1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <net/net_namespace.h> 38 #ifdef CONFIG_DCB 39 #include <net/dcbnl.h> 40 #endif 41 #include <net/netprio_cgroup.h> 42 #include <net/xdp.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <linux/hashtable.h> 50 #include <linux/rbtree.h> 51 52 struct netpoll_info; 53 struct device; 54 struct ethtool_ops; 55 struct phy_device; 56 struct dsa_port; 57 struct ip_tunnel_parm; 58 struct macsec_context; 59 struct macsec_ops; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct udp_tunnel_nic_info; 70 struct udp_tunnel_nic; 71 struct bpf_prog; 72 struct xdp_buff; 73 74 void synchronize_net(void); 75 void netdev_set_default_ethtool_ops(struct net_device *dev, 76 const struct ethtool_ops *ops); 77 78 /* Backlog congestion levels */ 79 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 80 #define NET_RX_DROP 1 /* packet dropped */ 81 82 #define MAX_NEST_DEV 8 83 84 /* 85 * Transmit return codes: transmit return codes originate from three different 86 * namespaces: 87 * 88 * - qdisc return codes 89 * - driver transmit return codes 90 * - errno values 91 * 92 * Drivers are allowed to return any one of those in their hard_start_xmit() 93 * function. Real network devices commonly used with qdiscs should only return 94 * the driver transmit return codes though - when qdiscs are used, the actual 95 * transmission happens asynchronously, so the value is not propagated to 96 * higher layers. Virtual network devices transmit synchronously; in this case 97 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 98 * others are propagated to higher layers. 99 */ 100 101 /* qdisc ->enqueue() return codes. */ 102 #define NET_XMIT_SUCCESS 0x00 103 #define NET_XMIT_DROP 0x01 /* skb dropped */ 104 #define NET_XMIT_CN 0x02 /* congestion notification */ 105 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 106 107 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 108 * indicates that the device will soon be dropping packets, or already drops 109 * some packets of the same priority; prompting us to send less aggressively. */ 110 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 111 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 112 113 /* Driver transmit return codes */ 114 #define NETDEV_TX_MASK 0xf0 115 116 enum netdev_tx { 117 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 118 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 119 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 120 }; 121 typedef enum netdev_tx netdev_tx_t; 122 123 /* 124 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 125 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 126 */ 127 static inline bool dev_xmit_complete(int rc) 128 { 129 /* 130 * Positive cases with an skb consumed by a driver: 131 * - successful transmission (rc == NETDEV_TX_OK) 132 * - error while transmitting (rc < 0) 133 * - error while queueing to a different device (rc & NET_XMIT_MASK) 134 */ 135 if (likely(rc < NET_XMIT_MASK)) 136 return true; 137 138 return false; 139 } 140 141 /* 142 * Compute the worst-case header length according to the protocols 143 * used. 144 */ 145 146 #if defined(CONFIG_HYPERV_NET) 147 # define LL_MAX_HEADER 128 148 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 149 # if defined(CONFIG_MAC80211_MESH) 150 # define LL_MAX_HEADER 128 151 # else 152 # define LL_MAX_HEADER 96 153 # endif 154 #else 155 # define LL_MAX_HEADER 32 156 #endif 157 158 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 159 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 160 #define MAX_HEADER LL_MAX_HEADER 161 #else 162 #define MAX_HEADER (LL_MAX_HEADER + 48) 163 #endif 164 165 /* 166 * Old network device statistics. Fields are native words 167 * (unsigned long) so they can be read and written atomically. 168 */ 169 170 struct net_device_stats { 171 unsigned long rx_packets; 172 unsigned long tx_packets; 173 unsigned long rx_bytes; 174 unsigned long tx_bytes; 175 unsigned long rx_errors; 176 unsigned long tx_errors; 177 unsigned long rx_dropped; 178 unsigned long tx_dropped; 179 unsigned long multicast; 180 unsigned long collisions; 181 unsigned long rx_length_errors; 182 unsigned long rx_over_errors; 183 unsigned long rx_crc_errors; 184 unsigned long rx_frame_errors; 185 unsigned long rx_fifo_errors; 186 unsigned long rx_missed_errors; 187 unsigned long tx_aborted_errors; 188 unsigned long tx_carrier_errors; 189 unsigned long tx_fifo_errors; 190 unsigned long tx_heartbeat_errors; 191 unsigned long tx_window_errors; 192 unsigned long rx_compressed; 193 unsigned long tx_compressed; 194 }; 195 196 197 #include <linux/cache.h> 198 #include <linux/skbuff.h> 199 200 #ifdef CONFIG_RPS 201 #include <linux/static_key.h> 202 extern struct static_key_false rps_needed; 203 extern struct static_key_false rfs_needed; 204 #endif 205 206 struct neighbour; 207 struct neigh_parms; 208 struct sk_buff; 209 210 struct netdev_hw_addr { 211 struct list_head list; 212 struct rb_node node; 213 unsigned char addr[MAX_ADDR_LEN]; 214 unsigned char type; 215 #define NETDEV_HW_ADDR_T_LAN 1 216 #define NETDEV_HW_ADDR_T_SAN 2 217 #define NETDEV_HW_ADDR_T_UNICAST 3 218 #define NETDEV_HW_ADDR_T_MULTICAST 4 219 bool global_use; 220 int sync_cnt; 221 int refcount; 222 int synced; 223 struct rcu_head rcu_head; 224 }; 225 226 struct netdev_hw_addr_list { 227 struct list_head list; 228 int count; 229 230 /* Auxiliary tree for faster lookup on addition and deletion */ 231 struct rb_root tree; 232 }; 233 234 #define netdev_hw_addr_list_count(l) ((l)->count) 235 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 236 #define netdev_hw_addr_list_for_each(ha, l) \ 237 list_for_each_entry(ha, &(l)->list, list) 238 239 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 240 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 241 #define netdev_for_each_uc_addr(ha, dev) \ 242 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 243 244 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 245 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 246 #define netdev_for_each_mc_addr(ha, dev) \ 247 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 248 249 struct hh_cache { 250 unsigned int hh_len; 251 seqlock_t hh_lock; 252 253 /* cached hardware header; allow for machine alignment needs. */ 254 #define HH_DATA_MOD 16 255 #define HH_DATA_OFF(__len) \ 256 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 257 #define HH_DATA_ALIGN(__len) \ 258 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 259 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 260 }; 261 262 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 263 * Alternative is: 264 * dev->hard_header_len ? (dev->hard_header_len + 265 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 266 * 267 * We could use other alignment values, but we must maintain the 268 * relationship HH alignment <= LL alignment. 269 */ 270 #define LL_RESERVED_SPACE(dev) \ 271 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 272 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 273 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 274 275 struct header_ops { 276 int (*create) (struct sk_buff *skb, struct net_device *dev, 277 unsigned short type, const void *daddr, 278 const void *saddr, unsigned int len); 279 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 280 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 281 void (*cache_update)(struct hh_cache *hh, 282 const struct net_device *dev, 283 const unsigned char *haddr); 284 bool (*validate)(const char *ll_header, unsigned int len); 285 __be16 (*parse_protocol)(const struct sk_buff *skb); 286 }; 287 288 /* These flag bits are private to the generic network queueing 289 * layer; they may not be explicitly referenced by any other 290 * code. 291 */ 292 293 enum netdev_state_t { 294 __LINK_STATE_START, 295 __LINK_STATE_PRESENT, 296 __LINK_STATE_NOCARRIER, 297 __LINK_STATE_LINKWATCH_PENDING, 298 __LINK_STATE_DORMANT, 299 __LINK_STATE_TESTING, 300 }; 301 302 303 struct gro_list { 304 struct list_head list; 305 int count; 306 }; 307 308 /* 309 * size of gro hash buckets, must less than bit number of 310 * napi_struct::gro_bitmask 311 */ 312 #define GRO_HASH_BUCKETS 8 313 314 /* 315 * Structure for NAPI scheduling similar to tasklet but with weighting 316 */ 317 struct napi_struct { 318 /* The poll_list must only be managed by the entity which 319 * changes the state of the NAPI_STATE_SCHED bit. This means 320 * whoever atomically sets that bit can add this napi_struct 321 * to the per-CPU poll_list, and whoever clears that bit 322 * can remove from the list right before clearing the bit. 323 */ 324 struct list_head poll_list; 325 326 unsigned long state; 327 int weight; 328 int defer_hard_irqs_count; 329 unsigned long gro_bitmask; 330 int (*poll)(struct napi_struct *, int); 331 #ifdef CONFIG_NETPOLL 332 int poll_owner; 333 #endif 334 struct net_device *dev; 335 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 336 struct sk_buff *skb; 337 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 338 int rx_count; /* length of rx_list */ 339 struct hrtimer timer; 340 struct list_head dev_list; 341 struct hlist_node napi_hash_node; 342 unsigned int napi_id; 343 struct task_struct *thread; 344 }; 345 346 enum { 347 NAPI_STATE_SCHED, /* Poll is scheduled */ 348 NAPI_STATE_MISSED, /* reschedule a napi */ 349 NAPI_STATE_DISABLE, /* Disable pending */ 350 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 351 NAPI_STATE_LISTED, /* NAPI added to system lists */ 352 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 353 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 354 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 355 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 356 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 357 }; 358 359 enum { 360 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 361 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 362 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 363 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 364 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 365 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 366 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 367 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 368 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 369 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 370 }; 371 372 enum gro_result { 373 GRO_MERGED, 374 GRO_MERGED_FREE, 375 GRO_HELD, 376 GRO_NORMAL, 377 GRO_CONSUMED, 378 }; 379 typedef enum gro_result gro_result_t; 380 381 /* 382 * enum rx_handler_result - Possible return values for rx_handlers. 383 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 384 * further. 385 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 386 * case skb->dev was changed by rx_handler. 387 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 388 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 389 * 390 * rx_handlers are functions called from inside __netif_receive_skb(), to do 391 * special processing of the skb, prior to delivery to protocol handlers. 392 * 393 * Currently, a net_device can only have a single rx_handler registered. Trying 394 * to register a second rx_handler will return -EBUSY. 395 * 396 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 397 * To unregister a rx_handler on a net_device, use 398 * netdev_rx_handler_unregister(). 399 * 400 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 401 * do with the skb. 402 * 403 * If the rx_handler consumed the skb in some way, it should return 404 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 405 * the skb to be delivered in some other way. 406 * 407 * If the rx_handler changed skb->dev, to divert the skb to another 408 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 409 * new device will be called if it exists. 410 * 411 * If the rx_handler decides the skb should be ignored, it should return 412 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 413 * are registered on exact device (ptype->dev == skb->dev). 414 * 415 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 416 * delivered, it should return RX_HANDLER_PASS. 417 * 418 * A device without a registered rx_handler will behave as if rx_handler 419 * returned RX_HANDLER_PASS. 420 */ 421 422 enum rx_handler_result { 423 RX_HANDLER_CONSUMED, 424 RX_HANDLER_ANOTHER, 425 RX_HANDLER_EXACT, 426 RX_HANDLER_PASS, 427 }; 428 typedef enum rx_handler_result rx_handler_result_t; 429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 430 431 void __napi_schedule(struct napi_struct *n); 432 void __napi_schedule_irqoff(struct napi_struct *n); 433 434 static inline bool napi_disable_pending(struct napi_struct *n) 435 { 436 return test_bit(NAPI_STATE_DISABLE, &n->state); 437 } 438 439 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 440 { 441 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 442 } 443 444 bool napi_schedule_prep(struct napi_struct *n); 445 446 /** 447 * napi_schedule - schedule NAPI poll 448 * @n: NAPI context 449 * 450 * Schedule NAPI poll routine to be called if it is not already 451 * running. 452 */ 453 static inline void napi_schedule(struct napi_struct *n) 454 { 455 if (napi_schedule_prep(n)) 456 __napi_schedule(n); 457 } 458 459 /** 460 * napi_schedule_irqoff - schedule NAPI poll 461 * @n: NAPI context 462 * 463 * Variant of napi_schedule(), assuming hard irqs are masked. 464 */ 465 static inline void napi_schedule_irqoff(struct napi_struct *n) 466 { 467 if (napi_schedule_prep(n)) 468 __napi_schedule_irqoff(n); 469 } 470 471 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 472 static inline bool napi_reschedule(struct napi_struct *napi) 473 { 474 if (napi_schedule_prep(napi)) { 475 __napi_schedule(napi); 476 return true; 477 } 478 return false; 479 } 480 481 bool napi_complete_done(struct napi_struct *n, int work_done); 482 /** 483 * napi_complete - NAPI processing complete 484 * @n: NAPI context 485 * 486 * Mark NAPI processing as complete. 487 * Consider using napi_complete_done() instead. 488 * Return false if device should avoid rearming interrupts. 489 */ 490 static inline bool napi_complete(struct napi_struct *n) 491 { 492 return napi_complete_done(n, 0); 493 } 494 495 int dev_set_threaded(struct net_device *dev, bool threaded); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: NAPI context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 void napi_disable(struct napi_struct *n); 505 506 void napi_enable(struct napi_struct *n); 507 508 /** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: NAPI context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516 static inline void napi_synchronize(const struct napi_struct *n) 517 { 518 if (IS_ENABLED(CONFIG_SMP)) 519 while (test_bit(NAPI_STATE_SCHED, &n->state)) 520 msleep(1); 521 else 522 barrier(); 523 } 524 525 /** 526 * napi_if_scheduled_mark_missed - if napi is running, set the 527 * NAPIF_STATE_MISSED 528 * @n: NAPI context 529 * 530 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 531 * NAPI is scheduled. 532 **/ 533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 534 { 535 unsigned long val, new; 536 537 do { 538 val = READ_ONCE(n->state); 539 if (val & NAPIF_STATE_DISABLE) 540 return true; 541 542 if (!(val & NAPIF_STATE_SCHED)) 543 return false; 544 545 new = val | NAPIF_STATE_MISSED; 546 } while (cmpxchg(&n->state, val, new) != val); 547 548 return true; 549 } 550 551 enum netdev_queue_state_t { 552 __QUEUE_STATE_DRV_XOFF, 553 __QUEUE_STATE_STACK_XOFF, 554 __QUEUE_STATE_FROZEN, 555 }; 556 557 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 558 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 559 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 560 561 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 563 QUEUE_STATE_FROZEN) 564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 565 QUEUE_STATE_FROZEN) 566 567 /* 568 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 569 * netif_tx_* functions below are used to manipulate this flag. The 570 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 571 * queue independently. The netif_xmit_*stopped functions below are called 572 * to check if the queue has been stopped by the driver or stack (either 573 * of the XOFF bits are set in the state). Drivers should not need to call 574 * netif_xmit*stopped functions, they should only be using netif_tx_*. 575 */ 576 577 struct netdev_queue { 578 /* 579 * read-mostly part 580 */ 581 struct net_device *dev; 582 struct Qdisc __rcu *qdisc; 583 struct Qdisc *qdisc_sleeping; 584 #ifdef CONFIG_SYSFS 585 struct kobject kobj; 586 #endif 587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 588 int numa_node; 589 #endif 590 unsigned long tx_maxrate; 591 /* 592 * Number of TX timeouts for this queue 593 * (/sys/class/net/DEV/Q/trans_timeout) 594 */ 595 unsigned long trans_timeout; 596 597 /* Subordinate device that the queue has been assigned to */ 598 struct net_device *sb_dev; 599 #ifdef CONFIG_XDP_SOCKETS 600 struct xsk_buff_pool *pool; 601 #endif 602 /* 603 * write-mostly part 604 */ 605 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 606 int xmit_lock_owner; 607 /* 608 * Time (in jiffies) of last Tx 609 */ 610 unsigned long trans_start; 611 612 unsigned long state; 613 614 #ifdef CONFIG_BQL 615 struct dql dql; 616 #endif 617 } ____cacheline_aligned_in_smp; 618 619 extern int sysctl_fb_tunnels_only_for_init_net; 620 extern int sysctl_devconf_inherit_init_net; 621 622 /* 623 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 624 * == 1 : For initns only 625 * == 2 : For none. 626 */ 627 static inline bool net_has_fallback_tunnels(const struct net *net) 628 { 629 return !IS_ENABLED(CONFIG_SYSCTL) || 630 !sysctl_fb_tunnels_only_for_init_net || 631 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); 632 } 633 634 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 635 { 636 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 637 return q->numa_node; 638 #else 639 return NUMA_NO_NODE; 640 #endif 641 } 642 643 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 644 { 645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 646 q->numa_node = node; 647 #endif 648 } 649 650 #ifdef CONFIG_RPS 651 /* 652 * This structure holds an RPS map which can be of variable length. The 653 * map is an array of CPUs. 654 */ 655 struct rps_map { 656 unsigned int len; 657 struct rcu_head rcu; 658 u16 cpus[]; 659 }; 660 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 661 662 /* 663 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 664 * tail pointer for that CPU's input queue at the time of last enqueue, and 665 * a hardware filter index. 666 */ 667 struct rps_dev_flow { 668 u16 cpu; 669 u16 filter; 670 unsigned int last_qtail; 671 }; 672 #define RPS_NO_FILTER 0xffff 673 674 /* 675 * The rps_dev_flow_table structure contains a table of flow mappings. 676 */ 677 struct rps_dev_flow_table { 678 unsigned int mask; 679 struct rcu_head rcu; 680 struct rps_dev_flow flows[]; 681 }; 682 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 683 ((_num) * sizeof(struct rps_dev_flow))) 684 685 /* 686 * The rps_sock_flow_table contains mappings of flows to the last CPU 687 * on which they were processed by the application (set in recvmsg). 688 * Each entry is a 32bit value. Upper part is the high-order bits 689 * of flow hash, lower part is CPU number. 690 * rps_cpu_mask is used to partition the space, depending on number of 691 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 692 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 693 * meaning we use 32-6=26 bits for the hash. 694 */ 695 struct rps_sock_flow_table { 696 u32 mask; 697 698 u32 ents[] ____cacheline_aligned_in_smp; 699 }; 700 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 701 702 #define RPS_NO_CPU 0xffff 703 704 extern u32 rps_cpu_mask; 705 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 706 707 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 708 u32 hash) 709 { 710 if (table && hash) { 711 unsigned int index = hash & table->mask; 712 u32 val = hash & ~rps_cpu_mask; 713 714 /* We only give a hint, preemption can change CPU under us */ 715 val |= raw_smp_processor_id(); 716 717 if (table->ents[index] != val) 718 table->ents[index] = val; 719 } 720 } 721 722 #ifdef CONFIG_RFS_ACCEL 723 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 724 u16 filter_id); 725 #endif 726 #endif /* CONFIG_RPS */ 727 728 /* This structure contains an instance of an RX queue. */ 729 struct netdev_rx_queue { 730 struct xdp_rxq_info xdp_rxq; 731 #ifdef CONFIG_RPS 732 struct rps_map __rcu *rps_map; 733 struct rps_dev_flow_table __rcu *rps_flow_table; 734 #endif 735 struct kobject kobj; 736 struct net_device *dev; 737 #ifdef CONFIG_XDP_SOCKETS 738 struct xsk_buff_pool *pool; 739 #endif 740 } ____cacheline_aligned_in_smp; 741 742 /* 743 * RX queue sysfs structures and functions. 744 */ 745 struct rx_queue_attribute { 746 struct attribute attr; 747 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 748 ssize_t (*store)(struct netdev_rx_queue *queue, 749 const char *buf, size_t len); 750 }; 751 752 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 753 enum xps_map_type { 754 XPS_CPUS = 0, 755 XPS_RXQS, 756 XPS_MAPS_MAX, 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 * 777 * We keep track of the number of cpus/rxqs used when the struct is allocated, 778 * in nr_ids. This will help not accessing out-of-bound memory. 779 * 780 * We keep track of the number of traffic classes used when the struct is 781 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 782 * not crossing its upper bound, as the original dev->num_tc can be updated in 783 * the meantime. 784 */ 785 struct xps_dev_maps { 786 struct rcu_head rcu; 787 unsigned int nr_ids; 788 s16 num_tc; 789 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 790 }; 791 792 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 793 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 794 795 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 796 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 797 798 #endif /* CONFIG_XPS */ 799 800 #define TC_MAX_QUEUE 16 801 #define TC_BITMASK 15 802 /* HW offloaded queuing disciplines txq count and offset maps */ 803 struct netdev_tc_txq { 804 u16 count; 805 u16 offset; 806 }; 807 808 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 809 /* 810 * This structure is to hold information about the device 811 * configured to run FCoE protocol stack. 812 */ 813 struct netdev_fcoe_hbainfo { 814 char manufacturer[64]; 815 char serial_number[64]; 816 char hardware_version[64]; 817 char driver_version[64]; 818 char optionrom_version[64]; 819 char firmware_version[64]; 820 char model[256]; 821 char model_description[256]; 822 }; 823 #endif 824 825 #define MAX_PHYS_ITEM_ID_LEN 32 826 827 /* This structure holds a unique identifier to identify some 828 * physical item (port for example) used by a netdevice. 829 */ 830 struct netdev_phys_item_id { 831 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 832 unsigned char id_len; 833 }; 834 835 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 836 struct netdev_phys_item_id *b) 837 { 838 return a->id_len == b->id_len && 839 memcmp(a->id, b->id, a->id_len) == 0; 840 } 841 842 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 843 struct sk_buff *skb, 844 struct net_device *sb_dev); 845 846 enum net_device_path_type { 847 DEV_PATH_ETHERNET = 0, 848 DEV_PATH_VLAN, 849 DEV_PATH_BRIDGE, 850 DEV_PATH_PPPOE, 851 DEV_PATH_DSA, 852 }; 853 854 struct net_device_path { 855 enum net_device_path_type type; 856 const struct net_device *dev; 857 union { 858 struct { 859 u16 id; 860 __be16 proto; 861 u8 h_dest[ETH_ALEN]; 862 } encap; 863 struct { 864 enum { 865 DEV_PATH_BR_VLAN_KEEP, 866 DEV_PATH_BR_VLAN_TAG, 867 DEV_PATH_BR_VLAN_UNTAG, 868 DEV_PATH_BR_VLAN_UNTAG_HW, 869 } vlan_mode; 870 u16 vlan_id; 871 __be16 vlan_proto; 872 } bridge; 873 struct { 874 int port; 875 u16 proto; 876 } dsa; 877 }; 878 }; 879 880 #define NET_DEVICE_PATH_STACK_MAX 5 881 #define NET_DEVICE_PATH_VLAN_MAX 2 882 883 struct net_device_path_stack { 884 int num_paths; 885 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 886 }; 887 888 struct net_device_path_ctx { 889 const struct net_device *dev; 890 const u8 *daddr; 891 892 int num_vlans; 893 struct { 894 u16 id; 895 __be16 proto; 896 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 897 }; 898 899 enum tc_setup_type { 900 TC_SETUP_QDISC_MQPRIO, 901 TC_SETUP_CLSU32, 902 TC_SETUP_CLSFLOWER, 903 TC_SETUP_CLSMATCHALL, 904 TC_SETUP_CLSBPF, 905 TC_SETUP_BLOCK, 906 TC_SETUP_QDISC_CBS, 907 TC_SETUP_QDISC_RED, 908 TC_SETUP_QDISC_PRIO, 909 TC_SETUP_QDISC_MQ, 910 TC_SETUP_QDISC_ETF, 911 TC_SETUP_ROOT_QDISC, 912 TC_SETUP_QDISC_GRED, 913 TC_SETUP_QDISC_TAPRIO, 914 TC_SETUP_FT, 915 TC_SETUP_QDISC_ETS, 916 TC_SETUP_QDISC_TBF, 917 TC_SETUP_QDISC_FIFO, 918 TC_SETUP_QDISC_HTB, 919 }; 920 921 /* These structures hold the attributes of bpf state that are being passed 922 * to the netdevice through the bpf op. 923 */ 924 enum bpf_netdev_command { 925 /* Set or clear a bpf program used in the earliest stages of packet 926 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 927 * is responsible for calling bpf_prog_put on any old progs that are 928 * stored. In case of error, the callee need not release the new prog 929 * reference, but on success it takes ownership and must bpf_prog_put 930 * when it is no longer used. 931 */ 932 XDP_SETUP_PROG, 933 XDP_SETUP_PROG_HW, 934 /* BPF program for offload callbacks, invoked at program load time. */ 935 BPF_OFFLOAD_MAP_ALLOC, 936 BPF_OFFLOAD_MAP_FREE, 937 XDP_SETUP_XSK_POOL, 938 }; 939 940 struct bpf_prog_offload_ops; 941 struct netlink_ext_ack; 942 struct xdp_umem; 943 struct xdp_dev_bulk_queue; 944 struct bpf_xdp_link; 945 946 enum bpf_xdp_mode { 947 XDP_MODE_SKB = 0, 948 XDP_MODE_DRV = 1, 949 XDP_MODE_HW = 2, 950 __MAX_XDP_MODE 951 }; 952 953 struct bpf_xdp_entity { 954 struct bpf_prog *prog; 955 struct bpf_xdp_link *link; 956 }; 957 958 struct netdev_bpf { 959 enum bpf_netdev_command command; 960 union { 961 /* XDP_SETUP_PROG */ 962 struct { 963 u32 flags; 964 struct bpf_prog *prog; 965 struct netlink_ext_ack *extack; 966 }; 967 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 968 struct { 969 struct bpf_offloaded_map *offmap; 970 }; 971 /* XDP_SETUP_XSK_POOL */ 972 struct { 973 struct xsk_buff_pool *pool; 974 u16 queue_id; 975 } xsk; 976 }; 977 }; 978 979 /* Flags for ndo_xsk_wakeup. */ 980 #define XDP_WAKEUP_RX (1 << 0) 981 #define XDP_WAKEUP_TX (1 << 1) 982 983 #ifdef CONFIG_XFRM_OFFLOAD 984 struct xfrmdev_ops { 985 int (*xdo_dev_state_add) (struct xfrm_state *x); 986 void (*xdo_dev_state_delete) (struct xfrm_state *x); 987 void (*xdo_dev_state_free) (struct xfrm_state *x); 988 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 989 struct xfrm_state *x); 990 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 991 }; 992 #endif 993 994 struct dev_ifalias { 995 struct rcu_head rcuhead; 996 char ifalias[]; 997 }; 998 999 struct devlink; 1000 struct tlsdev_ops; 1001 1002 struct netdev_name_node { 1003 struct hlist_node hlist; 1004 struct list_head list; 1005 struct net_device *dev; 1006 const char *name; 1007 }; 1008 1009 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 1010 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 1011 1012 struct netdev_net_notifier { 1013 struct list_head list; 1014 struct notifier_block *nb; 1015 }; 1016 1017 /* 1018 * This structure defines the management hooks for network devices. 1019 * The following hooks can be defined; unless noted otherwise, they are 1020 * optional and can be filled with a null pointer. 1021 * 1022 * int (*ndo_init)(struct net_device *dev); 1023 * This function is called once when a network device is registered. 1024 * The network device can use this for any late stage initialization 1025 * or semantic validation. It can fail with an error code which will 1026 * be propagated back to register_netdev. 1027 * 1028 * void (*ndo_uninit)(struct net_device *dev); 1029 * This function is called when device is unregistered or when registration 1030 * fails. It is not called if init fails. 1031 * 1032 * int (*ndo_open)(struct net_device *dev); 1033 * This function is called when a network device transitions to the up 1034 * state. 1035 * 1036 * int (*ndo_stop)(struct net_device *dev); 1037 * This function is called when a network device transitions to the down 1038 * state. 1039 * 1040 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1041 * struct net_device *dev); 1042 * Called when a packet needs to be transmitted. 1043 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1044 * the queue before that can happen; it's for obsolete devices and weird 1045 * corner cases, but the stack really does a non-trivial amount 1046 * of useless work if you return NETDEV_TX_BUSY. 1047 * Required; cannot be NULL. 1048 * 1049 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1050 * struct net_device *dev 1051 * netdev_features_t features); 1052 * Called by core transmit path to determine if device is capable of 1053 * performing offload operations on a given packet. This is to give 1054 * the device an opportunity to implement any restrictions that cannot 1055 * be otherwise expressed by feature flags. The check is called with 1056 * the set of features that the stack has calculated and it returns 1057 * those the driver believes to be appropriate. 1058 * 1059 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1060 * struct net_device *sb_dev); 1061 * Called to decide which queue to use when device supports multiple 1062 * transmit queues. 1063 * 1064 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1065 * This function is called to allow device receiver to make 1066 * changes to configuration when multicast or promiscuous is enabled. 1067 * 1068 * void (*ndo_set_rx_mode)(struct net_device *dev); 1069 * This function is called device changes address list filtering. 1070 * If driver handles unicast address filtering, it should set 1071 * IFF_UNICAST_FLT in its priv_flags. 1072 * 1073 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1074 * This function is called when the Media Access Control address 1075 * needs to be changed. If this interface is not defined, the 1076 * MAC address can not be changed. 1077 * 1078 * int (*ndo_validate_addr)(struct net_device *dev); 1079 * Test if Media Access Control address is valid for the device. 1080 * 1081 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1082 * Old-style ioctl entry point. This is used internally by the 1083 * appletalk and ieee802154 subsystems but is no longer called by 1084 * the device ioctl handler. 1085 * 1086 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1087 * Used by the bonding driver for its device specific ioctls: 1088 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1089 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1090 * 1091 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1092 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1093 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1094 * 1095 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1096 * Used to set network devices bus interface parameters. This interface 1097 * is retained for legacy reasons; new devices should use the bus 1098 * interface (PCI) for low level management. 1099 * 1100 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1101 * Called when a user wants to change the Maximum Transfer Unit 1102 * of a device. 1103 * 1104 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1105 * Callback used when the transmitter has not made any progress 1106 * for dev->watchdog ticks. 1107 * 1108 * void (*ndo_get_stats64)(struct net_device *dev, 1109 * struct rtnl_link_stats64 *storage); 1110 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1111 * Called when a user wants to get the network device usage 1112 * statistics. Drivers must do one of the following: 1113 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1114 * rtnl_link_stats64 structure passed by the caller. 1115 * 2. Define @ndo_get_stats to update a net_device_stats structure 1116 * (which should normally be dev->stats) and return a pointer to 1117 * it. The structure may be changed asynchronously only if each 1118 * field is written atomically. 1119 * 3. Update dev->stats asynchronously and atomically, and define 1120 * neither operation. 1121 * 1122 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1123 * Return true if this device supports offload stats of this attr_id. 1124 * 1125 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1126 * void *attr_data) 1127 * Get statistics for offload operations by attr_id. Write it into the 1128 * attr_data pointer. 1129 * 1130 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1131 * If device supports VLAN filtering this function is called when a 1132 * VLAN id is registered. 1133 * 1134 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1135 * If device supports VLAN filtering this function is called when a 1136 * VLAN id is unregistered. 1137 * 1138 * void (*ndo_poll_controller)(struct net_device *dev); 1139 * 1140 * SR-IOV management functions. 1141 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1142 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1143 * u8 qos, __be16 proto); 1144 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1145 * int max_tx_rate); 1146 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1147 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1148 * int (*ndo_get_vf_config)(struct net_device *dev, 1149 * int vf, struct ifla_vf_info *ivf); 1150 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1151 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1152 * struct nlattr *port[]); 1153 * 1154 * Enable or disable the VF ability to query its RSS Redirection Table and 1155 * Hash Key. This is needed since on some devices VF share this information 1156 * with PF and querying it may introduce a theoretical security risk. 1157 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1158 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1159 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1160 * void *type_data); 1161 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1162 * This is always called from the stack with the rtnl lock held and netif 1163 * tx queues stopped. This allows the netdevice to perform queue 1164 * management safely. 1165 * 1166 * Fiber Channel over Ethernet (FCoE) offload functions. 1167 * int (*ndo_fcoe_enable)(struct net_device *dev); 1168 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1169 * so the underlying device can perform whatever needed configuration or 1170 * initialization to support acceleration of FCoE traffic. 1171 * 1172 * int (*ndo_fcoe_disable)(struct net_device *dev); 1173 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1174 * so the underlying device can perform whatever needed clean-ups to 1175 * stop supporting acceleration of FCoE traffic. 1176 * 1177 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1178 * struct scatterlist *sgl, unsigned int sgc); 1179 * Called when the FCoE Initiator wants to initialize an I/O that 1180 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1181 * perform necessary setup and returns 1 to indicate the device is set up 1182 * successfully to perform DDP on this I/O, otherwise this returns 0. 1183 * 1184 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1185 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1186 * indicated by the FC exchange id 'xid', so the underlying device can 1187 * clean up and reuse resources for later DDP requests. 1188 * 1189 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1190 * struct scatterlist *sgl, unsigned int sgc); 1191 * Called when the FCoE Target wants to initialize an I/O that 1192 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1193 * perform necessary setup and returns 1 to indicate the device is set up 1194 * successfully to perform DDP on this I/O, otherwise this returns 0. 1195 * 1196 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1197 * struct netdev_fcoe_hbainfo *hbainfo); 1198 * Called when the FCoE Protocol stack wants information on the underlying 1199 * device. This information is utilized by the FCoE protocol stack to 1200 * register attributes with Fiber Channel management service as per the 1201 * FC-GS Fabric Device Management Information(FDMI) specification. 1202 * 1203 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1204 * Called when the underlying device wants to override default World Wide 1205 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1206 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1207 * protocol stack to use. 1208 * 1209 * RFS acceleration. 1210 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1211 * u16 rxq_index, u32 flow_id); 1212 * Set hardware filter for RFS. rxq_index is the target queue index; 1213 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1214 * Return the filter ID on success, or a negative error code. 1215 * 1216 * Slave management functions (for bridge, bonding, etc). 1217 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1218 * Called to make another netdev an underling. 1219 * 1220 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1221 * Called to release previously enslaved netdev. 1222 * 1223 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1224 * struct sk_buff *skb, 1225 * bool all_slaves); 1226 * Get the xmit slave of master device. If all_slaves is true, function 1227 * assume all the slaves can transmit. 1228 * 1229 * Feature/offload setting functions. 1230 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1231 * netdev_features_t features); 1232 * Adjusts the requested feature flags according to device-specific 1233 * constraints, and returns the resulting flags. Must not modify 1234 * the device state. 1235 * 1236 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1237 * Called to update device configuration to new features. Passed 1238 * feature set might be less than what was returned by ndo_fix_features()). 1239 * Must return >0 or -errno if it changed dev->features itself. 1240 * 1241 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1242 * struct net_device *dev, 1243 * const unsigned char *addr, u16 vid, u16 flags, 1244 * struct netlink_ext_ack *extack); 1245 * Adds an FDB entry to dev for addr. 1246 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1247 * struct net_device *dev, 1248 * const unsigned char *addr, u16 vid) 1249 * Deletes the FDB entry from dev coresponding to addr. 1250 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1251 * struct net_device *dev, struct net_device *filter_dev, 1252 * int *idx) 1253 * Used to add FDB entries to dump requests. Implementers should add 1254 * entries to skb and update idx with the number of entries. 1255 * 1256 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1257 * u16 flags, struct netlink_ext_ack *extack) 1258 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1259 * struct net_device *dev, u32 filter_mask, 1260 * int nlflags) 1261 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1262 * u16 flags); 1263 * 1264 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1265 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1266 * which do not represent real hardware may define this to allow their 1267 * userspace components to manage their virtual carrier state. Devices 1268 * that determine carrier state from physical hardware properties (eg 1269 * network cables) or protocol-dependent mechanisms (eg 1270 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1271 * 1272 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1273 * struct netdev_phys_item_id *ppid); 1274 * Called to get ID of physical port of this device. If driver does 1275 * not implement this, it is assumed that the hw is not able to have 1276 * multiple net devices on single physical port. 1277 * 1278 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1279 * struct netdev_phys_item_id *ppid) 1280 * Called to get the parent ID of the physical port of this device. 1281 * 1282 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1283 * struct net_device *dev) 1284 * Called by upper layer devices to accelerate switching or other 1285 * station functionality into hardware. 'pdev is the lowerdev 1286 * to use for the offload and 'dev' is the net device that will 1287 * back the offload. Returns a pointer to the private structure 1288 * the upper layer will maintain. 1289 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1290 * Called by upper layer device to delete the station created 1291 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1292 * the station and priv is the structure returned by the add 1293 * operation. 1294 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1295 * int queue_index, u32 maxrate); 1296 * Called when a user wants to set a max-rate limitation of specific 1297 * TX queue. 1298 * int (*ndo_get_iflink)(const struct net_device *dev); 1299 * Called to get the iflink value of this device. 1300 * void (*ndo_change_proto_down)(struct net_device *dev, 1301 * bool proto_down); 1302 * This function is used to pass protocol port error state information 1303 * to the switch driver. The switch driver can react to the proto_down 1304 * by doing a phys down on the associated switch port. 1305 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1306 * This function is used to get egress tunnel information for given skb. 1307 * This is useful for retrieving outer tunnel header parameters while 1308 * sampling packet. 1309 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1310 * This function is used to specify the headroom that the skb must 1311 * consider when allocation skb during packet reception. Setting 1312 * appropriate rx headroom value allows avoiding skb head copy on 1313 * forward. Setting a negative value resets the rx headroom to the 1314 * default value. 1315 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1316 * This function is used to set or query state related to XDP on the 1317 * netdevice and manage BPF offload. See definition of 1318 * enum bpf_netdev_command for details. 1319 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1320 * u32 flags); 1321 * This function is used to submit @n XDP packets for transmit on a 1322 * netdevice. Returns number of frames successfully transmitted, frames 1323 * that got dropped are freed/returned via xdp_return_frame(). 1324 * Returns negative number, means general error invoking ndo, meaning 1325 * no frames were xmit'ed and core-caller will free all frames. 1326 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1327 * struct xdp_buff *xdp); 1328 * Get the xmit slave of master device based on the xdp_buff. 1329 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1330 * This function is used to wake up the softirq, ksoftirqd or kthread 1331 * responsible for sending and/or receiving packets on a specific 1332 * queue id bound to an AF_XDP socket. The flags field specifies if 1333 * only RX, only Tx, or both should be woken up using the flags 1334 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1335 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1336 * Get devlink port instance associated with a given netdev. 1337 * Called with a reference on the netdevice and devlink locks only, 1338 * rtnl_lock is not held. 1339 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1340 * int cmd); 1341 * Add, change, delete or get information on an IPv4 tunnel. 1342 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1343 * If a device is paired with a peer device, return the peer instance. 1344 * The caller must be under RCU read context. 1345 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1346 * Get the forwarding path to reach the real device from the HW destination address 1347 */ 1348 struct net_device_ops { 1349 int (*ndo_init)(struct net_device *dev); 1350 void (*ndo_uninit)(struct net_device *dev); 1351 int (*ndo_open)(struct net_device *dev); 1352 int (*ndo_stop)(struct net_device *dev); 1353 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1354 struct net_device *dev); 1355 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1356 struct net_device *dev, 1357 netdev_features_t features); 1358 u16 (*ndo_select_queue)(struct net_device *dev, 1359 struct sk_buff *skb, 1360 struct net_device *sb_dev); 1361 void (*ndo_change_rx_flags)(struct net_device *dev, 1362 int flags); 1363 void (*ndo_set_rx_mode)(struct net_device *dev); 1364 int (*ndo_set_mac_address)(struct net_device *dev, 1365 void *addr); 1366 int (*ndo_validate_addr)(struct net_device *dev); 1367 int (*ndo_do_ioctl)(struct net_device *dev, 1368 struct ifreq *ifr, int cmd); 1369 int (*ndo_eth_ioctl)(struct net_device *dev, 1370 struct ifreq *ifr, int cmd); 1371 int (*ndo_siocbond)(struct net_device *dev, 1372 struct ifreq *ifr, int cmd); 1373 int (*ndo_siocwandev)(struct net_device *dev, 1374 struct if_settings *ifs); 1375 int (*ndo_siocdevprivate)(struct net_device *dev, 1376 struct ifreq *ifr, 1377 void __user *data, int cmd); 1378 int (*ndo_set_config)(struct net_device *dev, 1379 struct ifmap *map); 1380 int (*ndo_change_mtu)(struct net_device *dev, 1381 int new_mtu); 1382 int (*ndo_neigh_setup)(struct net_device *dev, 1383 struct neigh_parms *); 1384 void (*ndo_tx_timeout) (struct net_device *dev, 1385 unsigned int txqueue); 1386 1387 void (*ndo_get_stats64)(struct net_device *dev, 1388 struct rtnl_link_stats64 *storage); 1389 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1390 int (*ndo_get_offload_stats)(int attr_id, 1391 const struct net_device *dev, 1392 void *attr_data); 1393 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1394 1395 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1396 __be16 proto, u16 vid); 1397 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1398 __be16 proto, u16 vid); 1399 #ifdef CONFIG_NET_POLL_CONTROLLER 1400 void (*ndo_poll_controller)(struct net_device *dev); 1401 int (*ndo_netpoll_setup)(struct net_device *dev, 1402 struct netpoll_info *info); 1403 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1404 #endif 1405 int (*ndo_set_vf_mac)(struct net_device *dev, 1406 int queue, u8 *mac); 1407 int (*ndo_set_vf_vlan)(struct net_device *dev, 1408 int queue, u16 vlan, 1409 u8 qos, __be16 proto); 1410 int (*ndo_set_vf_rate)(struct net_device *dev, 1411 int vf, int min_tx_rate, 1412 int max_tx_rate); 1413 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1414 int vf, bool setting); 1415 int (*ndo_set_vf_trust)(struct net_device *dev, 1416 int vf, bool setting); 1417 int (*ndo_get_vf_config)(struct net_device *dev, 1418 int vf, 1419 struct ifla_vf_info *ivf); 1420 int (*ndo_set_vf_link_state)(struct net_device *dev, 1421 int vf, int link_state); 1422 int (*ndo_get_vf_stats)(struct net_device *dev, 1423 int vf, 1424 struct ifla_vf_stats 1425 *vf_stats); 1426 int (*ndo_set_vf_port)(struct net_device *dev, 1427 int vf, 1428 struct nlattr *port[]); 1429 int (*ndo_get_vf_port)(struct net_device *dev, 1430 int vf, struct sk_buff *skb); 1431 int (*ndo_get_vf_guid)(struct net_device *dev, 1432 int vf, 1433 struct ifla_vf_guid *node_guid, 1434 struct ifla_vf_guid *port_guid); 1435 int (*ndo_set_vf_guid)(struct net_device *dev, 1436 int vf, u64 guid, 1437 int guid_type); 1438 int (*ndo_set_vf_rss_query_en)( 1439 struct net_device *dev, 1440 int vf, bool setting); 1441 int (*ndo_setup_tc)(struct net_device *dev, 1442 enum tc_setup_type type, 1443 void *type_data); 1444 #if IS_ENABLED(CONFIG_FCOE) 1445 int (*ndo_fcoe_enable)(struct net_device *dev); 1446 int (*ndo_fcoe_disable)(struct net_device *dev); 1447 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1448 u16 xid, 1449 struct scatterlist *sgl, 1450 unsigned int sgc); 1451 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1452 u16 xid); 1453 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1454 u16 xid, 1455 struct scatterlist *sgl, 1456 unsigned int sgc); 1457 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1458 struct netdev_fcoe_hbainfo *hbainfo); 1459 #endif 1460 1461 #if IS_ENABLED(CONFIG_LIBFCOE) 1462 #define NETDEV_FCOE_WWNN 0 1463 #define NETDEV_FCOE_WWPN 1 1464 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1465 u64 *wwn, int type); 1466 #endif 1467 1468 #ifdef CONFIG_RFS_ACCEL 1469 int (*ndo_rx_flow_steer)(struct net_device *dev, 1470 const struct sk_buff *skb, 1471 u16 rxq_index, 1472 u32 flow_id); 1473 #endif 1474 int (*ndo_add_slave)(struct net_device *dev, 1475 struct net_device *slave_dev, 1476 struct netlink_ext_ack *extack); 1477 int (*ndo_del_slave)(struct net_device *dev, 1478 struct net_device *slave_dev); 1479 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1480 struct sk_buff *skb, 1481 bool all_slaves); 1482 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1483 struct sock *sk); 1484 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1485 netdev_features_t features); 1486 int (*ndo_set_features)(struct net_device *dev, 1487 netdev_features_t features); 1488 int (*ndo_neigh_construct)(struct net_device *dev, 1489 struct neighbour *n); 1490 void (*ndo_neigh_destroy)(struct net_device *dev, 1491 struct neighbour *n); 1492 1493 int (*ndo_fdb_add)(struct ndmsg *ndm, 1494 struct nlattr *tb[], 1495 struct net_device *dev, 1496 const unsigned char *addr, 1497 u16 vid, 1498 u16 flags, 1499 struct netlink_ext_ack *extack); 1500 int (*ndo_fdb_del)(struct ndmsg *ndm, 1501 struct nlattr *tb[], 1502 struct net_device *dev, 1503 const unsigned char *addr, 1504 u16 vid); 1505 int (*ndo_fdb_dump)(struct sk_buff *skb, 1506 struct netlink_callback *cb, 1507 struct net_device *dev, 1508 struct net_device *filter_dev, 1509 int *idx); 1510 int (*ndo_fdb_get)(struct sk_buff *skb, 1511 struct nlattr *tb[], 1512 struct net_device *dev, 1513 const unsigned char *addr, 1514 u16 vid, u32 portid, u32 seq, 1515 struct netlink_ext_ack *extack); 1516 int (*ndo_bridge_setlink)(struct net_device *dev, 1517 struct nlmsghdr *nlh, 1518 u16 flags, 1519 struct netlink_ext_ack *extack); 1520 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1521 u32 pid, u32 seq, 1522 struct net_device *dev, 1523 u32 filter_mask, 1524 int nlflags); 1525 int (*ndo_bridge_dellink)(struct net_device *dev, 1526 struct nlmsghdr *nlh, 1527 u16 flags); 1528 int (*ndo_change_carrier)(struct net_device *dev, 1529 bool new_carrier); 1530 int (*ndo_get_phys_port_id)(struct net_device *dev, 1531 struct netdev_phys_item_id *ppid); 1532 int (*ndo_get_port_parent_id)(struct net_device *dev, 1533 struct netdev_phys_item_id *ppid); 1534 int (*ndo_get_phys_port_name)(struct net_device *dev, 1535 char *name, size_t len); 1536 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1537 struct net_device *dev); 1538 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1539 void *priv); 1540 1541 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1542 int queue_index, 1543 u32 maxrate); 1544 int (*ndo_get_iflink)(const struct net_device *dev); 1545 int (*ndo_change_proto_down)(struct net_device *dev, 1546 bool proto_down); 1547 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1548 struct sk_buff *skb); 1549 void (*ndo_set_rx_headroom)(struct net_device *dev, 1550 int needed_headroom); 1551 int (*ndo_bpf)(struct net_device *dev, 1552 struct netdev_bpf *bpf); 1553 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1554 struct xdp_frame **xdp, 1555 u32 flags); 1556 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1557 struct xdp_buff *xdp); 1558 int (*ndo_xsk_wakeup)(struct net_device *dev, 1559 u32 queue_id, u32 flags); 1560 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1561 int (*ndo_tunnel_ctl)(struct net_device *dev, 1562 struct ip_tunnel_parm *p, int cmd); 1563 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1564 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1565 struct net_device_path *path); 1566 }; 1567 1568 /** 1569 * enum netdev_priv_flags - &struct net_device priv_flags 1570 * 1571 * These are the &struct net_device, they are only set internally 1572 * by drivers and used in the kernel. These flags are invisible to 1573 * userspace; this means that the order of these flags can change 1574 * during any kernel release. 1575 * 1576 * You should have a pretty good reason to be extending these flags. 1577 * 1578 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1579 * @IFF_EBRIDGE: Ethernet bridging device 1580 * @IFF_BONDING: bonding master or slave 1581 * @IFF_ISATAP: ISATAP interface (RFC4214) 1582 * @IFF_WAN_HDLC: WAN HDLC device 1583 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1584 * release skb->dst 1585 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1586 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1587 * @IFF_MACVLAN_PORT: device used as macvlan port 1588 * @IFF_BRIDGE_PORT: device used as bridge port 1589 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1590 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1591 * @IFF_UNICAST_FLT: Supports unicast filtering 1592 * @IFF_TEAM_PORT: device used as team port 1593 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1594 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1595 * change when it's running 1596 * @IFF_MACVLAN: Macvlan device 1597 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1598 * underlying stacked devices 1599 * @IFF_L3MDEV_MASTER: device is an L3 master device 1600 * @IFF_NO_QUEUE: device can run without qdisc attached 1601 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1602 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1603 * @IFF_TEAM: device is a team device 1604 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1605 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1606 * entity (i.e. the master device for bridged veth) 1607 * @IFF_MACSEC: device is a MACsec device 1608 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1609 * @IFF_FAILOVER: device is a failover master device 1610 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1611 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1612 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1613 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1614 * skb_headlen(skb) == 0 (data starts from frag0) 1615 */ 1616 enum netdev_priv_flags { 1617 IFF_802_1Q_VLAN = 1<<0, 1618 IFF_EBRIDGE = 1<<1, 1619 IFF_BONDING = 1<<2, 1620 IFF_ISATAP = 1<<3, 1621 IFF_WAN_HDLC = 1<<4, 1622 IFF_XMIT_DST_RELEASE = 1<<5, 1623 IFF_DONT_BRIDGE = 1<<6, 1624 IFF_DISABLE_NETPOLL = 1<<7, 1625 IFF_MACVLAN_PORT = 1<<8, 1626 IFF_BRIDGE_PORT = 1<<9, 1627 IFF_OVS_DATAPATH = 1<<10, 1628 IFF_TX_SKB_SHARING = 1<<11, 1629 IFF_UNICAST_FLT = 1<<12, 1630 IFF_TEAM_PORT = 1<<13, 1631 IFF_SUPP_NOFCS = 1<<14, 1632 IFF_LIVE_ADDR_CHANGE = 1<<15, 1633 IFF_MACVLAN = 1<<16, 1634 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1635 IFF_L3MDEV_MASTER = 1<<18, 1636 IFF_NO_QUEUE = 1<<19, 1637 IFF_OPENVSWITCH = 1<<20, 1638 IFF_L3MDEV_SLAVE = 1<<21, 1639 IFF_TEAM = 1<<22, 1640 IFF_RXFH_CONFIGURED = 1<<23, 1641 IFF_PHONY_HEADROOM = 1<<24, 1642 IFF_MACSEC = 1<<25, 1643 IFF_NO_RX_HANDLER = 1<<26, 1644 IFF_FAILOVER = 1<<27, 1645 IFF_FAILOVER_SLAVE = 1<<28, 1646 IFF_L3MDEV_RX_HANDLER = 1<<29, 1647 IFF_LIVE_RENAME_OK = 1<<30, 1648 IFF_TX_SKB_NO_LINEAR = 1<<31, 1649 }; 1650 1651 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1652 #define IFF_EBRIDGE IFF_EBRIDGE 1653 #define IFF_BONDING IFF_BONDING 1654 #define IFF_ISATAP IFF_ISATAP 1655 #define IFF_WAN_HDLC IFF_WAN_HDLC 1656 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1657 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1658 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1659 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1660 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1661 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1662 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1663 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1664 #define IFF_TEAM_PORT IFF_TEAM_PORT 1665 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1666 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1667 #define IFF_MACVLAN IFF_MACVLAN 1668 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1669 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1670 #define IFF_NO_QUEUE IFF_NO_QUEUE 1671 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1672 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1673 #define IFF_TEAM IFF_TEAM 1674 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1675 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1676 #define IFF_MACSEC IFF_MACSEC 1677 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1678 #define IFF_FAILOVER IFF_FAILOVER 1679 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1680 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1681 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1682 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1683 1684 /* Specifies the type of the struct net_device::ml_priv pointer */ 1685 enum netdev_ml_priv_type { 1686 ML_PRIV_NONE, 1687 ML_PRIV_CAN, 1688 }; 1689 1690 /** 1691 * struct net_device - The DEVICE structure. 1692 * 1693 * Actually, this whole structure is a big mistake. It mixes I/O 1694 * data with strictly "high-level" data, and it has to know about 1695 * almost every data structure used in the INET module. 1696 * 1697 * @name: This is the first field of the "visible" part of this structure 1698 * (i.e. as seen by users in the "Space.c" file). It is the name 1699 * of the interface. 1700 * 1701 * @name_node: Name hashlist node 1702 * @ifalias: SNMP alias 1703 * @mem_end: Shared memory end 1704 * @mem_start: Shared memory start 1705 * @base_addr: Device I/O address 1706 * @irq: Device IRQ number 1707 * 1708 * @state: Generic network queuing layer state, see netdev_state_t 1709 * @dev_list: The global list of network devices 1710 * @napi_list: List entry used for polling NAPI devices 1711 * @unreg_list: List entry when we are unregistering the 1712 * device; see the function unregister_netdev 1713 * @close_list: List entry used when we are closing the device 1714 * @ptype_all: Device-specific packet handlers for all protocols 1715 * @ptype_specific: Device-specific, protocol-specific packet handlers 1716 * 1717 * @adj_list: Directly linked devices, like slaves for bonding 1718 * @features: Currently active device features 1719 * @hw_features: User-changeable features 1720 * 1721 * @wanted_features: User-requested features 1722 * @vlan_features: Mask of features inheritable by VLAN devices 1723 * 1724 * @hw_enc_features: Mask of features inherited by encapsulating devices 1725 * This field indicates what encapsulation 1726 * offloads the hardware is capable of doing, 1727 * and drivers will need to set them appropriately. 1728 * 1729 * @mpls_features: Mask of features inheritable by MPLS 1730 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1731 * 1732 * @ifindex: interface index 1733 * @group: The group the device belongs to 1734 * 1735 * @stats: Statistics struct, which was left as a legacy, use 1736 * rtnl_link_stats64 instead 1737 * 1738 * @rx_dropped: Dropped packets by core network, 1739 * do not use this in drivers 1740 * @tx_dropped: Dropped packets by core network, 1741 * do not use this in drivers 1742 * @rx_nohandler: nohandler dropped packets by core network on 1743 * inactive devices, do not use this in drivers 1744 * @carrier_up_count: Number of times the carrier has been up 1745 * @carrier_down_count: Number of times the carrier has been down 1746 * 1747 * @wireless_handlers: List of functions to handle Wireless Extensions, 1748 * instead of ioctl, 1749 * see <net/iw_handler.h> for details. 1750 * @wireless_data: Instance data managed by the core of wireless extensions 1751 * 1752 * @netdev_ops: Includes several pointers to callbacks, 1753 * if one wants to override the ndo_*() functions 1754 * @ethtool_ops: Management operations 1755 * @l3mdev_ops: Layer 3 master device operations 1756 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1757 * discovery handling. Necessary for e.g. 6LoWPAN. 1758 * @xfrmdev_ops: Transformation offload operations 1759 * @tlsdev_ops: Transport Layer Security offload operations 1760 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1761 * of Layer 2 headers. 1762 * 1763 * @flags: Interface flags (a la BSD) 1764 * @priv_flags: Like 'flags' but invisible to userspace, 1765 * see if.h for the definitions 1766 * @gflags: Global flags ( kept as legacy ) 1767 * @padded: How much padding added by alloc_netdev() 1768 * @operstate: RFC2863 operstate 1769 * @link_mode: Mapping policy to operstate 1770 * @if_port: Selectable AUI, TP, ... 1771 * @dma: DMA channel 1772 * @mtu: Interface MTU value 1773 * @min_mtu: Interface Minimum MTU value 1774 * @max_mtu: Interface Maximum MTU value 1775 * @type: Interface hardware type 1776 * @hard_header_len: Maximum hardware header length. 1777 * @min_header_len: Minimum hardware header length 1778 * 1779 * @needed_headroom: Extra headroom the hardware may need, but not in all 1780 * cases can this be guaranteed 1781 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1782 * cases can this be guaranteed. Some cases also use 1783 * LL_MAX_HEADER instead to allocate the skb 1784 * 1785 * interface address info: 1786 * 1787 * @perm_addr: Permanent hw address 1788 * @addr_assign_type: Hw address assignment type 1789 * @addr_len: Hardware address length 1790 * @upper_level: Maximum depth level of upper devices. 1791 * @lower_level: Maximum depth level of lower devices. 1792 * @neigh_priv_len: Used in neigh_alloc() 1793 * @dev_id: Used to differentiate devices that share 1794 * the same link layer address 1795 * @dev_port: Used to differentiate devices that share 1796 * the same function 1797 * @addr_list_lock: XXX: need comments on this one 1798 * @name_assign_type: network interface name assignment type 1799 * @uc_promisc: Counter that indicates promiscuous mode 1800 * has been enabled due to the need to listen to 1801 * additional unicast addresses in a device that 1802 * does not implement ndo_set_rx_mode() 1803 * @uc: unicast mac addresses 1804 * @mc: multicast mac addresses 1805 * @dev_addrs: list of device hw addresses 1806 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1807 * @promiscuity: Number of times the NIC is told to work in 1808 * promiscuous mode; if it becomes 0 the NIC will 1809 * exit promiscuous mode 1810 * @allmulti: Counter, enables or disables allmulticast mode 1811 * 1812 * @vlan_info: VLAN info 1813 * @dsa_ptr: dsa specific data 1814 * @tipc_ptr: TIPC specific data 1815 * @atalk_ptr: AppleTalk link 1816 * @ip_ptr: IPv4 specific data 1817 * @dn_ptr: DECnet specific data 1818 * @ip6_ptr: IPv6 specific data 1819 * @ax25_ptr: AX.25 specific data 1820 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1821 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1822 * device struct 1823 * @mpls_ptr: mpls_dev struct pointer 1824 * @mctp_ptr: MCTP specific data 1825 * 1826 * @dev_addr: Hw address (before bcast, 1827 * because most packets are unicast) 1828 * 1829 * @_rx: Array of RX queues 1830 * @num_rx_queues: Number of RX queues 1831 * allocated at register_netdev() time 1832 * @real_num_rx_queues: Number of RX queues currently active in device 1833 * @xdp_prog: XDP sockets filter program pointer 1834 * @gro_flush_timeout: timeout for GRO layer in NAPI 1835 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1836 * allow to avoid NIC hard IRQ, on busy queues. 1837 * 1838 * @rx_handler: handler for received packets 1839 * @rx_handler_data: XXX: need comments on this one 1840 * @miniq_ingress: ingress/clsact qdisc specific data for 1841 * ingress processing 1842 * @ingress_queue: XXX: need comments on this one 1843 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1844 * @broadcast: hw bcast address 1845 * 1846 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1847 * indexed by RX queue number. Assigned by driver. 1848 * This must only be set if the ndo_rx_flow_steer 1849 * operation is defined 1850 * @index_hlist: Device index hash chain 1851 * 1852 * @_tx: Array of TX queues 1853 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1854 * @real_num_tx_queues: Number of TX queues currently active in device 1855 * @qdisc: Root qdisc from userspace point of view 1856 * @tx_queue_len: Max frames per queue allowed 1857 * @tx_global_lock: XXX: need comments on this one 1858 * @xdp_bulkq: XDP device bulk queue 1859 * @xps_maps: all CPUs/RXQs maps for XPS device 1860 * 1861 * @xps_maps: XXX: need comments on this one 1862 * @miniq_egress: clsact qdisc specific data for 1863 * egress processing 1864 * @nf_hooks_egress: netfilter hooks executed for egress packets 1865 * @qdisc_hash: qdisc hash table 1866 * @watchdog_timeo: Represents the timeout that is used by 1867 * the watchdog (see dev_watchdog()) 1868 * @watchdog_timer: List of timers 1869 * 1870 * @proto_down_reason: reason a netdev interface is held down 1871 * @pcpu_refcnt: Number of references to this device 1872 * @dev_refcnt: Number of references to this device 1873 * @todo_list: Delayed register/unregister 1874 * @link_watch_list: XXX: need comments on this one 1875 * 1876 * @reg_state: Register/unregister state machine 1877 * @dismantle: Device is going to be freed 1878 * @rtnl_link_state: This enum represents the phases of creating 1879 * a new link 1880 * 1881 * @needs_free_netdev: Should unregister perform free_netdev? 1882 * @priv_destructor: Called from unregister 1883 * @npinfo: XXX: need comments on this one 1884 * @nd_net: Network namespace this network device is inside 1885 * 1886 * @ml_priv: Mid-layer private 1887 * @ml_priv_type: Mid-layer private type 1888 * @lstats: Loopback statistics 1889 * @tstats: Tunnel statistics 1890 * @dstats: Dummy statistics 1891 * @vstats: Virtual ethernet statistics 1892 * 1893 * @garp_port: GARP 1894 * @mrp_port: MRP 1895 * 1896 * @dev: Class/net/name entry 1897 * @sysfs_groups: Space for optional device, statistics and wireless 1898 * sysfs groups 1899 * 1900 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1901 * @rtnl_link_ops: Rtnl_link_ops 1902 * 1903 * @gso_max_size: Maximum size of generic segmentation offload 1904 * @gso_max_segs: Maximum number of segments that can be passed to the 1905 * NIC for GSO 1906 * 1907 * @dcbnl_ops: Data Center Bridging netlink ops 1908 * @num_tc: Number of traffic classes in the net device 1909 * @tc_to_txq: XXX: need comments on this one 1910 * @prio_tc_map: XXX: need comments on this one 1911 * 1912 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1913 * 1914 * @priomap: XXX: need comments on this one 1915 * @phydev: Physical device may attach itself 1916 * for hardware timestamping 1917 * @sfp_bus: attached &struct sfp_bus structure. 1918 * 1919 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1920 * 1921 * @proto_down: protocol port state information can be sent to the 1922 * switch driver and used to set the phys state of the 1923 * switch port. 1924 * 1925 * @wol_enabled: Wake-on-LAN is enabled 1926 * 1927 * @threaded: napi threaded mode is enabled 1928 * 1929 * @net_notifier_list: List of per-net netdev notifier block 1930 * that follow this device when it is moved 1931 * to another network namespace. 1932 * 1933 * @macsec_ops: MACsec offloading ops 1934 * 1935 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1936 * offload capabilities of the device 1937 * @udp_tunnel_nic: UDP tunnel offload state 1938 * @xdp_state: stores info on attached XDP BPF programs 1939 * 1940 * @nested_level: Used as a parameter of spin_lock_nested() of 1941 * dev->addr_list_lock. 1942 * @unlink_list: As netif_addr_lock() can be called recursively, 1943 * keep a list of interfaces to be deleted. 1944 * 1945 * FIXME: cleanup struct net_device such that network protocol info 1946 * moves out. 1947 */ 1948 1949 struct net_device { 1950 char name[IFNAMSIZ]; 1951 struct netdev_name_node *name_node; 1952 struct dev_ifalias __rcu *ifalias; 1953 /* 1954 * I/O specific fields 1955 * FIXME: Merge these and struct ifmap into one 1956 */ 1957 unsigned long mem_end; 1958 unsigned long mem_start; 1959 unsigned long base_addr; 1960 1961 /* 1962 * Some hardware also needs these fields (state,dev_list, 1963 * napi_list,unreg_list,close_list) but they are not 1964 * part of the usual set specified in Space.c. 1965 */ 1966 1967 unsigned long state; 1968 1969 struct list_head dev_list; 1970 struct list_head napi_list; 1971 struct list_head unreg_list; 1972 struct list_head close_list; 1973 struct list_head ptype_all; 1974 struct list_head ptype_specific; 1975 1976 struct { 1977 struct list_head upper; 1978 struct list_head lower; 1979 } adj_list; 1980 1981 /* Read-mostly cache-line for fast-path access */ 1982 unsigned int flags; 1983 unsigned int priv_flags; 1984 const struct net_device_ops *netdev_ops; 1985 int ifindex; 1986 unsigned short gflags; 1987 unsigned short hard_header_len; 1988 1989 /* Note : dev->mtu is often read without holding a lock. 1990 * Writers usually hold RTNL. 1991 * It is recommended to use READ_ONCE() to annotate the reads, 1992 * and to use WRITE_ONCE() to annotate the writes. 1993 */ 1994 unsigned int mtu; 1995 unsigned short needed_headroom; 1996 unsigned short needed_tailroom; 1997 1998 netdev_features_t features; 1999 netdev_features_t hw_features; 2000 netdev_features_t wanted_features; 2001 netdev_features_t vlan_features; 2002 netdev_features_t hw_enc_features; 2003 netdev_features_t mpls_features; 2004 netdev_features_t gso_partial_features; 2005 2006 unsigned int min_mtu; 2007 unsigned int max_mtu; 2008 unsigned short type; 2009 unsigned char min_header_len; 2010 unsigned char name_assign_type; 2011 2012 int group; 2013 2014 struct net_device_stats stats; /* not used by modern drivers */ 2015 2016 atomic_long_t rx_dropped; 2017 atomic_long_t tx_dropped; 2018 atomic_long_t rx_nohandler; 2019 2020 /* Stats to monitor link on/off, flapping */ 2021 atomic_t carrier_up_count; 2022 atomic_t carrier_down_count; 2023 2024 #ifdef CONFIG_WIRELESS_EXT 2025 const struct iw_handler_def *wireless_handlers; 2026 struct iw_public_data *wireless_data; 2027 #endif 2028 const struct ethtool_ops *ethtool_ops; 2029 #ifdef CONFIG_NET_L3_MASTER_DEV 2030 const struct l3mdev_ops *l3mdev_ops; 2031 #endif 2032 #if IS_ENABLED(CONFIG_IPV6) 2033 const struct ndisc_ops *ndisc_ops; 2034 #endif 2035 2036 #ifdef CONFIG_XFRM_OFFLOAD 2037 const struct xfrmdev_ops *xfrmdev_ops; 2038 #endif 2039 2040 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2041 const struct tlsdev_ops *tlsdev_ops; 2042 #endif 2043 2044 const struct header_ops *header_ops; 2045 2046 unsigned char operstate; 2047 unsigned char link_mode; 2048 2049 unsigned char if_port; 2050 unsigned char dma; 2051 2052 /* Interface address info. */ 2053 unsigned char perm_addr[MAX_ADDR_LEN]; 2054 unsigned char addr_assign_type; 2055 unsigned char addr_len; 2056 unsigned char upper_level; 2057 unsigned char lower_level; 2058 2059 unsigned short neigh_priv_len; 2060 unsigned short dev_id; 2061 unsigned short dev_port; 2062 unsigned short padded; 2063 2064 spinlock_t addr_list_lock; 2065 int irq; 2066 2067 struct netdev_hw_addr_list uc; 2068 struct netdev_hw_addr_list mc; 2069 struct netdev_hw_addr_list dev_addrs; 2070 2071 #ifdef CONFIG_SYSFS 2072 struct kset *queues_kset; 2073 #endif 2074 #ifdef CONFIG_LOCKDEP 2075 struct list_head unlink_list; 2076 #endif 2077 unsigned int promiscuity; 2078 unsigned int allmulti; 2079 bool uc_promisc; 2080 #ifdef CONFIG_LOCKDEP 2081 unsigned char nested_level; 2082 #endif 2083 2084 2085 /* Protocol-specific pointers */ 2086 2087 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2088 struct vlan_info __rcu *vlan_info; 2089 #endif 2090 #if IS_ENABLED(CONFIG_NET_DSA) 2091 struct dsa_port *dsa_ptr; 2092 #endif 2093 #if IS_ENABLED(CONFIG_TIPC) 2094 struct tipc_bearer __rcu *tipc_ptr; 2095 #endif 2096 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 2097 void *atalk_ptr; 2098 #endif 2099 struct in_device __rcu *ip_ptr; 2100 #if IS_ENABLED(CONFIG_DECNET) 2101 struct dn_dev __rcu *dn_ptr; 2102 #endif 2103 struct inet6_dev __rcu *ip6_ptr; 2104 #if IS_ENABLED(CONFIG_AX25) 2105 void *ax25_ptr; 2106 #endif 2107 struct wireless_dev *ieee80211_ptr; 2108 struct wpan_dev *ieee802154_ptr; 2109 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2110 struct mpls_dev __rcu *mpls_ptr; 2111 #endif 2112 #if IS_ENABLED(CONFIG_MCTP) 2113 struct mctp_dev __rcu *mctp_ptr; 2114 #endif 2115 2116 /* 2117 * Cache lines mostly used on receive path (including eth_type_trans()) 2118 */ 2119 /* Interface address info used in eth_type_trans() */ 2120 unsigned char *dev_addr; 2121 2122 struct netdev_rx_queue *_rx; 2123 unsigned int num_rx_queues; 2124 unsigned int real_num_rx_queues; 2125 2126 struct bpf_prog __rcu *xdp_prog; 2127 unsigned long gro_flush_timeout; 2128 int napi_defer_hard_irqs; 2129 rx_handler_func_t __rcu *rx_handler; 2130 void __rcu *rx_handler_data; 2131 2132 #ifdef CONFIG_NET_CLS_ACT 2133 struct mini_Qdisc __rcu *miniq_ingress; 2134 #endif 2135 struct netdev_queue __rcu *ingress_queue; 2136 #ifdef CONFIG_NETFILTER_INGRESS 2137 struct nf_hook_entries __rcu *nf_hooks_ingress; 2138 #endif 2139 2140 unsigned char broadcast[MAX_ADDR_LEN]; 2141 #ifdef CONFIG_RFS_ACCEL 2142 struct cpu_rmap *rx_cpu_rmap; 2143 #endif 2144 struct hlist_node index_hlist; 2145 2146 /* 2147 * Cache lines mostly used on transmit path 2148 */ 2149 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2150 unsigned int num_tx_queues; 2151 unsigned int real_num_tx_queues; 2152 struct Qdisc *qdisc; 2153 unsigned int tx_queue_len; 2154 spinlock_t tx_global_lock; 2155 2156 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2157 2158 #ifdef CONFIG_XPS 2159 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2160 #endif 2161 #ifdef CONFIG_NET_CLS_ACT 2162 struct mini_Qdisc __rcu *miniq_egress; 2163 #endif 2164 #ifdef CONFIG_NETFILTER_EGRESS 2165 struct nf_hook_entries __rcu *nf_hooks_egress; 2166 #endif 2167 2168 #ifdef CONFIG_NET_SCHED 2169 DECLARE_HASHTABLE (qdisc_hash, 4); 2170 #endif 2171 /* These may be needed for future network-power-down code. */ 2172 struct timer_list watchdog_timer; 2173 int watchdog_timeo; 2174 2175 u32 proto_down_reason; 2176 2177 struct list_head todo_list; 2178 2179 #ifdef CONFIG_PCPU_DEV_REFCNT 2180 int __percpu *pcpu_refcnt; 2181 #else 2182 refcount_t dev_refcnt; 2183 #endif 2184 2185 struct list_head link_watch_list; 2186 2187 enum { NETREG_UNINITIALIZED=0, 2188 NETREG_REGISTERED, /* completed register_netdevice */ 2189 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2190 NETREG_UNREGISTERED, /* completed unregister todo */ 2191 NETREG_RELEASED, /* called free_netdev */ 2192 NETREG_DUMMY, /* dummy device for NAPI poll */ 2193 } reg_state:8; 2194 2195 bool dismantle; 2196 2197 enum { 2198 RTNL_LINK_INITIALIZED, 2199 RTNL_LINK_INITIALIZING, 2200 } rtnl_link_state:16; 2201 2202 bool needs_free_netdev; 2203 void (*priv_destructor)(struct net_device *dev); 2204 2205 #ifdef CONFIG_NETPOLL 2206 struct netpoll_info __rcu *npinfo; 2207 #endif 2208 2209 possible_net_t nd_net; 2210 2211 /* mid-layer private */ 2212 void *ml_priv; 2213 enum netdev_ml_priv_type ml_priv_type; 2214 2215 union { 2216 struct pcpu_lstats __percpu *lstats; 2217 struct pcpu_sw_netstats __percpu *tstats; 2218 struct pcpu_dstats __percpu *dstats; 2219 }; 2220 2221 #if IS_ENABLED(CONFIG_GARP) 2222 struct garp_port __rcu *garp_port; 2223 #endif 2224 #if IS_ENABLED(CONFIG_MRP) 2225 struct mrp_port __rcu *mrp_port; 2226 #endif 2227 2228 struct device dev; 2229 const struct attribute_group *sysfs_groups[4]; 2230 const struct attribute_group *sysfs_rx_queue_group; 2231 2232 const struct rtnl_link_ops *rtnl_link_ops; 2233 2234 /* for setting kernel sock attribute on TCP connection setup */ 2235 #define GSO_MAX_SIZE 65536 2236 unsigned int gso_max_size; 2237 #define GSO_MAX_SEGS 65535 2238 u16 gso_max_segs; 2239 2240 #ifdef CONFIG_DCB 2241 const struct dcbnl_rtnl_ops *dcbnl_ops; 2242 #endif 2243 s16 num_tc; 2244 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2245 u8 prio_tc_map[TC_BITMASK + 1]; 2246 2247 #if IS_ENABLED(CONFIG_FCOE) 2248 unsigned int fcoe_ddp_xid; 2249 #endif 2250 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2251 struct netprio_map __rcu *priomap; 2252 #endif 2253 struct phy_device *phydev; 2254 struct sfp_bus *sfp_bus; 2255 struct lock_class_key *qdisc_tx_busylock; 2256 bool proto_down; 2257 unsigned wol_enabled:1; 2258 unsigned threaded:1; 2259 2260 struct list_head net_notifier_list; 2261 2262 #if IS_ENABLED(CONFIG_MACSEC) 2263 /* MACsec management functions */ 2264 const struct macsec_ops *macsec_ops; 2265 #endif 2266 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2267 struct udp_tunnel_nic *udp_tunnel_nic; 2268 2269 /* protected by rtnl_lock */ 2270 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2271 }; 2272 #define to_net_dev(d) container_of(d, struct net_device, dev) 2273 2274 static inline bool netif_elide_gro(const struct net_device *dev) 2275 { 2276 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2277 return true; 2278 return false; 2279 } 2280 2281 #define NETDEV_ALIGN 32 2282 2283 static inline 2284 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2285 { 2286 return dev->prio_tc_map[prio & TC_BITMASK]; 2287 } 2288 2289 static inline 2290 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2291 { 2292 if (tc >= dev->num_tc) 2293 return -EINVAL; 2294 2295 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2296 return 0; 2297 } 2298 2299 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2300 void netdev_reset_tc(struct net_device *dev); 2301 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2302 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2303 2304 static inline 2305 int netdev_get_num_tc(struct net_device *dev) 2306 { 2307 return dev->num_tc; 2308 } 2309 2310 static inline void net_prefetch(void *p) 2311 { 2312 prefetch(p); 2313 #if L1_CACHE_BYTES < 128 2314 prefetch((u8 *)p + L1_CACHE_BYTES); 2315 #endif 2316 } 2317 2318 static inline void net_prefetchw(void *p) 2319 { 2320 prefetchw(p); 2321 #if L1_CACHE_BYTES < 128 2322 prefetchw((u8 *)p + L1_CACHE_BYTES); 2323 #endif 2324 } 2325 2326 void netdev_unbind_sb_channel(struct net_device *dev, 2327 struct net_device *sb_dev); 2328 int netdev_bind_sb_channel_queue(struct net_device *dev, 2329 struct net_device *sb_dev, 2330 u8 tc, u16 count, u16 offset); 2331 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2332 static inline int netdev_get_sb_channel(struct net_device *dev) 2333 { 2334 return max_t(int, -dev->num_tc, 0); 2335 } 2336 2337 static inline 2338 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2339 unsigned int index) 2340 { 2341 return &dev->_tx[index]; 2342 } 2343 2344 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2345 const struct sk_buff *skb) 2346 { 2347 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2348 } 2349 2350 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2351 void (*f)(struct net_device *, 2352 struct netdev_queue *, 2353 void *), 2354 void *arg) 2355 { 2356 unsigned int i; 2357 2358 for (i = 0; i < dev->num_tx_queues; i++) 2359 f(dev, &dev->_tx[i], arg); 2360 } 2361 2362 #define netdev_lockdep_set_classes(dev) \ 2363 { \ 2364 static struct lock_class_key qdisc_tx_busylock_key; \ 2365 static struct lock_class_key qdisc_xmit_lock_key; \ 2366 static struct lock_class_key dev_addr_list_lock_key; \ 2367 unsigned int i; \ 2368 \ 2369 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2370 lockdep_set_class(&(dev)->addr_list_lock, \ 2371 &dev_addr_list_lock_key); \ 2372 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2373 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2374 &qdisc_xmit_lock_key); \ 2375 } 2376 2377 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2378 struct net_device *sb_dev); 2379 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2380 struct sk_buff *skb, 2381 struct net_device *sb_dev); 2382 2383 /* returns the headroom that the master device needs to take in account 2384 * when forwarding to this dev 2385 */ 2386 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2387 { 2388 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2389 } 2390 2391 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2392 { 2393 if (dev->netdev_ops->ndo_set_rx_headroom) 2394 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2395 } 2396 2397 /* set the device rx headroom to the dev's default */ 2398 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2399 { 2400 netdev_set_rx_headroom(dev, -1); 2401 } 2402 2403 static inline void *netdev_get_ml_priv(struct net_device *dev, 2404 enum netdev_ml_priv_type type) 2405 { 2406 if (dev->ml_priv_type != type) 2407 return NULL; 2408 2409 return dev->ml_priv; 2410 } 2411 2412 static inline void netdev_set_ml_priv(struct net_device *dev, 2413 void *ml_priv, 2414 enum netdev_ml_priv_type type) 2415 { 2416 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2417 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2418 dev->ml_priv_type, type); 2419 WARN(!dev->ml_priv_type && dev->ml_priv, 2420 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2421 2422 dev->ml_priv = ml_priv; 2423 dev->ml_priv_type = type; 2424 } 2425 2426 /* 2427 * Net namespace inlines 2428 */ 2429 static inline 2430 struct net *dev_net(const struct net_device *dev) 2431 { 2432 return read_pnet(&dev->nd_net); 2433 } 2434 2435 static inline 2436 void dev_net_set(struct net_device *dev, struct net *net) 2437 { 2438 write_pnet(&dev->nd_net, net); 2439 } 2440 2441 /** 2442 * netdev_priv - access network device private data 2443 * @dev: network device 2444 * 2445 * Get network device private data 2446 */ 2447 static inline void *netdev_priv(const struct net_device *dev) 2448 { 2449 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2450 } 2451 2452 /* Set the sysfs physical device reference for the network logical device 2453 * if set prior to registration will cause a symlink during initialization. 2454 */ 2455 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2456 2457 /* Set the sysfs device type for the network logical device to allow 2458 * fine-grained identification of different network device types. For 2459 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2460 */ 2461 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2462 2463 /* Default NAPI poll() weight 2464 * Device drivers are strongly advised to not use bigger value 2465 */ 2466 #define NAPI_POLL_WEIGHT 64 2467 2468 /** 2469 * netif_napi_add - initialize a NAPI context 2470 * @dev: network device 2471 * @napi: NAPI context 2472 * @poll: polling function 2473 * @weight: default weight 2474 * 2475 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2476 * *any* of the other NAPI-related functions. 2477 */ 2478 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2479 int (*poll)(struct napi_struct *, int), int weight); 2480 2481 /** 2482 * netif_tx_napi_add - initialize a NAPI context 2483 * @dev: network device 2484 * @napi: NAPI context 2485 * @poll: polling function 2486 * @weight: default weight 2487 * 2488 * This variant of netif_napi_add() should be used from drivers using NAPI 2489 * to exclusively poll a TX queue. 2490 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2491 */ 2492 static inline void netif_tx_napi_add(struct net_device *dev, 2493 struct napi_struct *napi, 2494 int (*poll)(struct napi_struct *, int), 2495 int weight) 2496 { 2497 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2498 netif_napi_add(dev, napi, poll, weight); 2499 } 2500 2501 /** 2502 * __netif_napi_del - remove a NAPI context 2503 * @napi: NAPI context 2504 * 2505 * Warning: caller must observe RCU grace period before freeing memory 2506 * containing @napi. Drivers might want to call this helper to combine 2507 * all the needed RCU grace periods into a single one. 2508 */ 2509 void __netif_napi_del(struct napi_struct *napi); 2510 2511 /** 2512 * netif_napi_del - remove a NAPI context 2513 * @napi: NAPI context 2514 * 2515 * netif_napi_del() removes a NAPI context from the network device NAPI list 2516 */ 2517 static inline void netif_napi_del(struct napi_struct *napi) 2518 { 2519 __netif_napi_del(napi); 2520 synchronize_net(); 2521 } 2522 2523 struct napi_gro_cb { 2524 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2525 void *frag0; 2526 2527 /* Length of frag0. */ 2528 unsigned int frag0_len; 2529 2530 /* This indicates where we are processing relative to skb->data. */ 2531 int data_offset; 2532 2533 /* This is non-zero if the packet cannot be merged with the new skb. */ 2534 u16 flush; 2535 2536 /* Save the IP ID here and check when we get to the transport layer */ 2537 u16 flush_id; 2538 2539 /* Number of segments aggregated. */ 2540 u16 count; 2541 2542 /* Start offset for remote checksum offload */ 2543 u16 gro_remcsum_start; 2544 2545 /* jiffies when first packet was created/queued */ 2546 unsigned long age; 2547 2548 /* Used in ipv6_gro_receive() and foo-over-udp */ 2549 u16 proto; 2550 2551 /* This is non-zero if the packet may be of the same flow. */ 2552 u8 same_flow:1; 2553 2554 /* Used in tunnel GRO receive */ 2555 u8 encap_mark:1; 2556 2557 /* GRO checksum is valid */ 2558 u8 csum_valid:1; 2559 2560 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2561 u8 csum_cnt:3; 2562 2563 /* Free the skb? */ 2564 u8 free:2; 2565 #define NAPI_GRO_FREE 1 2566 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2567 2568 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2569 u8 is_ipv6:1; 2570 2571 /* Used in GRE, set in fou/gue_gro_receive */ 2572 u8 is_fou:1; 2573 2574 /* Used to determine if flush_id can be ignored */ 2575 u8 is_atomic:1; 2576 2577 /* Number of gro_receive callbacks this packet already went through */ 2578 u8 recursion_counter:4; 2579 2580 /* GRO is done by frag_list pointer chaining. */ 2581 u8 is_flist:1; 2582 2583 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2584 __wsum csum; 2585 2586 /* used in skb_gro_receive() slow path */ 2587 struct sk_buff *last; 2588 }; 2589 2590 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2591 2592 #define GRO_RECURSION_LIMIT 15 2593 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2594 { 2595 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2596 } 2597 2598 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2599 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2600 struct list_head *head, 2601 struct sk_buff *skb) 2602 { 2603 if (unlikely(gro_recursion_inc_test(skb))) { 2604 NAPI_GRO_CB(skb)->flush |= 1; 2605 return NULL; 2606 } 2607 2608 return cb(head, skb); 2609 } 2610 2611 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2612 struct sk_buff *); 2613 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2614 struct sock *sk, 2615 struct list_head *head, 2616 struct sk_buff *skb) 2617 { 2618 if (unlikely(gro_recursion_inc_test(skb))) { 2619 NAPI_GRO_CB(skb)->flush |= 1; 2620 return NULL; 2621 } 2622 2623 return cb(sk, head, skb); 2624 } 2625 2626 struct packet_type { 2627 __be16 type; /* This is really htons(ether_type). */ 2628 bool ignore_outgoing; 2629 struct net_device *dev; /* NULL is wildcarded here */ 2630 int (*func) (struct sk_buff *, 2631 struct net_device *, 2632 struct packet_type *, 2633 struct net_device *); 2634 void (*list_func) (struct list_head *, 2635 struct packet_type *, 2636 struct net_device *); 2637 bool (*id_match)(struct packet_type *ptype, 2638 struct sock *sk); 2639 void *af_packet_priv; 2640 struct list_head list; 2641 }; 2642 2643 struct offload_callbacks { 2644 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2645 netdev_features_t features); 2646 struct sk_buff *(*gro_receive)(struct list_head *head, 2647 struct sk_buff *skb); 2648 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2649 }; 2650 2651 struct packet_offload { 2652 __be16 type; /* This is really htons(ether_type). */ 2653 u16 priority; 2654 struct offload_callbacks callbacks; 2655 struct list_head list; 2656 }; 2657 2658 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2659 struct pcpu_sw_netstats { 2660 u64 rx_packets; 2661 u64 rx_bytes; 2662 u64 tx_packets; 2663 u64 tx_bytes; 2664 struct u64_stats_sync syncp; 2665 } __aligned(4 * sizeof(u64)); 2666 2667 struct pcpu_lstats { 2668 u64_stats_t packets; 2669 u64_stats_t bytes; 2670 struct u64_stats_sync syncp; 2671 } __aligned(2 * sizeof(u64)); 2672 2673 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2674 2675 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2676 { 2677 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2678 2679 u64_stats_update_begin(&tstats->syncp); 2680 tstats->rx_bytes += len; 2681 tstats->rx_packets++; 2682 u64_stats_update_end(&tstats->syncp); 2683 } 2684 2685 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2686 unsigned int packets, 2687 unsigned int len) 2688 { 2689 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2690 2691 u64_stats_update_begin(&tstats->syncp); 2692 tstats->tx_bytes += len; 2693 tstats->tx_packets += packets; 2694 u64_stats_update_end(&tstats->syncp); 2695 } 2696 2697 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2698 { 2699 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2700 2701 u64_stats_update_begin(&lstats->syncp); 2702 u64_stats_add(&lstats->bytes, len); 2703 u64_stats_inc(&lstats->packets); 2704 u64_stats_update_end(&lstats->syncp); 2705 } 2706 2707 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2708 ({ \ 2709 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2710 if (pcpu_stats) { \ 2711 int __cpu; \ 2712 for_each_possible_cpu(__cpu) { \ 2713 typeof(type) *stat; \ 2714 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2715 u64_stats_init(&stat->syncp); \ 2716 } \ 2717 } \ 2718 pcpu_stats; \ 2719 }) 2720 2721 #define netdev_alloc_pcpu_stats(type) \ 2722 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2723 2724 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2725 ({ \ 2726 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2727 if (pcpu_stats) { \ 2728 int __cpu; \ 2729 for_each_possible_cpu(__cpu) { \ 2730 typeof(type) *stat; \ 2731 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2732 u64_stats_init(&stat->syncp); \ 2733 } \ 2734 } \ 2735 pcpu_stats; \ 2736 }) 2737 2738 enum netdev_lag_tx_type { 2739 NETDEV_LAG_TX_TYPE_UNKNOWN, 2740 NETDEV_LAG_TX_TYPE_RANDOM, 2741 NETDEV_LAG_TX_TYPE_BROADCAST, 2742 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2743 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2744 NETDEV_LAG_TX_TYPE_HASH, 2745 }; 2746 2747 enum netdev_lag_hash { 2748 NETDEV_LAG_HASH_NONE, 2749 NETDEV_LAG_HASH_L2, 2750 NETDEV_LAG_HASH_L34, 2751 NETDEV_LAG_HASH_L23, 2752 NETDEV_LAG_HASH_E23, 2753 NETDEV_LAG_HASH_E34, 2754 NETDEV_LAG_HASH_VLAN_SRCMAC, 2755 NETDEV_LAG_HASH_UNKNOWN, 2756 }; 2757 2758 struct netdev_lag_upper_info { 2759 enum netdev_lag_tx_type tx_type; 2760 enum netdev_lag_hash hash_type; 2761 }; 2762 2763 struct netdev_lag_lower_state_info { 2764 u8 link_up : 1, 2765 tx_enabled : 1; 2766 }; 2767 2768 #include <linux/notifier.h> 2769 2770 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2771 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2772 * adding new types. 2773 */ 2774 enum netdev_cmd { 2775 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2776 NETDEV_DOWN, 2777 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2778 detected a hardware crash and restarted 2779 - we can use this eg to kick tcp sessions 2780 once done */ 2781 NETDEV_CHANGE, /* Notify device state change */ 2782 NETDEV_REGISTER, 2783 NETDEV_UNREGISTER, 2784 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2785 NETDEV_CHANGEADDR, /* notify after the address change */ 2786 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2787 NETDEV_GOING_DOWN, 2788 NETDEV_CHANGENAME, 2789 NETDEV_FEAT_CHANGE, 2790 NETDEV_BONDING_FAILOVER, 2791 NETDEV_PRE_UP, 2792 NETDEV_PRE_TYPE_CHANGE, 2793 NETDEV_POST_TYPE_CHANGE, 2794 NETDEV_POST_INIT, 2795 NETDEV_RELEASE, 2796 NETDEV_NOTIFY_PEERS, 2797 NETDEV_JOIN, 2798 NETDEV_CHANGEUPPER, 2799 NETDEV_RESEND_IGMP, 2800 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2801 NETDEV_CHANGEINFODATA, 2802 NETDEV_BONDING_INFO, 2803 NETDEV_PRECHANGEUPPER, 2804 NETDEV_CHANGELOWERSTATE, 2805 NETDEV_UDP_TUNNEL_PUSH_INFO, 2806 NETDEV_UDP_TUNNEL_DROP_INFO, 2807 NETDEV_CHANGE_TX_QUEUE_LEN, 2808 NETDEV_CVLAN_FILTER_PUSH_INFO, 2809 NETDEV_CVLAN_FILTER_DROP_INFO, 2810 NETDEV_SVLAN_FILTER_PUSH_INFO, 2811 NETDEV_SVLAN_FILTER_DROP_INFO, 2812 }; 2813 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2814 2815 int register_netdevice_notifier(struct notifier_block *nb); 2816 int unregister_netdevice_notifier(struct notifier_block *nb); 2817 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2818 int unregister_netdevice_notifier_net(struct net *net, 2819 struct notifier_block *nb); 2820 int register_netdevice_notifier_dev_net(struct net_device *dev, 2821 struct notifier_block *nb, 2822 struct netdev_net_notifier *nn); 2823 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2824 struct notifier_block *nb, 2825 struct netdev_net_notifier *nn); 2826 2827 struct netdev_notifier_info { 2828 struct net_device *dev; 2829 struct netlink_ext_ack *extack; 2830 }; 2831 2832 struct netdev_notifier_info_ext { 2833 struct netdev_notifier_info info; /* must be first */ 2834 union { 2835 u32 mtu; 2836 } ext; 2837 }; 2838 2839 struct netdev_notifier_change_info { 2840 struct netdev_notifier_info info; /* must be first */ 2841 unsigned int flags_changed; 2842 }; 2843 2844 struct netdev_notifier_changeupper_info { 2845 struct netdev_notifier_info info; /* must be first */ 2846 struct net_device *upper_dev; /* new upper dev */ 2847 bool master; /* is upper dev master */ 2848 bool linking; /* is the notification for link or unlink */ 2849 void *upper_info; /* upper dev info */ 2850 }; 2851 2852 struct netdev_notifier_changelowerstate_info { 2853 struct netdev_notifier_info info; /* must be first */ 2854 void *lower_state_info; /* is lower dev state */ 2855 }; 2856 2857 struct netdev_notifier_pre_changeaddr_info { 2858 struct netdev_notifier_info info; /* must be first */ 2859 const unsigned char *dev_addr; 2860 }; 2861 2862 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2863 struct net_device *dev) 2864 { 2865 info->dev = dev; 2866 info->extack = NULL; 2867 } 2868 2869 static inline struct net_device * 2870 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2871 { 2872 return info->dev; 2873 } 2874 2875 static inline struct netlink_ext_ack * 2876 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2877 { 2878 return info->extack; 2879 } 2880 2881 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2882 2883 2884 extern rwlock_t dev_base_lock; /* Device list lock */ 2885 2886 #define for_each_netdev(net, d) \ 2887 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2888 #define for_each_netdev_reverse(net, d) \ 2889 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2890 #define for_each_netdev_rcu(net, d) \ 2891 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2892 #define for_each_netdev_safe(net, d, n) \ 2893 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2894 #define for_each_netdev_continue(net, d) \ 2895 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2896 #define for_each_netdev_continue_reverse(net, d) \ 2897 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2898 dev_list) 2899 #define for_each_netdev_continue_rcu(net, d) \ 2900 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2901 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2902 for_each_netdev_rcu(&init_net, slave) \ 2903 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2904 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2905 2906 static inline struct net_device *next_net_device(struct net_device *dev) 2907 { 2908 struct list_head *lh; 2909 struct net *net; 2910 2911 net = dev_net(dev); 2912 lh = dev->dev_list.next; 2913 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2914 } 2915 2916 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2917 { 2918 struct list_head *lh; 2919 struct net *net; 2920 2921 net = dev_net(dev); 2922 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2923 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2924 } 2925 2926 static inline struct net_device *first_net_device(struct net *net) 2927 { 2928 return list_empty(&net->dev_base_head) ? NULL : 2929 net_device_entry(net->dev_base_head.next); 2930 } 2931 2932 static inline struct net_device *first_net_device_rcu(struct net *net) 2933 { 2934 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2935 2936 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2937 } 2938 2939 int netdev_boot_setup_check(struct net_device *dev); 2940 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2941 const char *hwaddr); 2942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2943 void dev_add_pack(struct packet_type *pt); 2944 void dev_remove_pack(struct packet_type *pt); 2945 void __dev_remove_pack(struct packet_type *pt); 2946 void dev_add_offload(struct packet_offload *po); 2947 void dev_remove_offload(struct packet_offload *po); 2948 2949 int dev_get_iflink(const struct net_device *dev); 2950 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2951 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 2952 struct net_device_path_stack *stack); 2953 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2954 unsigned short mask); 2955 struct net_device *dev_get_by_name(struct net *net, const char *name); 2956 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2957 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2958 bool netdev_name_in_use(struct net *net, const char *name); 2959 int dev_alloc_name(struct net_device *dev, const char *name); 2960 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2961 void dev_close(struct net_device *dev); 2962 void dev_close_many(struct list_head *head, bool unlink); 2963 void dev_disable_lro(struct net_device *dev); 2964 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2965 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2966 struct net_device *sb_dev); 2967 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2968 struct net_device *sb_dev); 2969 2970 int dev_queue_xmit(struct sk_buff *skb); 2971 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2972 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2973 2974 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 2975 { 2976 int ret; 2977 2978 ret = __dev_direct_xmit(skb, queue_id); 2979 if (!dev_xmit_complete(ret)) 2980 kfree_skb(skb); 2981 return ret; 2982 } 2983 2984 int register_netdevice(struct net_device *dev); 2985 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2986 void unregister_netdevice_many(struct list_head *head); 2987 static inline void unregister_netdevice(struct net_device *dev) 2988 { 2989 unregister_netdevice_queue(dev, NULL); 2990 } 2991 2992 int netdev_refcnt_read(const struct net_device *dev); 2993 void free_netdev(struct net_device *dev); 2994 void netdev_freemem(struct net_device *dev); 2995 int init_dummy_netdev(struct net_device *dev); 2996 2997 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2998 struct sk_buff *skb, 2999 bool all_slaves); 3000 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3001 struct sock *sk); 3002 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3003 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3004 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3005 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3006 int netdev_get_name(struct net *net, char *name, int ifindex); 3007 int dev_restart(struct net_device *dev); 3008 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 3009 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 3010 3011 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 3012 { 3013 return NAPI_GRO_CB(skb)->data_offset; 3014 } 3015 3016 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 3017 { 3018 return skb->len - NAPI_GRO_CB(skb)->data_offset; 3019 } 3020 3021 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 3022 { 3023 NAPI_GRO_CB(skb)->data_offset += len; 3024 } 3025 3026 static inline void *skb_gro_header_fast(struct sk_buff *skb, 3027 unsigned int offset) 3028 { 3029 return NAPI_GRO_CB(skb)->frag0 + offset; 3030 } 3031 3032 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 3033 { 3034 return NAPI_GRO_CB(skb)->frag0_len < hlen; 3035 } 3036 3037 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 3038 { 3039 NAPI_GRO_CB(skb)->frag0 = NULL; 3040 NAPI_GRO_CB(skb)->frag0_len = 0; 3041 } 3042 3043 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 3044 unsigned int offset) 3045 { 3046 if (!pskb_may_pull(skb, hlen)) 3047 return NULL; 3048 3049 skb_gro_frag0_invalidate(skb); 3050 return skb->data + offset; 3051 } 3052 3053 static inline void *skb_gro_network_header(struct sk_buff *skb) 3054 { 3055 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 3056 skb_network_offset(skb); 3057 } 3058 3059 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 3060 const void *start, unsigned int len) 3061 { 3062 if (NAPI_GRO_CB(skb)->csum_valid) 3063 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 3064 csum_partial(start, len, 0)); 3065 } 3066 3067 /* GRO checksum functions. These are logical equivalents of the normal 3068 * checksum functions (in skbuff.h) except that they operate on the GRO 3069 * offsets and fields in sk_buff. 3070 */ 3071 3072 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 3073 3074 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 3075 { 3076 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 3077 } 3078 3079 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 3080 bool zero_okay, 3081 __sum16 check) 3082 { 3083 return ((skb->ip_summed != CHECKSUM_PARTIAL || 3084 skb_checksum_start_offset(skb) < 3085 skb_gro_offset(skb)) && 3086 !skb_at_gro_remcsum_start(skb) && 3087 NAPI_GRO_CB(skb)->csum_cnt == 0 && 3088 (!zero_okay || check)); 3089 } 3090 3091 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 3092 __wsum psum) 3093 { 3094 if (NAPI_GRO_CB(skb)->csum_valid && 3095 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 3096 return 0; 3097 3098 NAPI_GRO_CB(skb)->csum = psum; 3099 3100 return __skb_gro_checksum_complete(skb); 3101 } 3102 3103 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 3104 { 3105 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 3106 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 3107 NAPI_GRO_CB(skb)->csum_cnt--; 3108 } else { 3109 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 3110 * verified a new top level checksum or an encapsulated one 3111 * during GRO. This saves work if we fallback to normal path. 3112 */ 3113 __skb_incr_checksum_unnecessary(skb); 3114 } 3115 } 3116 3117 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 3118 compute_pseudo) \ 3119 ({ \ 3120 __sum16 __ret = 0; \ 3121 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 3122 __ret = __skb_gro_checksum_validate_complete(skb, \ 3123 compute_pseudo(skb, proto)); \ 3124 if (!__ret) \ 3125 skb_gro_incr_csum_unnecessary(skb); \ 3126 __ret; \ 3127 }) 3128 3129 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 3130 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 3131 3132 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 3133 compute_pseudo) \ 3134 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 3135 3136 #define skb_gro_checksum_simple_validate(skb) \ 3137 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 3138 3139 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 3140 { 3141 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 3142 !NAPI_GRO_CB(skb)->csum_valid); 3143 } 3144 3145 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 3146 __wsum pseudo) 3147 { 3148 NAPI_GRO_CB(skb)->csum = ~pseudo; 3149 NAPI_GRO_CB(skb)->csum_valid = 1; 3150 } 3151 3152 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 3153 do { \ 3154 if (__skb_gro_checksum_convert_check(skb)) \ 3155 __skb_gro_checksum_convert(skb, \ 3156 compute_pseudo(skb, proto)); \ 3157 } while (0) 3158 3159 struct gro_remcsum { 3160 int offset; 3161 __wsum delta; 3162 }; 3163 3164 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 3165 { 3166 grc->offset = 0; 3167 grc->delta = 0; 3168 } 3169 3170 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 3171 unsigned int off, size_t hdrlen, 3172 int start, int offset, 3173 struct gro_remcsum *grc, 3174 bool nopartial) 3175 { 3176 __wsum delta; 3177 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 3178 3179 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 3180 3181 if (!nopartial) { 3182 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 3183 return ptr; 3184 } 3185 3186 ptr = skb_gro_header_fast(skb, off); 3187 if (skb_gro_header_hard(skb, off + plen)) { 3188 ptr = skb_gro_header_slow(skb, off + plen, off); 3189 if (!ptr) 3190 return NULL; 3191 } 3192 3193 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 3194 start, offset); 3195 3196 /* Adjust skb->csum since we changed the packet */ 3197 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 3198 3199 grc->offset = off + hdrlen + offset; 3200 grc->delta = delta; 3201 3202 return ptr; 3203 } 3204 3205 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 3206 struct gro_remcsum *grc) 3207 { 3208 void *ptr; 3209 size_t plen = grc->offset + sizeof(u16); 3210 3211 if (!grc->delta) 3212 return; 3213 3214 ptr = skb_gro_header_fast(skb, grc->offset); 3215 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 3216 ptr = skb_gro_header_slow(skb, plen, grc->offset); 3217 if (!ptr) 3218 return; 3219 } 3220 3221 remcsum_unadjust((__sum16 *)ptr, grc->delta); 3222 } 3223 3224 #ifdef CONFIG_XFRM_OFFLOAD 3225 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3226 { 3227 if (PTR_ERR(pp) != -EINPROGRESS) 3228 NAPI_GRO_CB(skb)->flush |= flush; 3229 } 3230 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3231 struct sk_buff *pp, 3232 int flush, 3233 struct gro_remcsum *grc) 3234 { 3235 if (PTR_ERR(pp) != -EINPROGRESS) { 3236 NAPI_GRO_CB(skb)->flush |= flush; 3237 skb_gro_remcsum_cleanup(skb, grc); 3238 skb->remcsum_offload = 0; 3239 } 3240 } 3241 #else 3242 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3243 { 3244 NAPI_GRO_CB(skb)->flush |= flush; 3245 } 3246 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3247 struct sk_buff *pp, 3248 int flush, 3249 struct gro_remcsum *grc) 3250 { 3251 NAPI_GRO_CB(skb)->flush |= flush; 3252 skb_gro_remcsum_cleanup(skb, grc); 3253 skb->remcsum_offload = 0; 3254 } 3255 #endif 3256 3257 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3258 unsigned short type, 3259 const void *daddr, const void *saddr, 3260 unsigned int len) 3261 { 3262 if (!dev->header_ops || !dev->header_ops->create) 3263 return 0; 3264 3265 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3266 } 3267 3268 static inline int dev_parse_header(const struct sk_buff *skb, 3269 unsigned char *haddr) 3270 { 3271 const struct net_device *dev = skb->dev; 3272 3273 if (!dev->header_ops || !dev->header_ops->parse) 3274 return 0; 3275 return dev->header_ops->parse(skb, haddr); 3276 } 3277 3278 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3279 { 3280 const struct net_device *dev = skb->dev; 3281 3282 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3283 return 0; 3284 return dev->header_ops->parse_protocol(skb); 3285 } 3286 3287 /* ll_header must have at least hard_header_len allocated */ 3288 static inline bool dev_validate_header(const struct net_device *dev, 3289 char *ll_header, int len) 3290 { 3291 if (likely(len >= dev->hard_header_len)) 3292 return true; 3293 if (len < dev->min_header_len) 3294 return false; 3295 3296 if (capable(CAP_SYS_RAWIO)) { 3297 memset(ll_header + len, 0, dev->hard_header_len - len); 3298 return true; 3299 } 3300 3301 if (dev->header_ops && dev->header_ops->validate) 3302 return dev->header_ops->validate(ll_header, len); 3303 3304 return false; 3305 } 3306 3307 static inline bool dev_has_header(const struct net_device *dev) 3308 { 3309 return dev->header_ops && dev->header_ops->create; 3310 } 3311 3312 #ifdef CONFIG_NET_FLOW_LIMIT 3313 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3314 struct sd_flow_limit { 3315 u64 count; 3316 unsigned int num_buckets; 3317 unsigned int history_head; 3318 u16 history[FLOW_LIMIT_HISTORY]; 3319 u8 buckets[]; 3320 }; 3321 3322 extern int netdev_flow_limit_table_len; 3323 #endif /* CONFIG_NET_FLOW_LIMIT */ 3324 3325 /* 3326 * Incoming packets are placed on per-CPU queues 3327 */ 3328 struct softnet_data { 3329 struct list_head poll_list; 3330 struct sk_buff_head process_queue; 3331 3332 /* stats */ 3333 unsigned int processed; 3334 unsigned int time_squeeze; 3335 unsigned int received_rps; 3336 #ifdef CONFIG_RPS 3337 struct softnet_data *rps_ipi_list; 3338 #endif 3339 #ifdef CONFIG_NET_FLOW_LIMIT 3340 struct sd_flow_limit __rcu *flow_limit; 3341 #endif 3342 struct Qdisc *output_queue; 3343 struct Qdisc **output_queue_tailp; 3344 struct sk_buff *completion_queue; 3345 #ifdef CONFIG_XFRM_OFFLOAD 3346 struct sk_buff_head xfrm_backlog; 3347 #endif 3348 /* written and read only by owning cpu: */ 3349 struct { 3350 u16 recursion; 3351 u8 more; 3352 } xmit; 3353 #ifdef CONFIG_RPS 3354 /* input_queue_head should be written by cpu owning this struct, 3355 * and only read by other cpus. Worth using a cache line. 3356 */ 3357 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3358 3359 /* Elements below can be accessed between CPUs for RPS/RFS */ 3360 call_single_data_t csd ____cacheline_aligned_in_smp; 3361 struct softnet_data *rps_ipi_next; 3362 unsigned int cpu; 3363 unsigned int input_queue_tail; 3364 #endif 3365 unsigned int dropped; 3366 struct sk_buff_head input_pkt_queue; 3367 struct napi_struct backlog; 3368 3369 }; 3370 3371 static inline void input_queue_head_incr(struct softnet_data *sd) 3372 { 3373 #ifdef CONFIG_RPS 3374 sd->input_queue_head++; 3375 #endif 3376 } 3377 3378 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3379 unsigned int *qtail) 3380 { 3381 #ifdef CONFIG_RPS 3382 *qtail = ++sd->input_queue_tail; 3383 #endif 3384 } 3385 3386 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3387 3388 static inline int dev_recursion_level(void) 3389 { 3390 return this_cpu_read(softnet_data.xmit.recursion); 3391 } 3392 3393 #define XMIT_RECURSION_LIMIT 8 3394 static inline bool dev_xmit_recursion(void) 3395 { 3396 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3397 XMIT_RECURSION_LIMIT); 3398 } 3399 3400 static inline void dev_xmit_recursion_inc(void) 3401 { 3402 __this_cpu_inc(softnet_data.xmit.recursion); 3403 } 3404 3405 static inline void dev_xmit_recursion_dec(void) 3406 { 3407 __this_cpu_dec(softnet_data.xmit.recursion); 3408 } 3409 3410 void __netif_schedule(struct Qdisc *q); 3411 void netif_schedule_queue(struct netdev_queue *txq); 3412 3413 static inline void netif_tx_schedule_all(struct net_device *dev) 3414 { 3415 unsigned int i; 3416 3417 for (i = 0; i < dev->num_tx_queues; i++) 3418 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3419 } 3420 3421 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3422 { 3423 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3424 } 3425 3426 /** 3427 * netif_start_queue - allow transmit 3428 * @dev: network device 3429 * 3430 * Allow upper layers to call the device hard_start_xmit routine. 3431 */ 3432 static inline void netif_start_queue(struct net_device *dev) 3433 { 3434 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3435 } 3436 3437 static inline void netif_tx_start_all_queues(struct net_device *dev) 3438 { 3439 unsigned int i; 3440 3441 for (i = 0; i < dev->num_tx_queues; i++) { 3442 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3443 netif_tx_start_queue(txq); 3444 } 3445 } 3446 3447 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3448 3449 /** 3450 * netif_wake_queue - restart transmit 3451 * @dev: network device 3452 * 3453 * Allow upper layers to call the device hard_start_xmit routine. 3454 * Used for flow control when transmit resources are available. 3455 */ 3456 static inline void netif_wake_queue(struct net_device *dev) 3457 { 3458 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3459 } 3460 3461 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3462 { 3463 unsigned int i; 3464 3465 for (i = 0; i < dev->num_tx_queues; i++) { 3466 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3467 netif_tx_wake_queue(txq); 3468 } 3469 } 3470 3471 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3472 { 3473 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3474 } 3475 3476 /** 3477 * netif_stop_queue - stop transmitted packets 3478 * @dev: network device 3479 * 3480 * Stop upper layers calling the device hard_start_xmit routine. 3481 * Used for flow control when transmit resources are unavailable. 3482 */ 3483 static inline void netif_stop_queue(struct net_device *dev) 3484 { 3485 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3486 } 3487 3488 void netif_tx_stop_all_queues(struct net_device *dev); 3489 3490 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3491 { 3492 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3493 } 3494 3495 /** 3496 * netif_queue_stopped - test if transmit queue is flowblocked 3497 * @dev: network device 3498 * 3499 * Test if transmit queue on device is currently unable to send. 3500 */ 3501 static inline bool netif_queue_stopped(const struct net_device *dev) 3502 { 3503 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3504 } 3505 3506 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3507 { 3508 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3509 } 3510 3511 static inline bool 3512 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3513 { 3514 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3515 } 3516 3517 static inline bool 3518 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3519 { 3520 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3521 } 3522 3523 /** 3524 * netdev_queue_set_dql_min_limit - set dql minimum limit 3525 * @dev_queue: pointer to transmit queue 3526 * @min_limit: dql minimum limit 3527 * 3528 * Forces xmit_more() to return true until the minimum threshold 3529 * defined by @min_limit is reached (or until the tx queue is 3530 * empty). Warning: to be use with care, misuse will impact the 3531 * latency. 3532 */ 3533 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3534 unsigned int min_limit) 3535 { 3536 #ifdef CONFIG_BQL 3537 dev_queue->dql.min_limit = min_limit; 3538 #endif 3539 } 3540 3541 /** 3542 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3543 * @dev_queue: pointer to transmit queue 3544 * 3545 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3546 * to give appropriate hint to the CPU. 3547 */ 3548 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3549 { 3550 #ifdef CONFIG_BQL 3551 prefetchw(&dev_queue->dql.num_queued); 3552 #endif 3553 } 3554 3555 /** 3556 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3557 * @dev_queue: pointer to transmit queue 3558 * 3559 * BQL enabled drivers might use this helper in their TX completion path, 3560 * to give appropriate hint to the CPU. 3561 */ 3562 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3563 { 3564 #ifdef CONFIG_BQL 3565 prefetchw(&dev_queue->dql.limit); 3566 #endif 3567 } 3568 3569 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3570 unsigned int bytes) 3571 { 3572 #ifdef CONFIG_BQL 3573 dql_queued(&dev_queue->dql, bytes); 3574 3575 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3576 return; 3577 3578 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3579 3580 /* 3581 * The XOFF flag must be set before checking the dql_avail below, 3582 * because in netdev_tx_completed_queue we update the dql_completed 3583 * before checking the XOFF flag. 3584 */ 3585 smp_mb(); 3586 3587 /* check again in case another CPU has just made room avail */ 3588 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3589 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3590 #endif 3591 } 3592 3593 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3594 * that they should not test BQL status themselves. 3595 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3596 * skb of a batch. 3597 * Returns true if the doorbell must be used to kick the NIC. 3598 */ 3599 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3600 unsigned int bytes, 3601 bool xmit_more) 3602 { 3603 if (xmit_more) { 3604 #ifdef CONFIG_BQL 3605 dql_queued(&dev_queue->dql, bytes); 3606 #endif 3607 return netif_tx_queue_stopped(dev_queue); 3608 } 3609 netdev_tx_sent_queue(dev_queue, bytes); 3610 return true; 3611 } 3612 3613 /** 3614 * netdev_sent_queue - report the number of bytes queued to hardware 3615 * @dev: network device 3616 * @bytes: number of bytes queued to the hardware device queue 3617 * 3618 * Report the number of bytes queued for sending/completion to the network 3619 * device hardware queue. @bytes should be a good approximation and should 3620 * exactly match netdev_completed_queue() @bytes 3621 */ 3622 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3623 { 3624 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3625 } 3626 3627 static inline bool __netdev_sent_queue(struct net_device *dev, 3628 unsigned int bytes, 3629 bool xmit_more) 3630 { 3631 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3632 xmit_more); 3633 } 3634 3635 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3636 unsigned int pkts, unsigned int bytes) 3637 { 3638 #ifdef CONFIG_BQL 3639 if (unlikely(!bytes)) 3640 return; 3641 3642 dql_completed(&dev_queue->dql, bytes); 3643 3644 /* 3645 * Without the memory barrier there is a small possiblity that 3646 * netdev_tx_sent_queue will miss the update and cause the queue to 3647 * be stopped forever 3648 */ 3649 smp_mb(); 3650 3651 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3652 return; 3653 3654 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3655 netif_schedule_queue(dev_queue); 3656 #endif 3657 } 3658 3659 /** 3660 * netdev_completed_queue - report bytes and packets completed by device 3661 * @dev: network device 3662 * @pkts: actual number of packets sent over the medium 3663 * @bytes: actual number of bytes sent over the medium 3664 * 3665 * Report the number of bytes and packets transmitted by the network device 3666 * hardware queue over the physical medium, @bytes must exactly match the 3667 * @bytes amount passed to netdev_sent_queue() 3668 */ 3669 static inline void netdev_completed_queue(struct net_device *dev, 3670 unsigned int pkts, unsigned int bytes) 3671 { 3672 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3673 } 3674 3675 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3676 { 3677 #ifdef CONFIG_BQL 3678 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3679 dql_reset(&q->dql); 3680 #endif 3681 } 3682 3683 /** 3684 * netdev_reset_queue - reset the packets and bytes count of a network device 3685 * @dev_queue: network device 3686 * 3687 * Reset the bytes and packet count of a network device and clear the 3688 * software flow control OFF bit for this network device 3689 */ 3690 static inline void netdev_reset_queue(struct net_device *dev_queue) 3691 { 3692 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3693 } 3694 3695 /** 3696 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3697 * @dev: network device 3698 * @queue_index: given tx queue index 3699 * 3700 * Returns 0 if given tx queue index >= number of device tx queues, 3701 * otherwise returns the originally passed tx queue index. 3702 */ 3703 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3704 { 3705 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3706 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3707 dev->name, queue_index, 3708 dev->real_num_tx_queues); 3709 return 0; 3710 } 3711 3712 return queue_index; 3713 } 3714 3715 /** 3716 * netif_running - test if up 3717 * @dev: network device 3718 * 3719 * Test if the device has been brought up. 3720 */ 3721 static inline bool netif_running(const struct net_device *dev) 3722 { 3723 return test_bit(__LINK_STATE_START, &dev->state); 3724 } 3725 3726 /* 3727 * Routines to manage the subqueues on a device. We only need start, 3728 * stop, and a check if it's stopped. All other device management is 3729 * done at the overall netdevice level. 3730 * Also test the device if we're multiqueue. 3731 */ 3732 3733 /** 3734 * netif_start_subqueue - allow sending packets on subqueue 3735 * @dev: network device 3736 * @queue_index: sub queue index 3737 * 3738 * Start individual transmit queue of a device with multiple transmit queues. 3739 */ 3740 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3741 { 3742 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3743 3744 netif_tx_start_queue(txq); 3745 } 3746 3747 /** 3748 * netif_stop_subqueue - stop sending packets on subqueue 3749 * @dev: network device 3750 * @queue_index: sub queue index 3751 * 3752 * Stop individual transmit queue of a device with multiple transmit queues. 3753 */ 3754 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3755 { 3756 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3757 netif_tx_stop_queue(txq); 3758 } 3759 3760 /** 3761 * __netif_subqueue_stopped - test status of subqueue 3762 * @dev: network device 3763 * @queue_index: sub queue index 3764 * 3765 * Check individual transmit queue of a device with multiple transmit queues. 3766 */ 3767 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3768 u16 queue_index) 3769 { 3770 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3771 3772 return netif_tx_queue_stopped(txq); 3773 } 3774 3775 /** 3776 * netif_subqueue_stopped - test status of subqueue 3777 * @dev: network device 3778 * @skb: sub queue buffer pointer 3779 * 3780 * Check individual transmit queue of a device with multiple transmit queues. 3781 */ 3782 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3783 struct sk_buff *skb) 3784 { 3785 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3786 } 3787 3788 /** 3789 * netif_wake_subqueue - allow sending packets on subqueue 3790 * @dev: network device 3791 * @queue_index: sub queue index 3792 * 3793 * Resume individual transmit queue of a device with multiple transmit queues. 3794 */ 3795 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3796 { 3797 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3798 3799 netif_tx_wake_queue(txq); 3800 } 3801 3802 #ifdef CONFIG_XPS 3803 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3804 u16 index); 3805 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3806 u16 index, enum xps_map_type type); 3807 3808 /** 3809 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3810 * @j: CPU/Rx queue index 3811 * @mask: bitmask of all cpus/rx queues 3812 * @nr_bits: number of bits in the bitmask 3813 * 3814 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3815 */ 3816 static inline bool netif_attr_test_mask(unsigned long j, 3817 const unsigned long *mask, 3818 unsigned int nr_bits) 3819 { 3820 cpu_max_bits_warn(j, nr_bits); 3821 return test_bit(j, mask); 3822 } 3823 3824 /** 3825 * netif_attr_test_online - Test for online CPU/Rx queue 3826 * @j: CPU/Rx queue index 3827 * @online_mask: bitmask for CPUs/Rx queues that are online 3828 * @nr_bits: number of bits in the bitmask 3829 * 3830 * Returns true if a CPU/Rx queue is online. 3831 */ 3832 static inline bool netif_attr_test_online(unsigned long j, 3833 const unsigned long *online_mask, 3834 unsigned int nr_bits) 3835 { 3836 cpu_max_bits_warn(j, nr_bits); 3837 3838 if (online_mask) 3839 return test_bit(j, online_mask); 3840 3841 return (j < nr_bits); 3842 } 3843 3844 /** 3845 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3846 * @n: CPU/Rx queue index 3847 * @srcp: the cpumask/Rx queue mask pointer 3848 * @nr_bits: number of bits in the bitmask 3849 * 3850 * Returns >= nr_bits if no further CPUs/Rx queues set. 3851 */ 3852 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3853 unsigned int nr_bits) 3854 { 3855 /* -1 is a legal arg here. */ 3856 if (n != -1) 3857 cpu_max_bits_warn(n, nr_bits); 3858 3859 if (srcp) 3860 return find_next_bit(srcp, nr_bits, n + 1); 3861 3862 return n + 1; 3863 } 3864 3865 /** 3866 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3867 * @n: CPU/Rx queue index 3868 * @src1p: the first CPUs/Rx queues mask pointer 3869 * @src2p: the second CPUs/Rx queues mask pointer 3870 * @nr_bits: number of bits in the bitmask 3871 * 3872 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3873 */ 3874 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3875 const unsigned long *src2p, 3876 unsigned int nr_bits) 3877 { 3878 /* -1 is a legal arg here. */ 3879 if (n != -1) 3880 cpu_max_bits_warn(n, nr_bits); 3881 3882 if (src1p && src2p) 3883 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3884 else if (src1p) 3885 return find_next_bit(src1p, nr_bits, n + 1); 3886 else if (src2p) 3887 return find_next_bit(src2p, nr_bits, n + 1); 3888 3889 return n + 1; 3890 } 3891 #else 3892 static inline int netif_set_xps_queue(struct net_device *dev, 3893 const struct cpumask *mask, 3894 u16 index) 3895 { 3896 return 0; 3897 } 3898 3899 static inline int __netif_set_xps_queue(struct net_device *dev, 3900 const unsigned long *mask, 3901 u16 index, enum xps_map_type type) 3902 { 3903 return 0; 3904 } 3905 #endif 3906 3907 /** 3908 * netif_is_multiqueue - test if device has multiple transmit queues 3909 * @dev: network device 3910 * 3911 * Check if device has multiple transmit queues 3912 */ 3913 static inline bool netif_is_multiqueue(const struct net_device *dev) 3914 { 3915 return dev->num_tx_queues > 1; 3916 } 3917 3918 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3919 3920 #ifdef CONFIG_SYSFS 3921 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3922 #else 3923 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3924 unsigned int rxqs) 3925 { 3926 dev->real_num_rx_queues = rxqs; 3927 return 0; 3928 } 3929 #endif 3930 int netif_set_real_num_queues(struct net_device *dev, 3931 unsigned int txq, unsigned int rxq); 3932 3933 static inline struct netdev_rx_queue * 3934 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3935 { 3936 return dev->_rx + rxq; 3937 } 3938 3939 #ifdef CONFIG_SYSFS 3940 static inline unsigned int get_netdev_rx_queue_index( 3941 struct netdev_rx_queue *queue) 3942 { 3943 struct net_device *dev = queue->dev; 3944 int index = queue - dev->_rx; 3945 3946 BUG_ON(index >= dev->num_rx_queues); 3947 return index; 3948 } 3949 #endif 3950 3951 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3952 int netif_get_num_default_rss_queues(void); 3953 3954 enum skb_free_reason { 3955 SKB_REASON_CONSUMED, 3956 SKB_REASON_DROPPED, 3957 }; 3958 3959 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3960 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3961 3962 /* 3963 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3964 * interrupt context or with hardware interrupts being disabled. 3965 * (in_hardirq() || irqs_disabled()) 3966 * 3967 * We provide four helpers that can be used in following contexts : 3968 * 3969 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3970 * replacing kfree_skb(skb) 3971 * 3972 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3973 * Typically used in place of consume_skb(skb) in TX completion path 3974 * 3975 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3976 * replacing kfree_skb(skb) 3977 * 3978 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3979 * and consumed a packet. Used in place of consume_skb(skb) 3980 */ 3981 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3982 { 3983 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3984 } 3985 3986 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3987 { 3988 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3989 } 3990 3991 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3992 { 3993 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3994 } 3995 3996 static inline void dev_consume_skb_any(struct sk_buff *skb) 3997 { 3998 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3999 } 4000 4001 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4002 struct bpf_prog *xdp_prog); 4003 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 4004 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 4005 int netif_rx(struct sk_buff *skb); 4006 int netif_rx_ni(struct sk_buff *skb); 4007 int netif_rx_any_context(struct sk_buff *skb); 4008 int netif_receive_skb(struct sk_buff *skb); 4009 int netif_receive_skb_core(struct sk_buff *skb); 4010 void netif_receive_skb_list(struct list_head *head); 4011 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 4012 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 4013 struct sk_buff *napi_get_frags(struct napi_struct *napi); 4014 gro_result_t napi_gro_frags(struct napi_struct *napi); 4015 struct packet_offload *gro_find_receive_by_type(__be16 type); 4016 struct packet_offload *gro_find_complete_by_type(__be16 type); 4017 4018 static inline void napi_free_frags(struct napi_struct *napi) 4019 { 4020 kfree_skb(napi->skb); 4021 napi->skb = NULL; 4022 } 4023 4024 bool netdev_is_rx_handler_busy(struct net_device *dev); 4025 int netdev_rx_handler_register(struct net_device *dev, 4026 rx_handler_func_t *rx_handler, 4027 void *rx_handler_data); 4028 void netdev_rx_handler_unregister(struct net_device *dev); 4029 4030 bool dev_valid_name(const char *name); 4031 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 4032 { 4033 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 4034 } 4035 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4036 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4037 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4038 void __user *data, bool *need_copyout); 4039 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4040 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4041 unsigned int dev_get_flags(const struct net_device *); 4042 int __dev_change_flags(struct net_device *dev, unsigned int flags, 4043 struct netlink_ext_ack *extack); 4044 int dev_change_flags(struct net_device *dev, unsigned int flags, 4045 struct netlink_ext_ack *extack); 4046 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 4047 unsigned int gchanges); 4048 int dev_change_name(struct net_device *, const char *); 4049 int dev_set_alias(struct net_device *, const char *, size_t); 4050 int dev_get_alias(const struct net_device *, char *, size_t); 4051 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4052 const char *pat, int new_ifindex); 4053 static inline 4054 int dev_change_net_namespace(struct net_device *dev, struct net *net, 4055 const char *pat) 4056 { 4057 return __dev_change_net_namespace(dev, net, pat, 0); 4058 } 4059 int __dev_set_mtu(struct net_device *, int); 4060 int dev_validate_mtu(struct net_device *dev, int mtu, 4061 struct netlink_ext_ack *extack); 4062 int dev_set_mtu_ext(struct net_device *dev, int mtu, 4063 struct netlink_ext_ack *extack); 4064 int dev_set_mtu(struct net_device *, int); 4065 int dev_change_tx_queue_len(struct net_device *, unsigned long); 4066 void dev_set_group(struct net_device *, int); 4067 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4068 struct netlink_ext_ack *extack); 4069 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 4070 struct netlink_ext_ack *extack); 4071 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 4072 struct netlink_ext_ack *extack); 4073 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4074 int dev_change_carrier(struct net_device *, bool new_carrier); 4075 int dev_get_phys_port_id(struct net_device *dev, 4076 struct netdev_phys_item_id *ppid); 4077 int dev_get_phys_port_name(struct net_device *dev, 4078 char *name, size_t len); 4079 int dev_get_port_parent_id(struct net_device *dev, 4080 struct netdev_phys_item_id *ppid, bool recurse); 4081 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4082 int dev_change_proto_down(struct net_device *dev, bool proto_down); 4083 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 4084 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 4085 u32 value); 4086 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4087 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4088 struct netdev_queue *txq, int *ret); 4089 4090 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 4091 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 4092 int fd, int expected_fd, u32 flags); 4093 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4094 u8 dev_xdp_prog_count(struct net_device *dev); 4095 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4096 4097 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4098 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4099 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4100 bool is_skb_forwardable(const struct net_device *dev, 4101 const struct sk_buff *skb); 4102 4103 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4104 const struct sk_buff *skb, 4105 const bool check_mtu) 4106 { 4107 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4108 unsigned int len; 4109 4110 if (!(dev->flags & IFF_UP)) 4111 return false; 4112 4113 if (!check_mtu) 4114 return true; 4115 4116 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4117 if (skb->len <= len) 4118 return true; 4119 4120 /* if TSO is enabled, we don't care about the length as the packet 4121 * could be forwarded without being segmented before 4122 */ 4123 if (skb_is_gso(skb)) 4124 return true; 4125 4126 return false; 4127 } 4128 4129 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4130 struct sk_buff *skb, 4131 const bool check_mtu) 4132 { 4133 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4134 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4135 atomic_long_inc(&dev->rx_dropped); 4136 kfree_skb(skb); 4137 return NET_RX_DROP; 4138 } 4139 4140 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4141 skb->priority = 0; 4142 return 0; 4143 } 4144 4145 bool dev_nit_active(struct net_device *dev); 4146 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4147 4148 extern int netdev_budget; 4149 extern unsigned int netdev_budget_usecs; 4150 4151 /* Called by rtnetlink.c:rtnl_unlock() */ 4152 void netdev_run_todo(void); 4153 4154 /** 4155 * dev_put - release reference to device 4156 * @dev: network device 4157 * 4158 * Release reference to device to allow it to be freed. 4159 */ 4160 static inline void dev_put(struct net_device *dev) 4161 { 4162 if (dev) { 4163 #ifdef CONFIG_PCPU_DEV_REFCNT 4164 this_cpu_dec(*dev->pcpu_refcnt); 4165 #else 4166 refcount_dec(&dev->dev_refcnt); 4167 #endif 4168 } 4169 } 4170 4171 /** 4172 * dev_hold - get reference to device 4173 * @dev: network device 4174 * 4175 * Hold reference to device to keep it from being freed. 4176 */ 4177 static inline void dev_hold(struct net_device *dev) 4178 { 4179 if (dev) { 4180 #ifdef CONFIG_PCPU_DEV_REFCNT 4181 this_cpu_inc(*dev->pcpu_refcnt); 4182 #else 4183 refcount_inc(&dev->dev_refcnt); 4184 #endif 4185 } 4186 } 4187 4188 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4189 * and _off may be called from IRQ context, but it is caller 4190 * who is responsible for serialization of these calls. 4191 * 4192 * The name carrier is inappropriate, these functions should really be 4193 * called netif_lowerlayer_*() because they represent the state of any 4194 * kind of lower layer not just hardware media. 4195 */ 4196 4197 void linkwatch_init_dev(struct net_device *dev); 4198 void linkwatch_fire_event(struct net_device *dev); 4199 void linkwatch_forget_dev(struct net_device *dev); 4200 4201 /** 4202 * netif_carrier_ok - test if carrier present 4203 * @dev: network device 4204 * 4205 * Check if carrier is present on device 4206 */ 4207 static inline bool netif_carrier_ok(const struct net_device *dev) 4208 { 4209 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4210 } 4211 4212 unsigned long dev_trans_start(struct net_device *dev); 4213 4214 void __netdev_watchdog_up(struct net_device *dev); 4215 4216 void netif_carrier_on(struct net_device *dev); 4217 void netif_carrier_off(struct net_device *dev); 4218 void netif_carrier_event(struct net_device *dev); 4219 4220 /** 4221 * netif_dormant_on - mark device as dormant. 4222 * @dev: network device 4223 * 4224 * Mark device as dormant (as per RFC2863). 4225 * 4226 * The dormant state indicates that the relevant interface is not 4227 * actually in a condition to pass packets (i.e., it is not 'up') but is 4228 * in a "pending" state, waiting for some external event. For "on- 4229 * demand" interfaces, this new state identifies the situation where the 4230 * interface is waiting for events to place it in the up state. 4231 */ 4232 static inline void netif_dormant_on(struct net_device *dev) 4233 { 4234 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4235 linkwatch_fire_event(dev); 4236 } 4237 4238 /** 4239 * netif_dormant_off - set device as not dormant. 4240 * @dev: network device 4241 * 4242 * Device is not in dormant state. 4243 */ 4244 static inline void netif_dormant_off(struct net_device *dev) 4245 { 4246 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4247 linkwatch_fire_event(dev); 4248 } 4249 4250 /** 4251 * netif_dormant - test if device is dormant 4252 * @dev: network device 4253 * 4254 * Check if device is dormant. 4255 */ 4256 static inline bool netif_dormant(const struct net_device *dev) 4257 { 4258 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4259 } 4260 4261 4262 /** 4263 * netif_testing_on - mark device as under test. 4264 * @dev: network device 4265 * 4266 * Mark device as under test (as per RFC2863). 4267 * 4268 * The testing state indicates that some test(s) must be performed on 4269 * the interface. After completion, of the test, the interface state 4270 * will change to up, dormant, or down, as appropriate. 4271 */ 4272 static inline void netif_testing_on(struct net_device *dev) 4273 { 4274 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4275 linkwatch_fire_event(dev); 4276 } 4277 4278 /** 4279 * netif_testing_off - set device as not under test. 4280 * @dev: network device 4281 * 4282 * Device is not in testing state. 4283 */ 4284 static inline void netif_testing_off(struct net_device *dev) 4285 { 4286 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4287 linkwatch_fire_event(dev); 4288 } 4289 4290 /** 4291 * netif_testing - test if device is under test 4292 * @dev: network device 4293 * 4294 * Check if device is under test 4295 */ 4296 static inline bool netif_testing(const struct net_device *dev) 4297 { 4298 return test_bit(__LINK_STATE_TESTING, &dev->state); 4299 } 4300 4301 4302 /** 4303 * netif_oper_up - test if device is operational 4304 * @dev: network device 4305 * 4306 * Check if carrier is operational 4307 */ 4308 static inline bool netif_oper_up(const struct net_device *dev) 4309 { 4310 return (dev->operstate == IF_OPER_UP || 4311 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4312 } 4313 4314 /** 4315 * netif_device_present - is device available or removed 4316 * @dev: network device 4317 * 4318 * Check if device has not been removed from system. 4319 */ 4320 static inline bool netif_device_present(const struct net_device *dev) 4321 { 4322 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4323 } 4324 4325 void netif_device_detach(struct net_device *dev); 4326 4327 void netif_device_attach(struct net_device *dev); 4328 4329 /* 4330 * Network interface message level settings 4331 */ 4332 4333 enum { 4334 NETIF_MSG_DRV_BIT, 4335 NETIF_MSG_PROBE_BIT, 4336 NETIF_MSG_LINK_BIT, 4337 NETIF_MSG_TIMER_BIT, 4338 NETIF_MSG_IFDOWN_BIT, 4339 NETIF_MSG_IFUP_BIT, 4340 NETIF_MSG_RX_ERR_BIT, 4341 NETIF_MSG_TX_ERR_BIT, 4342 NETIF_MSG_TX_QUEUED_BIT, 4343 NETIF_MSG_INTR_BIT, 4344 NETIF_MSG_TX_DONE_BIT, 4345 NETIF_MSG_RX_STATUS_BIT, 4346 NETIF_MSG_PKTDATA_BIT, 4347 NETIF_MSG_HW_BIT, 4348 NETIF_MSG_WOL_BIT, 4349 4350 /* When you add a new bit above, update netif_msg_class_names array 4351 * in net/ethtool/common.c 4352 */ 4353 NETIF_MSG_CLASS_COUNT, 4354 }; 4355 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4356 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4357 4358 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4359 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4360 4361 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4362 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4363 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4364 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4365 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4366 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4367 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4368 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4369 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4370 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4371 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4372 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4373 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4374 #define NETIF_MSG_HW __NETIF_MSG(HW) 4375 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4376 4377 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4378 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4379 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4380 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4381 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4382 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4383 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4384 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4385 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4386 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4387 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4388 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4389 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4390 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4391 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4392 4393 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4394 { 4395 /* use default */ 4396 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4397 return default_msg_enable_bits; 4398 if (debug_value == 0) /* no output */ 4399 return 0; 4400 /* set low N bits */ 4401 return (1U << debug_value) - 1; 4402 } 4403 4404 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4405 { 4406 spin_lock(&txq->_xmit_lock); 4407 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4408 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4409 } 4410 4411 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4412 { 4413 __acquire(&txq->_xmit_lock); 4414 return true; 4415 } 4416 4417 static inline void __netif_tx_release(struct netdev_queue *txq) 4418 { 4419 __release(&txq->_xmit_lock); 4420 } 4421 4422 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4423 { 4424 spin_lock_bh(&txq->_xmit_lock); 4425 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4426 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4427 } 4428 4429 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4430 { 4431 bool ok = spin_trylock(&txq->_xmit_lock); 4432 4433 if (likely(ok)) { 4434 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4435 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4436 } 4437 return ok; 4438 } 4439 4440 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4441 { 4442 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4443 WRITE_ONCE(txq->xmit_lock_owner, -1); 4444 spin_unlock(&txq->_xmit_lock); 4445 } 4446 4447 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4448 { 4449 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4450 WRITE_ONCE(txq->xmit_lock_owner, -1); 4451 spin_unlock_bh(&txq->_xmit_lock); 4452 } 4453 4454 static inline void txq_trans_update(struct netdev_queue *txq) 4455 { 4456 if (txq->xmit_lock_owner != -1) 4457 txq->trans_start = jiffies; 4458 } 4459 4460 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4461 static inline void netif_trans_update(struct net_device *dev) 4462 { 4463 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4464 4465 if (txq->trans_start != jiffies) 4466 txq->trans_start = jiffies; 4467 } 4468 4469 /** 4470 * netif_tx_lock - grab network device transmit lock 4471 * @dev: network device 4472 * 4473 * Get network device transmit lock 4474 */ 4475 static inline void netif_tx_lock(struct net_device *dev) 4476 { 4477 unsigned int i; 4478 int cpu; 4479 4480 spin_lock(&dev->tx_global_lock); 4481 cpu = smp_processor_id(); 4482 for (i = 0; i < dev->num_tx_queues; i++) { 4483 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4484 4485 /* We are the only thread of execution doing a 4486 * freeze, but we have to grab the _xmit_lock in 4487 * order to synchronize with threads which are in 4488 * the ->hard_start_xmit() handler and already 4489 * checked the frozen bit. 4490 */ 4491 __netif_tx_lock(txq, cpu); 4492 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4493 __netif_tx_unlock(txq); 4494 } 4495 } 4496 4497 static inline void netif_tx_lock_bh(struct net_device *dev) 4498 { 4499 local_bh_disable(); 4500 netif_tx_lock(dev); 4501 } 4502 4503 static inline void netif_tx_unlock(struct net_device *dev) 4504 { 4505 unsigned int i; 4506 4507 for (i = 0; i < dev->num_tx_queues; i++) { 4508 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4509 4510 /* No need to grab the _xmit_lock here. If the 4511 * queue is not stopped for another reason, we 4512 * force a schedule. 4513 */ 4514 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4515 netif_schedule_queue(txq); 4516 } 4517 spin_unlock(&dev->tx_global_lock); 4518 } 4519 4520 static inline void netif_tx_unlock_bh(struct net_device *dev) 4521 { 4522 netif_tx_unlock(dev); 4523 local_bh_enable(); 4524 } 4525 4526 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4527 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4528 __netif_tx_lock(txq, cpu); \ 4529 } else { \ 4530 __netif_tx_acquire(txq); \ 4531 } \ 4532 } 4533 4534 #define HARD_TX_TRYLOCK(dev, txq) \ 4535 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4536 __netif_tx_trylock(txq) : \ 4537 __netif_tx_acquire(txq)) 4538 4539 #define HARD_TX_UNLOCK(dev, txq) { \ 4540 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4541 __netif_tx_unlock(txq); \ 4542 } else { \ 4543 __netif_tx_release(txq); \ 4544 } \ 4545 } 4546 4547 static inline void netif_tx_disable(struct net_device *dev) 4548 { 4549 unsigned int i; 4550 int cpu; 4551 4552 local_bh_disable(); 4553 cpu = smp_processor_id(); 4554 spin_lock(&dev->tx_global_lock); 4555 for (i = 0; i < dev->num_tx_queues; i++) { 4556 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4557 4558 __netif_tx_lock(txq, cpu); 4559 netif_tx_stop_queue(txq); 4560 __netif_tx_unlock(txq); 4561 } 4562 spin_unlock(&dev->tx_global_lock); 4563 local_bh_enable(); 4564 } 4565 4566 static inline void netif_addr_lock(struct net_device *dev) 4567 { 4568 unsigned char nest_level = 0; 4569 4570 #ifdef CONFIG_LOCKDEP 4571 nest_level = dev->nested_level; 4572 #endif 4573 spin_lock_nested(&dev->addr_list_lock, nest_level); 4574 } 4575 4576 static inline void netif_addr_lock_bh(struct net_device *dev) 4577 { 4578 unsigned char nest_level = 0; 4579 4580 #ifdef CONFIG_LOCKDEP 4581 nest_level = dev->nested_level; 4582 #endif 4583 local_bh_disable(); 4584 spin_lock_nested(&dev->addr_list_lock, nest_level); 4585 } 4586 4587 static inline void netif_addr_unlock(struct net_device *dev) 4588 { 4589 spin_unlock(&dev->addr_list_lock); 4590 } 4591 4592 static inline void netif_addr_unlock_bh(struct net_device *dev) 4593 { 4594 spin_unlock_bh(&dev->addr_list_lock); 4595 } 4596 4597 /* 4598 * dev_addrs walker. Should be used only for read access. Call with 4599 * rcu_read_lock held. 4600 */ 4601 #define for_each_dev_addr(dev, ha) \ 4602 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4603 4604 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4605 4606 void ether_setup(struct net_device *dev); 4607 4608 /* Support for loadable net-drivers */ 4609 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4610 unsigned char name_assign_type, 4611 void (*setup)(struct net_device *), 4612 unsigned int txqs, unsigned int rxqs); 4613 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4614 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4615 4616 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4617 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4618 count) 4619 4620 int register_netdev(struct net_device *dev); 4621 void unregister_netdev(struct net_device *dev); 4622 4623 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4624 4625 /* General hardware address lists handling functions */ 4626 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4627 struct netdev_hw_addr_list *from_list, int addr_len); 4628 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4629 struct netdev_hw_addr_list *from_list, int addr_len); 4630 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4631 struct net_device *dev, 4632 int (*sync)(struct net_device *, const unsigned char *), 4633 int (*unsync)(struct net_device *, 4634 const unsigned char *)); 4635 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4636 struct net_device *dev, 4637 int (*sync)(struct net_device *, 4638 const unsigned char *, int), 4639 int (*unsync)(struct net_device *, 4640 const unsigned char *, int)); 4641 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4642 struct net_device *dev, 4643 int (*unsync)(struct net_device *, 4644 const unsigned char *, int)); 4645 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4646 struct net_device *dev, 4647 int (*unsync)(struct net_device *, 4648 const unsigned char *)); 4649 void __hw_addr_init(struct netdev_hw_addr_list *list); 4650 4651 /* Functions used for device addresses handling */ 4652 static inline void 4653 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4654 { 4655 memcpy(dev->dev_addr, addr, len); 4656 } 4657 4658 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4659 { 4660 __dev_addr_set(dev, addr, dev->addr_len); 4661 } 4662 4663 static inline void 4664 dev_addr_mod(struct net_device *dev, unsigned int offset, 4665 const void *addr, size_t len) 4666 { 4667 memcpy(&dev->dev_addr[offset], addr, len); 4668 } 4669 4670 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4671 unsigned char addr_type); 4672 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4673 unsigned char addr_type); 4674 void dev_addr_flush(struct net_device *dev); 4675 int dev_addr_init(struct net_device *dev); 4676 4677 /* Functions used for unicast addresses handling */ 4678 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4679 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4680 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4681 int dev_uc_sync(struct net_device *to, struct net_device *from); 4682 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4683 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4684 void dev_uc_flush(struct net_device *dev); 4685 void dev_uc_init(struct net_device *dev); 4686 4687 /** 4688 * __dev_uc_sync - Synchonize device's unicast list 4689 * @dev: device to sync 4690 * @sync: function to call if address should be added 4691 * @unsync: function to call if address should be removed 4692 * 4693 * Add newly added addresses to the interface, and release 4694 * addresses that have been deleted. 4695 */ 4696 static inline int __dev_uc_sync(struct net_device *dev, 4697 int (*sync)(struct net_device *, 4698 const unsigned char *), 4699 int (*unsync)(struct net_device *, 4700 const unsigned char *)) 4701 { 4702 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4703 } 4704 4705 /** 4706 * __dev_uc_unsync - Remove synchronized addresses from device 4707 * @dev: device to sync 4708 * @unsync: function to call if address should be removed 4709 * 4710 * Remove all addresses that were added to the device by dev_uc_sync(). 4711 */ 4712 static inline void __dev_uc_unsync(struct net_device *dev, 4713 int (*unsync)(struct net_device *, 4714 const unsigned char *)) 4715 { 4716 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4717 } 4718 4719 /* Functions used for multicast addresses handling */ 4720 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4721 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4722 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4723 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4724 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4725 int dev_mc_sync(struct net_device *to, struct net_device *from); 4726 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4727 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4728 void dev_mc_flush(struct net_device *dev); 4729 void dev_mc_init(struct net_device *dev); 4730 4731 /** 4732 * __dev_mc_sync - Synchonize device's multicast list 4733 * @dev: device to sync 4734 * @sync: function to call if address should be added 4735 * @unsync: function to call if address should be removed 4736 * 4737 * Add newly added addresses to the interface, and release 4738 * addresses that have been deleted. 4739 */ 4740 static inline int __dev_mc_sync(struct net_device *dev, 4741 int (*sync)(struct net_device *, 4742 const unsigned char *), 4743 int (*unsync)(struct net_device *, 4744 const unsigned char *)) 4745 { 4746 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4747 } 4748 4749 /** 4750 * __dev_mc_unsync - Remove synchronized addresses from device 4751 * @dev: device to sync 4752 * @unsync: function to call if address should be removed 4753 * 4754 * Remove all addresses that were added to the device by dev_mc_sync(). 4755 */ 4756 static inline void __dev_mc_unsync(struct net_device *dev, 4757 int (*unsync)(struct net_device *, 4758 const unsigned char *)) 4759 { 4760 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4761 } 4762 4763 /* Functions used for secondary unicast and multicast support */ 4764 void dev_set_rx_mode(struct net_device *dev); 4765 void __dev_set_rx_mode(struct net_device *dev); 4766 int dev_set_promiscuity(struct net_device *dev, int inc); 4767 int dev_set_allmulti(struct net_device *dev, int inc); 4768 void netdev_state_change(struct net_device *dev); 4769 void __netdev_notify_peers(struct net_device *dev); 4770 void netdev_notify_peers(struct net_device *dev); 4771 void netdev_features_change(struct net_device *dev); 4772 /* Load a device via the kmod */ 4773 void dev_load(struct net *net, const char *name); 4774 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4775 struct rtnl_link_stats64 *storage); 4776 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4777 const struct net_device_stats *netdev_stats); 4778 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4779 const struct pcpu_sw_netstats __percpu *netstats); 4780 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4781 4782 extern int netdev_max_backlog; 4783 extern int netdev_tstamp_prequeue; 4784 extern int netdev_unregister_timeout_secs; 4785 extern int weight_p; 4786 extern int dev_weight_rx_bias; 4787 extern int dev_weight_tx_bias; 4788 extern int dev_rx_weight; 4789 extern int dev_tx_weight; 4790 extern int gro_normal_batch; 4791 4792 enum { 4793 NESTED_SYNC_IMM_BIT, 4794 NESTED_SYNC_TODO_BIT, 4795 }; 4796 4797 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4798 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4799 4800 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4801 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4802 4803 struct netdev_nested_priv { 4804 unsigned char flags; 4805 void *data; 4806 }; 4807 4808 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4809 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4810 struct list_head **iter); 4811 4812 #ifdef CONFIG_LOCKDEP 4813 static LIST_HEAD(net_unlink_list); 4814 4815 static inline void net_unlink_todo(struct net_device *dev) 4816 { 4817 if (list_empty(&dev->unlink_list)) 4818 list_add_tail(&dev->unlink_list, &net_unlink_list); 4819 } 4820 #endif 4821 4822 /* iterate through upper list, must be called under RCU read lock */ 4823 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4824 for (iter = &(dev)->adj_list.upper, \ 4825 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4826 updev; \ 4827 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4828 4829 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4830 int (*fn)(struct net_device *upper_dev, 4831 struct netdev_nested_priv *priv), 4832 struct netdev_nested_priv *priv); 4833 4834 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4835 struct net_device *upper_dev); 4836 4837 bool netdev_has_any_upper_dev(struct net_device *dev); 4838 4839 void *netdev_lower_get_next_private(struct net_device *dev, 4840 struct list_head **iter); 4841 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4842 struct list_head **iter); 4843 4844 #define netdev_for_each_lower_private(dev, priv, iter) \ 4845 for (iter = (dev)->adj_list.lower.next, \ 4846 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4847 priv; \ 4848 priv = netdev_lower_get_next_private(dev, &(iter))) 4849 4850 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4851 for (iter = &(dev)->adj_list.lower, \ 4852 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4853 priv; \ 4854 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4855 4856 void *netdev_lower_get_next(struct net_device *dev, 4857 struct list_head **iter); 4858 4859 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4860 for (iter = (dev)->adj_list.lower.next, \ 4861 ldev = netdev_lower_get_next(dev, &(iter)); \ 4862 ldev; \ 4863 ldev = netdev_lower_get_next(dev, &(iter))) 4864 4865 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4866 struct list_head **iter); 4867 int netdev_walk_all_lower_dev(struct net_device *dev, 4868 int (*fn)(struct net_device *lower_dev, 4869 struct netdev_nested_priv *priv), 4870 struct netdev_nested_priv *priv); 4871 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4872 int (*fn)(struct net_device *lower_dev, 4873 struct netdev_nested_priv *priv), 4874 struct netdev_nested_priv *priv); 4875 4876 void *netdev_adjacent_get_private(struct list_head *adj_list); 4877 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4878 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4879 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4880 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4881 struct netlink_ext_ack *extack); 4882 int netdev_master_upper_dev_link(struct net_device *dev, 4883 struct net_device *upper_dev, 4884 void *upper_priv, void *upper_info, 4885 struct netlink_ext_ack *extack); 4886 void netdev_upper_dev_unlink(struct net_device *dev, 4887 struct net_device *upper_dev); 4888 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4889 struct net_device *new_dev, 4890 struct net_device *dev, 4891 struct netlink_ext_ack *extack); 4892 void netdev_adjacent_change_commit(struct net_device *old_dev, 4893 struct net_device *new_dev, 4894 struct net_device *dev); 4895 void netdev_adjacent_change_abort(struct net_device *old_dev, 4896 struct net_device *new_dev, 4897 struct net_device *dev); 4898 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4899 void *netdev_lower_dev_get_private(struct net_device *dev, 4900 struct net_device *lower_dev); 4901 void netdev_lower_state_changed(struct net_device *lower_dev, 4902 void *lower_state_info); 4903 4904 /* RSS keys are 40 or 52 bytes long */ 4905 #define NETDEV_RSS_KEY_LEN 52 4906 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4907 void netdev_rss_key_fill(void *buffer, size_t len); 4908 4909 int skb_checksum_help(struct sk_buff *skb); 4910 int skb_crc32c_csum_help(struct sk_buff *skb); 4911 int skb_csum_hwoffload_help(struct sk_buff *skb, 4912 const netdev_features_t features); 4913 4914 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4915 netdev_features_t features, bool tx_path); 4916 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4917 netdev_features_t features); 4918 4919 struct netdev_bonding_info { 4920 ifslave slave; 4921 ifbond master; 4922 }; 4923 4924 struct netdev_notifier_bonding_info { 4925 struct netdev_notifier_info info; /* must be first */ 4926 struct netdev_bonding_info bonding_info; 4927 }; 4928 4929 void netdev_bonding_info_change(struct net_device *dev, 4930 struct netdev_bonding_info *bonding_info); 4931 4932 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4933 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4934 #else 4935 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4936 const void *data) 4937 { 4938 } 4939 #endif 4940 4941 static inline 4942 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4943 { 4944 return __skb_gso_segment(skb, features, true); 4945 } 4946 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4947 4948 static inline bool can_checksum_protocol(netdev_features_t features, 4949 __be16 protocol) 4950 { 4951 if (protocol == htons(ETH_P_FCOE)) 4952 return !!(features & NETIF_F_FCOE_CRC); 4953 4954 /* Assume this is an IP checksum (not SCTP CRC) */ 4955 4956 if (features & NETIF_F_HW_CSUM) { 4957 /* Can checksum everything */ 4958 return true; 4959 } 4960 4961 switch (protocol) { 4962 case htons(ETH_P_IP): 4963 return !!(features & NETIF_F_IP_CSUM); 4964 case htons(ETH_P_IPV6): 4965 return !!(features & NETIF_F_IPV6_CSUM); 4966 default: 4967 return false; 4968 } 4969 } 4970 4971 #ifdef CONFIG_BUG 4972 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4973 #else 4974 static inline void netdev_rx_csum_fault(struct net_device *dev, 4975 struct sk_buff *skb) 4976 { 4977 } 4978 #endif 4979 /* rx skb timestamps */ 4980 void net_enable_timestamp(void); 4981 void net_disable_timestamp(void); 4982 4983 #ifdef CONFIG_PROC_FS 4984 int __init dev_proc_init(void); 4985 #else 4986 #define dev_proc_init() 0 4987 #endif 4988 4989 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4990 struct sk_buff *skb, struct net_device *dev, 4991 bool more) 4992 { 4993 __this_cpu_write(softnet_data.xmit.more, more); 4994 return ops->ndo_start_xmit(skb, dev); 4995 } 4996 4997 static inline bool netdev_xmit_more(void) 4998 { 4999 return __this_cpu_read(softnet_data.xmit.more); 5000 } 5001 5002 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 5003 struct netdev_queue *txq, bool more) 5004 { 5005 const struct net_device_ops *ops = dev->netdev_ops; 5006 netdev_tx_t rc; 5007 5008 rc = __netdev_start_xmit(ops, skb, dev, more); 5009 if (rc == NETDEV_TX_OK) 5010 txq_trans_update(txq); 5011 5012 return rc; 5013 } 5014 5015 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 5016 const void *ns); 5017 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 5018 const void *ns); 5019 5020 extern const struct kobj_ns_type_operations net_ns_type_operations; 5021 5022 const char *netdev_drivername(const struct net_device *dev); 5023 5024 void linkwatch_run_queue(void); 5025 5026 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 5027 netdev_features_t f2) 5028 { 5029 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 5030 if (f1 & NETIF_F_HW_CSUM) 5031 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5032 else 5033 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5034 } 5035 5036 return f1 & f2; 5037 } 5038 5039 static inline netdev_features_t netdev_get_wanted_features( 5040 struct net_device *dev) 5041 { 5042 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5043 } 5044 netdev_features_t netdev_increment_features(netdev_features_t all, 5045 netdev_features_t one, netdev_features_t mask); 5046 5047 /* Allow TSO being used on stacked device : 5048 * Performing the GSO segmentation before last device 5049 * is a performance improvement. 5050 */ 5051 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5052 netdev_features_t mask) 5053 { 5054 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5055 } 5056 5057 int __netdev_update_features(struct net_device *dev); 5058 void netdev_update_features(struct net_device *dev); 5059 void netdev_change_features(struct net_device *dev); 5060 5061 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5062 struct net_device *dev); 5063 5064 netdev_features_t passthru_features_check(struct sk_buff *skb, 5065 struct net_device *dev, 5066 netdev_features_t features); 5067 netdev_features_t netif_skb_features(struct sk_buff *skb); 5068 5069 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5070 { 5071 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5072 5073 /* check flags correspondence */ 5074 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5075 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5076 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5077 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5078 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5079 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5080 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5081 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5082 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5083 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5084 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5085 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5086 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5087 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5088 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5089 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5090 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5091 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5092 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5093 5094 return (features & feature) == feature; 5095 } 5096 5097 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5098 { 5099 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5100 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5101 } 5102 5103 static inline bool netif_needs_gso(struct sk_buff *skb, 5104 netdev_features_t features) 5105 { 5106 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5107 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5108 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5109 } 5110 5111 static inline void netif_set_gso_max_size(struct net_device *dev, 5112 unsigned int size) 5113 { 5114 dev->gso_max_size = size; 5115 } 5116 5117 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 5118 int pulled_hlen, u16 mac_offset, 5119 int mac_len) 5120 { 5121 skb->protocol = protocol; 5122 skb->encapsulation = 1; 5123 skb_push(skb, pulled_hlen); 5124 skb_reset_transport_header(skb); 5125 skb->mac_header = mac_offset; 5126 skb->network_header = skb->mac_header + mac_len; 5127 skb->mac_len = mac_len; 5128 } 5129 5130 static inline bool netif_is_macsec(const struct net_device *dev) 5131 { 5132 return dev->priv_flags & IFF_MACSEC; 5133 } 5134 5135 static inline bool netif_is_macvlan(const struct net_device *dev) 5136 { 5137 return dev->priv_flags & IFF_MACVLAN; 5138 } 5139 5140 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5141 { 5142 return dev->priv_flags & IFF_MACVLAN_PORT; 5143 } 5144 5145 static inline bool netif_is_bond_master(const struct net_device *dev) 5146 { 5147 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5148 } 5149 5150 static inline bool netif_is_bond_slave(const struct net_device *dev) 5151 { 5152 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5153 } 5154 5155 static inline bool netif_supports_nofcs(struct net_device *dev) 5156 { 5157 return dev->priv_flags & IFF_SUPP_NOFCS; 5158 } 5159 5160 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5161 { 5162 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5163 } 5164 5165 static inline bool netif_is_l3_master(const struct net_device *dev) 5166 { 5167 return dev->priv_flags & IFF_L3MDEV_MASTER; 5168 } 5169 5170 static inline bool netif_is_l3_slave(const struct net_device *dev) 5171 { 5172 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5173 } 5174 5175 static inline bool netif_is_bridge_master(const struct net_device *dev) 5176 { 5177 return dev->priv_flags & IFF_EBRIDGE; 5178 } 5179 5180 static inline bool netif_is_bridge_port(const struct net_device *dev) 5181 { 5182 return dev->priv_flags & IFF_BRIDGE_PORT; 5183 } 5184 5185 static inline bool netif_is_ovs_master(const struct net_device *dev) 5186 { 5187 return dev->priv_flags & IFF_OPENVSWITCH; 5188 } 5189 5190 static inline bool netif_is_ovs_port(const struct net_device *dev) 5191 { 5192 return dev->priv_flags & IFF_OVS_DATAPATH; 5193 } 5194 5195 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5196 { 5197 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5198 } 5199 5200 static inline bool netif_is_team_master(const struct net_device *dev) 5201 { 5202 return dev->priv_flags & IFF_TEAM; 5203 } 5204 5205 static inline bool netif_is_team_port(const struct net_device *dev) 5206 { 5207 return dev->priv_flags & IFF_TEAM_PORT; 5208 } 5209 5210 static inline bool netif_is_lag_master(const struct net_device *dev) 5211 { 5212 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5213 } 5214 5215 static inline bool netif_is_lag_port(const struct net_device *dev) 5216 { 5217 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5218 } 5219 5220 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5221 { 5222 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5223 } 5224 5225 static inline bool netif_is_failover(const struct net_device *dev) 5226 { 5227 return dev->priv_flags & IFF_FAILOVER; 5228 } 5229 5230 static inline bool netif_is_failover_slave(const struct net_device *dev) 5231 { 5232 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5233 } 5234 5235 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5236 static inline void netif_keep_dst(struct net_device *dev) 5237 { 5238 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5239 } 5240 5241 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5242 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5243 { 5244 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5245 return netif_is_macsec(dev); 5246 } 5247 5248 extern struct pernet_operations __net_initdata loopback_net_ops; 5249 5250 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5251 5252 /* netdev_printk helpers, similar to dev_printk */ 5253 5254 static inline const char *netdev_name(const struct net_device *dev) 5255 { 5256 if (!dev->name[0] || strchr(dev->name, '%')) 5257 return "(unnamed net_device)"; 5258 return dev->name; 5259 } 5260 5261 static inline bool netdev_unregistering(const struct net_device *dev) 5262 { 5263 return dev->reg_state == NETREG_UNREGISTERING; 5264 } 5265 5266 static inline const char *netdev_reg_state(const struct net_device *dev) 5267 { 5268 switch (dev->reg_state) { 5269 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5270 case NETREG_REGISTERED: return ""; 5271 case NETREG_UNREGISTERING: return " (unregistering)"; 5272 case NETREG_UNREGISTERED: return " (unregistered)"; 5273 case NETREG_RELEASED: return " (released)"; 5274 case NETREG_DUMMY: return " (dummy)"; 5275 } 5276 5277 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5278 return " (unknown)"; 5279 } 5280 5281 __printf(3, 4) __cold 5282 void netdev_printk(const char *level, const struct net_device *dev, 5283 const char *format, ...); 5284 __printf(2, 3) __cold 5285 void netdev_emerg(const struct net_device *dev, const char *format, ...); 5286 __printf(2, 3) __cold 5287 void netdev_alert(const struct net_device *dev, const char *format, ...); 5288 __printf(2, 3) __cold 5289 void netdev_crit(const struct net_device *dev, const char *format, ...); 5290 __printf(2, 3) __cold 5291 void netdev_err(const struct net_device *dev, const char *format, ...); 5292 __printf(2, 3) __cold 5293 void netdev_warn(const struct net_device *dev, const char *format, ...); 5294 __printf(2, 3) __cold 5295 void netdev_notice(const struct net_device *dev, const char *format, ...); 5296 __printf(2, 3) __cold 5297 void netdev_info(const struct net_device *dev, const char *format, ...); 5298 5299 #define netdev_level_once(level, dev, fmt, ...) \ 5300 do { \ 5301 static bool __print_once __read_mostly; \ 5302 \ 5303 if (!__print_once) { \ 5304 __print_once = true; \ 5305 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 5306 } \ 5307 } while (0) 5308 5309 #define netdev_emerg_once(dev, fmt, ...) \ 5310 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 5311 #define netdev_alert_once(dev, fmt, ...) \ 5312 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 5313 #define netdev_crit_once(dev, fmt, ...) \ 5314 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 5315 #define netdev_err_once(dev, fmt, ...) \ 5316 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 5317 #define netdev_warn_once(dev, fmt, ...) \ 5318 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 5319 #define netdev_notice_once(dev, fmt, ...) \ 5320 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 5321 #define netdev_info_once(dev, fmt, ...) \ 5322 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 5323 5324 #define MODULE_ALIAS_NETDEV(device) \ 5325 MODULE_ALIAS("netdev-" device) 5326 5327 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5328 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5329 #define netdev_dbg(__dev, format, args...) \ 5330 do { \ 5331 dynamic_netdev_dbg(__dev, format, ##args); \ 5332 } while (0) 5333 #elif defined(DEBUG) 5334 #define netdev_dbg(__dev, format, args...) \ 5335 netdev_printk(KERN_DEBUG, __dev, format, ##args) 5336 #else 5337 #define netdev_dbg(__dev, format, args...) \ 5338 ({ \ 5339 if (0) \ 5340 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 5341 }) 5342 #endif 5343 5344 #if defined(VERBOSE_DEBUG) 5345 #define netdev_vdbg netdev_dbg 5346 #else 5347 5348 #define netdev_vdbg(dev, format, args...) \ 5349 ({ \ 5350 if (0) \ 5351 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 5352 0; \ 5353 }) 5354 #endif 5355 5356 /* 5357 * netdev_WARN() acts like dev_printk(), but with the key difference 5358 * of using a WARN/WARN_ON to get the message out, including the 5359 * file/line information and a backtrace. 5360 */ 5361 #define netdev_WARN(dev, format, args...) \ 5362 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5363 netdev_reg_state(dev), ##args) 5364 5365 #define netdev_WARN_ONCE(dev, format, args...) \ 5366 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5367 netdev_reg_state(dev), ##args) 5368 5369 /* netif printk helpers, similar to netdev_printk */ 5370 5371 #define netif_printk(priv, type, level, dev, fmt, args...) \ 5372 do { \ 5373 if (netif_msg_##type(priv)) \ 5374 netdev_printk(level, (dev), fmt, ##args); \ 5375 } while (0) 5376 5377 #define netif_level(level, priv, type, dev, fmt, args...) \ 5378 do { \ 5379 if (netif_msg_##type(priv)) \ 5380 netdev_##level(dev, fmt, ##args); \ 5381 } while (0) 5382 5383 #define netif_emerg(priv, type, dev, fmt, args...) \ 5384 netif_level(emerg, priv, type, dev, fmt, ##args) 5385 #define netif_alert(priv, type, dev, fmt, args...) \ 5386 netif_level(alert, priv, type, dev, fmt, ##args) 5387 #define netif_crit(priv, type, dev, fmt, args...) \ 5388 netif_level(crit, priv, type, dev, fmt, ##args) 5389 #define netif_err(priv, type, dev, fmt, args...) \ 5390 netif_level(err, priv, type, dev, fmt, ##args) 5391 #define netif_warn(priv, type, dev, fmt, args...) \ 5392 netif_level(warn, priv, type, dev, fmt, ##args) 5393 #define netif_notice(priv, type, dev, fmt, args...) \ 5394 netif_level(notice, priv, type, dev, fmt, ##args) 5395 #define netif_info(priv, type, dev, fmt, args...) \ 5396 netif_level(info, priv, type, dev, fmt, ##args) 5397 5398 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5399 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5400 #define netif_dbg(priv, type, netdev, format, args...) \ 5401 do { \ 5402 if (netif_msg_##type(priv)) \ 5403 dynamic_netdev_dbg(netdev, format, ##args); \ 5404 } while (0) 5405 #elif defined(DEBUG) 5406 #define netif_dbg(priv, type, dev, format, args...) \ 5407 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5408 #else 5409 #define netif_dbg(priv, type, dev, format, args...) \ 5410 ({ \ 5411 if (0) \ 5412 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5413 0; \ 5414 }) 5415 #endif 5416 5417 /* if @cond then downgrade to debug, else print at @level */ 5418 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5419 do { \ 5420 if (cond) \ 5421 netif_dbg(priv, type, netdev, fmt, ##args); \ 5422 else \ 5423 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5424 } while (0) 5425 5426 #if defined(VERBOSE_DEBUG) 5427 #define netif_vdbg netif_dbg 5428 #else 5429 #define netif_vdbg(priv, type, dev, format, args...) \ 5430 ({ \ 5431 if (0) \ 5432 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5433 0; \ 5434 }) 5435 #endif 5436 5437 /* 5438 * The list of packet types we will receive (as opposed to discard) 5439 * and the routines to invoke. 5440 * 5441 * Why 16. Because with 16 the only overlap we get on a hash of the 5442 * low nibble of the protocol value is RARP/SNAP/X.25. 5443 * 5444 * 0800 IP 5445 * 0001 802.3 5446 * 0002 AX.25 5447 * 0004 802.2 5448 * 8035 RARP 5449 * 0005 SNAP 5450 * 0805 X.25 5451 * 0806 ARP 5452 * 8137 IPX 5453 * 0009 Localtalk 5454 * 86DD IPv6 5455 */ 5456 #define PTYPE_HASH_SIZE (16) 5457 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5458 5459 extern struct list_head ptype_all __read_mostly; 5460 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5461 5462 extern struct net_device *blackhole_netdev; 5463 5464 #endif /* _LINUX_NETDEVICE_H */ 5465