xref: /openbmc/linux/include/linux/netdevice.h (revision a701d28e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,	/* Poll is scheduled */
354 	NAPI_STATE_MISSED,	/* reschedule a napi */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361 
362 enum {
363 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
364 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
365 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
366 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
367 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
368 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_DROP,
378 	GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381 
382 /*
383  * enum rx_handler_result - Possible return values for rx_handlers.
384  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385  * further.
386  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387  * case skb->dev was changed by rx_handler.
388  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390  *
391  * rx_handlers are functions called from inside __netif_receive_skb(), to do
392  * special processing of the skb, prior to delivery to protocol handlers.
393  *
394  * Currently, a net_device can only have a single rx_handler registered. Trying
395  * to register a second rx_handler will return -EBUSY.
396  *
397  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398  * To unregister a rx_handler on a net_device, use
399  * netdev_rx_handler_unregister().
400  *
401  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402  * do with the skb.
403  *
404  * If the rx_handler consumed the skb in some way, it should return
405  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406  * the skb to be delivered in some other way.
407  *
408  * If the rx_handler changed skb->dev, to divert the skb to another
409  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410  * new device will be called if it exists.
411  *
412  * If the rx_handler decides the skb should be ignored, it should return
413  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414  * are registered on exact device (ptype->dev == skb->dev).
415  *
416  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417  * delivered, it should return RX_HANDLER_PASS.
418  *
419  * A device without a registered rx_handler will behave as if rx_handler
420  * returned RX_HANDLER_PASS.
421  */
422 
423 enum rx_handler_result {
424 	RX_HANDLER_CONSUMED,
425 	RX_HANDLER_ANOTHER,
426 	RX_HANDLER_EXACT,
427 	RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431 
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434 
435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 	return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439 
440 bool napi_schedule_prep(struct napi_struct *n);
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /**
456  *	napi_schedule_irqoff - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Variant of napi_schedule(), assuming hard irqs are masked.
460  */
461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 	if (napi_schedule_prep(n))
464 		__napi_schedule_irqoff(n);
465 }
466 
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 	if (napi_schedule_prep(napi)) {
471 		__napi_schedule(napi);
472 		return true;
473 	}
474 	return false;
475 }
476 
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479  *	napi_complete - NAPI processing complete
480  *	@n: NAPI context
481  *
482  * Mark NAPI processing as complete.
483  * Consider using napi_complete_done() instead.
484  * Return false if device should avoid rearming interrupts.
485  */
486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 	return napi_complete_done(n, 0);
489 }
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: NAPI context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: NAPI context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: NAPI context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 /**
533  *	napi_if_scheduled_mark_missed - if napi is running, set the
534  *	NAPIF_STATE_MISSED
535  *	@n: NAPI context
536  *
537  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538  * NAPI is scheduled.
539  **/
540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 	unsigned long val, new;
543 
544 	do {
545 		val = READ_ONCE(n->state);
546 		if (val & NAPIF_STATE_DISABLE)
547 			return true;
548 
549 		if (!(val & NAPIF_STATE_SCHED))
550 			return false;
551 
552 		new = val | NAPIF_STATE_MISSED;
553 	} while (cmpxchg(&n->state, val, new) != val);
554 
555 	return true;
556 }
557 
558 enum netdev_queue_state_t {
559 	__QUEUE_STATE_DRV_XOFF,
560 	__QUEUE_STATE_STACK_XOFF,
561 	__QUEUE_STATE_FROZEN,
562 };
563 
564 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
567 
568 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 					QUEUE_STATE_FROZEN)
573 
574 /*
575  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
576  * netif_tx_* functions below are used to manipulate this flag.  The
577  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578  * queue independently.  The netif_xmit_*stopped functions below are called
579  * to check if the queue has been stopped by the driver or stack (either
580  * of the XOFF bits are set in the state).  Drivers should not need to call
581  * netif_xmit*stopped functions, they should only be using netif_tx_*.
582  */
583 
584 struct netdev_queue {
585 /*
586  * read-mostly part
587  */
588 	struct net_device	*dev;
589 	struct Qdisc __rcu	*qdisc;
590 	struct Qdisc		*qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 	struct kobject		kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	int			numa_node;
596 #endif
597 	unsigned long		tx_maxrate;
598 	/*
599 	 * Number of TX timeouts for this queue
600 	 * (/sys/class/net/DEV/Q/trans_timeout)
601 	 */
602 	unsigned long		trans_timeout;
603 
604 	/* Subordinate device that the queue has been assigned to */
605 	struct net_device	*sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 	struct xsk_buff_pool    *pool;
608 #endif
609 /*
610  * write-mostly part
611  */
612 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
613 	int			xmit_lock_owner;
614 	/*
615 	 * Time (in jiffies) of last Tx
616 	 */
617 	unsigned long		trans_start;
618 
619 	unsigned long		state;
620 
621 #ifdef CONFIG_BQL
622 	struct dql		dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625 
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628 
629 /*
630  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631  *                                     == 1 : For initns only
632  *                                     == 2 : For none.
633  */
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return !IS_ENABLED(CONFIG_SYSCTL) ||
637 	       !sysctl_fb_tunnels_only_for_init_net ||
638 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xsk_buff_pool            *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 	TC_SETUP_QDISC_TBF,
854 	TC_SETUP_QDISC_FIFO,
855 };
856 
857 /* These structures hold the attributes of bpf state that are being passed
858  * to the netdevice through the bpf op.
859  */
860 enum bpf_netdev_command {
861 	/* Set or clear a bpf program used in the earliest stages of packet
862 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
863 	 * is responsible for calling bpf_prog_put on any old progs that are
864 	 * stored. In case of error, the callee need not release the new prog
865 	 * reference, but on success it takes ownership and must bpf_prog_put
866 	 * when it is no longer used.
867 	 */
868 	XDP_SETUP_PROG,
869 	XDP_SETUP_PROG_HW,
870 	/* BPF program for offload callbacks, invoked at program load time. */
871 	BPF_OFFLOAD_MAP_ALLOC,
872 	BPF_OFFLOAD_MAP_FREE,
873 	XDP_SETUP_XSK_POOL,
874 };
875 
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880 struct bpf_xdp_link;
881 
882 enum bpf_xdp_mode {
883 	XDP_MODE_SKB = 0,
884 	XDP_MODE_DRV = 1,
885 	XDP_MODE_HW = 2,
886 	__MAX_XDP_MODE
887 };
888 
889 struct bpf_xdp_entity {
890 	struct bpf_prog *prog;
891 	struct bpf_xdp_link *link;
892 };
893 
894 struct netdev_bpf {
895 	enum bpf_netdev_command command;
896 	union {
897 		/* XDP_SETUP_PROG */
898 		struct {
899 			u32 flags;
900 			struct bpf_prog *prog;
901 			struct netlink_ext_ack *extack;
902 		};
903 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 		struct {
905 			struct bpf_offloaded_map *offmap;
906 		};
907 		/* XDP_SETUP_XSK_POOL */
908 		struct {
909 			struct xsk_buff_pool *pool;
910 			u16 queue_id;
911 		} xsk;
912 	};
913 };
914 
915 /* Flags for ndo_xsk_wakeup. */
916 #define XDP_WAKEUP_RX (1 << 0)
917 #define XDP_WAKEUP_TX (1 << 1)
918 
919 #ifdef CONFIG_XFRM_OFFLOAD
920 struct xfrmdev_ops {
921 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
924 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
925 				       struct xfrm_state *x);
926 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
927 };
928 #endif
929 
930 struct dev_ifalias {
931 	struct rcu_head rcuhead;
932 	char ifalias[];
933 };
934 
935 struct devlink;
936 struct tlsdev_ops;
937 
938 struct netdev_name_node {
939 	struct hlist_node hlist;
940 	struct list_head list;
941 	struct net_device *dev;
942 	const char *name;
943 };
944 
945 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
947 
948 struct netdev_net_notifier {
949 	struct list_head list;
950 	struct notifier_block *nb;
951 };
952 
953 /*
954  * This structure defines the management hooks for network devices.
955  * The following hooks can be defined; unless noted otherwise, they are
956  * optional and can be filled with a null pointer.
957  *
958  * int (*ndo_init)(struct net_device *dev);
959  *     This function is called once when a network device is registered.
960  *     The network device can use this for any late stage initialization
961  *     or semantic validation. It can fail with an error code which will
962  *     be propagated back to register_netdev.
963  *
964  * void (*ndo_uninit)(struct net_device *dev);
965  *     This function is called when device is unregistered or when registration
966  *     fails. It is not called if init fails.
967  *
968  * int (*ndo_open)(struct net_device *dev);
969  *     This function is called when a network device transitions to the up
970  *     state.
971  *
972  * int (*ndo_stop)(struct net_device *dev);
973  *     This function is called when a network device transitions to the down
974  *     state.
975  *
976  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977  *                               struct net_device *dev);
978  *	Called when a packet needs to be transmitted.
979  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
980  *	the queue before that can happen; it's for obsolete devices and weird
981  *	corner cases, but the stack really does a non-trivial amount
982  *	of useless work if you return NETDEV_TX_BUSY.
983  *	Required; cannot be NULL.
984  *
985  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986  *					   struct net_device *dev
987  *					   netdev_features_t features);
988  *	Called by core transmit path to determine if device is capable of
989  *	performing offload operations on a given packet. This is to give
990  *	the device an opportunity to implement any restrictions that cannot
991  *	be otherwise expressed by feature flags. The check is called with
992  *	the set of features that the stack has calculated and it returns
993  *	those the driver believes to be appropriate.
994  *
995  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996  *                         struct net_device *sb_dev);
997  *	Called to decide which queue to use when device supports multiple
998  *	transmit queues.
999  *
1000  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1001  *	This function is called to allow device receiver to make
1002  *	changes to configuration when multicast or promiscuous is enabled.
1003  *
1004  * void (*ndo_set_rx_mode)(struct net_device *dev);
1005  *	This function is called device changes address list filtering.
1006  *	If driver handles unicast address filtering, it should set
1007  *	IFF_UNICAST_FLT in its priv_flags.
1008  *
1009  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1010  *	This function  is called when the Media Access Control address
1011  *	needs to be changed. If this interface is not defined, the
1012  *	MAC address can not be changed.
1013  *
1014  * int (*ndo_validate_addr)(struct net_device *dev);
1015  *	Test if Media Access Control address is valid for the device.
1016  *
1017  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1018  *	Called when a user requests an ioctl which can't be handled by
1019  *	the generic interface code. If not defined ioctls return
1020  *	not supported error code.
1021  *
1022  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1023  *	Used to set network devices bus interface parameters. This interface
1024  *	is retained for legacy reasons; new devices should use the bus
1025  *	interface (PCI) for low level management.
1026  *
1027  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1028  *	Called when a user wants to change the Maximum Transfer Unit
1029  *	of a device.
1030  *
1031  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1032  *	Callback used when the transmitter has not made any progress
1033  *	for dev->watchdog ticks.
1034  *
1035  * void (*ndo_get_stats64)(struct net_device *dev,
1036  *                         struct rtnl_link_stats64 *storage);
1037  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038  *	Called when a user wants to get the network device usage
1039  *	statistics. Drivers must do one of the following:
1040  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1041  *	   rtnl_link_stats64 structure passed by the caller.
1042  *	2. Define @ndo_get_stats to update a net_device_stats structure
1043  *	   (which should normally be dev->stats) and return a pointer to
1044  *	   it. The structure may be changed asynchronously only if each
1045  *	   field is written atomically.
1046  *	3. Update dev->stats asynchronously and atomically, and define
1047  *	   neither operation.
1048  *
1049  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1050  *	Return true if this device supports offload stats of this attr_id.
1051  *
1052  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1053  *	void *attr_data)
1054  *	Get statistics for offload operations by attr_id. Write it into the
1055  *	attr_data pointer.
1056  *
1057  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058  *	If device supports VLAN filtering this function is called when a
1059  *	VLAN id is registered.
1060  *
1061  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062  *	If device supports VLAN filtering this function is called when a
1063  *	VLAN id is unregistered.
1064  *
1065  * void (*ndo_poll_controller)(struct net_device *dev);
1066  *
1067  *	SR-IOV management functions.
1068  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1069  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1070  *			  u8 qos, __be16 proto);
1071  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1072  *			  int max_tx_rate);
1073  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_get_vf_config)(struct net_device *dev,
1076  *			    int vf, struct ifla_vf_info *ivf);
1077  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1078  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1079  *			  struct nlattr *port[]);
1080  *
1081  *      Enable or disable the VF ability to query its RSS Redirection Table and
1082  *      Hash Key. This is needed since on some devices VF share this information
1083  *      with PF and querying it may introduce a theoretical security risk.
1084  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1085  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1086  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1087  *		       void *type_data);
1088  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1089  *	This is always called from the stack with the rtnl lock held and netif
1090  *	tx queues stopped. This allows the netdevice to perform queue
1091  *	management safely.
1092  *
1093  *	Fiber Channel over Ethernet (FCoE) offload functions.
1094  * int (*ndo_fcoe_enable)(struct net_device *dev);
1095  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1096  *	so the underlying device can perform whatever needed configuration or
1097  *	initialization to support acceleration of FCoE traffic.
1098  *
1099  * int (*ndo_fcoe_disable)(struct net_device *dev);
1100  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1101  *	so the underlying device can perform whatever needed clean-ups to
1102  *	stop supporting acceleration of FCoE traffic.
1103  *
1104  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1105  *			     struct scatterlist *sgl, unsigned int sgc);
1106  *	Called when the FCoE Initiator wants to initialize an I/O that
1107  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1108  *	perform necessary setup and returns 1 to indicate the device is set up
1109  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1110  *
1111  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1112  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1113  *	indicated by the FC exchange id 'xid', so the underlying device can
1114  *	clean up and reuse resources for later DDP requests.
1115  *
1116  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1117  *			      struct scatterlist *sgl, unsigned int sgc);
1118  *	Called when the FCoE Target wants to initialize an I/O that
1119  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1120  *	perform necessary setup and returns 1 to indicate the device is set up
1121  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1122  *
1123  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1124  *			       struct netdev_fcoe_hbainfo *hbainfo);
1125  *	Called when the FCoE Protocol stack wants information on the underlying
1126  *	device. This information is utilized by the FCoE protocol stack to
1127  *	register attributes with Fiber Channel management service as per the
1128  *	FC-GS Fabric Device Management Information(FDMI) specification.
1129  *
1130  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1131  *	Called when the underlying device wants to override default World Wide
1132  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1133  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1134  *	protocol stack to use.
1135  *
1136  *	RFS acceleration.
1137  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1138  *			    u16 rxq_index, u32 flow_id);
1139  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1140  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1141  *	Return the filter ID on success, or a negative error code.
1142  *
1143  *	Slave management functions (for bridge, bonding, etc).
1144  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1145  *	Called to make another netdev an underling.
1146  *
1147  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1148  *	Called to release previously enslaved netdev.
1149  *
1150  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1151  *					    struct sk_buff *skb,
1152  *					    bool all_slaves);
1153  *	Get the xmit slave of master device. If all_slaves is true, function
1154  *	assume all the slaves can transmit.
1155  *
1156  *      Feature/offload setting functions.
1157  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1158  *		netdev_features_t features);
1159  *	Adjusts the requested feature flags according to device-specific
1160  *	constraints, and returns the resulting flags. Must not modify
1161  *	the device state.
1162  *
1163  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1164  *	Called to update device configuration to new features. Passed
1165  *	feature set might be less than what was returned by ndo_fix_features()).
1166  *	Must return >0 or -errno if it changed dev->features itself.
1167  *
1168  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1169  *		      struct net_device *dev,
1170  *		      const unsigned char *addr, u16 vid, u16 flags,
1171  *		      struct netlink_ext_ack *extack);
1172  *	Adds an FDB entry to dev for addr.
1173  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1174  *		      struct net_device *dev,
1175  *		      const unsigned char *addr, u16 vid)
1176  *	Deletes the FDB entry from dev coresponding to addr.
1177  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1178  *		       struct net_device *dev, struct net_device *filter_dev,
1179  *		       int *idx)
1180  *	Used to add FDB entries to dump requests. Implementers should add
1181  *	entries to skb and update idx with the number of entries.
1182  *
1183  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1184  *			     u16 flags, struct netlink_ext_ack *extack)
1185  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1186  *			     struct net_device *dev, u32 filter_mask,
1187  *			     int nlflags)
1188  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1189  *			     u16 flags);
1190  *
1191  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1192  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1193  *	which do not represent real hardware may define this to allow their
1194  *	userspace components to manage their virtual carrier state. Devices
1195  *	that determine carrier state from physical hardware properties (eg
1196  *	network cables) or protocol-dependent mechanisms (eg
1197  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1198  *
1199  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1200  *			       struct netdev_phys_item_id *ppid);
1201  *	Called to get ID of physical port of this device. If driver does
1202  *	not implement this, it is assumed that the hw is not able to have
1203  *	multiple net devices on single physical port.
1204  *
1205  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1206  *				 struct netdev_phys_item_id *ppid)
1207  *	Called to get the parent ID of the physical port of this device.
1208  *
1209  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1210  *			      struct udp_tunnel_info *ti);
1211  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1212  *	address family that a UDP tunnel is listnening to. It is called only
1213  *	when a new port starts listening. The operation is protected by the
1214  *	RTNL.
1215  *
1216  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1217  *			      struct udp_tunnel_info *ti);
1218  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1219  *	address family that the UDP tunnel is not listening to anymore. The
1220  *	operation is protected by the RTNL.
1221  *
1222  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1223  *				 struct net_device *dev)
1224  *	Called by upper layer devices to accelerate switching or other
1225  *	station functionality into hardware. 'pdev is the lowerdev
1226  *	to use for the offload and 'dev' is the net device that will
1227  *	back the offload. Returns a pointer to the private structure
1228  *	the upper layer will maintain.
1229  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1230  *	Called by upper layer device to delete the station created
1231  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1232  *	the station and priv is the structure returned by the add
1233  *	operation.
1234  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1235  *			     int queue_index, u32 maxrate);
1236  *	Called when a user wants to set a max-rate limitation of specific
1237  *	TX queue.
1238  * int (*ndo_get_iflink)(const struct net_device *dev);
1239  *	Called to get the iflink value of this device.
1240  * void (*ndo_change_proto_down)(struct net_device *dev,
1241  *				 bool proto_down);
1242  *	This function is used to pass protocol port error state information
1243  *	to the switch driver. The switch driver can react to the proto_down
1244  *      by doing a phys down on the associated switch port.
1245  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1246  *	This function is used to get egress tunnel information for given skb.
1247  *	This is useful for retrieving outer tunnel header parameters while
1248  *	sampling packet.
1249  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1250  *	This function is used to specify the headroom that the skb must
1251  *	consider when allocation skb during packet reception. Setting
1252  *	appropriate rx headroom value allows avoiding skb head copy on
1253  *	forward. Setting a negative value resets the rx headroom to the
1254  *	default value.
1255  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1256  *	This function is used to set or query state related to XDP on the
1257  *	netdevice and manage BPF offload. See definition of
1258  *	enum bpf_netdev_command for details.
1259  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1260  *			u32 flags);
1261  *	This function is used to submit @n XDP packets for transmit on a
1262  *	netdevice. Returns number of frames successfully transmitted, frames
1263  *	that got dropped are freed/returned via xdp_return_frame().
1264  *	Returns negative number, means general error invoking ndo, meaning
1265  *	no frames were xmit'ed and core-caller will free all frames.
1266  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1267  *      This function is used to wake up the softirq, ksoftirqd or kthread
1268  *	responsible for sending and/or receiving packets on a specific
1269  *	queue id bound to an AF_XDP socket. The flags field specifies if
1270  *	only RX, only Tx, or both should be woken up using the flags
1271  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1272  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1273  *	Get devlink port instance associated with a given netdev.
1274  *	Called with a reference on the netdevice and devlink locks only,
1275  *	rtnl_lock is not held.
1276  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1277  *			 int cmd);
1278  *	Add, change, delete or get information on an IPv4 tunnel.
1279  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1280  *	If a device is paired with a peer device, return the peer instance.
1281  *	The caller must be under RCU read context.
1282  */
1283 struct net_device_ops {
1284 	int			(*ndo_init)(struct net_device *dev);
1285 	void			(*ndo_uninit)(struct net_device *dev);
1286 	int			(*ndo_open)(struct net_device *dev);
1287 	int			(*ndo_stop)(struct net_device *dev);
1288 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1289 						  struct net_device *dev);
1290 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1291 						      struct net_device *dev,
1292 						      netdev_features_t features);
1293 	u16			(*ndo_select_queue)(struct net_device *dev,
1294 						    struct sk_buff *skb,
1295 						    struct net_device *sb_dev);
1296 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1297 						       int flags);
1298 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1299 	int			(*ndo_set_mac_address)(struct net_device *dev,
1300 						       void *addr);
1301 	int			(*ndo_validate_addr)(struct net_device *dev);
1302 	int			(*ndo_do_ioctl)(struct net_device *dev,
1303 					        struct ifreq *ifr, int cmd);
1304 	int			(*ndo_set_config)(struct net_device *dev,
1305 					          struct ifmap *map);
1306 	int			(*ndo_change_mtu)(struct net_device *dev,
1307 						  int new_mtu);
1308 	int			(*ndo_neigh_setup)(struct net_device *dev,
1309 						   struct neigh_parms *);
1310 	void			(*ndo_tx_timeout) (struct net_device *dev,
1311 						   unsigned int txqueue);
1312 
1313 	void			(*ndo_get_stats64)(struct net_device *dev,
1314 						   struct rtnl_link_stats64 *storage);
1315 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1316 	int			(*ndo_get_offload_stats)(int attr_id,
1317 							 const struct net_device *dev,
1318 							 void *attr_data);
1319 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1320 
1321 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1322 						       __be16 proto, u16 vid);
1323 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1324 						        __be16 proto, u16 vid);
1325 #ifdef CONFIG_NET_POLL_CONTROLLER
1326 	void                    (*ndo_poll_controller)(struct net_device *dev);
1327 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1328 						     struct netpoll_info *info);
1329 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1330 #endif
1331 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1332 						  int queue, u8 *mac);
1333 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1334 						   int queue, u16 vlan,
1335 						   u8 qos, __be16 proto);
1336 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1337 						   int vf, int min_tx_rate,
1338 						   int max_tx_rate);
1339 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1340 						       int vf, bool setting);
1341 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1342 						    int vf, bool setting);
1343 	int			(*ndo_get_vf_config)(struct net_device *dev,
1344 						     int vf,
1345 						     struct ifla_vf_info *ivf);
1346 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1347 							 int vf, int link_state);
1348 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1349 						    int vf,
1350 						    struct ifla_vf_stats
1351 						    *vf_stats);
1352 	int			(*ndo_set_vf_port)(struct net_device *dev,
1353 						   int vf,
1354 						   struct nlattr *port[]);
1355 	int			(*ndo_get_vf_port)(struct net_device *dev,
1356 						   int vf, struct sk_buff *skb);
1357 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1358 						   int vf,
1359 						   struct ifla_vf_guid *node_guid,
1360 						   struct ifla_vf_guid *port_guid);
1361 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1362 						   int vf, u64 guid,
1363 						   int guid_type);
1364 	int			(*ndo_set_vf_rss_query_en)(
1365 						   struct net_device *dev,
1366 						   int vf, bool setting);
1367 	int			(*ndo_setup_tc)(struct net_device *dev,
1368 						enum tc_setup_type type,
1369 						void *type_data);
1370 #if IS_ENABLED(CONFIG_FCOE)
1371 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1372 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1373 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1374 						      u16 xid,
1375 						      struct scatterlist *sgl,
1376 						      unsigned int sgc);
1377 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1378 						     u16 xid);
1379 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1380 						       u16 xid,
1381 						       struct scatterlist *sgl,
1382 						       unsigned int sgc);
1383 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1384 							struct netdev_fcoe_hbainfo *hbainfo);
1385 #endif
1386 
1387 #if IS_ENABLED(CONFIG_LIBFCOE)
1388 #define NETDEV_FCOE_WWNN 0
1389 #define NETDEV_FCOE_WWPN 1
1390 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1391 						    u64 *wwn, int type);
1392 #endif
1393 
1394 #ifdef CONFIG_RFS_ACCEL
1395 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1396 						     const struct sk_buff *skb,
1397 						     u16 rxq_index,
1398 						     u32 flow_id);
1399 #endif
1400 	int			(*ndo_add_slave)(struct net_device *dev,
1401 						 struct net_device *slave_dev,
1402 						 struct netlink_ext_ack *extack);
1403 	int			(*ndo_del_slave)(struct net_device *dev,
1404 						 struct net_device *slave_dev);
1405 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1406 						      struct sk_buff *skb,
1407 						      bool all_slaves);
1408 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1409 						    netdev_features_t features);
1410 	int			(*ndo_set_features)(struct net_device *dev,
1411 						    netdev_features_t features);
1412 	int			(*ndo_neigh_construct)(struct net_device *dev,
1413 						       struct neighbour *n);
1414 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1415 						     struct neighbour *n);
1416 
1417 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1418 					       struct nlattr *tb[],
1419 					       struct net_device *dev,
1420 					       const unsigned char *addr,
1421 					       u16 vid,
1422 					       u16 flags,
1423 					       struct netlink_ext_ack *extack);
1424 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1425 					       struct nlattr *tb[],
1426 					       struct net_device *dev,
1427 					       const unsigned char *addr,
1428 					       u16 vid);
1429 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1430 						struct netlink_callback *cb,
1431 						struct net_device *dev,
1432 						struct net_device *filter_dev,
1433 						int *idx);
1434 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1435 					       struct nlattr *tb[],
1436 					       struct net_device *dev,
1437 					       const unsigned char *addr,
1438 					       u16 vid, u32 portid, u32 seq,
1439 					       struct netlink_ext_ack *extack);
1440 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1441 						      struct nlmsghdr *nlh,
1442 						      u16 flags,
1443 						      struct netlink_ext_ack *extack);
1444 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1445 						      u32 pid, u32 seq,
1446 						      struct net_device *dev,
1447 						      u32 filter_mask,
1448 						      int nlflags);
1449 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1450 						      struct nlmsghdr *nlh,
1451 						      u16 flags);
1452 	int			(*ndo_change_carrier)(struct net_device *dev,
1453 						      bool new_carrier);
1454 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1455 							struct netdev_phys_item_id *ppid);
1456 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1457 							  struct netdev_phys_item_id *ppid);
1458 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1459 							  char *name, size_t len);
1460 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1461 						      struct udp_tunnel_info *ti);
1462 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1463 						      struct udp_tunnel_info *ti);
1464 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1465 							struct net_device *dev);
1466 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1467 							void *priv);
1468 
1469 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1470 						      int queue_index,
1471 						      u32 maxrate);
1472 	int			(*ndo_get_iflink)(const struct net_device *dev);
1473 	int			(*ndo_change_proto_down)(struct net_device *dev,
1474 							 bool proto_down);
1475 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1476 						       struct sk_buff *skb);
1477 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1478 						       int needed_headroom);
1479 	int			(*ndo_bpf)(struct net_device *dev,
1480 					   struct netdev_bpf *bpf);
1481 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1482 						struct xdp_frame **xdp,
1483 						u32 flags);
1484 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1485 						  u32 queue_id, u32 flags);
1486 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1487 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1488 						  struct ip_tunnel_parm *p, int cmd);
1489 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1490 };
1491 
1492 /**
1493  * enum net_device_priv_flags - &struct net_device priv_flags
1494  *
1495  * These are the &struct net_device, they are only set internally
1496  * by drivers and used in the kernel. These flags are invisible to
1497  * userspace; this means that the order of these flags can change
1498  * during any kernel release.
1499  *
1500  * You should have a pretty good reason to be extending these flags.
1501  *
1502  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1503  * @IFF_EBRIDGE: Ethernet bridging device
1504  * @IFF_BONDING: bonding master or slave
1505  * @IFF_ISATAP: ISATAP interface (RFC4214)
1506  * @IFF_WAN_HDLC: WAN HDLC device
1507  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1508  *	release skb->dst
1509  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1510  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1511  * @IFF_MACVLAN_PORT: device used as macvlan port
1512  * @IFF_BRIDGE_PORT: device used as bridge port
1513  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1514  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1515  * @IFF_UNICAST_FLT: Supports unicast filtering
1516  * @IFF_TEAM_PORT: device used as team port
1517  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1518  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1519  *	change when it's running
1520  * @IFF_MACVLAN: Macvlan device
1521  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1522  *	underlying stacked devices
1523  * @IFF_L3MDEV_MASTER: device is an L3 master device
1524  * @IFF_NO_QUEUE: device can run without qdisc attached
1525  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1526  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1527  * @IFF_TEAM: device is a team device
1528  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1529  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1530  *	entity (i.e. the master device for bridged veth)
1531  * @IFF_MACSEC: device is a MACsec device
1532  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1533  * @IFF_FAILOVER: device is a failover master device
1534  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1535  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1536  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1537  */
1538 enum netdev_priv_flags {
1539 	IFF_802_1Q_VLAN			= 1<<0,
1540 	IFF_EBRIDGE			= 1<<1,
1541 	IFF_BONDING			= 1<<2,
1542 	IFF_ISATAP			= 1<<3,
1543 	IFF_WAN_HDLC			= 1<<4,
1544 	IFF_XMIT_DST_RELEASE		= 1<<5,
1545 	IFF_DONT_BRIDGE			= 1<<6,
1546 	IFF_DISABLE_NETPOLL		= 1<<7,
1547 	IFF_MACVLAN_PORT		= 1<<8,
1548 	IFF_BRIDGE_PORT			= 1<<9,
1549 	IFF_OVS_DATAPATH		= 1<<10,
1550 	IFF_TX_SKB_SHARING		= 1<<11,
1551 	IFF_UNICAST_FLT			= 1<<12,
1552 	IFF_TEAM_PORT			= 1<<13,
1553 	IFF_SUPP_NOFCS			= 1<<14,
1554 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1555 	IFF_MACVLAN			= 1<<16,
1556 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1557 	IFF_L3MDEV_MASTER		= 1<<18,
1558 	IFF_NO_QUEUE			= 1<<19,
1559 	IFF_OPENVSWITCH			= 1<<20,
1560 	IFF_L3MDEV_SLAVE		= 1<<21,
1561 	IFF_TEAM			= 1<<22,
1562 	IFF_RXFH_CONFIGURED		= 1<<23,
1563 	IFF_PHONY_HEADROOM		= 1<<24,
1564 	IFF_MACSEC			= 1<<25,
1565 	IFF_NO_RX_HANDLER		= 1<<26,
1566 	IFF_FAILOVER			= 1<<27,
1567 	IFF_FAILOVER_SLAVE		= 1<<28,
1568 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1569 	IFF_LIVE_RENAME_OK		= 1<<30,
1570 };
1571 
1572 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1573 #define IFF_EBRIDGE			IFF_EBRIDGE
1574 #define IFF_BONDING			IFF_BONDING
1575 #define IFF_ISATAP			IFF_ISATAP
1576 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1577 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1578 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1579 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1580 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1581 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1582 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1583 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1584 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1585 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1586 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1587 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1588 #define IFF_MACVLAN			IFF_MACVLAN
1589 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1590 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1591 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1592 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1593 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1594 #define IFF_TEAM			IFF_TEAM
1595 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1596 #define IFF_MACSEC			IFF_MACSEC
1597 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1598 #define IFF_FAILOVER			IFF_FAILOVER
1599 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1600 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1601 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1602 
1603 /**
1604  *	struct net_device - The DEVICE structure.
1605  *
1606  *	Actually, this whole structure is a big mistake.  It mixes I/O
1607  *	data with strictly "high-level" data, and it has to know about
1608  *	almost every data structure used in the INET module.
1609  *
1610  *	@name:	This is the first field of the "visible" part of this structure
1611  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1612  *		of the interface.
1613  *
1614  *	@name_node:	Name hashlist node
1615  *	@ifalias:	SNMP alias
1616  *	@mem_end:	Shared memory end
1617  *	@mem_start:	Shared memory start
1618  *	@base_addr:	Device I/O address
1619  *	@irq:		Device IRQ number
1620  *
1621  *	@state:		Generic network queuing layer state, see netdev_state_t
1622  *	@dev_list:	The global list of network devices
1623  *	@napi_list:	List entry used for polling NAPI devices
1624  *	@unreg_list:	List entry  when we are unregistering the
1625  *			device; see the function unregister_netdev
1626  *	@close_list:	List entry used when we are closing the device
1627  *	@ptype_all:     Device-specific packet handlers for all protocols
1628  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1629  *
1630  *	@adj_list:	Directly linked devices, like slaves for bonding
1631  *	@features:	Currently active device features
1632  *	@hw_features:	User-changeable features
1633  *
1634  *	@wanted_features:	User-requested features
1635  *	@vlan_features:		Mask of features inheritable by VLAN devices
1636  *
1637  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1638  *				This field indicates what encapsulation
1639  *				offloads the hardware is capable of doing,
1640  *				and drivers will need to set them appropriately.
1641  *
1642  *	@mpls_features:	Mask of features inheritable by MPLS
1643  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1644  *
1645  *	@ifindex:	interface index
1646  *	@group:		The group the device belongs to
1647  *
1648  *	@stats:		Statistics struct, which was left as a legacy, use
1649  *			rtnl_link_stats64 instead
1650  *
1651  *	@rx_dropped:	Dropped packets by core network,
1652  *			do not use this in drivers
1653  *	@tx_dropped:	Dropped packets by core network,
1654  *			do not use this in drivers
1655  *	@rx_nohandler:	nohandler dropped packets by core network on
1656  *			inactive devices, do not use this in drivers
1657  *	@carrier_up_count:	Number of times the carrier has been up
1658  *	@carrier_down_count:	Number of times the carrier has been down
1659  *
1660  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1661  *				instead of ioctl,
1662  *				see <net/iw_handler.h> for details.
1663  *	@wireless_data:	Instance data managed by the core of wireless extensions
1664  *
1665  *	@netdev_ops:	Includes several pointers to callbacks,
1666  *			if one wants to override the ndo_*() functions
1667  *	@ethtool_ops:	Management operations
1668  *	@l3mdev_ops:	Layer 3 master device operations
1669  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1670  *			discovery handling. Necessary for e.g. 6LoWPAN.
1671  *	@xfrmdev_ops:	Transformation offload operations
1672  *	@tlsdev_ops:	Transport Layer Security offload operations
1673  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1674  *			of Layer 2 headers.
1675  *
1676  *	@flags:		Interface flags (a la BSD)
1677  *	@priv_flags:	Like 'flags' but invisible to userspace,
1678  *			see if.h for the definitions
1679  *	@gflags:	Global flags ( kept as legacy )
1680  *	@padded:	How much padding added by alloc_netdev()
1681  *	@operstate:	RFC2863 operstate
1682  *	@link_mode:	Mapping policy to operstate
1683  *	@if_port:	Selectable AUI, TP, ...
1684  *	@dma:		DMA channel
1685  *	@mtu:		Interface MTU value
1686  *	@min_mtu:	Interface Minimum MTU value
1687  *	@max_mtu:	Interface Maximum MTU value
1688  *	@type:		Interface hardware type
1689  *	@hard_header_len: Maximum hardware header length.
1690  *	@min_header_len:  Minimum hardware header length
1691  *
1692  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1693  *			  cases can this be guaranteed
1694  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1695  *			  cases can this be guaranteed. Some cases also use
1696  *			  LL_MAX_HEADER instead to allocate the skb
1697  *
1698  *	interface address info:
1699  *
1700  * 	@perm_addr:		Permanent hw address
1701  * 	@addr_assign_type:	Hw address assignment type
1702  * 	@addr_len:		Hardware address length
1703  *	@upper_level:		Maximum depth level of upper devices.
1704  *	@lower_level:		Maximum depth level of lower devices.
1705  *	@neigh_priv_len:	Used in neigh_alloc()
1706  * 	@dev_id:		Used to differentiate devices that share
1707  * 				the same link layer address
1708  * 	@dev_port:		Used to differentiate devices that share
1709  * 				the same function
1710  *	@addr_list_lock:	XXX: need comments on this one
1711  *	@name_assign_type:	network interface name assignment type
1712  *	@uc_promisc:		Counter that indicates promiscuous mode
1713  *				has been enabled due to the need to listen to
1714  *				additional unicast addresses in a device that
1715  *				does not implement ndo_set_rx_mode()
1716  *	@uc:			unicast mac addresses
1717  *	@mc:			multicast mac addresses
1718  *	@dev_addrs:		list of device hw addresses
1719  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1720  *	@promiscuity:		Number of times the NIC is told to work in
1721  *				promiscuous mode; if it becomes 0 the NIC will
1722  *				exit promiscuous mode
1723  *	@allmulti:		Counter, enables or disables allmulticast mode
1724  *
1725  *	@vlan_info:	VLAN info
1726  *	@dsa_ptr:	dsa specific data
1727  *	@tipc_ptr:	TIPC specific data
1728  *	@atalk_ptr:	AppleTalk link
1729  *	@ip_ptr:	IPv4 specific data
1730  *	@dn_ptr:	DECnet specific data
1731  *	@ip6_ptr:	IPv6 specific data
1732  *	@ax25_ptr:	AX.25 specific data
1733  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1734  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1735  *			 device struct
1736  *	@mpls_ptr:	mpls_dev struct pointer
1737  *
1738  *	@dev_addr:	Hw address (before bcast,
1739  *			because most packets are unicast)
1740  *
1741  *	@_rx:			Array of RX queues
1742  *	@num_rx_queues:		Number of RX queues
1743  *				allocated at register_netdev() time
1744  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1745  *	@xdp_prog:		XDP sockets filter program pointer
1746  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1747  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1748  *				allow to avoid NIC hard IRQ, on busy queues.
1749  *
1750  *	@rx_handler:		handler for received packets
1751  *	@rx_handler_data: 	XXX: need comments on this one
1752  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1753  *				ingress processing
1754  *	@ingress_queue:		XXX: need comments on this one
1755  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1756  *	@broadcast:		hw bcast address
1757  *
1758  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1759  *			indexed by RX queue number. Assigned by driver.
1760  *			This must only be set if the ndo_rx_flow_steer
1761  *			operation is defined
1762  *	@index_hlist:		Device index hash chain
1763  *
1764  *	@_tx:			Array of TX queues
1765  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1766  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1767  *	@qdisc:			Root qdisc from userspace point of view
1768  *	@tx_queue_len:		Max frames per queue allowed
1769  *	@tx_global_lock: 	XXX: need comments on this one
1770  *	@xdp_bulkq:		XDP device bulk queue
1771  *	@xps_cpus_map:		all CPUs map for XPS device
1772  *	@xps_rxqs_map:		all RXQs map for XPS device
1773  *
1774  *	@xps_maps:	XXX: need comments on this one
1775  *	@miniq_egress:		clsact qdisc specific data for
1776  *				egress processing
1777  *	@qdisc_hash:		qdisc hash table
1778  *	@watchdog_timeo:	Represents the timeout that is used by
1779  *				the watchdog (see dev_watchdog())
1780  *	@watchdog_timer:	List of timers
1781  *
1782  *	@proto_down_reason:	reason a netdev interface is held down
1783  *	@pcpu_refcnt:		Number of references to this device
1784  *	@todo_list:		Delayed register/unregister
1785  *	@link_watch_list:	XXX: need comments on this one
1786  *
1787  *	@reg_state:		Register/unregister state machine
1788  *	@dismantle:		Device is going to be freed
1789  *	@rtnl_link_state:	This enum represents the phases of creating
1790  *				a new link
1791  *
1792  *	@needs_free_netdev:	Should unregister perform free_netdev?
1793  *	@priv_destructor:	Called from unregister
1794  *	@npinfo:		XXX: need comments on this one
1795  * 	@nd_net:		Network namespace this network device is inside
1796  *
1797  * 	@ml_priv:	Mid-layer private
1798  * 	@lstats:	Loopback statistics
1799  * 	@tstats:	Tunnel statistics
1800  * 	@dstats:	Dummy statistics
1801  * 	@vstats:	Virtual ethernet statistics
1802  *
1803  *	@garp_port:	GARP
1804  *	@mrp_port:	MRP
1805  *
1806  *	@dev:		Class/net/name entry
1807  *	@sysfs_groups:	Space for optional device, statistics and wireless
1808  *			sysfs groups
1809  *
1810  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1811  *	@rtnl_link_ops:	Rtnl_link_ops
1812  *
1813  *	@gso_max_size:	Maximum size of generic segmentation offload
1814  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1815  *			NIC for GSO
1816  *
1817  *	@dcbnl_ops:	Data Center Bridging netlink ops
1818  *	@num_tc:	Number of traffic classes in the net device
1819  *	@tc_to_txq:	XXX: need comments on this one
1820  *	@prio_tc_map:	XXX: need comments on this one
1821  *
1822  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1823  *
1824  *	@priomap:	XXX: need comments on this one
1825  *	@phydev:	Physical device may attach itself
1826  *			for hardware timestamping
1827  *	@sfp_bus:	attached &struct sfp_bus structure.
1828  *
1829  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1830  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1831  *
1832  *	@proto_down:	protocol port state information can be sent to the
1833  *			switch driver and used to set the phys state of the
1834  *			switch port.
1835  *
1836  *	@wol_enabled:	Wake-on-LAN is enabled
1837  *
1838  *	@net_notifier_list:	List of per-net netdev notifier block
1839  *				that follow this device when it is moved
1840  *				to another network namespace.
1841  *
1842  *	@macsec_ops:    MACsec offloading ops
1843  *
1844  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1845  *				offload capabilities of the device
1846  *	@udp_tunnel_nic:	UDP tunnel offload state
1847  *	@xdp_state:		stores info on attached XDP BPF programs
1848  *
1849  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1850  *			dev->addr_list_lock.
1851  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1852  *			keep a list of interfaces to be deleted.
1853  *
1854  *	FIXME: cleanup struct net_device such that network protocol info
1855  *	moves out.
1856  */
1857 
1858 struct net_device {
1859 	char			name[IFNAMSIZ];
1860 	struct netdev_name_node	*name_node;
1861 	struct dev_ifalias	__rcu *ifalias;
1862 	/*
1863 	 *	I/O specific fields
1864 	 *	FIXME: Merge these and struct ifmap into one
1865 	 */
1866 	unsigned long		mem_end;
1867 	unsigned long		mem_start;
1868 	unsigned long		base_addr;
1869 	int			irq;
1870 
1871 	/*
1872 	 *	Some hardware also needs these fields (state,dev_list,
1873 	 *	napi_list,unreg_list,close_list) but they are not
1874 	 *	part of the usual set specified in Space.c.
1875 	 */
1876 
1877 	unsigned long		state;
1878 
1879 	struct list_head	dev_list;
1880 	struct list_head	napi_list;
1881 	struct list_head	unreg_list;
1882 	struct list_head	close_list;
1883 	struct list_head	ptype_all;
1884 	struct list_head	ptype_specific;
1885 
1886 	struct {
1887 		struct list_head upper;
1888 		struct list_head lower;
1889 	} adj_list;
1890 
1891 	netdev_features_t	features;
1892 	netdev_features_t	hw_features;
1893 	netdev_features_t	wanted_features;
1894 	netdev_features_t	vlan_features;
1895 	netdev_features_t	hw_enc_features;
1896 	netdev_features_t	mpls_features;
1897 	netdev_features_t	gso_partial_features;
1898 
1899 	int			ifindex;
1900 	int			group;
1901 
1902 	struct net_device_stats	stats;
1903 
1904 	atomic_long_t		rx_dropped;
1905 	atomic_long_t		tx_dropped;
1906 	atomic_long_t		rx_nohandler;
1907 
1908 	/* Stats to monitor link on/off, flapping */
1909 	atomic_t		carrier_up_count;
1910 	atomic_t		carrier_down_count;
1911 
1912 #ifdef CONFIG_WIRELESS_EXT
1913 	const struct iw_handler_def *wireless_handlers;
1914 	struct iw_public_data	*wireless_data;
1915 #endif
1916 	const struct net_device_ops *netdev_ops;
1917 	const struct ethtool_ops *ethtool_ops;
1918 #ifdef CONFIG_NET_L3_MASTER_DEV
1919 	const struct l3mdev_ops	*l3mdev_ops;
1920 #endif
1921 #if IS_ENABLED(CONFIG_IPV6)
1922 	const struct ndisc_ops *ndisc_ops;
1923 #endif
1924 
1925 #ifdef CONFIG_XFRM_OFFLOAD
1926 	const struct xfrmdev_ops *xfrmdev_ops;
1927 #endif
1928 
1929 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1930 	const struct tlsdev_ops *tlsdev_ops;
1931 #endif
1932 
1933 	const struct header_ops *header_ops;
1934 
1935 	unsigned int		flags;
1936 	unsigned int		priv_flags;
1937 
1938 	unsigned short		gflags;
1939 	unsigned short		padded;
1940 
1941 	unsigned char		operstate;
1942 	unsigned char		link_mode;
1943 
1944 	unsigned char		if_port;
1945 	unsigned char		dma;
1946 
1947 	/* Note : dev->mtu is often read without holding a lock.
1948 	 * Writers usually hold RTNL.
1949 	 * It is recommended to use READ_ONCE() to annotate the reads,
1950 	 * and to use WRITE_ONCE() to annotate the writes.
1951 	 */
1952 	unsigned int		mtu;
1953 	unsigned int		min_mtu;
1954 	unsigned int		max_mtu;
1955 	unsigned short		type;
1956 	unsigned short		hard_header_len;
1957 	unsigned char		min_header_len;
1958 	unsigned char		name_assign_type;
1959 
1960 	unsigned short		needed_headroom;
1961 	unsigned short		needed_tailroom;
1962 
1963 	/* Interface address info. */
1964 	unsigned char		perm_addr[MAX_ADDR_LEN];
1965 	unsigned char		addr_assign_type;
1966 	unsigned char		addr_len;
1967 	unsigned char		upper_level;
1968 	unsigned char		lower_level;
1969 
1970 	unsigned short		neigh_priv_len;
1971 	unsigned short          dev_id;
1972 	unsigned short          dev_port;
1973 	spinlock_t		addr_list_lock;
1974 
1975 	struct netdev_hw_addr_list	uc;
1976 	struct netdev_hw_addr_list	mc;
1977 	struct netdev_hw_addr_list	dev_addrs;
1978 
1979 #ifdef CONFIG_SYSFS
1980 	struct kset		*queues_kset;
1981 #endif
1982 #ifdef CONFIG_LOCKDEP
1983 	struct list_head	unlink_list;
1984 #endif
1985 	unsigned int		promiscuity;
1986 	unsigned int		allmulti;
1987 	bool			uc_promisc;
1988 #ifdef CONFIG_LOCKDEP
1989 	unsigned char		nested_level;
1990 #endif
1991 
1992 
1993 	/* Protocol-specific pointers */
1994 
1995 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1996 	struct vlan_info __rcu	*vlan_info;
1997 #endif
1998 #if IS_ENABLED(CONFIG_NET_DSA)
1999 	struct dsa_port		*dsa_ptr;
2000 #endif
2001 #if IS_ENABLED(CONFIG_TIPC)
2002 	struct tipc_bearer __rcu *tipc_ptr;
2003 #endif
2004 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2005 	void 			*atalk_ptr;
2006 #endif
2007 	struct in_device __rcu	*ip_ptr;
2008 #if IS_ENABLED(CONFIG_DECNET)
2009 	struct dn_dev __rcu     *dn_ptr;
2010 #endif
2011 	struct inet6_dev __rcu	*ip6_ptr;
2012 #if IS_ENABLED(CONFIG_AX25)
2013 	void			*ax25_ptr;
2014 #endif
2015 	struct wireless_dev	*ieee80211_ptr;
2016 	struct wpan_dev		*ieee802154_ptr;
2017 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2018 	struct mpls_dev __rcu	*mpls_ptr;
2019 #endif
2020 
2021 /*
2022  * Cache lines mostly used on receive path (including eth_type_trans())
2023  */
2024 	/* Interface address info used in eth_type_trans() */
2025 	unsigned char		*dev_addr;
2026 
2027 	struct netdev_rx_queue	*_rx;
2028 	unsigned int		num_rx_queues;
2029 	unsigned int		real_num_rx_queues;
2030 
2031 	struct bpf_prog __rcu	*xdp_prog;
2032 	unsigned long		gro_flush_timeout;
2033 	int			napi_defer_hard_irqs;
2034 	rx_handler_func_t __rcu	*rx_handler;
2035 	void __rcu		*rx_handler_data;
2036 
2037 #ifdef CONFIG_NET_CLS_ACT
2038 	struct mini_Qdisc __rcu	*miniq_ingress;
2039 #endif
2040 	struct netdev_queue __rcu *ingress_queue;
2041 #ifdef CONFIG_NETFILTER_INGRESS
2042 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2043 #endif
2044 
2045 	unsigned char		broadcast[MAX_ADDR_LEN];
2046 #ifdef CONFIG_RFS_ACCEL
2047 	struct cpu_rmap		*rx_cpu_rmap;
2048 #endif
2049 	struct hlist_node	index_hlist;
2050 
2051 /*
2052  * Cache lines mostly used on transmit path
2053  */
2054 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2055 	unsigned int		num_tx_queues;
2056 	unsigned int		real_num_tx_queues;
2057 	struct Qdisc		*qdisc;
2058 	unsigned int		tx_queue_len;
2059 	spinlock_t		tx_global_lock;
2060 
2061 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2062 
2063 #ifdef CONFIG_XPS
2064 	struct xps_dev_maps __rcu *xps_cpus_map;
2065 	struct xps_dev_maps __rcu *xps_rxqs_map;
2066 #endif
2067 #ifdef CONFIG_NET_CLS_ACT
2068 	struct mini_Qdisc __rcu	*miniq_egress;
2069 #endif
2070 
2071 #ifdef CONFIG_NET_SCHED
2072 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2073 #endif
2074 	/* These may be needed for future network-power-down code. */
2075 	struct timer_list	watchdog_timer;
2076 	int			watchdog_timeo;
2077 
2078 	u32                     proto_down_reason;
2079 
2080 	struct list_head	todo_list;
2081 	int __percpu		*pcpu_refcnt;
2082 
2083 	struct list_head	link_watch_list;
2084 
2085 	enum { NETREG_UNINITIALIZED=0,
2086 	       NETREG_REGISTERED,	/* completed register_netdevice */
2087 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2088 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2089 	       NETREG_RELEASED,		/* called free_netdev */
2090 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2091 	} reg_state:8;
2092 
2093 	bool dismantle;
2094 
2095 	enum {
2096 		RTNL_LINK_INITIALIZED,
2097 		RTNL_LINK_INITIALIZING,
2098 	} rtnl_link_state:16;
2099 
2100 	bool needs_free_netdev;
2101 	void (*priv_destructor)(struct net_device *dev);
2102 
2103 #ifdef CONFIG_NETPOLL
2104 	struct netpoll_info __rcu	*npinfo;
2105 #endif
2106 
2107 	possible_net_t			nd_net;
2108 
2109 	/* mid-layer private */
2110 	union {
2111 		void					*ml_priv;
2112 		struct pcpu_lstats __percpu		*lstats;
2113 		struct pcpu_sw_netstats __percpu	*tstats;
2114 		struct pcpu_dstats __percpu		*dstats;
2115 	};
2116 
2117 #if IS_ENABLED(CONFIG_GARP)
2118 	struct garp_port __rcu	*garp_port;
2119 #endif
2120 #if IS_ENABLED(CONFIG_MRP)
2121 	struct mrp_port __rcu	*mrp_port;
2122 #endif
2123 
2124 	struct device		dev;
2125 	const struct attribute_group *sysfs_groups[4];
2126 	const struct attribute_group *sysfs_rx_queue_group;
2127 
2128 	const struct rtnl_link_ops *rtnl_link_ops;
2129 
2130 	/* for setting kernel sock attribute on TCP connection setup */
2131 #define GSO_MAX_SIZE		65536
2132 	unsigned int		gso_max_size;
2133 #define GSO_MAX_SEGS		65535
2134 	u16			gso_max_segs;
2135 
2136 #ifdef CONFIG_DCB
2137 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2138 #endif
2139 	s16			num_tc;
2140 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2141 	u8			prio_tc_map[TC_BITMASK + 1];
2142 
2143 #if IS_ENABLED(CONFIG_FCOE)
2144 	unsigned int		fcoe_ddp_xid;
2145 #endif
2146 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2147 	struct netprio_map __rcu *priomap;
2148 #endif
2149 	struct phy_device	*phydev;
2150 	struct sfp_bus		*sfp_bus;
2151 	struct lock_class_key	*qdisc_tx_busylock;
2152 	struct lock_class_key	*qdisc_running_key;
2153 	bool			proto_down;
2154 	unsigned		wol_enabled:1;
2155 
2156 	struct list_head	net_notifier_list;
2157 
2158 #if IS_ENABLED(CONFIG_MACSEC)
2159 	/* MACsec management functions */
2160 	const struct macsec_ops *macsec_ops;
2161 #endif
2162 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2163 	struct udp_tunnel_nic	*udp_tunnel_nic;
2164 
2165 	/* protected by rtnl_lock */
2166 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2167 };
2168 #define to_net_dev(d) container_of(d, struct net_device, dev)
2169 
2170 static inline bool netif_elide_gro(const struct net_device *dev)
2171 {
2172 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2173 		return true;
2174 	return false;
2175 }
2176 
2177 #define	NETDEV_ALIGN		32
2178 
2179 static inline
2180 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2181 {
2182 	return dev->prio_tc_map[prio & TC_BITMASK];
2183 }
2184 
2185 static inline
2186 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2187 {
2188 	if (tc >= dev->num_tc)
2189 		return -EINVAL;
2190 
2191 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2192 	return 0;
2193 }
2194 
2195 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2196 void netdev_reset_tc(struct net_device *dev);
2197 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2198 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2199 
2200 static inline
2201 int netdev_get_num_tc(struct net_device *dev)
2202 {
2203 	return dev->num_tc;
2204 }
2205 
2206 static inline void net_prefetch(void *p)
2207 {
2208 	prefetch(p);
2209 #if L1_CACHE_BYTES < 128
2210 	prefetch((u8 *)p + L1_CACHE_BYTES);
2211 #endif
2212 }
2213 
2214 static inline void net_prefetchw(void *p)
2215 {
2216 	prefetchw(p);
2217 #if L1_CACHE_BYTES < 128
2218 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2219 #endif
2220 }
2221 
2222 void netdev_unbind_sb_channel(struct net_device *dev,
2223 			      struct net_device *sb_dev);
2224 int netdev_bind_sb_channel_queue(struct net_device *dev,
2225 				 struct net_device *sb_dev,
2226 				 u8 tc, u16 count, u16 offset);
2227 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2228 static inline int netdev_get_sb_channel(struct net_device *dev)
2229 {
2230 	return max_t(int, -dev->num_tc, 0);
2231 }
2232 
2233 static inline
2234 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2235 					 unsigned int index)
2236 {
2237 	return &dev->_tx[index];
2238 }
2239 
2240 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2241 						    const struct sk_buff *skb)
2242 {
2243 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2244 }
2245 
2246 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2247 					    void (*f)(struct net_device *,
2248 						      struct netdev_queue *,
2249 						      void *),
2250 					    void *arg)
2251 {
2252 	unsigned int i;
2253 
2254 	for (i = 0; i < dev->num_tx_queues; i++)
2255 		f(dev, &dev->_tx[i], arg);
2256 }
2257 
2258 #define netdev_lockdep_set_classes(dev)				\
2259 {								\
2260 	static struct lock_class_key qdisc_tx_busylock_key;	\
2261 	static struct lock_class_key qdisc_running_key;		\
2262 	static struct lock_class_key qdisc_xmit_lock_key;	\
2263 	static struct lock_class_key dev_addr_list_lock_key;	\
2264 	unsigned int i;						\
2265 								\
2266 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2267 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2268 	lockdep_set_class(&(dev)->addr_list_lock,		\
2269 			  &dev_addr_list_lock_key);		\
2270 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2271 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2272 				  &qdisc_xmit_lock_key);	\
2273 }
2274 
2275 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2276 		     struct net_device *sb_dev);
2277 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2278 					 struct sk_buff *skb,
2279 					 struct net_device *sb_dev);
2280 
2281 /* returns the headroom that the master device needs to take in account
2282  * when forwarding to this dev
2283  */
2284 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2285 {
2286 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2287 }
2288 
2289 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2290 {
2291 	if (dev->netdev_ops->ndo_set_rx_headroom)
2292 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2293 }
2294 
2295 /* set the device rx headroom to the dev's default */
2296 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2297 {
2298 	netdev_set_rx_headroom(dev, -1);
2299 }
2300 
2301 /*
2302  * Net namespace inlines
2303  */
2304 static inline
2305 struct net *dev_net(const struct net_device *dev)
2306 {
2307 	return read_pnet(&dev->nd_net);
2308 }
2309 
2310 static inline
2311 void dev_net_set(struct net_device *dev, struct net *net)
2312 {
2313 	write_pnet(&dev->nd_net, net);
2314 }
2315 
2316 /**
2317  *	netdev_priv - access network device private data
2318  *	@dev: network device
2319  *
2320  * Get network device private data
2321  */
2322 static inline void *netdev_priv(const struct net_device *dev)
2323 {
2324 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2325 }
2326 
2327 /* Set the sysfs physical device reference for the network logical device
2328  * if set prior to registration will cause a symlink during initialization.
2329  */
2330 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2331 
2332 /* Set the sysfs device type for the network logical device to allow
2333  * fine-grained identification of different network device types. For
2334  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2335  */
2336 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2337 
2338 /* Default NAPI poll() weight
2339  * Device drivers are strongly advised to not use bigger value
2340  */
2341 #define NAPI_POLL_WEIGHT 64
2342 
2343 /**
2344  *	netif_napi_add - initialize a NAPI context
2345  *	@dev:  network device
2346  *	@napi: NAPI context
2347  *	@poll: polling function
2348  *	@weight: default weight
2349  *
2350  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2351  * *any* of the other NAPI-related functions.
2352  */
2353 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2354 		    int (*poll)(struct napi_struct *, int), int weight);
2355 
2356 /**
2357  *	netif_tx_napi_add - initialize a NAPI context
2358  *	@dev:  network device
2359  *	@napi: NAPI context
2360  *	@poll: polling function
2361  *	@weight: default weight
2362  *
2363  * This variant of netif_napi_add() should be used from drivers using NAPI
2364  * to exclusively poll a TX queue.
2365  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2366  */
2367 static inline void netif_tx_napi_add(struct net_device *dev,
2368 				     struct napi_struct *napi,
2369 				     int (*poll)(struct napi_struct *, int),
2370 				     int weight)
2371 {
2372 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2373 	netif_napi_add(dev, napi, poll, weight);
2374 }
2375 
2376 /**
2377  *  __netif_napi_del - remove a NAPI context
2378  *  @napi: NAPI context
2379  *
2380  * Warning: caller must observe RCU grace period before freeing memory
2381  * containing @napi. Drivers might want to call this helper to combine
2382  * all the needed RCU grace periods into a single one.
2383  */
2384 void __netif_napi_del(struct napi_struct *napi);
2385 
2386 /**
2387  *  netif_napi_del - remove a NAPI context
2388  *  @napi: NAPI context
2389  *
2390  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2391  */
2392 static inline void netif_napi_del(struct napi_struct *napi)
2393 {
2394 	__netif_napi_del(napi);
2395 	synchronize_net();
2396 }
2397 
2398 struct napi_gro_cb {
2399 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2400 	void	*frag0;
2401 
2402 	/* Length of frag0. */
2403 	unsigned int frag0_len;
2404 
2405 	/* This indicates where we are processing relative to skb->data. */
2406 	int	data_offset;
2407 
2408 	/* This is non-zero if the packet cannot be merged with the new skb. */
2409 	u16	flush;
2410 
2411 	/* Save the IP ID here and check when we get to the transport layer */
2412 	u16	flush_id;
2413 
2414 	/* Number of segments aggregated. */
2415 	u16	count;
2416 
2417 	/* Start offset for remote checksum offload */
2418 	u16	gro_remcsum_start;
2419 
2420 	/* jiffies when first packet was created/queued */
2421 	unsigned long age;
2422 
2423 	/* Used in ipv6_gro_receive() and foo-over-udp */
2424 	u16	proto;
2425 
2426 	/* This is non-zero if the packet may be of the same flow. */
2427 	u8	same_flow:1;
2428 
2429 	/* Used in tunnel GRO receive */
2430 	u8	encap_mark:1;
2431 
2432 	/* GRO checksum is valid */
2433 	u8	csum_valid:1;
2434 
2435 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2436 	u8	csum_cnt:3;
2437 
2438 	/* Free the skb? */
2439 	u8	free:2;
2440 #define NAPI_GRO_FREE		  1
2441 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2442 
2443 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2444 	u8	is_ipv6:1;
2445 
2446 	/* Used in GRE, set in fou/gue_gro_receive */
2447 	u8	is_fou:1;
2448 
2449 	/* Used to determine if flush_id can be ignored */
2450 	u8	is_atomic:1;
2451 
2452 	/* Number of gro_receive callbacks this packet already went through */
2453 	u8 recursion_counter:4;
2454 
2455 	/* GRO is done by frag_list pointer chaining. */
2456 	u8	is_flist:1;
2457 
2458 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2459 	__wsum	csum;
2460 
2461 	/* used in skb_gro_receive() slow path */
2462 	struct sk_buff *last;
2463 };
2464 
2465 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2466 
2467 #define GRO_RECURSION_LIMIT 15
2468 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2469 {
2470 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2471 }
2472 
2473 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2474 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2475 					       struct list_head *head,
2476 					       struct sk_buff *skb)
2477 {
2478 	if (unlikely(gro_recursion_inc_test(skb))) {
2479 		NAPI_GRO_CB(skb)->flush |= 1;
2480 		return NULL;
2481 	}
2482 
2483 	return cb(head, skb);
2484 }
2485 
2486 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2487 					    struct sk_buff *);
2488 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2489 						  struct sock *sk,
2490 						  struct list_head *head,
2491 						  struct sk_buff *skb)
2492 {
2493 	if (unlikely(gro_recursion_inc_test(skb))) {
2494 		NAPI_GRO_CB(skb)->flush |= 1;
2495 		return NULL;
2496 	}
2497 
2498 	return cb(sk, head, skb);
2499 }
2500 
2501 struct packet_type {
2502 	__be16			type;	/* This is really htons(ether_type). */
2503 	bool			ignore_outgoing;
2504 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2505 	int			(*func) (struct sk_buff *,
2506 					 struct net_device *,
2507 					 struct packet_type *,
2508 					 struct net_device *);
2509 	void			(*list_func) (struct list_head *,
2510 					      struct packet_type *,
2511 					      struct net_device *);
2512 	bool			(*id_match)(struct packet_type *ptype,
2513 					    struct sock *sk);
2514 	void			*af_packet_priv;
2515 	struct list_head	list;
2516 };
2517 
2518 struct offload_callbacks {
2519 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2520 						netdev_features_t features);
2521 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2522 						struct sk_buff *skb);
2523 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2524 };
2525 
2526 struct packet_offload {
2527 	__be16			 type;	/* This is really htons(ether_type). */
2528 	u16			 priority;
2529 	struct offload_callbacks callbacks;
2530 	struct list_head	 list;
2531 };
2532 
2533 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2534 struct pcpu_sw_netstats {
2535 	u64     rx_packets;
2536 	u64     rx_bytes;
2537 	u64     tx_packets;
2538 	u64     tx_bytes;
2539 	struct u64_stats_sync   syncp;
2540 } __aligned(4 * sizeof(u64));
2541 
2542 struct pcpu_lstats {
2543 	u64_stats_t packets;
2544 	u64_stats_t bytes;
2545 	struct u64_stats_sync syncp;
2546 } __aligned(2 * sizeof(u64));
2547 
2548 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2549 
2550 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2551 {
2552 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2553 
2554 	u64_stats_update_begin(&tstats->syncp);
2555 	tstats->rx_bytes += len;
2556 	tstats->rx_packets++;
2557 	u64_stats_update_end(&tstats->syncp);
2558 }
2559 
2560 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2561 {
2562 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2563 
2564 	u64_stats_update_begin(&lstats->syncp);
2565 	u64_stats_add(&lstats->bytes, len);
2566 	u64_stats_inc(&lstats->packets);
2567 	u64_stats_update_end(&lstats->syncp);
2568 }
2569 
2570 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2571 ({									\
2572 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2573 	if (pcpu_stats)	{						\
2574 		int __cpu;						\
2575 		for_each_possible_cpu(__cpu) {				\
2576 			typeof(type) *stat;				\
2577 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2578 			u64_stats_init(&stat->syncp);			\
2579 		}							\
2580 	}								\
2581 	pcpu_stats;							\
2582 })
2583 
2584 #define netdev_alloc_pcpu_stats(type)					\
2585 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2586 
2587 enum netdev_lag_tx_type {
2588 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2589 	NETDEV_LAG_TX_TYPE_RANDOM,
2590 	NETDEV_LAG_TX_TYPE_BROADCAST,
2591 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2592 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2593 	NETDEV_LAG_TX_TYPE_HASH,
2594 };
2595 
2596 enum netdev_lag_hash {
2597 	NETDEV_LAG_HASH_NONE,
2598 	NETDEV_LAG_HASH_L2,
2599 	NETDEV_LAG_HASH_L34,
2600 	NETDEV_LAG_HASH_L23,
2601 	NETDEV_LAG_HASH_E23,
2602 	NETDEV_LAG_HASH_E34,
2603 	NETDEV_LAG_HASH_UNKNOWN,
2604 };
2605 
2606 struct netdev_lag_upper_info {
2607 	enum netdev_lag_tx_type tx_type;
2608 	enum netdev_lag_hash hash_type;
2609 };
2610 
2611 struct netdev_lag_lower_state_info {
2612 	u8 link_up : 1,
2613 	   tx_enabled : 1;
2614 };
2615 
2616 #include <linux/notifier.h>
2617 
2618 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2619  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2620  * adding new types.
2621  */
2622 enum netdev_cmd {
2623 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2624 	NETDEV_DOWN,
2625 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2626 				   detected a hardware crash and restarted
2627 				   - we can use this eg to kick tcp sessions
2628 				   once done */
2629 	NETDEV_CHANGE,		/* Notify device state change */
2630 	NETDEV_REGISTER,
2631 	NETDEV_UNREGISTER,
2632 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2633 	NETDEV_CHANGEADDR,	/* notify after the address change */
2634 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2635 	NETDEV_GOING_DOWN,
2636 	NETDEV_CHANGENAME,
2637 	NETDEV_FEAT_CHANGE,
2638 	NETDEV_BONDING_FAILOVER,
2639 	NETDEV_PRE_UP,
2640 	NETDEV_PRE_TYPE_CHANGE,
2641 	NETDEV_POST_TYPE_CHANGE,
2642 	NETDEV_POST_INIT,
2643 	NETDEV_RELEASE,
2644 	NETDEV_NOTIFY_PEERS,
2645 	NETDEV_JOIN,
2646 	NETDEV_CHANGEUPPER,
2647 	NETDEV_RESEND_IGMP,
2648 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2649 	NETDEV_CHANGEINFODATA,
2650 	NETDEV_BONDING_INFO,
2651 	NETDEV_PRECHANGEUPPER,
2652 	NETDEV_CHANGELOWERSTATE,
2653 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2654 	NETDEV_UDP_TUNNEL_DROP_INFO,
2655 	NETDEV_CHANGE_TX_QUEUE_LEN,
2656 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2657 	NETDEV_CVLAN_FILTER_DROP_INFO,
2658 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2659 	NETDEV_SVLAN_FILTER_DROP_INFO,
2660 };
2661 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2662 
2663 int register_netdevice_notifier(struct notifier_block *nb);
2664 int unregister_netdevice_notifier(struct notifier_block *nb);
2665 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2666 int unregister_netdevice_notifier_net(struct net *net,
2667 				      struct notifier_block *nb);
2668 int register_netdevice_notifier_dev_net(struct net_device *dev,
2669 					struct notifier_block *nb,
2670 					struct netdev_net_notifier *nn);
2671 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2672 					  struct notifier_block *nb,
2673 					  struct netdev_net_notifier *nn);
2674 
2675 struct netdev_notifier_info {
2676 	struct net_device	*dev;
2677 	struct netlink_ext_ack	*extack;
2678 };
2679 
2680 struct netdev_notifier_info_ext {
2681 	struct netdev_notifier_info info; /* must be first */
2682 	union {
2683 		u32 mtu;
2684 	} ext;
2685 };
2686 
2687 struct netdev_notifier_change_info {
2688 	struct netdev_notifier_info info; /* must be first */
2689 	unsigned int flags_changed;
2690 };
2691 
2692 struct netdev_notifier_changeupper_info {
2693 	struct netdev_notifier_info info; /* must be first */
2694 	struct net_device *upper_dev; /* new upper dev */
2695 	bool master; /* is upper dev master */
2696 	bool linking; /* is the notification for link or unlink */
2697 	void *upper_info; /* upper dev info */
2698 };
2699 
2700 struct netdev_notifier_changelowerstate_info {
2701 	struct netdev_notifier_info info; /* must be first */
2702 	void *lower_state_info; /* is lower dev state */
2703 };
2704 
2705 struct netdev_notifier_pre_changeaddr_info {
2706 	struct netdev_notifier_info info; /* must be first */
2707 	const unsigned char *dev_addr;
2708 };
2709 
2710 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2711 					     struct net_device *dev)
2712 {
2713 	info->dev = dev;
2714 	info->extack = NULL;
2715 }
2716 
2717 static inline struct net_device *
2718 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2719 {
2720 	return info->dev;
2721 }
2722 
2723 static inline struct netlink_ext_ack *
2724 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2725 {
2726 	return info->extack;
2727 }
2728 
2729 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2730 
2731 
2732 extern rwlock_t				dev_base_lock;		/* Device list lock */
2733 
2734 #define for_each_netdev(net, d)		\
2735 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2736 #define for_each_netdev_reverse(net, d)	\
2737 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2738 #define for_each_netdev_rcu(net, d)		\
2739 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2740 #define for_each_netdev_safe(net, d, n)	\
2741 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2742 #define for_each_netdev_continue(net, d)		\
2743 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2744 #define for_each_netdev_continue_reverse(net, d)		\
2745 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2746 						     dev_list)
2747 #define for_each_netdev_continue_rcu(net, d)		\
2748 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2749 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2750 		for_each_netdev_rcu(&init_net, slave)	\
2751 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2752 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2753 
2754 static inline struct net_device *next_net_device(struct net_device *dev)
2755 {
2756 	struct list_head *lh;
2757 	struct net *net;
2758 
2759 	net = dev_net(dev);
2760 	lh = dev->dev_list.next;
2761 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2762 }
2763 
2764 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2765 {
2766 	struct list_head *lh;
2767 	struct net *net;
2768 
2769 	net = dev_net(dev);
2770 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2771 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2772 }
2773 
2774 static inline struct net_device *first_net_device(struct net *net)
2775 {
2776 	return list_empty(&net->dev_base_head) ? NULL :
2777 		net_device_entry(net->dev_base_head.next);
2778 }
2779 
2780 static inline struct net_device *first_net_device_rcu(struct net *net)
2781 {
2782 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2783 
2784 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2785 }
2786 
2787 int netdev_boot_setup_check(struct net_device *dev);
2788 unsigned long netdev_boot_base(const char *prefix, int unit);
2789 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2790 				       const char *hwaddr);
2791 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2792 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2793 void dev_add_pack(struct packet_type *pt);
2794 void dev_remove_pack(struct packet_type *pt);
2795 void __dev_remove_pack(struct packet_type *pt);
2796 void dev_add_offload(struct packet_offload *po);
2797 void dev_remove_offload(struct packet_offload *po);
2798 
2799 int dev_get_iflink(const struct net_device *dev);
2800 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2801 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2802 				      unsigned short mask);
2803 struct net_device *dev_get_by_name(struct net *net, const char *name);
2804 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2805 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2806 int dev_alloc_name(struct net_device *dev, const char *name);
2807 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2808 void dev_close(struct net_device *dev);
2809 void dev_close_many(struct list_head *head, bool unlink);
2810 void dev_disable_lro(struct net_device *dev);
2811 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2812 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2813 		     struct net_device *sb_dev);
2814 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2815 		       struct net_device *sb_dev);
2816 int dev_queue_xmit(struct sk_buff *skb);
2817 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2818 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2819 int register_netdevice(struct net_device *dev);
2820 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2821 void unregister_netdevice_many(struct list_head *head);
2822 static inline void unregister_netdevice(struct net_device *dev)
2823 {
2824 	unregister_netdevice_queue(dev, NULL);
2825 }
2826 
2827 int netdev_refcnt_read(const struct net_device *dev);
2828 void free_netdev(struct net_device *dev);
2829 void netdev_freemem(struct net_device *dev);
2830 int init_dummy_netdev(struct net_device *dev);
2831 
2832 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2833 					 struct sk_buff *skb,
2834 					 bool all_slaves);
2835 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2836 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2838 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2839 int netdev_get_name(struct net *net, char *name, int ifindex);
2840 int dev_restart(struct net_device *dev);
2841 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2842 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2843 
2844 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2845 {
2846 	return NAPI_GRO_CB(skb)->data_offset;
2847 }
2848 
2849 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2850 {
2851 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2852 }
2853 
2854 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2855 {
2856 	NAPI_GRO_CB(skb)->data_offset += len;
2857 }
2858 
2859 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2860 					unsigned int offset)
2861 {
2862 	return NAPI_GRO_CB(skb)->frag0 + offset;
2863 }
2864 
2865 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2866 {
2867 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2868 }
2869 
2870 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2871 {
2872 	NAPI_GRO_CB(skb)->frag0 = NULL;
2873 	NAPI_GRO_CB(skb)->frag0_len = 0;
2874 }
2875 
2876 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2877 					unsigned int offset)
2878 {
2879 	if (!pskb_may_pull(skb, hlen))
2880 		return NULL;
2881 
2882 	skb_gro_frag0_invalidate(skb);
2883 	return skb->data + offset;
2884 }
2885 
2886 static inline void *skb_gro_network_header(struct sk_buff *skb)
2887 {
2888 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2889 	       skb_network_offset(skb);
2890 }
2891 
2892 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2893 					const void *start, unsigned int len)
2894 {
2895 	if (NAPI_GRO_CB(skb)->csum_valid)
2896 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2897 						  csum_partial(start, len, 0));
2898 }
2899 
2900 /* GRO checksum functions. These are logical equivalents of the normal
2901  * checksum functions (in skbuff.h) except that they operate on the GRO
2902  * offsets and fields in sk_buff.
2903  */
2904 
2905 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2906 
2907 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2908 {
2909 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2910 }
2911 
2912 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2913 						      bool zero_okay,
2914 						      __sum16 check)
2915 {
2916 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2917 		skb_checksum_start_offset(skb) <
2918 		 skb_gro_offset(skb)) &&
2919 		!skb_at_gro_remcsum_start(skb) &&
2920 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2921 		(!zero_okay || check));
2922 }
2923 
2924 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2925 							   __wsum psum)
2926 {
2927 	if (NAPI_GRO_CB(skb)->csum_valid &&
2928 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2929 		return 0;
2930 
2931 	NAPI_GRO_CB(skb)->csum = psum;
2932 
2933 	return __skb_gro_checksum_complete(skb);
2934 }
2935 
2936 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2937 {
2938 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2939 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2940 		NAPI_GRO_CB(skb)->csum_cnt--;
2941 	} else {
2942 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2943 		 * verified a new top level checksum or an encapsulated one
2944 		 * during GRO. This saves work if we fallback to normal path.
2945 		 */
2946 		__skb_incr_checksum_unnecessary(skb);
2947 	}
2948 }
2949 
2950 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2951 				    compute_pseudo)			\
2952 ({									\
2953 	__sum16 __ret = 0;						\
2954 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2955 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2956 				compute_pseudo(skb, proto));		\
2957 	if (!__ret)							\
2958 		skb_gro_incr_csum_unnecessary(skb);			\
2959 	__ret;								\
2960 })
2961 
2962 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2963 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2964 
2965 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2966 					     compute_pseudo)		\
2967 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2968 
2969 #define skb_gro_checksum_simple_validate(skb)				\
2970 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2971 
2972 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2973 {
2974 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2975 		!NAPI_GRO_CB(skb)->csum_valid);
2976 }
2977 
2978 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2979 					      __wsum pseudo)
2980 {
2981 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2982 	NAPI_GRO_CB(skb)->csum_valid = 1;
2983 }
2984 
2985 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2986 do {									\
2987 	if (__skb_gro_checksum_convert_check(skb))			\
2988 		__skb_gro_checksum_convert(skb, 			\
2989 					   compute_pseudo(skb, proto));	\
2990 } while (0)
2991 
2992 struct gro_remcsum {
2993 	int offset;
2994 	__wsum delta;
2995 };
2996 
2997 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2998 {
2999 	grc->offset = 0;
3000 	grc->delta = 0;
3001 }
3002 
3003 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3004 					    unsigned int off, size_t hdrlen,
3005 					    int start, int offset,
3006 					    struct gro_remcsum *grc,
3007 					    bool nopartial)
3008 {
3009 	__wsum delta;
3010 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3011 
3012 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3013 
3014 	if (!nopartial) {
3015 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3016 		return ptr;
3017 	}
3018 
3019 	ptr = skb_gro_header_fast(skb, off);
3020 	if (skb_gro_header_hard(skb, off + plen)) {
3021 		ptr = skb_gro_header_slow(skb, off + plen, off);
3022 		if (!ptr)
3023 			return NULL;
3024 	}
3025 
3026 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3027 			       start, offset);
3028 
3029 	/* Adjust skb->csum since we changed the packet */
3030 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3031 
3032 	grc->offset = off + hdrlen + offset;
3033 	grc->delta = delta;
3034 
3035 	return ptr;
3036 }
3037 
3038 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3039 					   struct gro_remcsum *grc)
3040 {
3041 	void *ptr;
3042 	size_t plen = grc->offset + sizeof(u16);
3043 
3044 	if (!grc->delta)
3045 		return;
3046 
3047 	ptr = skb_gro_header_fast(skb, grc->offset);
3048 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3049 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3050 		if (!ptr)
3051 			return;
3052 	}
3053 
3054 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3055 }
3056 
3057 #ifdef CONFIG_XFRM_OFFLOAD
3058 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3059 {
3060 	if (PTR_ERR(pp) != -EINPROGRESS)
3061 		NAPI_GRO_CB(skb)->flush |= flush;
3062 }
3063 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3064 					       struct sk_buff *pp,
3065 					       int flush,
3066 					       struct gro_remcsum *grc)
3067 {
3068 	if (PTR_ERR(pp) != -EINPROGRESS) {
3069 		NAPI_GRO_CB(skb)->flush |= flush;
3070 		skb_gro_remcsum_cleanup(skb, grc);
3071 		skb->remcsum_offload = 0;
3072 	}
3073 }
3074 #else
3075 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3076 {
3077 	NAPI_GRO_CB(skb)->flush |= flush;
3078 }
3079 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3080 					       struct sk_buff *pp,
3081 					       int flush,
3082 					       struct gro_remcsum *grc)
3083 {
3084 	NAPI_GRO_CB(skb)->flush |= flush;
3085 	skb_gro_remcsum_cleanup(skb, grc);
3086 	skb->remcsum_offload = 0;
3087 }
3088 #endif
3089 
3090 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3091 				  unsigned short type,
3092 				  const void *daddr, const void *saddr,
3093 				  unsigned int len)
3094 {
3095 	if (!dev->header_ops || !dev->header_ops->create)
3096 		return 0;
3097 
3098 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3099 }
3100 
3101 static inline int dev_parse_header(const struct sk_buff *skb,
3102 				   unsigned char *haddr)
3103 {
3104 	const struct net_device *dev = skb->dev;
3105 
3106 	if (!dev->header_ops || !dev->header_ops->parse)
3107 		return 0;
3108 	return dev->header_ops->parse(skb, haddr);
3109 }
3110 
3111 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3112 {
3113 	const struct net_device *dev = skb->dev;
3114 
3115 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3116 		return 0;
3117 	return dev->header_ops->parse_protocol(skb);
3118 }
3119 
3120 /* ll_header must have at least hard_header_len allocated */
3121 static inline bool dev_validate_header(const struct net_device *dev,
3122 				       char *ll_header, int len)
3123 {
3124 	if (likely(len >= dev->hard_header_len))
3125 		return true;
3126 	if (len < dev->min_header_len)
3127 		return false;
3128 
3129 	if (capable(CAP_SYS_RAWIO)) {
3130 		memset(ll_header + len, 0, dev->hard_header_len - len);
3131 		return true;
3132 	}
3133 
3134 	if (dev->header_ops && dev->header_ops->validate)
3135 		return dev->header_ops->validate(ll_header, len);
3136 
3137 	return false;
3138 }
3139 
3140 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3141 			   int len, int size);
3142 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3143 static inline int unregister_gifconf(unsigned int family)
3144 {
3145 	return register_gifconf(family, NULL);
3146 }
3147 
3148 #ifdef CONFIG_NET_FLOW_LIMIT
3149 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3150 struct sd_flow_limit {
3151 	u64			count;
3152 	unsigned int		num_buckets;
3153 	unsigned int		history_head;
3154 	u16			history[FLOW_LIMIT_HISTORY];
3155 	u8			buckets[];
3156 };
3157 
3158 extern int netdev_flow_limit_table_len;
3159 #endif /* CONFIG_NET_FLOW_LIMIT */
3160 
3161 /*
3162  * Incoming packets are placed on per-CPU queues
3163  */
3164 struct softnet_data {
3165 	struct list_head	poll_list;
3166 	struct sk_buff_head	process_queue;
3167 
3168 	/* stats */
3169 	unsigned int		processed;
3170 	unsigned int		time_squeeze;
3171 	unsigned int		received_rps;
3172 #ifdef CONFIG_RPS
3173 	struct softnet_data	*rps_ipi_list;
3174 #endif
3175 #ifdef CONFIG_NET_FLOW_LIMIT
3176 	struct sd_flow_limit __rcu *flow_limit;
3177 #endif
3178 	struct Qdisc		*output_queue;
3179 	struct Qdisc		**output_queue_tailp;
3180 	struct sk_buff		*completion_queue;
3181 #ifdef CONFIG_XFRM_OFFLOAD
3182 	struct sk_buff_head	xfrm_backlog;
3183 #endif
3184 	/* written and read only by owning cpu: */
3185 	struct {
3186 		u16 recursion;
3187 		u8  more;
3188 	} xmit;
3189 #ifdef CONFIG_RPS
3190 	/* input_queue_head should be written by cpu owning this struct,
3191 	 * and only read by other cpus. Worth using a cache line.
3192 	 */
3193 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3194 
3195 	/* Elements below can be accessed between CPUs for RPS/RFS */
3196 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3197 	struct softnet_data	*rps_ipi_next;
3198 	unsigned int		cpu;
3199 	unsigned int		input_queue_tail;
3200 #endif
3201 	unsigned int		dropped;
3202 	struct sk_buff_head	input_pkt_queue;
3203 	struct napi_struct	backlog;
3204 
3205 };
3206 
3207 static inline void input_queue_head_incr(struct softnet_data *sd)
3208 {
3209 #ifdef CONFIG_RPS
3210 	sd->input_queue_head++;
3211 #endif
3212 }
3213 
3214 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3215 					      unsigned int *qtail)
3216 {
3217 #ifdef CONFIG_RPS
3218 	*qtail = ++sd->input_queue_tail;
3219 #endif
3220 }
3221 
3222 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3223 
3224 static inline int dev_recursion_level(void)
3225 {
3226 	return this_cpu_read(softnet_data.xmit.recursion);
3227 }
3228 
3229 #define XMIT_RECURSION_LIMIT	8
3230 static inline bool dev_xmit_recursion(void)
3231 {
3232 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3233 			XMIT_RECURSION_LIMIT);
3234 }
3235 
3236 static inline void dev_xmit_recursion_inc(void)
3237 {
3238 	__this_cpu_inc(softnet_data.xmit.recursion);
3239 }
3240 
3241 static inline void dev_xmit_recursion_dec(void)
3242 {
3243 	__this_cpu_dec(softnet_data.xmit.recursion);
3244 }
3245 
3246 void __netif_schedule(struct Qdisc *q);
3247 void netif_schedule_queue(struct netdev_queue *txq);
3248 
3249 static inline void netif_tx_schedule_all(struct net_device *dev)
3250 {
3251 	unsigned int i;
3252 
3253 	for (i = 0; i < dev->num_tx_queues; i++)
3254 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3255 }
3256 
3257 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3258 {
3259 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3260 }
3261 
3262 /**
3263  *	netif_start_queue - allow transmit
3264  *	@dev: network device
3265  *
3266  *	Allow upper layers to call the device hard_start_xmit routine.
3267  */
3268 static inline void netif_start_queue(struct net_device *dev)
3269 {
3270 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3271 }
3272 
3273 static inline void netif_tx_start_all_queues(struct net_device *dev)
3274 {
3275 	unsigned int i;
3276 
3277 	for (i = 0; i < dev->num_tx_queues; i++) {
3278 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3279 		netif_tx_start_queue(txq);
3280 	}
3281 }
3282 
3283 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3284 
3285 /**
3286  *	netif_wake_queue - restart transmit
3287  *	@dev: network device
3288  *
3289  *	Allow upper layers to call the device hard_start_xmit routine.
3290  *	Used for flow control when transmit resources are available.
3291  */
3292 static inline void netif_wake_queue(struct net_device *dev)
3293 {
3294 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3295 }
3296 
3297 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3298 {
3299 	unsigned int i;
3300 
3301 	for (i = 0; i < dev->num_tx_queues; i++) {
3302 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3303 		netif_tx_wake_queue(txq);
3304 	}
3305 }
3306 
3307 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3308 {
3309 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3310 }
3311 
3312 /**
3313  *	netif_stop_queue - stop transmitted packets
3314  *	@dev: network device
3315  *
3316  *	Stop upper layers calling the device hard_start_xmit routine.
3317  *	Used for flow control when transmit resources are unavailable.
3318  */
3319 static inline void netif_stop_queue(struct net_device *dev)
3320 {
3321 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3322 }
3323 
3324 void netif_tx_stop_all_queues(struct net_device *dev);
3325 
3326 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3327 {
3328 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3329 }
3330 
3331 /**
3332  *	netif_queue_stopped - test if transmit queue is flowblocked
3333  *	@dev: network device
3334  *
3335  *	Test if transmit queue on device is currently unable to send.
3336  */
3337 static inline bool netif_queue_stopped(const struct net_device *dev)
3338 {
3339 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3340 }
3341 
3342 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3343 {
3344 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3345 }
3346 
3347 static inline bool
3348 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3349 {
3350 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3351 }
3352 
3353 static inline bool
3354 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3355 {
3356 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3357 }
3358 
3359 /**
3360  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3361  *	@dev_queue: pointer to transmit queue
3362  *
3363  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3364  * to give appropriate hint to the CPU.
3365  */
3366 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3367 {
3368 #ifdef CONFIG_BQL
3369 	prefetchw(&dev_queue->dql.num_queued);
3370 #endif
3371 }
3372 
3373 /**
3374  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3375  *	@dev_queue: pointer to transmit queue
3376  *
3377  * BQL enabled drivers might use this helper in their TX completion path,
3378  * to give appropriate hint to the CPU.
3379  */
3380 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3381 {
3382 #ifdef CONFIG_BQL
3383 	prefetchw(&dev_queue->dql.limit);
3384 #endif
3385 }
3386 
3387 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3388 					unsigned int bytes)
3389 {
3390 #ifdef CONFIG_BQL
3391 	dql_queued(&dev_queue->dql, bytes);
3392 
3393 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3394 		return;
3395 
3396 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3397 
3398 	/*
3399 	 * The XOFF flag must be set before checking the dql_avail below,
3400 	 * because in netdev_tx_completed_queue we update the dql_completed
3401 	 * before checking the XOFF flag.
3402 	 */
3403 	smp_mb();
3404 
3405 	/* check again in case another CPU has just made room avail */
3406 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3407 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3408 #endif
3409 }
3410 
3411 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3412  * that they should not test BQL status themselves.
3413  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3414  * skb of a batch.
3415  * Returns true if the doorbell must be used to kick the NIC.
3416  */
3417 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3418 					  unsigned int bytes,
3419 					  bool xmit_more)
3420 {
3421 	if (xmit_more) {
3422 #ifdef CONFIG_BQL
3423 		dql_queued(&dev_queue->dql, bytes);
3424 #endif
3425 		return netif_tx_queue_stopped(dev_queue);
3426 	}
3427 	netdev_tx_sent_queue(dev_queue, bytes);
3428 	return true;
3429 }
3430 
3431 /**
3432  * 	netdev_sent_queue - report the number of bytes queued to hardware
3433  * 	@dev: network device
3434  * 	@bytes: number of bytes queued to the hardware device queue
3435  *
3436  * 	Report the number of bytes queued for sending/completion to the network
3437  * 	device hardware queue. @bytes should be a good approximation and should
3438  * 	exactly match netdev_completed_queue() @bytes
3439  */
3440 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3441 {
3442 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3443 }
3444 
3445 static inline bool __netdev_sent_queue(struct net_device *dev,
3446 				       unsigned int bytes,
3447 				       bool xmit_more)
3448 {
3449 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3450 				      xmit_more);
3451 }
3452 
3453 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3454 					     unsigned int pkts, unsigned int bytes)
3455 {
3456 #ifdef CONFIG_BQL
3457 	if (unlikely(!bytes))
3458 		return;
3459 
3460 	dql_completed(&dev_queue->dql, bytes);
3461 
3462 	/*
3463 	 * Without the memory barrier there is a small possiblity that
3464 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3465 	 * be stopped forever
3466 	 */
3467 	smp_mb();
3468 
3469 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3470 		return;
3471 
3472 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3473 		netif_schedule_queue(dev_queue);
3474 #endif
3475 }
3476 
3477 /**
3478  * 	netdev_completed_queue - report bytes and packets completed by device
3479  * 	@dev: network device
3480  * 	@pkts: actual number of packets sent over the medium
3481  * 	@bytes: actual number of bytes sent over the medium
3482  *
3483  * 	Report the number of bytes and packets transmitted by the network device
3484  * 	hardware queue over the physical medium, @bytes must exactly match the
3485  * 	@bytes amount passed to netdev_sent_queue()
3486  */
3487 static inline void netdev_completed_queue(struct net_device *dev,
3488 					  unsigned int pkts, unsigned int bytes)
3489 {
3490 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3491 }
3492 
3493 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3494 {
3495 #ifdef CONFIG_BQL
3496 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3497 	dql_reset(&q->dql);
3498 #endif
3499 }
3500 
3501 /**
3502  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3503  * 	@dev_queue: network device
3504  *
3505  * 	Reset the bytes and packet count of a network device and clear the
3506  * 	software flow control OFF bit for this network device
3507  */
3508 static inline void netdev_reset_queue(struct net_device *dev_queue)
3509 {
3510 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3511 }
3512 
3513 /**
3514  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3515  * 	@dev: network device
3516  * 	@queue_index: given tx queue index
3517  *
3518  * 	Returns 0 if given tx queue index >= number of device tx queues,
3519  * 	otherwise returns the originally passed tx queue index.
3520  */
3521 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3522 {
3523 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3524 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3525 				     dev->name, queue_index,
3526 				     dev->real_num_tx_queues);
3527 		return 0;
3528 	}
3529 
3530 	return queue_index;
3531 }
3532 
3533 /**
3534  *	netif_running - test if up
3535  *	@dev: network device
3536  *
3537  *	Test if the device has been brought up.
3538  */
3539 static inline bool netif_running(const struct net_device *dev)
3540 {
3541 	return test_bit(__LINK_STATE_START, &dev->state);
3542 }
3543 
3544 /*
3545  * Routines to manage the subqueues on a device.  We only need start,
3546  * stop, and a check if it's stopped.  All other device management is
3547  * done at the overall netdevice level.
3548  * Also test the device if we're multiqueue.
3549  */
3550 
3551 /**
3552  *	netif_start_subqueue - allow sending packets on subqueue
3553  *	@dev: network device
3554  *	@queue_index: sub queue index
3555  *
3556  * Start individual transmit queue of a device with multiple transmit queues.
3557  */
3558 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3559 {
3560 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3561 
3562 	netif_tx_start_queue(txq);
3563 }
3564 
3565 /**
3566  *	netif_stop_subqueue - stop sending packets on subqueue
3567  *	@dev: network device
3568  *	@queue_index: sub queue index
3569  *
3570  * Stop individual transmit queue of a device with multiple transmit queues.
3571  */
3572 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3573 {
3574 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575 	netif_tx_stop_queue(txq);
3576 }
3577 
3578 /**
3579  *	netif_subqueue_stopped - test status of subqueue
3580  *	@dev: network device
3581  *	@queue_index: sub queue index
3582  *
3583  * Check individual transmit queue of a device with multiple transmit queues.
3584  */
3585 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3586 					    u16 queue_index)
3587 {
3588 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3589 
3590 	return netif_tx_queue_stopped(txq);
3591 }
3592 
3593 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3594 					  struct sk_buff *skb)
3595 {
3596 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3597 }
3598 
3599 /**
3600  *	netif_wake_subqueue - allow sending packets on subqueue
3601  *	@dev: network device
3602  *	@queue_index: sub queue index
3603  *
3604  * Resume individual transmit queue of a device with multiple transmit queues.
3605  */
3606 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3607 {
3608 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3609 
3610 	netif_tx_wake_queue(txq);
3611 }
3612 
3613 #ifdef CONFIG_XPS
3614 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3615 			u16 index);
3616 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3617 			  u16 index, bool is_rxqs_map);
3618 
3619 /**
3620  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3621  *	@j: CPU/Rx queue index
3622  *	@mask: bitmask of all cpus/rx queues
3623  *	@nr_bits: number of bits in the bitmask
3624  *
3625  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3626  */
3627 static inline bool netif_attr_test_mask(unsigned long j,
3628 					const unsigned long *mask,
3629 					unsigned int nr_bits)
3630 {
3631 	cpu_max_bits_warn(j, nr_bits);
3632 	return test_bit(j, mask);
3633 }
3634 
3635 /**
3636  *	netif_attr_test_online - Test for online CPU/Rx queue
3637  *	@j: CPU/Rx queue index
3638  *	@online_mask: bitmask for CPUs/Rx queues that are online
3639  *	@nr_bits: number of bits in the bitmask
3640  *
3641  * Returns true if a CPU/Rx queue is online.
3642  */
3643 static inline bool netif_attr_test_online(unsigned long j,
3644 					  const unsigned long *online_mask,
3645 					  unsigned int nr_bits)
3646 {
3647 	cpu_max_bits_warn(j, nr_bits);
3648 
3649 	if (online_mask)
3650 		return test_bit(j, online_mask);
3651 
3652 	return (j < nr_bits);
3653 }
3654 
3655 /**
3656  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3657  *	@n: CPU/Rx queue index
3658  *	@srcp: the cpumask/Rx queue mask pointer
3659  *	@nr_bits: number of bits in the bitmask
3660  *
3661  * Returns >= nr_bits if no further CPUs/Rx queues set.
3662  */
3663 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3664 					       unsigned int nr_bits)
3665 {
3666 	/* -1 is a legal arg here. */
3667 	if (n != -1)
3668 		cpu_max_bits_warn(n, nr_bits);
3669 
3670 	if (srcp)
3671 		return find_next_bit(srcp, nr_bits, n + 1);
3672 
3673 	return n + 1;
3674 }
3675 
3676 /**
3677  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3678  *	@n: CPU/Rx queue index
3679  *	@src1p: the first CPUs/Rx queues mask pointer
3680  *	@src2p: the second CPUs/Rx queues mask pointer
3681  *	@nr_bits: number of bits in the bitmask
3682  *
3683  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3684  */
3685 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3686 					  const unsigned long *src2p,
3687 					  unsigned int nr_bits)
3688 {
3689 	/* -1 is a legal arg here. */
3690 	if (n != -1)
3691 		cpu_max_bits_warn(n, nr_bits);
3692 
3693 	if (src1p && src2p)
3694 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3695 	else if (src1p)
3696 		return find_next_bit(src1p, nr_bits, n + 1);
3697 	else if (src2p)
3698 		return find_next_bit(src2p, nr_bits, n + 1);
3699 
3700 	return n + 1;
3701 }
3702 #else
3703 static inline int netif_set_xps_queue(struct net_device *dev,
3704 				      const struct cpumask *mask,
3705 				      u16 index)
3706 {
3707 	return 0;
3708 }
3709 
3710 static inline int __netif_set_xps_queue(struct net_device *dev,
3711 					const unsigned long *mask,
3712 					u16 index, bool is_rxqs_map)
3713 {
3714 	return 0;
3715 }
3716 #endif
3717 
3718 /**
3719  *	netif_is_multiqueue - test if device has multiple transmit queues
3720  *	@dev: network device
3721  *
3722  * Check if device has multiple transmit queues
3723  */
3724 static inline bool netif_is_multiqueue(const struct net_device *dev)
3725 {
3726 	return dev->num_tx_queues > 1;
3727 }
3728 
3729 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3730 
3731 #ifdef CONFIG_SYSFS
3732 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3733 #else
3734 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3735 						unsigned int rxqs)
3736 {
3737 	dev->real_num_rx_queues = rxqs;
3738 	return 0;
3739 }
3740 #endif
3741 
3742 static inline struct netdev_rx_queue *
3743 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3744 {
3745 	return dev->_rx + rxq;
3746 }
3747 
3748 #ifdef CONFIG_SYSFS
3749 static inline unsigned int get_netdev_rx_queue_index(
3750 		struct netdev_rx_queue *queue)
3751 {
3752 	struct net_device *dev = queue->dev;
3753 	int index = queue - dev->_rx;
3754 
3755 	BUG_ON(index >= dev->num_rx_queues);
3756 	return index;
3757 }
3758 #endif
3759 
3760 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3761 int netif_get_num_default_rss_queues(void);
3762 
3763 enum skb_free_reason {
3764 	SKB_REASON_CONSUMED,
3765 	SKB_REASON_DROPPED,
3766 };
3767 
3768 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3769 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3770 
3771 /*
3772  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3773  * interrupt context or with hardware interrupts being disabled.
3774  * (in_irq() || irqs_disabled())
3775  *
3776  * We provide four helpers that can be used in following contexts :
3777  *
3778  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3779  *  replacing kfree_skb(skb)
3780  *
3781  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3782  *  Typically used in place of consume_skb(skb) in TX completion path
3783  *
3784  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3785  *  replacing kfree_skb(skb)
3786  *
3787  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3788  *  and consumed a packet. Used in place of consume_skb(skb)
3789  */
3790 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3791 {
3792 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3793 }
3794 
3795 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3796 {
3797 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3798 }
3799 
3800 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3801 {
3802 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3803 }
3804 
3805 static inline void dev_consume_skb_any(struct sk_buff *skb)
3806 {
3807 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3808 }
3809 
3810 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3811 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3812 int netif_rx(struct sk_buff *skb);
3813 int netif_rx_ni(struct sk_buff *skb);
3814 int netif_rx_any_context(struct sk_buff *skb);
3815 int netif_receive_skb(struct sk_buff *skb);
3816 int netif_receive_skb_core(struct sk_buff *skb);
3817 void netif_receive_skb_list(struct list_head *head);
3818 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3819 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3820 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3821 gro_result_t napi_gro_frags(struct napi_struct *napi);
3822 struct packet_offload *gro_find_receive_by_type(__be16 type);
3823 struct packet_offload *gro_find_complete_by_type(__be16 type);
3824 
3825 static inline void napi_free_frags(struct napi_struct *napi)
3826 {
3827 	kfree_skb(napi->skb);
3828 	napi->skb = NULL;
3829 }
3830 
3831 bool netdev_is_rx_handler_busy(struct net_device *dev);
3832 int netdev_rx_handler_register(struct net_device *dev,
3833 			       rx_handler_func_t *rx_handler,
3834 			       void *rx_handler_data);
3835 void netdev_rx_handler_unregister(struct net_device *dev);
3836 
3837 bool dev_valid_name(const char *name);
3838 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3839 		bool *need_copyout);
3840 int dev_ifconf(struct net *net, struct ifconf *, int);
3841 int dev_ethtool(struct net *net, struct ifreq *);
3842 unsigned int dev_get_flags(const struct net_device *);
3843 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3844 		       struct netlink_ext_ack *extack);
3845 int dev_change_flags(struct net_device *dev, unsigned int flags,
3846 		     struct netlink_ext_ack *extack);
3847 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3848 			unsigned int gchanges);
3849 int dev_change_name(struct net_device *, const char *);
3850 int dev_set_alias(struct net_device *, const char *, size_t);
3851 int dev_get_alias(const struct net_device *, char *, size_t);
3852 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3853 int __dev_set_mtu(struct net_device *, int);
3854 int dev_validate_mtu(struct net_device *dev, int mtu,
3855 		     struct netlink_ext_ack *extack);
3856 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3857 		    struct netlink_ext_ack *extack);
3858 int dev_set_mtu(struct net_device *, int);
3859 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3860 void dev_set_group(struct net_device *, int);
3861 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3862 			      struct netlink_ext_ack *extack);
3863 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3864 			struct netlink_ext_ack *extack);
3865 int dev_change_carrier(struct net_device *, bool new_carrier);
3866 int dev_get_phys_port_id(struct net_device *dev,
3867 			 struct netdev_phys_item_id *ppid);
3868 int dev_get_phys_port_name(struct net_device *dev,
3869 			   char *name, size_t len);
3870 int dev_get_port_parent_id(struct net_device *dev,
3871 			   struct netdev_phys_item_id *ppid, bool recurse);
3872 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3873 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3874 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3875 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3876 				  u32 value);
3877 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3878 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3879 				    struct netdev_queue *txq, int *ret);
3880 
3881 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3882 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3883 		      int fd, int expected_fd, u32 flags);
3884 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3885 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3886 
3887 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3888 
3889 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3890 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3891 bool is_skb_forwardable(const struct net_device *dev,
3892 			const struct sk_buff *skb);
3893 
3894 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3895 					       struct sk_buff *skb)
3896 {
3897 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3898 	    unlikely(!is_skb_forwardable(dev, skb))) {
3899 		atomic_long_inc(&dev->rx_dropped);
3900 		kfree_skb(skb);
3901 		return NET_RX_DROP;
3902 	}
3903 
3904 	skb_scrub_packet(skb, true);
3905 	skb->priority = 0;
3906 	return 0;
3907 }
3908 
3909 bool dev_nit_active(struct net_device *dev);
3910 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3911 
3912 extern int		netdev_budget;
3913 extern unsigned int	netdev_budget_usecs;
3914 
3915 /* Called by rtnetlink.c:rtnl_unlock() */
3916 void netdev_run_todo(void);
3917 
3918 /**
3919  *	dev_put - release reference to device
3920  *	@dev: network device
3921  *
3922  * Release reference to device to allow it to be freed.
3923  */
3924 static inline void dev_put(struct net_device *dev)
3925 {
3926 	this_cpu_dec(*dev->pcpu_refcnt);
3927 }
3928 
3929 /**
3930  *	dev_hold - get reference to device
3931  *	@dev: network device
3932  *
3933  * Hold reference to device to keep it from being freed.
3934  */
3935 static inline void dev_hold(struct net_device *dev)
3936 {
3937 	this_cpu_inc(*dev->pcpu_refcnt);
3938 }
3939 
3940 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3941  * and _off may be called from IRQ context, but it is caller
3942  * who is responsible for serialization of these calls.
3943  *
3944  * The name carrier is inappropriate, these functions should really be
3945  * called netif_lowerlayer_*() because they represent the state of any
3946  * kind of lower layer not just hardware media.
3947  */
3948 
3949 void linkwatch_init_dev(struct net_device *dev);
3950 void linkwatch_fire_event(struct net_device *dev);
3951 void linkwatch_forget_dev(struct net_device *dev);
3952 
3953 /**
3954  *	netif_carrier_ok - test if carrier present
3955  *	@dev: network device
3956  *
3957  * Check if carrier is present on device
3958  */
3959 static inline bool netif_carrier_ok(const struct net_device *dev)
3960 {
3961 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3962 }
3963 
3964 unsigned long dev_trans_start(struct net_device *dev);
3965 
3966 void __netdev_watchdog_up(struct net_device *dev);
3967 
3968 void netif_carrier_on(struct net_device *dev);
3969 
3970 void netif_carrier_off(struct net_device *dev);
3971 
3972 /**
3973  *	netif_dormant_on - mark device as dormant.
3974  *	@dev: network device
3975  *
3976  * Mark device as dormant (as per RFC2863).
3977  *
3978  * The dormant state indicates that the relevant interface is not
3979  * actually in a condition to pass packets (i.e., it is not 'up') but is
3980  * in a "pending" state, waiting for some external event.  For "on-
3981  * demand" interfaces, this new state identifies the situation where the
3982  * interface is waiting for events to place it in the up state.
3983  */
3984 static inline void netif_dormant_on(struct net_device *dev)
3985 {
3986 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3987 		linkwatch_fire_event(dev);
3988 }
3989 
3990 /**
3991  *	netif_dormant_off - set device as not dormant.
3992  *	@dev: network device
3993  *
3994  * Device is not in dormant state.
3995  */
3996 static inline void netif_dormant_off(struct net_device *dev)
3997 {
3998 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3999 		linkwatch_fire_event(dev);
4000 }
4001 
4002 /**
4003  *	netif_dormant - test if device is dormant
4004  *	@dev: network device
4005  *
4006  * Check if device is dormant.
4007  */
4008 static inline bool netif_dormant(const struct net_device *dev)
4009 {
4010 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4011 }
4012 
4013 
4014 /**
4015  *	netif_testing_on - mark device as under test.
4016  *	@dev: network device
4017  *
4018  * Mark device as under test (as per RFC2863).
4019  *
4020  * The testing state indicates that some test(s) must be performed on
4021  * the interface. After completion, of the test, the interface state
4022  * will change to up, dormant, or down, as appropriate.
4023  */
4024 static inline void netif_testing_on(struct net_device *dev)
4025 {
4026 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4027 		linkwatch_fire_event(dev);
4028 }
4029 
4030 /**
4031  *	netif_testing_off - set device as not under test.
4032  *	@dev: network device
4033  *
4034  * Device is not in testing state.
4035  */
4036 static inline void netif_testing_off(struct net_device *dev)
4037 {
4038 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4039 		linkwatch_fire_event(dev);
4040 }
4041 
4042 /**
4043  *	netif_testing - test if device is under test
4044  *	@dev: network device
4045  *
4046  * Check if device is under test
4047  */
4048 static inline bool netif_testing(const struct net_device *dev)
4049 {
4050 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4051 }
4052 
4053 
4054 /**
4055  *	netif_oper_up - test if device is operational
4056  *	@dev: network device
4057  *
4058  * Check if carrier is operational
4059  */
4060 static inline bool netif_oper_up(const struct net_device *dev)
4061 {
4062 	return (dev->operstate == IF_OPER_UP ||
4063 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4064 }
4065 
4066 /**
4067  *	netif_device_present - is device available or removed
4068  *	@dev: network device
4069  *
4070  * Check if device has not been removed from system.
4071  */
4072 static inline bool netif_device_present(struct net_device *dev)
4073 {
4074 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4075 }
4076 
4077 void netif_device_detach(struct net_device *dev);
4078 
4079 void netif_device_attach(struct net_device *dev);
4080 
4081 /*
4082  * Network interface message level settings
4083  */
4084 
4085 enum {
4086 	NETIF_MSG_DRV_BIT,
4087 	NETIF_MSG_PROBE_BIT,
4088 	NETIF_MSG_LINK_BIT,
4089 	NETIF_MSG_TIMER_BIT,
4090 	NETIF_MSG_IFDOWN_BIT,
4091 	NETIF_MSG_IFUP_BIT,
4092 	NETIF_MSG_RX_ERR_BIT,
4093 	NETIF_MSG_TX_ERR_BIT,
4094 	NETIF_MSG_TX_QUEUED_BIT,
4095 	NETIF_MSG_INTR_BIT,
4096 	NETIF_MSG_TX_DONE_BIT,
4097 	NETIF_MSG_RX_STATUS_BIT,
4098 	NETIF_MSG_PKTDATA_BIT,
4099 	NETIF_MSG_HW_BIT,
4100 	NETIF_MSG_WOL_BIT,
4101 
4102 	/* When you add a new bit above, update netif_msg_class_names array
4103 	 * in net/ethtool/common.c
4104 	 */
4105 	NETIF_MSG_CLASS_COUNT,
4106 };
4107 /* Both ethtool_ops interface and internal driver implementation use u32 */
4108 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4109 
4110 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4111 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4112 
4113 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4114 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4115 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4116 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4117 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4118 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4119 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4120 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4121 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4122 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4123 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4124 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4125 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4126 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4127 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4128 
4129 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4130 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4131 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4132 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4133 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4134 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4135 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4136 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4137 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4138 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4139 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4140 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4141 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4142 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4143 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4144 
4145 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4146 {
4147 	/* use default */
4148 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4149 		return default_msg_enable_bits;
4150 	if (debug_value == 0)	/* no output */
4151 		return 0;
4152 	/* set low N bits */
4153 	return (1U << debug_value) - 1;
4154 }
4155 
4156 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4157 {
4158 	spin_lock(&txq->_xmit_lock);
4159 	txq->xmit_lock_owner = cpu;
4160 }
4161 
4162 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4163 {
4164 	__acquire(&txq->_xmit_lock);
4165 	return true;
4166 }
4167 
4168 static inline void __netif_tx_release(struct netdev_queue *txq)
4169 {
4170 	__release(&txq->_xmit_lock);
4171 }
4172 
4173 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4174 {
4175 	spin_lock_bh(&txq->_xmit_lock);
4176 	txq->xmit_lock_owner = smp_processor_id();
4177 }
4178 
4179 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4180 {
4181 	bool ok = spin_trylock(&txq->_xmit_lock);
4182 	if (likely(ok))
4183 		txq->xmit_lock_owner = smp_processor_id();
4184 	return ok;
4185 }
4186 
4187 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4188 {
4189 	txq->xmit_lock_owner = -1;
4190 	spin_unlock(&txq->_xmit_lock);
4191 }
4192 
4193 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4194 {
4195 	txq->xmit_lock_owner = -1;
4196 	spin_unlock_bh(&txq->_xmit_lock);
4197 }
4198 
4199 static inline void txq_trans_update(struct netdev_queue *txq)
4200 {
4201 	if (txq->xmit_lock_owner != -1)
4202 		txq->trans_start = jiffies;
4203 }
4204 
4205 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4206 static inline void netif_trans_update(struct net_device *dev)
4207 {
4208 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4209 
4210 	if (txq->trans_start != jiffies)
4211 		txq->trans_start = jiffies;
4212 }
4213 
4214 /**
4215  *	netif_tx_lock - grab network device transmit lock
4216  *	@dev: network device
4217  *
4218  * Get network device transmit lock
4219  */
4220 static inline void netif_tx_lock(struct net_device *dev)
4221 {
4222 	unsigned int i;
4223 	int cpu;
4224 
4225 	spin_lock(&dev->tx_global_lock);
4226 	cpu = smp_processor_id();
4227 	for (i = 0; i < dev->num_tx_queues; i++) {
4228 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4229 
4230 		/* We are the only thread of execution doing a
4231 		 * freeze, but we have to grab the _xmit_lock in
4232 		 * order to synchronize with threads which are in
4233 		 * the ->hard_start_xmit() handler and already
4234 		 * checked the frozen bit.
4235 		 */
4236 		__netif_tx_lock(txq, cpu);
4237 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4238 		__netif_tx_unlock(txq);
4239 	}
4240 }
4241 
4242 static inline void netif_tx_lock_bh(struct net_device *dev)
4243 {
4244 	local_bh_disable();
4245 	netif_tx_lock(dev);
4246 }
4247 
4248 static inline void netif_tx_unlock(struct net_device *dev)
4249 {
4250 	unsigned int i;
4251 
4252 	for (i = 0; i < dev->num_tx_queues; i++) {
4253 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4254 
4255 		/* No need to grab the _xmit_lock here.  If the
4256 		 * queue is not stopped for another reason, we
4257 		 * force a schedule.
4258 		 */
4259 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4260 		netif_schedule_queue(txq);
4261 	}
4262 	spin_unlock(&dev->tx_global_lock);
4263 }
4264 
4265 static inline void netif_tx_unlock_bh(struct net_device *dev)
4266 {
4267 	netif_tx_unlock(dev);
4268 	local_bh_enable();
4269 }
4270 
4271 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4272 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4273 		__netif_tx_lock(txq, cpu);		\
4274 	} else {					\
4275 		__netif_tx_acquire(txq);		\
4276 	}						\
4277 }
4278 
4279 #define HARD_TX_TRYLOCK(dev, txq)			\
4280 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4281 		__netif_tx_trylock(txq) :		\
4282 		__netif_tx_acquire(txq))
4283 
4284 #define HARD_TX_UNLOCK(dev, txq) {			\
4285 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4286 		__netif_tx_unlock(txq);			\
4287 	} else {					\
4288 		__netif_tx_release(txq);		\
4289 	}						\
4290 }
4291 
4292 static inline void netif_tx_disable(struct net_device *dev)
4293 {
4294 	unsigned int i;
4295 	int cpu;
4296 
4297 	local_bh_disable();
4298 	cpu = smp_processor_id();
4299 	for (i = 0; i < dev->num_tx_queues; i++) {
4300 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4301 
4302 		__netif_tx_lock(txq, cpu);
4303 		netif_tx_stop_queue(txq);
4304 		__netif_tx_unlock(txq);
4305 	}
4306 	local_bh_enable();
4307 }
4308 
4309 static inline void netif_addr_lock(struct net_device *dev)
4310 {
4311 	unsigned char nest_level = 0;
4312 
4313 #ifdef CONFIG_LOCKDEP
4314 	nest_level = dev->nested_level;
4315 #endif
4316 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4317 }
4318 
4319 static inline void netif_addr_lock_bh(struct net_device *dev)
4320 {
4321 	unsigned char nest_level = 0;
4322 
4323 #ifdef CONFIG_LOCKDEP
4324 	nest_level = dev->nested_level;
4325 #endif
4326 	local_bh_disable();
4327 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4328 }
4329 
4330 static inline void netif_addr_unlock(struct net_device *dev)
4331 {
4332 	spin_unlock(&dev->addr_list_lock);
4333 }
4334 
4335 static inline void netif_addr_unlock_bh(struct net_device *dev)
4336 {
4337 	spin_unlock_bh(&dev->addr_list_lock);
4338 }
4339 
4340 /*
4341  * dev_addrs walker. Should be used only for read access. Call with
4342  * rcu_read_lock held.
4343  */
4344 #define for_each_dev_addr(dev, ha) \
4345 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4346 
4347 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4348 
4349 void ether_setup(struct net_device *dev);
4350 
4351 /* Support for loadable net-drivers */
4352 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4353 				    unsigned char name_assign_type,
4354 				    void (*setup)(struct net_device *),
4355 				    unsigned int txqs, unsigned int rxqs);
4356 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4357 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4358 
4359 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4360 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4361 			 count)
4362 
4363 int register_netdev(struct net_device *dev);
4364 void unregister_netdev(struct net_device *dev);
4365 
4366 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4367 
4368 /* General hardware address lists handling functions */
4369 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4370 		   struct netdev_hw_addr_list *from_list, int addr_len);
4371 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4372 		      struct netdev_hw_addr_list *from_list, int addr_len);
4373 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4374 		       struct net_device *dev,
4375 		       int (*sync)(struct net_device *, const unsigned char *),
4376 		       int (*unsync)(struct net_device *,
4377 				     const unsigned char *));
4378 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4379 			   struct net_device *dev,
4380 			   int (*sync)(struct net_device *,
4381 				       const unsigned char *, int),
4382 			   int (*unsync)(struct net_device *,
4383 					 const unsigned char *, int));
4384 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4385 			      struct net_device *dev,
4386 			      int (*unsync)(struct net_device *,
4387 					    const unsigned char *, int));
4388 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4389 			  struct net_device *dev,
4390 			  int (*unsync)(struct net_device *,
4391 					const unsigned char *));
4392 void __hw_addr_init(struct netdev_hw_addr_list *list);
4393 
4394 /* Functions used for device addresses handling */
4395 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4396 		 unsigned char addr_type);
4397 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4398 		 unsigned char addr_type);
4399 void dev_addr_flush(struct net_device *dev);
4400 int dev_addr_init(struct net_device *dev);
4401 
4402 /* Functions used for unicast addresses handling */
4403 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4404 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4405 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4406 int dev_uc_sync(struct net_device *to, struct net_device *from);
4407 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4408 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4409 void dev_uc_flush(struct net_device *dev);
4410 void dev_uc_init(struct net_device *dev);
4411 
4412 /**
4413  *  __dev_uc_sync - Synchonize device's unicast list
4414  *  @dev:  device to sync
4415  *  @sync: function to call if address should be added
4416  *  @unsync: function to call if address should be removed
4417  *
4418  *  Add newly added addresses to the interface, and release
4419  *  addresses that have been deleted.
4420  */
4421 static inline int __dev_uc_sync(struct net_device *dev,
4422 				int (*sync)(struct net_device *,
4423 					    const unsigned char *),
4424 				int (*unsync)(struct net_device *,
4425 					      const unsigned char *))
4426 {
4427 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4428 }
4429 
4430 /**
4431  *  __dev_uc_unsync - Remove synchronized addresses from device
4432  *  @dev:  device to sync
4433  *  @unsync: function to call if address should be removed
4434  *
4435  *  Remove all addresses that were added to the device by dev_uc_sync().
4436  */
4437 static inline void __dev_uc_unsync(struct net_device *dev,
4438 				   int (*unsync)(struct net_device *,
4439 						 const unsigned char *))
4440 {
4441 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4442 }
4443 
4444 /* Functions used for multicast addresses handling */
4445 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4446 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4447 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4448 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4449 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4450 int dev_mc_sync(struct net_device *to, struct net_device *from);
4451 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4452 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4453 void dev_mc_flush(struct net_device *dev);
4454 void dev_mc_init(struct net_device *dev);
4455 
4456 /**
4457  *  __dev_mc_sync - Synchonize device's multicast list
4458  *  @dev:  device to sync
4459  *  @sync: function to call if address should be added
4460  *  @unsync: function to call if address should be removed
4461  *
4462  *  Add newly added addresses to the interface, and release
4463  *  addresses that have been deleted.
4464  */
4465 static inline int __dev_mc_sync(struct net_device *dev,
4466 				int (*sync)(struct net_device *,
4467 					    const unsigned char *),
4468 				int (*unsync)(struct net_device *,
4469 					      const unsigned char *))
4470 {
4471 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4472 }
4473 
4474 /**
4475  *  __dev_mc_unsync - Remove synchronized addresses from device
4476  *  @dev:  device to sync
4477  *  @unsync: function to call if address should be removed
4478  *
4479  *  Remove all addresses that were added to the device by dev_mc_sync().
4480  */
4481 static inline void __dev_mc_unsync(struct net_device *dev,
4482 				   int (*unsync)(struct net_device *,
4483 						 const unsigned char *))
4484 {
4485 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4486 }
4487 
4488 /* Functions used for secondary unicast and multicast support */
4489 void dev_set_rx_mode(struct net_device *dev);
4490 void __dev_set_rx_mode(struct net_device *dev);
4491 int dev_set_promiscuity(struct net_device *dev, int inc);
4492 int dev_set_allmulti(struct net_device *dev, int inc);
4493 void netdev_state_change(struct net_device *dev);
4494 void netdev_notify_peers(struct net_device *dev);
4495 void netdev_features_change(struct net_device *dev);
4496 /* Load a device via the kmod */
4497 void dev_load(struct net *net, const char *name);
4498 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4499 					struct rtnl_link_stats64 *storage);
4500 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4501 			     const struct net_device_stats *netdev_stats);
4502 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4503 			   const struct pcpu_sw_netstats __percpu *netstats);
4504 
4505 extern int		netdev_max_backlog;
4506 extern int		netdev_tstamp_prequeue;
4507 extern int		weight_p;
4508 extern int		dev_weight_rx_bias;
4509 extern int		dev_weight_tx_bias;
4510 extern int		dev_rx_weight;
4511 extern int		dev_tx_weight;
4512 extern int		gro_normal_batch;
4513 
4514 enum {
4515 	NESTED_SYNC_IMM_BIT,
4516 	NESTED_SYNC_TODO_BIT,
4517 };
4518 
4519 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4520 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4521 
4522 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4523 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4524 
4525 struct netdev_nested_priv {
4526 	unsigned char flags;
4527 	void *data;
4528 };
4529 
4530 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4531 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4532 						     struct list_head **iter);
4533 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4534 						     struct list_head **iter);
4535 
4536 #ifdef CONFIG_LOCKDEP
4537 static LIST_HEAD(net_unlink_list);
4538 
4539 static inline void net_unlink_todo(struct net_device *dev)
4540 {
4541 	if (list_empty(&dev->unlink_list))
4542 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4543 }
4544 #endif
4545 
4546 /* iterate through upper list, must be called under RCU read lock */
4547 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4548 	for (iter = &(dev)->adj_list.upper, \
4549 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4550 	     updev; \
4551 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4552 
4553 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4554 				  int (*fn)(struct net_device *upper_dev,
4555 					    struct netdev_nested_priv *priv),
4556 				  struct netdev_nested_priv *priv);
4557 
4558 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4559 				  struct net_device *upper_dev);
4560 
4561 bool netdev_has_any_upper_dev(struct net_device *dev);
4562 
4563 void *netdev_lower_get_next_private(struct net_device *dev,
4564 				    struct list_head **iter);
4565 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4566 					struct list_head **iter);
4567 
4568 #define netdev_for_each_lower_private(dev, priv, iter) \
4569 	for (iter = (dev)->adj_list.lower.next, \
4570 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4571 	     priv; \
4572 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4573 
4574 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4575 	for (iter = &(dev)->adj_list.lower, \
4576 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4577 	     priv; \
4578 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4579 
4580 void *netdev_lower_get_next(struct net_device *dev,
4581 				struct list_head **iter);
4582 
4583 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4584 	for (iter = (dev)->adj_list.lower.next, \
4585 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4586 	     ldev; \
4587 	     ldev = netdev_lower_get_next(dev, &(iter)))
4588 
4589 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4590 					     struct list_head **iter);
4591 int netdev_walk_all_lower_dev(struct net_device *dev,
4592 			      int (*fn)(struct net_device *lower_dev,
4593 					struct netdev_nested_priv *priv),
4594 			      struct netdev_nested_priv *priv);
4595 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4596 				  int (*fn)(struct net_device *lower_dev,
4597 					    struct netdev_nested_priv *priv),
4598 				  struct netdev_nested_priv *priv);
4599 
4600 void *netdev_adjacent_get_private(struct list_head *adj_list);
4601 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4602 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4603 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4604 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4605 			  struct netlink_ext_ack *extack);
4606 int netdev_master_upper_dev_link(struct net_device *dev,
4607 				 struct net_device *upper_dev,
4608 				 void *upper_priv, void *upper_info,
4609 				 struct netlink_ext_ack *extack);
4610 void netdev_upper_dev_unlink(struct net_device *dev,
4611 			     struct net_device *upper_dev);
4612 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4613 				   struct net_device *new_dev,
4614 				   struct net_device *dev,
4615 				   struct netlink_ext_ack *extack);
4616 void netdev_adjacent_change_commit(struct net_device *old_dev,
4617 				   struct net_device *new_dev,
4618 				   struct net_device *dev);
4619 void netdev_adjacent_change_abort(struct net_device *old_dev,
4620 				  struct net_device *new_dev,
4621 				  struct net_device *dev);
4622 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4623 void *netdev_lower_dev_get_private(struct net_device *dev,
4624 				   struct net_device *lower_dev);
4625 void netdev_lower_state_changed(struct net_device *lower_dev,
4626 				void *lower_state_info);
4627 
4628 /* RSS keys are 40 or 52 bytes long */
4629 #define NETDEV_RSS_KEY_LEN 52
4630 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4631 void netdev_rss_key_fill(void *buffer, size_t len);
4632 
4633 int skb_checksum_help(struct sk_buff *skb);
4634 int skb_crc32c_csum_help(struct sk_buff *skb);
4635 int skb_csum_hwoffload_help(struct sk_buff *skb,
4636 			    const netdev_features_t features);
4637 
4638 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4639 				  netdev_features_t features, bool tx_path);
4640 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4641 				    netdev_features_t features);
4642 
4643 struct netdev_bonding_info {
4644 	ifslave	slave;
4645 	ifbond	master;
4646 };
4647 
4648 struct netdev_notifier_bonding_info {
4649 	struct netdev_notifier_info info; /* must be first */
4650 	struct netdev_bonding_info  bonding_info;
4651 };
4652 
4653 void netdev_bonding_info_change(struct net_device *dev,
4654 				struct netdev_bonding_info *bonding_info);
4655 
4656 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4657 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4658 #else
4659 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4660 				  const void *data)
4661 {
4662 }
4663 #endif
4664 
4665 static inline
4666 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4667 {
4668 	return __skb_gso_segment(skb, features, true);
4669 }
4670 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4671 
4672 static inline bool can_checksum_protocol(netdev_features_t features,
4673 					 __be16 protocol)
4674 {
4675 	if (protocol == htons(ETH_P_FCOE))
4676 		return !!(features & NETIF_F_FCOE_CRC);
4677 
4678 	/* Assume this is an IP checksum (not SCTP CRC) */
4679 
4680 	if (features & NETIF_F_HW_CSUM) {
4681 		/* Can checksum everything */
4682 		return true;
4683 	}
4684 
4685 	switch (protocol) {
4686 	case htons(ETH_P_IP):
4687 		return !!(features & NETIF_F_IP_CSUM);
4688 	case htons(ETH_P_IPV6):
4689 		return !!(features & NETIF_F_IPV6_CSUM);
4690 	default:
4691 		return false;
4692 	}
4693 }
4694 
4695 #ifdef CONFIG_BUG
4696 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4697 #else
4698 static inline void netdev_rx_csum_fault(struct net_device *dev,
4699 					struct sk_buff *skb)
4700 {
4701 }
4702 #endif
4703 /* rx skb timestamps */
4704 void net_enable_timestamp(void);
4705 void net_disable_timestamp(void);
4706 
4707 #ifdef CONFIG_PROC_FS
4708 int __init dev_proc_init(void);
4709 #else
4710 #define dev_proc_init() 0
4711 #endif
4712 
4713 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4714 					      struct sk_buff *skb, struct net_device *dev,
4715 					      bool more)
4716 {
4717 	__this_cpu_write(softnet_data.xmit.more, more);
4718 	return ops->ndo_start_xmit(skb, dev);
4719 }
4720 
4721 static inline bool netdev_xmit_more(void)
4722 {
4723 	return __this_cpu_read(softnet_data.xmit.more);
4724 }
4725 
4726 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4727 					    struct netdev_queue *txq, bool more)
4728 {
4729 	const struct net_device_ops *ops = dev->netdev_ops;
4730 	netdev_tx_t rc;
4731 
4732 	rc = __netdev_start_xmit(ops, skb, dev, more);
4733 	if (rc == NETDEV_TX_OK)
4734 		txq_trans_update(txq);
4735 
4736 	return rc;
4737 }
4738 
4739 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4740 				const void *ns);
4741 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4742 				 const void *ns);
4743 
4744 extern const struct kobj_ns_type_operations net_ns_type_operations;
4745 
4746 const char *netdev_drivername(const struct net_device *dev);
4747 
4748 void linkwatch_run_queue(void);
4749 
4750 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4751 							  netdev_features_t f2)
4752 {
4753 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4754 		if (f1 & NETIF_F_HW_CSUM)
4755 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4756 		else
4757 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4758 	}
4759 
4760 	return f1 & f2;
4761 }
4762 
4763 static inline netdev_features_t netdev_get_wanted_features(
4764 	struct net_device *dev)
4765 {
4766 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4767 }
4768 netdev_features_t netdev_increment_features(netdev_features_t all,
4769 	netdev_features_t one, netdev_features_t mask);
4770 
4771 /* Allow TSO being used on stacked device :
4772  * Performing the GSO segmentation before last device
4773  * is a performance improvement.
4774  */
4775 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4776 							netdev_features_t mask)
4777 {
4778 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4779 }
4780 
4781 int __netdev_update_features(struct net_device *dev);
4782 void netdev_update_features(struct net_device *dev);
4783 void netdev_change_features(struct net_device *dev);
4784 
4785 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4786 					struct net_device *dev);
4787 
4788 netdev_features_t passthru_features_check(struct sk_buff *skb,
4789 					  struct net_device *dev,
4790 					  netdev_features_t features);
4791 netdev_features_t netif_skb_features(struct sk_buff *skb);
4792 
4793 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4794 {
4795 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4796 
4797 	/* check flags correspondence */
4798 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4799 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4800 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4801 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4802 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4803 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4804 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4805 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4806 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4807 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4808 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4809 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4810 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4811 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4812 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4813 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4814 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4815 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4816 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4817 
4818 	return (features & feature) == feature;
4819 }
4820 
4821 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4822 {
4823 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4824 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4825 }
4826 
4827 static inline bool netif_needs_gso(struct sk_buff *skb,
4828 				   netdev_features_t features)
4829 {
4830 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4831 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4832 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4833 }
4834 
4835 static inline void netif_set_gso_max_size(struct net_device *dev,
4836 					  unsigned int size)
4837 {
4838 	dev->gso_max_size = size;
4839 }
4840 
4841 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4842 					int pulled_hlen, u16 mac_offset,
4843 					int mac_len)
4844 {
4845 	skb->protocol = protocol;
4846 	skb->encapsulation = 1;
4847 	skb_push(skb, pulled_hlen);
4848 	skb_reset_transport_header(skb);
4849 	skb->mac_header = mac_offset;
4850 	skb->network_header = skb->mac_header + mac_len;
4851 	skb->mac_len = mac_len;
4852 }
4853 
4854 static inline bool netif_is_macsec(const struct net_device *dev)
4855 {
4856 	return dev->priv_flags & IFF_MACSEC;
4857 }
4858 
4859 static inline bool netif_is_macvlan(const struct net_device *dev)
4860 {
4861 	return dev->priv_flags & IFF_MACVLAN;
4862 }
4863 
4864 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4865 {
4866 	return dev->priv_flags & IFF_MACVLAN_PORT;
4867 }
4868 
4869 static inline bool netif_is_bond_master(const struct net_device *dev)
4870 {
4871 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4872 }
4873 
4874 static inline bool netif_is_bond_slave(const struct net_device *dev)
4875 {
4876 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4877 }
4878 
4879 static inline bool netif_supports_nofcs(struct net_device *dev)
4880 {
4881 	return dev->priv_flags & IFF_SUPP_NOFCS;
4882 }
4883 
4884 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4885 {
4886 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4887 }
4888 
4889 static inline bool netif_is_l3_master(const struct net_device *dev)
4890 {
4891 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4892 }
4893 
4894 static inline bool netif_is_l3_slave(const struct net_device *dev)
4895 {
4896 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4897 }
4898 
4899 static inline bool netif_is_bridge_master(const struct net_device *dev)
4900 {
4901 	return dev->priv_flags & IFF_EBRIDGE;
4902 }
4903 
4904 static inline bool netif_is_bridge_port(const struct net_device *dev)
4905 {
4906 	return dev->priv_flags & IFF_BRIDGE_PORT;
4907 }
4908 
4909 static inline bool netif_is_ovs_master(const struct net_device *dev)
4910 {
4911 	return dev->priv_flags & IFF_OPENVSWITCH;
4912 }
4913 
4914 static inline bool netif_is_ovs_port(const struct net_device *dev)
4915 {
4916 	return dev->priv_flags & IFF_OVS_DATAPATH;
4917 }
4918 
4919 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4920 {
4921 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4922 }
4923 
4924 static inline bool netif_is_team_master(const struct net_device *dev)
4925 {
4926 	return dev->priv_flags & IFF_TEAM;
4927 }
4928 
4929 static inline bool netif_is_team_port(const struct net_device *dev)
4930 {
4931 	return dev->priv_flags & IFF_TEAM_PORT;
4932 }
4933 
4934 static inline bool netif_is_lag_master(const struct net_device *dev)
4935 {
4936 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4937 }
4938 
4939 static inline bool netif_is_lag_port(const struct net_device *dev)
4940 {
4941 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4942 }
4943 
4944 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4945 {
4946 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4947 }
4948 
4949 static inline bool netif_is_failover(const struct net_device *dev)
4950 {
4951 	return dev->priv_flags & IFF_FAILOVER;
4952 }
4953 
4954 static inline bool netif_is_failover_slave(const struct net_device *dev)
4955 {
4956 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4957 }
4958 
4959 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4960 static inline void netif_keep_dst(struct net_device *dev)
4961 {
4962 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4963 }
4964 
4965 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4966 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4967 {
4968 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4969 	return dev->priv_flags & IFF_MACSEC;
4970 }
4971 
4972 extern struct pernet_operations __net_initdata loopback_net_ops;
4973 
4974 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4975 
4976 /* netdev_printk helpers, similar to dev_printk */
4977 
4978 static inline const char *netdev_name(const struct net_device *dev)
4979 {
4980 	if (!dev->name[0] || strchr(dev->name, '%'))
4981 		return "(unnamed net_device)";
4982 	return dev->name;
4983 }
4984 
4985 static inline bool netdev_unregistering(const struct net_device *dev)
4986 {
4987 	return dev->reg_state == NETREG_UNREGISTERING;
4988 }
4989 
4990 static inline const char *netdev_reg_state(const struct net_device *dev)
4991 {
4992 	switch (dev->reg_state) {
4993 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4994 	case NETREG_REGISTERED: return "";
4995 	case NETREG_UNREGISTERING: return " (unregistering)";
4996 	case NETREG_UNREGISTERED: return " (unregistered)";
4997 	case NETREG_RELEASED: return " (released)";
4998 	case NETREG_DUMMY: return " (dummy)";
4999 	}
5000 
5001 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5002 	return " (unknown)";
5003 }
5004 
5005 __printf(3, 4) __cold
5006 void netdev_printk(const char *level, const struct net_device *dev,
5007 		   const char *format, ...);
5008 __printf(2, 3) __cold
5009 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5010 __printf(2, 3) __cold
5011 void netdev_alert(const struct net_device *dev, const char *format, ...);
5012 __printf(2, 3) __cold
5013 void netdev_crit(const struct net_device *dev, const char *format, ...);
5014 __printf(2, 3) __cold
5015 void netdev_err(const struct net_device *dev, const char *format, ...);
5016 __printf(2, 3) __cold
5017 void netdev_warn(const struct net_device *dev, const char *format, ...);
5018 __printf(2, 3) __cold
5019 void netdev_notice(const struct net_device *dev, const char *format, ...);
5020 __printf(2, 3) __cold
5021 void netdev_info(const struct net_device *dev, const char *format, ...);
5022 
5023 #define netdev_level_once(level, dev, fmt, ...)			\
5024 do {								\
5025 	static bool __print_once __read_mostly;			\
5026 								\
5027 	if (!__print_once) {					\
5028 		__print_once = true;				\
5029 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5030 	}							\
5031 } while (0)
5032 
5033 #define netdev_emerg_once(dev, fmt, ...) \
5034 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5035 #define netdev_alert_once(dev, fmt, ...) \
5036 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5037 #define netdev_crit_once(dev, fmt, ...) \
5038 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5039 #define netdev_err_once(dev, fmt, ...) \
5040 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5041 #define netdev_warn_once(dev, fmt, ...) \
5042 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5043 #define netdev_notice_once(dev, fmt, ...) \
5044 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5045 #define netdev_info_once(dev, fmt, ...) \
5046 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5047 
5048 #define MODULE_ALIAS_NETDEV(device) \
5049 	MODULE_ALIAS("netdev-" device)
5050 
5051 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5052 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5053 #define netdev_dbg(__dev, format, args...)			\
5054 do {								\
5055 	dynamic_netdev_dbg(__dev, format, ##args);		\
5056 } while (0)
5057 #elif defined(DEBUG)
5058 #define netdev_dbg(__dev, format, args...)			\
5059 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5060 #else
5061 #define netdev_dbg(__dev, format, args...)			\
5062 ({								\
5063 	if (0)							\
5064 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5065 })
5066 #endif
5067 
5068 #if defined(VERBOSE_DEBUG)
5069 #define netdev_vdbg	netdev_dbg
5070 #else
5071 
5072 #define netdev_vdbg(dev, format, args...)			\
5073 ({								\
5074 	if (0)							\
5075 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5076 	0;							\
5077 })
5078 #endif
5079 
5080 /*
5081  * netdev_WARN() acts like dev_printk(), but with the key difference
5082  * of using a WARN/WARN_ON to get the message out, including the
5083  * file/line information and a backtrace.
5084  */
5085 #define netdev_WARN(dev, format, args...)			\
5086 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5087 	     netdev_reg_state(dev), ##args)
5088 
5089 #define netdev_WARN_ONCE(dev, format, args...)				\
5090 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5091 		  netdev_reg_state(dev), ##args)
5092 
5093 /* netif printk helpers, similar to netdev_printk */
5094 
5095 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5096 do {					  			\
5097 	if (netif_msg_##type(priv))				\
5098 		netdev_printk(level, (dev), fmt, ##args);	\
5099 } while (0)
5100 
5101 #define netif_level(level, priv, type, dev, fmt, args...)	\
5102 do {								\
5103 	if (netif_msg_##type(priv))				\
5104 		netdev_##level(dev, fmt, ##args);		\
5105 } while (0)
5106 
5107 #define netif_emerg(priv, type, dev, fmt, args...)		\
5108 	netif_level(emerg, priv, type, dev, fmt, ##args)
5109 #define netif_alert(priv, type, dev, fmt, args...)		\
5110 	netif_level(alert, priv, type, dev, fmt, ##args)
5111 #define netif_crit(priv, type, dev, fmt, args...)		\
5112 	netif_level(crit, priv, type, dev, fmt, ##args)
5113 #define netif_err(priv, type, dev, fmt, args...)		\
5114 	netif_level(err, priv, type, dev, fmt, ##args)
5115 #define netif_warn(priv, type, dev, fmt, args...)		\
5116 	netif_level(warn, priv, type, dev, fmt, ##args)
5117 #define netif_notice(priv, type, dev, fmt, args...)		\
5118 	netif_level(notice, priv, type, dev, fmt, ##args)
5119 #define netif_info(priv, type, dev, fmt, args...)		\
5120 	netif_level(info, priv, type, dev, fmt, ##args)
5121 
5122 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5123 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5124 #define netif_dbg(priv, type, netdev, format, args...)		\
5125 do {								\
5126 	if (netif_msg_##type(priv))				\
5127 		dynamic_netdev_dbg(netdev, format, ##args);	\
5128 } while (0)
5129 #elif defined(DEBUG)
5130 #define netif_dbg(priv, type, dev, format, args...)		\
5131 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5132 #else
5133 #define netif_dbg(priv, type, dev, format, args...)			\
5134 ({									\
5135 	if (0)								\
5136 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5137 	0;								\
5138 })
5139 #endif
5140 
5141 /* if @cond then downgrade to debug, else print at @level */
5142 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5143 	do {                                                              \
5144 		if (cond)                                                 \
5145 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5146 		else                                                      \
5147 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5148 	} while (0)
5149 
5150 #if defined(VERBOSE_DEBUG)
5151 #define netif_vdbg	netif_dbg
5152 #else
5153 #define netif_vdbg(priv, type, dev, format, args...)		\
5154 ({								\
5155 	if (0)							\
5156 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5157 	0;							\
5158 })
5159 #endif
5160 
5161 /*
5162  *	The list of packet types we will receive (as opposed to discard)
5163  *	and the routines to invoke.
5164  *
5165  *	Why 16. Because with 16 the only overlap we get on a hash of the
5166  *	low nibble of the protocol value is RARP/SNAP/X.25.
5167  *
5168  *		0800	IP
5169  *		0001	802.3
5170  *		0002	AX.25
5171  *		0004	802.2
5172  *		8035	RARP
5173  *		0005	SNAP
5174  *		0805	X.25
5175  *		0806	ARP
5176  *		8137	IPX
5177  *		0009	Localtalk
5178  *		86DD	IPv6
5179  */
5180 #define PTYPE_HASH_SIZE	(16)
5181 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5182 
5183 extern struct net_device *blackhole_netdev;
5184 
5185 #endif	/* _LINUX_NETDEVICE_H */
5186