1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/pm_qos.h> 29 #include <linux/timer.h> 30 #include <linux/bug.h> 31 #include <linux/delay.h> 32 #include <linux/atomic.h> 33 #include <linux/prefetch.h> 34 #include <asm/cache.h> 35 #include <asm/byteorder.h> 36 37 #include <linux/percpu.h> 38 #include <linux/rculist.h> 39 #include <linux/dmaengine.h> 40 #include <linux/workqueue.h> 41 #include <linux/dynamic_queue_limits.h> 42 43 #include <linux/ethtool.h> 44 #include <net/net_namespace.h> 45 #include <net/dsa.h> 46 #ifdef CONFIG_DCB 47 #include <net/dcbnl.h> 48 #endif 49 #include <net/netprio_cgroup.h> 50 51 #include <linux/netdev_features.h> 52 #include <linux/neighbour.h> 53 #include <uapi/linux/netdevice.h> 54 #include <uapi/linux/if_bonding.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 /* 802.11 specific */ 60 struct wireless_dev; 61 /* 802.15.4 specific */ 62 struct wpan_dev; 63 64 void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67 /* Backlog congestion levels */ 68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69 #define NET_RX_DROP 1 /* packet dropped */ 70 71 /* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88 /* qdisc ->enqueue() return codes. */ 89 #define NET_XMIT_SUCCESS 0x00 90 #define NET_XMIT_DROP 0x01 /* skb dropped */ 91 #define NET_XMIT_CN 0x02 /* congestion notification */ 92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101 /* Driver transmit return codes */ 102 #define NETDEV_TX_MASK 0xf0 103 104 enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109 }; 110 typedef enum netdev_tx netdev_tx_t; 111 112 /* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116 static inline bool dev_xmit_complete(int rc) 117 { 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128 } 129 130 /* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 136 # if defined(CONFIG_MAC80211_MESH) 137 # define LL_MAX_HEADER 128 138 # else 139 # define LL_MAX_HEADER 96 140 # endif 141 #else 142 # define LL_MAX_HEADER 32 143 #endif 144 145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 147 #define MAX_HEADER LL_MAX_HEADER 148 #else 149 #define MAX_HEADER (LL_MAX_HEADER + 48) 150 #endif 151 152 /* 153 * Old network device statistics. Fields are native words 154 * (unsigned long) so they can be read and written atomically. 155 */ 156 157 struct net_device_stats { 158 unsigned long rx_packets; 159 unsigned long tx_packets; 160 unsigned long rx_bytes; 161 unsigned long tx_bytes; 162 unsigned long rx_errors; 163 unsigned long tx_errors; 164 unsigned long rx_dropped; 165 unsigned long tx_dropped; 166 unsigned long multicast; 167 unsigned long collisions; 168 unsigned long rx_length_errors; 169 unsigned long rx_over_errors; 170 unsigned long rx_crc_errors; 171 unsigned long rx_frame_errors; 172 unsigned long rx_fifo_errors; 173 unsigned long rx_missed_errors; 174 unsigned long tx_aborted_errors; 175 unsigned long tx_carrier_errors; 176 unsigned long tx_fifo_errors; 177 unsigned long tx_heartbeat_errors; 178 unsigned long tx_window_errors; 179 unsigned long rx_compressed; 180 unsigned long tx_compressed; 181 }; 182 183 184 #include <linux/cache.h> 185 #include <linux/skbuff.h> 186 187 #ifdef CONFIG_RPS 188 #include <linux/static_key.h> 189 extern struct static_key rps_needed; 190 #endif 191 192 struct neighbour; 193 struct neigh_parms; 194 struct sk_buff; 195 196 struct netdev_hw_addr { 197 struct list_head list; 198 unsigned char addr[MAX_ADDR_LEN]; 199 unsigned char type; 200 #define NETDEV_HW_ADDR_T_LAN 1 201 #define NETDEV_HW_ADDR_T_SAN 2 202 #define NETDEV_HW_ADDR_T_SLAVE 3 203 #define NETDEV_HW_ADDR_T_UNICAST 4 204 #define NETDEV_HW_ADDR_T_MULTICAST 5 205 bool global_use; 206 int sync_cnt; 207 int refcount; 208 int synced; 209 struct rcu_head rcu_head; 210 }; 211 212 struct netdev_hw_addr_list { 213 struct list_head list; 214 int count; 215 }; 216 217 #define netdev_hw_addr_list_count(l) ((l)->count) 218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 219 #define netdev_hw_addr_list_for_each(ha, l) \ 220 list_for_each_entry(ha, &(l)->list, list) 221 222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 224 #define netdev_for_each_uc_addr(ha, dev) \ 225 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 226 227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 229 #define netdev_for_each_mc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 231 232 struct hh_cache { 233 u16 hh_len; 234 u16 __pad; 235 seqlock_t hh_lock; 236 237 /* cached hardware header; allow for machine alignment needs. */ 238 #define HH_DATA_MOD 16 239 #define HH_DATA_OFF(__len) \ 240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 241 #define HH_DATA_ALIGN(__len) \ 242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 244 }; 245 246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 247 * Alternative is: 248 * dev->hard_header_len ? (dev->hard_header_len + 249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 250 * 251 * We could use other alignment values, but we must maintain the 252 * relationship HH alignment <= LL alignment. 253 */ 254 #define LL_RESERVED_SPACE(dev) \ 255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 259 struct header_ops { 260 int (*create) (struct sk_buff *skb, struct net_device *dev, 261 unsigned short type, const void *daddr, 262 const void *saddr, unsigned int len); 263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 265 void (*cache_update)(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr); 268 }; 269 270 /* These flag bits are private to the generic network queueing 271 * layer, they may not be explicitly referenced by any other 272 * code. 273 */ 274 275 enum netdev_state_t { 276 __LINK_STATE_START, 277 __LINK_STATE_PRESENT, 278 __LINK_STATE_NOCARRIER, 279 __LINK_STATE_LINKWATCH_PENDING, 280 __LINK_STATE_DORMANT, 281 }; 282 283 284 /* 285 * This structure holds at boot time configured netdevice settings. They 286 * are then used in the device probing. 287 */ 288 struct netdev_boot_setup { 289 char name[IFNAMSIZ]; 290 struct ifmap map; 291 }; 292 #define NETDEV_BOOT_SETUP_MAX 8 293 294 int __init netdev_boot_setup(char *str); 295 296 /* 297 * Structure for NAPI scheduling similar to tasklet but with weighting 298 */ 299 struct napi_struct { 300 /* The poll_list must only be managed by the entity which 301 * changes the state of the NAPI_STATE_SCHED bit. This means 302 * whoever atomically sets that bit can add this napi_struct 303 * to the per-cpu poll_list, and whoever clears that bit 304 * can remove from the list right before clearing the bit. 305 */ 306 struct list_head poll_list; 307 308 unsigned long state; 309 int weight; 310 unsigned int gro_count; 311 int (*poll)(struct napi_struct *, int); 312 #ifdef CONFIG_NETPOLL 313 spinlock_t poll_lock; 314 int poll_owner; 315 #endif 316 struct net_device *dev; 317 struct sk_buff *gro_list; 318 struct sk_buff *skb; 319 struct hrtimer timer; 320 struct list_head dev_list; 321 struct hlist_node napi_hash_node; 322 unsigned int napi_id; 323 }; 324 325 enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329 NAPI_STATE_HASHED, /* In NAPI hash */ 330 }; 331 332 enum gro_result { 333 GRO_MERGED, 334 GRO_MERGED_FREE, 335 GRO_HELD, 336 GRO_NORMAL, 337 GRO_DROP, 338 }; 339 typedef enum gro_result gro_result_t; 340 341 /* 342 * enum rx_handler_result - Possible return values for rx_handlers. 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 344 * further. 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 346 * case skb->dev was changed by rx_handler. 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 349 * 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do 351 * special processing of the skb, prior to delivery to protocol handlers. 352 * 353 * Currently, a net_device can only have a single rx_handler registered. Trying 354 * to register a second rx_handler will return -EBUSY. 355 * 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 357 * To unregister a rx_handler on a net_device, use 358 * netdev_rx_handler_unregister(). 359 * 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 361 * do with the skb. 362 * 363 * If the rx_handler consumed to skb in some way, it should return 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 365 * the skb to be delivered in some other ways. 366 * 367 * If the rx_handler changed skb->dev, to divert the skb to another 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 369 * new device will be called if it exists. 370 * 371 * If the rx_handler consider the skb should be ignored, it should return 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 373 * are registered on exact device (ptype->dev == skb->dev). 374 * 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 376 * delivered, it should return RX_HANDLER_PASS. 377 * 378 * A device without a registered rx_handler will behave as if rx_handler 379 * returned RX_HANDLER_PASS. 380 */ 381 382 enum rx_handler_result { 383 RX_HANDLER_CONSUMED, 384 RX_HANDLER_ANOTHER, 385 RX_HANDLER_EXACT, 386 RX_HANDLER_PASS, 387 }; 388 typedef enum rx_handler_result rx_handler_result_t; 389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 390 391 void __napi_schedule(struct napi_struct *n); 392 void __napi_schedule_irqoff(struct napi_struct *n); 393 394 static inline bool napi_disable_pending(struct napi_struct *n) 395 { 396 return test_bit(NAPI_STATE_DISABLE, &n->state); 397 } 398 399 /** 400 * napi_schedule_prep - check if napi can be scheduled 401 * @n: napi context 402 * 403 * Test if NAPI routine is already running, and if not mark 404 * it as running. This is used as a condition variable 405 * insure only one NAPI poll instance runs. We also make 406 * sure there is no pending NAPI disable. 407 */ 408 static inline bool napi_schedule_prep(struct napi_struct *n) 409 { 410 return !napi_disable_pending(n) && 411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 412 } 413 414 /** 415 * napi_schedule - schedule NAPI poll 416 * @n: napi context 417 * 418 * Schedule NAPI poll routine to be called if it is not already 419 * running. 420 */ 421 static inline void napi_schedule(struct napi_struct *n) 422 { 423 if (napi_schedule_prep(n)) 424 __napi_schedule(n); 425 } 426 427 /** 428 * napi_schedule_irqoff - schedule NAPI poll 429 * @n: napi context 430 * 431 * Variant of napi_schedule(), assuming hard irqs are masked. 432 */ 433 static inline void napi_schedule_irqoff(struct napi_struct *n) 434 { 435 if (napi_schedule_prep(n)) 436 __napi_schedule_irqoff(n); 437 } 438 439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 440 static inline bool napi_reschedule(struct napi_struct *napi) 441 { 442 if (napi_schedule_prep(napi)) { 443 __napi_schedule(napi); 444 return true; 445 } 446 return false; 447 } 448 449 void __napi_complete(struct napi_struct *n); 450 void napi_complete_done(struct napi_struct *n, int work_done); 451 /** 452 * napi_complete - NAPI processing complete 453 * @n: napi context 454 * 455 * Mark NAPI processing as complete. 456 * Consider using napi_complete_done() instead. 457 */ 458 static inline void napi_complete(struct napi_struct *n) 459 { 460 return napi_complete_done(n, 0); 461 } 462 463 /** 464 * napi_by_id - lookup a NAPI by napi_id 465 * @napi_id: hashed napi_id 466 * 467 * lookup @napi_id in napi_hash table 468 * must be called under rcu_read_lock() 469 */ 470 struct napi_struct *napi_by_id(unsigned int napi_id); 471 472 /** 473 * napi_hash_add - add a NAPI to global hashtable 474 * @napi: napi context 475 * 476 * generate a new napi_id and store a @napi under it in napi_hash 477 */ 478 void napi_hash_add(struct napi_struct *napi); 479 480 /** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: napi context 483 * 484 * Warning: caller must observe rcu grace period 485 * before freeing memory containing @napi 486 */ 487 void napi_hash_del(struct napi_struct *napi); 488 489 /** 490 * napi_disable - prevent NAPI from scheduling 491 * @n: napi context 492 * 493 * Stop NAPI from being scheduled on this context. 494 * Waits till any outstanding processing completes. 495 */ 496 void napi_disable(struct napi_struct *n); 497 498 /** 499 * napi_enable - enable NAPI scheduling 500 * @n: napi context 501 * 502 * Resume NAPI from being scheduled on this context. 503 * Must be paired with napi_disable. 504 */ 505 static inline void napi_enable(struct napi_struct *n) 506 { 507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 508 smp_mb__before_atomic(); 509 clear_bit(NAPI_STATE_SCHED, &n->state); 510 } 511 512 #ifdef CONFIG_SMP 513 /** 514 * napi_synchronize - wait until NAPI is not running 515 * @n: napi context 516 * 517 * Wait until NAPI is done being scheduled on this context. 518 * Waits till any outstanding processing completes but 519 * does not disable future activations. 520 */ 521 static inline void napi_synchronize(const struct napi_struct *n) 522 { 523 while (test_bit(NAPI_STATE_SCHED, &n->state)) 524 msleep(1); 525 } 526 #else 527 # define napi_synchronize(n) barrier() 528 #endif 529 530 enum netdev_queue_state_t { 531 __QUEUE_STATE_DRV_XOFF, 532 __QUEUE_STATE_STACK_XOFF, 533 __QUEUE_STATE_FROZEN, 534 }; 535 536 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 537 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 538 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 539 540 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 542 QUEUE_STATE_FROZEN) 543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 544 QUEUE_STATE_FROZEN) 545 546 /* 547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 548 * netif_tx_* functions below are used to manipulate this flag. The 549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 550 * queue independently. The netif_xmit_*stopped functions below are called 551 * to check if the queue has been stopped by the driver or stack (either 552 * of the XOFF bits are set in the state). Drivers should not need to call 553 * netif_xmit*stopped functions, they should only be using netif_tx_*. 554 */ 555 556 struct netdev_queue { 557 /* 558 * read mostly part 559 */ 560 struct net_device *dev; 561 struct Qdisc __rcu *qdisc; 562 struct Qdisc *qdisc_sleeping; 563 #ifdef CONFIG_SYSFS 564 struct kobject kobj; 565 #endif 566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 567 int numa_node; 568 #endif 569 /* 570 * write mostly part 571 */ 572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 573 int xmit_lock_owner; 574 /* 575 * please use this field instead of dev->trans_start 576 */ 577 unsigned long trans_start; 578 579 /* 580 * Number of TX timeouts for this queue 581 * (/sys/class/net/DEV/Q/trans_timeout) 582 */ 583 unsigned long trans_timeout; 584 585 unsigned long state; 586 587 #ifdef CONFIG_BQL 588 struct dql dql; 589 #endif 590 } ____cacheline_aligned_in_smp; 591 592 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 593 { 594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 595 return q->numa_node; 596 #else 597 return NUMA_NO_NODE; 598 #endif 599 } 600 601 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 602 { 603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 604 q->numa_node = node; 605 #endif 606 } 607 608 #ifdef CONFIG_RPS 609 /* 610 * This structure holds an RPS map which can be of variable length. The 611 * map is an array of CPUs. 612 */ 613 struct rps_map { 614 unsigned int len; 615 struct rcu_head rcu; 616 u16 cpus[0]; 617 }; 618 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 619 620 /* 621 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 622 * tail pointer for that CPU's input queue at the time of last enqueue, and 623 * a hardware filter index. 624 */ 625 struct rps_dev_flow { 626 u16 cpu; 627 u16 filter; 628 unsigned int last_qtail; 629 }; 630 #define RPS_NO_FILTER 0xffff 631 632 /* 633 * The rps_dev_flow_table structure contains a table of flow mappings. 634 */ 635 struct rps_dev_flow_table { 636 unsigned int mask; 637 struct rcu_head rcu; 638 struct rps_dev_flow flows[0]; 639 }; 640 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 641 ((_num) * sizeof(struct rps_dev_flow))) 642 643 /* 644 * The rps_sock_flow_table contains mappings of flows to the last CPU 645 * on which they were processed by the application (set in recvmsg). 646 * Each entry is a 32bit value. Upper part is the high order bits 647 * of flow hash, lower part is cpu number. 648 * rps_cpu_mask is used to partition the space, depending on number of 649 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 650 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 651 * meaning we use 32-6=26 bits for the hash. 652 */ 653 struct rps_sock_flow_table { 654 u32 mask; 655 656 u32 ents[0] ____cacheline_aligned_in_smp; 657 }; 658 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 659 660 #define RPS_NO_CPU 0xffff 661 662 extern u32 rps_cpu_mask; 663 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 664 665 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 666 u32 hash) 667 { 668 if (table && hash) { 669 unsigned int index = hash & table->mask; 670 u32 val = hash & ~rps_cpu_mask; 671 672 /* We only give a hint, preemption can change cpu under us */ 673 val |= raw_smp_processor_id(); 674 675 if (table->ents[index] != val) 676 table->ents[index] = val; 677 } 678 } 679 680 #ifdef CONFIG_RFS_ACCEL 681 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 682 u16 filter_id); 683 #endif 684 #endif /* CONFIG_RPS */ 685 686 /* This structure contains an instance of an RX queue. */ 687 struct netdev_rx_queue { 688 #ifdef CONFIG_RPS 689 struct rps_map __rcu *rps_map; 690 struct rps_dev_flow_table __rcu *rps_flow_table; 691 #endif 692 struct kobject kobj; 693 struct net_device *dev; 694 } ____cacheline_aligned_in_smp; 695 696 /* 697 * RX queue sysfs structures and functions. 698 */ 699 struct rx_queue_attribute { 700 struct attribute attr; 701 ssize_t (*show)(struct netdev_rx_queue *queue, 702 struct rx_queue_attribute *attr, char *buf); 703 ssize_t (*store)(struct netdev_rx_queue *queue, 704 struct rx_queue_attribute *attr, const char *buf, size_t len); 705 }; 706 707 #ifdef CONFIG_XPS 708 /* 709 * This structure holds an XPS map which can be of variable length. The 710 * map is an array of queues. 711 */ 712 struct xps_map { 713 unsigned int len; 714 unsigned int alloc_len; 715 struct rcu_head rcu; 716 u16 queues[0]; 717 }; 718 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 719 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 720 / sizeof(u16)) 721 722 /* 723 * This structure holds all XPS maps for device. Maps are indexed by CPU. 724 */ 725 struct xps_dev_maps { 726 struct rcu_head rcu; 727 struct xps_map __rcu *cpu_map[0]; 728 }; 729 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 730 (nr_cpu_ids * sizeof(struct xps_map *))) 731 #endif /* CONFIG_XPS */ 732 733 #define TC_MAX_QUEUE 16 734 #define TC_BITMASK 15 735 /* HW offloaded queuing disciplines txq count and offset maps */ 736 struct netdev_tc_txq { 737 u16 count; 738 u16 offset; 739 }; 740 741 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 742 /* 743 * This structure is to hold information about the device 744 * configured to run FCoE protocol stack. 745 */ 746 struct netdev_fcoe_hbainfo { 747 char manufacturer[64]; 748 char serial_number[64]; 749 char hardware_version[64]; 750 char driver_version[64]; 751 char optionrom_version[64]; 752 char firmware_version[64]; 753 char model[256]; 754 char model_description[256]; 755 }; 756 #endif 757 758 #define MAX_PHYS_ITEM_ID_LEN 32 759 760 /* This structure holds a unique identifier to identify some 761 * physical item (port for example) used by a netdevice. 762 */ 763 struct netdev_phys_item_id { 764 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 765 unsigned char id_len; 766 }; 767 768 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 769 struct sk_buff *skb); 770 771 struct fib_info; 772 773 /* 774 * This structure defines the management hooks for network devices. 775 * The following hooks can be defined; unless noted otherwise, they are 776 * optional and can be filled with a null pointer. 777 * 778 * int (*ndo_init)(struct net_device *dev); 779 * This function is called once when network device is registered. 780 * The network device can use this to any late stage initializaton 781 * or semantic validattion. It can fail with an error code which will 782 * be propogated back to register_netdev 783 * 784 * void (*ndo_uninit)(struct net_device *dev); 785 * This function is called when device is unregistered or when registration 786 * fails. It is not called if init fails. 787 * 788 * int (*ndo_open)(struct net_device *dev); 789 * This function is called when network device transistions to the up 790 * state. 791 * 792 * int (*ndo_stop)(struct net_device *dev); 793 * This function is called when network device transistions to the down 794 * state. 795 * 796 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 797 * struct net_device *dev); 798 * Called when a packet needs to be transmitted. 799 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 800 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 801 * Required can not be NULL. 802 * 803 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 804 * void *accel_priv, select_queue_fallback_t fallback); 805 * Called to decide which queue to when device supports multiple 806 * transmit queues. 807 * 808 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 809 * This function is called to allow device receiver to make 810 * changes to configuration when multicast or promiscious is enabled. 811 * 812 * void (*ndo_set_rx_mode)(struct net_device *dev); 813 * This function is called device changes address list filtering. 814 * If driver handles unicast address filtering, it should set 815 * IFF_UNICAST_FLT to its priv_flags. 816 * 817 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 818 * This function is called when the Media Access Control address 819 * needs to be changed. If this interface is not defined, the 820 * mac address can not be changed. 821 * 822 * int (*ndo_validate_addr)(struct net_device *dev); 823 * Test if Media Access Control address is valid for the device. 824 * 825 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 826 * Called when a user request an ioctl which can't be handled by 827 * the generic interface code. If not defined ioctl's return 828 * not supported error code. 829 * 830 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 831 * Used to set network devices bus interface parameters. This interface 832 * is retained for legacy reason, new devices should use the bus 833 * interface (PCI) for low level management. 834 * 835 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 836 * Called when a user wants to change the Maximum Transfer Unit 837 * of a device. If not defined, any request to change MTU will 838 * will return an error. 839 * 840 * void (*ndo_tx_timeout)(struct net_device *dev); 841 * Callback uses when the transmitter has not made any progress 842 * for dev->watchdog ticks. 843 * 844 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 845 * struct rtnl_link_stats64 *storage); 846 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 847 * Called when a user wants to get the network device usage 848 * statistics. Drivers must do one of the following: 849 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 850 * rtnl_link_stats64 structure passed by the caller. 851 * 2. Define @ndo_get_stats to update a net_device_stats structure 852 * (which should normally be dev->stats) and return a pointer to 853 * it. The structure may be changed asynchronously only if each 854 * field is written atomically. 855 * 3. Update dev->stats asynchronously and atomically, and define 856 * neither operation. 857 * 858 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 859 * If device support VLAN filtering this function is called when a 860 * VLAN id is registered. 861 * 862 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 863 * If device support VLAN filtering this function is called when a 864 * VLAN id is unregistered. 865 * 866 * void (*ndo_poll_controller)(struct net_device *dev); 867 * 868 * SR-IOV management functions. 869 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 870 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 871 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 872 * int max_tx_rate); 873 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 874 * int (*ndo_get_vf_config)(struct net_device *dev, 875 * int vf, struct ifla_vf_info *ivf); 876 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 877 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 878 * struct nlattr *port[]); 879 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 880 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 881 * Called to setup 'tc' number of traffic classes in the net device. This 882 * is always called from the stack with the rtnl lock held and netif tx 883 * queues stopped. This allows the netdevice to perform queue management 884 * safely. 885 * 886 * Fiber Channel over Ethernet (FCoE) offload functions. 887 * int (*ndo_fcoe_enable)(struct net_device *dev); 888 * Called when the FCoE protocol stack wants to start using LLD for FCoE 889 * so the underlying device can perform whatever needed configuration or 890 * initialization to support acceleration of FCoE traffic. 891 * 892 * int (*ndo_fcoe_disable)(struct net_device *dev); 893 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 894 * so the underlying device can perform whatever needed clean-ups to 895 * stop supporting acceleration of FCoE traffic. 896 * 897 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 898 * struct scatterlist *sgl, unsigned int sgc); 899 * Called when the FCoE Initiator wants to initialize an I/O that 900 * is a possible candidate for Direct Data Placement (DDP). The LLD can 901 * perform necessary setup and returns 1 to indicate the device is set up 902 * successfully to perform DDP on this I/O, otherwise this returns 0. 903 * 904 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 905 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 906 * indicated by the FC exchange id 'xid', so the underlying device can 907 * clean up and reuse resources for later DDP requests. 908 * 909 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 910 * struct scatterlist *sgl, unsigned int sgc); 911 * Called when the FCoE Target wants to initialize an I/O that 912 * is a possible candidate for Direct Data Placement (DDP). The LLD can 913 * perform necessary setup and returns 1 to indicate the device is set up 914 * successfully to perform DDP on this I/O, otherwise this returns 0. 915 * 916 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 917 * struct netdev_fcoe_hbainfo *hbainfo); 918 * Called when the FCoE Protocol stack wants information on the underlying 919 * device. This information is utilized by the FCoE protocol stack to 920 * register attributes with Fiber Channel management service as per the 921 * FC-GS Fabric Device Management Information(FDMI) specification. 922 * 923 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 924 * Called when the underlying device wants to override default World Wide 925 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 926 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 927 * protocol stack to use. 928 * 929 * RFS acceleration. 930 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 931 * u16 rxq_index, u32 flow_id); 932 * Set hardware filter for RFS. rxq_index is the target queue index; 933 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 934 * Return the filter ID on success, or a negative error code. 935 * 936 * Slave management functions (for bridge, bonding, etc). 937 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 938 * Called to make another netdev an underling. 939 * 940 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 941 * Called to release previously enslaved netdev. 942 * 943 * Feature/offload setting functions. 944 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 945 * netdev_features_t features); 946 * Adjusts the requested feature flags according to device-specific 947 * constraints, and returns the resulting flags. Must not modify 948 * the device state. 949 * 950 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 951 * Called to update device configuration to new features. Passed 952 * feature set might be less than what was returned by ndo_fix_features()). 953 * Must return >0 or -errno if it changed dev->features itself. 954 * 955 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 956 * struct net_device *dev, 957 * const unsigned char *addr, u16 vid, u16 flags) 958 * Adds an FDB entry to dev for addr. 959 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 960 * struct net_device *dev, 961 * const unsigned char *addr, u16 vid) 962 * Deletes the FDB entry from dev coresponding to addr. 963 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 964 * struct net_device *dev, struct net_device *filter_dev, 965 * int idx) 966 * Used to add FDB entries to dump requests. Implementers should add 967 * entries to skb and update idx with the number of entries. 968 * 969 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 970 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 971 * struct net_device *dev, u32 filter_mask) 972 * 973 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 974 * Called to change device carrier. Soft-devices (like dummy, team, etc) 975 * which do not represent real hardware may define this to allow their 976 * userspace components to manage their virtual carrier state. Devices 977 * that determine carrier state from physical hardware properties (eg 978 * network cables) or protocol-dependent mechanisms (eg 979 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 980 * 981 * int (*ndo_get_phys_port_id)(struct net_device *dev, 982 * struct netdev_phys_item_id *ppid); 983 * Called to get ID of physical port of this device. If driver does 984 * not implement this, it is assumed that the hw is not able to have 985 * multiple net devices on single physical port. 986 * 987 * void (*ndo_add_vxlan_port)(struct net_device *dev, 988 * sa_family_t sa_family, __be16 port); 989 * Called by vxlan to notiy a driver about the UDP port and socket 990 * address family that vxlan is listnening to. It is called only when 991 * a new port starts listening. The operation is protected by the 992 * vxlan_net->sock_lock. 993 * 994 * void (*ndo_del_vxlan_port)(struct net_device *dev, 995 * sa_family_t sa_family, __be16 port); 996 * Called by vxlan to notify the driver about a UDP port and socket 997 * address family that vxlan is not listening to anymore. The operation 998 * is protected by the vxlan_net->sock_lock. 999 * 1000 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1001 * struct net_device *dev) 1002 * Called by upper layer devices to accelerate switching or other 1003 * station functionality into hardware. 'pdev is the lowerdev 1004 * to use for the offload and 'dev' is the net device that will 1005 * back the offload. Returns a pointer to the private structure 1006 * the upper layer will maintain. 1007 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1008 * Called by upper layer device to delete the station created 1009 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1010 * the station and priv is the structure returned by the add 1011 * operation. 1012 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1013 * struct net_device *dev, 1014 * void *priv); 1015 * Callback to use for xmit over the accelerated station. This 1016 * is used in place of ndo_start_xmit on accelerated net 1017 * devices. 1018 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1019 * struct net_device *dev 1020 * netdev_features_t features); 1021 * Called by core transmit path to determine if device is capable of 1022 * performing offload operations on a given packet. This is to give 1023 * the device an opportunity to implement any restrictions that cannot 1024 * be otherwise expressed by feature flags. The check is called with 1025 * the set of features that the stack has calculated and it returns 1026 * those the driver believes to be appropriate. 1027 * 1028 * int (*ndo_switch_parent_id_get)(struct net_device *dev, 1029 * struct netdev_phys_item_id *psid); 1030 * Called to get an ID of the switch chip this port is part of. 1031 * If driver implements this, it indicates that it represents a port 1032 * of a switch chip. 1033 * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state); 1034 * Called to notify switch device port of bridge port STP 1035 * state change. 1036 * int (*ndo_sw_parent_fib_ipv4_add)(struct net_device *dev, __be32 dst, 1037 * int dst_len, struct fib_info *fi, 1038 * u8 tos, u8 type, u32 tb_id); 1039 * Called to add/modify IPv4 route to switch device. 1040 * int (*ndo_sw_parent_fib_ipv4_del)(struct net_device *dev, __be32 dst, 1041 * int dst_len, struct fib_info *fi, 1042 * u8 tos, u8 type, u32 tb_id); 1043 * Called to delete IPv4 route from switch device. 1044 */ 1045 struct net_device_ops { 1046 int (*ndo_init)(struct net_device *dev); 1047 void (*ndo_uninit)(struct net_device *dev); 1048 int (*ndo_open)(struct net_device *dev); 1049 int (*ndo_stop)(struct net_device *dev); 1050 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1051 struct net_device *dev); 1052 u16 (*ndo_select_queue)(struct net_device *dev, 1053 struct sk_buff *skb, 1054 void *accel_priv, 1055 select_queue_fallback_t fallback); 1056 void (*ndo_change_rx_flags)(struct net_device *dev, 1057 int flags); 1058 void (*ndo_set_rx_mode)(struct net_device *dev); 1059 int (*ndo_set_mac_address)(struct net_device *dev, 1060 void *addr); 1061 int (*ndo_validate_addr)(struct net_device *dev); 1062 int (*ndo_do_ioctl)(struct net_device *dev, 1063 struct ifreq *ifr, int cmd); 1064 int (*ndo_set_config)(struct net_device *dev, 1065 struct ifmap *map); 1066 int (*ndo_change_mtu)(struct net_device *dev, 1067 int new_mtu); 1068 int (*ndo_neigh_setup)(struct net_device *dev, 1069 struct neigh_parms *); 1070 void (*ndo_tx_timeout) (struct net_device *dev); 1071 1072 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1073 struct rtnl_link_stats64 *storage); 1074 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1075 1076 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1077 __be16 proto, u16 vid); 1078 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1079 __be16 proto, u16 vid); 1080 #ifdef CONFIG_NET_POLL_CONTROLLER 1081 void (*ndo_poll_controller)(struct net_device *dev); 1082 int (*ndo_netpoll_setup)(struct net_device *dev, 1083 struct netpoll_info *info); 1084 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1085 #endif 1086 #ifdef CONFIG_NET_RX_BUSY_POLL 1087 int (*ndo_busy_poll)(struct napi_struct *dev); 1088 #endif 1089 int (*ndo_set_vf_mac)(struct net_device *dev, 1090 int queue, u8 *mac); 1091 int (*ndo_set_vf_vlan)(struct net_device *dev, 1092 int queue, u16 vlan, u8 qos); 1093 int (*ndo_set_vf_rate)(struct net_device *dev, 1094 int vf, int min_tx_rate, 1095 int max_tx_rate); 1096 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1097 int vf, bool setting); 1098 int (*ndo_get_vf_config)(struct net_device *dev, 1099 int vf, 1100 struct ifla_vf_info *ivf); 1101 int (*ndo_set_vf_link_state)(struct net_device *dev, 1102 int vf, int link_state); 1103 int (*ndo_set_vf_port)(struct net_device *dev, 1104 int vf, 1105 struct nlattr *port[]); 1106 int (*ndo_get_vf_port)(struct net_device *dev, 1107 int vf, struct sk_buff *skb); 1108 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1109 #if IS_ENABLED(CONFIG_FCOE) 1110 int (*ndo_fcoe_enable)(struct net_device *dev); 1111 int (*ndo_fcoe_disable)(struct net_device *dev); 1112 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1113 u16 xid, 1114 struct scatterlist *sgl, 1115 unsigned int sgc); 1116 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1117 u16 xid); 1118 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1119 u16 xid, 1120 struct scatterlist *sgl, 1121 unsigned int sgc); 1122 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1123 struct netdev_fcoe_hbainfo *hbainfo); 1124 #endif 1125 1126 #if IS_ENABLED(CONFIG_LIBFCOE) 1127 #define NETDEV_FCOE_WWNN 0 1128 #define NETDEV_FCOE_WWPN 1 1129 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1130 u64 *wwn, int type); 1131 #endif 1132 1133 #ifdef CONFIG_RFS_ACCEL 1134 int (*ndo_rx_flow_steer)(struct net_device *dev, 1135 const struct sk_buff *skb, 1136 u16 rxq_index, 1137 u32 flow_id); 1138 #endif 1139 int (*ndo_add_slave)(struct net_device *dev, 1140 struct net_device *slave_dev); 1141 int (*ndo_del_slave)(struct net_device *dev, 1142 struct net_device *slave_dev); 1143 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1144 netdev_features_t features); 1145 int (*ndo_set_features)(struct net_device *dev, 1146 netdev_features_t features); 1147 int (*ndo_neigh_construct)(struct neighbour *n); 1148 void (*ndo_neigh_destroy)(struct neighbour *n); 1149 1150 int (*ndo_fdb_add)(struct ndmsg *ndm, 1151 struct nlattr *tb[], 1152 struct net_device *dev, 1153 const unsigned char *addr, 1154 u16 vid, 1155 u16 flags); 1156 int (*ndo_fdb_del)(struct ndmsg *ndm, 1157 struct nlattr *tb[], 1158 struct net_device *dev, 1159 const unsigned char *addr, 1160 u16 vid); 1161 int (*ndo_fdb_dump)(struct sk_buff *skb, 1162 struct netlink_callback *cb, 1163 struct net_device *dev, 1164 struct net_device *filter_dev, 1165 int idx); 1166 1167 int (*ndo_bridge_setlink)(struct net_device *dev, 1168 struct nlmsghdr *nlh, 1169 u16 flags); 1170 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1171 u32 pid, u32 seq, 1172 struct net_device *dev, 1173 u32 filter_mask); 1174 int (*ndo_bridge_dellink)(struct net_device *dev, 1175 struct nlmsghdr *nlh, 1176 u16 flags); 1177 int (*ndo_change_carrier)(struct net_device *dev, 1178 bool new_carrier); 1179 int (*ndo_get_phys_port_id)(struct net_device *dev, 1180 struct netdev_phys_item_id *ppid); 1181 void (*ndo_add_vxlan_port)(struct net_device *dev, 1182 sa_family_t sa_family, 1183 __be16 port); 1184 void (*ndo_del_vxlan_port)(struct net_device *dev, 1185 sa_family_t sa_family, 1186 __be16 port); 1187 1188 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1189 struct net_device *dev); 1190 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1191 void *priv); 1192 1193 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1194 struct net_device *dev, 1195 void *priv); 1196 int (*ndo_get_lock_subclass)(struct net_device *dev); 1197 netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1198 struct net_device *dev, 1199 netdev_features_t features); 1200 #ifdef CONFIG_NET_SWITCHDEV 1201 int (*ndo_switch_parent_id_get)(struct net_device *dev, 1202 struct netdev_phys_item_id *psid); 1203 int (*ndo_switch_port_stp_update)(struct net_device *dev, 1204 u8 state); 1205 int (*ndo_switch_fib_ipv4_add)(struct net_device *dev, 1206 __be32 dst, 1207 int dst_len, 1208 struct fib_info *fi, 1209 u8 tos, u8 type, 1210 u32 tb_id); 1211 int (*ndo_switch_fib_ipv4_del)(struct net_device *dev, 1212 __be32 dst, 1213 int dst_len, 1214 struct fib_info *fi, 1215 u8 tos, u8 type, 1216 u32 tb_id); 1217 #endif 1218 }; 1219 1220 /** 1221 * enum net_device_priv_flags - &struct net_device priv_flags 1222 * 1223 * These are the &struct net_device, they are only set internally 1224 * by drivers and used in the kernel. These flags are invisible to 1225 * userspace, this means that the order of these flags can change 1226 * during any kernel release. 1227 * 1228 * You should have a pretty good reason to be extending these flags. 1229 * 1230 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1231 * @IFF_EBRIDGE: Ethernet bridging device 1232 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active 1233 * @IFF_MASTER_8023AD: bonding master, 802.3ad 1234 * @IFF_MASTER_ALB: bonding master, balance-alb 1235 * @IFF_BONDING: bonding master or slave 1236 * @IFF_SLAVE_NEEDARP: need ARPs for validation 1237 * @IFF_ISATAP: ISATAP interface (RFC4214) 1238 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use 1239 * @IFF_WAN_HDLC: WAN HDLC device 1240 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1241 * release skb->dst 1242 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1243 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1244 * @IFF_MACVLAN_PORT: device used as macvlan port 1245 * @IFF_BRIDGE_PORT: device used as bridge port 1246 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1247 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1248 * @IFF_UNICAST_FLT: Supports unicast filtering 1249 * @IFF_TEAM_PORT: device used as team port 1250 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1251 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1252 * change when it's running 1253 * @IFF_MACVLAN: Macvlan device 1254 */ 1255 enum netdev_priv_flags { 1256 IFF_802_1Q_VLAN = 1<<0, 1257 IFF_EBRIDGE = 1<<1, 1258 IFF_SLAVE_INACTIVE = 1<<2, 1259 IFF_MASTER_8023AD = 1<<3, 1260 IFF_MASTER_ALB = 1<<4, 1261 IFF_BONDING = 1<<5, 1262 IFF_SLAVE_NEEDARP = 1<<6, 1263 IFF_ISATAP = 1<<7, 1264 IFF_MASTER_ARPMON = 1<<8, 1265 IFF_WAN_HDLC = 1<<9, 1266 IFF_XMIT_DST_RELEASE = 1<<10, 1267 IFF_DONT_BRIDGE = 1<<11, 1268 IFF_DISABLE_NETPOLL = 1<<12, 1269 IFF_MACVLAN_PORT = 1<<13, 1270 IFF_BRIDGE_PORT = 1<<14, 1271 IFF_OVS_DATAPATH = 1<<15, 1272 IFF_TX_SKB_SHARING = 1<<16, 1273 IFF_UNICAST_FLT = 1<<17, 1274 IFF_TEAM_PORT = 1<<18, 1275 IFF_SUPP_NOFCS = 1<<19, 1276 IFF_LIVE_ADDR_CHANGE = 1<<20, 1277 IFF_MACVLAN = 1<<21, 1278 IFF_XMIT_DST_RELEASE_PERM = 1<<22, 1279 IFF_IPVLAN_MASTER = 1<<23, 1280 IFF_IPVLAN_SLAVE = 1<<24, 1281 }; 1282 1283 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1284 #define IFF_EBRIDGE IFF_EBRIDGE 1285 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE 1286 #define IFF_MASTER_8023AD IFF_MASTER_8023AD 1287 #define IFF_MASTER_ALB IFF_MASTER_ALB 1288 #define IFF_BONDING IFF_BONDING 1289 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP 1290 #define IFF_ISATAP IFF_ISATAP 1291 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON 1292 #define IFF_WAN_HDLC IFF_WAN_HDLC 1293 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1294 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1295 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1296 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1297 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1298 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1299 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1300 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1301 #define IFF_TEAM_PORT IFF_TEAM_PORT 1302 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1303 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1304 #define IFF_MACVLAN IFF_MACVLAN 1305 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1306 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1307 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1308 1309 /** 1310 * struct net_device - The DEVICE structure. 1311 * Actually, this whole structure is a big mistake. It mixes I/O 1312 * data with strictly "high-level" data, and it has to know about 1313 * almost every data structure used in the INET module. 1314 * 1315 * @name: This is the first field of the "visible" part of this structure 1316 * (i.e. as seen by users in the "Space.c" file). It is the name 1317 * of the interface. 1318 * 1319 * @name_hlist: Device name hash chain, please keep it close to name[] 1320 * @ifalias: SNMP alias 1321 * @mem_end: Shared memory end 1322 * @mem_start: Shared memory start 1323 * @base_addr: Device I/O address 1324 * @irq: Device IRQ number 1325 * 1326 * @state: Generic network queuing layer state, see netdev_state_t 1327 * @dev_list: The global list of network devices 1328 * @napi_list: List entry, that is used for polling napi devices 1329 * @unreg_list: List entry, that is used, when we are unregistering the 1330 * device, see the function unregister_netdev 1331 * @close_list: List entry, that is used, when we are closing the device 1332 * 1333 * @adj_list: Directly linked devices, like slaves for bonding 1334 * @all_adj_list: All linked devices, *including* neighbours 1335 * @features: Currently active device features 1336 * @hw_features: User-changeable features 1337 * 1338 * @wanted_features: User-requested features 1339 * @vlan_features: Mask of features inheritable by VLAN devices 1340 * 1341 * @hw_enc_features: Mask of features inherited by encapsulating devices 1342 * This field indicates what encapsulation 1343 * offloads the hardware is capable of doing, 1344 * and drivers will need to set them appropriately. 1345 * 1346 * @mpls_features: Mask of features inheritable by MPLS 1347 * 1348 * @ifindex: interface index 1349 * @iflink: unique device identifier 1350 * 1351 * @stats: Statistics struct, which was left as a legacy, use 1352 * rtnl_link_stats64 instead 1353 * 1354 * @rx_dropped: Dropped packets by core network, 1355 * do not use this in drivers 1356 * @tx_dropped: Dropped packets by core network, 1357 * do not use this in drivers 1358 * 1359 * @carrier_changes: Stats to monitor carrier on<->off transitions 1360 * 1361 * @wireless_handlers: List of functions to handle Wireless Extensions, 1362 * instead of ioctl, 1363 * see <net/iw_handler.h> for details. 1364 * @wireless_data: Instance data managed by the core of wireless extensions 1365 * 1366 * @netdev_ops: Includes several pointers to callbacks, 1367 * if one wants to override the ndo_*() functions 1368 * @ethtool_ops: Management operations 1369 * @fwd_ops: Management operations 1370 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1371 * of Layer 2 headers. 1372 * 1373 * @flags: Interface flags (a la BSD) 1374 * @priv_flags: Like 'flags' but invisible to userspace, 1375 * see if.h for the definitions 1376 * @gflags: Global flags ( kept as legacy ) 1377 * @padded: How much padding added by alloc_netdev() 1378 * @operstate: RFC2863 operstate 1379 * @link_mode: Mapping policy to operstate 1380 * @if_port: Selectable AUI, TP, ... 1381 * @dma: DMA channel 1382 * @mtu: Interface MTU value 1383 * @type: Interface hardware type 1384 * @hard_header_len: Hardware header length 1385 * 1386 * @needed_headroom: Extra headroom the hardware may need, but not in all 1387 * cases can this be guaranteed 1388 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1389 * cases can this be guaranteed. Some cases also use 1390 * LL_MAX_HEADER instead to allocate the skb 1391 * 1392 * interface address info: 1393 * 1394 * @perm_addr: Permanent hw address 1395 * @addr_assign_type: Hw address assignment type 1396 * @addr_len: Hardware address length 1397 * @neigh_priv_len; Used in neigh_alloc(), 1398 * initialized only in atm/clip.c 1399 * @dev_id: Used to differentiate devices that share 1400 * the same link layer address 1401 * @dev_port: Used to differentiate devices that share 1402 * the same function 1403 * @addr_list_lock: XXX: need comments on this one 1404 * @uc: unicast mac addresses 1405 * @mc: multicast mac addresses 1406 * @dev_addrs: list of device hw addresses 1407 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1408 * @uc_promisc: Counter, that indicates, that promiscuous mode 1409 * has been enabled due to the need to listen to 1410 * additional unicast addresses in a device that 1411 * does not implement ndo_set_rx_mode() 1412 * @promiscuity: Number of times, the NIC is told to work in 1413 * Promiscuous mode, if it becomes 0 the NIC will 1414 * exit from working in Promiscuous mode 1415 * @allmulti: Counter, enables or disables allmulticast mode 1416 * 1417 * @vlan_info: VLAN info 1418 * @dsa_ptr: dsa specific data 1419 * @tipc_ptr: TIPC specific data 1420 * @atalk_ptr: AppleTalk link 1421 * @ip_ptr: IPv4 specific data 1422 * @dn_ptr: DECnet specific data 1423 * @ip6_ptr: IPv6 specific data 1424 * @ax25_ptr: AX.25 specific data 1425 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1426 * 1427 * @last_rx: Time of last Rx 1428 * @dev_addr: Hw address (before bcast, 1429 * because most packets are unicast) 1430 * 1431 * @_rx: Array of RX queues 1432 * @num_rx_queues: Number of RX queues 1433 * allocated at register_netdev() time 1434 * @real_num_rx_queues: Number of RX queues currently active in device 1435 * 1436 * @rx_handler: handler for received packets 1437 * @rx_handler_data: XXX: need comments on this one 1438 * @ingress_queue: XXX: need comments on this one 1439 * @broadcast: hw bcast address 1440 * 1441 * @_tx: Array of TX queues 1442 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1443 * @real_num_tx_queues: Number of TX queues currently active in device 1444 * @qdisc: Root qdisc from userspace point of view 1445 * @tx_queue_len: Max frames per queue allowed 1446 * @tx_global_lock: XXX: need comments on this one 1447 * 1448 * @xps_maps: XXX: need comments on this one 1449 * 1450 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1451 * indexed by RX queue number. Assigned by driver. 1452 * This must only be set if the ndo_rx_flow_steer 1453 * operation is defined 1454 * 1455 * @trans_start: Time (in jiffies) of last Tx 1456 * @watchdog_timeo: Represents the timeout that is used by 1457 * the watchdog ( see dev_watchdog() ) 1458 * @watchdog_timer: List of timers 1459 * 1460 * @pcpu_refcnt: Number of references to this device 1461 * @todo_list: Delayed register/unregister 1462 * @index_hlist: Device index hash chain 1463 * @link_watch_list: XXX: need comments on this one 1464 * 1465 * @reg_state: Register/unregister state machine 1466 * @dismantle: Device is going to be freed 1467 * @rtnl_link_state: This enum represents the phases of creating 1468 * a new link 1469 * 1470 * @destructor: Called from unregister, 1471 * can be used to call free_netdev 1472 * @npinfo: XXX: need comments on this one 1473 * @nd_net: Network namespace this network device is inside 1474 * 1475 * @ml_priv: Mid-layer private 1476 * @lstats: Loopback statistics 1477 * @tstats: Tunnel statistics 1478 * @dstats: Dummy statistics 1479 * @vstats: Virtual ethernet statistics 1480 * 1481 * @garp_port: GARP 1482 * @mrp_port: MRP 1483 * 1484 * @dev: Class/net/name entry 1485 * @sysfs_groups: Space for optional device, statistics and wireless 1486 * sysfs groups 1487 * 1488 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1489 * @rtnl_link_ops: Rtnl_link_ops 1490 * 1491 * @gso_max_size: Maximum size of generic segmentation offload 1492 * @gso_max_segs: Maximum number of segments that can be passed to the 1493 * NIC for GSO 1494 * @gso_min_segs: Minimum number of segments that can be passed to the 1495 * NIC for GSO 1496 * 1497 * @dcbnl_ops: Data Center Bridging netlink ops 1498 * @num_tc: Number of traffic classes in the net device 1499 * @tc_to_txq: XXX: need comments on this one 1500 * @prio_tc_map XXX: need comments on this one 1501 * 1502 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1503 * 1504 * @priomap: XXX: need comments on this one 1505 * @phydev: Physical device may attach itself 1506 * for hardware timestamping 1507 * 1508 * @qdisc_tx_busylock: XXX: need comments on this one 1509 * 1510 * @group: The group, that the device belongs to 1511 * @pm_qos_req: Power Management QoS object 1512 * 1513 * FIXME: cleanup struct net_device such that network protocol info 1514 * moves out. 1515 */ 1516 1517 struct net_device { 1518 char name[IFNAMSIZ]; 1519 struct hlist_node name_hlist; 1520 char *ifalias; 1521 /* 1522 * I/O specific fields 1523 * FIXME: Merge these and struct ifmap into one 1524 */ 1525 unsigned long mem_end; 1526 unsigned long mem_start; 1527 unsigned long base_addr; 1528 int irq; 1529 1530 /* 1531 * Some hardware also needs these fields (state,dev_list, 1532 * napi_list,unreg_list,close_list) but they are not 1533 * part of the usual set specified in Space.c. 1534 */ 1535 1536 unsigned long state; 1537 1538 struct list_head dev_list; 1539 struct list_head napi_list; 1540 struct list_head unreg_list; 1541 struct list_head close_list; 1542 struct list_head ptype_all; 1543 struct list_head ptype_specific; 1544 1545 struct { 1546 struct list_head upper; 1547 struct list_head lower; 1548 } adj_list; 1549 1550 struct { 1551 struct list_head upper; 1552 struct list_head lower; 1553 } all_adj_list; 1554 1555 netdev_features_t features; 1556 netdev_features_t hw_features; 1557 netdev_features_t wanted_features; 1558 netdev_features_t vlan_features; 1559 netdev_features_t hw_enc_features; 1560 netdev_features_t mpls_features; 1561 1562 int ifindex; 1563 int iflink; 1564 1565 struct net_device_stats stats; 1566 1567 atomic_long_t rx_dropped; 1568 atomic_long_t tx_dropped; 1569 1570 atomic_t carrier_changes; 1571 1572 #ifdef CONFIG_WIRELESS_EXT 1573 const struct iw_handler_def * wireless_handlers; 1574 struct iw_public_data * wireless_data; 1575 #endif 1576 const struct net_device_ops *netdev_ops; 1577 const struct ethtool_ops *ethtool_ops; 1578 const struct forwarding_accel_ops *fwd_ops; 1579 1580 const struct header_ops *header_ops; 1581 1582 unsigned int flags; 1583 unsigned int priv_flags; 1584 1585 unsigned short gflags; 1586 unsigned short padded; 1587 1588 unsigned char operstate; 1589 unsigned char link_mode; 1590 1591 unsigned char if_port; 1592 unsigned char dma; 1593 1594 unsigned int mtu; 1595 unsigned short type; 1596 unsigned short hard_header_len; 1597 1598 unsigned short needed_headroom; 1599 unsigned short needed_tailroom; 1600 1601 /* Interface address info. */ 1602 unsigned char perm_addr[MAX_ADDR_LEN]; 1603 unsigned char addr_assign_type; 1604 unsigned char addr_len; 1605 unsigned short neigh_priv_len; 1606 unsigned short dev_id; 1607 unsigned short dev_port; 1608 spinlock_t addr_list_lock; 1609 struct netdev_hw_addr_list uc; 1610 struct netdev_hw_addr_list mc; 1611 struct netdev_hw_addr_list dev_addrs; 1612 1613 #ifdef CONFIG_SYSFS 1614 struct kset *queues_kset; 1615 #endif 1616 1617 unsigned char name_assign_type; 1618 1619 bool uc_promisc; 1620 unsigned int promiscuity; 1621 unsigned int allmulti; 1622 1623 1624 /* Protocol specific pointers */ 1625 1626 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1627 struct vlan_info __rcu *vlan_info; 1628 #endif 1629 #if IS_ENABLED(CONFIG_NET_DSA) 1630 struct dsa_switch_tree *dsa_ptr; 1631 #endif 1632 #if IS_ENABLED(CONFIG_TIPC) 1633 struct tipc_bearer __rcu *tipc_ptr; 1634 #endif 1635 void *atalk_ptr; 1636 struct in_device __rcu *ip_ptr; 1637 struct dn_dev __rcu *dn_ptr; 1638 struct inet6_dev __rcu *ip6_ptr; 1639 void *ax25_ptr; 1640 struct wireless_dev *ieee80211_ptr; 1641 struct wpan_dev *ieee802154_ptr; 1642 1643 /* 1644 * Cache lines mostly used on receive path (including eth_type_trans()) 1645 */ 1646 unsigned long last_rx; 1647 1648 /* Interface address info used in eth_type_trans() */ 1649 unsigned char *dev_addr; 1650 1651 1652 #ifdef CONFIG_SYSFS 1653 struct netdev_rx_queue *_rx; 1654 1655 unsigned int num_rx_queues; 1656 unsigned int real_num_rx_queues; 1657 1658 #endif 1659 1660 unsigned long gro_flush_timeout; 1661 rx_handler_func_t __rcu *rx_handler; 1662 void __rcu *rx_handler_data; 1663 1664 struct netdev_queue __rcu *ingress_queue; 1665 unsigned char broadcast[MAX_ADDR_LEN]; 1666 1667 1668 /* 1669 * Cache lines mostly used on transmit path 1670 */ 1671 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1672 unsigned int num_tx_queues; 1673 unsigned int real_num_tx_queues; 1674 struct Qdisc *qdisc; 1675 unsigned long tx_queue_len; 1676 spinlock_t tx_global_lock; 1677 1678 #ifdef CONFIG_XPS 1679 struct xps_dev_maps __rcu *xps_maps; 1680 #endif 1681 #ifdef CONFIG_RFS_ACCEL 1682 struct cpu_rmap *rx_cpu_rmap; 1683 #endif 1684 1685 /* These may be needed for future network-power-down code. */ 1686 1687 /* 1688 * trans_start here is expensive for high speed devices on SMP, 1689 * please use netdev_queue->trans_start instead. 1690 */ 1691 unsigned long trans_start; 1692 1693 int watchdog_timeo; 1694 struct timer_list watchdog_timer; 1695 1696 int __percpu *pcpu_refcnt; 1697 struct list_head todo_list; 1698 1699 struct hlist_node index_hlist; 1700 struct list_head link_watch_list; 1701 1702 enum { NETREG_UNINITIALIZED=0, 1703 NETREG_REGISTERED, /* completed register_netdevice */ 1704 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1705 NETREG_UNREGISTERED, /* completed unregister todo */ 1706 NETREG_RELEASED, /* called free_netdev */ 1707 NETREG_DUMMY, /* dummy device for NAPI poll */ 1708 } reg_state:8; 1709 1710 bool dismantle; 1711 1712 enum { 1713 RTNL_LINK_INITIALIZED, 1714 RTNL_LINK_INITIALIZING, 1715 } rtnl_link_state:16; 1716 1717 void (*destructor)(struct net_device *dev); 1718 1719 #ifdef CONFIG_NETPOLL 1720 struct netpoll_info __rcu *npinfo; 1721 #endif 1722 1723 #ifdef CONFIG_NET_NS 1724 struct net *nd_net; 1725 #endif 1726 1727 /* mid-layer private */ 1728 union { 1729 void *ml_priv; 1730 struct pcpu_lstats __percpu *lstats; 1731 struct pcpu_sw_netstats __percpu *tstats; 1732 struct pcpu_dstats __percpu *dstats; 1733 struct pcpu_vstats __percpu *vstats; 1734 }; 1735 1736 struct garp_port __rcu *garp_port; 1737 struct mrp_port __rcu *mrp_port; 1738 1739 struct device dev; 1740 const struct attribute_group *sysfs_groups[4]; 1741 const struct attribute_group *sysfs_rx_queue_group; 1742 1743 const struct rtnl_link_ops *rtnl_link_ops; 1744 1745 /* for setting kernel sock attribute on TCP connection setup */ 1746 #define GSO_MAX_SIZE 65536 1747 unsigned int gso_max_size; 1748 #define GSO_MAX_SEGS 65535 1749 u16 gso_max_segs; 1750 u16 gso_min_segs; 1751 #ifdef CONFIG_DCB 1752 const struct dcbnl_rtnl_ops *dcbnl_ops; 1753 #endif 1754 u8 num_tc; 1755 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1756 u8 prio_tc_map[TC_BITMASK + 1]; 1757 1758 #if IS_ENABLED(CONFIG_FCOE) 1759 unsigned int fcoe_ddp_xid; 1760 #endif 1761 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1762 struct netprio_map __rcu *priomap; 1763 #endif 1764 struct phy_device *phydev; 1765 struct lock_class_key *qdisc_tx_busylock; 1766 int group; 1767 struct pm_qos_request pm_qos_req; 1768 }; 1769 #define to_net_dev(d) container_of(d, struct net_device, dev) 1770 1771 #define NETDEV_ALIGN 32 1772 1773 static inline 1774 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1775 { 1776 return dev->prio_tc_map[prio & TC_BITMASK]; 1777 } 1778 1779 static inline 1780 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1781 { 1782 if (tc >= dev->num_tc) 1783 return -EINVAL; 1784 1785 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1786 return 0; 1787 } 1788 1789 static inline 1790 void netdev_reset_tc(struct net_device *dev) 1791 { 1792 dev->num_tc = 0; 1793 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1794 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1795 } 1796 1797 static inline 1798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1799 { 1800 if (tc >= dev->num_tc) 1801 return -EINVAL; 1802 1803 dev->tc_to_txq[tc].count = count; 1804 dev->tc_to_txq[tc].offset = offset; 1805 return 0; 1806 } 1807 1808 static inline 1809 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1810 { 1811 if (num_tc > TC_MAX_QUEUE) 1812 return -EINVAL; 1813 1814 dev->num_tc = num_tc; 1815 return 0; 1816 } 1817 1818 static inline 1819 int netdev_get_num_tc(struct net_device *dev) 1820 { 1821 return dev->num_tc; 1822 } 1823 1824 static inline 1825 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1826 unsigned int index) 1827 { 1828 return &dev->_tx[index]; 1829 } 1830 1831 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1832 const struct sk_buff *skb) 1833 { 1834 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1835 } 1836 1837 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1838 void (*f)(struct net_device *, 1839 struct netdev_queue *, 1840 void *), 1841 void *arg) 1842 { 1843 unsigned int i; 1844 1845 for (i = 0; i < dev->num_tx_queues; i++) 1846 f(dev, &dev->_tx[i], arg); 1847 } 1848 1849 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1850 struct sk_buff *skb, 1851 void *accel_priv); 1852 1853 /* 1854 * Net namespace inlines 1855 */ 1856 static inline 1857 struct net *dev_net(const struct net_device *dev) 1858 { 1859 return read_pnet(&dev->nd_net); 1860 } 1861 1862 static inline 1863 void dev_net_set(struct net_device *dev, struct net *net) 1864 { 1865 #ifdef CONFIG_NET_NS 1866 release_net(dev->nd_net); 1867 dev->nd_net = hold_net(net); 1868 #endif 1869 } 1870 1871 static inline bool netdev_uses_dsa(struct net_device *dev) 1872 { 1873 #if IS_ENABLED(CONFIG_NET_DSA) 1874 if (dev->dsa_ptr != NULL) 1875 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1876 #endif 1877 return false; 1878 } 1879 1880 /** 1881 * netdev_priv - access network device private data 1882 * @dev: network device 1883 * 1884 * Get network device private data 1885 */ 1886 static inline void *netdev_priv(const struct net_device *dev) 1887 { 1888 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1889 } 1890 1891 /* Set the sysfs physical device reference for the network logical device 1892 * if set prior to registration will cause a symlink during initialization. 1893 */ 1894 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1895 1896 /* Set the sysfs device type for the network logical device to allow 1897 * fine-grained identification of different network device types. For 1898 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1899 */ 1900 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1901 1902 /* Default NAPI poll() weight 1903 * Device drivers are strongly advised to not use bigger value 1904 */ 1905 #define NAPI_POLL_WEIGHT 64 1906 1907 /** 1908 * netif_napi_add - initialize a napi context 1909 * @dev: network device 1910 * @napi: napi context 1911 * @poll: polling function 1912 * @weight: default weight 1913 * 1914 * netif_napi_add() must be used to initialize a napi context prior to calling 1915 * *any* of the other napi related functions. 1916 */ 1917 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1918 int (*poll)(struct napi_struct *, int), int weight); 1919 1920 /** 1921 * netif_napi_del - remove a napi context 1922 * @napi: napi context 1923 * 1924 * netif_napi_del() removes a napi context from the network device napi list 1925 */ 1926 void netif_napi_del(struct napi_struct *napi); 1927 1928 struct napi_gro_cb { 1929 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1930 void *frag0; 1931 1932 /* Length of frag0. */ 1933 unsigned int frag0_len; 1934 1935 /* This indicates where we are processing relative to skb->data. */ 1936 int data_offset; 1937 1938 /* This is non-zero if the packet cannot be merged with the new skb. */ 1939 u16 flush; 1940 1941 /* Save the IP ID here and check when we get to the transport layer */ 1942 u16 flush_id; 1943 1944 /* Number of segments aggregated. */ 1945 u16 count; 1946 1947 /* Start offset for remote checksum offload */ 1948 u16 gro_remcsum_start; 1949 1950 /* jiffies when first packet was created/queued */ 1951 unsigned long age; 1952 1953 /* Used in ipv6_gro_receive() and foo-over-udp */ 1954 u16 proto; 1955 1956 /* This is non-zero if the packet may be of the same flow. */ 1957 u8 same_flow:1; 1958 1959 /* Used in udp_gro_receive */ 1960 u8 udp_mark:1; 1961 1962 /* GRO checksum is valid */ 1963 u8 csum_valid:1; 1964 1965 /* Number of checksums via CHECKSUM_UNNECESSARY */ 1966 u8 csum_cnt:3; 1967 1968 /* Free the skb? */ 1969 u8 free:2; 1970 #define NAPI_GRO_FREE 1 1971 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1972 1973 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 1974 u8 is_ipv6:1; 1975 1976 /* 7 bit hole */ 1977 1978 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1979 __wsum csum; 1980 1981 /* used in skb_gro_receive() slow path */ 1982 struct sk_buff *last; 1983 }; 1984 1985 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1986 1987 struct packet_type { 1988 __be16 type; /* This is really htons(ether_type). */ 1989 struct net_device *dev; /* NULL is wildcarded here */ 1990 int (*func) (struct sk_buff *, 1991 struct net_device *, 1992 struct packet_type *, 1993 struct net_device *); 1994 bool (*id_match)(struct packet_type *ptype, 1995 struct sock *sk); 1996 void *af_packet_priv; 1997 struct list_head list; 1998 }; 1999 2000 struct offload_callbacks { 2001 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2002 netdev_features_t features); 2003 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2004 struct sk_buff *skb); 2005 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2006 }; 2007 2008 struct packet_offload { 2009 __be16 type; /* This is really htons(ether_type). */ 2010 struct offload_callbacks callbacks; 2011 struct list_head list; 2012 }; 2013 2014 struct udp_offload; 2015 2016 struct udp_offload_callbacks { 2017 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2018 struct sk_buff *skb, 2019 struct udp_offload *uoff); 2020 int (*gro_complete)(struct sk_buff *skb, 2021 int nhoff, 2022 struct udp_offload *uoff); 2023 }; 2024 2025 struct udp_offload { 2026 __be16 port; 2027 u8 ipproto; 2028 struct udp_offload_callbacks callbacks; 2029 }; 2030 2031 /* often modified stats are per cpu, other are shared (netdev->stats) */ 2032 struct pcpu_sw_netstats { 2033 u64 rx_packets; 2034 u64 rx_bytes; 2035 u64 tx_packets; 2036 u64 tx_bytes; 2037 struct u64_stats_sync syncp; 2038 }; 2039 2040 #define netdev_alloc_pcpu_stats(type) \ 2041 ({ \ 2042 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 2043 if (pcpu_stats) { \ 2044 int i; \ 2045 for_each_possible_cpu(i) { \ 2046 typeof(type) *stat; \ 2047 stat = per_cpu_ptr(pcpu_stats, i); \ 2048 u64_stats_init(&stat->syncp); \ 2049 } \ 2050 } \ 2051 pcpu_stats; \ 2052 }) 2053 2054 #include <linux/notifier.h> 2055 2056 /* netdevice notifier chain. Please remember to update the rtnetlink 2057 * notification exclusion list in rtnetlink_event() when adding new 2058 * types. 2059 */ 2060 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2061 #define NETDEV_DOWN 0x0002 2062 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2063 detected a hardware crash and restarted 2064 - we can use this eg to kick tcp sessions 2065 once done */ 2066 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2067 #define NETDEV_REGISTER 0x0005 2068 #define NETDEV_UNREGISTER 0x0006 2069 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2070 #define NETDEV_CHANGEADDR 0x0008 2071 #define NETDEV_GOING_DOWN 0x0009 2072 #define NETDEV_CHANGENAME 0x000A 2073 #define NETDEV_FEAT_CHANGE 0x000B 2074 #define NETDEV_BONDING_FAILOVER 0x000C 2075 #define NETDEV_PRE_UP 0x000D 2076 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2077 #define NETDEV_POST_TYPE_CHANGE 0x000F 2078 #define NETDEV_POST_INIT 0x0010 2079 #define NETDEV_UNREGISTER_FINAL 0x0011 2080 #define NETDEV_RELEASE 0x0012 2081 #define NETDEV_NOTIFY_PEERS 0x0013 2082 #define NETDEV_JOIN 0x0014 2083 #define NETDEV_CHANGEUPPER 0x0015 2084 #define NETDEV_RESEND_IGMP 0x0016 2085 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2086 #define NETDEV_CHANGEINFODATA 0x0018 2087 #define NETDEV_BONDING_INFO 0x0019 2088 2089 int register_netdevice_notifier(struct notifier_block *nb); 2090 int unregister_netdevice_notifier(struct notifier_block *nb); 2091 2092 struct netdev_notifier_info { 2093 struct net_device *dev; 2094 }; 2095 2096 struct netdev_notifier_change_info { 2097 struct netdev_notifier_info info; /* must be first */ 2098 unsigned int flags_changed; 2099 }; 2100 2101 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2102 struct net_device *dev) 2103 { 2104 info->dev = dev; 2105 } 2106 2107 static inline struct net_device * 2108 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2109 { 2110 return info->dev; 2111 } 2112 2113 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2114 2115 2116 extern rwlock_t dev_base_lock; /* Device list lock */ 2117 2118 #define for_each_netdev(net, d) \ 2119 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2120 #define for_each_netdev_reverse(net, d) \ 2121 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2122 #define for_each_netdev_rcu(net, d) \ 2123 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2124 #define for_each_netdev_safe(net, d, n) \ 2125 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2126 #define for_each_netdev_continue(net, d) \ 2127 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2128 #define for_each_netdev_continue_rcu(net, d) \ 2129 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2130 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2131 for_each_netdev_rcu(&init_net, slave) \ 2132 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2133 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2134 2135 static inline struct net_device *next_net_device(struct net_device *dev) 2136 { 2137 struct list_head *lh; 2138 struct net *net; 2139 2140 net = dev_net(dev); 2141 lh = dev->dev_list.next; 2142 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2143 } 2144 2145 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2146 { 2147 struct list_head *lh; 2148 struct net *net; 2149 2150 net = dev_net(dev); 2151 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2152 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2153 } 2154 2155 static inline struct net_device *first_net_device(struct net *net) 2156 { 2157 return list_empty(&net->dev_base_head) ? NULL : 2158 net_device_entry(net->dev_base_head.next); 2159 } 2160 2161 static inline struct net_device *first_net_device_rcu(struct net *net) 2162 { 2163 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2164 2165 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2166 } 2167 2168 int netdev_boot_setup_check(struct net_device *dev); 2169 unsigned long netdev_boot_base(const char *prefix, int unit); 2170 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2171 const char *hwaddr); 2172 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2173 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2174 void dev_add_pack(struct packet_type *pt); 2175 void dev_remove_pack(struct packet_type *pt); 2176 void __dev_remove_pack(struct packet_type *pt); 2177 void dev_add_offload(struct packet_offload *po); 2178 void dev_remove_offload(struct packet_offload *po); 2179 2180 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2181 unsigned short mask); 2182 struct net_device *dev_get_by_name(struct net *net, const char *name); 2183 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2184 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2185 int dev_alloc_name(struct net_device *dev, const char *name); 2186 int dev_open(struct net_device *dev); 2187 int dev_close(struct net_device *dev); 2188 void dev_disable_lro(struct net_device *dev); 2189 int dev_loopback_xmit(struct sk_buff *newskb); 2190 int dev_queue_xmit(struct sk_buff *skb); 2191 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2192 int register_netdevice(struct net_device *dev); 2193 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2194 void unregister_netdevice_many(struct list_head *head); 2195 static inline void unregister_netdevice(struct net_device *dev) 2196 { 2197 unregister_netdevice_queue(dev, NULL); 2198 } 2199 2200 int netdev_refcnt_read(const struct net_device *dev); 2201 void free_netdev(struct net_device *dev); 2202 void netdev_freemem(struct net_device *dev); 2203 void synchronize_net(void); 2204 int init_dummy_netdev(struct net_device *dev); 2205 2206 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2207 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2208 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2209 int netdev_get_name(struct net *net, char *name, int ifindex); 2210 int dev_restart(struct net_device *dev); 2211 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2212 2213 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2214 { 2215 return NAPI_GRO_CB(skb)->data_offset; 2216 } 2217 2218 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2219 { 2220 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2221 } 2222 2223 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2224 { 2225 NAPI_GRO_CB(skb)->data_offset += len; 2226 } 2227 2228 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2229 unsigned int offset) 2230 { 2231 return NAPI_GRO_CB(skb)->frag0 + offset; 2232 } 2233 2234 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2235 { 2236 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2237 } 2238 2239 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2240 unsigned int offset) 2241 { 2242 if (!pskb_may_pull(skb, hlen)) 2243 return NULL; 2244 2245 NAPI_GRO_CB(skb)->frag0 = NULL; 2246 NAPI_GRO_CB(skb)->frag0_len = 0; 2247 return skb->data + offset; 2248 } 2249 2250 static inline void *skb_gro_network_header(struct sk_buff *skb) 2251 { 2252 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2253 skb_network_offset(skb); 2254 } 2255 2256 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2257 const void *start, unsigned int len) 2258 { 2259 if (NAPI_GRO_CB(skb)->csum_valid) 2260 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2261 csum_partial(start, len, 0)); 2262 } 2263 2264 /* GRO checksum functions. These are logical equivalents of the normal 2265 * checksum functions (in skbuff.h) except that they operate on the GRO 2266 * offsets and fields in sk_buff. 2267 */ 2268 2269 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2270 2271 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2272 { 2273 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) == 2274 skb_gro_offset(skb)); 2275 } 2276 2277 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2278 bool zero_okay, 2279 __sum16 check) 2280 { 2281 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2282 skb_checksum_start_offset(skb) < 2283 skb_gro_offset(skb)) && 2284 !skb_at_gro_remcsum_start(skb) && 2285 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2286 (!zero_okay || check)); 2287 } 2288 2289 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2290 __wsum psum) 2291 { 2292 if (NAPI_GRO_CB(skb)->csum_valid && 2293 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2294 return 0; 2295 2296 NAPI_GRO_CB(skb)->csum = psum; 2297 2298 return __skb_gro_checksum_complete(skb); 2299 } 2300 2301 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2302 { 2303 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2304 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2305 NAPI_GRO_CB(skb)->csum_cnt--; 2306 } else { 2307 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2308 * verified a new top level checksum or an encapsulated one 2309 * during GRO. This saves work if we fallback to normal path. 2310 */ 2311 __skb_incr_checksum_unnecessary(skb); 2312 } 2313 } 2314 2315 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2316 compute_pseudo) \ 2317 ({ \ 2318 __sum16 __ret = 0; \ 2319 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2320 __ret = __skb_gro_checksum_validate_complete(skb, \ 2321 compute_pseudo(skb, proto)); \ 2322 if (__ret) \ 2323 __skb_mark_checksum_bad(skb); \ 2324 else \ 2325 skb_gro_incr_csum_unnecessary(skb); \ 2326 __ret; \ 2327 }) 2328 2329 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2330 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2331 2332 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2333 compute_pseudo) \ 2334 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2335 2336 #define skb_gro_checksum_simple_validate(skb) \ 2337 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2338 2339 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2340 { 2341 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2342 !NAPI_GRO_CB(skb)->csum_valid); 2343 } 2344 2345 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2346 __sum16 check, __wsum pseudo) 2347 { 2348 NAPI_GRO_CB(skb)->csum = ~pseudo; 2349 NAPI_GRO_CB(skb)->csum_valid = 1; 2350 } 2351 2352 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2353 do { \ 2354 if (__skb_gro_checksum_convert_check(skb)) \ 2355 __skb_gro_checksum_convert(skb, check, \ 2356 compute_pseudo(skb, proto)); \ 2357 } while (0) 2358 2359 struct gro_remcsum { 2360 int offset; 2361 __wsum delta; 2362 }; 2363 2364 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2365 { 2366 grc->offset = 0; 2367 grc->delta = 0; 2368 } 2369 2370 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2371 int start, int offset, 2372 struct gro_remcsum *grc, 2373 bool nopartial) 2374 { 2375 __wsum delta; 2376 2377 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2378 2379 if (!nopartial) { 2380 NAPI_GRO_CB(skb)->gro_remcsum_start = 2381 ((unsigned char *)ptr + start) - skb->head; 2382 return; 2383 } 2384 2385 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset); 2386 2387 /* Adjust skb->csum since we changed the packet */ 2388 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2389 2390 grc->offset = (ptr + offset) - (void *)skb->head; 2391 grc->delta = delta; 2392 } 2393 2394 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2395 struct gro_remcsum *grc) 2396 { 2397 if (!grc->delta) 2398 return; 2399 2400 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta); 2401 } 2402 2403 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2404 unsigned short type, 2405 const void *daddr, const void *saddr, 2406 unsigned int len) 2407 { 2408 if (!dev->header_ops || !dev->header_ops->create) 2409 return 0; 2410 2411 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2412 } 2413 2414 static inline int dev_parse_header(const struct sk_buff *skb, 2415 unsigned char *haddr) 2416 { 2417 const struct net_device *dev = skb->dev; 2418 2419 if (!dev->header_ops || !dev->header_ops->parse) 2420 return 0; 2421 return dev->header_ops->parse(skb, haddr); 2422 } 2423 2424 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2425 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2426 static inline int unregister_gifconf(unsigned int family) 2427 { 2428 return register_gifconf(family, NULL); 2429 } 2430 2431 #ifdef CONFIG_NET_FLOW_LIMIT 2432 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2433 struct sd_flow_limit { 2434 u64 count; 2435 unsigned int num_buckets; 2436 unsigned int history_head; 2437 u16 history[FLOW_LIMIT_HISTORY]; 2438 u8 buckets[]; 2439 }; 2440 2441 extern int netdev_flow_limit_table_len; 2442 #endif /* CONFIG_NET_FLOW_LIMIT */ 2443 2444 /* 2445 * Incoming packets are placed on per-cpu queues 2446 */ 2447 struct softnet_data { 2448 struct list_head poll_list; 2449 struct sk_buff_head process_queue; 2450 2451 /* stats */ 2452 unsigned int processed; 2453 unsigned int time_squeeze; 2454 unsigned int cpu_collision; 2455 unsigned int received_rps; 2456 #ifdef CONFIG_RPS 2457 struct softnet_data *rps_ipi_list; 2458 #endif 2459 #ifdef CONFIG_NET_FLOW_LIMIT 2460 struct sd_flow_limit __rcu *flow_limit; 2461 #endif 2462 struct Qdisc *output_queue; 2463 struct Qdisc **output_queue_tailp; 2464 struct sk_buff *completion_queue; 2465 2466 #ifdef CONFIG_RPS 2467 /* Elements below can be accessed between CPUs for RPS */ 2468 struct call_single_data csd ____cacheline_aligned_in_smp; 2469 struct softnet_data *rps_ipi_next; 2470 unsigned int cpu; 2471 unsigned int input_queue_head; 2472 unsigned int input_queue_tail; 2473 #endif 2474 unsigned int dropped; 2475 struct sk_buff_head input_pkt_queue; 2476 struct napi_struct backlog; 2477 2478 }; 2479 2480 static inline void input_queue_head_incr(struct softnet_data *sd) 2481 { 2482 #ifdef CONFIG_RPS 2483 sd->input_queue_head++; 2484 #endif 2485 } 2486 2487 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2488 unsigned int *qtail) 2489 { 2490 #ifdef CONFIG_RPS 2491 *qtail = ++sd->input_queue_tail; 2492 #endif 2493 } 2494 2495 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2496 2497 void __netif_schedule(struct Qdisc *q); 2498 void netif_schedule_queue(struct netdev_queue *txq); 2499 2500 static inline void netif_tx_schedule_all(struct net_device *dev) 2501 { 2502 unsigned int i; 2503 2504 for (i = 0; i < dev->num_tx_queues; i++) 2505 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2506 } 2507 2508 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2509 { 2510 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2511 } 2512 2513 /** 2514 * netif_start_queue - allow transmit 2515 * @dev: network device 2516 * 2517 * Allow upper layers to call the device hard_start_xmit routine. 2518 */ 2519 static inline void netif_start_queue(struct net_device *dev) 2520 { 2521 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2522 } 2523 2524 static inline void netif_tx_start_all_queues(struct net_device *dev) 2525 { 2526 unsigned int i; 2527 2528 for (i = 0; i < dev->num_tx_queues; i++) { 2529 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2530 netif_tx_start_queue(txq); 2531 } 2532 } 2533 2534 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2535 2536 /** 2537 * netif_wake_queue - restart transmit 2538 * @dev: network device 2539 * 2540 * Allow upper layers to call the device hard_start_xmit routine. 2541 * Used for flow control when transmit resources are available. 2542 */ 2543 static inline void netif_wake_queue(struct net_device *dev) 2544 { 2545 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2546 } 2547 2548 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2549 { 2550 unsigned int i; 2551 2552 for (i = 0; i < dev->num_tx_queues; i++) { 2553 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2554 netif_tx_wake_queue(txq); 2555 } 2556 } 2557 2558 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2559 { 2560 if (WARN_ON(!dev_queue)) { 2561 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2562 return; 2563 } 2564 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2565 } 2566 2567 /** 2568 * netif_stop_queue - stop transmitted packets 2569 * @dev: network device 2570 * 2571 * Stop upper layers calling the device hard_start_xmit routine. 2572 * Used for flow control when transmit resources are unavailable. 2573 */ 2574 static inline void netif_stop_queue(struct net_device *dev) 2575 { 2576 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2577 } 2578 2579 static inline void netif_tx_stop_all_queues(struct net_device *dev) 2580 { 2581 unsigned int i; 2582 2583 for (i = 0; i < dev->num_tx_queues; i++) { 2584 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2585 netif_tx_stop_queue(txq); 2586 } 2587 } 2588 2589 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2590 { 2591 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2592 } 2593 2594 /** 2595 * netif_queue_stopped - test if transmit queue is flowblocked 2596 * @dev: network device 2597 * 2598 * Test if transmit queue on device is currently unable to send. 2599 */ 2600 static inline bool netif_queue_stopped(const struct net_device *dev) 2601 { 2602 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2603 } 2604 2605 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2606 { 2607 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2608 } 2609 2610 static inline bool 2611 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2612 { 2613 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2614 } 2615 2616 static inline bool 2617 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2618 { 2619 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2620 } 2621 2622 /** 2623 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2624 * @dev_queue: pointer to transmit queue 2625 * 2626 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2627 * to give appropriate hint to the cpu. 2628 */ 2629 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2630 { 2631 #ifdef CONFIG_BQL 2632 prefetchw(&dev_queue->dql.num_queued); 2633 #endif 2634 } 2635 2636 /** 2637 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2638 * @dev_queue: pointer to transmit queue 2639 * 2640 * BQL enabled drivers might use this helper in their TX completion path, 2641 * to give appropriate hint to the cpu. 2642 */ 2643 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2644 { 2645 #ifdef CONFIG_BQL 2646 prefetchw(&dev_queue->dql.limit); 2647 #endif 2648 } 2649 2650 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2651 unsigned int bytes) 2652 { 2653 #ifdef CONFIG_BQL 2654 dql_queued(&dev_queue->dql, bytes); 2655 2656 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2657 return; 2658 2659 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2660 2661 /* 2662 * The XOFF flag must be set before checking the dql_avail below, 2663 * because in netdev_tx_completed_queue we update the dql_completed 2664 * before checking the XOFF flag. 2665 */ 2666 smp_mb(); 2667 2668 /* check again in case another CPU has just made room avail */ 2669 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2670 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2671 #endif 2672 } 2673 2674 /** 2675 * netdev_sent_queue - report the number of bytes queued to hardware 2676 * @dev: network device 2677 * @bytes: number of bytes queued to the hardware device queue 2678 * 2679 * Report the number of bytes queued for sending/completion to the network 2680 * device hardware queue. @bytes should be a good approximation and should 2681 * exactly match netdev_completed_queue() @bytes 2682 */ 2683 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2684 { 2685 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2686 } 2687 2688 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2689 unsigned int pkts, unsigned int bytes) 2690 { 2691 #ifdef CONFIG_BQL 2692 if (unlikely(!bytes)) 2693 return; 2694 2695 dql_completed(&dev_queue->dql, bytes); 2696 2697 /* 2698 * Without the memory barrier there is a small possiblity that 2699 * netdev_tx_sent_queue will miss the update and cause the queue to 2700 * be stopped forever 2701 */ 2702 smp_mb(); 2703 2704 if (dql_avail(&dev_queue->dql) < 0) 2705 return; 2706 2707 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2708 netif_schedule_queue(dev_queue); 2709 #endif 2710 } 2711 2712 /** 2713 * netdev_completed_queue - report bytes and packets completed by device 2714 * @dev: network device 2715 * @pkts: actual number of packets sent over the medium 2716 * @bytes: actual number of bytes sent over the medium 2717 * 2718 * Report the number of bytes and packets transmitted by the network device 2719 * hardware queue over the physical medium, @bytes must exactly match the 2720 * @bytes amount passed to netdev_sent_queue() 2721 */ 2722 static inline void netdev_completed_queue(struct net_device *dev, 2723 unsigned int pkts, unsigned int bytes) 2724 { 2725 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2726 } 2727 2728 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2729 { 2730 #ifdef CONFIG_BQL 2731 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2732 dql_reset(&q->dql); 2733 #endif 2734 } 2735 2736 /** 2737 * netdev_reset_queue - reset the packets and bytes count of a network device 2738 * @dev_queue: network device 2739 * 2740 * Reset the bytes and packet count of a network device and clear the 2741 * software flow control OFF bit for this network device 2742 */ 2743 static inline void netdev_reset_queue(struct net_device *dev_queue) 2744 { 2745 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2746 } 2747 2748 /** 2749 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2750 * @dev: network device 2751 * @queue_index: given tx queue index 2752 * 2753 * Returns 0 if given tx queue index >= number of device tx queues, 2754 * otherwise returns the originally passed tx queue index. 2755 */ 2756 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2757 { 2758 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2759 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2760 dev->name, queue_index, 2761 dev->real_num_tx_queues); 2762 return 0; 2763 } 2764 2765 return queue_index; 2766 } 2767 2768 /** 2769 * netif_running - test if up 2770 * @dev: network device 2771 * 2772 * Test if the device has been brought up. 2773 */ 2774 static inline bool netif_running(const struct net_device *dev) 2775 { 2776 return test_bit(__LINK_STATE_START, &dev->state); 2777 } 2778 2779 /* 2780 * Routines to manage the subqueues on a device. We only need start 2781 * stop, and a check if it's stopped. All other device management is 2782 * done at the overall netdevice level. 2783 * Also test the device if we're multiqueue. 2784 */ 2785 2786 /** 2787 * netif_start_subqueue - allow sending packets on subqueue 2788 * @dev: network device 2789 * @queue_index: sub queue index 2790 * 2791 * Start individual transmit queue of a device with multiple transmit queues. 2792 */ 2793 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2794 { 2795 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2796 2797 netif_tx_start_queue(txq); 2798 } 2799 2800 /** 2801 * netif_stop_subqueue - stop sending packets on subqueue 2802 * @dev: network device 2803 * @queue_index: sub queue index 2804 * 2805 * Stop individual transmit queue of a device with multiple transmit queues. 2806 */ 2807 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2808 { 2809 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2810 netif_tx_stop_queue(txq); 2811 } 2812 2813 /** 2814 * netif_subqueue_stopped - test status of subqueue 2815 * @dev: network device 2816 * @queue_index: sub queue index 2817 * 2818 * Check individual transmit queue of a device with multiple transmit queues. 2819 */ 2820 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2821 u16 queue_index) 2822 { 2823 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2824 2825 return netif_tx_queue_stopped(txq); 2826 } 2827 2828 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2829 struct sk_buff *skb) 2830 { 2831 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2832 } 2833 2834 void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 2835 2836 #ifdef CONFIG_XPS 2837 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2838 u16 index); 2839 #else 2840 static inline int netif_set_xps_queue(struct net_device *dev, 2841 const struct cpumask *mask, 2842 u16 index) 2843 { 2844 return 0; 2845 } 2846 #endif 2847 2848 /* 2849 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2850 * as a distribution range limit for the returned value. 2851 */ 2852 static inline u16 skb_tx_hash(const struct net_device *dev, 2853 struct sk_buff *skb) 2854 { 2855 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2856 } 2857 2858 /** 2859 * netif_is_multiqueue - test if device has multiple transmit queues 2860 * @dev: network device 2861 * 2862 * Check if device has multiple transmit queues 2863 */ 2864 static inline bool netif_is_multiqueue(const struct net_device *dev) 2865 { 2866 return dev->num_tx_queues > 1; 2867 } 2868 2869 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2870 2871 #ifdef CONFIG_SYSFS 2872 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2873 #else 2874 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2875 unsigned int rxq) 2876 { 2877 return 0; 2878 } 2879 #endif 2880 2881 #ifdef CONFIG_SYSFS 2882 static inline unsigned int get_netdev_rx_queue_index( 2883 struct netdev_rx_queue *queue) 2884 { 2885 struct net_device *dev = queue->dev; 2886 int index = queue - dev->_rx; 2887 2888 BUG_ON(index >= dev->num_rx_queues); 2889 return index; 2890 } 2891 #endif 2892 2893 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2894 int netif_get_num_default_rss_queues(void); 2895 2896 enum skb_free_reason { 2897 SKB_REASON_CONSUMED, 2898 SKB_REASON_DROPPED, 2899 }; 2900 2901 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2902 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2903 2904 /* 2905 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2906 * interrupt context or with hardware interrupts being disabled. 2907 * (in_irq() || irqs_disabled()) 2908 * 2909 * We provide four helpers that can be used in following contexts : 2910 * 2911 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2912 * replacing kfree_skb(skb) 2913 * 2914 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2915 * Typically used in place of consume_skb(skb) in TX completion path 2916 * 2917 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2918 * replacing kfree_skb(skb) 2919 * 2920 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2921 * and consumed a packet. Used in place of consume_skb(skb) 2922 */ 2923 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2924 { 2925 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2926 } 2927 2928 static inline void dev_consume_skb_irq(struct sk_buff *skb) 2929 { 2930 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2931 } 2932 2933 static inline void dev_kfree_skb_any(struct sk_buff *skb) 2934 { 2935 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2936 } 2937 2938 static inline void dev_consume_skb_any(struct sk_buff *skb) 2939 { 2940 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2941 } 2942 2943 int netif_rx(struct sk_buff *skb); 2944 int netif_rx_ni(struct sk_buff *skb); 2945 int netif_receive_skb(struct sk_buff *skb); 2946 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2947 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2948 struct sk_buff *napi_get_frags(struct napi_struct *napi); 2949 gro_result_t napi_gro_frags(struct napi_struct *napi); 2950 struct packet_offload *gro_find_receive_by_type(__be16 type); 2951 struct packet_offload *gro_find_complete_by_type(__be16 type); 2952 2953 static inline void napi_free_frags(struct napi_struct *napi) 2954 { 2955 kfree_skb(napi->skb); 2956 napi->skb = NULL; 2957 } 2958 2959 int netdev_rx_handler_register(struct net_device *dev, 2960 rx_handler_func_t *rx_handler, 2961 void *rx_handler_data); 2962 void netdev_rx_handler_unregister(struct net_device *dev); 2963 2964 bool dev_valid_name(const char *name); 2965 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2966 int dev_ethtool(struct net *net, struct ifreq *); 2967 unsigned int dev_get_flags(const struct net_device *); 2968 int __dev_change_flags(struct net_device *, unsigned int flags); 2969 int dev_change_flags(struct net_device *, unsigned int); 2970 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2971 unsigned int gchanges); 2972 int dev_change_name(struct net_device *, const char *); 2973 int dev_set_alias(struct net_device *, const char *, size_t); 2974 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2975 int dev_set_mtu(struct net_device *, int); 2976 void dev_set_group(struct net_device *, int); 2977 int dev_set_mac_address(struct net_device *, struct sockaddr *); 2978 int dev_change_carrier(struct net_device *, bool new_carrier); 2979 int dev_get_phys_port_id(struct net_device *dev, 2980 struct netdev_phys_item_id *ppid); 2981 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 2982 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2983 struct netdev_queue *txq, int *ret); 2984 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2985 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2986 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 2987 2988 extern int netdev_budget; 2989 2990 /* Called by rtnetlink.c:rtnl_unlock() */ 2991 void netdev_run_todo(void); 2992 2993 /** 2994 * dev_put - release reference to device 2995 * @dev: network device 2996 * 2997 * Release reference to device to allow it to be freed. 2998 */ 2999 static inline void dev_put(struct net_device *dev) 3000 { 3001 this_cpu_dec(*dev->pcpu_refcnt); 3002 } 3003 3004 /** 3005 * dev_hold - get reference to device 3006 * @dev: network device 3007 * 3008 * Hold reference to device to keep it from being freed. 3009 */ 3010 static inline void dev_hold(struct net_device *dev) 3011 { 3012 this_cpu_inc(*dev->pcpu_refcnt); 3013 } 3014 3015 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3016 * and _off may be called from IRQ context, but it is caller 3017 * who is responsible for serialization of these calls. 3018 * 3019 * The name carrier is inappropriate, these functions should really be 3020 * called netif_lowerlayer_*() because they represent the state of any 3021 * kind of lower layer not just hardware media. 3022 */ 3023 3024 void linkwatch_init_dev(struct net_device *dev); 3025 void linkwatch_fire_event(struct net_device *dev); 3026 void linkwatch_forget_dev(struct net_device *dev); 3027 3028 /** 3029 * netif_carrier_ok - test if carrier present 3030 * @dev: network device 3031 * 3032 * Check if carrier is present on device 3033 */ 3034 static inline bool netif_carrier_ok(const struct net_device *dev) 3035 { 3036 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3037 } 3038 3039 unsigned long dev_trans_start(struct net_device *dev); 3040 3041 void __netdev_watchdog_up(struct net_device *dev); 3042 3043 void netif_carrier_on(struct net_device *dev); 3044 3045 void netif_carrier_off(struct net_device *dev); 3046 3047 /** 3048 * netif_dormant_on - mark device as dormant. 3049 * @dev: network device 3050 * 3051 * Mark device as dormant (as per RFC2863). 3052 * 3053 * The dormant state indicates that the relevant interface is not 3054 * actually in a condition to pass packets (i.e., it is not 'up') but is 3055 * in a "pending" state, waiting for some external event. For "on- 3056 * demand" interfaces, this new state identifies the situation where the 3057 * interface is waiting for events to place it in the up state. 3058 * 3059 */ 3060 static inline void netif_dormant_on(struct net_device *dev) 3061 { 3062 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3063 linkwatch_fire_event(dev); 3064 } 3065 3066 /** 3067 * netif_dormant_off - set device as not dormant. 3068 * @dev: network device 3069 * 3070 * Device is not in dormant state. 3071 */ 3072 static inline void netif_dormant_off(struct net_device *dev) 3073 { 3074 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3075 linkwatch_fire_event(dev); 3076 } 3077 3078 /** 3079 * netif_dormant - test if carrier present 3080 * @dev: network device 3081 * 3082 * Check if carrier is present on device 3083 */ 3084 static inline bool netif_dormant(const struct net_device *dev) 3085 { 3086 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3087 } 3088 3089 3090 /** 3091 * netif_oper_up - test if device is operational 3092 * @dev: network device 3093 * 3094 * Check if carrier is operational 3095 */ 3096 static inline bool netif_oper_up(const struct net_device *dev) 3097 { 3098 return (dev->operstate == IF_OPER_UP || 3099 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3100 } 3101 3102 /** 3103 * netif_device_present - is device available or removed 3104 * @dev: network device 3105 * 3106 * Check if device has not been removed from system. 3107 */ 3108 static inline bool netif_device_present(struct net_device *dev) 3109 { 3110 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3111 } 3112 3113 void netif_device_detach(struct net_device *dev); 3114 3115 void netif_device_attach(struct net_device *dev); 3116 3117 /* 3118 * Network interface message level settings 3119 */ 3120 3121 enum { 3122 NETIF_MSG_DRV = 0x0001, 3123 NETIF_MSG_PROBE = 0x0002, 3124 NETIF_MSG_LINK = 0x0004, 3125 NETIF_MSG_TIMER = 0x0008, 3126 NETIF_MSG_IFDOWN = 0x0010, 3127 NETIF_MSG_IFUP = 0x0020, 3128 NETIF_MSG_RX_ERR = 0x0040, 3129 NETIF_MSG_TX_ERR = 0x0080, 3130 NETIF_MSG_TX_QUEUED = 0x0100, 3131 NETIF_MSG_INTR = 0x0200, 3132 NETIF_MSG_TX_DONE = 0x0400, 3133 NETIF_MSG_RX_STATUS = 0x0800, 3134 NETIF_MSG_PKTDATA = 0x1000, 3135 NETIF_MSG_HW = 0x2000, 3136 NETIF_MSG_WOL = 0x4000, 3137 }; 3138 3139 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3140 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3141 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3142 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3143 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3144 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3145 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3146 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3147 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3148 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3149 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3150 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3151 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3152 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3153 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3154 3155 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3156 { 3157 /* use default */ 3158 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3159 return default_msg_enable_bits; 3160 if (debug_value == 0) /* no output */ 3161 return 0; 3162 /* set low N bits */ 3163 return (1 << debug_value) - 1; 3164 } 3165 3166 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3167 { 3168 spin_lock(&txq->_xmit_lock); 3169 txq->xmit_lock_owner = cpu; 3170 } 3171 3172 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3173 { 3174 spin_lock_bh(&txq->_xmit_lock); 3175 txq->xmit_lock_owner = smp_processor_id(); 3176 } 3177 3178 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3179 { 3180 bool ok = spin_trylock(&txq->_xmit_lock); 3181 if (likely(ok)) 3182 txq->xmit_lock_owner = smp_processor_id(); 3183 return ok; 3184 } 3185 3186 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3187 { 3188 txq->xmit_lock_owner = -1; 3189 spin_unlock(&txq->_xmit_lock); 3190 } 3191 3192 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3193 { 3194 txq->xmit_lock_owner = -1; 3195 spin_unlock_bh(&txq->_xmit_lock); 3196 } 3197 3198 static inline void txq_trans_update(struct netdev_queue *txq) 3199 { 3200 if (txq->xmit_lock_owner != -1) 3201 txq->trans_start = jiffies; 3202 } 3203 3204 /** 3205 * netif_tx_lock - grab network device transmit lock 3206 * @dev: network device 3207 * 3208 * Get network device transmit lock 3209 */ 3210 static inline void netif_tx_lock(struct net_device *dev) 3211 { 3212 unsigned int i; 3213 int cpu; 3214 3215 spin_lock(&dev->tx_global_lock); 3216 cpu = smp_processor_id(); 3217 for (i = 0; i < dev->num_tx_queues; i++) { 3218 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3219 3220 /* We are the only thread of execution doing a 3221 * freeze, but we have to grab the _xmit_lock in 3222 * order to synchronize with threads which are in 3223 * the ->hard_start_xmit() handler and already 3224 * checked the frozen bit. 3225 */ 3226 __netif_tx_lock(txq, cpu); 3227 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3228 __netif_tx_unlock(txq); 3229 } 3230 } 3231 3232 static inline void netif_tx_lock_bh(struct net_device *dev) 3233 { 3234 local_bh_disable(); 3235 netif_tx_lock(dev); 3236 } 3237 3238 static inline void netif_tx_unlock(struct net_device *dev) 3239 { 3240 unsigned int i; 3241 3242 for (i = 0; i < dev->num_tx_queues; i++) { 3243 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3244 3245 /* No need to grab the _xmit_lock here. If the 3246 * queue is not stopped for another reason, we 3247 * force a schedule. 3248 */ 3249 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3250 netif_schedule_queue(txq); 3251 } 3252 spin_unlock(&dev->tx_global_lock); 3253 } 3254 3255 static inline void netif_tx_unlock_bh(struct net_device *dev) 3256 { 3257 netif_tx_unlock(dev); 3258 local_bh_enable(); 3259 } 3260 3261 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3262 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3263 __netif_tx_lock(txq, cpu); \ 3264 } \ 3265 } 3266 3267 #define HARD_TX_TRYLOCK(dev, txq) \ 3268 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3269 __netif_tx_trylock(txq) : \ 3270 true ) 3271 3272 #define HARD_TX_UNLOCK(dev, txq) { \ 3273 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3274 __netif_tx_unlock(txq); \ 3275 } \ 3276 } 3277 3278 static inline void netif_tx_disable(struct net_device *dev) 3279 { 3280 unsigned int i; 3281 int cpu; 3282 3283 local_bh_disable(); 3284 cpu = smp_processor_id(); 3285 for (i = 0; i < dev->num_tx_queues; i++) { 3286 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3287 3288 __netif_tx_lock(txq, cpu); 3289 netif_tx_stop_queue(txq); 3290 __netif_tx_unlock(txq); 3291 } 3292 local_bh_enable(); 3293 } 3294 3295 static inline void netif_addr_lock(struct net_device *dev) 3296 { 3297 spin_lock(&dev->addr_list_lock); 3298 } 3299 3300 static inline void netif_addr_lock_nested(struct net_device *dev) 3301 { 3302 int subclass = SINGLE_DEPTH_NESTING; 3303 3304 if (dev->netdev_ops->ndo_get_lock_subclass) 3305 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3306 3307 spin_lock_nested(&dev->addr_list_lock, subclass); 3308 } 3309 3310 static inline void netif_addr_lock_bh(struct net_device *dev) 3311 { 3312 spin_lock_bh(&dev->addr_list_lock); 3313 } 3314 3315 static inline void netif_addr_unlock(struct net_device *dev) 3316 { 3317 spin_unlock(&dev->addr_list_lock); 3318 } 3319 3320 static inline void netif_addr_unlock_bh(struct net_device *dev) 3321 { 3322 spin_unlock_bh(&dev->addr_list_lock); 3323 } 3324 3325 /* 3326 * dev_addrs walker. Should be used only for read access. Call with 3327 * rcu_read_lock held. 3328 */ 3329 #define for_each_dev_addr(dev, ha) \ 3330 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3331 3332 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3333 3334 void ether_setup(struct net_device *dev); 3335 3336 /* Support for loadable net-drivers */ 3337 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3338 unsigned char name_assign_type, 3339 void (*setup)(struct net_device *), 3340 unsigned int txqs, unsigned int rxqs); 3341 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3342 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3343 3344 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3345 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3346 count) 3347 3348 int register_netdev(struct net_device *dev); 3349 void unregister_netdev(struct net_device *dev); 3350 3351 /* General hardware address lists handling functions */ 3352 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3353 struct netdev_hw_addr_list *from_list, int addr_len); 3354 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3355 struct netdev_hw_addr_list *from_list, int addr_len); 3356 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3357 struct net_device *dev, 3358 int (*sync)(struct net_device *, const unsigned char *), 3359 int (*unsync)(struct net_device *, 3360 const unsigned char *)); 3361 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3362 struct net_device *dev, 3363 int (*unsync)(struct net_device *, 3364 const unsigned char *)); 3365 void __hw_addr_init(struct netdev_hw_addr_list *list); 3366 3367 /* Functions used for device addresses handling */ 3368 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3369 unsigned char addr_type); 3370 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3371 unsigned char addr_type); 3372 void dev_addr_flush(struct net_device *dev); 3373 int dev_addr_init(struct net_device *dev); 3374 3375 /* Functions used for unicast addresses handling */ 3376 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3377 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3378 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3379 int dev_uc_sync(struct net_device *to, struct net_device *from); 3380 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3381 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3382 void dev_uc_flush(struct net_device *dev); 3383 void dev_uc_init(struct net_device *dev); 3384 3385 /** 3386 * __dev_uc_sync - Synchonize device's unicast list 3387 * @dev: device to sync 3388 * @sync: function to call if address should be added 3389 * @unsync: function to call if address should be removed 3390 * 3391 * Add newly added addresses to the interface, and release 3392 * addresses that have been deleted. 3393 **/ 3394 static inline int __dev_uc_sync(struct net_device *dev, 3395 int (*sync)(struct net_device *, 3396 const unsigned char *), 3397 int (*unsync)(struct net_device *, 3398 const unsigned char *)) 3399 { 3400 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3401 } 3402 3403 /** 3404 * __dev_uc_unsync - Remove synchronized addresses from device 3405 * @dev: device to sync 3406 * @unsync: function to call if address should be removed 3407 * 3408 * Remove all addresses that were added to the device by dev_uc_sync(). 3409 **/ 3410 static inline void __dev_uc_unsync(struct net_device *dev, 3411 int (*unsync)(struct net_device *, 3412 const unsigned char *)) 3413 { 3414 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3415 } 3416 3417 /* Functions used for multicast addresses handling */ 3418 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3419 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3420 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3421 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3422 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3423 int dev_mc_sync(struct net_device *to, struct net_device *from); 3424 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3425 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3426 void dev_mc_flush(struct net_device *dev); 3427 void dev_mc_init(struct net_device *dev); 3428 3429 /** 3430 * __dev_mc_sync - Synchonize device's multicast list 3431 * @dev: device to sync 3432 * @sync: function to call if address should be added 3433 * @unsync: function to call if address should be removed 3434 * 3435 * Add newly added addresses to the interface, and release 3436 * addresses that have been deleted. 3437 **/ 3438 static inline int __dev_mc_sync(struct net_device *dev, 3439 int (*sync)(struct net_device *, 3440 const unsigned char *), 3441 int (*unsync)(struct net_device *, 3442 const unsigned char *)) 3443 { 3444 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3445 } 3446 3447 /** 3448 * __dev_mc_unsync - Remove synchronized addresses from device 3449 * @dev: device to sync 3450 * @unsync: function to call if address should be removed 3451 * 3452 * Remove all addresses that were added to the device by dev_mc_sync(). 3453 **/ 3454 static inline void __dev_mc_unsync(struct net_device *dev, 3455 int (*unsync)(struct net_device *, 3456 const unsigned char *)) 3457 { 3458 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3459 } 3460 3461 /* Functions used for secondary unicast and multicast support */ 3462 void dev_set_rx_mode(struct net_device *dev); 3463 void __dev_set_rx_mode(struct net_device *dev); 3464 int dev_set_promiscuity(struct net_device *dev, int inc); 3465 int dev_set_allmulti(struct net_device *dev, int inc); 3466 void netdev_state_change(struct net_device *dev); 3467 void netdev_notify_peers(struct net_device *dev); 3468 void netdev_features_change(struct net_device *dev); 3469 /* Load a device via the kmod */ 3470 void dev_load(struct net *net, const char *name); 3471 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3472 struct rtnl_link_stats64 *storage); 3473 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3474 const struct net_device_stats *netdev_stats); 3475 3476 extern int netdev_max_backlog; 3477 extern int netdev_tstamp_prequeue; 3478 extern int weight_p; 3479 extern int bpf_jit_enable; 3480 3481 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3482 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3483 struct list_head **iter); 3484 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3485 struct list_head **iter); 3486 3487 /* iterate through upper list, must be called under RCU read lock */ 3488 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3489 for (iter = &(dev)->adj_list.upper, \ 3490 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3491 updev; \ 3492 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3493 3494 /* iterate through upper list, must be called under RCU read lock */ 3495 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3496 for (iter = &(dev)->all_adj_list.upper, \ 3497 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3498 updev; \ 3499 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3500 3501 void *netdev_lower_get_next_private(struct net_device *dev, 3502 struct list_head **iter); 3503 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3504 struct list_head **iter); 3505 3506 #define netdev_for_each_lower_private(dev, priv, iter) \ 3507 for (iter = (dev)->adj_list.lower.next, \ 3508 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3509 priv; \ 3510 priv = netdev_lower_get_next_private(dev, &(iter))) 3511 3512 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3513 for (iter = &(dev)->adj_list.lower, \ 3514 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3515 priv; \ 3516 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3517 3518 void *netdev_lower_get_next(struct net_device *dev, 3519 struct list_head **iter); 3520 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3521 for (iter = &(dev)->adj_list.lower, \ 3522 ldev = netdev_lower_get_next(dev, &(iter)); \ 3523 ldev; \ 3524 ldev = netdev_lower_get_next(dev, &(iter))) 3525 3526 void *netdev_adjacent_get_private(struct list_head *adj_list); 3527 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3528 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3529 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3530 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3531 int netdev_master_upper_dev_link(struct net_device *dev, 3532 struct net_device *upper_dev); 3533 int netdev_master_upper_dev_link_private(struct net_device *dev, 3534 struct net_device *upper_dev, 3535 void *private); 3536 void netdev_upper_dev_unlink(struct net_device *dev, 3537 struct net_device *upper_dev); 3538 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3539 void *netdev_lower_dev_get_private(struct net_device *dev, 3540 struct net_device *lower_dev); 3541 3542 /* RSS keys are 40 or 52 bytes long */ 3543 #define NETDEV_RSS_KEY_LEN 52 3544 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3545 void netdev_rss_key_fill(void *buffer, size_t len); 3546 3547 int dev_get_nest_level(struct net_device *dev, 3548 bool (*type_check)(struct net_device *dev)); 3549 int skb_checksum_help(struct sk_buff *skb); 3550 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3551 netdev_features_t features, bool tx_path); 3552 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3553 netdev_features_t features); 3554 3555 struct netdev_bonding_info { 3556 ifslave slave; 3557 ifbond master; 3558 }; 3559 3560 struct netdev_notifier_bonding_info { 3561 struct netdev_notifier_info info; /* must be first */ 3562 struct netdev_bonding_info bonding_info; 3563 }; 3564 3565 void netdev_bonding_info_change(struct net_device *dev, 3566 struct netdev_bonding_info *bonding_info); 3567 3568 static inline 3569 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3570 { 3571 return __skb_gso_segment(skb, features, true); 3572 } 3573 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3574 3575 static inline bool can_checksum_protocol(netdev_features_t features, 3576 __be16 protocol) 3577 { 3578 return ((features & NETIF_F_GEN_CSUM) || 3579 ((features & NETIF_F_V4_CSUM) && 3580 protocol == htons(ETH_P_IP)) || 3581 ((features & NETIF_F_V6_CSUM) && 3582 protocol == htons(ETH_P_IPV6)) || 3583 ((features & NETIF_F_FCOE_CRC) && 3584 protocol == htons(ETH_P_FCOE))); 3585 } 3586 3587 #ifdef CONFIG_BUG 3588 void netdev_rx_csum_fault(struct net_device *dev); 3589 #else 3590 static inline void netdev_rx_csum_fault(struct net_device *dev) 3591 { 3592 } 3593 #endif 3594 /* rx skb timestamps */ 3595 void net_enable_timestamp(void); 3596 void net_disable_timestamp(void); 3597 3598 #ifdef CONFIG_PROC_FS 3599 int __init dev_proc_init(void); 3600 #else 3601 #define dev_proc_init() 0 3602 #endif 3603 3604 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3605 struct sk_buff *skb, struct net_device *dev, 3606 bool more) 3607 { 3608 skb->xmit_more = more ? 1 : 0; 3609 return ops->ndo_start_xmit(skb, dev); 3610 } 3611 3612 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3613 struct netdev_queue *txq, bool more) 3614 { 3615 const struct net_device_ops *ops = dev->netdev_ops; 3616 int rc; 3617 3618 rc = __netdev_start_xmit(ops, skb, dev, more); 3619 if (rc == NETDEV_TX_OK) 3620 txq_trans_update(txq); 3621 3622 return rc; 3623 } 3624 3625 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3626 const void *ns); 3627 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3628 const void *ns); 3629 3630 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3631 { 3632 return netdev_class_create_file_ns(class_attr, NULL); 3633 } 3634 3635 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3636 { 3637 netdev_class_remove_file_ns(class_attr, NULL); 3638 } 3639 3640 extern struct kobj_ns_type_operations net_ns_type_operations; 3641 3642 const char *netdev_drivername(const struct net_device *dev); 3643 3644 void linkwatch_run_queue(void); 3645 3646 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3647 netdev_features_t f2) 3648 { 3649 if (f1 & NETIF_F_GEN_CSUM) 3650 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3651 if (f2 & NETIF_F_GEN_CSUM) 3652 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3653 f1 &= f2; 3654 if (f1 & NETIF_F_GEN_CSUM) 3655 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3656 3657 return f1; 3658 } 3659 3660 static inline netdev_features_t netdev_get_wanted_features( 3661 struct net_device *dev) 3662 { 3663 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3664 } 3665 netdev_features_t netdev_increment_features(netdev_features_t all, 3666 netdev_features_t one, netdev_features_t mask); 3667 3668 /* Allow TSO being used on stacked device : 3669 * Performing the GSO segmentation before last device 3670 * is a performance improvement. 3671 */ 3672 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3673 netdev_features_t mask) 3674 { 3675 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3676 } 3677 3678 int __netdev_update_features(struct net_device *dev); 3679 void netdev_update_features(struct net_device *dev); 3680 void netdev_change_features(struct net_device *dev); 3681 3682 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3683 struct net_device *dev); 3684 3685 netdev_features_t netif_skb_features(struct sk_buff *skb); 3686 3687 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3688 { 3689 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3690 3691 /* check flags correspondence */ 3692 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3693 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3694 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3695 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3696 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3697 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3698 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3699 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3700 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3701 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3702 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3703 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3704 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3705 3706 return (features & feature) == feature; 3707 } 3708 3709 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3710 { 3711 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3712 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3713 } 3714 3715 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb, 3716 netdev_features_t features) 3717 { 3718 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3719 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3720 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3721 } 3722 3723 static inline void netif_set_gso_max_size(struct net_device *dev, 3724 unsigned int size) 3725 { 3726 dev->gso_max_size = size; 3727 } 3728 3729 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3730 int pulled_hlen, u16 mac_offset, 3731 int mac_len) 3732 { 3733 skb->protocol = protocol; 3734 skb->encapsulation = 1; 3735 skb_push(skb, pulled_hlen); 3736 skb_reset_transport_header(skb); 3737 skb->mac_header = mac_offset; 3738 skb->network_header = skb->mac_header + mac_len; 3739 skb->mac_len = mac_len; 3740 } 3741 3742 static inline bool netif_is_macvlan(struct net_device *dev) 3743 { 3744 return dev->priv_flags & IFF_MACVLAN; 3745 } 3746 3747 static inline bool netif_is_macvlan_port(struct net_device *dev) 3748 { 3749 return dev->priv_flags & IFF_MACVLAN_PORT; 3750 } 3751 3752 static inline bool netif_is_ipvlan(struct net_device *dev) 3753 { 3754 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3755 } 3756 3757 static inline bool netif_is_ipvlan_port(struct net_device *dev) 3758 { 3759 return dev->priv_flags & IFF_IPVLAN_MASTER; 3760 } 3761 3762 static inline bool netif_is_bond_master(struct net_device *dev) 3763 { 3764 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3765 } 3766 3767 static inline bool netif_is_bond_slave(struct net_device *dev) 3768 { 3769 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3770 } 3771 3772 static inline bool netif_supports_nofcs(struct net_device *dev) 3773 { 3774 return dev->priv_flags & IFF_SUPP_NOFCS; 3775 } 3776 3777 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 3778 static inline void netif_keep_dst(struct net_device *dev) 3779 { 3780 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 3781 } 3782 3783 extern struct pernet_operations __net_initdata loopback_net_ops; 3784 3785 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 3786 3787 /* netdev_printk helpers, similar to dev_printk */ 3788 3789 static inline const char *netdev_name(const struct net_device *dev) 3790 { 3791 if (!dev->name[0] || strchr(dev->name, '%')) 3792 return "(unnamed net_device)"; 3793 return dev->name; 3794 } 3795 3796 static inline const char *netdev_reg_state(const struct net_device *dev) 3797 { 3798 switch (dev->reg_state) { 3799 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3800 case NETREG_REGISTERED: return ""; 3801 case NETREG_UNREGISTERING: return " (unregistering)"; 3802 case NETREG_UNREGISTERED: return " (unregistered)"; 3803 case NETREG_RELEASED: return " (released)"; 3804 case NETREG_DUMMY: return " (dummy)"; 3805 } 3806 3807 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3808 return " (unknown)"; 3809 } 3810 3811 __printf(3, 4) 3812 void netdev_printk(const char *level, const struct net_device *dev, 3813 const char *format, ...); 3814 __printf(2, 3) 3815 void netdev_emerg(const struct net_device *dev, const char *format, ...); 3816 __printf(2, 3) 3817 void netdev_alert(const struct net_device *dev, const char *format, ...); 3818 __printf(2, 3) 3819 void netdev_crit(const struct net_device *dev, const char *format, ...); 3820 __printf(2, 3) 3821 void netdev_err(const struct net_device *dev, const char *format, ...); 3822 __printf(2, 3) 3823 void netdev_warn(const struct net_device *dev, const char *format, ...); 3824 __printf(2, 3) 3825 void netdev_notice(const struct net_device *dev, const char *format, ...); 3826 __printf(2, 3) 3827 void netdev_info(const struct net_device *dev, const char *format, ...); 3828 3829 #define MODULE_ALIAS_NETDEV(device) \ 3830 MODULE_ALIAS("netdev-" device) 3831 3832 #if defined(CONFIG_DYNAMIC_DEBUG) 3833 #define netdev_dbg(__dev, format, args...) \ 3834 do { \ 3835 dynamic_netdev_dbg(__dev, format, ##args); \ 3836 } while (0) 3837 #elif defined(DEBUG) 3838 #define netdev_dbg(__dev, format, args...) \ 3839 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3840 #else 3841 #define netdev_dbg(__dev, format, args...) \ 3842 ({ \ 3843 if (0) \ 3844 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3845 }) 3846 #endif 3847 3848 #if defined(VERBOSE_DEBUG) 3849 #define netdev_vdbg netdev_dbg 3850 #else 3851 3852 #define netdev_vdbg(dev, format, args...) \ 3853 ({ \ 3854 if (0) \ 3855 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3856 0; \ 3857 }) 3858 #endif 3859 3860 /* 3861 * netdev_WARN() acts like dev_printk(), but with the key difference 3862 * of using a WARN/WARN_ON to get the message out, including the 3863 * file/line information and a backtrace. 3864 */ 3865 #define netdev_WARN(dev, format, args...) \ 3866 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3867 netdev_reg_state(dev), ##args) 3868 3869 /* netif printk helpers, similar to netdev_printk */ 3870 3871 #define netif_printk(priv, type, level, dev, fmt, args...) \ 3872 do { \ 3873 if (netif_msg_##type(priv)) \ 3874 netdev_printk(level, (dev), fmt, ##args); \ 3875 } while (0) 3876 3877 #define netif_level(level, priv, type, dev, fmt, args...) \ 3878 do { \ 3879 if (netif_msg_##type(priv)) \ 3880 netdev_##level(dev, fmt, ##args); \ 3881 } while (0) 3882 3883 #define netif_emerg(priv, type, dev, fmt, args...) \ 3884 netif_level(emerg, priv, type, dev, fmt, ##args) 3885 #define netif_alert(priv, type, dev, fmt, args...) \ 3886 netif_level(alert, priv, type, dev, fmt, ##args) 3887 #define netif_crit(priv, type, dev, fmt, args...) \ 3888 netif_level(crit, priv, type, dev, fmt, ##args) 3889 #define netif_err(priv, type, dev, fmt, args...) \ 3890 netif_level(err, priv, type, dev, fmt, ##args) 3891 #define netif_warn(priv, type, dev, fmt, args...) \ 3892 netif_level(warn, priv, type, dev, fmt, ##args) 3893 #define netif_notice(priv, type, dev, fmt, args...) \ 3894 netif_level(notice, priv, type, dev, fmt, ##args) 3895 #define netif_info(priv, type, dev, fmt, args...) \ 3896 netif_level(info, priv, type, dev, fmt, ##args) 3897 3898 #if defined(CONFIG_DYNAMIC_DEBUG) 3899 #define netif_dbg(priv, type, netdev, format, args...) \ 3900 do { \ 3901 if (netif_msg_##type(priv)) \ 3902 dynamic_netdev_dbg(netdev, format, ##args); \ 3903 } while (0) 3904 #elif defined(DEBUG) 3905 #define netif_dbg(priv, type, dev, format, args...) \ 3906 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3907 #else 3908 #define netif_dbg(priv, type, dev, format, args...) \ 3909 ({ \ 3910 if (0) \ 3911 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3912 0; \ 3913 }) 3914 #endif 3915 3916 #if defined(VERBOSE_DEBUG) 3917 #define netif_vdbg netif_dbg 3918 #else 3919 #define netif_vdbg(priv, type, dev, format, args...) \ 3920 ({ \ 3921 if (0) \ 3922 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3923 0; \ 3924 }) 3925 #endif 3926 3927 /* 3928 * The list of packet types we will receive (as opposed to discard) 3929 * and the routines to invoke. 3930 * 3931 * Why 16. Because with 16 the only overlap we get on a hash of the 3932 * low nibble of the protocol value is RARP/SNAP/X.25. 3933 * 3934 * NOTE: That is no longer true with the addition of VLAN tags. Not 3935 * sure which should go first, but I bet it won't make much 3936 * difference if we are running VLANs. The good news is that 3937 * this protocol won't be in the list unless compiled in, so 3938 * the average user (w/out VLANs) will not be adversely affected. 3939 * --BLG 3940 * 3941 * 0800 IP 3942 * 8100 802.1Q VLAN 3943 * 0001 802.3 3944 * 0002 AX.25 3945 * 0004 802.2 3946 * 8035 RARP 3947 * 0005 SNAP 3948 * 0805 X.25 3949 * 0806 ARP 3950 * 8137 IPX 3951 * 0009 Localtalk 3952 * 86DD IPv6 3953 */ 3954 #define PTYPE_HASH_SIZE (16) 3955 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3956 3957 #endif /* _LINUX_NETDEVICE_H */ 3958