xref: /openbmc/linux/include/linux/netdevice.h (revision a06c488d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_HYPERV_NET)
136 # define LL_MAX_HEADER 128
137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
138 # if defined(CONFIG_MAC80211_MESH)
139 #  define LL_MAX_HEADER 128
140 # else
141 #  define LL_MAX_HEADER 96
142 # endif
143 #else
144 # define LL_MAX_HEADER 32
145 #endif
146 
147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
149 #define MAX_HEADER LL_MAX_HEADER
150 #else
151 #define MAX_HEADER (LL_MAX_HEADER + 48)
152 #endif
153 
154 /*
155  *	Old network device statistics. Fields are native words
156  *	(unsigned long) so they can be read and written atomically.
157  */
158 
159 struct net_device_stats {
160 	unsigned long	rx_packets;
161 	unsigned long	tx_packets;
162 	unsigned long	rx_bytes;
163 	unsigned long	tx_bytes;
164 	unsigned long	rx_errors;
165 	unsigned long	tx_errors;
166 	unsigned long	rx_dropped;
167 	unsigned long	tx_dropped;
168 	unsigned long	multicast;
169 	unsigned long	collisions;
170 	unsigned long	rx_length_errors;
171 	unsigned long	rx_over_errors;
172 	unsigned long	rx_crc_errors;
173 	unsigned long	rx_frame_errors;
174 	unsigned long	rx_fifo_errors;
175 	unsigned long	rx_missed_errors;
176 	unsigned long	tx_aborted_errors;
177 	unsigned long	tx_carrier_errors;
178 	unsigned long	tx_fifo_errors;
179 	unsigned long	tx_heartbeat_errors;
180 	unsigned long	tx_window_errors;
181 	unsigned long	rx_compressed;
182 	unsigned long	tx_compressed;
183 };
184 
185 
186 #include <linux/cache.h>
187 #include <linux/skbuff.h>
188 
189 #ifdef CONFIG_RPS
190 #include <linux/static_key.h>
191 extern struct static_key rps_needed;
192 #endif
193 
194 struct neighbour;
195 struct neigh_parms;
196 struct sk_buff;
197 
198 struct netdev_hw_addr {
199 	struct list_head	list;
200 	unsigned char		addr[MAX_ADDR_LEN];
201 	unsigned char		type;
202 #define NETDEV_HW_ADDR_T_LAN		1
203 #define NETDEV_HW_ADDR_T_SAN		2
204 #define NETDEV_HW_ADDR_T_SLAVE		3
205 #define NETDEV_HW_ADDR_T_UNICAST	4
206 #define NETDEV_HW_ADDR_T_MULTICAST	5
207 	bool			global_use;
208 	int			sync_cnt;
209 	int			refcount;
210 	int			synced;
211 	struct rcu_head		rcu_head;
212 };
213 
214 struct netdev_hw_addr_list {
215 	struct list_head	list;
216 	int			count;
217 };
218 
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 	list_for_each_entry(ha, &(l)->list, list)
223 
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228 
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233 
234 struct hh_cache {
235 	u16		hh_len;
236 	u16		__pad;
237 	seqlock_t	hh_lock;
238 
239 	/* cached hardware header; allow for machine alignment needs.        */
240 #define HH_DATA_MOD	16
241 #define HH_DATA_OFF(__len) \
242 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247 
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249  * Alternative is:
250  *   dev->hard_header_len ? (dev->hard_header_len +
251  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252  *
253  * We could use other alignment values, but we must maintain the
254  * relationship HH alignment <= LL alignment.
255  */
256 #define LL_RESERVED_SPACE(dev) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 
261 struct header_ops {
262 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
263 			   unsigned short type, const void *daddr,
264 			   const void *saddr, unsigned int len);
265 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
267 	void	(*cache_update)(struct hh_cache *hh,
268 				const struct net_device *dev,
269 				const unsigned char *haddr);
270 };
271 
272 /* These flag bits are private to the generic network queueing
273  * layer, they may not be explicitly referenced by any other
274  * code.
275  */
276 
277 enum netdev_state_t {
278 	__LINK_STATE_START,
279 	__LINK_STATE_PRESENT,
280 	__LINK_STATE_NOCARRIER,
281 	__LINK_STATE_LINKWATCH_PENDING,
282 	__LINK_STATE_DORMANT,
283 };
284 
285 
286 /*
287  * This structure holds at boot time configured netdevice settings. They
288  * are then used in the device probing.
289  */
290 struct netdev_boot_setup {
291 	char name[IFNAMSIZ];
292 	struct ifmap map;
293 };
294 #define NETDEV_BOOT_SETUP_MAX 8
295 
296 int __init netdev_boot_setup(char *str);
297 
298 /*
299  * Structure for NAPI scheduling similar to tasklet but with weighting
300  */
301 struct napi_struct {
302 	/* The poll_list must only be managed by the entity which
303 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
304 	 * whoever atomically sets that bit can add this napi_struct
305 	 * to the per-cpu poll_list, and whoever clears that bit
306 	 * can remove from the list right before clearing the bit.
307 	 */
308 	struct list_head	poll_list;
309 
310 	unsigned long		state;
311 	int			weight;
312 	unsigned int		gro_count;
313 	int			(*poll)(struct napi_struct *, int);
314 #ifdef CONFIG_NETPOLL
315 	spinlock_t		poll_lock;
316 	int			poll_owner;
317 #endif
318 	struct net_device	*dev;
319 	struct sk_buff		*gro_list;
320 	struct sk_buff		*skb;
321 	struct hrtimer		timer;
322 	struct list_head	dev_list;
323 	struct hlist_node	napi_hash_node;
324 	unsigned int		napi_id;
325 };
326 
327 enum {
328 	NAPI_STATE_SCHED,	/* Poll is scheduled */
329 	NAPI_STATE_DISABLE,	/* Disable pending */
330 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
331 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
332 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
333 };
334 
335 enum gro_result {
336 	GRO_MERGED,
337 	GRO_MERGED_FREE,
338 	GRO_HELD,
339 	GRO_NORMAL,
340 	GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343 
344 /*
345  * enum rx_handler_result - Possible return values for rx_handlers.
346  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347  * further.
348  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349  * case skb->dev was changed by rx_handler.
350  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352  *
353  * rx_handlers are functions called from inside __netif_receive_skb(), to do
354  * special processing of the skb, prior to delivery to protocol handlers.
355  *
356  * Currently, a net_device can only have a single rx_handler registered. Trying
357  * to register a second rx_handler will return -EBUSY.
358  *
359  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360  * To unregister a rx_handler on a net_device, use
361  * netdev_rx_handler_unregister().
362  *
363  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364  * do with the skb.
365  *
366  * If the rx_handler consumed to skb in some way, it should return
367  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368  * the skb to be delivered in some other ways.
369  *
370  * If the rx_handler changed skb->dev, to divert the skb to another
371  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372  * new device will be called if it exists.
373  *
374  * If the rx_handler consider the skb should be ignored, it should return
375  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376  * are registered on exact device (ptype->dev == skb->dev).
377  *
378  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379  * delivered, it should return RX_HANDLER_PASS.
380  *
381  * A device without a registered rx_handler will behave as if rx_handler
382  * returned RX_HANDLER_PASS.
383  */
384 
385 enum rx_handler_result {
386 	RX_HANDLER_CONSUMED,
387 	RX_HANDLER_ANOTHER,
388 	RX_HANDLER_EXACT,
389 	RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393 
394 void __napi_schedule(struct napi_struct *n);
395 void __napi_schedule_irqoff(struct napi_struct *n);
396 
397 static inline bool napi_disable_pending(struct napi_struct *n)
398 {
399 	return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401 
402 /**
403  *	napi_schedule_prep - check if napi can be scheduled
404  *	@n: napi context
405  *
406  * Test if NAPI routine is already running, and if not mark
407  * it as running.  This is used as a condition variable
408  * insure only one NAPI poll instance runs.  We also make
409  * sure there is no pending NAPI disable.
410  */
411 static inline bool napi_schedule_prep(struct napi_struct *n)
412 {
413 	return !napi_disable_pending(n) &&
414 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416 
417 /**
418  *	napi_schedule - schedule NAPI poll
419  *	@n: napi context
420  *
421  * Schedule NAPI poll routine to be called if it is not already
422  * running.
423  */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 	if (napi_schedule_prep(n))
427 		__napi_schedule(n);
428 }
429 
430 /**
431  *	napi_schedule_irqoff - schedule NAPI poll
432  *	@n: napi context
433  *
434  * Variant of napi_schedule(), assuming hard irqs are masked.
435  */
436 static inline void napi_schedule_irqoff(struct napi_struct *n)
437 {
438 	if (napi_schedule_prep(n))
439 		__napi_schedule_irqoff(n);
440 }
441 
442 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
443 static inline bool napi_reschedule(struct napi_struct *napi)
444 {
445 	if (napi_schedule_prep(napi)) {
446 		__napi_schedule(napi);
447 		return true;
448 	}
449 	return false;
450 }
451 
452 void __napi_complete(struct napi_struct *n);
453 void napi_complete_done(struct napi_struct *n, int work_done);
454 /**
455  *	napi_complete - NAPI processing complete
456  *	@n: napi context
457  *
458  * Mark NAPI processing as complete.
459  * Consider using napi_complete_done() instead.
460  */
461 static inline void napi_complete(struct napi_struct *n)
462 {
463 	return napi_complete_done(n, 0);
464 }
465 
466 /**
467  *	napi_hash_add - add a NAPI to global hashtable
468  *	@napi: napi context
469  *
470  * generate a new napi_id and store a @napi under it in napi_hash
471  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
472  * Note: This is normally automatically done from netif_napi_add(),
473  * so might disappear in a future linux version.
474  */
475 void napi_hash_add(struct napi_struct *napi);
476 
477 /**
478  *	napi_hash_del - remove a NAPI from global table
479  *	@napi: napi context
480  *
481  * Warning: caller must observe rcu grace period
482  * before freeing memory containing @napi, if
483  * this function returns true.
484  * Note: core networking stack automatically calls it
485  * from netif_napi_del()
486  * Drivers might want to call this helper to combine all
487  * the needed rcu grace periods into a single one.
488  */
489 bool napi_hash_del(struct napi_struct *napi);
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: napi context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: napi context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 #ifdef CONFIG_SMP
516 /**
517  *	napi_synchronize - wait until NAPI is not running
518  *	@n: napi context
519  *
520  * Wait until NAPI is done being scheduled on this context.
521  * Waits till any outstanding processing completes but
522  * does not disable future activations.
523  */
524 static inline void napi_synchronize(const struct napi_struct *n)
525 {
526 	while (test_bit(NAPI_STATE_SCHED, &n->state))
527 		msleep(1);
528 }
529 #else
530 # define napi_synchronize(n)	barrier()
531 #endif
532 
533 enum netdev_queue_state_t {
534 	__QUEUE_STATE_DRV_XOFF,
535 	__QUEUE_STATE_STACK_XOFF,
536 	__QUEUE_STATE_FROZEN,
537 };
538 
539 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
540 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
542 
543 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
547 					QUEUE_STATE_FROZEN)
548 
549 /*
550  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
551  * netif_tx_* functions below are used to manipulate this flag.  The
552  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
553  * queue independently.  The netif_xmit_*stopped functions below are called
554  * to check if the queue has been stopped by the driver or stack (either
555  * of the XOFF bits are set in the state).  Drivers should not need to call
556  * netif_xmit*stopped functions, they should only be using netif_tx_*.
557  */
558 
559 struct netdev_queue {
560 /*
561  * read mostly part
562  */
563 	struct net_device	*dev;
564 	struct Qdisc __rcu	*qdisc;
565 	struct Qdisc		*qdisc_sleeping;
566 #ifdef CONFIG_SYSFS
567 	struct kobject		kobj;
568 #endif
569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570 	int			numa_node;
571 #endif
572 /*
573  * write mostly part
574  */
575 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
576 	int			xmit_lock_owner;
577 	/*
578 	 * please use this field instead of dev->trans_start
579 	 */
580 	unsigned long		trans_start;
581 
582 	/*
583 	 * Number of TX timeouts for this queue
584 	 * (/sys/class/net/DEV/Q/trans_timeout)
585 	 */
586 	unsigned long		trans_timeout;
587 
588 	unsigned long		state;
589 
590 #ifdef CONFIG_BQL
591 	struct dql		dql;
592 #endif
593 	unsigned long		tx_maxrate;
594 } ____cacheline_aligned_in_smp;
595 
596 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	return q->numa_node;
600 #else
601 	return NUMA_NO_NODE;
602 #endif
603 }
604 
605 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
606 {
607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 	q->numa_node = node;
609 #endif
610 }
611 
612 #ifdef CONFIG_RPS
613 /*
614  * This structure holds an RPS map which can be of variable length.  The
615  * map is an array of CPUs.
616  */
617 struct rps_map {
618 	unsigned int len;
619 	struct rcu_head rcu;
620 	u16 cpus[0];
621 };
622 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
623 
624 /*
625  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
626  * tail pointer for that CPU's input queue at the time of last enqueue, and
627  * a hardware filter index.
628  */
629 struct rps_dev_flow {
630 	u16 cpu;
631 	u16 filter;
632 	unsigned int last_qtail;
633 };
634 #define RPS_NO_FILTER 0xffff
635 
636 /*
637  * The rps_dev_flow_table structure contains a table of flow mappings.
638  */
639 struct rps_dev_flow_table {
640 	unsigned int mask;
641 	struct rcu_head rcu;
642 	struct rps_dev_flow flows[0];
643 };
644 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
645     ((_num) * sizeof(struct rps_dev_flow)))
646 
647 /*
648  * The rps_sock_flow_table contains mappings of flows to the last CPU
649  * on which they were processed by the application (set in recvmsg).
650  * Each entry is a 32bit value. Upper part is the high order bits
651  * of flow hash, lower part is cpu number.
652  * rps_cpu_mask is used to partition the space, depending on number of
653  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
654  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
655  * meaning we use 32-6=26 bits for the hash.
656  */
657 struct rps_sock_flow_table {
658 	u32	mask;
659 
660 	u32	ents[0] ____cacheline_aligned_in_smp;
661 };
662 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
663 
664 #define RPS_NO_CPU 0xffff
665 
666 extern u32 rps_cpu_mask;
667 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
668 
669 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
670 					u32 hash)
671 {
672 	if (table && hash) {
673 		unsigned int index = hash & table->mask;
674 		u32 val = hash & ~rps_cpu_mask;
675 
676 		/* We only give a hint, preemption can change cpu under us */
677 		val |= raw_smp_processor_id();
678 
679 		if (table->ents[index] != val)
680 			table->ents[index] = val;
681 	}
682 }
683 
684 #ifdef CONFIG_RFS_ACCEL
685 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
686 			 u16 filter_id);
687 #endif
688 #endif /* CONFIG_RPS */
689 
690 /* This structure contains an instance of an RX queue. */
691 struct netdev_rx_queue {
692 #ifdef CONFIG_RPS
693 	struct rps_map __rcu		*rps_map;
694 	struct rps_dev_flow_table __rcu	*rps_flow_table;
695 #endif
696 	struct kobject			kobj;
697 	struct net_device		*dev;
698 } ____cacheline_aligned_in_smp;
699 
700 /*
701  * RX queue sysfs structures and functions.
702  */
703 struct rx_queue_attribute {
704 	struct attribute attr;
705 	ssize_t (*show)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, char *buf);
707 	ssize_t (*store)(struct netdev_rx_queue *queue,
708 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
709 };
710 
711 #ifdef CONFIG_XPS
712 /*
713  * This structure holds an XPS map which can be of variable length.  The
714  * map is an array of queues.
715  */
716 struct xps_map {
717 	unsigned int len;
718 	unsigned int alloc_len;
719 	struct rcu_head rcu;
720 	u16 queues[0];
721 };
722 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
723 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
724        - sizeof(struct xps_map)) / sizeof(u16))
725 
726 /*
727  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
728  */
729 struct xps_dev_maps {
730 	struct rcu_head rcu;
731 	struct xps_map __rcu *cpu_map[0];
732 };
733 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
734     (nr_cpu_ids * sizeof(struct xps_map *)))
735 #endif /* CONFIG_XPS */
736 
737 #define TC_MAX_QUEUE	16
738 #define TC_BITMASK	15
739 /* HW offloaded queuing disciplines txq count and offset maps */
740 struct netdev_tc_txq {
741 	u16 count;
742 	u16 offset;
743 };
744 
745 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
746 /*
747  * This structure is to hold information about the device
748  * configured to run FCoE protocol stack.
749  */
750 struct netdev_fcoe_hbainfo {
751 	char	manufacturer[64];
752 	char	serial_number[64];
753 	char	hardware_version[64];
754 	char	driver_version[64];
755 	char	optionrom_version[64];
756 	char	firmware_version[64];
757 	char	model[256];
758 	char	model_description[256];
759 };
760 #endif
761 
762 #define MAX_PHYS_ITEM_ID_LEN 32
763 
764 /* This structure holds a unique identifier to identify some
765  * physical item (port for example) used by a netdevice.
766  */
767 struct netdev_phys_item_id {
768 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
769 	unsigned char id_len;
770 };
771 
772 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
773 					    struct netdev_phys_item_id *b)
774 {
775 	return a->id_len == b->id_len &&
776 	       memcmp(a->id, b->id, a->id_len) == 0;
777 }
778 
779 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
780 				       struct sk_buff *skb);
781 
782 /*
783  * This structure defines the management hooks for network devices.
784  * The following hooks can be defined; unless noted otherwise, they are
785  * optional and can be filled with a null pointer.
786  *
787  * int (*ndo_init)(struct net_device *dev);
788  *     This function is called once when network device is registered.
789  *     The network device can use this to any late stage initializaton
790  *     or semantic validattion. It can fail with an error code which will
791  *     be propogated back to register_netdev
792  *
793  * void (*ndo_uninit)(struct net_device *dev);
794  *     This function is called when device is unregistered or when registration
795  *     fails. It is not called if init fails.
796  *
797  * int (*ndo_open)(struct net_device *dev);
798  *     This function is called when network device transistions to the up
799  *     state.
800  *
801  * int (*ndo_stop)(struct net_device *dev);
802  *     This function is called when network device transistions to the down
803  *     state.
804  *
805  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
806  *                               struct net_device *dev);
807  *	Called when a packet needs to be transmitted.
808  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
809  *	the queue before that can happen; it's for obsolete devices and weird
810  *	corner cases, but the stack really does a non-trivial amount
811  *	of useless work if you return NETDEV_TX_BUSY.
812  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
813  *	Required can not be NULL.
814  *
815  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
816  *		netdev_features_t features);
817  *	Adjusts the requested feature flags according to device-specific
818  *	constraints, and returns the resulting flags. Must not modify
819  *	the device state.
820  *
821  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
822  *                         void *accel_priv, select_queue_fallback_t fallback);
823  *	Called to decide which queue to when device supports multiple
824  *	transmit queues.
825  *
826  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
827  *	This function is called to allow device receiver to make
828  *	changes to configuration when multicast or promiscious is enabled.
829  *
830  * void (*ndo_set_rx_mode)(struct net_device *dev);
831  *	This function is called device changes address list filtering.
832  *	If driver handles unicast address filtering, it should set
833  *	IFF_UNICAST_FLT to its priv_flags.
834  *
835  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
836  *	This function  is called when the Media Access Control address
837  *	needs to be changed. If this interface is not defined, the
838  *	mac address can not be changed.
839  *
840  * int (*ndo_validate_addr)(struct net_device *dev);
841  *	Test if Media Access Control address is valid for the device.
842  *
843  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
844  *	Called when a user request an ioctl which can't be handled by
845  *	the generic interface code. If not defined ioctl's return
846  *	not supported error code.
847  *
848  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
849  *	Used to set network devices bus interface parameters. This interface
850  *	is retained for legacy reason, new devices should use the bus
851  *	interface (PCI) for low level management.
852  *
853  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
854  *	Called when a user wants to change the Maximum Transfer Unit
855  *	of a device. If not defined, any request to change MTU will
856  *	will return an error.
857  *
858  * void (*ndo_tx_timeout)(struct net_device *dev);
859  *	Callback uses when the transmitter has not made any progress
860  *	for dev->watchdog ticks.
861  *
862  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
863  *                      struct rtnl_link_stats64 *storage);
864  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
865  *	Called when a user wants to get the network device usage
866  *	statistics. Drivers must do one of the following:
867  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
868  *	   rtnl_link_stats64 structure passed by the caller.
869  *	2. Define @ndo_get_stats to update a net_device_stats structure
870  *	   (which should normally be dev->stats) and return a pointer to
871  *	   it. The structure may be changed asynchronously only if each
872  *	   field is written atomically.
873  *	3. Update dev->stats asynchronously and atomically, and define
874  *	   neither operation.
875  *
876  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
877  *	If device support VLAN filtering this function is called when a
878  *	VLAN id is registered.
879  *
880  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
881  *	If device support VLAN filtering this function is called when a
882  *	VLAN id is unregistered.
883  *
884  * void (*ndo_poll_controller)(struct net_device *dev);
885  *
886  *	SR-IOV management functions.
887  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
888  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
889  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
890  *			  int max_tx_rate);
891  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
892  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
893  * int (*ndo_get_vf_config)(struct net_device *dev,
894  *			    int vf, struct ifla_vf_info *ivf);
895  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
896  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
897  *			  struct nlattr *port[]);
898  *
899  *      Enable or disable the VF ability to query its RSS Redirection Table and
900  *      Hash Key. This is needed since on some devices VF share this information
901  *      with PF and querying it may adduce a theoretical security risk.
902  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
903  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
904  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
905  * 	Called to setup 'tc' number of traffic classes in the net device. This
906  * 	is always called from the stack with the rtnl lock held and netif tx
907  * 	queues stopped. This allows the netdevice to perform queue management
908  * 	safely.
909  *
910  *	Fiber Channel over Ethernet (FCoE) offload functions.
911  * int (*ndo_fcoe_enable)(struct net_device *dev);
912  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
913  *	so the underlying device can perform whatever needed configuration or
914  *	initialization to support acceleration of FCoE traffic.
915  *
916  * int (*ndo_fcoe_disable)(struct net_device *dev);
917  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
918  *	so the underlying device can perform whatever needed clean-ups to
919  *	stop supporting acceleration of FCoE traffic.
920  *
921  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
922  *			     struct scatterlist *sgl, unsigned int sgc);
923  *	Called when the FCoE Initiator wants to initialize an I/O that
924  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
925  *	perform necessary setup and returns 1 to indicate the device is set up
926  *	successfully to perform DDP on this I/O, otherwise this returns 0.
927  *
928  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
929  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
930  *	indicated by the FC exchange id 'xid', so the underlying device can
931  *	clean up and reuse resources for later DDP requests.
932  *
933  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
934  *			      struct scatterlist *sgl, unsigned int sgc);
935  *	Called when the FCoE Target wants to initialize an I/O that
936  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
937  *	perform necessary setup and returns 1 to indicate the device is set up
938  *	successfully to perform DDP on this I/O, otherwise this returns 0.
939  *
940  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
941  *			       struct netdev_fcoe_hbainfo *hbainfo);
942  *	Called when the FCoE Protocol stack wants information on the underlying
943  *	device. This information is utilized by the FCoE protocol stack to
944  *	register attributes with Fiber Channel management service as per the
945  *	FC-GS Fabric Device Management Information(FDMI) specification.
946  *
947  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
948  *	Called when the underlying device wants to override default World Wide
949  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
950  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
951  *	protocol stack to use.
952  *
953  *	RFS acceleration.
954  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
955  *			    u16 rxq_index, u32 flow_id);
956  *	Set hardware filter for RFS.  rxq_index is the target queue index;
957  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
958  *	Return the filter ID on success, or a negative error code.
959  *
960  *	Slave management functions (for bridge, bonding, etc).
961  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
962  *	Called to make another netdev an underling.
963  *
964  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
965  *	Called to release previously enslaved netdev.
966  *
967  *      Feature/offload setting functions.
968  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
969  *	Called to update device configuration to new features. Passed
970  *	feature set might be less than what was returned by ndo_fix_features()).
971  *	Must return >0 or -errno if it changed dev->features itself.
972  *
973  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
974  *		      struct net_device *dev,
975  *		      const unsigned char *addr, u16 vid, u16 flags)
976  *	Adds an FDB entry to dev for addr.
977  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
978  *		      struct net_device *dev,
979  *		      const unsigned char *addr, u16 vid)
980  *	Deletes the FDB entry from dev coresponding to addr.
981  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
982  *		       struct net_device *dev, struct net_device *filter_dev,
983  *		       int idx)
984  *	Used to add FDB entries to dump requests. Implementers should add
985  *	entries to skb and update idx with the number of entries.
986  *
987  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
988  *			     u16 flags)
989  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
990  *			     struct net_device *dev, u32 filter_mask,
991  *			     int nlflags)
992  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
993  *			     u16 flags);
994  *
995  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
996  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
997  *	which do not represent real hardware may define this to allow their
998  *	userspace components to manage their virtual carrier state. Devices
999  *	that determine carrier state from physical hardware properties (eg
1000  *	network cables) or protocol-dependent mechanisms (eg
1001  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1002  *
1003  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1004  *			       struct netdev_phys_item_id *ppid);
1005  *	Called to get ID of physical port of this device. If driver does
1006  *	not implement this, it is assumed that the hw is not able to have
1007  *	multiple net devices on single physical port.
1008  *
1009  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1010  *			      sa_family_t sa_family, __be16 port);
1011  *	Called by vxlan to notiy a driver about the UDP port and socket
1012  *	address family that vxlan is listnening to. It is called only when
1013  *	a new port starts listening. The operation is protected by the
1014  *	vxlan_net->sock_lock.
1015  *
1016  * void (*ndo_add_geneve_port)(struct net_device *dev,
1017  *			      sa_family_t sa_family, __be16 port);
1018  *	Called by geneve to notify a driver about the UDP port and socket
1019  *	address family that geneve is listnening to. It is called only when
1020  *	a new port starts listening. The operation is protected by the
1021  *	geneve_net->sock_lock.
1022  *
1023  * void (*ndo_del_geneve_port)(struct net_device *dev,
1024  *			      sa_family_t sa_family, __be16 port);
1025  *	Called by geneve to notify the driver about a UDP port and socket
1026  *	address family that geneve is not listening to anymore. The operation
1027  *	is protected by the geneve_net->sock_lock.
1028  *
1029  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1030  *			      sa_family_t sa_family, __be16 port);
1031  *	Called by vxlan to notify the driver about a UDP port and socket
1032  *	address family that vxlan is not listening to anymore. The operation
1033  *	is protected by the vxlan_net->sock_lock.
1034  *
1035  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1036  *				 struct net_device *dev)
1037  *	Called by upper layer devices to accelerate switching or other
1038  *	station functionality into hardware. 'pdev is the lowerdev
1039  *	to use for the offload and 'dev' is the net device that will
1040  *	back the offload. Returns a pointer to the private structure
1041  *	the upper layer will maintain.
1042  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1043  *	Called by upper layer device to delete the station created
1044  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1045  *	the station and priv is the structure returned by the add
1046  *	operation.
1047  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1048  *				      struct net_device *dev,
1049  *				      void *priv);
1050  *	Callback to use for xmit over the accelerated station. This
1051  *	is used in place of ndo_start_xmit on accelerated net
1052  *	devices.
1053  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1054  *					    struct net_device *dev
1055  *					    netdev_features_t features);
1056  *	Called by core transmit path to determine if device is capable of
1057  *	performing offload operations on a given packet. This is to give
1058  *	the device an opportunity to implement any restrictions that cannot
1059  *	be otherwise expressed by feature flags. The check is called with
1060  *	the set of features that the stack has calculated and it returns
1061  *	those the driver believes to be appropriate.
1062  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1063  *			     int queue_index, u32 maxrate);
1064  *	Called when a user wants to set a max-rate limitation of specific
1065  *	TX queue.
1066  * int (*ndo_get_iflink)(const struct net_device *dev);
1067  *	Called to get the iflink value of this device.
1068  * void (*ndo_change_proto_down)(struct net_device *dev,
1069  *				  bool proto_down);
1070  *	This function is used to pass protocol port error state information
1071  *	to the switch driver. The switch driver can react to the proto_down
1072  *      by doing a phys down on the associated switch port.
1073  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1074  *	This function is used to get egress tunnel information for given skb.
1075  *	This is useful for retrieving outer tunnel header parameters while
1076  *	sampling packet.
1077  *
1078  */
1079 struct net_device_ops {
1080 	int			(*ndo_init)(struct net_device *dev);
1081 	void			(*ndo_uninit)(struct net_device *dev);
1082 	int			(*ndo_open)(struct net_device *dev);
1083 	int			(*ndo_stop)(struct net_device *dev);
1084 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1085 						  struct net_device *dev);
1086 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1087 						      struct net_device *dev,
1088 						      netdev_features_t features);
1089 	u16			(*ndo_select_queue)(struct net_device *dev,
1090 						    struct sk_buff *skb,
1091 						    void *accel_priv,
1092 						    select_queue_fallback_t fallback);
1093 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1094 						       int flags);
1095 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1096 	int			(*ndo_set_mac_address)(struct net_device *dev,
1097 						       void *addr);
1098 	int			(*ndo_validate_addr)(struct net_device *dev);
1099 	int			(*ndo_do_ioctl)(struct net_device *dev,
1100 					        struct ifreq *ifr, int cmd);
1101 	int			(*ndo_set_config)(struct net_device *dev,
1102 					          struct ifmap *map);
1103 	int			(*ndo_change_mtu)(struct net_device *dev,
1104 						  int new_mtu);
1105 	int			(*ndo_neigh_setup)(struct net_device *dev,
1106 						   struct neigh_parms *);
1107 	void			(*ndo_tx_timeout) (struct net_device *dev);
1108 
1109 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1110 						     struct rtnl_link_stats64 *storage);
1111 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1112 
1113 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1114 						       __be16 proto, u16 vid);
1115 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1116 						        __be16 proto, u16 vid);
1117 #ifdef CONFIG_NET_POLL_CONTROLLER
1118 	void                    (*ndo_poll_controller)(struct net_device *dev);
1119 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1120 						     struct netpoll_info *info);
1121 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1122 #endif
1123 #ifdef CONFIG_NET_RX_BUSY_POLL
1124 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1125 #endif
1126 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1127 						  int queue, u8 *mac);
1128 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1129 						   int queue, u16 vlan, u8 qos);
1130 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1131 						   int vf, int min_tx_rate,
1132 						   int max_tx_rate);
1133 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1134 						       int vf, bool setting);
1135 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1136 						    int vf, bool setting);
1137 	int			(*ndo_get_vf_config)(struct net_device *dev,
1138 						     int vf,
1139 						     struct ifla_vf_info *ivf);
1140 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1141 							 int vf, int link_state);
1142 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1143 						    int vf,
1144 						    struct ifla_vf_stats
1145 						    *vf_stats);
1146 	int			(*ndo_set_vf_port)(struct net_device *dev,
1147 						   int vf,
1148 						   struct nlattr *port[]);
1149 	int			(*ndo_get_vf_port)(struct net_device *dev,
1150 						   int vf, struct sk_buff *skb);
1151 	int			(*ndo_set_vf_rss_query_en)(
1152 						   struct net_device *dev,
1153 						   int vf, bool setting);
1154 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1155 #if IS_ENABLED(CONFIG_FCOE)
1156 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1157 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1158 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1159 						      u16 xid,
1160 						      struct scatterlist *sgl,
1161 						      unsigned int sgc);
1162 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1163 						     u16 xid);
1164 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1165 						       u16 xid,
1166 						       struct scatterlist *sgl,
1167 						       unsigned int sgc);
1168 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1169 							struct netdev_fcoe_hbainfo *hbainfo);
1170 #endif
1171 
1172 #if IS_ENABLED(CONFIG_LIBFCOE)
1173 #define NETDEV_FCOE_WWNN 0
1174 #define NETDEV_FCOE_WWPN 1
1175 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1176 						    u64 *wwn, int type);
1177 #endif
1178 
1179 #ifdef CONFIG_RFS_ACCEL
1180 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1181 						     const struct sk_buff *skb,
1182 						     u16 rxq_index,
1183 						     u32 flow_id);
1184 #endif
1185 	int			(*ndo_add_slave)(struct net_device *dev,
1186 						 struct net_device *slave_dev);
1187 	int			(*ndo_del_slave)(struct net_device *dev,
1188 						 struct net_device *slave_dev);
1189 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1190 						    netdev_features_t features);
1191 	int			(*ndo_set_features)(struct net_device *dev,
1192 						    netdev_features_t features);
1193 	int			(*ndo_neigh_construct)(struct neighbour *n);
1194 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1195 
1196 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1197 					       struct nlattr *tb[],
1198 					       struct net_device *dev,
1199 					       const unsigned char *addr,
1200 					       u16 vid,
1201 					       u16 flags);
1202 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1203 					       struct nlattr *tb[],
1204 					       struct net_device *dev,
1205 					       const unsigned char *addr,
1206 					       u16 vid);
1207 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1208 						struct netlink_callback *cb,
1209 						struct net_device *dev,
1210 						struct net_device *filter_dev,
1211 						int idx);
1212 
1213 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1214 						      struct nlmsghdr *nlh,
1215 						      u16 flags);
1216 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1217 						      u32 pid, u32 seq,
1218 						      struct net_device *dev,
1219 						      u32 filter_mask,
1220 						      int nlflags);
1221 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1222 						      struct nlmsghdr *nlh,
1223 						      u16 flags);
1224 	int			(*ndo_change_carrier)(struct net_device *dev,
1225 						      bool new_carrier);
1226 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1227 							struct netdev_phys_item_id *ppid);
1228 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1229 							  char *name, size_t len);
1230 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1231 						      sa_family_t sa_family,
1232 						      __be16 port);
1233 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1234 						      sa_family_t sa_family,
1235 						      __be16 port);
1236 	void			(*ndo_add_geneve_port)(struct  net_device *dev,
1237 						       sa_family_t sa_family,
1238 						       __be16 port);
1239 	void			(*ndo_del_geneve_port)(struct  net_device *dev,
1240 						       sa_family_t sa_family,
1241 						       __be16 port);
1242 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1243 							struct net_device *dev);
1244 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1245 							void *priv);
1246 
1247 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1248 							struct net_device *dev,
1249 							void *priv);
1250 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1251 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1252 						      int queue_index,
1253 						      u32 maxrate);
1254 	int			(*ndo_get_iflink)(const struct net_device *dev);
1255 	int			(*ndo_change_proto_down)(struct net_device *dev,
1256 							 bool proto_down);
1257 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1258 						       struct sk_buff *skb);
1259 };
1260 
1261 /**
1262  * enum net_device_priv_flags - &struct net_device priv_flags
1263  *
1264  * These are the &struct net_device, they are only set internally
1265  * by drivers and used in the kernel. These flags are invisible to
1266  * userspace, this means that the order of these flags can change
1267  * during any kernel release.
1268  *
1269  * You should have a pretty good reason to be extending these flags.
1270  *
1271  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1272  * @IFF_EBRIDGE: Ethernet bridging device
1273  * @IFF_BONDING: bonding master or slave
1274  * @IFF_ISATAP: ISATAP interface (RFC4214)
1275  * @IFF_WAN_HDLC: WAN HDLC device
1276  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1277  *	release skb->dst
1278  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1279  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1280  * @IFF_MACVLAN_PORT: device used as macvlan port
1281  * @IFF_BRIDGE_PORT: device used as bridge port
1282  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1283  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1284  * @IFF_UNICAST_FLT: Supports unicast filtering
1285  * @IFF_TEAM_PORT: device used as team port
1286  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1287  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1288  *	change when it's running
1289  * @IFF_MACVLAN: Macvlan device
1290  * @IFF_L3MDEV_MASTER: device is an L3 master device
1291  * @IFF_NO_QUEUE: device can run without qdisc attached
1292  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1293  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1294  * @IFF_TEAM: device is a team device
1295  */
1296 enum netdev_priv_flags {
1297 	IFF_802_1Q_VLAN			= 1<<0,
1298 	IFF_EBRIDGE			= 1<<1,
1299 	IFF_BONDING			= 1<<2,
1300 	IFF_ISATAP			= 1<<3,
1301 	IFF_WAN_HDLC			= 1<<4,
1302 	IFF_XMIT_DST_RELEASE		= 1<<5,
1303 	IFF_DONT_BRIDGE			= 1<<6,
1304 	IFF_DISABLE_NETPOLL		= 1<<7,
1305 	IFF_MACVLAN_PORT		= 1<<8,
1306 	IFF_BRIDGE_PORT			= 1<<9,
1307 	IFF_OVS_DATAPATH		= 1<<10,
1308 	IFF_TX_SKB_SHARING		= 1<<11,
1309 	IFF_UNICAST_FLT			= 1<<12,
1310 	IFF_TEAM_PORT			= 1<<13,
1311 	IFF_SUPP_NOFCS			= 1<<14,
1312 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1313 	IFF_MACVLAN			= 1<<16,
1314 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1315 	IFF_IPVLAN_MASTER		= 1<<18,
1316 	IFF_IPVLAN_SLAVE		= 1<<19,
1317 	IFF_L3MDEV_MASTER		= 1<<20,
1318 	IFF_NO_QUEUE			= 1<<21,
1319 	IFF_OPENVSWITCH			= 1<<22,
1320 	IFF_L3MDEV_SLAVE		= 1<<23,
1321 	IFF_TEAM			= 1<<24,
1322 };
1323 
1324 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1325 #define IFF_EBRIDGE			IFF_EBRIDGE
1326 #define IFF_BONDING			IFF_BONDING
1327 #define IFF_ISATAP			IFF_ISATAP
1328 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1329 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1330 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1331 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1332 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1333 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1334 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1335 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1336 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1337 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1338 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1339 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1340 #define IFF_MACVLAN			IFF_MACVLAN
1341 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1342 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1343 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1344 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1345 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1346 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1347 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1348 #define IFF_TEAM			IFF_TEAM
1349 
1350 /**
1351  *	struct net_device - The DEVICE structure.
1352  *		Actually, this whole structure is a big mistake.  It mixes I/O
1353  *		data with strictly "high-level" data, and it has to know about
1354  *		almost every data structure used in the INET module.
1355  *
1356  *	@name:	This is the first field of the "visible" part of this structure
1357  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1358  *	 	of the interface.
1359  *
1360  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1361  *	@ifalias:	SNMP alias
1362  *	@mem_end:	Shared memory end
1363  *	@mem_start:	Shared memory start
1364  *	@base_addr:	Device I/O address
1365  *	@irq:		Device IRQ number
1366  *
1367  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1368  *
1369  *	@state:		Generic network queuing layer state, see netdev_state_t
1370  *	@dev_list:	The global list of network devices
1371  *	@napi_list:	List entry, that is used for polling napi devices
1372  *	@unreg_list:	List entry, that is used, when we are unregistering the
1373  *			device, see the function unregister_netdev
1374  *	@close_list:	List entry, that is used, when we are closing the device
1375  *
1376  *	@adj_list:	Directly linked devices, like slaves for bonding
1377  *	@all_adj_list:	All linked devices, *including* neighbours
1378  *	@features:	Currently active device features
1379  *	@hw_features:	User-changeable features
1380  *
1381  *	@wanted_features:	User-requested features
1382  *	@vlan_features:		Mask of features inheritable by VLAN devices
1383  *
1384  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1385  *				This field indicates what encapsulation
1386  *				offloads the hardware is capable of doing,
1387  *				and drivers will need to set them appropriately.
1388  *
1389  *	@mpls_features:	Mask of features inheritable by MPLS
1390  *
1391  *	@ifindex:	interface index
1392  *	@group:		The group, that the device belongs to
1393  *
1394  *	@stats:		Statistics struct, which was left as a legacy, use
1395  *			rtnl_link_stats64 instead
1396  *
1397  *	@rx_dropped:	Dropped packets by core network,
1398  *			do not use this in drivers
1399  *	@tx_dropped:	Dropped packets by core network,
1400  *			do not use this in drivers
1401  *
1402  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1403  *				instead of ioctl,
1404  *				see <net/iw_handler.h> for details.
1405  *	@wireless_data:	Instance data managed by the core of wireless extensions
1406  *
1407  *	@netdev_ops:	Includes several pointers to callbacks,
1408  *			if one wants to override the ndo_*() functions
1409  *	@ethtool_ops:	Management operations
1410  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1411  *			of Layer 2 headers.
1412  *
1413  *	@flags:		Interface flags (a la BSD)
1414  *	@priv_flags:	Like 'flags' but invisible to userspace,
1415  *			see if.h for the definitions
1416  *	@gflags:	Global flags ( kept as legacy )
1417  *	@padded:	How much padding added by alloc_netdev()
1418  *	@operstate:	RFC2863 operstate
1419  *	@link_mode:	Mapping policy to operstate
1420  *	@if_port:	Selectable AUI, TP, ...
1421  *	@dma:		DMA channel
1422  *	@mtu:		Interface MTU value
1423  *	@type:		Interface hardware type
1424  *	@hard_header_len: Hardware header length, which means that this is the
1425  *			  minimum size of a packet.
1426  *
1427  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1428  *			  cases can this be guaranteed
1429  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1430  *			  cases can this be guaranteed. Some cases also use
1431  *			  LL_MAX_HEADER instead to allocate the skb
1432  *
1433  *	interface address info:
1434  *
1435  * 	@perm_addr:		Permanent hw address
1436  * 	@addr_assign_type:	Hw address assignment type
1437  * 	@addr_len:		Hardware address length
1438  * 	@neigh_priv_len;	Used in neigh_alloc(),
1439  * 				initialized only in atm/clip.c
1440  * 	@dev_id:		Used to differentiate devices that share
1441  * 				the same link layer address
1442  * 	@dev_port:		Used to differentiate devices that share
1443  * 				the same function
1444  *	@addr_list_lock:	XXX: need comments on this one
1445  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1446  *				has been enabled due to the need to listen to
1447  *				additional unicast addresses in a device that
1448  *				does not implement ndo_set_rx_mode()
1449  *	@uc:			unicast mac addresses
1450  *	@mc:			multicast mac addresses
1451  *	@dev_addrs:		list of device hw addresses
1452  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1453  *	@promiscuity:		Number of times, the NIC is told to work in
1454  *				Promiscuous mode, if it becomes 0 the NIC will
1455  *				exit from working in Promiscuous mode
1456  *	@allmulti:		Counter, enables or disables allmulticast mode
1457  *
1458  *	@vlan_info:	VLAN info
1459  *	@dsa_ptr:	dsa specific data
1460  *	@tipc_ptr:	TIPC specific data
1461  *	@atalk_ptr:	AppleTalk link
1462  *	@ip_ptr:	IPv4 specific data
1463  *	@dn_ptr:	DECnet specific data
1464  *	@ip6_ptr:	IPv6 specific data
1465  *	@ax25_ptr:	AX.25 specific data
1466  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1467  *
1468  *	@last_rx:	Time of last Rx
1469  *	@dev_addr:	Hw address (before bcast,
1470  *			because most packets are unicast)
1471  *
1472  *	@_rx:			Array of RX queues
1473  *	@num_rx_queues:		Number of RX queues
1474  *				allocated at register_netdev() time
1475  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1476  *
1477  *	@rx_handler:		handler for received packets
1478  *	@rx_handler_data: 	XXX: need comments on this one
1479  *	@ingress_queue:		XXX: need comments on this one
1480  *	@broadcast:		hw bcast address
1481  *
1482  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1483  *			indexed by RX queue number. Assigned by driver.
1484  *			This must only be set if the ndo_rx_flow_steer
1485  *			operation is defined
1486  *	@index_hlist:		Device index hash chain
1487  *
1488  *	@_tx:			Array of TX queues
1489  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1490  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1491  *	@qdisc:			Root qdisc from userspace point of view
1492  *	@tx_queue_len:		Max frames per queue allowed
1493  *	@tx_global_lock: 	XXX: need comments on this one
1494  *
1495  *	@xps_maps:	XXX: need comments on this one
1496  *
1497  *	@offload_fwd_mark:	Offload device fwding mark
1498  *
1499  *	@trans_start:		Time (in jiffies) of last Tx
1500  *	@watchdog_timeo:	Represents the timeout that is used by
1501  *				the watchdog ( see dev_watchdog() )
1502  *	@watchdog_timer:	List of timers
1503  *
1504  *	@pcpu_refcnt:		Number of references to this device
1505  *	@todo_list:		Delayed register/unregister
1506  *	@link_watch_list:	XXX: need comments on this one
1507  *
1508  *	@reg_state:		Register/unregister state machine
1509  *	@dismantle:		Device is going to be freed
1510  *	@rtnl_link_state:	This enum represents the phases of creating
1511  *				a new link
1512  *
1513  *	@destructor:		Called from unregister,
1514  *				can be used to call free_netdev
1515  *	@npinfo:		XXX: need comments on this one
1516  * 	@nd_net:		Network namespace this network device is inside
1517  *
1518  * 	@ml_priv:	Mid-layer private
1519  * 	@lstats:	Loopback statistics
1520  * 	@tstats:	Tunnel statistics
1521  * 	@dstats:	Dummy statistics
1522  * 	@vstats:	Virtual ethernet statistics
1523  *
1524  *	@garp_port:	GARP
1525  *	@mrp_port:	MRP
1526  *
1527  *	@dev:		Class/net/name entry
1528  *	@sysfs_groups:	Space for optional device, statistics and wireless
1529  *			sysfs groups
1530  *
1531  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1532  *	@rtnl_link_ops:	Rtnl_link_ops
1533  *
1534  *	@gso_max_size:	Maximum size of generic segmentation offload
1535  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1536  *			NIC for GSO
1537  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1538  *			NIC for GSO
1539  *
1540  *	@dcbnl_ops:	Data Center Bridging netlink ops
1541  *	@num_tc:	Number of traffic classes in the net device
1542  *	@tc_to_txq:	XXX: need comments on this one
1543  *	@prio_tc_map	XXX: need comments on this one
1544  *
1545  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1546  *
1547  *	@priomap:	XXX: need comments on this one
1548  *	@phydev:	Physical device may attach itself
1549  *			for hardware timestamping
1550  *
1551  *	@qdisc_tx_busylock:	XXX: need comments on this one
1552  *
1553  *	@proto_down:	protocol port state information can be sent to the
1554  *			switch driver and used to set the phys state of the
1555  *			switch port.
1556  *
1557  *	FIXME: cleanup struct net_device such that network protocol info
1558  *	moves out.
1559  */
1560 
1561 struct net_device {
1562 	char			name[IFNAMSIZ];
1563 	struct hlist_node	name_hlist;
1564 	char 			*ifalias;
1565 	/*
1566 	 *	I/O specific fields
1567 	 *	FIXME: Merge these and struct ifmap into one
1568 	 */
1569 	unsigned long		mem_end;
1570 	unsigned long		mem_start;
1571 	unsigned long		base_addr;
1572 	int			irq;
1573 
1574 	atomic_t		carrier_changes;
1575 
1576 	/*
1577 	 *	Some hardware also needs these fields (state,dev_list,
1578 	 *	napi_list,unreg_list,close_list) but they are not
1579 	 *	part of the usual set specified in Space.c.
1580 	 */
1581 
1582 	unsigned long		state;
1583 
1584 	struct list_head	dev_list;
1585 	struct list_head	napi_list;
1586 	struct list_head	unreg_list;
1587 	struct list_head	close_list;
1588 	struct list_head	ptype_all;
1589 	struct list_head	ptype_specific;
1590 
1591 	struct {
1592 		struct list_head upper;
1593 		struct list_head lower;
1594 	} adj_list;
1595 
1596 	struct {
1597 		struct list_head upper;
1598 		struct list_head lower;
1599 	} all_adj_list;
1600 
1601 	netdev_features_t	features;
1602 	netdev_features_t	hw_features;
1603 	netdev_features_t	wanted_features;
1604 	netdev_features_t	vlan_features;
1605 	netdev_features_t	hw_enc_features;
1606 	netdev_features_t	mpls_features;
1607 
1608 	int			ifindex;
1609 	int			group;
1610 
1611 	struct net_device_stats	stats;
1612 
1613 	atomic_long_t		rx_dropped;
1614 	atomic_long_t		tx_dropped;
1615 
1616 #ifdef CONFIG_WIRELESS_EXT
1617 	const struct iw_handler_def *	wireless_handlers;
1618 	struct iw_public_data *	wireless_data;
1619 #endif
1620 	const struct net_device_ops *netdev_ops;
1621 	const struct ethtool_ops *ethtool_ops;
1622 #ifdef CONFIG_NET_SWITCHDEV
1623 	const struct switchdev_ops *switchdev_ops;
1624 #endif
1625 #ifdef CONFIG_NET_L3_MASTER_DEV
1626 	const struct l3mdev_ops	*l3mdev_ops;
1627 #endif
1628 
1629 	const struct header_ops *header_ops;
1630 
1631 	unsigned int		flags;
1632 	unsigned int		priv_flags;
1633 
1634 	unsigned short		gflags;
1635 	unsigned short		padded;
1636 
1637 	unsigned char		operstate;
1638 	unsigned char		link_mode;
1639 
1640 	unsigned char		if_port;
1641 	unsigned char		dma;
1642 
1643 	unsigned int		mtu;
1644 	unsigned short		type;
1645 	unsigned short		hard_header_len;
1646 
1647 	unsigned short		needed_headroom;
1648 	unsigned short		needed_tailroom;
1649 
1650 	/* Interface address info. */
1651 	unsigned char		perm_addr[MAX_ADDR_LEN];
1652 	unsigned char		addr_assign_type;
1653 	unsigned char		addr_len;
1654 	unsigned short		neigh_priv_len;
1655 	unsigned short          dev_id;
1656 	unsigned short          dev_port;
1657 	spinlock_t		addr_list_lock;
1658 	unsigned char		name_assign_type;
1659 	bool			uc_promisc;
1660 	struct netdev_hw_addr_list	uc;
1661 	struct netdev_hw_addr_list	mc;
1662 	struct netdev_hw_addr_list	dev_addrs;
1663 
1664 #ifdef CONFIG_SYSFS
1665 	struct kset		*queues_kset;
1666 #endif
1667 	unsigned int		promiscuity;
1668 	unsigned int		allmulti;
1669 
1670 
1671 	/* Protocol specific pointers */
1672 
1673 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1674 	struct vlan_info __rcu	*vlan_info;
1675 #endif
1676 #if IS_ENABLED(CONFIG_NET_DSA)
1677 	struct dsa_switch_tree	*dsa_ptr;
1678 #endif
1679 #if IS_ENABLED(CONFIG_TIPC)
1680 	struct tipc_bearer __rcu *tipc_ptr;
1681 #endif
1682 	void 			*atalk_ptr;
1683 	struct in_device __rcu	*ip_ptr;
1684 	struct dn_dev __rcu     *dn_ptr;
1685 	struct inet6_dev __rcu	*ip6_ptr;
1686 	void			*ax25_ptr;
1687 	struct wireless_dev	*ieee80211_ptr;
1688 	struct wpan_dev		*ieee802154_ptr;
1689 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1690 	struct mpls_dev __rcu	*mpls_ptr;
1691 #endif
1692 
1693 /*
1694  * Cache lines mostly used on receive path (including eth_type_trans())
1695  */
1696 	unsigned long		last_rx;
1697 
1698 	/* Interface address info used in eth_type_trans() */
1699 	unsigned char		*dev_addr;
1700 
1701 
1702 #ifdef CONFIG_SYSFS
1703 	struct netdev_rx_queue	*_rx;
1704 
1705 	unsigned int		num_rx_queues;
1706 	unsigned int		real_num_rx_queues;
1707 
1708 #endif
1709 
1710 	unsigned long		gro_flush_timeout;
1711 	rx_handler_func_t __rcu	*rx_handler;
1712 	void __rcu		*rx_handler_data;
1713 
1714 #ifdef CONFIG_NET_CLS_ACT
1715 	struct tcf_proto __rcu  *ingress_cl_list;
1716 #endif
1717 	struct netdev_queue __rcu *ingress_queue;
1718 #ifdef CONFIG_NETFILTER_INGRESS
1719 	struct list_head	nf_hooks_ingress;
1720 #endif
1721 
1722 	unsigned char		broadcast[MAX_ADDR_LEN];
1723 #ifdef CONFIG_RFS_ACCEL
1724 	struct cpu_rmap		*rx_cpu_rmap;
1725 #endif
1726 	struct hlist_node	index_hlist;
1727 
1728 /*
1729  * Cache lines mostly used on transmit path
1730  */
1731 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1732 	unsigned int		num_tx_queues;
1733 	unsigned int		real_num_tx_queues;
1734 	struct Qdisc		*qdisc;
1735 	unsigned long		tx_queue_len;
1736 	spinlock_t		tx_global_lock;
1737 	int			watchdog_timeo;
1738 
1739 #ifdef CONFIG_XPS
1740 	struct xps_dev_maps __rcu *xps_maps;
1741 #endif
1742 #ifdef CONFIG_NET_CLS_ACT
1743 	struct tcf_proto __rcu  *egress_cl_list;
1744 #endif
1745 #ifdef CONFIG_NET_SWITCHDEV
1746 	u32			offload_fwd_mark;
1747 #endif
1748 
1749 	/* These may be needed for future network-power-down code. */
1750 
1751 	/*
1752 	 * trans_start here is expensive for high speed devices on SMP,
1753 	 * please use netdev_queue->trans_start instead.
1754 	 */
1755 	unsigned long		trans_start;
1756 
1757 	struct timer_list	watchdog_timer;
1758 
1759 	int __percpu		*pcpu_refcnt;
1760 	struct list_head	todo_list;
1761 
1762 	struct list_head	link_watch_list;
1763 
1764 	enum { NETREG_UNINITIALIZED=0,
1765 	       NETREG_REGISTERED,	/* completed register_netdevice */
1766 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1767 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1768 	       NETREG_RELEASED,		/* called free_netdev */
1769 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1770 	} reg_state:8;
1771 
1772 	bool dismantle;
1773 
1774 	enum {
1775 		RTNL_LINK_INITIALIZED,
1776 		RTNL_LINK_INITIALIZING,
1777 	} rtnl_link_state:16;
1778 
1779 	void (*destructor)(struct net_device *dev);
1780 
1781 #ifdef CONFIG_NETPOLL
1782 	struct netpoll_info __rcu	*npinfo;
1783 #endif
1784 
1785 	possible_net_t			nd_net;
1786 
1787 	/* mid-layer private */
1788 	union {
1789 		void					*ml_priv;
1790 		struct pcpu_lstats __percpu		*lstats;
1791 		struct pcpu_sw_netstats __percpu	*tstats;
1792 		struct pcpu_dstats __percpu		*dstats;
1793 		struct pcpu_vstats __percpu		*vstats;
1794 	};
1795 
1796 	struct garp_port __rcu	*garp_port;
1797 	struct mrp_port __rcu	*mrp_port;
1798 
1799 	struct device	dev;
1800 	const struct attribute_group *sysfs_groups[4];
1801 	const struct attribute_group *sysfs_rx_queue_group;
1802 
1803 	const struct rtnl_link_ops *rtnl_link_ops;
1804 
1805 	/* for setting kernel sock attribute on TCP connection setup */
1806 #define GSO_MAX_SIZE		65536
1807 	unsigned int		gso_max_size;
1808 #define GSO_MAX_SEGS		65535
1809 	u16			gso_max_segs;
1810 	u16			gso_min_segs;
1811 #ifdef CONFIG_DCB
1812 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1813 #endif
1814 	u8 num_tc;
1815 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1816 	u8 prio_tc_map[TC_BITMASK + 1];
1817 
1818 #if IS_ENABLED(CONFIG_FCOE)
1819 	unsigned int		fcoe_ddp_xid;
1820 #endif
1821 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1822 	struct netprio_map __rcu *priomap;
1823 #endif
1824 	struct phy_device *phydev;
1825 	struct lock_class_key *qdisc_tx_busylock;
1826 	bool proto_down;
1827 };
1828 #define to_net_dev(d) container_of(d, struct net_device, dev)
1829 
1830 #define	NETDEV_ALIGN		32
1831 
1832 static inline
1833 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1834 {
1835 	return dev->prio_tc_map[prio & TC_BITMASK];
1836 }
1837 
1838 static inline
1839 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1840 {
1841 	if (tc >= dev->num_tc)
1842 		return -EINVAL;
1843 
1844 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1845 	return 0;
1846 }
1847 
1848 static inline
1849 void netdev_reset_tc(struct net_device *dev)
1850 {
1851 	dev->num_tc = 0;
1852 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1853 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1854 }
1855 
1856 static inline
1857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1858 {
1859 	if (tc >= dev->num_tc)
1860 		return -EINVAL;
1861 
1862 	dev->tc_to_txq[tc].count = count;
1863 	dev->tc_to_txq[tc].offset = offset;
1864 	return 0;
1865 }
1866 
1867 static inline
1868 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1869 {
1870 	if (num_tc > TC_MAX_QUEUE)
1871 		return -EINVAL;
1872 
1873 	dev->num_tc = num_tc;
1874 	return 0;
1875 }
1876 
1877 static inline
1878 int netdev_get_num_tc(struct net_device *dev)
1879 {
1880 	return dev->num_tc;
1881 }
1882 
1883 static inline
1884 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1885 					 unsigned int index)
1886 {
1887 	return &dev->_tx[index];
1888 }
1889 
1890 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1891 						    const struct sk_buff *skb)
1892 {
1893 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1894 }
1895 
1896 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1897 					    void (*f)(struct net_device *,
1898 						      struct netdev_queue *,
1899 						      void *),
1900 					    void *arg)
1901 {
1902 	unsigned int i;
1903 
1904 	for (i = 0; i < dev->num_tx_queues; i++)
1905 		f(dev, &dev->_tx[i], arg);
1906 }
1907 
1908 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1909 				    struct sk_buff *skb,
1910 				    void *accel_priv);
1911 
1912 /*
1913  * Net namespace inlines
1914  */
1915 static inline
1916 struct net *dev_net(const struct net_device *dev)
1917 {
1918 	return read_pnet(&dev->nd_net);
1919 }
1920 
1921 static inline
1922 void dev_net_set(struct net_device *dev, struct net *net)
1923 {
1924 	write_pnet(&dev->nd_net, net);
1925 }
1926 
1927 static inline bool netdev_uses_dsa(struct net_device *dev)
1928 {
1929 #if IS_ENABLED(CONFIG_NET_DSA)
1930 	if (dev->dsa_ptr != NULL)
1931 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1932 #endif
1933 	return false;
1934 }
1935 
1936 /**
1937  *	netdev_priv - access network device private data
1938  *	@dev: network device
1939  *
1940  * Get network device private data
1941  */
1942 static inline void *netdev_priv(const struct net_device *dev)
1943 {
1944 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1945 }
1946 
1947 /* Set the sysfs physical device reference for the network logical device
1948  * if set prior to registration will cause a symlink during initialization.
1949  */
1950 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1951 
1952 /* Set the sysfs device type for the network logical device to allow
1953  * fine-grained identification of different network device types. For
1954  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1955  */
1956 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1957 
1958 /* Default NAPI poll() weight
1959  * Device drivers are strongly advised to not use bigger value
1960  */
1961 #define NAPI_POLL_WEIGHT 64
1962 
1963 /**
1964  *	netif_napi_add - initialize a napi context
1965  *	@dev:  network device
1966  *	@napi: napi context
1967  *	@poll: polling function
1968  *	@weight: default weight
1969  *
1970  * netif_napi_add() must be used to initialize a napi context prior to calling
1971  * *any* of the other napi related functions.
1972  */
1973 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1974 		    int (*poll)(struct napi_struct *, int), int weight);
1975 
1976 /**
1977  *	netif_tx_napi_add - initialize a napi context
1978  *	@dev:  network device
1979  *	@napi: napi context
1980  *	@poll: polling function
1981  *	@weight: default weight
1982  *
1983  * This variant of netif_napi_add() should be used from drivers using NAPI
1984  * to exclusively poll a TX queue.
1985  * This will avoid we add it into napi_hash[], thus polluting this hash table.
1986  */
1987 static inline void netif_tx_napi_add(struct net_device *dev,
1988 				     struct napi_struct *napi,
1989 				     int (*poll)(struct napi_struct *, int),
1990 				     int weight)
1991 {
1992 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
1993 	netif_napi_add(dev, napi, poll, weight);
1994 }
1995 
1996 /**
1997  *  netif_napi_del - remove a napi context
1998  *  @napi: napi context
1999  *
2000  *  netif_napi_del() removes a napi context from the network device napi list
2001  */
2002 void netif_napi_del(struct napi_struct *napi);
2003 
2004 struct napi_gro_cb {
2005 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2006 	void *frag0;
2007 
2008 	/* Length of frag0. */
2009 	unsigned int frag0_len;
2010 
2011 	/* This indicates where we are processing relative to skb->data. */
2012 	int data_offset;
2013 
2014 	/* This is non-zero if the packet cannot be merged with the new skb. */
2015 	u16	flush;
2016 
2017 	/* Save the IP ID here and check when we get to the transport layer */
2018 	u16	flush_id;
2019 
2020 	/* Number of segments aggregated. */
2021 	u16	count;
2022 
2023 	/* Start offset for remote checksum offload */
2024 	u16	gro_remcsum_start;
2025 
2026 	/* jiffies when first packet was created/queued */
2027 	unsigned long age;
2028 
2029 	/* Used in ipv6_gro_receive() and foo-over-udp */
2030 	u16	proto;
2031 
2032 	/* This is non-zero if the packet may be of the same flow. */
2033 	u8	same_flow:1;
2034 
2035 	/* Used in udp_gro_receive */
2036 	u8	udp_mark:1;
2037 
2038 	/* GRO checksum is valid */
2039 	u8	csum_valid:1;
2040 
2041 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2042 	u8	csum_cnt:3;
2043 
2044 	/* Free the skb? */
2045 	u8	free:2;
2046 #define NAPI_GRO_FREE		  1
2047 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2048 
2049 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2050 	u8	is_ipv6:1;
2051 
2052 	/* 7 bit hole */
2053 
2054 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2055 	__wsum	csum;
2056 
2057 	/* used in skb_gro_receive() slow path */
2058 	struct sk_buff *last;
2059 };
2060 
2061 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2062 
2063 struct packet_type {
2064 	__be16			type;	/* This is really htons(ether_type). */
2065 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2066 	int			(*func) (struct sk_buff *,
2067 					 struct net_device *,
2068 					 struct packet_type *,
2069 					 struct net_device *);
2070 	bool			(*id_match)(struct packet_type *ptype,
2071 					    struct sock *sk);
2072 	void			*af_packet_priv;
2073 	struct list_head	list;
2074 };
2075 
2076 struct offload_callbacks {
2077 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2078 						netdev_features_t features);
2079 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2080 						 struct sk_buff *skb);
2081 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2082 };
2083 
2084 struct packet_offload {
2085 	__be16			 type;	/* This is really htons(ether_type). */
2086 	u16			 priority;
2087 	struct offload_callbacks callbacks;
2088 	struct list_head	 list;
2089 };
2090 
2091 struct udp_offload;
2092 
2093 struct udp_offload_callbacks {
2094 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2095 						 struct sk_buff *skb,
2096 						 struct udp_offload *uoff);
2097 	int			(*gro_complete)(struct sk_buff *skb,
2098 						int nhoff,
2099 						struct udp_offload *uoff);
2100 };
2101 
2102 struct udp_offload {
2103 	__be16			 port;
2104 	u8			 ipproto;
2105 	struct udp_offload_callbacks callbacks;
2106 };
2107 
2108 /* often modified stats are per cpu, other are shared (netdev->stats) */
2109 struct pcpu_sw_netstats {
2110 	u64     rx_packets;
2111 	u64     rx_bytes;
2112 	u64     tx_packets;
2113 	u64     tx_bytes;
2114 	struct u64_stats_sync   syncp;
2115 };
2116 
2117 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2118 ({									\
2119 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2120 	if (pcpu_stats)	{						\
2121 		int __cpu;						\
2122 		for_each_possible_cpu(__cpu) {				\
2123 			typeof(type) *stat;				\
2124 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2125 			u64_stats_init(&stat->syncp);			\
2126 		}							\
2127 	}								\
2128 	pcpu_stats;							\
2129 })
2130 
2131 #define netdev_alloc_pcpu_stats(type)					\
2132 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2133 
2134 enum netdev_lag_tx_type {
2135 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2136 	NETDEV_LAG_TX_TYPE_RANDOM,
2137 	NETDEV_LAG_TX_TYPE_BROADCAST,
2138 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2139 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2140 	NETDEV_LAG_TX_TYPE_HASH,
2141 };
2142 
2143 struct netdev_lag_upper_info {
2144 	enum netdev_lag_tx_type tx_type;
2145 };
2146 
2147 struct netdev_lag_lower_state_info {
2148 	u8 link_up : 1,
2149 	   tx_enabled : 1;
2150 };
2151 
2152 #include <linux/notifier.h>
2153 
2154 /* netdevice notifier chain. Please remember to update the rtnetlink
2155  * notification exclusion list in rtnetlink_event() when adding new
2156  * types.
2157  */
2158 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2159 #define NETDEV_DOWN	0x0002
2160 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2161 				   detected a hardware crash and restarted
2162 				   - we can use this eg to kick tcp sessions
2163 				   once done */
2164 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2165 #define NETDEV_REGISTER 0x0005
2166 #define NETDEV_UNREGISTER	0x0006
2167 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2168 #define NETDEV_CHANGEADDR	0x0008
2169 #define NETDEV_GOING_DOWN	0x0009
2170 #define NETDEV_CHANGENAME	0x000A
2171 #define NETDEV_FEAT_CHANGE	0x000B
2172 #define NETDEV_BONDING_FAILOVER 0x000C
2173 #define NETDEV_PRE_UP		0x000D
2174 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2175 #define NETDEV_POST_TYPE_CHANGE	0x000F
2176 #define NETDEV_POST_INIT	0x0010
2177 #define NETDEV_UNREGISTER_FINAL 0x0011
2178 #define NETDEV_RELEASE		0x0012
2179 #define NETDEV_NOTIFY_PEERS	0x0013
2180 #define NETDEV_JOIN		0x0014
2181 #define NETDEV_CHANGEUPPER	0x0015
2182 #define NETDEV_RESEND_IGMP	0x0016
2183 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2184 #define NETDEV_CHANGEINFODATA	0x0018
2185 #define NETDEV_BONDING_INFO	0x0019
2186 #define NETDEV_PRECHANGEUPPER	0x001A
2187 #define NETDEV_CHANGELOWERSTATE	0x001B
2188 
2189 int register_netdevice_notifier(struct notifier_block *nb);
2190 int unregister_netdevice_notifier(struct notifier_block *nb);
2191 
2192 struct netdev_notifier_info {
2193 	struct net_device *dev;
2194 };
2195 
2196 struct netdev_notifier_change_info {
2197 	struct netdev_notifier_info info; /* must be first */
2198 	unsigned int flags_changed;
2199 };
2200 
2201 struct netdev_notifier_changeupper_info {
2202 	struct netdev_notifier_info info; /* must be first */
2203 	struct net_device *upper_dev; /* new upper dev */
2204 	bool master; /* is upper dev master */
2205 	bool linking; /* is the nofication for link or unlink */
2206 	void *upper_info; /* upper dev info */
2207 };
2208 
2209 struct netdev_notifier_changelowerstate_info {
2210 	struct netdev_notifier_info info; /* must be first */
2211 	void *lower_state_info; /* is lower dev state */
2212 };
2213 
2214 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2215 					     struct net_device *dev)
2216 {
2217 	info->dev = dev;
2218 }
2219 
2220 static inline struct net_device *
2221 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2222 {
2223 	return info->dev;
2224 }
2225 
2226 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2227 
2228 
2229 extern rwlock_t				dev_base_lock;		/* Device list lock */
2230 
2231 #define for_each_netdev(net, d)		\
2232 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2233 #define for_each_netdev_reverse(net, d)	\
2234 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2235 #define for_each_netdev_rcu(net, d)		\
2236 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2237 #define for_each_netdev_safe(net, d, n)	\
2238 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2239 #define for_each_netdev_continue(net, d)		\
2240 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2241 #define for_each_netdev_continue_rcu(net, d)		\
2242 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2243 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2244 		for_each_netdev_rcu(&init_net, slave)	\
2245 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2246 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2247 
2248 static inline struct net_device *next_net_device(struct net_device *dev)
2249 {
2250 	struct list_head *lh;
2251 	struct net *net;
2252 
2253 	net = dev_net(dev);
2254 	lh = dev->dev_list.next;
2255 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2256 }
2257 
2258 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2259 {
2260 	struct list_head *lh;
2261 	struct net *net;
2262 
2263 	net = dev_net(dev);
2264 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2265 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2266 }
2267 
2268 static inline struct net_device *first_net_device(struct net *net)
2269 {
2270 	return list_empty(&net->dev_base_head) ? NULL :
2271 		net_device_entry(net->dev_base_head.next);
2272 }
2273 
2274 static inline struct net_device *first_net_device_rcu(struct net *net)
2275 {
2276 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2277 
2278 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2279 }
2280 
2281 int netdev_boot_setup_check(struct net_device *dev);
2282 unsigned long netdev_boot_base(const char *prefix, int unit);
2283 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2284 				       const char *hwaddr);
2285 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2286 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2287 void dev_add_pack(struct packet_type *pt);
2288 void dev_remove_pack(struct packet_type *pt);
2289 void __dev_remove_pack(struct packet_type *pt);
2290 void dev_add_offload(struct packet_offload *po);
2291 void dev_remove_offload(struct packet_offload *po);
2292 
2293 int dev_get_iflink(const struct net_device *dev);
2294 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2295 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2296 				      unsigned short mask);
2297 struct net_device *dev_get_by_name(struct net *net, const char *name);
2298 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2299 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2300 int dev_alloc_name(struct net_device *dev, const char *name);
2301 int dev_open(struct net_device *dev);
2302 int dev_close(struct net_device *dev);
2303 int dev_close_many(struct list_head *head, bool unlink);
2304 void dev_disable_lro(struct net_device *dev);
2305 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2306 int dev_queue_xmit(struct sk_buff *skb);
2307 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2308 int register_netdevice(struct net_device *dev);
2309 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2310 void unregister_netdevice_many(struct list_head *head);
2311 static inline void unregister_netdevice(struct net_device *dev)
2312 {
2313 	unregister_netdevice_queue(dev, NULL);
2314 }
2315 
2316 int netdev_refcnt_read(const struct net_device *dev);
2317 void free_netdev(struct net_device *dev);
2318 void netdev_freemem(struct net_device *dev);
2319 void synchronize_net(void);
2320 int init_dummy_netdev(struct net_device *dev);
2321 
2322 DECLARE_PER_CPU(int, xmit_recursion);
2323 static inline int dev_recursion_level(void)
2324 {
2325 	return this_cpu_read(xmit_recursion);
2326 }
2327 
2328 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2329 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2330 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2331 int netdev_get_name(struct net *net, char *name, int ifindex);
2332 int dev_restart(struct net_device *dev);
2333 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2334 
2335 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2336 {
2337 	return NAPI_GRO_CB(skb)->data_offset;
2338 }
2339 
2340 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2341 {
2342 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2343 }
2344 
2345 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2346 {
2347 	NAPI_GRO_CB(skb)->data_offset += len;
2348 }
2349 
2350 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2351 					unsigned int offset)
2352 {
2353 	return NAPI_GRO_CB(skb)->frag0 + offset;
2354 }
2355 
2356 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2357 {
2358 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2359 }
2360 
2361 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2362 					unsigned int offset)
2363 {
2364 	if (!pskb_may_pull(skb, hlen))
2365 		return NULL;
2366 
2367 	NAPI_GRO_CB(skb)->frag0 = NULL;
2368 	NAPI_GRO_CB(skb)->frag0_len = 0;
2369 	return skb->data + offset;
2370 }
2371 
2372 static inline void *skb_gro_network_header(struct sk_buff *skb)
2373 {
2374 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2375 	       skb_network_offset(skb);
2376 }
2377 
2378 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2379 					const void *start, unsigned int len)
2380 {
2381 	if (NAPI_GRO_CB(skb)->csum_valid)
2382 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2383 						  csum_partial(start, len, 0));
2384 }
2385 
2386 /* GRO checksum functions. These are logical equivalents of the normal
2387  * checksum functions (in skbuff.h) except that they operate on the GRO
2388  * offsets and fields in sk_buff.
2389  */
2390 
2391 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2392 
2393 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2394 {
2395 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2396 }
2397 
2398 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2399 						      bool zero_okay,
2400 						      __sum16 check)
2401 {
2402 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2403 		skb_checksum_start_offset(skb) <
2404 		 skb_gro_offset(skb)) &&
2405 		!skb_at_gro_remcsum_start(skb) &&
2406 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2407 		(!zero_okay || check));
2408 }
2409 
2410 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2411 							   __wsum psum)
2412 {
2413 	if (NAPI_GRO_CB(skb)->csum_valid &&
2414 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2415 		return 0;
2416 
2417 	NAPI_GRO_CB(skb)->csum = psum;
2418 
2419 	return __skb_gro_checksum_complete(skb);
2420 }
2421 
2422 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2423 {
2424 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2425 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2426 		NAPI_GRO_CB(skb)->csum_cnt--;
2427 	} else {
2428 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2429 		 * verified a new top level checksum or an encapsulated one
2430 		 * during GRO. This saves work if we fallback to normal path.
2431 		 */
2432 		__skb_incr_checksum_unnecessary(skb);
2433 	}
2434 }
2435 
2436 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2437 				    compute_pseudo)			\
2438 ({									\
2439 	__sum16 __ret = 0;						\
2440 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2441 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2442 				compute_pseudo(skb, proto));		\
2443 	if (__ret)							\
2444 		__skb_mark_checksum_bad(skb);				\
2445 	else								\
2446 		skb_gro_incr_csum_unnecessary(skb);			\
2447 	__ret;								\
2448 })
2449 
2450 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2451 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2452 
2453 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2454 					     compute_pseudo)		\
2455 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2456 
2457 #define skb_gro_checksum_simple_validate(skb)				\
2458 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2459 
2460 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2461 {
2462 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2463 		!NAPI_GRO_CB(skb)->csum_valid);
2464 }
2465 
2466 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2467 					      __sum16 check, __wsum pseudo)
2468 {
2469 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2470 	NAPI_GRO_CB(skb)->csum_valid = 1;
2471 }
2472 
2473 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2474 do {									\
2475 	if (__skb_gro_checksum_convert_check(skb))			\
2476 		__skb_gro_checksum_convert(skb, check,			\
2477 					   compute_pseudo(skb, proto));	\
2478 } while (0)
2479 
2480 struct gro_remcsum {
2481 	int offset;
2482 	__wsum delta;
2483 };
2484 
2485 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2486 {
2487 	grc->offset = 0;
2488 	grc->delta = 0;
2489 }
2490 
2491 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2492 					    unsigned int off, size_t hdrlen,
2493 					    int start, int offset,
2494 					    struct gro_remcsum *grc,
2495 					    bool nopartial)
2496 {
2497 	__wsum delta;
2498 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2499 
2500 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2501 
2502 	if (!nopartial) {
2503 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2504 		return ptr;
2505 	}
2506 
2507 	ptr = skb_gro_header_fast(skb, off);
2508 	if (skb_gro_header_hard(skb, off + plen)) {
2509 		ptr = skb_gro_header_slow(skb, off + plen, off);
2510 		if (!ptr)
2511 			return NULL;
2512 	}
2513 
2514 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2515 			       start, offset);
2516 
2517 	/* Adjust skb->csum since we changed the packet */
2518 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2519 
2520 	grc->offset = off + hdrlen + offset;
2521 	grc->delta = delta;
2522 
2523 	return ptr;
2524 }
2525 
2526 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2527 					   struct gro_remcsum *grc)
2528 {
2529 	void *ptr;
2530 	size_t plen = grc->offset + sizeof(u16);
2531 
2532 	if (!grc->delta)
2533 		return;
2534 
2535 	ptr = skb_gro_header_fast(skb, grc->offset);
2536 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2537 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2538 		if (!ptr)
2539 			return;
2540 	}
2541 
2542 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2543 }
2544 
2545 struct skb_csum_offl_spec {
2546 	__u16		ipv4_okay:1,
2547 			ipv6_okay:1,
2548 			encap_okay:1,
2549 			ip_options_okay:1,
2550 			ext_hdrs_okay:1,
2551 			tcp_okay:1,
2552 			udp_okay:1,
2553 			sctp_okay:1,
2554 			vlan_okay:1,
2555 			no_encapped_ipv6:1,
2556 			no_not_encapped:1;
2557 };
2558 
2559 bool __skb_csum_offload_chk(struct sk_buff *skb,
2560 			    const struct skb_csum_offl_spec *spec,
2561 			    bool *csum_encapped,
2562 			    bool csum_help);
2563 
2564 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2565 					const struct skb_csum_offl_spec *spec,
2566 					bool *csum_encapped,
2567 					bool csum_help)
2568 {
2569 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2570 		return false;
2571 
2572 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2573 }
2574 
2575 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2576 					     const struct skb_csum_offl_spec *spec)
2577 {
2578 	bool csum_encapped;
2579 
2580 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2581 }
2582 
2583 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2584 {
2585 	static const struct skb_csum_offl_spec csum_offl_spec = {
2586 		.ipv4_okay = 1,
2587 		.ip_options_okay = 1,
2588 		.ipv6_okay = 1,
2589 		.vlan_okay = 1,
2590 		.tcp_okay = 1,
2591 		.udp_okay = 1,
2592 	};
2593 
2594 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2595 }
2596 
2597 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2598 {
2599 	static const struct skb_csum_offl_spec csum_offl_spec = {
2600 		.ipv4_okay = 1,
2601 		.ip_options_okay = 1,
2602 		.tcp_okay = 1,
2603 		.udp_okay = 1,
2604 		.vlan_okay = 1,
2605 	};
2606 
2607 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2608 }
2609 
2610 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2611 				  unsigned short type,
2612 				  const void *daddr, const void *saddr,
2613 				  unsigned int len)
2614 {
2615 	if (!dev->header_ops || !dev->header_ops->create)
2616 		return 0;
2617 
2618 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2619 }
2620 
2621 static inline int dev_parse_header(const struct sk_buff *skb,
2622 				   unsigned char *haddr)
2623 {
2624 	const struct net_device *dev = skb->dev;
2625 
2626 	if (!dev->header_ops || !dev->header_ops->parse)
2627 		return 0;
2628 	return dev->header_ops->parse(skb, haddr);
2629 }
2630 
2631 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2632 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2633 static inline int unregister_gifconf(unsigned int family)
2634 {
2635 	return register_gifconf(family, NULL);
2636 }
2637 
2638 #ifdef CONFIG_NET_FLOW_LIMIT
2639 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2640 struct sd_flow_limit {
2641 	u64			count;
2642 	unsigned int		num_buckets;
2643 	unsigned int		history_head;
2644 	u16			history[FLOW_LIMIT_HISTORY];
2645 	u8			buckets[];
2646 };
2647 
2648 extern int netdev_flow_limit_table_len;
2649 #endif /* CONFIG_NET_FLOW_LIMIT */
2650 
2651 /*
2652  * Incoming packets are placed on per-cpu queues
2653  */
2654 struct softnet_data {
2655 	struct list_head	poll_list;
2656 	struct sk_buff_head	process_queue;
2657 
2658 	/* stats */
2659 	unsigned int		processed;
2660 	unsigned int		time_squeeze;
2661 	unsigned int		cpu_collision;
2662 	unsigned int		received_rps;
2663 #ifdef CONFIG_RPS
2664 	struct softnet_data	*rps_ipi_list;
2665 #endif
2666 #ifdef CONFIG_NET_FLOW_LIMIT
2667 	struct sd_flow_limit __rcu *flow_limit;
2668 #endif
2669 	struct Qdisc		*output_queue;
2670 	struct Qdisc		**output_queue_tailp;
2671 	struct sk_buff		*completion_queue;
2672 
2673 #ifdef CONFIG_RPS
2674 	/* Elements below can be accessed between CPUs for RPS */
2675 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2676 	struct softnet_data	*rps_ipi_next;
2677 	unsigned int		cpu;
2678 	unsigned int		input_queue_head;
2679 	unsigned int		input_queue_tail;
2680 #endif
2681 	unsigned int		dropped;
2682 	struct sk_buff_head	input_pkt_queue;
2683 	struct napi_struct	backlog;
2684 
2685 };
2686 
2687 static inline void input_queue_head_incr(struct softnet_data *sd)
2688 {
2689 #ifdef CONFIG_RPS
2690 	sd->input_queue_head++;
2691 #endif
2692 }
2693 
2694 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2695 					      unsigned int *qtail)
2696 {
2697 #ifdef CONFIG_RPS
2698 	*qtail = ++sd->input_queue_tail;
2699 #endif
2700 }
2701 
2702 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2703 
2704 void __netif_schedule(struct Qdisc *q);
2705 void netif_schedule_queue(struct netdev_queue *txq);
2706 
2707 static inline void netif_tx_schedule_all(struct net_device *dev)
2708 {
2709 	unsigned int i;
2710 
2711 	for (i = 0; i < dev->num_tx_queues; i++)
2712 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2713 }
2714 
2715 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2716 {
2717 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2718 }
2719 
2720 /**
2721  *	netif_start_queue - allow transmit
2722  *	@dev: network device
2723  *
2724  *	Allow upper layers to call the device hard_start_xmit routine.
2725  */
2726 static inline void netif_start_queue(struct net_device *dev)
2727 {
2728 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2729 }
2730 
2731 static inline void netif_tx_start_all_queues(struct net_device *dev)
2732 {
2733 	unsigned int i;
2734 
2735 	for (i = 0; i < dev->num_tx_queues; i++) {
2736 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2737 		netif_tx_start_queue(txq);
2738 	}
2739 }
2740 
2741 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2742 
2743 /**
2744  *	netif_wake_queue - restart transmit
2745  *	@dev: network device
2746  *
2747  *	Allow upper layers to call the device hard_start_xmit routine.
2748  *	Used for flow control when transmit resources are available.
2749  */
2750 static inline void netif_wake_queue(struct net_device *dev)
2751 {
2752 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2753 }
2754 
2755 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2756 {
2757 	unsigned int i;
2758 
2759 	for (i = 0; i < dev->num_tx_queues; i++) {
2760 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2761 		netif_tx_wake_queue(txq);
2762 	}
2763 }
2764 
2765 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2766 {
2767 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2768 }
2769 
2770 /**
2771  *	netif_stop_queue - stop transmitted packets
2772  *	@dev: network device
2773  *
2774  *	Stop upper layers calling the device hard_start_xmit routine.
2775  *	Used for flow control when transmit resources are unavailable.
2776  */
2777 static inline void netif_stop_queue(struct net_device *dev)
2778 {
2779 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2780 }
2781 
2782 void netif_tx_stop_all_queues(struct net_device *dev);
2783 
2784 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2785 {
2786 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2787 }
2788 
2789 /**
2790  *	netif_queue_stopped - test if transmit queue is flowblocked
2791  *	@dev: network device
2792  *
2793  *	Test if transmit queue on device is currently unable to send.
2794  */
2795 static inline bool netif_queue_stopped(const struct net_device *dev)
2796 {
2797 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2798 }
2799 
2800 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2801 {
2802 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2803 }
2804 
2805 static inline bool
2806 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2807 {
2808 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2809 }
2810 
2811 static inline bool
2812 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2813 {
2814 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2815 }
2816 
2817 /**
2818  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2819  *	@dev_queue: pointer to transmit queue
2820  *
2821  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2822  * to give appropriate hint to the cpu.
2823  */
2824 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2825 {
2826 #ifdef CONFIG_BQL
2827 	prefetchw(&dev_queue->dql.num_queued);
2828 #endif
2829 }
2830 
2831 /**
2832  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2833  *	@dev_queue: pointer to transmit queue
2834  *
2835  * BQL enabled drivers might use this helper in their TX completion path,
2836  * to give appropriate hint to the cpu.
2837  */
2838 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2839 {
2840 #ifdef CONFIG_BQL
2841 	prefetchw(&dev_queue->dql.limit);
2842 #endif
2843 }
2844 
2845 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2846 					unsigned int bytes)
2847 {
2848 #ifdef CONFIG_BQL
2849 	dql_queued(&dev_queue->dql, bytes);
2850 
2851 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2852 		return;
2853 
2854 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2855 
2856 	/*
2857 	 * The XOFF flag must be set before checking the dql_avail below,
2858 	 * because in netdev_tx_completed_queue we update the dql_completed
2859 	 * before checking the XOFF flag.
2860 	 */
2861 	smp_mb();
2862 
2863 	/* check again in case another CPU has just made room avail */
2864 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2865 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2866 #endif
2867 }
2868 
2869 /**
2870  * 	netdev_sent_queue - report the number of bytes queued to hardware
2871  * 	@dev: network device
2872  * 	@bytes: number of bytes queued to the hardware device queue
2873  *
2874  * 	Report the number of bytes queued for sending/completion to the network
2875  * 	device hardware queue. @bytes should be a good approximation and should
2876  * 	exactly match netdev_completed_queue() @bytes
2877  */
2878 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2879 {
2880 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2881 }
2882 
2883 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2884 					     unsigned int pkts, unsigned int bytes)
2885 {
2886 #ifdef CONFIG_BQL
2887 	if (unlikely(!bytes))
2888 		return;
2889 
2890 	dql_completed(&dev_queue->dql, bytes);
2891 
2892 	/*
2893 	 * Without the memory barrier there is a small possiblity that
2894 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2895 	 * be stopped forever
2896 	 */
2897 	smp_mb();
2898 
2899 	if (dql_avail(&dev_queue->dql) < 0)
2900 		return;
2901 
2902 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2903 		netif_schedule_queue(dev_queue);
2904 #endif
2905 }
2906 
2907 /**
2908  * 	netdev_completed_queue - report bytes and packets completed by device
2909  * 	@dev: network device
2910  * 	@pkts: actual number of packets sent over the medium
2911  * 	@bytes: actual number of bytes sent over the medium
2912  *
2913  * 	Report the number of bytes and packets transmitted by the network device
2914  * 	hardware queue over the physical medium, @bytes must exactly match the
2915  * 	@bytes amount passed to netdev_sent_queue()
2916  */
2917 static inline void netdev_completed_queue(struct net_device *dev,
2918 					  unsigned int pkts, unsigned int bytes)
2919 {
2920 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2921 }
2922 
2923 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2924 {
2925 #ifdef CONFIG_BQL
2926 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2927 	dql_reset(&q->dql);
2928 #endif
2929 }
2930 
2931 /**
2932  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2933  * 	@dev_queue: network device
2934  *
2935  * 	Reset the bytes and packet count of a network device and clear the
2936  * 	software flow control OFF bit for this network device
2937  */
2938 static inline void netdev_reset_queue(struct net_device *dev_queue)
2939 {
2940 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2941 }
2942 
2943 /**
2944  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2945  * 	@dev: network device
2946  * 	@queue_index: given tx queue index
2947  *
2948  * 	Returns 0 if given tx queue index >= number of device tx queues,
2949  * 	otherwise returns the originally passed tx queue index.
2950  */
2951 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2952 {
2953 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2954 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2955 				     dev->name, queue_index,
2956 				     dev->real_num_tx_queues);
2957 		return 0;
2958 	}
2959 
2960 	return queue_index;
2961 }
2962 
2963 /**
2964  *	netif_running - test if up
2965  *	@dev: network device
2966  *
2967  *	Test if the device has been brought up.
2968  */
2969 static inline bool netif_running(const struct net_device *dev)
2970 {
2971 	return test_bit(__LINK_STATE_START, &dev->state);
2972 }
2973 
2974 /*
2975  * Routines to manage the subqueues on a device.  We only need start
2976  * stop, and a check if it's stopped.  All other device management is
2977  * done at the overall netdevice level.
2978  * Also test the device if we're multiqueue.
2979  */
2980 
2981 /**
2982  *	netif_start_subqueue - allow sending packets on subqueue
2983  *	@dev: network device
2984  *	@queue_index: sub queue index
2985  *
2986  * Start individual transmit queue of a device with multiple transmit queues.
2987  */
2988 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2989 {
2990 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2991 
2992 	netif_tx_start_queue(txq);
2993 }
2994 
2995 /**
2996  *	netif_stop_subqueue - stop sending packets on subqueue
2997  *	@dev: network device
2998  *	@queue_index: sub queue index
2999  *
3000  * Stop individual transmit queue of a device with multiple transmit queues.
3001  */
3002 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3003 {
3004 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3005 	netif_tx_stop_queue(txq);
3006 }
3007 
3008 /**
3009  *	netif_subqueue_stopped - test status of subqueue
3010  *	@dev: network device
3011  *	@queue_index: sub queue index
3012  *
3013  * Check individual transmit queue of a device with multiple transmit queues.
3014  */
3015 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3016 					    u16 queue_index)
3017 {
3018 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3019 
3020 	return netif_tx_queue_stopped(txq);
3021 }
3022 
3023 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3024 					  struct sk_buff *skb)
3025 {
3026 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3027 }
3028 
3029 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3030 
3031 #ifdef CONFIG_XPS
3032 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3033 			u16 index);
3034 #else
3035 static inline int netif_set_xps_queue(struct net_device *dev,
3036 				      const struct cpumask *mask,
3037 				      u16 index)
3038 {
3039 	return 0;
3040 }
3041 #endif
3042 
3043 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3044 		  unsigned int num_tx_queues);
3045 
3046 /*
3047  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3048  * as a distribution range limit for the returned value.
3049  */
3050 static inline u16 skb_tx_hash(const struct net_device *dev,
3051 			      struct sk_buff *skb)
3052 {
3053 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3054 }
3055 
3056 /**
3057  *	netif_is_multiqueue - test if device has multiple transmit queues
3058  *	@dev: network device
3059  *
3060  * Check if device has multiple transmit queues
3061  */
3062 static inline bool netif_is_multiqueue(const struct net_device *dev)
3063 {
3064 	return dev->num_tx_queues > 1;
3065 }
3066 
3067 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3068 
3069 #ifdef CONFIG_SYSFS
3070 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3071 #else
3072 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3073 						unsigned int rxq)
3074 {
3075 	return 0;
3076 }
3077 #endif
3078 
3079 #ifdef CONFIG_SYSFS
3080 static inline unsigned int get_netdev_rx_queue_index(
3081 		struct netdev_rx_queue *queue)
3082 {
3083 	struct net_device *dev = queue->dev;
3084 	int index = queue - dev->_rx;
3085 
3086 	BUG_ON(index >= dev->num_rx_queues);
3087 	return index;
3088 }
3089 #endif
3090 
3091 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3092 int netif_get_num_default_rss_queues(void);
3093 
3094 enum skb_free_reason {
3095 	SKB_REASON_CONSUMED,
3096 	SKB_REASON_DROPPED,
3097 };
3098 
3099 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3100 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3101 
3102 /*
3103  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3104  * interrupt context or with hardware interrupts being disabled.
3105  * (in_irq() || irqs_disabled())
3106  *
3107  * We provide four helpers that can be used in following contexts :
3108  *
3109  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3110  *  replacing kfree_skb(skb)
3111  *
3112  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3113  *  Typically used in place of consume_skb(skb) in TX completion path
3114  *
3115  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3116  *  replacing kfree_skb(skb)
3117  *
3118  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3119  *  and consumed a packet. Used in place of consume_skb(skb)
3120  */
3121 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3122 {
3123 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3124 }
3125 
3126 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3127 {
3128 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3129 }
3130 
3131 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3132 {
3133 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3134 }
3135 
3136 static inline void dev_consume_skb_any(struct sk_buff *skb)
3137 {
3138 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3139 }
3140 
3141 int netif_rx(struct sk_buff *skb);
3142 int netif_rx_ni(struct sk_buff *skb);
3143 int netif_receive_skb(struct sk_buff *skb);
3144 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3145 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3146 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3147 gro_result_t napi_gro_frags(struct napi_struct *napi);
3148 struct packet_offload *gro_find_receive_by_type(__be16 type);
3149 struct packet_offload *gro_find_complete_by_type(__be16 type);
3150 
3151 static inline void napi_free_frags(struct napi_struct *napi)
3152 {
3153 	kfree_skb(napi->skb);
3154 	napi->skb = NULL;
3155 }
3156 
3157 int netdev_rx_handler_register(struct net_device *dev,
3158 			       rx_handler_func_t *rx_handler,
3159 			       void *rx_handler_data);
3160 void netdev_rx_handler_unregister(struct net_device *dev);
3161 
3162 bool dev_valid_name(const char *name);
3163 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3164 int dev_ethtool(struct net *net, struct ifreq *);
3165 unsigned int dev_get_flags(const struct net_device *);
3166 int __dev_change_flags(struct net_device *, unsigned int flags);
3167 int dev_change_flags(struct net_device *, unsigned int);
3168 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3169 			unsigned int gchanges);
3170 int dev_change_name(struct net_device *, const char *);
3171 int dev_set_alias(struct net_device *, const char *, size_t);
3172 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3173 int dev_set_mtu(struct net_device *, int);
3174 void dev_set_group(struct net_device *, int);
3175 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3176 int dev_change_carrier(struct net_device *, bool new_carrier);
3177 int dev_get_phys_port_id(struct net_device *dev,
3178 			 struct netdev_phys_item_id *ppid);
3179 int dev_get_phys_port_name(struct net_device *dev,
3180 			   char *name, size_t len);
3181 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3182 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3183 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3184 				    struct netdev_queue *txq, int *ret);
3185 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3187 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3188 
3189 extern int		netdev_budget;
3190 
3191 /* Called by rtnetlink.c:rtnl_unlock() */
3192 void netdev_run_todo(void);
3193 
3194 /**
3195  *	dev_put - release reference to device
3196  *	@dev: network device
3197  *
3198  * Release reference to device to allow it to be freed.
3199  */
3200 static inline void dev_put(struct net_device *dev)
3201 {
3202 	this_cpu_dec(*dev->pcpu_refcnt);
3203 }
3204 
3205 /**
3206  *	dev_hold - get reference to device
3207  *	@dev: network device
3208  *
3209  * Hold reference to device to keep it from being freed.
3210  */
3211 static inline void dev_hold(struct net_device *dev)
3212 {
3213 	this_cpu_inc(*dev->pcpu_refcnt);
3214 }
3215 
3216 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3217  * and _off may be called from IRQ context, but it is caller
3218  * who is responsible for serialization of these calls.
3219  *
3220  * The name carrier is inappropriate, these functions should really be
3221  * called netif_lowerlayer_*() because they represent the state of any
3222  * kind of lower layer not just hardware media.
3223  */
3224 
3225 void linkwatch_init_dev(struct net_device *dev);
3226 void linkwatch_fire_event(struct net_device *dev);
3227 void linkwatch_forget_dev(struct net_device *dev);
3228 
3229 /**
3230  *	netif_carrier_ok - test if carrier present
3231  *	@dev: network device
3232  *
3233  * Check if carrier is present on device
3234  */
3235 static inline bool netif_carrier_ok(const struct net_device *dev)
3236 {
3237 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3238 }
3239 
3240 unsigned long dev_trans_start(struct net_device *dev);
3241 
3242 void __netdev_watchdog_up(struct net_device *dev);
3243 
3244 void netif_carrier_on(struct net_device *dev);
3245 
3246 void netif_carrier_off(struct net_device *dev);
3247 
3248 /**
3249  *	netif_dormant_on - mark device as dormant.
3250  *	@dev: network device
3251  *
3252  * Mark device as dormant (as per RFC2863).
3253  *
3254  * The dormant state indicates that the relevant interface is not
3255  * actually in a condition to pass packets (i.e., it is not 'up') but is
3256  * in a "pending" state, waiting for some external event.  For "on-
3257  * demand" interfaces, this new state identifies the situation where the
3258  * interface is waiting for events to place it in the up state.
3259  *
3260  */
3261 static inline void netif_dormant_on(struct net_device *dev)
3262 {
3263 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3264 		linkwatch_fire_event(dev);
3265 }
3266 
3267 /**
3268  *	netif_dormant_off - set device as not dormant.
3269  *	@dev: network device
3270  *
3271  * Device is not in dormant state.
3272  */
3273 static inline void netif_dormant_off(struct net_device *dev)
3274 {
3275 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3276 		linkwatch_fire_event(dev);
3277 }
3278 
3279 /**
3280  *	netif_dormant - test if carrier present
3281  *	@dev: network device
3282  *
3283  * Check if carrier is present on device
3284  */
3285 static inline bool netif_dormant(const struct net_device *dev)
3286 {
3287 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3288 }
3289 
3290 
3291 /**
3292  *	netif_oper_up - test if device is operational
3293  *	@dev: network device
3294  *
3295  * Check if carrier is operational
3296  */
3297 static inline bool netif_oper_up(const struct net_device *dev)
3298 {
3299 	return (dev->operstate == IF_OPER_UP ||
3300 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3301 }
3302 
3303 /**
3304  *	netif_device_present - is device available or removed
3305  *	@dev: network device
3306  *
3307  * Check if device has not been removed from system.
3308  */
3309 static inline bool netif_device_present(struct net_device *dev)
3310 {
3311 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3312 }
3313 
3314 void netif_device_detach(struct net_device *dev);
3315 
3316 void netif_device_attach(struct net_device *dev);
3317 
3318 /*
3319  * Network interface message level settings
3320  */
3321 
3322 enum {
3323 	NETIF_MSG_DRV		= 0x0001,
3324 	NETIF_MSG_PROBE		= 0x0002,
3325 	NETIF_MSG_LINK		= 0x0004,
3326 	NETIF_MSG_TIMER		= 0x0008,
3327 	NETIF_MSG_IFDOWN	= 0x0010,
3328 	NETIF_MSG_IFUP		= 0x0020,
3329 	NETIF_MSG_RX_ERR	= 0x0040,
3330 	NETIF_MSG_TX_ERR	= 0x0080,
3331 	NETIF_MSG_TX_QUEUED	= 0x0100,
3332 	NETIF_MSG_INTR		= 0x0200,
3333 	NETIF_MSG_TX_DONE	= 0x0400,
3334 	NETIF_MSG_RX_STATUS	= 0x0800,
3335 	NETIF_MSG_PKTDATA	= 0x1000,
3336 	NETIF_MSG_HW		= 0x2000,
3337 	NETIF_MSG_WOL		= 0x4000,
3338 };
3339 
3340 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3341 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3342 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3343 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3344 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3345 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3346 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3347 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3348 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3349 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3350 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3351 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3352 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3353 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3354 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3355 
3356 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3357 {
3358 	/* use default */
3359 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3360 		return default_msg_enable_bits;
3361 	if (debug_value == 0)	/* no output */
3362 		return 0;
3363 	/* set low N bits */
3364 	return (1 << debug_value) - 1;
3365 }
3366 
3367 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3368 {
3369 	spin_lock(&txq->_xmit_lock);
3370 	txq->xmit_lock_owner = cpu;
3371 }
3372 
3373 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3374 {
3375 	spin_lock_bh(&txq->_xmit_lock);
3376 	txq->xmit_lock_owner = smp_processor_id();
3377 }
3378 
3379 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3380 {
3381 	bool ok = spin_trylock(&txq->_xmit_lock);
3382 	if (likely(ok))
3383 		txq->xmit_lock_owner = smp_processor_id();
3384 	return ok;
3385 }
3386 
3387 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3388 {
3389 	txq->xmit_lock_owner = -1;
3390 	spin_unlock(&txq->_xmit_lock);
3391 }
3392 
3393 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3394 {
3395 	txq->xmit_lock_owner = -1;
3396 	spin_unlock_bh(&txq->_xmit_lock);
3397 }
3398 
3399 static inline void txq_trans_update(struct netdev_queue *txq)
3400 {
3401 	if (txq->xmit_lock_owner != -1)
3402 		txq->trans_start = jiffies;
3403 }
3404 
3405 /**
3406  *	netif_tx_lock - grab network device transmit lock
3407  *	@dev: network device
3408  *
3409  * Get network device transmit lock
3410  */
3411 static inline void netif_tx_lock(struct net_device *dev)
3412 {
3413 	unsigned int i;
3414 	int cpu;
3415 
3416 	spin_lock(&dev->tx_global_lock);
3417 	cpu = smp_processor_id();
3418 	for (i = 0; i < dev->num_tx_queues; i++) {
3419 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3420 
3421 		/* We are the only thread of execution doing a
3422 		 * freeze, but we have to grab the _xmit_lock in
3423 		 * order to synchronize with threads which are in
3424 		 * the ->hard_start_xmit() handler and already
3425 		 * checked the frozen bit.
3426 		 */
3427 		__netif_tx_lock(txq, cpu);
3428 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3429 		__netif_tx_unlock(txq);
3430 	}
3431 }
3432 
3433 static inline void netif_tx_lock_bh(struct net_device *dev)
3434 {
3435 	local_bh_disable();
3436 	netif_tx_lock(dev);
3437 }
3438 
3439 static inline void netif_tx_unlock(struct net_device *dev)
3440 {
3441 	unsigned int i;
3442 
3443 	for (i = 0; i < dev->num_tx_queues; i++) {
3444 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3445 
3446 		/* No need to grab the _xmit_lock here.  If the
3447 		 * queue is not stopped for another reason, we
3448 		 * force a schedule.
3449 		 */
3450 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3451 		netif_schedule_queue(txq);
3452 	}
3453 	spin_unlock(&dev->tx_global_lock);
3454 }
3455 
3456 static inline void netif_tx_unlock_bh(struct net_device *dev)
3457 {
3458 	netif_tx_unlock(dev);
3459 	local_bh_enable();
3460 }
3461 
3462 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3463 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3464 		__netif_tx_lock(txq, cpu);		\
3465 	}						\
3466 }
3467 
3468 #define HARD_TX_TRYLOCK(dev, txq)			\
3469 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3470 		__netif_tx_trylock(txq) :		\
3471 		true )
3472 
3473 #define HARD_TX_UNLOCK(dev, txq) {			\
3474 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3475 		__netif_tx_unlock(txq);			\
3476 	}						\
3477 }
3478 
3479 static inline void netif_tx_disable(struct net_device *dev)
3480 {
3481 	unsigned int i;
3482 	int cpu;
3483 
3484 	local_bh_disable();
3485 	cpu = smp_processor_id();
3486 	for (i = 0; i < dev->num_tx_queues; i++) {
3487 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3488 
3489 		__netif_tx_lock(txq, cpu);
3490 		netif_tx_stop_queue(txq);
3491 		__netif_tx_unlock(txq);
3492 	}
3493 	local_bh_enable();
3494 }
3495 
3496 static inline void netif_addr_lock(struct net_device *dev)
3497 {
3498 	spin_lock(&dev->addr_list_lock);
3499 }
3500 
3501 static inline void netif_addr_lock_nested(struct net_device *dev)
3502 {
3503 	int subclass = SINGLE_DEPTH_NESTING;
3504 
3505 	if (dev->netdev_ops->ndo_get_lock_subclass)
3506 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3507 
3508 	spin_lock_nested(&dev->addr_list_lock, subclass);
3509 }
3510 
3511 static inline void netif_addr_lock_bh(struct net_device *dev)
3512 {
3513 	spin_lock_bh(&dev->addr_list_lock);
3514 }
3515 
3516 static inline void netif_addr_unlock(struct net_device *dev)
3517 {
3518 	spin_unlock(&dev->addr_list_lock);
3519 }
3520 
3521 static inline void netif_addr_unlock_bh(struct net_device *dev)
3522 {
3523 	spin_unlock_bh(&dev->addr_list_lock);
3524 }
3525 
3526 /*
3527  * dev_addrs walker. Should be used only for read access. Call with
3528  * rcu_read_lock held.
3529  */
3530 #define for_each_dev_addr(dev, ha) \
3531 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3532 
3533 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3534 
3535 void ether_setup(struct net_device *dev);
3536 
3537 /* Support for loadable net-drivers */
3538 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3539 				    unsigned char name_assign_type,
3540 				    void (*setup)(struct net_device *),
3541 				    unsigned int txqs, unsigned int rxqs);
3542 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3543 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3544 
3545 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3546 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3547 			 count)
3548 
3549 int register_netdev(struct net_device *dev);
3550 void unregister_netdev(struct net_device *dev);
3551 
3552 /* General hardware address lists handling functions */
3553 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3554 		   struct netdev_hw_addr_list *from_list, int addr_len);
3555 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3556 		      struct netdev_hw_addr_list *from_list, int addr_len);
3557 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3558 		       struct net_device *dev,
3559 		       int (*sync)(struct net_device *, const unsigned char *),
3560 		       int (*unsync)(struct net_device *,
3561 				     const unsigned char *));
3562 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3563 			  struct net_device *dev,
3564 			  int (*unsync)(struct net_device *,
3565 					const unsigned char *));
3566 void __hw_addr_init(struct netdev_hw_addr_list *list);
3567 
3568 /* Functions used for device addresses handling */
3569 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3570 		 unsigned char addr_type);
3571 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3572 		 unsigned char addr_type);
3573 void dev_addr_flush(struct net_device *dev);
3574 int dev_addr_init(struct net_device *dev);
3575 
3576 /* Functions used for unicast addresses handling */
3577 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3578 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3579 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3580 int dev_uc_sync(struct net_device *to, struct net_device *from);
3581 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3582 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3583 void dev_uc_flush(struct net_device *dev);
3584 void dev_uc_init(struct net_device *dev);
3585 
3586 /**
3587  *  __dev_uc_sync - Synchonize device's unicast list
3588  *  @dev:  device to sync
3589  *  @sync: function to call if address should be added
3590  *  @unsync: function to call if address should be removed
3591  *
3592  *  Add newly added addresses to the interface, and release
3593  *  addresses that have been deleted.
3594  **/
3595 static inline int __dev_uc_sync(struct net_device *dev,
3596 				int (*sync)(struct net_device *,
3597 					    const unsigned char *),
3598 				int (*unsync)(struct net_device *,
3599 					      const unsigned char *))
3600 {
3601 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3602 }
3603 
3604 /**
3605  *  __dev_uc_unsync - Remove synchronized addresses from device
3606  *  @dev:  device to sync
3607  *  @unsync: function to call if address should be removed
3608  *
3609  *  Remove all addresses that were added to the device by dev_uc_sync().
3610  **/
3611 static inline void __dev_uc_unsync(struct net_device *dev,
3612 				   int (*unsync)(struct net_device *,
3613 						 const unsigned char *))
3614 {
3615 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3616 }
3617 
3618 /* Functions used for multicast addresses handling */
3619 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3620 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3621 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3622 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3623 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3624 int dev_mc_sync(struct net_device *to, struct net_device *from);
3625 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3626 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3627 void dev_mc_flush(struct net_device *dev);
3628 void dev_mc_init(struct net_device *dev);
3629 
3630 /**
3631  *  __dev_mc_sync - Synchonize device's multicast list
3632  *  @dev:  device to sync
3633  *  @sync: function to call if address should be added
3634  *  @unsync: function to call if address should be removed
3635  *
3636  *  Add newly added addresses to the interface, and release
3637  *  addresses that have been deleted.
3638  **/
3639 static inline int __dev_mc_sync(struct net_device *dev,
3640 				int (*sync)(struct net_device *,
3641 					    const unsigned char *),
3642 				int (*unsync)(struct net_device *,
3643 					      const unsigned char *))
3644 {
3645 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3646 }
3647 
3648 /**
3649  *  __dev_mc_unsync - Remove synchronized addresses from device
3650  *  @dev:  device to sync
3651  *  @unsync: function to call if address should be removed
3652  *
3653  *  Remove all addresses that were added to the device by dev_mc_sync().
3654  **/
3655 static inline void __dev_mc_unsync(struct net_device *dev,
3656 				   int (*unsync)(struct net_device *,
3657 						 const unsigned char *))
3658 {
3659 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3660 }
3661 
3662 /* Functions used for secondary unicast and multicast support */
3663 void dev_set_rx_mode(struct net_device *dev);
3664 void __dev_set_rx_mode(struct net_device *dev);
3665 int dev_set_promiscuity(struct net_device *dev, int inc);
3666 int dev_set_allmulti(struct net_device *dev, int inc);
3667 void netdev_state_change(struct net_device *dev);
3668 void netdev_notify_peers(struct net_device *dev);
3669 void netdev_features_change(struct net_device *dev);
3670 /* Load a device via the kmod */
3671 void dev_load(struct net *net, const char *name);
3672 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3673 					struct rtnl_link_stats64 *storage);
3674 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3675 			     const struct net_device_stats *netdev_stats);
3676 
3677 extern int		netdev_max_backlog;
3678 extern int		netdev_tstamp_prequeue;
3679 extern int		weight_p;
3680 extern int		bpf_jit_enable;
3681 
3682 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3683 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3684 						     struct list_head **iter);
3685 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3686 						     struct list_head **iter);
3687 
3688 /* iterate through upper list, must be called under RCU read lock */
3689 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3690 	for (iter = &(dev)->adj_list.upper, \
3691 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3692 	     updev; \
3693 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3694 
3695 /* iterate through upper list, must be called under RCU read lock */
3696 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3697 	for (iter = &(dev)->all_adj_list.upper, \
3698 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3699 	     updev; \
3700 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3701 
3702 void *netdev_lower_get_next_private(struct net_device *dev,
3703 				    struct list_head **iter);
3704 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3705 					struct list_head **iter);
3706 
3707 #define netdev_for_each_lower_private(dev, priv, iter) \
3708 	for (iter = (dev)->adj_list.lower.next, \
3709 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3710 	     priv; \
3711 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3712 
3713 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3714 	for (iter = &(dev)->adj_list.lower, \
3715 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3716 	     priv; \
3717 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3718 
3719 void *netdev_lower_get_next(struct net_device *dev,
3720 				struct list_head **iter);
3721 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3722 	for (iter = &(dev)->adj_list.lower, \
3723 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3724 	     ldev; \
3725 	     ldev = netdev_lower_get_next(dev, &(iter)))
3726 
3727 void *netdev_adjacent_get_private(struct list_head *adj_list);
3728 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3729 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3730 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3731 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3732 int netdev_master_upper_dev_link(struct net_device *dev,
3733 				 struct net_device *upper_dev,
3734 				 void *upper_priv, void *upper_info);
3735 void netdev_upper_dev_unlink(struct net_device *dev,
3736 			     struct net_device *upper_dev);
3737 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3738 void *netdev_lower_dev_get_private(struct net_device *dev,
3739 				   struct net_device *lower_dev);
3740 void netdev_lower_state_changed(struct net_device *lower_dev,
3741 				void *lower_state_info);
3742 
3743 /* RSS keys are 40 or 52 bytes long */
3744 #define NETDEV_RSS_KEY_LEN 52
3745 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3746 void netdev_rss_key_fill(void *buffer, size_t len);
3747 
3748 int dev_get_nest_level(struct net_device *dev,
3749 		       bool (*type_check)(const struct net_device *dev));
3750 int skb_checksum_help(struct sk_buff *skb);
3751 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3752 				  netdev_features_t features, bool tx_path);
3753 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3754 				    netdev_features_t features);
3755 
3756 struct netdev_bonding_info {
3757 	ifslave	slave;
3758 	ifbond	master;
3759 };
3760 
3761 struct netdev_notifier_bonding_info {
3762 	struct netdev_notifier_info info; /* must be first */
3763 	struct netdev_bonding_info  bonding_info;
3764 };
3765 
3766 void netdev_bonding_info_change(struct net_device *dev,
3767 				struct netdev_bonding_info *bonding_info);
3768 
3769 static inline
3770 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3771 {
3772 	return __skb_gso_segment(skb, features, true);
3773 }
3774 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3775 
3776 static inline bool can_checksum_protocol(netdev_features_t features,
3777 					 __be16 protocol)
3778 {
3779 	if (protocol == htons(ETH_P_FCOE))
3780 		return !!(features & NETIF_F_FCOE_CRC);
3781 
3782 	/* Assume this is an IP checksum (not SCTP CRC) */
3783 
3784 	if (features & NETIF_F_HW_CSUM) {
3785 		/* Can checksum everything */
3786 		return true;
3787 	}
3788 
3789 	switch (protocol) {
3790 	case htons(ETH_P_IP):
3791 		return !!(features & NETIF_F_IP_CSUM);
3792 	case htons(ETH_P_IPV6):
3793 		return !!(features & NETIF_F_IPV6_CSUM);
3794 	default:
3795 		return false;
3796 	}
3797 }
3798 
3799 /* Map an ethertype into IP protocol if possible */
3800 static inline int eproto_to_ipproto(int eproto)
3801 {
3802 	switch (eproto) {
3803 	case htons(ETH_P_IP):
3804 		return IPPROTO_IP;
3805 	case htons(ETH_P_IPV6):
3806 		return IPPROTO_IPV6;
3807 	default:
3808 		return -1;
3809 	}
3810 }
3811 
3812 #ifdef CONFIG_BUG
3813 void netdev_rx_csum_fault(struct net_device *dev);
3814 #else
3815 static inline void netdev_rx_csum_fault(struct net_device *dev)
3816 {
3817 }
3818 #endif
3819 /* rx skb timestamps */
3820 void net_enable_timestamp(void);
3821 void net_disable_timestamp(void);
3822 
3823 #ifdef CONFIG_PROC_FS
3824 int __init dev_proc_init(void);
3825 #else
3826 #define dev_proc_init() 0
3827 #endif
3828 
3829 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3830 					      struct sk_buff *skb, struct net_device *dev,
3831 					      bool more)
3832 {
3833 	skb->xmit_more = more ? 1 : 0;
3834 	return ops->ndo_start_xmit(skb, dev);
3835 }
3836 
3837 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3838 					    struct netdev_queue *txq, bool more)
3839 {
3840 	const struct net_device_ops *ops = dev->netdev_ops;
3841 	int rc;
3842 
3843 	rc = __netdev_start_xmit(ops, skb, dev, more);
3844 	if (rc == NETDEV_TX_OK)
3845 		txq_trans_update(txq);
3846 
3847 	return rc;
3848 }
3849 
3850 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3851 				const void *ns);
3852 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3853 				 const void *ns);
3854 
3855 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3856 {
3857 	return netdev_class_create_file_ns(class_attr, NULL);
3858 }
3859 
3860 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3861 {
3862 	netdev_class_remove_file_ns(class_attr, NULL);
3863 }
3864 
3865 extern struct kobj_ns_type_operations net_ns_type_operations;
3866 
3867 const char *netdev_drivername(const struct net_device *dev);
3868 
3869 void linkwatch_run_queue(void);
3870 
3871 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3872 							  netdev_features_t f2)
3873 {
3874 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3875 		if (f1 & NETIF_F_HW_CSUM)
3876 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3877 		else
3878 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3879 	}
3880 
3881 	return f1 & f2;
3882 }
3883 
3884 static inline netdev_features_t netdev_get_wanted_features(
3885 	struct net_device *dev)
3886 {
3887 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3888 }
3889 netdev_features_t netdev_increment_features(netdev_features_t all,
3890 	netdev_features_t one, netdev_features_t mask);
3891 
3892 /* Allow TSO being used on stacked device :
3893  * Performing the GSO segmentation before last device
3894  * is a performance improvement.
3895  */
3896 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3897 							netdev_features_t mask)
3898 {
3899 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3900 }
3901 
3902 int __netdev_update_features(struct net_device *dev);
3903 void netdev_update_features(struct net_device *dev);
3904 void netdev_change_features(struct net_device *dev);
3905 
3906 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3907 					struct net_device *dev);
3908 
3909 netdev_features_t passthru_features_check(struct sk_buff *skb,
3910 					  struct net_device *dev,
3911 					  netdev_features_t features);
3912 netdev_features_t netif_skb_features(struct sk_buff *skb);
3913 
3914 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3915 {
3916 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3917 
3918 	/* check flags correspondence */
3919 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3920 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3921 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3922 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3923 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3924 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3925 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3926 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3927 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3928 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3929 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3930 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3931 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3932 
3933 	return (features & feature) == feature;
3934 }
3935 
3936 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3937 {
3938 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3939 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3940 }
3941 
3942 static inline bool netif_needs_gso(struct sk_buff *skb,
3943 				   netdev_features_t features)
3944 {
3945 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3946 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3947 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3948 }
3949 
3950 static inline void netif_set_gso_max_size(struct net_device *dev,
3951 					  unsigned int size)
3952 {
3953 	dev->gso_max_size = size;
3954 }
3955 
3956 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3957 					int pulled_hlen, u16 mac_offset,
3958 					int mac_len)
3959 {
3960 	skb->protocol = protocol;
3961 	skb->encapsulation = 1;
3962 	skb_push(skb, pulled_hlen);
3963 	skb_reset_transport_header(skb);
3964 	skb->mac_header = mac_offset;
3965 	skb->network_header = skb->mac_header + mac_len;
3966 	skb->mac_len = mac_len;
3967 }
3968 
3969 static inline bool netif_is_macvlan(const struct net_device *dev)
3970 {
3971 	return dev->priv_flags & IFF_MACVLAN;
3972 }
3973 
3974 static inline bool netif_is_macvlan_port(const struct net_device *dev)
3975 {
3976 	return dev->priv_flags & IFF_MACVLAN_PORT;
3977 }
3978 
3979 static inline bool netif_is_ipvlan(const struct net_device *dev)
3980 {
3981 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3982 }
3983 
3984 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
3985 {
3986 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3987 }
3988 
3989 static inline bool netif_is_bond_master(const struct net_device *dev)
3990 {
3991 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3992 }
3993 
3994 static inline bool netif_is_bond_slave(const struct net_device *dev)
3995 {
3996 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3997 }
3998 
3999 static inline bool netif_supports_nofcs(struct net_device *dev)
4000 {
4001 	return dev->priv_flags & IFF_SUPP_NOFCS;
4002 }
4003 
4004 static inline bool netif_is_l3_master(const struct net_device *dev)
4005 {
4006 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4007 }
4008 
4009 static inline bool netif_is_l3_slave(const struct net_device *dev)
4010 {
4011 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4012 }
4013 
4014 static inline bool netif_is_bridge_master(const struct net_device *dev)
4015 {
4016 	return dev->priv_flags & IFF_EBRIDGE;
4017 }
4018 
4019 static inline bool netif_is_bridge_port(const struct net_device *dev)
4020 {
4021 	return dev->priv_flags & IFF_BRIDGE_PORT;
4022 }
4023 
4024 static inline bool netif_is_ovs_master(const struct net_device *dev)
4025 {
4026 	return dev->priv_flags & IFF_OPENVSWITCH;
4027 }
4028 
4029 static inline bool netif_is_team_master(const struct net_device *dev)
4030 {
4031 	return dev->priv_flags & IFF_TEAM;
4032 }
4033 
4034 static inline bool netif_is_team_port(const struct net_device *dev)
4035 {
4036 	return dev->priv_flags & IFF_TEAM_PORT;
4037 }
4038 
4039 static inline bool netif_is_lag_master(const struct net_device *dev)
4040 {
4041 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4042 }
4043 
4044 static inline bool netif_is_lag_port(const struct net_device *dev)
4045 {
4046 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4047 }
4048 
4049 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4050 static inline void netif_keep_dst(struct net_device *dev)
4051 {
4052 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4053 }
4054 
4055 extern struct pernet_operations __net_initdata loopback_net_ops;
4056 
4057 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4058 
4059 /* netdev_printk helpers, similar to dev_printk */
4060 
4061 static inline const char *netdev_name(const struct net_device *dev)
4062 {
4063 	if (!dev->name[0] || strchr(dev->name, '%'))
4064 		return "(unnamed net_device)";
4065 	return dev->name;
4066 }
4067 
4068 static inline const char *netdev_reg_state(const struct net_device *dev)
4069 {
4070 	switch (dev->reg_state) {
4071 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4072 	case NETREG_REGISTERED: return "";
4073 	case NETREG_UNREGISTERING: return " (unregistering)";
4074 	case NETREG_UNREGISTERED: return " (unregistered)";
4075 	case NETREG_RELEASED: return " (released)";
4076 	case NETREG_DUMMY: return " (dummy)";
4077 	}
4078 
4079 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4080 	return " (unknown)";
4081 }
4082 
4083 __printf(3, 4)
4084 void netdev_printk(const char *level, const struct net_device *dev,
4085 		   const char *format, ...);
4086 __printf(2, 3)
4087 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4088 __printf(2, 3)
4089 void netdev_alert(const struct net_device *dev, const char *format, ...);
4090 __printf(2, 3)
4091 void netdev_crit(const struct net_device *dev, const char *format, ...);
4092 __printf(2, 3)
4093 void netdev_err(const struct net_device *dev, const char *format, ...);
4094 __printf(2, 3)
4095 void netdev_warn(const struct net_device *dev, const char *format, ...);
4096 __printf(2, 3)
4097 void netdev_notice(const struct net_device *dev, const char *format, ...);
4098 __printf(2, 3)
4099 void netdev_info(const struct net_device *dev, const char *format, ...);
4100 
4101 #define MODULE_ALIAS_NETDEV(device) \
4102 	MODULE_ALIAS("netdev-" device)
4103 
4104 #if defined(CONFIG_DYNAMIC_DEBUG)
4105 #define netdev_dbg(__dev, format, args...)			\
4106 do {								\
4107 	dynamic_netdev_dbg(__dev, format, ##args);		\
4108 } while (0)
4109 #elif defined(DEBUG)
4110 #define netdev_dbg(__dev, format, args...)			\
4111 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4112 #else
4113 #define netdev_dbg(__dev, format, args...)			\
4114 ({								\
4115 	if (0)							\
4116 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4117 })
4118 #endif
4119 
4120 #if defined(VERBOSE_DEBUG)
4121 #define netdev_vdbg	netdev_dbg
4122 #else
4123 
4124 #define netdev_vdbg(dev, format, args...)			\
4125 ({								\
4126 	if (0)							\
4127 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4128 	0;							\
4129 })
4130 #endif
4131 
4132 /*
4133  * netdev_WARN() acts like dev_printk(), but with the key difference
4134  * of using a WARN/WARN_ON to get the message out, including the
4135  * file/line information and a backtrace.
4136  */
4137 #define netdev_WARN(dev, format, args...)			\
4138 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4139 	     netdev_reg_state(dev), ##args)
4140 
4141 /* netif printk helpers, similar to netdev_printk */
4142 
4143 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4144 do {					  			\
4145 	if (netif_msg_##type(priv))				\
4146 		netdev_printk(level, (dev), fmt, ##args);	\
4147 } while (0)
4148 
4149 #define netif_level(level, priv, type, dev, fmt, args...)	\
4150 do {								\
4151 	if (netif_msg_##type(priv))				\
4152 		netdev_##level(dev, fmt, ##args);		\
4153 } while (0)
4154 
4155 #define netif_emerg(priv, type, dev, fmt, args...)		\
4156 	netif_level(emerg, priv, type, dev, fmt, ##args)
4157 #define netif_alert(priv, type, dev, fmt, args...)		\
4158 	netif_level(alert, priv, type, dev, fmt, ##args)
4159 #define netif_crit(priv, type, dev, fmt, args...)		\
4160 	netif_level(crit, priv, type, dev, fmt, ##args)
4161 #define netif_err(priv, type, dev, fmt, args...)		\
4162 	netif_level(err, priv, type, dev, fmt, ##args)
4163 #define netif_warn(priv, type, dev, fmt, args...)		\
4164 	netif_level(warn, priv, type, dev, fmt, ##args)
4165 #define netif_notice(priv, type, dev, fmt, args...)		\
4166 	netif_level(notice, priv, type, dev, fmt, ##args)
4167 #define netif_info(priv, type, dev, fmt, args...)		\
4168 	netif_level(info, priv, type, dev, fmt, ##args)
4169 
4170 #if defined(CONFIG_DYNAMIC_DEBUG)
4171 #define netif_dbg(priv, type, netdev, format, args...)		\
4172 do {								\
4173 	if (netif_msg_##type(priv))				\
4174 		dynamic_netdev_dbg(netdev, format, ##args);	\
4175 } while (0)
4176 #elif defined(DEBUG)
4177 #define netif_dbg(priv, type, dev, format, args...)		\
4178 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4179 #else
4180 #define netif_dbg(priv, type, dev, format, args...)			\
4181 ({									\
4182 	if (0)								\
4183 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4184 	0;								\
4185 })
4186 #endif
4187 
4188 #if defined(VERBOSE_DEBUG)
4189 #define netif_vdbg	netif_dbg
4190 #else
4191 #define netif_vdbg(priv, type, dev, format, args...)		\
4192 ({								\
4193 	if (0)							\
4194 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4195 	0;							\
4196 })
4197 #endif
4198 
4199 /*
4200  *	The list of packet types we will receive (as opposed to discard)
4201  *	and the routines to invoke.
4202  *
4203  *	Why 16. Because with 16 the only overlap we get on a hash of the
4204  *	low nibble of the protocol value is RARP/SNAP/X.25.
4205  *
4206  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4207  *             sure which should go first, but I bet it won't make much
4208  *             difference if we are running VLANs.  The good news is that
4209  *             this protocol won't be in the list unless compiled in, so
4210  *             the average user (w/out VLANs) will not be adversely affected.
4211  *             --BLG
4212  *
4213  *		0800	IP
4214  *		8100    802.1Q VLAN
4215  *		0001	802.3
4216  *		0002	AX.25
4217  *		0004	802.2
4218  *		8035	RARP
4219  *		0005	SNAP
4220  *		0805	X.25
4221  *		0806	ARP
4222  *		8137	IPX
4223  *		0009	Localtalk
4224  *		86DD	IPv6
4225  */
4226 #define PTYPE_HASH_SIZE	(16)
4227 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4228 
4229 #endif	/* _LINUX_NETDEVICE_H */
4230