1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #ifdef CONFIG_DCB 45 #include <net/dcbnl.h> 46 #endif 47 #include <net/netprio_cgroup.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_switch_tree; 60 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct bpf_prog; 69 70 void netdev_set_default_ethtool_ops(struct net_device *dev, 71 const struct ethtool_ops *ops); 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously; in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106 /* Driver transmit return codes */ 107 #define NETDEV_TX_MASK 0xf0 108 109 enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 /* 135 * Compute the worst-case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_HYPERV_NET) 140 # define LL_MAX_HEADER 128 141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 extern struct static_key rfs_needed; 197 #endif 198 199 struct neighbour; 200 struct neigh_parms; 201 struct sk_buff; 202 203 struct netdev_hw_addr { 204 struct list_head list; 205 unsigned char addr[MAX_ADDR_LEN]; 206 unsigned char type; 207 #define NETDEV_HW_ADDR_T_LAN 1 208 #define NETDEV_HW_ADDR_T_SAN 2 209 #define NETDEV_HW_ADDR_T_SLAVE 3 210 #define NETDEV_HW_ADDR_T_UNICAST 4 211 #define NETDEV_HW_ADDR_T_MULTICAST 5 212 bool global_use; 213 int sync_cnt; 214 int refcount; 215 int synced; 216 struct rcu_head rcu_head; 217 }; 218 219 struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222 }; 223 224 #define netdev_hw_addr_list_count(l) ((l)->count) 225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226 #define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231 #define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236 #define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239 struct hh_cache { 240 unsigned int hh_len; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 int poll_owner; 321 #endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329 }; 330 331 enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_MISSED, /* reschedule a napi */ 334 NAPI_STATE_DISABLE, /* Disable pending */ 335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 339 }; 340 341 enum { 342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 349 }; 350 351 enum gro_result { 352 GRO_MERGED, 353 GRO_MERGED_FREE, 354 GRO_HELD, 355 GRO_NORMAL, 356 GRO_DROP, 357 GRO_CONSUMED, 358 }; 359 typedef enum gro_result gro_result_t; 360 361 /* 362 * enum rx_handler_result - Possible return values for rx_handlers. 363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 364 * further. 365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 366 * case skb->dev was changed by rx_handler. 367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 369 * 370 * rx_handlers are functions called from inside __netif_receive_skb(), to do 371 * special processing of the skb, prior to delivery to protocol handlers. 372 * 373 * Currently, a net_device can only have a single rx_handler registered. Trying 374 * to register a second rx_handler will return -EBUSY. 375 * 376 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 377 * To unregister a rx_handler on a net_device, use 378 * netdev_rx_handler_unregister(). 379 * 380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 381 * do with the skb. 382 * 383 * If the rx_handler consumed the skb in some way, it should return 384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 385 * the skb to be delivered in some other way. 386 * 387 * If the rx_handler changed skb->dev, to divert the skb to another 388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 389 * new device will be called if it exists. 390 * 391 * If the rx_handler decides the skb should be ignored, it should return 392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 393 * are registered on exact device (ptype->dev == skb->dev). 394 * 395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 396 * delivered, it should return RX_HANDLER_PASS. 397 * 398 * A device without a registered rx_handler will behave as if rx_handler 399 * returned RX_HANDLER_PASS. 400 */ 401 402 enum rx_handler_result { 403 RX_HANDLER_CONSUMED, 404 RX_HANDLER_ANOTHER, 405 RX_HANDLER_EXACT, 406 RX_HANDLER_PASS, 407 }; 408 typedef enum rx_handler_result rx_handler_result_t; 409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 410 411 void __napi_schedule(struct napi_struct *n); 412 void __napi_schedule_irqoff(struct napi_struct *n); 413 414 static inline bool napi_disable_pending(struct napi_struct *n) 415 { 416 return test_bit(NAPI_STATE_DISABLE, &n->state); 417 } 418 419 bool napi_schedule_prep(struct napi_struct *n); 420 421 /** 422 * napi_schedule - schedule NAPI poll 423 * @n: NAPI context 424 * 425 * Schedule NAPI poll routine to be called if it is not already 426 * running. 427 */ 428 static inline void napi_schedule(struct napi_struct *n) 429 { 430 if (napi_schedule_prep(n)) 431 __napi_schedule(n); 432 } 433 434 /** 435 * napi_schedule_irqoff - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Variant of napi_schedule(), assuming hard irqs are masked. 439 */ 440 static inline void napi_schedule_irqoff(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule_irqoff(n); 444 } 445 446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 447 static inline bool napi_reschedule(struct napi_struct *napi) 448 { 449 if (napi_schedule_prep(napi)) { 450 __napi_schedule(napi); 451 return true; 452 } 453 return false; 454 } 455 456 bool napi_complete_done(struct napi_struct *n, int work_done); 457 /** 458 * napi_complete - NAPI processing complete 459 * @n: NAPI context 460 * 461 * Mark NAPI processing as complete. 462 * Consider using napi_complete_done() instead. 463 * Return false if device should avoid rearming interrupts. 464 */ 465 static inline bool napi_complete(struct napi_struct *n) 466 { 467 return napi_complete_done(n, 0); 468 } 469 470 /** 471 * napi_hash_del - remove a NAPI from global table 472 * @napi: NAPI context 473 * 474 * Warning: caller must observe RCU grace period 475 * before freeing memory containing @napi, if 476 * this function returns true. 477 * Note: core networking stack automatically calls it 478 * from netif_napi_del(). 479 * Drivers might want to call this helper to combine all 480 * the needed RCU grace periods into a single one. 481 */ 482 bool napi_hash_del(struct napi_struct *napi); 483 484 /** 485 * napi_disable - prevent NAPI from scheduling 486 * @n: NAPI context 487 * 488 * Stop NAPI from being scheduled on this context. 489 * Waits till any outstanding processing completes. 490 */ 491 void napi_disable(struct napi_struct *n); 492 493 /** 494 * napi_enable - enable NAPI scheduling 495 * @n: NAPI context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500 static inline void napi_enable(struct napi_struct *n) 501 { 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_atomic(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505 clear_bit(NAPI_STATE_NPSVC, &n->state); 506 } 507 508 /** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: NAPI context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516 static inline void napi_synchronize(const struct napi_struct *n) 517 { 518 if (IS_ENABLED(CONFIG_SMP)) 519 while (test_bit(NAPI_STATE_SCHED, &n->state)) 520 msleep(1); 521 else 522 barrier(); 523 } 524 525 enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529 }; 530 531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 534 535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 537 QUEUE_STATE_FROZEN) 538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 541 /* 542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 543 * netif_tx_* functions below are used to manipulate this flag. The 544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 545 * queue independently. The netif_xmit_*stopped functions below are called 546 * to check if the queue has been stopped by the driver or stack (either 547 * of the XOFF bits are set in the state). Drivers should not need to call 548 * netif_xmit*stopped functions, they should only be using netif_tx_*. 549 */ 550 551 struct netdev_queue { 552 /* 553 * read-mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc __rcu *qdisc; 557 struct Qdisc *qdisc_sleeping; 558 #ifdef CONFIG_SYSFS 559 struct kobject kobj; 560 #endif 561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 int numa_node; 563 #endif 564 unsigned long tx_maxrate; 565 /* 566 * Number of TX timeouts for this queue 567 * (/sys/class/net/DEV/Q/trans_timeout) 568 */ 569 unsigned long trans_timeout; 570 /* 571 * write-mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * Time (in jiffies) of last Tx 577 */ 578 unsigned long trans_start; 579 580 unsigned long state; 581 582 #ifdef CONFIG_BQL 583 struct dql dql; 584 #endif 585 } ____cacheline_aligned_in_smp; 586 587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 588 { 589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 590 return q->numa_node; 591 #else 592 return NUMA_NO_NODE; 593 #endif 594 } 595 596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 q->numa_node = node; 600 #endif 601 } 602 603 #ifdef CONFIG_RPS 604 /* 605 * This structure holds an RPS map which can be of variable length. The 606 * map is an array of CPUs. 607 */ 608 struct rps_map { 609 unsigned int len; 610 struct rcu_head rcu; 611 u16 cpus[0]; 612 }; 613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 614 615 /* 616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 617 * tail pointer for that CPU's input queue at the time of last enqueue, and 618 * a hardware filter index. 619 */ 620 struct rps_dev_flow { 621 u16 cpu; 622 u16 filter; 623 unsigned int last_qtail; 624 }; 625 #define RPS_NO_FILTER 0xffff 626 627 /* 628 * The rps_dev_flow_table structure contains a table of flow mappings. 629 */ 630 struct rps_dev_flow_table { 631 unsigned int mask; 632 struct rcu_head rcu; 633 struct rps_dev_flow flows[0]; 634 }; 635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 636 ((_num) * sizeof(struct rps_dev_flow))) 637 638 /* 639 * The rps_sock_flow_table contains mappings of flows to the last CPU 640 * on which they were processed by the application (set in recvmsg). 641 * Each entry is a 32bit value. Upper part is the high-order bits 642 * of flow hash, lower part is CPU number. 643 * rps_cpu_mask is used to partition the space, depending on number of 644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 646 * meaning we use 32-6=26 bits for the hash. 647 */ 648 struct rps_sock_flow_table { 649 u32 mask; 650 651 u32 ents[0] ____cacheline_aligned_in_smp; 652 }; 653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 654 655 #define RPS_NO_CPU 0xffff 656 657 extern u32 rps_cpu_mask; 658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 659 660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 661 u32 hash) 662 { 663 if (table && hash) { 664 unsigned int index = hash & table->mask; 665 u32 val = hash & ~rps_cpu_mask; 666 667 /* We only give a hint, preemption can change CPU under us */ 668 val |= raw_smp_processor_id(); 669 670 if (table->ents[index] != val) 671 table->ents[index] = val; 672 } 673 } 674 675 #ifdef CONFIG_RFS_ACCEL 676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 677 u16 filter_id); 678 #endif 679 #endif /* CONFIG_RPS */ 680 681 /* This structure contains an instance of an RX queue. */ 682 struct netdev_rx_queue { 683 #ifdef CONFIG_RPS 684 struct rps_map __rcu *rps_map; 685 struct rps_dev_flow_table __rcu *rps_flow_table; 686 #endif 687 struct kobject kobj; 688 struct net_device *dev; 689 } ____cacheline_aligned_in_smp; 690 691 /* 692 * RX queue sysfs structures and functions. 693 */ 694 struct rx_queue_attribute { 695 struct attribute attr; 696 ssize_t (*show)(struct netdev_rx_queue *queue, 697 struct rx_queue_attribute *attr, char *buf); 698 ssize_t (*store)(struct netdev_rx_queue *queue, 699 struct rx_queue_attribute *attr, const char *buf, size_t len); 700 }; 701 702 #ifdef CONFIG_XPS 703 /* 704 * This structure holds an XPS map which can be of variable length. The 705 * map is an array of queues. 706 */ 707 struct xps_map { 708 unsigned int len; 709 unsigned int alloc_len; 710 struct rcu_head rcu; 711 u16 queues[0]; 712 }; 713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 715 - sizeof(struct xps_map)) / sizeof(u16)) 716 717 /* 718 * This structure holds all XPS maps for device. Maps are indexed by CPU. 719 */ 720 struct xps_dev_maps { 721 struct rcu_head rcu; 722 struct xps_map __rcu *cpu_map[0]; 723 }; 724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 725 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 726 #endif /* CONFIG_XPS */ 727 728 #define TC_MAX_QUEUE 16 729 #define TC_BITMASK 15 730 /* HW offloaded queuing disciplines txq count and offset maps */ 731 struct netdev_tc_txq { 732 u16 count; 733 u16 offset; 734 }; 735 736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 737 /* 738 * This structure is to hold information about the device 739 * configured to run FCoE protocol stack. 740 */ 741 struct netdev_fcoe_hbainfo { 742 char manufacturer[64]; 743 char serial_number[64]; 744 char hardware_version[64]; 745 char driver_version[64]; 746 char optionrom_version[64]; 747 char firmware_version[64]; 748 char model[256]; 749 char model_description[256]; 750 }; 751 #endif 752 753 #define MAX_PHYS_ITEM_ID_LEN 32 754 755 /* This structure holds a unique identifier to identify some 756 * physical item (port for example) used by a netdevice. 757 */ 758 struct netdev_phys_item_id { 759 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 760 unsigned char id_len; 761 }; 762 763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 764 struct netdev_phys_item_id *b) 765 { 766 return a->id_len == b->id_len && 767 memcmp(a->id, b->id, a->id_len) == 0; 768 } 769 770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 771 struct sk_buff *skb); 772 773 /* These structures hold the attributes of qdisc and classifiers 774 * that are being passed to the netdevice through the setup_tc op. 775 */ 776 enum { 777 TC_SETUP_MQPRIO, 778 TC_SETUP_CLSU32, 779 TC_SETUP_CLSFLOWER, 780 TC_SETUP_MATCHALL, 781 TC_SETUP_CLSBPF, 782 }; 783 784 struct tc_cls_u32_offload; 785 786 struct tc_to_netdev { 787 unsigned int type; 788 union { 789 struct tc_cls_u32_offload *cls_u32; 790 struct tc_cls_flower_offload *cls_flower; 791 struct tc_cls_matchall_offload *cls_mall; 792 struct tc_cls_bpf_offload *cls_bpf; 793 struct tc_mqprio_qopt *mqprio; 794 }; 795 bool egress_dev; 796 }; 797 798 /* These structures hold the attributes of xdp state that are being passed 799 * to the netdevice through the xdp op. 800 */ 801 enum xdp_netdev_command { 802 /* Set or clear a bpf program used in the earliest stages of packet 803 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 804 * is responsible for calling bpf_prog_put on any old progs that are 805 * stored. In case of error, the callee need not release the new prog 806 * reference, but on success it takes ownership and must bpf_prog_put 807 * when it is no longer used. 808 */ 809 XDP_SETUP_PROG, 810 /* Check if a bpf program is set on the device. The callee should 811 * return true if a program is currently attached and running. 812 */ 813 XDP_QUERY_PROG, 814 }; 815 816 struct netlink_ext_ack; 817 818 struct netdev_xdp { 819 enum xdp_netdev_command command; 820 union { 821 /* XDP_SETUP_PROG */ 822 struct { 823 struct bpf_prog *prog; 824 struct netlink_ext_ack *extack; 825 }; 826 /* XDP_QUERY_PROG */ 827 bool prog_attached; 828 }; 829 }; 830 831 #ifdef CONFIG_XFRM_OFFLOAD 832 struct xfrmdev_ops { 833 int (*xdo_dev_state_add) (struct xfrm_state *x); 834 void (*xdo_dev_state_delete) (struct xfrm_state *x); 835 void (*xdo_dev_state_free) (struct xfrm_state *x); 836 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 837 struct xfrm_state *x); 838 }; 839 #endif 840 841 /* 842 * This structure defines the management hooks for network devices. 843 * The following hooks can be defined; unless noted otherwise, they are 844 * optional and can be filled with a null pointer. 845 * 846 * int (*ndo_init)(struct net_device *dev); 847 * This function is called once when a network device is registered. 848 * The network device can use this for any late stage initialization 849 * or semantic validation. It can fail with an error code which will 850 * be propagated back to register_netdev. 851 * 852 * void (*ndo_uninit)(struct net_device *dev); 853 * This function is called when device is unregistered or when registration 854 * fails. It is not called if init fails. 855 * 856 * int (*ndo_open)(struct net_device *dev); 857 * This function is called when a network device transitions to the up 858 * state. 859 * 860 * int (*ndo_stop)(struct net_device *dev); 861 * This function is called when a network device transitions to the down 862 * state. 863 * 864 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 865 * struct net_device *dev); 866 * Called when a packet needs to be transmitted. 867 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 868 * the queue before that can happen; it's for obsolete devices and weird 869 * corner cases, but the stack really does a non-trivial amount 870 * of useless work if you return NETDEV_TX_BUSY. 871 * Required; cannot be NULL. 872 * 873 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 874 * struct net_device *dev 875 * netdev_features_t features); 876 * Called by core transmit path to determine if device is capable of 877 * performing offload operations on a given packet. This is to give 878 * the device an opportunity to implement any restrictions that cannot 879 * be otherwise expressed by feature flags. The check is called with 880 * the set of features that the stack has calculated and it returns 881 * those the driver believes to be appropriate. 882 * 883 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 884 * void *accel_priv, select_queue_fallback_t fallback); 885 * Called to decide which queue to use when device supports multiple 886 * transmit queues. 887 * 888 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 889 * This function is called to allow device receiver to make 890 * changes to configuration when multicast or promiscuous is enabled. 891 * 892 * void (*ndo_set_rx_mode)(struct net_device *dev); 893 * This function is called device changes address list filtering. 894 * If driver handles unicast address filtering, it should set 895 * IFF_UNICAST_FLT in its priv_flags. 896 * 897 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 898 * This function is called when the Media Access Control address 899 * needs to be changed. If this interface is not defined, the 900 * MAC address can not be changed. 901 * 902 * int (*ndo_validate_addr)(struct net_device *dev); 903 * Test if Media Access Control address is valid for the device. 904 * 905 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 906 * Called when a user requests an ioctl which can't be handled by 907 * the generic interface code. If not defined ioctls return 908 * not supported error code. 909 * 910 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 911 * Used to set network devices bus interface parameters. This interface 912 * is retained for legacy reasons; new devices should use the bus 913 * interface (PCI) for low level management. 914 * 915 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 916 * Called when a user wants to change the Maximum Transfer Unit 917 * of a device. If not defined, any request to change MTU will 918 * will return an error. 919 * 920 * void (*ndo_tx_timeout)(struct net_device *dev); 921 * Callback used when the transmitter has not made any progress 922 * for dev->watchdog ticks. 923 * 924 * void (*ndo_get_stats64)(struct net_device *dev, 925 * struct rtnl_link_stats64 *storage); 926 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 927 * Called when a user wants to get the network device usage 928 * statistics. Drivers must do one of the following: 929 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 930 * rtnl_link_stats64 structure passed by the caller. 931 * 2. Define @ndo_get_stats to update a net_device_stats structure 932 * (which should normally be dev->stats) and return a pointer to 933 * it. The structure may be changed asynchronously only if each 934 * field is written atomically. 935 * 3. Update dev->stats asynchronously and atomically, and define 936 * neither operation. 937 * 938 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 939 * Return true if this device supports offload stats of this attr_id. 940 * 941 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 942 * void *attr_data) 943 * Get statistics for offload operations by attr_id. Write it into the 944 * attr_data pointer. 945 * 946 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 947 * If device supports VLAN filtering this function is called when a 948 * VLAN id is registered. 949 * 950 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 951 * If device supports VLAN filtering this function is called when a 952 * VLAN id is unregistered. 953 * 954 * void (*ndo_poll_controller)(struct net_device *dev); 955 * 956 * SR-IOV management functions. 957 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 958 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 959 * u8 qos, __be16 proto); 960 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 961 * int max_tx_rate); 962 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 963 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 964 * int (*ndo_get_vf_config)(struct net_device *dev, 965 * int vf, struct ifla_vf_info *ivf); 966 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 967 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 968 * struct nlattr *port[]); 969 * 970 * Enable or disable the VF ability to query its RSS Redirection Table and 971 * Hash Key. This is needed since on some devices VF share this information 972 * with PF and querying it may introduce a theoretical security risk. 973 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 974 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 975 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, 976 * __be16 protocol, struct tc_to_netdev *tc); 977 * Called to setup any 'tc' scheduler, classifier or action on @dev. 978 * This is always called from the stack with the rtnl lock held and netif 979 * tx queues stopped. This allows the netdevice to perform queue 980 * management safely. 981 * 982 * Fiber Channel over Ethernet (FCoE) offload functions. 983 * int (*ndo_fcoe_enable)(struct net_device *dev); 984 * Called when the FCoE protocol stack wants to start using LLD for FCoE 985 * so the underlying device can perform whatever needed configuration or 986 * initialization to support acceleration of FCoE traffic. 987 * 988 * int (*ndo_fcoe_disable)(struct net_device *dev); 989 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 990 * so the underlying device can perform whatever needed clean-ups to 991 * stop supporting acceleration of FCoE traffic. 992 * 993 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 994 * struct scatterlist *sgl, unsigned int sgc); 995 * Called when the FCoE Initiator wants to initialize an I/O that 996 * is a possible candidate for Direct Data Placement (DDP). The LLD can 997 * perform necessary setup and returns 1 to indicate the device is set up 998 * successfully to perform DDP on this I/O, otherwise this returns 0. 999 * 1000 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1001 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1002 * indicated by the FC exchange id 'xid', so the underlying device can 1003 * clean up and reuse resources for later DDP requests. 1004 * 1005 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1006 * struct scatterlist *sgl, unsigned int sgc); 1007 * Called when the FCoE Target wants to initialize an I/O that 1008 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1009 * perform necessary setup and returns 1 to indicate the device is set up 1010 * successfully to perform DDP on this I/O, otherwise this returns 0. 1011 * 1012 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1013 * struct netdev_fcoe_hbainfo *hbainfo); 1014 * Called when the FCoE Protocol stack wants information on the underlying 1015 * device. This information is utilized by the FCoE protocol stack to 1016 * register attributes with Fiber Channel management service as per the 1017 * FC-GS Fabric Device Management Information(FDMI) specification. 1018 * 1019 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1020 * Called when the underlying device wants to override default World Wide 1021 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1022 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1023 * protocol stack to use. 1024 * 1025 * RFS acceleration. 1026 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1027 * u16 rxq_index, u32 flow_id); 1028 * Set hardware filter for RFS. rxq_index is the target queue index; 1029 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1030 * Return the filter ID on success, or a negative error code. 1031 * 1032 * Slave management functions (for bridge, bonding, etc). 1033 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1034 * Called to make another netdev an underling. 1035 * 1036 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1037 * Called to release previously enslaved netdev. 1038 * 1039 * Feature/offload setting functions. 1040 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1041 * netdev_features_t features); 1042 * Adjusts the requested feature flags according to device-specific 1043 * constraints, and returns the resulting flags. Must not modify 1044 * the device state. 1045 * 1046 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1047 * Called to update device configuration to new features. Passed 1048 * feature set might be less than what was returned by ndo_fix_features()). 1049 * Must return >0 or -errno if it changed dev->features itself. 1050 * 1051 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1052 * struct net_device *dev, 1053 * const unsigned char *addr, u16 vid, u16 flags) 1054 * Adds an FDB entry to dev for addr. 1055 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1056 * struct net_device *dev, 1057 * const unsigned char *addr, u16 vid) 1058 * Deletes the FDB entry from dev coresponding to addr. 1059 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1060 * struct net_device *dev, struct net_device *filter_dev, 1061 * int *idx) 1062 * Used to add FDB entries to dump requests. Implementers should add 1063 * entries to skb and update idx with the number of entries. 1064 * 1065 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1066 * u16 flags) 1067 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1068 * struct net_device *dev, u32 filter_mask, 1069 * int nlflags) 1070 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1071 * u16 flags); 1072 * 1073 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1074 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1075 * which do not represent real hardware may define this to allow their 1076 * userspace components to manage their virtual carrier state. Devices 1077 * that determine carrier state from physical hardware properties (eg 1078 * network cables) or protocol-dependent mechanisms (eg 1079 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1080 * 1081 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1082 * struct netdev_phys_item_id *ppid); 1083 * Called to get ID of physical port of this device. If driver does 1084 * not implement this, it is assumed that the hw is not able to have 1085 * multiple net devices on single physical port. 1086 * 1087 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1088 * struct udp_tunnel_info *ti); 1089 * Called by UDP tunnel to notify a driver about the UDP port and socket 1090 * address family that a UDP tunnel is listnening to. It is called only 1091 * when a new port starts listening. The operation is protected by the 1092 * RTNL. 1093 * 1094 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1095 * struct udp_tunnel_info *ti); 1096 * Called by UDP tunnel to notify the driver about a UDP port and socket 1097 * address family that the UDP tunnel is not listening to anymore. The 1098 * operation is protected by the RTNL. 1099 * 1100 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1101 * struct net_device *dev) 1102 * Called by upper layer devices to accelerate switching or other 1103 * station functionality into hardware. 'pdev is the lowerdev 1104 * to use for the offload and 'dev' is the net device that will 1105 * back the offload. Returns a pointer to the private structure 1106 * the upper layer will maintain. 1107 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1108 * Called by upper layer device to delete the station created 1109 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1110 * the station and priv is the structure returned by the add 1111 * operation. 1112 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1113 * struct net_device *dev, 1114 * void *priv); 1115 * Callback to use for xmit over the accelerated station. This 1116 * is used in place of ndo_start_xmit on accelerated net 1117 * devices. 1118 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1119 * int queue_index, u32 maxrate); 1120 * Called when a user wants to set a max-rate limitation of specific 1121 * TX queue. 1122 * int (*ndo_get_iflink)(const struct net_device *dev); 1123 * Called to get the iflink value of this device. 1124 * void (*ndo_change_proto_down)(struct net_device *dev, 1125 * bool proto_down); 1126 * This function is used to pass protocol port error state information 1127 * to the switch driver. The switch driver can react to the proto_down 1128 * by doing a phys down on the associated switch port. 1129 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1130 * This function is used to get egress tunnel information for given skb. 1131 * This is useful for retrieving outer tunnel header parameters while 1132 * sampling packet. 1133 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1134 * This function is used to specify the headroom that the skb must 1135 * consider when allocation skb during packet reception. Setting 1136 * appropriate rx headroom value allows avoiding skb head copy on 1137 * forward. Setting a negative value resets the rx headroom to the 1138 * default value. 1139 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1140 * This function is used to set or query state related to XDP on the 1141 * netdevice. See definition of enum xdp_netdev_command for details. 1142 * 1143 */ 1144 struct net_device_ops { 1145 int (*ndo_init)(struct net_device *dev); 1146 void (*ndo_uninit)(struct net_device *dev); 1147 int (*ndo_open)(struct net_device *dev); 1148 int (*ndo_stop)(struct net_device *dev); 1149 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1150 struct net_device *dev); 1151 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1152 struct net_device *dev, 1153 netdev_features_t features); 1154 u16 (*ndo_select_queue)(struct net_device *dev, 1155 struct sk_buff *skb, 1156 void *accel_priv, 1157 select_queue_fallback_t fallback); 1158 void (*ndo_change_rx_flags)(struct net_device *dev, 1159 int flags); 1160 void (*ndo_set_rx_mode)(struct net_device *dev); 1161 int (*ndo_set_mac_address)(struct net_device *dev, 1162 void *addr); 1163 int (*ndo_validate_addr)(struct net_device *dev); 1164 int (*ndo_do_ioctl)(struct net_device *dev, 1165 struct ifreq *ifr, int cmd); 1166 int (*ndo_set_config)(struct net_device *dev, 1167 struct ifmap *map); 1168 int (*ndo_change_mtu)(struct net_device *dev, 1169 int new_mtu); 1170 int (*ndo_neigh_setup)(struct net_device *dev, 1171 struct neigh_parms *); 1172 void (*ndo_tx_timeout) (struct net_device *dev); 1173 1174 void (*ndo_get_stats64)(struct net_device *dev, 1175 struct rtnl_link_stats64 *storage); 1176 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1177 int (*ndo_get_offload_stats)(int attr_id, 1178 const struct net_device *dev, 1179 void *attr_data); 1180 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1181 1182 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1183 __be16 proto, u16 vid); 1184 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1185 __be16 proto, u16 vid); 1186 #ifdef CONFIG_NET_POLL_CONTROLLER 1187 void (*ndo_poll_controller)(struct net_device *dev); 1188 int (*ndo_netpoll_setup)(struct net_device *dev, 1189 struct netpoll_info *info); 1190 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1191 #endif 1192 int (*ndo_set_vf_mac)(struct net_device *dev, 1193 int queue, u8 *mac); 1194 int (*ndo_set_vf_vlan)(struct net_device *dev, 1195 int queue, u16 vlan, 1196 u8 qos, __be16 proto); 1197 int (*ndo_set_vf_rate)(struct net_device *dev, 1198 int vf, int min_tx_rate, 1199 int max_tx_rate); 1200 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1201 int vf, bool setting); 1202 int (*ndo_set_vf_trust)(struct net_device *dev, 1203 int vf, bool setting); 1204 int (*ndo_get_vf_config)(struct net_device *dev, 1205 int vf, 1206 struct ifla_vf_info *ivf); 1207 int (*ndo_set_vf_link_state)(struct net_device *dev, 1208 int vf, int link_state); 1209 int (*ndo_get_vf_stats)(struct net_device *dev, 1210 int vf, 1211 struct ifla_vf_stats 1212 *vf_stats); 1213 int (*ndo_set_vf_port)(struct net_device *dev, 1214 int vf, 1215 struct nlattr *port[]); 1216 int (*ndo_get_vf_port)(struct net_device *dev, 1217 int vf, struct sk_buff *skb); 1218 int (*ndo_set_vf_guid)(struct net_device *dev, 1219 int vf, u64 guid, 1220 int guid_type); 1221 int (*ndo_set_vf_rss_query_en)( 1222 struct net_device *dev, 1223 int vf, bool setting); 1224 int (*ndo_setup_tc)(struct net_device *dev, 1225 u32 handle, 1226 __be16 protocol, 1227 struct tc_to_netdev *tc); 1228 #if IS_ENABLED(CONFIG_FCOE) 1229 int (*ndo_fcoe_enable)(struct net_device *dev); 1230 int (*ndo_fcoe_disable)(struct net_device *dev); 1231 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1232 u16 xid, 1233 struct scatterlist *sgl, 1234 unsigned int sgc); 1235 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1236 u16 xid); 1237 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1238 u16 xid, 1239 struct scatterlist *sgl, 1240 unsigned int sgc); 1241 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1242 struct netdev_fcoe_hbainfo *hbainfo); 1243 #endif 1244 1245 #if IS_ENABLED(CONFIG_LIBFCOE) 1246 #define NETDEV_FCOE_WWNN 0 1247 #define NETDEV_FCOE_WWPN 1 1248 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1249 u64 *wwn, int type); 1250 #endif 1251 1252 #ifdef CONFIG_RFS_ACCEL 1253 int (*ndo_rx_flow_steer)(struct net_device *dev, 1254 const struct sk_buff *skb, 1255 u16 rxq_index, 1256 u32 flow_id); 1257 #endif 1258 int (*ndo_add_slave)(struct net_device *dev, 1259 struct net_device *slave_dev); 1260 int (*ndo_del_slave)(struct net_device *dev, 1261 struct net_device *slave_dev); 1262 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1263 netdev_features_t features); 1264 int (*ndo_set_features)(struct net_device *dev, 1265 netdev_features_t features); 1266 int (*ndo_neigh_construct)(struct net_device *dev, 1267 struct neighbour *n); 1268 void (*ndo_neigh_destroy)(struct net_device *dev, 1269 struct neighbour *n); 1270 1271 int (*ndo_fdb_add)(struct ndmsg *ndm, 1272 struct nlattr *tb[], 1273 struct net_device *dev, 1274 const unsigned char *addr, 1275 u16 vid, 1276 u16 flags); 1277 int (*ndo_fdb_del)(struct ndmsg *ndm, 1278 struct nlattr *tb[], 1279 struct net_device *dev, 1280 const unsigned char *addr, 1281 u16 vid); 1282 int (*ndo_fdb_dump)(struct sk_buff *skb, 1283 struct netlink_callback *cb, 1284 struct net_device *dev, 1285 struct net_device *filter_dev, 1286 int *idx); 1287 1288 int (*ndo_bridge_setlink)(struct net_device *dev, 1289 struct nlmsghdr *nlh, 1290 u16 flags); 1291 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1292 u32 pid, u32 seq, 1293 struct net_device *dev, 1294 u32 filter_mask, 1295 int nlflags); 1296 int (*ndo_bridge_dellink)(struct net_device *dev, 1297 struct nlmsghdr *nlh, 1298 u16 flags); 1299 int (*ndo_change_carrier)(struct net_device *dev, 1300 bool new_carrier); 1301 int (*ndo_get_phys_port_id)(struct net_device *dev, 1302 struct netdev_phys_item_id *ppid); 1303 int (*ndo_get_phys_port_name)(struct net_device *dev, 1304 char *name, size_t len); 1305 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1306 struct udp_tunnel_info *ti); 1307 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1308 struct udp_tunnel_info *ti); 1309 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1310 struct net_device *dev); 1311 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1312 void *priv); 1313 1314 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1315 struct net_device *dev, 1316 void *priv); 1317 int (*ndo_get_lock_subclass)(struct net_device *dev); 1318 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1319 int queue_index, 1320 u32 maxrate); 1321 int (*ndo_get_iflink)(const struct net_device *dev); 1322 int (*ndo_change_proto_down)(struct net_device *dev, 1323 bool proto_down); 1324 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1325 struct sk_buff *skb); 1326 void (*ndo_set_rx_headroom)(struct net_device *dev, 1327 int needed_headroom); 1328 int (*ndo_xdp)(struct net_device *dev, 1329 struct netdev_xdp *xdp); 1330 }; 1331 1332 /** 1333 * enum net_device_priv_flags - &struct net_device priv_flags 1334 * 1335 * These are the &struct net_device, they are only set internally 1336 * by drivers and used in the kernel. These flags are invisible to 1337 * userspace; this means that the order of these flags can change 1338 * during any kernel release. 1339 * 1340 * You should have a pretty good reason to be extending these flags. 1341 * 1342 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1343 * @IFF_EBRIDGE: Ethernet bridging device 1344 * @IFF_BONDING: bonding master or slave 1345 * @IFF_ISATAP: ISATAP interface (RFC4214) 1346 * @IFF_WAN_HDLC: WAN HDLC device 1347 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1348 * release skb->dst 1349 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1350 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1351 * @IFF_MACVLAN_PORT: device used as macvlan port 1352 * @IFF_BRIDGE_PORT: device used as bridge port 1353 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1354 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1355 * @IFF_UNICAST_FLT: Supports unicast filtering 1356 * @IFF_TEAM_PORT: device used as team port 1357 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1358 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1359 * change when it's running 1360 * @IFF_MACVLAN: Macvlan device 1361 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1362 * underlying stacked devices 1363 * @IFF_IPVLAN_MASTER: IPvlan master device 1364 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1365 * @IFF_L3MDEV_MASTER: device is an L3 master device 1366 * @IFF_NO_QUEUE: device can run without qdisc attached 1367 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1368 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1369 * @IFF_TEAM: device is a team device 1370 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1371 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1372 * entity (i.e. the master device for bridged veth) 1373 * @IFF_MACSEC: device is a MACsec device 1374 */ 1375 enum netdev_priv_flags { 1376 IFF_802_1Q_VLAN = 1<<0, 1377 IFF_EBRIDGE = 1<<1, 1378 IFF_BONDING = 1<<2, 1379 IFF_ISATAP = 1<<3, 1380 IFF_WAN_HDLC = 1<<4, 1381 IFF_XMIT_DST_RELEASE = 1<<5, 1382 IFF_DONT_BRIDGE = 1<<6, 1383 IFF_DISABLE_NETPOLL = 1<<7, 1384 IFF_MACVLAN_PORT = 1<<8, 1385 IFF_BRIDGE_PORT = 1<<9, 1386 IFF_OVS_DATAPATH = 1<<10, 1387 IFF_TX_SKB_SHARING = 1<<11, 1388 IFF_UNICAST_FLT = 1<<12, 1389 IFF_TEAM_PORT = 1<<13, 1390 IFF_SUPP_NOFCS = 1<<14, 1391 IFF_LIVE_ADDR_CHANGE = 1<<15, 1392 IFF_MACVLAN = 1<<16, 1393 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1394 IFF_IPVLAN_MASTER = 1<<18, 1395 IFF_IPVLAN_SLAVE = 1<<19, 1396 IFF_L3MDEV_MASTER = 1<<20, 1397 IFF_NO_QUEUE = 1<<21, 1398 IFF_OPENVSWITCH = 1<<22, 1399 IFF_L3MDEV_SLAVE = 1<<23, 1400 IFF_TEAM = 1<<24, 1401 IFF_RXFH_CONFIGURED = 1<<25, 1402 IFF_PHONY_HEADROOM = 1<<26, 1403 IFF_MACSEC = 1<<27, 1404 }; 1405 1406 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1407 #define IFF_EBRIDGE IFF_EBRIDGE 1408 #define IFF_BONDING IFF_BONDING 1409 #define IFF_ISATAP IFF_ISATAP 1410 #define IFF_WAN_HDLC IFF_WAN_HDLC 1411 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1412 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1413 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1414 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1415 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1416 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1417 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1418 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1419 #define IFF_TEAM_PORT IFF_TEAM_PORT 1420 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1421 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1422 #define IFF_MACVLAN IFF_MACVLAN 1423 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1424 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1425 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1426 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1427 #define IFF_NO_QUEUE IFF_NO_QUEUE 1428 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1429 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1430 #define IFF_TEAM IFF_TEAM 1431 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1432 #define IFF_MACSEC IFF_MACSEC 1433 1434 /** 1435 * struct net_device - The DEVICE structure. 1436 * Actually, this whole structure is a big mistake. It mixes I/O 1437 * data with strictly "high-level" data, and it has to know about 1438 * almost every data structure used in the INET module. 1439 * 1440 * @name: This is the first field of the "visible" part of this structure 1441 * (i.e. as seen by users in the "Space.c" file). It is the name 1442 * of the interface. 1443 * 1444 * @name_hlist: Device name hash chain, please keep it close to name[] 1445 * @ifalias: SNMP alias 1446 * @mem_end: Shared memory end 1447 * @mem_start: Shared memory start 1448 * @base_addr: Device I/O address 1449 * @irq: Device IRQ number 1450 * 1451 * @carrier_changes: Stats to monitor carrier on<->off transitions 1452 * 1453 * @state: Generic network queuing layer state, see netdev_state_t 1454 * @dev_list: The global list of network devices 1455 * @napi_list: List entry used for polling NAPI devices 1456 * @unreg_list: List entry when we are unregistering the 1457 * device; see the function unregister_netdev 1458 * @close_list: List entry used when we are closing the device 1459 * @ptype_all: Device-specific packet handlers for all protocols 1460 * @ptype_specific: Device-specific, protocol-specific packet handlers 1461 * 1462 * @adj_list: Directly linked devices, like slaves for bonding 1463 * @features: Currently active device features 1464 * @hw_features: User-changeable features 1465 * 1466 * @wanted_features: User-requested features 1467 * @vlan_features: Mask of features inheritable by VLAN devices 1468 * 1469 * @hw_enc_features: Mask of features inherited by encapsulating devices 1470 * This field indicates what encapsulation 1471 * offloads the hardware is capable of doing, 1472 * and drivers will need to set them appropriately. 1473 * 1474 * @mpls_features: Mask of features inheritable by MPLS 1475 * 1476 * @ifindex: interface index 1477 * @group: The group the device belongs to 1478 * 1479 * @stats: Statistics struct, which was left as a legacy, use 1480 * rtnl_link_stats64 instead 1481 * 1482 * @rx_dropped: Dropped packets by core network, 1483 * do not use this in drivers 1484 * @tx_dropped: Dropped packets by core network, 1485 * do not use this in drivers 1486 * @rx_nohandler: nohandler dropped packets by core network on 1487 * inactive devices, do not use this in drivers 1488 * 1489 * @wireless_handlers: List of functions to handle Wireless Extensions, 1490 * instead of ioctl, 1491 * see <net/iw_handler.h> for details. 1492 * @wireless_data: Instance data managed by the core of wireless extensions 1493 * 1494 * @netdev_ops: Includes several pointers to callbacks, 1495 * if one wants to override the ndo_*() functions 1496 * @ethtool_ops: Management operations 1497 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1498 * discovery handling. Necessary for e.g. 6LoWPAN. 1499 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1500 * of Layer 2 headers. 1501 * 1502 * @flags: Interface flags (a la BSD) 1503 * @priv_flags: Like 'flags' but invisible to userspace, 1504 * see if.h for the definitions 1505 * @gflags: Global flags ( kept as legacy ) 1506 * @padded: How much padding added by alloc_netdev() 1507 * @operstate: RFC2863 operstate 1508 * @link_mode: Mapping policy to operstate 1509 * @if_port: Selectable AUI, TP, ... 1510 * @dma: DMA channel 1511 * @mtu: Interface MTU value 1512 * @min_mtu: Interface Minimum MTU value 1513 * @max_mtu: Interface Maximum MTU value 1514 * @type: Interface hardware type 1515 * @hard_header_len: Maximum hardware header length. 1516 * @min_header_len: Minimum hardware header length 1517 * 1518 * @needed_headroom: Extra headroom the hardware may need, but not in all 1519 * cases can this be guaranteed 1520 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1521 * cases can this be guaranteed. Some cases also use 1522 * LL_MAX_HEADER instead to allocate the skb 1523 * 1524 * interface address info: 1525 * 1526 * @perm_addr: Permanent hw address 1527 * @addr_assign_type: Hw address assignment type 1528 * @addr_len: Hardware address length 1529 * @neigh_priv_len: Used in neigh_alloc() 1530 * @dev_id: Used to differentiate devices that share 1531 * the same link layer address 1532 * @dev_port: Used to differentiate devices that share 1533 * the same function 1534 * @addr_list_lock: XXX: need comments on this one 1535 * @uc_promisc: Counter that indicates promiscuous mode 1536 * has been enabled due to the need to listen to 1537 * additional unicast addresses in a device that 1538 * does not implement ndo_set_rx_mode() 1539 * @uc: unicast mac addresses 1540 * @mc: multicast mac addresses 1541 * @dev_addrs: list of device hw addresses 1542 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1543 * @promiscuity: Number of times the NIC is told to work in 1544 * promiscuous mode; if it becomes 0 the NIC will 1545 * exit promiscuous mode 1546 * @allmulti: Counter, enables or disables allmulticast mode 1547 * 1548 * @vlan_info: VLAN info 1549 * @dsa_ptr: dsa specific data 1550 * @tipc_ptr: TIPC specific data 1551 * @atalk_ptr: AppleTalk link 1552 * @ip_ptr: IPv4 specific data 1553 * @dn_ptr: DECnet specific data 1554 * @ip6_ptr: IPv6 specific data 1555 * @ax25_ptr: AX.25 specific data 1556 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1557 * 1558 * @dev_addr: Hw address (before bcast, 1559 * because most packets are unicast) 1560 * 1561 * @_rx: Array of RX queues 1562 * @num_rx_queues: Number of RX queues 1563 * allocated at register_netdev() time 1564 * @real_num_rx_queues: Number of RX queues currently active in device 1565 * 1566 * @rx_handler: handler for received packets 1567 * @rx_handler_data: XXX: need comments on this one 1568 * @ingress_queue: XXX: need comments on this one 1569 * @broadcast: hw bcast address 1570 * 1571 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1572 * indexed by RX queue number. Assigned by driver. 1573 * This must only be set if the ndo_rx_flow_steer 1574 * operation is defined 1575 * @index_hlist: Device index hash chain 1576 * 1577 * @_tx: Array of TX queues 1578 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1579 * @real_num_tx_queues: Number of TX queues currently active in device 1580 * @qdisc: Root qdisc from userspace point of view 1581 * @tx_queue_len: Max frames per queue allowed 1582 * @tx_global_lock: XXX: need comments on this one 1583 * 1584 * @xps_maps: XXX: need comments on this one 1585 * 1586 * @watchdog_timeo: Represents the timeout that is used by 1587 * the watchdog (see dev_watchdog()) 1588 * @watchdog_timer: List of timers 1589 * 1590 * @pcpu_refcnt: Number of references to this device 1591 * @todo_list: Delayed register/unregister 1592 * @link_watch_list: XXX: need comments on this one 1593 * 1594 * @reg_state: Register/unregister state machine 1595 * @dismantle: Device is going to be freed 1596 * @rtnl_link_state: This enum represents the phases of creating 1597 * a new link 1598 * 1599 * @destructor: Called from unregister, 1600 * can be used to call free_netdev 1601 * @npinfo: XXX: need comments on this one 1602 * @nd_net: Network namespace this network device is inside 1603 * 1604 * @ml_priv: Mid-layer private 1605 * @lstats: Loopback statistics 1606 * @tstats: Tunnel statistics 1607 * @dstats: Dummy statistics 1608 * @vstats: Virtual ethernet statistics 1609 * 1610 * @garp_port: GARP 1611 * @mrp_port: MRP 1612 * 1613 * @dev: Class/net/name entry 1614 * @sysfs_groups: Space for optional device, statistics and wireless 1615 * sysfs groups 1616 * 1617 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1618 * @rtnl_link_ops: Rtnl_link_ops 1619 * 1620 * @gso_max_size: Maximum size of generic segmentation offload 1621 * @gso_max_segs: Maximum number of segments that can be passed to the 1622 * NIC for GSO 1623 * 1624 * @dcbnl_ops: Data Center Bridging netlink ops 1625 * @num_tc: Number of traffic classes in the net device 1626 * @tc_to_txq: XXX: need comments on this one 1627 * @prio_tc_map: XXX: need comments on this one 1628 * 1629 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1630 * 1631 * @priomap: XXX: need comments on this one 1632 * @phydev: Physical device may attach itself 1633 * for hardware timestamping 1634 * 1635 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1636 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1637 * 1638 * @proto_down: protocol port state information can be sent to the 1639 * switch driver and used to set the phys state of the 1640 * switch port. 1641 * 1642 * FIXME: cleanup struct net_device such that network protocol info 1643 * moves out. 1644 */ 1645 1646 struct net_device { 1647 char name[IFNAMSIZ]; 1648 struct hlist_node name_hlist; 1649 char *ifalias; 1650 /* 1651 * I/O specific fields 1652 * FIXME: Merge these and struct ifmap into one 1653 */ 1654 unsigned long mem_end; 1655 unsigned long mem_start; 1656 unsigned long base_addr; 1657 int irq; 1658 1659 atomic_t carrier_changes; 1660 1661 /* 1662 * Some hardware also needs these fields (state,dev_list, 1663 * napi_list,unreg_list,close_list) but they are not 1664 * part of the usual set specified in Space.c. 1665 */ 1666 1667 unsigned long state; 1668 1669 struct list_head dev_list; 1670 struct list_head napi_list; 1671 struct list_head unreg_list; 1672 struct list_head close_list; 1673 struct list_head ptype_all; 1674 struct list_head ptype_specific; 1675 1676 struct { 1677 struct list_head upper; 1678 struct list_head lower; 1679 } adj_list; 1680 1681 netdev_features_t features; 1682 netdev_features_t hw_features; 1683 netdev_features_t wanted_features; 1684 netdev_features_t vlan_features; 1685 netdev_features_t hw_enc_features; 1686 netdev_features_t mpls_features; 1687 netdev_features_t gso_partial_features; 1688 1689 int ifindex; 1690 int group; 1691 1692 struct net_device_stats stats; 1693 1694 atomic_long_t rx_dropped; 1695 atomic_long_t tx_dropped; 1696 atomic_long_t rx_nohandler; 1697 1698 #ifdef CONFIG_WIRELESS_EXT 1699 const struct iw_handler_def *wireless_handlers; 1700 struct iw_public_data *wireless_data; 1701 #endif 1702 const struct net_device_ops *netdev_ops; 1703 const struct ethtool_ops *ethtool_ops; 1704 #ifdef CONFIG_NET_SWITCHDEV 1705 const struct switchdev_ops *switchdev_ops; 1706 #endif 1707 #ifdef CONFIG_NET_L3_MASTER_DEV 1708 const struct l3mdev_ops *l3mdev_ops; 1709 #endif 1710 #if IS_ENABLED(CONFIG_IPV6) 1711 const struct ndisc_ops *ndisc_ops; 1712 #endif 1713 1714 #ifdef CONFIG_XFRM 1715 const struct xfrmdev_ops *xfrmdev_ops; 1716 #endif 1717 1718 const struct header_ops *header_ops; 1719 1720 unsigned int flags; 1721 unsigned int priv_flags; 1722 1723 unsigned short gflags; 1724 unsigned short padded; 1725 1726 unsigned char operstate; 1727 unsigned char link_mode; 1728 1729 unsigned char if_port; 1730 unsigned char dma; 1731 1732 unsigned int mtu; 1733 unsigned int min_mtu; 1734 unsigned int max_mtu; 1735 unsigned short type; 1736 unsigned short hard_header_len; 1737 unsigned char min_header_len; 1738 1739 unsigned short needed_headroom; 1740 unsigned short needed_tailroom; 1741 1742 /* Interface address info. */ 1743 unsigned char perm_addr[MAX_ADDR_LEN]; 1744 unsigned char addr_assign_type; 1745 unsigned char addr_len; 1746 unsigned short neigh_priv_len; 1747 unsigned short dev_id; 1748 unsigned short dev_port; 1749 spinlock_t addr_list_lock; 1750 unsigned char name_assign_type; 1751 bool uc_promisc; 1752 struct netdev_hw_addr_list uc; 1753 struct netdev_hw_addr_list mc; 1754 struct netdev_hw_addr_list dev_addrs; 1755 1756 #ifdef CONFIG_SYSFS 1757 struct kset *queues_kset; 1758 #endif 1759 unsigned int promiscuity; 1760 unsigned int allmulti; 1761 1762 1763 /* Protocol-specific pointers */ 1764 1765 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1766 struct vlan_info __rcu *vlan_info; 1767 #endif 1768 #if IS_ENABLED(CONFIG_NET_DSA) 1769 struct dsa_switch_tree *dsa_ptr; 1770 #endif 1771 #if IS_ENABLED(CONFIG_TIPC) 1772 struct tipc_bearer __rcu *tipc_ptr; 1773 #endif 1774 void *atalk_ptr; 1775 struct in_device __rcu *ip_ptr; 1776 struct dn_dev __rcu *dn_ptr; 1777 struct inet6_dev __rcu *ip6_ptr; 1778 void *ax25_ptr; 1779 struct wireless_dev *ieee80211_ptr; 1780 struct wpan_dev *ieee802154_ptr; 1781 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1782 struct mpls_dev __rcu *mpls_ptr; 1783 #endif 1784 1785 /* 1786 * Cache lines mostly used on receive path (including eth_type_trans()) 1787 */ 1788 /* Interface address info used in eth_type_trans() */ 1789 unsigned char *dev_addr; 1790 1791 #ifdef CONFIG_SYSFS 1792 struct netdev_rx_queue *_rx; 1793 1794 unsigned int num_rx_queues; 1795 unsigned int real_num_rx_queues; 1796 #endif 1797 1798 struct bpf_prog __rcu *xdp_prog; 1799 unsigned long gro_flush_timeout; 1800 rx_handler_func_t __rcu *rx_handler; 1801 void __rcu *rx_handler_data; 1802 1803 #ifdef CONFIG_NET_CLS_ACT 1804 struct tcf_proto __rcu *ingress_cl_list; 1805 #endif 1806 struct netdev_queue __rcu *ingress_queue; 1807 #ifdef CONFIG_NETFILTER_INGRESS 1808 struct nf_hook_entry __rcu *nf_hooks_ingress; 1809 #endif 1810 1811 unsigned char broadcast[MAX_ADDR_LEN]; 1812 #ifdef CONFIG_RFS_ACCEL 1813 struct cpu_rmap *rx_cpu_rmap; 1814 #endif 1815 struct hlist_node index_hlist; 1816 1817 /* 1818 * Cache lines mostly used on transmit path 1819 */ 1820 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1821 unsigned int num_tx_queues; 1822 unsigned int real_num_tx_queues; 1823 struct Qdisc *qdisc; 1824 #ifdef CONFIG_NET_SCHED 1825 DECLARE_HASHTABLE (qdisc_hash, 4); 1826 #endif 1827 unsigned long tx_queue_len; 1828 spinlock_t tx_global_lock; 1829 int watchdog_timeo; 1830 1831 #ifdef CONFIG_XPS 1832 struct xps_dev_maps __rcu *xps_maps; 1833 #endif 1834 #ifdef CONFIG_NET_CLS_ACT 1835 struct tcf_proto __rcu *egress_cl_list; 1836 #endif 1837 1838 /* These may be needed for future network-power-down code. */ 1839 struct timer_list watchdog_timer; 1840 1841 int __percpu *pcpu_refcnt; 1842 struct list_head todo_list; 1843 1844 struct list_head link_watch_list; 1845 1846 enum { NETREG_UNINITIALIZED=0, 1847 NETREG_REGISTERED, /* completed register_netdevice */ 1848 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1849 NETREG_UNREGISTERED, /* completed unregister todo */ 1850 NETREG_RELEASED, /* called free_netdev */ 1851 NETREG_DUMMY, /* dummy device for NAPI poll */ 1852 } reg_state:8; 1853 1854 bool dismantle; 1855 1856 enum { 1857 RTNL_LINK_INITIALIZED, 1858 RTNL_LINK_INITIALIZING, 1859 } rtnl_link_state:16; 1860 1861 void (*destructor)(struct net_device *dev); 1862 1863 #ifdef CONFIG_NETPOLL 1864 struct netpoll_info __rcu *npinfo; 1865 #endif 1866 1867 possible_net_t nd_net; 1868 1869 /* mid-layer private */ 1870 union { 1871 void *ml_priv; 1872 struct pcpu_lstats __percpu *lstats; 1873 struct pcpu_sw_netstats __percpu *tstats; 1874 struct pcpu_dstats __percpu *dstats; 1875 struct pcpu_vstats __percpu *vstats; 1876 }; 1877 1878 #if IS_ENABLED(CONFIG_GARP) 1879 struct garp_port __rcu *garp_port; 1880 #endif 1881 #if IS_ENABLED(CONFIG_MRP) 1882 struct mrp_port __rcu *mrp_port; 1883 #endif 1884 1885 struct device dev; 1886 const struct attribute_group *sysfs_groups[4]; 1887 const struct attribute_group *sysfs_rx_queue_group; 1888 1889 const struct rtnl_link_ops *rtnl_link_ops; 1890 1891 /* for setting kernel sock attribute on TCP connection setup */ 1892 #define GSO_MAX_SIZE 65536 1893 unsigned int gso_max_size; 1894 #define GSO_MAX_SEGS 65535 1895 u16 gso_max_segs; 1896 1897 #ifdef CONFIG_DCB 1898 const struct dcbnl_rtnl_ops *dcbnl_ops; 1899 #endif 1900 u8 num_tc; 1901 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1902 u8 prio_tc_map[TC_BITMASK + 1]; 1903 1904 #if IS_ENABLED(CONFIG_FCOE) 1905 unsigned int fcoe_ddp_xid; 1906 #endif 1907 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1908 struct netprio_map __rcu *priomap; 1909 #endif 1910 struct phy_device *phydev; 1911 struct lock_class_key *qdisc_tx_busylock; 1912 struct lock_class_key *qdisc_running_key; 1913 bool proto_down; 1914 }; 1915 #define to_net_dev(d) container_of(d, struct net_device, dev) 1916 1917 static inline bool netif_elide_gro(const struct net_device *dev) 1918 { 1919 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1920 return true; 1921 return false; 1922 } 1923 1924 #define NETDEV_ALIGN 32 1925 1926 static inline 1927 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1928 { 1929 return dev->prio_tc_map[prio & TC_BITMASK]; 1930 } 1931 1932 static inline 1933 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1934 { 1935 if (tc >= dev->num_tc) 1936 return -EINVAL; 1937 1938 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1939 return 0; 1940 } 1941 1942 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1943 void netdev_reset_tc(struct net_device *dev); 1944 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1946 1947 static inline 1948 int netdev_get_num_tc(struct net_device *dev) 1949 { 1950 return dev->num_tc; 1951 } 1952 1953 static inline 1954 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1955 unsigned int index) 1956 { 1957 return &dev->_tx[index]; 1958 } 1959 1960 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1961 const struct sk_buff *skb) 1962 { 1963 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1964 } 1965 1966 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1967 void (*f)(struct net_device *, 1968 struct netdev_queue *, 1969 void *), 1970 void *arg) 1971 { 1972 unsigned int i; 1973 1974 for (i = 0; i < dev->num_tx_queues; i++) 1975 f(dev, &dev->_tx[i], arg); 1976 } 1977 1978 #define netdev_lockdep_set_classes(dev) \ 1979 { \ 1980 static struct lock_class_key qdisc_tx_busylock_key; \ 1981 static struct lock_class_key qdisc_running_key; \ 1982 static struct lock_class_key qdisc_xmit_lock_key; \ 1983 static struct lock_class_key dev_addr_list_lock_key; \ 1984 unsigned int i; \ 1985 \ 1986 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1987 (dev)->qdisc_running_key = &qdisc_running_key; \ 1988 lockdep_set_class(&(dev)->addr_list_lock, \ 1989 &dev_addr_list_lock_key); \ 1990 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1991 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1992 &qdisc_xmit_lock_key); \ 1993 } 1994 1995 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1996 struct sk_buff *skb, 1997 void *accel_priv); 1998 1999 /* returns the headroom that the master device needs to take in account 2000 * when forwarding to this dev 2001 */ 2002 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2003 { 2004 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2005 } 2006 2007 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2008 { 2009 if (dev->netdev_ops->ndo_set_rx_headroom) 2010 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2011 } 2012 2013 /* set the device rx headroom to the dev's default */ 2014 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2015 { 2016 netdev_set_rx_headroom(dev, -1); 2017 } 2018 2019 /* 2020 * Net namespace inlines 2021 */ 2022 static inline 2023 struct net *dev_net(const struct net_device *dev) 2024 { 2025 return read_pnet(&dev->nd_net); 2026 } 2027 2028 static inline 2029 void dev_net_set(struct net_device *dev, struct net *net) 2030 { 2031 write_pnet(&dev->nd_net, net); 2032 } 2033 2034 /** 2035 * netdev_priv - access network device private data 2036 * @dev: network device 2037 * 2038 * Get network device private data 2039 */ 2040 static inline void *netdev_priv(const struct net_device *dev) 2041 { 2042 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2043 } 2044 2045 /* Set the sysfs physical device reference for the network logical device 2046 * if set prior to registration will cause a symlink during initialization. 2047 */ 2048 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2049 2050 /* Set the sysfs device type for the network logical device to allow 2051 * fine-grained identification of different network device types. For 2052 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2053 */ 2054 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2055 2056 /* Default NAPI poll() weight 2057 * Device drivers are strongly advised to not use bigger value 2058 */ 2059 #define NAPI_POLL_WEIGHT 64 2060 2061 /** 2062 * netif_napi_add - initialize a NAPI context 2063 * @dev: network device 2064 * @napi: NAPI context 2065 * @poll: polling function 2066 * @weight: default weight 2067 * 2068 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2069 * *any* of the other NAPI-related functions. 2070 */ 2071 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2072 int (*poll)(struct napi_struct *, int), int weight); 2073 2074 /** 2075 * netif_tx_napi_add - initialize a NAPI context 2076 * @dev: network device 2077 * @napi: NAPI context 2078 * @poll: polling function 2079 * @weight: default weight 2080 * 2081 * This variant of netif_napi_add() should be used from drivers using NAPI 2082 * to exclusively poll a TX queue. 2083 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2084 */ 2085 static inline void netif_tx_napi_add(struct net_device *dev, 2086 struct napi_struct *napi, 2087 int (*poll)(struct napi_struct *, int), 2088 int weight) 2089 { 2090 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2091 netif_napi_add(dev, napi, poll, weight); 2092 } 2093 2094 /** 2095 * netif_napi_del - remove a NAPI context 2096 * @napi: NAPI context 2097 * 2098 * netif_napi_del() removes a NAPI context from the network device NAPI list 2099 */ 2100 void netif_napi_del(struct napi_struct *napi); 2101 2102 struct napi_gro_cb { 2103 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2104 void *frag0; 2105 2106 /* Length of frag0. */ 2107 unsigned int frag0_len; 2108 2109 /* This indicates where we are processing relative to skb->data. */ 2110 int data_offset; 2111 2112 /* This is non-zero if the packet cannot be merged with the new skb. */ 2113 u16 flush; 2114 2115 /* Save the IP ID here and check when we get to the transport layer */ 2116 u16 flush_id; 2117 2118 /* Number of segments aggregated. */ 2119 u16 count; 2120 2121 /* Start offset for remote checksum offload */ 2122 u16 gro_remcsum_start; 2123 2124 /* jiffies when first packet was created/queued */ 2125 unsigned long age; 2126 2127 /* Used in ipv6_gro_receive() and foo-over-udp */ 2128 u16 proto; 2129 2130 /* This is non-zero if the packet may be of the same flow. */ 2131 u8 same_flow:1; 2132 2133 /* Used in tunnel GRO receive */ 2134 u8 encap_mark:1; 2135 2136 /* GRO checksum is valid */ 2137 u8 csum_valid:1; 2138 2139 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2140 u8 csum_cnt:3; 2141 2142 /* Free the skb? */ 2143 u8 free:2; 2144 #define NAPI_GRO_FREE 1 2145 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2146 2147 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2148 u8 is_ipv6:1; 2149 2150 /* Used in GRE, set in fou/gue_gro_receive */ 2151 u8 is_fou:1; 2152 2153 /* Used to determine if flush_id can be ignored */ 2154 u8 is_atomic:1; 2155 2156 /* Number of gro_receive callbacks this packet already went through */ 2157 u8 recursion_counter:4; 2158 2159 /* 1 bit hole */ 2160 2161 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2162 __wsum csum; 2163 2164 /* used in skb_gro_receive() slow path */ 2165 struct sk_buff *last; 2166 }; 2167 2168 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2169 2170 #define GRO_RECURSION_LIMIT 15 2171 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2172 { 2173 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2174 } 2175 2176 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2177 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2178 struct sk_buff **head, 2179 struct sk_buff *skb) 2180 { 2181 if (unlikely(gro_recursion_inc_test(skb))) { 2182 NAPI_GRO_CB(skb)->flush |= 1; 2183 return NULL; 2184 } 2185 2186 return cb(head, skb); 2187 } 2188 2189 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2190 struct sk_buff *); 2191 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2192 struct sock *sk, 2193 struct sk_buff **head, 2194 struct sk_buff *skb) 2195 { 2196 if (unlikely(gro_recursion_inc_test(skb))) { 2197 NAPI_GRO_CB(skb)->flush |= 1; 2198 return NULL; 2199 } 2200 2201 return cb(sk, head, skb); 2202 } 2203 2204 struct packet_type { 2205 __be16 type; /* This is really htons(ether_type). */ 2206 struct net_device *dev; /* NULL is wildcarded here */ 2207 int (*func) (struct sk_buff *, 2208 struct net_device *, 2209 struct packet_type *, 2210 struct net_device *); 2211 bool (*id_match)(struct packet_type *ptype, 2212 struct sock *sk); 2213 void *af_packet_priv; 2214 struct list_head list; 2215 }; 2216 2217 struct offload_callbacks { 2218 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2219 netdev_features_t features); 2220 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2221 struct sk_buff *skb); 2222 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2223 }; 2224 2225 struct packet_offload { 2226 __be16 type; /* This is really htons(ether_type). */ 2227 u16 priority; 2228 struct offload_callbacks callbacks; 2229 struct list_head list; 2230 }; 2231 2232 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2233 struct pcpu_sw_netstats { 2234 u64 rx_packets; 2235 u64 rx_bytes; 2236 u64 tx_packets; 2237 u64 tx_bytes; 2238 struct u64_stats_sync syncp; 2239 }; 2240 2241 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2242 ({ \ 2243 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2244 if (pcpu_stats) { \ 2245 int __cpu; \ 2246 for_each_possible_cpu(__cpu) { \ 2247 typeof(type) *stat; \ 2248 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2249 u64_stats_init(&stat->syncp); \ 2250 } \ 2251 } \ 2252 pcpu_stats; \ 2253 }) 2254 2255 #define netdev_alloc_pcpu_stats(type) \ 2256 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2257 2258 enum netdev_lag_tx_type { 2259 NETDEV_LAG_TX_TYPE_UNKNOWN, 2260 NETDEV_LAG_TX_TYPE_RANDOM, 2261 NETDEV_LAG_TX_TYPE_BROADCAST, 2262 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2263 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2264 NETDEV_LAG_TX_TYPE_HASH, 2265 }; 2266 2267 struct netdev_lag_upper_info { 2268 enum netdev_lag_tx_type tx_type; 2269 }; 2270 2271 struct netdev_lag_lower_state_info { 2272 u8 link_up : 1, 2273 tx_enabled : 1; 2274 }; 2275 2276 #include <linux/notifier.h> 2277 2278 /* netdevice notifier chain. Please remember to update the rtnetlink 2279 * notification exclusion list in rtnetlink_event() when adding new 2280 * types. 2281 */ 2282 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2283 #define NETDEV_DOWN 0x0002 2284 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2285 detected a hardware crash and restarted 2286 - we can use this eg to kick tcp sessions 2287 once done */ 2288 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2289 #define NETDEV_REGISTER 0x0005 2290 #define NETDEV_UNREGISTER 0x0006 2291 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2292 #define NETDEV_CHANGEADDR 0x0008 2293 #define NETDEV_GOING_DOWN 0x0009 2294 #define NETDEV_CHANGENAME 0x000A 2295 #define NETDEV_FEAT_CHANGE 0x000B 2296 #define NETDEV_BONDING_FAILOVER 0x000C 2297 #define NETDEV_PRE_UP 0x000D 2298 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2299 #define NETDEV_POST_TYPE_CHANGE 0x000F 2300 #define NETDEV_POST_INIT 0x0010 2301 #define NETDEV_UNREGISTER_FINAL 0x0011 2302 #define NETDEV_RELEASE 0x0012 2303 #define NETDEV_NOTIFY_PEERS 0x0013 2304 #define NETDEV_JOIN 0x0014 2305 #define NETDEV_CHANGEUPPER 0x0015 2306 #define NETDEV_RESEND_IGMP 0x0016 2307 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2308 #define NETDEV_CHANGEINFODATA 0x0018 2309 #define NETDEV_BONDING_INFO 0x0019 2310 #define NETDEV_PRECHANGEUPPER 0x001A 2311 #define NETDEV_CHANGELOWERSTATE 0x001B 2312 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2313 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2314 2315 int register_netdevice_notifier(struct notifier_block *nb); 2316 int unregister_netdevice_notifier(struct notifier_block *nb); 2317 2318 struct netdev_notifier_info { 2319 struct net_device *dev; 2320 }; 2321 2322 struct netdev_notifier_change_info { 2323 struct netdev_notifier_info info; /* must be first */ 2324 unsigned int flags_changed; 2325 }; 2326 2327 struct netdev_notifier_changeupper_info { 2328 struct netdev_notifier_info info; /* must be first */ 2329 struct net_device *upper_dev; /* new upper dev */ 2330 bool master; /* is upper dev master */ 2331 bool linking; /* is the notification for link or unlink */ 2332 void *upper_info; /* upper dev info */ 2333 }; 2334 2335 struct netdev_notifier_changelowerstate_info { 2336 struct netdev_notifier_info info; /* must be first */ 2337 void *lower_state_info; /* is lower dev state */ 2338 }; 2339 2340 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2341 struct net_device *dev) 2342 { 2343 info->dev = dev; 2344 } 2345 2346 static inline struct net_device * 2347 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2348 { 2349 return info->dev; 2350 } 2351 2352 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2353 2354 2355 extern rwlock_t dev_base_lock; /* Device list lock */ 2356 2357 #define for_each_netdev(net, d) \ 2358 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2359 #define for_each_netdev_reverse(net, d) \ 2360 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2361 #define for_each_netdev_rcu(net, d) \ 2362 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2363 #define for_each_netdev_safe(net, d, n) \ 2364 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2365 #define for_each_netdev_continue(net, d) \ 2366 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2367 #define for_each_netdev_continue_rcu(net, d) \ 2368 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2369 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2370 for_each_netdev_rcu(&init_net, slave) \ 2371 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2372 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2373 2374 static inline struct net_device *next_net_device(struct net_device *dev) 2375 { 2376 struct list_head *lh; 2377 struct net *net; 2378 2379 net = dev_net(dev); 2380 lh = dev->dev_list.next; 2381 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2382 } 2383 2384 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2385 { 2386 struct list_head *lh; 2387 struct net *net; 2388 2389 net = dev_net(dev); 2390 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2391 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2392 } 2393 2394 static inline struct net_device *first_net_device(struct net *net) 2395 { 2396 return list_empty(&net->dev_base_head) ? NULL : 2397 net_device_entry(net->dev_base_head.next); 2398 } 2399 2400 static inline struct net_device *first_net_device_rcu(struct net *net) 2401 { 2402 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2403 2404 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2405 } 2406 2407 int netdev_boot_setup_check(struct net_device *dev); 2408 unsigned long netdev_boot_base(const char *prefix, int unit); 2409 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2410 const char *hwaddr); 2411 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2412 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2413 void dev_add_pack(struct packet_type *pt); 2414 void dev_remove_pack(struct packet_type *pt); 2415 void __dev_remove_pack(struct packet_type *pt); 2416 void dev_add_offload(struct packet_offload *po); 2417 void dev_remove_offload(struct packet_offload *po); 2418 2419 int dev_get_iflink(const struct net_device *dev); 2420 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2421 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2422 unsigned short mask); 2423 struct net_device *dev_get_by_name(struct net *net, const char *name); 2424 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2425 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2426 int dev_alloc_name(struct net_device *dev, const char *name); 2427 int dev_open(struct net_device *dev); 2428 int dev_close(struct net_device *dev); 2429 int dev_close_many(struct list_head *head, bool unlink); 2430 void dev_disable_lro(struct net_device *dev); 2431 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2432 int dev_queue_xmit(struct sk_buff *skb); 2433 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2434 int register_netdevice(struct net_device *dev); 2435 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2436 void unregister_netdevice_many(struct list_head *head); 2437 static inline void unregister_netdevice(struct net_device *dev) 2438 { 2439 unregister_netdevice_queue(dev, NULL); 2440 } 2441 2442 int netdev_refcnt_read(const struct net_device *dev); 2443 void free_netdev(struct net_device *dev); 2444 void netdev_freemem(struct net_device *dev); 2445 void synchronize_net(void); 2446 int init_dummy_netdev(struct net_device *dev); 2447 2448 DECLARE_PER_CPU(int, xmit_recursion); 2449 #define XMIT_RECURSION_LIMIT 10 2450 2451 static inline int dev_recursion_level(void) 2452 { 2453 return this_cpu_read(xmit_recursion); 2454 } 2455 2456 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2457 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2458 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2459 int netdev_get_name(struct net *net, char *name, int ifindex); 2460 int dev_restart(struct net_device *dev); 2461 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2462 2463 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2464 { 2465 return NAPI_GRO_CB(skb)->data_offset; 2466 } 2467 2468 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2469 { 2470 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2471 } 2472 2473 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2474 { 2475 NAPI_GRO_CB(skb)->data_offset += len; 2476 } 2477 2478 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2479 unsigned int offset) 2480 { 2481 return NAPI_GRO_CB(skb)->frag0 + offset; 2482 } 2483 2484 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2485 { 2486 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2487 } 2488 2489 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2490 { 2491 NAPI_GRO_CB(skb)->frag0 = NULL; 2492 NAPI_GRO_CB(skb)->frag0_len = 0; 2493 } 2494 2495 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2496 unsigned int offset) 2497 { 2498 if (!pskb_may_pull(skb, hlen)) 2499 return NULL; 2500 2501 skb_gro_frag0_invalidate(skb); 2502 return skb->data + offset; 2503 } 2504 2505 static inline void *skb_gro_network_header(struct sk_buff *skb) 2506 { 2507 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2508 skb_network_offset(skb); 2509 } 2510 2511 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2512 const void *start, unsigned int len) 2513 { 2514 if (NAPI_GRO_CB(skb)->csum_valid) 2515 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2516 csum_partial(start, len, 0)); 2517 } 2518 2519 /* GRO checksum functions. These are logical equivalents of the normal 2520 * checksum functions (in skbuff.h) except that they operate on the GRO 2521 * offsets and fields in sk_buff. 2522 */ 2523 2524 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2525 2526 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2527 { 2528 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2529 } 2530 2531 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2532 bool zero_okay, 2533 __sum16 check) 2534 { 2535 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2536 skb_checksum_start_offset(skb) < 2537 skb_gro_offset(skb)) && 2538 !skb_at_gro_remcsum_start(skb) && 2539 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2540 (!zero_okay || check)); 2541 } 2542 2543 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2544 __wsum psum) 2545 { 2546 if (NAPI_GRO_CB(skb)->csum_valid && 2547 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2548 return 0; 2549 2550 NAPI_GRO_CB(skb)->csum = psum; 2551 2552 return __skb_gro_checksum_complete(skb); 2553 } 2554 2555 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2556 { 2557 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2558 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2559 NAPI_GRO_CB(skb)->csum_cnt--; 2560 } else { 2561 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2562 * verified a new top level checksum or an encapsulated one 2563 * during GRO. This saves work if we fallback to normal path. 2564 */ 2565 __skb_incr_checksum_unnecessary(skb); 2566 } 2567 } 2568 2569 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2570 compute_pseudo) \ 2571 ({ \ 2572 __sum16 __ret = 0; \ 2573 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2574 __ret = __skb_gro_checksum_validate_complete(skb, \ 2575 compute_pseudo(skb, proto)); \ 2576 if (__ret) \ 2577 __skb_mark_checksum_bad(skb); \ 2578 else \ 2579 skb_gro_incr_csum_unnecessary(skb); \ 2580 __ret; \ 2581 }) 2582 2583 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2584 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2585 2586 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2587 compute_pseudo) \ 2588 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2589 2590 #define skb_gro_checksum_simple_validate(skb) \ 2591 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2592 2593 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2594 { 2595 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2596 !NAPI_GRO_CB(skb)->csum_valid); 2597 } 2598 2599 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2600 __sum16 check, __wsum pseudo) 2601 { 2602 NAPI_GRO_CB(skb)->csum = ~pseudo; 2603 NAPI_GRO_CB(skb)->csum_valid = 1; 2604 } 2605 2606 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2607 do { \ 2608 if (__skb_gro_checksum_convert_check(skb)) \ 2609 __skb_gro_checksum_convert(skb, check, \ 2610 compute_pseudo(skb, proto)); \ 2611 } while (0) 2612 2613 struct gro_remcsum { 2614 int offset; 2615 __wsum delta; 2616 }; 2617 2618 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2619 { 2620 grc->offset = 0; 2621 grc->delta = 0; 2622 } 2623 2624 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2625 unsigned int off, size_t hdrlen, 2626 int start, int offset, 2627 struct gro_remcsum *grc, 2628 bool nopartial) 2629 { 2630 __wsum delta; 2631 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2632 2633 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2634 2635 if (!nopartial) { 2636 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2637 return ptr; 2638 } 2639 2640 ptr = skb_gro_header_fast(skb, off); 2641 if (skb_gro_header_hard(skb, off + plen)) { 2642 ptr = skb_gro_header_slow(skb, off + plen, off); 2643 if (!ptr) 2644 return NULL; 2645 } 2646 2647 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2648 start, offset); 2649 2650 /* Adjust skb->csum since we changed the packet */ 2651 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2652 2653 grc->offset = off + hdrlen + offset; 2654 grc->delta = delta; 2655 2656 return ptr; 2657 } 2658 2659 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2660 struct gro_remcsum *grc) 2661 { 2662 void *ptr; 2663 size_t plen = grc->offset + sizeof(u16); 2664 2665 if (!grc->delta) 2666 return; 2667 2668 ptr = skb_gro_header_fast(skb, grc->offset); 2669 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2670 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2671 if (!ptr) 2672 return; 2673 } 2674 2675 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2676 } 2677 2678 #ifdef CONFIG_XFRM_OFFLOAD 2679 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2680 { 2681 if (PTR_ERR(pp) != -EINPROGRESS) 2682 NAPI_GRO_CB(skb)->flush |= flush; 2683 } 2684 #else 2685 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2686 { 2687 NAPI_GRO_CB(skb)->flush |= flush; 2688 } 2689 #endif 2690 2691 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2692 unsigned short type, 2693 const void *daddr, const void *saddr, 2694 unsigned int len) 2695 { 2696 if (!dev->header_ops || !dev->header_ops->create) 2697 return 0; 2698 2699 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2700 } 2701 2702 static inline int dev_parse_header(const struct sk_buff *skb, 2703 unsigned char *haddr) 2704 { 2705 const struct net_device *dev = skb->dev; 2706 2707 if (!dev->header_ops || !dev->header_ops->parse) 2708 return 0; 2709 return dev->header_ops->parse(skb, haddr); 2710 } 2711 2712 /* ll_header must have at least hard_header_len allocated */ 2713 static inline bool dev_validate_header(const struct net_device *dev, 2714 char *ll_header, int len) 2715 { 2716 if (likely(len >= dev->hard_header_len)) 2717 return true; 2718 if (len < dev->min_header_len) 2719 return false; 2720 2721 if (capable(CAP_SYS_RAWIO)) { 2722 memset(ll_header + len, 0, dev->hard_header_len - len); 2723 return true; 2724 } 2725 2726 if (dev->header_ops && dev->header_ops->validate) 2727 return dev->header_ops->validate(ll_header, len); 2728 2729 return false; 2730 } 2731 2732 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2733 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2734 static inline int unregister_gifconf(unsigned int family) 2735 { 2736 return register_gifconf(family, NULL); 2737 } 2738 2739 #ifdef CONFIG_NET_FLOW_LIMIT 2740 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2741 struct sd_flow_limit { 2742 u64 count; 2743 unsigned int num_buckets; 2744 unsigned int history_head; 2745 u16 history[FLOW_LIMIT_HISTORY]; 2746 u8 buckets[]; 2747 }; 2748 2749 extern int netdev_flow_limit_table_len; 2750 #endif /* CONFIG_NET_FLOW_LIMIT */ 2751 2752 /* 2753 * Incoming packets are placed on per-CPU queues 2754 */ 2755 struct softnet_data { 2756 struct list_head poll_list; 2757 struct sk_buff_head process_queue; 2758 2759 /* stats */ 2760 unsigned int processed; 2761 unsigned int time_squeeze; 2762 unsigned int received_rps; 2763 #ifdef CONFIG_RPS 2764 struct softnet_data *rps_ipi_list; 2765 #endif 2766 #ifdef CONFIG_NET_FLOW_LIMIT 2767 struct sd_flow_limit __rcu *flow_limit; 2768 #endif 2769 struct Qdisc *output_queue; 2770 struct Qdisc **output_queue_tailp; 2771 struct sk_buff *completion_queue; 2772 2773 #ifdef CONFIG_RPS 2774 /* input_queue_head should be written by cpu owning this struct, 2775 * and only read by other cpus. Worth using a cache line. 2776 */ 2777 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2778 2779 /* Elements below can be accessed between CPUs for RPS/RFS */ 2780 struct call_single_data csd ____cacheline_aligned_in_smp; 2781 struct softnet_data *rps_ipi_next; 2782 unsigned int cpu; 2783 unsigned int input_queue_tail; 2784 #endif 2785 unsigned int dropped; 2786 struct sk_buff_head input_pkt_queue; 2787 struct napi_struct backlog; 2788 2789 }; 2790 2791 static inline void input_queue_head_incr(struct softnet_data *sd) 2792 { 2793 #ifdef CONFIG_RPS 2794 sd->input_queue_head++; 2795 #endif 2796 } 2797 2798 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2799 unsigned int *qtail) 2800 { 2801 #ifdef CONFIG_RPS 2802 *qtail = ++sd->input_queue_tail; 2803 #endif 2804 } 2805 2806 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2807 2808 void __netif_schedule(struct Qdisc *q); 2809 void netif_schedule_queue(struct netdev_queue *txq); 2810 2811 static inline void netif_tx_schedule_all(struct net_device *dev) 2812 { 2813 unsigned int i; 2814 2815 for (i = 0; i < dev->num_tx_queues; i++) 2816 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2817 } 2818 2819 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2820 { 2821 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2822 } 2823 2824 /** 2825 * netif_start_queue - allow transmit 2826 * @dev: network device 2827 * 2828 * Allow upper layers to call the device hard_start_xmit routine. 2829 */ 2830 static inline void netif_start_queue(struct net_device *dev) 2831 { 2832 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2833 } 2834 2835 static inline void netif_tx_start_all_queues(struct net_device *dev) 2836 { 2837 unsigned int i; 2838 2839 for (i = 0; i < dev->num_tx_queues; i++) { 2840 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2841 netif_tx_start_queue(txq); 2842 } 2843 } 2844 2845 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2846 2847 /** 2848 * netif_wake_queue - restart transmit 2849 * @dev: network device 2850 * 2851 * Allow upper layers to call the device hard_start_xmit routine. 2852 * Used for flow control when transmit resources are available. 2853 */ 2854 static inline void netif_wake_queue(struct net_device *dev) 2855 { 2856 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2857 } 2858 2859 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2860 { 2861 unsigned int i; 2862 2863 for (i = 0; i < dev->num_tx_queues; i++) { 2864 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2865 netif_tx_wake_queue(txq); 2866 } 2867 } 2868 2869 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2870 { 2871 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2872 } 2873 2874 /** 2875 * netif_stop_queue - stop transmitted packets 2876 * @dev: network device 2877 * 2878 * Stop upper layers calling the device hard_start_xmit routine. 2879 * Used for flow control when transmit resources are unavailable. 2880 */ 2881 static inline void netif_stop_queue(struct net_device *dev) 2882 { 2883 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2884 } 2885 2886 void netif_tx_stop_all_queues(struct net_device *dev); 2887 2888 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2889 { 2890 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2891 } 2892 2893 /** 2894 * netif_queue_stopped - test if transmit queue is flowblocked 2895 * @dev: network device 2896 * 2897 * Test if transmit queue on device is currently unable to send. 2898 */ 2899 static inline bool netif_queue_stopped(const struct net_device *dev) 2900 { 2901 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2902 } 2903 2904 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2905 { 2906 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2907 } 2908 2909 static inline bool 2910 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2911 { 2912 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2913 } 2914 2915 static inline bool 2916 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2917 { 2918 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2919 } 2920 2921 /** 2922 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2923 * @dev_queue: pointer to transmit queue 2924 * 2925 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2926 * to give appropriate hint to the CPU. 2927 */ 2928 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2929 { 2930 #ifdef CONFIG_BQL 2931 prefetchw(&dev_queue->dql.num_queued); 2932 #endif 2933 } 2934 2935 /** 2936 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2937 * @dev_queue: pointer to transmit queue 2938 * 2939 * BQL enabled drivers might use this helper in their TX completion path, 2940 * to give appropriate hint to the CPU. 2941 */ 2942 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2943 { 2944 #ifdef CONFIG_BQL 2945 prefetchw(&dev_queue->dql.limit); 2946 #endif 2947 } 2948 2949 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2950 unsigned int bytes) 2951 { 2952 #ifdef CONFIG_BQL 2953 dql_queued(&dev_queue->dql, bytes); 2954 2955 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2956 return; 2957 2958 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2959 2960 /* 2961 * The XOFF flag must be set before checking the dql_avail below, 2962 * because in netdev_tx_completed_queue we update the dql_completed 2963 * before checking the XOFF flag. 2964 */ 2965 smp_mb(); 2966 2967 /* check again in case another CPU has just made room avail */ 2968 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2969 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2970 #endif 2971 } 2972 2973 /** 2974 * netdev_sent_queue - report the number of bytes queued to hardware 2975 * @dev: network device 2976 * @bytes: number of bytes queued to the hardware device queue 2977 * 2978 * Report the number of bytes queued for sending/completion to the network 2979 * device hardware queue. @bytes should be a good approximation and should 2980 * exactly match netdev_completed_queue() @bytes 2981 */ 2982 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2983 { 2984 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2985 } 2986 2987 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2988 unsigned int pkts, unsigned int bytes) 2989 { 2990 #ifdef CONFIG_BQL 2991 if (unlikely(!bytes)) 2992 return; 2993 2994 dql_completed(&dev_queue->dql, bytes); 2995 2996 /* 2997 * Without the memory barrier there is a small possiblity that 2998 * netdev_tx_sent_queue will miss the update and cause the queue to 2999 * be stopped forever 3000 */ 3001 smp_mb(); 3002 3003 if (dql_avail(&dev_queue->dql) < 0) 3004 return; 3005 3006 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3007 netif_schedule_queue(dev_queue); 3008 #endif 3009 } 3010 3011 /** 3012 * netdev_completed_queue - report bytes and packets completed by device 3013 * @dev: network device 3014 * @pkts: actual number of packets sent over the medium 3015 * @bytes: actual number of bytes sent over the medium 3016 * 3017 * Report the number of bytes and packets transmitted by the network device 3018 * hardware queue over the physical medium, @bytes must exactly match the 3019 * @bytes amount passed to netdev_sent_queue() 3020 */ 3021 static inline void netdev_completed_queue(struct net_device *dev, 3022 unsigned int pkts, unsigned int bytes) 3023 { 3024 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3025 } 3026 3027 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3028 { 3029 #ifdef CONFIG_BQL 3030 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3031 dql_reset(&q->dql); 3032 #endif 3033 } 3034 3035 /** 3036 * netdev_reset_queue - reset the packets and bytes count of a network device 3037 * @dev_queue: network device 3038 * 3039 * Reset the bytes and packet count of a network device and clear the 3040 * software flow control OFF bit for this network device 3041 */ 3042 static inline void netdev_reset_queue(struct net_device *dev_queue) 3043 { 3044 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3045 } 3046 3047 /** 3048 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3049 * @dev: network device 3050 * @queue_index: given tx queue index 3051 * 3052 * Returns 0 if given tx queue index >= number of device tx queues, 3053 * otherwise returns the originally passed tx queue index. 3054 */ 3055 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3056 { 3057 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3058 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3059 dev->name, queue_index, 3060 dev->real_num_tx_queues); 3061 return 0; 3062 } 3063 3064 return queue_index; 3065 } 3066 3067 /** 3068 * netif_running - test if up 3069 * @dev: network device 3070 * 3071 * Test if the device has been brought up. 3072 */ 3073 static inline bool netif_running(const struct net_device *dev) 3074 { 3075 return test_bit(__LINK_STATE_START, &dev->state); 3076 } 3077 3078 /* 3079 * Routines to manage the subqueues on a device. We only need start, 3080 * stop, and a check if it's stopped. All other device management is 3081 * done at the overall netdevice level. 3082 * Also test the device if we're multiqueue. 3083 */ 3084 3085 /** 3086 * netif_start_subqueue - allow sending packets on subqueue 3087 * @dev: network device 3088 * @queue_index: sub queue index 3089 * 3090 * Start individual transmit queue of a device with multiple transmit queues. 3091 */ 3092 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3093 { 3094 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3095 3096 netif_tx_start_queue(txq); 3097 } 3098 3099 /** 3100 * netif_stop_subqueue - stop sending packets on subqueue 3101 * @dev: network device 3102 * @queue_index: sub queue index 3103 * 3104 * Stop individual transmit queue of a device with multiple transmit queues. 3105 */ 3106 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3107 { 3108 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3109 netif_tx_stop_queue(txq); 3110 } 3111 3112 /** 3113 * netif_subqueue_stopped - test status of subqueue 3114 * @dev: network device 3115 * @queue_index: sub queue index 3116 * 3117 * Check individual transmit queue of a device with multiple transmit queues. 3118 */ 3119 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3120 u16 queue_index) 3121 { 3122 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3123 3124 return netif_tx_queue_stopped(txq); 3125 } 3126 3127 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3128 struct sk_buff *skb) 3129 { 3130 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3131 } 3132 3133 /** 3134 * netif_wake_subqueue - allow sending packets on subqueue 3135 * @dev: network device 3136 * @queue_index: sub queue index 3137 * 3138 * Resume individual transmit queue of a device with multiple transmit queues. 3139 */ 3140 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3141 { 3142 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3143 3144 netif_tx_wake_queue(txq); 3145 } 3146 3147 #ifdef CONFIG_XPS 3148 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3149 u16 index); 3150 #else 3151 static inline int netif_set_xps_queue(struct net_device *dev, 3152 const struct cpumask *mask, 3153 u16 index) 3154 { 3155 return 0; 3156 } 3157 #endif 3158 3159 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3160 unsigned int num_tx_queues); 3161 3162 /* 3163 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3164 * as a distribution range limit for the returned value. 3165 */ 3166 static inline u16 skb_tx_hash(const struct net_device *dev, 3167 struct sk_buff *skb) 3168 { 3169 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3170 } 3171 3172 /** 3173 * netif_is_multiqueue - test if device has multiple transmit queues 3174 * @dev: network device 3175 * 3176 * Check if device has multiple transmit queues 3177 */ 3178 static inline bool netif_is_multiqueue(const struct net_device *dev) 3179 { 3180 return dev->num_tx_queues > 1; 3181 } 3182 3183 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3184 3185 #ifdef CONFIG_SYSFS 3186 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3187 #else 3188 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3189 unsigned int rxq) 3190 { 3191 return 0; 3192 } 3193 #endif 3194 3195 #ifdef CONFIG_SYSFS 3196 static inline unsigned int get_netdev_rx_queue_index( 3197 struct netdev_rx_queue *queue) 3198 { 3199 struct net_device *dev = queue->dev; 3200 int index = queue - dev->_rx; 3201 3202 BUG_ON(index >= dev->num_rx_queues); 3203 return index; 3204 } 3205 #endif 3206 3207 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3208 int netif_get_num_default_rss_queues(void); 3209 3210 enum skb_free_reason { 3211 SKB_REASON_CONSUMED, 3212 SKB_REASON_DROPPED, 3213 }; 3214 3215 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3216 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3217 3218 /* 3219 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3220 * interrupt context or with hardware interrupts being disabled. 3221 * (in_irq() || irqs_disabled()) 3222 * 3223 * We provide four helpers that can be used in following contexts : 3224 * 3225 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3226 * replacing kfree_skb(skb) 3227 * 3228 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3229 * Typically used in place of consume_skb(skb) in TX completion path 3230 * 3231 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3232 * replacing kfree_skb(skb) 3233 * 3234 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3235 * and consumed a packet. Used in place of consume_skb(skb) 3236 */ 3237 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3238 { 3239 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3240 } 3241 3242 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3243 { 3244 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3245 } 3246 3247 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3248 { 3249 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3250 } 3251 3252 static inline void dev_consume_skb_any(struct sk_buff *skb) 3253 { 3254 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3255 } 3256 3257 int netif_rx(struct sk_buff *skb); 3258 int netif_rx_ni(struct sk_buff *skb); 3259 int netif_receive_skb(struct sk_buff *skb); 3260 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3261 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3262 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3263 gro_result_t napi_gro_frags(struct napi_struct *napi); 3264 struct packet_offload *gro_find_receive_by_type(__be16 type); 3265 struct packet_offload *gro_find_complete_by_type(__be16 type); 3266 3267 static inline void napi_free_frags(struct napi_struct *napi) 3268 { 3269 kfree_skb(napi->skb); 3270 napi->skb = NULL; 3271 } 3272 3273 bool netdev_is_rx_handler_busy(struct net_device *dev); 3274 int netdev_rx_handler_register(struct net_device *dev, 3275 rx_handler_func_t *rx_handler, 3276 void *rx_handler_data); 3277 void netdev_rx_handler_unregister(struct net_device *dev); 3278 3279 bool dev_valid_name(const char *name); 3280 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3281 int dev_ethtool(struct net *net, struct ifreq *); 3282 unsigned int dev_get_flags(const struct net_device *); 3283 int __dev_change_flags(struct net_device *, unsigned int flags); 3284 int dev_change_flags(struct net_device *, unsigned int); 3285 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3286 unsigned int gchanges); 3287 int dev_change_name(struct net_device *, const char *); 3288 int dev_set_alias(struct net_device *, const char *, size_t); 3289 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3290 int dev_set_mtu(struct net_device *, int); 3291 void dev_set_group(struct net_device *, int); 3292 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3293 int dev_change_carrier(struct net_device *, bool new_carrier); 3294 int dev_get_phys_port_id(struct net_device *dev, 3295 struct netdev_phys_item_id *ppid); 3296 int dev_get_phys_port_name(struct net_device *dev, 3297 char *name, size_t len); 3298 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3299 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3300 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3301 struct netdev_queue *txq, int *ret); 3302 3303 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp); 3304 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3305 int fd, u32 flags); 3306 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op); 3307 3308 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3309 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3310 bool is_skb_forwardable(const struct net_device *dev, 3311 const struct sk_buff *skb); 3312 3313 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3314 struct sk_buff *skb) 3315 { 3316 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3317 unlikely(!is_skb_forwardable(dev, skb))) { 3318 atomic_long_inc(&dev->rx_dropped); 3319 kfree_skb(skb); 3320 return NET_RX_DROP; 3321 } 3322 3323 skb_scrub_packet(skb, true); 3324 skb->priority = 0; 3325 return 0; 3326 } 3327 3328 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3329 3330 extern int netdev_budget; 3331 extern unsigned int netdev_budget_usecs; 3332 3333 /* Called by rtnetlink.c:rtnl_unlock() */ 3334 void netdev_run_todo(void); 3335 3336 /** 3337 * dev_put - release reference to device 3338 * @dev: network device 3339 * 3340 * Release reference to device to allow it to be freed. 3341 */ 3342 static inline void dev_put(struct net_device *dev) 3343 { 3344 this_cpu_dec(*dev->pcpu_refcnt); 3345 } 3346 3347 /** 3348 * dev_hold - get reference to device 3349 * @dev: network device 3350 * 3351 * Hold reference to device to keep it from being freed. 3352 */ 3353 static inline void dev_hold(struct net_device *dev) 3354 { 3355 this_cpu_inc(*dev->pcpu_refcnt); 3356 } 3357 3358 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3359 * and _off may be called from IRQ context, but it is caller 3360 * who is responsible for serialization of these calls. 3361 * 3362 * The name carrier is inappropriate, these functions should really be 3363 * called netif_lowerlayer_*() because they represent the state of any 3364 * kind of lower layer not just hardware media. 3365 */ 3366 3367 void linkwatch_init_dev(struct net_device *dev); 3368 void linkwatch_fire_event(struct net_device *dev); 3369 void linkwatch_forget_dev(struct net_device *dev); 3370 3371 /** 3372 * netif_carrier_ok - test if carrier present 3373 * @dev: network device 3374 * 3375 * Check if carrier is present on device 3376 */ 3377 static inline bool netif_carrier_ok(const struct net_device *dev) 3378 { 3379 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3380 } 3381 3382 unsigned long dev_trans_start(struct net_device *dev); 3383 3384 void __netdev_watchdog_up(struct net_device *dev); 3385 3386 void netif_carrier_on(struct net_device *dev); 3387 3388 void netif_carrier_off(struct net_device *dev); 3389 3390 /** 3391 * netif_dormant_on - mark device as dormant. 3392 * @dev: network device 3393 * 3394 * Mark device as dormant (as per RFC2863). 3395 * 3396 * The dormant state indicates that the relevant interface is not 3397 * actually in a condition to pass packets (i.e., it is not 'up') but is 3398 * in a "pending" state, waiting for some external event. For "on- 3399 * demand" interfaces, this new state identifies the situation where the 3400 * interface is waiting for events to place it in the up state. 3401 */ 3402 static inline void netif_dormant_on(struct net_device *dev) 3403 { 3404 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3405 linkwatch_fire_event(dev); 3406 } 3407 3408 /** 3409 * netif_dormant_off - set device as not dormant. 3410 * @dev: network device 3411 * 3412 * Device is not in dormant state. 3413 */ 3414 static inline void netif_dormant_off(struct net_device *dev) 3415 { 3416 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3417 linkwatch_fire_event(dev); 3418 } 3419 3420 /** 3421 * netif_dormant - test if device is dormant 3422 * @dev: network device 3423 * 3424 * Check if device is dormant. 3425 */ 3426 static inline bool netif_dormant(const struct net_device *dev) 3427 { 3428 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3429 } 3430 3431 3432 /** 3433 * netif_oper_up - test if device is operational 3434 * @dev: network device 3435 * 3436 * Check if carrier is operational 3437 */ 3438 static inline bool netif_oper_up(const struct net_device *dev) 3439 { 3440 return (dev->operstate == IF_OPER_UP || 3441 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3442 } 3443 3444 /** 3445 * netif_device_present - is device available or removed 3446 * @dev: network device 3447 * 3448 * Check if device has not been removed from system. 3449 */ 3450 static inline bool netif_device_present(struct net_device *dev) 3451 { 3452 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3453 } 3454 3455 void netif_device_detach(struct net_device *dev); 3456 3457 void netif_device_attach(struct net_device *dev); 3458 3459 /* 3460 * Network interface message level settings 3461 */ 3462 3463 enum { 3464 NETIF_MSG_DRV = 0x0001, 3465 NETIF_MSG_PROBE = 0x0002, 3466 NETIF_MSG_LINK = 0x0004, 3467 NETIF_MSG_TIMER = 0x0008, 3468 NETIF_MSG_IFDOWN = 0x0010, 3469 NETIF_MSG_IFUP = 0x0020, 3470 NETIF_MSG_RX_ERR = 0x0040, 3471 NETIF_MSG_TX_ERR = 0x0080, 3472 NETIF_MSG_TX_QUEUED = 0x0100, 3473 NETIF_MSG_INTR = 0x0200, 3474 NETIF_MSG_TX_DONE = 0x0400, 3475 NETIF_MSG_RX_STATUS = 0x0800, 3476 NETIF_MSG_PKTDATA = 0x1000, 3477 NETIF_MSG_HW = 0x2000, 3478 NETIF_MSG_WOL = 0x4000, 3479 }; 3480 3481 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3482 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3483 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3484 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3485 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3486 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3487 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3488 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3489 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3490 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3491 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3492 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3493 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3494 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3495 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3496 3497 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3498 { 3499 /* use default */ 3500 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3501 return default_msg_enable_bits; 3502 if (debug_value == 0) /* no output */ 3503 return 0; 3504 /* set low N bits */ 3505 return (1 << debug_value) - 1; 3506 } 3507 3508 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3509 { 3510 spin_lock(&txq->_xmit_lock); 3511 txq->xmit_lock_owner = cpu; 3512 } 3513 3514 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3515 { 3516 __acquire(&txq->_xmit_lock); 3517 return true; 3518 } 3519 3520 static inline void __netif_tx_release(struct netdev_queue *txq) 3521 { 3522 __release(&txq->_xmit_lock); 3523 } 3524 3525 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3526 { 3527 spin_lock_bh(&txq->_xmit_lock); 3528 txq->xmit_lock_owner = smp_processor_id(); 3529 } 3530 3531 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3532 { 3533 bool ok = spin_trylock(&txq->_xmit_lock); 3534 if (likely(ok)) 3535 txq->xmit_lock_owner = smp_processor_id(); 3536 return ok; 3537 } 3538 3539 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3540 { 3541 txq->xmit_lock_owner = -1; 3542 spin_unlock(&txq->_xmit_lock); 3543 } 3544 3545 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3546 { 3547 txq->xmit_lock_owner = -1; 3548 spin_unlock_bh(&txq->_xmit_lock); 3549 } 3550 3551 static inline void txq_trans_update(struct netdev_queue *txq) 3552 { 3553 if (txq->xmit_lock_owner != -1) 3554 txq->trans_start = jiffies; 3555 } 3556 3557 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3558 static inline void netif_trans_update(struct net_device *dev) 3559 { 3560 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3561 3562 if (txq->trans_start != jiffies) 3563 txq->trans_start = jiffies; 3564 } 3565 3566 /** 3567 * netif_tx_lock - grab network device transmit lock 3568 * @dev: network device 3569 * 3570 * Get network device transmit lock 3571 */ 3572 static inline void netif_tx_lock(struct net_device *dev) 3573 { 3574 unsigned int i; 3575 int cpu; 3576 3577 spin_lock(&dev->tx_global_lock); 3578 cpu = smp_processor_id(); 3579 for (i = 0; i < dev->num_tx_queues; i++) { 3580 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3581 3582 /* We are the only thread of execution doing a 3583 * freeze, but we have to grab the _xmit_lock in 3584 * order to synchronize with threads which are in 3585 * the ->hard_start_xmit() handler and already 3586 * checked the frozen bit. 3587 */ 3588 __netif_tx_lock(txq, cpu); 3589 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3590 __netif_tx_unlock(txq); 3591 } 3592 } 3593 3594 static inline void netif_tx_lock_bh(struct net_device *dev) 3595 { 3596 local_bh_disable(); 3597 netif_tx_lock(dev); 3598 } 3599 3600 static inline void netif_tx_unlock(struct net_device *dev) 3601 { 3602 unsigned int i; 3603 3604 for (i = 0; i < dev->num_tx_queues; i++) { 3605 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3606 3607 /* No need to grab the _xmit_lock here. If the 3608 * queue is not stopped for another reason, we 3609 * force a schedule. 3610 */ 3611 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3612 netif_schedule_queue(txq); 3613 } 3614 spin_unlock(&dev->tx_global_lock); 3615 } 3616 3617 static inline void netif_tx_unlock_bh(struct net_device *dev) 3618 { 3619 netif_tx_unlock(dev); 3620 local_bh_enable(); 3621 } 3622 3623 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3624 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3625 __netif_tx_lock(txq, cpu); \ 3626 } else { \ 3627 __netif_tx_acquire(txq); \ 3628 } \ 3629 } 3630 3631 #define HARD_TX_TRYLOCK(dev, txq) \ 3632 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3633 __netif_tx_trylock(txq) : \ 3634 __netif_tx_acquire(txq)) 3635 3636 #define HARD_TX_UNLOCK(dev, txq) { \ 3637 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3638 __netif_tx_unlock(txq); \ 3639 } else { \ 3640 __netif_tx_release(txq); \ 3641 } \ 3642 } 3643 3644 static inline void netif_tx_disable(struct net_device *dev) 3645 { 3646 unsigned int i; 3647 int cpu; 3648 3649 local_bh_disable(); 3650 cpu = smp_processor_id(); 3651 for (i = 0; i < dev->num_tx_queues; i++) { 3652 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3653 3654 __netif_tx_lock(txq, cpu); 3655 netif_tx_stop_queue(txq); 3656 __netif_tx_unlock(txq); 3657 } 3658 local_bh_enable(); 3659 } 3660 3661 static inline void netif_addr_lock(struct net_device *dev) 3662 { 3663 spin_lock(&dev->addr_list_lock); 3664 } 3665 3666 static inline void netif_addr_lock_nested(struct net_device *dev) 3667 { 3668 int subclass = SINGLE_DEPTH_NESTING; 3669 3670 if (dev->netdev_ops->ndo_get_lock_subclass) 3671 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3672 3673 spin_lock_nested(&dev->addr_list_lock, subclass); 3674 } 3675 3676 static inline void netif_addr_lock_bh(struct net_device *dev) 3677 { 3678 spin_lock_bh(&dev->addr_list_lock); 3679 } 3680 3681 static inline void netif_addr_unlock(struct net_device *dev) 3682 { 3683 spin_unlock(&dev->addr_list_lock); 3684 } 3685 3686 static inline void netif_addr_unlock_bh(struct net_device *dev) 3687 { 3688 spin_unlock_bh(&dev->addr_list_lock); 3689 } 3690 3691 /* 3692 * dev_addrs walker. Should be used only for read access. Call with 3693 * rcu_read_lock held. 3694 */ 3695 #define for_each_dev_addr(dev, ha) \ 3696 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3697 3698 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3699 3700 void ether_setup(struct net_device *dev); 3701 3702 /* Support for loadable net-drivers */ 3703 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3704 unsigned char name_assign_type, 3705 void (*setup)(struct net_device *), 3706 unsigned int txqs, unsigned int rxqs); 3707 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3708 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3709 3710 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3711 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3712 count) 3713 3714 int register_netdev(struct net_device *dev); 3715 void unregister_netdev(struct net_device *dev); 3716 3717 /* General hardware address lists handling functions */ 3718 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3719 struct netdev_hw_addr_list *from_list, int addr_len); 3720 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3721 struct netdev_hw_addr_list *from_list, int addr_len); 3722 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3723 struct net_device *dev, 3724 int (*sync)(struct net_device *, const unsigned char *), 3725 int (*unsync)(struct net_device *, 3726 const unsigned char *)); 3727 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3728 struct net_device *dev, 3729 int (*unsync)(struct net_device *, 3730 const unsigned char *)); 3731 void __hw_addr_init(struct netdev_hw_addr_list *list); 3732 3733 /* Functions used for device addresses handling */ 3734 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3735 unsigned char addr_type); 3736 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3737 unsigned char addr_type); 3738 void dev_addr_flush(struct net_device *dev); 3739 int dev_addr_init(struct net_device *dev); 3740 3741 /* Functions used for unicast addresses handling */ 3742 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3743 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3744 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3745 int dev_uc_sync(struct net_device *to, struct net_device *from); 3746 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3747 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3748 void dev_uc_flush(struct net_device *dev); 3749 void dev_uc_init(struct net_device *dev); 3750 3751 /** 3752 * __dev_uc_sync - Synchonize device's unicast list 3753 * @dev: device to sync 3754 * @sync: function to call if address should be added 3755 * @unsync: function to call if address should be removed 3756 * 3757 * Add newly added addresses to the interface, and release 3758 * addresses that have been deleted. 3759 */ 3760 static inline int __dev_uc_sync(struct net_device *dev, 3761 int (*sync)(struct net_device *, 3762 const unsigned char *), 3763 int (*unsync)(struct net_device *, 3764 const unsigned char *)) 3765 { 3766 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3767 } 3768 3769 /** 3770 * __dev_uc_unsync - Remove synchronized addresses from device 3771 * @dev: device to sync 3772 * @unsync: function to call if address should be removed 3773 * 3774 * Remove all addresses that were added to the device by dev_uc_sync(). 3775 */ 3776 static inline void __dev_uc_unsync(struct net_device *dev, 3777 int (*unsync)(struct net_device *, 3778 const unsigned char *)) 3779 { 3780 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3781 } 3782 3783 /* Functions used for multicast addresses handling */ 3784 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3785 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3786 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3787 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3788 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3789 int dev_mc_sync(struct net_device *to, struct net_device *from); 3790 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3791 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3792 void dev_mc_flush(struct net_device *dev); 3793 void dev_mc_init(struct net_device *dev); 3794 3795 /** 3796 * __dev_mc_sync - Synchonize device's multicast list 3797 * @dev: device to sync 3798 * @sync: function to call if address should be added 3799 * @unsync: function to call if address should be removed 3800 * 3801 * Add newly added addresses to the interface, and release 3802 * addresses that have been deleted. 3803 */ 3804 static inline int __dev_mc_sync(struct net_device *dev, 3805 int (*sync)(struct net_device *, 3806 const unsigned char *), 3807 int (*unsync)(struct net_device *, 3808 const unsigned char *)) 3809 { 3810 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3811 } 3812 3813 /** 3814 * __dev_mc_unsync - Remove synchronized addresses from device 3815 * @dev: device to sync 3816 * @unsync: function to call if address should be removed 3817 * 3818 * Remove all addresses that were added to the device by dev_mc_sync(). 3819 */ 3820 static inline void __dev_mc_unsync(struct net_device *dev, 3821 int (*unsync)(struct net_device *, 3822 const unsigned char *)) 3823 { 3824 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3825 } 3826 3827 /* Functions used for secondary unicast and multicast support */ 3828 void dev_set_rx_mode(struct net_device *dev); 3829 void __dev_set_rx_mode(struct net_device *dev); 3830 int dev_set_promiscuity(struct net_device *dev, int inc); 3831 int dev_set_allmulti(struct net_device *dev, int inc); 3832 void netdev_state_change(struct net_device *dev); 3833 void netdev_notify_peers(struct net_device *dev); 3834 void netdev_features_change(struct net_device *dev); 3835 /* Load a device via the kmod */ 3836 void dev_load(struct net *net, const char *name); 3837 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3838 struct rtnl_link_stats64 *storage); 3839 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3840 const struct net_device_stats *netdev_stats); 3841 3842 extern int netdev_max_backlog; 3843 extern int netdev_tstamp_prequeue; 3844 extern int weight_p; 3845 extern int dev_weight_rx_bias; 3846 extern int dev_weight_tx_bias; 3847 extern int dev_rx_weight; 3848 extern int dev_tx_weight; 3849 3850 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3851 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3852 struct list_head **iter); 3853 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3854 struct list_head **iter); 3855 3856 /* iterate through upper list, must be called under RCU read lock */ 3857 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3858 for (iter = &(dev)->adj_list.upper, \ 3859 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3860 updev; \ 3861 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3862 3863 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3864 int (*fn)(struct net_device *upper_dev, 3865 void *data), 3866 void *data); 3867 3868 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3869 struct net_device *upper_dev); 3870 3871 void *netdev_lower_get_next_private(struct net_device *dev, 3872 struct list_head **iter); 3873 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3874 struct list_head **iter); 3875 3876 #define netdev_for_each_lower_private(dev, priv, iter) \ 3877 for (iter = (dev)->adj_list.lower.next, \ 3878 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3879 priv; \ 3880 priv = netdev_lower_get_next_private(dev, &(iter))) 3881 3882 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3883 for (iter = &(dev)->adj_list.lower, \ 3884 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3885 priv; \ 3886 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3887 3888 void *netdev_lower_get_next(struct net_device *dev, 3889 struct list_head **iter); 3890 3891 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3892 for (iter = (dev)->adj_list.lower.next, \ 3893 ldev = netdev_lower_get_next(dev, &(iter)); \ 3894 ldev; \ 3895 ldev = netdev_lower_get_next(dev, &(iter))) 3896 3897 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3898 struct list_head **iter); 3899 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3900 struct list_head **iter); 3901 3902 int netdev_walk_all_lower_dev(struct net_device *dev, 3903 int (*fn)(struct net_device *lower_dev, 3904 void *data), 3905 void *data); 3906 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3907 int (*fn)(struct net_device *lower_dev, 3908 void *data), 3909 void *data); 3910 3911 void *netdev_adjacent_get_private(struct list_head *adj_list); 3912 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3913 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3914 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3915 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3916 int netdev_master_upper_dev_link(struct net_device *dev, 3917 struct net_device *upper_dev, 3918 void *upper_priv, void *upper_info); 3919 void netdev_upper_dev_unlink(struct net_device *dev, 3920 struct net_device *upper_dev); 3921 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3922 void *netdev_lower_dev_get_private(struct net_device *dev, 3923 struct net_device *lower_dev); 3924 void netdev_lower_state_changed(struct net_device *lower_dev, 3925 void *lower_state_info); 3926 3927 /* RSS keys are 40 or 52 bytes long */ 3928 #define NETDEV_RSS_KEY_LEN 52 3929 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3930 void netdev_rss_key_fill(void *buffer, size_t len); 3931 3932 int dev_get_nest_level(struct net_device *dev); 3933 int skb_checksum_help(struct sk_buff *skb); 3934 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3935 netdev_features_t features, bool tx_path); 3936 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3937 netdev_features_t features); 3938 3939 struct netdev_bonding_info { 3940 ifslave slave; 3941 ifbond master; 3942 }; 3943 3944 struct netdev_notifier_bonding_info { 3945 struct netdev_notifier_info info; /* must be first */ 3946 struct netdev_bonding_info bonding_info; 3947 }; 3948 3949 void netdev_bonding_info_change(struct net_device *dev, 3950 struct netdev_bonding_info *bonding_info); 3951 3952 static inline 3953 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3954 { 3955 return __skb_gso_segment(skb, features, true); 3956 } 3957 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3958 3959 static inline bool can_checksum_protocol(netdev_features_t features, 3960 __be16 protocol) 3961 { 3962 if (protocol == htons(ETH_P_FCOE)) 3963 return !!(features & NETIF_F_FCOE_CRC); 3964 3965 /* Assume this is an IP checksum (not SCTP CRC) */ 3966 3967 if (features & NETIF_F_HW_CSUM) { 3968 /* Can checksum everything */ 3969 return true; 3970 } 3971 3972 switch (protocol) { 3973 case htons(ETH_P_IP): 3974 return !!(features & NETIF_F_IP_CSUM); 3975 case htons(ETH_P_IPV6): 3976 return !!(features & NETIF_F_IPV6_CSUM); 3977 default: 3978 return false; 3979 } 3980 } 3981 3982 #ifdef CONFIG_BUG 3983 void netdev_rx_csum_fault(struct net_device *dev); 3984 #else 3985 static inline void netdev_rx_csum_fault(struct net_device *dev) 3986 { 3987 } 3988 #endif 3989 /* rx skb timestamps */ 3990 void net_enable_timestamp(void); 3991 void net_disable_timestamp(void); 3992 3993 #ifdef CONFIG_PROC_FS 3994 int __init dev_proc_init(void); 3995 #else 3996 #define dev_proc_init() 0 3997 #endif 3998 3999 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4000 struct sk_buff *skb, struct net_device *dev, 4001 bool more) 4002 { 4003 skb->xmit_more = more ? 1 : 0; 4004 return ops->ndo_start_xmit(skb, dev); 4005 } 4006 4007 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4008 struct netdev_queue *txq, bool more) 4009 { 4010 const struct net_device_ops *ops = dev->netdev_ops; 4011 int rc; 4012 4013 rc = __netdev_start_xmit(ops, skb, dev, more); 4014 if (rc == NETDEV_TX_OK) 4015 txq_trans_update(txq); 4016 4017 return rc; 4018 } 4019 4020 int netdev_class_create_file_ns(struct class_attribute *class_attr, 4021 const void *ns); 4022 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 4023 const void *ns); 4024 4025 static inline int netdev_class_create_file(struct class_attribute *class_attr) 4026 { 4027 return netdev_class_create_file_ns(class_attr, NULL); 4028 } 4029 4030 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4031 { 4032 netdev_class_remove_file_ns(class_attr, NULL); 4033 } 4034 4035 extern struct kobj_ns_type_operations net_ns_type_operations; 4036 4037 const char *netdev_drivername(const struct net_device *dev); 4038 4039 void linkwatch_run_queue(void); 4040 4041 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4042 netdev_features_t f2) 4043 { 4044 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4045 if (f1 & NETIF_F_HW_CSUM) 4046 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4047 else 4048 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4049 } 4050 4051 return f1 & f2; 4052 } 4053 4054 static inline netdev_features_t netdev_get_wanted_features( 4055 struct net_device *dev) 4056 { 4057 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4058 } 4059 netdev_features_t netdev_increment_features(netdev_features_t all, 4060 netdev_features_t one, netdev_features_t mask); 4061 4062 /* Allow TSO being used on stacked device : 4063 * Performing the GSO segmentation before last device 4064 * is a performance improvement. 4065 */ 4066 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4067 netdev_features_t mask) 4068 { 4069 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4070 } 4071 4072 int __netdev_update_features(struct net_device *dev); 4073 void netdev_update_features(struct net_device *dev); 4074 void netdev_change_features(struct net_device *dev); 4075 4076 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4077 struct net_device *dev); 4078 4079 netdev_features_t passthru_features_check(struct sk_buff *skb, 4080 struct net_device *dev, 4081 netdev_features_t features); 4082 netdev_features_t netif_skb_features(struct sk_buff *skb); 4083 4084 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4085 { 4086 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4087 4088 /* check flags correspondence */ 4089 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4090 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4091 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4092 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4093 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4094 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4095 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4096 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4097 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4098 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4099 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4100 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4101 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4102 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4103 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4104 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4105 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4106 4107 return (features & feature) == feature; 4108 } 4109 4110 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4111 { 4112 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4113 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4114 } 4115 4116 static inline bool netif_needs_gso(struct sk_buff *skb, 4117 netdev_features_t features) 4118 { 4119 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4120 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4121 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4122 } 4123 4124 static inline void netif_set_gso_max_size(struct net_device *dev, 4125 unsigned int size) 4126 { 4127 dev->gso_max_size = size; 4128 } 4129 4130 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4131 int pulled_hlen, u16 mac_offset, 4132 int mac_len) 4133 { 4134 skb->protocol = protocol; 4135 skb->encapsulation = 1; 4136 skb_push(skb, pulled_hlen); 4137 skb_reset_transport_header(skb); 4138 skb->mac_header = mac_offset; 4139 skb->network_header = skb->mac_header + mac_len; 4140 skb->mac_len = mac_len; 4141 } 4142 4143 static inline bool netif_is_macsec(const struct net_device *dev) 4144 { 4145 return dev->priv_flags & IFF_MACSEC; 4146 } 4147 4148 static inline bool netif_is_macvlan(const struct net_device *dev) 4149 { 4150 return dev->priv_flags & IFF_MACVLAN; 4151 } 4152 4153 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4154 { 4155 return dev->priv_flags & IFF_MACVLAN_PORT; 4156 } 4157 4158 static inline bool netif_is_ipvlan(const struct net_device *dev) 4159 { 4160 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4161 } 4162 4163 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4164 { 4165 return dev->priv_flags & IFF_IPVLAN_MASTER; 4166 } 4167 4168 static inline bool netif_is_bond_master(const struct net_device *dev) 4169 { 4170 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4171 } 4172 4173 static inline bool netif_is_bond_slave(const struct net_device *dev) 4174 { 4175 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4176 } 4177 4178 static inline bool netif_supports_nofcs(struct net_device *dev) 4179 { 4180 return dev->priv_flags & IFF_SUPP_NOFCS; 4181 } 4182 4183 static inline bool netif_is_l3_master(const struct net_device *dev) 4184 { 4185 return dev->priv_flags & IFF_L3MDEV_MASTER; 4186 } 4187 4188 static inline bool netif_is_l3_slave(const struct net_device *dev) 4189 { 4190 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4191 } 4192 4193 static inline bool netif_is_bridge_master(const struct net_device *dev) 4194 { 4195 return dev->priv_flags & IFF_EBRIDGE; 4196 } 4197 4198 static inline bool netif_is_bridge_port(const struct net_device *dev) 4199 { 4200 return dev->priv_flags & IFF_BRIDGE_PORT; 4201 } 4202 4203 static inline bool netif_is_ovs_master(const struct net_device *dev) 4204 { 4205 return dev->priv_flags & IFF_OPENVSWITCH; 4206 } 4207 4208 static inline bool netif_is_ovs_port(const struct net_device *dev) 4209 { 4210 return dev->priv_flags & IFF_OVS_DATAPATH; 4211 } 4212 4213 static inline bool netif_is_team_master(const struct net_device *dev) 4214 { 4215 return dev->priv_flags & IFF_TEAM; 4216 } 4217 4218 static inline bool netif_is_team_port(const struct net_device *dev) 4219 { 4220 return dev->priv_flags & IFF_TEAM_PORT; 4221 } 4222 4223 static inline bool netif_is_lag_master(const struct net_device *dev) 4224 { 4225 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4226 } 4227 4228 static inline bool netif_is_lag_port(const struct net_device *dev) 4229 { 4230 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4231 } 4232 4233 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4234 { 4235 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4236 } 4237 4238 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4239 static inline void netif_keep_dst(struct net_device *dev) 4240 { 4241 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4242 } 4243 4244 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4245 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4246 { 4247 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4248 return dev->priv_flags & IFF_MACSEC; 4249 } 4250 4251 extern struct pernet_operations __net_initdata loopback_net_ops; 4252 4253 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4254 4255 /* netdev_printk helpers, similar to dev_printk */ 4256 4257 static inline const char *netdev_name(const struct net_device *dev) 4258 { 4259 if (!dev->name[0] || strchr(dev->name, '%')) 4260 return "(unnamed net_device)"; 4261 return dev->name; 4262 } 4263 4264 static inline const char *netdev_reg_state(const struct net_device *dev) 4265 { 4266 switch (dev->reg_state) { 4267 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4268 case NETREG_REGISTERED: return ""; 4269 case NETREG_UNREGISTERING: return " (unregistering)"; 4270 case NETREG_UNREGISTERED: return " (unregistered)"; 4271 case NETREG_RELEASED: return " (released)"; 4272 case NETREG_DUMMY: return " (dummy)"; 4273 } 4274 4275 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4276 return " (unknown)"; 4277 } 4278 4279 __printf(3, 4) 4280 void netdev_printk(const char *level, const struct net_device *dev, 4281 const char *format, ...); 4282 __printf(2, 3) 4283 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4284 __printf(2, 3) 4285 void netdev_alert(const struct net_device *dev, const char *format, ...); 4286 __printf(2, 3) 4287 void netdev_crit(const struct net_device *dev, const char *format, ...); 4288 __printf(2, 3) 4289 void netdev_err(const struct net_device *dev, const char *format, ...); 4290 __printf(2, 3) 4291 void netdev_warn(const struct net_device *dev, const char *format, ...); 4292 __printf(2, 3) 4293 void netdev_notice(const struct net_device *dev, const char *format, ...); 4294 __printf(2, 3) 4295 void netdev_info(const struct net_device *dev, const char *format, ...); 4296 4297 #define MODULE_ALIAS_NETDEV(device) \ 4298 MODULE_ALIAS("netdev-" device) 4299 4300 #if defined(CONFIG_DYNAMIC_DEBUG) 4301 #define netdev_dbg(__dev, format, args...) \ 4302 do { \ 4303 dynamic_netdev_dbg(__dev, format, ##args); \ 4304 } while (0) 4305 #elif defined(DEBUG) 4306 #define netdev_dbg(__dev, format, args...) \ 4307 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4308 #else 4309 #define netdev_dbg(__dev, format, args...) \ 4310 ({ \ 4311 if (0) \ 4312 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4313 }) 4314 #endif 4315 4316 #if defined(VERBOSE_DEBUG) 4317 #define netdev_vdbg netdev_dbg 4318 #else 4319 4320 #define netdev_vdbg(dev, format, args...) \ 4321 ({ \ 4322 if (0) \ 4323 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4324 0; \ 4325 }) 4326 #endif 4327 4328 /* 4329 * netdev_WARN() acts like dev_printk(), but with the key difference 4330 * of using a WARN/WARN_ON to get the message out, including the 4331 * file/line information and a backtrace. 4332 */ 4333 #define netdev_WARN(dev, format, args...) \ 4334 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4335 netdev_reg_state(dev), ##args) 4336 4337 /* netif printk helpers, similar to netdev_printk */ 4338 4339 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4340 do { \ 4341 if (netif_msg_##type(priv)) \ 4342 netdev_printk(level, (dev), fmt, ##args); \ 4343 } while (0) 4344 4345 #define netif_level(level, priv, type, dev, fmt, args...) \ 4346 do { \ 4347 if (netif_msg_##type(priv)) \ 4348 netdev_##level(dev, fmt, ##args); \ 4349 } while (0) 4350 4351 #define netif_emerg(priv, type, dev, fmt, args...) \ 4352 netif_level(emerg, priv, type, dev, fmt, ##args) 4353 #define netif_alert(priv, type, dev, fmt, args...) \ 4354 netif_level(alert, priv, type, dev, fmt, ##args) 4355 #define netif_crit(priv, type, dev, fmt, args...) \ 4356 netif_level(crit, priv, type, dev, fmt, ##args) 4357 #define netif_err(priv, type, dev, fmt, args...) \ 4358 netif_level(err, priv, type, dev, fmt, ##args) 4359 #define netif_warn(priv, type, dev, fmt, args...) \ 4360 netif_level(warn, priv, type, dev, fmt, ##args) 4361 #define netif_notice(priv, type, dev, fmt, args...) \ 4362 netif_level(notice, priv, type, dev, fmt, ##args) 4363 #define netif_info(priv, type, dev, fmt, args...) \ 4364 netif_level(info, priv, type, dev, fmt, ##args) 4365 4366 #if defined(CONFIG_DYNAMIC_DEBUG) 4367 #define netif_dbg(priv, type, netdev, format, args...) \ 4368 do { \ 4369 if (netif_msg_##type(priv)) \ 4370 dynamic_netdev_dbg(netdev, format, ##args); \ 4371 } while (0) 4372 #elif defined(DEBUG) 4373 #define netif_dbg(priv, type, dev, format, args...) \ 4374 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4375 #else 4376 #define netif_dbg(priv, type, dev, format, args...) \ 4377 ({ \ 4378 if (0) \ 4379 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4380 0; \ 4381 }) 4382 #endif 4383 4384 /* if @cond then downgrade to debug, else print at @level */ 4385 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4386 do { \ 4387 if (cond) \ 4388 netif_dbg(priv, type, netdev, fmt, ##args); \ 4389 else \ 4390 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4391 } while (0) 4392 4393 #if defined(VERBOSE_DEBUG) 4394 #define netif_vdbg netif_dbg 4395 #else 4396 #define netif_vdbg(priv, type, dev, format, args...) \ 4397 ({ \ 4398 if (0) \ 4399 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4400 0; \ 4401 }) 4402 #endif 4403 4404 /* 4405 * The list of packet types we will receive (as opposed to discard) 4406 * and the routines to invoke. 4407 * 4408 * Why 16. Because with 16 the only overlap we get on a hash of the 4409 * low nibble of the protocol value is RARP/SNAP/X.25. 4410 * 4411 * NOTE: That is no longer true with the addition of VLAN tags. Not 4412 * sure which should go first, but I bet it won't make much 4413 * difference if we are running VLANs. The good news is that 4414 * this protocol won't be in the list unless compiled in, so 4415 * the average user (w/out VLANs) will not be adversely affected. 4416 * --BLG 4417 * 4418 * 0800 IP 4419 * 8100 802.1Q VLAN 4420 * 0001 802.3 4421 * 0002 AX.25 4422 * 0004 802.2 4423 * 8035 RARP 4424 * 0005 SNAP 4425 * 0805 X.25 4426 * 0806 ARP 4427 * 8137 IPX 4428 * 0009 Localtalk 4429 * 86DD IPv6 4430 */ 4431 #define PTYPE_HASH_SIZE (16) 4432 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4433 4434 #endif /* _LINUX_NETDEVICE_H */ 4435