896 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4897 
4898 static inline bool can_checksum_protocol(netdev_features_t features,
4899 					 __be16 protocol)
4900 {
4901 	if (protocol == htons(ETH_P_FCOE))
4902 		return !!(features & NETIF_F_FCOE_CRC);
4903 
4904 	/* Assume this is an IP checksum (not SCTP CRC) */
4905 
4906 	if (features & NETIF_F_HW_CSUM) {
4907 		/* Can checksum everything */
4908 		return true;
4909 	}
4910 
4911 	switch (protocol) {
4912 	case htons(ETH_P_IP):
4913 		return !!(features & NETIF_F_IP_CSUM);
4914 	case htons(ETH_P_IPV6):
4915 		return !!(features & NETIF_F_IPV6_CSUM);
4916 	default:
4917 		return false;
4918 	}
4919 }
4920 
4921 #ifdef CONFIG_BUG
4922 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4923 #else
4924 static inline void netdev_rx_csum_fault(struct net_device *dev,
4925 					struct sk_buff *skb)
4926 {
4927 }
4928 #endif
4929 /* rx skb timestamps */
4930 void net_enable_timestamp(void);
4931 void net_disable_timestamp(void);
4932 
4933 #ifdef CONFIG_PROC_FS
4934 int __init dev_proc_init(void);
4935 #else
4936 #define dev_proc_init() 0
4937 #endif
4938 
4939 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4940 					      struct sk_buff *skb, struct net_device *dev,
4941 					      bool more)
4942 {
4943 	__this_cpu_write(softnet_data.xmit.more, more);
4944 	return ops->ndo_start_xmit(skb, dev);
4945 }
4946 
4947 static inline bool netdev_xmit_more(void)
4948 {
4949 	return __this_cpu_read(softnet_data.xmit.more);
4950 }
4951 
4952 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4953 					    struct netdev_queue *txq, bool more)
4954 {
4955 	const struct net_device_ops *ops = dev->netdev_ops;
4956 	netdev_tx_t rc;
4957 
4958 	rc = __netdev_start_xmit(ops, skb, dev, more);
4959 	if (rc == NETDEV_TX_OK)
4960 		txq_trans_update(txq);
4961 
4962 	return rc;
4963 }
4964 
4965 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4966 				const void *ns);
4967 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4968 				 const void *ns);
4969 
4970 extern const struct kobj_ns_type_operations net_ns_type_operations;
4971 
4972 const char *netdev_drivername(const struct net_device *dev);
4973 
4974 void linkwatch_run_queue(void);
4975 
4976 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4977 							  netdev_features_t f2)
4978 {
4979 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4980 		if (f1 & NETIF_F_HW_CSUM)
4981 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4982 		else
4983 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4984 	}
4985 
4986 	return f1 & f2;
4987 }
4988 
4989 static inline netdev_features_t netdev_get_wanted_features(
4990 	struct net_device *dev)
4991 {
4992 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4993 }
4994 netdev_features_t netdev_increment_features(netdev_features_t all,
4995 	netdev_features_t one, netdev_features_t mask);
4996 
4997 /* Allow TSO being used on stacked device :
4998  * Performing the GSO segmentation before last device
4999  * is a performance improvement.
5000  */
5001 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5002 							netdev_features_t mask)
5003 {
5004 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5005 }
5006 
5007 int __netdev_update_features(struct net_device *dev);
5008 void netdev_update_features(struct net_device *dev);
5009 void netdev_change_features(struct net_device *dev);
5010 
5011 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5012 					struct net_device *dev);
5013 
5014 netdev_features_t passthru_features_check(struct sk_buff *skb,
5015 					  struct net_device *dev,
5016 					  netdev_features_t features);
5017 netdev_features_t netif_skb_features(struct sk_buff *skb);
5018 
5019 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5020 {
5021 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5022 
5023 	/* check flags correspondence */
5024 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5025 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5026 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5027 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5028 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5029 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5030 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5031 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5032 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5033 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5034 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5035 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5036 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5037 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5038 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5039 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5040 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5041 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5042 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5043 
5044 	return (features & feature) == feature;
5045 }
5046 
5047 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5048 {
5049 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5050 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5051 }
5052 
5053 static inline bool netif_needs_gso(struct sk_buff *skb,
5054 				   netdev_features_t features)
5055 {
5056 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5057 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5058 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5059 }
5060 
5061 static inline void netif_set_gso_max_size(struct net_device *dev,
5062 					  unsigned int size)
5063 {
5064 	dev->gso_max_size = size;
5065 }
5066 
5067 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5068 					int pulled_hlen, u16 mac_offset,
5069 					int mac_len)
5070 {
5071 	skb->protocol = protocol;
5072 	skb->encapsulation = 1;
5073 	skb_push(skb, pulled_hlen);
5074 	skb_reset_transport_header(skb);
5075 	skb->mac_header = mac_offset;
5076 	skb->network_header = skb->mac_header + mac_len;
5077 	skb->mac_len = mac_len;
5078 }
5079 
5080 static inline bool netif_is_macsec(const struct net_device *dev)
5081 {
5082 	return dev->priv_flags & IFF_MACSEC;
5083 }
5084 
5085 static inline bool netif_is_macvlan(const struct net_device *dev)
5086 {
5087 	return dev->priv_flags & IFF_MACVLAN;
5088 }
5089 
5090 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5091 {
5092 	return dev->priv_flags & IFF_MACVLAN_PORT;
5093 }
5094 
5095 static inline bool netif_is_bond_master(const struct net_device *dev)
5096 {
5097 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5098 }
5099 
5100 static inline bool netif_is_bond_slave(const struct net_device *dev)
5101 {
5102 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5103 }
5104 
5105 static inline bool netif_supports_nofcs(struct net_device *dev)
5106 {
5107 	return dev->priv_flags & IFF_SUPP_NOFCS;
5108 }
5109 
5110 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5111 {
5112 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5113 }
5114 
5115 static inline bool netif_is_l3_master(const struct net_device *dev)
5116 {
5117 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5118 }
5119 
5120 static inline bool netif_is_l3_slave(const struct net_device *dev)
5121 {
5122 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5123 }
5124 
5125 static inline bool netif_is_bridge_master(const struct net_device *dev)
5126 {
5127 	return dev->priv_flags & IFF_EBRIDGE;
5128 }
5129 
5130 static inline bool netif_is_bridge_port(const struct net_device *dev)
5131 {
5132 	return dev->priv_flags & IFF_BRIDGE_PORT;
5133 }
5134 
5135 static inline bool netif_is_ovs_master(const struct net_device *dev)
5136 {
5137 	return dev->priv_flags & IFF_OPENVSWITCH;
5138 }
5139 
5140 static inline bool netif_is_ovs_port(const struct net_device *dev)
5141 {
5142 	return dev->priv_flags & IFF_OVS_DATAPATH;
5143 }
5144 
5145 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5146 {
5147 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5148 }
5149 
5150 static inline bool netif_is_team_master(const struct net_device *dev)
5151 {
5152 	return dev->priv_flags & IFF_TEAM;
5153 }
5154 
5155 static inline bool netif_is_team_port(const struct net_device *dev)
5156 {
5157 	return dev->priv_flags & IFF_TEAM_PORT;
5158 }
5159 
5160 static inline bool netif_is_lag_master(const struct net_device *dev)
5161 {
5162 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5163 }
5164 
5165 static inline bool netif_is_lag_port(const struct net_device *dev)
5166 {
5167 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5168 }
5169 
5170 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5171 {
5172 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5173 }
5174 
5175 static inline bool netif_is_failover(const struct net_device *dev)
5176 {
5177 	return dev->priv_flags & IFF_FAILOVER;
5178 }
5179 
5180 static inline bool netif_is_failover_slave(const struct net_device *dev)
5181 {
5182 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5183 }
5184 
5185 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5186 static inline void netif_keep_dst(struct net_device *dev)
5187 {
5188 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5189 }
5190 
5191 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5192 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5193 {
5194 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5195 	return dev->priv_flags & IFF_MACSEC;
5196 }
5197 
5198 extern struct pernet_operations __net_initdata loopback_net_ops;
5199 
5200 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5201 
5202 /* netdev_printk helpers, similar to dev_printk */
5203 
5204 static inline const char *netdev_name(const struct net_device *dev)
5205 {
5206 	if (!dev->name[0] || strchr(dev->name, '%'))
5207 		return "(unnamed net_device)";
5208 	return dev->name;
5209 }
5210 
5211 static inline bool netdev_unregistering(const struct net_device *dev)
5212 {
5213 	return dev->reg_state == NETREG_UNREGISTERING;
5214 }
5215 
5216 static inline const char *netdev_reg_state(const struct net_device *dev)
5217 {
5218 	switch (dev->reg_state) {
5219 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5220 	case NETREG_REGISTERED: return "";
5221 	case NETREG_UNREGISTERING: return " (unregistering)";
5222 	case NETREG_UNREGISTERED: return " (unregistered)";
5223 	case NETREG_RELEASED: return " (released)";
5224 	case NETREG_DUMMY: return " (dummy)";
5225 	}
5226 
5227 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5228 	return " (unknown)";
5229 }
5230 
5231 __printf(3, 4) __cold
5232 void netdev_printk(const char *level, const struct net_device *dev,
5233 		   const char *format, ...);
5234 __printf(2, 3) __cold
5235 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5236 __printf(2, 3) __cold
5237 void netdev_alert(const struct net_device *dev, const char *format, ...);
5238 __printf(2, 3) __cold
5239 void netdev_crit(const struct net_device *dev, const char *format, ...);
5240 __printf(2, 3) __cold
5241 void netdev_err(const struct net_device *dev, const char *format, ...);
5242 __printf(2, 3) __cold
5243 void netdev_warn(const struct net_device *dev, const char *format, ...);
5244 __printf(2, 3) __cold
5245 void netdev_notice(const struct net_device *dev, const char *format, ...);
5246 __printf(2, 3) __cold
5247 void netdev_info(const struct net_device *dev, const char *format, ...);
5248 
5249 #define netdev_level_once(level, dev, fmt, ...)			\
5250 do {								\
5251 	static bool __print_once __read_mostly;			\
5252 								\
5253 	if (!__print_once) {					\
5254 		__print_once = true;				\
5255 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5256 	}							\
5257 } while (0)
5258 
5259 #define netdev_emerg_once(dev, fmt, ...) \
5260 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5261 #define netdev_alert_once(dev, fmt, ...) \
5262 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5263 #define netdev_crit_once(dev, fmt, ...) \
5264 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5265 #define netdev_err_once(dev, fmt, ...) \
5266 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5267 #define netdev_warn_once(dev, fmt, ...) \
5268 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5269 #define netdev_notice_once(dev, fmt, ...) \
5270 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5271 #define netdev_info_once(dev, fmt, ...) \
5272 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5273 
5274 #define MODULE_ALIAS_NETDEV(device) \
5275 	MODULE_ALIAS("netdev-" device)
5276 
5277 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5278 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5279 #define netdev_dbg(__dev, format, args...)			\
5280 do {								\
5281 	dynamic_netdev_dbg(__dev, format, ##args);		\
5282 } while (0)
5283 #elif defined(DEBUG)
5284 #define netdev_dbg(__dev, format, args...)			\
5285 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5286 #else
5287 #define netdev_dbg(__dev, format, args...)			\
5288 ({								\
5289 	if (0)							\
5290 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5291 })
5292 #endif
5293 
5294 #if defined(VERBOSE_DEBUG)
5295 #define netdev_vdbg	netdev_dbg
5296 #else
5297 
5298 #define netdev_vdbg(dev, format, args...)			\
5299 ({								\
5300 	if (0)							\
5301 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5302 	0;							\
5303 })
5304 #endif
5305 
5306 /*
5307  * netdev_WARN() acts like dev_printk(), but with the key difference
5308  * of using a WARN/WARN_ON to get the message out, including the
5309  * file/line information and a backtrace.
5310  */
5311 #define netdev_WARN(dev, format, args...)			\
5312 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5313 	     netdev_reg_state(dev), ##args)
5314 
5315 #define netdev_WARN_ONCE(dev, format, args...)				\
5316 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5317 		  netdev_reg_state(dev), ##args)
5318 
5319 /* netif printk helpers, similar to netdev_printk */
5320 
5321 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5322 do {					  			\
5323 	if (netif_msg_##type(priv))				\
5324 		netdev_printk(level, (dev), fmt, ##args);	\
5325 } while (0)
5326 
5327 #define netif_level(level, priv, type, dev, fmt, args...)	\
5328 do {								\
5329 	if (netif_msg_##type(priv))				\
5330 		netdev_##level(dev, fmt, ##args);		\
5331 } while (0)
5332 
5333 #define netif_emerg(priv, type, dev, fmt, args...)		\
5334 	netif_level(emerg, priv, type, dev, fmt, ##args)
5335 #define netif_alert(priv, type, dev, fmt, args...)		\
5336 	netif_level(alert, priv, type, dev, fmt, ##args)
5337 #define netif_crit(priv, type, dev, fmt, args...)		\
5338 	netif_level(crit, priv, type, dev, fmt, ##args)
5339 #define netif_err(priv, type, dev, fmt, args...)		\
5340 	netif_level(err, priv, type, dev, fmt, ##args)
5341 #define netif_warn(priv, type, dev, fmt, args...)		\
5342 	netif_level(warn, priv, type, dev, fmt, ##args)
5343 #define netif_notice(priv, type, dev, fmt, args...)		\
5344 	netif_level(notice, priv, type, dev, fmt, ##args)
5345 #define netif_info(priv, type, dev, fmt, args...)		\
5346 	netif_level(info, priv, type, dev, fmt, ##args)
5347 
5348 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5349 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5350 #define netif_dbg(priv, type, netdev, format, args...)		\
5351 do {								\
5352 	if (netif_msg_##type(priv))				\
5353 		dynamic_netdev_dbg(netdev, format, ##args);	\
5354 } while (0)
5355 #elif defined(DEBUG)
5356 #define netif_dbg(priv, type, dev, format, args...)		\
5357 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5358 #else
5359 #define netif_dbg(priv, type, dev, format, args...)			\
5360 ({									\
5361 	if (0)								\
5362 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5363 	0;								\
5364 })
5365 #endif
5366 
5367 /* if @cond then downgrade to debug, else print at @level */
5368 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5369 	do {                                                              \
5370 		if (cond)                                                 \
5371 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5372 		else                                                      \
5373 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5374 	} while (0)
5375 
5376 #if defined(VERBOSE_DEBUG)
5377 #define netif_vdbg	netif_dbg
5378 #else
5379 #define netif_vdbg(priv, type, dev, format, args...)		\
5380 ({								\
5381 	if (0)							\
5382 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5383 	0;							\
5384 })
5385 #endif
5386 
5387 /*
5388  *	The list of packet types we will receive (as opposed to discard)
5389  *	and the routines to invoke.
5390  *
5391  *	Why 16. Because with 16 the only overlap we get on a hash of the
5392  *	low nibble of the protocol value is RARP/SNAP/X.25.
5393  *
5394  *		0800	IP
5395  *		0001	802.3
5396  *		0002	AX.25
5397  *		0004	802.2
5398  *		8035	RARP
5399  *		0005	SNAP
5400  *		0805	X.25
5401  *		0806	ARP
5402  *		8137	IPX
5403  *		0009	Localtalk
5404  *		86DD	IPv6
5405  */
5406 #define PTYPE_HASH_SIZE	(16)
5407 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5408 
5409 extern struct list_head ptype_all __read_mostly;
5410 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5411 
5412 extern struct net_device *blackhole_netdev;
5413 
5414 #endif	/* _LINUX_NETDEVICE_H */
5415