xref: /openbmc/linux/include/linux/netdevice.h (revision a36954f5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #ifdef CONFIG_DCB
45 #include <net/dcbnl.h>
46 #endif
47 #include <net/netprio_cgroup.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_switch_tree;
60 
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 				    const struct ethtool_ops *ops);
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously; in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK		0xf0
108 
109 enum netdev_tx {
110 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
111 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
112 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 /*
135  *	Compute the worst-case header length according to the protocols
136  *	used.
137  */
138 
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198 
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202 
203 struct netdev_hw_addr {
204 	struct list_head	list;
205 	unsigned char		addr[MAX_ADDR_LEN];
206 	unsigned char		type;
207 #define NETDEV_HW_ADDR_T_LAN		1
208 #define NETDEV_HW_ADDR_T_SAN		2
209 #define NETDEV_HW_ADDR_T_SLAVE		3
210 #define NETDEV_HW_ADDR_T_UNICAST	4
211 #define NETDEV_HW_ADDR_T_MULTICAST	5
212 	bool			global_use;
213 	int			sync_cnt;
214 	int			refcount;
215 	int			synced;
216 	struct rcu_head		rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220 	struct list_head	list;
221 	int			count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 	list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240 	unsigned int	hh_len;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-CPU poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_MISSED,	/* reschedule a napi */
334 	NAPI_STATE_DISABLE,	/* Disable pending */
335 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
336 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
337 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340 
341 enum {
342 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
343 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
344 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
345 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
346 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
347 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350 
351 enum gro_result {
352 	GRO_MERGED,
353 	GRO_MERGED_FREE,
354 	GRO_HELD,
355 	GRO_NORMAL,
356 	GRO_DROP,
357 	GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360 
361 /*
362  * enum rx_handler_result - Possible return values for rx_handlers.
363  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364  * further.
365  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366  * case skb->dev was changed by rx_handler.
367  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369  *
370  * rx_handlers are functions called from inside __netif_receive_skb(), to do
371  * special processing of the skb, prior to delivery to protocol handlers.
372  *
373  * Currently, a net_device can only have a single rx_handler registered. Trying
374  * to register a second rx_handler will return -EBUSY.
375  *
376  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377  * To unregister a rx_handler on a net_device, use
378  * netdev_rx_handler_unregister().
379  *
380  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381  * do with the skb.
382  *
383  * If the rx_handler consumed the skb in some way, it should return
384  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385  * the skb to be delivered in some other way.
386  *
387  * If the rx_handler changed skb->dev, to divert the skb to another
388  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389  * new device will be called if it exists.
390  *
391  * If the rx_handler decides the skb should be ignored, it should return
392  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393  * are registered on exact device (ptype->dev == skb->dev).
394  *
395  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396  * delivered, it should return RX_HANDLER_PASS.
397  *
398  * A device without a registered rx_handler will behave as if rx_handler
399  * returned RX_HANDLER_PASS.
400  */
401 
402 enum rx_handler_result {
403 	RX_HANDLER_CONSUMED,
404 	RX_HANDLER_ANOTHER,
405 	RX_HANDLER_EXACT,
406 	RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410 
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413 
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 	return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418 
419 bool napi_schedule_prep(struct napi_struct *n);
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *	napi_complete - NAPI processing complete
459  *	@n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  * Return false if device should avoid rearming interrupts.
464  */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_del - remove a NAPI from global table
472  *	@napi: NAPI context
473  *
474  * Warning: caller must observe RCU grace period
475  * before freeing memory containing @napi, if
476  * this function returns true.
477  * Note: core networking stack automatically calls it
478  * from netif_napi_del().
479  * Drivers might want to call this helper to combine all
480  * the needed RCU grace periods into a single one.
481  */
482 bool napi_hash_del(struct napi_struct *napi);
483 
484 /**
485  *	napi_disable - prevent NAPI from scheduling
486  *	@n: NAPI context
487  *
488  * Stop NAPI from being scheduled on this context.
489  * Waits till any outstanding processing completes.
490  */
491 void napi_disable(struct napi_struct *n);
492 
493 /**
494  *	napi_enable - enable NAPI scheduling
495  *	@n: NAPI context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 	smp_mb__before_atomic();
504 	clear_bit(NAPI_STATE_SCHED, &n->state);
505 	clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 enum netdev_queue_state_t {
526 	__QUEUE_STATE_DRV_XOFF,
527 	__QUEUE_STATE_STACK_XOFF,
528 	__QUEUE_STATE_FROZEN,
529 };
530 
531 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
534 
535 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 					QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 
541 /*
542  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
543  * netif_tx_* functions below are used to manipulate this flag.  The
544  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545  * queue independently.  The netif_xmit_*stopped functions below are called
546  * to check if the queue has been stopped by the driver or stack (either
547  * of the XOFF bits are set in the state).  Drivers should not need to call
548  * netif_xmit*stopped functions, they should only be using netif_tx_*.
549  */
550 
551 struct netdev_queue {
552 /*
553  * read-mostly part
554  */
555 	struct net_device	*dev;
556 	struct Qdisc __rcu	*qdisc;
557 	struct Qdisc		*qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 	struct kobject		kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 	int			numa_node;
563 #endif
564 	unsigned long		tx_maxrate;
565 	/*
566 	 * Number of TX timeouts for this queue
567 	 * (/sys/class/net/DEV/Q/trans_timeout)
568 	 */
569 	unsigned long		trans_timeout;
570 /*
571  * write-mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * Time (in jiffies) of last Tx
577 	 */
578 	unsigned long		trans_start;
579 
580 	unsigned long		state;
581 
582 #ifdef CONFIG_BQL
583 	struct dql		dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586 
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	return q->numa_node;
591 #else
592 	return NUMA_NO_NODE;
593 #endif
594 }
595 
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	q->numa_node = node;
600 #endif
601 }
602 
603 #ifdef CONFIG_RPS
604 /*
605  * This structure holds an RPS map which can be of variable length.  The
606  * map is an array of CPUs.
607  */
608 struct rps_map {
609 	unsigned int len;
610 	struct rcu_head rcu;
611 	u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614 
615 /*
616  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617  * tail pointer for that CPU's input queue at the time of last enqueue, and
618  * a hardware filter index.
619  */
620 struct rps_dev_flow {
621 	u16 cpu;
622 	u16 filter;
623 	unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626 
627 /*
628  * The rps_dev_flow_table structure contains a table of flow mappings.
629  */
630 struct rps_dev_flow_table {
631 	unsigned int mask;
632 	struct rcu_head rcu;
633 	struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636     ((_num) * sizeof(struct rps_dev_flow)))
637 
638 /*
639  * The rps_sock_flow_table contains mappings of flows to the last CPU
640  * on which they were processed by the application (set in recvmsg).
641  * Each entry is a 32bit value. Upper part is the high-order bits
642  * of flow hash, lower part is CPU number.
643  * rps_cpu_mask is used to partition the space, depending on number of
644  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646  * meaning we use 32-6=26 bits for the hash.
647  */
648 struct rps_sock_flow_table {
649 	u32	mask;
650 
651 	u32	ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654 
655 #define RPS_NO_CPU 0xffff
656 
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659 
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 					u32 hash)
662 {
663 	if (table && hash) {
664 		unsigned int index = hash & table->mask;
665 		u32 val = hash & ~rps_cpu_mask;
666 
667 		/* We only give a hint, preemption can change CPU under us */
668 		val |= raw_smp_processor_id();
669 
670 		if (table->ents[index] != val)
671 			table->ents[index] = val;
672 	}
673 }
674 
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 			 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680 
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 	struct rps_map __rcu		*rps_map;
685 	struct rps_dev_flow_table __rcu	*rps_flow_table;
686 #endif
687 	struct kobject			kobj;
688 	struct net_device		*dev;
689 } ____cacheline_aligned_in_smp;
690 
691 /*
692  * RX queue sysfs structures and functions.
693  */
694 struct rx_queue_attribute {
695 	struct attribute attr;
696 	ssize_t (*show)(struct netdev_rx_queue *queue,
697 	    struct rx_queue_attribute *attr, char *buf);
698 	ssize_t (*store)(struct netdev_rx_queue *queue,
699 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
700 };
701 
702 #ifdef CONFIG_XPS
703 /*
704  * This structure holds an XPS map which can be of variable length.  The
705  * map is an array of queues.
706  */
707 struct xps_map {
708 	unsigned int len;
709 	unsigned int alloc_len;
710 	struct rcu_head rcu;
711 	u16 queues[0];
712 };
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715        - sizeof(struct xps_map)) / sizeof(u16))
716 
717 /*
718  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
719  */
720 struct xps_dev_maps {
721 	struct rcu_head rcu;
722 	struct xps_map __rcu *cpu_map[0];
723 };
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
725 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
727 
728 #define TC_MAX_QUEUE	16
729 #define TC_BITMASK	15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732 	u16 count;
733 	u16 offset;
734 };
735 
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
737 /*
738  * This structure is to hold information about the device
739  * configured to run FCoE protocol stack.
740  */
741 struct netdev_fcoe_hbainfo {
742 	char	manufacturer[64];
743 	char	serial_number[64];
744 	char	hardware_version[64];
745 	char	driver_version[64];
746 	char	optionrom_version[64];
747 	char	firmware_version[64];
748 	char	model[256];
749 	char	model_description[256];
750 };
751 #endif
752 
753 #define MAX_PHYS_ITEM_ID_LEN 32
754 
755 /* This structure holds a unique identifier to identify some
756  * physical item (port for example) used by a netdevice.
757  */
758 struct netdev_phys_item_id {
759 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760 	unsigned char id_len;
761 };
762 
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764 					    struct netdev_phys_item_id *b)
765 {
766 	return a->id_len == b->id_len &&
767 	       memcmp(a->id, b->id, a->id_len) == 0;
768 }
769 
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771 				       struct sk_buff *skb);
772 
773 /* These structures hold the attributes of qdisc and classifiers
774  * that are being passed to the netdevice through the setup_tc op.
775  */
776 enum {
777 	TC_SETUP_MQPRIO,
778 	TC_SETUP_CLSU32,
779 	TC_SETUP_CLSFLOWER,
780 	TC_SETUP_MATCHALL,
781 	TC_SETUP_CLSBPF,
782 };
783 
784 struct tc_cls_u32_offload;
785 
786 struct tc_to_netdev {
787 	unsigned int type;
788 	union {
789 		struct tc_cls_u32_offload *cls_u32;
790 		struct tc_cls_flower_offload *cls_flower;
791 		struct tc_cls_matchall_offload *cls_mall;
792 		struct tc_cls_bpf_offload *cls_bpf;
793 		struct tc_mqprio_qopt *mqprio;
794 	};
795 	bool egress_dev;
796 };
797 
798 /* These structures hold the attributes of xdp state that are being passed
799  * to the netdevice through the xdp op.
800  */
801 enum xdp_netdev_command {
802 	/* Set or clear a bpf program used in the earliest stages of packet
803 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
804 	 * is responsible for calling bpf_prog_put on any old progs that are
805 	 * stored. In case of error, the callee need not release the new prog
806 	 * reference, but on success it takes ownership and must bpf_prog_put
807 	 * when it is no longer used.
808 	 */
809 	XDP_SETUP_PROG,
810 	/* Check if a bpf program is set on the device.  The callee should
811 	 * return true if a program is currently attached and running.
812 	 */
813 	XDP_QUERY_PROG,
814 };
815 
816 struct netlink_ext_ack;
817 
818 struct netdev_xdp {
819 	enum xdp_netdev_command command;
820 	union {
821 		/* XDP_SETUP_PROG */
822 		struct {
823 			struct bpf_prog *prog;
824 			struct netlink_ext_ack *extack;
825 		};
826 		/* XDP_QUERY_PROG */
827 		bool prog_attached;
828 	};
829 };
830 
831 #ifdef CONFIG_XFRM_OFFLOAD
832 struct xfrmdev_ops {
833 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
834 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
835 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
836 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
837 				       struct xfrm_state *x);
838 };
839 #endif
840 
841 /*
842  * This structure defines the management hooks for network devices.
843  * The following hooks can be defined; unless noted otherwise, they are
844  * optional and can be filled with a null pointer.
845  *
846  * int (*ndo_init)(struct net_device *dev);
847  *     This function is called once when a network device is registered.
848  *     The network device can use this for any late stage initialization
849  *     or semantic validation. It can fail with an error code which will
850  *     be propagated back to register_netdev.
851  *
852  * void (*ndo_uninit)(struct net_device *dev);
853  *     This function is called when device is unregistered or when registration
854  *     fails. It is not called if init fails.
855  *
856  * int (*ndo_open)(struct net_device *dev);
857  *     This function is called when a network device transitions to the up
858  *     state.
859  *
860  * int (*ndo_stop)(struct net_device *dev);
861  *     This function is called when a network device transitions to the down
862  *     state.
863  *
864  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
865  *                               struct net_device *dev);
866  *	Called when a packet needs to be transmitted.
867  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
868  *	the queue before that can happen; it's for obsolete devices and weird
869  *	corner cases, but the stack really does a non-trivial amount
870  *	of useless work if you return NETDEV_TX_BUSY.
871  *	Required; cannot be NULL.
872  *
873  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
874  *					   struct net_device *dev
875  *					   netdev_features_t features);
876  *	Called by core transmit path to determine if device is capable of
877  *	performing offload operations on a given packet. This is to give
878  *	the device an opportunity to implement any restrictions that cannot
879  *	be otherwise expressed by feature flags. The check is called with
880  *	the set of features that the stack has calculated and it returns
881  *	those the driver believes to be appropriate.
882  *
883  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
884  *                         void *accel_priv, select_queue_fallback_t fallback);
885  *	Called to decide which queue to use when device supports multiple
886  *	transmit queues.
887  *
888  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
889  *	This function is called to allow device receiver to make
890  *	changes to configuration when multicast or promiscuous is enabled.
891  *
892  * void (*ndo_set_rx_mode)(struct net_device *dev);
893  *	This function is called device changes address list filtering.
894  *	If driver handles unicast address filtering, it should set
895  *	IFF_UNICAST_FLT in its priv_flags.
896  *
897  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
898  *	This function  is called when the Media Access Control address
899  *	needs to be changed. If this interface is not defined, the
900  *	MAC address can not be changed.
901  *
902  * int (*ndo_validate_addr)(struct net_device *dev);
903  *	Test if Media Access Control address is valid for the device.
904  *
905  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
906  *	Called when a user requests an ioctl which can't be handled by
907  *	the generic interface code. If not defined ioctls return
908  *	not supported error code.
909  *
910  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
911  *	Used to set network devices bus interface parameters. This interface
912  *	is retained for legacy reasons; new devices should use the bus
913  *	interface (PCI) for low level management.
914  *
915  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
916  *	Called when a user wants to change the Maximum Transfer Unit
917  *	of a device. If not defined, any request to change MTU will
918  *	will return an error.
919  *
920  * void (*ndo_tx_timeout)(struct net_device *dev);
921  *	Callback used when the transmitter has not made any progress
922  *	for dev->watchdog ticks.
923  *
924  * void (*ndo_get_stats64)(struct net_device *dev,
925  *                         struct rtnl_link_stats64 *storage);
926  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
927  *	Called when a user wants to get the network device usage
928  *	statistics. Drivers must do one of the following:
929  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
930  *	   rtnl_link_stats64 structure passed by the caller.
931  *	2. Define @ndo_get_stats to update a net_device_stats structure
932  *	   (which should normally be dev->stats) and return a pointer to
933  *	   it. The structure may be changed asynchronously only if each
934  *	   field is written atomically.
935  *	3. Update dev->stats asynchronously and atomically, and define
936  *	   neither operation.
937  *
938  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
939  *	Return true if this device supports offload stats of this attr_id.
940  *
941  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
942  *	void *attr_data)
943  *	Get statistics for offload operations by attr_id. Write it into the
944  *	attr_data pointer.
945  *
946  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
947  *	If device supports VLAN filtering this function is called when a
948  *	VLAN id is registered.
949  *
950  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
951  *	If device supports VLAN filtering this function is called when a
952  *	VLAN id is unregistered.
953  *
954  * void (*ndo_poll_controller)(struct net_device *dev);
955  *
956  *	SR-IOV management functions.
957  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
958  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
959  *			  u8 qos, __be16 proto);
960  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
961  *			  int max_tx_rate);
962  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
963  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
964  * int (*ndo_get_vf_config)(struct net_device *dev,
965  *			    int vf, struct ifla_vf_info *ivf);
966  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
967  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
968  *			  struct nlattr *port[]);
969  *
970  *      Enable or disable the VF ability to query its RSS Redirection Table and
971  *      Hash Key. This is needed since on some devices VF share this information
972  *      with PF and querying it may introduce a theoretical security risk.
973  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
974  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
975  * int (*ndo_setup_tc)(struct net_device *dev, u32 handle,
976  *		       __be16 protocol, struct tc_to_netdev *tc);
977  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
978  *	This is always called from the stack with the rtnl lock held and netif
979  *	tx queues stopped. This allows the netdevice to perform queue
980  *	management safely.
981  *
982  *	Fiber Channel over Ethernet (FCoE) offload functions.
983  * int (*ndo_fcoe_enable)(struct net_device *dev);
984  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
985  *	so the underlying device can perform whatever needed configuration or
986  *	initialization to support acceleration of FCoE traffic.
987  *
988  * int (*ndo_fcoe_disable)(struct net_device *dev);
989  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
990  *	so the underlying device can perform whatever needed clean-ups to
991  *	stop supporting acceleration of FCoE traffic.
992  *
993  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
994  *			     struct scatterlist *sgl, unsigned int sgc);
995  *	Called when the FCoE Initiator wants to initialize an I/O that
996  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
997  *	perform necessary setup and returns 1 to indicate the device is set up
998  *	successfully to perform DDP on this I/O, otherwise this returns 0.
999  *
1000  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1001  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1002  *	indicated by the FC exchange id 'xid', so the underlying device can
1003  *	clean up and reuse resources for later DDP requests.
1004  *
1005  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1006  *			      struct scatterlist *sgl, unsigned int sgc);
1007  *	Called when the FCoE Target wants to initialize an I/O that
1008  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1009  *	perform necessary setup and returns 1 to indicate the device is set up
1010  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1011  *
1012  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1013  *			       struct netdev_fcoe_hbainfo *hbainfo);
1014  *	Called when the FCoE Protocol stack wants information on the underlying
1015  *	device. This information is utilized by the FCoE protocol stack to
1016  *	register attributes with Fiber Channel management service as per the
1017  *	FC-GS Fabric Device Management Information(FDMI) specification.
1018  *
1019  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1020  *	Called when the underlying device wants to override default World Wide
1021  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1022  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1023  *	protocol stack to use.
1024  *
1025  *	RFS acceleration.
1026  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1027  *			    u16 rxq_index, u32 flow_id);
1028  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1029  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1030  *	Return the filter ID on success, or a negative error code.
1031  *
1032  *	Slave management functions (for bridge, bonding, etc).
1033  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1034  *	Called to make another netdev an underling.
1035  *
1036  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1037  *	Called to release previously enslaved netdev.
1038  *
1039  *      Feature/offload setting functions.
1040  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1041  *		netdev_features_t features);
1042  *	Adjusts the requested feature flags according to device-specific
1043  *	constraints, and returns the resulting flags. Must not modify
1044  *	the device state.
1045  *
1046  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1047  *	Called to update device configuration to new features. Passed
1048  *	feature set might be less than what was returned by ndo_fix_features()).
1049  *	Must return >0 or -errno if it changed dev->features itself.
1050  *
1051  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1052  *		      struct net_device *dev,
1053  *		      const unsigned char *addr, u16 vid, u16 flags)
1054  *	Adds an FDB entry to dev for addr.
1055  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1056  *		      struct net_device *dev,
1057  *		      const unsigned char *addr, u16 vid)
1058  *	Deletes the FDB entry from dev coresponding to addr.
1059  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1060  *		       struct net_device *dev, struct net_device *filter_dev,
1061  *		       int *idx)
1062  *	Used to add FDB entries to dump requests. Implementers should add
1063  *	entries to skb and update idx with the number of entries.
1064  *
1065  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1066  *			     u16 flags)
1067  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1068  *			     struct net_device *dev, u32 filter_mask,
1069  *			     int nlflags)
1070  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1071  *			     u16 flags);
1072  *
1073  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1074  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1075  *	which do not represent real hardware may define this to allow their
1076  *	userspace components to manage their virtual carrier state. Devices
1077  *	that determine carrier state from physical hardware properties (eg
1078  *	network cables) or protocol-dependent mechanisms (eg
1079  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1080  *
1081  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1082  *			       struct netdev_phys_item_id *ppid);
1083  *	Called to get ID of physical port of this device. If driver does
1084  *	not implement this, it is assumed that the hw is not able to have
1085  *	multiple net devices on single physical port.
1086  *
1087  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1088  *			      struct udp_tunnel_info *ti);
1089  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1090  *	address family that a UDP tunnel is listnening to. It is called only
1091  *	when a new port starts listening. The operation is protected by the
1092  *	RTNL.
1093  *
1094  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1095  *			      struct udp_tunnel_info *ti);
1096  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1097  *	address family that the UDP tunnel is not listening to anymore. The
1098  *	operation is protected by the RTNL.
1099  *
1100  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1101  *				 struct net_device *dev)
1102  *	Called by upper layer devices to accelerate switching or other
1103  *	station functionality into hardware. 'pdev is the lowerdev
1104  *	to use for the offload and 'dev' is the net device that will
1105  *	back the offload. Returns a pointer to the private structure
1106  *	the upper layer will maintain.
1107  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1108  *	Called by upper layer device to delete the station created
1109  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1110  *	the station and priv is the structure returned by the add
1111  *	operation.
1112  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1113  *				      struct net_device *dev,
1114  *				      void *priv);
1115  *	Callback to use for xmit over the accelerated station. This
1116  *	is used in place of ndo_start_xmit on accelerated net
1117  *	devices.
1118  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1119  *			     int queue_index, u32 maxrate);
1120  *	Called when a user wants to set a max-rate limitation of specific
1121  *	TX queue.
1122  * int (*ndo_get_iflink)(const struct net_device *dev);
1123  *	Called to get the iflink value of this device.
1124  * void (*ndo_change_proto_down)(struct net_device *dev,
1125  *				 bool proto_down);
1126  *	This function is used to pass protocol port error state information
1127  *	to the switch driver. The switch driver can react to the proto_down
1128  *      by doing a phys down on the associated switch port.
1129  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1130  *	This function is used to get egress tunnel information for given skb.
1131  *	This is useful for retrieving outer tunnel header parameters while
1132  *	sampling packet.
1133  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1134  *	This function is used to specify the headroom that the skb must
1135  *	consider when allocation skb during packet reception. Setting
1136  *	appropriate rx headroom value allows avoiding skb head copy on
1137  *	forward. Setting a negative value resets the rx headroom to the
1138  *	default value.
1139  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1140  *	This function is used to set or query state related to XDP on the
1141  *	netdevice. See definition of enum xdp_netdev_command for details.
1142  *
1143  */
1144 struct net_device_ops {
1145 	int			(*ndo_init)(struct net_device *dev);
1146 	void			(*ndo_uninit)(struct net_device *dev);
1147 	int			(*ndo_open)(struct net_device *dev);
1148 	int			(*ndo_stop)(struct net_device *dev);
1149 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1150 						  struct net_device *dev);
1151 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1152 						      struct net_device *dev,
1153 						      netdev_features_t features);
1154 	u16			(*ndo_select_queue)(struct net_device *dev,
1155 						    struct sk_buff *skb,
1156 						    void *accel_priv,
1157 						    select_queue_fallback_t fallback);
1158 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1159 						       int flags);
1160 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1161 	int			(*ndo_set_mac_address)(struct net_device *dev,
1162 						       void *addr);
1163 	int			(*ndo_validate_addr)(struct net_device *dev);
1164 	int			(*ndo_do_ioctl)(struct net_device *dev,
1165 					        struct ifreq *ifr, int cmd);
1166 	int			(*ndo_set_config)(struct net_device *dev,
1167 					          struct ifmap *map);
1168 	int			(*ndo_change_mtu)(struct net_device *dev,
1169 						  int new_mtu);
1170 	int			(*ndo_neigh_setup)(struct net_device *dev,
1171 						   struct neigh_parms *);
1172 	void			(*ndo_tx_timeout) (struct net_device *dev);
1173 
1174 	void			(*ndo_get_stats64)(struct net_device *dev,
1175 						   struct rtnl_link_stats64 *storage);
1176 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1177 	int			(*ndo_get_offload_stats)(int attr_id,
1178 							 const struct net_device *dev,
1179 							 void *attr_data);
1180 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1181 
1182 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1183 						       __be16 proto, u16 vid);
1184 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1185 						        __be16 proto, u16 vid);
1186 #ifdef CONFIG_NET_POLL_CONTROLLER
1187 	void                    (*ndo_poll_controller)(struct net_device *dev);
1188 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1189 						     struct netpoll_info *info);
1190 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1191 #endif
1192 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1193 						  int queue, u8 *mac);
1194 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1195 						   int queue, u16 vlan,
1196 						   u8 qos, __be16 proto);
1197 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1198 						   int vf, int min_tx_rate,
1199 						   int max_tx_rate);
1200 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1201 						       int vf, bool setting);
1202 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1203 						    int vf, bool setting);
1204 	int			(*ndo_get_vf_config)(struct net_device *dev,
1205 						     int vf,
1206 						     struct ifla_vf_info *ivf);
1207 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1208 							 int vf, int link_state);
1209 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1210 						    int vf,
1211 						    struct ifla_vf_stats
1212 						    *vf_stats);
1213 	int			(*ndo_set_vf_port)(struct net_device *dev,
1214 						   int vf,
1215 						   struct nlattr *port[]);
1216 	int			(*ndo_get_vf_port)(struct net_device *dev,
1217 						   int vf, struct sk_buff *skb);
1218 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1219 						   int vf, u64 guid,
1220 						   int guid_type);
1221 	int			(*ndo_set_vf_rss_query_en)(
1222 						   struct net_device *dev,
1223 						   int vf, bool setting);
1224 	int			(*ndo_setup_tc)(struct net_device *dev,
1225 						u32 handle,
1226 						__be16 protocol,
1227 						struct tc_to_netdev *tc);
1228 #if IS_ENABLED(CONFIG_FCOE)
1229 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1230 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1231 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1232 						      u16 xid,
1233 						      struct scatterlist *sgl,
1234 						      unsigned int sgc);
1235 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1236 						     u16 xid);
1237 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1238 						       u16 xid,
1239 						       struct scatterlist *sgl,
1240 						       unsigned int sgc);
1241 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1242 							struct netdev_fcoe_hbainfo *hbainfo);
1243 #endif
1244 
1245 #if IS_ENABLED(CONFIG_LIBFCOE)
1246 #define NETDEV_FCOE_WWNN 0
1247 #define NETDEV_FCOE_WWPN 1
1248 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1249 						    u64 *wwn, int type);
1250 #endif
1251 
1252 #ifdef CONFIG_RFS_ACCEL
1253 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1254 						     const struct sk_buff *skb,
1255 						     u16 rxq_index,
1256 						     u32 flow_id);
1257 #endif
1258 	int			(*ndo_add_slave)(struct net_device *dev,
1259 						 struct net_device *slave_dev);
1260 	int			(*ndo_del_slave)(struct net_device *dev,
1261 						 struct net_device *slave_dev);
1262 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1263 						    netdev_features_t features);
1264 	int			(*ndo_set_features)(struct net_device *dev,
1265 						    netdev_features_t features);
1266 	int			(*ndo_neigh_construct)(struct net_device *dev,
1267 						       struct neighbour *n);
1268 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1269 						     struct neighbour *n);
1270 
1271 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1272 					       struct nlattr *tb[],
1273 					       struct net_device *dev,
1274 					       const unsigned char *addr,
1275 					       u16 vid,
1276 					       u16 flags);
1277 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1278 					       struct nlattr *tb[],
1279 					       struct net_device *dev,
1280 					       const unsigned char *addr,
1281 					       u16 vid);
1282 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1283 						struct netlink_callback *cb,
1284 						struct net_device *dev,
1285 						struct net_device *filter_dev,
1286 						int *idx);
1287 
1288 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1289 						      struct nlmsghdr *nlh,
1290 						      u16 flags);
1291 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1292 						      u32 pid, u32 seq,
1293 						      struct net_device *dev,
1294 						      u32 filter_mask,
1295 						      int nlflags);
1296 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1297 						      struct nlmsghdr *nlh,
1298 						      u16 flags);
1299 	int			(*ndo_change_carrier)(struct net_device *dev,
1300 						      bool new_carrier);
1301 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1302 							struct netdev_phys_item_id *ppid);
1303 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1304 							  char *name, size_t len);
1305 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1306 						      struct udp_tunnel_info *ti);
1307 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1308 						      struct udp_tunnel_info *ti);
1309 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1310 							struct net_device *dev);
1311 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1312 							void *priv);
1313 
1314 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1315 							struct net_device *dev,
1316 							void *priv);
1317 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1318 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1319 						      int queue_index,
1320 						      u32 maxrate);
1321 	int			(*ndo_get_iflink)(const struct net_device *dev);
1322 	int			(*ndo_change_proto_down)(struct net_device *dev,
1323 							 bool proto_down);
1324 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1325 						       struct sk_buff *skb);
1326 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1327 						       int needed_headroom);
1328 	int			(*ndo_xdp)(struct net_device *dev,
1329 					   struct netdev_xdp *xdp);
1330 };
1331 
1332 /**
1333  * enum net_device_priv_flags - &struct net_device priv_flags
1334  *
1335  * These are the &struct net_device, they are only set internally
1336  * by drivers and used in the kernel. These flags are invisible to
1337  * userspace; this means that the order of these flags can change
1338  * during any kernel release.
1339  *
1340  * You should have a pretty good reason to be extending these flags.
1341  *
1342  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1343  * @IFF_EBRIDGE: Ethernet bridging device
1344  * @IFF_BONDING: bonding master or slave
1345  * @IFF_ISATAP: ISATAP interface (RFC4214)
1346  * @IFF_WAN_HDLC: WAN HDLC device
1347  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1348  *	release skb->dst
1349  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1350  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1351  * @IFF_MACVLAN_PORT: device used as macvlan port
1352  * @IFF_BRIDGE_PORT: device used as bridge port
1353  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1354  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1355  * @IFF_UNICAST_FLT: Supports unicast filtering
1356  * @IFF_TEAM_PORT: device used as team port
1357  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1358  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1359  *	change when it's running
1360  * @IFF_MACVLAN: Macvlan device
1361  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1362  *	underlying stacked devices
1363  * @IFF_IPVLAN_MASTER: IPvlan master device
1364  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1365  * @IFF_L3MDEV_MASTER: device is an L3 master device
1366  * @IFF_NO_QUEUE: device can run without qdisc attached
1367  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1368  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1369  * @IFF_TEAM: device is a team device
1370  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1371  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1372  *	entity (i.e. the master device for bridged veth)
1373  * @IFF_MACSEC: device is a MACsec device
1374  */
1375 enum netdev_priv_flags {
1376 	IFF_802_1Q_VLAN			= 1<<0,
1377 	IFF_EBRIDGE			= 1<<1,
1378 	IFF_BONDING			= 1<<2,
1379 	IFF_ISATAP			= 1<<3,
1380 	IFF_WAN_HDLC			= 1<<4,
1381 	IFF_XMIT_DST_RELEASE		= 1<<5,
1382 	IFF_DONT_BRIDGE			= 1<<6,
1383 	IFF_DISABLE_NETPOLL		= 1<<7,
1384 	IFF_MACVLAN_PORT		= 1<<8,
1385 	IFF_BRIDGE_PORT			= 1<<9,
1386 	IFF_OVS_DATAPATH		= 1<<10,
1387 	IFF_TX_SKB_SHARING		= 1<<11,
1388 	IFF_UNICAST_FLT			= 1<<12,
1389 	IFF_TEAM_PORT			= 1<<13,
1390 	IFF_SUPP_NOFCS			= 1<<14,
1391 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1392 	IFF_MACVLAN			= 1<<16,
1393 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1394 	IFF_IPVLAN_MASTER		= 1<<18,
1395 	IFF_IPVLAN_SLAVE		= 1<<19,
1396 	IFF_L3MDEV_MASTER		= 1<<20,
1397 	IFF_NO_QUEUE			= 1<<21,
1398 	IFF_OPENVSWITCH			= 1<<22,
1399 	IFF_L3MDEV_SLAVE		= 1<<23,
1400 	IFF_TEAM			= 1<<24,
1401 	IFF_RXFH_CONFIGURED		= 1<<25,
1402 	IFF_PHONY_HEADROOM		= 1<<26,
1403 	IFF_MACSEC			= 1<<27,
1404 };
1405 
1406 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1407 #define IFF_EBRIDGE			IFF_EBRIDGE
1408 #define IFF_BONDING			IFF_BONDING
1409 #define IFF_ISATAP			IFF_ISATAP
1410 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1411 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1412 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1413 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1414 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1415 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1416 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1417 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1418 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1419 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1420 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1421 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1422 #define IFF_MACVLAN			IFF_MACVLAN
1423 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1424 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1425 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1426 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1427 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1428 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1429 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1430 #define IFF_TEAM			IFF_TEAM
1431 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1432 #define IFF_MACSEC			IFF_MACSEC
1433 
1434 /**
1435  *	struct net_device - The DEVICE structure.
1436  *		Actually, this whole structure is a big mistake.  It mixes I/O
1437  *		data with strictly "high-level" data, and it has to know about
1438  *		almost every data structure used in the INET module.
1439  *
1440  *	@name:	This is the first field of the "visible" part of this structure
1441  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1442  *	 	of the interface.
1443  *
1444  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1445  *	@ifalias:	SNMP alias
1446  *	@mem_end:	Shared memory end
1447  *	@mem_start:	Shared memory start
1448  *	@base_addr:	Device I/O address
1449  *	@irq:		Device IRQ number
1450  *
1451  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1452  *
1453  *	@state:		Generic network queuing layer state, see netdev_state_t
1454  *	@dev_list:	The global list of network devices
1455  *	@napi_list:	List entry used for polling NAPI devices
1456  *	@unreg_list:	List entry  when we are unregistering the
1457  *			device; see the function unregister_netdev
1458  *	@close_list:	List entry used when we are closing the device
1459  *	@ptype_all:     Device-specific packet handlers for all protocols
1460  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1461  *
1462  *	@adj_list:	Directly linked devices, like slaves for bonding
1463  *	@features:	Currently active device features
1464  *	@hw_features:	User-changeable features
1465  *
1466  *	@wanted_features:	User-requested features
1467  *	@vlan_features:		Mask of features inheritable by VLAN devices
1468  *
1469  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1470  *				This field indicates what encapsulation
1471  *				offloads the hardware is capable of doing,
1472  *				and drivers will need to set them appropriately.
1473  *
1474  *	@mpls_features:	Mask of features inheritable by MPLS
1475  *
1476  *	@ifindex:	interface index
1477  *	@group:		The group the device belongs to
1478  *
1479  *	@stats:		Statistics struct, which was left as a legacy, use
1480  *			rtnl_link_stats64 instead
1481  *
1482  *	@rx_dropped:	Dropped packets by core network,
1483  *			do not use this in drivers
1484  *	@tx_dropped:	Dropped packets by core network,
1485  *			do not use this in drivers
1486  *	@rx_nohandler:	nohandler dropped packets by core network on
1487  *			inactive devices, do not use this in drivers
1488  *
1489  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1490  *				instead of ioctl,
1491  *				see <net/iw_handler.h> for details.
1492  *	@wireless_data:	Instance data managed by the core of wireless extensions
1493  *
1494  *	@netdev_ops:	Includes several pointers to callbacks,
1495  *			if one wants to override the ndo_*() functions
1496  *	@ethtool_ops:	Management operations
1497  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1498  *			discovery handling. Necessary for e.g. 6LoWPAN.
1499  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1500  *			of Layer 2 headers.
1501  *
1502  *	@flags:		Interface flags (a la BSD)
1503  *	@priv_flags:	Like 'flags' but invisible to userspace,
1504  *			see if.h for the definitions
1505  *	@gflags:	Global flags ( kept as legacy )
1506  *	@padded:	How much padding added by alloc_netdev()
1507  *	@operstate:	RFC2863 operstate
1508  *	@link_mode:	Mapping policy to operstate
1509  *	@if_port:	Selectable AUI, TP, ...
1510  *	@dma:		DMA channel
1511  *	@mtu:		Interface MTU value
1512  *	@min_mtu:	Interface Minimum MTU value
1513  *	@max_mtu:	Interface Maximum MTU value
1514  *	@type:		Interface hardware type
1515  *	@hard_header_len: Maximum hardware header length.
1516  *	@min_header_len:  Minimum hardware header length
1517  *
1518  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1519  *			  cases can this be guaranteed
1520  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1521  *			  cases can this be guaranteed. Some cases also use
1522  *			  LL_MAX_HEADER instead to allocate the skb
1523  *
1524  *	interface address info:
1525  *
1526  * 	@perm_addr:		Permanent hw address
1527  * 	@addr_assign_type:	Hw address assignment type
1528  * 	@addr_len:		Hardware address length
1529  *	@neigh_priv_len:	Used in neigh_alloc()
1530  * 	@dev_id:		Used to differentiate devices that share
1531  * 				the same link layer address
1532  * 	@dev_port:		Used to differentiate devices that share
1533  * 				the same function
1534  *	@addr_list_lock:	XXX: need comments on this one
1535  *	@uc_promisc:		Counter that indicates promiscuous mode
1536  *				has been enabled due to the need to listen to
1537  *				additional unicast addresses in a device that
1538  *				does not implement ndo_set_rx_mode()
1539  *	@uc:			unicast mac addresses
1540  *	@mc:			multicast mac addresses
1541  *	@dev_addrs:		list of device hw addresses
1542  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1543  *	@promiscuity:		Number of times the NIC is told to work in
1544  *				promiscuous mode; if it becomes 0 the NIC will
1545  *				exit promiscuous mode
1546  *	@allmulti:		Counter, enables or disables allmulticast mode
1547  *
1548  *	@vlan_info:	VLAN info
1549  *	@dsa_ptr:	dsa specific data
1550  *	@tipc_ptr:	TIPC specific data
1551  *	@atalk_ptr:	AppleTalk link
1552  *	@ip_ptr:	IPv4 specific data
1553  *	@dn_ptr:	DECnet specific data
1554  *	@ip6_ptr:	IPv6 specific data
1555  *	@ax25_ptr:	AX.25 specific data
1556  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1557  *
1558  *	@dev_addr:	Hw address (before bcast,
1559  *			because most packets are unicast)
1560  *
1561  *	@_rx:			Array of RX queues
1562  *	@num_rx_queues:		Number of RX queues
1563  *				allocated at register_netdev() time
1564  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1565  *
1566  *	@rx_handler:		handler for received packets
1567  *	@rx_handler_data: 	XXX: need comments on this one
1568  *	@ingress_queue:		XXX: need comments on this one
1569  *	@broadcast:		hw bcast address
1570  *
1571  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1572  *			indexed by RX queue number. Assigned by driver.
1573  *			This must only be set if the ndo_rx_flow_steer
1574  *			operation is defined
1575  *	@index_hlist:		Device index hash chain
1576  *
1577  *	@_tx:			Array of TX queues
1578  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1579  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1580  *	@qdisc:			Root qdisc from userspace point of view
1581  *	@tx_queue_len:		Max frames per queue allowed
1582  *	@tx_global_lock: 	XXX: need comments on this one
1583  *
1584  *	@xps_maps:	XXX: need comments on this one
1585  *
1586  *	@watchdog_timeo:	Represents the timeout that is used by
1587  *				the watchdog (see dev_watchdog())
1588  *	@watchdog_timer:	List of timers
1589  *
1590  *	@pcpu_refcnt:		Number of references to this device
1591  *	@todo_list:		Delayed register/unregister
1592  *	@link_watch_list:	XXX: need comments on this one
1593  *
1594  *	@reg_state:		Register/unregister state machine
1595  *	@dismantle:		Device is going to be freed
1596  *	@rtnl_link_state:	This enum represents the phases of creating
1597  *				a new link
1598  *
1599  *	@destructor:		Called from unregister,
1600  *				can be used to call free_netdev
1601  *	@npinfo:		XXX: need comments on this one
1602  * 	@nd_net:		Network namespace this network device is inside
1603  *
1604  * 	@ml_priv:	Mid-layer private
1605  * 	@lstats:	Loopback statistics
1606  * 	@tstats:	Tunnel statistics
1607  * 	@dstats:	Dummy statistics
1608  * 	@vstats:	Virtual ethernet statistics
1609  *
1610  *	@garp_port:	GARP
1611  *	@mrp_port:	MRP
1612  *
1613  *	@dev:		Class/net/name entry
1614  *	@sysfs_groups:	Space for optional device, statistics and wireless
1615  *			sysfs groups
1616  *
1617  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1618  *	@rtnl_link_ops:	Rtnl_link_ops
1619  *
1620  *	@gso_max_size:	Maximum size of generic segmentation offload
1621  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1622  *			NIC for GSO
1623  *
1624  *	@dcbnl_ops:	Data Center Bridging netlink ops
1625  *	@num_tc:	Number of traffic classes in the net device
1626  *	@tc_to_txq:	XXX: need comments on this one
1627  *	@prio_tc_map:	XXX: need comments on this one
1628  *
1629  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1630  *
1631  *	@priomap:	XXX: need comments on this one
1632  *	@phydev:	Physical device may attach itself
1633  *			for hardware timestamping
1634  *
1635  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1636  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1637  *
1638  *	@proto_down:	protocol port state information can be sent to the
1639  *			switch driver and used to set the phys state of the
1640  *			switch port.
1641  *
1642  *	FIXME: cleanup struct net_device such that network protocol info
1643  *	moves out.
1644  */
1645 
1646 struct net_device {
1647 	char			name[IFNAMSIZ];
1648 	struct hlist_node	name_hlist;
1649 	char 			*ifalias;
1650 	/*
1651 	 *	I/O specific fields
1652 	 *	FIXME: Merge these and struct ifmap into one
1653 	 */
1654 	unsigned long		mem_end;
1655 	unsigned long		mem_start;
1656 	unsigned long		base_addr;
1657 	int			irq;
1658 
1659 	atomic_t		carrier_changes;
1660 
1661 	/*
1662 	 *	Some hardware also needs these fields (state,dev_list,
1663 	 *	napi_list,unreg_list,close_list) but they are not
1664 	 *	part of the usual set specified in Space.c.
1665 	 */
1666 
1667 	unsigned long		state;
1668 
1669 	struct list_head	dev_list;
1670 	struct list_head	napi_list;
1671 	struct list_head	unreg_list;
1672 	struct list_head	close_list;
1673 	struct list_head	ptype_all;
1674 	struct list_head	ptype_specific;
1675 
1676 	struct {
1677 		struct list_head upper;
1678 		struct list_head lower;
1679 	} adj_list;
1680 
1681 	netdev_features_t	features;
1682 	netdev_features_t	hw_features;
1683 	netdev_features_t	wanted_features;
1684 	netdev_features_t	vlan_features;
1685 	netdev_features_t	hw_enc_features;
1686 	netdev_features_t	mpls_features;
1687 	netdev_features_t	gso_partial_features;
1688 
1689 	int			ifindex;
1690 	int			group;
1691 
1692 	struct net_device_stats	stats;
1693 
1694 	atomic_long_t		rx_dropped;
1695 	atomic_long_t		tx_dropped;
1696 	atomic_long_t		rx_nohandler;
1697 
1698 #ifdef CONFIG_WIRELESS_EXT
1699 	const struct iw_handler_def *wireless_handlers;
1700 	struct iw_public_data	*wireless_data;
1701 #endif
1702 	const struct net_device_ops *netdev_ops;
1703 	const struct ethtool_ops *ethtool_ops;
1704 #ifdef CONFIG_NET_SWITCHDEV
1705 	const struct switchdev_ops *switchdev_ops;
1706 #endif
1707 #ifdef CONFIG_NET_L3_MASTER_DEV
1708 	const struct l3mdev_ops	*l3mdev_ops;
1709 #endif
1710 #if IS_ENABLED(CONFIG_IPV6)
1711 	const struct ndisc_ops *ndisc_ops;
1712 #endif
1713 
1714 #ifdef CONFIG_XFRM
1715 	const struct xfrmdev_ops *xfrmdev_ops;
1716 #endif
1717 
1718 	const struct header_ops *header_ops;
1719 
1720 	unsigned int		flags;
1721 	unsigned int		priv_flags;
1722 
1723 	unsigned short		gflags;
1724 	unsigned short		padded;
1725 
1726 	unsigned char		operstate;
1727 	unsigned char		link_mode;
1728 
1729 	unsigned char		if_port;
1730 	unsigned char		dma;
1731 
1732 	unsigned int		mtu;
1733 	unsigned int		min_mtu;
1734 	unsigned int		max_mtu;
1735 	unsigned short		type;
1736 	unsigned short		hard_header_len;
1737 	unsigned char		min_header_len;
1738 
1739 	unsigned short		needed_headroom;
1740 	unsigned short		needed_tailroom;
1741 
1742 	/* Interface address info. */
1743 	unsigned char		perm_addr[MAX_ADDR_LEN];
1744 	unsigned char		addr_assign_type;
1745 	unsigned char		addr_len;
1746 	unsigned short		neigh_priv_len;
1747 	unsigned short          dev_id;
1748 	unsigned short          dev_port;
1749 	spinlock_t		addr_list_lock;
1750 	unsigned char		name_assign_type;
1751 	bool			uc_promisc;
1752 	struct netdev_hw_addr_list	uc;
1753 	struct netdev_hw_addr_list	mc;
1754 	struct netdev_hw_addr_list	dev_addrs;
1755 
1756 #ifdef CONFIG_SYSFS
1757 	struct kset		*queues_kset;
1758 #endif
1759 	unsigned int		promiscuity;
1760 	unsigned int		allmulti;
1761 
1762 
1763 	/* Protocol-specific pointers */
1764 
1765 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1766 	struct vlan_info __rcu	*vlan_info;
1767 #endif
1768 #if IS_ENABLED(CONFIG_NET_DSA)
1769 	struct dsa_switch_tree	*dsa_ptr;
1770 #endif
1771 #if IS_ENABLED(CONFIG_TIPC)
1772 	struct tipc_bearer __rcu *tipc_ptr;
1773 #endif
1774 	void 			*atalk_ptr;
1775 	struct in_device __rcu	*ip_ptr;
1776 	struct dn_dev __rcu     *dn_ptr;
1777 	struct inet6_dev __rcu	*ip6_ptr;
1778 	void			*ax25_ptr;
1779 	struct wireless_dev	*ieee80211_ptr;
1780 	struct wpan_dev		*ieee802154_ptr;
1781 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1782 	struct mpls_dev __rcu	*mpls_ptr;
1783 #endif
1784 
1785 /*
1786  * Cache lines mostly used on receive path (including eth_type_trans())
1787  */
1788 	/* Interface address info used in eth_type_trans() */
1789 	unsigned char		*dev_addr;
1790 
1791 #ifdef CONFIG_SYSFS
1792 	struct netdev_rx_queue	*_rx;
1793 
1794 	unsigned int		num_rx_queues;
1795 	unsigned int		real_num_rx_queues;
1796 #endif
1797 
1798 	struct bpf_prog __rcu	*xdp_prog;
1799 	unsigned long		gro_flush_timeout;
1800 	rx_handler_func_t __rcu	*rx_handler;
1801 	void __rcu		*rx_handler_data;
1802 
1803 #ifdef CONFIG_NET_CLS_ACT
1804 	struct tcf_proto __rcu  *ingress_cl_list;
1805 #endif
1806 	struct netdev_queue __rcu *ingress_queue;
1807 #ifdef CONFIG_NETFILTER_INGRESS
1808 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1809 #endif
1810 
1811 	unsigned char		broadcast[MAX_ADDR_LEN];
1812 #ifdef CONFIG_RFS_ACCEL
1813 	struct cpu_rmap		*rx_cpu_rmap;
1814 #endif
1815 	struct hlist_node	index_hlist;
1816 
1817 /*
1818  * Cache lines mostly used on transmit path
1819  */
1820 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1821 	unsigned int		num_tx_queues;
1822 	unsigned int		real_num_tx_queues;
1823 	struct Qdisc		*qdisc;
1824 #ifdef CONFIG_NET_SCHED
1825 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1826 #endif
1827 	unsigned long		tx_queue_len;
1828 	spinlock_t		tx_global_lock;
1829 	int			watchdog_timeo;
1830 
1831 #ifdef CONFIG_XPS
1832 	struct xps_dev_maps __rcu *xps_maps;
1833 #endif
1834 #ifdef CONFIG_NET_CLS_ACT
1835 	struct tcf_proto __rcu  *egress_cl_list;
1836 #endif
1837 
1838 	/* These may be needed for future network-power-down code. */
1839 	struct timer_list	watchdog_timer;
1840 
1841 	int __percpu		*pcpu_refcnt;
1842 	struct list_head	todo_list;
1843 
1844 	struct list_head	link_watch_list;
1845 
1846 	enum { NETREG_UNINITIALIZED=0,
1847 	       NETREG_REGISTERED,	/* completed register_netdevice */
1848 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1849 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1850 	       NETREG_RELEASED,		/* called free_netdev */
1851 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1852 	} reg_state:8;
1853 
1854 	bool dismantle;
1855 
1856 	enum {
1857 		RTNL_LINK_INITIALIZED,
1858 		RTNL_LINK_INITIALIZING,
1859 	} rtnl_link_state:16;
1860 
1861 	void (*destructor)(struct net_device *dev);
1862 
1863 #ifdef CONFIG_NETPOLL
1864 	struct netpoll_info __rcu	*npinfo;
1865 #endif
1866 
1867 	possible_net_t			nd_net;
1868 
1869 	/* mid-layer private */
1870 	union {
1871 		void					*ml_priv;
1872 		struct pcpu_lstats __percpu		*lstats;
1873 		struct pcpu_sw_netstats __percpu	*tstats;
1874 		struct pcpu_dstats __percpu		*dstats;
1875 		struct pcpu_vstats __percpu		*vstats;
1876 	};
1877 
1878 #if IS_ENABLED(CONFIG_GARP)
1879 	struct garp_port __rcu	*garp_port;
1880 #endif
1881 #if IS_ENABLED(CONFIG_MRP)
1882 	struct mrp_port __rcu	*mrp_port;
1883 #endif
1884 
1885 	struct device		dev;
1886 	const struct attribute_group *sysfs_groups[4];
1887 	const struct attribute_group *sysfs_rx_queue_group;
1888 
1889 	const struct rtnl_link_ops *rtnl_link_ops;
1890 
1891 	/* for setting kernel sock attribute on TCP connection setup */
1892 #define GSO_MAX_SIZE		65536
1893 	unsigned int		gso_max_size;
1894 #define GSO_MAX_SEGS		65535
1895 	u16			gso_max_segs;
1896 
1897 #ifdef CONFIG_DCB
1898 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1899 #endif
1900 	u8			num_tc;
1901 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1902 	u8			prio_tc_map[TC_BITMASK + 1];
1903 
1904 #if IS_ENABLED(CONFIG_FCOE)
1905 	unsigned int		fcoe_ddp_xid;
1906 #endif
1907 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1908 	struct netprio_map __rcu *priomap;
1909 #endif
1910 	struct phy_device	*phydev;
1911 	struct lock_class_key	*qdisc_tx_busylock;
1912 	struct lock_class_key	*qdisc_running_key;
1913 	bool			proto_down;
1914 };
1915 #define to_net_dev(d) container_of(d, struct net_device, dev)
1916 
1917 static inline bool netif_elide_gro(const struct net_device *dev)
1918 {
1919 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1920 		return true;
1921 	return false;
1922 }
1923 
1924 #define	NETDEV_ALIGN		32
1925 
1926 static inline
1927 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1928 {
1929 	return dev->prio_tc_map[prio & TC_BITMASK];
1930 }
1931 
1932 static inline
1933 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1934 {
1935 	if (tc >= dev->num_tc)
1936 		return -EINVAL;
1937 
1938 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1939 	return 0;
1940 }
1941 
1942 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1943 void netdev_reset_tc(struct net_device *dev);
1944 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1946 
1947 static inline
1948 int netdev_get_num_tc(struct net_device *dev)
1949 {
1950 	return dev->num_tc;
1951 }
1952 
1953 static inline
1954 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1955 					 unsigned int index)
1956 {
1957 	return &dev->_tx[index];
1958 }
1959 
1960 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1961 						    const struct sk_buff *skb)
1962 {
1963 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1964 }
1965 
1966 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1967 					    void (*f)(struct net_device *,
1968 						      struct netdev_queue *,
1969 						      void *),
1970 					    void *arg)
1971 {
1972 	unsigned int i;
1973 
1974 	for (i = 0; i < dev->num_tx_queues; i++)
1975 		f(dev, &dev->_tx[i], arg);
1976 }
1977 
1978 #define netdev_lockdep_set_classes(dev)				\
1979 {								\
1980 	static struct lock_class_key qdisc_tx_busylock_key;	\
1981 	static struct lock_class_key qdisc_running_key;		\
1982 	static struct lock_class_key qdisc_xmit_lock_key;	\
1983 	static struct lock_class_key dev_addr_list_lock_key;	\
1984 	unsigned int i;						\
1985 								\
1986 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1987 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1988 	lockdep_set_class(&(dev)->addr_list_lock,		\
1989 			  &dev_addr_list_lock_key); 		\
1990 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1991 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1992 				  &qdisc_xmit_lock_key);	\
1993 }
1994 
1995 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1996 				    struct sk_buff *skb,
1997 				    void *accel_priv);
1998 
1999 /* returns the headroom that the master device needs to take in account
2000  * when forwarding to this dev
2001  */
2002 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2003 {
2004 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2005 }
2006 
2007 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2008 {
2009 	if (dev->netdev_ops->ndo_set_rx_headroom)
2010 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2011 }
2012 
2013 /* set the device rx headroom to the dev's default */
2014 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2015 {
2016 	netdev_set_rx_headroom(dev, -1);
2017 }
2018 
2019 /*
2020  * Net namespace inlines
2021  */
2022 static inline
2023 struct net *dev_net(const struct net_device *dev)
2024 {
2025 	return read_pnet(&dev->nd_net);
2026 }
2027 
2028 static inline
2029 void dev_net_set(struct net_device *dev, struct net *net)
2030 {
2031 	write_pnet(&dev->nd_net, net);
2032 }
2033 
2034 /**
2035  *	netdev_priv - access network device private data
2036  *	@dev: network device
2037  *
2038  * Get network device private data
2039  */
2040 static inline void *netdev_priv(const struct net_device *dev)
2041 {
2042 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2043 }
2044 
2045 /* Set the sysfs physical device reference for the network logical device
2046  * if set prior to registration will cause a symlink during initialization.
2047  */
2048 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2049 
2050 /* Set the sysfs device type for the network logical device to allow
2051  * fine-grained identification of different network device types. For
2052  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2053  */
2054 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2055 
2056 /* Default NAPI poll() weight
2057  * Device drivers are strongly advised to not use bigger value
2058  */
2059 #define NAPI_POLL_WEIGHT 64
2060 
2061 /**
2062  *	netif_napi_add - initialize a NAPI context
2063  *	@dev:  network device
2064  *	@napi: NAPI context
2065  *	@poll: polling function
2066  *	@weight: default weight
2067  *
2068  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2069  * *any* of the other NAPI-related functions.
2070  */
2071 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2072 		    int (*poll)(struct napi_struct *, int), int weight);
2073 
2074 /**
2075  *	netif_tx_napi_add - initialize a NAPI context
2076  *	@dev:  network device
2077  *	@napi: NAPI context
2078  *	@poll: polling function
2079  *	@weight: default weight
2080  *
2081  * This variant of netif_napi_add() should be used from drivers using NAPI
2082  * to exclusively poll a TX queue.
2083  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2084  */
2085 static inline void netif_tx_napi_add(struct net_device *dev,
2086 				     struct napi_struct *napi,
2087 				     int (*poll)(struct napi_struct *, int),
2088 				     int weight)
2089 {
2090 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2091 	netif_napi_add(dev, napi, poll, weight);
2092 }
2093 
2094 /**
2095  *  netif_napi_del - remove a NAPI context
2096  *  @napi: NAPI context
2097  *
2098  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2099  */
2100 void netif_napi_del(struct napi_struct *napi);
2101 
2102 struct napi_gro_cb {
2103 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2104 	void	*frag0;
2105 
2106 	/* Length of frag0. */
2107 	unsigned int frag0_len;
2108 
2109 	/* This indicates where we are processing relative to skb->data. */
2110 	int	data_offset;
2111 
2112 	/* This is non-zero if the packet cannot be merged with the new skb. */
2113 	u16	flush;
2114 
2115 	/* Save the IP ID here and check when we get to the transport layer */
2116 	u16	flush_id;
2117 
2118 	/* Number of segments aggregated. */
2119 	u16	count;
2120 
2121 	/* Start offset for remote checksum offload */
2122 	u16	gro_remcsum_start;
2123 
2124 	/* jiffies when first packet was created/queued */
2125 	unsigned long age;
2126 
2127 	/* Used in ipv6_gro_receive() and foo-over-udp */
2128 	u16	proto;
2129 
2130 	/* This is non-zero if the packet may be of the same flow. */
2131 	u8	same_flow:1;
2132 
2133 	/* Used in tunnel GRO receive */
2134 	u8	encap_mark:1;
2135 
2136 	/* GRO checksum is valid */
2137 	u8	csum_valid:1;
2138 
2139 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2140 	u8	csum_cnt:3;
2141 
2142 	/* Free the skb? */
2143 	u8	free:2;
2144 #define NAPI_GRO_FREE		  1
2145 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2146 
2147 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2148 	u8	is_ipv6:1;
2149 
2150 	/* Used in GRE, set in fou/gue_gro_receive */
2151 	u8	is_fou:1;
2152 
2153 	/* Used to determine if flush_id can be ignored */
2154 	u8	is_atomic:1;
2155 
2156 	/* Number of gro_receive callbacks this packet already went through */
2157 	u8 recursion_counter:4;
2158 
2159 	/* 1 bit hole */
2160 
2161 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2162 	__wsum	csum;
2163 
2164 	/* used in skb_gro_receive() slow path */
2165 	struct sk_buff *last;
2166 };
2167 
2168 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2169 
2170 #define GRO_RECURSION_LIMIT 15
2171 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2172 {
2173 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2174 }
2175 
2176 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2177 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2178 						struct sk_buff **head,
2179 						struct sk_buff *skb)
2180 {
2181 	if (unlikely(gro_recursion_inc_test(skb))) {
2182 		NAPI_GRO_CB(skb)->flush |= 1;
2183 		return NULL;
2184 	}
2185 
2186 	return cb(head, skb);
2187 }
2188 
2189 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2190 					     struct sk_buff *);
2191 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2192 						   struct sock *sk,
2193 						   struct sk_buff **head,
2194 						   struct sk_buff *skb)
2195 {
2196 	if (unlikely(gro_recursion_inc_test(skb))) {
2197 		NAPI_GRO_CB(skb)->flush |= 1;
2198 		return NULL;
2199 	}
2200 
2201 	return cb(sk, head, skb);
2202 }
2203 
2204 struct packet_type {
2205 	__be16			type;	/* This is really htons(ether_type). */
2206 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2207 	int			(*func) (struct sk_buff *,
2208 					 struct net_device *,
2209 					 struct packet_type *,
2210 					 struct net_device *);
2211 	bool			(*id_match)(struct packet_type *ptype,
2212 					    struct sock *sk);
2213 	void			*af_packet_priv;
2214 	struct list_head	list;
2215 };
2216 
2217 struct offload_callbacks {
2218 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2219 						netdev_features_t features);
2220 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2221 						 struct sk_buff *skb);
2222 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2223 };
2224 
2225 struct packet_offload {
2226 	__be16			 type;	/* This is really htons(ether_type). */
2227 	u16			 priority;
2228 	struct offload_callbacks callbacks;
2229 	struct list_head	 list;
2230 };
2231 
2232 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2233 struct pcpu_sw_netstats {
2234 	u64     rx_packets;
2235 	u64     rx_bytes;
2236 	u64     tx_packets;
2237 	u64     tx_bytes;
2238 	struct u64_stats_sync   syncp;
2239 };
2240 
2241 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2242 ({									\
2243 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2244 	if (pcpu_stats)	{						\
2245 		int __cpu;						\
2246 		for_each_possible_cpu(__cpu) {				\
2247 			typeof(type) *stat;				\
2248 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2249 			u64_stats_init(&stat->syncp);			\
2250 		}							\
2251 	}								\
2252 	pcpu_stats;							\
2253 })
2254 
2255 #define netdev_alloc_pcpu_stats(type)					\
2256 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2257 
2258 enum netdev_lag_tx_type {
2259 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2260 	NETDEV_LAG_TX_TYPE_RANDOM,
2261 	NETDEV_LAG_TX_TYPE_BROADCAST,
2262 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2263 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2264 	NETDEV_LAG_TX_TYPE_HASH,
2265 };
2266 
2267 struct netdev_lag_upper_info {
2268 	enum netdev_lag_tx_type tx_type;
2269 };
2270 
2271 struct netdev_lag_lower_state_info {
2272 	u8 link_up : 1,
2273 	   tx_enabled : 1;
2274 };
2275 
2276 #include <linux/notifier.h>
2277 
2278 /* netdevice notifier chain. Please remember to update the rtnetlink
2279  * notification exclusion list in rtnetlink_event() when adding new
2280  * types.
2281  */
2282 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2283 #define NETDEV_DOWN	0x0002
2284 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2285 				   detected a hardware crash and restarted
2286 				   - we can use this eg to kick tcp sessions
2287 				   once done */
2288 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2289 #define NETDEV_REGISTER 0x0005
2290 #define NETDEV_UNREGISTER	0x0006
2291 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2292 #define NETDEV_CHANGEADDR	0x0008
2293 #define NETDEV_GOING_DOWN	0x0009
2294 #define NETDEV_CHANGENAME	0x000A
2295 #define NETDEV_FEAT_CHANGE	0x000B
2296 #define NETDEV_BONDING_FAILOVER 0x000C
2297 #define NETDEV_PRE_UP		0x000D
2298 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2299 #define NETDEV_POST_TYPE_CHANGE	0x000F
2300 #define NETDEV_POST_INIT	0x0010
2301 #define NETDEV_UNREGISTER_FINAL 0x0011
2302 #define NETDEV_RELEASE		0x0012
2303 #define NETDEV_NOTIFY_PEERS	0x0013
2304 #define NETDEV_JOIN		0x0014
2305 #define NETDEV_CHANGEUPPER	0x0015
2306 #define NETDEV_RESEND_IGMP	0x0016
2307 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2308 #define NETDEV_CHANGEINFODATA	0x0018
2309 #define NETDEV_BONDING_INFO	0x0019
2310 #define NETDEV_PRECHANGEUPPER	0x001A
2311 #define NETDEV_CHANGELOWERSTATE	0x001B
2312 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2313 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2314 
2315 int register_netdevice_notifier(struct notifier_block *nb);
2316 int unregister_netdevice_notifier(struct notifier_block *nb);
2317 
2318 struct netdev_notifier_info {
2319 	struct net_device *dev;
2320 };
2321 
2322 struct netdev_notifier_change_info {
2323 	struct netdev_notifier_info info; /* must be first */
2324 	unsigned int flags_changed;
2325 };
2326 
2327 struct netdev_notifier_changeupper_info {
2328 	struct netdev_notifier_info info; /* must be first */
2329 	struct net_device *upper_dev; /* new upper dev */
2330 	bool master; /* is upper dev master */
2331 	bool linking; /* is the notification for link or unlink */
2332 	void *upper_info; /* upper dev info */
2333 };
2334 
2335 struct netdev_notifier_changelowerstate_info {
2336 	struct netdev_notifier_info info; /* must be first */
2337 	void *lower_state_info; /* is lower dev state */
2338 };
2339 
2340 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2341 					     struct net_device *dev)
2342 {
2343 	info->dev = dev;
2344 }
2345 
2346 static inline struct net_device *
2347 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2348 {
2349 	return info->dev;
2350 }
2351 
2352 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2353 
2354 
2355 extern rwlock_t				dev_base_lock;		/* Device list lock */
2356 
2357 #define for_each_netdev(net, d)		\
2358 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2359 #define for_each_netdev_reverse(net, d)	\
2360 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2361 #define for_each_netdev_rcu(net, d)		\
2362 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2363 #define for_each_netdev_safe(net, d, n)	\
2364 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2365 #define for_each_netdev_continue(net, d)		\
2366 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2367 #define for_each_netdev_continue_rcu(net, d)		\
2368 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2369 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2370 		for_each_netdev_rcu(&init_net, slave)	\
2371 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2372 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2373 
2374 static inline struct net_device *next_net_device(struct net_device *dev)
2375 {
2376 	struct list_head *lh;
2377 	struct net *net;
2378 
2379 	net = dev_net(dev);
2380 	lh = dev->dev_list.next;
2381 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2382 }
2383 
2384 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2385 {
2386 	struct list_head *lh;
2387 	struct net *net;
2388 
2389 	net = dev_net(dev);
2390 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2391 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2392 }
2393 
2394 static inline struct net_device *first_net_device(struct net *net)
2395 {
2396 	return list_empty(&net->dev_base_head) ? NULL :
2397 		net_device_entry(net->dev_base_head.next);
2398 }
2399 
2400 static inline struct net_device *first_net_device_rcu(struct net *net)
2401 {
2402 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2403 
2404 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2405 }
2406 
2407 int netdev_boot_setup_check(struct net_device *dev);
2408 unsigned long netdev_boot_base(const char *prefix, int unit);
2409 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2410 				       const char *hwaddr);
2411 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2412 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2413 void dev_add_pack(struct packet_type *pt);
2414 void dev_remove_pack(struct packet_type *pt);
2415 void __dev_remove_pack(struct packet_type *pt);
2416 void dev_add_offload(struct packet_offload *po);
2417 void dev_remove_offload(struct packet_offload *po);
2418 
2419 int dev_get_iflink(const struct net_device *dev);
2420 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2421 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2422 				      unsigned short mask);
2423 struct net_device *dev_get_by_name(struct net *net, const char *name);
2424 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2425 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2426 int dev_alloc_name(struct net_device *dev, const char *name);
2427 int dev_open(struct net_device *dev);
2428 int dev_close(struct net_device *dev);
2429 int dev_close_many(struct list_head *head, bool unlink);
2430 void dev_disable_lro(struct net_device *dev);
2431 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2432 int dev_queue_xmit(struct sk_buff *skb);
2433 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2434 int register_netdevice(struct net_device *dev);
2435 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2436 void unregister_netdevice_many(struct list_head *head);
2437 static inline void unregister_netdevice(struct net_device *dev)
2438 {
2439 	unregister_netdevice_queue(dev, NULL);
2440 }
2441 
2442 int netdev_refcnt_read(const struct net_device *dev);
2443 void free_netdev(struct net_device *dev);
2444 void netdev_freemem(struct net_device *dev);
2445 void synchronize_net(void);
2446 int init_dummy_netdev(struct net_device *dev);
2447 
2448 DECLARE_PER_CPU(int, xmit_recursion);
2449 #define XMIT_RECURSION_LIMIT	10
2450 
2451 static inline int dev_recursion_level(void)
2452 {
2453 	return this_cpu_read(xmit_recursion);
2454 }
2455 
2456 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2457 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2458 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2459 int netdev_get_name(struct net *net, char *name, int ifindex);
2460 int dev_restart(struct net_device *dev);
2461 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2462 
2463 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2464 {
2465 	return NAPI_GRO_CB(skb)->data_offset;
2466 }
2467 
2468 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2469 {
2470 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2471 }
2472 
2473 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2474 {
2475 	NAPI_GRO_CB(skb)->data_offset += len;
2476 }
2477 
2478 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2479 					unsigned int offset)
2480 {
2481 	return NAPI_GRO_CB(skb)->frag0 + offset;
2482 }
2483 
2484 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2485 {
2486 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2487 }
2488 
2489 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2490 {
2491 	NAPI_GRO_CB(skb)->frag0 = NULL;
2492 	NAPI_GRO_CB(skb)->frag0_len = 0;
2493 }
2494 
2495 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2496 					unsigned int offset)
2497 {
2498 	if (!pskb_may_pull(skb, hlen))
2499 		return NULL;
2500 
2501 	skb_gro_frag0_invalidate(skb);
2502 	return skb->data + offset;
2503 }
2504 
2505 static inline void *skb_gro_network_header(struct sk_buff *skb)
2506 {
2507 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2508 	       skb_network_offset(skb);
2509 }
2510 
2511 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2512 					const void *start, unsigned int len)
2513 {
2514 	if (NAPI_GRO_CB(skb)->csum_valid)
2515 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2516 						  csum_partial(start, len, 0));
2517 }
2518 
2519 /* GRO checksum functions. These are logical equivalents of the normal
2520  * checksum functions (in skbuff.h) except that they operate on the GRO
2521  * offsets and fields in sk_buff.
2522  */
2523 
2524 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2525 
2526 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2527 {
2528 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2529 }
2530 
2531 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2532 						      bool zero_okay,
2533 						      __sum16 check)
2534 {
2535 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2536 		skb_checksum_start_offset(skb) <
2537 		 skb_gro_offset(skb)) &&
2538 		!skb_at_gro_remcsum_start(skb) &&
2539 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2540 		(!zero_okay || check));
2541 }
2542 
2543 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2544 							   __wsum psum)
2545 {
2546 	if (NAPI_GRO_CB(skb)->csum_valid &&
2547 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2548 		return 0;
2549 
2550 	NAPI_GRO_CB(skb)->csum = psum;
2551 
2552 	return __skb_gro_checksum_complete(skb);
2553 }
2554 
2555 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2556 {
2557 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2558 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2559 		NAPI_GRO_CB(skb)->csum_cnt--;
2560 	} else {
2561 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2562 		 * verified a new top level checksum or an encapsulated one
2563 		 * during GRO. This saves work if we fallback to normal path.
2564 		 */
2565 		__skb_incr_checksum_unnecessary(skb);
2566 	}
2567 }
2568 
2569 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2570 				    compute_pseudo)			\
2571 ({									\
2572 	__sum16 __ret = 0;						\
2573 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2574 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2575 				compute_pseudo(skb, proto));		\
2576 	if (__ret)							\
2577 		__skb_mark_checksum_bad(skb);				\
2578 	else								\
2579 		skb_gro_incr_csum_unnecessary(skb);			\
2580 	__ret;								\
2581 })
2582 
2583 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2584 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2585 
2586 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2587 					     compute_pseudo)		\
2588 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2589 
2590 #define skb_gro_checksum_simple_validate(skb)				\
2591 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2592 
2593 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2594 {
2595 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2596 		!NAPI_GRO_CB(skb)->csum_valid);
2597 }
2598 
2599 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2600 					      __sum16 check, __wsum pseudo)
2601 {
2602 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2603 	NAPI_GRO_CB(skb)->csum_valid = 1;
2604 }
2605 
2606 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2607 do {									\
2608 	if (__skb_gro_checksum_convert_check(skb))			\
2609 		__skb_gro_checksum_convert(skb, check,			\
2610 					   compute_pseudo(skb, proto));	\
2611 } while (0)
2612 
2613 struct gro_remcsum {
2614 	int offset;
2615 	__wsum delta;
2616 };
2617 
2618 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2619 {
2620 	grc->offset = 0;
2621 	grc->delta = 0;
2622 }
2623 
2624 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2625 					    unsigned int off, size_t hdrlen,
2626 					    int start, int offset,
2627 					    struct gro_remcsum *grc,
2628 					    bool nopartial)
2629 {
2630 	__wsum delta;
2631 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2632 
2633 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2634 
2635 	if (!nopartial) {
2636 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2637 		return ptr;
2638 	}
2639 
2640 	ptr = skb_gro_header_fast(skb, off);
2641 	if (skb_gro_header_hard(skb, off + plen)) {
2642 		ptr = skb_gro_header_slow(skb, off + plen, off);
2643 		if (!ptr)
2644 			return NULL;
2645 	}
2646 
2647 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2648 			       start, offset);
2649 
2650 	/* Adjust skb->csum since we changed the packet */
2651 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2652 
2653 	grc->offset = off + hdrlen + offset;
2654 	grc->delta = delta;
2655 
2656 	return ptr;
2657 }
2658 
2659 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2660 					   struct gro_remcsum *grc)
2661 {
2662 	void *ptr;
2663 	size_t plen = grc->offset + sizeof(u16);
2664 
2665 	if (!grc->delta)
2666 		return;
2667 
2668 	ptr = skb_gro_header_fast(skb, grc->offset);
2669 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2670 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2671 		if (!ptr)
2672 			return;
2673 	}
2674 
2675 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2676 }
2677 
2678 #ifdef CONFIG_XFRM_OFFLOAD
2679 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2680 {
2681 	if (PTR_ERR(pp) != -EINPROGRESS)
2682 		NAPI_GRO_CB(skb)->flush |= flush;
2683 }
2684 #else
2685 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2686 {
2687 	NAPI_GRO_CB(skb)->flush |= flush;
2688 }
2689 #endif
2690 
2691 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2692 				  unsigned short type,
2693 				  const void *daddr, const void *saddr,
2694 				  unsigned int len)
2695 {
2696 	if (!dev->header_ops || !dev->header_ops->create)
2697 		return 0;
2698 
2699 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2700 }
2701 
2702 static inline int dev_parse_header(const struct sk_buff *skb,
2703 				   unsigned char *haddr)
2704 {
2705 	const struct net_device *dev = skb->dev;
2706 
2707 	if (!dev->header_ops || !dev->header_ops->parse)
2708 		return 0;
2709 	return dev->header_ops->parse(skb, haddr);
2710 }
2711 
2712 /* ll_header must have at least hard_header_len allocated */
2713 static inline bool dev_validate_header(const struct net_device *dev,
2714 				       char *ll_header, int len)
2715 {
2716 	if (likely(len >= dev->hard_header_len))
2717 		return true;
2718 	if (len < dev->min_header_len)
2719 		return false;
2720 
2721 	if (capable(CAP_SYS_RAWIO)) {
2722 		memset(ll_header + len, 0, dev->hard_header_len - len);
2723 		return true;
2724 	}
2725 
2726 	if (dev->header_ops && dev->header_ops->validate)
2727 		return dev->header_ops->validate(ll_header, len);
2728 
2729 	return false;
2730 }
2731 
2732 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2733 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2734 static inline int unregister_gifconf(unsigned int family)
2735 {
2736 	return register_gifconf(family, NULL);
2737 }
2738 
2739 #ifdef CONFIG_NET_FLOW_LIMIT
2740 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2741 struct sd_flow_limit {
2742 	u64			count;
2743 	unsigned int		num_buckets;
2744 	unsigned int		history_head;
2745 	u16			history[FLOW_LIMIT_HISTORY];
2746 	u8			buckets[];
2747 };
2748 
2749 extern int netdev_flow_limit_table_len;
2750 #endif /* CONFIG_NET_FLOW_LIMIT */
2751 
2752 /*
2753  * Incoming packets are placed on per-CPU queues
2754  */
2755 struct softnet_data {
2756 	struct list_head	poll_list;
2757 	struct sk_buff_head	process_queue;
2758 
2759 	/* stats */
2760 	unsigned int		processed;
2761 	unsigned int		time_squeeze;
2762 	unsigned int		received_rps;
2763 #ifdef CONFIG_RPS
2764 	struct softnet_data	*rps_ipi_list;
2765 #endif
2766 #ifdef CONFIG_NET_FLOW_LIMIT
2767 	struct sd_flow_limit __rcu *flow_limit;
2768 #endif
2769 	struct Qdisc		*output_queue;
2770 	struct Qdisc		**output_queue_tailp;
2771 	struct sk_buff		*completion_queue;
2772 
2773 #ifdef CONFIG_RPS
2774 	/* input_queue_head should be written by cpu owning this struct,
2775 	 * and only read by other cpus. Worth using a cache line.
2776 	 */
2777 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2778 
2779 	/* Elements below can be accessed between CPUs for RPS/RFS */
2780 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2781 	struct softnet_data	*rps_ipi_next;
2782 	unsigned int		cpu;
2783 	unsigned int		input_queue_tail;
2784 #endif
2785 	unsigned int		dropped;
2786 	struct sk_buff_head	input_pkt_queue;
2787 	struct napi_struct	backlog;
2788 
2789 };
2790 
2791 static inline void input_queue_head_incr(struct softnet_data *sd)
2792 {
2793 #ifdef CONFIG_RPS
2794 	sd->input_queue_head++;
2795 #endif
2796 }
2797 
2798 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2799 					      unsigned int *qtail)
2800 {
2801 #ifdef CONFIG_RPS
2802 	*qtail = ++sd->input_queue_tail;
2803 #endif
2804 }
2805 
2806 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2807 
2808 void __netif_schedule(struct Qdisc *q);
2809 void netif_schedule_queue(struct netdev_queue *txq);
2810 
2811 static inline void netif_tx_schedule_all(struct net_device *dev)
2812 {
2813 	unsigned int i;
2814 
2815 	for (i = 0; i < dev->num_tx_queues; i++)
2816 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2817 }
2818 
2819 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2820 {
2821 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2822 }
2823 
2824 /**
2825  *	netif_start_queue - allow transmit
2826  *	@dev: network device
2827  *
2828  *	Allow upper layers to call the device hard_start_xmit routine.
2829  */
2830 static inline void netif_start_queue(struct net_device *dev)
2831 {
2832 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2833 }
2834 
2835 static inline void netif_tx_start_all_queues(struct net_device *dev)
2836 {
2837 	unsigned int i;
2838 
2839 	for (i = 0; i < dev->num_tx_queues; i++) {
2840 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2841 		netif_tx_start_queue(txq);
2842 	}
2843 }
2844 
2845 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2846 
2847 /**
2848  *	netif_wake_queue - restart transmit
2849  *	@dev: network device
2850  *
2851  *	Allow upper layers to call the device hard_start_xmit routine.
2852  *	Used for flow control when transmit resources are available.
2853  */
2854 static inline void netif_wake_queue(struct net_device *dev)
2855 {
2856 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2857 }
2858 
2859 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2860 {
2861 	unsigned int i;
2862 
2863 	for (i = 0; i < dev->num_tx_queues; i++) {
2864 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2865 		netif_tx_wake_queue(txq);
2866 	}
2867 }
2868 
2869 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2870 {
2871 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2872 }
2873 
2874 /**
2875  *	netif_stop_queue - stop transmitted packets
2876  *	@dev: network device
2877  *
2878  *	Stop upper layers calling the device hard_start_xmit routine.
2879  *	Used for flow control when transmit resources are unavailable.
2880  */
2881 static inline void netif_stop_queue(struct net_device *dev)
2882 {
2883 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2884 }
2885 
2886 void netif_tx_stop_all_queues(struct net_device *dev);
2887 
2888 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2889 {
2890 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2891 }
2892 
2893 /**
2894  *	netif_queue_stopped - test if transmit queue is flowblocked
2895  *	@dev: network device
2896  *
2897  *	Test if transmit queue on device is currently unable to send.
2898  */
2899 static inline bool netif_queue_stopped(const struct net_device *dev)
2900 {
2901 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2902 }
2903 
2904 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2905 {
2906 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2907 }
2908 
2909 static inline bool
2910 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2911 {
2912 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2913 }
2914 
2915 static inline bool
2916 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2917 {
2918 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2919 }
2920 
2921 /**
2922  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2923  *	@dev_queue: pointer to transmit queue
2924  *
2925  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2926  * to give appropriate hint to the CPU.
2927  */
2928 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2929 {
2930 #ifdef CONFIG_BQL
2931 	prefetchw(&dev_queue->dql.num_queued);
2932 #endif
2933 }
2934 
2935 /**
2936  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2937  *	@dev_queue: pointer to transmit queue
2938  *
2939  * BQL enabled drivers might use this helper in their TX completion path,
2940  * to give appropriate hint to the CPU.
2941  */
2942 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2943 {
2944 #ifdef CONFIG_BQL
2945 	prefetchw(&dev_queue->dql.limit);
2946 #endif
2947 }
2948 
2949 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2950 					unsigned int bytes)
2951 {
2952 #ifdef CONFIG_BQL
2953 	dql_queued(&dev_queue->dql, bytes);
2954 
2955 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2956 		return;
2957 
2958 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2959 
2960 	/*
2961 	 * The XOFF flag must be set before checking the dql_avail below,
2962 	 * because in netdev_tx_completed_queue we update the dql_completed
2963 	 * before checking the XOFF flag.
2964 	 */
2965 	smp_mb();
2966 
2967 	/* check again in case another CPU has just made room avail */
2968 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2969 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2970 #endif
2971 }
2972 
2973 /**
2974  * 	netdev_sent_queue - report the number of bytes queued to hardware
2975  * 	@dev: network device
2976  * 	@bytes: number of bytes queued to the hardware device queue
2977  *
2978  * 	Report the number of bytes queued for sending/completion to the network
2979  * 	device hardware queue. @bytes should be a good approximation and should
2980  * 	exactly match netdev_completed_queue() @bytes
2981  */
2982 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2983 {
2984 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2985 }
2986 
2987 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2988 					     unsigned int pkts, unsigned int bytes)
2989 {
2990 #ifdef CONFIG_BQL
2991 	if (unlikely(!bytes))
2992 		return;
2993 
2994 	dql_completed(&dev_queue->dql, bytes);
2995 
2996 	/*
2997 	 * Without the memory barrier there is a small possiblity that
2998 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2999 	 * be stopped forever
3000 	 */
3001 	smp_mb();
3002 
3003 	if (dql_avail(&dev_queue->dql) < 0)
3004 		return;
3005 
3006 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3007 		netif_schedule_queue(dev_queue);
3008 #endif
3009 }
3010 
3011 /**
3012  * 	netdev_completed_queue - report bytes and packets completed by device
3013  * 	@dev: network device
3014  * 	@pkts: actual number of packets sent over the medium
3015  * 	@bytes: actual number of bytes sent over the medium
3016  *
3017  * 	Report the number of bytes and packets transmitted by the network device
3018  * 	hardware queue over the physical medium, @bytes must exactly match the
3019  * 	@bytes amount passed to netdev_sent_queue()
3020  */
3021 static inline void netdev_completed_queue(struct net_device *dev,
3022 					  unsigned int pkts, unsigned int bytes)
3023 {
3024 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3025 }
3026 
3027 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3028 {
3029 #ifdef CONFIG_BQL
3030 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3031 	dql_reset(&q->dql);
3032 #endif
3033 }
3034 
3035 /**
3036  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3037  * 	@dev_queue: network device
3038  *
3039  * 	Reset the bytes and packet count of a network device and clear the
3040  * 	software flow control OFF bit for this network device
3041  */
3042 static inline void netdev_reset_queue(struct net_device *dev_queue)
3043 {
3044 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3045 }
3046 
3047 /**
3048  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3049  * 	@dev: network device
3050  * 	@queue_index: given tx queue index
3051  *
3052  * 	Returns 0 if given tx queue index >= number of device tx queues,
3053  * 	otherwise returns the originally passed tx queue index.
3054  */
3055 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3056 {
3057 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3058 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3059 				     dev->name, queue_index,
3060 				     dev->real_num_tx_queues);
3061 		return 0;
3062 	}
3063 
3064 	return queue_index;
3065 }
3066 
3067 /**
3068  *	netif_running - test if up
3069  *	@dev: network device
3070  *
3071  *	Test if the device has been brought up.
3072  */
3073 static inline bool netif_running(const struct net_device *dev)
3074 {
3075 	return test_bit(__LINK_STATE_START, &dev->state);
3076 }
3077 
3078 /*
3079  * Routines to manage the subqueues on a device.  We only need start,
3080  * stop, and a check if it's stopped.  All other device management is
3081  * done at the overall netdevice level.
3082  * Also test the device if we're multiqueue.
3083  */
3084 
3085 /**
3086  *	netif_start_subqueue - allow sending packets on subqueue
3087  *	@dev: network device
3088  *	@queue_index: sub queue index
3089  *
3090  * Start individual transmit queue of a device with multiple transmit queues.
3091  */
3092 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3093 {
3094 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3095 
3096 	netif_tx_start_queue(txq);
3097 }
3098 
3099 /**
3100  *	netif_stop_subqueue - stop sending packets on subqueue
3101  *	@dev: network device
3102  *	@queue_index: sub queue index
3103  *
3104  * Stop individual transmit queue of a device with multiple transmit queues.
3105  */
3106 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3107 {
3108 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3109 	netif_tx_stop_queue(txq);
3110 }
3111 
3112 /**
3113  *	netif_subqueue_stopped - test status of subqueue
3114  *	@dev: network device
3115  *	@queue_index: sub queue index
3116  *
3117  * Check individual transmit queue of a device with multiple transmit queues.
3118  */
3119 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3120 					    u16 queue_index)
3121 {
3122 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3123 
3124 	return netif_tx_queue_stopped(txq);
3125 }
3126 
3127 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3128 					  struct sk_buff *skb)
3129 {
3130 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3131 }
3132 
3133 /**
3134  *	netif_wake_subqueue - allow sending packets on subqueue
3135  *	@dev: network device
3136  *	@queue_index: sub queue index
3137  *
3138  * Resume individual transmit queue of a device with multiple transmit queues.
3139  */
3140 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3141 {
3142 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3143 
3144 	netif_tx_wake_queue(txq);
3145 }
3146 
3147 #ifdef CONFIG_XPS
3148 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3149 			u16 index);
3150 #else
3151 static inline int netif_set_xps_queue(struct net_device *dev,
3152 				      const struct cpumask *mask,
3153 				      u16 index)
3154 {
3155 	return 0;
3156 }
3157 #endif
3158 
3159 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3160 		  unsigned int num_tx_queues);
3161 
3162 /*
3163  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3164  * as a distribution range limit for the returned value.
3165  */
3166 static inline u16 skb_tx_hash(const struct net_device *dev,
3167 			      struct sk_buff *skb)
3168 {
3169 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3170 }
3171 
3172 /**
3173  *	netif_is_multiqueue - test if device has multiple transmit queues
3174  *	@dev: network device
3175  *
3176  * Check if device has multiple transmit queues
3177  */
3178 static inline bool netif_is_multiqueue(const struct net_device *dev)
3179 {
3180 	return dev->num_tx_queues > 1;
3181 }
3182 
3183 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3184 
3185 #ifdef CONFIG_SYSFS
3186 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3187 #else
3188 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3189 						unsigned int rxq)
3190 {
3191 	return 0;
3192 }
3193 #endif
3194 
3195 #ifdef CONFIG_SYSFS
3196 static inline unsigned int get_netdev_rx_queue_index(
3197 		struct netdev_rx_queue *queue)
3198 {
3199 	struct net_device *dev = queue->dev;
3200 	int index = queue - dev->_rx;
3201 
3202 	BUG_ON(index >= dev->num_rx_queues);
3203 	return index;
3204 }
3205 #endif
3206 
3207 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3208 int netif_get_num_default_rss_queues(void);
3209 
3210 enum skb_free_reason {
3211 	SKB_REASON_CONSUMED,
3212 	SKB_REASON_DROPPED,
3213 };
3214 
3215 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3216 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3217 
3218 /*
3219  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3220  * interrupt context or with hardware interrupts being disabled.
3221  * (in_irq() || irqs_disabled())
3222  *
3223  * We provide four helpers that can be used in following contexts :
3224  *
3225  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3226  *  replacing kfree_skb(skb)
3227  *
3228  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3229  *  Typically used in place of consume_skb(skb) in TX completion path
3230  *
3231  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3232  *  replacing kfree_skb(skb)
3233  *
3234  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3235  *  and consumed a packet. Used in place of consume_skb(skb)
3236  */
3237 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3238 {
3239 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3240 }
3241 
3242 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3243 {
3244 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3245 }
3246 
3247 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3248 {
3249 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3250 }
3251 
3252 static inline void dev_consume_skb_any(struct sk_buff *skb)
3253 {
3254 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3255 }
3256 
3257 int netif_rx(struct sk_buff *skb);
3258 int netif_rx_ni(struct sk_buff *skb);
3259 int netif_receive_skb(struct sk_buff *skb);
3260 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3261 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3262 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3263 gro_result_t napi_gro_frags(struct napi_struct *napi);
3264 struct packet_offload *gro_find_receive_by_type(__be16 type);
3265 struct packet_offload *gro_find_complete_by_type(__be16 type);
3266 
3267 static inline void napi_free_frags(struct napi_struct *napi)
3268 {
3269 	kfree_skb(napi->skb);
3270 	napi->skb = NULL;
3271 }
3272 
3273 bool netdev_is_rx_handler_busy(struct net_device *dev);
3274 int netdev_rx_handler_register(struct net_device *dev,
3275 			       rx_handler_func_t *rx_handler,
3276 			       void *rx_handler_data);
3277 void netdev_rx_handler_unregister(struct net_device *dev);
3278 
3279 bool dev_valid_name(const char *name);
3280 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3281 int dev_ethtool(struct net *net, struct ifreq *);
3282 unsigned int dev_get_flags(const struct net_device *);
3283 int __dev_change_flags(struct net_device *, unsigned int flags);
3284 int dev_change_flags(struct net_device *, unsigned int);
3285 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3286 			unsigned int gchanges);
3287 int dev_change_name(struct net_device *, const char *);
3288 int dev_set_alias(struct net_device *, const char *, size_t);
3289 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3290 int dev_set_mtu(struct net_device *, int);
3291 void dev_set_group(struct net_device *, int);
3292 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3293 int dev_change_carrier(struct net_device *, bool new_carrier);
3294 int dev_get_phys_port_id(struct net_device *dev,
3295 			 struct netdev_phys_item_id *ppid);
3296 int dev_get_phys_port_name(struct net_device *dev,
3297 			   char *name, size_t len);
3298 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3299 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3300 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3301 				    struct netdev_queue *txq, int *ret);
3302 
3303 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3304 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3305 		      int fd, u32 flags);
3306 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op);
3307 
3308 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3309 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3310 bool is_skb_forwardable(const struct net_device *dev,
3311 			const struct sk_buff *skb);
3312 
3313 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3314 					       struct sk_buff *skb)
3315 {
3316 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3317 	    unlikely(!is_skb_forwardable(dev, skb))) {
3318 		atomic_long_inc(&dev->rx_dropped);
3319 		kfree_skb(skb);
3320 		return NET_RX_DROP;
3321 	}
3322 
3323 	skb_scrub_packet(skb, true);
3324 	skb->priority = 0;
3325 	return 0;
3326 }
3327 
3328 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3329 
3330 extern int		netdev_budget;
3331 extern unsigned int	netdev_budget_usecs;
3332 
3333 /* Called by rtnetlink.c:rtnl_unlock() */
3334 void netdev_run_todo(void);
3335 
3336 /**
3337  *	dev_put - release reference to device
3338  *	@dev: network device
3339  *
3340  * Release reference to device to allow it to be freed.
3341  */
3342 static inline void dev_put(struct net_device *dev)
3343 {
3344 	this_cpu_dec(*dev->pcpu_refcnt);
3345 }
3346 
3347 /**
3348  *	dev_hold - get reference to device
3349  *	@dev: network device
3350  *
3351  * Hold reference to device to keep it from being freed.
3352  */
3353 static inline void dev_hold(struct net_device *dev)
3354 {
3355 	this_cpu_inc(*dev->pcpu_refcnt);
3356 }
3357 
3358 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3359  * and _off may be called from IRQ context, but it is caller
3360  * who is responsible for serialization of these calls.
3361  *
3362  * The name carrier is inappropriate, these functions should really be
3363  * called netif_lowerlayer_*() because they represent the state of any
3364  * kind of lower layer not just hardware media.
3365  */
3366 
3367 void linkwatch_init_dev(struct net_device *dev);
3368 void linkwatch_fire_event(struct net_device *dev);
3369 void linkwatch_forget_dev(struct net_device *dev);
3370 
3371 /**
3372  *	netif_carrier_ok - test if carrier present
3373  *	@dev: network device
3374  *
3375  * Check if carrier is present on device
3376  */
3377 static inline bool netif_carrier_ok(const struct net_device *dev)
3378 {
3379 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3380 }
3381 
3382 unsigned long dev_trans_start(struct net_device *dev);
3383 
3384 void __netdev_watchdog_up(struct net_device *dev);
3385 
3386 void netif_carrier_on(struct net_device *dev);
3387 
3388 void netif_carrier_off(struct net_device *dev);
3389 
3390 /**
3391  *	netif_dormant_on - mark device as dormant.
3392  *	@dev: network device
3393  *
3394  * Mark device as dormant (as per RFC2863).
3395  *
3396  * The dormant state indicates that the relevant interface is not
3397  * actually in a condition to pass packets (i.e., it is not 'up') but is
3398  * in a "pending" state, waiting for some external event.  For "on-
3399  * demand" interfaces, this new state identifies the situation where the
3400  * interface is waiting for events to place it in the up state.
3401  */
3402 static inline void netif_dormant_on(struct net_device *dev)
3403 {
3404 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3405 		linkwatch_fire_event(dev);
3406 }
3407 
3408 /**
3409  *	netif_dormant_off - set device as not dormant.
3410  *	@dev: network device
3411  *
3412  * Device is not in dormant state.
3413  */
3414 static inline void netif_dormant_off(struct net_device *dev)
3415 {
3416 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3417 		linkwatch_fire_event(dev);
3418 }
3419 
3420 /**
3421  *	netif_dormant - test if device is dormant
3422  *	@dev: network device
3423  *
3424  * Check if device is dormant.
3425  */
3426 static inline bool netif_dormant(const struct net_device *dev)
3427 {
3428 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3429 }
3430 
3431 
3432 /**
3433  *	netif_oper_up - test if device is operational
3434  *	@dev: network device
3435  *
3436  * Check if carrier is operational
3437  */
3438 static inline bool netif_oper_up(const struct net_device *dev)
3439 {
3440 	return (dev->operstate == IF_OPER_UP ||
3441 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3442 }
3443 
3444 /**
3445  *	netif_device_present - is device available or removed
3446  *	@dev: network device
3447  *
3448  * Check if device has not been removed from system.
3449  */
3450 static inline bool netif_device_present(struct net_device *dev)
3451 {
3452 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3453 }
3454 
3455 void netif_device_detach(struct net_device *dev);
3456 
3457 void netif_device_attach(struct net_device *dev);
3458 
3459 /*
3460  * Network interface message level settings
3461  */
3462 
3463 enum {
3464 	NETIF_MSG_DRV		= 0x0001,
3465 	NETIF_MSG_PROBE		= 0x0002,
3466 	NETIF_MSG_LINK		= 0x0004,
3467 	NETIF_MSG_TIMER		= 0x0008,
3468 	NETIF_MSG_IFDOWN	= 0x0010,
3469 	NETIF_MSG_IFUP		= 0x0020,
3470 	NETIF_MSG_RX_ERR	= 0x0040,
3471 	NETIF_MSG_TX_ERR	= 0x0080,
3472 	NETIF_MSG_TX_QUEUED	= 0x0100,
3473 	NETIF_MSG_INTR		= 0x0200,
3474 	NETIF_MSG_TX_DONE	= 0x0400,
3475 	NETIF_MSG_RX_STATUS	= 0x0800,
3476 	NETIF_MSG_PKTDATA	= 0x1000,
3477 	NETIF_MSG_HW		= 0x2000,
3478 	NETIF_MSG_WOL		= 0x4000,
3479 };
3480 
3481 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3482 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3483 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3484 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3485 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3486 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3487 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3488 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3489 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3490 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3491 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3492 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3493 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3494 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3495 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3496 
3497 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3498 {
3499 	/* use default */
3500 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3501 		return default_msg_enable_bits;
3502 	if (debug_value == 0)	/* no output */
3503 		return 0;
3504 	/* set low N bits */
3505 	return (1 << debug_value) - 1;
3506 }
3507 
3508 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3509 {
3510 	spin_lock(&txq->_xmit_lock);
3511 	txq->xmit_lock_owner = cpu;
3512 }
3513 
3514 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3515 {
3516 	__acquire(&txq->_xmit_lock);
3517 	return true;
3518 }
3519 
3520 static inline void __netif_tx_release(struct netdev_queue *txq)
3521 {
3522 	__release(&txq->_xmit_lock);
3523 }
3524 
3525 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3526 {
3527 	spin_lock_bh(&txq->_xmit_lock);
3528 	txq->xmit_lock_owner = smp_processor_id();
3529 }
3530 
3531 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3532 {
3533 	bool ok = spin_trylock(&txq->_xmit_lock);
3534 	if (likely(ok))
3535 		txq->xmit_lock_owner = smp_processor_id();
3536 	return ok;
3537 }
3538 
3539 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3540 {
3541 	txq->xmit_lock_owner = -1;
3542 	spin_unlock(&txq->_xmit_lock);
3543 }
3544 
3545 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3546 {
3547 	txq->xmit_lock_owner = -1;
3548 	spin_unlock_bh(&txq->_xmit_lock);
3549 }
3550 
3551 static inline void txq_trans_update(struct netdev_queue *txq)
3552 {
3553 	if (txq->xmit_lock_owner != -1)
3554 		txq->trans_start = jiffies;
3555 }
3556 
3557 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3558 static inline void netif_trans_update(struct net_device *dev)
3559 {
3560 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3561 
3562 	if (txq->trans_start != jiffies)
3563 		txq->trans_start = jiffies;
3564 }
3565 
3566 /**
3567  *	netif_tx_lock - grab network device transmit lock
3568  *	@dev: network device
3569  *
3570  * Get network device transmit lock
3571  */
3572 static inline void netif_tx_lock(struct net_device *dev)
3573 {
3574 	unsigned int i;
3575 	int cpu;
3576 
3577 	spin_lock(&dev->tx_global_lock);
3578 	cpu = smp_processor_id();
3579 	for (i = 0; i < dev->num_tx_queues; i++) {
3580 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3581 
3582 		/* We are the only thread of execution doing a
3583 		 * freeze, but we have to grab the _xmit_lock in
3584 		 * order to synchronize with threads which are in
3585 		 * the ->hard_start_xmit() handler and already
3586 		 * checked the frozen bit.
3587 		 */
3588 		__netif_tx_lock(txq, cpu);
3589 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3590 		__netif_tx_unlock(txq);
3591 	}
3592 }
3593 
3594 static inline void netif_tx_lock_bh(struct net_device *dev)
3595 {
3596 	local_bh_disable();
3597 	netif_tx_lock(dev);
3598 }
3599 
3600 static inline void netif_tx_unlock(struct net_device *dev)
3601 {
3602 	unsigned int i;
3603 
3604 	for (i = 0; i < dev->num_tx_queues; i++) {
3605 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3606 
3607 		/* No need to grab the _xmit_lock here.  If the
3608 		 * queue is not stopped for another reason, we
3609 		 * force a schedule.
3610 		 */
3611 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3612 		netif_schedule_queue(txq);
3613 	}
3614 	spin_unlock(&dev->tx_global_lock);
3615 }
3616 
3617 static inline void netif_tx_unlock_bh(struct net_device *dev)
3618 {
3619 	netif_tx_unlock(dev);
3620 	local_bh_enable();
3621 }
3622 
3623 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3624 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3625 		__netif_tx_lock(txq, cpu);		\
3626 	} else {					\
3627 		__netif_tx_acquire(txq);		\
3628 	}						\
3629 }
3630 
3631 #define HARD_TX_TRYLOCK(dev, txq)			\
3632 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3633 		__netif_tx_trylock(txq) :		\
3634 		__netif_tx_acquire(txq))
3635 
3636 #define HARD_TX_UNLOCK(dev, txq) {			\
3637 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3638 		__netif_tx_unlock(txq);			\
3639 	} else {					\
3640 		__netif_tx_release(txq);		\
3641 	}						\
3642 }
3643 
3644 static inline void netif_tx_disable(struct net_device *dev)
3645 {
3646 	unsigned int i;
3647 	int cpu;
3648 
3649 	local_bh_disable();
3650 	cpu = smp_processor_id();
3651 	for (i = 0; i < dev->num_tx_queues; i++) {
3652 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3653 
3654 		__netif_tx_lock(txq, cpu);
3655 		netif_tx_stop_queue(txq);
3656 		__netif_tx_unlock(txq);
3657 	}
3658 	local_bh_enable();
3659 }
3660 
3661 static inline void netif_addr_lock(struct net_device *dev)
3662 {
3663 	spin_lock(&dev->addr_list_lock);
3664 }
3665 
3666 static inline void netif_addr_lock_nested(struct net_device *dev)
3667 {
3668 	int subclass = SINGLE_DEPTH_NESTING;
3669 
3670 	if (dev->netdev_ops->ndo_get_lock_subclass)
3671 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3672 
3673 	spin_lock_nested(&dev->addr_list_lock, subclass);
3674 }
3675 
3676 static inline void netif_addr_lock_bh(struct net_device *dev)
3677 {
3678 	spin_lock_bh(&dev->addr_list_lock);
3679 }
3680 
3681 static inline void netif_addr_unlock(struct net_device *dev)
3682 {
3683 	spin_unlock(&dev->addr_list_lock);
3684 }
3685 
3686 static inline void netif_addr_unlock_bh(struct net_device *dev)
3687 {
3688 	spin_unlock_bh(&dev->addr_list_lock);
3689 }
3690 
3691 /*
3692  * dev_addrs walker. Should be used only for read access. Call with
3693  * rcu_read_lock held.
3694  */
3695 #define for_each_dev_addr(dev, ha) \
3696 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3697 
3698 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3699 
3700 void ether_setup(struct net_device *dev);
3701 
3702 /* Support for loadable net-drivers */
3703 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3704 				    unsigned char name_assign_type,
3705 				    void (*setup)(struct net_device *),
3706 				    unsigned int txqs, unsigned int rxqs);
3707 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3708 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3709 
3710 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3711 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3712 			 count)
3713 
3714 int register_netdev(struct net_device *dev);
3715 void unregister_netdev(struct net_device *dev);
3716 
3717 /* General hardware address lists handling functions */
3718 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3719 		   struct netdev_hw_addr_list *from_list, int addr_len);
3720 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3721 		      struct netdev_hw_addr_list *from_list, int addr_len);
3722 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3723 		       struct net_device *dev,
3724 		       int (*sync)(struct net_device *, const unsigned char *),
3725 		       int (*unsync)(struct net_device *,
3726 				     const unsigned char *));
3727 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3728 			  struct net_device *dev,
3729 			  int (*unsync)(struct net_device *,
3730 					const unsigned char *));
3731 void __hw_addr_init(struct netdev_hw_addr_list *list);
3732 
3733 /* Functions used for device addresses handling */
3734 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3735 		 unsigned char addr_type);
3736 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3737 		 unsigned char addr_type);
3738 void dev_addr_flush(struct net_device *dev);
3739 int dev_addr_init(struct net_device *dev);
3740 
3741 /* Functions used for unicast addresses handling */
3742 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3743 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3744 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3745 int dev_uc_sync(struct net_device *to, struct net_device *from);
3746 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3747 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3748 void dev_uc_flush(struct net_device *dev);
3749 void dev_uc_init(struct net_device *dev);
3750 
3751 /**
3752  *  __dev_uc_sync - Synchonize device's unicast list
3753  *  @dev:  device to sync
3754  *  @sync: function to call if address should be added
3755  *  @unsync: function to call if address should be removed
3756  *
3757  *  Add newly added addresses to the interface, and release
3758  *  addresses that have been deleted.
3759  */
3760 static inline int __dev_uc_sync(struct net_device *dev,
3761 				int (*sync)(struct net_device *,
3762 					    const unsigned char *),
3763 				int (*unsync)(struct net_device *,
3764 					      const unsigned char *))
3765 {
3766 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3767 }
3768 
3769 /**
3770  *  __dev_uc_unsync - Remove synchronized addresses from device
3771  *  @dev:  device to sync
3772  *  @unsync: function to call if address should be removed
3773  *
3774  *  Remove all addresses that were added to the device by dev_uc_sync().
3775  */
3776 static inline void __dev_uc_unsync(struct net_device *dev,
3777 				   int (*unsync)(struct net_device *,
3778 						 const unsigned char *))
3779 {
3780 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3781 }
3782 
3783 /* Functions used for multicast addresses handling */
3784 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3785 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3786 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3787 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3788 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3789 int dev_mc_sync(struct net_device *to, struct net_device *from);
3790 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3791 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3792 void dev_mc_flush(struct net_device *dev);
3793 void dev_mc_init(struct net_device *dev);
3794 
3795 /**
3796  *  __dev_mc_sync - Synchonize device's multicast list
3797  *  @dev:  device to sync
3798  *  @sync: function to call if address should be added
3799  *  @unsync: function to call if address should be removed
3800  *
3801  *  Add newly added addresses to the interface, and release
3802  *  addresses that have been deleted.
3803  */
3804 static inline int __dev_mc_sync(struct net_device *dev,
3805 				int (*sync)(struct net_device *,
3806 					    const unsigned char *),
3807 				int (*unsync)(struct net_device *,
3808 					      const unsigned char *))
3809 {
3810 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3811 }
3812 
3813 /**
3814  *  __dev_mc_unsync - Remove synchronized addresses from device
3815  *  @dev:  device to sync
3816  *  @unsync: function to call if address should be removed
3817  *
3818  *  Remove all addresses that were added to the device by dev_mc_sync().
3819  */
3820 static inline void __dev_mc_unsync(struct net_device *dev,
3821 				   int (*unsync)(struct net_device *,
3822 						 const unsigned char *))
3823 {
3824 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3825 }
3826 
3827 /* Functions used for secondary unicast and multicast support */
3828 void dev_set_rx_mode(struct net_device *dev);
3829 void __dev_set_rx_mode(struct net_device *dev);
3830 int dev_set_promiscuity(struct net_device *dev, int inc);
3831 int dev_set_allmulti(struct net_device *dev, int inc);
3832 void netdev_state_change(struct net_device *dev);
3833 void netdev_notify_peers(struct net_device *dev);
3834 void netdev_features_change(struct net_device *dev);
3835 /* Load a device via the kmod */
3836 void dev_load(struct net *net, const char *name);
3837 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3838 					struct rtnl_link_stats64 *storage);
3839 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3840 			     const struct net_device_stats *netdev_stats);
3841 
3842 extern int		netdev_max_backlog;
3843 extern int		netdev_tstamp_prequeue;
3844 extern int		weight_p;
3845 extern int		dev_weight_rx_bias;
3846 extern int		dev_weight_tx_bias;
3847 extern int		dev_rx_weight;
3848 extern int		dev_tx_weight;
3849 
3850 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3851 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3852 						     struct list_head **iter);
3853 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3854 						     struct list_head **iter);
3855 
3856 /* iterate through upper list, must be called under RCU read lock */
3857 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3858 	for (iter = &(dev)->adj_list.upper, \
3859 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3860 	     updev; \
3861 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3862 
3863 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3864 				  int (*fn)(struct net_device *upper_dev,
3865 					    void *data),
3866 				  void *data);
3867 
3868 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3869 				  struct net_device *upper_dev);
3870 
3871 void *netdev_lower_get_next_private(struct net_device *dev,
3872 				    struct list_head **iter);
3873 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3874 					struct list_head **iter);
3875 
3876 #define netdev_for_each_lower_private(dev, priv, iter) \
3877 	for (iter = (dev)->adj_list.lower.next, \
3878 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3879 	     priv; \
3880 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3881 
3882 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3883 	for (iter = &(dev)->adj_list.lower, \
3884 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3885 	     priv; \
3886 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3887 
3888 void *netdev_lower_get_next(struct net_device *dev,
3889 				struct list_head **iter);
3890 
3891 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3892 	for (iter = (dev)->adj_list.lower.next, \
3893 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3894 	     ldev; \
3895 	     ldev = netdev_lower_get_next(dev, &(iter)))
3896 
3897 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3898 					     struct list_head **iter);
3899 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3900 						 struct list_head **iter);
3901 
3902 int netdev_walk_all_lower_dev(struct net_device *dev,
3903 			      int (*fn)(struct net_device *lower_dev,
3904 					void *data),
3905 			      void *data);
3906 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3907 				  int (*fn)(struct net_device *lower_dev,
3908 					    void *data),
3909 				  void *data);
3910 
3911 void *netdev_adjacent_get_private(struct list_head *adj_list);
3912 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3913 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3914 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3915 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3916 int netdev_master_upper_dev_link(struct net_device *dev,
3917 				 struct net_device *upper_dev,
3918 				 void *upper_priv, void *upper_info);
3919 void netdev_upper_dev_unlink(struct net_device *dev,
3920 			     struct net_device *upper_dev);
3921 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3922 void *netdev_lower_dev_get_private(struct net_device *dev,
3923 				   struct net_device *lower_dev);
3924 void netdev_lower_state_changed(struct net_device *lower_dev,
3925 				void *lower_state_info);
3926 
3927 /* RSS keys are 40 or 52 bytes long */
3928 #define NETDEV_RSS_KEY_LEN 52
3929 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3930 void netdev_rss_key_fill(void *buffer, size_t len);
3931 
3932 int dev_get_nest_level(struct net_device *dev);
3933 int skb_checksum_help(struct sk_buff *skb);
3934 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3935 				  netdev_features_t features, bool tx_path);
3936 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3937 				    netdev_features_t features);
3938 
3939 struct netdev_bonding_info {
3940 	ifslave	slave;
3941 	ifbond	master;
3942 };
3943 
3944 struct netdev_notifier_bonding_info {
3945 	struct netdev_notifier_info info; /* must be first */
3946 	struct netdev_bonding_info  bonding_info;
3947 };
3948 
3949 void netdev_bonding_info_change(struct net_device *dev,
3950 				struct netdev_bonding_info *bonding_info);
3951 
3952 static inline
3953 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3954 {
3955 	return __skb_gso_segment(skb, features, true);
3956 }
3957 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3958 
3959 static inline bool can_checksum_protocol(netdev_features_t features,
3960 					 __be16 protocol)
3961 {
3962 	if (protocol == htons(ETH_P_FCOE))
3963 		return !!(features & NETIF_F_FCOE_CRC);
3964 
3965 	/* Assume this is an IP checksum (not SCTP CRC) */
3966 
3967 	if (features & NETIF_F_HW_CSUM) {
3968 		/* Can checksum everything */
3969 		return true;
3970 	}
3971 
3972 	switch (protocol) {
3973 	case htons(ETH_P_IP):
3974 		return !!(features & NETIF_F_IP_CSUM);
3975 	case htons(ETH_P_IPV6):
3976 		return !!(features & NETIF_F_IPV6_CSUM);
3977 	default:
3978 		return false;
3979 	}
3980 }
3981 
3982 #ifdef CONFIG_BUG
3983 void netdev_rx_csum_fault(struct net_device *dev);
3984 #else
3985 static inline void netdev_rx_csum_fault(struct net_device *dev)
3986 {
3987 }
3988 #endif
3989 /* rx skb timestamps */
3990 void net_enable_timestamp(void);
3991 void net_disable_timestamp(void);
3992 
3993 #ifdef CONFIG_PROC_FS
3994 int __init dev_proc_init(void);
3995 #else
3996 #define dev_proc_init() 0
3997 #endif
3998 
3999 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4000 					      struct sk_buff *skb, struct net_device *dev,
4001 					      bool more)
4002 {
4003 	skb->xmit_more = more ? 1 : 0;
4004 	return ops->ndo_start_xmit(skb, dev);
4005 }
4006 
4007 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4008 					    struct netdev_queue *txq, bool more)
4009 {
4010 	const struct net_device_ops *ops = dev->netdev_ops;
4011 	int rc;
4012 
4013 	rc = __netdev_start_xmit(ops, skb, dev, more);
4014 	if (rc == NETDEV_TX_OK)
4015 		txq_trans_update(txq);
4016 
4017 	return rc;
4018 }
4019 
4020 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4021 				const void *ns);
4022 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4023 				 const void *ns);
4024 
4025 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4026 {
4027 	return netdev_class_create_file_ns(class_attr, NULL);
4028 }
4029 
4030 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4031 {
4032 	netdev_class_remove_file_ns(class_attr, NULL);
4033 }
4034 
4035 extern struct kobj_ns_type_operations net_ns_type_operations;
4036 
4037 const char *netdev_drivername(const struct net_device *dev);
4038 
4039 void linkwatch_run_queue(void);
4040 
4041 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4042 							  netdev_features_t f2)
4043 {
4044 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4045 		if (f1 & NETIF_F_HW_CSUM)
4046 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4047 		else
4048 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4049 	}
4050 
4051 	return f1 & f2;
4052 }
4053 
4054 static inline netdev_features_t netdev_get_wanted_features(
4055 	struct net_device *dev)
4056 {
4057 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4058 }
4059 netdev_features_t netdev_increment_features(netdev_features_t all,
4060 	netdev_features_t one, netdev_features_t mask);
4061 
4062 /* Allow TSO being used on stacked device :
4063  * Performing the GSO segmentation before last device
4064  * is a performance improvement.
4065  */
4066 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4067 							netdev_features_t mask)
4068 {
4069 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4070 }
4071 
4072 int __netdev_update_features(struct net_device *dev);
4073 void netdev_update_features(struct net_device *dev);
4074 void netdev_change_features(struct net_device *dev);
4075 
4076 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4077 					struct net_device *dev);
4078 
4079 netdev_features_t passthru_features_check(struct sk_buff *skb,
4080 					  struct net_device *dev,
4081 					  netdev_features_t features);
4082 netdev_features_t netif_skb_features(struct sk_buff *skb);
4083 
4084 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4085 {
4086 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4087 
4088 	/* check flags correspondence */
4089 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4090 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4091 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4092 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4093 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4094 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4095 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4096 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4097 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4098 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4099 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4100 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4101 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4102 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4103 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4104 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4105 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4106 
4107 	return (features & feature) == feature;
4108 }
4109 
4110 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4111 {
4112 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4113 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4114 }
4115 
4116 static inline bool netif_needs_gso(struct sk_buff *skb,
4117 				   netdev_features_t features)
4118 {
4119 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4120 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4121 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4122 }
4123 
4124 static inline void netif_set_gso_max_size(struct net_device *dev,
4125 					  unsigned int size)
4126 {
4127 	dev->gso_max_size = size;
4128 }
4129 
4130 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4131 					int pulled_hlen, u16 mac_offset,
4132 					int mac_len)
4133 {
4134 	skb->protocol = protocol;
4135 	skb->encapsulation = 1;
4136 	skb_push(skb, pulled_hlen);
4137 	skb_reset_transport_header(skb);
4138 	skb->mac_header = mac_offset;
4139 	skb->network_header = skb->mac_header + mac_len;
4140 	skb->mac_len = mac_len;
4141 }
4142 
4143 static inline bool netif_is_macsec(const struct net_device *dev)
4144 {
4145 	return dev->priv_flags & IFF_MACSEC;
4146 }
4147 
4148 static inline bool netif_is_macvlan(const struct net_device *dev)
4149 {
4150 	return dev->priv_flags & IFF_MACVLAN;
4151 }
4152 
4153 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4154 {
4155 	return dev->priv_flags & IFF_MACVLAN_PORT;
4156 }
4157 
4158 static inline bool netif_is_ipvlan(const struct net_device *dev)
4159 {
4160 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4161 }
4162 
4163 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4164 {
4165 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4166 }
4167 
4168 static inline bool netif_is_bond_master(const struct net_device *dev)
4169 {
4170 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4171 }
4172 
4173 static inline bool netif_is_bond_slave(const struct net_device *dev)
4174 {
4175 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4176 }
4177 
4178 static inline bool netif_supports_nofcs(struct net_device *dev)
4179 {
4180 	return dev->priv_flags & IFF_SUPP_NOFCS;
4181 }
4182 
4183 static inline bool netif_is_l3_master(const struct net_device *dev)
4184 {
4185 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4186 }
4187 
4188 static inline bool netif_is_l3_slave(const struct net_device *dev)
4189 {
4190 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4191 }
4192 
4193 static inline bool netif_is_bridge_master(const struct net_device *dev)
4194 {
4195 	return dev->priv_flags & IFF_EBRIDGE;
4196 }
4197 
4198 static inline bool netif_is_bridge_port(const struct net_device *dev)
4199 {
4200 	return dev->priv_flags & IFF_BRIDGE_PORT;
4201 }
4202 
4203 static inline bool netif_is_ovs_master(const struct net_device *dev)
4204 {
4205 	return dev->priv_flags & IFF_OPENVSWITCH;
4206 }
4207 
4208 static inline bool netif_is_ovs_port(const struct net_device *dev)
4209 {
4210 	return dev->priv_flags & IFF_OVS_DATAPATH;
4211 }
4212 
4213 static inline bool netif_is_team_master(const struct net_device *dev)
4214 {
4215 	return dev->priv_flags & IFF_TEAM;
4216 }
4217 
4218 static inline bool netif_is_team_port(const struct net_device *dev)
4219 {
4220 	return dev->priv_flags & IFF_TEAM_PORT;
4221 }
4222 
4223 static inline bool netif_is_lag_master(const struct net_device *dev)
4224 {
4225 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4226 }
4227 
4228 static inline bool netif_is_lag_port(const struct net_device *dev)
4229 {
4230 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4231 }
4232 
4233 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4234 {
4235 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4236 }
4237 
4238 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4239 static inline void netif_keep_dst(struct net_device *dev)
4240 {
4241 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4242 }
4243 
4244 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4245 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4246 {
4247 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4248 	return dev->priv_flags & IFF_MACSEC;
4249 }
4250 
4251 extern struct pernet_operations __net_initdata loopback_net_ops;
4252 
4253 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4254 
4255 /* netdev_printk helpers, similar to dev_printk */
4256 
4257 static inline const char *netdev_name(const struct net_device *dev)
4258 {
4259 	if (!dev->name[0] || strchr(dev->name, '%'))
4260 		return "(unnamed net_device)";
4261 	return dev->name;
4262 }
4263 
4264 static inline const char *netdev_reg_state(const struct net_device *dev)
4265 {
4266 	switch (dev->reg_state) {
4267 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4268 	case NETREG_REGISTERED: return "";
4269 	case NETREG_UNREGISTERING: return " (unregistering)";
4270 	case NETREG_UNREGISTERED: return " (unregistered)";
4271 	case NETREG_RELEASED: return " (released)";
4272 	case NETREG_DUMMY: return " (dummy)";
4273 	}
4274 
4275 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4276 	return " (unknown)";
4277 }
4278 
4279 __printf(3, 4)
4280 void netdev_printk(const char *level, const struct net_device *dev,
4281 		   const char *format, ...);
4282 __printf(2, 3)
4283 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4284 __printf(2, 3)
4285 void netdev_alert(const struct net_device *dev, const char *format, ...);
4286 __printf(2, 3)
4287 void netdev_crit(const struct net_device *dev, const char *format, ...);
4288 __printf(2, 3)
4289 void netdev_err(const struct net_device *dev, const char *format, ...);
4290 __printf(2, 3)
4291 void netdev_warn(const struct net_device *dev, const char *format, ...);
4292 __printf(2, 3)
4293 void netdev_notice(const struct net_device *dev, const char *format, ...);
4294 __printf(2, 3)
4295 void netdev_info(const struct net_device *dev, const char *format, ...);
4296 
4297 #define MODULE_ALIAS_NETDEV(device) \
4298 	MODULE_ALIAS("netdev-" device)
4299 
4300 #if defined(CONFIG_DYNAMIC_DEBUG)
4301 #define netdev_dbg(__dev, format, args...)			\
4302 do {								\
4303 	dynamic_netdev_dbg(__dev, format, ##args);		\
4304 } while (0)
4305 #elif defined(DEBUG)
4306 #define netdev_dbg(__dev, format, args...)			\
4307 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4308 #else
4309 #define netdev_dbg(__dev, format, args...)			\
4310 ({								\
4311 	if (0)							\
4312 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4313 })
4314 #endif
4315 
4316 #if defined(VERBOSE_DEBUG)
4317 #define netdev_vdbg	netdev_dbg
4318 #else
4319 
4320 #define netdev_vdbg(dev, format, args...)			\
4321 ({								\
4322 	if (0)							\
4323 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4324 	0;							\
4325 })
4326 #endif
4327 
4328 /*
4329  * netdev_WARN() acts like dev_printk(), but with the key difference
4330  * of using a WARN/WARN_ON to get the message out, including the
4331  * file/line information and a backtrace.
4332  */
4333 #define netdev_WARN(dev, format, args...)			\
4334 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4335 	     netdev_reg_state(dev), ##args)
4336 
4337 /* netif printk helpers, similar to netdev_printk */
4338 
4339 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4340 do {					  			\
4341 	if (netif_msg_##type(priv))				\
4342 		netdev_printk(level, (dev), fmt, ##args);	\
4343 } while (0)
4344 
4345 #define netif_level(level, priv, type, dev, fmt, args...)	\
4346 do {								\
4347 	if (netif_msg_##type(priv))				\
4348 		netdev_##level(dev, fmt, ##args);		\
4349 } while (0)
4350 
4351 #define netif_emerg(priv, type, dev, fmt, args...)		\
4352 	netif_level(emerg, priv, type, dev, fmt, ##args)
4353 #define netif_alert(priv, type, dev, fmt, args...)		\
4354 	netif_level(alert, priv, type, dev, fmt, ##args)
4355 #define netif_crit(priv, type, dev, fmt, args...)		\
4356 	netif_level(crit, priv, type, dev, fmt, ##args)
4357 #define netif_err(priv, type, dev, fmt, args...)		\
4358 	netif_level(err, priv, type, dev, fmt, ##args)
4359 #define netif_warn(priv, type, dev, fmt, args...)		\
4360 	netif_level(warn, priv, type, dev, fmt, ##args)
4361 #define netif_notice(priv, type, dev, fmt, args...)		\
4362 	netif_level(notice, priv, type, dev, fmt, ##args)
4363 #define netif_info(priv, type, dev, fmt, args...)		\
4364 	netif_level(info, priv, type, dev, fmt, ##args)
4365 
4366 #if defined(CONFIG_DYNAMIC_DEBUG)
4367 #define netif_dbg(priv, type, netdev, format, args...)		\
4368 do {								\
4369 	if (netif_msg_##type(priv))				\
4370 		dynamic_netdev_dbg(netdev, format, ##args);	\
4371 } while (0)
4372 #elif defined(DEBUG)
4373 #define netif_dbg(priv, type, dev, format, args...)		\
4374 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4375 #else
4376 #define netif_dbg(priv, type, dev, format, args...)			\
4377 ({									\
4378 	if (0)								\
4379 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4380 	0;								\
4381 })
4382 #endif
4383 
4384 /* if @cond then downgrade to debug, else print at @level */
4385 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4386 	do {                                                              \
4387 		if (cond)                                                 \
4388 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4389 		else                                                      \
4390 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4391 	} while (0)
4392 
4393 #if defined(VERBOSE_DEBUG)
4394 #define netif_vdbg	netif_dbg
4395 #else
4396 #define netif_vdbg(priv, type, dev, format, args...)		\
4397 ({								\
4398 	if (0)							\
4399 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4400 	0;							\
4401 })
4402 #endif
4403 
4404 /*
4405  *	The list of packet types we will receive (as opposed to discard)
4406  *	and the routines to invoke.
4407  *
4408  *	Why 16. Because with 16 the only overlap we get on a hash of the
4409  *	low nibble of the protocol value is RARP/SNAP/X.25.
4410  *
4411  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4412  *             sure which should go first, but I bet it won't make much
4413  *             difference if we are running VLANs.  The good news is that
4414  *             this protocol won't be in the list unless compiled in, so
4415  *             the average user (w/out VLANs) will not be adversely affected.
4416  *             --BLG
4417  *
4418  *		0800	IP
4419  *		8100    802.1Q VLAN
4420  *		0001	802.3
4421  *		0002	AX.25
4422  *		0004	802.2
4423  *		8035	RARP
4424  *		0005	SNAP
4425  *		0805	X.25
4426  *		0806	ARP
4427  *		8137	IPX
4428  *		0009	Localtalk
4429  *		86DD	IPv6
4430  */
4431 #define PTYPE_HASH_SIZE	(16)
4432 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4433 
4434 #endif	/* _LINUX_NETDEVICE_H */
4435