1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 }; 278 279 /* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284 enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290 }; 291 292 293 /* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297 struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300 }; 301 #define NETDEV_BOOT_SETUP_MAX 8 302 303 int __init netdev_boot_setup(char *str); 304 305 struct gro_list { 306 struct list_head list; 307 int count; 308 }; 309 310 /* 311 * size of gro hash buckets, must less than bit number of 312 * napi_struct::gro_bitmask 313 */ 314 #define GRO_HASH_BUCKETS 8 315 316 /* 317 * Structure for NAPI scheduling similar to tasklet but with weighting 318 */ 319 struct napi_struct { 320 /* The poll_list must only be managed by the entity which 321 * changes the state of the NAPI_STATE_SCHED bit. This means 322 * whoever atomically sets that bit can add this napi_struct 323 * to the per-CPU poll_list, and whoever clears that bit 324 * can remove from the list right before clearing the bit. 325 */ 326 struct list_head poll_list; 327 328 unsigned long state; 329 int weight; 330 unsigned long gro_bitmask; 331 int (*poll)(struct napi_struct *, int); 332 #ifdef CONFIG_NETPOLL 333 int poll_owner; 334 #endif 335 struct net_device *dev; 336 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 337 struct sk_buff *skb; 338 struct hrtimer timer; 339 struct list_head dev_list; 340 struct hlist_node napi_hash_node; 341 unsigned int napi_id; 342 }; 343 344 enum { 345 NAPI_STATE_SCHED, /* Poll is scheduled */ 346 NAPI_STATE_MISSED, /* reschedule a napi */ 347 NAPI_STATE_DISABLE, /* Disable pending */ 348 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 349 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 350 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 351 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 352 }; 353 354 enum { 355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 359 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 362 }; 363 364 enum gro_result { 365 GRO_MERGED, 366 GRO_MERGED_FREE, 367 GRO_HELD, 368 GRO_NORMAL, 369 GRO_DROP, 370 GRO_CONSUMED, 371 }; 372 typedef enum gro_result gro_result_t; 373 374 /* 375 * enum rx_handler_result - Possible return values for rx_handlers. 376 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 377 * further. 378 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 379 * case skb->dev was changed by rx_handler. 380 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 381 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 382 * 383 * rx_handlers are functions called from inside __netif_receive_skb(), to do 384 * special processing of the skb, prior to delivery to protocol handlers. 385 * 386 * Currently, a net_device can only have a single rx_handler registered. Trying 387 * to register a second rx_handler will return -EBUSY. 388 * 389 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 390 * To unregister a rx_handler on a net_device, use 391 * netdev_rx_handler_unregister(). 392 * 393 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 394 * do with the skb. 395 * 396 * If the rx_handler consumed the skb in some way, it should return 397 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 398 * the skb to be delivered in some other way. 399 * 400 * If the rx_handler changed skb->dev, to divert the skb to another 401 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 402 * new device will be called if it exists. 403 * 404 * If the rx_handler decides the skb should be ignored, it should return 405 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 406 * are registered on exact device (ptype->dev == skb->dev). 407 * 408 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 409 * delivered, it should return RX_HANDLER_PASS. 410 * 411 * A device without a registered rx_handler will behave as if rx_handler 412 * returned RX_HANDLER_PASS. 413 */ 414 415 enum rx_handler_result { 416 RX_HANDLER_CONSUMED, 417 RX_HANDLER_ANOTHER, 418 RX_HANDLER_EXACT, 419 RX_HANDLER_PASS, 420 }; 421 typedef enum rx_handler_result rx_handler_result_t; 422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 423 424 void __napi_schedule(struct napi_struct *n); 425 void __napi_schedule_irqoff(struct napi_struct *n); 426 427 static inline bool napi_disable_pending(struct napi_struct *n) 428 { 429 return test_bit(NAPI_STATE_DISABLE, &n->state); 430 } 431 432 bool napi_schedule_prep(struct napi_struct *n); 433 434 /** 435 * napi_schedule - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Schedule NAPI poll routine to be called if it is not already 439 * running. 440 */ 441 static inline void napi_schedule(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule(n); 445 } 446 447 /** 448 * napi_schedule_irqoff - schedule NAPI poll 449 * @n: NAPI context 450 * 451 * Variant of napi_schedule(), assuming hard irqs are masked. 452 */ 453 static inline void napi_schedule_irqoff(struct napi_struct *n) 454 { 455 if (napi_schedule_prep(n)) 456 __napi_schedule_irqoff(n); 457 } 458 459 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 460 static inline bool napi_reschedule(struct napi_struct *napi) 461 { 462 if (napi_schedule_prep(napi)) { 463 __napi_schedule(napi); 464 return true; 465 } 466 return false; 467 } 468 469 bool napi_complete_done(struct napi_struct *n, int work_done); 470 /** 471 * napi_complete - NAPI processing complete 472 * @n: NAPI context 473 * 474 * Mark NAPI processing as complete. 475 * Consider using napi_complete_done() instead. 476 * Return false if device should avoid rearming interrupts. 477 */ 478 static inline bool napi_complete(struct napi_struct *n) 479 { 480 return napi_complete_done(n, 0); 481 } 482 483 /** 484 * napi_hash_del - remove a NAPI from global table 485 * @napi: NAPI context 486 * 487 * Warning: caller must observe RCU grace period 488 * before freeing memory containing @napi, if 489 * this function returns true. 490 * Note: core networking stack automatically calls it 491 * from netif_napi_del(). 492 * Drivers might want to call this helper to combine all 493 * the needed RCU grace periods into a single one. 494 */ 495 bool napi_hash_del(struct napi_struct *napi); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: NAPI context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 void napi_disable(struct napi_struct *n); 505 506 /** 507 * napi_enable - enable NAPI scheduling 508 * @n: NAPI context 509 * 510 * Resume NAPI from being scheduled on this context. 511 * Must be paired with napi_disable. 512 */ 513 static inline void napi_enable(struct napi_struct *n) 514 { 515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 516 smp_mb__before_atomic(); 517 clear_bit(NAPI_STATE_SCHED, &n->state); 518 clear_bit(NAPI_STATE_NPSVC, &n->state); 519 } 520 521 /** 522 * napi_synchronize - wait until NAPI is not running 523 * @n: NAPI context 524 * 525 * Wait until NAPI is done being scheduled on this context. 526 * Waits till any outstanding processing completes but 527 * does not disable future activations. 528 */ 529 static inline void napi_synchronize(const struct napi_struct *n) 530 { 531 if (IS_ENABLED(CONFIG_SMP)) 532 while (test_bit(NAPI_STATE_SCHED, &n->state)) 533 msleep(1); 534 else 535 barrier(); 536 } 537 538 /** 539 * napi_if_scheduled_mark_missed - if napi is running, set the 540 * NAPIF_STATE_MISSED 541 * @n: NAPI context 542 * 543 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 544 * NAPI is scheduled. 545 **/ 546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 547 { 548 unsigned long val, new; 549 550 do { 551 val = READ_ONCE(n->state); 552 if (val & NAPIF_STATE_DISABLE) 553 return true; 554 555 if (!(val & NAPIF_STATE_SCHED)) 556 return false; 557 558 new = val | NAPIF_STATE_MISSED; 559 } while (cmpxchg(&n->state, val, new) != val); 560 561 return true; 562 } 563 564 enum netdev_queue_state_t { 565 __QUEUE_STATE_DRV_XOFF, 566 __QUEUE_STATE_STACK_XOFF, 567 __QUEUE_STATE_FROZEN, 568 }; 569 570 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 571 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 572 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 573 574 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 576 QUEUE_STATE_FROZEN) 577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 578 QUEUE_STATE_FROZEN) 579 580 /* 581 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 582 * netif_tx_* functions below are used to manipulate this flag. The 583 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 584 * queue independently. The netif_xmit_*stopped functions below are called 585 * to check if the queue has been stopped by the driver or stack (either 586 * of the XOFF bits are set in the state). Drivers should not need to call 587 * netif_xmit*stopped functions, they should only be using netif_tx_*. 588 */ 589 590 struct netdev_queue { 591 /* 592 * read-mostly part 593 */ 594 struct net_device *dev; 595 struct Qdisc __rcu *qdisc; 596 struct Qdisc *qdisc_sleeping; 597 #ifdef CONFIG_SYSFS 598 struct kobject kobj; 599 #endif 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 int numa_node; 602 #endif 603 unsigned long tx_maxrate; 604 /* 605 * Number of TX timeouts for this queue 606 * (/sys/class/net/DEV/Q/trans_timeout) 607 */ 608 unsigned long trans_timeout; 609 610 /* Subordinate device that the queue has been assigned to */ 611 struct net_device *sb_dev; 612 #ifdef CONFIG_XDP_SOCKETS 613 struct xdp_umem *umem; 614 #endif 615 /* 616 * write-mostly part 617 */ 618 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 619 int xmit_lock_owner; 620 /* 621 * Time (in jiffies) of last Tx 622 */ 623 unsigned long trans_start; 624 625 unsigned long state; 626 627 #ifdef CONFIG_BQL 628 struct dql dql; 629 #endif 630 } ____cacheline_aligned_in_smp; 631 632 extern int sysctl_fb_tunnels_only_for_init_net; 633 634 static inline bool net_has_fallback_tunnels(const struct net *net) 635 { 636 return net == &init_net || 637 !IS_ENABLED(CONFIG_SYSCTL) || 638 !sysctl_fb_tunnels_only_for_init_net; 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[0]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[0]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[0] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xdp_umem *umem; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[0]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 }; 851 852 /* These structures hold the attributes of bpf state that are being passed 853 * to the netdevice through the bpf op. 854 */ 855 enum bpf_netdev_command { 856 /* Set or clear a bpf program used in the earliest stages of packet 857 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 858 * is responsible for calling bpf_prog_put on any old progs that are 859 * stored. In case of error, the callee need not release the new prog 860 * reference, but on success it takes ownership and must bpf_prog_put 861 * when it is no longer used. 862 */ 863 XDP_SETUP_PROG, 864 XDP_SETUP_PROG_HW, 865 XDP_QUERY_PROG, 866 XDP_QUERY_PROG_HW, 867 /* BPF program for offload callbacks, invoked at program load time. */ 868 BPF_OFFLOAD_MAP_ALLOC, 869 BPF_OFFLOAD_MAP_FREE, 870 XDP_QUERY_XSK_UMEM, 871 XDP_SETUP_XSK_UMEM, 872 }; 873 874 struct bpf_prog_offload_ops; 875 struct netlink_ext_ack; 876 struct xdp_umem; 877 878 struct netdev_bpf { 879 enum bpf_netdev_command command; 880 union { 881 /* XDP_SETUP_PROG */ 882 struct { 883 u32 flags; 884 struct bpf_prog *prog; 885 struct netlink_ext_ack *extack; 886 }; 887 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 888 struct { 889 u32 prog_id; 890 /* flags with which program was installed */ 891 u32 prog_flags; 892 }; 893 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 894 struct { 895 struct bpf_offloaded_map *offmap; 896 }; 897 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */ 898 struct { 899 struct xdp_umem *umem; /* out for query*/ 900 u16 queue_id; /* in for query */ 901 } xsk; 902 }; 903 }; 904 905 #ifdef CONFIG_XFRM_OFFLOAD 906 struct xfrmdev_ops { 907 int (*xdo_dev_state_add) (struct xfrm_state *x); 908 void (*xdo_dev_state_delete) (struct xfrm_state *x); 909 void (*xdo_dev_state_free) (struct xfrm_state *x); 910 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 911 struct xfrm_state *x); 912 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 913 }; 914 #endif 915 916 #if IS_ENABLED(CONFIG_TLS_DEVICE) 917 enum tls_offload_ctx_dir { 918 TLS_OFFLOAD_CTX_DIR_RX, 919 TLS_OFFLOAD_CTX_DIR_TX, 920 }; 921 922 struct tls_crypto_info; 923 struct tls_context; 924 925 struct tlsdev_ops { 926 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 927 enum tls_offload_ctx_dir direction, 928 struct tls_crypto_info *crypto_info, 929 u32 start_offload_tcp_sn); 930 void (*tls_dev_del)(struct net_device *netdev, 931 struct tls_context *ctx, 932 enum tls_offload_ctx_dir direction); 933 void (*tls_dev_resync_rx)(struct net_device *netdev, 934 struct sock *sk, u32 seq, u64 rcd_sn); 935 }; 936 #endif 937 938 struct dev_ifalias { 939 struct rcu_head rcuhead; 940 char ifalias[]; 941 }; 942 943 /* 944 * This structure defines the management hooks for network devices. 945 * The following hooks can be defined; unless noted otherwise, they are 946 * optional and can be filled with a null pointer. 947 * 948 * int (*ndo_init)(struct net_device *dev); 949 * This function is called once when a network device is registered. 950 * The network device can use this for any late stage initialization 951 * or semantic validation. It can fail with an error code which will 952 * be propagated back to register_netdev. 953 * 954 * void (*ndo_uninit)(struct net_device *dev); 955 * This function is called when device is unregistered or when registration 956 * fails. It is not called if init fails. 957 * 958 * int (*ndo_open)(struct net_device *dev); 959 * This function is called when a network device transitions to the up 960 * state. 961 * 962 * int (*ndo_stop)(struct net_device *dev); 963 * This function is called when a network device transitions to the down 964 * state. 965 * 966 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 967 * struct net_device *dev); 968 * Called when a packet needs to be transmitted. 969 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 970 * the queue before that can happen; it's for obsolete devices and weird 971 * corner cases, but the stack really does a non-trivial amount 972 * of useless work if you return NETDEV_TX_BUSY. 973 * Required; cannot be NULL. 974 * 975 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 976 * struct net_device *dev 977 * netdev_features_t features); 978 * Called by core transmit path to determine if device is capable of 979 * performing offload operations on a given packet. This is to give 980 * the device an opportunity to implement any restrictions that cannot 981 * be otherwise expressed by feature flags. The check is called with 982 * the set of features that the stack has calculated and it returns 983 * those the driver believes to be appropriate. 984 * 985 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 986 * struct net_device *sb_dev, 987 * select_queue_fallback_t fallback); 988 * Called to decide which queue to use when device supports multiple 989 * transmit queues. 990 * 991 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 992 * This function is called to allow device receiver to make 993 * changes to configuration when multicast or promiscuous is enabled. 994 * 995 * void (*ndo_set_rx_mode)(struct net_device *dev); 996 * This function is called device changes address list filtering. 997 * If driver handles unicast address filtering, it should set 998 * IFF_UNICAST_FLT in its priv_flags. 999 * 1000 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1001 * This function is called when the Media Access Control address 1002 * needs to be changed. If this interface is not defined, the 1003 * MAC address can not be changed. 1004 * 1005 * int (*ndo_validate_addr)(struct net_device *dev); 1006 * Test if Media Access Control address is valid for the device. 1007 * 1008 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1009 * Called when a user requests an ioctl which can't be handled by 1010 * the generic interface code. If not defined ioctls return 1011 * not supported error code. 1012 * 1013 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1014 * Used to set network devices bus interface parameters. This interface 1015 * is retained for legacy reasons; new devices should use the bus 1016 * interface (PCI) for low level management. 1017 * 1018 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1019 * Called when a user wants to change the Maximum Transfer Unit 1020 * of a device. 1021 * 1022 * void (*ndo_tx_timeout)(struct net_device *dev); 1023 * Callback used when the transmitter has not made any progress 1024 * for dev->watchdog ticks. 1025 * 1026 * void (*ndo_get_stats64)(struct net_device *dev, 1027 * struct rtnl_link_stats64 *storage); 1028 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1029 * Called when a user wants to get the network device usage 1030 * statistics. Drivers must do one of the following: 1031 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1032 * rtnl_link_stats64 structure passed by the caller. 1033 * 2. Define @ndo_get_stats to update a net_device_stats structure 1034 * (which should normally be dev->stats) and return a pointer to 1035 * it. The structure may be changed asynchronously only if each 1036 * field is written atomically. 1037 * 3. Update dev->stats asynchronously and atomically, and define 1038 * neither operation. 1039 * 1040 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1041 * Return true if this device supports offload stats of this attr_id. 1042 * 1043 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1044 * void *attr_data) 1045 * Get statistics for offload operations by attr_id. Write it into the 1046 * attr_data pointer. 1047 * 1048 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1049 * If device supports VLAN filtering this function is called when a 1050 * VLAN id is registered. 1051 * 1052 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1053 * If device supports VLAN filtering this function is called when a 1054 * VLAN id is unregistered. 1055 * 1056 * void (*ndo_poll_controller)(struct net_device *dev); 1057 * 1058 * SR-IOV management functions. 1059 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1060 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1061 * u8 qos, __be16 proto); 1062 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1063 * int max_tx_rate); 1064 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1065 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1066 * int (*ndo_get_vf_config)(struct net_device *dev, 1067 * int vf, struct ifla_vf_info *ivf); 1068 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1069 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1070 * struct nlattr *port[]); 1071 * 1072 * Enable or disable the VF ability to query its RSS Redirection Table and 1073 * Hash Key. This is needed since on some devices VF share this information 1074 * with PF and querying it may introduce a theoretical security risk. 1075 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1076 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1077 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1078 * void *type_data); 1079 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1080 * This is always called from the stack with the rtnl lock held and netif 1081 * tx queues stopped. This allows the netdevice to perform queue 1082 * management safely. 1083 * 1084 * Fiber Channel over Ethernet (FCoE) offload functions. 1085 * int (*ndo_fcoe_enable)(struct net_device *dev); 1086 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1087 * so the underlying device can perform whatever needed configuration or 1088 * initialization to support acceleration of FCoE traffic. 1089 * 1090 * int (*ndo_fcoe_disable)(struct net_device *dev); 1091 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1092 * so the underlying device can perform whatever needed clean-ups to 1093 * stop supporting acceleration of FCoE traffic. 1094 * 1095 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1096 * struct scatterlist *sgl, unsigned int sgc); 1097 * Called when the FCoE Initiator wants to initialize an I/O that 1098 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1099 * perform necessary setup and returns 1 to indicate the device is set up 1100 * successfully to perform DDP on this I/O, otherwise this returns 0. 1101 * 1102 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1103 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1104 * indicated by the FC exchange id 'xid', so the underlying device can 1105 * clean up and reuse resources for later DDP requests. 1106 * 1107 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1108 * struct scatterlist *sgl, unsigned int sgc); 1109 * Called when the FCoE Target wants to initialize an I/O that 1110 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1111 * perform necessary setup and returns 1 to indicate the device is set up 1112 * successfully to perform DDP on this I/O, otherwise this returns 0. 1113 * 1114 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1115 * struct netdev_fcoe_hbainfo *hbainfo); 1116 * Called when the FCoE Protocol stack wants information on the underlying 1117 * device. This information is utilized by the FCoE protocol stack to 1118 * register attributes with Fiber Channel management service as per the 1119 * FC-GS Fabric Device Management Information(FDMI) specification. 1120 * 1121 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1122 * Called when the underlying device wants to override default World Wide 1123 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1124 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1125 * protocol stack to use. 1126 * 1127 * RFS acceleration. 1128 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1129 * u16 rxq_index, u32 flow_id); 1130 * Set hardware filter for RFS. rxq_index is the target queue index; 1131 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1132 * Return the filter ID on success, or a negative error code. 1133 * 1134 * Slave management functions (for bridge, bonding, etc). 1135 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1136 * Called to make another netdev an underling. 1137 * 1138 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1139 * Called to release previously enslaved netdev. 1140 * 1141 * Feature/offload setting functions. 1142 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1143 * netdev_features_t features); 1144 * Adjusts the requested feature flags according to device-specific 1145 * constraints, and returns the resulting flags. Must not modify 1146 * the device state. 1147 * 1148 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1149 * Called to update device configuration to new features. Passed 1150 * feature set might be less than what was returned by ndo_fix_features()). 1151 * Must return >0 or -errno if it changed dev->features itself. 1152 * 1153 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1154 * struct net_device *dev, 1155 * const unsigned char *addr, u16 vid, u16 flags) 1156 * Adds an FDB entry to dev for addr. 1157 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1158 * struct net_device *dev, 1159 * const unsigned char *addr, u16 vid) 1160 * Deletes the FDB entry from dev coresponding to addr. 1161 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1162 * struct net_device *dev, struct net_device *filter_dev, 1163 * int *idx) 1164 * Used to add FDB entries to dump requests. Implementers should add 1165 * entries to skb and update idx with the number of entries. 1166 * 1167 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1168 * u16 flags, struct netlink_ext_ack *extack) 1169 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1170 * struct net_device *dev, u32 filter_mask, 1171 * int nlflags) 1172 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1173 * u16 flags); 1174 * 1175 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1176 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1177 * which do not represent real hardware may define this to allow their 1178 * userspace components to manage their virtual carrier state. Devices 1179 * that determine carrier state from physical hardware properties (eg 1180 * network cables) or protocol-dependent mechanisms (eg 1181 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1182 * 1183 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1184 * struct netdev_phys_item_id *ppid); 1185 * Called to get ID of physical port of this device. If driver does 1186 * not implement this, it is assumed that the hw is not able to have 1187 * multiple net devices on single physical port. 1188 * 1189 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1190 * struct udp_tunnel_info *ti); 1191 * Called by UDP tunnel to notify a driver about the UDP port and socket 1192 * address family that a UDP tunnel is listnening to. It is called only 1193 * when a new port starts listening. The operation is protected by the 1194 * RTNL. 1195 * 1196 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1197 * struct udp_tunnel_info *ti); 1198 * Called by UDP tunnel to notify the driver about a UDP port and socket 1199 * address family that the UDP tunnel is not listening to anymore. The 1200 * operation is protected by the RTNL. 1201 * 1202 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1203 * struct net_device *dev) 1204 * Called by upper layer devices to accelerate switching or other 1205 * station functionality into hardware. 'pdev is the lowerdev 1206 * to use for the offload and 'dev' is the net device that will 1207 * back the offload. Returns a pointer to the private structure 1208 * the upper layer will maintain. 1209 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1210 * Called by upper layer device to delete the station created 1211 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1212 * the station and priv is the structure returned by the add 1213 * operation. 1214 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1215 * int queue_index, u32 maxrate); 1216 * Called when a user wants to set a max-rate limitation of specific 1217 * TX queue. 1218 * int (*ndo_get_iflink)(const struct net_device *dev); 1219 * Called to get the iflink value of this device. 1220 * void (*ndo_change_proto_down)(struct net_device *dev, 1221 * bool proto_down); 1222 * This function is used to pass protocol port error state information 1223 * to the switch driver. The switch driver can react to the proto_down 1224 * by doing a phys down on the associated switch port. 1225 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1226 * This function is used to get egress tunnel information for given skb. 1227 * This is useful for retrieving outer tunnel header parameters while 1228 * sampling packet. 1229 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1230 * This function is used to specify the headroom that the skb must 1231 * consider when allocation skb during packet reception. Setting 1232 * appropriate rx headroom value allows avoiding skb head copy on 1233 * forward. Setting a negative value resets the rx headroom to the 1234 * default value. 1235 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1236 * This function is used to set or query state related to XDP on the 1237 * netdevice and manage BPF offload. See definition of 1238 * enum bpf_netdev_command for details. 1239 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1240 * u32 flags); 1241 * This function is used to submit @n XDP packets for transmit on a 1242 * netdevice. Returns number of frames successfully transmitted, frames 1243 * that got dropped are freed/returned via xdp_return_frame(). 1244 * Returns negative number, means general error invoking ndo, meaning 1245 * no frames were xmit'ed and core-caller will free all frames. 1246 */ 1247 struct net_device_ops { 1248 int (*ndo_init)(struct net_device *dev); 1249 void (*ndo_uninit)(struct net_device *dev); 1250 int (*ndo_open)(struct net_device *dev); 1251 int (*ndo_stop)(struct net_device *dev); 1252 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1253 struct net_device *dev); 1254 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1255 struct net_device *dev, 1256 netdev_features_t features); 1257 u16 (*ndo_select_queue)(struct net_device *dev, 1258 struct sk_buff *skb, 1259 struct net_device *sb_dev, 1260 select_queue_fallback_t fallback); 1261 void (*ndo_change_rx_flags)(struct net_device *dev, 1262 int flags); 1263 void (*ndo_set_rx_mode)(struct net_device *dev); 1264 int (*ndo_set_mac_address)(struct net_device *dev, 1265 void *addr); 1266 int (*ndo_validate_addr)(struct net_device *dev); 1267 int (*ndo_do_ioctl)(struct net_device *dev, 1268 struct ifreq *ifr, int cmd); 1269 int (*ndo_set_config)(struct net_device *dev, 1270 struct ifmap *map); 1271 int (*ndo_change_mtu)(struct net_device *dev, 1272 int new_mtu); 1273 int (*ndo_neigh_setup)(struct net_device *dev, 1274 struct neigh_parms *); 1275 void (*ndo_tx_timeout) (struct net_device *dev); 1276 1277 void (*ndo_get_stats64)(struct net_device *dev, 1278 struct rtnl_link_stats64 *storage); 1279 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1280 int (*ndo_get_offload_stats)(int attr_id, 1281 const struct net_device *dev, 1282 void *attr_data); 1283 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1284 1285 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1286 __be16 proto, u16 vid); 1287 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1288 __be16 proto, u16 vid); 1289 #ifdef CONFIG_NET_POLL_CONTROLLER 1290 void (*ndo_poll_controller)(struct net_device *dev); 1291 int (*ndo_netpoll_setup)(struct net_device *dev, 1292 struct netpoll_info *info); 1293 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1294 #endif 1295 int (*ndo_set_vf_mac)(struct net_device *dev, 1296 int queue, u8 *mac); 1297 int (*ndo_set_vf_vlan)(struct net_device *dev, 1298 int queue, u16 vlan, 1299 u8 qos, __be16 proto); 1300 int (*ndo_set_vf_rate)(struct net_device *dev, 1301 int vf, int min_tx_rate, 1302 int max_tx_rate); 1303 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1304 int vf, bool setting); 1305 int (*ndo_set_vf_trust)(struct net_device *dev, 1306 int vf, bool setting); 1307 int (*ndo_get_vf_config)(struct net_device *dev, 1308 int vf, 1309 struct ifla_vf_info *ivf); 1310 int (*ndo_set_vf_link_state)(struct net_device *dev, 1311 int vf, int link_state); 1312 int (*ndo_get_vf_stats)(struct net_device *dev, 1313 int vf, 1314 struct ifla_vf_stats 1315 *vf_stats); 1316 int (*ndo_set_vf_port)(struct net_device *dev, 1317 int vf, 1318 struct nlattr *port[]); 1319 int (*ndo_get_vf_port)(struct net_device *dev, 1320 int vf, struct sk_buff *skb); 1321 int (*ndo_set_vf_guid)(struct net_device *dev, 1322 int vf, u64 guid, 1323 int guid_type); 1324 int (*ndo_set_vf_rss_query_en)( 1325 struct net_device *dev, 1326 int vf, bool setting); 1327 int (*ndo_setup_tc)(struct net_device *dev, 1328 enum tc_setup_type type, 1329 void *type_data); 1330 #if IS_ENABLED(CONFIG_FCOE) 1331 int (*ndo_fcoe_enable)(struct net_device *dev); 1332 int (*ndo_fcoe_disable)(struct net_device *dev); 1333 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1334 u16 xid, 1335 struct scatterlist *sgl, 1336 unsigned int sgc); 1337 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1338 u16 xid); 1339 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1340 u16 xid, 1341 struct scatterlist *sgl, 1342 unsigned int sgc); 1343 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1344 struct netdev_fcoe_hbainfo *hbainfo); 1345 #endif 1346 1347 #if IS_ENABLED(CONFIG_LIBFCOE) 1348 #define NETDEV_FCOE_WWNN 0 1349 #define NETDEV_FCOE_WWPN 1 1350 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1351 u64 *wwn, int type); 1352 #endif 1353 1354 #ifdef CONFIG_RFS_ACCEL 1355 int (*ndo_rx_flow_steer)(struct net_device *dev, 1356 const struct sk_buff *skb, 1357 u16 rxq_index, 1358 u32 flow_id); 1359 #endif 1360 int (*ndo_add_slave)(struct net_device *dev, 1361 struct net_device *slave_dev, 1362 struct netlink_ext_ack *extack); 1363 int (*ndo_del_slave)(struct net_device *dev, 1364 struct net_device *slave_dev); 1365 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1366 netdev_features_t features); 1367 int (*ndo_set_features)(struct net_device *dev, 1368 netdev_features_t features); 1369 int (*ndo_neigh_construct)(struct net_device *dev, 1370 struct neighbour *n); 1371 void (*ndo_neigh_destroy)(struct net_device *dev, 1372 struct neighbour *n); 1373 1374 int (*ndo_fdb_add)(struct ndmsg *ndm, 1375 struct nlattr *tb[], 1376 struct net_device *dev, 1377 const unsigned char *addr, 1378 u16 vid, 1379 u16 flags); 1380 int (*ndo_fdb_del)(struct ndmsg *ndm, 1381 struct nlattr *tb[], 1382 struct net_device *dev, 1383 const unsigned char *addr, 1384 u16 vid); 1385 int (*ndo_fdb_dump)(struct sk_buff *skb, 1386 struct netlink_callback *cb, 1387 struct net_device *dev, 1388 struct net_device *filter_dev, 1389 int *idx); 1390 int (*ndo_fdb_get)(struct sk_buff *skb, 1391 struct nlattr *tb[], 1392 struct net_device *dev, 1393 const unsigned char *addr, 1394 u16 vid, u32 portid, u32 seq, 1395 struct netlink_ext_ack *extack); 1396 int (*ndo_bridge_setlink)(struct net_device *dev, 1397 struct nlmsghdr *nlh, 1398 u16 flags, 1399 struct netlink_ext_ack *extack); 1400 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1401 u32 pid, u32 seq, 1402 struct net_device *dev, 1403 u32 filter_mask, 1404 int nlflags); 1405 int (*ndo_bridge_dellink)(struct net_device *dev, 1406 struct nlmsghdr *nlh, 1407 u16 flags); 1408 int (*ndo_change_carrier)(struct net_device *dev, 1409 bool new_carrier); 1410 int (*ndo_get_phys_port_id)(struct net_device *dev, 1411 struct netdev_phys_item_id *ppid); 1412 int (*ndo_get_phys_port_name)(struct net_device *dev, 1413 char *name, size_t len); 1414 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1415 struct udp_tunnel_info *ti); 1416 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1417 struct udp_tunnel_info *ti); 1418 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1419 struct net_device *dev); 1420 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1421 void *priv); 1422 1423 int (*ndo_get_lock_subclass)(struct net_device *dev); 1424 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1425 int queue_index, 1426 u32 maxrate); 1427 int (*ndo_get_iflink)(const struct net_device *dev); 1428 int (*ndo_change_proto_down)(struct net_device *dev, 1429 bool proto_down); 1430 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1431 struct sk_buff *skb); 1432 void (*ndo_set_rx_headroom)(struct net_device *dev, 1433 int needed_headroom); 1434 int (*ndo_bpf)(struct net_device *dev, 1435 struct netdev_bpf *bpf); 1436 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1437 struct xdp_frame **xdp, 1438 u32 flags); 1439 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1440 u32 queue_id); 1441 }; 1442 1443 /** 1444 * enum net_device_priv_flags - &struct net_device priv_flags 1445 * 1446 * These are the &struct net_device, they are only set internally 1447 * by drivers and used in the kernel. These flags are invisible to 1448 * userspace; this means that the order of these flags can change 1449 * during any kernel release. 1450 * 1451 * You should have a pretty good reason to be extending these flags. 1452 * 1453 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1454 * @IFF_EBRIDGE: Ethernet bridging device 1455 * @IFF_BONDING: bonding master or slave 1456 * @IFF_ISATAP: ISATAP interface (RFC4214) 1457 * @IFF_WAN_HDLC: WAN HDLC device 1458 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1459 * release skb->dst 1460 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1461 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1462 * @IFF_MACVLAN_PORT: device used as macvlan port 1463 * @IFF_BRIDGE_PORT: device used as bridge port 1464 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1465 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1466 * @IFF_UNICAST_FLT: Supports unicast filtering 1467 * @IFF_TEAM_PORT: device used as team port 1468 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1469 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1470 * change when it's running 1471 * @IFF_MACVLAN: Macvlan device 1472 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1473 * underlying stacked devices 1474 * @IFF_L3MDEV_MASTER: device is an L3 master device 1475 * @IFF_NO_QUEUE: device can run without qdisc attached 1476 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1477 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1478 * @IFF_TEAM: device is a team device 1479 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1480 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1481 * entity (i.e. the master device for bridged veth) 1482 * @IFF_MACSEC: device is a MACsec device 1483 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1484 * @IFF_FAILOVER: device is a failover master device 1485 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1486 */ 1487 enum netdev_priv_flags { 1488 IFF_802_1Q_VLAN = 1<<0, 1489 IFF_EBRIDGE = 1<<1, 1490 IFF_BONDING = 1<<2, 1491 IFF_ISATAP = 1<<3, 1492 IFF_WAN_HDLC = 1<<4, 1493 IFF_XMIT_DST_RELEASE = 1<<5, 1494 IFF_DONT_BRIDGE = 1<<6, 1495 IFF_DISABLE_NETPOLL = 1<<7, 1496 IFF_MACVLAN_PORT = 1<<8, 1497 IFF_BRIDGE_PORT = 1<<9, 1498 IFF_OVS_DATAPATH = 1<<10, 1499 IFF_TX_SKB_SHARING = 1<<11, 1500 IFF_UNICAST_FLT = 1<<12, 1501 IFF_TEAM_PORT = 1<<13, 1502 IFF_SUPP_NOFCS = 1<<14, 1503 IFF_LIVE_ADDR_CHANGE = 1<<15, 1504 IFF_MACVLAN = 1<<16, 1505 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1506 IFF_L3MDEV_MASTER = 1<<18, 1507 IFF_NO_QUEUE = 1<<19, 1508 IFF_OPENVSWITCH = 1<<20, 1509 IFF_L3MDEV_SLAVE = 1<<21, 1510 IFF_TEAM = 1<<22, 1511 IFF_RXFH_CONFIGURED = 1<<23, 1512 IFF_PHONY_HEADROOM = 1<<24, 1513 IFF_MACSEC = 1<<25, 1514 IFF_NO_RX_HANDLER = 1<<26, 1515 IFF_FAILOVER = 1<<27, 1516 IFF_FAILOVER_SLAVE = 1<<28, 1517 }; 1518 1519 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1520 #define IFF_EBRIDGE IFF_EBRIDGE 1521 #define IFF_BONDING IFF_BONDING 1522 #define IFF_ISATAP IFF_ISATAP 1523 #define IFF_WAN_HDLC IFF_WAN_HDLC 1524 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1525 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1526 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1527 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1528 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1529 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1530 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1531 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1532 #define IFF_TEAM_PORT IFF_TEAM_PORT 1533 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1534 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1535 #define IFF_MACVLAN IFF_MACVLAN 1536 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1537 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1538 #define IFF_NO_QUEUE IFF_NO_QUEUE 1539 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1540 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1541 #define IFF_TEAM IFF_TEAM 1542 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1543 #define IFF_MACSEC IFF_MACSEC 1544 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1545 #define IFF_FAILOVER IFF_FAILOVER 1546 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1547 1548 /** 1549 * struct net_device - The DEVICE structure. 1550 * 1551 * Actually, this whole structure is a big mistake. It mixes I/O 1552 * data with strictly "high-level" data, and it has to know about 1553 * almost every data structure used in the INET module. 1554 * 1555 * @name: This is the first field of the "visible" part of this structure 1556 * (i.e. as seen by users in the "Space.c" file). It is the name 1557 * of the interface. 1558 * 1559 * @name_hlist: Device name hash chain, please keep it close to name[] 1560 * @ifalias: SNMP alias 1561 * @mem_end: Shared memory end 1562 * @mem_start: Shared memory start 1563 * @base_addr: Device I/O address 1564 * @irq: Device IRQ number 1565 * 1566 * @state: Generic network queuing layer state, see netdev_state_t 1567 * @dev_list: The global list of network devices 1568 * @napi_list: List entry used for polling NAPI devices 1569 * @unreg_list: List entry when we are unregistering the 1570 * device; see the function unregister_netdev 1571 * @close_list: List entry used when we are closing the device 1572 * @ptype_all: Device-specific packet handlers for all protocols 1573 * @ptype_specific: Device-specific, protocol-specific packet handlers 1574 * 1575 * @adj_list: Directly linked devices, like slaves for bonding 1576 * @features: Currently active device features 1577 * @hw_features: User-changeable features 1578 * 1579 * @wanted_features: User-requested features 1580 * @vlan_features: Mask of features inheritable by VLAN devices 1581 * 1582 * @hw_enc_features: Mask of features inherited by encapsulating devices 1583 * This field indicates what encapsulation 1584 * offloads the hardware is capable of doing, 1585 * and drivers will need to set them appropriately. 1586 * 1587 * @mpls_features: Mask of features inheritable by MPLS 1588 * 1589 * @ifindex: interface index 1590 * @group: The group the device belongs to 1591 * 1592 * @stats: Statistics struct, which was left as a legacy, use 1593 * rtnl_link_stats64 instead 1594 * 1595 * @rx_dropped: Dropped packets by core network, 1596 * do not use this in drivers 1597 * @tx_dropped: Dropped packets by core network, 1598 * do not use this in drivers 1599 * @rx_nohandler: nohandler dropped packets by core network on 1600 * inactive devices, do not use this in drivers 1601 * @carrier_up_count: Number of times the carrier has been up 1602 * @carrier_down_count: Number of times the carrier has been down 1603 * 1604 * @wireless_handlers: List of functions to handle Wireless Extensions, 1605 * instead of ioctl, 1606 * see <net/iw_handler.h> for details. 1607 * @wireless_data: Instance data managed by the core of wireless extensions 1608 * 1609 * @netdev_ops: Includes several pointers to callbacks, 1610 * if one wants to override the ndo_*() functions 1611 * @ethtool_ops: Management operations 1612 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1613 * discovery handling. Necessary for e.g. 6LoWPAN. 1614 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1615 * of Layer 2 headers. 1616 * 1617 * @flags: Interface flags (a la BSD) 1618 * @priv_flags: Like 'flags' but invisible to userspace, 1619 * see if.h for the definitions 1620 * @gflags: Global flags ( kept as legacy ) 1621 * @padded: How much padding added by alloc_netdev() 1622 * @operstate: RFC2863 operstate 1623 * @link_mode: Mapping policy to operstate 1624 * @if_port: Selectable AUI, TP, ... 1625 * @dma: DMA channel 1626 * @mtu: Interface MTU value 1627 * @min_mtu: Interface Minimum MTU value 1628 * @max_mtu: Interface Maximum MTU value 1629 * @type: Interface hardware type 1630 * @hard_header_len: Maximum hardware header length. 1631 * @min_header_len: Minimum hardware header length 1632 * 1633 * @needed_headroom: Extra headroom the hardware may need, but not in all 1634 * cases can this be guaranteed 1635 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1636 * cases can this be guaranteed. Some cases also use 1637 * LL_MAX_HEADER instead to allocate the skb 1638 * 1639 * interface address info: 1640 * 1641 * @perm_addr: Permanent hw address 1642 * @addr_assign_type: Hw address assignment type 1643 * @addr_len: Hardware address length 1644 * @neigh_priv_len: Used in neigh_alloc() 1645 * @dev_id: Used to differentiate devices that share 1646 * the same link layer address 1647 * @dev_port: Used to differentiate devices that share 1648 * the same function 1649 * @addr_list_lock: XXX: need comments on this one 1650 * @uc_promisc: Counter that indicates promiscuous mode 1651 * has been enabled due to the need to listen to 1652 * additional unicast addresses in a device that 1653 * does not implement ndo_set_rx_mode() 1654 * @uc: unicast mac addresses 1655 * @mc: multicast mac addresses 1656 * @dev_addrs: list of device hw addresses 1657 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1658 * @promiscuity: Number of times the NIC is told to work in 1659 * promiscuous mode; if it becomes 0 the NIC will 1660 * exit promiscuous mode 1661 * @allmulti: Counter, enables or disables allmulticast mode 1662 * 1663 * @vlan_info: VLAN info 1664 * @dsa_ptr: dsa specific data 1665 * @tipc_ptr: TIPC specific data 1666 * @atalk_ptr: AppleTalk link 1667 * @ip_ptr: IPv4 specific data 1668 * @dn_ptr: DECnet specific data 1669 * @ip6_ptr: IPv6 specific data 1670 * @ax25_ptr: AX.25 specific data 1671 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1672 * 1673 * @dev_addr: Hw address (before bcast, 1674 * because most packets are unicast) 1675 * 1676 * @_rx: Array of RX queues 1677 * @num_rx_queues: Number of RX queues 1678 * allocated at register_netdev() time 1679 * @real_num_rx_queues: Number of RX queues currently active in device 1680 * 1681 * @rx_handler: handler for received packets 1682 * @rx_handler_data: XXX: need comments on this one 1683 * @miniq_ingress: ingress/clsact qdisc specific data for 1684 * ingress processing 1685 * @ingress_queue: XXX: need comments on this one 1686 * @broadcast: hw bcast address 1687 * 1688 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1689 * indexed by RX queue number. Assigned by driver. 1690 * This must only be set if the ndo_rx_flow_steer 1691 * operation is defined 1692 * @index_hlist: Device index hash chain 1693 * 1694 * @_tx: Array of TX queues 1695 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1696 * @real_num_tx_queues: Number of TX queues currently active in device 1697 * @qdisc: Root qdisc from userspace point of view 1698 * @tx_queue_len: Max frames per queue allowed 1699 * @tx_global_lock: XXX: need comments on this one 1700 * 1701 * @xps_maps: XXX: need comments on this one 1702 * @miniq_egress: clsact qdisc specific data for 1703 * egress processing 1704 * @watchdog_timeo: Represents the timeout that is used by 1705 * the watchdog (see dev_watchdog()) 1706 * @watchdog_timer: List of timers 1707 * 1708 * @pcpu_refcnt: Number of references to this device 1709 * @todo_list: Delayed register/unregister 1710 * @link_watch_list: XXX: need comments on this one 1711 * 1712 * @reg_state: Register/unregister state machine 1713 * @dismantle: Device is going to be freed 1714 * @rtnl_link_state: This enum represents the phases of creating 1715 * a new link 1716 * 1717 * @needs_free_netdev: Should unregister perform free_netdev? 1718 * @priv_destructor: Called from unregister 1719 * @npinfo: XXX: need comments on this one 1720 * @nd_net: Network namespace this network device is inside 1721 * 1722 * @ml_priv: Mid-layer private 1723 * @lstats: Loopback statistics 1724 * @tstats: Tunnel statistics 1725 * @dstats: Dummy statistics 1726 * @vstats: Virtual ethernet statistics 1727 * 1728 * @garp_port: GARP 1729 * @mrp_port: MRP 1730 * 1731 * @dev: Class/net/name entry 1732 * @sysfs_groups: Space for optional device, statistics and wireless 1733 * sysfs groups 1734 * 1735 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1736 * @rtnl_link_ops: Rtnl_link_ops 1737 * 1738 * @gso_max_size: Maximum size of generic segmentation offload 1739 * @gso_max_segs: Maximum number of segments that can be passed to the 1740 * NIC for GSO 1741 * 1742 * @dcbnl_ops: Data Center Bridging netlink ops 1743 * @num_tc: Number of traffic classes in the net device 1744 * @tc_to_txq: XXX: need comments on this one 1745 * @prio_tc_map: XXX: need comments on this one 1746 * 1747 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1748 * 1749 * @priomap: XXX: need comments on this one 1750 * @phydev: Physical device may attach itself 1751 * for hardware timestamping 1752 * @sfp_bus: attached &struct sfp_bus structure. 1753 * 1754 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1755 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1756 * 1757 * @proto_down: protocol port state information can be sent to the 1758 * switch driver and used to set the phys state of the 1759 * switch port. 1760 * 1761 * @wol_enabled: Wake-on-LAN is enabled 1762 * 1763 * FIXME: cleanup struct net_device such that network protocol info 1764 * moves out. 1765 */ 1766 1767 struct net_device { 1768 char name[IFNAMSIZ]; 1769 struct hlist_node name_hlist; 1770 struct dev_ifalias __rcu *ifalias; 1771 /* 1772 * I/O specific fields 1773 * FIXME: Merge these and struct ifmap into one 1774 */ 1775 unsigned long mem_end; 1776 unsigned long mem_start; 1777 unsigned long base_addr; 1778 int irq; 1779 1780 /* 1781 * Some hardware also needs these fields (state,dev_list, 1782 * napi_list,unreg_list,close_list) but they are not 1783 * part of the usual set specified in Space.c. 1784 */ 1785 1786 unsigned long state; 1787 1788 struct list_head dev_list; 1789 struct list_head napi_list; 1790 struct list_head unreg_list; 1791 struct list_head close_list; 1792 struct list_head ptype_all; 1793 struct list_head ptype_specific; 1794 1795 struct { 1796 struct list_head upper; 1797 struct list_head lower; 1798 } adj_list; 1799 1800 netdev_features_t features; 1801 netdev_features_t hw_features; 1802 netdev_features_t wanted_features; 1803 netdev_features_t vlan_features; 1804 netdev_features_t hw_enc_features; 1805 netdev_features_t mpls_features; 1806 netdev_features_t gso_partial_features; 1807 1808 int ifindex; 1809 int group; 1810 1811 struct net_device_stats stats; 1812 1813 atomic_long_t rx_dropped; 1814 atomic_long_t tx_dropped; 1815 atomic_long_t rx_nohandler; 1816 1817 /* Stats to monitor link on/off, flapping */ 1818 atomic_t carrier_up_count; 1819 atomic_t carrier_down_count; 1820 1821 #ifdef CONFIG_WIRELESS_EXT 1822 const struct iw_handler_def *wireless_handlers; 1823 struct iw_public_data *wireless_data; 1824 #endif 1825 const struct net_device_ops *netdev_ops; 1826 const struct ethtool_ops *ethtool_ops; 1827 #ifdef CONFIG_NET_SWITCHDEV 1828 const struct switchdev_ops *switchdev_ops; 1829 #endif 1830 #ifdef CONFIG_NET_L3_MASTER_DEV 1831 const struct l3mdev_ops *l3mdev_ops; 1832 #endif 1833 #if IS_ENABLED(CONFIG_IPV6) 1834 const struct ndisc_ops *ndisc_ops; 1835 #endif 1836 1837 #ifdef CONFIG_XFRM_OFFLOAD 1838 const struct xfrmdev_ops *xfrmdev_ops; 1839 #endif 1840 1841 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1842 const struct tlsdev_ops *tlsdev_ops; 1843 #endif 1844 1845 const struct header_ops *header_ops; 1846 1847 unsigned int flags; 1848 unsigned int priv_flags; 1849 1850 unsigned short gflags; 1851 unsigned short padded; 1852 1853 unsigned char operstate; 1854 unsigned char link_mode; 1855 1856 unsigned char if_port; 1857 unsigned char dma; 1858 1859 unsigned int mtu; 1860 unsigned int min_mtu; 1861 unsigned int max_mtu; 1862 unsigned short type; 1863 unsigned short hard_header_len; 1864 unsigned char min_header_len; 1865 1866 unsigned short needed_headroom; 1867 unsigned short needed_tailroom; 1868 1869 /* Interface address info. */ 1870 unsigned char perm_addr[MAX_ADDR_LEN]; 1871 unsigned char addr_assign_type; 1872 unsigned char addr_len; 1873 unsigned short neigh_priv_len; 1874 unsigned short dev_id; 1875 unsigned short dev_port; 1876 spinlock_t addr_list_lock; 1877 unsigned char name_assign_type; 1878 bool uc_promisc; 1879 struct netdev_hw_addr_list uc; 1880 struct netdev_hw_addr_list mc; 1881 struct netdev_hw_addr_list dev_addrs; 1882 1883 #ifdef CONFIG_SYSFS 1884 struct kset *queues_kset; 1885 #endif 1886 unsigned int promiscuity; 1887 unsigned int allmulti; 1888 1889 1890 /* Protocol-specific pointers */ 1891 1892 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1893 struct vlan_info __rcu *vlan_info; 1894 #endif 1895 #if IS_ENABLED(CONFIG_NET_DSA) 1896 struct dsa_port *dsa_ptr; 1897 #endif 1898 #if IS_ENABLED(CONFIG_TIPC) 1899 struct tipc_bearer __rcu *tipc_ptr; 1900 #endif 1901 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1902 void *atalk_ptr; 1903 #endif 1904 struct in_device __rcu *ip_ptr; 1905 #if IS_ENABLED(CONFIG_DECNET) 1906 struct dn_dev __rcu *dn_ptr; 1907 #endif 1908 struct inet6_dev __rcu *ip6_ptr; 1909 #if IS_ENABLED(CONFIG_AX25) 1910 void *ax25_ptr; 1911 #endif 1912 struct wireless_dev *ieee80211_ptr; 1913 struct wpan_dev *ieee802154_ptr; 1914 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1915 struct mpls_dev __rcu *mpls_ptr; 1916 #endif 1917 1918 /* 1919 * Cache lines mostly used on receive path (including eth_type_trans()) 1920 */ 1921 /* Interface address info used in eth_type_trans() */ 1922 unsigned char *dev_addr; 1923 1924 struct netdev_rx_queue *_rx; 1925 unsigned int num_rx_queues; 1926 unsigned int real_num_rx_queues; 1927 1928 struct bpf_prog __rcu *xdp_prog; 1929 unsigned long gro_flush_timeout; 1930 rx_handler_func_t __rcu *rx_handler; 1931 void __rcu *rx_handler_data; 1932 1933 #ifdef CONFIG_NET_CLS_ACT 1934 struct mini_Qdisc __rcu *miniq_ingress; 1935 #endif 1936 struct netdev_queue __rcu *ingress_queue; 1937 #ifdef CONFIG_NETFILTER_INGRESS 1938 struct nf_hook_entries __rcu *nf_hooks_ingress; 1939 #endif 1940 1941 unsigned char broadcast[MAX_ADDR_LEN]; 1942 #ifdef CONFIG_RFS_ACCEL 1943 struct cpu_rmap *rx_cpu_rmap; 1944 #endif 1945 struct hlist_node index_hlist; 1946 1947 /* 1948 * Cache lines mostly used on transmit path 1949 */ 1950 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1951 unsigned int num_tx_queues; 1952 unsigned int real_num_tx_queues; 1953 struct Qdisc *qdisc; 1954 #ifdef CONFIG_NET_SCHED 1955 DECLARE_HASHTABLE (qdisc_hash, 4); 1956 #endif 1957 unsigned int tx_queue_len; 1958 spinlock_t tx_global_lock; 1959 int watchdog_timeo; 1960 1961 #ifdef CONFIG_XPS 1962 struct xps_dev_maps __rcu *xps_cpus_map; 1963 struct xps_dev_maps __rcu *xps_rxqs_map; 1964 #endif 1965 #ifdef CONFIG_NET_CLS_ACT 1966 struct mini_Qdisc __rcu *miniq_egress; 1967 #endif 1968 1969 /* These may be needed for future network-power-down code. */ 1970 struct timer_list watchdog_timer; 1971 1972 int __percpu *pcpu_refcnt; 1973 struct list_head todo_list; 1974 1975 struct list_head link_watch_list; 1976 1977 enum { NETREG_UNINITIALIZED=0, 1978 NETREG_REGISTERED, /* completed register_netdevice */ 1979 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1980 NETREG_UNREGISTERED, /* completed unregister todo */ 1981 NETREG_RELEASED, /* called free_netdev */ 1982 NETREG_DUMMY, /* dummy device for NAPI poll */ 1983 } reg_state:8; 1984 1985 bool dismantle; 1986 1987 enum { 1988 RTNL_LINK_INITIALIZED, 1989 RTNL_LINK_INITIALIZING, 1990 } rtnl_link_state:16; 1991 1992 bool needs_free_netdev; 1993 void (*priv_destructor)(struct net_device *dev); 1994 1995 #ifdef CONFIG_NETPOLL 1996 struct netpoll_info __rcu *npinfo; 1997 #endif 1998 1999 possible_net_t nd_net; 2000 2001 /* mid-layer private */ 2002 union { 2003 void *ml_priv; 2004 struct pcpu_lstats __percpu *lstats; 2005 struct pcpu_sw_netstats __percpu *tstats; 2006 struct pcpu_dstats __percpu *dstats; 2007 }; 2008 2009 #if IS_ENABLED(CONFIG_GARP) 2010 struct garp_port __rcu *garp_port; 2011 #endif 2012 #if IS_ENABLED(CONFIG_MRP) 2013 struct mrp_port __rcu *mrp_port; 2014 #endif 2015 2016 struct device dev; 2017 const struct attribute_group *sysfs_groups[4]; 2018 const struct attribute_group *sysfs_rx_queue_group; 2019 2020 const struct rtnl_link_ops *rtnl_link_ops; 2021 2022 /* for setting kernel sock attribute on TCP connection setup */ 2023 #define GSO_MAX_SIZE 65536 2024 unsigned int gso_max_size; 2025 #define GSO_MAX_SEGS 65535 2026 u16 gso_max_segs; 2027 2028 #ifdef CONFIG_DCB 2029 const struct dcbnl_rtnl_ops *dcbnl_ops; 2030 #endif 2031 s16 num_tc; 2032 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2033 u8 prio_tc_map[TC_BITMASK + 1]; 2034 2035 #if IS_ENABLED(CONFIG_FCOE) 2036 unsigned int fcoe_ddp_xid; 2037 #endif 2038 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2039 struct netprio_map __rcu *priomap; 2040 #endif 2041 struct phy_device *phydev; 2042 struct sfp_bus *sfp_bus; 2043 struct lock_class_key *qdisc_tx_busylock; 2044 struct lock_class_key *qdisc_running_key; 2045 bool proto_down; 2046 unsigned wol_enabled:1; 2047 }; 2048 #define to_net_dev(d) container_of(d, struct net_device, dev) 2049 2050 static inline bool netif_elide_gro(const struct net_device *dev) 2051 { 2052 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2053 return true; 2054 return false; 2055 } 2056 2057 #define NETDEV_ALIGN 32 2058 2059 static inline 2060 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2061 { 2062 return dev->prio_tc_map[prio & TC_BITMASK]; 2063 } 2064 2065 static inline 2066 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2067 { 2068 if (tc >= dev->num_tc) 2069 return -EINVAL; 2070 2071 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2072 return 0; 2073 } 2074 2075 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2076 void netdev_reset_tc(struct net_device *dev); 2077 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2078 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2079 2080 static inline 2081 int netdev_get_num_tc(struct net_device *dev) 2082 { 2083 return dev->num_tc; 2084 } 2085 2086 void netdev_unbind_sb_channel(struct net_device *dev, 2087 struct net_device *sb_dev); 2088 int netdev_bind_sb_channel_queue(struct net_device *dev, 2089 struct net_device *sb_dev, 2090 u8 tc, u16 count, u16 offset); 2091 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2092 static inline int netdev_get_sb_channel(struct net_device *dev) 2093 { 2094 return max_t(int, -dev->num_tc, 0); 2095 } 2096 2097 static inline 2098 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2099 unsigned int index) 2100 { 2101 return &dev->_tx[index]; 2102 } 2103 2104 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2105 const struct sk_buff *skb) 2106 { 2107 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2108 } 2109 2110 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2111 void (*f)(struct net_device *, 2112 struct netdev_queue *, 2113 void *), 2114 void *arg) 2115 { 2116 unsigned int i; 2117 2118 for (i = 0; i < dev->num_tx_queues; i++) 2119 f(dev, &dev->_tx[i], arg); 2120 } 2121 2122 #define netdev_lockdep_set_classes(dev) \ 2123 { \ 2124 static struct lock_class_key qdisc_tx_busylock_key; \ 2125 static struct lock_class_key qdisc_running_key; \ 2126 static struct lock_class_key qdisc_xmit_lock_key; \ 2127 static struct lock_class_key dev_addr_list_lock_key; \ 2128 unsigned int i; \ 2129 \ 2130 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2131 (dev)->qdisc_running_key = &qdisc_running_key; \ 2132 lockdep_set_class(&(dev)->addr_list_lock, \ 2133 &dev_addr_list_lock_key); \ 2134 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2135 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2136 &qdisc_xmit_lock_key); \ 2137 } 2138 2139 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2140 struct sk_buff *skb, 2141 struct net_device *sb_dev); 2142 2143 /* returns the headroom that the master device needs to take in account 2144 * when forwarding to this dev 2145 */ 2146 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2147 { 2148 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2149 } 2150 2151 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2152 { 2153 if (dev->netdev_ops->ndo_set_rx_headroom) 2154 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2155 } 2156 2157 /* set the device rx headroom to the dev's default */ 2158 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2159 { 2160 netdev_set_rx_headroom(dev, -1); 2161 } 2162 2163 /* 2164 * Net namespace inlines 2165 */ 2166 static inline 2167 struct net *dev_net(const struct net_device *dev) 2168 { 2169 return read_pnet(&dev->nd_net); 2170 } 2171 2172 static inline 2173 void dev_net_set(struct net_device *dev, struct net *net) 2174 { 2175 write_pnet(&dev->nd_net, net); 2176 } 2177 2178 /** 2179 * netdev_priv - access network device private data 2180 * @dev: network device 2181 * 2182 * Get network device private data 2183 */ 2184 static inline void *netdev_priv(const struct net_device *dev) 2185 { 2186 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2187 } 2188 2189 /* Set the sysfs physical device reference for the network logical device 2190 * if set prior to registration will cause a symlink during initialization. 2191 */ 2192 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2193 2194 /* Set the sysfs device type for the network logical device to allow 2195 * fine-grained identification of different network device types. For 2196 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2197 */ 2198 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2199 2200 /* Default NAPI poll() weight 2201 * Device drivers are strongly advised to not use bigger value 2202 */ 2203 #define NAPI_POLL_WEIGHT 64 2204 2205 /** 2206 * netif_napi_add - initialize a NAPI context 2207 * @dev: network device 2208 * @napi: NAPI context 2209 * @poll: polling function 2210 * @weight: default weight 2211 * 2212 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2213 * *any* of the other NAPI-related functions. 2214 */ 2215 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2216 int (*poll)(struct napi_struct *, int), int weight); 2217 2218 /** 2219 * netif_tx_napi_add - initialize a NAPI context 2220 * @dev: network device 2221 * @napi: NAPI context 2222 * @poll: polling function 2223 * @weight: default weight 2224 * 2225 * This variant of netif_napi_add() should be used from drivers using NAPI 2226 * to exclusively poll a TX queue. 2227 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2228 */ 2229 static inline void netif_tx_napi_add(struct net_device *dev, 2230 struct napi_struct *napi, 2231 int (*poll)(struct napi_struct *, int), 2232 int weight) 2233 { 2234 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2235 netif_napi_add(dev, napi, poll, weight); 2236 } 2237 2238 /** 2239 * netif_napi_del - remove a NAPI context 2240 * @napi: NAPI context 2241 * 2242 * netif_napi_del() removes a NAPI context from the network device NAPI list 2243 */ 2244 void netif_napi_del(struct napi_struct *napi); 2245 2246 struct napi_gro_cb { 2247 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2248 void *frag0; 2249 2250 /* Length of frag0. */ 2251 unsigned int frag0_len; 2252 2253 /* This indicates where we are processing relative to skb->data. */ 2254 int data_offset; 2255 2256 /* This is non-zero if the packet cannot be merged with the new skb. */ 2257 u16 flush; 2258 2259 /* Save the IP ID here and check when we get to the transport layer */ 2260 u16 flush_id; 2261 2262 /* Number of segments aggregated. */ 2263 u16 count; 2264 2265 /* Start offset for remote checksum offload */ 2266 u16 gro_remcsum_start; 2267 2268 /* jiffies when first packet was created/queued */ 2269 unsigned long age; 2270 2271 /* Used in ipv6_gro_receive() and foo-over-udp */ 2272 u16 proto; 2273 2274 /* This is non-zero if the packet may be of the same flow. */ 2275 u8 same_flow:1; 2276 2277 /* Used in tunnel GRO receive */ 2278 u8 encap_mark:1; 2279 2280 /* GRO checksum is valid */ 2281 u8 csum_valid:1; 2282 2283 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2284 u8 csum_cnt:3; 2285 2286 /* Free the skb? */ 2287 u8 free:2; 2288 #define NAPI_GRO_FREE 1 2289 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2290 2291 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2292 u8 is_ipv6:1; 2293 2294 /* Used in GRE, set in fou/gue_gro_receive */ 2295 u8 is_fou:1; 2296 2297 /* Used to determine if flush_id can be ignored */ 2298 u8 is_atomic:1; 2299 2300 /* Number of gro_receive callbacks this packet already went through */ 2301 u8 recursion_counter:4; 2302 2303 /* 1 bit hole */ 2304 2305 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2306 __wsum csum; 2307 2308 /* used in skb_gro_receive() slow path */ 2309 struct sk_buff *last; 2310 }; 2311 2312 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2313 2314 #define GRO_RECURSION_LIMIT 15 2315 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2316 { 2317 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2318 } 2319 2320 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2321 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2322 struct list_head *head, 2323 struct sk_buff *skb) 2324 { 2325 if (unlikely(gro_recursion_inc_test(skb))) { 2326 NAPI_GRO_CB(skb)->flush |= 1; 2327 return NULL; 2328 } 2329 2330 return cb(head, skb); 2331 } 2332 2333 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2334 struct sk_buff *); 2335 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2336 struct sock *sk, 2337 struct list_head *head, 2338 struct sk_buff *skb) 2339 { 2340 if (unlikely(gro_recursion_inc_test(skb))) { 2341 NAPI_GRO_CB(skb)->flush |= 1; 2342 return NULL; 2343 } 2344 2345 return cb(sk, head, skb); 2346 } 2347 2348 struct packet_type { 2349 __be16 type; /* This is really htons(ether_type). */ 2350 bool ignore_outgoing; 2351 struct net_device *dev; /* NULL is wildcarded here */ 2352 int (*func) (struct sk_buff *, 2353 struct net_device *, 2354 struct packet_type *, 2355 struct net_device *); 2356 void (*list_func) (struct list_head *, 2357 struct packet_type *, 2358 struct net_device *); 2359 bool (*id_match)(struct packet_type *ptype, 2360 struct sock *sk); 2361 void *af_packet_priv; 2362 struct list_head list; 2363 }; 2364 2365 struct offload_callbacks { 2366 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2367 netdev_features_t features); 2368 struct sk_buff *(*gro_receive)(struct list_head *head, 2369 struct sk_buff *skb); 2370 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2371 }; 2372 2373 struct packet_offload { 2374 __be16 type; /* This is really htons(ether_type). */ 2375 u16 priority; 2376 struct offload_callbacks callbacks; 2377 struct list_head list; 2378 }; 2379 2380 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2381 struct pcpu_sw_netstats { 2382 u64 rx_packets; 2383 u64 rx_bytes; 2384 u64 tx_packets; 2385 u64 tx_bytes; 2386 struct u64_stats_sync syncp; 2387 } __aligned(4 * sizeof(u64)); 2388 2389 struct pcpu_lstats { 2390 u64 packets; 2391 u64 bytes; 2392 struct u64_stats_sync syncp; 2393 } __aligned(2 * sizeof(u64)); 2394 2395 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2396 ({ \ 2397 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2398 if (pcpu_stats) { \ 2399 int __cpu; \ 2400 for_each_possible_cpu(__cpu) { \ 2401 typeof(type) *stat; \ 2402 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2403 u64_stats_init(&stat->syncp); \ 2404 } \ 2405 } \ 2406 pcpu_stats; \ 2407 }) 2408 2409 #define netdev_alloc_pcpu_stats(type) \ 2410 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2411 2412 enum netdev_lag_tx_type { 2413 NETDEV_LAG_TX_TYPE_UNKNOWN, 2414 NETDEV_LAG_TX_TYPE_RANDOM, 2415 NETDEV_LAG_TX_TYPE_BROADCAST, 2416 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2417 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2418 NETDEV_LAG_TX_TYPE_HASH, 2419 }; 2420 2421 enum netdev_lag_hash { 2422 NETDEV_LAG_HASH_NONE, 2423 NETDEV_LAG_HASH_L2, 2424 NETDEV_LAG_HASH_L34, 2425 NETDEV_LAG_HASH_L23, 2426 NETDEV_LAG_HASH_E23, 2427 NETDEV_LAG_HASH_E34, 2428 NETDEV_LAG_HASH_UNKNOWN, 2429 }; 2430 2431 struct netdev_lag_upper_info { 2432 enum netdev_lag_tx_type tx_type; 2433 enum netdev_lag_hash hash_type; 2434 }; 2435 2436 struct netdev_lag_lower_state_info { 2437 u8 link_up : 1, 2438 tx_enabled : 1; 2439 }; 2440 2441 #include <linux/notifier.h> 2442 2443 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2444 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2445 * adding new types. 2446 */ 2447 enum netdev_cmd { 2448 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2449 NETDEV_DOWN, 2450 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2451 detected a hardware crash and restarted 2452 - we can use this eg to kick tcp sessions 2453 once done */ 2454 NETDEV_CHANGE, /* Notify device state change */ 2455 NETDEV_REGISTER, 2456 NETDEV_UNREGISTER, 2457 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2458 NETDEV_CHANGEADDR, /* notify after the address change */ 2459 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2460 NETDEV_GOING_DOWN, 2461 NETDEV_CHANGENAME, 2462 NETDEV_FEAT_CHANGE, 2463 NETDEV_BONDING_FAILOVER, 2464 NETDEV_PRE_UP, 2465 NETDEV_PRE_TYPE_CHANGE, 2466 NETDEV_POST_TYPE_CHANGE, 2467 NETDEV_POST_INIT, 2468 NETDEV_RELEASE, 2469 NETDEV_NOTIFY_PEERS, 2470 NETDEV_JOIN, 2471 NETDEV_CHANGEUPPER, 2472 NETDEV_RESEND_IGMP, 2473 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2474 NETDEV_CHANGEINFODATA, 2475 NETDEV_BONDING_INFO, 2476 NETDEV_PRECHANGEUPPER, 2477 NETDEV_CHANGELOWERSTATE, 2478 NETDEV_UDP_TUNNEL_PUSH_INFO, 2479 NETDEV_UDP_TUNNEL_DROP_INFO, 2480 NETDEV_CHANGE_TX_QUEUE_LEN, 2481 NETDEV_CVLAN_FILTER_PUSH_INFO, 2482 NETDEV_CVLAN_FILTER_DROP_INFO, 2483 NETDEV_SVLAN_FILTER_PUSH_INFO, 2484 NETDEV_SVLAN_FILTER_DROP_INFO, 2485 }; 2486 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2487 2488 int register_netdevice_notifier(struct notifier_block *nb); 2489 int unregister_netdevice_notifier(struct notifier_block *nb); 2490 2491 struct netdev_notifier_info { 2492 struct net_device *dev; 2493 struct netlink_ext_ack *extack; 2494 }; 2495 2496 struct netdev_notifier_info_ext { 2497 struct netdev_notifier_info info; /* must be first */ 2498 union { 2499 u32 mtu; 2500 } ext; 2501 }; 2502 2503 struct netdev_notifier_change_info { 2504 struct netdev_notifier_info info; /* must be first */ 2505 unsigned int flags_changed; 2506 }; 2507 2508 struct netdev_notifier_changeupper_info { 2509 struct netdev_notifier_info info; /* must be first */ 2510 struct net_device *upper_dev; /* new upper dev */ 2511 bool master; /* is upper dev master */ 2512 bool linking; /* is the notification for link or unlink */ 2513 void *upper_info; /* upper dev info */ 2514 }; 2515 2516 struct netdev_notifier_changelowerstate_info { 2517 struct netdev_notifier_info info; /* must be first */ 2518 void *lower_state_info; /* is lower dev state */ 2519 }; 2520 2521 struct netdev_notifier_pre_changeaddr_info { 2522 struct netdev_notifier_info info; /* must be first */ 2523 const unsigned char *dev_addr; 2524 }; 2525 2526 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2527 struct net_device *dev) 2528 { 2529 info->dev = dev; 2530 info->extack = NULL; 2531 } 2532 2533 static inline struct net_device * 2534 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2535 { 2536 return info->dev; 2537 } 2538 2539 static inline struct netlink_ext_ack * 2540 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2541 { 2542 return info->extack; 2543 } 2544 2545 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2546 2547 2548 extern rwlock_t dev_base_lock; /* Device list lock */ 2549 2550 #define for_each_netdev(net, d) \ 2551 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2552 #define for_each_netdev_reverse(net, d) \ 2553 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2554 #define for_each_netdev_rcu(net, d) \ 2555 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2556 #define for_each_netdev_safe(net, d, n) \ 2557 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2558 #define for_each_netdev_continue(net, d) \ 2559 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2560 #define for_each_netdev_continue_rcu(net, d) \ 2561 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2562 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2563 for_each_netdev_rcu(&init_net, slave) \ 2564 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2565 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2566 2567 static inline struct net_device *next_net_device(struct net_device *dev) 2568 { 2569 struct list_head *lh; 2570 struct net *net; 2571 2572 net = dev_net(dev); 2573 lh = dev->dev_list.next; 2574 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2575 } 2576 2577 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2578 { 2579 struct list_head *lh; 2580 struct net *net; 2581 2582 net = dev_net(dev); 2583 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2584 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2585 } 2586 2587 static inline struct net_device *first_net_device(struct net *net) 2588 { 2589 return list_empty(&net->dev_base_head) ? NULL : 2590 net_device_entry(net->dev_base_head.next); 2591 } 2592 2593 static inline struct net_device *first_net_device_rcu(struct net *net) 2594 { 2595 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2596 2597 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2598 } 2599 2600 int netdev_boot_setup_check(struct net_device *dev); 2601 unsigned long netdev_boot_base(const char *prefix, int unit); 2602 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2603 const char *hwaddr); 2604 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2605 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2606 void dev_add_pack(struct packet_type *pt); 2607 void dev_remove_pack(struct packet_type *pt); 2608 void __dev_remove_pack(struct packet_type *pt); 2609 void dev_add_offload(struct packet_offload *po); 2610 void dev_remove_offload(struct packet_offload *po); 2611 2612 int dev_get_iflink(const struct net_device *dev); 2613 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2614 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2615 unsigned short mask); 2616 struct net_device *dev_get_by_name(struct net *net, const char *name); 2617 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2618 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2619 int dev_alloc_name(struct net_device *dev, const char *name); 2620 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2621 void dev_close(struct net_device *dev); 2622 void dev_close_many(struct list_head *head, bool unlink); 2623 void dev_disable_lro(struct net_device *dev); 2624 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2625 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2626 struct net_device *sb_dev, 2627 select_queue_fallback_t fallback); 2628 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2629 struct net_device *sb_dev, 2630 select_queue_fallback_t fallback); 2631 int dev_queue_xmit(struct sk_buff *skb); 2632 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2633 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2634 int register_netdevice(struct net_device *dev); 2635 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2636 void unregister_netdevice_many(struct list_head *head); 2637 static inline void unregister_netdevice(struct net_device *dev) 2638 { 2639 unregister_netdevice_queue(dev, NULL); 2640 } 2641 2642 int netdev_refcnt_read(const struct net_device *dev); 2643 void free_netdev(struct net_device *dev); 2644 void netdev_freemem(struct net_device *dev); 2645 void synchronize_net(void); 2646 int init_dummy_netdev(struct net_device *dev); 2647 2648 DECLARE_PER_CPU(int, xmit_recursion); 2649 #define XMIT_RECURSION_LIMIT 10 2650 2651 static inline int dev_recursion_level(void) 2652 { 2653 return this_cpu_read(xmit_recursion); 2654 } 2655 2656 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2657 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2658 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2659 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2660 int netdev_get_name(struct net *net, char *name, int ifindex); 2661 int dev_restart(struct net_device *dev); 2662 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2663 2664 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2665 { 2666 return NAPI_GRO_CB(skb)->data_offset; 2667 } 2668 2669 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2670 { 2671 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2672 } 2673 2674 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2675 { 2676 NAPI_GRO_CB(skb)->data_offset += len; 2677 } 2678 2679 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2680 unsigned int offset) 2681 { 2682 return NAPI_GRO_CB(skb)->frag0 + offset; 2683 } 2684 2685 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2686 { 2687 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2688 } 2689 2690 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2691 { 2692 NAPI_GRO_CB(skb)->frag0 = NULL; 2693 NAPI_GRO_CB(skb)->frag0_len = 0; 2694 } 2695 2696 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2697 unsigned int offset) 2698 { 2699 if (!pskb_may_pull(skb, hlen)) 2700 return NULL; 2701 2702 skb_gro_frag0_invalidate(skb); 2703 return skb->data + offset; 2704 } 2705 2706 static inline void *skb_gro_network_header(struct sk_buff *skb) 2707 { 2708 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2709 skb_network_offset(skb); 2710 } 2711 2712 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2713 const void *start, unsigned int len) 2714 { 2715 if (NAPI_GRO_CB(skb)->csum_valid) 2716 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2717 csum_partial(start, len, 0)); 2718 } 2719 2720 /* GRO checksum functions. These are logical equivalents of the normal 2721 * checksum functions (in skbuff.h) except that they operate on the GRO 2722 * offsets and fields in sk_buff. 2723 */ 2724 2725 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2726 2727 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2728 { 2729 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2730 } 2731 2732 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2733 bool zero_okay, 2734 __sum16 check) 2735 { 2736 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2737 skb_checksum_start_offset(skb) < 2738 skb_gro_offset(skb)) && 2739 !skb_at_gro_remcsum_start(skb) && 2740 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2741 (!zero_okay || check)); 2742 } 2743 2744 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2745 __wsum psum) 2746 { 2747 if (NAPI_GRO_CB(skb)->csum_valid && 2748 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2749 return 0; 2750 2751 NAPI_GRO_CB(skb)->csum = psum; 2752 2753 return __skb_gro_checksum_complete(skb); 2754 } 2755 2756 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2757 { 2758 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2759 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2760 NAPI_GRO_CB(skb)->csum_cnt--; 2761 } else { 2762 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2763 * verified a new top level checksum or an encapsulated one 2764 * during GRO. This saves work if we fallback to normal path. 2765 */ 2766 __skb_incr_checksum_unnecessary(skb); 2767 } 2768 } 2769 2770 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2771 compute_pseudo) \ 2772 ({ \ 2773 __sum16 __ret = 0; \ 2774 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2775 __ret = __skb_gro_checksum_validate_complete(skb, \ 2776 compute_pseudo(skb, proto)); \ 2777 if (!__ret) \ 2778 skb_gro_incr_csum_unnecessary(skb); \ 2779 __ret; \ 2780 }) 2781 2782 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2783 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2784 2785 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2786 compute_pseudo) \ 2787 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2788 2789 #define skb_gro_checksum_simple_validate(skb) \ 2790 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2791 2792 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2793 { 2794 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2795 !NAPI_GRO_CB(skb)->csum_valid); 2796 } 2797 2798 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2799 __sum16 check, __wsum pseudo) 2800 { 2801 NAPI_GRO_CB(skb)->csum = ~pseudo; 2802 NAPI_GRO_CB(skb)->csum_valid = 1; 2803 } 2804 2805 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2806 do { \ 2807 if (__skb_gro_checksum_convert_check(skb)) \ 2808 __skb_gro_checksum_convert(skb, check, \ 2809 compute_pseudo(skb, proto)); \ 2810 } while (0) 2811 2812 struct gro_remcsum { 2813 int offset; 2814 __wsum delta; 2815 }; 2816 2817 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2818 { 2819 grc->offset = 0; 2820 grc->delta = 0; 2821 } 2822 2823 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2824 unsigned int off, size_t hdrlen, 2825 int start, int offset, 2826 struct gro_remcsum *grc, 2827 bool nopartial) 2828 { 2829 __wsum delta; 2830 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2831 2832 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2833 2834 if (!nopartial) { 2835 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2836 return ptr; 2837 } 2838 2839 ptr = skb_gro_header_fast(skb, off); 2840 if (skb_gro_header_hard(skb, off + plen)) { 2841 ptr = skb_gro_header_slow(skb, off + plen, off); 2842 if (!ptr) 2843 return NULL; 2844 } 2845 2846 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2847 start, offset); 2848 2849 /* Adjust skb->csum since we changed the packet */ 2850 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2851 2852 grc->offset = off + hdrlen + offset; 2853 grc->delta = delta; 2854 2855 return ptr; 2856 } 2857 2858 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2859 struct gro_remcsum *grc) 2860 { 2861 void *ptr; 2862 size_t plen = grc->offset + sizeof(u16); 2863 2864 if (!grc->delta) 2865 return; 2866 2867 ptr = skb_gro_header_fast(skb, grc->offset); 2868 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2869 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2870 if (!ptr) 2871 return; 2872 } 2873 2874 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2875 } 2876 2877 #ifdef CONFIG_XFRM_OFFLOAD 2878 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2879 { 2880 if (PTR_ERR(pp) != -EINPROGRESS) 2881 NAPI_GRO_CB(skb)->flush |= flush; 2882 } 2883 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2884 struct sk_buff *pp, 2885 int flush, 2886 struct gro_remcsum *grc) 2887 { 2888 if (PTR_ERR(pp) != -EINPROGRESS) { 2889 NAPI_GRO_CB(skb)->flush |= flush; 2890 skb_gro_remcsum_cleanup(skb, grc); 2891 skb->remcsum_offload = 0; 2892 } 2893 } 2894 #else 2895 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2896 { 2897 NAPI_GRO_CB(skb)->flush |= flush; 2898 } 2899 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2900 struct sk_buff *pp, 2901 int flush, 2902 struct gro_remcsum *grc) 2903 { 2904 NAPI_GRO_CB(skb)->flush |= flush; 2905 skb_gro_remcsum_cleanup(skb, grc); 2906 skb->remcsum_offload = 0; 2907 } 2908 #endif 2909 2910 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2911 unsigned short type, 2912 const void *daddr, const void *saddr, 2913 unsigned int len) 2914 { 2915 if (!dev->header_ops || !dev->header_ops->create) 2916 return 0; 2917 2918 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2919 } 2920 2921 static inline int dev_parse_header(const struct sk_buff *skb, 2922 unsigned char *haddr) 2923 { 2924 const struct net_device *dev = skb->dev; 2925 2926 if (!dev->header_ops || !dev->header_ops->parse) 2927 return 0; 2928 return dev->header_ops->parse(skb, haddr); 2929 } 2930 2931 /* ll_header must have at least hard_header_len allocated */ 2932 static inline bool dev_validate_header(const struct net_device *dev, 2933 char *ll_header, int len) 2934 { 2935 if (likely(len >= dev->hard_header_len)) 2936 return true; 2937 if (len < dev->min_header_len) 2938 return false; 2939 2940 if (capable(CAP_SYS_RAWIO)) { 2941 memset(ll_header + len, 0, dev->hard_header_len - len); 2942 return true; 2943 } 2944 2945 if (dev->header_ops && dev->header_ops->validate) 2946 return dev->header_ops->validate(ll_header, len); 2947 2948 return false; 2949 } 2950 2951 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2952 int len, int size); 2953 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2954 static inline int unregister_gifconf(unsigned int family) 2955 { 2956 return register_gifconf(family, NULL); 2957 } 2958 2959 #ifdef CONFIG_NET_FLOW_LIMIT 2960 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2961 struct sd_flow_limit { 2962 u64 count; 2963 unsigned int num_buckets; 2964 unsigned int history_head; 2965 u16 history[FLOW_LIMIT_HISTORY]; 2966 u8 buckets[]; 2967 }; 2968 2969 extern int netdev_flow_limit_table_len; 2970 #endif /* CONFIG_NET_FLOW_LIMIT */ 2971 2972 /* 2973 * Incoming packets are placed on per-CPU queues 2974 */ 2975 struct softnet_data { 2976 struct list_head poll_list; 2977 struct sk_buff_head process_queue; 2978 2979 /* stats */ 2980 unsigned int processed; 2981 unsigned int time_squeeze; 2982 unsigned int received_rps; 2983 #ifdef CONFIG_RPS 2984 struct softnet_data *rps_ipi_list; 2985 #endif 2986 #ifdef CONFIG_NET_FLOW_LIMIT 2987 struct sd_flow_limit __rcu *flow_limit; 2988 #endif 2989 struct Qdisc *output_queue; 2990 struct Qdisc **output_queue_tailp; 2991 struct sk_buff *completion_queue; 2992 #ifdef CONFIG_XFRM_OFFLOAD 2993 struct sk_buff_head xfrm_backlog; 2994 #endif 2995 #ifdef CONFIG_RPS 2996 /* input_queue_head should be written by cpu owning this struct, 2997 * and only read by other cpus. Worth using a cache line. 2998 */ 2999 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3000 3001 /* Elements below can be accessed between CPUs for RPS/RFS */ 3002 call_single_data_t csd ____cacheline_aligned_in_smp; 3003 struct softnet_data *rps_ipi_next; 3004 unsigned int cpu; 3005 unsigned int input_queue_tail; 3006 #endif 3007 unsigned int dropped; 3008 struct sk_buff_head input_pkt_queue; 3009 struct napi_struct backlog; 3010 3011 }; 3012 3013 static inline void input_queue_head_incr(struct softnet_data *sd) 3014 { 3015 #ifdef CONFIG_RPS 3016 sd->input_queue_head++; 3017 #endif 3018 } 3019 3020 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3021 unsigned int *qtail) 3022 { 3023 #ifdef CONFIG_RPS 3024 *qtail = ++sd->input_queue_tail; 3025 #endif 3026 } 3027 3028 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3029 3030 void __netif_schedule(struct Qdisc *q); 3031 void netif_schedule_queue(struct netdev_queue *txq); 3032 3033 static inline void netif_tx_schedule_all(struct net_device *dev) 3034 { 3035 unsigned int i; 3036 3037 for (i = 0; i < dev->num_tx_queues; i++) 3038 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3039 } 3040 3041 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3042 { 3043 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3044 } 3045 3046 /** 3047 * netif_start_queue - allow transmit 3048 * @dev: network device 3049 * 3050 * Allow upper layers to call the device hard_start_xmit routine. 3051 */ 3052 static inline void netif_start_queue(struct net_device *dev) 3053 { 3054 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3055 } 3056 3057 static inline void netif_tx_start_all_queues(struct net_device *dev) 3058 { 3059 unsigned int i; 3060 3061 for (i = 0; i < dev->num_tx_queues; i++) { 3062 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3063 netif_tx_start_queue(txq); 3064 } 3065 } 3066 3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3068 3069 /** 3070 * netif_wake_queue - restart transmit 3071 * @dev: network device 3072 * 3073 * Allow upper layers to call the device hard_start_xmit routine. 3074 * Used for flow control when transmit resources are available. 3075 */ 3076 static inline void netif_wake_queue(struct net_device *dev) 3077 { 3078 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3079 } 3080 3081 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3082 { 3083 unsigned int i; 3084 3085 for (i = 0; i < dev->num_tx_queues; i++) { 3086 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3087 netif_tx_wake_queue(txq); 3088 } 3089 } 3090 3091 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3092 { 3093 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3094 } 3095 3096 /** 3097 * netif_stop_queue - stop transmitted packets 3098 * @dev: network device 3099 * 3100 * Stop upper layers calling the device hard_start_xmit routine. 3101 * Used for flow control when transmit resources are unavailable. 3102 */ 3103 static inline void netif_stop_queue(struct net_device *dev) 3104 { 3105 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3106 } 3107 3108 void netif_tx_stop_all_queues(struct net_device *dev); 3109 3110 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3111 { 3112 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3113 } 3114 3115 /** 3116 * netif_queue_stopped - test if transmit queue is flowblocked 3117 * @dev: network device 3118 * 3119 * Test if transmit queue on device is currently unable to send. 3120 */ 3121 static inline bool netif_queue_stopped(const struct net_device *dev) 3122 { 3123 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3124 } 3125 3126 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3127 { 3128 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3129 } 3130 3131 static inline bool 3132 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3133 { 3134 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3135 } 3136 3137 static inline bool 3138 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3139 { 3140 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3141 } 3142 3143 /** 3144 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3145 * @dev_queue: pointer to transmit queue 3146 * 3147 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3148 * to give appropriate hint to the CPU. 3149 */ 3150 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3151 { 3152 #ifdef CONFIG_BQL 3153 prefetchw(&dev_queue->dql.num_queued); 3154 #endif 3155 } 3156 3157 /** 3158 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3159 * @dev_queue: pointer to transmit queue 3160 * 3161 * BQL enabled drivers might use this helper in their TX completion path, 3162 * to give appropriate hint to the CPU. 3163 */ 3164 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3165 { 3166 #ifdef CONFIG_BQL 3167 prefetchw(&dev_queue->dql.limit); 3168 #endif 3169 } 3170 3171 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3172 unsigned int bytes) 3173 { 3174 #ifdef CONFIG_BQL 3175 dql_queued(&dev_queue->dql, bytes); 3176 3177 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3178 return; 3179 3180 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3181 3182 /* 3183 * The XOFF flag must be set before checking the dql_avail below, 3184 * because in netdev_tx_completed_queue we update the dql_completed 3185 * before checking the XOFF flag. 3186 */ 3187 smp_mb(); 3188 3189 /* check again in case another CPU has just made room avail */ 3190 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3191 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3192 #endif 3193 } 3194 3195 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3196 * that they should not test BQL status themselves. 3197 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3198 * skb of a batch. 3199 * Returns true if the doorbell must be used to kick the NIC. 3200 */ 3201 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3202 unsigned int bytes, 3203 bool xmit_more) 3204 { 3205 if (xmit_more) { 3206 #ifdef CONFIG_BQL 3207 dql_queued(&dev_queue->dql, bytes); 3208 #endif 3209 return netif_tx_queue_stopped(dev_queue); 3210 } 3211 netdev_tx_sent_queue(dev_queue, bytes); 3212 return true; 3213 } 3214 3215 /** 3216 * netdev_sent_queue - report the number of bytes queued to hardware 3217 * @dev: network device 3218 * @bytes: number of bytes queued to the hardware device queue 3219 * 3220 * Report the number of bytes queued for sending/completion to the network 3221 * device hardware queue. @bytes should be a good approximation and should 3222 * exactly match netdev_completed_queue() @bytes 3223 */ 3224 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3225 { 3226 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3227 } 3228 3229 static inline bool __netdev_sent_queue(struct net_device *dev, 3230 unsigned int bytes, 3231 bool xmit_more) 3232 { 3233 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3234 xmit_more); 3235 } 3236 3237 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3238 unsigned int pkts, unsigned int bytes) 3239 { 3240 #ifdef CONFIG_BQL 3241 if (unlikely(!bytes)) 3242 return; 3243 3244 dql_completed(&dev_queue->dql, bytes); 3245 3246 /* 3247 * Without the memory barrier there is a small possiblity that 3248 * netdev_tx_sent_queue will miss the update and cause the queue to 3249 * be stopped forever 3250 */ 3251 smp_mb(); 3252 3253 if (dql_avail(&dev_queue->dql) < 0) 3254 return; 3255 3256 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3257 netif_schedule_queue(dev_queue); 3258 #endif 3259 } 3260 3261 /** 3262 * netdev_completed_queue - report bytes and packets completed by device 3263 * @dev: network device 3264 * @pkts: actual number of packets sent over the medium 3265 * @bytes: actual number of bytes sent over the medium 3266 * 3267 * Report the number of bytes and packets transmitted by the network device 3268 * hardware queue over the physical medium, @bytes must exactly match the 3269 * @bytes amount passed to netdev_sent_queue() 3270 */ 3271 static inline void netdev_completed_queue(struct net_device *dev, 3272 unsigned int pkts, unsigned int bytes) 3273 { 3274 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3275 } 3276 3277 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3278 { 3279 #ifdef CONFIG_BQL 3280 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3281 dql_reset(&q->dql); 3282 #endif 3283 } 3284 3285 /** 3286 * netdev_reset_queue - reset the packets and bytes count of a network device 3287 * @dev_queue: network device 3288 * 3289 * Reset the bytes and packet count of a network device and clear the 3290 * software flow control OFF bit for this network device 3291 */ 3292 static inline void netdev_reset_queue(struct net_device *dev_queue) 3293 { 3294 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3295 } 3296 3297 /** 3298 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3299 * @dev: network device 3300 * @queue_index: given tx queue index 3301 * 3302 * Returns 0 if given tx queue index >= number of device tx queues, 3303 * otherwise returns the originally passed tx queue index. 3304 */ 3305 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3306 { 3307 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3308 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3309 dev->name, queue_index, 3310 dev->real_num_tx_queues); 3311 return 0; 3312 } 3313 3314 return queue_index; 3315 } 3316 3317 /** 3318 * netif_running - test if up 3319 * @dev: network device 3320 * 3321 * Test if the device has been brought up. 3322 */ 3323 static inline bool netif_running(const struct net_device *dev) 3324 { 3325 return test_bit(__LINK_STATE_START, &dev->state); 3326 } 3327 3328 /* 3329 * Routines to manage the subqueues on a device. We only need start, 3330 * stop, and a check if it's stopped. All other device management is 3331 * done at the overall netdevice level. 3332 * Also test the device if we're multiqueue. 3333 */ 3334 3335 /** 3336 * netif_start_subqueue - allow sending packets on subqueue 3337 * @dev: network device 3338 * @queue_index: sub queue index 3339 * 3340 * Start individual transmit queue of a device with multiple transmit queues. 3341 */ 3342 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3343 { 3344 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3345 3346 netif_tx_start_queue(txq); 3347 } 3348 3349 /** 3350 * netif_stop_subqueue - stop sending packets on subqueue 3351 * @dev: network device 3352 * @queue_index: sub queue index 3353 * 3354 * Stop individual transmit queue of a device with multiple transmit queues. 3355 */ 3356 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3357 { 3358 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3359 netif_tx_stop_queue(txq); 3360 } 3361 3362 /** 3363 * netif_subqueue_stopped - test status of subqueue 3364 * @dev: network device 3365 * @queue_index: sub queue index 3366 * 3367 * Check individual transmit queue of a device with multiple transmit queues. 3368 */ 3369 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3370 u16 queue_index) 3371 { 3372 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3373 3374 return netif_tx_queue_stopped(txq); 3375 } 3376 3377 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3378 struct sk_buff *skb) 3379 { 3380 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3381 } 3382 3383 /** 3384 * netif_wake_subqueue - allow sending packets on subqueue 3385 * @dev: network device 3386 * @queue_index: sub queue index 3387 * 3388 * Resume individual transmit queue of a device with multiple transmit queues. 3389 */ 3390 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3391 { 3392 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3393 3394 netif_tx_wake_queue(txq); 3395 } 3396 3397 #ifdef CONFIG_XPS 3398 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3399 u16 index); 3400 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3401 u16 index, bool is_rxqs_map); 3402 3403 /** 3404 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3405 * @j: CPU/Rx queue index 3406 * @mask: bitmask of all cpus/rx queues 3407 * @nr_bits: number of bits in the bitmask 3408 * 3409 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3410 */ 3411 static inline bool netif_attr_test_mask(unsigned long j, 3412 const unsigned long *mask, 3413 unsigned int nr_bits) 3414 { 3415 cpu_max_bits_warn(j, nr_bits); 3416 return test_bit(j, mask); 3417 } 3418 3419 /** 3420 * netif_attr_test_online - Test for online CPU/Rx queue 3421 * @j: CPU/Rx queue index 3422 * @online_mask: bitmask for CPUs/Rx queues that are online 3423 * @nr_bits: number of bits in the bitmask 3424 * 3425 * Returns true if a CPU/Rx queue is online. 3426 */ 3427 static inline bool netif_attr_test_online(unsigned long j, 3428 const unsigned long *online_mask, 3429 unsigned int nr_bits) 3430 { 3431 cpu_max_bits_warn(j, nr_bits); 3432 3433 if (online_mask) 3434 return test_bit(j, online_mask); 3435 3436 return (j < nr_bits); 3437 } 3438 3439 /** 3440 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3441 * @n: CPU/Rx queue index 3442 * @srcp: the cpumask/Rx queue mask pointer 3443 * @nr_bits: number of bits in the bitmask 3444 * 3445 * Returns >= nr_bits if no further CPUs/Rx queues set. 3446 */ 3447 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3448 unsigned int nr_bits) 3449 { 3450 /* -1 is a legal arg here. */ 3451 if (n != -1) 3452 cpu_max_bits_warn(n, nr_bits); 3453 3454 if (srcp) 3455 return find_next_bit(srcp, nr_bits, n + 1); 3456 3457 return n + 1; 3458 } 3459 3460 /** 3461 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3462 * @n: CPU/Rx queue index 3463 * @src1p: the first CPUs/Rx queues mask pointer 3464 * @src2p: the second CPUs/Rx queues mask pointer 3465 * @nr_bits: number of bits in the bitmask 3466 * 3467 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3468 */ 3469 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3470 const unsigned long *src2p, 3471 unsigned int nr_bits) 3472 { 3473 /* -1 is a legal arg here. */ 3474 if (n != -1) 3475 cpu_max_bits_warn(n, nr_bits); 3476 3477 if (src1p && src2p) 3478 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3479 else if (src1p) 3480 return find_next_bit(src1p, nr_bits, n + 1); 3481 else if (src2p) 3482 return find_next_bit(src2p, nr_bits, n + 1); 3483 3484 return n + 1; 3485 } 3486 #else 3487 static inline int netif_set_xps_queue(struct net_device *dev, 3488 const struct cpumask *mask, 3489 u16 index) 3490 { 3491 return 0; 3492 } 3493 3494 static inline int __netif_set_xps_queue(struct net_device *dev, 3495 const unsigned long *mask, 3496 u16 index, bool is_rxqs_map) 3497 { 3498 return 0; 3499 } 3500 #endif 3501 3502 /** 3503 * netif_is_multiqueue - test if device has multiple transmit queues 3504 * @dev: network device 3505 * 3506 * Check if device has multiple transmit queues 3507 */ 3508 static inline bool netif_is_multiqueue(const struct net_device *dev) 3509 { 3510 return dev->num_tx_queues > 1; 3511 } 3512 3513 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3514 3515 #ifdef CONFIG_SYSFS 3516 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3517 #else 3518 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3519 unsigned int rxqs) 3520 { 3521 dev->real_num_rx_queues = rxqs; 3522 return 0; 3523 } 3524 #endif 3525 3526 static inline struct netdev_rx_queue * 3527 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3528 { 3529 return dev->_rx + rxq; 3530 } 3531 3532 #ifdef CONFIG_SYSFS 3533 static inline unsigned int get_netdev_rx_queue_index( 3534 struct netdev_rx_queue *queue) 3535 { 3536 struct net_device *dev = queue->dev; 3537 int index = queue - dev->_rx; 3538 3539 BUG_ON(index >= dev->num_rx_queues); 3540 return index; 3541 } 3542 #endif 3543 3544 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3545 int netif_get_num_default_rss_queues(void); 3546 3547 enum skb_free_reason { 3548 SKB_REASON_CONSUMED, 3549 SKB_REASON_DROPPED, 3550 }; 3551 3552 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3553 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3554 3555 /* 3556 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3557 * interrupt context or with hardware interrupts being disabled. 3558 * (in_irq() || irqs_disabled()) 3559 * 3560 * We provide four helpers that can be used in following contexts : 3561 * 3562 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3563 * replacing kfree_skb(skb) 3564 * 3565 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3566 * Typically used in place of consume_skb(skb) in TX completion path 3567 * 3568 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3569 * replacing kfree_skb(skb) 3570 * 3571 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3572 * and consumed a packet. Used in place of consume_skb(skb) 3573 */ 3574 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3575 { 3576 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3577 } 3578 3579 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3580 { 3581 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3582 } 3583 3584 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3585 { 3586 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3587 } 3588 3589 static inline void dev_consume_skb_any(struct sk_buff *skb) 3590 { 3591 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3592 } 3593 3594 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3595 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3596 int netif_rx(struct sk_buff *skb); 3597 int netif_rx_ni(struct sk_buff *skb); 3598 int netif_receive_skb(struct sk_buff *skb); 3599 int netif_receive_skb_core(struct sk_buff *skb); 3600 void netif_receive_skb_list(struct list_head *head); 3601 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3602 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3603 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3604 gro_result_t napi_gro_frags(struct napi_struct *napi); 3605 struct packet_offload *gro_find_receive_by_type(__be16 type); 3606 struct packet_offload *gro_find_complete_by_type(__be16 type); 3607 3608 static inline void napi_free_frags(struct napi_struct *napi) 3609 { 3610 kfree_skb(napi->skb); 3611 napi->skb = NULL; 3612 } 3613 3614 bool netdev_is_rx_handler_busy(struct net_device *dev); 3615 int netdev_rx_handler_register(struct net_device *dev, 3616 rx_handler_func_t *rx_handler, 3617 void *rx_handler_data); 3618 void netdev_rx_handler_unregister(struct net_device *dev); 3619 3620 bool dev_valid_name(const char *name); 3621 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3622 bool *need_copyout); 3623 int dev_ifconf(struct net *net, struct ifconf *, int); 3624 int dev_ethtool(struct net *net, struct ifreq *); 3625 unsigned int dev_get_flags(const struct net_device *); 3626 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3627 struct netlink_ext_ack *extack); 3628 int dev_change_flags(struct net_device *dev, unsigned int flags, 3629 struct netlink_ext_ack *extack); 3630 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3631 unsigned int gchanges); 3632 int dev_change_name(struct net_device *, const char *); 3633 int dev_set_alias(struct net_device *, const char *, size_t); 3634 int dev_get_alias(const struct net_device *, char *, size_t); 3635 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3636 int __dev_set_mtu(struct net_device *, int); 3637 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3638 struct netlink_ext_ack *extack); 3639 int dev_set_mtu(struct net_device *, int); 3640 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3641 void dev_set_group(struct net_device *, int); 3642 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3643 struct netlink_ext_ack *extack); 3644 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3645 struct netlink_ext_ack *extack); 3646 int dev_change_carrier(struct net_device *, bool new_carrier); 3647 int dev_get_phys_port_id(struct net_device *dev, 3648 struct netdev_phys_item_id *ppid); 3649 int dev_get_phys_port_name(struct net_device *dev, 3650 char *name, size_t len); 3651 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3652 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3653 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3654 struct netdev_queue *txq, int *ret); 3655 3656 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3657 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3658 int fd, u32 flags); 3659 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3660 enum bpf_netdev_command cmd); 3661 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3662 3663 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3664 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3665 bool is_skb_forwardable(const struct net_device *dev, 3666 const struct sk_buff *skb); 3667 3668 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3669 struct sk_buff *skb) 3670 { 3671 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3672 unlikely(!is_skb_forwardable(dev, skb))) { 3673 atomic_long_inc(&dev->rx_dropped); 3674 kfree_skb(skb); 3675 return NET_RX_DROP; 3676 } 3677 3678 skb_scrub_packet(skb, true); 3679 skb->priority = 0; 3680 return 0; 3681 } 3682 3683 bool dev_nit_active(struct net_device *dev); 3684 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3685 3686 extern int netdev_budget; 3687 extern unsigned int netdev_budget_usecs; 3688 3689 /* Called by rtnetlink.c:rtnl_unlock() */ 3690 void netdev_run_todo(void); 3691 3692 /** 3693 * dev_put - release reference to device 3694 * @dev: network device 3695 * 3696 * Release reference to device to allow it to be freed. 3697 */ 3698 static inline void dev_put(struct net_device *dev) 3699 { 3700 this_cpu_dec(*dev->pcpu_refcnt); 3701 } 3702 3703 /** 3704 * dev_hold - get reference to device 3705 * @dev: network device 3706 * 3707 * Hold reference to device to keep it from being freed. 3708 */ 3709 static inline void dev_hold(struct net_device *dev) 3710 { 3711 this_cpu_inc(*dev->pcpu_refcnt); 3712 } 3713 3714 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3715 * and _off may be called from IRQ context, but it is caller 3716 * who is responsible for serialization of these calls. 3717 * 3718 * The name carrier is inappropriate, these functions should really be 3719 * called netif_lowerlayer_*() because they represent the state of any 3720 * kind of lower layer not just hardware media. 3721 */ 3722 3723 void linkwatch_init_dev(struct net_device *dev); 3724 void linkwatch_fire_event(struct net_device *dev); 3725 void linkwatch_forget_dev(struct net_device *dev); 3726 3727 /** 3728 * netif_carrier_ok - test if carrier present 3729 * @dev: network device 3730 * 3731 * Check if carrier is present on device 3732 */ 3733 static inline bool netif_carrier_ok(const struct net_device *dev) 3734 { 3735 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3736 } 3737 3738 unsigned long dev_trans_start(struct net_device *dev); 3739 3740 void __netdev_watchdog_up(struct net_device *dev); 3741 3742 void netif_carrier_on(struct net_device *dev); 3743 3744 void netif_carrier_off(struct net_device *dev); 3745 3746 /** 3747 * netif_dormant_on - mark device as dormant. 3748 * @dev: network device 3749 * 3750 * Mark device as dormant (as per RFC2863). 3751 * 3752 * The dormant state indicates that the relevant interface is not 3753 * actually in a condition to pass packets (i.e., it is not 'up') but is 3754 * in a "pending" state, waiting for some external event. For "on- 3755 * demand" interfaces, this new state identifies the situation where the 3756 * interface is waiting for events to place it in the up state. 3757 */ 3758 static inline void netif_dormant_on(struct net_device *dev) 3759 { 3760 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3761 linkwatch_fire_event(dev); 3762 } 3763 3764 /** 3765 * netif_dormant_off - set device as not dormant. 3766 * @dev: network device 3767 * 3768 * Device is not in dormant state. 3769 */ 3770 static inline void netif_dormant_off(struct net_device *dev) 3771 { 3772 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3773 linkwatch_fire_event(dev); 3774 } 3775 3776 /** 3777 * netif_dormant - test if device is dormant 3778 * @dev: network device 3779 * 3780 * Check if device is dormant. 3781 */ 3782 static inline bool netif_dormant(const struct net_device *dev) 3783 { 3784 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3785 } 3786 3787 3788 /** 3789 * netif_oper_up - test if device is operational 3790 * @dev: network device 3791 * 3792 * Check if carrier is operational 3793 */ 3794 static inline bool netif_oper_up(const struct net_device *dev) 3795 { 3796 return (dev->operstate == IF_OPER_UP || 3797 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3798 } 3799 3800 /** 3801 * netif_device_present - is device available or removed 3802 * @dev: network device 3803 * 3804 * Check if device has not been removed from system. 3805 */ 3806 static inline bool netif_device_present(struct net_device *dev) 3807 { 3808 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3809 } 3810 3811 void netif_device_detach(struct net_device *dev); 3812 3813 void netif_device_attach(struct net_device *dev); 3814 3815 /* 3816 * Network interface message level settings 3817 */ 3818 3819 enum { 3820 NETIF_MSG_DRV = 0x0001, 3821 NETIF_MSG_PROBE = 0x0002, 3822 NETIF_MSG_LINK = 0x0004, 3823 NETIF_MSG_TIMER = 0x0008, 3824 NETIF_MSG_IFDOWN = 0x0010, 3825 NETIF_MSG_IFUP = 0x0020, 3826 NETIF_MSG_RX_ERR = 0x0040, 3827 NETIF_MSG_TX_ERR = 0x0080, 3828 NETIF_MSG_TX_QUEUED = 0x0100, 3829 NETIF_MSG_INTR = 0x0200, 3830 NETIF_MSG_TX_DONE = 0x0400, 3831 NETIF_MSG_RX_STATUS = 0x0800, 3832 NETIF_MSG_PKTDATA = 0x1000, 3833 NETIF_MSG_HW = 0x2000, 3834 NETIF_MSG_WOL = 0x4000, 3835 }; 3836 3837 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3838 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3839 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3840 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3841 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3842 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3843 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3844 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3845 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3846 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3847 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3848 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3849 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3850 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3851 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3852 3853 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3854 { 3855 /* use default */ 3856 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3857 return default_msg_enable_bits; 3858 if (debug_value == 0) /* no output */ 3859 return 0; 3860 /* set low N bits */ 3861 return (1 << debug_value) - 1; 3862 } 3863 3864 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3865 { 3866 spin_lock(&txq->_xmit_lock); 3867 txq->xmit_lock_owner = cpu; 3868 } 3869 3870 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3871 { 3872 __acquire(&txq->_xmit_lock); 3873 return true; 3874 } 3875 3876 static inline void __netif_tx_release(struct netdev_queue *txq) 3877 { 3878 __release(&txq->_xmit_lock); 3879 } 3880 3881 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3882 { 3883 spin_lock_bh(&txq->_xmit_lock); 3884 txq->xmit_lock_owner = smp_processor_id(); 3885 } 3886 3887 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3888 { 3889 bool ok = spin_trylock(&txq->_xmit_lock); 3890 if (likely(ok)) 3891 txq->xmit_lock_owner = smp_processor_id(); 3892 return ok; 3893 } 3894 3895 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3896 { 3897 txq->xmit_lock_owner = -1; 3898 spin_unlock(&txq->_xmit_lock); 3899 } 3900 3901 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3902 { 3903 txq->xmit_lock_owner = -1; 3904 spin_unlock_bh(&txq->_xmit_lock); 3905 } 3906 3907 static inline void txq_trans_update(struct netdev_queue *txq) 3908 { 3909 if (txq->xmit_lock_owner != -1) 3910 txq->trans_start = jiffies; 3911 } 3912 3913 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3914 static inline void netif_trans_update(struct net_device *dev) 3915 { 3916 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3917 3918 if (txq->trans_start != jiffies) 3919 txq->trans_start = jiffies; 3920 } 3921 3922 /** 3923 * netif_tx_lock - grab network device transmit lock 3924 * @dev: network device 3925 * 3926 * Get network device transmit lock 3927 */ 3928 static inline void netif_tx_lock(struct net_device *dev) 3929 { 3930 unsigned int i; 3931 int cpu; 3932 3933 spin_lock(&dev->tx_global_lock); 3934 cpu = smp_processor_id(); 3935 for (i = 0; i < dev->num_tx_queues; i++) { 3936 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3937 3938 /* We are the only thread of execution doing a 3939 * freeze, but we have to grab the _xmit_lock in 3940 * order to synchronize with threads which are in 3941 * the ->hard_start_xmit() handler and already 3942 * checked the frozen bit. 3943 */ 3944 __netif_tx_lock(txq, cpu); 3945 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3946 __netif_tx_unlock(txq); 3947 } 3948 } 3949 3950 static inline void netif_tx_lock_bh(struct net_device *dev) 3951 { 3952 local_bh_disable(); 3953 netif_tx_lock(dev); 3954 } 3955 3956 static inline void netif_tx_unlock(struct net_device *dev) 3957 { 3958 unsigned int i; 3959 3960 for (i = 0; i < dev->num_tx_queues; i++) { 3961 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3962 3963 /* No need to grab the _xmit_lock here. If the 3964 * queue is not stopped for another reason, we 3965 * force a schedule. 3966 */ 3967 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3968 netif_schedule_queue(txq); 3969 } 3970 spin_unlock(&dev->tx_global_lock); 3971 } 3972 3973 static inline void netif_tx_unlock_bh(struct net_device *dev) 3974 { 3975 netif_tx_unlock(dev); 3976 local_bh_enable(); 3977 } 3978 3979 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3980 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3981 __netif_tx_lock(txq, cpu); \ 3982 } else { \ 3983 __netif_tx_acquire(txq); \ 3984 } \ 3985 } 3986 3987 #define HARD_TX_TRYLOCK(dev, txq) \ 3988 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3989 __netif_tx_trylock(txq) : \ 3990 __netif_tx_acquire(txq)) 3991 3992 #define HARD_TX_UNLOCK(dev, txq) { \ 3993 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3994 __netif_tx_unlock(txq); \ 3995 } else { \ 3996 __netif_tx_release(txq); \ 3997 } \ 3998 } 3999 4000 static inline void netif_tx_disable(struct net_device *dev) 4001 { 4002 unsigned int i; 4003 int cpu; 4004 4005 local_bh_disable(); 4006 cpu = smp_processor_id(); 4007 for (i = 0; i < dev->num_tx_queues; i++) { 4008 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4009 4010 __netif_tx_lock(txq, cpu); 4011 netif_tx_stop_queue(txq); 4012 __netif_tx_unlock(txq); 4013 } 4014 local_bh_enable(); 4015 } 4016 4017 static inline void netif_addr_lock(struct net_device *dev) 4018 { 4019 spin_lock(&dev->addr_list_lock); 4020 } 4021 4022 static inline void netif_addr_lock_nested(struct net_device *dev) 4023 { 4024 int subclass = SINGLE_DEPTH_NESTING; 4025 4026 if (dev->netdev_ops->ndo_get_lock_subclass) 4027 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4028 4029 spin_lock_nested(&dev->addr_list_lock, subclass); 4030 } 4031 4032 static inline void netif_addr_lock_bh(struct net_device *dev) 4033 { 4034 spin_lock_bh(&dev->addr_list_lock); 4035 } 4036 4037 static inline void netif_addr_unlock(struct net_device *dev) 4038 { 4039 spin_unlock(&dev->addr_list_lock); 4040 } 4041 4042 static inline void netif_addr_unlock_bh(struct net_device *dev) 4043 { 4044 spin_unlock_bh(&dev->addr_list_lock); 4045 } 4046 4047 /* 4048 * dev_addrs walker. Should be used only for read access. Call with 4049 * rcu_read_lock held. 4050 */ 4051 #define for_each_dev_addr(dev, ha) \ 4052 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4053 4054 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4055 4056 void ether_setup(struct net_device *dev); 4057 4058 /* Support for loadable net-drivers */ 4059 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4060 unsigned char name_assign_type, 4061 void (*setup)(struct net_device *), 4062 unsigned int txqs, unsigned int rxqs); 4063 int dev_get_valid_name(struct net *net, struct net_device *dev, 4064 const char *name); 4065 4066 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4067 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4068 4069 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4070 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4071 count) 4072 4073 int register_netdev(struct net_device *dev); 4074 void unregister_netdev(struct net_device *dev); 4075 4076 /* General hardware address lists handling functions */ 4077 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4078 struct netdev_hw_addr_list *from_list, int addr_len); 4079 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4080 struct netdev_hw_addr_list *from_list, int addr_len); 4081 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4082 struct net_device *dev, 4083 int (*sync)(struct net_device *, const unsigned char *), 4084 int (*unsync)(struct net_device *, 4085 const unsigned char *)); 4086 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4087 struct net_device *dev, 4088 int (*sync)(struct net_device *, 4089 const unsigned char *, int), 4090 int (*unsync)(struct net_device *, 4091 const unsigned char *, int)); 4092 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4093 struct net_device *dev, 4094 int (*unsync)(struct net_device *, 4095 const unsigned char *, int)); 4096 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4097 struct net_device *dev, 4098 int (*unsync)(struct net_device *, 4099 const unsigned char *)); 4100 void __hw_addr_init(struct netdev_hw_addr_list *list); 4101 4102 /* Functions used for device addresses handling */ 4103 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4104 unsigned char addr_type); 4105 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4106 unsigned char addr_type); 4107 void dev_addr_flush(struct net_device *dev); 4108 int dev_addr_init(struct net_device *dev); 4109 4110 /* Functions used for unicast addresses handling */ 4111 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4112 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4113 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4114 int dev_uc_sync(struct net_device *to, struct net_device *from); 4115 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4116 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4117 void dev_uc_flush(struct net_device *dev); 4118 void dev_uc_init(struct net_device *dev); 4119 4120 /** 4121 * __dev_uc_sync - Synchonize device's unicast list 4122 * @dev: device to sync 4123 * @sync: function to call if address should be added 4124 * @unsync: function to call if address should be removed 4125 * 4126 * Add newly added addresses to the interface, and release 4127 * addresses that have been deleted. 4128 */ 4129 static inline int __dev_uc_sync(struct net_device *dev, 4130 int (*sync)(struct net_device *, 4131 const unsigned char *), 4132 int (*unsync)(struct net_device *, 4133 const unsigned char *)) 4134 { 4135 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4136 } 4137 4138 /** 4139 * __dev_uc_unsync - Remove synchronized addresses from device 4140 * @dev: device to sync 4141 * @unsync: function to call if address should be removed 4142 * 4143 * Remove all addresses that were added to the device by dev_uc_sync(). 4144 */ 4145 static inline void __dev_uc_unsync(struct net_device *dev, 4146 int (*unsync)(struct net_device *, 4147 const unsigned char *)) 4148 { 4149 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4150 } 4151 4152 /* Functions used for multicast addresses handling */ 4153 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4154 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4155 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4156 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4157 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4158 int dev_mc_sync(struct net_device *to, struct net_device *from); 4159 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4160 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4161 void dev_mc_flush(struct net_device *dev); 4162 void dev_mc_init(struct net_device *dev); 4163 4164 /** 4165 * __dev_mc_sync - Synchonize device's multicast list 4166 * @dev: device to sync 4167 * @sync: function to call if address should be added 4168 * @unsync: function to call if address should be removed 4169 * 4170 * Add newly added addresses to the interface, and release 4171 * addresses that have been deleted. 4172 */ 4173 static inline int __dev_mc_sync(struct net_device *dev, 4174 int (*sync)(struct net_device *, 4175 const unsigned char *), 4176 int (*unsync)(struct net_device *, 4177 const unsigned char *)) 4178 { 4179 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4180 } 4181 4182 /** 4183 * __dev_mc_unsync - Remove synchronized addresses from device 4184 * @dev: device to sync 4185 * @unsync: function to call if address should be removed 4186 * 4187 * Remove all addresses that were added to the device by dev_mc_sync(). 4188 */ 4189 static inline void __dev_mc_unsync(struct net_device *dev, 4190 int (*unsync)(struct net_device *, 4191 const unsigned char *)) 4192 { 4193 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4194 } 4195 4196 /* Functions used for secondary unicast and multicast support */ 4197 void dev_set_rx_mode(struct net_device *dev); 4198 void __dev_set_rx_mode(struct net_device *dev); 4199 int dev_set_promiscuity(struct net_device *dev, int inc); 4200 int dev_set_allmulti(struct net_device *dev, int inc); 4201 void netdev_state_change(struct net_device *dev); 4202 void netdev_notify_peers(struct net_device *dev); 4203 void netdev_features_change(struct net_device *dev); 4204 /* Load a device via the kmod */ 4205 void dev_load(struct net *net, const char *name); 4206 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4207 struct rtnl_link_stats64 *storage); 4208 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4209 const struct net_device_stats *netdev_stats); 4210 4211 extern int netdev_max_backlog; 4212 extern int netdev_tstamp_prequeue; 4213 extern int weight_p; 4214 extern int dev_weight_rx_bias; 4215 extern int dev_weight_tx_bias; 4216 extern int dev_rx_weight; 4217 extern int dev_tx_weight; 4218 4219 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4220 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4221 struct list_head **iter); 4222 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4223 struct list_head **iter); 4224 4225 /* iterate through upper list, must be called under RCU read lock */ 4226 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4227 for (iter = &(dev)->adj_list.upper, \ 4228 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4229 updev; \ 4230 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4231 4232 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4233 int (*fn)(struct net_device *upper_dev, 4234 void *data), 4235 void *data); 4236 4237 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4238 struct net_device *upper_dev); 4239 4240 bool netdev_has_any_upper_dev(struct net_device *dev); 4241 4242 void *netdev_lower_get_next_private(struct net_device *dev, 4243 struct list_head **iter); 4244 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4245 struct list_head **iter); 4246 4247 #define netdev_for_each_lower_private(dev, priv, iter) \ 4248 for (iter = (dev)->adj_list.lower.next, \ 4249 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4250 priv; \ 4251 priv = netdev_lower_get_next_private(dev, &(iter))) 4252 4253 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4254 for (iter = &(dev)->adj_list.lower, \ 4255 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4256 priv; \ 4257 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4258 4259 void *netdev_lower_get_next(struct net_device *dev, 4260 struct list_head **iter); 4261 4262 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4263 for (iter = (dev)->adj_list.lower.next, \ 4264 ldev = netdev_lower_get_next(dev, &(iter)); \ 4265 ldev; \ 4266 ldev = netdev_lower_get_next(dev, &(iter))) 4267 4268 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4269 struct list_head **iter); 4270 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4271 struct list_head **iter); 4272 4273 int netdev_walk_all_lower_dev(struct net_device *dev, 4274 int (*fn)(struct net_device *lower_dev, 4275 void *data), 4276 void *data); 4277 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4278 int (*fn)(struct net_device *lower_dev, 4279 void *data), 4280 void *data); 4281 4282 void *netdev_adjacent_get_private(struct list_head *adj_list); 4283 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4284 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4285 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4286 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4287 struct netlink_ext_ack *extack); 4288 int netdev_master_upper_dev_link(struct net_device *dev, 4289 struct net_device *upper_dev, 4290 void *upper_priv, void *upper_info, 4291 struct netlink_ext_ack *extack); 4292 void netdev_upper_dev_unlink(struct net_device *dev, 4293 struct net_device *upper_dev); 4294 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4295 void *netdev_lower_dev_get_private(struct net_device *dev, 4296 struct net_device *lower_dev); 4297 void netdev_lower_state_changed(struct net_device *lower_dev, 4298 void *lower_state_info); 4299 4300 /* RSS keys are 40 or 52 bytes long */ 4301 #define NETDEV_RSS_KEY_LEN 52 4302 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4303 void netdev_rss_key_fill(void *buffer, size_t len); 4304 4305 int dev_get_nest_level(struct net_device *dev); 4306 int skb_checksum_help(struct sk_buff *skb); 4307 int skb_crc32c_csum_help(struct sk_buff *skb); 4308 int skb_csum_hwoffload_help(struct sk_buff *skb, 4309 const netdev_features_t features); 4310 4311 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4312 netdev_features_t features, bool tx_path); 4313 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4314 netdev_features_t features); 4315 4316 struct netdev_bonding_info { 4317 ifslave slave; 4318 ifbond master; 4319 }; 4320 4321 struct netdev_notifier_bonding_info { 4322 struct netdev_notifier_info info; /* must be first */ 4323 struct netdev_bonding_info bonding_info; 4324 }; 4325 4326 void netdev_bonding_info_change(struct net_device *dev, 4327 struct netdev_bonding_info *bonding_info); 4328 4329 static inline 4330 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4331 { 4332 return __skb_gso_segment(skb, features, true); 4333 } 4334 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4335 4336 static inline bool can_checksum_protocol(netdev_features_t features, 4337 __be16 protocol) 4338 { 4339 if (protocol == htons(ETH_P_FCOE)) 4340 return !!(features & NETIF_F_FCOE_CRC); 4341 4342 /* Assume this is an IP checksum (not SCTP CRC) */ 4343 4344 if (features & NETIF_F_HW_CSUM) { 4345 /* Can checksum everything */ 4346 return true; 4347 } 4348 4349 switch (protocol) { 4350 case htons(ETH_P_IP): 4351 return !!(features & NETIF_F_IP_CSUM); 4352 case htons(ETH_P_IPV6): 4353 return !!(features & NETIF_F_IPV6_CSUM); 4354 default: 4355 return false; 4356 } 4357 } 4358 4359 #ifdef CONFIG_BUG 4360 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4361 #else 4362 static inline void netdev_rx_csum_fault(struct net_device *dev, 4363 struct sk_buff *skb) 4364 { 4365 } 4366 #endif 4367 /* rx skb timestamps */ 4368 void net_enable_timestamp(void); 4369 void net_disable_timestamp(void); 4370 4371 #ifdef CONFIG_PROC_FS 4372 int __init dev_proc_init(void); 4373 #else 4374 #define dev_proc_init() 0 4375 #endif 4376 4377 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4378 struct sk_buff *skb, struct net_device *dev, 4379 bool more) 4380 { 4381 skb->xmit_more = more ? 1 : 0; 4382 return ops->ndo_start_xmit(skb, dev); 4383 } 4384 4385 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4386 struct netdev_queue *txq, bool more) 4387 { 4388 const struct net_device_ops *ops = dev->netdev_ops; 4389 netdev_tx_t rc; 4390 4391 rc = __netdev_start_xmit(ops, skb, dev, more); 4392 if (rc == NETDEV_TX_OK) 4393 txq_trans_update(txq); 4394 4395 return rc; 4396 } 4397 4398 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4399 const void *ns); 4400 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4401 const void *ns); 4402 4403 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4404 { 4405 return netdev_class_create_file_ns(class_attr, NULL); 4406 } 4407 4408 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4409 { 4410 netdev_class_remove_file_ns(class_attr, NULL); 4411 } 4412 4413 extern const struct kobj_ns_type_operations net_ns_type_operations; 4414 4415 const char *netdev_drivername(const struct net_device *dev); 4416 4417 void linkwatch_run_queue(void); 4418 4419 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4420 netdev_features_t f2) 4421 { 4422 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4423 if (f1 & NETIF_F_HW_CSUM) 4424 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4425 else 4426 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4427 } 4428 4429 return f1 & f2; 4430 } 4431 4432 static inline netdev_features_t netdev_get_wanted_features( 4433 struct net_device *dev) 4434 { 4435 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4436 } 4437 netdev_features_t netdev_increment_features(netdev_features_t all, 4438 netdev_features_t one, netdev_features_t mask); 4439 4440 /* Allow TSO being used on stacked device : 4441 * Performing the GSO segmentation before last device 4442 * is a performance improvement. 4443 */ 4444 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4445 netdev_features_t mask) 4446 { 4447 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4448 } 4449 4450 int __netdev_update_features(struct net_device *dev); 4451 void netdev_update_features(struct net_device *dev); 4452 void netdev_change_features(struct net_device *dev); 4453 4454 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4455 struct net_device *dev); 4456 4457 netdev_features_t passthru_features_check(struct sk_buff *skb, 4458 struct net_device *dev, 4459 netdev_features_t features); 4460 netdev_features_t netif_skb_features(struct sk_buff *skb); 4461 4462 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4463 { 4464 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4465 4466 /* check flags correspondence */ 4467 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4468 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4469 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4470 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4471 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4472 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4473 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4474 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4475 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4476 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4477 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4478 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4479 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4480 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4481 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4482 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4483 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4484 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4485 4486 return (features & feature) == feature; 4487 } 4488 4489 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4490 { 4491 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4492 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4493 } 4494 4495 static inline bool netif_needs_gso(struct sk_buff *skb, 4496 netdev_features_t features) 4497 { 4498 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4499 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4500 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4501 } 4502 4503 static inline void netif_set_gso_max_size(struct net_device *dev, 4504 unsigned int size) 4505 { 4506 dev->gso_max_size = size; 4507 } 4508 4509 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4510 int pulled_hlen, u16 mac_offset, 4511 int mac_len) 4512 { 4513 skb->protocol = protocol; 4514 skb->encapsulation = 1; 4515 skb_push(skb, pulled_hlen); 4516 skb_reset_transport_header(skb); 4517 skb->mac_header = mac_offset; 4518 skb->network_header = skb->mac_header + mac_len; 4519 skb->mac_len = mac_len; 4520 } 4521 4522 static inline bool netif_is_macsec(const struct net_device *dev) 4523 { 4524 return dev->priv_flags & IFF_MACSEC; 4525 } 4526 4527 static inline bool netif_is_macvlan(const struct net_device *dev) 4528 { 4529 return dev->priv_flags & IFF_MACVLAN; 4530 } 4531 4532 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4533 { 4534 return dev->priv_flags & IFF_MACVLAN_PORT; 4535 } 4536 4537 static inline bool netif_is_bond_master(const struct net_device *dev) 4538 { 4539 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4540 } 4541 4542 static inline bool netif_is_bond_slave(const struct net_device *dev) 4543 { 4544 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4545 } 4546 4547 static inline bool netif_supports_nofcs(struct net_device *dev) 4548 { 4549 return dev->priv_flags & IFF_SUPP_NOFCS; 4550 } 4551 4552 static inline bool netif_is_l3_master(const struct net_device *dev) 4553 { 4554 return dev->priv_flags & IFF_L3MDEV_MASTER; 4555 } 4556 4557 static inline bool netif_is_l3_slave(const struct net_device *dev) 4558 { 4559 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4560 } 4561 4562 static inline bool netif_is_bridge_master(const struct net_device *dev) 4563 { 4564 return dev->priv_flags & IFF_EBRIDGE; 4565 } 4566 4567 static inline bool netif_is_bridge_port(const struct net_device *dev) 4568 { 4569 return dev->priv_flags & IFF_BRIDGE_PORT; 4570 } 4571 4572 static inline bool netif_is_ovs_master(const struct net_device *dev) 4573 { 4574 return dev->priv_flags & IFF_OPENVSWITCH; 4575 } 4576 4577 static inline bool netif_is_ovs_port(const struct net_device *dev) 4578 { 4579 return dev->priv_flags & IFF_OVS_DATAPATH; 4580 } 4581 4582 static inline bool netif_is_team_master(const struct net_device *dev) 4583 { 4584 return dev->priv_flags & IFF_TEAM; 4585 } 4586 4587 static inline bool netif_is_team_port(const struct net_device *dev) 4588 { 4589 return dev->priv_flags & IFF_TEAM_PORT; 4590 } 4591 4592 static inline bool netif_is_lag_master(const struct net_device *dev) 4593 { 4594 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4595 } 4596 4597 static inline bool netif_is_lag_port(const struct net_device *dev) 4598 { 4599 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4600 } 4601 4602 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4603 { 4604 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4605 } 4606 4607 static inline bool netif_is_failover(const struct net_device *dev) 4608 { 4609 return dev->priv_flags & IFF_FAILOVER; 4610 } 4611 4612 static inline bool netif_is_failover_slave(const struct net_device *dev) 4613 { 4614 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4615 } 4616 4617 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4618 static inline void netif_keep_dst(struct net_device *dev) 4619 { 4620 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4621 } 4622 4623 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4624 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4625 { 4626 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4627 return dev->priv_flags & IFF_MACSEC; 4628 } 4629 4630 extern struct pernet_operations __net_initdata loopback_net_ops; 4631 4632 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4633 4634 /* netdev_printk helpers, similar to dev_printk */ 4635 4636 static inline const char *netdev_name(const struct net_device *dev) 4637 { 4638 if (!dev->name[0] || strchr(dev->name, '%')) 4639 return "(unnamed net_device)"; 4640 return dev->name; 4641 } 4642 4643 static inline bool netdev_unregistering(const struct net_device *dev) 4644 { 4645 return dev->reg_state == NETREG_UNREGISTERING; 4646 } 4647 4648 static inline const char *netdev_reg_state(const struct net_device *dev) 4649 { 4650 switch (dev->reg_state) { 4651 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4652 case NETREG_REGISTERED: return ""; 4653 case NETREG_UNREGISTERING: return " (unregistering)"; 4654 case NETREG_UNREGISTERED: return " (unregistered)"; 4655 case NETREG_RELEASED: return " (released)"; 4656 case NETREG_DUMMY: return " (dummy)"; 4657 } 4658 4659 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4660 return " (unknown)"; 4661 } 4662 4663 __printf(3, 4) 4664 void netdev_printk(const char *level, const struct net_device *dev, 4665 const char *format, ...); 4666 __printf(2, 3) 4667 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4668 __printf(2, 3) 4669 void netdev_alert(const struct net_device *dev, const char *format, ...); 4670 __printf(2, 3) 4671 void netdev_crit(const struct net_device *dev, const char *format, ...); 4672 __printf(2, 3) 4673 void netdev_err(const struct net_device *dev, const char *format, ...); 4674 __printf(2, 3) 4675 void netdev_warn(const struct net_device *dev, const char *format, ...); 4676 __printf(2, 3) 4677 void netdev_notice(const struct net_device *dev, const char *format, ...); 4678 __printf(2, 3) 4679 void netdev_info(const struct net_device *dev, const char *format, ...); 4680 4681 #define netdev_level_once(level, dev, fmt, ...) \ 4682 do { \ 4683 static bool __print_once __read_mostly; \ 4684 \ 4685 if (!__print_once) { \ 4686 __print_once = true; \ 4687 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4688 } \ 4689 } while (0) 4690 4691 #define netdev_emerg_once(dev, fmt, ...) \ 4692 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4693 #define netdev_alert_once(dev, fmt, ...) \ 4694 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4695 #define netdev_crit_once(dev, fmt, ...) \ 4696 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4697 #define netdev_err_once(dev, fmt, ...) \ 4698 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4699 #define netdev_warn_once(dev, fmt, ...) \ 4700 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4701 #define netdev_notice_once(dev, fmt, ...) \ 4702 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4703 #define netdev_info_once(dev, fmt, ...) \ 4704 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4705 4706 #define MODULE_ALIAS_NETDEV(device) \ 4707 MODULE_ALIAS("netdev-" device) 4708 4709 #if defined(CONFIG_DYNAMIC_DEBUG) 4710 #define netdev_dbg(__dev, format, args...) \ 4711 do { \ 4712 dynamic_netdev_dbg(__dev, format, ##args); \ 4713 } while (0) 4714 #elif defined(DEBUG) 4715 #define netdev_dbg(__dev, format, args...) \ 4716 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4717 #else 4718 #define netdev_dbg(__dev, format, args...) \ 4719 ({ \ 4720 if (0) \ 4721 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4722 }) 4723 #endif 4724 4725 #if defined(VERBOSE_DEBUG) 4726 #define netdev_vdbg netdev_dbg 4727 #else 4728 4729 #define netdev_vdbg(dev, format, args...) \ 4730 ({ \ 4731 if (0) \ 4732 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4733 0; \ 4734 }) 4735 #endif 4736 4737 /* 4738 * netdev_WARN() acts like dev_printk(), but with the key difference 4739 * of using a WARN/WARN_ON to get the message out, including the 4740 * file/line information and a backtrace. 4741 */ 4742 #define netdev_WARN(dev, format, args...) \ 4743 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4744 netdev_reg_state(dev), ##args) 4745 4746 #define netdev_WARN_ONCE(dev, format, args...) \ 4747 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4748 netdev_reg_state(dev), ##args) 4749 4750 /* netif printk helpers, similar to netdev_printk */ 4751 4752 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4753 do { \ 4754 if (netif_msg_##type(priv)) \ 4755 netdev_printk(level, (dev), fmt, ##args); \ 4756 } while (0) 4757 4758 #define netif_level(level, priv, type, dev, fmt, args...) \ 4759 do { \ 4760 if (netif_msg_##type(priv)) \ 4761 netdev_##level(dev, fmt, ##args); \ 4762 } while (0) 4763 4764 #define netif_emerg(priv, type, dev, fmt, args...) \ 4765 netif_level(emerg, priv, type, dev, fmt, ##args) 4766 #define netif_alert(priv, type, dev, fmt, args...) \ 4767 netif_level(alert, priv, type, dev, fmt, ##args) 4768 #define netif_crit(priv, type, dev, fmt, args...) \ 4769 netif_level(crit, priv, type, dev, fmt, ##args) 4770 #define netif_err(priv, type, dev, fmt, args...) \ 4771 netif_level(err, priv, type, dev, fmt, ##args) 4772 #define netif_warn(priv, type, dev, fmt, args...) \ 4773 netif_level(warn, priv, type, dev, fmt, ##args) 4774 #define netif_notice(priv, type, dev, fmt, args...) \ 4775 netif_level(notice, priv, type, dev, fmt, ##args) 4776 #define netif_info(priv, type, dev, fmt, args...) \ 4777 netif_level(info, priv, type, dev, fmt, ##args) 4778 4779 #if defined(CONFIG_DYNAMIC_DEBUG) 4780 #define netif_dbg(priv, type, netdev, format, args...) \ 4781 do { \ 4782 if (netif_msg_##type(priv)) \ 4783 dynamic_netdev_dbg(netdev, format, ##args); \ 4784 } while (0) 4785 #elif defined(DEBUG) 4786 #define netif_dbg(priv, type, dev, format, args...) \ 4787 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4788 #else 4789 #define netif_dbg(priv, type, dev, format, args...) \ 4790 ({ \ 4791 if (0) \ 4792 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4793 0; \ 4794 }) 4795 #endif 4796 4797 /* if @cond then downgrade to debug, else print at @level */ 4798 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4799 do { \ 4800 if (cond) \ 4801 netif_dbg(priv, type, netdev, fmt, ##args); \ 4802 else \ 4803 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4804 } while (0) 4805 4806 #if defined(VERBOSE_DEBUG) 4807 #define netif_vdbg netif_dbg 4808 #else 4809 #define netif_vdbg(priv, type, dev, format, args...) \ 4810 ({ \ 4811 if (0) \ 4812 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4813 0; \ 4814 }) 4815 #endif 4816 4817 /* 4818 * The list of packet types we will receive (as opposed to discard) 4819 * and the routines to invoke. 4820 * 4821 * Why 16. Because with 16 the only overlap we get on a hash of the 4822 * low nibble of the protocol value is RARP/SNAP/X.25. 4823 * 4824 * 0800 IP 4825 * 0001 802.3 4826 * 0002 AX.25 4827 * 0004 802.2 4828 * 8035 RARP 4829 * 0005 SNAP 4830 * 0805 X.25 4831 * 0806 ARP 4832 * 8137 IPX 4833 * 0009 Localtalk 4834 * 86DD IPv6 4835 */ 4836 #define PTYPE_HASH_SIZE (16) 4837 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4838 4839 #endif /* _LINUX_NETDEVICE_H */ 4840