xref: /openbmc/linux/include/linux/netdevice.h (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * Structure for NAPI scheduling similar to tasklet but with weighting
312  */
313 #define GRO_HASH_BUCKETS	8
314 struct napi_struct {
315 	/* The poll_list must only be managed by the entity which
316 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
317 	 * whoever atomically sets that bit can add this napi_struct
318 	 * to the per-CPU poll_list, and whoever clears that bit
319 	 * can remove from the list right before clearing the bit.
320 	 */
321 	struct list_head	poll_list;
322 
323 	unsigned long		state;
324 	int			weight;
325 	unsigned int		gro_count;
326 	int			(*poll)(struct napi_struct *, int);
327 #ifdef CONFIG_NETPOLL
328 	int			poll_owner;
329 #endif
330 	struct net_device	*dev;
331 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
332 	struct sk_buff		*skb;
333 	struct hrtimer		timer;
334 	struct list_head	dev_list;
335 	struct hlist_node	napi_hash_node;
336 	unsigned int		napi_id;
337 };
338 
339 enum {
340 	NAPI_STATE_SCHED,	/* Poll is scheduled */
341 	NAPI_STATE_MISSED,	/* reschedule a napi */
342 	NAPI_STATE_DISABLE,	/* Disable pending */
343 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
344 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
345 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
346 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
347 };
348 
349 enum {
350 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
351 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
352 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
353 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
354 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
355 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
356 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
357 };
358 
359 enum gro_result {
360 	GRO_MERGED,
361 	GRO_MERGED_FREE,
362 	GRO_HELD,
363 	GRO_NORMAL,
364 	GRO_DROP,
365 	GRO_CONSUMED,
366 };
367 typedef enum gro_result gro_result_t;
368 
369 /*
370  * enum rx_handler_result - Possible return values for rx_handlers.
371  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
372  * further.
373  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
374  * case skb->dev was changed by rx_handler.
375  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
376  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
377  *
378  * rx_handlers are functions called from inside __netif_receive_skb(), to do
379  * special processing of the skb, prior to delivery to protocol handlers.
380  *
381  * Currently, a net_device can only have a single rx_handler registered. Trying
382  * to register a second rx_handler will return -EBUSY.
383  *
384  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
385  * To unregister a rx_handler on a net_device, use
386  * netdev_rx_handler_unregister().
387  *
388  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
389  * do with the skb.
390  *
391  * If the rx_handler consumed the skb in some way, it should return
392  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
393  * the skb to be delivered in some other way.
394  *
395  * If the rx_handler changed skb->dev, to divert the skb to another
396  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
397  * new device will be called if it exists.
398  *
399  * If the rx_handler decides the skb should be ignored, it should return
400  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
401  * are registered on exact device (ptype->dev == skb->dev).
402  *
403  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
404  * delivered, it should return RX_HANDLER_PASS.
405  *
406  * A device without a registered rx_handler will behave as if rx_handler
407  * returned RX_HANDLER_PASS.
408  */
409 
410 enum rx_handler_result {
411 	RX_HANDLER_CONSUMED,
412 	RX_HANDLER_ANOTHER,
413 	RX_HANDLER_EXACT,
414 	RX_HANDLER_PASS,
415 };
416 typedef enum rx_handler_result rx_handler_result_t;
417 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
418 
419 void __napi_schedule(struct napi_struct *n);
420 void __napi_schedule_irqoff(struct napi_struct *n);
421 
422 static inline bool napi_disable_pending(struct napi_struct *n)
423 {
424 	return test_bit(NAPI_STATE_DISABLE, &n->state);
425 }
426 
427 bool napi_schedule_prep(struct napi_struct *n);
428 
429 /**
430  *	napi_schedule - schedule NAPI poll
431  *	@n: NAPI context
432  *
433  * Schedule NAPI poll routine to be called if it is not already
434  * running.
435  */
436 static inline void napi_schedule(struct napi_struct *n)
437 {
438 	if (napi_schedule_prep(n))
439 		__napi_schedule(n);
440 }
441 
442 /**
443  *	napi_schedule_irqoff - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Variant of napi_schedule(), assuming hard irqs are masked.
447  */
448 static inline void napi_schedule_irqoff(struct napi_struct *n)
449 {
450 	if (napi_schedule_prep(n))
451 		__napi_schedule_irqoff(n);
452 }
453 
454 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
455 static inline bool napi_reschedule(struct napi_struct *napi)
456 {
457 	if (napi_schedule_prep(napi)) {
458 		__napi_schedule(napi);
459 		return true;
460 	}
461 	return false;
462 }
463 
464 bool napi_complete_done(struct napi_struct *n, int work_done);
465 /**
466  *	napi_complete - NAPI processing complete
467  *	@n: NAPI context
468  *
469  * Mark NAPI processing as complete.
470  * Consider using napi_complete_done() instead.
471  * Return false if device should avoid rearming interrupts.
472  */
473 static inline bool napi_complete(struct napi_struct *n)
474 {
475 	return napi_complete_done(n, 0);
476 }
477 
478 /**
479  *	napi_hash_del - remove a NAPI from global table
480  *	@napi: NAPI context
481  *
482  * Warning: caller must observe RCU grace period
483  * before freeing memory containing @napi, if
484  * this function returns true.
485  * Note: core networking stack automatically calls it
486  * from netif_napi_del().
487  * Drivers might want to call this helper to combine all
488  * the needed RCU grace periods into a single one.
489  */
490 bool napi_hash_del(struct napi_struct *napi);
491 
492 /**
493  *	napi_disable - prevent NAPI from scheduling
494  *	@n: NAPI context
495  *
496  * Stop NAPI from being scheduled on this context.
497  * Waits till any outstanding processing completes.
498  */
499 void napi_disable(struct napi_struct *n);
500 
501 /**
502  *	napi_enable - enable NAPI scheduling
503  *	@n: NAPI context
504  *
505  * Resume NAPI from being scheduled on this context.
506  * Must be paired with napi_disable.
507  */
508 static inline void napi_enable(struct napi_struct *n)
509 {
510 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
511 	smp_mb__before_atomic();
512 	clear_bit(NAPI_STATE_SCHED, &n->state);
513 	clear_bit(NAPI_STATE_NPSVC, &n->state);
514 }
515 
516 /**
517  *	napi_synchronize - wait until NAPI is not running
518  *	@n: NAPI context
519  *
520  * Wait until NAPI is done being scheduled on this context.
521  * Waits till any outstanding processing completes but
522  * does not disable future activations.
523  */
524 static inline void napi_synchronize(const struct napi_struct *n)
525 {
526 	if (IS_ENABLED(CONFIG_SMP))
527 		while (test_bit(NAPI_STATE_SCHED, &n->state))
528 			msleep(1);
529 	else
530 		barrier();
531 }
532 
533 enum netdev_queue_state_t {
534 	__QUEUE_STATE_DRV_XOFF,
535 	__QUEUE_STATE_STACK_XOFF,
536 	__QUEUE_STATE_FROZEN,
537 };
538 
539 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
540 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
542 
543 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
547 					QUEUE_STATE_FROZEN)
548 
549 /*
550  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
551  * netif_tx_* functions below are used to manipulate this flag.  The
552  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
553  * queue independently.  The netif_xmit_*stopped functions below are called
554  * to check if the queue has been stopped by the driver or stack (either
555  * of the XOFF bits are set in the state).  Drivers should not need to call
556  * netif_xmit*stopped functions, they should only be using netif_tx_*.
557  */
558 
559 struct netdev_queue {
560 /*
561  * read-mostly part
562  */
563 	struct net_device	*dev;
564 	struct Qdisc __rcu	*qdisc;
565 	struct Qdisc		*qdisc_sleeping;
566 #ifdef CONFIG_SYSFS
567 	struct kobject		kobj;
568 #endif
569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570 	int			numa_node;
571 #endif
572 	unsigned long		tx_maxrate;
573 	/*
574 	 * Number of TX timeouts for this queue
575 	 * (/sys/class/net/DEV/Q/trans_timeout)
576 	 */
577 	unsigned long		trans_timeout;
578 
579 	/* Subordinate device that the queue has been assigned to */
580 	struct net_device	*sb_dev;
581 /*
582  * write-mostly part
583  */
584 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
585 	int			xmit_lock_owner;
586 	/*
587 	 * Time (in jiffies) of last Tx
588 	 */
589 	unsigned long		trans_start;
590 
591 	unsigned long		state;
592 
593 #ifdef CONFIG_BQL
594 	struct dql		dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
598 extern int sysctl_fb_tunnels_only_for_init_net;
599 
600 static inline bool net_has_fallback_tunnels(const struct net *net)
601 {
602 	return net == &init_net ||
603 	       !IS_ENABLED(CONFIG_SYSCTL) ||
604 	       !sysctl_fb_tunnels_only_for_init_net;
605 }
606 
607 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	return q->numa_node;
611 #else
612 	return NUMA_NO_NODE;
613 #endif
614 }
615 
616 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
617 {
618 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
619 	q->numa_node = node;
620 #endif
621 }
622 
623 #ifdef CONFIG_RPS
624 /*
625  * This structure holds an RPS map which can be of variable length.  The
626  * map is an array of CPUs.
627  */
628 struct rps_map {
629 	unsigned int len;
630 	struct rcu_head rcu;
631 	u16 cpus[0];
632 };
633 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
634 
635 /*
636  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
637  * tail pointer for that CPU's input queue at the time of last enqueue, and
638  * a hardware filter index.
639  */
640 struct rps_dev_flow {
641 	u16 cpu;
642 	u16 filter;
643 	unsigned int last_qtail;
644 };
645 #define RPS_NO_FILTER 0xffff
646 
647 /*
648  * The rps_dev_flow_table structure contains a table of flow mappings.
649  */
650 struct rps_dev_flow_table {
651 	unsigned int mask;
652 	struct rcu_head rcu;
653 	struct rps_dev_flow flows[0];
654 };
655 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
656     ((_num) * sizeof(struct rps_dev_flow)))
657 
658 /*
659  * The rps_sock_flow_table contains mappings of flows to the last CPU
660  * on which they were processed by the application (set in recvmsg).
661  * Each entry is a 32bit value. Upper part is the high-order bits
662  * of flow hash, lower part is CPU number.
663  * rps_cpu_mask is used to partition the space, depending on number of
664  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
665  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
666  * meaning we use 32-6=26 bits for the hash.
667  */
668 struct rps_sock_flow_table {
669 	u32	mask;
670 
671 	u32	ents[0] ____cacheline_aligned_in_smp;
672 };
673 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
674 
675 #define RPS_NO_CPU 0xffff
676 
677 extern u32 rps_cpu_mask;
678 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
679 
680 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
681 					u32 hash)
682 {
683 	if (table && hash) {
684 		unsigned int index = hash & table->mask;
685 		u32 val = hash & ~rps_cpu_mask;
686 
687 		/* We only give a hint, preemption can change CPU under us */
688 		val |= raw_smp_processor_id();
689 
690 		if (table->ents[index] != val)
691 			table->ents[index] = val;
692 	}
693 }
694 
695 #ifdef CONFIG_RFS_ACCEL
696 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
697 			 u16 filter_id);
698 #endif
699 #endif /* CONFIG_RPS */
700 
701 /* This structure contains an instance of an RX queue. */
702 struct netdev_rx_queue {
703 #ifdef CONFIG_RPS
704 	struct rps_map __rcu		*rps_map;
705 	struct rps_dev_flow_table __rcu	*rps_flow_table;
706 #endif
707 	struct kobject			kobj;
708 	struct net_device		*dev;
709 	struct xdp_rxq_info		xdp_rxq;
710 } ____cacheline_aligned_in_smp;
711 
712 /*
713  * RX queue sysfs structures and functions.
714  */
715 struct rx_queue_attribute {
716 	struct attribute attr;
717 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
718 	ssize_t (*store)(struct netdev_rx_queue *queue,
719 			 const char *buf, size_t len);
720 };
721 
722 #ifdef CONFIG_XPS
723 /*
724  * This structure holds an XPS map which can be of variable length.  The
725  * map is an array of queues.
726  */
727 struct xps_map {
728 	unsigned int len;
729 	unsigned int alloc_len;
730 	struct rcu_head rcu;
731 	u16 queues[0];
732 };
733 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
734 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
735        - sizeof(struct xps_map)) / sizeof(u16))
736 
737 /*
738  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
739  */
740 struct xps_dev_maps {
741 	struct rcu_head rcu;
742 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
743 };
744 
745 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
746 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
747 
748 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
749 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
750 
751 #endif /* CONFIG_XPS */
752 
753 #define TC_MAX_QUEUE	16
754 #define TC_BITMASK	15
755 /* HW offloaded queuing disciplines txq count and offset maps */
756 struct netdev_tc_txq {
757 	u16 count;
758 	u16 offset;
759 };
760 
761 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
762 /*
763  * This structure is to hold information about the device
764  * configured to run FCoE protocol stack.
765  */
766 struct netdev_fcoe_hbainfo {
767 	char	manufacturer[64];
768 	char	serial_number[64];
769 	char	hardware_version[64];
770 	char	driver_version[64];
771 	char	optionrom_version[64];
772 	char	firmware_version[64];
773 	char	model[256];
774 	char	model_description[256];
775 };
776 #endif
777 
778 #define MAX_PHYS_ITEM_ID_LEN 32
779 
780 /* This structure holds a unique identifier to identify some
781  * physical item (port for example) used by a netdevice.
782  */
783 struct netdev_phys_item_id {
784 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
785 	unsigned char id_len;
786 };
787 
788 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
789 					    struct netdev_phys_item_id *b)
790 {
791 	return a->id_len == b->id_len &&
792 	       memcmp(a->id, b->id, a->id_len) == 0;
793 }
794 
795 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
796 				       struct sk_buff *skb,
797 				       struct net_device *sb_dev);
798 
799 enum tc_setup_type {
800 	TC_SETUP_QDISC_MQPRIO,
801 	TC_SETUP_CLSU32,
802 	TC_SETUP_CLSFLOWER,
803 	TC_SETUP_CLSMATCHALL,
804 	TC_SETUP_CLSBPF,
805 	TC_SETUP_BLOCK,
806 	TC_SETUP_QDISC_CBS,
807 	TC_SETUP_QDISC_RED,
808 	TC_SETUP_QDISC_PRIO,
809 	TC_SETUP_QDISC_MQ,
810 	TC_SETUP_QDISC_ETF,
811 };
812 
813 /* These structures hold the attributes of bpf state that are being passed
814  * to the netdevice through the bpf op.
815  */
816 enum bpf_netdev_command {
817 	/* Set or clear a bpf program used in the earliest stages of packet
818 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
819 	 * is responsible for calling bpf_prog_put on any old progs that are
820 	 * stored. In case of error, the callee need not release the new prog
821 	 * reference, but on success it takes ownership and must bpf_prog_put
822 	 * when it is no longer used.
823 	 */
824 	XDP_SETUP_PROG,
825 	XDP_SETUP_PROG_HW,
826 	XDP_QUERY_PROG,
827 	XDP_QUERY_PROG_HW,
828 	/* BPF program for offload callbacks, invoked at program load time. */
829 	BPF_OFFLOAD_VERIFIER_PREP,
830 	BPF_OFFLOAD_TRANSLATE,
831 	BPF_OFFLOAD_DESTROY,
832 	BPF_OFFLOAD_MAP_ALLOC,
833 	BPF_OFFLOAD_MAP_FREE,
834 	XDP_QUERY_XSK_UMEM,
835 	XDP_SETUP_XSK_UMEM,
836 };
837 
838 struct bpf_prog_offload_ops;
839 struct netlink_ext_ack;
840 struct xdp_umem;
841 
842 struct netdev_bpf {
843 	enum bpf_netdev_command command;
844 	union {
845 		/* XDP_SETUP_PROG */
846 		struct {
847 			u32 flags;
848 			struct bpf_prog *prog;
849 			struct netlink_ext_ack *extack;
850 		};
851 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
852 		struct {
853 			u32 prog_id;
854 			/* flags with which program was installed */
855 			u32 prog_flags;
856 		};
857 		/* BPF_OFFLOAD_VERIFIER_PREP */
858 		struct {
859 			struct bpf_prog *prog;
860 			const struct bpf_prog_offload_ops *ops; /* callee set */
861 		} verifier;
862 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
863 		struct {
864 			struct bpf_prog *prog;
865 		} offload;
866 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
867 		struct {
868 			struct bpf_offloaded_map *offmap;
869 		};
870 		/* XDP_SETUP_XSK_UMEM */
871 		struct {
872 			struct xdp_umem *umem;
873 			u16 queue_id;
874 		} xsk;
875 	};
876 };
877 
878 #ifdef CONFIG_XFRM_OFFLOAD
879 struct xfrmdev_ops {
880 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
881 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
882 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
883 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
884 				       struct xfrm_state *x);
885 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
886 };
887 #endif
888 
889 #if IS_ENABLED(CONFIG_TLS_DEVICE)
890 enum tls_offload_ctx_dir {
891 	TLS_OFFLOAD_CTX_DIR_RX,
892 	TLS_OFFLOAD_CTX_DIR_TX,
893 };
894 
895 struct tls_crypto_info;
896 struct tls_context;
897 
898 struct tlsdev_ops {
899 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
900 			   enum tls_offload_ctx_dir direction,
901 			   struct tls_crypto_info *crypto_info,
902 			   u32 start_offload_tcp_sn);
903 	void (*tls_dev_del)(struct net_device *netdev,
904 			    struct tls_context *ctx,
905 			    enum tls_offload_ctx_dir direction);
906 	void (*tls_dev_resync_rx)(struct net_device *netdev,
907 				  struct sock *sk, u32 seq, u64 rcd_sn);
908 };
909 #endif
910 
911 struct dev_ifalias {
912 	struct rcu_head rcuhead;
913 	char ifalias[];
914 };
915 
916 /*
917  * This structure defines the management hooks for network devices.
918  * The following hooks can be defined; unless noted otherwise, they are
919  * optional and can be filled with a null pointer.
920  *
921  * int (*ndo_init)(struct net_device *dev);
922  *     This function is called once when a network device is registered.
923  *     The network device can use this for any late stage initialization
924  *     or semantic validation. It can fail with an error code which will
925  *     be propagated back to register_netdev.
926  *
927  * void (*ndo_uninit)(struct net_device *dev);
928  *     This function is called when device is unregistered or when registration
929  *     fails. It is not called if init fails.
930  *
931  * int (*ndo_open)(struct net_device *dev);
932  *     This function is called when a network device transitions to the up
933  *     state.
934  *
935  * int (*ndo_stop)(struct net_device *dev);
936  *     This function is called when a network device transitions to the down
937  *     state.
938  *
939  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
940  *                               struct net_device *dev);
941  *	Called when a packet needs to be transmitted.
942  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
943  *	the queue before that can happen; it's for obsolete devices and weird
944  *	corner cases, but the stack really does a non-trivial amount
945  *	of useless work if you return NETDEV_TX_BUSY.
946  *	Required; cannot be NULL.
947  *
948  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
949  *					   struct net_device *dev
950  *					   netdev_features_t features);
951  *	Called by core transmit path to determine if device is capable of
952  *	performing offload operations on a given packet. This is to give
953  *	the device an opportunity to implement any restrictions that cannot
954  *	be otherwise expressed by feature flags. The check is called with
955  *	the set of features that the stack has calculated and it returns
956  *	those the driver believes to be appropriate.
957  *
958  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
959  *                         struct net_device *sb_dev,
960  *                         select_queue_fallback_t fallback);
961  *	Called to decide which queue to use when device supports multiple
962  *	transmit queues.
963  *
964  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
965  *	This function is called to allow device receiver to make
966  *	changes to configuration when multicast or promiscuous is enabled.
967  *
968  * void (*ndo_set_rx_mode)(struct net_device *dev);
969  *	This function is called device changes address list filtering.
970  *	If driver handles unicast address filtering, it should set
971  *	IFF_UNICAST_FLT in its priv_flags.
972  *
973  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
974  *	This function  is called when the Media Access Control address
975  *	needs to be changed. If this interface is not defined, the
976  *	MAC address can not be changed.
977  *
978  * int (*ndo_validate_addr)(struct net_device *dev);
979  *	Test if Media Access Control address is valid for the device.
980  *
981  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
982  *	Called when a user requests an ioctl which can't be handled by
983  *	the generic interface code. If not defined ioctls return
984  *	not supported error code.
985  *
986  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
987  *	Used to set network devices bus interface parameters. This interface
988  *	is retained for legacy reasons; new devices should use the bus
989  *	interface (PCI) for low level management.
990  *
991  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
992  *	Called when a user wants to change the Maximum Transfer Unit
993  *	of a device.
994  *
995  * void (*ndo_tx_timeout)(struct net_device *dev);
996  *	Callback used when the transmitter has not made any progress
997  *	for dev->watchdog ticks.
998  *
999  * void (*ndo_get_stats64)(struct net_device *dev,
1000  *                         struct rtnl_link_stats64 *storage);
1001  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1002  *	Called when a user wants to get the network device usage
1003  *	statistics. Drivers must do one of the following:
1004  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1005  *	   rtnl_link_stats64 structure passed by the caller.
1006  *	2. Define @ndo_get_stats to update a net_device_stats structure
1007  *	   (which should normally be dev->stats) and return a pointer to
1008  *	   it. The structure may be changed asynchronously only if each
1009  *	   field is written atomically.
1010  *	3. Update dev->stats asynchronously and atomically, and define
1011  *	   neither operation.
1012  *
1013  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1014  *	Return true if this device supports offload stats of this attr_id.
1015  *
1016  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1017  *	void *attr_data)
1018  *	Get statistics for offload operations by attr_id. Write it into the
1019  *	attr_data pointer.
1020  *
1021  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1022  *	If device supports VLAN filtering this function is called when a
1023  *	VLAN id is registered.
1024  *
1025  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1026  *	If device supports VLAN filtering this function is called when a
1027  *	VLAN id is unregistered.
1028  *
1029  * void (*ndo_poll_controller)(struct net_device *dev);
1030  *
1031  *	SR-IOV management functions.
1032  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1033  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1034  *			  u8 qos, __be16 proto);
1035  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1036  *			  int max_tx_rate);
1037  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1038  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1039  * int (*ndo_get_vf_config)(struct net_device *dev,
1040  *			    int vf, struct ifla_vf_info *ivf);
1041  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1042  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1043  *			  struct nlattr *port[]);
1044  *
1045  *      Enable or disable the VF ability to query its RSS Redirection Table and
1046  *      Hash Key. This is needed since on some devices VF share this information
1047  *      with PF and querying it may introduce a theoretical security risk.
1048  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1049  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1050  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1051  *		       void *type_data);
1052  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1053  *	This is always called from the stack with the rtnl lock held and netif
1054  *	tx queues stopped. This allows the netdevice to perform queue
1055  *	management safely.
1056  *
1057  *	Fiber Channel over Ethernet (FCoE) offload functions.
1058  * int (*ndo_fcoe_enable)(struct net_device *dev);
1059  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1060  *	so the underlying device can perform whatever needed configuration or
1061  *	initialization to support acceleration of FCoE traffic.
1062  *
1063  * int (*ndo_fcoe_disable)(struct net_device *dev);
1064  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1065  *	so the underlying device can perform whatever needed clean-ups to
1066  *	stop supporting acceleration of FCoE traffic.
1067  *
1068  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1069  *			     struct scatterlist *sgl, unsigned int sgc);
1070  *	Called when the FCoE Initiator wants to initialize an I/O that
1071  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1072  *	perform necessary setup and returns 1 to indicate the device is set up
1073  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1074  *
1075  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1076  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1077  *	indicated by the FC exchange id 'xid', so the underlying device can
1078  *	clean up and reuse resources for later DDP requests.
1079  *
1080  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1081  *			      struct scatterlist *sgl, unsigned int sgc);
1082  *	Called when the FCoE Target wants to initialize an I/O that
1083  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1084  *	perform necessary setup and returns 1 to indicate the device is set up
1085  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1086  *
1087  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1088  *			       struct netdev_fcoe_hbainfo *hbainfo);
1089  *	Called when the FCoE Protocol stack wants information on the underlying
1090  *	device. This information is utilized by the FCoE protocol stack to
1091  *	register attributes with Fiber Channel management service as per the
1092  *	FC-GS Fabric Device Management Information(FDMI) specification.
1093  *
1094  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1095  *	Called when the underlying device wants to override default World Wide
1096  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1097  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1098  *	protocol stack to use.
1099  *
1100  *	RFS acceleration.
1101  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1102  *			    u16 rxq_index, u32 flow_id);
1103  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1104  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1105  *	Return the filter ID on success, or a negative error code.
1106  *
1107  *	Slave management functions (for bridge, bonding, etc).
1108  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1109  *	Called to make another netdev an underling.
1110  *
1111  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1112  *	Called to release previously enslaved netdev.
1113  *
1114  *      Feature/offload setting functions.
1115  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1116  *		netdev_features_t features);
1117  *	Adjusts the requested feature flags according to device-specific
1118  *	constraints, and returns the resulting flags. Must not modify
1119  *	the device state.
1120  *
1121  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1122  *	Called to update device configuration to new features. Passed
1123  *	feature set might be less than what was returned by ndo_fix_features()).
1124  *	Must return >0 or -errno if it changed dev->features itself.
1125  *
1126  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1127  *		      struct net_device *dev,
1128  *		      const unsigned char *addr, u16 vid, u16 flags)
1129  *	Adds an FDB entry to dev for addr.
1130  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1131  *		      struct net_device *dev,
1132  *		      const unsigned char *addr, u16 vid)
1133  *	Deletes the FDB entry from dev coresponding to addr.
1134  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1135  *		       struct net_device *dev, struct net_device *filter_dev,
1136  *		       int *idx)
1137  *	Used to add FDB entries to dump requests. Implementers should add
1138  *	entries to skb and update idx with the number of entries.
1139  *
1140  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1141  *			     u16 flags)
1142  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1143  *			     struct net_device *dev, u32 filter_mask,
1144  *			     int nlflags)
1145  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1146  *			     u16 flags);
1147  *
1148  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1149  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1150  *	which do not represent real hardware may define this to allow their
1151  *	userspace components to manage their virtual carrier state. Devices
1152  *	that determine carrier state from physical hardware properties (eg
1153  *	network cables) or protocol-dependent mechanisms (eg
1154  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1155  *
1156  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1157  *			       struct netdev_phys_item_id *ppid);
1158  *	Called to get ID of physical port of this device. If driver does
1159  *	not implement this, it is assumed that the hw is not able to have
1160  *	multiple net devices on single physical port.
1161  *
1162  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1163  *			      struct udp_tunnel_info *ti);
1164  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1165  *	address family that a UDP tunnel is listnening to. It is called only
1166  *	when a new port starts listening. The operation is protected by the
1167  *	RTNL.
1168  *
1169  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1170  *			      struct udp_tunnel_info *ti);
1171  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1172  *	address family that the UDP tunnel is not listening to anymore. The
1173  *	operation is protected by the RTNL.
1174  *
1175  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1176  *				 struct net_device *dev)
1177  *	Called by upper layer devices to accelerate switching or other
1178  *	station functionality into hardware. 'pdev is the lowerdev
1179  *	to use for the offload and 'dev' is the net device that will
1180  *	back the offload. Returns a pointer to the private structure
1181  *	the upper layer will maintain.
1182  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1183  *	Called by upper layer device to delete the station created
1184  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1185  *	the station and priv is the structure returned by the add
1186  *	operation.
1187  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1188  *			     int queue_index, u32 maxrate);
1189  *	Called when a user wants to set a max-rate limitation of specific
1190  *	TX queue.
1191  * int (*ndo_get_iflink)(const struct net_device *dev);
1192  *	Called to get the iflink value of this device.
1193  * void (*ndo_change_proto_down)(struct net_device *dev,
1194  *				 bool proto_down);
1195  *	This function is used to pass protocol port error state information
1196  *	to the switch driver. The switch driver can react to the proto_down
1197  *      by doing a phys down on the associated switch port.
1198  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1199  *	This function is used to get egress tunnel information for given skb.
1200  *	This is useful for retrieving outer tunnel header parameters while
1201  *	sampling packet.
1202  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1203  *	This function is used to specify the headroom that the skb must
1204  *	consider when allocation skb during packet reception. Setting
1205  *	appropriate rx headroom value allows avoiding skb head copy on
1206  *	forward. Setting a negative value resets the rx headroom to the
1207  *	default value.
1208  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1209  *	This function is used to set or query state related to XDP on the
1210  *	netdevice and manage BPF offload. See definition of
1211  *	enum bpf_netdev_command for details.
1212  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1213  *			u32 flags);
1214  *	This function is used to submit @n XDP packets for transmit on a
1215  *	netdevice. Returns number of frames successfully transmitted, frames
1216  *	that got dropped are freed/returned via xdp_return_frame().
1217  *	Returns negative number, means general error invoking ndo, meaning
1218  *	no frames were xmit'ed and core-caller will free all frames.
1219  */
1220 struct net_device_ops {
1221 	int			(*ndo_init)(struct net_device *dev);
1222 	void			(*ndo_uninit)(struct net_device *dev);
1223 	int			(*ndo_open)(struct net_device *dev);
1224 	int			(*ndo_stop)(struct net_device *dev);
1225 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1226 						  struct net_device *dev);
1227 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1228 						      struct net_device *dev,
1229 						      netdev_features_t features);
1230 	u16			(*ndo_select_queue)(struct net_device *dev,
1231 						    struct sk_buff *skb,
1232 						    struct net_device *sb_dev,
1233 						    select_queue_fallback_t fallback);
1234 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1235 						       int flags);
1236 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1237 	int			(*ndo_set_mac_address)(struct net_device *dev,
1238 						       void *addr);
1239 	int			(*ndo_validate_addr)(struct net_device *dev);
1240 	int			(*ndo_do_ioctl)(struct net_device *dev,
1241 					        struct ifreq *ifr, int cmd);
1242 	int			(*ndo_set_config)(struct net_device *dev,
1243 					          struct ifmap *map);
1244 	int			(*ndo_change_mtu)(struct net_device *dev,
1245 						  int new_mtu);
1246 	int			(*ndo_neigh_setup)(struct net_device *dev,
1247 						   struct neigh_parms *);
1248 	void			(*ndo_tx_timeout) (struct net_device *dev);
1249 
1250 	void			(*ndo_get_stats64)(struct net_device *dev,
1251 						   struct rtnl_link_stats64 *storage);
1252 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1253 	int			(*ndo_get_offload_stats)(int attr_id,
1254 							 const struct net_device *dev,
1255 							 void *attr_data);
1256 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1257 
1258 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1259 						       __be16 proto, u16 vid);
1260 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1261 						        __be16 proto, u16 vid);
1262 #ifdef CONFIG_NET_POLL_CONTROLLER
1263 	void                    (*ndo_poll_controller)(struct net_device *dev);
1264 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1265 						     struct netpoll_info *info);
1266 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1267 #endif
1268 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1269 						  int queue, u8 *mac);
1270 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1271 						   int queue, u16 vlan,
1272 						   u8 qos, __be16 proto);
1273 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1274 						   int vf, int min_tx_rate,
1275 						   int max_tx_rate);
1276 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1277 						       int vf, bool setting);
1278 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1279 						    int vf, bool setting);
1280 	int			(*ndo_get_vf_config)(struct net_device *dev,
1281 						     int vf,
1282 						     struct ifla_vf_info *ivf);
1283 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1284 							 int vf, int link_state);
1285 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1286 						    int vf,
1287 						    struct ifla_vf_stats
1288 						    *vf_stats);
1289 	int			(*ndo_set_vf_port)(struct net_device *dev,
1290 						   int vf,
1291 						   struct nlattr *port[]);
1292 	int			(*ndo_get_vf_port)(struct net_device *dev,
1293 						   int vf, struct sk_buff *skb);
1294 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1295 						   int vf, u64 guid,
1296 						   int guid_type);
1297 	int			(*ndo_set_vf_rss_query_en)(
1298 						   struct net_device *dev,
1299 						   int vf, bool setting);
1300 	int			(*ndo_setup_tc)(struct net_device *dev,
1301 						enum tc_setup_type type,
1302 						void *type_data);
1303 #if IS_ENABLED(CONFIG_FCOE)
1304 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1305 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1306 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1307 						      u16 xid,
1308 						      struct scatterlist *sgl,
1309 						      unsigned int sgc);
1310 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1311 						     u16 xid);
1312 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1313 						       u16 xid,
1314 						       struct scatterlist *sgl,
1315 						       unsigned int sgc);
1316 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1317 							struct netdev_fcoe_hbainfo *hbainfo);
1318 #endif
1319 
1320 #if IS_ENABLED(CONFIG_LIBFCOE)
1321 #define NETDEV_FCOE_WWNN 0
1322 #define NETDEV_FCOE_WWPN 1
1323 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1324 						    u64 *wwn, int type);
1325 #endif
1326 
1327 #ifdef CONFIG_RFS_ACCEL
1328 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1329 						     const struct sk_buff *skb,
1330 						     u16 rxq_index,
1331 						     u32 flow_id);
1332 #endif
1333 	int			(*ndo_add_slave)(struct net_device *dev,
1334 						 struct net_device *slave_dev,
1335 						 struct netlink_ext_ack *extack);
1336 	int			(*ndo_del_slave)(struct net_device *dev,
1337 						 struct net_device *slave_dev);
1338 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1339 						    netdev_features_t features);
1340 	int			(*ndo_set_features)(struct net_device *dev,
1341 						    netdev_features_t features);
1342 	int			(*ndo_neigh_construct)(struct net_device *dev,
1343 						       struct neighbour *n);
1344 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1345 						     struct neighbour *n);
1346 
1347 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1348 					       struct nlattr *tb[],
1349 					       struct net_device *dev,
1350 					       const unsigned char *addr,
1351 					       u16 vid,
1352 					       u16 flags);
1353 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1354 					       struct nlattr *tb[],
1355 					       struct net_device *dev,
1356 					       const unsigned char *addr,
1357 					       u16 vid);
1358 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1359 						struct netlink_callback *cb,
1360 						struct net_device *dev,
1361 						struct net_device *filter_dev,
1362 						int *idx);
1363 
1364 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1365 						      struct nlmsghdr *nlh,
1366 						      u16 flags);
1367 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1368 						      u32 pid, u32 seq,
1369 						      struct net_device *dev,
1370 						      u32 filter_mask,
1371 						      int nlflags);
1372 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1373 						      struct nlmsghdr *nlh,
1374 						      u16 flags);
1375 	int			(*ndo_change_carrier)(struct net_device *dev,
1376 						      bool new_carrier);
1377 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1378 							struct netdev_phys_item_id *ppid);
1379 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1380 							  char *name, size_t len);
1381 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1382 						      struct udp_tunnel_info *ti);
1383 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1384 						      struct udp_tunnel_info *ti);
1385 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1386 							struct net_device *dev);
1387 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1388 							void *priv);
1389 
1390 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1391 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1392 						      int queue_index,
1393 						      u32 maxrate);
1394 	int			(*ndo_get_iflink)(const struct net_device *dev);
1395 	int			(*ndo_change_proto_down)(struct net_device *dev,
1396 							 bool proto_down);
1397 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1398 						       struct sk_buff *skb);
1399 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1400 						       int needed_headroom);
1401 	int			(*ndo_bpf)(struct net_device *dev,
1402 					   struct netdev_bpf *bpf);
1403 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1404 						struct xdp_frame **xdp,
1405 						u32 flags);
1406 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1407 						      u32 queue_id);
1408 };
1409 
1410 /**
1411  * enum net_device_priv_flags - &struct net_device priv_flags
1412  *
1413  * These are the &struct net_device, they are only set internally
1414  * by drivers and used in the kernel. These flags are invisible to
1415  * userspace; this means that the order of these flags can change
1416  * during any kernel release.
1417  *
1418  * You should have a pretty good reason to be extending these flags.
1419  *
1420  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1421  * @IFF_EBRIDGE: Ethernet bridging device
1422  * @IFF_BONDING: bonding master or slave
1423  * @IFF_ISATAP: ISATAP interface (RFC4214)
1424  * @IFF_WAN_HDLC: WAN HDLC device
1425  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1426  *	release skb->dst
1427  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1428  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1429  * @IFF_MACVLAN_PORT: device used as macvlan port
1430  * @IFF_BRIDGE_PORT: device used as bridge port
1431  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1432  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1433  * @IFF_UNICAST_FLT: Supports unicast filtering
1434  * @IFF_TEAM_PORT: device used as team port
1435  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1436  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1437  *	change when it's running
1438  * @IFF_MACVLAN: Macvlan device
1439  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1440  *	underlying stacked devices
1441  * @IFF_L3MDEV_MASTER: device is an L3 master device
1442  * @IFF_NO_QUEUE: device can run without qdisc attached
1443  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1444  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1445  * @IFF_TEAM: device is a team device
1446  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1447  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1448  *	entity (i.e. the master device for bridged veth)
1449  * @IFF_MACSEC: device is a MACsec device
1450  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1451  * @IFF_FAILOVER: device is a failover master device
1452  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1453  */
1454 enum netdev_priv_flags {
1455 	IFF_802_1Q_VLAN			= 1<<0,
1456 	IFF_EBRIDGE			= 1<<1,
1457 	IFF_BONDING			= 1<<2,
1458 	IFF_ISATAP			= 1<<3,
1459 	IFF_WAN_HDLC			= 1<<4,
1460 	IFF_XMIT_DST_RELEASE		= 1<<5,
1461 	IFF_DONT_BRIDGE			= 1<<6,
1462 	IFF_DISABLE_NETPOLL		= 1<<7,
1463 	IFF_MACVLAN_PORT		= 1<<8,
1464 	IFF_BRIDGE_PORT			= 1<<9,
1465 	IFF_OVS_DATAPATH		= 1<<10,
1466 	IFF_TX_SKB_SHARING		= 1<<11,
1467 	IFF_UNICAST_FLT			= 1<<12,
1468 	IFF_TEAM_PORT			= 1<<13,
1469 	IFF_SUPP_NOFCS			= 1<<14,
1470 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1471 	IFF_MACVLAN			= 1<<16,
1472 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1473 	IFF_L3MDEV_MASTER		= 1<<18,
1474 	IFF_NO_QUEUE			= 1<<19,
1475 	IFF_OPENVSWITCH			= 1<<20,
1476 	IFF_L3MDEV_SLAVE		= 1<<21,
1477 	IFF_TEAM			= 1<<22,
1478 	IFF_RXFH_CONFIGURED		= 1<<23,
1479 	IFF_PHONY_HEADROOM		= 1<<24,
1480 	IFF_MACSEC			= 1<<25,
1481 	IFF_NO_RX_HANDLER		= 1<<26,
1482 	IFF_FAILOVER			= 1<<27,
1483 	IFF_FAILOVER_SLAVE		= 1<<28,
1484 };
1485 
1486 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1487 #define IFF_EBRIDGE			IFF_EBRIDGE
1488 #define IFF_BONDING			IFF_BONDING
1489 #define IFF_ISATAP			IFF_ISATAP
1490 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1491 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1492 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1493 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1494 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1495 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1496 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1497 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1498 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1499 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1500 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1501 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1502 #define IFF_MACVLAN			IFF_MACVLAN
1503 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1504 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1505 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1506 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1507 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1508 #define IFF_TEAM			IFF_TEAM
1509 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1510 #define IFF_MACSEC			IFF_MACSEC
1511 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1512 #define IFF_FAILOVER			IFF_FAILOVER
1513 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1514 
1515 /**
1516  *	struct net_device - The DEVICE structure.
1517  *
1518  *	Actually, this whole structure is a big mistake.  It mixes I/O
1519  *	data with strictly "high-level" data, and it has to know about
1520  *	almost every data structure used in the INET module.
1521  *
1522  *	@name:	This is the first field of the "visible" part of this structure
1523  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1524  *		of the interface.
1525  *
1526  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1527  *	@ifalias:	SNMP alias
1528  *	@mem_end:	Shared memory end
1529  *	@mem_start:	Shared memory start
1530  *	@base_addr:	Device I/O address
1531  *	@irq:		Device IRQ number
1532  *
1533  *	@state:		Generic network queuing layer state, see netdev_state_t
1534  *	@dev_list:	The global list of network devices
1535  *	@napi_list:	List entry used for polling NAPI devices
1536  *	@unreg_list:	List entry  when we are unregistering the
1537  *			device; see the function unregister_netdev
1538  *	@close_list:	List entry used when we are closing the device
1539  *	@ptype_all:     Device-specific packet handlers for all protocols
1540  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1541  *
1542  *	@adj_list:	Directly linked devices, like slaves for bonding
1543  *	@features:	Currently active device features
1544  *	@hw_features:	User-changeable features
1545  *
1546  *	@wanted_features:	User-requested features
1547  *	@vlan_features:		Mask of features inheritable by VLAN devices
1548  *
1549  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1550  *				This field indicates what encapsulation
1551  *				offloads the hardware is capable of doing,
1552  *				and drivers will need to set them appropriately.
1553  *
1554  *	@mpls_features:	Mask of features inheritable by MPLS
1555  *
1556  *	@ifindex:	interface index
1557  *	@group:		The group the device belongs to
1558  *
1559  *	@stats:		Statistics struct, which was left as a legacy, use
1560  *			rtnl_link_stats64 instead
1561  *
1562  *	@rx_dropped:	Dropped packets by core network,
1563  *			do not use this in drivers
1564  *	@tx_dropped:	Dropped packets by core network,
1565  *			do not use this in drivers
1566  *	@rx_nohandler:	nohandler dropped packets by core network on
1567  *			inactive devices, do not use this in drivers
1568  *	@carrier_up_count:	Number of times the carrier has been up
1569  *	@carrier_down_count:	Number of times the carrier has been down
1570  *
1571  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1572  *				instead of ioctl,
1573  *				see <net/iw_handler.h> for details.
1574  *	@wireless_data:	Instance data managed by the core of wireless extensions
1575  *
1576  *	@netdev_ops:	Includes several pointers to callbacks,
1577  *			if one wants to override the ndo_*() functions
1578  *	@ethtool_ops:	Management operations
1579  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1580  *			discovery handling. Necessary for e.g. 6LoWPAN.
1581  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1582  *			of Layer 2 headers.
1583  *
1584  *	@flags:		Interface flags (a la BSD)
1585  *	@priv_flags:	Like 'flags' but invisible to userspace,
1586  *			see if.h for the definitions
1587  *	@gflags:	Global flags ( kept as legacy )
1588  *	@padded:	How much padding added by alloc_netdev()
1589  *	@operstate:	RFC2863 operstate
1590  *	@link_mode:	Mapping policy to operstate
1591  *	@if_port:	Selectable AUI, TP, ...
1592  *	@dma:		DMA channel
1593  *	@mtu:		Interface MTU value
1594  *	@min_mtu:	Interface Minimum MTU value
1595  *	@max_mtu:	Interface Maximum MTU value
1596  *	@type:		Interface hardware type
1597  *	@hard_header_len: Maximum hardware header length.
1598  *	@min_header_len:  Minimum hardware header length
1599  *
1600  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1601  *			  cases can this be guaranteed
1602  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1603  *			  cases can this be guaranteed. Some cases also use
1604  *			  LL_MAX_HEADER instead to allocate the skb
1605  *
1606  *	interface address info:
1607  *
1608  * 	@perm_addr:		Permanent hw address
1609  * 	@addr_assign_type:	Hw address assignment type
1610  * 	@addr_len:		Hardware address length
1611  *	@neigh_priv_len:	Used in neigh_alloc()
1612  * 	@dev_id:		Used to differentiate devices that share
1613  * 				the same link layer address
1614  * 	@dev_port:		Used to differentiate devices that share
1615  * 				the same function
1616  *	@addr_list_lock:	XXX: need comments on this one
1617  *	@uc_promisc:		Counter that indicates promiscuous mode
1618  *				has been enabled due to the need to listen to
1619  *				additional unicast addresses in a device that
1620  *				does not implement ndo_set_rx_mode()
1621  *	@uc:			unicast mac addresses
1622  *	@mc:			multicast mac addresses
1623  *	@dev_addrs:		list of device hw addresses
1624  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1625  *	@promiscuity:		Number of times the NIC is told to work in
1626  *				promiscuous mode; if it becomes 0 the NIC will
1627  *				exit promiscuous mode
1628  *	@allmulti:		Counter, enables or disables allmulticast mode
1629  *
1630  *	@vlan_info:	VLAN info
1631  *	@dsa_ptr:	dsa specific data
1632  *	@tipc_ptr:	TIPC specific data
1633  *	@atalk_ptr:	AppleTalk link
1634  *	@ip_ptr:	IPv4 specific data
1635  *	@dn_ptr:	DECnet specific data
1636  *	@ip6_ptr:	IPv6 specific data
1637  *	@ax25_ptr:	AX.25 specific data
1638  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1639  *
1640  *	@dev_addr:	Hw address (before bcast,
1641  *			because most packets are unicast)
1642  *
1643  *	@_rx:			Array of RX queues
1644  *	@num_rx_queues:		Number of RX queues
1645  *				allocated at register_netdev() time
1646  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1647  *
1648  *	@rx_handler:		handler for received packets
1649  *	@rx_handler_data: 	XXX: need comments on this one
1650  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1651  *				ingress processing
1652  *	@ingress_queue:		XXX: need comments on this one
1653  *	@broadcast:		hw bcast address
1654  *
1655  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1656  *			indexed by RX queue number. Assigned by driver.
1657  *			This must only be set if the ndo_rx_flow_steer
1658  *			operation is defined
1659  *	@index_hlist:		Device index hash chain
1660  *
1661  *	@_tx:			Array of TX queues
1662  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1663  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1664  *	@qdisc:			Root qdisc from userspace point of view
1665  *	@tx_queue_len:		Max frames per queue allowed
1666  *	@tx_global_lock: 	XXX: need comments on this one
1667  *
1668  *	@xps_maps:	XXX: need comments on this one
1669  *	@miniq_egress:		clsact qdisc specific data for
1670  *				egress processing
1671  *	@watchdog_timeo:	Represents the timeout that is used by
1672  *				the watchdog (see dev_watchdog())
1673  *	@watchdog_timer:	List of timers
1674  *
1675  *	@pcpu_refcnt:		Number of references to this device
1676  *	@todo_list:		Delayed register/unregister
1677  *	@link_watch_list:	XXX: need comments on this one
1678  *
1679  *	@reg_state:		Register/unregister state machine
1680  *	@dismantle:		Device is going to be freed
1681  *	@rtnl_link_state:	This enum represents the phases of creating
1682  *				a new link
1683  *
1684  *	@needs_free_netdev:	Should unregister perform free_netdev?
1685  *	@priv_destructor:	Called from unregister
1686  *	@npinfo:		XXX: need comments on this one
1687  * 	@nd_net:		Network namespace this network device is inside
1688  *
1689  * 	@ml_priv:	Mid-layer private
1690  * 	@lstats:	Loopback statistics
1691  * 	@tstats:	Tunnel statistics
1692  * 	@dstats:	Dummy statistics
1693  * 	@vstats:	Virtual ethernet statistics
1694  *
1695  *	@garp_port:	GARP
1696  *	@mrp_port:	MRP
1697  *
1698  *	@dev:		Class/net/name entry
1699  *	@sysfs_groups:	Space for optional device, statistics and wireless
1700  *			sysfs groups
1701  *
1702  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1703  *	@rtnl_link_ops:	Rtnl_link_ops
1704  *
1705  *	@gso_max_size:	Maximum size of generic segmentation offload
1706  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1707  *			NIC for GSO
1708  *
1709  *	@dcbnl_ops:	Data Center Bridging netlink ops
1710  *	@num_tc:	Number of traffic classes in the net device
1711  *	@tc_to_txq:	XXX: need comments on this one
1712  *	@prio_tc_map:	XXX: need comments on this one
1713  *
1714  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1715  *
1716  *	@priomap:	XXX: need comments on this one
1717  *	@phydev:	Physical device may attach itself
1718  *			for hardware timestamping
1719  *	@sfp_bus:	attached &struct sfp_bus structure.
1720  *
1721  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1722  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1723  *
1724  *	@proto_down:	protocol port state information can be sent to the
1725  *			switch driver and used to set the phys state of the
1726  *			switch port.
1727  *
1728  *	FIXME: cleanup struct net_device such that network protocol info
1729  *	moves out.
1730  */
1731 
1732 struct net_device {
1733 	char			name[IFNAMSIZ];
1734 	struct hlist_node	name_hlist;
1735 	struct dev_ifalias	__rcu *ifalias;
1736 	/*
1737 	 *	I/O specific fields
1738 	 *	FIXME: Merge these and struct ifmap into one
1739 	 */
1740 	unsigned long		mem_end;
1741 	unsigned long		mem_start;
1742 	unsigned long		base_addr;
1743 	int			irq;
1744 
1745 	/*
1746 	 *	Some hardware also needs these fields (state,dev_list,
1747 	 *	napi_list,unreg_list,close_list) but they are not
1748 	 *	part of the usual set specified in Space.c.
1749 	 */
1750 
1751 	unsigned long		state;
1752 
1753 	struct list_head	dev_list;
1754 	struct list_head	napi_list;
1755 	struct list_head	unreg_list;
1756 	struct list_head	close_list;
1757 	struct list_head	ptype_all;
1758 	struct list_head	ptype_specific;
1759 
1760 	struct {
1761 		struct list_head upper;
1762 		struct list_head lower;
1763 	} adj_list;
1764 
1765 	netdev_features_t	features;
1766 	netdev_features_t	hw_features;
1767 	netdev_features_t	wanted_features;
1768 	netdev_features_t	vlan_features;
1769 	netdev_features_t	hw_enc_features;
1770 	netdev_features_t	mpls_features;
1771 	netdev_features_t	gso_partial_features;
1772 
1773 	int			ifindex;
1774 	int			group;
1775 
1776 	struct net_device_stats	stats;
1777 
1778 	atomic_long_t		rx_dropped;
1779 	atomic_long_t		tx_dropped;
1780 	atomic_long_t		rx_nohandler;
1781 
1782 	/* Stats to monitor link on/off, flapping */
1783 	atomic_t		carrier_up_count;
1784 	atomic_t		carrier_down_count;
1785 
1786 #ifdef CONFIG_WIRELESS_EXT
1787 	const struct iw_handler_def *wireless_handlers;
1788 	struct iw_public_data	*wireless_data;
1789 #endif
1790 	const struct net_device_ops *netdev_ops;
1791 	const struct ethtool_ops *ethtool_ops;
1792 #ifdef CONFIG_NET_SWITCHDEV
1793 	const struct switchdev_ops *switchdev_ops;
1794 #endif
1795 #ifdef CONFIG_NET_L3_MASTER_DEV
1796 	const struct l3mdev_ops	*l3mdev_ops;
1797 #endif
1798 #if IS_ENABLED(CONFIG_IPV6)
1799 	const struct ndisc_ops *ndisc_ops;
1800 #endif
1801 
1802 #ifdef CONFIG_XFRM_OFFLOAD
1803 	const struct xfrmdev_ops *xfrmdev_ops;
1804 #endif
1805 
1806 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1807 	const struct tlsdev_ops *tlsdev_ops;
1808 #endif
1809 
1810 	const struct header_ops *header_ops;
1811 
1812 	unsigned int		flags;
1813 	unsigned int		priv_flags;
1814 
1815 	unsigned short		gflags;
1816 	unsigned short		padded;
1817 
1818 	unsigned char		operstate;
1819 	unsigned char		link_mode;
1820 
1821 	unsigned char		if_port;
1822 	unsigned char		dma;
1823 
1824 	unsigned int		mtu;
1825 	unsigned int		min_mtu;
1826 	unsigned int		max_mtu;
1827 	unsigned short		type;
1828 	unsigned short		hard_header_len;
1829 	unsigned char		min_header_len;
1830 
1831 	unsigned short		needed_headroom;
1832 	unsigned short		needed_tailroom;
1833 
1834 	/* Interface address info. */
1835 	unsigned char		perm_addr[MAX_ADDR_LEN];
1836 	unsigned char		addr_assign_type;
1837 	unsigned char		addr_len;
1838 	unsigned short		neigh_priv_len;
1839 	unsigned short          dev_id;
1840 	unsigned short          dev_port;
1841 	spinlock_t		addr_list_lock;
1842 	unsigned char		name_assign_type;
1843 	bool			uc_promisc;
1844 	struct netdev_hw_addr_list	uc;
1845 	struct netdev_hw_addr_list	mc;
1846 	struct netdev_hw_addr_list	dev_addrs;
1847 
1848 #ifdef CONFIG_SYSFS
1849 	struct kset		*queues_kset;
1850 #endif
1851 	unsigned int		promiscuity;
1852 	unsigned int		allmulti;
1853 
1854 
1855 	/* Protocol-specific pointers */
1856 
1857 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1858 	struct vlan_info __rcu	*vlan_info;
1859 #endif
1860 #if IS_ENABLED(CONFIG_NET_DSA)
1861 	struct dsa_port		*dsa_ptr;
1862 #endif
1863 #if IS_ENABLED(CONFIG_TIPC)
1864 	struct tipc_bearer __rcu *tipc_ptr;
1865 #endif
1866 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1867 	void 			*atalk_ptr;
1868 #endif
1869 	struct in_device __rcu	*ip_ptr;
1870 #if IS_ENABLED(CONFIG_DECNET)
1871 	struct dn_dev __rcu     *dn_ptr;
1872 #endif
1873 	struct inet6_dev __rcu	*ip6_ptr;
1874 #if IS_ENABLED(CONFIG_AX25)
1875 	void			*ax25_ptr;
1876 #endif
1877 	struct wireless_dev	*ieee80211_ptr;
1878 	struct wpan_dev		*ieee802154_ptr;
1879 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1880 	struct mpls_dev __rcu	*mpls_ptr;
1881 #endif
1882 
1883 /*
1884  * Cache lines mostly used on receive path (including eth_type_trans())
1885  */
1886 	/* Interface address info used in eth_type_trans() */
1887 	unsigned char		*dev_addr;
1888 
1889 	struct netdev_rx_queue	*_rx;
1890 	unsigned int		num_rx_queues;
1891 	unsigned int		real_num_rx_queues;
1892 
1893 	struct bpf_prog __rcu	*xdp_prog;
1894 	unsigned long		gro_flush_timeout;
1895 	rx_handler_func_t __rcu	*rx_handler;
1896 	void __rcu		*rx_handler_data;
1897 
1898 #ifdef CONFIG_NET_CLS_ACT
1899 	struct mini_Qdisc __rcu	*miniq_ingress;
1900 #endif
1901 	struct netdev_queue __rcu *ingress_queue;
1902 #ifdef CONFIG_NETFILTER_INGRESS
1903 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1904 #endif
1905 
1906 	unsigned char		broadcast[MAX_ADDR_LEN];
1907 #ifdef CONFIG_RFS_ACCEL
1908 	struct cpu_rmap		*rx_cpu_rmap;
1909 #endif
1910 	struct hlist_node	index_hlist;
1911 
1912 /*
1913  * Cache lines mostly used on transmit path
1914  */
1915 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1916 	unsigned int		num_tx_queues;
1917 	unsigned int		real_num_tx_queues;
1918 	struct Qdisc		*qdisc;
1919 #ifdef CONFIG_NET_SCHED
1920 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1921 #endif
1922 	unsigned int		tx_queue_len;
1923 	spinlock_t		tx_global_lock;
1924 	int			watchdog_timeo;
1925 
1926 #ifdef CONFIG_XPS
1927 	struct xps_dev_maps __rcu *xps_cpus_map;
1928 	struct xps_dev_maps __rcu *xps_rxqs_map;
1929 #endif
1930 #ifdef CONFIG_NET_CLS_ACT
1931 	struct mini_Qdisc __rcu	*miniq_egress;
1932 #endif
1933 
1934 	/* These may be needed for future network-power-down code. */
1935 	struct timer_list	watchdog_timer;
1936 
1937 	int __percpu		*pcpu_refcnt;
1938 	struct list_head	todo_list;
1939 
1940 	struct list_head	link_watch_list;
1941 
1942 	enum { NETREG_UNINITIALIZED=0,
1943 	       NETREG_REGISTERED,	/* completed register_netdevice */
1944 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1945 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1946 	       NETREG_RELEASED,		/* called free_netdev */
1947 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1948 	} reg_state:8;
1949 
1950 	bool dismantle;
1951 
1952 	enum {
1953 		RTNL_LINK_INITIALIZED,
1954 		RTNL_LINK_INITIALIZING,
1955 	} rtnl_link_state:16;
1956 
1957 	bool needs_free_netdev;
1958 	void (*priv_destructor)(struct net_device *dev);
1959 
1960 #ifdef CONFIG_NETPOLL
1961 	struct netpoll_info __rcu	*npinfo;
1962 #endif
1963 
1964 	possible_net_t			nd_net;
1965 
1966 	/* mid-layer private */
1967 	union {
1968 		void					*ml_priv;
1969 		struct pcpu_lstats __percpu		*lstats;
1970 		struct pcpu_sw_netstats __percpu	*tstats;
1971 		struct pcpu_dstats __percpu		*dstats;
1972 		struct pcpu_vstats __percpu		*vstats;
1973 	};
1974 
1975 #if IS_ENABLED(CONFIG_GARP)
1976 	struct garp_port __rcu	*garp_port;
1977 #endif
1978 #if IS_ENABLED(CONFIG_MRP)
1979 	struct mrp_port __rcu	*mrp_port;
1980 #endif
1981 
1982 	struct device		dev;
1983 	const struct attribute_group *sysfs_groups[4];
1984 	const struct attribute_group *sysfs_rx_queue_group;
1985 
1986 	const struct rtnl_link_ops *rtnl_link_ops;
1987 
1988 	/* for setting kernel sock attribute on TCP connection setup */
1989 #define GSO_MAX_SIZE		65536
1990 	unsigned int		gso_max_size;
1991 #define GSO_MAX_SEGS		65535
1992 	u16			gso_max_segs;
1993 
1994 #ifdef CONFIG_DCB
1995 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1996 #endif
1997 	s16			num_tc;
1998 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1999 	u8			prio_tc_map[TC_BITMASK + 1];
2000 
2001 #if IS_ENABLED(CONFIG_FCOE)
2002 	unsigned int		fcoe_ddp_xid;
2003 #endif
2004 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2005 	struct netprio_map __rcu *priomap;
2006 #endif
2007 	struct phy_device	*phydev;
2008 	struct sfp_bus		*sfp_bus;
2009 	struct lock_class_key	*qdisc_tx_busylock;
2010 	struct lock_class_key	*qdisc_running_key;
2011 	bool			proto_down;
2012 };
2013 #define to_net_dev(d) container_of(d, struct net_device, dev)
2014 
2015 static inline bool netif_elide_gro(const struct net_device *dev)
2016 {
2017 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2018 		return true;
2019 	return false;
2020 }
2021 
2022 #define	NETDEV_ALIGN		32
2023 
2024 static inline
2025 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2026 {
2027 	return dev->prio_tc_map[prio & TC_BITMASK];
2028 }
2029 
2030 static inline
2031 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2032 {
2033 	if (tc >= dev->num_tc)
2034 		return -EINVAL;
2035 
2036 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2037 	return 0;
2038 }
2039 
2040 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2041 void netdev_reset_tc(struct net_device *dev);
2042 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2043 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2044 
2045 static inline
2046 int netdev_get_num_tc(struct net_device *dev)
2047 {
2048 	return dev->num_tc;
2049 }
2050 
2051 void netdev_unbind_sb_channel(struct net_device *dev,
2052 			      struct net_device *sb_dev);
2053 int netdev_bind_sb_channel_queue(struct net_device *dev,
2054 				 struct net_device *sb_dev,
2055 				 u8 tc, u16 count, u16 offset);
2056 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2057 static inline int netdev_get_sb_channel(struct net_device *dev)
2058 {
2059 	return max_t(int, -dev->num_tc, 0);
2060 }
2061 
2062 static inline
2063 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2064 					 unsigned int index)
2065 {
2066 	return &dev->_tx[index];
2067 }
2068 
2069 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2070 						    const struct sk_buff *skb)
2071 {
2072 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2073 }
2074 
2075 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2076 					    void (*f)(struct net_device *,
2077 						      struct netdev_queue *,
2078 						      void *),
2079 					    void *arg)
2080 {
2081 	unsigned int i;
2082 
2083 	for (i = 0; i < dev->num_tx_queues; i++)
2084 		f(dev, &dev->_tx[i], arg);
2085 }
2086 
2087 #define netdev_lockdep_set_classes(dev)				\
2088 {								\
2089 	static struct lock_class_key qdisc_tx_busylock_key;	\
2090 	static struct lock_class_key qdisc_running_key;		\
2091 	static struct lock_class_key qdisc_xmit_lock_key;	\
2092 	static struct lock_class_key dev_addr_list_lock_key;	\
2093 	unsigned int i;						\
2094 								\
2095 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2096 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2097 	lockdep_set_class(&(dev)->addr_list_lock,		\
2098 			  &dev_addr_list_lock_key); 		\
2099 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2100 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2101 				  &qdisc_xmit_lock_key);	\
2102 }
2103 
2104 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2105 				    struct sk_buff *skb,
2106 				    struct net_device *sb_dev);
2107 
2108 /* returns the headroom that the master device needs to take in account
2109  * when forwarding to this dev
2110  */
2111 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2112 {
2113 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2114 }
2115 
2116 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2117 {
2118 	if (dev->netdev_ops->ndo_set_rx_headroom)
2119 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2120 }
2121 
2122 /* set the device rx headroom to the dev's default */
2123 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2124 {
2125 	netdev_set_rx_headroom(dev, -1);
2126 }
2127 
2128 /*
2129  * Net namespace inlines
2130  */
2131 static inline
2132 struct net *dev_net(const struct net_device *dev)
2133 {
2134 	return read_pnet(&dev->nd_net);
2135 }
2136 
2137 static inline
2138 void dev_net_set(struct net_device *dev, struct net *net)
2139 {
2140 	write_pnet(&dev->nd_net, net);
2141 }
2142 
2143 /**
2144  *	netdev_priv - access network device private data
2145  *	@dev: network device
2146  *
2147  * Get network device private data
2148  */
2149 static inline void *netdev_priv(const struct net_device *dev)
2150 {
2151 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2152 }
2153 
2154 /* Set the sysfs physical device reference for the network logical device
2155  * if set prior to registration will cause a symlink during initialization.
2156  */
2157 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2158 
2159 /* Set the sysfs device type for the network logical device to allow
2160  * fine-grained identification of different network device types. For
2161  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2162  */
2163 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2164 
2165 /* Default NAPI poll() weight
2166  * Device drivers are strongly advised to not use bigger value
2167  */
2168 #define NAPI_POLL_WEIGHT 64
2169 
2170 /**
2171  *	netif_napi_add - initialize a NAPI context
2172  *	@dev:  network device
2173  *	@napi: NAPI context
2174  *	@poll: polling function
2175  *	@weight: default weight
2176  *
2177  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2178  * *any* of the other NAPI-related functions.
2179  */
2180 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2181 		    int (*poll)(struct napi_struct *, int), int weight);
2182 
2183 /**
2184  *	netif_tx_napi_add - initialize a NAPI context
2185  *	@dev:  network device
2186  *	@napi: NAPI context
2187  *	@poll: polling function
2188  *	@weight: default weight
2189  *
2190  * This variant of netif_napi_add() should be used from drivers using NAPI
2191  * to exclusively poll a TX queue.
2192  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2193  */
2194 static inline void netif_tx_napi_add(struct net_device *dev,
2195 				     struct napi_struct *napi,
2196 				     int (*poll)(struct napi_struct *, int),
2197 				     int weight)
2198 {
2199 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2200 	netif_napi_add(dev, napi, poll, weight);
2201 }
2202 
2203 /**
2204  *  netif_napi_del - remove a NAPI context
2205  *  @napi: NAPI context
2206  *
2207  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2208  */
2209 void netif_napi_del(struct napi_struct *napi);
2210 
2211 struct napi_gro_cb {
2212 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2213 	void	*frag0;
2214 
2215 	/* Length of frag0. */
2216 	unsigned int frag0_len;
2217 
2218 	/* This indicates where we are processing relative to skb->data. */
2219 	int	data_offset;
2220 
2221 	/* This is non-zero if the packet cannot be merged with the new skb. */
2222 	u16	flush;
2223 
2224 	/* Save the IP ID here and check when we get to the transport layer */
2225 	u16	flush_id;
2226 
2227 	/* Number of segments aggregated. */
2228 	u16	count;
2229 
2230 	/* Start offset for remote checksum offload */
2231 	u16	gro_remcsum_start;
2232 
2233 	/* jiffies when first packet was created/queued */
2234 	unsigned long age;
2235 
2236 	/* Used in ipv6_gro_receive() and foo-over-udp */
2237 	u16	proto;
2238 
2239 	/* This is non-zero if the packet may be of the same flow. */
2240 	u8	same_flow:1;
2241 
2242 	/* Used in tunnel GRO receive */
2243 	u8	encap_mark:1;
2244 
2245 	/* GRO checksum is valid */
2246 	u8	csum_valid:1;
2247 
2248 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2249 	u8	csum_cnt:3;
2250 
2251 	/* Free the skb? */
2252 	u8	free:2;
2253 #define NAPI_GRO_FREE		  1
2254 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2255 
2256 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2257 	u8	is_ipv6:1;
2258 
2259 	/* Used in GRE, set in fou/gue_gro_receive */
2260 	u8	is_fou:1;
2261 
2262 	/* Used to determine if flush_id can be ignored */
2263 	u8	is_atomic:1;
2264 
2265 	/* Number of gro_receive callbacks this packet already went through */
2266 	u8 recursion_counter:4;
2267 
2268 	/* 1 bit hole */
2269 
2270 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2271 	__wsum	csum;
2272 
2273 	/* used in skb_gro_receive() slow path */
2274 	struct sk_buff *last;
2275 };
2276 
2277 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2278 
2279 #define GRO_RECURSION_LIMIT 15
2280 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2281 {
2282 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2283 }
2284 
2285 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2286 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2287 					       struct list_head *head,
2288 					       struct sk_buff *skb)
2289 {
2290 	if (unlikely(gro_recursion_inc_test(skb))) {
2291 		NAPI_GRO_CB(skb)->flush |= 1;
2292 		return NULL;
2293 	}
2294 
2295 	return cb(head, skb);
2296 }
2297 
2298 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2299 					    struct sk_buff *);
2300 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2301 						  struct sock *sk,
2302 						  struct list_head *head,
2303 						  struct sk_buff *skb)
2304 {
2305 	if (unlikely(gro_recursion_inc_test(skb))) {
2306 		NAPI_GRO_CB(skb)->flush |= 1;
2307 		return NULL;
2308 	}
2309 
2310 	return cb(sk, head, skb);
2311 }
2312 
2313 struct packet_type {
2314 	__be16			type;	/* This is really htons(ether_type). */
2315 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2316 	int			(*func) (struct sk_buff *,
2317 					 struct net_device *,
2318 					 struct packet_type *,
2319 					 struct net_device *);
2320 	void			(*list_func) (struct list_head *,
2321 					      struct packet_type *,
2322 					      struct net_device *);
2323 	bool			(*id_match)(struct packet_type *ptype,
2324 					    struct sock *sk);
2325 	void			*af_packet_priv;
2326 	struct list_head	list;
2327 };
2328 
2329 struct offload_callbacks {
2330 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2331 						netdev_features_t features);
2332 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2333 						struct sk_buff *skb);
2334 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2335 };
2336 
2337 struct packet_offload {
2338 	__be16			 type;	/* This is really htons(ether_type). */
2339 	u16			 priority;
2340 	struct offload_callbacks callbacks;
2341 	struct list_head	 list;
2342 };
2343 
2344 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2345 struct pcpu_sw_netstats {
2346 	u64     rx_packets;
2347 	u64     rx_bytes;
2348 	u64     tx_packets;
2349 	u64     tx_bytes;
2350 	struct u64_stats_sync   syncp;
2351 };
2352 
2353 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2354 ({									\
2355 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2356 	if (pcpu_stats)	{						\
2357 		int __cpu;						\
2358 		for_each_possible_cpu(__cpu) {				\
2359 			typeof(type) *stat;				\
2360 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2361 			u64_stats_init(&stat->syncp);			\
2362 		}							\
2363 	}								\
2364 	pcpu_stats;							\
2365 })
2366 
2367 #define netdev_alloc_pcpu_stats(type)					\
2368 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2369 
2370 enum netdev_lag_tx_type {
2371 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2372 	NETDEV_LAG_TX_TYPE_RANDOM,
2373 	NETDEV_LAG_TX_TYPE_BROADCAST,
2374 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2375 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2376 	NETDEV_LAG_TX_TYPE_HASH,
2377 };
2378 
2379 enum netdev_lag_hash {
2380 	NETDEV_LAG_HASH_NONE,
2381 	NETDEV_LAG_HASH_L2,
2382 	NETDEV_LAG_HASH_L34,
2383 	NETDEV_LAG_HASH_L23,
2384 	NETDEV_LAG_HASH_E23,
2385 	NETDEV_LAG_HASH_E34,
2386 	NETDEV_LAG_HASH_UNKNOWN,
2387 };
2388 
2389 struct netdev_lag_upper_info {
2390 	enum netdev_lag_tx_type tx_type;
2391 	enum netdev_lag_hash hash_type;
2392 };
2393 
2394 struct netdev_lag_lower_state_info {
2395 	u8 link_up : 1,
2396 	   tx_enabled : 1;
2397 };
2398 
2399 #include <linux/notifier.h>
2400 
2401 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2402  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2403  * adding new types.
2404  */
2405 enum netdev_cmd {
2406 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2407 	NETDEV_DOWN,
2408 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2409 				   detected a hardware crash and restarted
2410 				   - we can use this eg to kick tcp sessions
2411 				   once done */
2412 	NETDEV_CHANGE,		/* Notify device state change */
2413 	NETDEV_REGISTER,
2414 	NETDEV_UNREGISTER,
2415 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2416 	NETDEV_CHANGEADDR,
2417 	NETDEV_GOING_DOWN,
2418 	NETDEV_CHANGENAME,
2419 	NETDEV_FEAT_CHANGE,
2420 	NETDEV_BONDING_FAILOVER,
2421 	NETDEV_PRE_UP,
2422 	NETDEV_PRE_TYPE_CHANGE,
2423 	NETDEV_POST_TYPE_CHANGE,
2424 	NETDEV_POST_INIT,
2425 	NETDEV_RELEASE,
2426 	NETDEV_NOTIFY_PEERS,
2427 	NETDEV_JOIN,
2428 	NETDEV_CHANGEUPPER,
2429 	NETDEV_RESEND_IGMP,
2430 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2431 	NETDEV_CHANGEINFODATA,
2432 	NETDEV_BONDING_INFO,
2433 	NETDEV_PRECHANGEUPPER,
2434 	NETDEV_CHANGELOWERSTATE,
2435 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2436 	NETDEV_UDP_TUNNEL_DROP_INFO,
2437 	NETDEV_CHANGE_TX_QUEUE_LEN,
2438 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2439 	NETDEV_CVLAN_FILTER_DROP_INFO,
2440 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2441 	NETDEV_SVLAN_FILTER_DROP_INFO,
2442 };
2443 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2444 
2445 int register_netdevice_notifier(struct notifier_block *nb);
2446 int unregister_netdevice_notifier(struct notifier_block *nb);
2447 
2448 struct netdev_notifier_info {
2449 	struct net_device	*dev;
2450 	struct netlink_ext_ack	*extack;
2451 };
2452 
2453 struct netdev_notifier_change_info {
2454 	struct netdev_notifier_info info; /* must be first */
2455 	unsigned int flags_changed;
2456 };
2457 
2458 struct netdev_notifier_changeupper_info {
2459 	struct netdev_notifier_info info; /* must be first */
2460 	struct net_device *upper_dev; /* new upper dev */
2461 	bool master; /* is upper dev master */
2462 	bool linking; /* is the notification for link or unlink */
2463 	void *upper_info; /* upper dev info */
2464 };
2465 
2466 struct netdev_notifier_changelowerstate_info {
2467 	struct netdev_notifier_info info; /* must be first */
2468 	void *lower_state_info; /* is lower dev state */
2469 };
2470 
2471 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2472 					     struct net_device *dev)
2473 {
2474 	info->dev = dev;
2475 	info->extack = NULL;
2476 }
2477 
2478 static inline struct net_device *
2479 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2480 {
2481 	return info->dev;
2482 }
2483 
2484 static inline struct netlink_ext_ack *
2485 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2486 {
2487 	return info->extack;
2488 }
2489 
2490 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2491 
2492 
2493 extern rwlock_t				dev_base_lock;		/* Device list lock */
2494 
2495 #define for_each_netdev(net, d)		\
2496 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2497 #define for_each_netdev_reverse(net, d)	\
2498 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2499 #define for_each_netdev_rcu(net, d)		\
2500 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2501 #define for_each_netdev_safe(net, d, n)	\
2502 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2503 #define for_each_netdev_continue(net, d)		\
2504 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2505 #define for_each_netdev_continue_rcu(net, d)		\
2506 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2507 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2508 		for_each_netdev_rcu(&init_net, slave)	\
2509 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2510 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2511 
2512 static inline struct net_device *next_net_device(struct net_device *dev)
2513 {
2514 	struct list_head *lh;
2515 	struct net *net;
2516 
2517 	net = dev_net(dev);
2518 	lh = dev->dev_list.next;
2519 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2520 }
2521 
2522 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2523 {
2524 	struct list_head *lh;
2525 	struct net *net;
2526 
2527 	net = dev_net(dev);
2528 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2529 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2530 }
2531 
2532 static inline struct net_device *first_net_device(struct net *net)
2533 {
2534 	return list_empty(&net->dev_base_head) ? NULL :
2535 		net_device_entry(net->dev_base_head.next);
2536 }
2537 
2538 static inline struct net_device *first_net_device_rcu(struct net *net)
2539 {
2540 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2541 
2542 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2543 }
2544 
2545 int netdev_boot_setup_check(struct net_device *dev);
2546 unsigned long netdev_boot_base(const char *prefix, int unit);
2547 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2548 				       const char *hwaddr);
2549 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2550 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2551 void dev_add_pack(struct packet_type *pt);
2552 void dev_remove_pack(struct packet_type *pt);
2553 void __dev_remove_pack(struct packet_type *pt);
2554 void dev_add_offload(struct packet_offload *po);
2555 void dev_remove_offload(struct packet_offload *po);
2556 
2557 int dev_get_iflink(const struct net_device *dev);
2558 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2559 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2560 				      unsigned short mask);
2561 struct net_device *dev_get_by_name(struct net *net, const char *name);
2562 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2563 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2564 int dev_alloc_name(struct net_device *dev, const char *name);
2565 int dev_open(struct net_device *dev);
2566 void dev_close(struct net_device *dev);
2567 void dev_close_many(struct list_head *head, bool unlink);
2568 void dev_disable_lro(struct net_device *dev);
2569 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2570 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2571 		     struct net_device *sb_dev,
2572 		     select_queue_fallback_t fallback);
2573 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2574 		       struct net_device *sb_dev,
2575 		       select_queue_fallback_t fallback);
2576 int dev_queue_xmit(struct sk_buff *skb);
2577 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2578 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2579 int register_netdevice(struct net_device *dev);
2580 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2581 void unregister_netdevice_many(struct list_head *head);
2582 static inline void unregister_netdevice(struct net_device *dev)
2583 {
2584 	unregister_netdevice_queue(dev, NULL);
2585 }
2586 
2587 int netdev_refcnt_read(const struct net_device *dev);
2588 void free_netdev(struct net_device *dev);
2589 void netdev_freemem(struct net_device *dev);
2590 void synchronize_net(void);
2591 int init_dummy_netdev(struct net_device *dev);
2592 
2593 DECLARE_PER_CPU(int, xmit_recursion);
2594 #define XMIT_RECURSION_LIMIT	10
2595 
2596 static inline int dev_recursion_level(void)
2597 {
2598 	return this_cpu_read(xmit_recursion);
2599 }
2600 
2601 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2602 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2603 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2604 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2605 int netdev_get_name(struct net *net, char *name, int ifindex);
2606 int dev_restart(struct net_device *dev);
2607 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2608 
2609 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2610 {
2611 	return NAPI_GRO_CB(skb)->data_offset;
2612 }
2613 
2614 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2615 {
2616 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2617 }
2618 
2619 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2620 {
2621 	NAPI_GRO_CB(skb)->data_offset += len;
2622 }
2623 
2624 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2625 					unsigned int offset)
2626 {
2627 	return NAPI_GRO_CB(skb)->frag0 + offset;
2628 }
2629 
2630 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2631 {
2632 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2633 }
2634 
2635 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2636 {
2637 	NAPI_GRO_CB(skb)->frag0 = NULL;
2638 	NAPI_GRO_CB(skb)->frag0_len = 0;
2639 }
2640 
2641 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2642 					unsigned int offset)
2643 {
2644 	if (!pskb_may_pull(skb, hlen))
2645 		return NULL;
2646 
2647 	skb_gro_frag0_invalidate(skb);
2648 	return skb->data + offset;
2649 }
2650 
2651 static inline void *skb_gro_network_header(struct sk_buff *skb)
2652 {
2653 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2654 	       skb_network_offset(skb);
2655 }
2656 
2657 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2658 					const void *start, unsigned int len)
2659 {
2660 	if (NAPI_GRO_CB(skb)->csum_valid)
2661 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2662 						  csum_partial(start, len, 0));
2663 }
2664 
2665 /* GRO checksum functions. These are logical equivalents of the normal
2666  * checksum functions (in skbuff.h) except that they operate on the GRO
2667  * offsets and fields in sk_buff.
2668  */
2669 
2670 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2671 
2672 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2673 {
2674 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2675 }
2676 
2677 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2678 						      bool zero_okay,
2679 						      __sum16 check)
2680 {
2681 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2682 		skb_checksum_start_offset(skb) <
2683 		 skb_gro_offset(skb)) &&
2684 		!skb_at_gro_remcsum_start(skb) &&
2685 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2686 		(!zero_okay || check));
2687 }
2688 
2689 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2690 							   __wsum psum)
2691 {
2692 	if (NAPI_GRO_CB(skb)->csum_valid &&
2693 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2694 		return 0;
2695 
2696 	NAPI_GRO_CB(skb)->csum = psum;
2697 
2698 	return __skb_gro_checksum_complete(skb);
2699 }
2700 
2701 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2702 {
2703 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2704 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2705 		NAPI_GRO_CB(skb)->csum_cnt--;
2706 	} else {
2707 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2708 		 * verified a new top level checksum or an encapsulated one
2709 		 * during GRO. This saves work if we fallback to normal path.
2710 		 */
2711 		__skb_incr_checksum_unnecessary(skb);
2712 	}
2713 }
2714 
2715 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2716 				    compute_pseudo)			\
2717 ({									\
2718 	__sum16 __ret = 0;						\
2719 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2720 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2721 				compute_pseudo(skb, proto));		\
2722 	if (!__ret)							\
2723 		skb_gro_incr_csum_unnecessary(skb);			\
2724 	__ret;								\
2725 })
2726 
2727 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2728 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2729 
2730 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2731 					     compute_pseudo)		\
2732 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2733 
2734 #define skb_gro_checksum_simple_validate(skb)				\
2735 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2736 
2737 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2738 {
2739 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2740 		!NAPI_GRO_CB(skb)->csum_valid);
2741 }
2742 
2743 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2744 					      __sum16 check, __wsum pseudo)
2745 {
2746 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2747 	NAPI_GRO_CB(skb)->csum_valid = 1;
2748 }
2749 
2750 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2751 do {									\
2752 	if (__skb_gro_checksum_convert_check(skb))			\
2753 		__skb_gro_checksum_convert(skb, check,			\
2754 					   compute_pseudo(skb, proto));	\
2755 } while (0)
2756 
2757 struct gro_remcsum {
2758 	int offset;
2759 	__wsum delta;
2760 };
2761 
2762 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2763 {
2764 	grc->offset = 0;
2765 	grc->delta = 0;
2766 }
2767 
2768 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2769 					    unsigned int off, size_t hdrlen,
2770 					    int start, int offset,
2771 					    struct gro_remcsum *grc,
2772 					    bool nopartial)
2773 {
2774 	__wsum delta;
2775 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2776 
2777 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2778 
2779 	if (!nopartial) {
2780 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2781 		return ptr;
2782 	}
2783 
2784 	ptr = skb_gro_header_fast(skb, off);
2785 	if (skb_gro_header_hard(skb, off + plen)) {
2786 		ptr = skb_gro_header_slow(skb, off + plen, off);
2787 		if (!ptr)
2788 			return NULL;
2789 	}
2790 
2791 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2792 			       start, offset);
2793 
2794 	/* Adjust skb->csum since we changed the packet */
2795 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2796 
2797 	grc->offset = off + hdrlen + offset;
2798 	grc->delta = delta;
2799 
2800 	return ptr;
2801 }
2802 
2803 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2804 					   struct gro_remcsum *grc)
2805 {
2806 	void *ptr;
2807 	size_t plen = grc->offset + sizeof(u16);
2808 
2809 	if (!grc->delta)
2810 		return;
2811 
2812 	ptr = skb_gro_header_fast(skb, grc->offset);
2813 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2814 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2815 		if (!ptr)
2816 			return;
2817 	}
2818 
2819 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2820 }
2821 
2822 #ifdef CONFIG_XFRM_OFFLOAD
2823 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2824 {
2825 	if (PTR_ERR(pp) != -EINPROGRESS)
2826 		NAPI_GRO_CB(skb)->flush |= flush;
2827 }
2828 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2829 					       struct sk_buff *pp,
2830 					       int flush,
2831 					       struct gro_remcsum *grc)
2832 {
2833 	if (PTR_ERR(pp) != -EINPROGRESS) {
2834 		NAPI_GRO_CB(skb)->flush |= flush;
2835 		skb_gro_remcsum_cleanup(skb, grc);
2836 		skb->remcsum_offload = 0;
2837 	}
2838 }
2839 #else
2840 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2841 {
2842 	NAPI_GRO_CB(skb)->flush |= flush;
2843 }
2844 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2845 					       struct sk_buff *pp,
2846 					       int flush,
2847 					       struct gro_remcsum *grc)
2848 {
2849 	NAPI_GRO_CB(skb)->flush |= flush;
2850 	skb_gro_remcsum_cleanup(skb, grc);
2851 	skb->remcsum_offload = 0;
2852 }
2853 #endif
2854 
2855 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2856 				  unsigned short type,
2857 				  const void *daddr, const void *saddr,
2858 				  unsigned int len)
2859 {
2860 	if (!dev->header_ops || !dev->header_ops->create)
2861 		return 0;
2862 
2863 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2864 }
2865 
2866 static inline int dev_parse_header(const struct sk_buff *skb,
2867 				   unsigned char *haddr)
2868 {
2869 	const struct net_device *dev = skb->dev;
2870 
2871 	if (!dev->header_ops || !dev->header_ops->parse)
2872 		return 0;
2873 	return dev->header_ops->parse(skb, haddr);
2874 }
2875 
2876 /* ll_header must have at least hard_header_len allocated */
2877 static inline bool dev_validate_header(const struct net_device *dev,
2878 				       char *ll_header, int len)
2879 {
2880 	if (likely(len >= dev->hard_header_len))
2881 		return true;
2882 	if (len < dev->min_header_len)
2883 		return false;
2884 
2885 	if (capable(CAP_SYS_RAWIO)) {
2886 		memset(ll_header + len, 0, dev->hard_header_len - len);
2887 		return true;
2888 	}
2889 
2890 	if (dev->header_ops && dev->header_ops->validate)
2891 		return dev->header_ops->validate(ll_header, len);
2892 
2893 	return false;
2894 }
2895 
2896 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2897 			   int len, int size);
2898 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2899 static inline int unregister_gifconf(unsigned int family)
2900 {
2901 	return register_gifconf(family, NULL);
2902 }
2903 
2904 #ifdef CONFIG_NET_FLOW_LIMIT
2905 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2906 struct sd_flow_limit {
2907 	u64			count;
2908 	unsigned int		num_buckets;
2909 	unsigned int		history_head;
2910 	u16			history[FLOW_LIMIT_HISTORY];
2911 	u8			buckets[];
2912 };
2913 
2914 extern int netdev_flow_limit_table_len;
2915 #endif /* CONFIG_NET_FLOW_LIMIT */
2916 
2917 /*
2918  * Incoming packets are placed on per-CPU queues
2919  */
2920 struct softnet_data {
2921 	struct list_head	poll_list;
2922 	struct sk_buff_head	process_queue;
2923 
2924 	/* stats */
2925 	unsigned int		processed;
2926 	unsigned int		time_squeeze;
2927 	unsigned int		received_rps;
2928 #ifdef CONFIG_RPS
2929 	struct softnet_data	*rps_ipi_list;
2930 #endif
2931 #ifdef CONFIG_NET_FLOW_LIMIT
2932 	struct sd_flow_limit __rcu *flow_limit;
2933 #endif
2934 	struct Qdisc		*output_queue;
2935 	struct Qdisc		**output_queue_tailp;
2936 	struct sk_buff		*completion_queue;
2937 #ifdef CONFIG_XFRM_OFFLOAD
2938 	struct sk_buff_head	xfrm_backlog;
2939 #endif
2940 #ifdef CONFIG_RPS
2941 	/* input_queue_head should be written by cpu owning this struct,
2942 	 * and only read by other cpus. Worth using a cache line.
2943 	 */
2944 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2945 
2946 	/* Elements below can be accessed between CPUs for RPS/RFS */
2947 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2948 	struct softnet_data	*rps_ipi_next;
2949 	unsigned int		cpu;
2950 	unsigned int		input_queue_tail;
2951 #endif
2952 	unsigned int		dropped;
2953 	struct sk_buff_head	input_pkt_queue;
2954 	struct napi_struct	backlog;
2955 
2956 };
2957 
2958 static inline void input_queue_head_incr(struct softnet_data *sd)
2959 {
2960 #ifdef CONFIG_RPS
2961 	sd->input_queue_head++;
2962 #endif
2963 }
2964 
2965 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2966 					      unsigned int *qtail)
2967 {
2968 #ifdef CONFIG_RPS
2969 	*qtail = ++sd->input_queue_tail;
2970 #endif
2971 }
2972 
2973 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2974 
2975 void __netif_schedule(struct Qdisc *q);
2976 void netif_schedule_queue(struct netdev_queue *txq);
2977 
2978 static inline void netif_tx_schedule_all(struct net_device *dev)
2979 {
2980 	unsigned int i;
2981 
2982 	for (i = 0; i < dev->num_tx_queues; i++)
2983 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2984 }
2985 
2986 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2987 {
2988 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2989 }
2990 
2991 /**
2992  *	netif_start_queue - allow transmit
2993  *	@dev: network device
2994  *
2995  *	Allow upper layers to call the device hard_start_xmit routine.
2996  */
2997 static inline void netif_start_queue(struct net_device *dev)
2998 {
2999 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3000 }
3001 
3002 static inline void netif_tx_start_all_queues(struct net_device *dev)
3003 {
3004 	unsigned int i;
3005 
3006 	for (i = 0; i < dev->num_tx_queues; i++) {
3007 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3008 		netif_tx_start_queue(txq);
3009 	}
3010 }
3011 
3012 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3013 
3014 /**
3015  *	netif_wake_queue - restart transmit
3016  *	@dev: network device
3017  *
3018  *	Allow upper layers to call the device hard_start_xmit routine.
3019  *	Used for flow control when transmit resources are available.
3020  */
3021 static inline void netif_wake_queue(struct net_device *dev)
3022 {
3023 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3024 }
3025 
3026 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3027 {
3028 	unsigned int i;
3029 
3030 	for (i = 0; i < dev->num_tx_queues; i++) {
3031 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3032 		netif_tx_wake_queue(txq);
3033 	}
3034 }
3035 
3036 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3037 {
3038 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3039 }
3040 
3041 /**
3042  *	netif_stop_queue - stop transmitted packets
3043  *	@dev: network device
3044  *
3045  *	Stop upper layers calling the device hard_start_xmit routine.
3046  *	Used for flow control when transmit resources are unavailable.
3047  */
3048 static inline void netif_stop_queue(struct net_device *dev)
3049 {
3050 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3051 }
3052 
3053 void netif_tx_stop_all_queues(struct net_device *dev);
3054 
3055 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3056 {
3057 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3058 }
3059 
3060 /**
3061  *	netif_queue_stopped - test if transmit queue is flowblocked
3062  *	@dev: network device
3063  *
3064  *	Test if transmit queue on device is currently unable to send.
3065  */
3066 static inline bool netif_queue_stopped(const struct net_device *dev)
3067 {
3068 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3069 }
3070 
3071 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3072 {
3073 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3074 }
3075 
3076 static inline bool
3077 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3078 {
3079 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3080 }
3081 
3082 static inline bool
3083 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3084 {
3085 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3086 }
3087 
3088 /**
3089  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3090  *	@dev_queue: pointer to transmit queue
3091  *
3092  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3093  * to give appropriate hint to the CPU.
3094  */
3095 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3096 {
3097 #ifdef CONFIG_BQL
3098 	prefetchw(&dev_queue->dql.num_queued);
3099 #endif
3100 }
3101 
3102 /**
3103  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3104  *	@dev_queue: pointer to transmit queue
3105  *
3106  * BQL enabled drivers might use this helper in their TX completion path,
3107  * to give appropriate hint to the CPU.
3108  */
3109 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3110 {
3111 #ifdef CONFIG_BQL
3112 	prefetchw(&dev_queue->dql.limit);
3113 #endif
3114 }
3115 
3116 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3117 					unsigned int bytes)
3118 {
3119 #ifdef CONFIG_BQL
3120 	dql_queued(&dev_queue->dql, bytes);
3121 
3122 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3123 		return;
3124 
3125 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3126 
3127 	/*
3128 	 * The XOFF flag must be set before checking the dql_avail below,
3129 	 * because in netdev_tx_completed_queue we update the dql_completed
3130 	 * before checking the XOFF flag.
3131 	 */
3132 	smp_mb();
3133 
3134 	/* check again in case another CPU has just made room avail */
3135 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3136 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3137 #endif
3138 }
3139 
3140 /**
3141  * 	netdev_sent_queue - report the number of bytes queued to hardware
3142  * 	@dev: network device
3143  * 	@bytes: number of bytes queued to the hardware device queue
3144  *
3145  * 	Report the number of bytes queued for sending/completion to the network
3146  * 	device hardware queue. @bytes should be a good approximation and should
3147  * 	exactly match netdev_completed_queue() @bytes
3148  */
3149 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3150 {
3151 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3152 }
3153 
3154 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3155 					     unsigned int pkts, unsigned int bytes)
3156 {
3157 #ifdef CONFIG_BQL
3158 	if (unlikely(!bytes))
3159 		return;
3160 
3161 	dql_completed(&dev_queue->dql, bytes);
3162 
3163 	/*
3164 	 * Without the memory barrier there is a small possiblity that
3165 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3166 	 * be stopped forever
3167 	 */
3168 	smp_mb();
3169 
3170 	if (dql_avail(&dev_queue->dql) < 0)
3171 		return;
3172 
3173 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3174 		netif_schedule_queue(dev_queue);
3175 #endif
3176 }
3177 
3178 /**
3179  * 	netdev_completed_queue - report bytes and packets completed by device
3180  * 	@dev: network device
3181  * 	@pkts: actual number of packets sent over the medium
3182  * 	@bytes: actual number of bytes sent over the medium
3183  *
3184  * 	Report the number of bytes and packets transmitted by the network device
3185  * 	hardware queue over the physical medium, @bytes must exactly match the
3186  * 	@bytes amount passed to netdev_sent_queue()
3187  */
3188 static inline void netdev_completed_queue(struct net_device *dev,
3189 					  unsigned int pkts, unsigned int bytes)
3190 {
3191 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3192 }
3193 
3194 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3195 {
3196 #ifdef CONFIG_BQL
3197 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3198 	dql_reset(&q->dql);
3199 #endif
3200 }
3201 
3202 /**
3203  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3204  * 	@dev_queue: network device
3205  *
3206  * 	Reset the bytes and packet count of a network device and clear the
3207  * 	software flow control OFF bit for this network device
3208  */
3209 static inline void netdev_reset_queue(struct net_device *dev_queue)
3210 {
3211 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3212 }
3213 
3214 /**
3215  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3216  * 	@dev: network device
3217  * 	@queue_index: given tx queue index
3218  *
3219  * 	Returns 0 if given tx queue index >= number of device tx queues,
3220  * 	otherwise returns the originally passed tx queue index.
3221  */
3222 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3223 {
3224 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3225 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3226 				     dev->name, queue_index,
3227 				     dev->real_num_tx_queues);
3228 		return 0;
3229 	}
3230 
3231 	return queue_index;
3232 }
3233 
3234 /**
3235  *	netif_running - test if up
3236  *	@dev: network device
3237  *
3238  *	Test if the device has been brought up.
3239  */
3240 static inline bool netif_running(const struct net_device *dev)
3241 {
3242 	return test_bit(__LINK_STATE_START, &dev->state);
3243 }
3244 
3245 /*
3246  * Routines to manage the subqueues on a device.  We only need start,
3247  * stop, and a check if it's stopped.  All other device management is
3248  * done at the overall netdevice level.
3249  * Also test the device if we're multiqueue.
3250  */
3251 
3252 /**
3253  *	netif_start_subqueue - allow sending packets on subqueue
3254  *	@dev: network device
3255  *	@queue_index: sub queue index
3256  *
3257  * Start individual transmit queue of a device with multiple transmit queues.
3258  */
3259 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3260 {
3261 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3262 
3263 	netif_tx_start_queue(txq);
3264 }
3265 
3266 /**
3267  *	netif_stop_subqueue - stop sending packets on subqueue
3268  *	@dev: network device
3269  *	@queue_index: sub queue index
3270  *
3271  * Stop individual transmit queue of a device with multiple transmit queues.
3272  */
3273 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3274 {
3275 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3276 	netif_tx_stop_queue(txq);
3277 }
3278 
3279 /**
3280  *	netif_subqueue_stopped - test status of subqueue
3281  *	@dev: network device
3282  *	@queue_index: sub queue index
3283  *
3284  * Check individual transmit queue of a device with multiple transmit queues.
3285  */
3286 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3287 					    u16 queue_index)
3288 {
3289 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3290 
3291 	return netif_tx_queue_stopped(txq);
3292 }
3293 
3294 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3295 					  struct sk_buff *skb)
3296 {
3297 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3298 }
3299 
3300 /**
3301  *	netif_wake_subqueue - allow sending packets on subqueue
3302  *	@dev: network device
3303  *	@queue_index: sub queue index
3304  *
3305  * Resume individual transmit queue of a device with multiple transmit queues.
3306  */
3307 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3308 {
3309 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3310 
3311 	netif_tx_wake_queue(txq);
3312 }
3313 
3314 #ifdef CONFIG_XPS
3315 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3316 			u16 index);
3317 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3318 			  u16 index, bool is_rxqs_map);
3319 
3320 /**
3321  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3322  *	@j: CPU/Rx queue index
3323  *	@mask: bitmask of all cpus/rx queues
3324  *	@nr_bits: number of bits in the bitmask
3325  *
3326  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3327  */
3328 static inline bool netif_attr_test_mask(unsigned long j,
3329 					const unsigned long *mask,
3330 					unsigned int nr_bits)
3331 {
3332 	cpu_max_bits_warn(j, nr_bits);
3333 	return test_bit(j, mask);
3334 }
3335 
3336 /**
3337  *	netif_attr_test_online - Test for online CPU/Rx queue
3338  *	@j: CPU/Rx queue index
3339  *	@online_mask: bitmask for CPUs/Rx queues that are online
3340  *	@nr_bits: number of bits in the bitmask
3341  *
3342  * Returns true if a CPU/Rx queue is online.
3343  */
3344 static inline bool netif_attr_test_online(unsigned long j,
3345 					  const unsigned long *online_mask,
3346 					  unsigned int nr_bits)
3347 {
3348 	cpu_max_bits_warn(j, nr_bits);
3349 
3350 	if (online_mask)
3351 		return test_bit(j, online_mask);
3352 
3353 	return (j < nr_bits);
3354 }
3355 
3356 /**
3357  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3358  *	@n: CPU/Rx queue index
3359  *	@srcp: the cpumask/Rx queue mask pointer
3360  *	@nr_bits: number of bits in the bitmask
3361  *
3362  * Returns >= nr_bits if no further CPUs/Rx queues set.
3363  */
3364 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3365 					       unsigned int nr_bits)
3366 {
3367 	/* -1 is a legal arg here. */
3368 	if (n != -1)
3369 		cpu_max_bits_warn(n, nr_bits);
3370 
3371 	if (srcp)
3372 		return find_next_bit(srcp, nr_bits, n + 1);
3373 
3374 	return n + 1;
3375 }
3376 
3377 /**
3378  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3379  *	@n: CPU/Rx queue index
3380  *	@src1p: the first CPUs/Rx queues mask pointer
3381  *	@src2p: the second CPUs/Rx queues mask pointer
3382  *	@nr_bits: number of bits in the bitmask
3383  *
3384  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3385  */
3386 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3387 					  const unsigned long *src2p,
3388 					  unsigned int nr_bits)
3389 {
3390 	/* -1 is a legal arg here. */
3391 	if (n != -1)
3392 		cpu_max_bits_warn(n, nr_bits);
3393 
3394 	if (src1p && src2p)
3395 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3396 	else if (src1p)
3397 		return find_next_bit(src1p, nr_bits, n + 1);
3398 	else if (src2p)
3399 		return find_next_bit(src2p, nr_bits, n + 1);
3400 
3401 	return n + 1;
3402 }
3403 #else
3404 static inline int netif_set_xps_queue(struct net_device *dev,
3405 				      const struct cpumask *mask,
3406 				      u16 index)
3407 {
3408 	return 0;
3409 }
3410 #endif
3411 
3412 /**
3413  *	netif_is_multiqueue - test if device has multiple transmit queues
3414  *	@dev: network device
3415  *
3416  * Check if device has multiple transmit queues
3417  */
3418 static inline bool netif_is_multiqueue(const struct net_device *dev)
3419 {
3420 	return dev->num_tx_queues > 1;
3421 }
3422 
3423 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3424 
3425 #ifdef CONFIG_SYSFS
3426 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3427 #else
3428 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3429 						unsigned int rxq)
3430 {
3431 	return 0;
3432 }
3433 #endif
3434 
3435 static inline struct netdev_rx_queue *
3436 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3437 {
3438 	return dev->_rx + rxq;
3439 }
3440 
3441 #ifdef CONFIG_SYSFS
3442 static inline unsigned int get_netdev_rx_queue_index(
3443 		struct netdev_rx_queue *queue)
3444 {
3445 	struct net_device *dev = queue->dev;
3446 	int index = queue - dev->_rx;
3447 
3448 	BUG_ON(index >= dev->num_rx_queues);
3449 	return index;
3450 }
3451 #endif
3452 
3453 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3454 int netif_get_num_default_rss_queues(void);
3455 
3456 enum skb_free_reason {
3457 	SKB_REASON_CONSUMED,
3458 	SKB_REASON_DROPPED,
3459 };
3460 
3461 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3462 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3463 
3464 /*
3465  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3466  * interrupt context or with hardware interrupts being disabled.
3467  * (in_irq() || irqs_disabled())
3468  *
3469  * We provide four helpers that can be used in following contexts :
3470  *
3471  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3472  *  replacing kfree_skb(skb)
3473  *
3474  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3475  *  Typically used in place of consume_skb(skb) in TX completion path
3476  *
3477  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3478  *  replacing kfree_skb(skb)
3479  *
3480  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3481  *  and consumed a packet. Used in place of consume_skb(skb)
3482  */
3483 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3484 {
3485 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3486 }
3487 
3488 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3489 {
3490 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3491 }
3492 
3493 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3494 {
3495 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3496 }
3497 
3498 static inline void dev_consume_skb_any(struct sk_buff *skb)
3499 {
3500 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3501 }
3502 
3503 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3504 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3505 int netif_rx(struct sk_buff *skb);
3506 int netif_rx_ni(struct sk_buff *skb);
3507 int netif_receive_skb(struct sk_buff *skb);
3508 int netif_receive_skb_core(struct sk_buff *skb);
3509 void netif_receive_skb_list(struct list_head *head);
3510 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3511 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3512 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3513 gro_result_t napi_gro_frags(struct napi_struct *napi);
3514 struct packet_offload *gro_find_receive_by_type(__be16 type);
3515 struct packet_offload *gro_find_complete_by_type(__be16 type);
3516 
3517 static inline void napi_free_frags(struct napi_struct *napi)
3518 {
3519 	kfree_skb(napi->skb);
3520 	napi->skb = NULL;
3521 }
3522 
3523 bool netdev_is_rx_handler_busy(struct net_device *dev);
3524 int netdev_rx_handler_register(struct net_device *dev,
3525 			       rx_handler_func_t *rx_handler,
3526 			       void *rx_handler_data);
3527 void netdev_rx_handler_unregister(struct net_device *dev);
3528 
3529 bool dev_valid_name(const char *name);
3530 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3531 		bool *need_copyout);
3532 int dev_ifconf(struct net *net, struct ifconf *, int);
3533 int dev_ethtool(struct net *net, struct ifreq *);
3534 unsigned int dev_get_flags(const struct net_device *);
3535 int __dev_change_flags(struct net_device *, unsigned int flags);
3536 int dev_change_flags(struct net_device *, unsigned int);
3537 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3538 			unsigned int gchanges);
3539 int dev_change_name(struct net_device *, const char *);
3540 int dev_set_alias(struct net_device *, const char *, size_t);
3541 int dev_get_alias(const struct net_device *, char *, size_t);
3542 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3543 int __dev_set_mtu(struct net_device *, int);
3544 int dev_set_mtu(struct net_device *, int);
3545 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3546 void dev_set_group(struct net_device *, int);
3547 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3548 int dev_change_carrier(struct net_device *, bool new_carrier);
3549 int dev_get_phys_port_id(struct net_device *dev,
3550 			 struct netdev_phys_item_id *ppid);
3551 int dev_get_phys_port_name(struct net_device *dev,
3552 			   char *name, size_t len);
3553 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3554 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3555 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3556 				    struct netdev_queue *txq, int *ret);
3557 
3558 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3559 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3560 		      int fd, u32 flags);
3561 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3562 		    enum bpf_netdev_command cmd);
3563 
3564 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3565 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3566 bool is_skb_forwardable(const struct net_device *dev,
3567 			const struct sk_buff *skb);
3568 
3569 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3570 					       struct sk_buff *skb)
3571 {
3572 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3573 	    unlikely(!is_skb_forwardable(dev, skb))) {
3574 		atomic_long_inc(&dev->rx_dropped);
3575 		kfree_skb(skb);
3576 		return NET_RX_DROP;
3577 	}
3578 
3579 	skb_scrub_packet(skb, true);
3580 	skb->priority = 0;
3581 	return 0;
3582 }
3583 
3584 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3585 
3586 extern int		netdev_budget;
3587 extern unsigned int	netdev_budget_usecs;
3588 
3589 /* Called by rtnetlink.c:rtnl_unlock() */
3590 void netdev_run_todo(void);
3591 
3592 /**
3593  *	dev_put - release reference to device
3594  *	@dev: network device
3595  *
3596  * Release reference to device to allow it to be freed.
3597  */
3598 static inline void dev_put(struct net_device *dev)
3599 {
3600 	this_cpu_dec(*dev->pcpu_refcnt);
3601 }
3602 
3603 /**
3604  *	dev_hold - get reference to device
3605  *	@dev: network device
3606  *
3607  * Hold reference to device to keep it from being freed.
3608  */
3609 static inline void dev_hold(struct net_device *dev)
3610 {
3611 	this_cpu_inc(*dev->pcpu_refcnt);
3612 }
3613 
3614 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3615  * and _off may be called from IRQ context, but it is caller
3616  * who is responsible for serialization of these calls.
3617  *
3618  * The name carrier is inappropriate, these functions should really be
3619  * called netif_lowerlayer_*() because they represent the state of any
3620  * kind of lower layer not just hardware media.
3621  */
3622 
3623 void linkwatch_init_dev(struct net_device *dev);
3624 void linkwatch_fire_event(struct net_device *dev);
3625 void linkwatch_forget_dev(struct net_device *dev);
3626 
3627 /**
3628  *	netif_carrier_ok - test if carrier present
3629  *	@dev: network device
3630  *
3631  * Check if carrier is present on device
3632  */
3633 static inline bool netif_carrier_ok(const struct net_device *dev)
3634 {
3635 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3636 }
3637 
3638 unsigned long dev_trans_start(struct net_device *dev);
3639 
3640 void __netdev_watchdog_up(struct net_device *dev);
3641 
3642 void netif_carrier_on(struct net_device *dev);
3643 
3644 void netif_carrier_off(struct net_device *dev);
3645 
3646 /**
3647  *	netif_dormant_on - mark device as dormant.
3648  *	@dev: network device
3649  *
3650  * Mark device as dormant (as per RFC2863).
3651  *
3652  * The dormant state indicates that the relevant interface is not
3653  * actually in a condition to pass packets (i.e., it is not 'up') but is
3654  * in a "pending" state, waiting for some external event.  For "on-
3655  * demand" interfaces, this new state identifies the situation where the
3656  * interface is waiting for events to place it in the up state.
3657  */
3658 static inline void netif_dormant_on(struct net_device *dev)
3659 {
3660 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3661 		linkwatch_fire_event(dev);
3662 }
3663 
3664 /**
3665  *	netif_dormant_off - set device as not dormant.
3666  *	@dev: network device
3667  *
3668  * Device is not in dormant state.
3669  */
3670 static inline void netif_dormant_off(struct net_device *dev)
3671 {
3672 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3673 		linkwatch_fire_event(dev);
3674 }
3675 
3676 /**
3677  *	netif_dormant - test if device is dormant
3678  *	@dev: network device
3679  *
3680  * Check if device is dormant.
3681  */
3682 static inline bool netif_dormant(const struct net_device *dev)
3683 {
3684 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3685 }
3686 
3687 
3688 /**
3689  *	netif_oper_up - test if device is operational
3690  *	@dev: network device
3691  *
3692  * Check if carrier is operational
3693  */
3694 static inline bool netif_oper_up(const struct net_device *dev)
3695 {
3696 	return (dev->operstate == IF_OPER_UP ||
3697 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3698 }
3699 
3700 /**
3701  *	netif_device_present - is device available or removed
3702  *	@dev: network device
3703  *
3704  * Check if device has not been removed from system.
3705  */
3706 static inline bool netif_device_present(struct net_device *dev)
3707 {
3708 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3709 }
3710 
3711 void netif_device_detach(struct net_device *dev);
3712 
3713 void netif_device_attach(struct net_device *dev);
3714 
3715 /*
3716  * Network interface message level settings
3717  */
3718 
3719 enum {
3720 	NETIF_MSG_DRV		= 0x0001,
3721 	NETIF_MSG_PROBE		= 0x0002,
3722 	NETIF_MSG_LINK		= 0x0004,
3723 	NETIF_MSG_TIMER		= 0x0008,
3724 	NETIF_MSG_IFDOWN	= 0x0010,
3725 	NETIF_MSG_IFUP		= 0x0020,
3726 	NETIF_MSG_RX_ERR	= 0x0040,
3727 	NETIF_MSG_TX_ERR	= 0x0080,
3728 	NETIF_MSG_TX_QUEUED	= 0x0100,
3729 	NETIF_MSG_INTR		= 0x0200,
3730 	NETIF_MSG_TX_DONE	= 0x0400,
3731 	NETIF_MSG_RX_STATUS	= 0x0800,
3732 	NETIF_MSG_PKTDATA	= 0x1000,
3733 	NETIF_MSG_HW		= 0x2000,
3734 	NETIF_MSG_WOL		= 0x4000,
3735 };
3736 
3737 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3738 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3739 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3740 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3741 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3742 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3743 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3744 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3745 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3746 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3747 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3748 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3749 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3750 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3751 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3752 
3753 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3754 {
3755 	/* use default */
3756 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3757 		return default_msg_enable_bits;
3758 	if (debug_value == 0)	/* no output */
3759 		return 0;
3760 	/* set low N bits */
3761 	return (1 << debug_value) - 1;
3762 }
3763 
3764 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3765 {
3766 	spin_lock(&txq->_xmit_lock);
3767 	txq->xmit_lock_owner = cpu;
3768 }
3769 
3770 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3771 {
3772 	__acquire(&txq->_xmit_lock);
3773 	return true;
3774 }
3775 
3776 static inline void __netif_tx_release(struct netdev_queue *txq)
3777 {
3778 	__release(&txq->_xmit_lock);
3779 }
3780 
3781 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3782 {
3783 	spin_lock_bh(&txq->_xmit_lock);
3784 	txq->xmit_lock_owner = smp_processor_id();
3785 }
3786 
3787 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3788 {
3789 	bool ok = spin_trylock(&txq->_xmit_lock);
3790 	if (likely(ok))
3791 		txq->xmit_lock_owner = smp_processor_id();
3792 	return ok;
3793 }
3794 
3795 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3796 {
3797 	txq->xmit_lock_owner = -1;
3798 	spin_unlock(&txq->_xmit_lock);
3799 }
3800 
3801 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3802 {
3803 	txq->xmit_lock_owner = -1;
3804 	spin_unlock_bh(&txq->_xmit_lock);
3805 }
3806 
3807 static inline void txq_trans_update(struct netdev_queue *txq)
3808 {
3809 	if (txq->xmit_lock_owner != -1)
3810 		txq->trans_start = jiffies;
3811 }
3812 
3813 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3814 static inline void netif_trans_update(struct net_device *dev)
3815 {
3816 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3817 
3818 	if (txq->trans_start != jiffies)
3819 		txq->trans_start = jiffies;
3820 }
3821 
3822 /**
3823  *	netif_tx_lock - grab network device transmit lock
3824  *	@dev: network device
3825  *
3826  * Get network device transmit lock
3827  */
3828 static inline void netif_tx_lock(struct net_device *dev)
3829 {
3830 	unsigned int i;
3831 	int cpu;
3832 
3833 	spin_lock(&dev->tx_global_lock);
3834 	cpu = smp_processor_id();
3835 	for (i = 0; i < dev->num_tx_queues; i++) {
3836 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3837 
3838 		/* We are the only thread of execution doing a
3839 		 * freeze, but we have to grab the _xmit_lock in
3840 		 * order to synchronize with threads which are in
3841 		 * the ->hard_start_xmit() handler and already
3842 		 * checked the frozen bit.
3843 		 */
3844 		__netif_tx_lock(txq, cpu);
3845 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3846 		__netif_tx_unlock(txq);
3847 	}
3848 }
3849 
3850 static inline void netif_tx_lock_bh(struct net_device *dev)
3851 {
3852 	local_bh_disable();
3853 	netif_tx_lock(dev);
3854 }
3855 
3856 static inline void netif_tx_unlock(struct net_device *dev)
3857 {
3858 	unsigned int i;
3859 
3860 	for (i = 0; i < dev->num_tx_queues; i++) {
3861 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3862 
3863 		/* No need to grab the _xmit_lock here.  If the
3864 		 * queue is not stopped for another reason, we
3865 		 * force a schedule.
3866 		 */
3867 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3868 		netif_schedule_queue(txq);
3869 	}
3870 	spin_unlock(&dev->tx_global_lock);
3871 }
3872 
3873 static inline void netif_tx_unlock_bh(struct net_device *dev)
3874 {
3875 	netif_tx_unlock(dev);
3876 	local_bh_enable();
3877 }
3878 
3879 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3880 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3881 		__netif_tx_lock(txq, cpu);		\
3882 	} else {					\
3883 		__netif_tx_acquire(txq);		\
3884 	}						\
3885 }
3886 
3887 #define HARD_TX_TRYLOCK(dev, txq)			\
3888 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3889 		__netif_tx_trylock(txq) :		\
3890 		__netif_tx_acquire(txq))
3891 
3892 #define HARD_TX_UNLOCK(dev, txq) {			\
3893 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3894 		__netif_tx_unlock(txq);			\
3895 	} else {					\
3896 		__netif_tx_release(txq);		\
3897 	}						\
3898 }
3899 
3900 static inline void netif_tx_disable(struct net_device *dev)
3901 {
3902 	unsigned int i;
3903 	int cpu;
3904 
3905 	local_bh_disable();
3906 	cpu = smp_processor_id();
3907 	for (i = 0; i < dev->num_tx_queues; i++) {
3908 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3909 
3910 		__netif_tx_lock(txq, cpu);
3911 		netif_tx_stop_queue(txq);
3912 		__netif_tx_unlock(txq);
3913 	}
3914 	local_bh_enable();
3915 }
3916 
3917 static inline void netif_addr_lock(struct net_device *dev)
3918 {
3919 	spin_lock(&dev->addr_list_lock);
3920 }
3921 
3922 static inline void netif_addr_lock_nested(struct net_device *dev)
3923 {
3924 	int subclass = SINGLE_DEPTH_NESTING;
3925 
3926 	if (dev->netdev_ops->ndo_get_lock_subclass)
3927 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3928 
3929 	spin_lock_nested(&dev->addr_list_lock, subclass);
3930 }
3931 
3932 static inline void netif_addr_lock_bh(struct net_device *dev)
3933 {
3934 	spin_lock_bh(&dev->addr_list_lock);
3935 }
3936 
3937 static inline void netif_addr_unlock(struct net_device *dev)
3938 {
3939 	spin_unlock(&dev->addr_list_lock);
3940 }
3941 
3942 static inline void netif_addr_unlock_bh(struct net_device *dev)
3943 {
3944 	spin_unlock_bh(&dev->addr_list_lock);
3945 }
3946 
3947 /*
3948  * dev_addrs walker. Should be used only for read access. Call with
3949  * rcu_read_lock held.
3950  */
3951 #define for_each_dev_addr(dev, ha) \
3952 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3953 
3954 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3955 
3956 void ether_setup(struct net_device *dev);
3957 
3958 /* Support for loadable net-drivers */
3959 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3960 				    unsigned char name_assign_type,
3961 				    void (*setup)(struct net_device *),
3962 				    unsigned int txqs, unsigned int rxqs);
3963 int dev_get_valid_name(struct net *net, struct net_device *dev,
3964 		       const char *name);
3965 
3966 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3967 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3968 
3969 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3970 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3971 			 count)
3972 
3973 int register_netdev(struct net_device *dev);
3974 void unregister_netdev(struct net_device *dev);
3975 
3976 /* General hardware address lists handling functions */
3977 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3978 		   struct netdev_hw_addr_list *from_list, int addr_len);
3979 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3980 		      struct netdev_hw_addr_list *from_list, int addr_len);
3981 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3982 		       struct net_device *dev,
3983 		       int (*sync)(struct net_device *, const unsigned char *),
3984 		       int (*unsync)(struct net_device *,
3985 				     const unsigned char *));
3986 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3987 			  struct net_device *dev,
3988 			  int (*unsync)(struct net_device *,
3989 					const unsigned char *));
3990 void __hw_addr_init(struct netdev_hw_addr_list *list);
3991 
3992 /* Functions used for device addresses handling */
3993 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3994 		 unsigned char addr_type);
3995 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3996 		 unsigned char addr_type);
3997 void dev_addr_flush(struct net_device *dev);
3998 int dev_addr_init(struct net_device *dev);
3999 
4000 /* Functions used for unicast addresses handling */
4001 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4002 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4003 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4004 int dev_uc_sync(struct net_device *to, struct net_device *from);
4005 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4006 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4007 void dev_uc_flush(struct net_device *dev);
4008 void dev_uc_init(struct net_device *dev);
4009 
4010 /**
4011  *  __dev_uc_sync - Synchonize device's unicast list
4012  *  @dev:  device to sync
4013  *  @sync: function to call if address should be added
4014  *  @unsync: function to call if address should be removed
4015  *
4016  *  Add newly added addresses to the interface, and release
4017  *  addresses that have been deleted.
4018  */
4019 static inline int __dev_uc_sync(struct net_device *dev,
4020 				int (*sync)(struct net_device *,
4021 					    const unsigned char *),
4022 				int (*unsync)(struct net_device *,
4023 					      const unsigned char *))
4024 {
4025 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4026 }
4027 
4028 /**
4029  *  __dev_uc_unsync - Remove synchronized addresses from device
4030  *  @dev:  device to sync
4031  *  @unsync: function to call if address should be removed
4032  *
4033  *  Remove all addresses that were added to the device by dev_uc_sync().
4034  */
4035 static inline void __dev_uc_unsync(struct net_device *dev,
4036 				   int (*unsync)(struct net_device *,
4037 						 const unsigned char *))
4038 {
4039 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4040 }
4041 
4042 /* Functions used for multicast addresses handling */
4043 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4044 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4045 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4046 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4047 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4048 int dev_mc_sync(struct net_device *to, struct net_device *from);
4049 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4050 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4051 void dev_mc_flush(struct net_device *dev);
4052 void dev_mc_init(struct net_device *dev);
4053 
4054 /**
4055  *  __dev_mc_sync - Synchonize device's multicast list
4056  *  @dev:  device to sync
4057  *  @sync: function to call if address should be added
4058  *  @unsync: function to call if address should be removed
4059  *
4060  *  Add newly added addresses to the interface, and release
4061  *  addresses that have been deleted.
4062  */
4063 static inline int __dev_mc_sync(struct net_device *dev,
4064 				int (*sync)(struct net_device *,
4065 					    const unsigned char *),
4066 				int (*unsync)(struct net_device *,
4067 					      const unsigned char *))
4068 {
4069 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4070 }
4071 
4072 /**
4073  *  __dev_mc_unsync - Remove synchronized addresses from device
4074  *  @dev:  device to sync
4075  *  @unsync: function to call if address should be removed
4076  *
4077  *  Remove all addresses that were added to the device by dev_mc_sync().
4078  */
4079 static inline void __dev_mc_unsync(struct net_device *dev,
4080 				   int (*unsync)(struct net_device *,
4081 						 const unsigned char *))
4082 {
4083 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4084 }
4085 
4086 /* Functions used for secondary unicast and multicast support */
4087 void dev_set_rx_mode(struct net_device *dev);
4088 void __dev_set_rx_mode(struct net_device *dev);
4089 int dev_set_promiscuity(struct net_device *dev, int inc);
4090 int dev_set_allmulti(struct net_device *dev, int inc);
4091 void netdev_state_change(struct net_device *dev);
4092 void netdev_notify_peers(struct net_device *dev);
4093 void netdev_features_change(struct net_device *dev);
4094 /* Load a device via the kmod */
4095 void dev_load(struct net *net, const char *name);
4096 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4097 					struct rtnl_link_stats64 *storage);
4098 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4099 			     const struct net_device_stats *netdev_stats);
4100 
4101 extern int		netdev_max_backlog;
4102 extern int		netdev_tstamp_prequeue;
4103 extern int		weight_p;
4104 extern int		dev_weight_rx_bias;
4105 extern int		dev_weight_tx_bias;
4106 extern int		dev_rx_weight;
4107 extern int		dev_tx_weight;
4108 
4109 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4110 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4111 						     struct list_head **iter);
4112 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4113 						     struct list_head **iter);
4114 
4115 /* iterate through upper list, must be called under RCU read lock */
4116 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4117 	for (iter = &(dev)->adj_list.upper, \
4118 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4119 	     updev; \
4120 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4121 
4122 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4123 				  int (*fn)(struct net_device *upper_dev,
4124 					    void *data),
4125 				  void *data);
4126 
4127 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4128 				  struct net_device *upper_dev);
4129 
4130 bool netdev_has_any_upper_dev(struct net_device *dev);
4131 
4132 void *netdev_lower_get_next_private(struct net_device *dev,
4133 				    struct list_head **iter);
4134 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4135 					struct list_head **iter);
4136 
4137 #define netdev_for_each_lower_private(dev, priv, iter) \
4138 	for (iter = (dev)->adj_list.lower.next, \
4139 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4140 	     priv; \
4141 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4142 
4143 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4144 	for (iter = &(dev)->adj_list.lower, \
4145 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4146 	     priv; \
4147 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4148 
4149 void *netdev_lower_get_next(struct net_device *dev,
4150 				struct list_head **iter);
4151 
4152 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4153 	for (iter = (dev)->adj_list.lower.next, \
4154 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4155 	     ldev; \
4156 	     ldev = netdev_lower_get_next(dev, &(iter)))
4157 
4158 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4159 					     struct list_head **iter);
4160 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4161 						 struct list_head **iter);
4162 
4163 int netdev_walk_all_lower_dev(struct net_device *dev,
4164 			      int (*fn)(struct net_device *lower_dev,
4165 					void *data),
4166 			      void *data);
4167 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4168 				  int (*fn)(struct net_device *lower_dev,
4169 					    void *data),
4170 				  void *data);
4171 
4172 void *netdev_adjacent_get_private(struct list_head *adj_list);
4173 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4174 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4175 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4176 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4177 			  struct netlink_ext_ack *extack);
4178 int netdev_master_upper_dev_link(struct net_device *dev,
4179 				 struct net_device *upper_dev,
4180 				 void *upper_priv, void *upper_info,
4181 				 struct netlink_ext_ack *extack);
4182 void netdev_upper_dev_unlink(struct net_device *dev,
4183 			     struct net_device *upper_dev);
4184 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4185 void *netdev_lower_dev_get_private(struct net_device *dev,
4186 				   struct net_device *lower_dev);
4187 void netdev_lower_state_changed(struct net_device *lower_dev,
4188 				void *lower_state_info);
4189 
4190 /* RSS keys are 40 or 52 bytes long */
4191 #define NETDEV_RSS_KEY_LEN 52
4192 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4193 void netdev_rss_key_fill(void *buffer, size_t len);
4194 
4195 int dev_get_nest_level(struct net_device *dev);
4196 int skb_checksum_help(struct sk_buff *skb);
4197 int skb_crc32c_csum_help(struct sk_buff *skb);
4198 int skb_csum_hwoffload_help(struct sk_buff *skb,
4199 			    const netdev_features_t features);
4200 
4201 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4202 				  netdev_features_t features, bool tx_path);
4203 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4204 				    netdev_features_t features);
4205 
4206 struct netdev_bonding_info {
4207 	ifslave	slave;
4208 	ifbond	master;
4209 };
4210 
4211 struct netdev_notifier_bonding_info {
4212 	struct netdev_notifier_info info; /* must be first */
4213 	struct netdev_bonding_info  bonding_info;
4214 };
4215 
4216 void netdev_bonding_info_change(struct net_device *dev,
4217 				struct netdev_bonding_info *bonding_info);
4218 
4219 static inline
4220 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4221 {
4222 	return __skb_gso_segment(skb, features, true);
4223 }
4224 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4225 
4226 static inline bool can_checksum_protocol(netdev_features_t features,
4227 					 __be16 protocol)
4228 {
4229 	if (protocol == htons(ETH_P_FCOE))
4230 		return !!(features & NETIF_F_FCOE_CRC);
4231 
4232 	/* Assume this is an IP checksum (not SCTP CRC) */
4233 
4234 	if (features & NETIF_F_HW_CSUM) {
4235 		/* Can checksum everything */
4236 		return true;
4237 	}
4238 
4239 	switch (protocol) {
4240 	case htons(ETH_P_IP):
4241 		return !!(features & NETIF_F_IP_CSUM);
4242 	case htons(ETH_P_IPV6):
4243 		return !!(features & NETIF_F_IPV6_CSUM);
4244 	default:
4245 		return false;
4246 	}
4247 }
4248 
4249 #ifdef CONFIG_BUG
4250 void netdev_rx_csum_fault(struct net_device *dev);
4251 #else
4252 static inline void netdev_rx_csum_fault(struct net_device *dev)
4253 {
4254 }
4255 #endif
4256 /* rx skb timestamps */
4257 void net_enable_timestamp(void);
4258 void net_disable_timestamp(void);
4259 
4260 #ifdef CONFIG_PROC_FS
4261 int __init dev_proc_init(void);
4262 #else
4263 #define dev_proc_init() 0
4264 #endif
4265 
4266 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4267 					      struct sk_buff *skb, struct net_device *dev,
4268 					      bool more)
4269 {
4270 	skb->xmit_more = more ? 1 : 0;
4271 	return ops->ndo_start_xmit(skb, dev);
4272 }
4273 
4274 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4275 					    struct netdev_queue *txq, bool more)
4276 {
4277 	const struct net_device_ops *ops = dev->netdev_ops;
4278 	int rc;
4279 
4280 	rc = __netdev_start_xmit(ops, skb, dev, more);
4281 	if (rc == NETDEV_TX_OK)
4282 		txq_trans_update(txq);
4283 
4284 	return rc;
4285 }
4286 
4287 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4288 				const void *ns);
4289 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4290 				 const void *ns);
4291 
4292 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4293 {
4294 	return netdev_class_create_file_ns(class_attr, NULL);
4295 }
4296 
4297 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4298 {
4299 	netdev_class_remove_file_ns(class_attr, NULL);
4300 }
4301 
4302 extern const struct kobj_ns_type_operations net_ns_type_operations;
4303 
4304 const char *netdev_drivername(const struct net_device *dev);
4305 
4306 void linkwatch_run_queue(void);
4307 
4308 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4309 							  netdev_features_t f2)
4310 {
4311 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4312 		if (f1 & NETIF_F_HW_CSUM)
4313 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4314 		else
4315 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4316 	}
4317 
4318 	return f1 & f2;
4319 }
4320 
4321 static inline netdev_features_t netdev_get_wanted_features(
4322 	struct net_device *dev)
4323 {
4324 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4325 }
4326 netdev_features_t netdev_increment_features(netdev_features_t all,
4327 	netdev_features_t one, netdev_features_t mask);
4328 
4329 /* Allow TSO being used on stacked device :
4330  * Performing the GSO segmentation before last device
4331  * is a performance improvement.
4332  */
4333 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4334 							netdev_features_t mask)
4335 {
4336 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4337 }
4338 
4339 int __netdev_update_features(struct net_device *dev);
4340 void netdev_update_features(struct net_device *dev);
4341 void netdev_change_features(struct net_device *dev);
4342 
4343 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4344 					struct net_device *dev);
4345 
4346 netdev_features_t passthru_features_check(struct sk_buff *skb,
4347 					  struct net_device *dev,
4348 					  netdev_features_t features);
4349 netdev_features_t netif_skb_features(struct sk_buff *skb);
4350 
4351 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4352 {
4353 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4354 
4355 	/* check flags correspondence */
4356 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4357 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4358 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4359 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4360 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4361 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4362 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4363 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4364 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4365 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4366 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4367 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4368 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4369 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4370 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4371 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4372 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4373 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4374 
4375 	return (features & feature) == feature;
4376 }
4377 
4378 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4379 {
4380 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4381 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4382 }
4383 
4384 static inline bool netif_needs_gso(struct sk_buff *skb,
4385 				   netdev_features_t features)
4386 {
4387 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4388 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4389 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4390 }
4391 
4392 static inline void netif_set_gso_max_size(struct net_device *dev,
4393 					  unsigned int size)
4394 {
4395 	dev->gso_max_size = size;
4396 }
4397 
4398 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4399 					int pulled_hlen, u16 mac_offset,
4400 					int mac_len)
4401 {
4402 	skb->protocol = protocol;
4403 	skb->encapsulation = 1;
4404 	skb_push(skb, pulled_hlen);
4405 	skb_reset_transport_header(skb);
4406 	skb->mac_header = mac_offset;
4407 	skb->network_header = skb->mac_header + mac_len;
4408 	skb->mac_len = mac_len;
4409 }
4410 
4411 static inline bool netif_is_macsec(const struct net_device *dev)
4412 {
4413 	return dev->priv_flags & IFF_MACSEC;
4414 }
4415 
4416 static inline bool netif_is_macvlan(const struct net_device *dev)
4417 {
4418 	return dev->priv_flags & IFF_MACVLAN;
4419 }
4420 
4421 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4422 {
4423 	return dev->priv_flags & IFF_MACVLAN_PORT;
4424 }
4425 
4426 static inline bool netif_is_bond_master(const struct net_device *dev)
4427 {
4428 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4429 }
4430 
4431 static inline bool netif_is_bond_slave(const struct net_device *dev)
4432 {
4433 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4434 }
4435 
4436 static inline bool netif_supports_nofcs(struct net_device *dev)
4437 {
4438 	return dev->priv_flags & IFF_SUPP_NOFCS;
4439 }
4440 
4441 static inline bool netif_is_l3_master(const struct net_device *dev)
4442 {
4443 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4444 }
4445 
4446 static inline bool netif_is_l3_slave(const struct net_device *dev)
4447 {
4448 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4449 }
4450 
4451 static inline bool netif_is_bridge_master(const struct net_device *dev)
4452 {
4453 	return dev->priv_flags & IFF_EBRIDGE;
4454 }
4455 
4456 static inline bool netif_is_bridge_port(const struct net_device *dev)
4457 {
4458 	return dev->priv_flags & IFF_BRIDGE_PORT;
4459 }
4460 
4461 static inline bool netif_is_ovs_master(const struct net_device *dev)
4462 {
4463 	return dev->priv_flags & IFF_OPENVSWITCH;
4464 }
4465 
4466 static inline bool netif_is_ovs_port(const struct net_device *dev)
4467 {
4468 	return dev->priv_flags & IFF_OVS_DATAPATH;
4469 }
4470 
4471 static inline bool netif_is_team_master(const struct net_device *dev)
4472 {
4473 	return dev->priv_flags & IFF_TEAM;
4474 }
4475 
4476 static inline bool netif_is_team_port(const struct net_device *dev)
4477 {
4478 	return dev->priv_flags & IFF_TEAM_PORT;
4479 }
4480 
4481 static inline bool netif_is_lag_master(const struct net_device *dev)
4482 {
4483 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4484 }
4485 
4486 static inline bool netif_is_lag_port(const struct net_device *dev)
4487 {
4488 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4489 }
4490 
4491 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4492 {
4493 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4494 }
4495 
4496 static inline bool netif_is_failover(const struct net_device *dev)
4497 {
4498 	return dev->priv_flags & IFF_FAILOVER;
4499 }
4500 
4501 static inline bool netif_is_failover_slave(const struct net_device *dev)
4502 {
4503 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4504 }
4505 
4506 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4507 static inline void netif_keep_dst(struct net_device *dev)
4508 {
4509 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4510 }
4511 
4512 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4513 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4514 {
4515 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4516 	return dev->priv_flags & IFF_MACSEC;
4517 }
4518 
4519 extern struct pernet_operations __net_initdata loopback_net_ops;
4520 
4521 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4522 
4523 /* netdev_printk helpers, similar to dev_printk */
4524 
4525 static inline const char *netdev_name(const struct net_device *dev)
4526 {
4527 	if (!dev->name[0] || strchr(dev->name, '%'))
4528 		return "(unnamed net_device)";
4529 	return dev->name;
4530 }
4531 
4532 static inline bool netdev_unregistering(const struct net_device *dev)
4533 {
4534 	return dev->reg_state == NETREG_UNREGISTERING;
4535 }
4536 
4537 static inline const char *netdev_reg_state(const struct net_device *dev)
4538 {
4539 	switch (dev->reg_state) {
4540 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4541 	case NETREG_REGISTERED: return "";
4542 	case NETREG_UNREGISTERING: return " (unregistering)";
4543 	case NETREG_UNREGISTERED: return " (unregistered)";
4544 	case NETREG_RELEASED: return " (released)";
4545 	case NETREG_DUMMY: return " (dummy)";
4546 	}
4547 
4548 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4549 	return " (unknown)";
4550 }
4551 
4552 __printf(3, 4)
4553 void netdev_printk(const char *level, const struct net_device *dev,
4554 		   const char *format, ...);
4555 __printf(2, 3)
4556 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4557 __printf(2, 3)
4558 void netdev_alert(const struct net_device *dev, const char *format, ...);
4559 __printf(2, 3)
4560 void netdev_crit(const struct net_device *dev, const char *format, ...);
4561 __printf(2, 3)
4562 void netdev_err(const struct net_device *dev, const char *format, ...);
4563 __printf(2, 3)
4564 void netdev_warn(const struct net_device *dev, const char *format, ...);
4565 __printf(2, 3)
4566 void netdev_notice(const struct net_device *dev, const char *format, ...);
4567 __printf(2, 3)
4568 void netdev_info(const struct net_device *dev, const char *format, ...);
4569 
4570 #define netdev_level_once(level, dev, fmt, ...)			\
4571 do {								\
4572 	static bool __print_once __read_mostly;			\
4573 								\
4574 	if (!__print_once) {					\
4575 		__print_once = true;				\
4576 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4577 	}							\
4578 } while (0)
4579 
4580 #define netdev_emerg_once(dev, fmt, ...) \
4581 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4582 #define netdev_alert_once(dev, fmt, ...) \
4583 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4584 #define netdev_crit_once(dev, fmt, ...) \
4585 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4586 #define netdev_err_once(dev, fmt, ...) \
4587 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4588 #define netdev_warn_once(dev, fmt, ...) \
4589 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4590 #define netdev_notice_once(dev, fmt, ...) \
4591 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4592 #define netdev_info_once(dev, fmt, ...) \
4593 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4594 
4595 #define MODULE_ALIAS_NETDEV(device) \
4596 	MODULE_ALIAS("netdev-" device)
4597 
4598 #if defined(CONFIG_DYNAMIC_DEBUG)
4599 #define netdev_dbg(__dev, format, args...)			\
4600 do {								\
4601 	dynamic_netdev_dbg(__dev, format, ##args);		\
4602 } while (0)
4603 #elif defined(DEBUG)
4604 #define netdev_dbg(__dev, format, args...)			\
4605 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4606 #else
4607 #define netdev_dbg(__dev, format, args...)			\
4608 ({								\
4609 	if (0)							\
4610 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4611 })
4612 #endif
4613 
4614 #if defined(VERBOSE_DEBUG)
4615 #define netdev_vdbg	netdev_dbg
4616 #else
4617 
4618 #define netdev_vdbg(dev, format, args...)			\
4619 ({								\
4620 	if (0)							\
4621 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4622 	0;							\
4623 })
4624 #endif
4625 
4626 /*
4627  * netdev_WARN() acts like dev_printk(), but with the key difference
4628  * of using a WARN/WARN_ON to get the message out, including the
4629  * file/line information and a backtrace.
4630  */
4631 #define netdev_WARN(dev, format, args...)			\
4632 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4633 	     netdev_reg_state(dev), ##args)
4634 
4635 #define netdev_WARN_ONCE(dev, format, args...)				\
4636 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4637 		  netdev_reg_state(dev), ##args)
4638 
4639 /* netif printk helpers, similar to netdev_printk */
4640 
4641 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4642 do {					  			\
4643 	if (netif_msg_##type(priv))				\
4644 		netdev_printk(level, (dev), fmt, ##args);	\
4645 } while (0)
4646 
4647 #define netif_level(level, priv, type, dev, fmt, args...)	\
4648 do {								\
4649 	if (netif_msg_##type(priv))				\
4650 		netdev_##level(dev, fmt, ##args);		\
4651 } while (0)
4652 
4653 #define netif_emerg(priv, type, dev, fmt, args...)		\
4654 	netif_level(emerg, priv, type, dev, fmt, ##args)
4655 #define netif_alert(priv, type, dev, fmt, args...)		\
4656 	netif_level(alert, priv, type, dev, fmt, ##args)
4657 #define netif_crit(priv, type, dev, fmt, args...)		\
4658 	netif_level(crit, priv, type, dev, fmt, ##args)
4659 #define netif_err(priv, type, dev, fmt, args...)		\
4660 	netif_level(err, priv, type, dev, fmt, ##args)
4661 #define netif_warn(priv, type, dev, fmt, args...)		\
4662 	netif_level(warn, priv, type, dev, fmt, ##args)
4663 #define netif_notice(priv, type, dev, fmt, args...)		\
4664 	netif_level(notice, priv, type, dev, fmt, ##args)
4665 #define netif_info(priv, type, dev, fmt, args...)		\
4666 	netif_level(info, priv, type, dev, fmt, ##args)
4667 
4668 #if defined(CONFIG_DYNAMIC_DEBUG)
4669 #define netif_dbg(priv, type, netdev, format, args...)		\
4670 do {								\
4671 	if (netif_msg_##type(priv))				\
4672 		dynamic_netdev_dbg(netdev, format, ##args);	\
4673 } while (0)
4674 #elif defined(DEBUG)
4675 #define netif_dbg(priv, type, dev, format, args...)		\
4676 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4677 #else
4678 #define netif_dbg(priv, type, dev, format, args...)			\
4679 ({									\
4680 	if (0)								\
4681 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4682 	0;								\
4683 })
4684 #endif
4685 
4686 /* if @cond then downgrade to debug, else print at @level */
4687 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4688 	do {                                                              \
4689 		if (cond)                                                 \
4690 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4691 		else                                                      \
4692 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4693 	} while (0)
4694 
4695 #if defined(VERBOSE_DEBUG)
4696 #define netif_vdbg	netif_dbg
4697 #else
4698 #define netif_vdbg(priv, type, dev, format, args...)		\
4699 ({								\
4700 	if (0)							\
4701 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4702 	0;							\
4703 })
4704 #endif
4705 
4706 /*
4707  *	The list of packet types we will receive (as opposed to discard)
4708  *	and the routines to invoke.
4709  *
4710  *	Why 16. Because with 16 the only overlap we get on a hash of the
4711  *	low nibble of the protocol value is RARP/SNAP/X.25.
4712  *
4713  *		0800	IP
4714  *		0001	802.3
4715  *		0002	AX.25
4716  *		0004	802.2
4717  *		8035	RARP
4718  *		0005	SNAP
4719  *		0805	X.25
4720  *		0806	ARP
4721  *		8137	IPX
4722  *		0009	Localtalk
4723  *		86DD	IPv6
4724  */
4725 #define PTYPE_HASH_SIZE	(16)
4726 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4727 
4728 #endif	/* _LINUX_NETDEVICE_H */
4729