1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 #include <uapi/linux/if_bonding.h> 54 55 struct netpoll_info; 56 struct device; 57 struct phy_device; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 64 void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67 /* Backlog congestion levels */ 68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69 #define NET_RX_DROP 1 /* packet dropped */ 70 71 /* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88 /* qdisc ->enqueue() return codes. */ 89 #define NET_XMIT_SUCCESS 0x00 90 #define NET_XMIT_DROP 0x01 /* skb dropped */ 91 #define NET_XMIT_CN 0x02 /* congestion notification */ 92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101 /* Driver transmit return codes */ 102 #define NETDEV_TX_MASK 0xf0 103 104 enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109 }; 110 typedef enum netdev_tx netdev_tx_t; 111 112 /* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116 static inline bool dev_xmit_complete(int rc) 117 { 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128 } 129 130 /* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135 #if defined(CONFIG_HYPERV_NET) 136 # define LL_MAX_HEADER 128 137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 138 # if defined(CONFIG_MAC80211_MESH) 139 # define LL_MAX_HEADER 128 140 # else 141 # define LL_MAX_HEADER 96 142 # endif 143 #else 144 # define LL_MAX_HEADER 32 145 #endif 146 147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 148 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 149 #define MAX_HEADER LL_MAX_HEADER 150 #else 151 #define MAX_HEADER (LL_MAX_HEADER + 48) 152 #endif 153 154 /* 155 * Old network device statistics. Fields are native words 156 * (unsigned long) so they can be read and written atomically. 157 */ 158 159 struct net_device_stats { 160 unsigned long rx_packets; 161 unsigned long tx_packets; 162 unsigned long rx_bytes; 163 unsigned long tx_bytes; 164 unsigned long rx_errors; 165 unsigned long tx_errors; 166 unsigned long rx_dropped; 167 unsigned long tx_dropped; 168 unsigned long multicast; 169 unsigned long collisions; 170 unsigned long rx_length_errors; 171 unsigned long rx_over_errors; 172 unsigned long rx_crc_errors; 173 unsigned long rx_frame_errors; 174 unsigned long rx_fifo_errors; 175 unsigned long rx_missed_errors; 176 unsigned long tx_aborted_errors; 177 unsigned long tx_carrier_errors; 178 unsigned long tx_fifo_errors; 179 unsigned long tx_heartbeat_errors; 180 unsigned long tx_window_errors; 181 unsigned long rx_compressed; 182 unsigned long tx_compressed; 183 }; 184 185 186 #include <linux/cache.h> 187 #include <linux/skbuff.h> 188 189 #ifdef CONFIG_RPS 190 #include <linux/static_key.h> 191 extern struct static_key rps_needed; 192 #endif 193 194 struct neighbour; 195 struct neigh_parms; 196 struct sk_buff; 197 198 struct netdev_hw_addr { 199 struct list_head list; 200 unsigned char addr[MAX_ADDR_LEN]; 201 unsigned char type; 202 #define NETDEV_HW_ADDR_T_LAN 1 203 #define NETDEV_HW_ADDR_T_SAN 2 204 #define NETDEV_HW_ADDR_T_SLAVE 3 205 #define NETDEV_HW_ADDR_T_UNICAST 4 206 #define NETDEV_HW_ADDR_T_MULTICAST 5 207 bool global_use; 208 int sync_cnt; 209 int refcount; 210 int synced; 211 struct rcu_head rcu_head; 212 }; 213 214 struct netdev_hw_addr_list { 215 struct list_head list; 216 int count; 217 }; 218 219 #define netdev_hw_addr_list_count(l) ((l)->count) 220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 221 #define netdev_hw_addr_list_for_each(ha, l) \ 222 list_for_each_entry(ha, &(l)->list, list) 223 224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 226 #define netdev_for_each_uc_addr(ha, dev) \ 227 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 228 229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 231 #define netdev_for_each_mc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 233 234 struct hh_cache { 235 u16 hh_len; 236 u16 __pad; 237 seqlock_t hh_lock; 238 239 /* cached hardware header; allow for machine alignment needs. */ 240 #define HH_DATA_MOD 16 241 #define HH_DATA_OFF(__len) \ 242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 243 #define HH_DATA_ALIGN(__len) \ 244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 246 }; 247 248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 249 * Alternative is: 250 * dev->hard_header_len ? (dev->hard_header_len + 251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 252 * 253 * We could use other alignment values, but we must maintain the 254 * relationship HH alignment <= LL alignment. 255 */ 256 #define LL_RESERVED_SPACE(dev) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 261 struct header_ops { 262 int (*create) (struct sk_buff *skb, struct net_device *dev, 263 unsigned short type, const void *daddr, 264 const void *saddr, unsigned int len); 265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 266 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 267 void (*cache_update)(struct hh_cache *hh, 268 const struct net_device *dev, 269 const unsigned char *haddr); 270 }; 271 272 /* These flag bits are private to the generic network queueing 273 * layer, they may not be explicitly referenced by any other 274 * code. 275 */ 276 277 enum netdev_state_t { 278 __LINK_STATE_START, 279 __LINK_STATE_PRESENT, 280 __LINK_STATE_NOCARRIER, 281 __LINK_STATE_LINKWATCH_PENDING, 282 __LINK_STATE_DORMANT, 283 }; 284 285 286 /* 287 * This structure holds at boot time configured netdevice settings. They 288 * are then used in the device probing. 289 */ 290 struct netdev_boot_setup { 291 char name[IFNAMSIZ]; 292 struct ifmap map; 293 }; 294 #define NETDEV_BOOT_SETUP_MAX 8 295 296 int __init netdev_boot_setup(char *str); 297 298 /* 299 * Structure for NAPI scheduling similar to tasklet but with weighting 300 */ 301 struct napi_struct { 302 /* The poll_list must only be managed by the entity which 303 * changes the state of the NAPI_STATE_SCHED bit. This means 304 * whoever atomically sets that bit can add this napi_struct 305 * to the per-cpu poll_list, and whoever clears that bit 306 * can remove from the list right before clearing the bit. 307 */ 308 struct list_head poll_list; 309 310 unsigned long state; 311 int weight; 312 unsigned int gro_count; 313 int (*poll)(struct napi_struct *, int); 314 #ifdef CONFIG_NETPOLL 315 spinlock_t poll_lock; 316 int poll_owner; 317 #endif 318 struct net_device *dev; 319 struct sk_buff *gro_list; 320 struct sk_buff *skb; 321 struct hrtimer timer; 322 struct list_head dev_list; 323 struct hlist_node napi_hash_node; 324 unsigned int napi_id; 325 }; 326 327 enum { 328 NAPI_STATE_SCHED, /* Poll is scheduled */ 329 NAPI_STATE_DISABLE, /* Disable pending */ 330 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 331 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 332 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 333 }; 334 335 enum gro_result { 336 GRO_MERGED, 337 GRO_MERGED_FREE, 338 GRO_HELD, 339 GRO_NORMAL, 340 GRO_DROP, 341 }; 342 typedef enum gro_result gro_result_t; 343 344 /* 345 * enum rx_handler_result - Possible return values for rx_handlers. 346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 347 * further. 348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 349 * case skb->dev was changed by rx_handler. 350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 352 * 353 * rx_handlers are functions called from inside __netif_receive_skb(), to do 354 * special processing of the skb, prior to delivery to protocol handlers. 355 * 356 * Currently, a net_device can only have a single rx_handler registered. Trying 357 * to register a second rx_handler will return -EBUSY. 358 * 359 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 360 * To unregister a rx_handler on a net_device, use 361 * netdev_rx_handler_unregister(). 362 * 363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 364 * do with the skb. 365 * 366 * If the rx_handler consumed to skb in some way, it should return 367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 368 * the skb to be delivered in some other ways. 369 * 370 * If the rx_handler changed skb->dev, to divert the skb to another 371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 372 * new device will be called if it exists. 373 * 374 * If the rx_handler consider the skb should be ignored, it should return 375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 376 * are registered on exact device (ptype->dev == skb->dev). 377 * 378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 379 * delivered, it should return RX_HANDLER_PASS. 380 * 381 * A device without a registered rx_handler will behave as if rx_handler 382 * returned RX_HANDLER_PASS. 383 */ 384 385 enum rx_handler_result { 386 RX_HANDLER_CONSUMED, 387 RX_HANDLER_ANOTHER, 388 RX_HANDLER_EXACT, 389 RX_HANDLER_PASS, 390 }; 391 typedef enum rx_handler_result rx_handler_result_t; 392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 393 394 void __napi_schedule(struct napi_struct *n); 395 void __napi_schedule_irqoff(struct napi_struct *n); 396 397 static inline bool napi_disable_pending(struct napi_struct *n) 398 { 399 return test_bit(NAPI_STATE_DISABLE, &n->state); 400 } 401 402 /** 403 * napi_schedule_prep - check if napi can be scheduled 404 * @n: napi context 405 * 406 * Test if NAPI routine is already running, and if not mark 407 * it as running. This is used as a condition variable 408 * insure only one NAPI poll instance runs. We also make 409 * sure there is no pending NAPI disable. 410 */ 411 static inline bool napi_schedule_prep(struct napi_struct *n) 412 { 413 return !napi_disable_pending(n) && 414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 415 } 416 417 /** 418 * napi_schedule - schedule NAPI poll 419 * @n: napi context 420 * 421 * Schedule NAPI poll routine to be called if it is not already 422 * running. 423 */ 424 static inline void napi_schedule(struct napi_struct *n) 425 { 426 if (napi_schedule_prep(n)) 427 __napi_schedule(n); 428 } 429 430 /** 431 * napi_schedule_irqoff - schedule NAPI poll 432 * @n: napi context 433 * 434 * Variant of napi_schedule(), assuming hard irqs are masked. 435 */ 436 static inline void napi_schedule_irqoff(struct napi_struct *n) 437 { 438 if (napi_schedule_prep(n)) 439 __napi_schedule_irqoff(n); 440 } 441 442 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 443 static inline bool napi_reschedule(struct napi_struct *napi) 444 { 445 if (napi_schedule_prep(napi)) { 446 __napi_schedule(napi); 447 return true; 448 } 449 return false; 450 } 451 452 void __napi_complete(struct napi_struct *n); 453 void napi_complete_done(struct napi_struct *n, int work_done); 454 /** 455 * napi_complete - NAPI processing complete 456 * @n: napi context 457 * 458 * Mark NAPI processing as complete. 459 * Consider using napi_complete_done() instead. 460 */ 461 static inline void napi_complete(struct napi_struct *n) 462 { 463 return napi_complete_done(n, 0); 464 } 465 466 /** 467 * napi_hash_add - add a NAPI to global hashtable 468 * @napi: napi context 469 * 470 * generate a new napi_id and store a @napi under it in napi_hash 471 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL) 472 * Note: This is normally automatically done from netif_napi_add(), 473 * so might disappear in a future linux version. 474 */ 475 void napi_hash_add(struct napi_struct *napi); 476 477 /** 478 * napi_hash_del - remove a NAPI from global table 479 * @napi: napi context 480 * 481 * Warning: caller must observe rcu grace period 482 * before freeing memory containing @napi, if 483 * this function returns true. 484 * Note: core networking stack automatically calls it 485 * from netif_napi_del() 486 * Drivers might want to call this helper to combine all 487 * the needed rcu grace periods into a single one. 488 */ 489 bool napi_hash_del(struct napi_struct *napi); 490 491 /** 492 * napi_disable - prevent NAPI from scheduling 493 * @n: napi context 494 * 495 * Stop NAPI from being scheduled on this context. 496 * Waits till any outstanding processing completes. 497 */ 498 void napi_disable(struct napi_struct *n); 499 500 /** 501 * napi_enable - enable NAPI scheduling 502 * @n: napi context 503 * 504 * Resume NAPI from being scheduled on this context. 505 * Must be paired with napi_disable. 506 */ 507 static inline void napi_enable(struct napi_struct *n) 508 { 509 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 510 smp_mb__before_atomic(); 511 clear_bit(NAPI_STATE_SCHED, &n->state); 512 clear_bit(NAPI_STATE_NPSVC, &n->state); 513 } 514 515 #ifdef CONFIG_SMP 516 /** 517 * napi_synchronize - wait until NAPI is not running 518 * @n: napi context 519 * 520 * Wait until NAPI is done being scheduled on this context. 521 * Waits till any outstanding processing completes but 522 * does not disable future activations. 523 */ 524 static inline void napi_synchronize(const struct napi_struct *n) 525 { 526 while (test_bit(NAPI_STATE_SCHED, &n->state)) 527 msleep(1); 528 } 529 #else 530 # define napi_synchronize(n) barrier() 531 #endif 532 533 enum netdev_queue_state_t { 534 __QUEUE_STATE_DRV_XOFF, 535 __QUEUE_STATE_STACK_XOFF, 536 __QUEUE_STATE_FROZEN, 537 }; 538 539 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 540 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 541 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 542 543 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 545 QUEUE_STATE_FROZEN) 546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 547 QUEUE_STATE_FROZEN) 548 549 /* 550 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 551 * netif_tx_* functions below are used to manipulate this flag. The 552 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 553 * queue independently. The netif_xmit_*stopped functions below are called 554 * to check if the queue has been stopped by the driver or stack (either 555 * of the XOFF bits are set in the state). Drivers should not need to call 556 * netif_xmit*stopped functions, they should only be using netif_tx_*. 557 */ 558 559 struct netdev_queue { 560 /* 561 * read mostly part 562 */ 563 struct net_device *dev; 564 struct Qdisc __rcu *qdisc; 565 struct Qdisc *qdisc_sleeping; 566 #ifdef CONFIG_SYSFS 567 struct kobject kobj; 568 #endif 569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 570 int numa_node; 571 #endif 572 /* 573 * write mostly part 574 */ 575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 576 int xmit_lock_owner; 577 /* 578 * please use this field instead of dev->trans_start 579 */ 580 unsigned long trans_start; 581 582 /* 583 * Number of TX timeouts for this queue 584 * (/sys/class/net/DEV/Q/trans_timeout) 585 */ 586 unsigned long trans_timeout; 587 588 unsigned long state; 589 590 #ifdef CONFIG_BQL 591 struct dql dql; 592 #endif 593 unsigned long tx_maxrate; 594 } ____cacheline_aligned_in_smp; 595 596 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 return q->numa_node; 600 #else 601 return NUMA_NO_NODE; 602 #endif 603 } 604 605 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 606 { 607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 608 q->numa_node = node; 609 #endif 610 } 611 612 #ifdef CONFIG_RPS 613 /* 614 * This structure holds an RPS map which can be of variable length. The 615 * map is an array of CPUs. 616 */ 617 struct rps_map { 618 unsigned int len; 619 struct rcu_head rcu; 620 u16 cpus[0]; 621 }; 622 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 623 624 /* 625 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 626 * tail pointer for that CPU's input queue at the time of last enqueue, and 627 * a hardware filter index. 628 */ 629 struct rps_dev_flow { 630 u16 cpu; 631 u16 filter; 632 unsigned int last_qtail; 633 }; 634 #define RPS_NO_FILTER 0xffff 635 636 /* 637 * The rps_dev_flow_table structure contains a table of flow mappings. 638 */ 639 struct rps_dev_flow_table { 640 unsigned int mask; 641 struct rcu_head rcu; 642 struct rps_dev_flow flows[0]; 643 }; 644 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 645 ((_num) * sizeof(struct rps_dev_flow))) 646 647 /* 648 * The rps_sock_flow_table contains mappings of flows to the last CPU 649 * on which they were processed by the application (set in recvmsg). 650 * Each entry is a 32bit value. Upper part is the high order bits 651 * of flow hash, lower part is cpu number. 652 * rps_cpu_mask is used to partition the space, depending on number of 653 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 654 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 655 * meaning we use 32-6=26 bits for the hash. 656 */ 657 struct rps_sock_flow_table { 658 u32 mask; 659 660 u32 ents[0] ____cacheline_aligned_in_smp; 661 }; 662 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 663 664 #define RPS_NO_CPU 0xffff 665 666 extern u32 rps_cpu_mask; 667 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 668 669 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 670 u32 hash) 671 { 672 if (table && hash) { 673 unsigned int index = hash & table->mask; 674 u32 val = hash & ~rps_cpu_mask; 675 676 /* We only give a hint, preemption can change cpu under us */ 677 val |= raw_smp_processor_id(); 678 679 if (table->ents[index] != val) 680 table->ents[index] = val; 681 } 682 } 683 684 #ifdef CONFIG_RFS_ACCEL 685 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 686 u16 filter_id); 687 #endif 688 #endif /* CONFIG_RPS */ 689 690 /* This structure contains an instance of an RX queue. */ 691 struct netdev_rx_queue { 692 #ifdef CONFIG_RPS 693 struct rps_map __rcu *rps_map; 694 struct rps_dev_flow_table __rcu *rps_flow_table; 695 #endif 696 struct kobject kobj; 697 struct net_device *dev; 698 } ____cacheline_aligned_in_smp; 699 700 /* 701 * RX queue sysfs structures and functions. 702 */ 703 struct rx_queue_attribute { 704 struct attribute attr; 705 ssize_t (*show)(struct netdev_rx_queue *queue, 706 struct rx_queue_attribute *attr, char *buf); 707 ssize_t (*store)(struct netdev_rx_queue *queue, 708 struct rx_queue_attribute *attr, const char *buf, size_t len); 709 }; 710 711 #ifdef CONFIG_XPS 712 /* 713 * This structure holds an XPS map which can be of variable length. The 714 * map is an array of queues. 715 */ 716 struct xps_map { 717 unsigned int len; 718 unsigned int alloc_len; 719 struct rcu_head rcu; 720 u16 queues[0]; 721 }; 722 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 723 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 724 - sizeof(struct xps_map)) / sizeof(u16)) 725 726 /* 727 * This structure holds all XPS maps for device. Maps are indexed by CPU. 728 */ 729 struct xps_dev_maps { 730 struct rcu_head rcu; 731 struct xps_map __rcu *cpu_map[0]; 732 }; 733 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 734 (nr_cpu_ids * sizeof(struct xps_map *))) 735 #endif /* CONFIG_XPS */ 736 737 #define TC_MAX_QUEUE 16 738 #define TC_BITMASK 15 739 /* HW offloaded queuing disciplines txq count and offset maps */ 740 struct netdev_tc_txq { 741 u16 count; 742 u16 offset; 743 }; 744 745 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 746 /* 747 * This structure is to hold information about the device 748 * configured to run FCoE protocol stack. 749 */ 750 struct netdev_fcoe_hbainfo { 751 char manufacturer[64]; 752 char serial_number[64]; 753 char hardware_version[64]; 754 char driver_version[64]; 755 char optionrom_version[64]; 756 char firmware_version[64]; 757 char model[256]; 758 char model_description[256]; 759 }; 760 #endif 761 762 #define MAX_PHYS_ITEM_ID_LEN 32 763 764 /* This structure holds a unique identifier to identify some 765 * physical item (port for example) used by a netdevice. 766 */ 767 struct netdev_phys_item_id { 768 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 769 unsigned char id_len; 770 }; 771 772 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 773 struct netdev_phys_item_id *b) 774 { 775 return a->id_len == b->id_len && 776 memcmp(a->id, b->id, a->id_len) == 0; 777 } 778 779 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 780 struct sk_buff *skb); 781 782 /* 783 * This structure defines the management hooks for network devices. 784 * The following hooks can be defined; unless noted otherwise, they are 785 * optional and can be filled with a null pointer. 786 * 787 * int (*ndo_init)(struct net_device *dev); 788 * This function is called once when network device is registered. 789 * The network device can use this to any late stage initializaton 790 * or semantic validattion. It can fail with an error code which will 791 * be propogated back to register_netdev 792 * 793 * void (*ndo_uninit)(struct net_device *dev); 794 * This function is called when device is unregistered or when registration 795 * fails. It is not called if init fails. 796 * 797 * int (*ndo_open)(struct net_device *dev); 798 * This function is called when network device transistions to the up 799 * state. 800 * 801 * int (*ndo_stop)(struct net_device *dev); 802 * This function is called when network device transistions to the down 803 * state. 804 * 805 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 806 * struct net_device *dev); 807 * Called when a packet needs to be transmitted. 808 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 809 * the queue before that can happen; it's for obsolete devices and weird 810 * corner cases, but the stack really does a non-trivial amount 811 * of useless work if you return NETDEV_TX_BUSY. 812 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 813 * Required can not be NULL. 814 * 815 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 816 * netdev_features_t features); 817 * Adjusts the requested feature flags according to device-specific 818 * constraints, and returns the resulting flags. Must not modify 819 * the device state. 820 * 821 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 822 * void *accel_priv, select_queue_fallback_t fallback); 823 * Called to decide which queue to when device supports multiple 824 * transmit queues. 825 * 826 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 827 * This function is called to allow device receiver to make 828 * changes to configuration when multicast or promiscious is enabled. 829 * 830 * void (*ndo_set_rx_mode)(struct net_device *dev); 831 * This function is called device changes address list filtering. 832 * If driver handles unicast address filtering, it should set 833 * IFF_UNICAST_FLT to its priv_flags. 834 * 835 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 836 * This function is called when the Media Access Control address 837 * needs to be changed. If this interface is not defined, the 838 * mac address can not be changed. 839 * 840 * int (*ndo_validate_addr)(struct net_device *dev); 841 * Test if Media Access Control address is valid for the device. 842 * 843 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 844 * Called when a user request an ioctl which can't be handled by 845 * the generic interface code. If not defined ioctl's return 846 * not supported error code. 847 * 848 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 849 * Used to set network devices bus interface parameters. This interface 850 * is retained for legacy reason, new devices should use the bus 851 * interface (PCI) for low level management. 852 * 853 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 854 * Called when a user wants to change the Maximum Transfer Unit 855 * of a device. If not defined, any request to change MTU will 856 * will return an error. 857 * 858 * void (*ndo_tx_timeout)(struct net_device *dev); 859 * Callback uses when the transmitter has not made any progress 860 * for dev->watchdog ticks. 861 * 862 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 863 * struct rtnl_link_stats64 *storage); 864 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 865 * Called when a user wants to get the network device usage 866 * statistics. Drivers must do one of the following: 867 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 868 * rtnl_link_stats64 structure passed by the caller. 869 * 2. Define @ndo_get_stats to update a net_device_stats structure 870 * (which should normally be dev->stats) and return a pointer to 871 * it. The structure may be changed asynchronously only if each 872 * field is written atomically. 873 * 3. Update dev->stats asynchronously and atomically, and define 874 * neither operation. 875 * 876 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 877 * If device support VLAN filtering this function is called when a 878 * VLAN id is registered. 879 * 880 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 881 * If device support VLAN filtering this function is called when a 882 * VLAN id is unregistered. 883 * 884 * void (*ndo_poll_controller)(struct net_device *dev); 885 * 886 * SR-IOV management functions. 887 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 888 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 889 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 890 * int max_tx_rate); 891 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 892 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 893 * int (*ndo_get_vf_config)(struct net_device *dev, 894 * int vf, struct ifla_vf_info *ivf); 895 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 896 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 897 * struct nlattr *port[]); 898 * 899 * Enable or disable the VF ability to query its RSS Redirection Table and 900 * Hash Key. This is needed since on some devices VF share this information 901 * with PF and querying it may adduce a theoretical security risk. 902 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 903 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 904 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 905 * Called to setup 'tc' number of traffic classes in the net device. This 906 * is always called from the stack with the rtnl lock held and netif tx 907 * queues stopped. This allows the netdevice to perform queue management 908 * safely. 909 * 910 * Fiber Channel over Ethernet (FCoE) offload functions. 911 * int (*ndo_fcoe_enable)(struct net_device *dev); 912 * Called when the FCoE protocol stack wants to start using LLD for FCoE 913 * so the underlying device can perform whatever needed configuration or 914 * initialization to support acceleration of FCoE traffic. 915 * 916 * int (*ndo_fcoe_disable)(struct net_device *dev); 917 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 918 * so the underlying device can perform whatever needed clean-ups to 919 * stop supporting acceleration of FCoE traffic. 920 * 921 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 922 * struct scatterlist *sgl, unsigned int sgc); 923 * Called when the FCoE Initiator wants to initialize an I/O that 924 * is a possible candidate for Direct Data Placement (DDP). The LLD can 925 * perform necessary setup and returns 1 to indicate the device is set up 926 * successfully to perform DDP on this I/O, otherwise this returns 0. 927 * 928 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 929 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 930 * indicated by the FC exchange id 'xid', so the underlying device can 931 * clean up and reuse resources for later DDP requests. 932 * 933 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 934 * struct scatterlist *sgl, unsigned int sgc); 935 * Called when the FCoE Target wants to initialize an I/O that 936 * is a possible candidate for Direct Data Placement (DDP). The LLD can 937 * perform necessary setup and returns 1 to indicate the device is set up 938 * successfully to perform DDP on this I/O, otherwise this returns 0. 939 * 940 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 941 * struct netdev_fcoe_hbainfo *hbainfo); 942 * Called when the FCoE Protocol stack wants information on the underlying 943 * device. This information is utilized by the FCoE protocol stack to 944 * register attributes with Fiber Channel management service as per the 945 * FC-GS Fabric Device Management Information(FDMI) specification. 946 * 947 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 948 * Called when the underlying device wants to override default World Wide 949 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 950 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 951 * protocol stack to use. 952 * 953 * RFS acceleration. 954 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 955 * u16 rxq_index, u32 flow_id); 956 * Set hardware filter for RFS. rxq_index is the target queue index; 957 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 958 * Return the filter ID on success, or a negative error code. 959 * 960 * Slave management functions (for bridge, bonding, etc). 961 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 962 * Called to make another netdev an underling. 963 * 964 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 965 * Called to release previously enslaved netdev. 966 * 967 * Feature/offload setting functions. 968 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 969 * Called to update device configuration to new features. Passed 970 * feature set might be less than what was returned by ndo_fix_features()). 971 * Must return >0 or -errno if it changed dev->features itself. 972 * 973 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 974 * struct net_device *dev, 975 * const unsigned char *addr, u16 vid, u16 flags) 976 * Adds an FDB entry to dev for addr. 977 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 978 * struct net_device *dev, 979 * const unsigned char *addr, u16 vid) 980 * Deletes the FDB entry from dev coresponding to addr. 981 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 982 * struct net_device *dev, struct net_device *filter_dev, 983 * int idx) 984 * Used to add FDB entries to dump requests. Implementers should add 985 * entries to skb and update idx with the number of entries. 986 * 987 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 988 * u16 flags) 989 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 990 * struct net_device *dev, u32 filter_mask, 991 * int nlflags) 992 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 993 * u16 flags); 994 * 995 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 996 * Called to change device carrier. Soft-devices (like dummy, team, etc) 997 * which do not represent real hardware may define this to allow their 998 * userspace components to manage their virtual carrier state. Devices 999 * that determine carrier state from physical hardware properties (eg 1000 * network cables) or protocol-dependent mechanisms (eg 1001 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1002 * 1003 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1004 * struct netdev_phys_item_id *ppid); 1005 * Called to get ID of physical port of this device. If driver does 1006 * not implement this, it is assumed that the hw is not able to have 1007 * multiple net devices on single physical port. 1008 * 1009 * void (*ndo_add_vxlan_port)(struct net_device *dev, 1010 * sa_family_t sa_family, __be16 port); 1011 * Called by vxlan to notiy a driver about the UDP port and socket 1012 * address family that vxlan is listnening to. It is called only when 1013 * a new port starts listening. The operation is protected by the 1014 * vxlan_net->sock_lock. 1015 * 1016 * void (*ndo_add_geneve_port)(struct net_device *dev, 1017 * sa_family_t sa_family, __be16 port); 1018 * Called by geneve to notify a driver about the UDP port and socket 1019 * address family that geneve is listnening to. It is called only when 1020 * a new port starts listening. The operation is protected by the 1021 * geneve_net->sock_lock. 1022 * 1023 * void (*ndo_del_geneve_port)(struct net_device *dev, 1024 * sa_family_t sa_family, __be16 port); 1025 * Called by geneve to notify the driver about a UDP port and socket 1026 * address family that geneve is not listening to anymore. The operation 1027 * is protected by the geneve_net->sock_lock. 1028 * 1029 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1030 * sa_family_t sa_family, __be16 port); 1031 * Called by vxlan to notify the driver about a UDP port and socket 1032 * address family that vxlan is not listening to anymore. The operation 1033 * is protected by the vxlan_net->sock_lock. 1034 * 1035 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1036 * struct net_device *dev) 1037 * Called by upper layer devices to accelerate switching or other 1038 * station functionality into hardware. 'pdev is the lowerdev 1039 * to use for the offload and 'dev' is the net device that will 1040 * back the offload. Returns a pointer to the private structure 1041 * the upper layer will maintain. 1042 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1043 * Called by upper layer device to delete the station created 1044 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1045 * the station and priv is the structure returned by the add 1046 * operation. 1047 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1048 * struct net_device *dev, 1049 * void *priv); 1050 * Callback to use for xmit over the accelerated station. This 1051 * is used in place of ndo_start_xmit on accelerated net 1052 * devices. 1053 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1054 * struct net_device *dev 1055 * netdev_features_t features); 1056 * Called by core transmit path to determine if device is capable of 1057 * performing offload operations on a given packet. This is to give 1058 * the device an opportunity to implement any restrictions that cannot 1059 * be otherwise expressed by feature flags. The check is called with 1060 * the set of features that the stack has calculated and it returns 1061 * those the driver believes to be appropriate. 1062 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1063 * int queue_index, u32 maxrate); 1064 * Called when a user wants to set a max-rate limitation of specific 1065 * TX queue. 1066 * int (*ndo_get_iflink)(const struct net_device *dev); 1067 * Called to get the iflink value of this device. 1068 * void (*ndo_change_proto_down)(struct net_device *dev, 1069 * bool proto_down); 1070 * This function is used to pass protocol port error state information 1071 * to the switch driver. The switch driver can react to the proto_down 1072 * by doing a phys down on the associated switch port. 1073 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1074 * This function is used to get egress tunnel information for given skb. 1075 * This is useful for retrieving outer tunnel header parameters while 1076 * sampling packet. 1077 * 1078 */ 1079 struct net_device_ops { 1080 int (*ndo_init)(struct net_device *dev); 1081 void (*ndo_uninit)(struct net_device *dev); 1082 int (*ndo_open)(struct net_device *dev); 1083 int (*ndo_stop)(struct net_device *dev); 1084 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1085 struct net_device *dev); 1086 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1087 struct net_device *dev, 1088 netdev_features_t features); 1089 u16 (*ndo_select_queue)(struct net_device *dev, 1090 struct sk_buff *skb, 1091 void *accel_priv, 1092 select_queue_fallback_t fallback); 1093 void (*ndo_change_rx_flags)(struct net_device *dev, 1094 int flags); 1095 void (*ndo_set_rx_mode)(struct net_device *dev); 1096 int (*ndo_set_mac_address)(struct net_device *dev, 1097 void *addr); 1098 int (*ndo_validate_addr)(struct net_device *dev); 1099 int (*ndo_do_ioctl)(struct net_device *dev, 1100 struct ifreq *ifr, int cmd); 1101 int (*ndo_set_config)(struct net_device *dev, 1102 struct ifmap *map); 1103 int (*ndo_change_mtu)(struct net_device *dev, 1104 int new_mtu); 1105 int (*ndo_neigh_setup)(struct net_device *dev, 1106 struct neigh_parms *); 1107 void (*ndo_tx_timeout) (struct net_device *dev); 1108 1109 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1110 struct rtnl_link_stats64 *storage); 1111 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1112 1113 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1114 __be16 proto, u16 vid); 1115 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1116 __be16 proto, u16 vid); 1117 #ifdef CONFIG_NET_POLL_CONTROLLER 1118 void (*ndo_poll_controller)(struct net_device *dev); 1119 int (*ndo_netpoll_setup)(struct net_device *dev, 1120 struct netpoll_info *info); 1121 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1122 #endif 1123 #ifdef CONFIG_NET_RX_BUSY_POLL 1124 int (*ndo_busy_poll)(struct napi_struct *dev); 1125 #endif 1126 int (*ndo_set_vf_mac)(struct net_device *dev, 1127 int queue, u8 *mac); 1128 int (*ndo_set_vf_vlan)(struct net_device *dev, 1129 int queue, u16 vlan, u8 qos); 1130 int (*ndo_set_vf_rate)(struct net_device *dev, 1131 int vf, int min_tx_rate, 1132 int max_tx_rate); 1133 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1134 int vf, bool setting); 1135 int (*ndo_set_vf_trust)(struct net_device *dev, 1136 int vf, bool setting); 1137 int (*ndo_get_vf_config)(struct net_device *dev, 1138 int vf, 1139 struct ifla_vf_info *ivf); 1140 int (*ndo_set_vf_link_state)(struct net_device *dev, 1141 int vf, int link_state); 1142 int (*ndo_get_vf_stats)(struct net_device *dev, 1143 int vf, 1144 struct ifla_vf_stats 1145 *vf_stats); 1146 int (*ndo_set_vf_port)(struct net_device *dev, 1147 int vf, 1148 struct nlattr *port[]); 1149 int (*ndo_get_vf_port)(struct net_device *dev, 1150 int vf, struct sk_buff *skb); 1151 int (*ndo_set_vf_rss_query_en)( 1152 struct net_device *dev, 1153 int vf, bool setting); 1154 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1155 #if IS_ENABLED(CONFIG_FCOE) 1156 int (*ndo_fcoe_enable)(struct net_device *dev); 1157 int (*ndo_fcoe_disable)(struct net_device *dev); 1158 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1159 u16 xid, 1160 struct scatterlist *sgl, 1161 unsigned int sgc); 1162 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1163 u16 xid); 1164 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1165 u16 xid, 1166 struct scatterlist *sgl, 1167 unsigned int sgc); 1168 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1169 struct netdev_fcoe_hbainfo *hbainfo); 1170 #endif 1171 1172 #if IS_ENABLED(CONFIG_LIBFCOE) 1173 #define NETDEV_FCOE_WWNN 0 1174 #define NETDEV_FCOE_WWPN 1 1175 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1176 u64 *wwn, int type); 1177 #endif 1178 1179 #ifdef CONFIG_RFS_ACCEL 1180 int (*ndo_rx_flow_steer)(struct net_device *dev, 1181 const struct sk_buff *skb, 1182 u16 rxq_index, 1183 u32 flow_id); 1184 #endif 1185 int (*ndo_add_slave)(struct net_device *dev, 1186 struct net_device *slave_dev); 1187 int (*ndo_del_slave)(struct net_device *dev, 1188 struct net_device *slave_dev); 1189 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1190 netdev_features_t features); 1191 int (*ndo_set_features)(struct net_device *dev, 1192 netdev_features_t features); 1193 int (*ndo_neigh_construct)(struct neighbour *n); 1194 void (*ndo_neigh_destroy)(struct neighbour *n); 1195 1196 int (*ndo_fdb_add)(struct ndmsg *ndm, 1197 struct nlattr *tb[], 1198 struct net_device *dev, 1199 const unsigned char *addr, 1200 u16 vid, 1201 u16 flags); 1202 int (*ndo_fdb_del)(struct ndmsg *ndm, 1203 struct nlattr *tb[], 1204 struct net_device *dev, 1205 const unsigned char *addr, 1206 u16 vid); 1207 int (*ndo_fdb_dump)(struct sk_buff *skb, 1208 struct netlink_callback *cb, 1209 struct net_device *dev, 1210 struct net_device *filter_dev, 1211 int idx); 1212 1213 int (*ndo_bridge_setlink)(struct net_device *dev, 1214 struct nlmsghdr *nlh, 1215 u16 flags); 1216 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1217 u32 pid, u32 seq, 1218 struct net_device *dev, 1219 u32 filter_mask, 1220 int nlflags); 1221 int (*ndo_bridge_dellink)(struct net_device *dev, 1222 struct nlmsghdr *nlh, 1223 u16 flags); 1224 int (*ndo_change_carrier)(struct net_device *dev, 1225 bool new_carrier); 1226 int (*ndo_get_phys_port_id)(struct net_device *dev, 1227 struct netdev_phys_item_id *ppid); 1228 int (*ndo_get_phys_port_name)(struct net_device *dev, 1229 char *name, size_t len); 1230 void (*ndo_add_vxlan_port)(struct net_device *dev, 1231 sa_family_t sa_family, 1232 __be16 port); 1233 void (*ndo_del_vxlan_port)(struct net_device *dev, 1234 sa_family_t sa_family, 1235 __be16 port); 1236 void (*ndo_add_geneve_port)(struct net_device *dev, 1237 sa_family_t sa_family, 1238 __be16 port); 1239 void (*ndo_del_geneve_port)(struct net_device *dev, 1240 sa_family_t sa_family, 1241 __be16 port); 1242 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1243 struct net_device *dev); 1244 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1245 void *priv); 1246 1247 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1248 struct net_device *dev, 1249 void *priv); 1250 int (*ndo_get_lock_subclass)(struct net_device *dev); 1251 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1252 int queue_index, 1253 u32 maxrate); 1254 int (*ndo_get_iflink)(const struct net_device *dev); 1255 int (*ndo_change_proto_down)(struct net_device *dev, 1256 bool proto_down); 1257 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1258 struct sk_buff *skb); 1259 }; 1260 1261 /** 1262 * enum net_device_priv_flags - &struct net_device priv_flags 1263 * 1264 * These are the &struct net_device, they are only set internally 1265 * by drivers and used in the kernel. These flags are invisible to 1266 * userspace, this means that the order of these flags can change 1267 * during any kernel release. 1268 * 1269 * You should have a pretty good reason to be extending these flags. 1270 * 1271 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1272 * @IFF_EBRIDGE: Ethernet bridging device 1273 * @IFF_BONDING: bonding master or slave 1274 * @IFF_ISATAP: ISATAP interface (RFC4214) 1275 * @IFF_WAN_HDLC: WAN HDLC device 1276 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1277 * release skb->dst 1278 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1279 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1280 * @IFF_MACVLAN_PORT: device used as macvlan port 1281 * @IFF_BRIDGE_PORT: device used as bridge port 1282 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1283 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1284 * @IFF_UNICAST_FLT: Supports unicast filtering 1285 * @IFF_TEAM_PORT: device used as team port 1286 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1287 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1288 * change when it's running 1289 * @IFF_MACVLAN: Macvlan device 1290 * @IFF_L3MDEV_MASTER: device is an L3 master device 1291 * @IFF_NO_QUEUE: device can run without qdisc attached 1292 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1293 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1294 * @IFF_TEAM: device is a team device 1295 */ 1296 enum netdev_priv_flags { 1297 IFF_802_1Q_VLAN = 1<<0, 1298 IFF_EBRIDGE = 1<<1, 1299 IFF_BONDING = 1<<2, 1300 IFF_ISATAP = 1<<3, 1301 IFF_WAN_HDLC = 1<<4, 1302 IFF_XMIT_DST_RELEASE = 1<<5, 1303 IFF_DONT_BRIDGE = 1<<6, 1304 IFF_DISABLE_NETPOLL = 1<<7, 1305 IFF_MACVLAN_PORT = 1<<8, 1306 IFF_BRIDGE_PORT = 1<<9, 1307 IFF_OVS_DATAPATH = 1<<10, 1308 IFF_TX_SKB_SHARING = 1<<11, 1309 IFF_UNICAST_FLT = 1<<12, 1310 IFF_TEAM_PORT = 1<<13, 1311 IFF_SUPP_NOFCS = 1<<14, 1312 IFF_LIVE_ADDR_CHANGE = 1<<15, 1313 IFF_MACVLAN = 1<<16, 1314 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1315 IFF_IPVLAN_MASTER = 1<<18, 1316 IFF_IPVLAN_SLAVE = 1<<19, 1317 IFF_L3MDEV_MASTER = 1<<20, 1318 IFF_NO_QUEUE = 1<<21, 1319 IFF_OPENVSWITCH = 1<<22, 1320 IFF_L3MDEV_SLAVE = 1<<23, 1321 IFF_TEAM = 1<<24, 1322 }; 1323 1324 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1325 #define IFF_EBRIDGE IFF_EBRIDGE 1326 #define IFF_BONDING IFF_BONDING 1327 #define IFF_ISATAP IFF_ISATAP 1328 #define IFF_WAN_HDLC IFF_WAN_HDLC 1329 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1330 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1331 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1332 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1333 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1334 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1335 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1336 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1337 #define IFF_TEAM_PORT IFF_TEAM_PORT 1338 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1339 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1340 #define IFF_MACVLAN IFF_MACVLAN 1341 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1342 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1343 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1344 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1345 #define IFF_NO_QUEUE IFF_NO_QUEUE 1346 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1347 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1348 #define IFF_TEAM IFF_TEAM 1349 1350 /** 1351 * struct net_device - The DEVICE structure. 1352 * Actually, this whole structure is a big mistake. It mixes I/O 1353 * data with strictly "high-level" data, and it has to know about 1354 * almost every data structure used in the INET module. 1355 * 1356 * @name: This is the first field of the "visible" part of this structure 1357 * (i.e. as seen by users in the "Space.c" file). It is the name 1358 * of the interface. 1359 * 1360 * @name_hlist: Device name hash chain, please keep it close to name[] 1361 * @ifalias: SNMP alias 1362 * @mem_end: Shared memory end 1363 * @mem_start: Shared memory start 1364 * @base_addr: Device I/O address 1365 * @irq: Device IRQ number 1366 * 1367 * @carrier_changes: Stats to monitor carrier on<->off transitions 1368 * 1369 * @state: Generic network queuing layer state, see netdev_state_t 1370 * @dev_list: The global list of network devices 1371 * @napi_list: List entry, that is used for polling napi devices 1372 * @unreg_list: List entry, that is used, when we are unregistering the 1373 * device, see the function unregister_netdev 1374 * @close_list: List entry, that is used, when we are closing the device 1375 * 1376 * @adj_list: Directly linked devices, like slaves for bonding 1377 * @all_adj_list: All linked devices, *including* neighbours 1378 * @features: Currently active device features 1379 * @hw_features: User-changeable features 1380 * 1381 * @wanted_features: User-requested features 1382 * @vlan_features: Mask of features inheritable by VLAN devices 1383 * 1384 * @hw_enc_features: Mask of features inherited by encapsulating devices 1385 * This field indicates what encapsulation 1386 * offloads the hardware is capable of doing, 1387 * and drivers will need to set them appropriately. 1388 * 1389 * @mpls_features: Mask of features inheritable by MPLS 1390 * 1391 * @ifindex: interface index 1392 * @group: The group, that the device belongs to 1393 * 1394 * @stats: Statistics struct, which was left as a legacy, use 1395 * rtnl_link_stats64 instead 1396 * 1397 * @rx_dropped: Dropped packets by core network, 1398 * do not use this in drivers 1399 * @tx_dropped: Dropped packets by core network, 1400 * do not use this in drivers 1401 * 1402 * @wireless_handlers: List of functions to handle Wireless Extensions, 1403 * instead of ioctl, 1404 * see <net/iw_handler.h> for details. 1405 * @wireless_data: Instance data managed by the core of wireless extensions 1406 * 1407 * @netdev_ops: Includes several pointers to callbacks, 1408 * if one wants to override the ndo_*() functions 1409 * @ethtool_ops: Management operations 1410 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1411 * of Layer 2 headers. 1412 * 1413 * @flags: Interface flags (a la BSD) 1414 * @priv_flags: Like 'flags' but invisible to userspace, 1415 * see if.h for the definitions 1416 * @gflags: Global flags ( kept as legacy ) 1417 * @padded: How much padding added by alloc_netdev() 1418 * @operstate: RFC2863 operstate 1419 * @link_mode: Mapping policy to operstate 1420 * @if_port: Selectable AUI, TP, ... 1421 * @dma: DMA channel 1422 * @mtu: Interface MTU value 1423 * @type: Interface hardware type 1424 * @hard_header_len: Hardware header length, which means that this is the 1425 * minimum size of a packet. 1426 * 1427 * @needed_headroom: Extra headroom the hardware may need, but not in all 1428 * cases can this be guaranteed 1429 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1430 * cases can this be guaranteed. Some cases also use 1431 * LL_MAX_HEADER instead to allocate the skb 1432 * 1433 * interface address info: 1434 * 1435 * @perm_addr: Permanent hw address 1436 * @addr_assign_type: Hw address assignment type 1437 * @addr_len: Hardware address length 1438 * @neigh_priv_len; Used in neigh_alloc(), 1439 * initialized only in atm/clip.c 1440 * @dev_id: Used to differentiate devices that share 1441 * the same link layer address 1442 * @dev_port: Used to differentiate devices that share 1443 * the same function 1444 * @addr_list_lock: XXX: need comments on this one 1445 * @uc_promisc: Counter, that indicates, that promiscuous mode 1446 * has been enabled due to the need to listen to 1447 * additional unicast addresses in a device that 1448 * does not implement ndo_set_rx_mode() 1449 * @uc: unicast mac addresses 1450 * @mc: multicast mac addresses 1451 * @dev_addrs: list of device hw addresses 1452 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1453 * @promiscuity: Number of times, the NIC is told to work in 1454 * Promiscuous mode, if it becomes 0 the NIC will 1455 * exit from working in Promiscuous mode 1456 * @allmulti: Counter, enables or disables allmulticast mode 1457 * 1458 * @vlan_info: VLAN info 1459 * @dsa_ptr: dsa specific data 1460 * @tipc_ptr: TIPC specific data 1461 * @atalk_ptr: AppleTalk link 1462 * @ip_ptr: IPv4 specific data 1463 * @dn_ptr: DECnet specific data 1464 * @ip6_ptr: IPv6 specific data 1465 * @ax25_ptr: AX.25 specific data 1466 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1467 * 1468 * @last_rx: Time of last Rx 1469 * @dev_addr: Hw address (before bcast, 1470 * because most packets are unicast) 1471 * 1472 * @_rx: Array of RX queues 1473 * @num_rx_queues: Number of RX queues 1474 * allocated at register_netdev() time 1475 * @real_num_rx_queues: Number of RX queues currently active in device 1476 * 1477 * @rx_handler: handler for received packets 1478 * @rx_handler_data: XXX: need comments on this one 1479 * @ingress_queue: XXX: need comments on this one 1480 * @broadcast: hw bcast address 1481 * 1482 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1483 * indexed by RX queue number. Assigned by driver. 1484 * This must only be set if the ndo_rx_flow_steer 1485 * operation is defined 1486 * @index_hlist: Device index hash chain 1487 * 1488 * @_tx: Array of TX queues 1489 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1490 * @real_num_tx_queues: Number of TX queues currently active in device 1491 * @qdisc: Root qdisc from userspace point of view 1492 * @tx_queue_len: Max frames per queue allowed 1493 * @tx_global_lock: XXX: need comments on this one 1494 * 1495 * @xps_maps: XXX: need comments on this one 1496 * 1497 * @offload_fwd_mark: Offload device fwding mark 1498 * 1499 * @trans_start: Time (in jiffies) of last Tx 1500 * @watchdog_timeo: Represents the timeout that is used by 1501 * the watchdog ( see dev_watchdog() ) 1502 * @watchdog_timer: List of timers 1503 * 1504 * @pcpu_refcnt: Number of references to this device 1505 * @todo_list: Delayed register/unregister 1506 * @link_watch_list: XXX: need comments on this one 1507 * 1508 * @reg_state: Register/unregister state machine 1509 * @dismantle: Device is going to be freed 1510 * @rtnl_link_state: This enum represents the phases of creating 1511 * a new link 1512 * 1513 * @destructor: Called from unregister, 1514 * can be used to call free_netdev 1515 * @npinfo: XXX: need comments on this one 1516 * @nd_net: Network namespace this network device is inside 1517 * 1518 * @ml_priv: Mid-layer private 1519 * @lstats: Loopback statistics 1520 * @tstats: Tunnel statistics 1521 * @dstats: Dummy statistics 1522 * @vstats: Virtual ethernet statistics 1523 * 1524 * @garp_port: GARP 1525 * @mrp_port: MRP 1526 * 1527 * @dev: Class/net/name entry 1528 * @sysfs_groups: Space for optional device, statistics and wireless 1529 * sysfs groups 1530 * 1531 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1532 * @rtnl_link_ops: Rtnl_link_ops 1533 * 1534 * @gso_max_size: Maximum size of generic segmentation offload 1535 * @gso_max_segs: Maximum number of segments that can be passed to the 1536 * NIC for GSO 1537 * @gso_min_segs: Minimum number of segments that can be passed to the 1538 * NIC for GSO 1539 * 1540 * @dcbnl_ops: Data Center Bridging netlink ops 1541 * @num_tc: Number of traffic classes in the net device 1542 * @tc_to_txq: XXX: need comments on this one 1543 * @prio_tc_map XXX: need comments on this one 1544 * 1545 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1546 * 1547 * @priomap: XXX: need comments on this one 1548 * @phydev: Physical device may attach itself 1549 * for hardware timestamping 1550 * 1551 * @qdisc_tx_busylock: XXX: need comments on this one 1552 * 1553 * @proto_down: protocol port state information can be sent to the 1554 * switch driver and used to set the phys state of the 1555 * switch port. 1556 * 1557 * FIXME: cleanup struct net_device such that network protocol info 1558 * moves out. 1559 */ 1560 1561 struct net_device { 1562 char name[IFNAMSIZ]; 1563 struct hlist_node name_hlist; 1564 char *ifalias; 1565 /* 1566 * I/O specific fields 1567 * FIXME: Merge these and struct ifmap into one 1568 */ 1569 unsigned long mem_end; 1570 unsigned long mem_start; 1571 unsigned long base_addr; 1572 int irq; 1573 1574 atomic_t carrier_changes; 1575 1576 /* 1577 * Some hardware also needs these fields (state,dev_list, 1578 * napi_list,unreg_list,close_list) but they are not 1579 * part of the usual set specified in Space.c. 1580 */ 1581 1582 unsigned long state; 1583 1584 struct list_head dev_list; 1585 struct list_head napi_list; 1586 struct list_head unreg_list; 1587 struct list_head close_list; 1588 struct list_head ptype_all; 1589 struct list_head ptype_specific; 1590 1591 struct { 1592 struct list_head upper; 1593 struct list_head lower; 1594 } adj_list; 1595 1596 struct { 1597 struct list_head upper; 1598 struct list_head lower; 1599 } all_adj_list; 1600 1601 netdev_features_t features; 1602 netdev_features_t hw_features; 1603 netdev_features_t wanted_features; 1604 netdev_features_t vlan_features; 1605 netdev_features_t hw_enc_features; 1606 netdev_features_t mpls_features; 1607 1608 int ifindex; 1609 int group; 1610 1611 struct net_device_stats stats; 1612 1613 atomic_long_t rx_dropped; 1614 atomic_long_t tx_dropped; 1615 1616 #ifdef CONFIG_WIRELESS_EXT 1617 const struct iw_handler_def * wireless_handlers; 1618 struct iw_public_data * wireless_data; 1619 #endif 1620 const struct net_device_ops *netdev_ops; 1621 const struct ethtool_ops *ethtool_ops; 1622 #ifdef CONFIG_NET_SWITCHDEV 1623 const struct switchdev_ops *switchdev_ops; 1624 #endif 1625 #ifdef CONFIG_NET_L3_MASTER_DEV 1626 const struct l3mdev_ops *l3mdev_ops; 1627 #endif 1628 1629 const struct header_ops *header_ops; 1630 1631 unsigned int flags; 1632 unsigned int priv_flags; 1633 1634 unsigned short gflags; 1635 unsigned short padded; 1636 1637 unsigned char operstate; 1638 unsigned char link_mode; 1639 1640 unsigned char if_port; 1641 unsigned char dma; 1642 1643 unsigned int mtu; 1644 unsigned short type; 1645 unsigned short hard_header_len; 1646 1647 unsigned short needed_headroom; 1648 unsigned short needed_tailroom; 1649 1650 /* Interface address info. */ 1651 unsigned char perm_addr[MAX_ADDR_LEN]; 1652 unsigned char addr_assign_type; 1653 unsigned char addr_len; 1654 unsigned short neigh_priv_len; 1655 unsigned short dev_id; 1656 unsigned short dev_port; 1657 spinlock_t addr_list_lock; 1658 unsigned char name_assign_type; 1659 bool uc_promisc; 1660 struct netdev_hw_addr_list uc; 1661 struct netdev_hw_addr_list mc; 1662 struct netdev_hw_addr_list dev_addrs; 1663 1664 #ifdef CONFIG_SYSFS 1665 struct kset *queues_kset; 1666 #endif 1667 unsigned int promiscuity; 1668 unsigned int allmulti; 1669 1670 1671 /* Protocol specific pointers */ 1672 1673 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1674 struct vlan_info __rcu *vlan_info; 1675 #endif 1676 #if IS_ENABLED(CONFIG_NET_DSA) 1677 struct dsa_switch_tree *dsa_ptr; 1678 #endif 1679 #if IS_ENABLED(CONFIG_TIPC) 1680 struct tipc_bearer __rcu *tipc_ptr; 1681 #endif 1682 void *atalk_ptr; 1683 struct in_device __rcu *ip_ptr; 1684 struct dn_dev __rcu *dn_ptr; 1685 struct inet6_dev __rcu *ip6_ptr; 1686 void *ax25_ptr; 1687 struct wireless_dev *ieee80211_ptr; 1688 struct wpan_dev *ieee802154_ptr; 1689 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1690 struct mpls_dev __rcu *mpls_ptr; 1691 #endif 1692 1693 /* 1694 * Cache lines mostly used on receive path (including eth_type_trans()) 1695 */ 1696 unsigned long last_rx; 1697 1698 /* Interface address info used in eth_type_trans() */ 1699 unsigned char *dev_addr; 1700 1701 1702 #ifdef CONFIG_SYSFS 1703 struct netdev_rx_queue *_rx; 1704 1705 unsigned int num_rx_queues; 1706 unsigned int real_num_rx_queues; 1707 1708 #endif 1709 1710 unsigned long gro_flush_timeout; 1711 rx_handler_func_t __rcu *rx_handler; 1712 void __rcu *rx_handler_data; 1713 1714 #ifdef CONFIG_NET_CLS_ACT 1715 struct tcf_proto __rcu *ingress_cl_list; 1716 #endif 1717 struct netdev_queue __rcu *ingress_queue; 1718 #ifdef CONFIG_NETFILTER_INGRESS 1719 struct list_head nf_hooks_ingress; 1720 #endif 1721 1722 unsigned char broadcast[MAX_ADDR_LEN]; 1723 #ifdef CONFIG_RFS_ACCEL 1724 struct cpu_rmap *rx_cpu_rmap; 1725 #endif 1726 struct hlist_node index_hlist; 1727 1728 /* 1729 * Cache lines mostly used on transmit path 1730 */ 1731 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1732 unsigned int num_tx_queues; 1733 unsigned int real_num_tx_queues; 1734 struct Qdisc *qdisc; 1735 unsigned long tx_queue_len; 1736 spinlock_t tx_global_lock; 1737 int watchdog_timeo; 1738 1739 #ifdef CONFIG_XPS 1740 struct xps_dev_maps __rcu *xps_maps; 1741 #endif 1742 #ifdef CONFIG_NET_CLS_ACT 1743 struct tcf_proto __rcu *egress_cl_list; 1744 #endif 1745 #ifdef CONFIG_NET_SWITCHDEV 1746 u32 offload_fwd_mark; 1747 #endif 1748 1749 /* These may be needed for future network-power-down code. */ 1750 1751 /* 1752 * trans_start here is expensive for high speed devices on SMP, 1753 * please use netdev_queue->trans_start instead. 1754 */ 1755 unsigned long trans_start; 1756 1757 struct timer_list watchdog_timer; 1758 1759 int __percpu *pcpu_refcnt; 1760 struct list_head todo_list; 1761 1762 struct list_head link_watch_list; 1763 1764 enum { NETREG_UNINITIALIZED=0, 1765 NETREG_REGISTERED, /* completed register_netdevice */ 1766 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1767 NETREG_UNREGISTERED, /* completed unregister todo */ 1768 NETREG_RELEASED, /* called free_netdev */ 1769 NETREG_DUMMY, /* dummy device for NAPI poll */ 1770 } reg_state:8; 1771 1772 bool dismantle; 1773 1774 enum { 1775 RTNL_LINK_INITIALIZED, 1776 RTNL_LINK_INITIALIZING, 1777 } rtnl_link_state:16; 1778 1779 void (*destructor)(struct net_device *dev); 1780 1781 #ifdef CONFIG_NETPOLL 1782 struct netpoll_info __rcu *npinfo; 1783 #endif 1784 1785 possible_net_t nd_net; 1786 1787 /* mid-layer private */ 1788 union { 1789 void *ml_priv; 1790 struct pcpu_lstats __percpu *lstats; 1791 struct pcpu_sw_netstats __percpu *tstats; 1792 struct pcpu_dstats __percpu *dstats; 1793 struct pcpu_vstats __percpu *vstats; 1794 }; 1795 1796 struct garp_port __rcu *garp_port; 1797 struct mrp_port __rcu *mrp_port; 1798 1799 struct device dev; 1800 const struct attribute_group *sysfs_groups[4]; 1801 const struct attribute_group *sysfs_rx_queue_group; 1802 1803 const struct rtnl_link_ops *rtnl_link_ops; 1804 1805 /* for setting kernel sock attribute on TCP connection setup */ 1806 #define GSO_MAX_SIZE 65536 1807 unsigned int gso_max_size; 1808 #define GSO_MAX_SEGS 65535 1809 u16 gso_max_segs; 1810 u16 gso_min_segs; 1811 #ifdef CONFIG_DCB 1812 const struct dcbnl_rtnl_ops *dcbnl_ops; 1813 #endif 1814 u8 num_tc; 1815 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1816 u8 prio_tc_map[TC_BITMASK + 1]; 1817 1818 #if IS_ENABLED(CONFIG_FCOE) 1819 unsigned int fcoe_ddp_xid; 1820 #endif 1821 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1822 struct netprio_map __rcu *priomap; 1823 #endif 1824 struct phy_device *phydev; 1825 struct lock_class_key *qdisc_tx_busylock; 1826 bool proto_down; 1827 }; 1828 #define to_net_dev(d) container_of(d, struct net_device, dev) 1829 1830 #define NETDEV_ALIGN 32 1831 1832 static inline 1833 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1834 { 1835 return dev->prio_tc_map[prio & TC_BITMASK]; 1836 } 1837 1838 static inline 1839 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1840 { 1841 if (tc >= dev->num_tc) 1842 return -EINVAL; 1843 1844 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1845 return 0; 1846 } 1847 1848 static inline 1849 void netdev_reset_tc(struct net_device *dev) 1850 { 1851 dev->num_tc = 0; 1852 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1853 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1854 } 1855 1856 static inline 1857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1858 { 1859 if (tc >= dev->num_tc) 1860 return -EINVAL; 1861 1862 dev->tc_to_txq[tc].count = count; 1863 dev->tc_to_txq[tc].offset = offset; 1864 return 0; 1865 } 1866 1867 static inline 1868 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1869 { 1870 if (num_tc > TC_MAX_QUEUE) 1871 return -EINVAL; 1872 1873 dev->num_tc = num_tc; 1874 return 0; 1875 } 1876 1877 static inline 1878 int netdev_get_num_tc(struct net_device *dev) 1879 { 1880 return dev->num_tc; 1881 } 1882 1883 static inline 1884 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1885 unsigned int index) 1886 { 1887 return &dev->_tx[index]; 1888 } 1889 1890 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1891 const struct sk_buff *skb) 1892 { 1893 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1894 } 1895 1896 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1897 void (*f)(struct net_device *, 1898 struct netdev_queue *, 1899 void *), 1900 void *arg) 1901 { 1902 unsigned int i; 1903 1904 for (i = 0; i < dev->num_tx_queues; i++) 1905 f(dev, &dev->_tx[i], arg); 1906 } 1907 1908 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1909 struct sk_buff *skb, 1910 void *accel_priv); 1911 1912 /* 1913 * Net namespace inlines 1914 */ 1915 static inline 1916 struct net *dev_net(const struct net_device *dev) 1917 { 1918 return read_pnet(&dev->nd_net); 1919 } 1920 1921 static inline 1922 void dev_net_set(struct net_device *dev, struct net *net) 1923 { 1924 write_pnet(&dev->nd_net, net); 1925 } 1926 1927 static inline bool netdev_uses_dsa(struct net_device *dev) 1928 { 1929 #if IS_ENABLED(CONFIG_NET_DSA) 1930 if (dev->dsa_ptr != NULL) 1931 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1932 #endif 1933 return false; 1934 } 1935 1936 /** 1937 * netdev_priv - access network device private data 1938 * @dev: network device 1939 * 1940 * Get network device private data 1941 */ 1942 static inline void *netdev_priv(const struct net_device *dev) 1943 { 1944 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1945 } 1946 1947 /* Set the sysfs physical device reference for the network logical device 1948 * if set prior to registration will cause a symlink during initialization. 1949 */ 1950 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1951 1952 /* Set the sysfs device type for the network logical device to allow 1953 * fine-grained identification of different network device types. For 1954 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1955 */ 1956 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1957 1958 /* Default NAPI poll() weight 1959 * Device drivers are strongly advised to not use bigger value 1960 */ 1961 #define NAPI_POLL_WEIGHT 64 1962 1963 /** 1964 * netif_napi_add - initialize a napi context 1965 * @dev: network device 1966 * @napi: napi context 1967 * @poll: polling function 1968 * @weight: default weight 1969 * 1970 * netif_napi_add() must be used to initialize a napi context prior to calling 1971 * *any* of the other napi related functions. 1972 */ 1973 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1974 int (*poll)(struct napi_struct *, int), int weight); 1975 1976 /** 1977 * netif_tx_napi_add - initialize a napi context 1978 * @dev: network device 1979 * @napi: napi context 1980 * @poll: polling function 1981 * @weight: default weight 1982 * 1983 * This variant of netif_napi_add() should be used from drivers using NAPI 1984 * to exclusively poll a TX queue. 1985 * This will avoid we add it into napi_hash[], thus polluting this hash table. 1986 */ 1987 static inline void netif_tx_napi_add(struct net_device *dev, 1988 struct napi_struct *napi, 1989 int (*poll)(struct napi_struct *, int), 1990 int weight) 1991 { 1992 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 1993 netif_napi_add(dev, napi, poll, weight); 1994 } 1995 1996 /** 1997 * netif_napi_del - remove a napi context 1998 * @napi: napi context 1999 * 2000 * netif_napi_del() removes a napi context from the network device napi list 2001 */ 2002 void netif_napi_del(struct napi_struct *napi); 2003 2004 struct napi_gro_cb { 2005 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2006 void *frag0; 2007 2008 /* Length of frag0. */ 2009 unsigned int frag0_len; 2010 2011 /* This indicates where we are processing relative to skb->data. */ 2012 int data_offset; 2013 2014 /* This is non-zero if the packet cannot be merged with the new skb. */ 2015 u16 flush; 2016 2017 /* Save the IP ID here and check when we get to the transport layer */ 2018 u16 flush_id; 2019 2020 /* Number of segments aggregated. */ 2021 u16 count; 2022 2023 /* Start offset for remote checksum offload */ 2024 u16 gro_remcsum_start; 2025 2026 /* jiffies when first packet was created/queued */ 2027 unsigned long age; 2028 2029 /* Used in ipv6_gro_receive() and foo-over-udp */ 2030 u16 proto; 2031 2032 /* This is non-zero if the packet may be of the same flow. */ 2033 u8 same_flow:1; 2034 2035 /* Used in udp_gro_receive */ 2036 u8 udp_mark:1; 2037 2038 /* GRO checksum is valid */ 2039 u8 csum_valid:1; 2040 2041 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2042 u8 csum_cnt:3; 2043 2044 /* Free the skb? */ 2045 u8 free:2; 2046 #define NAPI_GRO_FREE 1 2047 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2048 2049 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2050 u8 is_ipv6:1; 2051 2052 /* 7 bit hole */ 2053 2054 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2055 __wsum csum; 2056 2057 /* used in skb_gro_receive() slow path */ 2058 struct sk_buff *last; 2059 }; 2060 2061 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2062 2063 struct packet_type { 2064 __be16 type; /* This is really htons(ether_type). */ 2065 struct net_device *dev; /* NULL is wildcarded here */ 2066 int (*func) (struct sk_buff *, 2067 struct net_device *, 2068 struct packet_type *, 2069 struct net_device *); 2070 bool (*id_match)(struct packet_type *ptype, 2071 struct sock *sk); 2072 void *af_packet_priv; 2073 struct list_head list; 2074 }; 2075 2076 struct offload_callbacks { 2077 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2078 netdev_features_t features); 2079 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2080 struct sk_buff *skb); 2081 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2082 }; 2083 2084 struct packet_offload { 2085 __be16 type; /* This is really htons(ether_type). */ 2086 u16 priority; 2087 struct offload_callbacks callbacks; 2088 struct list_head list; 2089 }; 2090 2091 struct udp_offload; 2092 2093 struct udp_offload_callbacks { 2094 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2095 struct sk_buff *skb, 2096 struct udp_offload *uoff); 2097 int (*gro_complete)(struct sk_buff *skb, 2098 int nhoff, 2099 struct udp_offload *uoff); 2100 }; 2101 2102 struct udp_offload { 2103 __be16 port; 2104 u8 ipproto; 2105 struct udp_offload_callbacks callbacks; 2106 }; 2107 2108 /* often modified stats are per cpu, other are shared (netdev->stats) */ 2109 struct pcpu_sw_netstats { 2110 u64 rx_packets; 2111 u64 rx_bytes; 2112 u64 tx_packets; 2113 u64 tx_bytes; 2114 struct u64_stats_sync syncp; 2115 }; 2116 2117 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2118 ({ \ 2119 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2120 if (pcpu_stats) { \ 2121 int __cpu; \ 2122 for_each_possible_cpu(__cpu) { \ 2123 typeof(type) *stat; \ 2124 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2125 u64_stats_init(&stat->syncp); \ 2126 } \ 2127 } \ 2128 pcpu_stats; \ 2129 }) 2130 2131 #define netdev_alloc_pcpu_stats(type) \ 2132 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2133 2134 enum netdev_lag_tx_type { 2135 NETDEV_LAG_TX_TYPE_UNKNOWN, 2136 NETDEV_LAG_TX_TYPE_RANDOM, 2137 NETDEV_LAG_TX_TYPE_BROADCAST, 2138 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2139 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2140 NETDEV_LAG_TX_TYPE_HASH, 2141 }; 2142 2143 struct netdev_lag_upper_info { 2144 enum netdev_lag_tx_type tx_type; 2145 }; 2146 2147 struct netdev_lag_lower_state_info { 2148 u8 link_up : 1, 2149 tx_enabled : 1; 2150 }; 2151 2152 #include <linux/notifier.h> 2153 2154 /* netdevice notifier chain. Please remember to update the rtnetlink 2155 * notification exclusion list in rtnetlink_event() when adding new 2156 * types. 2157 */ 2158 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2159 #define NETDEV_DOWN 0x0002 2160 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2161 detected a hardware crash and restarted 2162 - we can use this eg to kick tcp sessions 2163 once done */ 2164 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2165 #define NETDEV_REGISTER 0x0005 2166 #define NETDEV_UNREGISTER 0x0006 2167 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2168 #define NETDEV_CHANGEADDR 0x0008 2169 #define NETDEV_GOING_DOWN 0x0009 2170 #define NETDEV_CHANGENAME 0x000A 2171 #define NETDEV_FEAT_CHANGE 0x000B 2172 #define NETDEV_BONDING_FAILOVER 0x000C 2173 #define NETDEV_PRE_UP 0x000D 2174 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2175 #define NETDEV_POST_TYPE_CHANGE 0x000F 2176 #define NETDEV_POST_INIT 0x0010 2177 #define NETDEV_UNREGISTER_FINAL 0x0011 2178 #define NETDEV_RELEASE 0x0012 2179 #define NETDEV_NOTIFY_PEERS 0x0013 2180 #define NETDEV_JOIN 0x0014 2181 #define NETDEV_CHANGEUPPER 0x0015 2182 #define NETDEV_RESEND_IGMP 0x0016 2183 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2184 #define NETDEV_CHANGEINFODATA 0x0018 2185 #define NETDEV_BONDING_INFO 0x0019 2186 #define NETDEV_PRECHANGEUPPER 0x001A 2187 #define NETDEV_CHANGELOWERSTATE 0x001B 2188 2189 int register_netdevice_notifier(struct notifier_block *nb); 2190 int unregister_netdevice_notifier(struct notifier_block *nb); 2191 2192 struct netdev_notifier_info { 2193 struct net_device *dev; 2194 }; 2195 2196 struct netdev_notifier_change_info { 2197 struct netdev_notifier_info info; /* must be first */ 2198 unsigned int flags_changed; 2199 }; 2200 2201 struct netdev_notifier_changeupper_info { 2202 struct netdev_notifier_info info; /* must be first */ 2203 struct net_device *upper_dev; /* new upper dev */ 2204 bool master; /* is upper dev master */ 2205 bool linking; /* is the nofication for link or unlink */ 2206 void *upper_info; /* upper dev info */ 2207 }; 2208 2209 struct netdev_notifier_changelowerstate_info { 2210 struct netdev_notifier_info info; /* must be first */ 2211 void *lower_state_info; /* is lower dev state */ 2212 }; 2213 2214 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2215 struct net_device *dev) 2216 { 2217 info->dev = dev; 2218 } 2219 2220 static inline struct net_device * 2221 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2222 { 2223 return info->dev; 2224 } 2225 2226 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2227 2228 2229 extern rwlock_t dev_base_lock; /* Device list lock */ 2230 2231 #define for_each_netdev(net, d) \ 2232 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2233 #define for_each_netdev_reverse(net, d) \ 2234 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2235 #define for_each_netdev_rcu(net, d) \ 2236 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2237 #define for_each_netdev_safe(net, d, n) \ 2238 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2239 #define for_each_netdev_continue(net, d) \ 2240 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2241 #define for_each_netdev_continue_rcu(net, d) \ 2242 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2243 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2244 for_each_netdev_rcu(&init_net, slave) \ 2245 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2246 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2247 2248 static inline struct net_device *next_net_device(struct net_device *dev) 2249 { 2250 struct list_head *lh; 2251 struct net *net; 2252 2253 net = dev_net(dev); 2254 lh = dev->dev_list.next; 2255 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2256 } 2257 2258 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2259 { 2260 struct list_head *lh; 2261 struct net *net; 2262 2263 net = dev_net(dev); 2264 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2265 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2266 } 2267 2268 static inline struct net_device *first_net_device(struct net *net) 2269 { 2270 return list_empty(&net->dev_base_head) ? NULL : 2271 net_device_entry(net->dev_base_head.next); 2272 } 2273 2274 static inline struct net_device *first_net_device_rcu(struct net *net) 2275 { 2276 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2277 2278 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2279 } 2280 2281 int netdev_boot_setup_check(struct net_device *dev); 2282 unsigned long netdev_boot_base(const char *prefix, int unit); 2283 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2284 const char *hwaddr); 2285 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2286 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2287 void dev_add_pack(struct packet_type *pt); 2288 void dev_remove_pack(struct packet_type *pt); 2289 void __dev_remove_pack(struct packet_type *pt); 2290 void dev_add_offload(struct packet_offload *po); 2291 void dev_remove_offload(struct packet_offload *po); 2292 2293 int dev_get_iflink(const struct net_device *dev); 2294 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2295 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2296 unsigned short mask); 2297 struct net_device *dev_get_by_name(struct net *net, const char *name); 2298 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2299 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2300 int dev_alloc_name(struct net_device *dev, const char *name); 2301 int dev_open(struct net_device *dev); 2302 int dev_close(struct net_device *dev); 2303 int dev_close_many(struct list_head *head, bool unlink); 2304 void dev_disable_lro(struct net_device *dev); 2305 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2306 int dev_queue_xmit(struct sk_buff *skb); 2307 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2308 int register_netdevice(struct net_device *dev); 2309 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2310 void unregister_netdevice_many(struct list_head *head); 2311 static inline void unregister_netdevice(struct net_device *dev) 2312 { 2313 unregister_netdevice_queue(dev, NULL); 2314 } 2315 2316 int netdev_refcnt_read(const struct net_device *dev); 2317 void free_netdev(struct net_device *dev); 2318 void netdev_freemem(struct net_device *dev); 2319 void synchronize_net(void); 2320 int init_dummy_netdev(struct net_device *dev); 2321 2322 DECLARE_PER_CPU(int, xmit_recursion); 2323 static inline int dev_recursion_level(void) 2324 { 2325 return this_cpu_read(xmit_recursion); 2326 } 2327 2328 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2329 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2330 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2331 int netdev_get_name(struct net *net, char *name, int ifindex); 2332 int dev_restart(struct net_device *dev); 2333 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2334 2335 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2336 { 2337 return NAPI_GRO_CB(skb)->data_offset; 2338 } 2339 2340 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2341 { 2342 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2343 } 2344 2345 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2346 { 2347 NAPI_GRO_CB(skb)->data_offset += len; 2348 } 2349 2350 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2351 unsigned int offset) 2352 { 2353 return NAPI_GRO_CB(skb)->frag0 + offset; 2354 } 2355 2356 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2357 { 2358 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2359 } 2360 2361 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2362 unsigned int offset) 2363 { 2364 if (!pskb_may_pull(skb, hlen)) 2365 return NULL; 2366 2367 NAPI_GRO_CB(skb)->frag0 = NULL; 2368 NAPI_GRO_CB(skb)->frag0_len = 0; 2369 return skb->data + offset; 2370 } 2371 2372 static inline void *skb_gro_network_header(struct sk_buff *skb) 2373 { 2374 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2375 skb_network_offset(skb); 2376 } 2377 2378 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2379 const void *start, unsigned int len) 2380 { 2381 if (NAPI_GRO_CB(skb)->csum_valid) 2382 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2383 csum_partial(start, len, 0)); 2384 } 2385 2386 /* GRO checksum functions. These are logical equivalents of the normal 2387 * checksum functions (in skbuff.h) except that they operate on the GRO 2388 * offsets and fields in sk_buff. 2389 */ 2390 2391 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2392 2393 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2394 { 2395 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2396 } 2397 2398 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2399 bool zero_okay, 2400 __sum16 check) 2401 { 2402 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2403 skb_checksum_start_offset(skb) < 2404 skb_gro_offset(skb)) && 2405 !skb_at_gro_remcsum_start(skb) && 2406 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2407 (!zero_okay || check)); 2408 } 2409 2410 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2411 __wsum psum) 2412 { 2413 if (NAPI_GRO_CB(skb)->csum_valid && 2414 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2415 return 0; 2416 2417 NAPI_GRO_CB(skb)->csum = psum; 2418 2419 return __skb_gro_checksum_complete(skb); 2420 } 2421 2422 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2423 { 2424 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2425 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2426 NAPI_GRO_CB(skb)->csum_cnt--; 2427 } else { 2428 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2429 * verified a new top level checksum or an encapsulated one 2430 * during GRO. This saves work if we fallback to normal path. 2431 */ 2432 __skb_incr_checksum_unnecessary(skb); 2433 } 2434 } 2435 2436 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2437 compute_pseudo) \ 2438 ({ \ 2439 __sum16 __ret = 0; \ 2440 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2441 __ret = __skb_gro_checksum_validate_complete(skb, \ 2442 compute_pseudo(skb, proto)); \ 2443 if (__ret) \ 2444 __skb_mark_checksum_bad(skb); \ 2445 else \ 2446 skb_gro_incr_csum_unnecessary(skb); \ 2447 __ret; \ 2448 }) 2449 2450 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2451 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2452 2453 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2454 compute_pseudo) \ 2455 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2456 2457 #define skb_gro_checksum_simple_validate(skb) \ 2458 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2459 2460 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2461 { 2462 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2463 !NAPI_GRO_CB(skb)->csum_valid); 2464 } 2465 2466 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2467 __sum16 check, __wsum pseudo) 2468 { 2469 NAPI_GRO_CB(skb)->csum = ~pseudo; 2470 NAPI_GRO_CB(skb)->csum_valid = 1; 2471 } 2472 2473 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2474 do { \ 2475 if (__skb_gro_checksum_convert_check(skb)) \ 2476 __skb_gro_checksum_convert(skb, check, \ 2477 compute_pseudo(skb, proto)); \ 2478 } while (0) 2479 2480 struct gro_remcsum { 2481 int offset; 2482 __wsum delta; 2483 }; 2484 2485 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2486 { 2487 grc->offset = 0; 2488 grc->delta = 0; 2489 } 2490 2491 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2492 unsigned int off, size_t hdrlen, 2493 int start, int offset, 2494 struct gro_remcsum *grc, 2495 bool nopartial) 2496 { 2497 __wsum delta; 2498 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2499 2500 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2501 2502 if (!nopartial) { 2503 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2504 return ptr; 2505 } 2506 2507 ptr = skb_gro_header_fast(skb, off); 2508 if (skb_gro_header_hard(skb, off + plen)) { 2509 ptr = skb_gro_header_slow(skb, off + plen, off); 2510 if (!ptr) 2511 return NULL; 2512 } 2513 2514 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2515 start, offset); 2516 2517 /* Adjust skb->csum since we changed the packet */ 2518 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2519 2520 grc->offset = off + hdrlen + offset; 2521 grc->delta = delta; 2522 2523 return ptr; 2524 } 2525 2526 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2527 struct gro_remcsum *grc) 2528 { 2529 void *ptr; 2530 size_t plen = grc->offset + sizeof(u16); 2531 2532 if (!grc->delta) 2533 return; 2534 2535 ptr = skb_gro_header_fast(skb, grc->offset); 2536 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2537 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2538 if (!ptr) 2539 return; 2540 } 2541 2542 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2543 } 2544 2545 struct skb_csum_offl_spec { 2546 __u16 ipv4_okay:1, 2547 ipv6_okay:1, 2548 encap_okay:1, 2549 ip_options_okay:1, 2550 ext_hdrs_okay:1, 2551 tcp_okay:1, 2552 udp_okay:1, 2553 sctp_okay:1, 2554 vlan_okay:1, 2555 no_encapped_ipv6:1, 2556 no_not_encapped:1; 2557 }; 2558 2559 bool __skb_csum_offload_chk(struct sk_buff *skb, 2560 const struct skb_csum_offl_spec *spec, 2561 bool *csum_encapped, 2562 bool csum_help); 2563 2564 static inline bool skb_csum_offload_chk(struct sk_buff *skb, 2565 const struct skb_csum_offl_spec *spec, 2566 bool *csum_encapped, 2567 bool csum_help) 2568 { 2569 if (skb->ip_summed != CHECKSUM_PARTIAL) 2570 return false; 2571 2572 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help); 2573 } 2574 2575 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb, 2576 const struct skb_csum_offl_spec *spec) 2577 { 2578 bool csum_encapped; 2579 2580 return skb_csum_offload_chk(skb, spec, &csum_encapped, true); 2581 } 2582 2583 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb) 2584 { 2585 static const struct skb_csum_offl_spec csum_offl_spec = { 2586 .ipv4_okay = 1, 2587 .ip_options_okay = 1, 2588 .ipv6_okay = 1, 2589 .vlan_okay = 1, 2590 .tcp_okay = 1, 2591 .udp_okay = 1, 2592 }; 2593 2594 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2595 } 2596 2597 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb) 2598 { 2599 static const struct skb_csum_offl_spec csum_offl_spec = { 2600 .ipv4_okay = 1, 2601 .ip_options_okay = 1, 2602 .tcp_okay = 1, 2603 .udp_okay = 1, 2604 .vlan_okay = 1, 2605 }; 2606 2607 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2608 } 2609 2610 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2611 unsigned short type, 2612 const void *daddr, const void *saddr, 2613 unsigned int len) 2614 { 2615 if (!dev->header_ops || !dev->header_ops->create) 2616 return 0; 2617 2618 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2619 } 2620 2621 static inline int dev_parse_header(const struct sk_buff *skb, 2622 unsigned char *haddr) 2623 { 2624 const struct net_device *dev = skb->dev; 2625 2626 if (!dev->header_ops || !dev->header_ops->parse) 2627 return 0; 2628 return dev->header_ops->parse(skb, haddr); 2629 } 2630 2631 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2632 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2633 static inline int unregister_gifconf(unsigned int family) 2634 { 2635 return register_gifconf(family, NULL); 2636 } 2637 2638 #ifdef CONFIG_NET_FLOW_LIMIT 2639 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2640 struct sd_flow_limit { 2641 u64 count; 2642 unsigned int num_buckets; 2643 unsigned int history_head; 2644 u16 history[FLOW_LIMIT_HISTORY]; 2645 u8 buckets[]; 2646 }; 2647 2648 extern int netdev_flow_limit_table_len; 2649 #endif /* CONFIG_NET_FLOW_LIMIT */ 2650 2651 /* 2652 * Incoming packets are placed on per-cpu queues 2653 */ 2654 struct softnet_data { 2655 struct list_head poll_list; 2656 struct sk_buff_head process_queue; 2657 2658 /* stats */ 2659 unsigned int processed; 2660 unsigned int time_squeeze; 2661 unsigned int cpu_collision; 2662 unsigned int received_rps; 2663 #ifdef CONFIG_RPS 2664 struct softnet_data *rps_ipi_list; 2665 #endif 2666 #ifdef CONFIG_NET_FLOW_LIMIT 2667 struct sd_flow_limit __rcu *flow_limit; 2668 #endif 2669 struct Qdisc *output_queue; 2670 struct Qdisc **output_queue_tailp; 2671 struct sk_buff *completion_queue; 2672 2673 #ifdef CONFIG_RPS 2674 /* Elements below can be accessed between CPUs for RPS */ 2675 struct call_single_data csd ____cacheline_aligned_in_smp; 2676 struct softnet_data *rps_ipi_next; 2677 unsigned int cpu; 2678 unsigned int input_queue_head; 2679 unsigned int input_queue_tail; 2680 #endif 2681 unsigned int dropped; 2682 struct sk_buff_head input_pkt_queue; 2683 struct napi_struct backlog; 2684 2685 }; 2686 2687 static inline void input_queue_head_incr(struct softnet_data *sd) 2688 { 2689 #ifdef CONFIG_RPS 2690 sd->input_queue_head++; 2691 #endif 2692 } 2693 2694 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2695 unsigned int *qtail) 2696 { 2697 #ifdef CONFIG_RPS 2698 *qtail = ++sd->input_queue_tail; 2699 #endif 2700 } 2701 2702 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2703 2704 void __netif_schedule(struct Qdisc *q); 2705 void netif_schedule_queue(struct netdev_queue *txq); 2706 2707 static inline void netif_tx_schedule_all(struct net_device *dev) 2708 { 2709 unsigned int i; 2710 2711 for (i = 0; i < dev->num_tx_queues; i++) 2712 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2713 } 2714 2715 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2716 { 2717 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2718 } 2719 2720 /** 2721 * netif_start_queue - allow transmit 2722 * @dev: network device 2723 * 2724 * Allow upper layers to call the device hard_start_xmit routine. 2725 */ 2726 static inline void netif_start_queue(struct net_device *dev) 2727 { 2728 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2729 } 2730 2731 static inline void netif_tx_start_all_queues(struct net_device *dev) 2732 { 2733 unsigned int i; 2734 2735 for (i = 0; i < dev->num_tx_queues; i++) { 2736 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2737 netif_tx_start_queue(txq); 2738 } 2739 } 2740 2741 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2742 2743 /** 2744 * netif_wake_queue - restart transmit 2745 * @dev: network device 2746 * 2747 * Allow upper layers to call the device hard_start_xmit routine. 2748 * Used for flow control when transmit resources are available. 2749 */ 2750 static inline void netif_wake_queue(struct net_device *dev) 2751 { 2752 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2753 } 2754 2755 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2756 { 2757 unsigned int i; 2758 2759 for (i = 0; i < dev->num_tx_queues; i++) { 2760 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2761 netif_tx_wake_queue(txq); 2762 } 2763 } 2764 2765 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2766 { 2767 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2768 } 2769 2770 /** 2771 * netif_stop_queue - stop transmitted packets 2772 * @dev: network device 2773 * 2774 * Stop upper layers calling the device hard_start_xmit routine. 2775 * Used for flow control when transmit resources are unavailable. 2776 */ 2777 static inline void netif_stop_queue(struct net_device *dev) 2778 { 2779 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2780 } 2781 2782 void netif_tx_stop_all_queues(struct net_device *dev); 2783 2784 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2785 { 2786 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2787 } 2788 2789 /** 2790 * netif_queue_stopped - test if transmit queue is flowblocked 2791 * @dev: network device 2792 * 2793 * Test if transmit queue on device is currently unable to send. 2794 */ 2795 static inline bool netif_queue_stopped(const struct net_device *dev) 2796 { 2797 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2798 } 2799 2800 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2801 { 2802 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2803 } 2804 2805 static inline bool 2806 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2807 { 2808 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2809 } 2810 2811 static inline bool 2812 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2813 { 2814 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2815 } 2816 2817 /** 2818 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2819 * @dev_queue: pointer to transmit queue 2820 * 2821 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2822 * to give appropriate hint to the cpu. 2823 */ 2824 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2825 { 2826 #ifdef CONFIG_BQL 2827 prefetchw(&dev_queue->dql.num_queued); 2828 #endif 2829 } 2830 2831 /** 2832 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2833 * @dev_queue: pointer to transmit queue 2834 * 2835 * BQL enabled drivers might use this helper in their TX completion path, 2836 * to give appropriate hint to the cpu. 2837 */ 2838 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2839 { 2840 #ifdef CONFIG_BQL 2841 prefetchw(&dev_queue->dql.limit); 2842 #endif 2843 } 2844 2845 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2846 unsigned int bytes) 2847 { 2848 #ifdef CONFIG_BQL 2849 dql_queued(&dev_queue->dql, bytes); 2850 2851 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2852 return; 2853 2854 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2855 2856 /* 2857 * The XOFF flag must be set before checking the dql_avail below, 2858 * because in netdev_tx_completed_queue we update the dql_completed 2859 * before checking the XOFF flag. 2860 */ 2861 smp_mb(); 2862 2863 /* check again in case another CPU has just made room avail */ 2864 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2865 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2866 #endif 2867 } 2868 2869 /** 2870 * netdev_sent_queue - report the number of bytes queued to hardware 2871 * @dev: network device 2872 * @bytes: number of bytes queued to the hardware device queue 2873 * 2874 * Report the number of bytes queued for sending/completion to the network 2875 * device hardware queue. @bytes should be a good approximation and should 2876 * exactly match netdev_completed_queue() @bytes 2877 */ 2878 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2879 { 2880 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2881 } 2882 2883 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2884 unsigned int pkts, unsigned int bytes) 2885 { 2886 #ifdef CONFIG_BQL 2887 if (unlikely(!bytes)) 2888 return; 2889 2890 dql_completed(&dev_queue->dql, bytes); 2891 2892 /* 2893 * Without the memory barrier there is a small possiblity that 2894 * netdev_tx_sent_queue will miss the update and cause the queue to 2895 * be stopped forever 2896 */ 2897 smp_mb(); 2898 2899 if (dql_avail(&dev_queue->dql) < 0) 2900 return; 2901 2902 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2903 netif_schedule_queue(dev_queue); 2904 #endif 2905 } 2906 2907 /** 2908 * netdev_completed_queue - report bytes and packets completed by device 2909 * @dev: network device 2910 * @pkts: actual number of packets sent over the medium 2911 * @bytes: actual number of bytes sent over the medium 2912 * 2913 * Report the number of bytes and packets transmitted by the network device 2914 * hardware queue over the physical medium, @bytes must exactly match the 2915 * @bytes amount passed to netdev_sent_queue() 2916 */ 2917 static inline void netdev_completed_queue(struct net_device *dev, 2918 unsigned int pkts, unsigned int bytes) 2919 { 2920 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2921 } 2922 2923 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2924 { 2925 #ifdef CONFIG_BQL 2926 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2927 dql_reset(&q->dql); 2928 #endif 2929 } 2930 2931 /** 2932 * netdev_reset_queue - reset the packets and bytes count of a network device 2933 * @dev_queue: network device 2934 * 2935 * Reset the bytes and packet count of a network device and clear the 2936 * software flow control OFF bit for this network device 2937 */ 2938 static inline void netdev_reset_queue(struct net_device *dev_queue) 2939 { 2940 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2941 } 2942 2943 /** 2944 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2945 * @dev: network device 2946 * @queue_index: given tx queue index 2947 * 2948 * Returns 0 if given tx queue index >= number of device tx queues, 2949 * otherwise returns the originally passed tx queue index. 2950 */ 2951 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2952 { 2953 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2954 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2955 dev->name, queue_index, 2956 dev->real_num_tx_queues); 2957 return 0; 2958 } 2959 2960 return queue_index; 2961 } 2962 2963 /** 2964 * netif_running - test if up 2965 * @dev: network device 2966 * 2967 * Test if the device has been brought up. 2968 */ 2969 static inline bool netif_running(const struct net_device *dev) 2970 { 2971 return test_bit(__LINK_STATE_START, &dev->state); 2972 } 2973 2974 /* 2975 * Routines to manage the subqueues on a device. We only need start 2976 * stop, and a check if it's stopped. All other device management is 2977 * done at the overall netdevice level. 2978 * Also test the device if we're multiqueue. 2979 */ 2980 2981 /** 2982 * netif_start_subqueue - allow sending packets on subqueue 2983 * @dev: network device 2984 * @queue_index: sub queue index 2985 * 2986 * Start individual transmit queue of a device with multiple transmit queues. 2987 */ 2988 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2989 { 2990 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2991 2992 netif_tx_start_queue(txq); 2993 } 2994 2995 /** 2996 * netif_stop_subqueue - stop sending packets on subqueue 2997 * @dev: network device 2998 * @queue_index: sub queue index 2999 * 3000 * Stop individual transmit queue of a device with multiple transmit queues. 3001 */ 3002 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3003 { 3004 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3005 netif_tx_stop_queue(txq); 3006 } 3007 3008 /** 3009 * netif_subqueue_stopped - test status of subqueue 3010 * @dev: network device 3011 * @queue_index: sub queue index 3012 * 3013 * Check individual transmit queue of a device with multiple transmit queues. 3014 */ 3015 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3016 u16 queue_index) 3017 { 3018 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3019 3020 return netif_tx_queue_stopped(txq); 3021 } 3022 3023 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3024 struct sk_buff *skb) 3025 { 3026 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3027 } 3028 3029 void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3030 3031 #ifdef CONFIG_XPS 3032 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3033 u16 index); 3034 #else 3035 static inline int netif_set_xps_queue(struct net_device *dev, 3036 const struct cpumask *mask, 3037 u16 index) 3038 { 3039 return 0; 3040 } 3041 #endif 3042 3043 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3044 unsigned int num_tx_queues); 3045 3046 /* 3047 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3048 * as a distribution range limit for the returned value. 3049 */ 3050 static inline u16 skb_tx_hash(const struct net_device *dev, 3051 struct sk_buff *skb) 3052 { 3053 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3054 } 3055 3056 /** 3057 * netif_is_multiqueue - test if device has multiple transmit queues 3058 * @dev: network device 3059 * 3060 * Check if device has multiple transmit queues 3061 */ 3062 static inline bool netif_is_multiqueue(const struct net_device *dev) 3063 { 3064 return dev->num_tx_queues > 1; 3065 } 3066 3067 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3068 3069 #ifdef CONFIG_SYSFS 3070 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3071 #else 3072 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3073 unsigned int rxq) 3074 { 3075 return 0; 3076 } 3077 #endif 3078 3079 #ifdef CONFIG_SYSFS 3080 static inline unsigned int get_netdev_rx_queue_index( 3081 struct netdev_rx_queue *queue) 3082 { 3083 struct net_device *dev = queue->dev; 3084 int index = queue - dev->_rx; 3085 3086 BUG_ON(index >= dev->num_rx_queues); 3087 return index; 3088 } 3089 #endif 3090 3091 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3092 int netif_get_num_default_rss_queues(void); 3093 3094 enum skb_free_reason { 3095 SKB_REASON_CONSUMED, 3096 SKB_REASON_DROPPED, 3097 }; 3098 3099 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3100 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3101 3102 /* 3103 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3104 * interrupt context or with hardware interrupts being disabled. 3105 * (in_irq() || irqs_disabled()) 3106 * 3107 * We provide four helpers that can be used in following contexts : 3108 * 3109 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3110 * replacing kfree_skb(skb) 3111 * 3112 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3113 * Typically used in place of consume_skb(skb) in TX completion path 3114 * 3115 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3116 * replacing kfree_skb(skb) 3117 * 3118 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3119 * and consumed a packet. Used in place of consume_skb(skb) 3120 */ 3121 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3122 { 3123 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3124 } 3125 3126 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3127 { 3128 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3129 } 3130 3131 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3132 { 3133 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3134 } 3135 3136 static inline void dev_consume_skb_any(struct sk_buff *skb) 3137 { 3138 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3139 } 3140 3141 int netif_rx(struct sk_buff *skb); 3142 int netif_rx_ni(struct sk_buff *skb); 3143 int netif_receive_skb(struct sk_buff *skb); 3144 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3145 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3146 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3147 gro_result_t napi_gro_frags(struct napi_struct *napi); 3148 struct packet_offload *gro_find_receive_by_type(__be16 type); 3149 struct packet_offload *gro_find_complete_by_type(__be16 type); 3150 3151 static inline void napi_free_frags(struct napi_struct *napi) 3152 { 3153 kfree_skb(napi->skb); 3154 napi->skb = NULL; 3155 } 3156 3157 int netdev_rx_handler_register(struct net_device *dev, 3158 rx_handler_func_t *rx_handler, 3159 void *rx_handler_data); 3160 void netdev_rx_handler_unregister(struct net_device *dev); 3161 3162 bool dev_valid_name(const char *name); 3163 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3164 int dev_ethtool(struct net *net, struct ifreq *); 3165 unsigned int dev_get_flags(const struct net_device *); 3166 int __dev_change_flags(struct net_device *, unsigned int flags); 3167 int dev_change_flags(struct net_device *, unsigned int); 3168 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3169 unsigned int gchanges); 3170 int dev_change_name(struct net_device *, const char *); 3171 int dev_set_alias(struct net_device *, const char *, size_t); 3172 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3173 int dev_set_mtu(struct net_device *, int); 3174 void dev_set_group(struct net_device *, int); 3175 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3176 int dev_change_carrier(struct net_device *, bool new_carrier); 3177 int dev_get_phys_port_id(struct net_device *dev, 3178 struct netdev_phys_item_id *ppid); 3179 int dev_get_phys_port_name(struct net_device *dev, 3180 char *name, size_t len); 3181 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3182 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3183 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3184 struct netdev_queue *txq, int *ret); 3185 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3187 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 3188 3189 extern int netdev_budget; 3190 3191 /* Called by rtnetlink.c:rtnl_unlock() */ 3192 void netdev_run_todo(void); 3193 3194 /** 3195 * dev_put - release reference to device 3196 * @dev: network device 3197 * 3198 * Release reference to device to allow it to be freed. 3199 */ 3200 static inline void dev_put(struct net_device *dev) 3201 { 3202 this_cpu_dec(*dev->pcpu_refcnt); 3203 } 3204 3205 /** 3206 * dev_hold - get reference to device 3207 * @dev: network device 3208 * 3209 * Hold reference to device to keep it from being freed. 3210 */ 3211 static inline void dev_hold(struct net_device *dev) 3212 { 3213 this_cpu_inc(*dev->pcpu_refcnt); 3214 } 3215 3216 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3217 * and _off may be called from IRQ context, but it is caller 3218 * who is responsible for serialization of these calls. 3219 * 3220 * The name carrier is inappropriate, these functions should really be 3221 * called netif_lowerlayer_*() because they represent the state of any 3222 * kind of lower layer not just hardware media. 3223 */ 3224 3225 void linkwatch_init_dev(struct net_device *dev); 3226 void linkwatch_fire_event(struct net_device *dev); 3227 void linkwatch_forget_dev(struct net_device *dev); 3228 3229 /** 3230 * netif_carrier_ok - test if carrier present 3231 * @dev: network device 3232 * 3233 * Check if carrier is present on device 3234 */ 3235 static inline bool netif_carrier_ok(const struct net_device *dev) 3236 { 3237 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3238 } 3239 3240 unsigned long dev_trans_start(struct net_device *dev); 3241 3242 void __netdev_watchdog_up(struct net_device *dev); 3243 3244 void netif_carrier_on(struct net_device *dev); 3245 3246 void netif_carrier_off(struct net_device *dev); 3247 3248 /** 3249 * netif_dormant_on - mark device as dormant. 3250 * @dev: network device 3251 * 3252 * Mark device as dormant (as per RFC2863). 3253 * 3254 * The dormant state indicates that the relevant interface is not 3255 * actually in a condition to pass packets (i.e., it is not 'up') but is 3256 * in a "pending" state, waiting for some external event. For "on- 3257 * demand" interfaces, this new state identifies the situation where the 3258 * interface is waiting for events to place it in the up state. 3259 * 3260 */ 3261 static inline void netif_dormant_on(struct net_device *dev) 3262 { 3263 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3264 linkwatch_fire_event(dev); 3265 } 3266 3267 /** 3268 * netif_dormant_off - set device as not dormant. 3269 * @dev: network device 3270 * 3271 * Device is not in dormant state. 3272 */ 3273 static inline void netif_dormant_off(struct net_device *dev) 3274 { 3275 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3276 linkwatch_fire_event(dev); 3277 } 3278 3279 /** 3280 * netif_dormant - test if carrier present 3281 * @dev: network device 3282 * 3283 * Check if carrier is present on device 3284 */ 3285 static inline bool netif_dormant(const struct net_device *dev) 3286 { 3287 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3288 } 3289 3290 3291 /** 3292 * netif_oper_up - test if device is operational 3293 * @dev: network device 3294 * 3295 * Check if carrier is operational 3296 */ 3297 static inline bool netif_oper_up(const struct net_device *dev) 3298 { 3299 return (dev->operstate == IF_OPER_UP || 3300 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3301 } 3302 3303 /** 3304 * netif_device_present - is device available or removed 3305 * @dev: network device 3306 * 3307 * Check if device has not been removed from system. 3308 */ 3309 static inline bool netif_device_present(struct net_device *dev) 3310 { 3311 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3312 } 3313 3314 void netif_device_detach(struct net_device *dev); 3315 3316 void netif_device_attach(struct net_device *dev); 3317 3318 /* 3319 * Network interface message level settings 3320 */ 3321 3322 enum { 3323 NETIF_MSG_DRV = 0x0001, 3324 NETIF_MSG_PROBE = 0x0002, 3325 NETIF_MSG_LINK = 0x0004, 3326 NETIF_MSG_TIMER = 0x0008, 3327 NETIF_MSG_IFDOWN = 0x0010, 3328 NETIF_MSG_IFUP = 0x0020, 3329 NETIF_MSG_RX_ERR = 0x0040, 3330 NETIF_MSG_TX_ERR = 0x0080, 3331 NETIF_MSG_TX_QUEUED = 0x0100, 3332 NETIF_MSG_INTR = 0x0200, 3333 NETIF_MSG_TX_DONE = 0x0400, 3334 NETIF_MSG_RX_STATUS = 0x0800, 3335 NETIF_MSG_PKTDATA = 0x1000, 3336 NETIF_MSG_HW = 0x2000, 3337 NETIF_MSG_WOL = 0x4000, 3338 }; 3339 3340 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3341 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3342 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3343 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3344 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3345 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3346 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3347 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3348 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3349 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3350 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3351 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3352 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3353 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3354 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3355 3356 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3357 { 3358 /* use default */ 3359 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3360 return default_msg_enable_bits; 3361 if (debug_value == 0) /* no output */ 3362 return 0; 3363 /* set low N bits */ 3364 return (1 << debug_value) - 1; 3365 } 3366 3367 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3368 { 3369 spin_lock(&txq->_xmit_lock); 3370 txq->xmit_lock_owner = cpu; 3371 } 3372 3373 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3374 { 3375 spin_lock_bh(&txq->_xmit_lock); 3376 txq->xmit_lock_owner = smp_processor_id(); 3377 } 3378 3379 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3380 { 3381 bool ok = spin_trylock(&txq->_xmit_lock); 3382 if (likely(ok)) 3383 txq->xmit_lock_owner = smp_processor_id(); 3384 return ok; 3385 } 3386 3387 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3388 { 3389 txq->xmit_lock_owner = -1; 3390 spin_unlock(&txq->_xmit_lock); 3391 } 3392 3393 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3394 { 3395 txq->xmit_lock_owner = -1; 3396 spin_unlock_bh(&txq->_xmit_lock); 3397 } 3398 3399 static inline void txq_trans_update(struct netdev_queue *txq) 3400 { 3401 if (txq->xmit_lock_owner != -1) 3402 txq->trans_start = jiffies; 3403 } 3404 3405 /** 3406 * netif_tx_lock - grab network device transmit lock 3407 * @dev: network device 3408 * 3409 * Get network device transmit lock 3410 */ 3411 static inline void netif_tx_lock(struct net_device *dev) 3412 { 3413 unsigned int i; 3414 int cpu; 3415 3416 spin_lock(&dev->tx_global_lock); 3417 cpu = smp_processor_id(); 3418 for (i = 0; i < dev->num_tx_queues; i++) { 3419 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3420 3421 /* We are the only thread of execution doing a 3422 * freeze, but we have to grab the _xmit_lock in 3423 * order to synchronize with threads which are in 3424 * the ->hard_start_xmit() handler and already 3425 * checked the frozen bit. 3426 */ 3427 __netif_tx_lock(txq, cpu); 3428 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3429 __netif_tx_unlock(txq); 3430 } 3431 } 3432 3433 static inline void netif_tx_lock_bh(struct net_device *dev) 3434 { 3435 local_bh_disable(); 3436 netif_tx_lock(dev); 3437 } 3438 3439 static inline void netif_tx_unlock(struct net_device *dev) 3440 { 3441 unsigned int i; 3442 3443 for (i = 0; i < dev->num_tx_queues; i++) { 3444 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3445 3446 /* No need to grab the _xmit_lock here. If the 3447 * queue is not stopped for another reason, we 3448 * force a schedule. 3449 */ 3450 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3451 netif_schedule_queue(txq); 3452 } 3453 spin_unlock(&dev->tx_global_lock); 3454 } 3455 3456 static inline void netif_tx_unlock_bh(struct net_device *dev) 3457 { 3458 netif_tx_unlock(dev); 3459 local_bh_enable(); 3460 } 3461 3462 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3463 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3464 __netif_tx_lock(txq, cpu); \ 3465 } \ 3466 } 3467 3468 #define HARD_TX_TRYLOCK(dev, txq) \ 3469 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3470 __netif_tx_trylock(txq) : \ 3471 true ) 3472 3473 #define HARD_TX_UNLOCK(dev, txq) { \ 3474 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3475 __netif_tx_unlock(txq); \ 3476 } \ 3477 } 3478 3479 static inline void netif_tx_disable(struct net_device *dev) 3480 { 3481 unsigned int i; 3482 int cpu; 3483 3484 local_bh_disable(); 3485 cpu = smp_processor_id(); 3486 for (i = 0; i < dev->num_tx_queues; i++) { 3487 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3488 3489 __netif_tx_lock(txq, cpu); 3490 netif_tx_stop_queue(txq); 3491 __netif_tx_unlock(txq); 3492 } 3493 local_bh_enable(); 3494 } 3495 3496 static inline void netif_addr_lock(struct net_device *dev) 3497 { 3498 spin_lock(&dev->addr_list_lock); 3499 } 3500 3501 static inline void netif_addr_lock_nested(struct net_device *dev) 3502 { 3503 int subclass = SINGLE_DEPTH_NESTING; 3504 3505 if (dev->netdev_ops->ndo_get_lock_subclass) 3506 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3507 3508 spin_lock_nested(&dev->addr_list_lock, subclass); 3509 } 3510 3511 static inline void netif_addr_lock_bh(struct net_device *dev) 3512 { 3513 spin_lock_bh(&dev->addr_list_lock); 3514 } 3515 3516 static inline void netif_addr_unlock(struct net_device *dev) 3517 { 3518 spin_unlock(&dev->addr_list_lock); 3519 } 3520 3521 static inline void netif_addr_unlock_bh(struct net_device *dev) 3522 { 3523 spin_unlock_bh(&dev->addr_list_lock); 3524 } 3525 3526 /* 3527 * dev_addrs walker. Should be used only for read access. Call with 3528 * rcu_read_lock held. 3529 */ 3530 #define for_each_dev_addr(dev, ha) \ 3531 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3532 3533 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3534 3535 void ether_setup(struct net_device *dev); 3536 3537 /* Support for loadable net-drivers */ 3538 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3539 unsigned char name_assign_type, 3540 void (*setup)(struct net_device *), 3541 unsigned int txqs, unsigned int rxqs); 3542 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3543 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3544 3545 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3546 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3547 count) 3548 3549 int register_netdev(struct net_device *dev); 3550 void unregister_netdev(struct net_device *dev); 3551 3552 /* General hardware address lists handling functions */ 3553 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3554 struct netdev_hw_addr_list *from_list, int addr_len); 3555 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3556 struct netdev_hw_addr_list *from_list, int addr_len); 3557 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3558 struct net_device *dev, 3559 int (*sync)(struct net_device *, const unsigned char *), 3560 int (*unsync)(struct net_device *, 3561 const unsigned char *)); 3562 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3563 struct net_device *dev, 3564 int (*unsync)(struct net_device *, 3565 const unsigned char *)); 3566 void __hw_addr_init(struct netdev_hw_addr_list *list); 3567 3568 /* Functions used for device addresses handling */ 3569 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3570 unsigned char addr_type); 3571 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3572 unsigned char addr_type); 3573 void dev_addr_flush(struct net_device *dev); 3574 int dev_addr_init(struct net_device *dev); 3575 3576 /* Functions used for unicast addresses handling */ 3577 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3578 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3579 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3580 int dev_uc_sync(struct net_device *to, struct net_device *from); 3581 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3582 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3583 void dev_uc_flush(struct net_device *dev); 3584 void dev_uc_init(struct net_device *dev); 3585 3586 /** 3587 * __dev_uc_sync - Synchonize device's unicast list 3588 * @dev: device to sync 3589 * @sync: function to call if address should be added 3590 * @unsync: function to call if address should be removed 3591 * 3592 * Add newly added addresses to the interface, and release 3593 * addresses that have been deleted. 3594 **/ 3595 static inline int __dev_uc_sync(struct net_device *dev, 3596 int (*sync)(struct net_device *, 3597 const unsigned char *), 3598 int (*unsync)(struct net_device *, 3599 const unsigned char *)) 3600 { 3601 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3602 } 3603 3604 /** 3605 * __dev_uc_unsync - Remove synchronized addresses from device 3606 * @dev: device to sync 3607 * @unsync: function to call if address should be removed 3608 * 3609 * Remove all addresses that were added to the device by dev_uc_sync(). 3610 **/ 3611 static inline void __dev_uc_unsync(struct net_device *dev, 3612 int (*unsync)(struct net_device *, 3613 const unsigned char *)) 3614 { 3615 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3616 } 3617 3618 /* Functions used for multicast addresses handling */ 3619 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3620 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3621 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3622 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3623 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3624 int dev_mc_sync(struct net_device *to, struct net_device *from); 3625 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3626 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3627 void dev_mc_flush(struct net_device *dev); 3628 void dev_mc_init(struct net_device *dev); 3629 3630 /** 3631 * __dev_mc_sync - Synchonize device's multicast list 3632 * @dev: device to sync 3633 * @sync: function to call if address should be added 3634 * @unsync: function to call if address should be removed 3635 * 3636 * Add newly added addresses to the interface, and release 3637 * addresses that have been deleted. 3638 **/ 3639 static inline int __dev_mc_sync(struct net_device *dev, 3640 int (*sync)(struct net_device *, 3641 const unsigned char *), 3642 int (*unsync)(struct net_device *, 3643 const unsigned char *)) 3644 { 3645 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3646 } 3647 3648 /** 3649 * __dev_mc_unsync - Remove synchronized addresses from device 3650 * @dev: device to sync 3651 * @unsync: function to call if address should be removed 3652 * 3653 * Remove all addresses that were added to the device by dev_mc_sync(). 3654 **/ 3655 static inline void __dev_mc_unsync(struct net_device *dev, 3656 int (*unsync)(struct net_device *, 3657 const unsigned char *)) 3658 { 3659 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3660 } 3661 3662 /* Functions used for secondary unicast and multicast support */ 3663 void dev_set_rx_mode(struct net_device *dev); 3664 void __dev_set_rx_mode(struct net_device *dev); 3665 int dev_set_promiscuity(struct net_device *dev, int inc); 3666 int dev_set_allmulti(struct net_device *dev, int inc); 3667 void netdev_state_change(struct net_device *dev); 3668 void netdev_notify_peers(struct net_device *dev); 3669 void netdev_features_change(struct net_device *dev); 3670 /* Load a device via the kmod */ 3671 void dev_load(struct net *net, const char *name); 3672 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3673 struct rtnl_link_stats64 *storage); 3674 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3675 const struct net_device_stats *netdev_stats); 3676 3677 extern int netdev_max_backlog; 3678 extern int netdev_tstamp_prequeue; 3679 extern int weight_p; 3680 extern int bpf_jit_enable; 3681 3682 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3683 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3684 struct list_head **iter); 3685 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3686 struct list_head **iter); 3687 3688 /* iterate through upper list, must be called under RCU read lock */ 3689 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3690 for (iter = &(dev)->adj_list.upper, \ 3691 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3692 updev; \ 3693 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3694 3695 /* iterate through upper list, must be called under RCU read lock */ 3696 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3697 for (iter = &(dev)->all_adj_list.upper, \ 3698 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3699 updev; \ 3700 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3701 3702 void *netdev_lower_get_next_private(struct net_device *dev, 3703 struct list_head **iter); 3704 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3705 struct list_head **iter); 3706 3707 #define netdev_for_each_lower_private(dev, priv, iter) \ 3708 for (iter = (dev)->adj_list.lower.next, \ 3709 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3710 priv; \ 3711 priv = netdev_lower_get_next_private(dev, &(iter))) 3712 3713 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3714 for (iter = &(dev)->adj_list.lower, \ 3715 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3716 priv; \ 3717 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3718 3719 void *netdev_lower_get_next(struct net_device *dev, 3720 struct list_head **iter); 3721 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3722 for (iter = &(dev)->adj_list.lower, \ 3723 ldev = netdev_lower_get_next(dev, &(iter)); \ 3724 ldev; \ 3725 ldev = netdev_lower_get_next(dev, &(iter))) 3726 3727 void *netdev_adjacent_get_private(struct list_head *adj_list); 3728 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3729 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3730 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3731 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3732 int netdev_master_upper_dev_link(struct net_device *dev, 3733 struct net_device *upper_dev, 3734 void *upper_priv, void *upper_info); 3735 void netdev_upper_dev_unlink(struct net_device *dev, 3736 struct net_device *upper_dev); 3737 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3738 void *netdev_lower_dev_get_private(struct net_device *dev, 3739 struct net_device *lower_dev); 3740 void netdev_lower_state_changed(struct net_device *lower_dev, 3741 void *lower_state_info); 3742 3743 /* RSS keys are 40 or 52 bytes long */ 3744 #define NETDEV_RSS_KEY_LEN 52 3745 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3746 void netdev_rss_key_fill(void *buffer, size_t len); 3747 3748 int dev_get_nest_level(struct net_device *dev, 3749 bool (*type_check)(const struct net_device *dev)); 3750 int skb_checksum_help(struct sk_buff *skb); 3751 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3752 netdev_features_t features, bool tx_path); 3753 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3754 netdev_features_t features); 3755 3756 struct netdev_bonding_info { 3757 ifslave slave; 3758 ifbond master; 3759 }; 3760 3761 struct netdev_notifier_bonding_info { 3762 struct netdev_notifier_info info; /* must be first */ 3763 struct netdev_bonding_info bonding_info; 3764 }; 3765 3766 void netdev_bonding_info_change(struct net_device *dev, 3767 struct netdev_bonding_info *bonding_info); 3768 3769 static inline 3770 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3771 { 3772 return __skb_gso_segment(skb, features, true); 3773 } 3774 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3775 3776 static inline bool can_checksum_protocol(netdev_features_t features, 3777 __be16 protocol) 3778 { 3779 if (protocol == htons(ETH_P_FCOE)) 3780 return !!(features & NETIF_F_FCOE_CRC); 3781 3782 /* Assume this is an IP checksum (not SCTP CRC) */ 3783 3784 if (features & NETIF_F_HW_CSUM) { 3785 /* Can checksum everything */ 3786 return true; 3787 } 3788 3789 switch (protocol) { 3790 case htons(ETH_P_IP): 3791 return !!(features & NETIF_F_IP_CSUM); 3792 case htons(ETH_P_IPV6): 3793 return !!(features & NETIF_F_IPV6_CSUM); 3794 default: 3795 return false; 3796 } 3797 } 3798 3799 /* Map an ethertype into IP protocol if possible */ 3800 static inline int eproto_to_ipproto(int eproto) 3801 { 3802 switch (eproto) { 3803 case htons(ETH_P_IP): 3804 return IPPROTO_IP; 3805 case htons(ETH_P_IPV6): 3806 return IPPROTO_IPV6; 3807 default: 3808 return -1; 3809 } 3810 } 3811 3812 #ifdef CONFIG_BUG 3813 void netdev_rx_csum_fault(struct net_device *dev); 3814 #else 3815 static inline void netdev_rx_csum_fault(struct net_device *dev) 3816 { 3817 } 3818 #endif 3819 /* rx skb timestamps */ 3820 void net_enable_timestamp(void); 3821 void net_disable_timestamp(void); 3822 3823 #ifdef CONFIG_PROC_FS 3824 int __init dev_proc_init(void); 3825 #else 3826 #define dev_proc_init() 0 3827 #endif 3828 3829 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3830 struct sk_buff *skb, struct net_device *dev, 3831 bool more) 3832 { 3833 skb->xmit_more = more ? 1 : 0; 3834 return ops->ndo_start_xmit(skb, dev); 3835 } 3836 3837 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3838 struct netdev_queue *txq, bool more) 3839 { 3840 const struct net_device_ops *ops = dev->netdev_ops; 3841 int rc; 3842 3843 rc = __netdev_start_xmit(ops, skb, dev, more); 3844 if (rc == NETDEV_TX_OK) 3845 txq_trans_update(txq); 3846 3847 return rc; 3848 } 3849 3850 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3851 const void *ns); 3852 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3853 const void *ns); 3854 3855 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3856 { 3857 return netdev_class_create_file_ns(class_attr, NULL); 3858 } 3859 3860 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3861 { 3862 netdev_class_remove_file_ns(class_attr, NULL); 3863 } 3864 3865 extern struct kobj_ns_type_operations net_ns_type_operations; 3866 3867 const char *netdev_drivername(const struct net_device *dev); 3868 3869 void linkwatch_run_queue(void); 3870 3871 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3872 netdev_features_t f2) 3873 { 3874 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 3875 if (f1 & NETIF_F_HW_CSUM) 3876 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3877 else 3878 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3879 } 3880 3881 return f1 & f2; 3882 } 3883 3884 static inline netdev_features_t netdev_get_wanted_features( 3885 struct net_device *dev) 3886 { 3887 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3888 } 3889 netdev_features_t netdev_increment_features(netdev_features_t all, 3890 netdev_features_t one, netdev_features_t mask); 3891 3892 /* Allow TSO being used on stacked device : 3893 * Performing the GSO segmentation before last device 3894 * is a performance improvement. 3895 */ 3896 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3897 netdev_features_t mask) 3898 { 3899 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3900 } 3901 3902 int __netdev_update_features(struct net_device *dev); 3903 void netdev_update_features(struct net_device *dev); 3904 void netdev_change_features(struct net_device *dev); 3905 3906 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3907 struct net_device *dev); 3908 3909 netdev_features_t passthru_features_check(struct sk_buff *skb, 3910 struct net_device *dev, 3911 netdev_features_t features); 3912 netdev_features_t netif_skb_features(struct sk_buff *skb); 3913 3914 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3915 { 3916 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3917 3918 /* check flags correspondence */ 3919 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3920 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3921 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3922 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3923 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3924 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3925 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3926 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3927 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3928 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3929 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3930 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3931 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3932 3933 return (features & feature) == feature; 3934 } 3935 3936 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3937 { 3938 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3939 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3940 } 3941 3942 static inline bool netif_needs_gso(struct sk_buff *skb, 3943 netdev_features_t features) 3944 { 3945 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3946 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3947 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3948 } 3949 3950 static inline void netif_set_gso_max_size(struct net_device *dev, 3951 unsigned int size) 3952 { 3953 dev->gso_max_size = size; 3954 } 3955 3956 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3957 int pulled_hlen, u16 mac_offset, 3958 int mac_len) 3959 { 3960 skb->protocol = protocol; 3961 skb->encapsulation = 1; 3962 skb_push(skb, pulled_hlen); 3963 skb_reset_transport_header(skb); 3964 skb->mac_header = mac_offset; 3965 skb->network_header = skb->mac_header + mac_len; 3966 skb->mac_len = mac_len; 3967 } 3968 3969 static inline bool netif_is_macvlan(const struct net_device *dev) 3970 { 3971 return dev->priv_flags & IFF_MACVLAN; 3972 } 3973 3974 static inline bool netif_is_macvlan_port(const struct net_device *dev) 3975 { 3976 return dev->priv_flags & IFF_MACVLAN_PORT; 3977 } 3978 3979 static inline bool netif_is_ipvlan(const struct net_device *dev) 3980 { 3981 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3982 } 3983 3984 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 3985 { 3986 return dev->priv_flags & IFF_IPVLAN_MASTER; 3987 } 3988 3989 static inline bool netif_is_bond_master(const struct net_device *dev) 3990 { 3991 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3992 } 3993 3994 static inline bool netif_is_bond_slave(const struct net_device *dev) 3995 { 3996 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3997 } 3998 3999 static inline bool netif_supports_nofcs(struct net_device *dev) 4000 { 4001 return dev->priv_flags & IFF_SUPP_NOFCS; 4002 } 4003 4004 static inline bool netif_is_l3_master(const struct net_device *dev) 4005 { 4006 return dev->priv_flags & IFF_L3MDEV_MASTER; 4007 } 4008 4009 static inline bool netif_is_l3_slave(const struct net_device *dev) 4010 { 4011 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4012 } 4013 4014 static inline bool netif_is_bridge_master(const struct net_device *dev) 4015 { 4016 return dev->priv_flags & IFF_EBRIDGE; 4017 } 4018 4019 static inline bool netif_is_bridge_port(const struct net_device *dev) 4020 { 4021 return dev->priv_flags & IFF_BRIDGE_PORT; 4022 } 4023 4024 static inline bool netif_is_ovs_master(const struct net_device *dev) 4025 { 4026 return dev->priv_flags & IFF_OPENVSWITCH; 4027 } 4028 4029 static inline bool netif_is_team_master(const struct net_device *dev) 4030 { 4031 return dev->priv_flags & IFF_TEAM; 4032 } 4033 4034 static inline bool netif_is_team_port(const struct net_device *dev) 4035 { 4036 return dev->priv_flags & IFF_TEAM_PORT; 4037 } 4038 4039 static inline bool netif_is_lag_master(const struct net_device *dev) 4040 { 4041 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4042 } 4043 4044 static inline bool netif_is_lag_port(const struct net_device *dev) 4045 { 4046 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4047 } 4048 4049 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4050 static inline void netif_keep_dst(struct net_device *dev) 4051 { 4052 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4053 } 4054 4055 extern struct pernet_operations __net_initdata loopback_net_ops; 4056 4057 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4058 4059 /* netdev_printk helpers, similar to dev_printk */ 4060 4061 static inline const char *netdev_name(const struct net_device *dev) 4062 { 4063 if (!dev->name[0] || strchr(dev->name, '%')) 4064 return "(unnamed net_device)"; 4065 return dev->name; 4066 } 4067 4068 static inline const char *netdev_reg_state(const struct net_device *dev) 4069 { 4070 switch (dev->reg_state) { 4071 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4072 case NETREG_REGISTERED: return ""; 4073 case NETREG_UNREGISTERING: return " (unregistering)"; 4074 case NETREG_UNREGISTERED: return " (unregistered)"; 4075 case NETREG_RELEASED: return " (released)"; 4076 case NETREG_DUMMY: return " (dummy)"; 4077 } 4078 4079 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4080 return " (unknown)"; 4081 } 4082 4083 __printf(3, 4) 4084 void netdev_printk(const char *level, const struct net_device *dev, 4085 const char *format, ...); 4086 __printf(2, 3) 4087 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4088 __printf(2, 3) 4089 void netdev_alert(const struct net_device *dev, const char *format, ...); 4090 __printf(2, 3) 4091 void netdev_crit(const struct net_device *dev, const char *format, ...); 4092 __printf(2, 3) 4093 void netdev_err(const struct net_device *dev, const char *format, ...); 4094 __printf(2, 3) 4095 void netdev_warn(const struct net_device *dev, const char *format, ...); 4096 __printf(2, 3) 4097 void netdev_notice(const struct net_device *dev, const char *format, ...); 4098 __printf(2, 3) 4099 void netdev_info(const struct net_device *dev, const char *format, ...); 4100 4101 #define MODULE_ALIAS_NETDEV(device) \ 4102 MODULE_ALIAS("netdev-" device) 4103 4104 #if defined(CONFIG_DYNAMIC_DEBUG) 4105 #define netdev_dbg(__dev, format, args...) \ 4106 do { \ 4107 dynamic_netdev_dbg(__dev, format, ##args); \ 4108 } while (0) 4109 #elif defined(DEBUG) 4110 #define netdev_dbg(__dev, format, args...) \ 4111 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4112 #else 4113 #define netdev_dbg(__dev, format, args...) \ 4114 ({ \ 4115 if (0) \ 4116 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4117 }) 4118 #endif 4119 4120 #if defined(VERBOSE_DEBUG) 4121 #define netdev_vdbg netdev_dbg 4122 #else 4123 4124 #define netdev_vdbg(dev, format, args...) \ 4125 ({ \ 4126 if (0) \ 4127 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4128 0; \ 4129 }) 4130 #endif 4131 4132 /* 4133 * netdev_WARN() acts like dev_printk(), but with the key difference 4134 * of using a WARN/WARN_ON to get the message out, including the 4135 * file/line information and a backtrace. 4136 */ 4137 #define netdev_WARN(dev, format, args...) \ 4138 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4139 netdev_reg_state(dev), ##args) 4140 4141 /* netif printk helpers, similar to netdev_printk */ 4142 4143 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4144 do { \ 4145 if (netif_msg_##type(priv)) \ 4146 netdev_printk(level, (dev), fmt, ##args); \ 4147 } while (0) 4148 4149 #define netif_level(level, priv, type, dev, fmt, args...) \ 4150 do { \ 4151 if (netif_msg_##type(priv)) \ 4152 netdev_##level(dev, fmt, ##args); \ 4153 } while (0) 4154 4155 #define netif_emerg(priv, type, dev, fmt, args...) \ 4156 netif_level(emerg, priv, type, dev, fmt, ##args) 4157 #define netif_alert(priv, type, dev, fmt, args...) \ 4158 netif_level(alert, priv, type, dev, fmt, ##args) 4159 #define netif_crit(priv, type, dev, fmt, args...) \ 4160 netif_level(crit, priv, type, dev, fmt, ##args) 4161 #define netif_err(priv, type, dev, fmt, args...) \ 4162 netif_level(err, priv, type, dev, fmt, ##args) 4163 #define netif_warn(priv, type, dev, fmt, args...) \ 4164 netif_level(warn, priv, type, dev, fmt, ##args) 4165 #define netif_notice(priv, type, dev, fmt, args...) \ 4166 netif_level(notice, priv, type, dev, fmt, ##args) 4167 #define netif_info(priv, type, dev, fmt, args...) \ 4168 netif_level(info, priv, type, dev, fmt, ##args) 4169 4170 #if defined(CONFIG_DYNAMIC_DEBUG) 4171 #define netif_dbg(priv, type, netdev, format, args...) \ 4172 do { \ 4173 if (netif_msg_##type(priv)) \ 4174 dynamic_netdev_dbg(netdev, format, ##args); \ 4175 } while (0) 4176 #elif defined(DEBUG) 4177 #define netif_dbg(priv, type, dev, format, args...) \ 4178 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4179 #else 4180 #define netif_dbg(priv, type, dev, format, args...) \ 4181 ({ \ 4182 if (0) \ 4183 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4184 0; \ 4185 }) 4186 #endif 4187 4188 #if defined(VERBOSE_DEBUG) 4189 #define netif_vdbg netif_dbg 4190 #else 4191 #define netif_vdbg(priv, type, dev, format, args...) \ 4192 ({ \ 4193 if (0) \ 4194 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4195 0; \ 4196 }) 4197 #endif 4198 4199 /* 4200 * The list of packet types we will receive (as opposed to discard) 4201 * and the routines to invoke. 4202 * 4203 * Why 16. Because with 16 the only overlap we get on a hash of the 4204 * low nibble of the protocol value is RARP/SNAP/X.25. 4205 * 4206 * NOTE: That is no longer true with the addition of VLAN tags. Not 4207 * sure which should go first, but I bet it won't make much 4208 * difference if we are running VLANs. The good news is that 4209 * this protocol won't be in the list unless compiled in, so 4210 * the average user (w/out VLANs) will not be adversely affected. 4211 * --BLG 4212 * 4213 * 0800 IP 4214 * 8100 802.1Q VLAN 4215 * 0001 802.3 4216 * 0002 AX.25 4217 * 0004 802.2 4218 * 8035 RARP 4219 * 0005 SNAP 4220 * 0805 X.25 4221 * 0806 ARP 4222 * 8137 IPX 4223 * 0009 Localtalk 4224 * 86DD IPv6 4225 */ 4226 #define PTYPE_HASH_SIZE (16) 4227 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4228 4229 #endif /* _LINUX_NETDEVICE_H */ 4230