1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 48 #include <linux/netdev_features.h> 49 #include <linux/neighbour.h> 50 #include <uapi/linux/netdevice.h> 51 #include <uapi/linux/if_bonding.h> 52 #include <uapi/linux/pkt_cls.h> 53 #include <linux/hashtable.h> 54 55 struct netpoll_info; 56 struct device; 57 struct phy_device; 58 struct dsa_port; 59 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* 802.15.4 specific */ 63 struct wpan_dev; 64 struct mpls_dev; 65 /* UDP Tunnel offloads */ 66 struct udp_tunnel_info; 67 struct bpf_prog; 68 struct xdp_buff; 69 70 void netdev_set_default_ethtool_ops(struct net_device *dev, 71 const struct ethtool_ops *ops); 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously; in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106 /* Driver transmit return codes */ 107 #define NETDEV_TX_MASK 0xf0 108 109 enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 /* 135 * Compute the worst-case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_HYPERV_NET) 140 # define LL_MAX_HEADER 128 141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 extern struct static_key rfs_needed; 197 #endif 198 199 struct neighbour; 200 struct neigh_parms; 201 struct sk_buff; 202 203 struct netdev_hw_addr { 204 struct list_head list; 205 unsigned char addr[MAX_ADDR_LEN]; 206 unsigned char type; 207 #define NETDEV_HW_ADDR_T_LAN 1 208 #define NETDEV_HW_ADDR_T_SAN 2 209 #define NETDEV_HW_ADDR_T_SLAVE 3 210 #define NETDEV_HW_ADDR_T_UNICAST 4 211 #define NETDEV_HW_ADDR_T_MULTICAST 5 212 bool global_use; 213 int sync_cnt; 214 int refcount; 215 int synced; 216 struct rcu_head rcu_head; 217 }; 218 219 struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222 }; 223 224 #define netdev_hw_addr_list_count(l) ((l)->count) 225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226 #define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231 #define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236 #define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239 struct hh_cache { 240 unsigned int hh_len; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 int poll_owner; 321 #endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329 }; 330 331 enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_MISSED, /* reschedule a napi */ 334 NAPI_STATE_DISABLE, /* Disable pending */ 335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 339 }; 340 341 enum { 342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 349 }; 350 351 enum gro_result { 352 GRO_MERGED, 353 GRO_MERGED_FREE, 354 GRO_HELD, 355 GRO_NORMAL, 356 GRO_DROP, 357 GRO_CONSUMED, 358 }; 359 typedef enum gro_result gro_result_t; 360 361 /* 362 * enum rx_handler_result - Possible return values for rx_handlers. 363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 364 * further. 365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 366 * case skb->dev was changed by rx_handler. 367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 369 * 370 * rx_handlers are functions called from inside __netif_receive_skb(), to do 371 * special processing of the skb, prior to delivery to protocol handlers. 372 * 373 * Currently, a net_device can only have a single rx_handler registered. Trying 374 * to register a second rx_handler will return -EBUSY. 375 * 376 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 377 * To unregister a rx_handler on a net_device, use 378 * netdev_rx_handler_unregister(). 379 * 380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 381 * do with the skb. 382 * 383 * If the rx_handler consumed the skb in some way, it should return 384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 385 * the skb to be delivered in some other way. 386 * 387 * If the rx_handler changed skb->dev, to divert the skb to another 388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 389 * new device will be called if it exists. 390 * 391 * If the rx_handler decides the skb should be ignored, it should return 392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 393 * are registered on exact device (ptype->dev == skb->dev). 394 * 395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 396 * delivered, it should return RX_HANDLER_PASS. 397 * 398 * A device without a registered rx_handler will behave as if rx_handler 399 * returned RX_HANDLER_PASS. 400 */ 401 402 enum rx_handler_result { 403 RX_HANDLER_CONSUMED, 404 RX_HANDLER_ANOTHER, 405 RX_HANDLER_EXACT, 406 RX_HANDLER_PASS, 407 }; 408 typedef enum rx_handler_result rx_handler_result_t; 409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 410 411 void __napi_schedule(struct napi_struct *n); 412 void __napi_schedule_irqoff(struct napi_struct *n); 413 414 static inline bool napi_disable_pending(struct napi_struct *n) 415 { 416 return test_bit(NAPI_STATE_DISABLE, &n->state); 417 } 418 419 bool napi_schedule_prep(struct napi_struct *n); 420 421 /** 422 * napi_schedule - schedule NAPI poll 423 * @n: NAPI context 424 * 425 * Schedule NAPI poll routine to be called if it is not already 426 * running. 427 */ 428 static inline void napi_schedule(struct napi_struct *n) 429 { 430 if (napi_schedule_prep(n)) 431 __napi_schedule(n); 432 } 433 434 /** 435 * napi_schedule_irqoff - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Variant of napi_schedule(), assuming hard irqs are masked. 439 */ 440 static inline void napi_schedule_irqoff(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule_irqoff(n); 444 } 445 446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 447 static inline bool napi_reschedule(struct napi_struct *napi) 448 { 449 if (napi_schedule_prep(napi)) { 450 __napi_schedule(napi); 451 return true; 452 } 453 return false; 454 } 455 456 bool napi_complete_done(struct napi_struct *n, int work_done); 457 /** 458 * napi_complete - NAPI processing complete 459 * @n: NAPI context 460 * 461 * Mark NAPI processing as complete. 462 * Consider using napi_complete_done() instead. 463 * Return false if device should avoid rearming interrupts. 464 */ 465 static inline bool napi_complete(struct napi_struct *n) 466 { 467 return napi_complete_done(n, 0); 468 } 469 470 /** 471 * napi_hash_del - remove a NAPI from global table 472 * @napi: NAPI context 473 * 474 * Warning: caller must observe RCU grace period 475 * before freeing memory containing @napi, if 476 * this function returns true. 477 * Note: core networking stack automatically calls it 478 * from netif_napi_del(). 479 * Drivers might want to call this helper to combine all 480 * the needed RCU grace periods into a single one. 481 */ 482 bool napi_hash_del(struct napi_struct *napi); 483 484 /** 485 * napi_disable - prevent NAPI from scheduling 486 * @n: NAPI context 487 * 488 * Stop NAPI from being scheduled on this context. 489 * Waits till any outstanding processing completes. 490 */ 491 void napi_disable(struct napi_struct *n); 492 493 /** 494 * napi_enable - enable NAPI scheduling 495 * @n: NAPI context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500 static inline void napi_enable(struct napi_struct *n) 501 { 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_atomic(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505 clear_bit(NAPI_STATE_NPSVC, &n->state); 506 } 507 508 /** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: NAPI context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516 static inline void napi_synchronize(const struct napi_struct *n) 517 { 518 if (IS_ENABLED(CONFIG_SMP)) 519 while (test_bit(NAPI_STATE_SCHED, &n->state)) 520 msleep(1); 521 else 522 barrier(); 523 } 524 525 enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529 }; 530 531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 534 535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 537 QUEUE_STATE_FROZEN) 538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 541 /* 542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 543 * netif_tx_* functions below are used to manipulate this flag. The 544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 545 * queue independently. The netif_xmit_*stopped functions below are called 546 * to check if the queue has been stopped by the driver or stack (either 547 * of the XOFF bits are set in the state). Drivers should not need to call 548 * netif_xmit*stopped functions, they should only be using netif_tx_*. 549 */ 550 551 struct netdev_queue { 552 /* 553 * read-mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc __rcu *qdisc; 557 struct Qdisc *qdisc_sleeping; 558 #ifdef CONFIG_SYSFS 559 struct kobject kobj; 560 #endif 561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 int numa_node; 563 #endif 564 unsigned long tx_maxrate; 565 /* 566 * Number of TX timeouts for this queue 567 * (/sys/class/net/DEV/Q/trans_timeout) 568 */ 569 unsigned long trans_timeout; 570 /* 571 * write-mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * Time (in jiffies) of last Tx 577 */ 578 unsigned long trans_start; 579 580 unsigned long state; 581 582 #ifdef CONFIG_BQL 583 struct dql dql; 584 #endif 585 } ____cacheline_aligned_in_smp; 586 587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 588 { 589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 590 return q->numa_node; 591 #else 592 return NUMA_NO_NODE; 593 #endif 594 } 595 596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 q->numa_node = node; 600 #endif 601 } 602 603 #ifdef CONFIG_RPS 604 /* 605 * This structure holds an RPS map which can be of variable length. The 606 * map is an array of CPUs. 607 */ 608 struct rps_map { 609 unsigned int len; 610 struct rcu_head rcu; 611 u16 cpus[0]; 612 }; 613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 614 615 /* 616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 617 * tail pointer for that CPU's input queue at the time of last enqueue, and 618 * a hardware filter index. 619 */ 620 struct rps_dev_flow { 621 u16 cpu; 622 u16 filter; 623 unsigned int last_qtail; 624 }; 625 #define RPS_NO_FILTER 0xffff 626 627 /* 628 * The rps_dev_flow_table structure contains a table of flow mappings. 629 */ 630 struct rps_dev_flow_table { 631 unsigned int mask; 632 struct rcu_head rcu; 633 struct rps_dev_flow flows[0]; 634 }; 635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 636 ((_num) * sizeof(struct rps_dev_flow))) 637 638 /* 639 * The rps_sock_flow_table contains mappings of flows to the last CPU 640 * on which they were processed by the application (set in recvmsg). 641 * Each entry is a 32bit value. Upper part is the high-order bits 642 * of flow hash, lower part is CPU number. 643 * rps_cpu_mask is used to partition the space, depending on number of 644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 646 * meaning we use 32-6=26 bits for the hash. 647 */ 648 struct rps_sock_flow_table { 649 u32 mask; 650 651 u32 ents[0] ____cacheline_aligned_in_smp; 652 }; 653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 654 655 #define RPS_NO_CPU 0xffff 656 657 extern u32 rps_cpu_mask; 658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 659 660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 661 u32 hash) 662 { 663 if (table && hash) { 664 unsigned int index = hash & table->mask; 665 u32 val = hash & ~rps_cpu_mask; 666 667 /* We only give a hint, preemption can change CPU under us */ 668 val |= raw_smp_processor_id(); 669 670 if (table->ents[index] != val) 671 table->ents[index] = val; 672 } 673 } 674 675 #ifdef CONFIG_RFS_ACCEL 676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 677 u16 filter_id); 678 #endif 679 #endif /* CONFIG_RPS */ 680 681 /* This structure contains an instance of an RX queue. */ 682 struct netdev_rx_queue { 683 #ifdef CONFIG_RPS 684 struct rps_map __rcu *rps_map; 685 struct rps_dev_flow_table __rcu *rps_flow_table; 686 #endif 687 struct kobject kobj; 688 struct net_device *dev; 689 } ____cacheline_aligned_in_smp; 690 691 /* 692 * RX queue sysfs structures and functions. 693 */ 694 struct rx_queue_attribute { 695 struct attribute attr; 696 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 697 ssize_t (*store)(struct netdev_rx_queue *queue, 698 const char *buf, size_t len); 699 }; 700 701 #ifdef CONFIG_XPS 702 /* 703 * This structure holds an XPS map which can be of variable length. The 704 * map is an array of queues. 705 */ 706 struct xps_map { 707 unsigned int len; 708 unsigned int alloc_len; 709 struct rcu_head rcu; 710 u16 queues[0]; 711 }; 712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 714 - sizeof(struct xps_map)) / sizeof(u16)) 715 716 /* 717 * This structure holds all XPS maps for device. Maps are indexed by CPU. 718 */ 719 struct xps_dev_maps { 720 struct rcu_head rcu; 721 struct xps_map __rcu *cpu_map[0]; 722 }; 723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 724 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 725 #endif /* CONFIG_XPS */ 726 727 #define TC_MAX_QUEUE 16 728 #define TC_BITMASK 15 729 /* HW offloaded queuing disciplines txq count and offset maps */ 730 struct netdev_tc_txq { 731 u16 count; 732 u16 offset; 733 }; 734 735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 736 /* 737 * This structure is to hold information about the device 738 * configured to run FCoE protocol stack. 739 */ 740 struct netdev_fcoe_hbainfo { 741 char manufacturer[64]; 742 char serial_number[64]; 743 char hardware_version[64]; 744 char driver_version[64]; 745 char optionrom_version[64]; 746 char firmware_version[64]; 747 char model[256]; 748 char model_description[256]; 749 }; 750 #endif 751 752 #define MAX_PHYS_ITEM_ID_LEN 32 753 754 /* This structure holds a unique identifier to identify some 755 * physical item (port for example) used by a netdevice. 756 */ 757 struct netdev_phys_item_id { 758 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 759 unsigned char id_len; 760 }; 761 762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 763 struct netdev_phys_item_id *b) 764 { 765 return a->id_len == b->id_len && 766 memcmp(a->id, b->id, a->id_len) == 0; 767 } 768 769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 770 struct sk_buff *skb); 771 772 enum tc_setup_type { 773 TC_SETUP_QDISC_MQPRIO, 774 TC_SETUP_CLSU32, 775 TC_SETUP_CLSFLOWER, 776 TC_SETUP_CLSMATCHALL, 777 TC_SETUP_CLSBPF, 778 TC_SETUP_BLOCK, 779 TC_SETUP_QDISC_CBS, 780 TC_SETUP_QDISC_RED, 781 }; 782 783 /* These structures hold the attributes of bpf state that are being passed 784 * to the netdevice through the bpf op. 785 */ 786 enum bpf_netdev_command { 787 /* Set or clear a bpf program used in the earliest stages of packet 788 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 789 * is responsible for calling bpf_prog_put on any old progs that are 790 * stored. In case of error, the callee need not release the new prog 791 * reference, but on success it takes ownership and must bpf_prog_put 792 * when it is no longer used. 793 */ 794 XDP_SETUP_PROG, 795 XDP_SETUP_PROG_HW, 796 /* Check if a bpf program is set on the device. The callee should 797 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 798 * is equivalent to XDP_ATTACHED_DRV. 799 */ 800 XDP_QUERY_PROG, 801 /* BPF program for offload callbacks, invoked at program load time. */ 802 BPF_OFFLOAD_VERIFIER_PREP, 803 BPF_OFFLOAD_TRANSLATE, 804 BPF_OFFLOAD_DESTROY, 805 }; 806 807 struct bpf_ext_analyzer_ops; 808 struct netlink_ext_ack; 809 810 struct netdev_bpf { 811 enum bpf_netdev_command command; 812 union { 813 /* XDP_SETUP_PROG */ 814 struct { 815 u32 flags; 816 struct bpf_prog *prog; 817 struct netlink_ext_ack *extack; 818 }; 819 /* XDP_QUERY_PROG */ 820 struct { 821 u8 prog_attached; 822 u32 prog_id; 823 }; 824 /* BPF_OFFLOAD_VERIFIER_PREP */ 825 struct { 826 struct bpf_prog *prog; 827 const struct bpf_ext_analyzer_ops *ops; /* callee set */ 828 } verifier; 829 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 830 struct { 831 struct bpf_prog *prog; 832 } offload; 833 }; 834 }; 835 836 #ifdef CONFIG_XFRM_OFFLOAD 837 struct xfrmdev_ops { 838 int (*xdo_dev_state_add) (struct xfrm_state *x); 839 void (*xdo_dev_state_delete) (struct xfrm_state *x); 840 void (*xdo_dev_state_free) (struct xfrm_state *x); 841 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 842 struct xfrm_state *x); 843 }; 844 #endif 845 846 struct dev_ifalias { 847 struct rcu_head rcuhead; 848 char ifalias[]; 849 }; 850 851 /* 852 * This structure defines the management hooks for network devices. 853 * The following hooks can be defined; unless noted otherwise, they are 854 * optional and can be filled with a null pointer. 855 * 856 * int (*ndo_init)(struct net_device *dev); 857 * This function is called once when a network device is registered. 858 * The network device can use this for any late stage initialization 859 * or semantic validation. It can fail with an error code which will 860 * be propagated back to register_netdev. 861 * 862 * void (*ndo_uninit)(struct net_device *dev); 863 * This function is called when device is unregistered or when registration 864 * fails. It is not called if init fails. 865 * 866 * int (*ndo_open)(struct net_device *dev); 867 * This function is called when a network device transitions to the up 868 * state. 869 * 870 * int (*ndo_stop)(struct net_device *dev); 871 * This function is called when a network device transitions to the down 872 * state. 873 * 874 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 875 * struct net_device *dev); 876 * Called when a packet needs to be transmitted. 877 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 878 * the queue before that can happen; it's for obsolete devices and weird 879 * corner cases, but the stack really does a non-trivial amount 880 * of useless work if you return NETDEV_TX_BUSY. 881 * Required; cannot be NULL. 882 * 883 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 884 * struct net_device *dev 885 * netdev_features_t features); 886 * Called by core transmit path to determine if device is capable of 887 * performing offload operations on a given packet. This is to give 888 * the device an opportunity to implement any restrictions that cannot 889 * be otherwise expressed by feature flags. The check is called with 890 * the set of features that the stack has calculated and it returns 891 * those the driver believes to be appropriate. 892 * 893 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 894 * void *accel_priv, select_queue_fallback_t fallback); 895 * Called to decide which queue to use when device supports multiple 896 * transmit queues. 897 * 898 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 899 * This function is called to allow device receiver to make 900 * changes to configuration when multicast or promiscuous is enabled. 901 * 902 * void (*ndo_set_rx_mode)(struct net_device *dev); 903 * This function is called device changes address list filtering. 904 * If driver handles unicast address filtering, it should set 905 * IFF_UNICAST_FLT in its priv_flags. 906 * 907 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 908 * This function is called when the Media Access Control address 909 * needs to be changed. If this interface is not defined, the 910 * MAC address can not be changed. 911 * 912 * int (*ndo_validate_addr)(struct net_device *dev); 913 * Test if Media Access Control address is valid for the device. 914 * 915 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 916 * Called when a user requests an ioctl which can't be handled by 917 * the generic interface code. If not defined ioctls return 918 * not supported error code. 919 * 920 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 921 * Used to set network devices bus interface parameters. This interface 922 * is retained for legacy reasons; new devices should use the bus 923 * interface (PCI) for low level management. 924 * 925 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 926 * Called when a user wants to change the Maximum Transfer Unit 927 * of a device. 928 * 929 * void (*ndo_tx_timeout)(struct net_device *dev); 930 * Callback used when the transmitter has not made any progress 931 * for dev->watchdog ticks. 932 * 933 * void (*ndo_get_stats64)(struct net_device *dev, 934 * struct rtnl_link_stats64 *storage); 935 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 936 * Called when a user wants to get the network device usage 937 * statistics. Drivers must do one of the following: 938 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 939 * rtnl_link_stats64 structure passed by the caller. 940 * 2. Define @ndo_get_stats to update a net_device_stats structure 941 * (which should normally be dev->stats) and return a pointer to 942 * it. The structure may be changed asynchronously only if each 943 * field is written atomically. 944 * 3. Update dev->stats asynchronously and atomically, and define 945 * neither operation. 946 * 947 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 948 * Return true if this device supports offload stats of this attr_id. 949 * 950 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 951 * void *attr_data) 952 * Get statistics for offload operations by attr_id. Write it into the 953 * attr_data pointer. 954 * 955 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 956 * If device supports VLAN filtering this function is called when a 957 * VLAN id is registered. 958 * 959 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 960 * If device supports VLAN filtering this function is called when a 961 * VLAN id is unregistered. 962 * 963 * void (*ndo_poll_controller)(struct net_device *dev); 964 * 965 * SR-IOV management functions. 966 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 967 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 968 * u8 qos, __be16 proto); 969 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 970 * int max_tx_rate); 971 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 972 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 973 * int (*ndo_get_vf_config)(struct net_device *dev, 974 * int vf, struct ifla_vf_info *ivf); 975 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 976 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 977 * struct nlattr *port[]); 978 * 979 * Enable or disable the VF ability to query its RSS Redirection Table and 980 * Hash Key. This is needed since on some devices VF share this information 981 * with PF and querying it may introduce a theoretical security risk. 982 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 983 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 984 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 985 * void *type_data); 986 * Called to setup any 'tc' scheduler, classifier or action on @dev. 987 * This is always called from the stack with the rtnl lock held and netif 988 * tx queues stopped. This allows the netdevice to perform queue 989 * management safely. 990 * 991 * Fiber Channel over Ethernet (FCoE) offload functions. 992 * int (*ndo_fcoe_enable)(struct net_device *dev); 993 * Called when the FCoE protocol stack wants to start using LLD for FCoE 994 * so the underlying device can perform whatever needed configuration or 995 * initialization to support acceleration of FCoE traffic. 996 * 997 * int (*ndo_fcoe_disable)(struct net_device *dev); 998 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 999 * so the underlying device can perform whatever needed clean-ups to 1000 * stop supporting acceleration of FCoE traffic. 1001 * 1002 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1003 * struct scatterlist *sgl, unsigned int sgc); 1004 * Called when the FCoE Initiator wants to initialize an I/O that 1005 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1006 * perform necessary setup and returns 1 to indicate the device is set up 1007 * successfully to perform DDP on this I/O, otherwise this returns 0. 1008 * 1009 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1010 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1011 * indicated by the FC exchange id 'xid', so the underlying device can 1012 * clean up and reuse resources for later DDP requests. 1013 * 1014 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1015 * struct scatterlist *sgl, unsigned int sgc); 1016 * Called when the FCoE Target wants to initialize an I/O that 1017 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1018 * perform necessary setup and returns 1 to indicate the device is set up 1019 * successfully to perform DDP on this I/O, otherwise this returns 0. 1020 * 1021 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1022 * struct netdev_fcoe_hbainfo *hbainfo); 1023 * Called when the FCoE Protocol stack wants information on the underlying 1024 * device. This information is utilized by the FCoE protocol stack to 1025 * register attributes with Fiber Channel management service as per the 1026 * FC-GS Fabric Device Management Information(FDMI) specification. 1027 * 1028 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1029 * Called when the underlying device wants to override default World Wide 1030 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1031 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1032 * protocol stack to use. 1033 * 1034 * RFS acceleration. 1035 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1036 * u16 rxq_index, u32 flow_id); 1037 * Set hardware filter for RFS. rxq_index is the target queue index; 1038 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1039 * Return the filter ID on success, or a negative error code. 1040 * 1041 * Slave management functions (for bridge, bonding, etc). 1042 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1043 * Called to make another netdev an underling. 1044 * 1045 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1046 * Called to release previously enslaved netdev. 1047 * 1048 * Feature/offload setting functions. 1049 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1050 * netdev_features_t features); 1051 * Adjusts the requested feature flags according to device-specific 1052 * constraints, and returns the resulting flags. Must not modify 1053 * the device state. 1054 * 1055 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1056 * Called to update device configuration to new features. Passed 1057 * feature set might be less than what was returned by ndo_fix_features()). 1058 * Must return >0 or -errno if it changed dev->features itself. 1059 * 1060 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1061 * struct net_device *dev, 1062 * const unsigned char *addr, u16 vid, u16 flags) 1063 * Adds an FDB entry to dev for addr. 1064 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1065 * struct net_device *dev, 1066 * const unsigned char *addr, u16 vid) 1067 * Deletes the FDB entry from dev coresponding to addr. 1068 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1069 * struct net_device *dev, struct net_device *filter_dev, 1070 * int *idx) 1071 * Used to add FDB entries to dump requests. Implementers should add 1072 * entries to skb and update idx with the number of entries. 1073 * 1074 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1075 * u16 flags) 1076 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1077 * struct net_device *dev, u32 filter_mask, 1078 * int nlflags) 1079 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1080 * u16 flags); 1081 * 1082 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1083 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1084 * which do not represent real hardware may define this to allow their 1085 * userspace components to manage their virtual carrier state. Devices 1086 * that determine carrier state from physical hardware properties (eg 1087 * network cables) or protocol-dependent mechanisms (eg 1088 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1089 * 1090 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1091 * struct netdev_phys_item_id *ppid); 1092 * Called to get ID of physical port of this device. If driver does 1093 * not implement this, it is assumed that the hw is not able to have 1094 * multiple net devices on single physical port. 1095 * 1096 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1097 * struct udp_tunnel_info *ti); 1098 * Called by UDP tunnel to notify a driver about the UDP port and socket 1099 * address family that a UDP tunnel is listnening to. It is called only 1100 * when a new port starts listening. The operation is protected by the 1101 * RTNL. 1102 * 1103 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1104 * struct udp_tunnel_info *ti); 1105 * Called by UDP tunnel to notify the driver about a UDP port and socket 1106 * address family that the UDP tunnel is not listening to anymore. The 1107 * operation is protected by the RTNL. 1108 * 1109 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1110 * struct net_device *dev) 1111 * Called by upper layer devices to accelerate switching or other 1112 * station functionality into hardware. 'pdev is the lowerdev 1113 * to use for the offload and 'dev' is the net device that will 1114 * back the offload. Returns a pointer to the private structure 1115 * the upper layer will maintain. 1116 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1117 * Called by upper layer device to delete the station created 1118 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1119 * the station and priv is the structure returned by the add 1120 * operation. 1121 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1122 * int queue_index, u32 maxrate); 1123 * Called when a user wants to set a max-rate limitation of specific 1124 * TX queue. 1125 * int (*ndo_get_iflink)(const struct net_device *dev); 1126 * Called to get the iflink value of this device. 1127 * void (*ndo_change_proto_down)(struct net_device *dev, 1128 * bool proto_down); 1129 * This function is used to pass protocol port error state information 1130 * to the switch driver. The switch driver can react to the proto_down 1131 * by doing a phys down on the associated switch port. 1132 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1133 * This function is used to get egress tunnel information for given skb. 1134 * This is useful for retrieving outer tunnel header parameters while 1135 * sampling packet. 1136 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1137 * This function is used to specify the headroom that the skb must 1138 * consider when allocation skb during packet reception. Setting 1139 * appropriate rx headroom value allows avoiding skb head copy on 1140 * forward. Setting a negative value resets the rx headroom to the 1141 * default value. 1142 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1143 * This function is used to set or query state related to XDP on the 1144 * netdevice and manage BPF offload. See definition of 1145 * enum bpf_netdev_command for details. 1146 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1147 * This function is used to submit a XDP packet for transmit on a 1148 * netdevice. 1149 * void (*ndo_xdp_flush)(struct net_device *dev); 1150 * This function is used to inform the driver to flush a particular 1151 * xdp tx queue. Must be called on same CPU as xdp_xmit. 1152 */ 1153 struct net_device_ops { 1154 int (*ndo_init)(struct net_device *dev); 1155 void (*ndo_uninit)(struct net_device *dev); 1156 int (*ndo_open)(struct net_device *dev); 1157 int (*ndo_stop)(struct net_device *dev); 1158 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1159 struct net_device *dev); 1160 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1161 struct net_device *dev, 1162 netdev_features_t features); 1163 u16 (*ndo_select_queue)(struct net_device *dev, 1164 struct sk_buff *skb, 1165 void *accel_priv, 1166 select_queue_fallback_t fallback); 1167 void (*ndo_change_rx_flags)(struct net_device *dev, 1168 int flags); 1169 void (*ndo_set_rx_mode)(struct net_device *dev); 1170 int (*ndo_set_mac_address)(struct net_device *dev, 1171 void *addr); 1172 int (*ndo_validate_addr)(struct net_device *dev); 1173 int (*ndo_do_ioctl)(struct net_device *dev, 1174 struct ifreq *ifr, int cmd); 1175 int (*ndo_set_config)(struct net_device *dev, 1176 struct ifmap *map); 1177 int (*ndo_change_mtu)(struct net_device *dev, 1178 int new_mtu); 1179 int (*ndo_neigh_setup)(struct net_device *dev, 1180 struct neigh_parms *); 1181 void (*ndo_tx_timeout) (struct net_device *dev); 1182 1183 void (*ndo_get_stats64)(struct net_device *dev, 1184 struct rtnl_link_stats64 *storage); 1185 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1186 int (*ndo_get_offload_stats)(int attr_id, 1187 const struct net_device *dev, 1188 void *attr_data); 1189 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1190 1191 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1192 __be16 proto, u16 vid); 1193 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1194 __be16 proto, u16 vid); 1195 #ifdef CONFIG_NET_POLL_CONTROLLER 1196 void (*ndo_poll_controller)(struct net_device *dev); 1197 int (*ndo_netpoll_setup)(struct net_device *dev, 1198 struct netpoll_info *info); 1199 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1200 #endif 1201 int (*ndo_set_vf_mac)(struct net_device *dev, 1202 int queue, u8 *mac); 1203 int (*ndo_set_vf_vlan)(struct net_device *dev, 1204 int queue, u16 vlan, 1205 u8 qos, __be16 proto); 1206 int (*ndo_set_vf_rate)(struct net_device *dev, 1207 int vf, int min_tx_rate, 1208 int max_tx_rate); 1209 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1210 int vf, bool setting); 1211 int (*ndo_set_vf_trust)(struct net_device *dev, 1212 int vf, bool setting); 1213 int (*ndo_get_vf_config)(struct net_device *dev, 1214 int vf, 1215 struct ifla_vf_info *ivf); 1216 int (*ndo_set_vf_link_state)(struct net_device *dev, 1217 int vf, int link_state); 1218 int (*ndo_get_vf_stats)(struct net_device *dev, 1219 int vf, 1220 struct ifla_vf_stats 1221 *vf_stats); 1222 int (*ndo_set_vf_port)(struct net_device *dev, 1223 int vf, 1224 struct nlattr *port[]); 1225 int (*ndo_get_vf_port)(struct net_device *dev, 1226 int vf, struct sk_buff *skb); 1227 int (*ndo_set_vf_guid)(struct net_device *dev, 1228 int vf, u64 guid, 1229 int guid_type); 1230 int (*ndo_set_vf_rss_query_en)( 1231 struct net_device *dev, 1232 int vf, bool setting); 1233 int (*ndo_setup_tc)(struct net_device *dev, 1234 enum tc_setup_type type, 1235 void *type_data); 1236 #if IS_ENABLED(CONFIG_FCOE) 1237 int (*ndo_fcoe_enable)(struct net_device *dev); 1238 int (*ndo_fcoe_disable)(struct net_device *dev); 1239 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1240 u16 xid, 1241 struct scatterlist *sgl, 1242 unsigned int sgc); 1243 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1244 u16 xid); 1245 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1246 u16 xid, 1247 struct scatterlist *sgl, 1248 unsigned int sgc); 1249 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1250 struct netdev_fcoe_hbainfo *hbainfo); 1251 #endif 1252 1253 #if IS_ENABLED(CONFIG_LIBFCOE) 1254 #define NETDEV_FCOE_WWNN 0 1255 #define NETDEV_FCOE_WWPN 1 1256 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1257 u64 *wwn, int type); 1258 #endif 1259 1260 #ifdef CONFIG_RFS_ACCEL 1261 int (*ndo_rx_flow_steer)(struct net_device *dev, 1262 const struct sk_buff *skb, 1263 u16 rxq_index, 1264 u32 flow_id); 1265 #endif 1266 int (*ndo_add_slave)(struct net_device *dev, 1267 struct net_device *slave_dev, 1268 struct netlink_ext_ack *extack); 1269 int (*ndo_del_slave)(struct net_device *dev, 1270 struct net_device *slave_dev); 1271 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1272 netdev_features_t features); 1273 int (*ndo_set_features)(struct net_device *dev, 1274 netdev_features_t features); 1275 int (*ndo_neigh_construct)(struct net_device *dev, 1276 struct neighbour *n); 1277 void (*ndo_neigh_destroy)(struct net_device *dev, 1278 struct neighbour *n); 1279 1280 int (*ndo_fdb_add)(struct ndmsg *ndm, 1281 struct nlattr *tb[], 1282 struct net_device *dev, 1283 const unsigned char *addr, 1284 u16 vid, 1285 u16 flags); 1286 int (*ndo_fdb_del)(struct ndmsg *ndm, 1287 struct nlattr *tb[], 1288 struct net_device *dev, 1289 const unsigned char *addr, 1290 u16 vid); 1291 int (*ndo_fdb_dump)(struct sk_buff *skb, 1292 struct netlink_callback *cb, 1293 struct net_device *dev, 1294 struct net_device *filter_dev, 1295 int *idx); 1296 1297 int (*ndo_bridge_setlink)(struct net_device *dev, 1298 struct nlmsghdr *nlh, 1299 u16 flags); 1300 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1301 u32 pid, u32 seq, 1302 struct net_device *dev, 1303 u32 filter_mask, 1304 int nlflags); 1305 int (*ndo_bridge_dellink)(struct net_device *dev, 1306 struct nlmsghdr *nlh, 1307 u16 flags); 1308 int (*ndo_change_carrier)(struct net_device *dev, 1309 bool new_carrier); 1310 int (*ndo_get_phys_port_id)(struct net_device *dev, 1311 struct netdev_phys_item_id *ppid); 1312 int (*ndo_get_phys_port_name)(struct net_device *dev, 1313 char *name, size_t len); 1314 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1315 struct udp_tunnel_info *ti); 1316 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1317 struct udp_tunnel_info *ti); 1318 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1319 struct net_device *dev); 1320 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1321 void *priv); 1322 1323 int (*ndo_get_lock_subclass)(struct net_device *dev); 1324 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1325 int queue_index, 1326 u32 maxrate); 1327 int (*ndo_get_iflink)(const struct net_device *dev); 1328 int (*ndo_change_proto_down)(struct net_device *dev, 1329 bool proto_down); 1330 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1331 struct sk_buff *skb); 1332 void (*ndo_set_rx_headroom)(struct net_device *dev, 1333 int needed_headroom); 1334 int (*ndo_bpf)(struct net_device *dev, 1335 struct netdev_bpf *bpf); 1336 int (*ndo_xdp_xmit)(struct net_device *dev, 1337 struct xdp_buff *xdp); 1338 void (*ndo_xdp_flush)(struct net_device *dev); 1339 }; 1340 1341 /** 1342 * enum net_device_priv_flags - &struct net_device priv_flags 1343 * 1344 * These are the &struct net_device, they are only set internally 1345 * by drivers and used in the kernel. These flags are invisible to 1346 * userspace; this means that the order of these flags can change 1347 * during any kernel release. 1348 * 1349 * You should have a pretty good reason to be extending these flags. 1350 * 1351 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1352 * @IFF_EBRIDGE: Ethernet bridging device 1353 * @IFF_BONDING: bonding master or slave 1354 * @IFF_ISATAP: ISATAP interface (RFC4214) 1355 * @IFF_WAN_HDLC: WAN HDLC device 1356 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1357 * release skb->dst 1358 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1359 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1360 * @IFF_MACVLAN_PORT: device used as macvlan port 1361 * @IFF_BRIDGE_PORT: device used as bridge port 1362 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1363 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1364 * @IFF_UNICAST_FLT: Supports unicast filtering 1365 * @IFF_TEAM_PORT: device used as team port 1366 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1367 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1368 * change when it's running 1369 * @IFF_MACVLAN: Macvlan device 1370 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1371 * underlying stacked devices 1372 * @IFF_IPVLAN_MASTER: IPvlan master device 1373 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1374 * @IFF_L3MDEV_MASTER: device is an L3 master device 1375 * @IFF_NO_QUEUE: device can run without qdisc attached 1376 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1377 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1378 * @IFF_TEAM: device is a team device 1379 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1380 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1381 * entity (i.e. the master device for bridged veth) 1382 * @IFF_MACSEC: device is a MACsec device 1383 */ 1384 enum netdev_priv_flags { 1385 IFF_802_1Q_VLAN = 1<<0, 1386 IFF_EBRIDGE = 1<<1, 1387 IFF_BONDING = 1<<2, 1388 IFF_ISATAP = 1<<3, 1389 IFF_WAN_HDLC = 1<<4, 1390 IFF_XMIT_DST_RELEASE = 1<<5, 1391 IFF_DONT_BRIDGE = 1<<6, 1392 IFF_DISABLE_NETPOLL = 1<<7, 1393 IFF_MACVLAN_PORT = 1<<8, 1394 IFF_BRIDGE_PORT = 1<<9, 1395 IFF_OVS_DATAPATH = 1<<10, 1396 IFF_TX_SKB_SHARING = 1<<11, 1397 IFF_UNICAST_FLT = 1<<12, 1398 IFF_TEAM_PORT = 1<<13, 1399 IFF_SUPP_NOFCS = 1<<14, 1400 IFF_LIVE_ADDR_CHANGE = 1<<15, 1401 IFF_MACVLAN = 1<<16, 1402 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1403 IFF_IPVLAN_MASTER = 1<<18, 1404 IFF_IPVLAN_SLAVE = 1<<19, 1405 IFF_L3MDEV_MASTER = 1<<20, 1406 IFF_NO_QUEUE = 1<<21, 1407 IFF_OPENVSWITCH = 1<<22, 1408 IFF_L3MDEV_SLAVE = 1<<23, 1409 IFF_TEAM = 1<<24, 1410 IFF_RXFH_CONFIGURED = 1<<25, 1411 IFF_PHONY_HEADROOM = 1<<26, 1412 IFF_MACSEC = 1<<27, 1413 }; 1414 1415 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1416 #define IFF_EBRIDGE IFF_EBRIDGE 1417 #define IFF_BONDING IFF_BONDING 1418 #define IFF_ISATAP IFF_ISATAP 1419 #define IFF_WAN_HDLC IFF_WAN_HDLC 1420 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1421 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1422 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1423 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1424 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1425 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1426 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1427 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1428 #define IFF_TEAM_PORT IFF_TEAM_PORT 1429 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1430 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1431 #define IFF_MACVLAN IFF_MACVLAN 1432 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1433 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1434 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1435 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1436 #define IFF_NO_QUEUE IFF_NO_QUEUE 1437 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1438 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1439 #define IFF_TEAM IFF_TEAM 1440 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1441 #define IFF_MACSEC IFF_MACSEC 1442 1443 /** 1444 * struct net_device - The DEVICE structure. 1445 * 1446 * Actually, this whole structure is a big mistake. It mixes I/O 1447 * data with strictly "high-level" data, and it has to know about 1448 * almost every data structure used in the INET module. 1449 * 1450 * @name: This is the first field of the "visible" part of this structure 1451 * (i.e. as seen by users in the "Space.c" file). It is the name 1452 * of the interface. 1453 * 1454 * @name_hlist: Device name hash chain, please keep it close to name[] 1455 * @ifalias: SNMP alias 1456 * @mem_end: Shared memory end 1457 * @mem_start: Shared memory start 1458 * @base_addr: Device I/O address 1459 * @irq: Device IRQ number 1460 * 1461 * @carrier_changes: Stats to monitor carrier on<->off transitions 1462 * 1463 * @state: Generic network queuing layer state, see netdev_state_t 1464 * @dev_list: The global list of network devices 1465 * @napi_list: List entry used for polling NAPI devices 1466 * @unreg_list: List entry when we are unregistering the 1467 * device; see the function unregister_netdev 1468 * @close_list: List entry used when we are closing the device 1469 * @ptype_all: Device-specific packet handlers for all protocols 1470 * @ptype_specific: Device-specific, protocol-specific packet handlers 1471 * 1472 * @adj_list: Directly linked devices, like slaves for bonding 1473 * @features: Currently active device features 1474 * @hw_features: User-changeable features 1475 * 1476 * @wanted_features: User-requested features 1477 * @vlan_features: Mask of features inheritable by VLAN devices 1478 * 1479 * @hw_enc_features: Mask of features inherited by encapsulating devices 1480 * This field indicates what encapsulation 1481 * offloads the hardware is capable of doing, 1482 * and drivers will need to set them appropriately. 1483 * 1484 * @mpls_features: Mask of features inheritable by MPLS 1485 * 1486 * @ifindex: interface index 1487 * @group: The group the device belongs to 1488 * 1489 * @stats: Statistics struct, which was left as a legacy, use 1490 * rtnl_link_stats64 instead 1491 * 1492 * @rx_dropped: Dropped packets by core network, 1493 * do not use this in drivers 1494 * @tx_dropped: Dropped packets by core network, 1495 * do not use this in drivers 1496 * @rx_nohandler: nohandler dropped packets by core network on 1497 * inactive devices, do not use this in drivers 1498 * 1499 * @wireless_handlers: List of functions to handle Wireless Extensions, 1500 * instead of ioctl, 1501 * see <net/iw_handler.h> for details. 1502 * @wireless_data: Instance data managed by the core of wireless extensions 1503 * 1504 * @netdev_ops: Includes several pointers to callbacks, 1505 * if one wants to override the ndo_*() functions 1506 * @ethtool_ops: Management operations 1507 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1508 * discovery handling. Necessary for e.g. 6LoWPAN. 1509 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1510 * of Layer 2 headers. 1511 * 1512 * @flags: Interface flags (a la BSD) 1513 * @priv_flags: Like 'flags' but invisible to userspace, 1514 * see if.h for the definitions 1515 * @gflags: Global flags ( kept as legacy ) 1516 * @padded: How much padding added by alloc_netdev() 1517 * @operstate: RFC2863 operstate 1518 * @link_mode: Mapping policy to operstate 1519 * @if_port: Selectable AUI, TP, ... 1520 * @dma: DMA channel 1521 * @mtu: Interface MTU value 1522 * @min_mtu: Interface Minimum MTU value 1523 * @max_mtu: Interface Maximum MTU value 1524 * @type: Interface hardware type 1525 * @hard_header_len: Maximum hardware header length. 1526 * @min_header_len: Minimum hardware header length 1527 * 1528 * @needed_headroom: Extra headroom the hardware may need, but not in all 1529 * cases can this be guaranteed 1530 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1531 * cases can this be guaranteed. Some cases also use 1532 * LL_MAX_HEADER instead to allocate the skb 1533 * 1534 * interface address info: 1535 * 1536 * @perm_addr: Permanent hw address 1537 * @addr_assign_type: Hw address assignment type 1538 * @addr_len: Hardware address length 1539 * @neigh_priv_len: Used in neigh_alloc() 1540 * @dev_id: Used to differentiate devices that share 1541 * the same link layer address 1542 * @dev_port: Used to differentiate devices that share 1543 * the same function 1544 * @addr_list_lock: XXX: need comments on this one 1545 * @uc_promisc: Counter that indicates promiscuous mode 1546 * has been enabled due to the need to listen to 1547 * additional unicast addresses in a device that 1548 * does not implement ndo_set_rx_mode() 1549 * @uc: unicast mac addresses 1550 * @mc: multicast mac addresses 1551 * @dev_addrs: list of device hw addresses 1552 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1553 * @promiscuity: Number of times the NIC is told to work in 1554 * promiscuous mode; if it becomes 0 the NIC will 1555 * exit promiscuous mode 1556 * @allmulti: Counter, enables or disables allmulticast mode 1557 * 1558 * @vlan_info: VLAN info 1559 * @dsa_ptr: dsa specific data 1560 * @tipc_ptr: TIPC specific data 1561 * @atalk_ptr: AppleTalk link 1562 * @ip_ptr: IPv4 specific data 1563 * @dn_ptr: DECnet specific data 1564 * @ip6_ptr: IPv6 specific data 1565 * @ax25_ptr: AX.25 specific data 1566 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1567 * 1568 * @dev_addr: Hw address (before bcast, 1569 * because most packets are unicast) 1570 * 1571 * @_rx: Array of RX queues 1572 * @num_rx_queues: Number of RX queues 1573 * allocated at register_netdev() time 1574 * @real_num_rx_queues: Number of RX queues currently active in device 1575 * 1576 * @rx_handler: handler for received packets 1577 * @rx_handler_data: XXX: need comments on this one 1578 * @miniq_ingress: ingress/clsact qdisc specific data for 1579 * ingress processing 1580 * @ingress_queue: XXX: need comments on this one 1581 * @broadcast: hw bcast address 1582 * 1583 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1584 * indexed by RX queue number. Assigned by driver. 1585 * This must only be set if the ndo_rx_flow_steer 1586 * operation is defined 1587 * @index_hlist: Device index hash chain 1588 * 1589 * @_tx: Array of TX queues 1590 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1591 * @real_num_tx_queues: Number of TX queues currently active in device 1592 * @qdisc: Root qdisc from userspace point of view 1593 * @tx_queue_len: Max frames per queue allowed 1594 * @tx_global_lock: XXX: need comments on this one 1595 * 1596 * @xps_maps: XXX: need comments on this one 1597 * @miniq_egress: clsact qdisc specific data for 1598 * egress processing 1599 * @watchdog_timeo: Represents the timeout that is used by 1600 * the watchdog (see dev_watchdog()) 1601 * @watchdog_timer: List of timers 1602 * 1603 * @pcpu_refcnt: Number of references to this device 1604 * @todo_list: Delayed register/unregister 1605 * @link_watch_list: XXX: need comments on this one 1606 * 1607 * @reg_state: Register/unregister state machine 1608 * @dismantle: Device is going to be freed 1609 * @rtnl_link_state: This enum represents the phases of creating 1610 * a new link 1611 * 1612 * @needs_free_netdev: Should unregister perform free_netdev? 1613 * @priv_destructor: Called from unregister 1614 * @npinfo: XXX: need comments on this one 1615 * @nd_net: Network namespace this network device is inside 1616 * 1617 * @ml_priv: Mid-layer private 1618 * @lstats: Loopback statistics 1619 * @tstats: Tunnel statistics 1620 * @dstats: Dummy statistics 1621 * @vstats: Virtual ethernet statistics 1622 * 1623 * @garp_port: GARP 1624 * @mrp_port: MRP 1625 * 1626 * @dev: Class/net/name entry 1627 * @sysfs_groups: Space for optional device, statistics and wireless 1628 * sysfs groups 1629 * 1630 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1631 * @rtnl_link_ops: Rtnl_link_ops 1632 * 1633 * @gso_max_size: Maximum size of generic segmentation offload 1634 * @gso_max_segs: Maximum number of segments that can be passed to the 1635 * NIC for GSO 1636 * 1637 * @dcbnl_ops: Data Center Bridging netlink ops 1638 * @num_tc: Number of traffic classes in the net device 1639 * @tc_to_txq: XXX: need comments on this one 1640 * @prio_tc_map: XXX: need comments on this one 1641 * 1642 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1643 * 1644 * @priomap: XXX: need comments on this one 1645 * @phydev: Physical device may attach itself 1646 * for hardware timestamping 1647 * 1648 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1649 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1650 * 1651 * @proto_down: protocol port state information can be sent to the 1652 * switch driver and used to set the phys state of the 1653 * switch port. 1654 * 1655 * FIXME: cleanup struct net_device such that network protocol info 1656 * moves out. 1657 */ 1658 1659 struct net_device { 1660 char name[IFNAMSIZ]; 1661 struct hlist_node name_hlist; 1662 struct dev_ifalias __rcu *ifalias; 1663 /* 1664 * I/O specific fields 1665 * FIXME: Merge these and struct ifmap into one 1666 */ 1667 unsigned long mem_end; 1668 unsigned long mem_start; 1669 unsigned long base_addr; 1670 int irq; 1671 1672 atomic_t carrier_changes; 1673 1674 /* 1675 * Some hardware also needs these fields (state,dev_list, 1676 * napi_list,unreg_list,close_list) but they are not 1677 * part of the usual set specified in Space.c. 1678 */ 1679 1680 unsigned long state; 1681 1682 struct list_head dev_list; 1683 struct list_head napi_list; 1684 struct list_head unreg_list; 1685 struct list_head close_list; 1686 struct list_head ptype_all; 1687 struct list_head ptype_specific; 1688 1689 struct { 1690 struct list_head upper; 1691 struct list_head lower; 1692 } adj_list; 1693 1694 netdev_features_t features; 1695 netdev_features_t hw_features; 1696 netdev_features_t wanted_features; 1697 netdev_features_t vlan_features; 1698 netdev_features_t hw_enc_features; 1699 netdev_features_t mpls_features; 1700 netdev_features_t gso_partial_features; 1701 1702 int ifindex; 1703 int group; 1704 1705 struct net_device_stats stats; 1706 1707 atomic_long_t rx_dropped; 1708 atomic_long_t tx_dropped; 1709 atomic_long_t rx_nohandler; 1710 1711 #ifdef CONFIG_WIRELESS_EXT 1712 const struct iw_handler_def *wireless_handlers; 1713 struct iw_public_data *wireless_data; 1714 #endif 1715 const struct net_device_ops *netdev_ops; 1716 const struct ethtool_ops *ethtool_ops; 1717 #ifdef CONFIG_NET_SWITCHDEV 1718 const struct switchdev_ops *switchdev_ops; 1719 #endif 1720 #ifdef CONFIG_NET_L3_MASTER_DEV 1721 const struct l3mdev_ops *l3mdev_ops; 1722 #endif 1723 #if IS_ENABLED(CONFIG_IPV6) 1724 const struct ndisc_ops *ndisc_ops; 1725 #endif 1726 1727 #ifdef CONFIG_XFRM 1728 const struct xfrmdev_ops *xfrmdev_ops; 1729 #endif 1730 1731 const struct header_ops *header_ops; 1732 1733 unsigned int flags; 1734 unsigned int priv_flags; 1735 1736 unsigned short gflags; 1737 unsigned short padded; 1738 1739 unsigned char operstate; 1740 unsigned char link_mode; 1741 1742 unsigned char if_port; 1743 unsigned char dma; 1744 1745 unsigned int mtu; 1746 unsigned int min_mtu; 1747 unsigned int max_mtu; 1748 unsigned short type; 1749 unsigned short hard_header_len; 1750 unsigned char min_header_len; 1751 1752 unsigned short needed_headroom; 1753 unsigned short needed_tailroom; 1754 1755 /* Interface address info. */ 1756 unsigned char perm_addr[MAX_ADDR_LEN]; 1757 unsigned char addr_assign_type; 1758 unsigned char addr_len; 1759 unsigned short neigh_priv_len; 1760 unsigned short dev_id; 1761 unsigned short dev_port; 1762 spinlock_t addr_list_lock; 1763 unsigned char name_assign_type; 1764 bool uc_promisc; 1765 struct netdev_hw_addr_list uc; 1766 struct netdev_hw_addr_list mc; 1767 struct netdev_hw_addr_list dev_addrs; 1768 1769 #ifdef CONFIG_SYSFS 1770 struct kset *queues_kset; 1771 #endif 1772 unsigned int promiscuity; 1773 unsigned int allmulti; 1774 1775 1776 /* Protocol-specific pointers */ 1777 1778 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1779 struct vlan_info __rcu *vlan_info; 1780 #endif 1781 #if IS_ENABLED(CONFIG_NET_DSA) 1782 struct dsa_port *dsa_ptr; 1783 #endif 1784 #if IS_ENABLED(CONFIG_TIPC) 1785 struct tipc_bearer __rcu *tipc_ptr; 1786 #endif 1787 void *atalk_ptr; 1788 struct in_device __rcu *ip_ptr; 1789 struct dn_dev __rcu *dn_ptr; 1790 struct inet6_dev __rcu *ip6_ptr; 1791 void *ax25_ptr; 1792 struct wireless_dev *ieee80211_ptr; 1793 struct wpan_dev *ieee802154_ptr; 1794 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1795 struct mpls_dev __rcu *mpls_ptr; 1796 #endif 1797 1798 /* 1799 * Cache lines mostly used on receive path (including eth_type_trans()) 1800 */ 1801 /* Interface address info used in eth_type_trans() */ 1802 unsigned char *dev_addr; 1803 1804 #ifdef CONFIG_SYSFS 1805 struct netdev_rx_queue *_rx; 1806 1807 unsigned int num_rx_queues; 1808 unsigned int real_num_rx_queues; 1809 #endif 1810 1811 struct bpf_prog __rcu *xdp_prog; 1812 unsigned long gro_flush_timeout; 1813 rx_handler_func_t __rcu *rx_handler; 1814 void __rcu *rx_handler_data; 1815 1816 #ifdef CONFIG_NET_CLS_ACT 1817 struct mini_Qdisc __rcu *miniq_ingress; 1818 #endif 1819 struct netdev_queue __rcu *ingress_queue; 1820 #ifdef CONFIG_NETFILTER_INGRESS 1821 struct nf_hook_entries __rcu *nf_hooks_ingress; 1822 #endif 1823 1824 unsigned char broadcast[MAX_ADDR_LEN]; 1825 #ifdef CONFIG_RFS_ACCEL 1826 struct cpu_rmap *rx_cpu_rmap; 1827 #endif 1828 struct hlist_node index_hlist; 1829 1830 /* 1831 * Cache lines mostly used on transmit path 1832 */ 1833 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1834 unsigned int num_tx_queues; 1835 unsigned int real_num_tx_queues; 1836 struct Qdisc *qdisc; 1837 #ifdef CONFIG_NET_SCHED 1838 DECLARE_HASHTABLE (qdisc_hash, 4); 1839 #endif 1840 unsigned int tx_queue_len; 1841 spinlock_t tx_global_lock; 1842 int watchdog_timeo; 1843 1844 #ifdef CONFIG_XPS 1845 struct xps_dev_maps __rcu *xps_maps; 1846 #endif 1847 #ifdef CONFIG_NET_CLS_ACT 1848 struct mini_Qdisc __rcu *miniq_egress; 1849 #endif 1850 1851 /* These may be needed for future network-power-down code. */ 1852 struct timer_list watchdog_timer; 1853 1854 int __percpu *pcpu_refcnt; 1855 struct list_head todo_list; 1856 1857 struct list_head link_watch_list; 1858 1859 enum { NETREG_UNINITIALIZED=0, 1860 NETREG_REGISTERED, /* completed register_netdevice */ 1861 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1862 NETREG_UNREGISTERED, /* completed unregister todo */ 1863 NETREG_RELEASED, /* called free_netdev */ 1864 NETREG_DUMMY, /* dummy device for NAPI poll */ 1865 } reg_state:8; 1866 1867 bool dismantle; 1868 1869 enum { 1870 RTNL_LINK_INITIALIZED, 1871 RTNL_LINK_INITIALIZING, 1872 } rtnl_link_state:16; 1873 1874 bool needs_free_netdev; 1875 void (*priv_destructor)(struct net_device *dev); 1876 1877 #ifdef CONFIG_NETPOLL 1878 struct netpoll_info __rcu *npinfo; 1879 #endif 1880 1881 possible_net_t nd_net; 1882 1883 /* mid-layer private */ 1884 union { 1885 void *ml_priv; 1886 struct pcpu_lstats __percpu *lstats; 1887 struct pcpu_sw_netstats __percpu *tstats; 1888 struct pcpu_dstats __percpu *dstats; 1889 struct pcpu_vstats __percpu *vstats; 1890 }; 1891 1892 #if IS_ENABLED(CONFIG_GARP) 1893 struct garp_port __rcu *garp_port; 1894 #endif 1895 #if IS_ENABLED(CONFIG_MRP) 1896 struct mrp_port __rcu *mrp_port; 1897 #endif 1898 1899 struct device dev; 1900 const struct attribute_group *sysfs_groups[4]; 1901 const struct attribute_group *sysfs_rx_queue_group; 1902 1903 const struct rtnl_link_ops *rtnl_link_ops; 1904 1905 /* for setting kernel sock attribute on TCP connection setup */ 1906 #define GSO_MAX_SIZE 65536 1907 unsigned int gso_max_size; 1908 #define GSO_MAX_SEGS 65535 1909 u16 gso_max_segs; 1910 1911 #ifdef CONFIG_DCB 1912 const struct dcbnl_rtnl_ops *dcbnl_ops; 1913 #endif 1914 u8 num_tc; 1915 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1916 u8 prio_tc_map[TC_BITMASK + 1]; 1917 1918 #if IS_ENABLED(CONFIG_FCOE) 1919 unsigned int fcoe_ddp_xid; 1920 #endif 1921 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1922 struct netprio_map __rcu *priomap; 1923 #endif 1924 struct phy_device *phydev; 1925 struct lock_class_key *qdisc_tx_busylock; 1926 struct lock_class_key *qdisc_running_key; 1927 bool proto_down; 1928 }; 1929 #define to_net_dev(d) container_of(d, struct net_device, dev) 1930 1931 static inline bool netif_elide_gro(const struct net_device *dev) 1932 { 1933 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1934 return true; 1935 return false; 1936 } 1937 1938 #define NETDEV_ALIGN 32 1939 1940 static inline 1941 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1942 { 1943 return dev->prio_tc_map[prio & TC_BITMASK]; 1944 } 1945 1946 static inline 1947 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1948 { 1949 if (tc >= dev->num_tc) 1950 return -EINVAL; 1951 1952 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1953 return 0; 1954 } 1955 1956 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1957 void netdev_reset_tc(struct net_device *dev); 1958 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1959 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1960 1961 static inline 1962 int netdev_get_num_tc(struct net_device *dev) 1963 { 1964 return dev->num_tc; 1965 } 1966 1967 static inline 1968 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1969 unsigned int index) 1970 { 1971 return &dev->_tx[index]; 1972 } 1973 1974 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1975 const struct sk_buff *skb) 1976 { 1977 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1978 } 1979 1980 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1981 void (*f)(struct net_device *, 1982 struct netdev_queue *, 1983 void *), 1984 void *arg) 1985 { 1986 unsigned int i; 1987 1988 for (i = 0; i < dev->num_tx_queues; i++) 1989 f(dev, &dev->_tx[i], arg); 1990 } 1991 1992 #define netdev_lockdep_set_classes(dev) \ 1993 { \ 1994 static struct lock_class_key qdisc_tx_busylock_key; \ 1995 static struct lock_class_key qdisc_running_key; \ 1996 static struct lock_class_key qdisc_xmit_lock_key; \ 1997 static struct lock_class_key dev_addr_list_lock_key; \ 1998 unsigned int i; \ 1999 \ 2000 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2001 (dev)->qdisc_running_key = &qdisc_running_key; \ 2002 lockdep_set_class(&(dev)->addr_list_lock, \ 2003 &dev_addr_list_lock_key); \ 2004 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2005 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2006 &qdisc_xmit_lock_key); \ 2007 } 2008 2009 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2010 struct sk_buff *skb, 2011 void *accel_priv); 2012 2013 /* returns the headroom that the master device needs to take in account 2014 * when forwarding to this dev 2015 */ 2016 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2017 { 2018 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2019 } 2020 2021 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2022 { 2023 if (dev->netdev_ops->ndo_set_rx_headroom) 2024 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2025 } 2026 2027 /* set the device rx headroom to the dev's default */ 2028 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2029 { 2030 netdev_set_rx_headroom(dev, -1); 2031 } 2032 2033 /* 2034 * Net namespace inlines 2035 */ 2036 static inline 2037 struct net *dev_net(const struct net_device *dev) 2038 { 2039 return read_pnet(&dev->nd_net); 2040 } 2041 2042 static inline 2043 void dev_net_set(struct net_device *dev, struct net *net) 2044 { 2045 write_pnet(&dev->nd_net, net); 2046 } 2047 2048 /** 2049 * netdev_priv - access network device private data 2050 * @dev: network device 2051 * 2052 * Get network device private data 2053 */ 2054 static inline void *netdev_priv(const struct net_device *dev) 2055 { 2056 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2057 } 2058 2059 /* Set the sysfs physical device reference for the network logical device 2060 * if set prior to registration will cause a symlink during initialization. 2061 */ 2062 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2063 2064 /* Set the sysfs device type for the network logical device to allow 2065 * fine-grained identification of different network device types. For 2066 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2067 */ 2068 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2069 2070 /* Default NAPI poll() weight 2071 * Device drivers are strongly advised to not use bigger value 2072 */ 2073 #define NAPI_POLL_WEIGHT 64 2074 2075 /** 2076 * netif_napi_add - initialize a NAPI context 2077 * @dev: network device 2078 * @napi: NAPI context 2079 * @poll: polling function 2080 * @weight: default weight 2081 * 2082 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2083 * *any* of the other NAPI-related functions. 2084 */ 2085 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2086 int (*poll)(struct napi_struct *, int), int weight); 2087 2088 /** 2089 * netif_tx_napi_add - initialize a NAPI context 2090 * @dev: network device 2091 * @napi: NAPI context 2092 * @poll: polling function 2093 * @weight: default weight 2094 * 2095 * This variant of netif_napi_add() should be used from drivers using NAPI 2096 * to exclusively poll a TX queue. 2097 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2098 */ 2099 static inline void netif_tx_napi_add(struct net_device *dev, 2100 struct napi_struct *napi, 2101 int (*poll)(struct napi_struct *, int), 2102 int weight) 2103 { 2104 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2105 netif_napi_add(dev, napi, poll, weight); 2106 } 2107 2108 /** 2109 * netif_napi_del - remove a NAPI context 2110 * @napi: NAPI context 2111 * 2112 * netif_napi_del() removes a NAPI context from the network device NAPI list 2113 */ 2114 void netif_napi_del(struct napi_struct *napi); 2115 2116 struct napi_gro_cb { 2117 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2118 void *frag0; 2119 2120 /* Length of frag0. */ 2121 unsigned int frag0_len; 2122 2123 /* This indicates where we are processing relative to skb->data. */ 2124 int data_offset; 2125 2126 /* This is non-zero if the packet cannot be merged with the new skb. */ 2127 u16 flush; 2128 2129 /* Save the IP ID here and check when we get to the transport layer */ 2130 u16 flush_id; 2131 2132 /* Number of segments aggregated. */ 2133 u16 count; 2134 2135 /* Start offset for remote checksum offload */ 2136 u16 gro_remcsum_start; 2137 2138 /* jiffies when first packet was created/queued */ 2139 unsigned long age; 2140 2141 /* Used in ipv6_gro_receive() and foo-over-udp */ 2142 u16 proto; 2143 2144 /* This is non-zero if the packet may be of the same flow. */ 2145 u8 same_flow:1; 2146 2147 /* Used in tunnel GRO receive */ 2148 u8 encap_mark:1; 2149 2150 /* GRO checksum is valid */ 2151 u8 csum_valid:1; 2152 2153 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2154 u8 csum_cnt:3; 2155 2156 /* Free the skb? */ 2157 u8 free:2; 2158 #define NAPI_GRO_FREE 1 2159 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2160 2161 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2162 u8 is_ipv6:1; 2163 2164 /* Used in GRE, set in fou/gue_gro_receive */ 2165 u8 is_fou:1; 2166 2167 /* Used to determine if flush_id can be ignored */ 2168 u8 is_atomic:1; 2169 2170 /* Number of gro_receive callbacks this packet already went through */ 2171 u8 recursion_counter:4; 2172 2173 /* 1 bit hole */ 2174 2175 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2176 __wsum csum; 2177 2178 /* used in skb_gro_receive() slow path */ 2179 struct sk_buff *last; 2180 }; 2181 2182 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2183 2184 #define GRO_RECURSION_LIMIT 15 2185 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2186 { 2187 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2188 } 2189 2190 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2191 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2192 struct sk_buff **head, 2193 struct sk_buff *skb) 2194 { 2195 if (unlikely(gro_recursion_inc_test(skb))) { 2196 NAPI_GRO_CB(skb)->flush |= 1; 2197 return NULL; 2198 } 2199 2200 return cb(head, skb); 2201 } 2202 2203 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2204 struct sk_buff *); 2205 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2206 struct sock *sk, 2207 struct sk_buff **head, 2208 struct sk_buff *skb) 2209 { 2210 if (unlikely(gro_recursion_inc_test(skb))) { 2211 NAPI_GRO_CB(skb)->flush |= 1; 2212 return NULL; 2213 } 2214 2215 return cb(sk, head, skb); 2216 } 2217 2218 struct packet_type { 2219 __be16 type; /* This is really htons(ether_type). */ 2220 struct net_device *dev; /* NULL is wildcarded here */ 2221 int (*func) (struct sk_buff *, 2222 struct net_device *, 2223 struct packet_type *, 2224 struct net_device *); 2225 bool (*id_match)(struct packet_type *ptype, 2226 struct sock *sk); 2227 void *af_packet_priv; 2228 struct list_head list; 2229 }; 2230 2231 struct offload_callbacks { 2232 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2233 netdev_features_t features); 2234 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2235 struct sk_buff *skb); 2236 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2237 }; 2238 2239 struct packet_offload { 2240 __be16 type; /* This is really htons(ether_type). */ 2241 u16 priority; 2242 struct offload_callbacks callbacks; 2243 struct list_head list; 2244 }; 2245 2246 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2247 struct pcpu_sw_netstats { 2248 u64 rx_packets; 2249 u64 rx_bytes; 2250 u64 tx_packets; 2251 u64 tx_bytes; 2252 struct u64_stats_sync syncp; 2253 }; 2254 2255 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2256 ({ \ 2257 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2258 if (pcpu_stats) { \ 2259 int __cpu; \ 2260 for_each_possible_cpu(__cpu) { \ 2261 typeof(type) *stat; \ 2262 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2263 u64_stats_init(&stat->syncp); \ 2264 } \ 2265 } \ 2266 pcpu_stats; \ 2267 }) 2268 2269 #define netdev_alloc_pcpu_stats(type) \ 2270 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2271 2272 enum netdev_lag_tx_type { 2273 NETDEV_LAG_TX_TYPE_UNKNOWN, 2274 NETDEV_LAG_TX_TYPE_RANDOM, 2275 NETDEV_LAG_TX_TYPE_BROADCAST, 2276 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2277 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2278 NETDEV_LAG_TX_TYPE_HASH, 2279 }; 2280 2281 struct netdev_lag_upper_info { 2282 enum netdev_lag_tx_type tx_type; 2283 }; 2284 2285 struct netdev_lag_lower_state_info { 2286 u8 link_up : 1, 2287 tx_enabled : 1; 2288 }; 2289 2290 #include <linux/notifier.h> 2291 2292 /* netdevice notifier chain. Please remember to update the rtnetlink 2293 * notification exclusion list in rtnetlink_event() when adding new 2294 * types. 2295 */ 2296 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2297 #define NETDEV_DOWN 0x0002 2298 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2299 detected a hardware crash and restarted 2300 - we can use this eg to kick tcp sessions 2301 once done */ 2302 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2303 #define NETDEV_REGISTER 0x0005 2304 #define NETDEV_UNREGISTER 0x0006 2305 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2306 #define NETDEV_CHANGEADDR 0x0008 2307 #define NETDEV_GOING_DOWN 0x0009 2308 #define NETDEV_CHANGENAME 0x000A 2309 #define NETDEV_FEAT_CHANGE 0x000B 2310 #define NETDEV_BONDING_FAILOVER 0x000C 2311 #define NETDEV_PRE_UP 0x000D 2312 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2313 #define NETDEV_POST_TYPE_CHANGE 0x000F 2314 #define NETDEV_POST_INIT 0x0010 2315 #define NETDEV_UNREGISTER_FINAL 0x0011 2316 #define NETDEV_RELEASE 0x0012 2317 #define NETDEV_NOTIFY_PEERS 0x0013 2318 #define NETDEV_JOIN 0x0014 2319 #define NETDEV_CHANGEUPPER 0x0015 2320 #define NETDEV_RESEND_IGMP 0x0016 2321 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2322 #define NETDEV_CHANGEINFODATA 0x0018 2323 #define NETDEV_BONDING_INFO 0x0019 2324 #define NETDEV_PRECHANGEUPPER 0x001A 2325 #define NETDEV_CHANGELOWERSTATE 0x001B 2326 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2327 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D 2328 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2329 2330 int register_netdevice_notifier(struct notifier_block *nb); 2331 int unregister_netdevice_notifier(struct notifier_block *nb); 2332 2333 struct netdev_notifier_info { 2334 struct net_device *dev; 2335 struct netlink_ext_ack *extack; 2336 }; 2337 2338 struct netdev_notifier_change_info { 2339 struct netdev_notifier_info info; /* must be first */ 2340 unsigned int flags_changed; 2341 }; 2342 2343 struct netdev_notifier_changeupper_info { 2344 struct netdev_notifier_info info; /* must be first */ 2345 struct net_device *upper_dev; /* new upper dev */ 2346 bool master; /* is upper dev master */ 2347 bool linking; /* is the notification for link or unlink */ 2348 void *upper_info; /* upper dev info */ 2349 }; 2350 2351 struct netdev_notifier_changelowerstate_info { 2352 struct netdev_notifier_info info; /* must be first */ 2353 void *lower_state_info; /* is lower dev state */ 2354 }; 2355 2356 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2357 struct net_device *dev) 2358 { 2359 info->dev = dev; 2360 info->extack = NULL; 2361 } 2362 2363 static inline struct net_device * 2364 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2365 { 2366 return info->dev; 2367 } 2368 2369 static inline struct netlink_ext_ack * 2370 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2371 { 2372 return info->extack; 2373 } 2374 2375 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2376 2377 2378 extern rwlock_t dev_base_lock; /* Device list lock */ 2379 2380 #define for_each_netdev(net, d) \ 2381 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2382 #define for_each_netdev_reverse(net, d) \ 2383 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2384 #define for_each_netdev_rcu(net, d) \ 2385 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2386 #define for_each_netdev_safe(net, d, n) \ 2387 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2388 #define for_each_netdev_continue(net, d) \ 2389 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2390 #define for_each_netdev_continue_rcu(net, d) \ 2391 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2392 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2393 for_each_netdev_rcu(&init_net, slave) \ 2394 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2395 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2396 2397 static inline struct net_device *next_net_device(struct net_device *dev) 2398 { 2399 struct list_head *lh; 2400 struct net *net; 2401 2402 net = dev_net(dev); 2403 lh = dev->dev_list.next; 2404 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2405 } 2406 2407 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2408 { 2409 struct list_head *lh; 2410 struct net *net; 2411 2412 net = dev_net(dev); 2413 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2414 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2415 } 2416 2417 static inline struct net_device *first_net_device(struct net *net) 2418 { 2419 return list_empty(&net->dev_base_head) ? NULL : 2420 net_device_entry(net->dev_base_head.next); 2421 } 2422 2423 static inline struct net_device *first_net_device_rcu(struct net *net) 2424 { 2425 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2426 2427 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2428 } 2429 2430 int netdev_boot_setup_check(struct net_device *dev); 2431 unsigned long netdev_boot_base(const char *prefix, int unit); 2432 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2433 const char *hwaddr); 2434 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2435 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2436 void dev_add_pack(struct packet_type *pt); 2437 void dev_remove_pack(struct packet_type *pt); 2438 void __dev_remove_pack(struct packet_type *pt); 2439 void dev_add_offload(struct packet_offload *po); 2440 void dev_remove_offload(struct packet_offload *po); 2441 2442 int dev_get_iflink(const struct net_device *dev); 2443 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2444 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2445 unsigned short mask); 2446 struct net_device *dev_get_by_name(struct net *net, const char *name); 2447 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2448 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2449 int dev_alloc_name(struct net_device *dev, const char *name); 2450 int dev_open(struct net_device *dev); 2451 void dev_close(struct net_device *dev); 2452 void dev_close_many(struct list_head *head, bool unlink); 2453 void dev_disable_lro(struct net_device *dev); 2454 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2455 int dev_queue_xmit(struct sk_buff *skb); 2456 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2457 int register_netdevice(struct net_device *dev); 2458 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2459 void unregister_netdevice_many(struct list_head *head); 2460 static inline void unregister_netdevice(struct net_device *dev) 2461 { 2462 unregister_netdevice_queue(dev, NULL); 2463 } 2464 2465 int netdev_refcnt_read(const struct net_device *dev); 2466 void free_netdev(struct net_device *dev); 2467 void netdev_freemem(struct net_device *dev); 2468 void synchronize_net(void); 2469 int init_dummy_netdev(struct net_device *dev); 2470 2471 DECLARE_PER_CPU(int, xmit_recursion); 2472 #define XMIT_RECURSION_LIMIT 10 2473 2474 static inline int dev_recursion_level(void) 2475 { 2476 return this_cpu_read(xmit_recursion); 2477 } 2478 2479 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2480 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2481 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2482 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2483 int netdev_get_name(struct net *net, char *name, int ifindex); 2484 int dev_restart(struct net_device *dev); 2485 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2486 2487 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2488 { 2489 return NAPI_GRO_CB(skb)->data_offset; 2490 } 2491 2492 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2493 { 2494 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2495 } 2496 2497 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2498 { 2499 NAPI_GRO_CB(skb)->data_offset += len; 2500 } 2501 2502 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2503 unsigned int offset) 2504 { 2505 return NAPI_GRO_CB(skb)->frag0 + offset; 2506 } 2507 2508 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2509 { 2510 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2511 } 2512 2513 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2514 { 2515 NAPI_GRO_CB(skb)->frag0 = NULL; 2516 NAPI_GRO_CB(skb)->frag0_len = 0; 2517 } 2518 2519 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2520 unsigned int offset) 2521 { 2522 if (!pskb_may_pull(skb, hlen)) 2523 return NULL; 2524 2525 skb_gro_frag0_invalidate(skb); 2526 return skb->data + offset; 2527 } 2528 2529 static inline void *skb_gro_network_header(struct sk_buff *skb) 2530 { 2531 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2532 skb_network_offset(skb); 2533 } 2534 2535 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2536 const void *start, unsigned int len) 2537 { 2538 if (NAPI_GRO_CB(skb)->csum_valid) 2539 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2540 csum_partial(start, len, 0)); 2541 } 2542 2543 /* GRO checksum functions. These are logical equivalents of the normal 2544 * checksum functions (in skbuff.h) except that they operate on the GRO 2545 * offsets and fields in sk_buff. 2546 */ 2547 2548 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2549 2550 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2551 { 2552 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2553 } 2554 2555 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2556 bool zero_okay, 2557 __sum16 check) 2558 { 2559 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2560 skb_checksum_start_offset(skb) < 2561 skb_gro_offset(skb)) && 2562 !skb_at_gro_remcsum_start(skb) && 2563 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2564 (!zero_okay || check)); 2565 } 2566 2567 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2568 __wsum psum) 2569 { 2570 if (NAPI_GRO_CB(skb)->csum_valid && 2571 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2572 return 0; 2573 2574 NAPI_GRO_CB(skb)->csum = psum; 2575 2576 return __skb_gro_checksum_complete(skb); 2577 } 2578 2579 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2580 { 2581 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2582 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2583 NAPI_GRO_CB(skb)->csum_cnt--; 2584 } else { 2585 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2586 * verified a new top level checksum or an encapsulated one 2587 * during GRO. This saves work if we fallback to normal path. 2588 */ 2589 __skb_incr_checksum_unnecessary(skb); 2590 } 2591 } 2592 2593 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2594 compute_pseudo) \ 2595 ({ \ 2596 __sum16 __ret = 0; \ 2597 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2598 __ret = __skb_gro_checksum_validate_complete(skb, \ 2599 compute_pseudo(skb, proto)); \ 2600 if (!__ret) \ 2601 skb_gro_incr_csum_unnecessary(skb); \ 2602 __ret; \ 2603 }) 2604 2605 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2606 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2607 2608 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2609 compute_pseudo) \ 2610 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2611 2612 #define skb_gro_checksum_simple_validate(skb) \ 2613 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2614 2615 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2616 { 2617 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2618 !NAPI_GRO_CB(skb)->csum_valid); 2619 } 2620 2621 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2622 __sum16 check, __wsum pseudo) 2623 { 2624 NAPI_GRO_CB(skb)->csum = ~pseudo; 2625 NAPI_GRO_CB(skb)->csum_valid = 1; 2626 } 2627 2628 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2629 do { \ 2630 if (__skb_gro_checksum_convert_check(skb)) \ 2631 __skb_gro_checksum_convert(skb, check, \ 2632 compute_pseudo(skb, proto)); \ 2633 } while (0) 2634 2635 struct gro_remcsum { 2636 int offset; 2637 __wsum delta; 2638 }; 2639 2640 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2641 { 2642 grc->offset = 0; 2643 grc->delta = 0; 2644 } 2645 2646 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2647 unsigned int off, size_t hdrlen, 2648 int start, int offset, 2649 struct gro_remcsum *grc, 2650 bool nopartial) 2651 { 2652 __wsum delta; 2653 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2654 2655 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2656 2657 if (!nopartial) { 2658 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2659 return ptr; 2660 } 2661 2662 ptr = skb_gro_header_fast(skb, off); 2663 if (skb_gro_header_hard(skb, off + plen)) { 2664 ptr = skb_gro_header_slow(skb, off + plen, off); 2665 if (!ptr) 2666 return NULL; 2667 } 2668 2669 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2670 start, offset); 2671 2672 /* Adjust skb->csum since we changed the packet */ 2673 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2674 2675 grc->offset = off + hdrlen + offset; 2676 grc->delta = delta; 2677 2678 return ptr; 2679 } 2680 2681 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2682 struct gro_remcsum *grc) 2683 { 2684 void *ptr; 2685 size_t plen = grc->offset + sizeof(u16); 2686 2687 if (!grc->delta) 2688 return; 2689 2690 ptr = skb_gro_header_fast(skb, grc->offset); 2691 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2692 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2693 if (!ptr) 2694 return; 2695 } 2696 2697 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2698 } 2699 2700 #ifdef CONFIG_XFRM_OFFLOAD 2701 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2702 { 2703 if (PTR_ERR(pp) != -EINPROGRESS) 2704 NAPI_GRO_CB(skb)->flush |= flush; 2705 } 2706 #else 2707 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2708 { 2709 NAPI_GRO_CB(skb)->flush |= flush; 2710 } 2711 #endif 2712 2713 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2714 unsigned short type, 2715 const void *daddr, const void *saddr, 2716 unsigned int len) 2717 { 2718 if (!dev->header_ops || !dev->header_ops->create) 2719 return 0; 2720 2721 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2722 } 2723 2724 static inline int dev_parse_header(const struct sk_buff *skb, 2725 unsigned char *haddr) 2726 { 2727 const struct net_device *dev = skb->dev; 2728 2729 if (!dev->header_ops || !dev->header_ops->parse) 2730 return 0; 2731 return dev->header_ops->parse(skb, haddr); 2732 } 2733 2734 /* ll_header must have at least hard_header_len allocated */ 2735 static inline bool dev_validate_header(const struct net_device *dev, 2736 char *ll_header, int len) 2737 { 2738 if (likely(len >= dev->hard_header_len)) 2739 return true; 2740 if (len < dev->min_header_len) 2741 return false; 2742 2743 if (capable(CAP_SYS_RAWIO)) { 2744 memset(ll_header + len, 0, dev->hard_header_len - len); 2745 return true; 2746 } 2747 2748 if (dev->header_ops && dev->header_ops->validate) 2749 return dev->header_ops->validate(ll_header, len); 2750 2751 return false; 2752 } 2753 2754 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2755 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2756 static inline int unregister_gifconf(unsigned int family) 2757 { 2758 return register_gifconf(family, NULL); 2759 } 2760 2761 #ifdef CONFIG_NET_FLOW_LIMIT 2762 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2763 struct sd_flow_limit { 2764 u64 count; 2765 unsigned int num_buckets; 2766 unsigned int history_head; 2767 u16 history[FLOW_LIMIT_HISTORY]; 2768 u8 buckets[]; 2769 }; 2770 2771 extern int netdev_flow_limit_table_len; 2772 #endif /* CONFIG_NET_FLOW_LIMIT */ 2773 2774 /* 2775 * Incoming packets are placed on per-CPU queues 2776 */ 2777 struct softnet_data { 2778 struct list_head poll_list; 2779 struct sk_buff_head process_queue; 2780 2781 /* stats */ 2782 unsigned int processed; 2783 unsigned int time_squeeze; 2784 unsigned int received_rps; 2785 #ifdef CONFIG_RPS 2786 struct softnet_data *rps_ipi_list; 2787 #endif 2788 #ifdef CONFIG_NET_FLOW_LIMIT 2789 struct sd_flow_limit __rcu *flow_limit; 2790 #endif 2791 struct Qdisc *output_queue; 2792 struct Qdisc **output_queue_tailp; 2793 struct sk_buff *completion_queue; 2794 2795 #ifdef CONFIG_RPS 2796 /* input_queue_head should be written by cpu owning this struct, 2797 * and only read by other cpus. Worth using a cache line. 2798 */ 2799 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2800 2801 /* Elements below can be accessed between CPUs for RPS/RFS */ 2802 call_single_data_t csd ____cacheline_aligned_in_smp; 2803 struct softnet_data *rps_ipi_next; 2804 unsigned int cpu; 2805 unsigned int input_queue_tail; 2806 #endif 2807 unsigned int dropped; 2808 struct sk_buff_head input_pkt_queue; 2809 struct napi_struct backlog; 2810 2811 }; 2812 2813 static inline void input_queue_head_incr(struct softnet_data *sd) 2814 { 2815 #ifdef CONFIG_RPS 2816 sd->input_queue_head++; 2817 #endif 2818 } 2819 2820 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2821 unsigned int *qtail) 2822 { 2823 #ifdef CONFIG_RPS 2824 *qtail = ++sd->input_queue_tail; 2825 #endif 2826 } 2827 2828 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2829 2830 void __netif_schedule(struct Qdisc *q); 2831 void netif_schedule_queue(struct netdev_queue *txq); 2832 2833 static inline void netif_tx_schedule_all(struct net_device *dev) 2834 { 2835 unsigned int i; 2836 2837 for (i = 0; i < dev->num_tx_queues; i++) 2838 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2839 } 2840 2841 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2842 { 2843 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2844 } 2845 2846 /** 2847 * netif_start_queue - allow transmit 2848 * @dev: network device 2849 * 2850 * Allow upper layers to call the device hard_start_xmit routine. 2851 */ 2852 static inline void netif_start_queue(struct net_device *dev) 2853 { 2854 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2855 } 2856 2857 static inline void netif_tx_start_all_queues(struct net_device *dev) 2858 { 2859 unsigned int i; 2860 2861 for (i = 0; i < dev->num_tx_queues; i++) { 2862 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2863 netif_tx_start_queue(txq); 2864 } 2865 } 2866 2867 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2868 2869 /** 2870 * netif_wake_queue - restart transmit 2871 * @dev: network device 2872 * 2873 * Allow upper layers to call the device hard_start_xmit routine. 2874 * Used for flow control when transmit resources are available. 2875 */ 2876 static inline void netif_wake_queue(struct net_device *dev) 2877 { 2878 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2879 } 2880 2881 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2882 { 2883 unsigned int i; 2884 2885 for (i = 0; i < dev->num_tx_queues; i++) { 2886 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2887 netif_tx_wake_queue(txq); 2888 } 2889 } 2890 2891 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2892 { 2893 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2894 } 2895 2896 /** 2897 * netif_stop_queue - stop transmitted packets 2898 * @dev: network device 2899 * 2900 * Stop upper layers calling the device hard_start_xmit routine. 2901 * Used for flow control when transmit resources are unavailable. 2902 */ 2903 static inline void netif_stop_queue(struct net_device *dev) 2904 { 2905 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2906 } 2907 2908 void netif_tx_stop_all_queues(struct net_device *dev); 2909 2910 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2911 { 2912 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2913 } 2914 2915 /** 2916 * netif_queue_stopped - test if transmit queue is flowblocked 2917 * @dev: network device 2918 * 2919 * Test if transmit queue on device is currently unable to send. 2920 */ 2921 static inline bool netif_queue_stopped(const struct net_device *dev) 2922 { 2923 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2924 } 2925 2926 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2927 { 2928 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2929 } 2930 2931 static inline bool 2932 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2933 { 2934 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2935 } 2936 2937 static inline bool 2938 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2939 { 2940 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2941 } 2942 2943 /** 2944 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2945 * @dev_queue: pointer to transmit queue 2946 * 2947 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2948 * to give appropriate hint to the CPU. 2949 */ 2950 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2951 { 2952 #ifdef CONFIG_BQL 2953 prefetchw(&dev_queue->dql.num_queued); 2954 #endif 2955 } 2956 2957 /** 2958 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2959 * @dev_queue: pointer to transmit queue 2960 * 2961 * BQL enabled drivers might use this helper in their TX completion path, 2962 * to give appropriate hint to the CPU. 2963 */ 2964 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2965 { 2966 #ifdef CONFIG_BQL 2967 prefetchw(&dev_queue->dql.limit); 2968 #endif 2969 } 2970 2971 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2972 unsigned int bytes) 2973 { 2974 #ifdef CONFIG_BQL 2975 dql_queued(&dev_queue->dql, bytes); 2976 2977 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2978 return; 2979 2980 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2981 2982 /* 2983 * The XOFF flag must be set before checking the dql_avail below, 2984 * because in netdev_tx_completed_queue we update the dql_completed 2985 * before checking the XOFF flag. 2986 */ 2987 smp_mb(); 2988 2989 /* check again in case another CPU has just made room avail */ 2990 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2991 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2992 #endif 2993 } 2994 2995 /** 2996 * netdev_sent_queue - report the number of bytes queued to hardware 2997 * @dev: network device 2998 * @bytes: number of bytes queued to the hardware device queue 2999 * 3000 * Report the number of bytes queued for sending/completion to the network 3001 * device hardware queue. @bytes should be a good approximation and should 3002 * exactly match netdev_completed_queue() @bytes 3003 */ 3004 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3005 { 3006 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3007 } 3008 3009 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3010 unsigned int pkts, unsigned int bytes) 3011 { 3012 #ifdef CONFIG_BQL 3013 if (unlikely(!bytes)) 3014 return; 3015 3016 dql_completed(&dev_queue->dql, bytes); 3017 3018 /* 3019 * Without the memory barrier there is a small possiblity that 3020 * netdev_tx_sent_queue will miss the update and cause the queue to 3021 * be stopped forever 3022 */ 3023 smp_mb(); 3024 3025 if (dql_avail(&dev_queue->dql) < 0) 3026 return; 3027 3028 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3029 netif_schedule_queue(dev_queue); 3030 #endif 3031 } 3032 3033 /** 3034 * netdev_completed_queue - report bytes and packets completed by device 3035 * @dev: network device 3036 * @pkts: actual number of packets sent over the medium 3037 * @bytes: actual number of bytes sent over the medium 3038 * 3039 * Report the number of bytes and packets transmitted by the network device 3040 * hardware queue over the physical medium, @bytes must exactly match the 3041 * @bytes amount passed to netdev_sent_queue() 3042 */ 3043 static inline void netdev_completed_queue(struct net_device *dev, 3044 unsigned int pkts, unsigned int bytes) 3045 { 3046 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3047 } 3048 3049 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3050 { 3051 #ifdef CONFIG_BQL 3052 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3053 dql_reset(&q->dql); 3054 #endif 3055 } 3056 3057 /** 3058 * netdev_reset_queue - reset the packets and bytes count of a network device 3059 * @dev_queue: network device 3060 * 3061 * Reset the bytes and packet count of a network device and clear the 3062 * software flow control OFF bit for this network device 3063 */ 3064 static inline void netdev_reset_queue(struct net_device *dev_queue) 3065 { 3066 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3067 } 3068 3069 /** 3070 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3071 * @dev: network device 3072 * @queue_index: given tx queue index 3073 * 3074 * Returns 0 if given tx queue index >= number of device tx queues, 3075 * otherwise returns the originally passed tx queue index. 3076 */ 3077 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3078 { 3079 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3080 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3081 dev->name, queue_index, 3082 dev->real_num_tx_queues); 3083 return 0; 3084 } 3085 3086 return queue_index; 3087 } 3088 3089 /** 3090 * netif_running - test if up 3091 * @dev: network device 3092 * 3093 * Test if the device has been brought up. 3094 */ 3095 static inline bool netif_running(const struct net_device *dev) 3096 { 3097 return test_bit(__LINK_STATE_START, &dev->state); 3098 } 3099 3100 /* 3101 * Routines to manage the subqueues on a device. We only need start, 3102 * stop, and a check if it's stopped. All other device management is 3103 * done at the overall netdevice level. 3104 * Also test the device if we're multiqueue. 3105 */ 3106 3107 /** 3108 * netif_start_subqueue - allow sending packets on subqueue 3109 * @dev: network device 3110 * @queue_index: sub queue index 3111 * 3112 * Start individual transmit queue of a device with multiple transmit queues. 3113 */ 3114 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3115 { 3116 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3117 3118 netif_tx_start_queue(txq); 3119 } 3120 3121 /** 3122 * netif_stop_subqueue - stop sending packets on subqueue 3123 * @dev: network device 3124 * @queue_index: sub queue index 3125 * 3126 * Stop individual transmit queue of a device with multiple transmit queues. 3127 */ 3128 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3129 { 3130 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3131 netif_tx_stop_queue(txq); 3132 } 3133 3134 /** 3135 * netif_subqueue_stopped - test status of subqueue 3136 * @dev: network device 3137 * @queue_index: sub queue index 3138 * 3139 * Check individual transmit queue of a device with multiple transmit queues. 3140 */ 3141 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3142 u16 queue_index) 3143 { 3144 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3145 3146 return netif_tx_queue_stopped(txq); 3147 } 3148 3149 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3150 struct sk_buff *skb) 3151 { 3152 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3153 } 3154 3155 /** 3156 * netif_wake_subqueue - allow sending packets on subqueue 3157 * @dev: network device 3158 * @queue_index: sub queue index 3159 * 3160 * Resume individual transmit queue of a device with multiple transmit queues. 3161 */ 3162 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3163 { 3164 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3165 3166 netif_tx_wake_queue(txq); 3167 } 3168 3169 #ifdef CONFIG_XPS 3170 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3171 u16 index); 3172 #else 3173 static inline int netif_set_xps_queue(struct net_device *dev, 3174 const struct cpumask *mask, 3175 u16 index) 3176 { 3177 return 0; 3178 } 3179 #endif 3180 3181 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3182 unsigned int num_tx_queues); 3183 3184 /* 3185 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3186 * as a distribution range limit for the returned value. 3187 */ 3188 static inline u16 skb_tx_hash(const struct net_device *dev, 3189 struct sk_buff *skb) 3190 { 3191 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3192 } 3193 3194 /** 3195 * netif_is_multiqueue - test if device has multiple transmit queues 3196 * @dev: network device 3197 * 3198 * Check if device has multiple transmit queues 3199 */ 3200 static inline bool netif_is_multiqueue(const struct net_device *dev) 3201 { 3202 return dev->num_tx_queues > 1; 3203 } 3204 3205 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3206 3207 #ifdef CONFIG_SYSFS 3208 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3209 #else 3210 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3211 unsigned int rxq) 3212 { 3213 return 0; 3214 } 3215 #endif 3216 3217 #ifdef CONFIG_SYSFS 3218 static inline unsigned int get_netdev_rx_queue_index( 3219 struct netdev_rx_queue *queue) 3220 { 3221 struct net_device *dev = queue->dev; 3222 int index = queue - dev->_rx; 3223 3224 BUG_ON(index >= dev->num_rx_queues); 3225 return index; 3226 } 3227 #endif 3228 3229 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3230 int netif_get_num_default_rss_queues(void); 3231 3232 enum skb_free_reason { 3233 SKB_REASON_CONSUMED, 3234 SKB_REASON_DROPPED, 3235 }; 3236 3237 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3238 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3239 3240 /* 3241 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3242 * interrupt context or with hardware interrupts being disabled. 3243 * (in_irq() || irqs_disabled()) 3244 * 3245 * We provide four helpers that can be used in following contexts : 3246 * 3247 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3248 * replacing kfree_skb(skb) 3249 * 3250 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3251 * Typically used in place of consume_skb(skb) in TX completion path 3252 * 3253 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3254 * replacing kfree_skb(skb) 3255 * 3256 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3257 * and consumed a packet. Used in place of consume_skb(skb) 3258 */ 3259 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3260 { 3261 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3262 } 3263 3264 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3265 { 3266 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3267 } 3268 3269 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3270 { 3271 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3272 } 3273 3274 static inline void dev_consume_skb_any(struct sk_buff *skb) 3275 { 3276 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3277 } 3278 3279 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3280 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3281 int netif_rx(struct sk_buff *skb); 3282 int netif_rx_ni(struct sk_buff *skb); 3283 int netif_receive_skb(struct sk_buff *skb); 3284 int netif_receive_skb_core(struct sk_buff *skb); 3285 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3286 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3287 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3288 gro_result_t napi_gro_frags(struct napi_struct *napi); 3289 struct packet_offload *gro_find_receive_by_type(__be16 type); 3290 struct packet_offload *gro_find_complete_by_type(__be16 type); 3291 3292 static inline void napi_free_frags(struct napi_struct *napi) 3293 { 3294 kfree_skb(napi->skb); 3295 napi->skb = NULL; 3296 } 3297 3298 bool netdev_is_rx_handler_busy(struct net_device *dev); 3299 int netdev_rx_handler_register(struct net_device *dev, 3300 rx_handler_func_t *rx_handler, 3301 void *rx_handler_data); 3302 void netdev_rx_handler_unregister(struct net_device *dev); 3303 3304 bool dev_valid_name(const char *name); 3305 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3306 int dev_ethtool(struct net *net, struct ifreq *); 3307 unsigned int dev_get_flags(const struct net_device *); 3308 int __dev_change_flags(struct net_device *, unsigned int flags); 3309 int dev_change_flags(struct net_device *, unsigned int); 3310 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3311 unsigned int gchanges); 3312 int dev_change_name(struct net_device *, const char *); 3313 int dev_set_alias(struct net_device *, const char *, size_t); 3314 int dev_get_alias(const struct net_device *, char *, size_t); 3315 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3316 int __dev_set_mtu(struct net_device *, int); 3317 int dev_set_mtu(struct net_device *, int); 3318 void dev_set_group(struct net_device *, int); 3319 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3320 int dev_change_carrier(struct net_device *, bool new_carrier); 3321 int dev_get_phys_port_id(struct net_device *dev, 3322 struct netdev_phys_item_id *ppid); 3323 int dev_get_phys_port_name(struct net_device *dev, 3324 char *name, size_t len); 3325 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3326 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3327 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3328 struct netdev_queue *txq, int *ret); 3329 3330 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3331 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3332 int fd, u32 flags); 3333 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t xdp_op, u32 *prog_id); 3334 3335 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3336 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3337 bool is_skb_forwardable(const struct net_device *dev, 3338 const struct sk_buff *skb); 3339 3340 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3341 struct sk_buff *skb) 3342 { 3343 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3344 unlikely(!is_skb_forwardable(dev, skb))) { 3345 atomic_long_inc(&dev->rx_dropped); 3346 kfree_skb(skb); 3347 return NET_RX_DROP; 3348 } 3349 3350 skb_scrub_packet(skb, true); 3351 skb->priority = 0; 3352 return 0; 3353 } 3354 3355 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3356 3357 extern int netdev_budget; 3358 extern unsigned int netdev_budget_usecs; 3359 3360 /* Called by rtnetlink.c:rtnl_unlock() */ 3361 void netdev_run_todo(void); 3362 3363 /** 3364 * dev_put - release reference to device 3365 * @dev: network device 3366 * 3367 * Release reference to device to allow it to be freed. 3368 */ 3369 static inline void dev_put(struct net_device *dev) 3370 { 3371 this_cpu_dec(*dev->pcpu_refcnt); 3372 } 3373 3374 /** 3375 * dev_hold - get reference to device 3376 * @dev: network device 3377 * 3378 * Hold reference to device to keep it from being freed. 3379 */ 3380 static inline void dev_hold(struct net_device *dev) 3381 { 3382 this_cpu_inc(*dev->pcpu_refcnt); 3383 } 3384 3385 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3386 * and _off may be called from IRQ context, but it is caller 3387 * who is responsible for serialization of these calls. 3388 * 3389 * The name carrier is inappropriate, these functions should really be 3390 * called netif_lowerlayer_*() because they represent the state of any 3391 * kind of lower layer not just hardware media. 3392 */ 3393 3394 void linkwatch_init_dev(struct net_device *dev); 3395 void linkwatch_fire_event(struct net_device *dev); 3396 void linkwatch_forget_dev(struct net_device *dev); 3397 3398 /** 3399 * netif_carrier_ok - test if carrier present 3400 * @dev: network device 3401 * 3402 * Check if carrier is present on device 3403 */ 3404 static inline bool netif_carrier_ok(const struct net_device *dev) 3405 { 3406 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3407 } 3408 3409 unsigned long dev_trans_start(struct net_device *dev); 3410 3411 void __netdev_watchdog_up(struct net_device *dev); 3412 3413 void netif_carrier_on(struct net_device *dev); 3414 3415 void netif_carrier_off(struct net_device *dev); 3416 3417 /** 3418 * netif_dormant_on - mark device as dormant. 3419 * @dev: network device 3420 * 3421 * Mark device as dormant (as per RFC2863). 3422 * 3423 * The dormant state indicates that the relevant interface is not 3424 * actually in a condition to pass packets (i.e., it is not 'up') but is 3425 * in a "pending" state, waiting for some external event. For "on- 3426 * demand" interfaces, this new state identifies the situation where the 3427 * interface is waiting for events to place it in the up state. 3428 */ 3429 static inline void netif_dormant_on(struct net_device *dev) 3430 { 3431 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3432 linkwatch_fire_event(dev); 3433 } 3434 3435 /** 3436 * netif_dormant_off - set device as not dormant. 3437 * @dev: network device 3438 * 3439 * Device is not in dormant state. 3440 */ 3441 static inline void netif_dormant_off(struct net_device *dev) 3442 { 3443 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3444 linkwatch_fire_event(dev); 3445 } 3446 3447 /** 3448 * netif_dormant - test if device is dormant 3449 * @dev: network device 3450 * 3451 * Check if device is dormant. 3452 */ 3453 static inline bool netif_dormant(const struct net_device *dev) 3454 { 3455 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3456 } 3457 3458 3459 /** 3460 * netif_oper_up - test if device is operational 3461 * @dev: network device 3462 * 3463 * Check if carrier is operational 3464 */ 3465 static inline bool netif_oper_up(const struct net_device *dev) 3466 { 3467 return (dev->operstate == IF_OPER_UP || 3468 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3469 } 3470 3471 /** 3472 * netif_device_present - is device available or removed 3473 * @dev: network device 3474 * 3475 * Check if device has not been removed from system. 3476 */ 3477 static inline bool netif_device_present(struct net_device *dev) 3478 { 3479 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3480 } 3481 3482 void netif_device_detach(struct net_device *dev); 3483 3484 void netif_device_attach(struct net_device *dev); 3485 3486 /* 3487 * Network interface message level settings 3488 */ 3489 3490 enum { 3491 NETIF_MSG_DRV = 0x0001, 3492 NETIF_MSG_PROBE = 0x0002, 3493 NETIF_MSG_LINK = 0x0004, 3494 NETIF_MSG_TIMER = 0x0008, 3495 NETIF_MSG_IFDOWN = 0x0010, 3496 NETIF_MSG_IFUP = 0x0020, 3497 NETIF_MSG_RX_ERR = 0x0040, 3498 NETIF_MSG_TX_ERR = 0x0080, 3499 NETIF_MSG_TX_QUEUED = 0x0100, 3500 NETIF_MSG_INTR = 0x0200, 3501 NETIF_MSG_TX_DONE = 0x0400, 3502 NETIF_MSG_RX_STATUS = 0x0800, 3503 NETIF_MSG_PKTDATA = 0x1000, 3504 NETIF_MSG_HW = 0x2000, 3505 NETIF_MSG_WOL = 0x4000, 3506 }; 3507 3508 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3509 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3510 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3511 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3512 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3513 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3514 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3515 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3516 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3517 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3518 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3519 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3520 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3521 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3522 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3523 3524 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3525 { 3526 /* use default */ 3527 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3528 return default_msg_enable_bits; 3529 if (debug_value == 0) /* no output */ 3530 return 0; 3531 /* set low N bits */ 3532 return (1 << debug_value) - 1; 3533 } 3534 3535 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3536 { 3537 spin_lock(&txq->_xmit_lock); 3538 txq->xmit_lock_owner = cpu; 3539 } 3540 3541 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3542 { 3543 __acquire(&txq->_xmit_lock); 3544 return true; 3545 } 3546 3547 static inline void __netif_tx_release(struct netdev_queue *txq) 3548 { 3549 __release(&txq->_xmit_lock); 3550 } 3551 3552 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3553 { 3554 spin_lock_bh(&txq->_xmit_lock); 3555 txq->xmit_lock_owner = smp_processor_id(); 3556 } 3557 3558 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3559 { 3560 bool ok = spin_trylock(&txq->_xmit_lock); 3561 if (likely(ok)) 3562 txq->xmit_lock_owner = smp_processor_id(); 3563 return ok; 3564 } 3565 3566 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3567 { 3568 txq->xmit_lock_owner = -1; 3569 spin_unlock(&txq->_xmit_lock); 3570 } 3571 3572 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3573 { 3574 txq->xmit_lock_owner = -1; 3575 spin_unlock_bh(&txq->_xmit_lock); 3576 } 3577 3578 static inline void txq_trans_update(struct netdev_queue *txq) 3579 { 3580 if (txq->xmit_lock_owner != -1) 3581 txq->trans_start = jiffies; 3582 } 3583 3584 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3585 static inline void netif_trans_update(struct net_device *dev) 3586 { 3587 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3588 3589 if (txq->trans_start != jiffies) 3590 txq->trans_start = jiffies; 3591 } 3592 3593 /** 3594 * netif_tx_lock - grab network device transmit lock 3595 * @dev: network device 3596 * 3597 * Get network device transmit lock 3598 */ 3599 static inline void netif_tx_lock(struct net_device *dev) 3600 { 3601 unsigned int i; 3602 int cpu; 3603 3604 spin_lock(&dev->tx_global_lock); 3605 cpu = smp_processor_id(); 3606 for (i = 0; i < dev->num_tx_queues; i++) { 3607 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3608 3609 /* We are the only thread of execution doing a 3610 * freeze, but we have to grab the _xmit_lock in 3611 * order to synchronize with threads which are in 3612 * the ->hard_start_xmit() handler and already 3613 * checked the frozen bit. 3614 */ 3615 __netif_tx_lock(txq, cpu); 3616 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3617 __netif_tx_unlock(txq); 3618 } 3619 } 3620 3621 static inline void netif_tx_lock_bh(struct net_device *dev) 3622 { 3623 local_bh_disable(); 3624 netif_tx_lock(dev); 3625 } 3626 3627 static inline void netif_tx_unlock(struct net_device *dev) 3628 { 3629 unsigned int i; 3630 3631 for (i = 0; i < dev->num_tx_queues; i++) { 3632 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3633 3634 /* No need to grab the _xmit_lock here. If the 3635 * queue is not stopped for another reason, we 3636 * force a schedule. 3637 */ 3638 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3639 netif_schedule_queue(txq); 3640 } 3641 spin_unlock(&dev->tx_global_lock); 3642 } 3643 3644 static inline void netif_tx_unlock_bh(struct net_device *dev) 3645 { 3646 netif_tx_unlock(dev); 3647 local_bh_enable(); 3648 } 3649 3650 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3651 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3652 __netif_tx_lock(txq, cpu); \ 3653 } else { \ 3654 __netif_tx_acquire(txq); \ 3655 } \ 3656 } 3657 3658 #define HARD_TX_TRYLOCK(dev, txq) \ 3659 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3660 __netif_tx_trylock(txq) : \ 3661 __netif_tx_acquire(txq)) 3662 3663 #define HARD_TX_UNLOCK(dev, txq) { \ 3664 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3665 __netif_tx_unlock(txq); \ 3666 } else { \ 3667 __netif_tx_release(txq); \ 3668 } \ 3669 } 3670 3671 static inline void netif_tx_disable(struct net_device *dev) 3672 { 3673 unsigned int i; 3674 int cpu; 3675 3676 local_bh_disable(); 3677 cpu = smp_processor_id(); 3678 for (i = 0; i < dev->num_tx_queues; i++) { 3679 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3680 3681 __netif_tx_lock(txq, cpu); 3682 netif_tx_stop_queue(txq); 3683 __netif_tx_unlock(txq); 3684 } 3685 local_bh_enable(); 3686 } 3687 3688 static inline void netif_addr_lock(struct net_device *dev) 3689 { 3690 spin_lock(&dev->addr_list_lock); 3691 } 3692 3693 static inline void netif_addr_lock_nested(struct net_device *dev) 3694 { 3695 int subclass = SINGLE_DEPTH_NESTING; 3696 3697 if (dev->netdev_ops->ndo_get_lock_subclass) 3698 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3699 3700 spin_lock_nested(&dev->addr_list_lock, subclass); 3701 } 3702 3703 static inline void netif_addr_lock_bh(struct net_device *dev) 3704 { 3705 spin_lock_bh(&dev->addr_list_lock); 3706 } 3707 3708 static inline void netif_addr_unlock(struct net_device *dev) 3709 { 3710 spin_unlock(&dev->addr_list_lock); 3711 } 3712 3713 static inline void netif_addr_unlock_bh(struct net_device *dev) 3714 { 3715 spin_unlock_bh(&dev->addr_list_lock); 3716 } 3717 3718 /* 3719 * dev_addrs walker. Should be used only for read access. Call with 3720 * rcu_read_lock held. 3721 */ 3722 #define for_each_dev_addr(dev, ha) \ 3723 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3724 3725 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3726 3727 void ether_setup(struct net_device *dev); 3728 3729 /* Support for loadable net-drivers */ 3730 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3731 unsigned char name_assign_type, 3732 void (*setup)(struct net_device *), 3733 unsigned int txqs, unsigned int rxqs); 3734 int dev_get_valid_name(struct net *net, struct net_device *dev, 3735 const char *name); 3736 3737 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3738 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3739 3740 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3741 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3742 count) 3743 3744 int register_netdev(struct net_device *dev); 3745 void unregister_netdev(struct net_device *dev); 3746 3747 /* General hardware address lists handling functions */ 3748 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3749 struct netdev_hw_addr_list *from_list, int addr_len); 3750 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3751 struct netdev_hw_addr_list *from_list, int addr_len); 3752 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3753 struct net_device *dev, 3754 int (*sync)(struct net_device *, const unsigned char *), 3755 int (*unsync)(struct net_device *, 3756 const unsigned char *)); 3757 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3758 struct net_device *dev, 3759 int (*unsync)(struct net_device *, 3760 const unsigned char *)); 3761 void __hw_addr_init(struct netdev_hw_addr_list *list); 3762 3763 /* Functions used for device addresses handling */ 3764 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3765 unsigned char addr_type); 3766 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3767 unsigned char addr_type); 3768 void dev_addr_flush(struct net_device *dev); 3769 int dev_addr_init(struct net_device *dev); 3770 3771 /* Functions used for unicast addresses handling */ 3772 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3773 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3774 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3775 int dev_uc_sync(struct net_device *to, struct net_device *from); 3776 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3777 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3778 void dev_uc_flush(struct net_device *dev); 3779 void dev_uc_init(struct net_device *dev); 3780 3781 /** 3782 * __dev_uc_sync - Synchonize device's unicast list 3783 * @dev: device to sync 3784 * @sync: function to call if address should be added 3785 * @unsync: function to call if address should be removed 3786 * 3787 * Add newly added addresses to the interface, and release 3788 * addresses that have been deleted. 3789 */ 3790 static inline int __dev_uc_sync(struct net_device *dev, 3791 int (*sync)(struct net_device *, 3792 const unsigned char *), 3793 int (*unsync)(struct net_device *, 3794 const unsigned char *)) 3795 { 3796 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3797 } 3798 3799 /** 3800 * __dev_uc_unsync - Remove synchronized addresses from device 3801 * @dev: device to sync 3802 * @unsync: function to call if address should be removed 3803 * 3804 * Remove all addresses that were added to the device by dev_uc_sync(). 3805 */ 3806 static inline void __dev_uc_unsync(struct net_device *dev, 3807 int (*unsync)(struct net_device *, 3808 const unsigned char *)) 3809 { 3810 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3811 } 3812 3813 /* Functions used for multicast addresses handling */ 3814 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3815 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3816 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3817 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3818 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3819 int dev_mc_sync(struct net_device *to, struct net_device *from); 3820 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3821 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3822 void dev_mc_flush(struct net_device *dev); 3823 void dev_mc_init(struct net_device *dev); 3824 3825 /** 3826 * __dev_mc_sync - Synchonize device's multicast list 3827 * @dev: device to sync 3828 * @sync: function to call if address should be added 3829 * @unsync: function to call if address should be removed 3830 * 3831 * Add newly added addresses to the interface, and release 3832 * addresses that have been deleted. 3833 */ 3834 static inline int __dev_mc_sync(struct net_device *dev, 3835 int (*sync)(struct net_device *, 3836 const unsigned char *), 3837 int (*unsync)(struct net_device *, 3838 const unsigned char *)) 3839 { 3840 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3841 } 3842 3843 /** 3844 * __dev_mc_unsync - Remove synchronized addresses from device 3845 * @dev: device to sync 3846 * @unsync: function to call if address should be removed 3847 * 3848 * Remove all addresses that were added to the device by dev_mc_sync(). 3849 */ 3850 static inline void __dev_mc_unsync(struct net_device *dev, 3851 int (*unsync)(struct net_device *, 3852 const unsigned char *)) 3853 { 3854 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3855 } 3856 3857 /* Functions used for secondary unicast and multicast support */ 3858 void dev_set_rx_mode(struct net_device *dev); 3859 void __dev_set_rx_mode(struct net_device *dev); 3860 int dev_set_promiscuity(struct net_device *dev, int inc); 3861 int dev_set_allmulti(struct net_device *dev, int inc); 3862 void netdev_state_change(struct net_device *dev); 3863 void netdev_notify_peers(struct net_device *dev); 3864 void netdev_features_change(struct net_device *dev); 3865 /* Load a device via the kmod */ 3866 void dev_load(struct net *net, const char *name); 3867 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3868 struct rtnl_link_stats64 *storage); 3869 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3870 const struct net_device_stats *netdev_stats); 3871 3872 extern int netdev_max_backlog; 3873 extern int netdev_tstamp_prequeue; 3874 extern int weight_p; 3875 extern int dev_weight_rx_bias; 3876 extern int dev_weight_tx_bias; 3877 extern int dev_rx_weight; 3878 extern int dev_tx_weight; 3879 3880 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3881 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3882 struct list_head **iter); 3883 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3884 struct list_head **iter); 3885 3886 /* iterate through upper list, must be called under RCU read lock */ 3887 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3888 for (iter = &(dev)->adj_list.upper, \ 3889 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3890 updev; \ 3891 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3892 3893 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3894 int (*fn)(struct net_device *upper_dev, 3895 void *data), 3896 void *data); 3897 3898 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3899 struct net_device *upper_dev); 3900 3901 bool netdev_has_any_upper_dev(struct net_device *dev); 3902 3903 void *netdev_lower_get_next_private(struct net_device *dev, 3904 struct list_head **iter); 3905 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3906 struct list_head **iter); 3907 3908 #define netdev_for_each_lower_private(dev, priv, iter) \ 3909 for (iter = (dev)->adj_list.lower.next, \ 3910 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3911 priv; \ 3912 priv = netdev_lower_get_next_private(dev, &(iter))) 3913 3914 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3915 for (iter = &(dev)->adj_list.lower, \ 3916 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3917 priv; \ 3918 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3919 3920 void *netdev_lower_get_next(struct net_device *dev, 3921 struct list_head **iter); 3922 3923 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3924 for (iter = (dev)->adj_list.lower.next, \ 3925 ldev = netdev_lower_get_next(dev, &(iter)); \ 3926 ldev; \ 3927 ldev = netdev_lower_get_next(dev, &(iter))) 3928 3929 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3930 struct list_head **iter); 3931 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3932 struct list_head **iter); 3933 3934 int netdev_walk_all_lower_dev(struct net_device *dev, 3935 int (*fn)(struct net_device *lower_dev, 3936 void *data), 3937 void *data); 3938 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3939 int (*fn)(struct net_device *lower_dev, 3940 void *data), 3941 void *data); 3942 3943 void *netdev_adjacent_get_private(struct list_head *adj_list); 3944 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3945 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3946 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3947 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 3948 struct netlink_ext_ack *extack); 3949 int netdev_master_upper_dev_link(struct net_device *dev, 3950 struct net_device *upper_dev, 3951 void *upper_priv, void *upper_info, 3952 struct netlink_ext_ack *extack); 3953 void netdev_upper_dev_unlink(struct net_device *dev, 3954 struct net_device *upper_dev); 3955 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3956 void *netdev_lower_dev_get_private(struct net_device *dev, 3957 struct net_device *lower_dev); 3958 void netdev_lower_state_changed(struct net_device *lower_dev, 3959 void *lower_state_info); 3960 3961 /* RSS keys are 40 or 52 bytes long */ 3962 #define NETDEV_RSS_KEY_LEN 52 3963 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3964 void netdev_rss_key_fill(void *buffer, size_t len); 3965 3966 int dev_get_nest_level(struct net_device *dev); 3967 int skb_checksum_help(struct sk_buff *skb); 3968 int skb_crc32c_csum_help(struct sk_buff *skb); 3969 int skb_csum_hwoffload_help(struct sk_buff *skb, 3970 const netdev_features_t features); 3971 3972 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3973 netdev_features_t features, bool tx_path); 3974 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3975 netdev_features_t features); 3976 3977 struct netdev_bonding_info { 3978 ifslave slave; 3979 ifbond master; 3980 }; 3981 3982 struct netdev_notifier_bonding_info { 3983 struct netdev_notifier_info info; /* must be first */ 3984 struct netdev_bonding_info bonding_info; 3985 }; 3986 3987 void netdev_bonding_info_change(struct net_device *dev, 3988 struct netdev_bonding_info *bonding_info); 3989 3990 static inline 3991 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3992 { 3993 return __skb_gso_segment(skb, features, true); 3994 } 3995 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3996 3997 static inline bool can_checksum_protocol(netdev_features_t features, 3998 __be16 protocol) 3999 { 4000 if (protocol == htons(ETH_P_FCOE)) 4001 return !!(features & NETIF_F_FCOE_CRC); 4002 4003 /* Assume this is an IP checksum (not SCTP CRC) */ 4004 4005 if (features & NETIF_F_HW_CSUM) { 4006 /* Can checksum everything */ 4007 return true; 4008 } 4009 4010 switch (protocol) { 4011 case htons(ETH_P_IP): 4012 return !!(features & NETIF_F_IP_CSUM); 4013 case htons(ETH_P_IPV6): 4014 return !!(features & NETIF_F_IPV6_CSUM); 4015 default: 4016 return false; 4017 } 4018 } 4019 4020 #ifdef CONFIG_BUG 4021 void netdev_rx_csum_fault(struct net_device *dev); 4022 #else 4023 static inline void netdev_rx_csum_fault(struct net_device *dev) 4024 { 4025 } 4026 #endif 4027 /* rx skb timestamps */ 4028 void net_enable_timestamp(void); 4029 void net_disable_timestamp(void); 4030 4031 #ifdef CONFIG_PROC_FS 4032 int __init dev_proc_init(void); 4033 #else 4034 #define dev_proc_init() 0 4035 #endif 4036 4037 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4038 struct sk_buff *skb, struct net_device *dev, 4039 bool more) 4040 { 4041 skb->xmit_more = more ? 1 : 0; 4042 return ops->ndo_start_xmit(skb, dev); 4043 } 4044 4045 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4046 struct netdev_queue *txq, bool more) 4047 { 4048 const struct net_device_ops *ops = dev->netdev_ops; 4049 int rc; 4050 4051 rc = __netdev_start_xmit(ops, skb, dev, more); 4052 if (rc == NETDEV_TX_OK) 4053 txq_trans_update(txq); 4054 4055 return rc; 4056 } 4057 4058 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4059 const void *ns); 4060 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4061 const void *ns); 4062 4063 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4064 { 4065 return netdev_class_create_file_ns(class_attr, NULL); 4066 } 4067 4068 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4069 { 4070 netdev_class_remove_file_ns(class_attr, NULL); 4071 } 4072 4073 extern const struct kobj_ns_type_operations net_ns_type_operations; 4074 4075 const char *netdev_drivername(const struct net_device *dev); 4076 4077 void linkwatch_run_queue(void); 4078 4079 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4080 netdev_features_t f2) 4081 { 4082 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4083 if (f1 & NETIF_F_HW_CSUM) 4084 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4085 else 4086 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4087 } 4088 4089 return f1 & f2; 4090 } 4091 4092 static inline netdev_features_t netdev_get_wanted_features( 4093 struct net_device *dev) 4094 { 4095 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4096 } 4097 netdev_features_t netdev_increment_features(netdev_features_t all, 4098 netdev_features_t one, netdev_features_t mask); 4099 4100 /* Allow TSO being used on stacked device : 4101 * Performing the GSO segmentation before last device 4102 * is a performance improvement. 4103 */ 4104 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4105 netdev_features_t mask) 4106 { 4107 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4108 } 4109 4110 int __netdev_update_features(struct net_device *dev); 4111 void netdev_update_features(struct net_device *dev); 4112 void netdev_change_features(struct net_device *dev); 4113 4114 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4115 struct net_device *dev); 4116 4117 netdev_features_t passthru_features_check(struct sk_buff *skb, 4118 struct net_device *dev, 4119 netdev_features_t features); 4120 netdev_features_t netif_skb_features(struct sk_buff *skb); 4121 4122 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4123 { 4124 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4125 4126 /* check flags correspondence */ 4127 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4128 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4129 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4130 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4131 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4132 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4133 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4134 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4135 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4136 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4137 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4138 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4139 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4140 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4141 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4142 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4143 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4144 4145 return (features & feature) == feature; 4146 } 4147 4148 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4149 { 4150 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4151 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4152 } 4153 4154 static inline bool netif_needs_gso(struct sk_buff *skb, 4155 netdev_features_t features) 4156 { 4157 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4158 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4159 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4160 } 4161 4162 static inline void netif_set_gso_max_size(struct net_device *dev, 4163 unsigned int size) 4164 { 4165 dev->gso_max_size = size; 4166 } 4167 4168 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4169 int pulled_hlen, u16 mac_offset, 4170 int mac_len) 4171 { 4172 skb->protocol = protocol; 4173 skb->encapsulation = 1; 4174 skb_push(skb, pulled_hlen); 4175 skb_reset_transport_header(skb); 4176 skb->mac_header = mac_offset; 4177 skb->network_header = skb->mac_header + mac_len; 4178 skb->mac_len = mac_len; 4179 } 4180 4181 static inline bool netif_is_macsec(const struct net_device *dev) 4182 { 4183 return dev->priv_flags & IFF_MACSEC; 4184 } 4185 4186 static inline bool netif_is_macvlan(const struct net_device *dev) 4187 { 4188 return dev->priv_flags & IFF_MACVLAN; 4189 } 4190 4191 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4192 { 4193 return dev->priv_flags & IFF_MACVLAN_PORT; 4194 } 4195 4196 static inline bool netif_is_ipvlan(const struct net_device *dev) 4197 { 4198 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4199 } 4200 4201 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4202 { 4203 return dev->priv_flags & IFF_IPVLAN_MASTER; 4204 } 4205 4206 static inline bool netif_is_bond_master(const struct net_device *dev) 4207 { 4208 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4209 } 4210 4211 static inline bool netif_is_bond_slave(const struct net_device *dev) 4212 { 4213 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4214 } 4215 4216 static inline bool netif_supports_nofcs(struct net_device *dev) 4217 { 4218 return dev->priv_flags & IFF_SUPP_NOFCS; 4219 } 4220 4221 static inline bool netif_is_l3_master(const struct net_device *dev) 4222 { 4223 return dev->priv_flags & IFF_L3MDEV_MASTER; 4224 } 4225 4226 static inline bool netif_is_l3_slave(const struct net_device *dev) 4227 { 4228 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4229 } 4230 4231 static inline bool netif_is_bridge_master(const struct net_device *dev) 4232 { 4233 return dev->priv_flags & IFF_EBRIDGE; 4234 } 4235 4236 static inline bool netif_is_bridge_port(const struct net_device *dev) 4237 { 4238 return dev->priv_flags & IFF_BRIDGE_PORT; 4239 } 4240 4241 static inline bool netif_is_ovs_master(const struct net_device *dev) 4242 { 4243 return dev->priv_flags & IFF_OPENVSWITCH; 4244 } 4245 4246 static inline bool netif_is_ovs_port(const struct net_device *dev) 4247 { 4248 return dev->priv_flags & IFF_OVS_DATAPATH; 4249 } 4250 4251 static inline bool netif_is_team_master(const struct net_device *dev) 4252 { 4253 return dev->priv_flags & IFF_TEAM; 4254 } 4255 4256 static inline bool netif_is_team_port(const struct net_device *dev) 4257 { 4258 return dev->priv_flags & IFF_TEAM_PORT; 4259 } 4260 4261 static inline bool netif_is_lag_master(const struct net_device *dev) 4262 { 4263 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4264 } 4265 4266 static inline bool netif_is_lag_port(const struct net_device *dev) 4267 { 4268 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4269 } 4270 4271 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4272 { 4273 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4274 } 4275 4276 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4277 static inline void netif_keep_dst(struct net_device *dev) 4278 { 4279 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4280 } 4281 4282 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4283 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4284 { 4285 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4286 return dev->priv_flags & IFF_MACSEC; 4287 } 4288 4289 extern struct pernet_operations __net_initdata loopback_net_ops; 4290 4291 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4292 4293 /* netdev_printk helpers, similar to dev_printk */ 4294 4295 static inline const char *netdev_name(const struct net_device *dev) 4296 { 4297 if (!dev->name[0] || strchr(dev->name, '%')) 4298 return "(unnamed net_device)"; 4299 return dev->name; 4300 } 4301 4302 static inline bool netdev_unregistering(const struct net_device *dev) 4303 { 4304 return dev->reg_state == NETREG_UNREGISTERING; 4305 } 4306 4307 static inline const char *netdev_reg_state(const struct net_device *dev) 4308 { 4309 switch (dev->reg_state) { 4310 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4311 case NETREG_REGISTERED: return ""; 4312 case NETREG_UNREGISTERING: return " (unregistering)"; 4313 case NETREG_UNREGISTERED: return " (unregistered)"; 4314 case NETREG_RELEASED: return " (released)"; 4315 case NETREG_DUMMY: return " (dummy)"; 4316 } 4317 4318 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4319 return " (unknown)"; 4320 } 4321 4322 __printf(3, 4) 4323 void netdev_printk(const char *level, const struct net_device *dev, 4324 const char *format, ...); 4325 __printf(2, 3) 4326 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4327 __printf(2, 3) 4328 void netdev_alert(const struct net_device *dev, const char *format, ...); 4329 __printf(2, 3) 4330 void netdev_crit(const struct net_device *dev, const char *format, ...); 4331 __printf(2, 3) 4332 void netdev_err(const struct net_device *dev, const char *format, ...); 4333 __printf(2, 3) 4334 void netdev_warn(const struct net_device *dev, const char *format, ...); 4335 __printf(2, 3) 4336 void netdev_notice(const struct net_device *dev, const char *format, ...); 4337 __printf(2, 3) 4338 void netdev_info(const struct net_device *dev, const char *format, ...); 4339 4340 #define netdev_level_once(level, dev, fmt, ...) \ 4341 do { \ 4342 static bool __print_once __read_mostly; \ 4343 \ 4344 if (!__print_once) { \ 4345 __print_once = true; \ 4346 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4347 } \ 4348 } while (0) 4349 4350 #define netdev_emerg_once(dev, fmt, ...) \ 4351 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4352 #define netdev_alert_once(dev, fmt, ...) \ 4353 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4354 #define netdev_crit_once(dev, fmt, ...) \ 4355 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4356 #define netdev_err_once(dev, fmt, ...) \ 4357 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4358 #define netdev_warn_once(dev, fmt, ...) \ 4359 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4360 #define netdev_notice_once(dev, fmt, ...) \ 4361 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4362 #define netdev_info_once(dev, fmt, ...) \ 4363 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4364 4365 #define MODULE_ALIAS_NETDEV(device) \ 4366 MODULE_ALIAS("netdev-" device) 4367 4368 #if defined(CONFIG_DYNAMIC_DEBUG) 4369 #define netdev_dbg(__dev, format, args...) \ 4370 do { \ 4371 dynamic_netdev_dbg(__dev, format, ##args); \ 4372 } while (0) 4373 #elif defined(DEBUG) 4374 #define netdev_dbg(__dev, format, args...) \ 4375 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4376 #else 4377 #define netdev_dbg(__dev, format, args...) \ 4378 ({ \ 4379 if (0) \ 4380 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4381 }) 4382 #endif 4383 4384 #if defined(VERBOSE_DEBUG) 4385 #define netdev_vdbg netdev_dbg 4386 #else 4387 4388 #define netdev_vdbg(dev, format, args...) \ 4389 ({ \ 4390 if (0) \ 4391 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4392 0; \ 4393 }) 4394 #endif 4395 4396 /* 4397 * netdev_WARN() acts like dev_printk(), but with the key difference 4398 * of using a WARN/WARN_ON to get the message out, including the 4399 * file/line information and a backtrace. 4400 */ 4401 #define netdev_WARN(dev, format, args...) \ 4402 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4403 netdev_reg_state(dev), ##args) 4404 4405 #define netdev_WARN_ONCE(dev, condition, format, arg...) \ 4406 WARN_ONCE(1, "netdevice: %s%s\n" format, netdev_name(dev) \ 4407 netdev_reg_state(dev), ##args) 4408 4409 /* netif printk helpers, similar to netdev_printk */ 4410 4411 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4412 do { \ 4413 if (netif_msg_##type(priv)) \ 4414 netdev_printk(level, (dev), fmt, ##args); \ 4415 } while (0) 4416 4417 #define netif_level(level, priv, type, dev, fmt, args...) \ 4418 do { \ 4419 if (netif_msg_##type(priv)) \ 4420 netdev_##level(dev, fmt, ##args); \ 4421 } while (0) 4422 4423 #define netif_emerg(priv, type, dev, fmt, args...) \ 4424 netif_level(emerg, priv, type, dev, fmt, ##args) 4425 #define netif_alert(priv, type, dev, fmt, args...) \ 4426 netif_level(alert, priv, type, dev, fmt, ##args) 4427 #define netif_crit(priv, type, dev, fmt, args...) \ 4428 netif_level(crit, priv, type, dev, fmt, ##args) 4429 #define netif_err(priv, type, dev, fmt, args...) \ 4430 netif_level(err, priv, type, dev, fmt, ##args) 4431 #define netif_warn(priv, type, dev, fmt, args...) \ 4432 netif_level(warn, priv, type, dev, fmt, ##args) 4433 #define netif_notice(priv, type, dev, fmt, args...) \ 4434 netif_level(notice, priv, type, dev, fmt, ##args) 4435 #define netif_info(priv, type, dev, fmt, args...) \ 4436 netif_level(info, priv, type, dev, fmt, ##args) 4437 4438 #if defined(CONFIG_DYNAMIC_DEBUG) 4439 #define netif_dbg(priv, type, netdev, format, args...) \ 4440 do { \ 4441 if (netif_msg_##type(priv)) \ 4442 dynamic_netdev_dbg(netdev, format, ##args); \ 4443 } while (0) 4444 #elif defined(DEBUG) 4445 #define netif_dbg(priv, type, dev, format, args...) \ 4446 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4447 #else 4448 #define netif_dbg(priv, type, dev, format, args...) \ 4449 ({ \ 4450 if (0) \ 4451 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4452 0; \ 4453 }) 4454 #endif 4455 4456 /* if @cond then downgrade to debug, else print at @level */ 4457 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4458 do { \ 4459 if (cond) \ 4460 netif_dbg(priv, type, netdev, fmt, ##args); \ 4461 else \ 4462 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4463 } while (0) 4464 4465 #if defined(VERBOSE_DEBUG) 4466 #define netif_vdbg netif_dbg 4467 #else 4468 #define netif_vdbg(priv, type, dev, format, args...) \ 4469 ({ \ 4470 if (0) \ 4471 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4472 0; \ 4473 }) 4474 #endif 4475 4476 /* 4477 * The list of packet types we will receive (as opposed to discard) 4478 * and the routines to invoke. 4479 * 4480 * Why 16. Because with 16 the only overlap we get on a hash of the 4481 * low nibble of the protocol value is RARP/SNAP/X.25. 4482 * 4483 * 0800 IP 4484 * 0001 802.3 4485 * 0002 AX.25 4486 * 0004 802.2 4487 * 8035 RARP 4488 * 0005 SNAP 4489 * 0805 X.25 4490 * 0806 ARP 4491 * 8137 IPX 4492 * 0009 Localtalk 4493 * 86DD IPv6 4494 */ 4495 #define PTYPE_HASH_SIZE (16) 4496 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4497 4498 #endif /* _LINUX_NETDEVICE_H */ 4499