xref: /openbmc/linux/include/linux/netdevice.h (revision a72594ca)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 
48 #include <linux/netdev_features.h>
49 #include <linux/neighbour.h>
50 #include <uapi/linux/netdevice.h>
51 #include <uapi/linux/if_bonding.h>
52 #include <uapi/linux/pkt_cls.h>
53 #include <linux/hashtable.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 struct dsa_port;
59 
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69 
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 				    const struct ethtool_ops *ops);
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously; in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK		0xf0
108 
109 enum netdev_tx {
110 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
111 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
112 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 /*
135  *	Compute the worst-case header length according to the protocols
136  *	used.
137  */
138 
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198 
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202 
203 struct netdev_hw_addr {
204 	struct list_head	list;
205 	unsigned char		addr[MAX_ADDR_LEN];
206 	unsigned char		type;
207 #define NETDEV_HW_ADDR_T_LAN		1
208 #define NETDEV_HW_ADDR_T_SAN		2
209 #define NETDEV_HW_ADDR_T_SLAVE		3
210 #define NETDEV_HW_ADDR_T_UNICAST	4
211 #define NETDEV_HW_ADDR_T_MULTICAST	5
212 	bool			global_use;
213 	int			sync_cnt;
214 	int			refcount;
215 	int			synced;
216 	struct rcu_head		rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220 	struct list_head	list;
221 	int			count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 	list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240 	unsigned int	hh_len;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-CPU poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_MISSED,	/* reschedule a napi */
334 	NAPI_STATE_DISABLE,	/* Disable pending */
335 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
336 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
337 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340 
341 enum {
342 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
343 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
344 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
345 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
346 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
347 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350 
351 enum gro_result {
352 	GRO_MERGED,
353 	GRO_MERGED_FREE,
354 	GRO_HELD,
355 	GRO_NORMAL,
356 	GRO_DROP,
357 	GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360 
361 /*
362  * enum rx_handler_result - Possible return values for rx_handlers.
363  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364  * further.
365  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366  * case skb->dev was changed by rx_handler.
367  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369  *
370  * rx_handlers are functions called from inside __netif_receive_skb(), to do
371  * special processing of the skb, prior to delivery to protocol handlers.
372  *
373  * Currently, a net_device can only have a single rx_handler registered. Trying
374  * to register a second rx_handler will return -EBUSY.
375  *
376  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377  * To unregister a rx_handler on a net_device, use
378  * netdev_rx_handler_unregister().
379  *
380  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381  * do with the skb.
382  *
383  * If the rx_handler consumed the skb in some way, it should return
384  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385  * the skb to be delivered in some other way.
386  *
387  * If the rx_handler changed skb->dev, to divert the skb to another
388  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389  * new device will be called if it exists.
390  *
391  * If the rx_handler decides the skb should be ignored, it should return
392  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393  * are registered on exact device (ptype->dev == skb->dev).
394  *
395  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396  * delivered, it should return RX_HANDLER_PASS.
397  *
398  * A device without a registered rx_handler will behave as if rx_handler
399  * returned RX_HANDLER_PASS.
400  */
401 
402 enum rx_handler_result {
403 	RX_HANDLER_CONSUMED,
404 	RX_HANDLER_ANOTHER,
405 	RX_HANDLER_EXACT,
406 	RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410 
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413 
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 	return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418 
419 bool napi_schedule_prep(struct napi_struct *n);
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *	napi_complete - NAPI processing complete
459  *	@n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  * Return false if device should avoid rearming interrupts.
464  */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_del - remove a NAPI from global table
472  *	@napi: NAPI context
473  *
474  * Warning: caller must observe RCU grace period
475  * before freeing memory containing @napi, if
476  * this function returns true.
477  * Note: core networking stack automatically calls it
478  * from netif_napi_del().
479  * Drivers might want to call this helper to combine all
480  * the needed RCU grace periods into a single one.
481  */
482 bool napi_hash_del(struct napi_struct *napi);
483 
484 /**
485  *	napi_disable - prevent NAPI from scheduling
486  *	@n: NAPI context
487  *
488  * Stop NAPI from being scheduled on this context.
489  * Waits till any outstanding processing completes.
490  */
491 void napi_disable(struct napi_struct *n);
492 
493 /**
494  *	napi_enable - enable NAPI scheduling
495  *	@n: NAPI context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 	smp_mb__before_atomic();
504 	clear_bit(NAPI_STATE_SCHED, &n->state);
505 	clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 enum netdev_queue_state_t {
526 	__QUEUE_STATE_DRV_XOFF,
527 	__QUEUE_STATE_STACK_XOFF,
528 	__QUEUE_STATE_FROZEN,
529 };
530 
531 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
534 
535 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 					QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 
541 /*
542  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
543  * netif_tx_* functions below are used to manipulate this flag.  The
544  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545  * queue independently.  The netif_xmit_*stopped functions below are called
546  * to check if the queue has been stopped by the driver or stack (either
547  * of the XOFF bits are set in the state).  Drivers should not need to call
548  * netif_xmit*stopped functions, they should only be using netif_tx_*.
549  */
550 
551 struct netdev_queue {
552 /*
553  * read-mostly part
554  */
555 	struct net_device	*dev;
556 	struct Qdisc __rcu	*qdisc;
557 	struct Qdisc		*qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 	struct kobject		kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 	int			numa_node;
563 #endif
564 	unsigned long		tx_maxrate;
565 	/*
566 	 * Number of TX timeouts for this queue
567 	 * (/sys/class/net/DEV/Q/trans_timeout)
568 	 */
569 	unsigned long		trans_timeout;
570 /*
571  * write-mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * Time (in jiffies) of last Tx
577 	 */
578 	unsigned long		trans_start;
579 
580 	unsigned long		state;
581 
582 #ifdef CONFIG_BQL
583 	struct dql		dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586 
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	return q->numa_node;
591 #else
592 	return NUMA_NO_NODE;
593 #endif
594 }
595 
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	q->numa_node = node;
600 #endif
601 }
602 
603 #ifdef CONFIG_RPS
604 /*
605  * This structure holds an RPS map which can be of variable length.  The
606  * map is an array of CPUs.
607  */
608 struct rps_map {
609 	unsigned int len;
610 	struct rcu_head rcu;
611 	u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614 
615 /*
616  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617  * tail pointer for that CPU's input queue at the time of last enqueue, and
618  * a hardware filter index.
619  */
620 struct rps_dev_flow {
621 	u16 cpu;
622 	u16 filter;
623 	unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626 
627 /*
628  * The rps_dev_flow_table structure contains a table of flow mappings.
629  */
630 struct rps_dev_flow_table {
631 	unsigned int mask;
632 	struct rcu_head rcu;
633 	struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636     ((_num) * sizeof(struct rps_dev_flow)))
637 
638 /*
639  * The rps_sock_flow_table contains mappings of flows to the last CPU
640  * on which they were processed by the application (set in recvmsg).
641  * Each entry is a 32bit value. Upper part is the high-order bits
642  * of flow hash, lower part is CPU number.
643  * rps_cpu_mask is used to partition the space, depending on number of
644  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646  * meaning we use 32-6=26 bits for the hash.
647  */
648 struct rps_sock_flow_table {
649 	u32	mask;
650 
651 	u32	ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654 
655 #define RPS_NO_CPU 0xffff
656 
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659 
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 					u32 hash)
662 {
663 	if (table && hash) {
664 		unsigned int index = hash & table->mask;
665 		u32 val = hash & ~rps_cpu_mask;
666 
667 		/* We only give a hint, preemption can change CPU under us */
668 		val |= raw_smp_processor_id();
669 
670 		if (table->ents[index] != val)
671 			table->ents[index] = val;
672 	}
673 }
674 
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 			 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680 
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 	struct rps_map __rcu		*rps_map;
685 	struct rps_dev_flow_table __rcu	*rps_flow_table;
686 #endif
687 	struct kobject			kobj;
688 	struct net_device		*dev;
689 } ____cacheline_aligned_in_smp;
690 
691 /*
692  * RX queue sysfs structures and functions.
693  */
694 struct rx_queue_attribute {
695 	struct attribute attr;
696 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
697 	ssize_t (*store)(struct netdev_rx_queue *queue,
698 			 const char *buf, size_t len);
699 };
700 
701 #ifdef CONFIG_XPS
702 /*
703  * This structure holds an XPS map which can be of variable length.  The
704  * map is an array of queues.
705  */
706 struct xps_map {
707 	unsigned int len;
708 	unsigned int alloc_len;
709 	struct rcu_head rcu;
710 	u16 queues[0];
711 };
712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
714        - sizeof(struct xps_map)) / sizeof(u16))
715 
716 /*
717  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
718  */
719 struct xps_dev_maps {
720 	struct rcu_head rcu;
721 	struct xps_map __rcu *cpu_map[0];
722 };
723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
724 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
725 #endif /* CONFIG_XPS */
726 
727 #define TC_MAX_QUEUE	16
728 #define TC_BITMASK	15
729 /* HW offloaded queuing disciplines txq count and offset maps */
730 struct netdev_tc_txq {
731 	u16 count;
732 	u16 offset;
733 };
734 
735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
736 /*
737  * This structure is to hold information about the device
738  * configured to run FCoE protocol stack.
739  */
740 struct netdev_fcoe_hbainfo {
741 	char	manufacturer[64];
742 	char	serial_number[64];
743 	char	hardware_version[64];
744 	char	driver_version[64];
745 	char	optionrom_version[64];
746 	char	firmware_version[64];
747 	char	model[256];
748 	char	model_description[256];
749 };
750 #endif
751 
752 #define MAX_PHYS_ITEM_ID_LEN 32
753 
754 /* This structure holds a unique identifier to identify some
755  * physical item (port for example) used by a netdevice.
756  */
757 struct netdev_phys_item_id {
758 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
759 	unsigned char id_len;
760 };
761 
762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
763 					    struct netdev_phys_item_id *b)
764 {
765 	return a->id_len == b->id_len &&
766 	       memcmp(a->id, b->id, a->id_len) == 0;
767 }
768 
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 				       struct sk_buff *skb);
771 
772 enum tc_setup_type {
773 	TC_SETUP_QDISC_MQPRIO,
774 	TC_SETUP_CLSU32,
775 	TC_SETUP_CLSFLOWER,
776 	TC_SETUP_CLSMATCHALL,
777 	TC_SETUP_CLSBPF,
778 	TC_SETUP_BLOCK,
779 	TC_SETUP_QDISC_CBS,
780 	TC_SETUP_QDISC_RED,
781 };
782 
783 /* These structures hold the attributes of bpf state that are being passed
784  * to the netdevice through the bpf op.
785  */
786 enum bpf_netdev_command {
787 	/* Set or clear a bpf program used in the earliest stages of packet
788 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
789 	 * is responsible for calling bpf_prog_put on any old progs that are
790 	 * stored. In case of error, the callee need not release the new prog
791 	 * reference, but on success it takes ownership and must bpf_prog_put
792 	 * when it is no longer used.
793 	 */
794 	XDP_SETUP_PROG,
795 	XDP_SETUP_PROG_HW,
796 	/* Check if a bpf program is set on the device.  The callee should
797 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
798 	 * is equivalent to XDP_ATTACHED_DRV.
799 	 */
800 	XDP_QUERY_PROG,
801 	/* BPF program for offload callbacks, invoked at program load time. */
802 	BPF_OFFLOAD_VERIFIER_PREP,
803 	BPF_OFFLOAD_TRANSLATE,
804 	BPF_OFFLOAD_DESTROY,
805 };
806 
807 struct bpf_ext_analyzer_ops;
808 struct netlink_ext_ack;
809 
810 struct netdev_bpf {
811 	enum bpf_netdev_command command;
812 	union {
813 		/* XDP_SETUP_PROG */
814 		struct {
815 			u32 flags;
816 			struct bpf_prog *prog;
817 			struct netlink_ext_ack *extack;
818 		};
819 		/* XDP_QUERY_PROG */
820 		struct {
821 			u8 prog_attached;
822 			u32 prog_id;
823 		};
824 		/* BPF_OFFLOAD_VERIFIER_PREP */
825 		struct {
826 			struct bpf_prog *prog;
827 			const struct bpf_ext_analyzer_ops *ops; /* callee set */
828 		} verifier;
829 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
830 		struct {
831 			struct bpf_prog *prog;
832 		} offload;
833 	};
834 };
835 
836 #ifdef CONFIG_XFRM_OFFLOAD
837 struct xfrmdev_ops {
838 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
839 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
840 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
841 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
842 				       struct xfrm_state *x);
843 };
844 #endif
845 
846 struct dev_ifalias {
847 	struct rcu_head rcuhead;
848 	char ifalias[];
849 };
850 
851 /*
852  * This structure defines the management hooks for network devices.
853  * The following hooks can be defined; unless noted otherwise, they are
854  * optional and can be filled with a null pointer.
855  *
856  * int (*ndo_init)(struct net_device *dev);
857  *     This function is called once when a network device is registered.
858  *     The network device can use this for any late stage initialization
859  *     or semantic validation. It can fail with an error code which will
860  *     be propagated back to register_netdev.
861  *
862  * void (*ndo_uninit)(struct net_device *dev);
863  *     This function is called when device is unregistered or when registration
864  *     fails. It is not called if init fails.
865  *
866  * int (*ndo_open)(struct net_device *dev);
867  *     This function is called when a network device transitions to the up
868  *     state.
869  *
870  * int (*ndo_stop)(struct net_device *dev);
871  *     This function is called when a network device transitions to the down
872  *     state.
873  *
874  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
875  *                               struct net_device *dev);
876  *	Called when a packet needs to be transmitted.
877  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
878  *	the queue before that can happen; it's for obsolete devices and weird
879  *	corner cases, but the stack really does a non-trivial amount
880  *	of useless work if you return NETDEV_TX_BUSY.
881  *	Required; cannot be NULL.
882  *
883  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
884  *					   struct net_device *dev
885  *					   netdev_features_t features);
886  *	Called by core transmit path to determine if device is capable of
887  *	performing offload operations on a given packet. This is to give
888  *	the device an opportunity to implement any restrictions that cannot
889  *	be otherwise expressed by feature flags. The check is called with
890  *	the set of features that the stack has calculated and it returns
891  *	those the driver believes to be appropriate.
892  *
893  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
894  *                         void *accel_priv, select_queue_fallback_t fallback);
895  *	Called to decide which queue to use when device supports multiple
896  *	transmit queues.
897  *
898  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
899  *	This function is called to allow device receiver to make
900  *	changes to configuration when multicast or promiscuous is enabled.
901  *
902  * void (*ndo_set_rx_mode)(struct net_device *dev);
903  *	This function is called device changes address list filtering.
904  *	If driver handles unicast address filtering, it should set
905  *	IFF_UNICAST_FLT in its priv_flags.
906  *
907  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
908  *	This function  is called when the Media Access Control address
909  *	needs to be changed. If this interface is not defined, the
910  *	MAC address can not be changed.
911  *
912  * int (*ndo_validate_addr)(struct net_device *dev);
913  *	Test if Media Access Control address is valid for the device.
914  *
915  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
916  *	Called when a user requests an ioctl which can't be handled by
917  *	the generic interface code. If not defined ioctls return
918  *	not supported error code.
919  *
920  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
921  *	Used to set network devices bus interface parameters. This interface
922  *	is retained for legacy reasons; new devices should use the bus
923  *	interface (PCI) for low level management.
924  *
925  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
926  *	Called when a user wants to change the Maximum Transfer Unit
927  *	of a device.
928  *
929  * void (*ndo_tx_timeout)(struct net_device *dev);
930  *	Callback used when the transmitter has not made any progress
931  *	for dev->watchdog ticks.
932  *
933  * void (*ndo_get_stats64)(struct net_device *dev,
934  *                         struct rtnl_link_stats64 *storage);
935  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
936  *	Called when a user wants to get the network device usage
937  *	statistics. Drivers must do one of the following:
938  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
939  *	   rtnl_link_stats64 structure passed by the caller.
940  *	2. Define @ndo_get_stats to update a net_device_stats structure
941  *	   (which should normally be dev->stats) and return a pointer to
942  *	   it. The structure may be changed asynchronously only if each
943  *	   field is written atomically.
944  *	3. Update dev->stats asynchronously and atomically, and define
945  *	   neither operation.
946  *
947  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
948  *	Return true if this device supports offload stats of this attr_id.
949  *
950  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
951  *	void *attr_data)
952  *	Get statistics for offload operations by attr_id. Write it into the
953  *	attr_data pointer.
954  *
955  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
956  *	If device supports VLAN filtering this function is called when a
957  *	VLAN id is registered.
958  *
959  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
960  *	If device supports VLAN filtering this function is called when a
961  *	VLAN id is unregistered.
962  *
963  * void (*ndo_poll_controller)(struct net_device *dev);
964  *
965  *	SR-IOV management functions.
966  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
967  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
968  *			  u8 qos, __be16 proto);
969  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
970  *			  int max_tx_rate);
971  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
972  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
973  * int (*ndo_get_vf_config)(struct net_device *dev,
974  *			    int vf, struct ifla_vf_info *ivf);
975  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
976  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
977  *			  struct nlattr *port[]);
978  *
979  *      Enable or disable the VF ability to query its RSS Redirection Table and
980  *      Hash Key. This is needed since on some devices VF share this information
981  *      with PF and querying it may introduce a theoretical security risk.
982  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
983  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
984  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
985  *		       void *type_data);
986  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
987  *	This is always called from the stack with the rtnl lock held and netif
988  *	tx queues stopped. This allows the netdevice to perform queue
989  *	management safely.
990  *
991  *	Fiber Channel over Ethernet (FCoE) offload functions.
992  * int (*ndo_fcoe_enable)(struct net_device *dev);
993  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
994  *	so the underlying device can perform whatever needed configuration or
995  *	initialization to support acceleration of FCoE traffic.
996  *
997  * int (*ndo_fcoe_disable)(struct net_device *dev);
998  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
999  *	so the underlying device can perform whatever needed clean-ups to
1000  *	stop supporting acceleration of FCoE traffic.
1001  *
1002  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1003  *			     struct scatterlist *sgl, unsigned int sgc);
1004  *	Called when the FCoE Initiator wants to initialize an I/O that
1005  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1006  *	perform necessary setup and returns 1 to indicate the device is set up
1007  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1008  *
1009  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1010  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1011  *	indicated by the FC exchange id 'xid', so the underlying device can
1012  *	clean up and reuse resources for later DDP requests.
1013  *
1014  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1015  *			      struct scatterlist *sgl, unsigned int sgc);
1016  *	Called when the FCoE Target wants to initialize an I/O that
1017  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1018  *	perform necessary setup and returns 1 to indicate the device is set up
1019  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1020  *
1021  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1022  *			       struct netdev_fcoe_hbainfo *hbainfo);
1023  *	Called when the FCoE Protocol stack wants information on the underlying
1024  *	device. This information is utilized by the FCoE protocol stack to
1025  *	register attributes with Fiber Channel management service as per the
1026  *	FC-GS Fabric Device Management Information(FDMI) specification.
1027  *
1028  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1029  *	Called when the underlying device wants to override default World Wide
1030  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1031  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1032  *	protocol stack to use.
1033  *
1034  *	RFS acceleration.
1035  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1036  *			    u16 rxq_index, u32 flow_id);
1037  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1038  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1039  *	Return the filter ID on success, or a negative error code.
1040  *
1041  *	Slave management functions (for bridge, bonding, etc).
1042  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1043  *	Called to make another netdev an underling.
1044  *
1045  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1046  *	Called to release previously enslaved netdev.
1047  *
1048  *      Feature/offload setting functions.
1049  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1050  *		netdev_features_t features);
1051  *	Adjusts the requested feature flags according to device-specific
1052  *	constraints, and returns the resulting flags. Must not modify
1053  *	the device state.
1054  *
1055  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1056  *	Called to update device configuration to new features. Passed
1057  *	feature set might be less than what was returned by ndo_fix_features()).
1058  *	Must return >0 or -errno if it changed dev->features itself.
1059  *
1060  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1061  *		      struct net_device *dev,
1062  *		      const unsigned char *addr, u16 vid, u16 flags)
1063  *	Adds an FDB entry to dev for addr.
1064  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1065  *		      struct net_device *dev,
1066  *		      const unsigned char *addr, u16 vid)
1067  *	Deletes the FDB entry from dev coresponding to addr.
1068  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1069  *		       struct net_device *dev, struct net_device *filter_dev,
1070  *		       int *idx)
1071  *	Used to add FDB entries to dump requests. Implementers should add
1072  *	entries to skb and update idx with the number of entries.
1073  *
1074  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1075  *			     u16 flags)
1076  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1077  *			     struct net_device *dev, u32 filter_mask,
1078  *			     int nlflags)
1079  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1080  *			     u16 flags);
1081  *
1082  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1083  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1084  *	which do not represent real hardware may define this to allow their
1085  *	userspace components to manage their virtual carrier state. Devices
1086  *	that determine carrier state from physical hardware properties (eg
1087  *	network cables) or protocol-dependent mechanisms (eg
1088  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1089  *
1090  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1091  *			       struct netdev_phys_item_id *ppid);
1092  *	Called to get ID of physical port of this device. If driver does
1093  *	not implement this, it is assumed that the hw is not able to have
1094  *	multiple net devices on single physical port.
1095  *
1096  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1097  *			      struct udp_tunnel_info *ti);
1098  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1099  *	address family that a UDP tunnel is listnening to. It is called only
1100  *	when a new port starts listening. The operation is protected by the
1101  *	RTNL.
1102  *
1103  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1104  *			      struct udp_tunnel_info *ti);
1105  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1106  *	address family that the UDP tunnel is not listening to anymore. The
1107  *	operation is protected by the RTNL.
1108  *
1109  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1110  *				 struct net_device *dev)
1111  *	Called by upper layer devices to accelerate switching or other
1112  *	station functionality into hardware. 'pdev is the lowerdev
1113  *	to use for the offload and 'dev' is the net device that will
1114  *	back the offload. Returns a pointer to the private structure
1115  *	the upper layer will maintain.
1116  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1117  *	Called by upper layer device to delete the station created
1118  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1119  *	the station and priv is the structure returned by the add
1120  *	operation.
1121  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1122  *			     int queue_index, u32 maxrate);
1123  *	Called when a user wants to set a max-rate limitation of specific
1124  *	TX queue.
1125  * int (*ndo_get_iflink)(const struct net_device *dev);
1126  *	Called to get the iflink value of this device.
1127  * void (*ndo_change_proto_down)(struct net_device *dev,
1128  *				 bool proto_down);
1129  *	This function is used to pass protocol port error state information
1130  *	to the switch driver. The switch driver can react to the proto_down
1131  *      by doing a phys down on the associated switch port.
1132  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1133  *	This function is used to get egress tunnel information for given skb.
1134  *	This is useful for retrieving outer tunnel header parameters while
1135  *	sampling packet.
1136  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1137  *	This function is used to specify the headroom that the skb must
1138  *	consider when allocation skb during packet reception. Setting
1139  *	appropriate rx headroom value allows avoiding skb head copy on
1140  *	forward. Setting a negative value resets the rx headroom to the
1141  *	default value.
1142  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1143  *	This function is used to set or query state related to XDP on the
1144  *	netdevice and manage BPF offload. See definition of
1145  *	enum bpf_netdev_command for details.
1146  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1147  *	This function is used to submit a XDP packet for transmit on a
1148  *	netdevice.
1149  * void (*ndo_xdp_flush)(struct net_device *dev);
1150  *	This function is used to inform the driver to flush a particular
1151  *	xdp tx queue. Must be called on same CPU as xdp_xmit.
1152  */
1153 struct net_device_ops {
1154 	int			(*ndo_init)(struct net_device *dev);
1155 	void			(*ndo_uninit)(struct net_device *dev);
1156 	int			(*ndo_open)(struct net_device *dev);
1157 	int			(*ndo_stop)(struct net_device *dev);
1158 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1159 						  struct net_device *dev);
1160 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1161 						      struct net_device *dev,
1162 						      netdev_features_t features);
1163 	u16			(*ndo_select_queue)(struct net_device *dev,
1164 						    struct sk_buff *skb,
1165 						    void *accel_priv,
1166 						    select_queue_fallback_t fallback);
1167 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1168 						       int flags);
1169 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1170 	int			(*ndo_set_mac_address)(struct net_device *dev,
1171 						       void *addr);
1172 	int			(*ndo_validate_addr)(struct net_device *dev);
1173 	int			(*ndo_do_ioctl)(struct net_device *dev,
1174 					        struct ifreq *ifr, int cmd);
1175 	int			(*ndo_set_config)(struct net_device *dev,
1176 					          struct ifmap *map);
1177 	int			(*ndo_change_mtu)(struct net_device *dev,
1178 						  int new_mtu);
1179 	int			(*ndo_neigh_setup)(struct net_device *dev,
1180 						   struct neigh_parms *);
1181 	void			(*ndo_tx_timeout) (struct net_device *dev);
1182 
1183 	void			(*ndo_get_stats64)(struct net_device *dev,
1184 						   struct rtnl_link_stats64 *storage);
1185 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1186 	int			(*ndo_get_offload_stats)(int attr_id,
1187 							 const struct net_device *dev,
1188 							 void *attr_data);
1189 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1190 
1191 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1192 						       __be16 proto, u16 vid);
1193 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1194 						        __be16 proto, u16 vid);
1195 #ifdef CONFIG_NET_POLL_CONTROLLER
1196 	void                    (*ndo_poll_controller)(struct net_device *dev);
1197 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1198 						     struct netpoll_info *info);
1199 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1200 #endif
1201 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1202 						  int queue, u8 *mac);
1203 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1204 						   int queue, u16 vlan,
1205 						   u8 qos, __be16 proto);
1206 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1207 						   int vf, int min_tx_rate,
1208 						   int max_tx_rate);
1209 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1210 						       int vf, bool setting);
1211 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1212 						    int vf, bool setting);
1213 	int			(*ndo_get_vf_config)(struct net_device *dev,
1214 						     int vf,
1215 						     struct ifla_vf_info *ivf);
1216 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1217 							 int vf, int link_state);
1218 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1219 						    int vf,
1220 						    struct ifla_vf_stats
1221 						    *vf_stats);
1222 	int			(*ndo_set_vf_port)(struct net_device *dev,
1223 						   int vf,
1224 						   struct nlattr *port[]);
1225 	int			(*ndo_get_vf_port)(struct net_device *dev,
1226 						   int vf, struct sk_buff *skb);
1227 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1228 						   int vf, u64 guid,
1229 						   int guid_type);
1230 	int			(*ndo_set_vf_rss_query_en)(
1231 						   struct net_device *dev,
1232 						   int vf, bool setting);
1233 	int			(*ndo_setup_tc)(struct net_device *dev,
1234 						enum tc_setup_type type,
1235 						void *type_data);
1236 #if IS_ENABLED(CONFIG_FCOE)
1237 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1238 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1239 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1240 						      u16 xid,
1241 						      struct scatterlist *sgl,
1242 						      unsigned int sgc);
1243 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1244 						     u16 xid);
1245 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1246 						       u16 xid,
1247 						       struct scatterlist *sgl,
1248 						       unsigned int sgc);
1249 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1250 							struct netdev_fcoe_hbainfo *hbainfo);
1251 #endif
1252 
1253 #if IS_ENABLED(CONFIG_LIBFCOE)
1254 #define NETDEV_FCOE_WWNN 0
1255 #define NETDEV_FCOE_WWPN 1
1256 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1257 						    u64 *wwn, int type);
1258 #endif
1259 
1260 #ifdef CONFIG_RFS_ACCEL
1261 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1262 						     const struct sk_buff *skb,
1263 						     u16 rxq_index,
1264 						     u32 flow_id);
1265 #endif
1266 	int			(*ndo_add_slave)(struct net_device *dev,
1267 						 struct net_device *slave_dev,
1268 						 struct netlink_ext_ack *extack);
1269 	int			(*ndo_del_slave)(struct net_device *dev,
1270 						 struct net_device *slave_dev);
1271 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1272 						    netdev_features_t features);
1273 	int			(*ndo_set_features)(struct net_device *dev,
1274 						    netdev_features_t features);
1275 	int			(*ndo_neigh_construct)(struct net_device *dev,
1276 						       struct neighbour *n);
1277 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1278 						     struct neighbour *n);
1279 
1280 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1281 					       struct nlattr *tb[],
1282 					       struct net_device *dev,
1283 					       const unsigned char *addr,
1284 					       u16 vid,
1285 					       u16 flags);
1286 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1287 					       struct nlattr *tb[],
1288 					       struct net_device *dev,
1289 					       const unsigned char *addr,
1290 					       u16 vid);
1291 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1292 						struct netlink_callback *cb,
1293 						struct net_device *dev,
1294 						struct net_device *filter_dev,
1295 						int *idx);
1296 
1297 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1298 						      struct nlmsghdr *nlh,
1299 						      u16 flags);
1300 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1301 						      u32 pid, u32 seq,
1302 						      struct net_device *dev,
1303 						      u32 filter_mask,
1304 						      int nlflags);
1305 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1306 						      struct nlmsghdr *nlh,
1307 						      u16 flags);
1308 	int			(*ndo_change_carrier)(struct net_device *dev,
1309 						      bool new_carrier);
1310 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1311 							struct netdev_phys_item_id *ppid);
1312 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1313 							  char *name, size_t len);
1314 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1315 						      struct udp_tunnel_info *ti);
1316 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1317 						      struct udp_tunnel_info *ti);
1318 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1319 							struct net_device *dev);
1320 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1321 							void *priv);
1322 
1323 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1324 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1325 						      int queue_index,
1326 						      u32 maxrate);
1327 	int			(*ndo_get_iflink)(const struct net_device *dev);
1328 	int			(*ndo_change_proto_down)(struct net_device *dev,
1329 							 bool proto_down);
1330 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1331 						       struct sk_buff *skb);
1332 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1333 						       int needed_headroom);
1334 	int			(*ndo_bpf)(struct net_device *dev,
1335 					   struct netdev_bpf *bpf);
1336 	int			(*ndo_xdp_xmit)(struct net_device *dev,
1337 						struct xdp_buff *xdp);
1338 	void			(*ndo_xdp_flush)(struct net_device *dev);
1339 };
1340 
1341 /**
1342  * enum net_device_priv_flags - &struct net_device priv_flags
1343  *
1344  * These are the &struct net_device, they are only set internally
1345  * by drivers and used in the kernel. These flags are invisible to
1346  * userspace; this means that the order of these flags can change
1347  * during any kernel release.
1348  *
1349  * You should have a pretty good reason to be extending these flags.
1350  *
1351  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1352  * @IFF_EBRIDGE: Ethernet bridging device
1353  * @IFF_BONDING: bonding master or slave
1354  * @IFF_ISATAP: ISATAP interface (RFC4214)
1355  * @IFF_WAN_HDLC: WAN HDLC device
1356  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1357  *	release skb->dst
1358  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1359  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1360  * @IFF_MACVLAN_PORT: device used as macvlan port
1361  * @IFF_BRIDGE_PORT: device used as bridge port
1362  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1363  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1364  * @IFF_UNICAST_FLT: Supports unicast filtering
1365  * @IFF_TEAM_PORT: device used as team port
1366  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1367  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1368  *	change when it's running
1369  * @IFF_MACVLAN: Macvlan device
1370  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1371  *	underlying stacked devices
1372  * @IFF_IPVLAN_MASTER: IPvlan master device
1373  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1374  * @IFF_L3MDEV_MASTER: device is an L3 master device
1375  * @IFF_NO_QUEUE: device can run without qdisc attached
1376  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1377  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1378  * @IFF_TEAM: device is a team device
1379  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1380  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1381  *	entity (i.e. the master device for bridged veth)
1382  * @IFF_MACSEC: device is a MACsec device
1383  */
1384 enum netdev_priv_flags {
1385 	IFF_802_1Q_VLAN			= 1<<0,
1386 	IFF_EBRIDGE			= 1<<1,
1387 	IFF_BONDING			= 1<<2,
1388 	IFF_ISATAP			= 1<<3,
1389 	IFF_WAN_HDLC			= 1<<4,
1390 	IFF_XMIT_DST_RELEASE		= 1<<5,
1391 	IFF_DONT_BRIDGE			= 1<<6,
1392 	IFF_DISABLE_NETPOLL		= 1<<7,
1393 	IFF_MACVLAN_PORT		= 1<<8,
1394 	IFF_BRIDGE_PORT			= 1<<9,
1395 	IFF_OVS_DATAPATH		= 1<<10,
1396 	IFF_TX_SKB_SHARING		= 1<<11,
1397 	IFF_UNICAST_FLT			= 1<<12,
1398 	IFF_TEAM_PORT			= 1<<13,
1399 	IFF_SUPP_NOFCS			= 1<<14,
1400 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1401 	IFF_MACVLAN			= 1<<16,
1402 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1403 	IFF_IPVLAN_MASTER		= 1<<18,
1404 	IFF_IPVLAN_SLAVE		= 1<<19,
1405 	IFF_L3MDEV_MASTER		= 1<<20,
1406 	IFF_NO_QUEUE			= 1<<21,
1407 	IFF_OPENVSWITCH			= 1<<22,
1408 	IFF_L3MDEV_SLAVE		= 1<<23,
1409 	IFF_TEAM			= 1<<24,
1410 	IFF_RXFH_CONFIGURED		= 1<<25,
1411 	IFF_PHONY_HEADROOM		= 1<<26,
1412 	IFF_MACSEC			= 1<<27,
1413 };
1414 
1415 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1416 #define IFF_EBRIDGE			IFF_EBRIDGE
1417 #define IFF_BONDING			IFF_BONDING
1418 #define IFF_ISATAP			IFF_ISATAP
1419 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1420 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1421 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1422 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1423 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1424 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1425 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1426 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1427 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1428 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1429 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1430 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1431 #define IFF_MACVLAN			IFF_MACVLAN
1432 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1433 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1434 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1435 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1436 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1437 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1438 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1439 #define IFF_TEAM			IFF_TEAM
1440 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1441 #define IFF_MACSEC			IFF_MACSEC
1442 
1443 /**
1444  *	struct net_device - The DEVICE structure.
1445  *
1446  *	Actually, this whole structure is a big mistake.  It mixes I/O
1447  *	data with strictly "high-level" data, and it has to know about
1448  *	almost every data structure used in the INET module.
1449  *
1450  *	@name:	This is the first field of the "visible" part of this structure
1451  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1452  *		of the interface.
1453  *
1454  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1455  *	@ifalias:	SNMP alias
1456  *	@mem_end:	Shared memory end
1457  *	@mem_start:	Shared memory start
1458  *	@base_addr:	Device I/O address
1459  *	@irq:		Device IRQ number
1460  *
1461  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1462  *
1463  *	@state:		Generic network queuing layer state, see netdev_state_t
1464  *	@dev_list:	The global list of network devices
1465  *	@napi_list:	List entry used for polling NAPI devices
1466  *	@unreg_list:	List entry  when we are unregistering the
1467  *			device; see the function unregister_netdev
1468  *	@close_list:	List entry used when we are closing the device
1469  *	@ptype_all:     Device-specific packet handlers for all protocols
1470  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1471  *
1472  *	@adj_list:	Directly linked devices, like slaves for bonding
1473  *	@features:	Currently active device features
1474  *	@hw_features:	User-changeable features
1475  *
1476  *	@wanted_features:	User-requested features
1477  *	@vlan_features:		Mask of features inheritable by VLAN devices
1478  *
1479  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1480  *				This field indicates what encapsulation
1481  *				offloads the hardware is capable of doing,
1482  *				and drivers will need to set them appropriately.
1483  *
1484  *	@mpls_features:	Mask of features inheritable by MPLS
1485  *
1486  *	@ifindex:	interface index
1487  *	@group:		The group the device belongs to
1488  *
1489  *	@stats:		Statistics struct, which was left as a legacy, use
1490  *			rtnl_link_stats64 instead
1491  *
1492  *	@rx_dropped:	Dropped packets by core network,
1493  *			do not use this in drivers
1494  *	@tx_dropped:	Dropped packets by core network,
1495  *			do not use this in drivers
1496  *	@rx_nohandler:	nohandler dropped packets by core network on
1497  *			inactive devices, do not use this in drivers
1498  *
1499  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1500  *				instead of ioctl,
1501  *				see <net/iw_handler.h> for details.
1502  *	@wireless_data:	Instance data managed by the core of wireless extensions
1503  *
1504  *	@netdev_ops:	Includes several pointers to callbacks,
1505  *			if one wants to override the ndo_*() functions
1506  *	@ethtool_ops:	Management operations
1507  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1508  *			discovery handling. Necessary for e.g. 6LoWPAN.
1509  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1510  *			of Layer 2 headers.
1511  *
1512  *	@flags:		Interface flags (a la BSD)
1513  *	@priv_flags:	Like 'flags' but invisible to userspace,
1514  *			see if.h for the definitions
1515  *	@gflags:	Global flags ( kept as legacy )
1516  *	@padded:	How much padding added by alloc_netdev()
1517  *	@operstate:	RFC2863 operstate
1518  *	@link_mode:	Mapping policy to operstate
1519  *	@if_port:	Selectable AUI, TP, ...
1520  *	@dma:		DMA channel
1521  *	@mtu:		Interface MTU value
1522  *	@min_mtu:	Interface Minimum MTU value
1523  *	@max_mtu:	Interface Maximum MTU value
1524  *	@type:		Interface hardware type
1525  *	@hard_header_len: Maximum hardware header length.
1526  *	@min_header_len:  Minimum hardware header length
1527  *
1528  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1529  *			  cases can this be guaranteed
1530  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1531  *			  cases can this be guaranteed. Some cases also use
1532  *			  LL_MAX_HEADER instead to allocate the skb
1533  *
1534  *	interface address info:
1535  *
1536  * 	@perm_addr:		Permanent hw address
1537  * 	@addr_assign_type:	Hw address assignment type
1538  * 	@addr_len:		Hardware address length
1539  *	@neigh_priv_len:	Used in neigh_alloc()
1540  * 	@dev_id:		Used to differentiate devices that share
1541  * 				the same link layer address
1542  * 	@dev_port:		Used to differentiate devices that share
1543  * 				the same function
1544  *	@addr_list_lock:	XXX: need comments on this one
1545  *	@uc_promisc:		Counter that indicates promiscuous mode
1546  *				has been enabled due to the need to listen to
1547  *				additional unicast addresses in a device that
1548  *				does not implement ndo_set_rx_mode()
1549  *	@uc:			unicast mac addresses
1550  *	@mc:			multicast mac addresses
1551  *	@dev_addrs:		list of device hw addresses
1552  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1553  *	@promiscuity:		Number of times the NIC is told to work in
1554  *				promiscuous mode; if it becomes 0 the NIC will
1555  *				exit promiscuous mode
1556  *	@allmulti:		Counter, enables or disables allmulticast mode
1557  *
1558  *	@vlan_info:	VLAN info
1559  *	@dsa_ptr:	dsa specific data
1560  *	@tipc_ptr:	TIPC specific data
1561  *	@atalk_ptr:	AppleTalk link
1562  *	@ip_ptr:	IPv4 specific data
1563  *	@dn_ptr:	DECnet specific data
1564  *	@ip6_ptr:	IPv6 specific data
1565  *	@ax25_ptr:	AX.25 specific data
1566  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1567  *
1568  *	@dev_addr:	Hw address (before bcast,
1569  *			because most packets are unicast)
1570  *
1571  *	@_rx:			Array of RX queues
1572  *	@num_rx_queues:		Number of RX queues
1573  *				allocated at register_netdev() time
1574  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1575  *
1576  *	@rx_handler:		handler for received packets
1577  *	@rx_handler_data: 	XXX: need comments on this one
1578  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1579  *				ingress processing
1580  *	@ingress_queue:		XXX: need comments on this one
1581  *	@broadcast:		hw bcast address
1582  *
1583  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1584  *			indexed by RX queue number. Assigned by driver.
1585  *			This must only be set if the ndo_rx_flow_steer
1586  *			operation is defined
1587  *	@index_hlist:		Device index hash chain
1588  *
1589  *	@_tx:			Array of TX queues
1590  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1591  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1592  *	@qdisc:			Root qdisc from userspace point of view
1593  *	@tx_queue_len:		Max frames per queue allowed
1594  *	@tx_global_lock: 	XXX: need comments on this one
1595  *
1596  *	@xps_maps:	XXX: need comments on this one
1597  *	@miniq_egress:		clsact qdisc specific data for
1598  *				egress processing
1599  *	@watchdog_timeo:	Represents the timeout that is used by
1600  *				the watchdog (see dev_watchdog())
1601  *	@watchdog_timer:	List of timers
1602  *
1603  *	@pcpu_refcnt:		Number of references to this device
1604  *	@todo_list:		Delayed register/unregister
1605  *	@link_watch_list:	XXX: need comments on this one
1606  *
1607  *	@reg_state:		Register/unregister state machine
1608  *	@dismantle:		Device is going to be freed
1609  *	@rtnl_link_state:	This enum represents the phases of creating
1610  *				a new link
1611  *
1612  *	@needs_free_netdev:	Should unregister perform free_netdev?
1613  *	@priv_destructor:	Called from unregister
1614  *	@npinfo:		XXX: need comments on this one
1615  * 	@nd_net:		Network namespace this network device is inside
1616  *
1617  * 	@ml_priv:	Mid-layer private
1618  * 	@lstats:	Loopback statistics
1619  * 	@tstats:	Tunnel statistics
1620  * 	@dstats:	Dummy statistics
1621  * 	@vstats:	Virtual ethernet statistics
1622  *
1623  *	@garp_port:	GARP
1624  *	@mrp_port:	MRP
1625  *
1626  *	@dev:		Class/net/name entry
1627  *	@sysfs_groups:	Space for optional device, statistics and wireless
1628  *			sysfs groups
1629  *
1630  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1631  *	@rtnl_link_ops:	Rtnl_link_ops
1632  *
1633  *	@gso_max_size:	Maximum size of generic segmentation offload
1634  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1635  *			NIC for GSO
1636  *
1637  *	@dcbnl_ops:	Data Center Bridging netlink ops
1638  *	@num_tc:	Number of traffic classes in the net device
1639  *	@tc_to_txq:	XXX: need comments on this one
1640  *	@prio_tc_map:	XXX: need comments on this one
1641  *
1642  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1643  *
1644  *	@priomap:	XXX: need comments on this one
1645  *	@phydev:	Physical device may attach itself
1646  *			for hardware timestamping
1647  *
1648  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1649  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1650  *
1651  *	@proto_down:	protocol port state information can be sent to the
1652  *			switch driver and used to set the phys state of the
1653  *			switch port.
1654  *
1655  *	FIXME: cleanup struct net_device such that network protocol info
1656  *	moves out.
1657  */
1658 
1659 struct net_device {
1660 	char			name[IFNAMSIZ];
1661 	struct hlist_node	name_hlist;
1662 	struct dev_ifalias	__rcu *ifalias;
1663 	/*
1664 	 *	I/O specific fields
1665 	 *	FIXME: Merge these and struct ifmap into one
1666 	 */
1667 	unsigned long		mem_end;
1668 	unsigned long		mem_start;
1669 	unsigned long		base_addr;
1670 	int			irq;
1671 
1672 	atomic_t		carrier_changes;
1673 
1674 	/*
1675 	 *	Some hardware also needs these fields (state,dev_list,
1676 	 *	napi_list,unreg_list,close_list) but they are not
1677 	 *	part of the usual set specified in Space.c.
1678 	 */
1679 
1680 	unsigned long		state;
1681 
1682 	struct list_head	dev_list;
1683 	struct list_head	napi_list;
1684 	struct list_head	unreg_list;
1685 	struct list_head	close_list;
1686 	struct list_head	ptype_all;
1687 	struct list_head	ptype_specific;
1688 
1689 	struct {
1690 		struct list_head upper;
1691 		struct list_head lower;
1692 	} adj_list;
1693 
1694 	netdev_features_t	features;
1695 	netdev_features_t	hw_features;
1696 	netdev_features_t	wanted_features;
1697 	netdev_features_t	vlan_features;
1698 	netdev_features_t	hw_enc_features;
1699 	netdev_features_t	mpls_features;
1700 	netdev_features_t	gso_partial_features;
1701 
1702 	int			ifindex;
1703 	int			group;
1704 
1705 	struct net_device_stats	stats;
1706 
1707 	atomic_long_t		rx_dropped;
1708 	atomic_long_t		tx_dropped;
1709 	atomic_long_t		rx_nohandler;
1710 
1711 #ifdef CONFIG_WIRELESS_EXT
1712 	const struct iw_handler_def *wireless_handlers;
1713 	struct iw_public_data	*wireless_data;
1714 #endif
1715 	const struct net_device_ops *netdev_ops;
1716 	const struct ethtool_ops *ethtool_ops;
1717 #ifdef CONFIG_NET_SWITCHDEV
1718 	const struct switchdev_ops *switchdev_ops;
1719 #endif
1720 #ifdef CONFIG_NET_L3_MASTER_DEV
1721 	const struct l3mdev_ops	*l3mdev_ops;
1722 #endif
1723 #if IS_ENABLED(CONFIG_IPV6)
1724 	const struct ndisc_ops *ndisc_ops;
1725 #endif
1726 
1727 #ifdef CONFIG_XFRM
1728 	const struct xfrmdev_ops *xfrmdev_ops;
1729 #endif
1730 
1731 	const struct header_ops *header_ops;
1732 
1733 	unsigned int		flags;
1734 	unsigned int		priv_flags;
1735 
1736 	unsigned short		gflags;
1737 	unsigned short		padded;
1738 
1739 	unsigned char		operstate;
1740 	unsigned char		link_mode;
1741 
1742 	unsigned char		if_port;
1743 	unsigned char		dma;
1744 
1745 	unsigned int		mtu;
1746 	unsigned int		min_mtu;
1747 	unsigned int		max_mtu;
1748 	unsigned short		type;
1749 	unsigned short		hard_header_len;
1750 	unsigned char		min_header_len;
1751 
1752 	unsigned short		needed_headroom;
1753 	unsigned short		needed_tailroom;
1754 
1755 	/* Interface address info. */
1756 	unsigned char		perm_addr[MAX_ADDR_LEN];
1757 	unsigned char		addr_assign_type;
1758 	unsigned char		addr_len;
1759 	unsigned short		neigh_priv_len;
1760 	unsigned short          dev_id;
1761 	unsigned short          dev_port;
1762 	spinlock_t		addr_list_lock;
1763 	unsigned char		name_assign_type;
1764 	bool			uc_promisc;
1765 	struct netdev_hw_addr_list	uc;
1766 	struct netdev_hw_addr_list	mc;
1767 	struct netdev_hw_addr_list	dev_addrs;
1768 
1769 #ifdef CONFIG_SYSFS
1770 	struct kset		*queues_kset;
1771 #endif
1772 	unsigned int		promiscuity;
1773 	unsigned int		allmulti;
1774 
1775 
1776 	/* Protocol-specific pointers */
1777 
1778 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1779 	struct vlan_info __rcu	*vlan_info;
1780 #endif
1781 #if IS_ENABLED(CONFIG_NET_DSA)
1782 	struct dsa_port		*dsa_ptr;
1783 #endif
1784 #if IS_ENABLED(CONFIG_TIPC)
1785 	struct tipc_bearer __rcu *tipc_ptr;
1786 #endif
1787 	void 			*atalk_ptr;
1788 	struct in_device __rcu	*ip_ptr;
1789 	struct dn_dev __rcu     *dn_ptr;
1790 	struct inet6_dev __rcu	*ip6_ptr;
1791 	void			*ax25_ptr;
1792 	struct wireless_dev	*ieee80211_ptr;
1793 	struct wpan_dev		*ieee802154_ptr;
1794 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1795 	struct mpls_dev __rcu	*mpls_ptr;
1796 #endif
1797 
1798 /*
1799  * Cache lines mostly used on receive path (including eth_type_trans())
1800  */
1801 	/* Interface address info used in eth_type_trans() */
1802 	unsigned char		*dev_addr;
1803 
1804 #ifdef CONFIG_SYSFS
1805 	struct netdev_rx_queue	*_rx;
1806 
1807 	unsigned int		num_rx_queues;
1808 	unsigned int		real_num_rx_queues;
1809 #endif
1810 
1811 	struct bpf_prog __rcu	*xdp_prog;
1812 	unsigned long		gro_flush_timeout;
1813 	rx_handler_func_t __rcu	*rx_handler;
1814 	void __rcu		*rx_handler_data;
1815 
1816 #ifdef CONFIG_NET_CLS_ACT
1817 	struct mini_Qdisc __rcu	*miniq_ingress;
1818 #endif
1819 	struct netdev_queue __rcu *ingress_queue;
1820 #ifdef CONFIG_NETFILTER_INGRESS
1821 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1822 #endif
1823 
1824 	unsigned char		broadcast[MAX_ADDR_LEN];
1825 #ifdef CONFIG_RFS_ACCEL
1826 	struct cpu_rmap		*rx_cpu_rmap;
1827 #endif
1828 	struct hlist_node	index_hlist;
1829 
1830 /*
1831  * Cache lines mostly used on transmit path
1832  */
1833 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1834 	unsigned int		num_tx_queues;
1835 	unsigned int		real_num_tx_queues;
1836 	struct Qdisc		*qdisc;
1837 #ifdef CONFIG_NET_SCHED
1838 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1839 #endif
1840 	unsigned int		tx_queue_len;
1841 	spinlock_t		tx_global_lock;
1842 	int			watchdog_timeo;
1843 
1844 #ifdef CONFIG_XPS
1845 	struct xps_dev_maps __rcu *xps_maps;
1846 #endif
1847 #ifdef CONFIG_NET_CLS_ACT
1848 	struct mini_Qdisc __rcu	*miniq_egress;
1849 #endif
1850 
1851 	/* These may be needed for future network-power-down code. */
1852 	struct timer_list	watchdog_timer;
1853 
1854 	int __percpu		*pcpu_refcnt;
1855 	struct list_head	todo_list;
1856 
1857 	struct list_head	link_watch_list;
1858 
1859 	enum { NETREG_UNINITIALIZED=0,
1860 	       NETREG_REGISTERED,	/* completed register_netdevice */
1861 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1862 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1863 	       NETREG_RELEASED,		/* called free_netdev */
1864 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1865 	} reg_state:8;
1866 
1867 	bool dismantle;
1868 
1869 	enum {
1870 		RTNL_LINK_INITIALIZED,
1871 		RTNL_LINK_INITIALIZING,
1872 	} rtnl_link_state:16;
1873 
1874 	bool needs_free_netdev;
1875 	void (*priv_destructor)(struct net_device *dev);
1876 
1877 #ifdef CONFIG_NETPOLL
1878 	struct netpoll_info __rcu	*npinfo;
1879 #endif
1880 
1881 	possible_net_t			nd_net;
1882 
1883 	/* mid-layer private */
1884 	union {
1885 		void					*ml_priv;
1886 		struct pcpu_lstats __percpu		*lstats;
1887 		struct pcpu_sw_netstats __percpu	*tstats;
1888 		struct pcpu_dstats __percpu		*dstats;
1889 		struct pcpu_vstats __percpu		*vstats;
1890 	};
1891 
1892 #if IS_ENABLED(CONFIG_GARP)
1893 	struct garp_port __rcu	*garp_port;
1894 #endif
1895 #if IS_ENABLED(CONFIG_MRP)
1896 	struct mrp_port __rcu	*mrp_port;
1897 #endif
1898 
1899 	struct device		dev;
1900 	const struct attribute_group *sysfs_groups[4];
1901 	const struct attribute_group *sysfs_rx_queue_group;
1902 
1903 	const struct rtnl_link_ops *rtnl_link_ops;
1904 
1905 	/* for setting kernel sock attribute on TCP connection setup */
1906 #define GSO_MAX_SIZE		65536
1907 	unsigned int		gso_max_size;
1908 #define GSO_MAX_SEGS		65535
1909 	u16			gso_max_segs;
1910 
1911 #ifdef CONFIG_DCB
1912 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1913 #endif
1914 	u8			num_tc;
1915 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1916 	u8			prio_tc_map[TC_BITMASK + 1];
1917 
1918 #if IS_ENABLED(CONFIG_FCOE)
1919 	unsigned int		fcoe_ddp_xid;
1920 #endif
1921 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1922 	struct netprio_map __rcu *priomap;
1923 #endif
1924 	struct phy_device	*phydev;
1925 	struct lock_class_key	*qdisc_tx_busylock;
1926 	struct lock_class_key	*qdisc_running_key;
1927 	bool			proto_down;
1928 };
1929 #define to_net_dev(d) container_of(d, struct net_device, dev)
1930 
1931 static inline bool netif_elide_gro(const struct net_device *dev)
1932 {
1933 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1934 		return true;
1935 	return false;
1936 }
1937 
1938 #define	NETDEV_ALIGN		32
1939 
1940 static inline
1941 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1942 {
1943 	return dev->prio_tc_map[prio & TC_BITMASK];
1944 }
1945 
1946 static inline
1947 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1948 {
1949 	if (tc >= dev->num_tc)
1950 		return -EINVAL;
1951 
1952 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1953 	return 0;
1954 }
1955 
1956 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1957 void netdev_reset_tc(struct net_device *dev);
1958 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1959 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1960 
1961 static inline
1962 int netdev_get_num_tc(struct net_device *dev)
1963 {
1964 	return dev->num_tc;
1965 }
1966 
1967 static inline
1968 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1969 					 unsigned int index)
1970 {
1971 	return &dev->_tx[index];
1972 }
1973 
1974 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1975 						    const struct sk_buff *skb)
1976 {
1977 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1978 }
1979 
1980 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1981 					    void (*f)(struct net_device *,
1982 						      struct netdev_queue *,
1983 						      void *),
1984 					    void *arg)
1985 {
1986 	unsigned int i;
1987 
1988 	for (i = 0; i < dev->num_tx_queues; i++)
1989 		f(dev, &dev->_tx[i], arg);
1990 }
1991 
1992 #define netdev_lockdep_set_classes(dev)				\
1993 {								\
1994 	static struct lock_class_key qdisc_tx_busylock_key;	\
1995 	static struct lock_class_key qdisc_running_key;		\
1996 	static struct lock_class_key qdisc_xmit_lock_key;	\
1997 	static struct lock_class_key dev_addr_list_lock_key;	\
1998 	unsigned int i;						\
1999 								\
2000 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2001 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2002 	lockdep_set_class(&(dev)->addr_list_lock,		\
2003 			  &dev_addr_list_lock_key); 		\
2004 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2005 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2006 				  &qdisc_xmit_lock_key);	\
2007 }
2008 
2009 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2010 				    struct sk_buff *skb,
2011 				    void *accel_priv);
2012 
2013 /* returns the headroom that the master device needs to take in account
2014  * when forwarding to this dev
2015  */
2016 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2017 {
2018 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2019 }
2020 
2021 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2022 {
2023 	if (dev->netdev_ops->ndo_set_rx_headroom)
2024 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2025 }
2026 
2027 /* set the device rx headroom to the dev's default */
2028 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2029 {
2030 	netdev_set_rx_headroom(dev, -1);
2031 }
2032 
2033 /*
2034  * Net namespace inlines
2035  */
2036 static inline
2037 struct net *dev_net(const struct net_device *dev)
2038 {
2039 	return read_pnet(&dev->nd_net);
2040 }
2041 
2042 static inline
2043 void dev_net_set(struct net_device *dev, struct net *net)
2044 {
2045 	write_pnet(&dev->nd_net, net);
2046 }
2047 
2048 /**
2049  *	netdev_priv - access network device private data
2050  *	@dev: network device
2051  *
2052  * Get network device private data
2053  */
2054 static inline void *netdev_priv(const struct net_device *dev)
2055 {
2056 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2057 }
2058 
2059 /* Set the sysfs physical device reference for the network logical device
2060  * if set prior to registration will cause a symlink during initialization.
2061  */
2062 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2063 
2064 /* Set the sysfs device type for the network logical device to allow
2065  * fine-grained identification of different network device types. For
2066  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2067  */
2068 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2069 
2070 /* Default NAPI poll() weight
2071  * Device drivers are strongly advised to not use bigger value
2072  */
2073 #define NAPI_POLL_WEIGHT 64
2074 
2075 /**
2076  *	netif_napi_add - initialize a NAPI context
2077  *	@dev:  network device
2078  *	@napi: NAPI context
2079  *	@poll: polling function
2080  *	@weight: default weight
2081  *
2082  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2083  * *any* of the other NAPI-related functions.
2084  */
2085 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2086 		    int (*poll)(struct napi_struct *, int), int weight);
2087 
2088 /**
2089  *	netif_tx_napi_add - initialize a NAPI context
2090  *	@dev:  network device
2091  *	@napi: NAPI context
2092  *	@poll: polling function
2093  *	@weight: default weight
2094  *
2095  * This variant of netif_napi_add() should be used from drivers using NAPI
2096  * to exclusively poll a TX queue.
2097  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2098  */
2099 static inline void netif_tx_napi_add(struct net_device *dev,
2100 				     struct napi_struct *napi,
2101 				     int (*poll)(struct napi_struct *, int),
2102 				     int weight)
2103 {
2104 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2105 	netif_napi_add(dev, napi, poll, weight);
2106 }
2107 
2108 /**
2109  *  netif_napi_del - remove a NAPI context
2110  *  @napi: NAPI context
2111  *
2112  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2113  */
2114 void netif_napi_del(struct napi_struct *napi);
2115 
2116 struct napi_gro_cb {
2117 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2118 	void	*frag0;
2119 
2120 	/* Length of frag0. */
2121 	unsigned int frag0_len;
2122 
2123 	/* This indicates where we are processing relative to skb->data. */
2124 	int	data_offset;
2125 
2126 	/* This is non-zero if the packet cannot be merged with the new skb. */
2127 	u16	flush;
2128 
2129 	/* Save the IP ID here and check when we get to the transport layer */
2130 	u16	flush_id;
2131 
2132 	/* Number of segments aggregated. */
2133 	u16	count;
2134 
2135 	/* Start offset for remote checksum offload */
2136 	u16	gro_remcsum_start;
2137 
2138 	/* jiffies when first packet was created/queued */
2139 	unsigned long age;
2140 
2141 	/* Used in ipv6_gro_receive() and foo-over-udp */
2142 	u16	proto;
2143 
2144 	/* This is non-zero if the packet may be of the same flow. */
2145 	u8	same_flow:1;
2146 
2147 	/* Used in tunnel GRO receive */
2148 	u8	encap_mark:1;
2149 
2150 	/* GRO checksum is valid */
2151 	u8	csum_valid:1;
2152 
2153 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2154 	u8	csum_cnt:3;
2155 
2156 	/* Free the skb? */
2157 	u8	free:2;
2158 #define NAPI_GRO_FREE		  1
2159 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2160 
2161 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2162 	u8	is_ipv6:1;
2163 
2164 	/* Used in GRE, set in fou/gue_gro_receive */
2165 	u8	is_fou:1;
2166 
2167 	/* Used to determine if flush_id can be ignored */
2168 	u8	is_atomic:1;
2169 
2170 	/* Number of gro_receive callbacks this packet already went through */
2171 	u8 recursion_counter:4;
2172 
2173 	/* 1 bit hole */
2174 
2175 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2176 	__wsum	csum;
2177 
2178 	/* used in skb_gro_receive() slow path */
2179 	struct sk_buff *last;
2180 };
2181 
2182 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2183 
2184 #define GRO_RECURSION_LIMIT 15
2185 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2186 {
2187 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2188 }
2189 
2190 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2191 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2192 						struct sk_buff **head,
2193 						struct sk_buff *skb)
2194 {
2195 	if (unlikely(gro_recursion_inc_test(skb))) {
2196 		NAPI_GRO_CB(skb)->flush |= 1;
2197 		return NULL;
2198 	}
2199 
2200 	return cb(head, skb);
2201 }
2202 
2203 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2204 					     struct sk_buff *);
2205 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2206 						   struct sock *sk,
2207 						   struct sk_buff **head,
2208 						   struct sk_buff *skb)
2209 {
2210 	if (unlikely(gro_recursion_inc_test(skb))) {
2211 		NAPI_GRO_CB(skb)->flush |= 1;
2212 		return NULL;
2213 	}
2214 
2215 	return cb(sk, head, skb);
2216 }
2217 
2218 struct packet_type {
2219 	__be16			type;	/* This is really htons(ether_type). */
2220 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2221 	int			(*func) (struct sk_buff *,
2222 					 struct net_device *,
2223 					 struct packet_type *,
2224 					 struct net_device *);
2225 	bool			(*id_match)(struct packet_type *ptype,
2226 					    struct sock *sk);
2227 	void			*af_packet_priv;
2228 	struct list_head	list;
2229 };
2230 
2231 struct offload_callbacks {
2232 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2233 						netdev_features_t features);
2234 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2235 						 struct sk_buff *skb);
2236 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2237 };
2238 
2239 struct packet_offload {
2240 	__be16			 type;	/* This is really htons(ether_type). */
2241 	u16			 priority;
2242 	struct offload_callbacks callbacks;
2243 	struct list_head	 list;
2244 };
2245 
2246 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2247 struct pcpu_sw_netstats {
2248 	u64     rx_packets;
2249 	u64     rx_bytes;
2250 	u64     tx_packets;
2251 	u64     tx_bytes;
2252 	struct u64_stats_sync   syncp;
2253 };
2254 
2255 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2256 ({									\
2257 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2258 	if (pcpu_stats)	{						\
2259 		int __cpu;						\
2260 		for_each_possible_cpu(__cpu) {				\
2261 			typeof(type) *stat;				\
2262 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2263 			u64_stats_init(&stat->syncp);			\
2264 		}							\
2265 	}								\
2266 	pcpu_stats;							\
2267 })
2268 
2269 #define netdev_alloc_pcpu_stats(type)					\
2270 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2271 
2272 enum netdev_lag_tx_type {
2273 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2274 	NETDEV_LAG_TX_TYPE_RANDOM,
2275 	NETDEV_LAG_TX_TYPE_BROADCAST,
2276 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2277 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2278 	NETDEV_LAG_TX_TYPE_HASH,
2279 };
2280 
2281 struct netdev_lag_upper_info {
2282 	enum netdev_lag_tx_type tx_type;
2283 };
2284 
2285 struct netdev_lag_lower_state_info {
2286 	u8 link_up : 1,
2287 	   tx_enabled : 1;
2288 };
2289 
2290 #include <linux/notifier.h>
2291 
2292 /* netdevice notifier chain. Please remember to update the rtnetlink
2293  * notification exclusion list in rtnetlink_event() when adding new
2294  * types.
2295  */
2296 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2297 #define NETDEV_DOWN	0x0002
2298 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2299 				   detected a hardware crash and restarted
2300 				   - we can use this eg to kick tcp sessions
2301 				   once done */
2302 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2303 #define NETDEV_REGISTER 0x0005
2304 #define NETDEV_UNREGISTER	0x0006
2305 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2306 #define NETDEV_CHANGEADDR	0x0008
2307 #define NETDEV_GOING_DOWN	0x0009
2308 #define NETDEV_CHANGENAME	0x000A
2309 #define NETDEV_FEAT_CHANGE	0x000B
2310 #define NETDEV_BONDING_FAILOVER 0x000C
2311 #define NETDEV_PRE_UP		0x000D
2312 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2313 #define NETDEV_POST_TYPE_CHANGE	0x000F
2314 #define NETDEV_POST_INIT	0x0010
2315 #define NETDEV_UNREGISTER_FINAL 0x0011
2316 #define NETDEV_RELEASE		0x0012
2317 #define NETDEV_NOTIFY_PEERS	0x0013
2318 #define NETDEV_JOIN		0x0014
2319 #define NETDEV_CHANGEUPPER	0x0015
2320 #define NETDEV_RESEND_IGMP	0x0016
2321 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2322 #define NETDEV_CHANGEINFODATA	0x0018
2323 #define NETDEV_BONDING_INFO	0x0019
2324 #define NETDEV_PRECHANGEUPPER	0x001A
2325 #define NETDEV_CHANGELOWERSTATE	0x001B
2326 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2327 #define NETDEV_UDP_TUNNEL_DROP_INFO	0x001D
2328 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2329 
2330 int register_netdevice_notifier(struct notifier_block *nb);
2331 int unregister_netdevice_notifier(struct notifier_block *nb);
2332 
2333 struct netdev_notifier_info {
2334 	struct net_device	*dev;
2335 	struct netlink_ext_ack	*extack;
2336 };
2337 
2338 struct netdev_notifier_change_info {
2339 	struct netdev_notifier_info info; /* must be first */
2340 	unsigned int flags_changed;
2341 };
2342 
2343 struct netdev_notifier_changeupper_info {
2344 	struct netdev_notifier_info info; /* must be first */
2345 	struct net_device *upper_dev; /* new upper dev */
2346 	bool master; /* is upper dev master */
2347 	bool linking; /* is the notification for link or unlink */
2348 	void *upper_info; /* upper dev info */
2349 };
2350 
2351 struct netdev_notifier_changelowerstate_info {
2352 	struct netdev_notifier_info info; /* must be first */
2353 	void *lower_state_info; /* is lower dev state */
2354 };
2355 
2356 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2357 					     struct net_device *dev)
2358 {
2359 	info->dev = dev;
2360 	info->extack = NULL;
2361 }
2362 
2363 static inline struct net_device *
2364 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2365 {
2366 	return info->dev;
2367 }
2368 
2369 static inline struct netlink_ext_ack *
2370 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2371 {
2372 	return info->extack;
2373 }
2374 
2375 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2376 
2377 
2378 extern rwlock_t				dev_base_lock;		/* Device list lock */
2379 
2380 #define for_each_netdev(net, d)		\
2381 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2382 #define for_each_netdev_reverse(net, d)	\
2383 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2384 #define for_each_netdev_rcu(net, d)		\
2385 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2386 #define for_each_netdev_safe(net, d, n)	\
2387 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2388 #define for_each_netdev_continue(net, d)		\
2389 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2390 #define for_each_netdev_continue_rcu(net, d)		\
2391 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2392 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2393 		for_each_netdev_rcu(&init_net, slave)	\
2394 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2395 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2396 
2397 static inline struct net_device *next_net_device(struct net_device *dev)
2398 {
2399 	struct list_head *lh;
2400 	struct net *net;
2401 
2402 	net = dev_net(dev);
2403 	lh = dev->dev_list.next;
2404 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2405 }
2406 
2407 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2408 {
2409 	struct list_head *lh;
2410 	struct net *net;
2411 
2412 	net = dev_net(dev);
2413 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2414 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2415 }
2416 
2417 static inline struct net_device *first_net_device(struct net *net)
2418 {
2419 	return list_empty(&net->dev_base_head) ? NULL :
2420 		net_device_entry(net->dev_base_head.next);
2421 }
2422 
2423 static inline struct net_device *first_net_device_rcu(struct net *net)
2424 {
2425 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2426 
2427 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2428 }
2429 
2430 int netdev_boot_setup_check(struct net_device *dev);
2431 unsigned long netdev_boot_base(const char *prefix, int unit);
2432 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2433 				       const char *hwaddr);
2434 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2435 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2436 void dev_add_pack(struct packet_type *pt);
2437 void dev_remove_pack(struct packet_type *pt);
2438 void __dev_remove_pack(struct packet_type *pt);
2439 void dev_add_offload(struct packet_offload *po);
2440 void dev_remove_offload(struct packet_offload *po);
2441 
2442 int dev_get_iflink(const struct net_device *dev);
2443 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2444 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2445 				      unsigned short mask);
2446 struct net_device *dev_get_by_name(struct net *net, const char *name);
2447 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2448 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2449 int dev_alloc_name(struct net_device *dev, const char *name);
2450 int dev_open(struct net_device *dev);
2451 void dev_close(struct net_device *dev);
2452 void dev_close_many(struct list_head *head, bool unlink);
2453 void dev_disable_lro(struct net_device *dev);
2454 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2455 int dev_queue_xmit(struct sk_buff *skb);
2456 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2457 int register_netdevice(struct net_device *dev);
2458 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2459 void unregister_netdevice_many(struct list_head *head);
2460 static inline void unregister_netdevice(struct net_device *dev)
2461 {
2462 	unregister_netdevice_queue(dev, NULL);
2463 }
2464 
2465 int netdev_refcnt_read(const struct net_device *dev);
2466 void free_netdev(struct net_device *dev);
2467 void netdev_freemem(struct net_device *dev);
2468 void synchronize_net(void);
2469 int init_dummy_netdev(struct net_device *dev);
2470 
2471 DECLARE_PER_CPU(int, xmit_recursion);
2472 #define XMIT_RECURSION_LIMIT	10
2473 
2474 static inline int dev_recursion_level(void)
2475 {
2476 	return this_cpu_read(xmit_recursion);
2477 }
2478 
2479 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2480 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2481 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2482 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2483 int netdev_get_name(struct net *net, char *name, int ifindex);
2484 int dev_restart(struct net_device *dev);
2485 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2486 
2487 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2488 {
2489 	return NAPI_GRO_CB(skb)->data_offset;
2490 }
2491 
2492 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2493 {
2494 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2495 }
2496 
2497 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2498 {
2499 	NAPI_GRO_CB(skb)->data_offset += len;
2500 }
2501 
2502 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2503 					unsigned int offset)
2504 {
2505 	return NAPI_GRO_CB(skb)->frag0 + offset;
2506 }
2507 
2508 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2509 {
2510 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2511 }
2512 
2513 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2514 {
2515 	NAPI_GRO_CB(skb)->frag0 = NULL;
2516 	NAPI_GRO_CB(skb)->frag0_len = 0;
2517 }
2518 
2519 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2520 					unsigned int offset)
2521 {
2522 	if (!pskb_may_pull(skb, hlen))
2523 		return NULL;
2524 
2525 	skb_gro_frag0_invalidate(skb);
2526 	return skb->data + offset;
2527 }
2528 
2529 static inline void *skb_gro_network_header(struct sk_buff *skb)
2530 {
2531 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2532 	       skb_network_offset(skb);
2533 }
2534 
2535 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2536 					const void *start, unsigned int len)
2537 {
2538 	if (NAPI_GRO_CB(skb)->csum_valid)
2539 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2540 						  csum_partial(start, len, 0));
2541 }
2542 
2543 /* GRO checksum functions. These are logical equivalents of the normal
2544  * checksum functions (in skbuff.h) except that they operate on the GRO
2545  * offsets and fields in sk_buff.
2546  */
2547 
2548 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2549 
2550 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2551 {
2552 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2553 }
2554 
2555 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2556 						      bool zero_okay,
2557 						      __sum16 check)
2558 {
2559 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2560 		skb_checksum_start_offset(skb) <
2561 		 skb_gro_offset(skb)) &&
2562 		!skb_at_gro_remcsum_start(skb) &&
2563 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2564 		(!zero_okay || check));
2565 }
2566 
2567 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2568 							   __wsum psum)
2569 {
2570 	if (NAPI_GRO_CB(skb)->csum_valid &&
2571 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2572 		return 0;
2573 
2574 	NAPI_GRO_CB(skb)->csum = psum;
2575 
2576 	return __skb_gro_checksum_complete(skb);
2577 }
2578 
2579 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2580 {
2581 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2582 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2583 		NAPI_GRO_CB(skb)->csum_cnt--;
2584 	} else {
2585 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2586 		 * verified a new top level checksum or an encapsulated one
2587 		 * during GRO. This saves work if we fallback to normal path.
2588 		 */
2589 		__skb_incr_checksum_unnecessary(skb);
2590 	}
2591 }
2592 
2593 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2594 				    compute_pseudo)			\
2595 ({									\
2596 	__sum16 __ret = 0;						\
2597 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2598 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2599 				compute_pseudo(skb, proto));		\
2600 	if (!__ret)							\
2601 		skb_gro_incr_csum_unnecessary(skb);			\
2602 	__ret;								\
2603 })
2604 
2605 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2606 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2607 
2608 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2609 					     compute_pseudo)		\
2610 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2611 
2612 #define skb_gro_checksum_simple_validate(skb)				\
2613 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2614 
2615 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2616 {
2617 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2618 		!NAPI_GRO_CB(skb)->csum_valid);
2619 }
2620 
2621 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2622 					      __sum16 check, __wsum pseudo)
2623 {
2624 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2625 	NAPI_GRO_CB(skb)->csum_valid = 1;
2626 }
2627 
2628 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2629 do {									\
2630 	if (__skb_gro_checksum_convert_check(skb))			\
2631 		__skb_gro_checksum_convert(skb, check,			\
2632 					   compute_pseudo(skb, proto));	\
2633 } while (0)
2634 
2635 struct gro_remcsum {
2636 	int offset;
2637 	__wsum delta;
2638 };
2639 
2640 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2641 {
2642 	grc->offset = 0;
2643 	grc->delta = 0;
2644 }
2645 
2646 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2647 					    unsigned int off, size_t hdrlen,
2648 					    int start, int offset,
2649 					    struct gro_remcsum *grc,
2650 					    bool nopartial)
2651 {
2652 	__wsum delta;
2653 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2654 
2655 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2656 
2657 	if (!nopartial) {
2658 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2659 		return ptr;
2660 	}
2661 
2662 	ptr = skb_gro_header_fast(skb, off);
2663 	if (skb_gro_header_hard(skb, off + plen)) {
2664 		ptr = skb_gro_header_slow(skb, off + plen, off);
2665 		if (!ptr)
2666 			return NULL;
2667 	}
2668 
2669 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2670 			       start, offset);
2671 
2672 	/* Adjust skb->csum since we changed the packet */
2673 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2674 
2675 	grc->offset = off + hdrlen + offset;
2676 	grc->delta = delta;
2677 
2678 	return ptr;
2679 }
2680 
2681 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2682 					   struct gro_remcsum *grc)
2683 {
2684 	void *ptr;
2685 	size_t plen = grc->offset + sizeof(u16);
2686 
2687 	if (!grc->delta)
2688 		return;
2689 
2690 	ptr = skb_gro_header_fast(skb, grc->offset);
2691 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2692 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2693 		if (!ptr)
2694 			return;
2695 	}
2696 
2697 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2698 }
2699 
2700 #ifdef CONFIG_XFRM_OFFLOAD
2701 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2702 {
2703 	if (PTR_ERR(pp) != -EINPROGRESS)
2704 		NAPI_GRO_CB(skb)->flush |= flush;
2705 }
2706 #else
2707 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2708 {
2709 	NAPI_GRO_CB(skb)->flush |= flush;
2710 }
2711 #endif
2712 
2713 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2714 				  unsigned short type,
2715 				  const void *daddr, const void *saddr,
2716 				  unsigned int len)
2717 {
2718 	if (!dev->header_ops || !dev->header_ops->create)
2719 		return 0;
2720 
2721 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2722 }
2723 
2724 static inline int dev_parse_header(const struct sk_buff *skb,
2725 				   unsigned char *haddr)
2726 {
2727 	const struct net_device *dev = skb->dev;
2728 
2729 	if (!dev->header_ops || !dev->header_ops->parse)
2730 		return 0;
2731 	return dev->header_ops->parse(skb, haddr);
2732 }
2733 
2734 /* ll_header must have at least hard_header_len allocated */
2735 static inline bool dev_validate_header(const struct net_device *dev,
2736 				       char *ll_header, int len)
2737 {
2738 	if (likely(len >= dev->hard_header_len))
2739 		return true;
2740 	if (len < dev->min_header_len)
2741 		return false;
2742 
2743 	if (capable(CAP_SYS_RAWIO)) {
2744 		memset(ll_header + len, 0, dev->hard_header_len - len);
2745 		return true;
2746 	}
2747 
2748 	if (dev->header_ops && dev->header_ops->validate)
2749 		return dev->header_ops->validate(ll_header, len);
2750 
2751 	return false;
2752 }
2753 
2754 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2755 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2756 static inline int unregister_gifconf(unsigned int family)
2757 {
2758 	return register_gifconf(family, NULL);
2759 }
2760 
2761 #ifdef CONFIG_NET_FLOW_LIMIT
2762 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2763 struct sd_flow_limit {
2764 	u64			count;
2765 	unsigned int		num_buckets;
2766 	unsigned int		history_head;
2767 	u16			history[FLOW_LIMIT_HISTORY];
2768 	u8			buckets[];
2769 };
2770 
2771 extern int netdev_flow_limit_table_len;
2772 #endif /* CONFIG_NET_FLOW_LIMIT */
2773 
2774 /*
2775  * Incoming packets are placed on per-CPU queues
2776  */
2777 struct softnet_data {
2778 	struct list_head	poll_list;
2779 	struct sk_buff_head	process_queue;
2780 
2781 	/* stats */
2782 	unsigned int		processed;
2783 	unsigned int		time_squeeze;
2784 	unsigned int		received_rps;
2785 #ifdef CONFIG_RPS
2786 	struct softnet_data	*rps_ipi_list;
2787 #endif
2788 #ifdef CONFIG_NET_FLOW_LIMIT
2789 	struct sd_flow_limit __rcu *flow_limit;
2790 #endif
2791 	struct Qdisc		*output_queue;
2792 	struct Qdisc		**output_queue_tailp;
2793 	struct sk_buff		*completion_queue;
2794 
2795 #ifdef CONFIG_RPS
2796 	/* input_queue_head should be written by cpu owning this struct,
2797 	 * and only read by other cpus. Worth using a cache line.
2798 	 */
2799 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2800 
2801 	/* Elements below can be accessed between CPUs for RPS/RFS */
2802 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2803 	struct softnet_data	*rps_ipi_next;
2804 	unsigned int		cpu;
2805 	unsigned int		input_queue_tail;
2806 #endif
2807 	unsigned int		dropped;
2808 	struct sk_buff_head	input_pkt_queue;
2809 	struct napi_struct	backlog;
2810 
2811 };
2812 
2813 static inline void input_queue_head_incr(struct softnet_data *sd)
2814 {
2815 #ifdef CONFIG_RPS
2816 	sd->input_queue_head++;
2817 #endif
2818 }
2819 
2820 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2821 					      unsigned int *qtail)
2822 {
2823 #ifdef CONFIG_RPS
2824 	*qtail = ++sd->input_queue_tail;
2825 #endif
2826 }
2827 
2828 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2829 
2830 void __netif_schedule(struct Qdisc *q);
2831 void netif_schedule_queue(struct netdev_queue *txq);
2832 
2833 static inline void netif_tx_schedule_all(struct net_device *dev)
2834 {
2835 	unsigned int i;
2836 
2837 	for (i = 0; i < dev->num_tx_queues; i++)
2838 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2839 }
2840 
2841 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2842 {
2843 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2844 }
2845 
2846 /**
2847  *	netif_start_queue - allow transmit
2848  *	@dev: network device
2849  *
2850  *	Allow upper layers to call the device hard_start_xmit routine.
2851  */
2852 static inline void netif_start_queue(struct net_device *dev)
2853 {
2854 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2855 }
2856 
2857 static inline void netif_tx_start_all_queues(struct net_device *dev)
2858 {
2859 	unsigned int i;
2860 
2861 	for (i = 0; i < dev->num_tx_queues; i++) {
2862 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2863 		netif_tx_start_queue(txq);
2864 	}
2865 }
2866 
2867 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2868 
2869 /**
2870  *	netif_wake_queue - restart transmit
2871  *	@dev: network device
2872  *
2873  *	Allow upper layers to call the device hard_start_xmit routine.
2874  *	Used for flow control when transmit resources are available.
2875  */
2876 static inline void netif_wake_queue(struct net_device *dev)
2877 {
2878 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2879 }
2880 
2881 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2882 {
2883 	unsigned int i;
2884 
2885 	for (i = 0; i < dev->num_tx_queues; i++) {
2886 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2887 		netif_tx_wake_queue(txq);
2888 	}
2889 }
2890 
2891 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2892 {
2893 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2894 }
2895 
2896 /**
2897  *	netif_stop_queue - stop transmitted packets
2898  *	@dev: network device
2899  *
2900  *	Stop upper layers calling the device hard_start_xmit routine.
2901  *	Used for flow control when transmit resources are unavailable.
2902  */
2903 static inline void netif_stop_queue(struct net_device *dev)
2904 {
2905 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2906 }
2907 
2908 void netif_tx_stop_all_queues(struct net_device *dev);
2909 
2910 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2911 {
2912 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2913 }
2914 
2915 /**
2916  *	netif_queue_stopped - test if transmit queue is flowblocked
2917  *	@dev: network device
2918  *
2919  *	Test if transmit queue on device is currently unable to send.
2920  */
2921 static inline bool netif_queue_stopped(const struct net_device *dev)
2922 {
2923 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2924 }
2925 
2926 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2927 {
2928 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2929 }
2930 
2931 static inline bool
2932 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2933 {
2934 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2935 }
2936 
2937 static inline bool
2938 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2939 {
2940 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2941 }
2942 
2943 /**
2944  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2945  *	@dev_queue: pointer to transmit queue
2946  *
2947  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2948  * to give appropriate hint to the CPU.
2949  */
2950 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2951 {
2952 #ifdef CONFIG_BQL
2953 	prefetchw(&dev_queue->dql.num_queued);
2954 #endif
2955 }
2956 
2957 /**
2958  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2959  *	@dev_queue: pointer to transmit queue
2960  *
2961  * BQL enabled drivers might use this helper in their TX completion path,
2962  * to give appropriate hint to the CPU.
2963  */
2964 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2965 {
2966 #ifdef CONFIG_BQL
2967 	prefetchw(&dev_queue->dql.limit);
2968 #endif
2969 }
2970 
2971 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2972 					unsigned int bytes)
2973 {
2974 #ifdef CONFIG_BQL
2975 	dql_queued(&dev_queue->dql, bytes);
2976 
2977 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2978 		return;
2979 
2980 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2981 
2982 	/*
2983 	 * The XOFF flag must be set before checking the dql_avail below,
2984 	 * because in netdev_tx_completed_queue we update the dql_completed
2985 	 * before checking the XOFF flag.
2986 	 */
2987 	smp_mb();
2988 
2989 	/* check again in case another CPU has just made room avail */
2990 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2991 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2992 #endif
2993 }
2994 
2995 /**
2996  * 	netdev_sent_queue - report the number of bytes queued to hardware
2997  * 	@dev: network device
2998  * 	@bytes: number of bytes queued to the hardware device queue
2999  *
3000  * 	Report the number of bytes queued for sending/completion to the network
3001  * 	device hardware queue. @bytes should be a good approximation and should
3002  * 	exactly match netdev_completed_queue() @bytes
3003  */
3004 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3005 {
3006 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3007 }
3008 
3009 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3010 					     unsigned int pkts, unsigned int bytes)
3011 {
3012 #ifdef CONFIG_BQL
3013 	if (unlikely(!bytes))
3014 		return;
3015 
3016 	dql_completed(&dev_queue->dql, bytes);
3017 
3018 	/*
3019 	 * Without the memory barrier there is a small possiblity that
3020 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3021 	 * be stopped forever
3022 	 */
3023 	smp_mb();
3024 
3025 	if (dql_avail(&dev_queue->dql) < 0)
3026 		return;
3027 
3028 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3029 		netif_schedule_queue(dev_queue);
3030 #endif
3031 }
3032 
3033 /**
3034  * 	netdev_completed_queue - report bytes and packets completed by device
3035  * 	@dev: network device
3036  * 	@pkts: actual number of packets sent over the medium
3037  * 	@bytes: actual number of bytes sent over the medium
3038  *
3039  * 	Report the number of bytes and packets transmitted by the network device
3040  * 	hardware queue over the physical medium, @bytes must exactly match the
3041  * 	@bytes amount passed to netdev_sent_queue()
3042  */
3043 static inline void netdev_completed_queue(struct net_device *dev,
3044 					  unsigned int pkts, unsigned int bytes)
3045 {
3046 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3047 }
3048 
3049 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3050 {
3051 #ifdef CONFIG_BQL
3052 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3053 	dql_reset(&q->dql);
3054 #endif
3055 }
3056 
3057 /**
3058  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3059  * 	@dev_queue: network device
3060  *
3061  * 	Reset the bytes and packet count of a network device and clear the
3062  * 	software flow control OFF bit for this network device
3063  */
3064 static inline void netdev_reset_queue(struct net_device *dev_queue)
3065 {
3066 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3067 }
3068 
3069 /**
3070  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3071  * 	@dev: network device
3072  * 	@queue_index: given tx queue index
3073  *
3074  * 	Returns 0 if given tx queue index >= number of device tx queues,
3075  * 	otherwise returns the originally passed tx queue index.
3076  */
3077 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3078 {
3079 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3080 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3081 				     dev->name, queue_index,
3082 				     dev->real_num_tx_queues);
3083 		return 0;
3084 	}
3085 
3086 	return queue_index;
3087 }
3088 
3089 /**
3090  *	netif_running - test if up
3091  *	@dev: network device
3092  *
3093  *	Test if the device has been brought up.
3094  */
3095 static inline bool netif_running(const struct net_device *dev)
3096 {
3097 	return test_bit(__LINK_STATE_START, &dev->state);
3098 }
3099 
3100 /*
3101  * Routines to manage the subqueues on a device.  We only need start,
3102  * stop, and a check if it's stopped.  All other device management is
3103  * done at the overall netdevice level.
3104  * Also test the device if we're multiqueue.
3105  */
3106 
3107 /**
3108  *	netif_start_subqueue - allow sending packets on subqueue
3109  *	@dev: network device
3110  *	@queue_index: sub queue index
3111  *
3112  * Start individual transmit queue of a device with multiple transmit queues.
3113  */
3114 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3115 {
3116 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3117 
3118 	netif_tx_start_queue(txq);
3119 }
3120 
3121 /**
3122  *	netif_stop_subqueue - stop sending packets on subqueue
3123  *	@dev: network device
3124  *	@queue_index: sub queue index
3125  *
3126  * Stop individual transmit queue of a device with multiple transmit queues.
3127  */
3128 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3129 {
3130 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3131 	netif_tx_stop_queue(txq);
3132 }
3133 
3134 /**
3135  *	netif_subqueue_stopped - test status of subqueue
3136  *	@dev: network device
3137  *	@queue_index: sub queue index
3138  *
3139  * Check individual transmit queue of a device with multiple transmit queues.
3140  */
3141 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3142 					    u16 queue_index)
3143 {
3144 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3145 
3146 	return netif_tx_queue_stopped(txq);
3147 }
3148 
3149 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3150 					  struct sk_buff *skb)
3151 {
3152 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3153 }
3154 
3155 /**
3156  *	netif_wake_subqueue - allow sending packets on subqueue
3157  *	@dev: network device
3158  *	@queue_index: sub queue index
3159  *
3160  * Resume individual transmit queue of a device with multiple transmit queues.
3161  */
3162 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3163 {
3164 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3165 
3166 	netif_tx_wake_queue(txq);
3167 }
3168 
3169 #ifdef CONFIG_XPS
3170 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3171 			u16 index);
3172 #else
3173 static inline int netif_set_xps_queue(struct net_device *dev,
3174 				      const struct cpumask *mask,
3175 				      u16 index)
3176 {
3177 	return 0;
3178 }
3179 #endif
3180 
3181 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3182 		  unsigned int num_tx_queues);
3183 
3184 /*
3185  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3186  * as a distribution range limit for the returned value.
3187  */
3188 static inline u16 skb_tx_hash(const struct net_device *dev,
3189 			      struct sk_buff *skb)
3190 {
3191 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3192 }
3193 
3194 /**
3195  *	netif_is_multiqueue - test if device has multiple transmit queues
3196  *	@dev: network device
3197  *
3198  * Check if device has multiple transmit queues
3199  */
3200 static inline bool netif_is_multiqueue(const struct net_device *dev)
3201 {
3202 	return dev->num_tx_queues > 1;
3203 }
3204 
3205 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3206 
3207 #ifdef CONFIG_SYSFS
3208 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3209 #else
3210 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3211 						unsigned int rxq)
3212 {
3213 	return 0;
3214 }
3215 #endif
3216 
3217 #ifdef CONFIG_SYSFS
3218 static inline unsigned int get_netdev_rx_queue_index(
3219 		struct netdev_rx_queue *queue)
3220 {
3221 	struct net_device *dev = queue->dev;
3222 	int index = queue - dev->_rx;
3223 
3224 	BUG_ON(index >= dev->num_rx_queues);
3225 	return index;
3226 }
3227 #endif
3228 
3229 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3230 int netif_get_num_default_rss_queues(void);
3231 
3232 enum skb_free_reason {
3233 	SKB_REASON_CONSUMED,
3234 	SKB_REASON_DROPPED,
3235 };
3236 
3237 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3238 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3239 
3240 /*
3241  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3242  * interrupt context or with hardware interrupts being disabled.
3243  * (in_irq() || irqs_disabled())
3244  *
3245  * We provide four helpers that can be used in following contexts :
3246  *
3247  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3248  *  replacing kfree_skb(skb)
3249  *
3250  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3251  *  Typically used in place of consume_skb(skb) in TX completion path
3252  *
3253  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3254  *  replacing kfree_skb(skb)
3255  *
3256  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3257  *  and consumed a packet. Used in place of consume_skb(skb)
3258  */
3259 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3260 {
3261 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3262 }
3263 
3264 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3265 {
3266 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3267 }
3268 
3269 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3270 {
3271 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3272 }
3273 
3274 static inline void dev_consume_skb_any(struct sk_buff *skb)
3275 {
3276 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3277 }
3278 
3279 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3280 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3281 int netif_rx(struct sk_buff *skb);
3282 int netif_rx_ni(struct sk_buff *skb);
3283 int netif_receive_skb(struct sk_buff *skb);
3284 int netif_receive_skb_core(struct sk_buff *skb);
3285 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3286 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3287 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3288 gro_result_t napi_gro_frags(struct napi_struct *napi);
3289 struct packet_offload *gro_find_receive_by_type(__be16 type);
3290 struct packet_offload *gro_find_complete_by_type(__be16 type);
3291 
3292 static inline void napi_free_frags(struct napi_struct *napi)
3293 {
3294 	kfree_skb(napi->skb);
3295 	napi->skb = NULL;
3296 }
3297 
3298 bool netdev_is_rx_handler_busy(struct net_device *dev);
3299 int netdev_rx_handler_register(struct net_device *dev,
3300 			       rx_handler_func_t *rx_handler,
3301 			       void *rx_handler_data);
3302 void netdev_rx_handler_unregister(struct net_device *dev);
3303 
3304 bool dev_valid_name(const char *name);
3305 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3306 int dev_ethtool(struct net *net, struct ifreq *);
3307 unsigned int dev_get_flags(const struct net_device *);
3308 int __dev_change_flags(struct net_device *, unsigned int flags);
3309 int dev_change_flags(struct net_device *, unsigned int);
3310 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3311 			unsigned int gchanges);
3312 int dev_change_name(struct net_device *, const char *);
3313 int dev_set_alias(struct net_device *, const char *, size_t);
3314 int dev_get_alias(const struct net_device *, char *, size_t);
3315 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3316 int __dev_set_mtu(struct net_device *, int);
3317 int dev_set_mtu(struct net_device *, int);
3318 void dev_set_group(struct net_device *, int);
3319 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3320 int dev_change_carrier(struct net_device *, bool new_carrier);
3321 int dev_get_phys_port_id(struct net_device *dev,
3322 			 struct netdev_phys_item_id *ppid);
3323 int dev_get_phys_port_name(struct net_device *dev,
3324 			   char *name, size_t len);
3325 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3326 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3327 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3328 				    struct netdev_queue *txq, int *ret);
3329 
3330 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3331 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3332 		      int fd, u32 flags);
3333 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t xdp_op, u32 *prog_id);
3334 
3335 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3336 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3337 bool is_skb_forwardable(const struct net_device *dev,
3338 			const struct sk_buff *skb);
3339 
3340 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3341 					       struct sk_buff *skb)
3342 {
3343 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3344 	    unlikely(!is_skb_forwardable(dev, skb))) {
3345 		atomic_long_inc(&dev->rx_dropped);
3346 		kfree_skb(skb);
3347 		return NET_RX_DROP;
3348 	}
3349 
3350 	skb_scrub_packet(skb, true);
3351 	skb->priority = 0;
3352 	return 0;
3353 }
3354 
3355 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3356 
3357 extern int		netdev_budget;
3358 extern unsigned int	netdev_budget_usecs;
3359 
3360 /* Called by rtnetlink.c:rtnl_unlock() */
3361 void netdev_run_todo(void);
3362 
3363 /**
3364  *	dev_put - release reference to device
3365  *	@dev: network device
3366  *
3367  * Release reference to device to allow it to be freed.
3368  */
3369 static inline void dev_put(struct net_device *dev)
3370 {
3371 	this_cpu_dec(*dev->pcpu_refcnt);
3372 }
3373 
3374 /**
3375  *	dev_hold - get reference to device
3376  *	@dev: network device
3377  *
3378  * Hold reference to device to keep it from being freed.
3379  */
3380 static inline void dev_hold(struct net_device *dev)
3381 {
3382 	this_cpu_inc(*dev->pcpu_refcnt);
3383 }
3384 
3385 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3386  * and _off may be called from IRQ context, but it is caller
3387  * who is responsible for serialization of these calls.
3388  *
3389  * The name carrier is inappropriate, these functions should really be
3390  * called netif_lowerlayer_*() because they represent the state of any
3391  * kind of lower layer not just hardware media.
3392  */
3393 
3394 void linkwatch_init_dev(struct net_device *dev);
3395 void linkwatch_fire_event(struct net_device *dev);
3396 void linkwatch_forget_dev(struct net_device *dev);
3397 
3398 /**
3399  *	netif_carrier_ok - test if carrier present
3400  *	@dev: network device
3401  *
3402  * Check if carrier is present on device
3403  */
3404 static inline bool netif_carrier_ok(const struct net_device *dev)
3405 {
3406 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3407 }
3408 
3409 unsigned long dev_trans_start(struct net_device *dev);
3410 
3411 void __netdev_watchdog_up(struct net_device *dev);
3412 
3413 void netif_carrier_on(struct net_device *dev);
3414 
3415 void netif_carrier_off(struct net_device *dev);
3416 
3417 /**
3418  *	netif_dormant_on - mark device as dormant.
3419  *	@dev: network device
3420  *
3421  * Mark device as dormant (as per RFC2863).
3422  *
3423  * The dormant state indicates that the relevant interface is not
3424  * actually in a condition to pass packets (i.e., it is not 'up') but is
3425  * in a "pending" state, waiting for some external event.  For "on-
3426  * demand" interfaces, this new state identifies the situation where the
3427  * interface is waiting for events to place it in the up state.
3428  */
3429 static inline void netif_dormant_on(struct net_device *dev)
3430 {
3431 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3432 		linkwatch_fire_event(dev);
3433 }
3434 
3435 /**
3436  *	netif_dormant_off - set device as not dormant.
3437  *	@dev: network device
3438  *
3439  * Device is not in dormant state.
3440  */
3441 static inline void netif_dormant_off(struct net_device *dev)
3442 {
3443 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3444 		linkwatch_fire_event(dev);
3445 }
3446 
3447 /**
3448  *	netif_dormant - test if device is dormant
3449  *	@dev: network device
3450  *
3451  * Check if device is dormant.
3452  */
3453 static inline bool netif_dormant(const struct net_device *dev)
3454 {
3455 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3456 }
3457 
3458 
3459 /**
3460  *	netif_oper_up - test if device is operational
3461  *	@dev: network device
3462  *
3463  * Check if carrier is operational
3464  */
3465 static inline bool netif_oper_up(const struct net_device *dev)
3466 {
3467 	return (dev->operstate == IF_OPER_UP ||
3468 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3469 }
3470 
3471 /**
3472  *	netif_device_present - is device available or removed
3473  *	@dev: network device
3474  *
3475  * Check if device has not been removed from system.
3476  */
3477 static inline bool netif_device_present(struct net_device *dev)
3478 {
3479 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3480 }
3481 
3482 void netif_device_detach(struct net_device *dev);
3483 
3484 void netif_device_attach(struct net_device *dev);
3485 
3486 /*
3487  * Network interface message level settings
3488  */
3489 
3490 enum {
3491 	NETIF_MSG_DRV		= 0x0001,
3492 	NETIF_MSG_PROBE		= 0x0002,
3493 	NETIF_MSG_LINK		= 0x0004,
3494 	NETIF_MSG_TIMER		= 0x0008,
3495 	NETIF_MSG_IFDOWN	= 0x0010,
3496 	NETIF_MSG_IFUP		= 0x0020,
3497 	NETIF_MSG_RX_ERR	= 0x0040,
3498 	NETIF_MSG_TX_ERR	= 0x0080,
3499 	NETIF_MSG_TX_QUEUED	= 0x0100,
3500 	NETIF_MSG_INTR		= 0x0200,
3501 	NETIF_MSG_TX_DONE	= 0x0400,
3502 	NETIF_MSG_RX_STATUS	= 0x0800,
3503 	NETIF_MSG_PKTDATA	= 0x1000,
3504 	NETIF_MSG_HW		= 0x2000,
3505 	NETIF_MSG_WOL		= 0x4000,
3506 };
3507 
3508 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3509 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3510 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3511 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3512 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3513 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3514 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3515 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3516 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3517 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3518 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3519 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3520 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3521 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3522 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3523 
3524 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3525 {
3526 	/* use default */
3527 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3528 		return default_msg_enable_bits;
3529 	if (debug_value == 0)	/* no output */
3530 		return 0;
3531 	/* set low N bits */
3532 	return (1 << debug_value) - 1;
3533 }
3534 
3535 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3536 {
3537 	spin_lock(&txq->_xmit_lock);
3538 	txq->xmit_lock_owner = cpu;
3539 }
3540 
3541 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3542 {
3543 	__acquire(&txq->_xmit_lock);
3544 	return true;
3545 }
3546 
3547 static inline void __netif_tx_release(struct netdev_queue *txq)
3548 {
3549 	__release(&txq->_xmit_lock);
3550 }
3551 
3552 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3553 {
3554 	spin_lock_bh(&txq->_xmit_lock);
3555 	txq->xmit_lock_owner = smp_processor_id();
3556 }
3557 
3558 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3559 {
3560 	bool ok = spin_trylock(&txq->_xmit_lock);
3561 	if (likely(ok))
3562 		txq->xmit_lock_owner = smp_processor_id();
3563 	return ok;
3564 }
3565 
3566 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3567 {
3568 	txq->xmit_lock_owner = -1;
3569 	spin_unlock(&txq->_xmit_lock);
3570 }
3571 
3572 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3573 {
3574 	txq->xmit_lock_owner = -1;
3575 	spin_unlock_bh(&txq->_xmit_lock);
3576 }
3577 
3578 static inline void txq_trans_update(struct netdev_queue *txq)
3579 {
3580 	if (txq->xmit_lock_owner != -1)
3581 		txq->trans_start = jiffies;
3582 }
3583 
3584 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3585 static inline void netif_trans_update(struct net_device *dev)
3586 {
3587 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3588 
3589 	if (txq->trans_start != jiffies)
3590 		txq->trans_start = jiffies;
3591 }
3592 
3593 /**
3594  *	netif_tx_lock - grab network device transmit lock
3595  *	@dev: network device
3596  *
3597  * Get network device transmit lock
3598  */
3599 static inline void netif_tx_lock(struct net_device *dev)
3600 {
3601 	unsigned int i;
3602 	int cpu;
3603 
3604 	spin_lock(&dev->tx_global_lock);
3605 	cpu = smp_processor_id();
3606 	for (i = 0; i < dev->num_tx_queues; i++) {
3607 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3608 
3609 		/* We are the only thread of execution doing a
3610 		 * freeze, but we have to grab the _xmit_lock in
3611 		 * order to synchronize with threads which are in
3612 		 * the ->hard_start_xmit() handler and already
3613 		 * checked the frozen bit.
3614 		 */
3615 		__netif_tx_lock(txq, cpu);
3616 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3617 		__netif_tx_unlock(txq);
3618 	}
3619 }
3620 
3621 static inline void netif_tx_lock_bh(struct net_device *dev)
3622 {
3623 	local_bh_disable();
3624 	netif_tx_lock(dev);
3625 }
3626 
3627 static inline void netif_tx_unlock(struct net_device *dev)
3628 {
3629 	unsigned int i;
3630 
3631 	for (i = 0; i < dev->num_tx_queues; i++) {
3632 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3633 
3634 		/* No need to grab the _xmit_lock here.  If the
3635 		 * queue is not stopped for another reason, we
3636 		 * force a schedule.
3637 		 */
3638 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3639 		netif_schedule_queue(txq);
3640 	}
3641 	spin_unlock(&dev->tx_global_lock);
3642 }
3643 
3644 static inline void netif_tx_unlock_bh(struct net_device *dev)
3645 {
3646 	netif_tx_unlock(dev);
3647 	local_bh_enable();
3648 }
3649 
3650 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3651 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3652 		__netif_tx_lock(txq, cpu);		\
3653 	} else {					\
3654 		__netif_tx_acquire(txq);		\
3655 	}						\
3656 }
3657 
3658 #define HARD_TX_TRYLOCK(dev, txq)			\
3659 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3660 		__netif_tx_trylock(txq) :		\
3661 		__netif_tx_acquire(txq))
3662 
3663 #define HARD_TX_UNLOCK(dev, txq) {			\
3664 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3665 		__netif_tx_unlock(txq);			\
3666 	} else {					\
3667 		__netif_tx_release(txq);		\
3668 	}						\
3669 }
3670 
3671 static inline void netif_tx_disable(struct net_device *dev)
3672 {
3673 	unsigned int i;
3674 	int cpu;
3675 
3676 	local_bh_disable();
3677 	cpu = smp_processor_id();
3678 	for (i = 0; i < dev->num_tx_queues; i++) {
3679 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3680 
3681 		__netif_tx_lock(txq, cpu);
3682 		netif_tx_stop_queue(txq);
3683 		__netif_tx_unlock(txq);
3684 	}
3685 	local_bh_enable();
3686 }
3687 
3688 static inline void netif_addr_lock(struct net_device *dev)
3689 {
3690 	spin_lock(&dev->addr_list_lock);
3691 }
3692 
3693 static inline void netif_addr_lock_nested(struct net_device *dev)
3694 {
3695 	int subclass = SINGLE_DEPTH_NESTING;
3696 
3697 	if (dev->netdev_ops->ndo_get_lock_subclass)
3698 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3699 
3700 	spin_lock_nested(&dev->addr_list_lock, subclass);
3701 }
3702 
3703 static inline void netif_addr_lock_bh(struct net_device *dev)
3704 {
3705 	spin_lock_bh(&dev->addr_list_lock);
3706 }
3707 
3708 static inline void netif_addr_unlock(struct net_device *dev)
3709 {
3710 	spin_unlock(&dev->addr_list_lock);
3711 }
3712 
3713 static inline void netif_addr_unlock_bh(struct net_device *dev)
3714 {
3715 	spin_unlock_bh(&dev->addr_list_lock);
3716 }
3717 
3718 /*
3719  * dev_addrs walker. Should be used only for read access. Call with
3720  * rcu_read_lock held.
3721  */
3722 #define for_each_dev_addr(dev, ha) \
3723 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3724 
3725 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3726 
3727 void ether_setup(struct net_device *dev);
3728 
3729 /* Support for loadable net-drivers */
3730 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3731 				    unsigned char name_assign_type,
3732 				    void (*setup)(struct net_device *),
3733 				    unsigned int txqs, unsigned int rxqs);
3734 int dev_get_valid_name(struct net *net, struct net_device *dev,
3735 		       const char *name);
3736 
3737 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3738 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3739 
3740 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3741 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3742 			 count)
3743 
3744 int register_netdev(struct net_device *dev);
3745 void unregister_netdev(struct net_device *dev);
3746 
3747 /* General hardware address lists handling functions */
3748 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3749 		   struct netdev_hw_addr_list *from_list, int addr_len);
3750 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3751 		      struct netdev_hw_addr_list *from_list, int addr_len);
3752 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3753 		       struct net_device *dev,
3754 		       int (*sync)(struct net_device *, const unsigned char *),
3755 		       int (*unsync)(struct net_device *,
3756 				     const unsigned char *));
3757 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3758 			  struct net_device *dev,
3759 			  int (*unsync)(struct net_device *,
3760 					const unsigned char *));
3761 void __hw_addr_init(struct netdev_hw_addr_list *list);
3762 
3763 /* Functions used for device addresses handling */
3764 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3765 		 unsigned char addr_type);
3766 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3767 		 unsigned char addr_type);
3768 void dev_addr_flush(struct net_device *dev);
3769 int dev_addr_init(struct net_device *dev);
3770 
3771 /* Functions used for unicast addresses handling */
3772 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3773 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3774 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3775 int dev_uc_sync(struct net_device *to, struct net_device *from);
3776 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3777 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3778 void dev_uc_flush(struct net_device *dev);
3779 void dev_uc_init(struct net_device *dev);
3780 
3781 /**
3782  *  __dev_uc_sync - Synchonize device's unicast list
3783  *  @dev:  device to sync
3784  *  @sync: function to call if address should be added
3785  *  @unsync: function to call if address should be removed
3786  *
3787  *  Add newly added addresses to the interface, and release
3788  *  addresses that have been deleted.
3789  */
3790 static inline int __dev_uc_sync(struct net_device *dev,
3791 				int (*sync)(struct net_device *,
3792 					    const unsigned char *),
3793 				int (*unsync)(struct net_device *,
3794 					      const unsigned char *))
3795 {
3796 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3797 }
3798 
3799 /**
3800  *  __dev_uc_unsync - Remove synchronized addresses from device
3801  *  @dev:  device to sync
3802  *  @unsync: function to call if address should be removed
3803  *
3804  *  Remove all addresses that were added to the device by dev_uc_sync().
3805  */
3806 static inline void __dev_uc_unsync(struct net_device *dev,
3807 				   int (*unsync)(struct net_device *,
3808 						 const unsigned char *))
3809 {
3810 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3811 }
3812 
3813 /* Functions used for multicast addresses handling */
3814 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3815 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3816 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3817 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3818 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3819 int dev_mc_sync(struct net_device *to, struct net_device *from);
3820 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3821 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3822 void dev_mc_flush(struct net_device *dev);
3823 void dev_mc_init(struct net_device *dev);
3824 
3825 /**
3826  *  __dev_mc_sync - Synchonize device's multicast list
3827  *  @dev:  device to sync
3828  *  @sync: function to call if address should be added
3829  *  @unsync: function to call if address should be removed
3830  *
3831  *  Add newly added addresses to the interface, and release
3832  *  addresses that have been deleted.
3833  */
3834 static inline int __dev_mc_sync(struct net_device *dev,
3835 				int (*sync)(struct net_device *,
3836 					    const unsigned char *),
3837 				int (*unsync)(struct net_device *,
3838 					      const unsigned char *))
3839 {
3840 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3841 }
3842 
3843 /**
3844  *  __dev_mc_unsync - Remove synchronized addresses from device
3845  *  @dev:  device to sync
3846  *  @unsync: function to call if address should be removed
3847  *
3848  *  Remove all addresses that were added to the device by dev_mc_sync().
3849  */
3850 static inline void __dev_mc_unsync(struct net_device *dev,
3851 				   int (*unsync)(struct net_device *,
3852 						 const unsigned char *))
3853 {
3854 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3855 }
3856 
3857 /* Functions used for secondary unicast and multicast support */
3858 void dev_set_rx_mode(struct net_device *dev);
3859 void __dev_set_rx_mode(struct net_device *dev);
3860 int dev_set_promiscuity(struct net_device *dev, int inc);
3861 int dev_set_allmulti(struct net_device *dev, int inc);
3862 void netdev_state_change(struct net_device *dev);
3863 void netdev_notify_peers(struct net_device *dev);
3864 void netdev_features_change(struct net_device *dev);
3865 /* Load a device via the kmod */
3866 void dev_load(struct net *net, const char *name);
3867 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3868 					struct rtnl_link_stats64 *storage);
3869 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3870 			     const struct net_device_stats *netdev_stats);
3871 
3872 extern int		netdev_max_backlog;
3873 extern int		netdev_tstamp_prequeue;
3874 extern int		weight_p;
3875 extern int		dev_weight_rx_bias;
3876 extern int		dev_weight_tx_bias;
3877 extern int		dev_rx_weight;
3878 extern int		dev_tx_weight;
3879 
3880 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3881 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3882 						     struct list_head **iter);
3883 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3884 						     struct list_head **iter);
3885 
3886 /* iterate through upper list, must be called under RCU read lock */
3887 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3888 	for (iter = &(dev)->adj_list.upper, \
3889 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3890 	     updev; \
3891 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3892 
3893 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3894 				  int (*fn)(struct net_device *upper_dev,
3895 					    void *data),
3896 				  void *data);
3897 
3898 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3899 				  struct net_device *upper_dev);
3900 
3901 bool netdev_has_any_upper_dev(struct net_device *dev);
3902 
3903 void *netdev_lower_get_next_private(struct net_device *dev,
3904 				    struct list_head **iter);
3905 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3906 					struct list_head **iter);
3907 
3908 #define netdev_for_each_lower_private(dev, priv, iter) \
3909 	for (iter = (dev)->adj_list.lower.next, \
3910 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3911 	     priv; \
3912 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3913 
3914 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3915 	for (iter = &(dev)->adj_list.lower, \
3916 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3917 	     priv; \
3918 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3919 
3920 void *netdev_lower_get_next(struct net_device *dev,
3921 				struct list_head **iter);
3922 
3923 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3924 	for (iter = (dev)->adj_list.lower.next, \
3925 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3926 	     ldev; \
3927 	     ldev = netdev_lower_get_next(dev, &(iter)))
3928 
3929 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3930 					     struct list_head **iter);
3931 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3932 						 struct list_head **iter);
3933 
3934 int netdev_walk_all_lower_dev(struct net_device *dev,
3935 			      int (*fn)(struct net_device *lower_dev,
3936 					void *data),
3937 			      void *data);
3938 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3939 				  int (*fn)(struct net_device *lower_dev,
3940 					    void *data),
3941 				  void *data);
3942 
3943 void *netdev_adjacent_get_private(struct list_head *adj_list);
3944 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3945 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3946 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3947 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
3948 			  struct netlink_ext_ack *extack);
3949 int netdev_master_upper_dev_link(struct net_device *dev,
3950 				 struct net_device *upper_dev,
3951 				 void *upper_priv, void *upper_info,
3952 				 struct netlink_ext_ack *extack);
3953 void netdev_upper_dev_unlink(struct net_device *dev,
3954 			     struct net_device *upper_dev);
3955 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3956 void *netdev_lower_dev_get_private(struct net_device *dev,
3957 				   struct net_device *lower_dev);
3958 void netdev_lower_state_changed(struct net_device *lower_dev,
3959 				void *lower_state_info);
3960 
3961 /* RSS keys are 40 or 52 bytes long */
3962 #define NETDEV_RSS_KEY_LEN 52
3963 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3964 void netdev_rss_key_fill(void *buffer, size_t len);
3965 
3966 int dev_get_nest_level(struct net_device *dev);
3967 int skb_checksum_help(struct sk_buff *skb);
3968 int skb_crc32c_csum_help(struct sk_buff *skb);
3969 int skb_csum_hwoffload_help(struct sk_buff *skb,
3970 			    const netdev_features_t features);
3971 
3972 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3973 				  netdev_features_t features, bool tx_path);
3974 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3975 				    netdev_features_t features);
3976 
3977 struct netdev_bonding_info {
3978 	ifslave	slave;
3979 	ifbond	master;
3980 };
3981 
3982 struct netdev_notifier_bonding_info {
3983 	struct netdev_notifier_info info; /* must be first */
3984 	struct netdev_bonding_info  bonding_info;
3985 };
3986 
3987 void netdev_bonding_info_change(struct net_device *dev,
3988 				struct netdev_bonding_info *bonding_info);
3989 
3990 static inline
3991 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3992 {
3993 	return __skb_gso_segment(skb, features, true);
3994 }
3995 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3996 
3997 static inline bool can_checksum_protocol(netdev_features_t features,
3998 					 __be16 protocol)
3999 {
4000 	if (protocol == htons(ETH_P_FCOE))
4001 		return !!(features & NETIF_F_FCOE_CRC);
4002 
4003 	/* Assume this is an IP checksum (not SCTP CRC) */
4004 
4005 	if (features & NETIF_F_HW_CSUM) {
4006 		/* Can checksum everything */
4007 		return true;
4008 	}
4009 
4010 	switch (protocol) {
4011 	case htons(ETH_P_IP):
4012 		return !!(features & NETIF_F_IP_CSUM);
4013 	case htons(ETH_P_IPV6):
4014 		return !!(features & NETIF_F_IPV6_CSUM);
4015 	default:
4016 		return false;
4017 	}
4018 }
4019 
4020 #ifdef CONFIG_BUG
4021 void netdev_rx_csum_fault(struct net_device *dev);
4022 #else
4023 static inline void netdev_rx_csum_fault(struct net_device *dev)
4024 {
4025 }
4026 #endif
4027 /* rx skb timestamps */
4028 void net_enable_timestamp(void);
4029 void net_disable_timestamp(void);
4030 
4031 #ifdef CONFIG_PROC_FS
4032 int __init dev_proc_init(void);
4033 #else
4034 #define dev_proc_init() 0
4035 #endif
4036 
4037 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4038 					      struct sk_buff *skb, struct net_device *dev,
4039 					      bool more)
4040 {
4041 	skb->xmit_more = more ? 1 : 0;
4042 	return ops->ndo_start_xmit(skb, dev);
4043 }
4044 
4045 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4046 					    struct netdev_queue *txq, bool more)
4047 {
4048 	const struct net_device_ops *ops = dev->netdev_ops;
4049 	int rc;
4050 
4051 	rc = __netdev_start_xmit(ops, skb, dev, more);
4052 	if (rc == NETDEV_TX_OK)
4053 		txq_trans_update(txq);
4054 
4055 	return rc;
4056 }
4057 
4058 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4059 				const void *ns);
4060 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4061 				 const void *ns);
4062 
4063 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4064 {
4065 	return netdev_class_create_file_ns(class_attr, NULL);
4066 }
4067 
4068 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4069 {
4070 	netdev_class_remove_file_ns(class_attr, NULL);
4071 }
4072 
4073 extern const struct kobj_ns_type_operations net_ns_type_operations;
4074 
4075 const char *netdev_drivername(const struct net_device *dev);
4076 
4077 void linkwatch_run_queue(void);
4078 
4079 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4080 							  netdev_features_t f2)
4081 {
4082 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4083 		if (f1 & NETIF_F_HW_CSUM)
4084 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4085 		else
4086 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4087 	}
4088 
4089 	return f1 & f2;
4090 }
4091 
4092 static inline netdev_features_t netdev_get_wanted_features(
4093 	struct net_device *dev)
4094 {
4095 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4096 }
4097 netdev_features_t netdev_increment_features(netdev_features_t all,
4098 	netdev_features_t one, netdev_features_t mask);
4099 
4100 /* Allow TSO being used on stacked device :
4101  * Performing the GSO segmentation before last device
4102  * is a performance improvement.
4103  */
4104 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4105 							netdev_features_t mask)
4106 {
4107 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4108 }
4109 
4110 int __netdev_update_features(struct net_device *dev);
4111 void netdev_update_features(struct net_device *dev);
4112 void netdev_change_features(struct net_device *dev);
4113 
4114 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4115 					struct net_device *dev);
4116 
4117 netdev_features_t passthru_features_check(struct sk_buff *skb,
4118 					  struct net_device *dev,
4119 					  netdev_features_t features);
4120 netdev_features_t netif_skb_features(struct sk_buff *skb);
4121 
4122 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4123 {
4124 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4125 
4126 	/* check flags correspondence */
4127 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4128 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4129 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4130 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4131 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4132 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4133 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4134 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4135 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4136 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4137 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4138 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4139 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4140 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4141 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4142 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4143 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4144 
4145 	return (features & feature) == feature;
4146 }
4147 
4148 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4149 {
4150 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4151 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4152 }
4153 
4154 static inline bool netif_needs_gso(struct sk_buff *skb,
4155 				   netdev_features_t features)
4156 {
4157 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4158 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4159 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4160 }
4161 
4162 static inline void netif_set_gso_max_size(struct net_device *dev,
4163 					  unsigned int size)
4164 {
4165 	dev->gso_max_size = size;
4166 }
4167 
4168 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4169 					int pulled_hlen, u16 mac_offset,
4170 					int mac_len)
4171 {
4172 	skb->protocol = protocol;
4173 	skb->encapsulation = 1;
4174 	skb_push(skb, pulled_hlen);
4175 	skb_reset_transport_header(skb);
4176 	skb->mac_header = mac_offset;
4177 	skb->network_header = skb->mac_header + mac_len;
4178 	skb->mac_len = mac_len;
4179 }
4180 
4181 static inline bool netif_is_macsec(const struct net_device *dev)
4182 {
4183 	return dev->priv_flags & IFF_MACSEC;
4184 }
4185 
4186 static inline bool netif_is_macvlan(const struct net_device *dev)
4187 {
4188 	return dev->priv_flags & IFF_MACVLAN;
4189 }
4190 
4191 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4192 {
4193 	return dev->priv_flags & IFF_MACVLAN_PORT;
4194 }
4195 
4196 static inline bool netif_is_ipvlan(const struct net_device *dev)
4197 {
4198 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4199 }
4200 
4201 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4202 {
4203 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4204 }
4205 
4206 static inline bool netif_is_bond_master(const struct net_device *dev)
4207 {
4208 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4209 }
4210 
4211 static inline bool netif_is_bond_slave(const struct net_device *dev)
4212 {
4213 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4214 }
4215 
4216 static inline bool netif_supports_nofcs(struct net_device *dev)
4217 {
4218 	return dev->priv_flags & IFF_SUPP_NOFCS;
4219 }
4220 
4221 static inline bool netif_is_l3_master(const struct net_device *dev)
4222 {
4223 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4224 }
4225 
4226 static inline bool netif_is_l3_slave(const struct net_device *dev)
4227 {
4228 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4229 }
4230 
4231 static inline bool netif_is_bridge_master(const struct net_device *dev)
4232 {
4233 	return dev->priv_flags & IFF_EBRIDGE;
4234 }
4235 
4236 static inline bool netif_is_bridge_port(const struct net_device *dev)
4237 {
4238 	return dev->priv_flags & IFF_BRIDGE_PORT;
4239 }
4240 
4241 static inline bool netif_is_ovs_master(const struct net_device *dev)
4242 {
4243 	return dev->priv_flags & IFF_OPENVSWITCH;
4244 }
4245 
4246 static inline bool netif_is_ovs_port(const struct net_device *dev)
4247 {
4248 	return dev->priv_flags & IFF_OVS_DATAPATH;
4249 }
4250 
4251 static inline bool netif_is_team_master(const struct net_device *dev)
4252 {
4253 	return dev->priv_flags & IFF_TEAM;
4254 }
4255 
4256 static inline bool netif_is_team_port(const struct net_device *dev)
4257 {
4258 	return dev->priv_flags & IFF_TEAM_PORT;
4259 }
4260 
4261 static inline bool netif_is_lag_master(const struct net_device *dev)
4262 {
4263 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4264 }
4265 
4266 static inline bool netif_is_lag_port(const struct net_device *dev)
4267 {
4268 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4269 }
4270 
4271 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4272 {
4273 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4274 }
4275 
4276 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4277 static inline void netif_keep_dst(struct net_device *dev)
4278 {
4279 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4280 }
4281 
4282 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4283 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4284 {
4285 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4286 	return dev->priv_flags & IFF_MACSEC;
4287 }
4288 
4289 extern struct pernet_operations __net_initdata loopback_net_ops;
4290 
4291 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4292 
4293 /* netdev_printk helpers, similar to dev_printk */
4294 
4295 static inline const char *netdev_name(const struct net_device *dev)
4296 {
4297 	if (!dev->name[0] || strchr(dev->name, '%'))
4298 		return "(unnamed net_device)";
4299 	return dev->name;
4300 }
4301 
4302 static inline bool netdev_unregistering(const struct net_device *dev)
4303 {
4304 	return dev->reg_state == NETREG_UNREGISTERING;
4305 }
4306 
4307 static inline const char *netdev_reg_state(const struct net_device *dev)
4308 {
4309 	switch (dev->reg_state) {
4310 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4311 	case NETREG_REGISTERED: return "";
4312 	case NETREG_UNREGISTERING: return " (unregistering)";
4313 	case NETREG_UNREGISTERED: return " (unregistered)";
4314 	case NETREG_RELEASED: return " (released)";
4315 	case NETREG_DUMMY: return " (dummy)";
4316 	}
4317 
4318 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4319 	return " (unknown)";
4320 }
4321 
4322 __printf(3, 4)
4323 void netdev_printk(const char *level, const struct net_device *dev,
4324 		   const char *format, ...);
4325 __printf(2, 3)
4326 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4327 __printf(2, 3)
4328 void netdev_alert(const struct net_device *dev, const char *format, ...);
4329 __printf(2, 3)
4330 void netdev_crit(const struct net_device *dev, const char *format, ...);
4331 __printf(2, 3)
4332 void netdev_err(const struct net_device *dev, const char *format, ...);
4333 __printf(2, 3)
4334 void netdev_warn(const struct net_device *dev, const char *format, ...);
4335 __printf(2, 3)
4336 void netdev_notice(const struct net_device *dev, const char *format, ...);
4337 __printf(2, 3)
4338 void netdev_info(const struct net_device *dev, const char *format, ...);
4339 
4340 #define netdev_level_once(level, dev, fmt, ...)			\
4341 do {								\
4342 	static bool __print_once __read_mostly;			\
4343 								\
4344 	if (!__print_once) {					\
4345 		__print_once = true;				\
4346 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4347 	}							\
4348 } while (0)
4349 
4350 #define netdev_emerg_once(dev, fmt, ...) \
4351 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4352 #define netdev_alert_once(dev, fmt, ...) \
4353 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4354 #define netdev_crit_once(dev, fmt, ...) \
4355 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4356 #define netdev_err_once(dev, fmt, ...) \
4357 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4358 #define netdev_warn_once(dev, fmt, ...) \
4359 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4360 #define netdev_notice_once(dev, fmt, ...) \
4361 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4362 #define netdev_info_once(dev, fmt, ...) \
4363 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4364 
4365 #define MODULE_ALIAS_NETDEV(device) \
4366 	MODULE_ALIAS("netdev-" device)
4367 
4368 #if defined(CONFIG_DYNAMIC_DEBUG)
4369 #define netdev_dbg(__dev, format, args...)			\
4370 do {								\
4371 	dynamic_netdev_dbg(__dev, format, ##args);		\
4372 } while (0)
4373 #elif defined(DEBUG)
4374 #define netdev_dbg(__dev, format, args...)			\
4375 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4376 #else
4377 #define netdev_dbg(__dev, format, args...)			\
4378 ({								\
4379 	if (0)							\
4380 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4381 })
4382 #endif
4383 
4384 #if defined(VERBOSE_DEBUG)
4385 #define netdev_vdbg	netdev_dbg
4386 #else
4387 
4388 #define netdev_vdbg(dev, format, args...)			\
4389 ({								\
4390 	if (0)							\
4391 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4392 	0;							\
4393 })
4394 #endif
4395 
4396 /*
4397  * netdev_WARN() acts like dev_printk(), but with the key difference
4398  * of using a WARN/WARN_ON to get the message out, including the
4399  * file/line information and a backtrace.
4400  */
4401 #define netdev_WARN(dev, format, args...)			\
4402 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4403 	     netdev_reg_state(dev), ##args)
4404 
4405 #define netdev_WARN_ONCE(dev, condition, format, arg...)		\
4406 	WARN_ONCE(1, "netdevice: %s%s\n" format, netdev_name(dev)	\
4407 		  netdev_reg_state(dev), ##args)
4408 
4409 /* netif printk helpers, similar to netdev_printk */
4410 
4411 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4412 do {					  			\
4413 	if (netif_msg_##type(priv))				\
4414 		netdev_printk(level, (dev), fmt, ##args);	\
4415 } while (0)
4416 
4417 #define netif_level(level, priv, type, dev, fmt, args...)	\
4418 do {								\
4419 	if (netif_msg_##type(priv))				\
4420 		netdev_##level(dev, fmt, ##args);		\
4421 } while (0)
4422 
4423 #define netif_emerg(priv, type, dev, fmt, args...)		\
4424 	netif_level(emerg, priv, type, dev, fmt, ##args)
4425 #define netif_alert(priv, type, dev, fmt, args...)		\
4426 	netif_level(alert, priv, type, dev, fmt, ##args)
4427 #define netif_crit(priv, type, dev, fmt, args...)		\
4428 	netif_level(crit, priv, type, dev, fmt, ##args)
4429 #define netif_err(priv, type, dev, fmt, args...)		\
4430 	netif_level(err, priv, type, dev, fmt, ##args)
4431 #define netif_warn(priv, type, dev, fmt, args...)		\
4432 	netif_level(warn, priv, type, dev, fmt, ##args)
4433 #define netif_notice(priv, type, dev, fmt, args...)		\
4434 	netif_level(notice, priv, type, dev, fmt, ##args)
4435 #define netif_info(priv, type, dev, fmt, args...)		\
4436 	netif_level(info, priv, type, dev, fmt, ##args)
4437 
4438 #if defined(CONFIG_DYNAMIC_DEBUG)
4439 #define netif_dbg(priv, type, netdev, format, args...)		\
4440 do {								\
4441 	if (netif_msg_##type(priv))				\
4442 		dynamic_netdev_dbg(netdev, format, ##args);	\
4443 } while (0)
4444 #elif defined(DEBUG)
4445 #define netif_dbg(priv, type, dev, format, args...)		\
4446 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4447 #else
4448 #define netif_dbg(priv, type, dev, format, args...)			\
4449 ({									\
4450 	if (0)								\
4451 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4452 	0;								\
4453 })
4454 #endif
4455 
4456 /* if @cond then downgrade to debug, else print at @level */
4457 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4458 	do {                                                              \
4459 		if (cond)                                                 \
4460 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4461 		else                                                      \
4462 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4463 	} while (0)
4464 
4465 #if defined(VERBOSE_DEBUG)
4466 #define netif_vdbg	netif_dbg
4467 #else
4468 #define netif_vdbg(priv, type, dev, format, args...)		\
4469 ({								\
4470 	if (0)							\
4471 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4472 	0;							\
4473 })
4474 #endif
4475 
4476 /*
4477  *	The list of packet types we will receive (as opposed to discard)
4478  *	and the routines to invoke.
4479  *
4480  *	Why 16. Because with 16 the only overlap we get on a hash of the
4481  *	low nibble of the protocol value is RARP/SNAP/X.25.
4482  *
4483  *		0800	IP
4484  *		0001	802.3
4485  *		0002	AX.25
4486  *		0004	802.2
4487  *		8035	RARP
4488  *		0005	SNAP
4489  *		0805	X.25
4490  *		0806	ARP
4491  *		8137	IPX
4492  *		0009	Localtalk
4493  *		86DD	IPv6
4494  */
4495 #define PTYPE_HASH_SIZE	(16)
4496 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4497 
4498 #endif	/* _LINUX_NETDEVICE_H */
4499