xref: /openbmc/linux/include/linux/netdevice.h (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36 
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42 
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50 
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 #include <uapi/linux/if_bonding.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	while (test_bit(NAPI_STATE_SCHED, &n->state))
524 		msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)	barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531 	__QUEUE_STATE_DRV_XOFF,
532 	__QUEUE_STATE_STACK_XOFF,
533 	__QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560 	struct net_device	*dev;
561 	struct Qdisc __rcu	*qdisc;
562 	struct Qdisc		*qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 	struct kobject		kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 	int			numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573 	int			xmit_lock_owner;
574 	/*
575 	 * please use this field instead of dev->trans_start
576 	 */
577 	unsigned long		trans_start;
578 
579 	/*
580 	 * Number of TX timeouts for this queue
581 	 * (/sys/class/net/DEV/Q/trans_timeout)
582 	 */
583 	unsigned long		trans_timeout;
584 
585 	unsigned long		state;
586 
587 #ifdef CONFIG_BQL
588 	struct dql		dql;
589 #endif
590 } ____cacheline_aligned_in_smp;
591 
592 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
593 {
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	return q->numa_node;
596 #else
597 	return NUMA_NO_NODE;
598 #endif
599 }
600 
601 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
602 {
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 	q->numa_node = node;
605 #endif
606 }
607 
608 #ifdef CONFIG_RPS
609 /*
610  * This structure holds an RPS map which can be of variable length.  The
611  * map is an array of CPUs.
612  */
613 struct rps_map {
614 	unsigned int len;
615 	struct rcu_head rcu;
616 	u16 cpus[0];
617 };
618 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
619 
620 /*
621  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
622  * tail pointer for that CPU's input queue at the time of last enqueue, and
623  * a hardware filter index.
624  */
625 struct rps_dev_flow {
626 	u16 cpu;
627 	u16 filter;
628 	unsigned int last_qtail;
629 };
630 #define RPS_NO_FILTER 0xffff
631 
632 /*
633  * The rps_dev_flow_table structure contains a table of flow mappings.
634  */
635 struct rps_dev_flow_table {
636 	unsigned int mask;
637 	struct rcu_head rcu;
638 	struct rps_dev_flow flows[0];
639 };
640 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
641     ((_num) * sizeof(struct rps_dev_flow)))
642 
643 /*
644  * The rps_sock_flow_table contains mappings of flows to the last CPU
645  * on which they were processed by the application (set in recvmsg).
646  * Each entry is a 32bit value. Upper part is the high order bits
647  * of flow hash, lower part is cpu number.
648  * rps_cpu_mask is used to partition the space, depending on number of
649  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
650  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
651  * meaning we use 32-6=26 bits for the hash.
652  */
653 struct rps_sock_flow_table {
654 	u32	mask;
655 
656 	u32	ents[0] ____cacheline_aligned_in_smp;
657 };
658 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
659 
660 #define RPS_NO_CPU 0xffff
661 
662 extern u32 rps_cpu_mask;
663 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
664 
665 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
666 					u32 hash)
667 {
668 	if (table && hash) {
669 		unsigned int index = hash & table->mask;
670 		u32 val = hash & ~rps_cpu_mask;
671 
672 		/* We only give a hint, preemption can change cpu under us */
673 		val |= raw_smp_processor_id();
674 
675 		if (table->ents[index] != val)
676 			table->ents[index] = val;
677 	}
678 }
679 
680 #ifdef CONFIG_RFS_ACCEL
681 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
682 			 u16 filter_id);
683 #endif
684 #endif /* CONFIG_RPS */
685 
686 /* This structure contains an instance of an RX queue. */
687 struct netdev_rx_queue {
688 #ifdef CONFIG_RPS
689 	struct rps_map __rcu		*rps_map;
690 	struct rps_dev_flow_table __rcu	*rps_flow_table;
691 #endif
692 	struct kobject			kobj;
693 	struct net_device		*dev;
694 } ____cacheline_aligned_in_smp;
695 
696 /*
697  * RX queue sysfs structures and functions.
698  */
699 struct rx_queue_attribute {
700 	struct attribute attr;
701 	ssize_t (*show)(struct netdev_rx_queue *queue,
702 	    struct rx_queue_attribute *attr, char *buf);
703 	ssize_t (*store)(struct netdev_rx_queue *queue,
704 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
705 };
706 
707 #ifdef CONFIG_XPS
708 /*
709  * This structure holds an XPS map which can be of variable length.  The
710  * map is an array of queues.
711  */
712 struct xps_map {
713 	unsigned int len;
714 	unsigned int alloc_len;
715 	struct rcu_head rcu;
716 	u16 queues[0];
717 };
718 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
719 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
720     / sizeof(u16))
721 
722 /*
723  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
724  */
725 struct xps_dev_maps {
726 	struct rcu_head rcu;
727 	struct xps_map __rcu *cpu_map[0];
728 };
729 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
730     (nr_cpu_ids * sizeof(struct xps_map *)))
731 #endif /* CONFIG_XPS */
732 
733 #define TC_MAX_QUEUE	16
734 #define TC_BITMASK	15
735 /* HW offloaded queuing disciplines txq count and offset maps */
736 struct netdev_tc_txq {
737 	u16 count;
738 	u16 offset;
739 };
740 
741 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
742 /*
743  * This structure is to hold information about the device
744  * configured to run FCoE protocol stack.
745  */
746 struct netdev_fcoe_hbainfo {
747 	char	manufacturer[64];
748 	char	serial_number[64];
749 	char	hardware_version[64];
750 	char	driver_version[64];
751 	char	optionrom_version[64];
752 	char	firmware_version[64];
753 	char	model[256];
754 	char	model_description[256];
755 };
756 #endif
757 
758 #define MAX_PHYS_ITEM_ID_LEN 32
759 
760 /* This structure holds a unique identifier to identify some
761  * physical item (port for example) used by a netdevice.
762  */
763 struct netdev_phys_item_id {
764 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
765 	unsigned char id_len;
766 };
767 
768 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
769 				       struct sk_buff *skb);
770 
771 struct fib_info;
772 
773 /*
774  * This structure defines the management hooks for network devices.
775  * The following hooks can be defined; unless noted otherwise, they are
776  * optional and can be filled with a null pointer.
777  *
778  * int (*ndo_init)(struct net_device *dev);
779  *     This function is called once when network device is registered.
780  *     The network device can use this to any late stage initializaton
781  *     or semantic validattion. It can fail with an error code which will
782  *     be propogated back to register_netdev
783  *
784  * void (*ndo_uninit)(struct net_device *dev);
785  *     This function is called when device is unregistered or when registration
786  *     fails. It is not called if init fails.
787  *
788  * int (*ndo_open)(struct net_device *dev);
789  *     This function is called when network device transistions to the up
790  *     state.
791  *
792  * int (*ndo_stop)(struct net_device *dev);
793  *     This function is called when network device transistions to the down
794  *     state.
795  *
796  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
797  *                               struct net_device *dev);
798  *	Called when a packet needs to be transmitted.
799  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
800  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
801  *	Required can not be NULL.
802  *
803  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
804  *                         void *accel_priv, select_queue_fallback_t fallback);
805  *	Called to decide which queue to when device supports multiple
806  *	transmit queues.
807  *
808  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
809  *	This function is called to allow device receiver to make
810  *	changes to configuration when multicast or promiscious is enabled.
811  *
812  * void (*ndo_set_rx_mode)(struct net_device *dev);
813  *	This function is called device changes address list filtering.
814  *	If driver handles unicast address filtering, it should set
815  *	IFF_UNICAST_FLT to its priv_flags.
816  *
817  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
818  *	This function  is called when the Media Access Control address
819  *	needs to be changed. If this interface is not defined, the
820  *	mac address can not be changed.
821  *
822  * int (*ndo_validate_addr)(struct net_device *dev);
823  *	Test if Media Access Control address is valid for the device.
824  *
825  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
826  *	Called when a user request an ioctl which can't be handled by
827  *	the generic interface code. If not defined ioctl's return
828  *	not supported error code.
829  *
830  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
831  *	Used to set network devices bus interface parameters. This interface
832  *	is retained for legacy reason, new devices should use the bus
833  *	interface (PCI) for low level management.
834  *
835  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
836  *	Called when a user wants to change the Maximum Transfer Unit
837  *	of a device. If not defined, any request to change MTU will
838  *	will return an error.
839  *
840  * void (*ndo_tx_timeout)(struct net_device *dev);
841  *	Callback uses when the transmitter has not made any progress
842  *	for dev->watchdog ticks.
843  *
844  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
845  *                      struct rtnl_link_stats64 *storage);
846  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
847  *	Called when a user wants to get the network device usage
848  *	statistics. Drivers must do one of the following:
849  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
850  *	   rtnl_link_stats64 structure passed by the caller.
851  *	2. Define @ndo_get_stats to update a net_device_stats structure
852  *	   (which should normally be dev->stats) and return a pointer to
853  *	   it. The structure may be changed asynchronously only if each
854  *	   field is written atomically.
855  *	3. Update dev->stats asynchronously and atomically, and define
856  *	   neither operation.
857  *
858  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
859  *	If device support VLAN filtering this function is called when a
860  *	VLAN id is registered.
861  *
862  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
863  *	If device support VLAN filtering this function is called when a
864  *	VLAN id is unregistered.
865  *
866  * void (*ndo_poll_controller)(struct net_device *dev);
867  *
868  *	SR-IOV management functions.
869  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
870  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
871  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
872  *			  int max_tx_rate);
873  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
874  * int (*ndo_get_vf_config)(struct net_device *dev,
875  *			    int vf, struct ifla_vf_info *ivf);
876  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
877  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
878  *			  struct nlattr *port[]);
879  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
880  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
881  * 	Called to setup 'tc' number of traffic classes in the net device. This
882  * 	is always called from the stack with the rtnl lock held and netif tx
883  * 	queues stopped. This allows the netdevice to perform queue management
884  * 	safely.
885  *
886  *	Fiber Channel over Ethernet (FCoE) offload functions.
887  * int (*ndo_fcoe_enable)(struct net_device *dev);
888  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
889  *	so the underlying device can perform whatever needed configuration or
890  *	initialization to support acceleration of FCoE traffic.
891  *
892  * int (*ndo_fcoe_disable)(struct net_device *dev);
893  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
894  *	so the underlying device can perform whatever needed clean-ups to
895  *	stop supporting acceleration of FCoE traffic.
896  *
897  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
898  *			     struct scatterlist *sgl, unsigned int sgc);
899  *	Called when the FCoE Initiator wants to initialize an I/O that
900  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
901  *	perform necessary setup and returns 1 to indicate the device is set up
902  *	successfully to perform DDP on this I/O, otherwise this returns 0.
903  *
904  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
905  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
906  *	indicated by the FC exchange id 'xid', so the underlying device can
907  *	clean up and reuse resources for later DDP requests.
908  *
909  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
910  *			      struct scatterlist *sgl, unsigned int sgc);
911  *	Called when the FCoE Target wants to initialize an I/O that
912  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
913  *	perform necessary setup and returns 1 to indicate the device is set up
914  *	successfully to perform DDP on this I/O, otherwise this returns 0.
915  *
916  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
917  *			       struct netdev_fcoe_hbainfo *hbainfo);
918  *	Called when the FCoE Protocol stack wants information on the underlying
919  *	device. This information is utilized by the FCoE protocol stack to
920  *	register attributes with Fiber Channel management service as per the
921  *	FC-GS Fabric Device Management Information(FDMI) specification.
922  *
923  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
924  *	Called when the underlying device wants to override default World Wide
925  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
926  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
927  *	protocol stack to use.
928  *
929  *	RFS acceleration.
930  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
931  *			    u16 rxq_index, u32 flow_id);
932  *	Set hardware filter for RFS.  rxq_index is the target queue index;
933  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
934  *	Return the filter ID on success, or a negative error code.
935  *
936  *	Slave management functions (for bridge, bonding, etc).
937  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
938  *	Called to make another netdev an underling.
939  *
940  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
941  *	Called to release previously enslaved netdev.
942  *
943  *      Feature/offload setting functions.
944  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
945  *		netdev_features_t features);
946  *	Adjusts the requested feature flags according to device-specific
947  *	constraints, and returns the resulting flags. Must not modify
948  *	the device state.
949  *
950  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
951  *	Called to update device configuration to new features. Passed
952  *	feature set might be less than what was returned by ndo_fix_features()).
953  *	Must return >0 or -errno if it changed dev->features itself.
954  *
955  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
956  *		      struct net_device *dev,
957  *		      const unsigned char *addr, u16 vid, u16 flags)
958  *	Adds an FDB entry to dev for addr.
959  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
960  *		      struct net_device *dev,
961  *		      const unsigned char *addr, u16 vid)
962  *	Deletes the FDB entry from dev coresponding to addr.
963  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
964  *		       struct net_device *dev, struct net_device *filter_dev,
965  *		       int idx)
966  *	Used to add FDB entries to dump requests. Implementers should add
967  *	entries to skb and update idx with the number of entries.
968  *
969  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
970  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
971  *			     struct net_device *dev, u32 filter_mask)
972  *
973  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
974  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
975  *	which do not represent real hardware may define this to allow their
976  *	userspace components to manage their virtual carrier state. Devices
977  *	that determine carrier state from physical hardware properties (eg
978  *	network cables) or protocol-dependent mechanisms (eg
979  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
980  *
981  * int (*ndo_get_phys_port_id)(struct net_device *dev,
982  *			       struct netdev_phys_item_id *ppid);
983  *	Called to get ID of physical port of this device. If driver does
984  *	not implement this, it is assumed that the hw is not able to have
985  *	multiple net devices on single physical port.
986  *
987  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
988  *			      sa_family_t sa_family, __be16 port);
989  *	Called by vxlan to notiy a driver about the UDP port and socket
990  *	address family that vxlan is listnening to. It is called only when
991  *	a new port starts listening. The operation is protected by the
992  *	vxlan_net->sock_lock.
993  *
994  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
995  *			      sa_family_t sa_family, __be16 port);
996  *	Called by vxlan to notify the driver about a UDP port and socket
997  *	address family that vxlan is not listening to anymore. The operation
998  *	is protected by the vxlan_net->sock_lock.
999  *
1000  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1001  *				 struct net_device *dev)
1002  *	Called by upper layer devices to accelerate switching or other
1003  *	station functionality into hardware. 'pdev is the lowerdev
1004  *	to use for the offload and 'dev' is the net device that will
1005  *	back the offload. Returns a pointer to the private structure
1006  *	the upper layer will maintain.
1007  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1008  *	Called by upper layer device to delete the station created
1009  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1010  *	the station and priv is the structure returned by the add
1011  *	operation.
1012  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1013  *				      struct net_device *dev,
1014  *				      void *priv);
1015  *	Callback to use for xmit over the accelerated station. This
1016  *	is used in place of ndo_start_xmit on accelerated net
1017  *	devices.
1018  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1019  *					    struct net_device *dev
1020  *					    netdev_features_t features);
1021  *	Called by core transmit path to determine if device is capable of
1022  *	performing offload operations on a given packet. This is to give
1023  *	the device an opportunity to implement any restrictions that cannot
1024  *	be otherwise expressed by feature flags. The check is called with
1025  *	the set of features that the stack has calculated and it returns
1026  *	those the driver believes to be appropriate.
1027  *
1028  * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1029  *				   struct netdev_phys_item_id *psid);
1030  *	Called to get an ID of the switch chip this port is part of.
1031  *	If driver implements this, it indicates that it represents a port
1032  *	of a switch chip.
1033  * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1034  *	Called to notify switch device port of bridge port STP
1035  *	state change.
1036  * int (*ndo_sw_parent_fib_ipv4_add)(struct net_device *dev, __be32 dst,
1037  *				     int dst_len, struct fib_info *fi,
1038  *				     u8 tos, u8 type, u32 tb_id);
1039  *	Called to add/modify IPv4 route to switch device.
1040  * int (*ndo_sw_parent_fib_ipv4_del)(struct net_device *dev, __be32 dst,
1041  *				     int dst_len, struct fib_info *fi,
1042  *				     u8 tos, u8 type, u32 tb_id);
1043  *	Called to delete IPv4 route from switch device.
1044  */
1045 struct net_device_ops {
1046 	int			(*ndo_init)(struct net_device *dev);
1047 	void			(*ndo_uninit)(struct net_device *dev);
1048 	int			(*ndo_open)(struct net_device *dev);
1049 	int			(*ndo_stop)(struct net_device *dev);
1050 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1051 						   struct net_device *dev);
1052 	u16			(*ndo_select_queue)(struct net_device *dev,
1053 						    struct sk_buff *skb,
1054 						    void *accel_priv,
1055 						    select_queue_fallback_t fallback);
1056 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1057 						       int flags);
1058 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1059 	int			(*ndo_set_mac_address)(struct net_device *dev,
1060 						       void *addr);
1061 	int			(*ndo_validate_addr)(struct net_device *dev);
1062 	int			(*ndo_do_ioctl)(struct net_device *dev,
1063 					        struct ifreq *ifr, int cmd);
1064 	int			(*ndo_set_config)(struct net_device *dev,
1065 					          struct ifmap *map);
1066 	int			(*ndo_change_mtu)(struct net_device *dev,
1067 						  int new_mtu);
1068 	int			(*ndo_neigh_setup)(struct net_device *dev,
1069 						   struct neigh_parms *);
1070 	void			(*ndo_tx_timeout) (struct net_device *dev);
1071 
1072 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073 						     struct rtnl_link_stats64 *storage);
1074 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1075 
1076 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077 						       __be16 proto, u16 vid);
1078 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079 						        __be16 proto, u16 vid);
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081 	void                    (*ndo_poll_controller)(struct net_device *dev);
1082 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1083 						     struct netpoll_info *info);
1084 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1085 #endif
1086 #ifdef CONFIG_NET_RX_BUSY_POLL
1087 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1088 #endif
1089 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1090 						  int queue, u8 *mac);
1091 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1092 						   int queue, u16 vlan, u8 qos);
1093 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1094 						   int vf, int min_tx_rate,
1095 						   int max_tx_rate);
1096 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1097 						       int vf, bool setting);
1098 	int			(*ndo_get_vf_config)(struct net_device *dev,
1099 						     int vf,
1100 						     struct ifla_vf_info *ivf);
1101 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1102 							 int vf, int link_state);
1103 	int			(*ndo_set_vf_port)(struct net_device *dev,
1104 						   int vf,
1105 						   struct nlattr *port[]);
1106 	int			(*ndo_get_vf_port)(struct net_device *dev,
1107 						   int vf, struct sk_buff *skb);
1108 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1109 #if IS_ENABLED(CONFIG_FCOE)
1110 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1111 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1112 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1113 						      u16 xid,
1114 						      struct scatterlist *sgl,
1115 						      unsigned int sgc);
1116 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1117 						     u16 xid);
1118 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1119 						       u16 xid,
1120 						       struct scatterlist *sgl,
1121 						       unsigned int sgc);
1122 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1123 							struct netdev_fcoe_hbainfo *hbainfo);
1124 #endif
1125 
1126 #if IS_ENABLED(CONFIG_LIBFCOE)
1127 #define NETDEV_FCOE_WWNN 0
1128 #define NETDEV_FCOE_WWPN 1
1129 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1130 						    u64 *wwn, int type);
1131 #endif
1132 
1133 #ifdef CONFIG_RFS_ACCEL
1134 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1135 						     const struct sk_buff *skb,
1136 						     u16 rxq_index,
1137 						     u32 flow_id);
1138 #endif
1139 	int			(*ndo_add_slave)(struct net_device *dev,
1140 						 struct net_device *slave_dev);
1141 	int			(*ndo_del_slave)(struct net_device *dev,
1142 						 struct net_device *slave_dev);
1143 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1144 						    netdev_features_t features);
1145 	int			(*ndo_set_features)(struct net_device *dev,
1146 						    netdev_features_t features);
1147 	int			(*ndo_neigh_construct)(struct neighbour *n);
1148 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1149 
1150 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1151 					       struct nlattr *tb[],
1152 					       struct net_device *dev,
1153 					       const unsigned char *addr,
1154 					       u16 vid,
1155 					       u16 flags);
1156 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1157 					       struct nlattr *tb[],
1158 					       struct net_device *dev,
1159 					       const unsigned char *addr,
1160 					       u16 vid);
1161 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1162 						struct netlink_callback *cb,
1163 						struct net_device *dev,
1164 						struct net_device *filter_dev,
1165 						int idx);
1166 
1167 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1168 						      struct nlmsghdr *nlh,
1169 						      u16 flags);
1170 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1171 						      u32 pid, u32 seq,
1172 						      struct net_device *dev,
1173 						      u32 filter_mask);
1174 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1175 						      struct nlmsghdr *nlh,
1176 						      u16 flags);
1177 	int			(*ndo_change_carrier)(struct net_device *dev,
1178 						      bool new_carrier);
1179 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1180 							struct netdev_phys_item_id *ppid);
1181 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1182 						      sa_family_t sa_family,
1183 						      __be16 port);
1184 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1185 						      sa_family_t sa_family,
1186 						      __be16 port);
1187 
1188 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1189 							struct net_device *dev);
1190 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1191 							void *priv);
1192 
1193 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1194 							struct net_device *dev,
1195 							void *priv);
1196 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1197 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1198 						       struct net_device *dev,
1199 						       netdev_features_t features);
1200 #ifdef CONFIG_NET_SWITCHDEV
1201 	int			(*ndo_switch_parent_id_get)(struct net_device *dev,
1202 							    struct netdev_phys_item_id *psid);
1203 	int			(*ndo_switch_port_stp_update)(struct net_device *dev,
1204 							      u8 state);
1205 	int			(*ndo_switch_fib_ipv4_add)(struct net_device *dev,
1206 							   __be32 dst,
1207 							   int dst_len,
1208 							   struct fib_info *fi,
1209 							   u8 tos, u8 type,
1210 							   u32 tb_id);
1211 	int			(*ndo_switch_fib_ipv4_del)(struct net_device *dev,
1212 							   __be32 dst,
1213 							   int dst_len,
1214 							   struct fib_info *fi,
1215 							   u8 tos, u8 type,
1216 							   u32 tb_id);
1217 #endif
1218 };
1219 
1220 /**
1221  * enum net_device_priv_flags - &struct net_device priv_flags
1222  *
1223  * These are the &struct net_device, they are only set internally
1224  * by drivers and used in the kernel. These flags are invisible to
1225  * userspace, this means that the order of these flags can change
1226  * during any kernel release.
1227  *
1228  * You should have a pretty good reason to be extending these flags.
1229  *
1230  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1231  * @IFF_EBRIDGE: Ethernet bridging device
1232  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1233  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1234  * @IFF_MASTER_ALB: bonding master, balance-alb
1235  * @IFF_BONDING: bonding master or slave
1236  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1237  * @IFF_ISATAP: ISATAP interface (RFC4214)
1238  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1239  * @IFF_WAN_HDLC: WAN HDLC device
1240  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1241  *	release skb->dst
1242  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1243  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1244  * @IFF_MACVLAN_PORT: device used as macvlan port
1245  * @IFF_BRIDGE_PORT: device used as bridge port
1246  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1247  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1248  * @IFF_UNICAST_FLT: Supports unicast filtering
1249  * @IFF_TEAM_PORT: device used as team port
1250  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1251  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1252  *	change when it's running
1253  * @IFF_MACVLAN: Macvlan device
1254  */
1255 enum netdev_priv_flags {
1256 	IFF_802_1Q_VLAN			= 1<<0,
1257 	IFF_EBRIDGE			= 1<<1,
1258 	IFF_SLAVE_INACTIVE		= 1<<2,
1259 	IFF_MASTER_8023AD		= 1<<3,
1260 	IFF_MASTER_ALB			= 1<<4,
1261 	IFF_BONDING			= 1<<5,
1262 	IFF_SLAVE_NEEDARP		= 1<<6,
1263 	IFF_ISATAP			= 1<<7,
1264 	IFF_MASTER_ARPMON		= 1<<8,
1265 	IFF_WAN_HDLC			= 1<<9,
1266 	IFF_XMIT_DST_RELEASE		= 1<<10,
1267 	IFF_DONT_BRIDGE			= 1<<11,
1268 	IFF_DISABLE_NETPOLL		= 1<<12,
1269 	IFF_MACVLAN_PORT		= 1<<13,
1270 	IFF_BRIDGE_PORT			= 1<<14,
1271 	IFF_OVS_DATAPATH		= 1<<15,
1272 	IFF_TX_SKB_SHARING		= 1<<16,
1273 	IFF_UNICAST_FLT			= 1<<17,
1274 	IFF_TEAM_PORT			= 1<<18,
1275 	IFF_SUPP_NOFCS			= 1<<19,
1276 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1277 	IFF_MACVLAN			= 1<<21,
1278 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1279 	IFF_IPVLAN_MASTER		= 1<<23,
1280 	IFF_IPVLAN_SLAVE		= 1<<24,
1281 };
1282 
1283 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1284 #define IFF_EBRIDGE			IFF_EBRIDGE
1285 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1286 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1287 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1288 #define IFF_BONDING			IFF_BONDING
1289 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1290 #define IFF_ISATAP			IFF_ISATAP
1291 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1292 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1293 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1294 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1295 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1296 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1297 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1298 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1299 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1300 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1301 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1302 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1303 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1304 #define IFF_MACVLAN			IFF_MACVLAN
1305 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1306 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1307 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1308 
1309 /**
1310  *	struct net_device - The DEVICE structure.
1311  *		Actually, this whole structure is a big mistake.  It mixes I/O
1312  *		data with strictly "high-level" data, and it has to know about
1313  *		almost every data structure used in the INET module.
1314  *
1315  *	@name:	This is the first field of the "visible" part of this structure
1316  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1317  *	 	of the interface.
1318  *
1319  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1320  *	@ifalias:	SNMP alias
1321  *	@mem_end:	Shared memory end
1322  *	@mem_start:	Shared memory start
1323  *	@base_addr:	Device I/O address
1324  *	@irq:		Device IRQ number
1325  *
1326  *	@state:		Generic network queuing layer state, see netdev_state_t
1327  *	@dev_list:	The global list of network devices
1328  *	@napi_list:	List entry, that is used for polling napi devices
1329  *	@unreg_list:	List entry, that is used, when we are unregistering the
1330  *			device, see the function unregister_netdev
1331  *	@close_list:	List entry, that is used, when we are closing the device
1332  *
1333  *	@adj_list:	Directly linked devices, like slaves for bonding
1334  *	@all_adj_list:	All linked devices, *including* neighbours
1335  *	@features:	Currently active device features
1336  *	@hw_features:	User-changeable features
1337  *
1338  *	@wanted_features:	User-requested features
1339  *	@vlan_features:		Mask of features inheritable by VLAN devices
1340  *
1341  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1342  *				This field indicates what encapsulation
1343  *				offloads the hardware is capable of doing,
1344  *				and drivers will need to set them appropriately.
1345  *
1346  *	@mpls_features:	Mask of features inheritable by MPLS
1347  *
1348  *	@ifindex:	interface index
1349  *	@iflink:	unique device identifier
1350  *
1351  *	@stats:		Statistics struct, which was left as a legacy, use
1352  *			rtnl_link_stats64 instead
1353  *
1354  *	@rx_dropped:	Dropped packets by core network,
1355  *			do not use this in drivers
1356  *	@tx_dropped:	Dropped packets by core network,
1357  *			do not use this in drivers
1358  *
1359  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1360  *
1361  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1362  *				instead of ioctl,
1363  *				see <net/iw_handler.h> for details.
1364  *	@wireless_data:	Instance data managed by the core of wireless extensions
1365  *
1366  *	@netdev_ops:	Includes several pointers to callbacks,
1367  *			if one wants to override the ndo_*() functions
1368  *	@ethtool_ops:	Management operations
1369  *	@fwd_ops:	Management operations
1370  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1371  *			of Layer 2 headers.
1372  *
1373  *	@flags:		Interface flags (a la BSD)
1374  *	@priv_flags:	Like 'flags' but invisible to userspace,
1375  *			see if.h for the definitions
1376  *	@gflags:	Global flags ( kept as legacy )
1377  *	@padded:	How much padding added by alloc_netdev()
1378  *	@operstate:	RFC2863 operstate
1379  *	@link_mode:	Mapping policy to operstate
1380  *	@if_port:	Selectable AUI, TP, ...
1381  *	@dma:		DMA channel
1382  *	@mtu:		Interface MTU value
1383  *	@type:		Interface hardware type
1384  *	@hard_header_len: Hardware header length
1385  *
1386  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1387  *			  cases can this be guaranteed
1388  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1389  *			  cases can this be guaranteed. Some cases also use
1390  *			  LL_MAX_HEADER instead to allocate the skb
1391  *
1392  *	interface address info:
1393  *
1394  * 	@perm_addr:		Permanent hw address
1395  * 	@addr_assign_type:	Hw address assignment type
1396  * 	@addr_len:		Hardware address length
1397  * 	@neigh_priv_len;	Used in neigh_alloc(),
1398  * 				initialized only in atm/clip.c
1399  * 	@dev_id:		Used to differentiate devices that share
1400  * 				the same link layer address
1401  * 	@dev_port:		Used to differentiate devices that share
1402  * 				the same function
1403  *	@addr_list_lock:	XXX: need comments on this one
1404  *	@uc:			unicast mac addresses
1405  *	@mc:			multicast mac addresses
1406  *	@dev_addrs:		list of device hw addresses
1407  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1408  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1409  *				has been enabled due to the need to listen to
1410  *				additional unicast addresses in a device that
1411  *				does not implement ndo_set_rx_mode()
1412  *	@promiscuity:		Number of times, the NIC is told to work in
1413  *				Promiscuous mode, if it becomes 0 the NIC will
1414  *				exit from working in Promiscuous mode
1415  *	@allmulti:		Counter, enables or disables allmulticast mode
1416  *
1417  *	@vlan_info:	VLAN info
1418  *	@dsa_ptr:	dsa specific data
1419  *	@tipc_ptr:	TIPC specific data
1420  *	@atalk_ptr:	AppleTalk link
1421  *	@ip_ptr:	IPv4 specific data
1422  *	@dn_ptr:	DECnet specific data
1423  *	@ip6_ptr:	IPv6 specific data
1424  *	@ax25_ptr:	AX.25 specific data
1425  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1426  *
1427  *	@last_rx:	Time of last Rx
1428  *	@dev_addr:	Hw address (before bcast,
1429  *			because most packets are unicast)
1430  *
1431  *	@_rx:			Array of RX queues
1432  *	@num_rx_queues:		Number of RX queues
1433  *				allocated at register_netdev() time
1434  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1435  *
1436  *	@rx_handler:		handler for received packets
1437  *	@rx_handler_data: 	XXX: need comments on this one
1438  *	@ingress_queue:		XXX: need comments on this one
1439  *	@broadcast:		hw bcast address
1440  *
1441  *	@_tx:			Array of TX queues
1442  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1443  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1444  *	@qdisc:			Root qdisc from userspace point of view
1445  *	@tx_queue_len:		Max frames per queue allowed
1446  *	@tx_global_lock: 	XXX: need comments on this one
1447  *
1448  *	@xps_maps:	XXX: need comments on this one
1449  *
1450  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1451  *			indexed by RX queue number. Assigned by driver.
1452  *			This must only be set if the ndo_rx_flow_steer
1453  *			operation is defined
1454  *
1455  *	@trans_start:		Time (in jiffies) of last Tx
1456  *	@watchdog_timeo:	Represents the timeout that is used by
1457  *				the watchdog ( see dev_watchdog() )
1458  *	@watchdog_timer:	List of timers
1459  *
1460  *	@pcpu_refcnt:		Number of references to this device
1461  *	@todo_list:		Delayed register/unregister
1462  *	@index_hlist:		Device index hash chain
1463  *	@link_watch_list:	XXX: need comments on this one
1464  *
1465  *	@reg_state:		Register/unregister state machine
1466  *	@dismantle:		Device is going to be freed
1467  *	@rtnl_link_state:	This enum represents the phases of creating
1468  *				a new link
1469  *
1470  *	@destructor:		Called from unregister,
1471  *				can be used to call free_netdev
1472  *	@npinfo:		XXX: need comments on this one
1473  * 	@nd_net:		Network namespace this network device is inside
1474  *
1475  * 	@ml_priv:	Mid-layer private
1476  * 	@lstats:	Loopback statistics
1477  * 	@tstats:	Tunnel statistics
1478  * 	@dstats:	Dummy statistics
1479  * 	@vstats:	Virtual ethernet statistics
1480  *
1481  *	@garp_port:	GARP
1482  *	@mrp_port:	MRP
1483  *
1484  *	@dev:		Class/net/name entry
1485  *	@sysfs_groups:	Space for optional device, statistics and wireless
1486  *			sysfs groups
1487  *
1488  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1489  *	@rtnl_link_ops:	Rtnl_link_ops
1490  *
1491  *	@gso_max_size:	Maximum size of generic segmentation offload
1492  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1493  *			NIC for GSO
1494  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1495  *			NIC for GSO
1496  *
1497  *	@dcbnl_ops:	Data Center Bridging netlink ops
1498  *	@num_tc:	Number of traffic classes in the net device
1499  *	@tc_to_txq:	XXX: need comments on this one
1500  *	@prio_tc_map	XXX: need comments on this one
1501  *
1502  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1503  *
1504  *	@priomap:	XXX: need comments on this one
1505  *	@phydev:	Physical device may attach itself
1506  *			for hardware timestamping
1507  *
1508  *	@qdisc_tx_busylock:	XXX: need comments on this one
1509  *
1510  *	@group:		The group, that the device belongs to
1511  *	@pm_qos_req:	Power Management QoS object
1512  *
1513  *	FIXME: cleanup struct net_device such that network protocol info
1514  *	moves out.
1515  */
1516 
1517 struct net_device {
1518 	char			name[IFNAMSIZ];
1519 	struct hlist_node	name_hlist;
1520 	char 			*ifalias;
1521 	/*
1522 	 *	I/O specific fields
1523 	 *	FIXME: Merge these and struct ifmap into one
1524 	 */
1525 	unsigned long		mem_end;
1526 	unsigned long		mem_start;
1527 	unsigned long		base_addr;
1528 	int			irq;
1529 
1530 	/*
1531 	 *	Some hardware also needs these fields (state,dev_list,
1532 	 *	napi_list,unreg_list,close_list) but they are not
1533 	 *	part of the usual set specified in Space.c.
1534 	 */
1535 
1536 	unsigned long		state;
1537 
1538 	struct list_head	dev_list;
1539 	struct list_head	napi_list;
1540 	struct list_head	unreg_list;
1541 	struct list_head	close_list;
1542 	struct list_head	ptype_all;
1543 	struct list_head	ptype_specific;
1544 
1545 	struct {
1546 		struct list_head upper;
1547 		struct list_head lower;
1548 	} adj_list;
1549 
1550 	struct {
1551 		struct list_head upper;
1552 		struct list_head lower;
1553 	} all_adj_list;
1554 
1555 	netdev_features_t	features;
1556 	netdev_features_t	hw_features;
1557 	netdev_features_t	wanted_features;
1558 	netdev_features_t	vlan_features;
1559 	netdev_features_t	hw_enc_features;
1560 	netdev_features_t	mpls_features;
1561 
1562 	int			ifindex;
1563 	int			iflink;
1564 
1565 	struct net_device_stats	stats;
1566 
1567 	atomic_long_t		rx_dropped;
1568 	atomic_long_t		tx_dropped;
1569 
1570 	atomic_t		carrier_changes;
1571 
1572 #ifdef CONFIG_WIRELESS_EXT
1573 	const struct iw_handler_def *	wireless_handlers;
1574 	struct iw_public_data *	wireless_data;
1575 #endif
1576 	const struct net_device_ops *netdev_ops;
1577 	const struct ethtool_ops *ethtool_ops;
1578 	const struct forwarding_accel_ops *fwd_ops;
1579 
1580 	const struct header_ops *header_ops;
1581 
1582 	unsigned int		flags;
1583 	unsigned int		priv_flags;
1584 
1585 	unsigned short		gflags;
1586 	unsigned short		padded;
1587 
1588 	unsigned char		operstate;
1589 	unsigned char		link_mode;
1590 
1591 	unsigned char		if_port;
1592 	unsigned char		dma;
1593 
1594 	unsigned int		mtu;
1595 	unsigned short		type;
1596 	unsigned short		hard_header_len;
1597 
1598 	unsigned short		needed_headroom;
1599 	unsigned short		needed_tailroom;
1600 
1601 	/* Interface address info. */
1602 	unsigned char		perm_addr[MAX_ADDR_LEN];
1603 	unsigned char		addr_assign_type;
1604 	unsigned char		addr_len;
1605 	unsigned short		neigh_priv_len;
1606 	unsigned short          dev_id;
1607 	unsigned short          dev_port;
1608 	spinlock_t		addr_list_lock;
1609 	struct netdev_hw_addr_list	uc;
1610 	struct netdev_hw_addr_list	mc;
1611 	struct netdev_hw_addr_list	dev_addrs;
1612 
1613 #ifdef CONFIG_SYSFS
1614 	struct kset		*queues_kset;
1615 #endif
1616 
1617 	unsigned char		name_assign_type;
1618 
1619 	bool			uc_promisc;
1620 	unsigned int		promiscuity;
1621 	unsigned int		allmulti;
1622 
1623 
1624 	/* Protocol specific pointers */
1625 
1626 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1627 	struct vlan_info __rcu	*vlan_info;
1628 #endif
1629 #if IS_ENABLED(CONFIG_NET_DSA)
1630 	struct dsa_switch_tree	*dsa_ptr;
1631 #endif
1632 #if IS_ENABLED(CONFIG_TIPC)
1633 	struct tipc_bearer __rcu *tipc_ptr;
1634 #endif
1635 	void 			*atalk_ptr;
1636 	struct in_device __rcu	*ip_ptr;
1637 	struct dn_dev __rcu     *dn_ptr;
1638 	struct inet6_dev __rcu	*ip6_ptr;
1639 	void			*ax25_ptr;
1640 	struct wireless_dev	*ieee80211_ptr;
1641 	struct wpan_dev		*ieee802154_ptr;
1642 
1643 /*
1644  * Cache lines mostly used on receive path (including eth_type_trans())
1645  */
1646 	unsigned long		last_rx;
1647 
1648 	/* Interface address info used in eth_type_trans() */
1649 	unsigned char		*dev_addr;
1650 
1651 
1652 #ifdef CONFIG_SYSFS
1653 	struct netdev_rx_queue	*_rx;
1654 
1655 	unsigned int		num_rx_queues;
1656 	unsigned int		real_num_rx_queues;
1657 
1658 #endif
1659 
1660 	unsigned long		gro_flush_timeout;
1661 	rx_handler_func_t __rcu	*rx_handler;
1662 	void __rcu		*rx_handler_data;
1663 
1664 	struct netdev_queue __rcu *ingress_queue;
1665 	unsigned char		broadcast[MAX_ADDR_LEN];
1666 
1667 
1668 /*
1669  * Cache lines mostly used on transmit path
1670  */
1671 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1672 	unsigned int		num_tx_queues;
1673 	unsigned int		real_num_tx_queues;
1674 	struct Qdisc		*qdisc;
1675 	unsigned long		tx_queue_len;
1676 	spinlock_t		tx_global_lock;
1677 
1678 #ifdef CONFIG_XPS
1679 	struct xps_dev_maps __rcu *xps_maps;
1680 #endif
1681 #ifdef CONFIG_RFS_ACCEL
1682 	struct cpu_rmap		*rx_cpu_rmap;
1683 #endif
1684 
1685 	/* These may be needed for future network-power-down code. */
1686 
1687 	/*
1688 	 * trans_start here is expensive for high speed devices on SMP,
1689 	 * please use netdev_queue->trans_start instead.
1690 	 */
1691 	unsigned long		trans_start;
1692 
1693 	int			watchdog_timeo;
1694 	struct timer_list	watchdog_timer;
1695 
1696 	int __percpu		*pcpu_refcnt;
1697 	struct list_head	todo_list;
1698 
1699 	struct hlist_node	index_hlist;
1700 	struct list_head	link_watch_list;
1701 
1702 	enum { NETREG_UNINITIALIZED=0,
1703 	       NETREG_REGISTERED,	/* completed register_netdevice */
1704 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1705 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1706 	       NETREG_RELEASED,		/* called free_netdev */
1707 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1708 	} reg_state:8;
1709 
1710 	bool dismantle;
1711 
1712 	enum {
1713 		RTNL_LINK_INITIALIZED,
1714 		RTNL_LINK_INITIALIZING,
1715 	} rtnl_link_state:16;
1716 
1717 	void (*destructor)(struct net_device *dev);
1718 
1719 #ifdef CONFIG_NETPOLL
1720 	struct netpoll_info __rcu	*npinfo;
1721 #endif
1722 
1723 #ifdef CONFIG_NET_NS
1724 	struct net		*nd_net;
1725 #endif
1726 
1727 	/* mid-layer private */
1728 	union {
1729 		void					*ml_priv;
1730 		struct pcpu_lstats __percpu		*lstats;
1731 		struct pcpu_sw_netstats __percpu	*tstats;
1732 		struct pcpu_dstats __percpu		*dstats;
1733 		struct pcpu_vstats __percpu		*vstats;
1734 	};
1735 
1736 	struct garp_port __rcu	*garp_port;
1737 	struct mrp_port __rcu	*mrp_port;
1738 
1739 	struct device	dev;
1740 	const struct attribute_group *sysfs_groups[4];
1741 	const struct attribute_group *sysfs_rx_queue_group;
1742 
1743 	const struct rtnl_link_ops *rtnl_link_ops;
1744 
1745 	/* for setting kernel sock attribute on TCP connection setup */
1746 #define GSO_MAX_SIZE		65536
1747 	unsigned int		gso_max_size;
1748 #define GSO_MAX_SEGS		65535
1749 	u16			gso_max_segs;
1750 	u16			gso_min_segs;
1751 #ifdef CONFIG_DCB
1752 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1753 #endif
1754 	u8 num_tc;
1755 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1756 	u8 prio_tc_map[TC_BITMASK + 1];
1757 
1758 #if IS_ENABLED(CONFIG_FCOE)
1759 	unsigned int		fcoe_ddp_xid;
1760 #endif
1761 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1762 	struct netprio_map __rcu *priomap;
1763 #endif
1764 	struct phy_device *phydev;
1765 	struct lock_class_key *qdisc_tx_busylock;
1766 	int group;
1767 	struct pm_qos_request	pm_qos_req;
1768 };
1769 #define to_net_dev(d) container_of(d, struct net_device, dev)
1770 
1771 #define	NETDEV_ALIGN		32
1772 
1773 static inline
1774 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1775 {
1776 	return dev->prio_tc_map[prio & TC_BITMASK];
1777 }
1778 
1779 static inline
1780 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1781 {
1782 	if (tc >= dev->num_tc)
1783 		return -EINVAL;
1784 
1785 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1786 	return 0;
1787 }
1788 
1789 static inline
1790 void netdev_reset_tc(struct net_device *dev)
1791 {
1792 	dev->num_tc = 0;
1793 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1794 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1795 }
1796 
1797 static inline
1798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1799 {
1800 	if (tc >= dev->num_tc)
1801 		return -EINVAL;
1802 
1803 	dev->tc_to_txq[tc].count = count;
1804 	dev->tc_to_txq[tc].offset = offset;
1805 	return 0;
1806 }
1807 
1808 static inline
1809 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1810 {
1811 	if (num_tc > TC_MAX_QUEUE)
1812 		return -EINVAL;
1813 
1814 	dev->num_tc = num_tc;
1815 	return 0;
1816 }
1817 
1818 static inline
1819 int netdev_get_num_tc(struct net_device *dev)
1820 {
1821 	return dev->num_tc;
1822 }
1823 
1824 static inline
1825 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1826 					 unsigned int index)
1827 {
1828 	return &dev->_tx[index];
1829 }
1830 
1831 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1832 						    const struct sk_buff *skb)
1833 {
1834 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1835 }
1836 
1837 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1838 					    void (*f)(struct net_device *,
1839 						      struct netdev_queue *,
1840 						      void *),
1841 					    void *arg)
1842 {
1843 	unsigned int i;
1844 
1845 	for (i = 0; i < dev->num_tx_queues; i++)
1846 		f(dev, &dev->_tx[i], arg);
1847 }
1848 
1849 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1850 				    struct sk_buff *skb,
1851 				    void *accel_priv);
1852 
1853 /*
1854  * Net namespace inlines
1855  */
1856 static inline
1857 struct net *dev_net(const struct net_device *dev)
1858 {
1859 	return read_pnet(&dev->nd_net);
1860 }
1861 
1862 static inline
1863 void dev_net_set(struct net_device *dev, struct net *net)
1864 {
1865 #ifdef CONFIG_NET_NS
1866 	release_net(dev->nd_net);
1867 	dev->nd_net = hold_net(net);
1868 #endif
1869 }
1870 
1871 static inline bool netdev_uses_dsa(struct net_device *dev)
1872 {
1873 #if IS_ENABLED(CONFIG_NET_DSA)
1874 	if (dev->dsa_ptr != NULL)
1875 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1876 #endif
1877 	return false;
1878 }
1879 
1880 /**
1881  *	netdev_priv - access network device private data
1882  *	@dev: network device
1883  *
1884  * Get network device private data
1885  */
1886 static inline void *netdev_priv(const struct net_device *dev)
1887 {
1888 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1889 }
1890 
1891 /* Set the sysfs physical device reference for the network logical device
1892  * if set prior to registration will cause a symlink during initialization.
1893  */
1894 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1895 
1896 /* Set the sysfs device type for the network logical device to allow
1897  * fine-grained identification of different network device types. For
1898  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1899  */
1900 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1901 
1902 /* Default NAPI poll() weight
1903  * Device drivers are strongly advised to not use bigger value
1904  */
1905 #define NAPI_POLL_WEIGHT 64
1906 
1907 /**
1908  *	netif_napi_add - initialize a napi context
1909  *	@dev:  network device
1910  *	@napi: napi context
1911  *	@poll: polling function
1912  *	@weight: default weight
1913  *
1914  * netif_napi_add() must be used to initialize a napi context prior to calling
1915  * *any* of the other napi related functions.
1916  */
1917 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1918 		    int (*poll)(struct napi_struct *, int), int weight);
1919 
1920 /**
1921  *  netif_napi_del - remove a napi context
1922  *  @napi: napi context
1923  *
1924  *  netif_napi_del() removes a napi context from the network device napi list
1925  */
1926 void netif_napi_del(struct napi_struct *napi);
1927 
1928 struct napi_gro_cb {
1929 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1930 	void *frag0;
1931 
1932 	/* Length of frag0. */
1933 	unsigned int frag0_len;
1934 
1935 	/* This indicates where we are processing relative to skb->data. */
1936 	int data_offset;
1937 
1938 	/* This is non-zero if the packet cannot be merged with the new skb. */
1939 	u16	flush;
1940 
1941 	/* Save the IP ID here and check when we get to the transport layer */
1942 	u16	flush_id;
1943 
1944 	/* Number of segments aggregated. */
1945 	u16	count;
1946 
1947 	/* Start offset for remote checksum offload */
1948 	u16	gro_remcsum_start;
1949 
1950 	/* jiffies when first packet was created/queued */
1951 	unsigned long age;
1952 
1953 	/* Used in ipv6_gro_receive() and foo-over-udp */
1954 	u16	proto;
1955 
1956 	/* This is non-zero if the packet may be of the same flow. */
1957 	u8	same_flow:1;
1958 
1959 	/* Used in udp_gro_receive */
1960 	u8	udp_mark:1;
1961 
1962 	/* GRO checksum is valid */
1963 	u8	csum_valid:1;
1964 
1965 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1966 	u8	csum_cnt:3;
1967 
1968 	/* Free the skb? */
1969 	u8	free:2;
1970 #define NAPI_GRO_FREE		  1
1971 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1972 
1973 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1974 	u8	is_ipv6:1;
1975 
1976 	/* 7 bit hole */
1977 
1978 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1979 	__wsum	csum;
1980 
1981 	/* used in skb_gro_receive() slow path */
1982 	struct sk_buff *last;
1983 };
1984 
1985 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1986 
1987 struct packet_type {
1988 	__be16			type;	/* This is really htons(ether_type). */
1989 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1990 	int			(*func) (struct sk_buff *,
1991 					 struct net_device *,
1992 					 struct packet_type *,
1993 					 struct net_device *);
1994 	bool			(*id_match)(struct packet_type *ptype,
1995 					    struct sock *sk);
1996 	void			*af_packet_priv;
1997 	struct list_head	list;
1998 };
1999 
2000 struct offload_callbacks {
2001 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2002 						netdev_features_t features);
2003 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2004 						 struct sk_buff *skb);
2005 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2006 };
2007 
2008 struct packet_offload {
2009 	__be16			 type;	/* This is really htons(ether_type). */
2010 	struct offload_callbacks callbacks;
2011 	struct list_head	 list;
2012 };
2013 
2014 struct udp_offload;
2015 
2016 struct udp_offload_callbacks {
2017 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2018 						 struct sk_buff *skb,
2019 						 struct udp_offload *uoff);
2020 	int			(*gro_complete)(struct sk_buff *skb,
2021 						int nhoff,
2022 						struct udp_offload *uoff);
2023 };
2024 
2025 struct udp_offload {
2026 	__be16			 port;
2027 	u8			 ipproto;
2028 	struct udp_offload_callbacks callbacks;
2029 };
2030 
2031 /* often modified stats are per cpu, other are shared (netdev->stats) */
2032 struct pcpu_sw_netstats {
2033 	u64     rx_packets;
2034 	u64     rx_bytes;
2035 	u64     tx_packets;
2036 	u64     tx_bytes;
2037 	struct u64_stats_sync   syncp;
2038 };
2039 
2040 #define netdev_alloc_pcpu_stats(type)				\
2041 ({								\
2042 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2043 	if (pcpu_stats)	{					\
2044 		int i;						\
2045 		for_each_possible_cpu(i) {			\
2046 			typeof(type) *stat;			\
2047 			stat = per_cpu_ptr(pcpu_stats, i);	\
2048 			u64_stats_init(&stat->syncp);		\
2049 		}						\
2050 	}							\
2051 	pcpu_stats;						\
2052 })
2053 
2054 #include <linux/notifier.h>
2055 
2056 /* netdevice notifier chain. Please remember to update the rtnetlink
2057  * notification exclusion list in rtnetlink_event() when adding new
2058  * types.
2059  */
2060 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2061 #define NETDEV_DOWN	0x0002
2062 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2063 				   detected a hardware crash and restarted
2064 				   - we can use this eg to kick tcp sessions
2065 				   once done */
2066 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2067 #define NETDEV_REGISTER 0x0005
2068 #define NETDEV_UNREGISTER	0x0006
2069 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2070 #define NETDEV_CHANGEADDR	0x0008
2071 #define NETDEV_GOING_DOWN	0x0009
2072 #define NETDEV_CHANGENAME	0x000A
2073 #define NETDEV_FEAT_CHANGE	0x000B
2074 #define NETDEV_BONDING_FAILOVER 0x000C
2075 #define NETDEV_PRE_UP		0x000D
2076 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2077 #define NETDEV_POST_TYPE_CHANGE	0x000F
2078 #define NETDEV_POST_INIT	0x0010
2079 #define NETDEV_UNREGISTER_FINAL 0x0011
2080 #define NETDEV_RELEASE		0x0012
2081 #define NETDEV_NOTIFY_PEERS	0x0013
2082 #define NETDEV_JOIN		0x0014
2083 #define NETDEV_CHANGEUPPER	0x0015
2084 #define NETDEV_RESEND_IGMP	0x0016
2085 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2086 #define NETDEV_CHANGEINFODATA	0x0018
2087 #define NETDEV_BONDING_INFO	0x0019
2088 
2089 int register_netdevice_notifier(struct notifier_block *nb);
2090 int unregister_netdevice_notifier(struct notifier_block *nb);
2091 
2092 struct netdev_notifier_info {
2093 	struct net_device *dev;
2094 };
2095 
2096 struct netdev_notifier_change_info {
2097 	struct netdev_notifier_info info; /* must be first */
2098 	unsigned int flags_changed;
2099 };
2100 
2101 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2102 					     struct net_device *dev)
2103 {
2104 	info->dev = dev;
2105 }
2106 
2107 static inline struct net_device *
2108 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2109 {
2110 	return info->dev;
2111 }
2112 
2113 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2114 
2115 
2116 extern rwlock_t				dev_base_lock;		/* Device list lock */
2117 
2118 #define for_each_netdev(net, d)		\
2119 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2120 #define for_each_netdev_reverse(net, d)	\
2121 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2122 #define for_each_netdev_rcu(net, d)		\
2123 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2124 #define for_each_netdev_safe(net, d, n)	\
2125 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2126 #define for_each_netdev_continue(net, d)		\
2127 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2128 #define for_each_netdev_continue_rcu(net, d)		\
2129 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2130 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2131 		for_each_netdev_rcu(&init_net, slave)	\
2132 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2133 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2134 
2135 static inline struct net_device *next_net_device(struct net_device *dev)
2136 {
2137 	struct list_head *lh;
2138 	struct net *net;
2139 
2140 	net = dev_net(dev);
2141 	lh = dev->dev_list.next;
2142 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2143 }
2144 
2145 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2146 {
2147 	struct list_head *lh;
2148 	struct net *net;
2149 
2150 	net = dev_net(dev);
2151 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2152 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2153 }
2154 
2155 static inline struct net_device *first_net_device(struct net *net)
2156 {
2157 	return list_empty(&net->dev_base_head) ? NULL :
2158 		net_device_entry(net->dev_base_head.next);
2159 }
2160 
2161 static inline struct net_device *first_net_device_rcu(struct net *net)
2162 {
2163 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2164 
2165 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2166 }
2167 
2168 int netdev_boot_setup_check(struct net_device *dev);
2169 unsigned long netdev_boot_base(const char *prefix, int unit);
2170 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2171 				       const char *hwaddr);
2172 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2173 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2174 void dev_add_pack(struct packet_type *pt);
2175 void dev_remove_pack(struct packet_type *pt);
2176 void __dev_remove_pack(struct packet_type *pt);
2177 void dev_add_offload(struct packet_offload *po);
2178 void dev_remove_offload(struct packet_offload *po);
2179 
2180 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2181 				      unsigned short mask);
2182 struct net_device *dev_get_by_name(struct net *net, const char *name);
2183 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2184 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2185 int dev_alloc_name(struct net_device *dev, const char *name);
2186 int dev_open(struct net_device *dev);
2187 int dev_close(struct net_device *dev);
2188 void dev_disable_lro(struct net_device *dev);
2189 int dev_loopback_xmit(struct sk_buff *newskb);
2190 int dev_queue_xmit(struct sk_buff *skb);
2191 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2192 int register_netdevice(struct net_device *dev);
2193 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2194 void unregister_netdevice_many(struct list_head *head);
2195 static inline void unregister_netdevice(struct net_device *dev)
2196 {
2197 	unregister_netdevice_queue(dev, NULL);
2198 }
2199 
2200 int netdev_refcnt_read(const struct net_device *dev);
2201 void free_netdev(struct net_device *dev);
2202 void netdev_freemem(struct net_device *dev);
2203 void synchronize_net(void);
2204 int init_dummy_netdev(struct net_device *dev);
2205 
2206 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2207 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2208 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2209 int netdev_get_name(struct net *net, char *name, int ifindex);
2210 int dev_restart(struct net_device *dev);
2211 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2212 
2213 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2214 {
2215 	return NAPI_GRO_CB(skb)->data_offset;
2216 }
2217 
2218 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2219 {
2220 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2221 }
2222 
2223 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2224 {
2225 	NAPI_GRO_CB(skb)->data_offset += len;
2226 }
2227 
2228 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2229 					unsigned int offset)
2230 {
2231 	return NAPI_GRO_CB(skb)->frag0 + offset;
2232 }
2233 
2234 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2235 {
2236 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2237 }
2238 
2239 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2240 					unsigned int offset)
2241 {
2242 	if (!pskb_may_pull(skb, hlen))
2243 		return NULL;
2244 
2245 	NAPI_GRO_CB(skb)->frag0 = NULL;
2246 	NAPI_GRO_CB(skb)->frag0_len = 0;
2247 	return skb->data + offset;
2248 }
2249 
2250 static inline void *skb_gro_network_header(struct sk_buff *skb)
2251 {
2252 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2253 	       skb_network_offset(skb);
2254 }
2255 
2256 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2257 					const void *start, unsigned int len)
2258 {
2259 	if (NAPI_GRO_CB(skb)->csum_valid)
2260 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2261 						  csum_partial(start, len, 0));
2262 }
2263 
2264 /* GRO checksum functions. These are logical equivalents of the normal
2265  * checksum functions (in skbuff.h) except that they operate on the GRO
2266  * offsets and fields in sk_buff.
2267  */
2268 
2269 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2270 
2271 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2272 {
2273 	return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2274 		skb_gro_offset(skb));
2275 }
2276 
2277 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2278 						      bool zero_okay,
2279 						      __sum16 check)
2280 {
2281 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2282 		skb_checksum_start_offset(skb) <
2283 		 skb_gro_offset(skb)) &&
2284 		!skb_at_gro_remcsum_start(skb) &&
2285 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2286 		(!zero_okay || check));
2287 }
2288 
2289 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2290 							   __wsum psum)
2291 {
2292 	if (NAPI_GRO_CB(skb)->csum_valid &&
2293 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2294 		return 0;
2295 
2296 	NAPI_GRO_CB(skb)->csum = psum;
2297 
2298 	return __skb_gro_checksum_complete(skb);
2299 }
2300 
2301 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2302 {
2303 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2304 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2305 		NAPI_GRO_CB(skb)->csum_cnt--;
2306 	} else {
2307 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2308 		 * verified a new top level checksum or an encapsulated one
2309 		 * during GRO. This saves work if we fallback to normal path.
2310 		 */
2311 		__skb_incr_checksum_unnecessary(skb);
2312 	}
2313 }
2314 
2315 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2316 				    compute_pseudo)			\
2317 ({									\
2318 	__sum16 __ret = 0;						\
2319 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2320 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2321 				compute_pseudo(skb, proto));		\
2322 	if (__ret)							\
2323 		__skb_mark_checksum_bad(skb);				\
2324 	else								\
2325 		skb_gro_incr_csum_unnecessary(skb);			\
2326 	__ret;								\
2327 })
2328 
2329 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2330 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2331 
2332 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2333 					     compute_pseudo)		\
2334 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2335 
2336 #define skb_gro_checksum_simple_validate(skb)				\
2337 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2338 
2339 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2340 {
2341 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2342 		!NAPI_GRO_CB(skb)->csum_valid);
2343 }
2344 
2345 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2346 					      __sum16 check, __wsum pseudo)
2347 {
2348 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2349 	NAPI_GRO_CB(skb)->csum_valid = 1;
2350 }
2351 
2352 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2353 do {									\
2354 	if (__skb_gro_checksum_convert_check(skb))			\
2355 		__skb_gro_checksum_convert(skb, check,			\
2356 					   compute_pseudo(skb, proto));	\
2357 } while (0)
2358 
2359 struct gro_remcsum {
2360 	int offset;
2361 	__wsum delta;
2362 };
2363 
2364 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2365 {
2366 	grc->offset = 0;
2367 	grc->delta = 0;
2368 }
2369 
2370 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2371 					   int start, int offset,
2372 					   struct gro_remcsum *grc,
2373 					   bool nopartial)
2374 {
2375 	__wsum delta;
2376 
2377 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2378 
2379 	if (!nopartial) {
2380 		NAPI_GRO_CB(skb)->gro_remcsum_start =
2381 		    ((unsigned char *)ptr + start) - skb->head;
2382 		return;
2383 	}
2384 
2385 	delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2386 
2387 	/* Adjust skb->csum since we changed the packet */
2388 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2389 
2390 	grc->offset = (ptr + offset) - (void *)skb->head;
2391 	grc->delta = delta;
2392 }
2393 
2394 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2395 					   struct gro_remcsum *grc)
2396 {
2397 	if (!grc->delta)
2398 		return;
2399 
2400 	remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2401 }
2402 
2403 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2404 				  unsigned short type,
2405 				  const void *daddr, const void *saddr,
2406 				  unsigned int len)
2407 {
2408 	if (!dev->header_ops || !dev->header_ops->create)
2409 		return 0;
2410 
2411 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2412 }
2413 
2414 static inline int dev_parse_header(const struct sk_buff *skb,
2415 				   unsigned char *haddr)
2416 {
2417 	const struct net_device *dev = skb->dev;
2418 
2419 	if (!dev->header_ops || !dev->header_ops->parse)
2420 		return 0;
2421 	return dev->header_ops->parse(skb, haddr);
2422 }
2423 
2424 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2425 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2426 static inline int unregister_gifconf(unsigned int family)
2427 {
2428 	return register_gifconf(family, NULL);
2429 }
2430 
2431 #ifdef CONFIG_NET_FLOW_LIMIT
2432 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2433 struct sd_flow_limit {
2434 	u64			count;
2435 	unsigned int		num_buckets;
2436 	unsigned int		history_head;
2437 	u16			history[FLOW_LIMIT_HISTORY];
2438 	u8			buckets[];
2439 };
2440 
2441 extern int netdev_flow_limit_table_len;
2442 #endif /* CONFIG_NET_FLOW_LIMIT */
2443 
2444 /*
2445  * Incoming packets are placed on per-cpu queues
2446  */
2447 struct softnet_data {
2448 	struct list_head	poll_list;
2449 	struct sk_buff_head	process_queue;
2450 
2451 	/* stats */
2452 	unsigned int		processed;
2453 	unsigned int		time_squeeze;
2454 	unsigned int		cpu_collision;
2455 	unsigned int		received_rps;
2456 #ifdef CONFIG_RPS
2457 	struct softnet_data	*rps_ipi_list;
2458 #endif
2459 #ifdef CONFIG_NET_FLOW_LIMIT
2460 	struct sd_flow_limit __rcu *flow_limit;
2461 #endif
2462 	struct Qdisc		*output_queue;
2463 	struct Qdisc		**output_queue_tailp;
2464 	struct sk_buff		*completion_queue;
2465 
2466 #ifdef CONFIG_RPS
2467 	/* Elements below can be accessed between CPUs for RPS */
2468 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2469 	struct softnet_data	*rps_ipi_next;
2470 	unsigned int		cpu;
2471 	unsigned int		input_queue_head;
2472 	unsigned int		input_queue_tail;
2473 #endif
2474 	unsigned int		dropped;
2475 	struct sk_buff_head	input_pkt_queue;
2476 	struct napi_struct	backlog;
2477 
2478 };
2479 
2480 static inline void input_queue_head_incr(struct softnet_data *sd)
2481 {
2482 #ifdef CONFIG_RPS
2483 	sd->input_queue_head++;
2484 #endif
2485 }
2486 
2487 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2488 					      unsigned int *qtail)
2489 {
2490 #ifdef CONFIG_RPS
2491 	*qtail = ++sd->input_queue_tail;
2492 #endif
2493 }
2494 
2495 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2496 
2497 void __netif_schedule(struct Qdisc *q);
2498 void netif_schedule_queue(struct netdev_queue *txq);
2499 
2500 static inline void netif_tx_schedule_all(struct net_device *dev)
2501 {
2502 	unsigned int i;
2503 
2504 	for (i = 0; i < dev->num_tx_queues; i++)
2505 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2506 }
2507 
2508 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2509 {
2510 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2511 }
2512 
2513 /**
2514  *	netif_start_queue - allow transmit
2515  *	@dev: network device
2516  *
2517  *	Allow upper layers to call the device hard_start_xmit routine.
2518  */
2519 static inline void netif_start_queue(struct net_device *dev)
2520 {
2521 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2522 }
2523 
2524 static inline void netif_tx_start_all_queues(struct net_device *dev)
2525 {
2526 	unsigned int i;
2527 
2528 	for (i = 0; i < dev->num_tx_queues; i++) {
2529 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2530 		netif_tx_start_queue(txq);
2531 	}
2532 }
2533 
2534 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2535 
2536 /**
2537  *	netif_wake_queue - restart transmit
2538  *	@dev: network device
2539  *
2540  *	Allow upper layers to call the device hard_start_xmit routine.
2541  *	Used for flow control when transmit resources are available.
2542  */
2543 static inline void netif_wake_queue(struct net_device *dev)
2544 {
2545 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2546 }
2547 
2548 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2549 {
2550 	unsigned int i;
2551 
2552 	for (i = 0; i < dev->num_tx_queues; i++) {
2553 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2554 		netif_tx_wake_queue(txq);
2555 	}
2556 }
2557 
2558 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2559 {
2560 	if (WARN_ON(!dev_queue)) {
2561 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2562 		return;
2563 	}
2564 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2565 }
2566 
2567 /**
2568  *	netif_stop_queue - stop transmitted packets
2569  *	@dev: network device
2570  *
2571  *	Stop upper layers calling the device hard_start_xmit routine.
2572  *	Used for flow control when transmit resources are unavailable.
2573  */
2574 static inline void netif_stop_queue(struct net_device *dev)
2575 {
2576 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2577 }
2578 
2579 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2580 {
2581 	unsigned int i;
2582 
2583 	for (i = 0; i < dev->num_tx_queues; i++) {
2584 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2585 		netif_tx_stop_queue(txq);
2586 	}
2587 }
2588 
2589 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2590 {
2591 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2592 }
2593 
2594 /**
2595  *	netif_queue_stopped - test if transmit queue is flowblocked
2596  *	@dev: network device
2597  *
2598  *	Test if transmit queue on device is currently unable to send.
2599  */
2600 static inline bool netif_queue_stopped(const struct net_device *dev)
2601 {
2602 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2603 }
2604 
2605 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2606 {
2607 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2608 }
2609 
2610 static inline bool
2611 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2612 {
2613 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2614 }
2615 
2616 static inline bool
2617 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2618 {
2619 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2620 }
2621 
2622 /**
2623  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2624  *	@dev_queue: pointer to transmit queue
2625  *
2626  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2627  * to give appropriate hint to the cpu.
2628  */
2629 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2630 {
2631 #ifdef CONFIG_BQL
2632 	prefetchw(&dev_queue->dql.num_queued);
2633 #endif
2634 }
2635 
2636 /**
2637  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2638  *	@dev_queue: pointer to transmit queue
2639  *
2640  * BQL enabled drivers might use this helper in their TX completion path,
2641  * to give appropriate hint to the cpu.
2642  */
2643 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2644 {
2645 #ifdef CONFIG_BQL
2646 	prefetchw(&dev_queue->dql.limit);
2647 #endif
2648 }
2649 
2650 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2651 					unsigned int bytes)
2652 {
2653 #ifdef CONFIG_BQL
2654 	dql_queued(&dev_queue->dql, bytes);
2655 
2656 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2657 		return;
2658 
2659 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2660 
2661 	/*
2662 	 * The XOFF flag must be set before checking the dql_avail below,
2663 	 * because in netdev_tx_completed_queue we update the dql_completed
2664 	 * before checking the XOFF flag.
2665 	 */
2666 	smp_mb();
2667 
2668 	/* check again in case another CPU has just made room avail */
2669 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2670 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2671 #endif
2672 }
2673 
2674 /**
2675  * 	netdev_sent_queue - report the number of bytes queued to hardware
2676  * 	@dev: network device
2677  * 	@bytes: number of bytes queued to the hardware device queue
2678  *
2679  * 	Report the number of bytes queued for sending/completion to the network
2680  * 	device hardware queue. @bytes should be a good approximation and should
2681  * 	exactly match netdev_completed_queue() @bytes
2682  */
2683 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2684 {
2685 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2686 }
2687 
2688 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2689 					     unsigned int pkts, unsigned int bytes)
2690 {
2691 #ifdef CONFIG_BQL
2692 	if (unlikely(!bytes))
2693 		return;
2694 
2695 	dql_completed(&dev_queue->dql, bytes);
2696 
2697 	/*
2698 	 * Without the memory barrier there is a small possiblity that
2699 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2700 	 * be stopped forever
2701 	 */
2702 	smp_mb();
2703 
2704 	if (dql_avail(&dev_queue->dql) < 0)
2705 		return;
2706 
2707 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2708 		netif_schedule_queue(dev_queue);
2709 #endif
2710 }
2711 
2712 /**
2713  * 	netdev_completed_queue - report bytes and packets completed by device
2714  * 	@dev: network device
2715  * 	@pkts: actual number of packets sent over the medium
2716  * 	@bytes: actual number of bytes sent over the medium
2717  *
2718  * 	Report the number of bytes and packets transmitted by the network device
2719  * 	hardware queue over the physical medium, @bytes must exactly match the
2720  * 	@bytes amount passed to netdev_sent_queue()
2721  */
2722 static inline void netdev_completed_queue(struct net_device *dev,
2723 					  unsigned int pkts, unsigned int bytes)
2724 {
2725 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2726 }
2727 
2728 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2729 {
2730 #ifdef CONFIG_BQL
2731 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2732 	dql_reset(&q->dql);
2733 #endif
2734 }
2735 
2736 /**
2737  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2738  * 	@dev_queue: network device
2739  *
2740  * 	Reset the bytes and packet count of a network device and clear the
2741  * 	software flow control OFF bit for this network device
2742  */
2743 static inline void netdev_reset_queue(struct net_device *dev_queue)
2744 {
2745 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2746 }
2747 
2748 /**
2749  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2750  * 	@dev: network device
2751  * 	@queue_index: given tx queue index
2752  *
2753  * 	Returns 0 if given tx queue index >= number of device tx queues,
2754  * 	otherwise returns the originally passed tx queue index.
2755  */
2756 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2757 {
2758 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2759 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2760 				     dev->name, queue_index,
2761 				     dev->real_num_tx_queues);
2762 		return 0;
2763 	}
2764 
2765 	return queue_index;
2766 }
2767 
2768 /**
2769  *	netif_running - test if up
2770  *	@dev: network device
2771  *
2772  *	Test if the device has been brought up.
2773  */
2774 static inline bool netif_running(const struct net_device *dev)
2775 {
2776 	return test_bit(__LINK_STATE_START, &dev->state);
2777 }
2778 
2779 /*
2780  * Routines to manage the subqueues on a device.  We only need start
2781  * stop, and a check if it's stopped.  All other device management is
2782  * done at the overall netdevice level.
2783  * Also test the device if we're multiqueue.
2784  */
2785 
2786 /**
2787  *	netif_start_subqueue - allow sending packets on subqueue
2788  *	@dev: network device
2789  *	@queue_index: sub queue index
2790  *
2791  * Start individual transmit queue of a device with multiple transmit queues.
2792  */
2793 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2794 {
2795 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2796 
2797 	netif_tx_start_queue(txq);
2798 }
2799 
2800 /**
2801  *	netif_stop_subqueue - stop sending packets on subqueue
2802  *	@dev: network device
2803  *	@queue_index: sub queue index
2804  *
2805  * Stop individual transmit queue of a device with multiple transmit queues.
2806  */
2807 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2808 {
2809 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2810 	netif_tx_stop_queue(txq);
2811 }
2812 
2813 /**
2814  *	netif_subqueue_stopped - test status of subqueue
2815  *	@dev: network device
2816  *	@queue_index: sub queue index
2817  *
2818  * Check individual transmit queue of a device with multiple transmit queues.
2819  */
2820 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2821 					    u16 queue_index)
2822 {
2823 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2824 
2825 	return netif_tx_queue_stopped(txq);
2826 }
2827 
2828 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2829 					  struct sk_buff *skb)
2830 {
2831 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2832 }
2833 
2834 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2835 
2836 #ifdef CONFIG_XPS
2837 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2838 			u16 index);
2839 #else
2840 static inline int netif_set_xps_queue(struct net_device *dev,
2841 				      const struct cpumask *mask,
2842 				      u16 index)
2843 {
2844 	return 0;
2845 }
2846 #endif
2847 
2848 /*
2849  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2850  * as a distribution range limit for the returned value.
2851  */
2852 static inline u16 skb_tx_hash(const struct net_device *dev,
2853 			      struct sk_buff *skb)
2854 {
2855 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2856 }
2857 
2858 /**
2859  *	netif_is_multiqueue - test if device has multiple transmit queues
2860  *	@dev: network device
2861  *
2862  * Check if device has multiple transmit queues
2863  */
2864 static inline bool netif_is_multiqueue(const struct net_device *dev)
2865 {
2866 	return dev->num_tx_queues > 1;
2867 }
2868 
2869 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2870 
2871 #ifdef CONFIG_SYSFS
2872 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2873 #else
2874 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2875 						unsigned int rxq)
2876 {
2877 	return 0;
2878 }
2879 #endif
2880 
2881 #ifdef CONFIG_SYSFS
2882 static inline unsigned int get_netdev_rx_queue_index(
2883 		struct netdev_rx_queue *queue)
2884 {
2885 	struct net_device *dev = queue->dev;
2886 	int index = queue - dev->_rx;
2887 
2888 	BUG_ON(index >= dev->num_rx_queues);
2889 	return index;
2890 }
2891 #endif
2892 
2893 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2894 int netif_get_num_default_rss_queues(void);
2895 
2896 enum skb_free_reason {
2897 	SKB_REASON_CONSUMED,
2898 	SKB_REASON_DROPPED,
2899 };
2900 
2901 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2902 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2903 
2904 /*
2905  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2906  * interrupt context or with hardware interrupts being disabled.
2907  * (in_irq() || irqs_disabled())
2908  *
2909  * We provide four helpers that can be used in following contexts :
2910  *
2911  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2912  *  replacing kfree_skb(skb)
2913  *
2914  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2915  *  Typically used in place of consume_skb(skb) in TX completion path
2916  *
2917  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2918  *  replacing kfree_skb(skb)
2919  *
2920  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2921  *  and consumed a packet. Used in place of consume_skb(skb)
2922  */
2923 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2924 {
2925 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2926 }
2927 
2928 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2929 {
2930 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2931 }
2932 
2933 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2934 {
2935 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2936 }
2937 
2938 static inline void dev_consume_skb_any(struct sk_buff *skb)
2939 {
2940 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2941 }
2942 
2943 int netif_rx(struct sk_buff *skb);
2944 int netif_rx_ni(struct sk_buff *skb);
2945 int netif_receive_skb(struct sk_buff *skb);
2946 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2947 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2948 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2949 gro_result_t napi_gro_frags(struct napi_struct *napi);
2950 struct packet_offload *gro_find_receive_by_type(__be16 type);
2951 struct packet_offload *gro_find_complete_by_type(__be16 type);
2952 
2953 static inline void napi_free_frags(struct napi_struct *napi)
2954 {
2955 	kfree_skb(napi->skb);
2956 	napi->skb = NULL;
2957 }
2958 
2959 int netdev_rx_handler_register(struct net_device *dev,
2960 			       rx_handler_func_t *rx_handler,
2961 			       void *rx_handler_data);
2962 void netdev_rx_handler_unregister(struct net_device *dev);
2963 
2964 bool dev_valid_name(const char *name);
2965 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2966 int dev_ethtool(struct net *net, struct ifreq *);
2967 unsigned int dev_get_flags(const struct net_device *);
2968 int __dev_change_flags(struct net_device *, unsigned int flags);
2969 int dev_change_flags(struct net_device *, unsigned int);
2970 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2971 			unsigned int gchanges);
2972 int dev_change_name(struct net_device *, const char *);
2973 int dev_set_alias(struct net_device *, const char *, size_t);
2974 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2975 int dev_set_mtu(struct net_device *, int);
2976 void dev_set_group(struct net_device *, int);
2977 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2978 int dev_change_carrier(struct net_device *, bool new_carrier);
2979 int dev_get_phys_port_id(struct net_device *dev,
2980 			 struct netdev_phys_item_id *ppid);
2981 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2982 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2983 				    struct netdev_queue *txq, int *ret);
2984 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2985 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2986 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2987 
2988 extern int		netdev_budget;
2989 
2990 /* Called by rtnetlink.c:rtnl_unlock() */
2991 void netdev_run_todo(void);
2992 
2993 /**
2994  *	dev_put - release reference to device
2995  *	@dev: network device
2996  *
2997  * Release reference to device to allow it to be freed.
2998  */
2999 static inline void dev_put(struct net_device *dev)
3000 {
3001 	this_cpu_dec(*dev->pcpu_refcnt);
3002 }
3003 
3004 /**
3005  *	dev_hold - get reference to device
3006  *	@dev: network device
3007  *
3008  * Hold reference to device to keep it from being freed.
3009  */
3010 static inline void dev_hold(struct net_device *dev)
3011 {
3012 	this_cpu_inc(*dev->pcpu_refcnt);
3013 }
3014 
3015 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3016  * and _off may be called from IRQ context, but it is caller
3017  * who is responsible for serialization of these calls.
3018  *
3019  * The name carrier is inappropriate, these functions should really be
3020  * called netif_lowerlayer_*() because they represent the state of any
3021  * kind of lower layer not just hardware media.
3022  */
3023 
3024 void linkwatch_init_dev(struct net_device *dev);
3025 void linkwatch_fire_event(struct net_device *dev);
3026 void linkwatch_forget_dev(struct net_device *dev);
3027 
3028 /**
3029  *	netif_carrier_ok - test if carrier present
3030  *	@dev: network device
3031  *
3032  * Check if carrier is present on device
3033  */
3034 static inline bool netif_carrier_ok(const struct net_device *dev)
3035 {
3036 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3037 }
3038 
3039 unsigned long dev_trans_start(struct net_device *dev);
3040 
3041 void __netdev_watchdog_up(struct net_device *dev);
3042 
3043 void netif_carrier_on(struct net_device *dev);
3044 
3045 void netif_carrier_off(struct net_device *dev);
3046 
3047 /**
3048  *	netif_dormant_on - mark device as dormant.
3049  *	@dev: network device
3050  *
3051  * Mark device as dormant (as per RFC2863).
3052  *
3053  * The dormant state indicates that the relevant interface is not
3054  * actually in a condition to pass packets (i.e., it is not 'up') but is
3055  * in a "pending" state, waiting for some external event.  For "on-
3056  * demand" interfaces, this new state identifies the situation where the
3057  * interface is waiting for events to place it in the up state.
3058  *
3059  */
3060 static inline void netif_dormant_on(struct net_device *dev)
3061 {
3062 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3063 		linkwatch_fire_event(dev);
3064 }
3065 
3066 /**
3067  *	netif_dormant_off - set device as not dormant.
3068  *	@dev: network device
3069  *
3070  * Device is not in dormant state.
3071  */
3072 static inline void netif_dormant_off(struct net_device *dev)
3073 {
3074 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3075 		linkwatch_fire_event(dev);
3076 }
3077 
3078 /**
3079  *	netif_dormant - test if carrier present
3080  *	@dev: network device
3081  *
3082  * Check if carrier is present on device
3083  */
3084 static inline bool netif_dormant(const struct net_device *dev)
3085 {
3086 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3087 }
3088 
3089 
3090 /**
3091  *	netif_oper_up - test if device is operational
3092  *	@dev: network device
3093  *
3094  * Check if carrier is operational
3095  */
3096 static inline bool netif_oper_up(const struct net_device *dev)
3097 {
3098 	return (dev->operstate == IF_OPER_UP ||
3099 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3100 }
3101 
3102 /**
3103  *	netif_device_present - is device available or removed
3104  *	@dev: network device
3105  *
3106  * Check if device has not been removed from system.
3107  */
3108 static inline bool netif_device_present(struct net_device *dev)
3109 {
3110 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3111 }
3112 
3113 void netif_device_detach(struct net_device *dev);
3114 
3115 void netif_device_attach(struct net_device *dev);
3116 
3117 /*
3118  * Network interface message level settings
3119  */
3120 
3121 enum {
3122 	NETIF_MSG_DRV		= 0x0001,
3123 	NETIF_MSG_PROBE		= 0x0002,
3124 	NETIF_MSG_LINK		= 0x0004,
3125 	NETIF_MSG_TIMER		= 0x0008,
3126 	NETIF_MSG_IFDOWN	= 0x0010,
3127 	NETIF_MSG_IFUP		= 0x0020,
3128 	NETIF_MSG_RX_ERR	= 0x0040,
3129 	NETIF_MSG_TX_ERR	= 0x0080,
3130 	NETIF_MSG_TX_QUEUED	= 0x0100,
3131 	NETIF_MSG_INTR		= 0x0200,
3132 	NETIF_MSG_TX_DONE	= 0x0400,
3133 	NETIF_MSG_RX_STATUS	= 0x0800,
3134 	NETIF_MSG_PKTDATA	= 0x1000,
3135 	NETIF_MSG_HW		= 0x2000,
3136 	NETIF_MSG_WOL		= 0x4000,
3137 };
3138 
3139 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3140 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3141 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3142 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3143 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3144 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3145 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3146 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3147 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3148 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3149 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3150 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3151 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3152 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3153 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3154 
3155 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3156 {
3157 	/* use default */
3158 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3159 		return default_msg_enable_bits;
3160 	if (debug_value == 0)	/* no output */
3161 		return 0;
3162 	/* set low N bits */
3163 	return (1 << debug_value) - 1;
3164 }
3165 
3166 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3167 {
3168 	spin_lock(&txq->_xmit_lock);
3169 	txq->xmit_lock_owner = cpu;
3170 }
3171 
3172 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3173 {
3174 	spin_lock_bh(&txq->_xmit_lock);
3175 	txq->xmit_lock_owner = smp_processor_id();
3176 }
3177 
3178 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3179 {
3180 	bool ok = spin_trylock(&txq->_xmit_lock);
3181 	if (likely(ok))
3182 		txq->xmit_lock_owner = smp_processor_id();
3183 	return ok;
3184 }
3185 
3186 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3187 {
3188 	txq->xmit_lock_owner = -1;
3189 	spin_unlock(&txq->_xmit_lock);
3190 }
3191 
3192 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3193 {
3194 	txq->xmit_lock_owner = -1;
3195 	spin_unlock_bh(&txq->_xmit_lock);
3196 }
3197 
3198 static inline void txq_trans_update(struct netdev_queue *txq)
3199 {
3200 	if (txq->xmit_lock_owner != -1)
3201 		txq->trans_start = jiffies;
3202 }
3203 
3204 /**
3205  *	netif_tx_lock - grab network device transmit lock
3206  *	@dev: network device
3207  *
3208  * Get network device transmit lock
3209  */
3210 static inline void netif_tx_lock(struct net_device *dev)
3211 {
3212 	unsigned int i;
3213 	int cpu;
3214 
3215 	spin_lock(&dev->tx_global_lock);
3216 	cpu = smp_processor_id();
3217 	for (i = 0; i < dev->num_tx_queues; i++) {
3218 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3219 
3220 		/* We are the only thread of execution doing a
3221 		 * freeze, but we have to grab the _xmit_lock in
3222 		 * order to synchronize with threads which are in
3223 		 * the ->hard_start_xmit() handler and already
3224 		 * checked the frozen bit.
3225 		 */
3226 		__netif_tx_lock(txq, cpu);
3227 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3228 		__netif_tx_unlock(txq);
3229 	}
3230 }
3231 
3232 static inline void netif_tx_lock_bh(struct net_device *dev)
3233 {
3234 	local_bh_disable();
3235 	netif_tx_lock(dev);
3236 }
3237 
3238 static inline void netif_tx_unlock(struct net_device *dev)
3239 {
3240 	unsigned int i;
3241 
3242 	for (i = 0; i < dev->num_tx_queues; i++) {
3243 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3244 
3245 		/* No need to grab the _xmit_lock here.  If the
3246 		 * queue is not stopped for another reason, we
3247 		 * force a schedule.
3248 		 */
3249 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3250 		netif_schedule_queue(txq);
3251 	}
3252 	spin_unlock(&dev->tx_global_lock);
3253 }
3254 
3255 static inline void netif_tx_unlock_bh(struct net_device *dev)
3256 {
3257 	netif_tx_unlock(dev);
3258 	local_bh_enable();
3259 }
3260 
3261 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3262 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3263 		__netif_tx_lock(txq, cpu);		\
3264 	}						\
3265 }
3266 
3267 #define HARD_TX_TRYLOCK(dev, txq)			\
3268 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3269 		__netif_tx_trylock(txq) :		\
3270 		true )
3271 
3272 #define HARD_TX_UNLOCK(dev, txq) {			\
3273 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3274 		__netif_tx_unlock(txq);			\
3275 	}						\
3276 }
3277 
3278 static inline void netif_tx_disable(struct net_device *dev)
3279 {
3280 	unsigned int i;
3281 	int cpu;
3282 
3283 	local_bh_disable();
3284 	cpu = smp_processor_id();
3285 	for (i = 0; i < dev->num_tx_queues; i++) {
3286 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3287 
3288 		__netif_tx_lock(txq, cpu);
3289 		netif_tx_stop_queue(txq);
3290 		__netif_tx_unlock(txq);
3291 	}
3292 	local_bh_enable();
3293 }
3294 
3295 static inline void netif_addr_lock(struct net_device *dev)
3296 {
3297 	spin_lock(&dev->addr_list_lock);
3298 }
3299 
3300 static inline void netif_addr_lock_nested(struct net_device *dev)
3301 {
3302 	int subclass = SINGLE_DEPTH_NESTING;
3303 
3304 	if (dev->netdev_ops->ndo_get_lock_subclass)
3305 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3306 
3307 	spin_lock_nested(&dev->addr_list_lock, subclass);
3308 }
3309 
3310 static inline void netif_addr_lock_bh(struct net_device *dev)
3311 {
3312 	spin_lock_bh(&dev->addr_list_lock);
3313 }
3314 
3315 static inline void netif_addr_unlock(struct net_device *dev)
3316 {
3317 	spin_unlock(&dev->addr_list_lock);
3318 }
3319 
3320 static inline void netif_addr_unlock_bh(struct net_device *dev)
3321 {
3322 	spin_unlock_bh(&dev->addr_list_lock);
3323 }
3324 
3325 /*
3326  * dev_addrs walker. Should be used only for read access. Call with
3327  * rcu_read_lock held.
3328  */
3329 #define for_each_dev_addr(dev, ha) \
3330 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3331 
3332 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3333 
3334 void ether_setup(struct net_device *dev);
3335 
3336 /* Support for loadable net-drivers */
3337 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3338 				    unsigned char name_assign_type,
3339 				    void (*setup)(struct net_device *),
3340 				    unsigned int txqs, unsigned int rxqs);
3341 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3342 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3343 
3344 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3345 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3346 			 count)
3347 
3348 int register_netdev(struct net_device *dev);
3349 void unregister_netdev(struct net_device *dev);
3350 
3351 /* General hardware address lists handling functions */
3352 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3353 		   struct netdev_hw_addr_list *from_list, int addr_len);
3354 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3355 		      struct netdev_hw_addr_list *from_list, int addr_len);
3356 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3357 		       struct net_device *dev,
3358 		       int (*sync)(struct net_device *, const unsigned char *),
3359 		       int (*unsync)(struct net_device *,
3360 				     const unsigned char *));
3361 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3362 			  struct net_device *dev,
3363 			  int (*unsync)(struct net_device *,
3364 					const unsigned char *));
3365 void __hw_addr_init(struct netdev_hw_addr_list *list);
3366 
3367 /* Functions used for device addresses handling */
3368 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3369 		 unsigned char addr_type);
3370 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3371 		 unsigned char addr_type);
3372 void dev_addr_flush(struct net_device *dev);
3373 int dev_addr_init(struct net_device *dev);
3374 
3375 /* Functions used for unicast addresses handling */
3376 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3377 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3378 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3379 int dev_uc_sync(struct net_device *to, struct net_device *from);
3380 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3381 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3382 void dev_uc_flush(struct net_device *dev);
3383 void dev_uc_init(struct net_device *dev);
3384 
3385 /**
3386  *  __dev_uc_sync - Synchonize device's unicast list
3387  *  @dev:  device to sync
3388  *  @sync: function to call if address should be added
3389  *  @unsync: function to call if address should be removed
3390  *
3391  *  Add newly added addresses to the interface, and release
3392  *  addresses that have been deleted.
3393  **/
3394 static inline int __dev_uc_sync(struct net_device *dev,
3395 				int (*sync)(struct net_device *,
3396 					    const unsigned char *),
3397 				int (*unsync)(struct net_device *,
3398 					      const unsigned char *))
3399 {
3400 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3401 }
3402 
3403 /**
3404  *  __dev_uc_unsync - Remove synchronized addresses from device
3405  *  @dev:  device to sync
3406  *  @unsync: function to call if address should be removed
3407  *
3408  *  Remove all addresses that were added to the device by dev_uc_sync().
3409  **/
3410 static inline void __dev_uc_unsync(struct net_device *dev,
3411 				   int (*unsync)(struct net_device *,
3412 						 const unsigned char *))
3413 {
3414 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3415 }
3416 
3417 /* Functions used for multicast addresses handling */
3418 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3419 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3420 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3421 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3422 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3423 int dev_mc_sync(struct net_device *to, struct net_device *from);
3424 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3425 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3426 void dev_mc_flush(struct net_device *dev);
3427 void dev_mc_init(struct net_device *dev);
3428 
3429 /**
3430  *  __dev_mc_sync - Synchonize device's multicast list
3431  *  @dev:  device to sync
3432  *  @sync: function to call if address should be added
3433  *  @unsync: function to call if address should be removed
3434  *
3435  *  Add newly added addresses to the interface, and release
3436  *  addresses that have been deleted.
3437  **/
3438 static inline int __dev_mc_sync(struct net_device *dev,
3439 				int (*sync)(struct net_device *,
3440 					    const unsigned char *),
3441 				int (*unsync)(struct net_device *,
3442 					      const unsigned char *))
3443 {
3444 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3445 }
3446 
3447 /**
3448  *  __dev_mc_unsync - Remove synchronized addresses from device
3449  *  @dev:  device to sync
3450  *  @unsync: function to call if address should be removed
3451  *
3452  *  Remove all addresses that were added to the device by dev_mc_sync().
3453  **/
3454 static inline void __dev_mc_unsync(struct net_device *dev,
3455 				   int (*unsync)(struct net_device *,
3456 						 const unsigned char *))
3457 {
3458 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3459 }
3460 
3461 /* Functions used for secondary unicast and multicast support */
3462 void dev_set_rx_mode(struct net_device *dev);
3463 void __dev_set_rx_mode(struct net_device *dev);
3464 int dev_set_promiscuity(struct net_device *dev, int inc);
3465 int dev_set_allmulti(struct net_device *dev, int inc);
3466 void netdev_state_change(struct net_device *dev);
3467 void netdev_notify_peers(struct net_device *dev);
3468 void netdev_features_change(struct net_device *dev);
3469 /* Load a device via the kmod */
3470 void dev_load(struct net *net, const char *name);
3471 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3472 					struct rtnl_link_stats64 *storage);
3473 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3474 			     const struct net_device_stats *netdev_stats);
3475 
3476 extern int		netdev_max_backlog;
3477 extern int		netdev_tstamp_prequeue;
3478 extern int		weight_p;
3479 extern int		bpf_jit_enable;
3480 
3481 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3482 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3483 						     struct list_head **iter);
3484 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3485 						     struct list_head **iter);
3486 
3487 /* iterate through upper list, must be called under RCU read lock */
3488 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3489 	for (iter = &(dev)->adj_list.upper, \
3490 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3491 	     updev; \
3492 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3493 
3494 /* iterate through upper list, must be called under RCU read lock */
3495 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3496 	for (iter = &(dev)->all_adj_list.upper, \
3497 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3498 	     updev; \
3499 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3500 
3501 void *netdev_lower_get_next_private(struct net_device *dev,
3502 				    struct list_head **iter);
3503 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3504 					struct list_head **iter);
3505 
3506 #define netdev_for_each_lower_private(dev, priv, iter) \
3507 	for (iter = (dev)->adj_list.lower.next, \
3508 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3509 	     priv; \
3510 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3511 
3512 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3513 	for (iter = &(dev)->adj_list.lower, \
3514 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3515 	     priv; \
3516 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3517 
3518 void *netdev_lower_get_next(struct net_device *dev,
3519 				struct list_head **iter);
3520 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3521 	for (iter = &(dev)->adj_list.lower, \
3522 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3523 	     ldev; \
3524 	     ldev = netdev_lower_get_next(dev, &(iter)))
3525 
3526 void *netdev_adjacent_get_private(struct list_head *adj_list);
3527 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3528 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3529 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3530 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3531 int netdev_master_upper_dev_link(struct net_device *dev,
3532 				 struct net_device *upper_dev);
3533 int netdev_master_upper_dev_link_private(struct net_device *dev,
3534 					 struct net_device *upper_dev,
3535 					 void *private);
3536 void netdev_upper_dev_unlink(struct net_device *dev,
3537 			     struct net_device *upper_dev);
3538 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3539 void *netdev_lower_dev_get_private(struct net_device *dev,
3540 				   struct net_device *lower_dev);
3541 
3542 /* RSS keys are 40 or 52 bytes long */
3543 #define NETDEV_RSS_KEY_LEN 52
3544 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3545 void netdev_rss_key_fill(void *buffer, size_t len);
3546 
3547 int dev_get_nest_level(struct net_device *dev,
3548 		       bool (*type_check)(struct net_device *dev));
3549 int skb_checksum_help(struct sk_buff *skb);
3550 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3551 				  netdev_features_t features, bool tx_path);
3552 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3553 				    netdev_features_t features);
3554 
3555 struct netdev_bonding_info {
3556 	ifslave	slave;
3557 	ifbond	master;
3558 };
3559 
3560 struct netdev_notifier_bonding_info {
3561 	struct netdev_notifier_info info; /* must be first */
3562 	struct netdev_bonding_info  bonding_info;
3563 };
3564 
3565 void netdev_bonding_info_change(struct net_device *dev,
3566 				struct netdev_bonding_info *bonding_info);
3567 
3568 static inline
3569 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3570 {
3571 	return __skb_gso_segment(skb, features, true);
3572 }
3573 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3574 
3575 static inline bool can_checksum_protocol(netdev_features_t features,
3576 					 __be16 protocol)
3577 {
3578 	return ((features & NETIF_F_GEN_CSUM) ||
3579 		((features & NETIF_F_V4_CSUM) &&
3580 		 protocol == htons(ETH_P_IP)) ||
3581 		((features & NETIF_F_V6_CSUM) &&
3582 		 protocol == htons(ETH_P_IPV6)) ||
3583 		((features & NETIF_F_FCOE_CRC) &&
3584 		 protocol == htons(ETH_P_FCOE)));
3585 }
3586 
3587 #ifdef CONFIG_BUG
3588 void netdev_rx_csum_fault(struct net_device *dev);
3589 #else
3590 static inline void netdev_rx_csum_fault(struct net_device *dev)
3591 {
3592 }
3593 #endif
3594 /* rx skb timestamps */
3595 void net_enable_timestamp(void);
3596 void net_disable_timestamp(void);
3597 
3598 #ifdef CONFIG_PROC_FS
3599 int __init dev_proc_init(void);
3600 #else
3601 #define dev_proc_init() 0
3602 #endif
3603 
3604 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3605 					      struct sk_buff *skb, struct net_device *dev,
3606 					      bool more)
3607 {
3608 	skb->xmit_more = more ? 1 : 0;
3609 	return ops->ndo_start_xmit(skb, dev);
3610 }
3611 
3612 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3613 					    struct netdev_queue *txq, bool more)
3614 {
3615 	const struct net_device_ops *ops = dev->netdev_ops;
3616 	int rc;
3617 
3618 	rc = __netdev_start_xmit(ops, skb, dev, more);
3619 	if (rc == NETDEV_TX_OK)
3620 		txq_trans_update(txq);
3621 
3622 	return rc;
3623 }
3624 
3625 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3626 				const void *ns);
3627 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3628 				 const void *ns);
3629 
3630 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3631 {
3632 	return netdev_class_create_file_ns(class_attr, NULL);
3633 }
3634 
3635 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3636 {
3637 	netdev_class_remove_file_ns(class_attr, NULL);
3638 }
3639 
3640 extern struct kobj_ns_type_operations net_ns_type_operations;
3641 
3642 const char *netdev_drivername(const struct net_device *dev);
3643 
3644 void linkwatch_run_queue(void);
3645 
3646 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3647 							  netdev_features_t f2)
3648 {
3649 	if (f1 & NETIF_F_GEN_CSUM)
3650 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3651 	if (f2 & NETIF_F_GEN_CSUM)
3652 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3653 	f1 &= f2;
3654 	if (f1 & NETIF_F_GEN_CSUM)
3655 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3656 
3657 	return f1;
3658 }
3659 
3660 static inline netdev_features_t netdev_get_wanted_features(
3661 	struct net_device *dev)
3662 {
3663 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3664 }
3665 netdev_features_t netdev_increment_features(netdev_features_t all,
3666 	netdev_features_t one, netdev_features_t mask);
3667 
3668 /* Allow TSO being used on stacked device :
3669  * Performing the GSO segmentation before last device
3670  * is a performance improvement.
3671  */
3672 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3673 							netdev_features_t mask)
3674 {
3675 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3676 }
3677 
3678 int __netdev_update_features(struct net_device *dev);
3679 void netdev_update_features(struct net_device *dev);
3680 void netdev_change_features(struct net_device *dev);
3681 
3682 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3683 					struct net_device *dev);
3684 
3685 netdev_features_t netif_skb_features(struct sk_buff *skb);
3686 
3687 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3688 {
3689 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3690 
3691 	/* check flags correspondence */
3692 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3693 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3694 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3695 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3696 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3697 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3698 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3699 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3700 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3701 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3702 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3703 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3704 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3705 
3706 	return (features & feature) == feature;
3707 }
3708 
3709 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3710 {
3711 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3712 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3713 }
3714 
3715 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3716 				   netdev_features_t features)
3717 {
3718 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3719 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3720 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3721 }
3722 
3723 static inline void netif_set_gso_max_size(struct net_device *dev,
3724 					  unsigned int size)
3725 {
3726 	dev->gso_max_size = size;
3727 }
3728 
3729 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3730 					int pulled_hlen, u16 mac_offset,
3731 					int mac_len)
3732 {
3733 	skb->protocol = protocol;
3734 	skb->encapsulation = 1;
3735 	skb_push(skb, pulled_hlen);
3736 	skb_reset_transport_header(skb);
3737 	skb->mac_header = mac_offset;
3738 	skb->network_header = skb->mac_header + mac_len;
3739 	skb->mac_len = mac_len;
3740 }
3741 
3742 static inline bool netif_is_macvlan(struct net_device *dev)
3743 {
3744 	return dev->priv_flags & IFF_MACVLAN;
3745 }
3746 
3747 static inline bool netif_is_macvlan_port(struct net_device *dev)
3748 {
3749 	return dev->priv_flags & IFF_MACVLAN_PORT;
3750 }
3751 
3752 static inline bool netif_is_ipvlan(struct net_device *dev)
3753 {
3754 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3755 }
3756 
3757 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3758 {
3759 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3760 }
3761 
3762 static inline bool netif_is_bond_master(struct net_device *dev)
3763 {
3764 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3765 }
3766 
3767 static inline bool netif_is_bond_slave(struct net_device *dev)
3768 {
3769 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3770 }
3771 
3772 static inline bool netif_supports_nofcs(struct net_device *dev)
3773 {
3774 	return dev->priv_flags & IFF_SUPP_NOFCS;
3775 }
3776 
3777 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3778 static inline void netif_keep_dst(struct net_device *dev)
3779 {
3780 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3781 }
3782 
3783 extern struct pernet_operations __net_initdata loopback_net_ops;
3784 
3785 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3786 
3787 /* netdev_printk helpers, similar to dev_printk */
3788 
3789 static inline const char *netdev_name(const struct net_device *dev)
3790 {
3791 	if (!dev->name[0] || strchr(dev->name, '%'))
3792 		return "(unnamed net_device)";
3793 	return dev->name;
3794 }
3795 
3796 static inline const char *netdev_reg_state(const struct net_device *dev)
3797 {
3798 	switch (dev->reg_state) {
3799 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3800 	case NETREG_REGISTERED: return "";
3801 	case NETREG_UNREGISTERING: return " (unregistering)";
3802 	case NETREG_UNREGISTERED: return " (unregistered)";
3803 	case NETREG_RELEASED: return " (released)";
3804 	case NETREG_DUMMY: return " (dummy)";
3805 	}
3806 
3807 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3808 	return " (unknown)";
3809 }
3810 
3811 __printf(3, 4)
3812 void netdev_printk(const char *level, const struct net_device *dev,
3813 		   const char *format, ...);
3814 __printf(2, 3)
3815 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3816 __printf(2, 3)
3817 void netdev_alert(const struct net_device *dev, const char *format, ...);
3818 __printf(2, 3)
3819 void netdev_crit(const struct net_device *dev, const char *format, ...);
3820 __printf(2, 3)
3821 void netdev_err(const struct net_device *dev, const char *format, ...);
3822 __printf(2, 3)
3823 void netdev_warn(const struct net_device *dev, const char *format, ...);
3824 __printf(2, 3)
3825 void netdev_notice(const struct net_device *dev, const char *format, ...);
3826 __printf(2, 3)
3827 void netdev_info(const struct net_device *dev, const char *format, ...);
3828 
3829 #define MODULE_ALIAS_NETDEV(device) \
3830 	MODULE_ALIAS("netdev-" device)
3831 
3832 #if defined(CONFIG_DYNAMIC_DEBUG)
3833 #define netdev_dbg(__dev, format, args...)			\
3834 do {								\
3835 	dynamic_netdev_dbg(__dev, format, ##args);		\
3836 } while (0)
3837 #elif defined(DEBUG)
3838 #define netdev_dbg(__dev, format, args...)			\
3839 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3840 #else
3841 #define netdev_dbg(__dev, format, args...)			\
3842 ({								\
3843 	if (0)							\
3844 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3845 })
3846 #endif
3847 
3848 #if defined(VERBOSE_DEBUG)
3849 #define netdev_vdbg	netdev_dbg
3850 #else
3851 
3852 #define netdev_vdbg(dev, format, args...)			\
3853 ({								\
3854 	if (0)							\
3855 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3856 	0;							\
3857 })
3858 #endif
3859 
3860 /*
3861  * netdev_WARN() acts like dev_printk(), but with the key difference
3862  * of using a WARN/WARN_ON to get the message out, including the
3863  * file/line information and a backtrace.
3864  */
3865 #define netdev_WARN(dev, format, args...)			\
3866 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3867 	     netdev_reg_state(dev), ##args)
3868 
3869 /* netif printk helpers, similar to netdev_printk */
3870 
3871 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3872 do {					  			\
3873 	if (netif_msg_##type(priv))				\
3874 		netdev_printk(level, (dev), fmt, ##args);	\
3875 } while (0)
3876 
3877 #define netif_level(level, priv, type, dev, fmt, args...)	\
3878 do {								\
3879 	if (netif_msg_##type(priv))				\
3880 		netdev_##level(dev, fmt, ##args);		\
3881 } while (0)
3882 
3883 #define netif_emerg(priv, type, dev, fmt, args...)		\
3884 	netif_level(emerg, priv, type, dev, fmt, ##args)
3885 #define netif_alert(priv, type, dev, fmt, args...)		\
3886 	netif_level(alert, priv, type, dev, fmt, ##args)
3887 #define netif_crit(priv, type, dev, fmt, args...)		\
3888 	netif_level(crit, priv, type, dev, fmt, ##args)
3889 #define netif_err(priv, type, dev, fmt, args...)		\
3890 	netif_level(err, priv, type, dev, fmt, ##args)
3891 #define netif_warn(priv, type, dev, fmt, args...)		\
3892 	netif_level(warn, priv, type, dev, fmt, ##args)
3893 #define netif_notice(priv, type, dev, fmt, args...)		\
3894 	netif_level(notice, priv, type, dev, fmt, ##args)
3895 #define netif_info(priv, type, dev, fmt, args...)		\
3896 	netif_level(info, priv, type, dev, fmt, ##args)
3897 
3898 #if defined(CONFIG_DYNAMIC_DEBUG)
3899 #define netif_dbg(priv, type, netdev, format, args...)		\
3900 do {								\
3901 	if (netif_msg_##type(priv))				\
3902 		dynamic_netdev_dbg(netdev, format, ##args);	\
3903 } while (0)
3904 #elif defined(DEBUG)
3905 #define netif_dbg(priv, type, dev, format, args...)		\
3906 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3907 #else
3908 #define netif_dbg(priv, type, dev, format, args...)			\
3909 ({									\
3910 	if (0)								\
3911 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3912 	0;								\
3913 })
3914 #endif
3915 
3916 #if defined(VERBOSE_DEBUG)
3917 #define netif_vdbg	netif_dbg
3918 #else
3919 #define netif_vdbg(priv, type, dev, format, args...)		\
3920 ({								\
3921 	if (0)							\
3922 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3923 	0;							\
3924 })
3925 #endif
3926 
3927 /*
3928  *	The list of packet types we will receive (as opposed to discard)
3929  *	and the routines to invoke.
3930  *
3931  *	Why 16. Because with 16 the only overlap we get on a hash of the
3932  *	low nibble of the protocol value is RARP/SNAP/X.25.
3933  *
3934  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3935  *             sure which should go first, but I bet it won't make much
3936  *             difference if we are running VLANs.  The good news is that
3937  *             this protocol won't be in the list unless compiled in, so
3938  *             the average user (w/out VLANs) will not be adversely affected.
3939  *             --BLG
3940  *
3941  *		0800	IP
3942  *		8100    802.1Q VLAN
3943  *		0001	802.3
3944  *		0002	AX.25
3945  *		0004	802.2
3946  *		8035	RARP
3947  *		0005	SNAP
3948  *		0805	X.25
3949  *		0806	ARP
3950  *		8137	IPX
3951  *		0009	Localtalk
3952  *		86DD	IPv6
3953  */
3954 #define PTYPE_HASH_SIZE	(16)
3955 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3956 
3957 #endif	/* _LINUX_NETDEVICE_H */
3958