xref: /openbmc/linux/include/linux/netdevice.h (revision 9fb29c73)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xdp_umem         *umem;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 };
851 
852 /* These structures hold the attributes of bpf state that are being passed
853  * to the netdevice through the bpf op.
854  */
855 enum bpf_netdev_command {
856 	/* Set or clear a bpf program used in the earliest stages of packet
857 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
858 	 * is responsible for calling bpf_prog_put on any old progs that are
859 	 * stored. In case of error, the callee need not release the new prog
860 	 * reference, but on success it takes ownership and must bpf_prog_put
861 	 * when it is no longer used.
862 	 */
863 	XDP_SETUP_PROG,
864 	XDP_SETUP_PROG_HW,
865 	XDP_QUERY_PROG,
866 	XDP_QUERY_PROG_HW,
867 	/* BPF program for offload callbacks, invoked at program load time. */
868 	BPF_OFFLOAD_MAP_ALLOC,
869 	BPF_OFFLOAD_MAP_FREE,
870 	XDP_QUERY_XSK_UMEM,
871 	XDP_SETUP_XSK_UMEM,
872 };
873 
874 struct bpf_prog_offload_ops;
875 struct netlink_ext_ack;
876 struct xdp_umem;
877 
878 struct netdev_bpf {
879 	enum bpf_netdev_command command;
880 	union {
881 		/* XDP_SETUP_PROG */
882 		struct {
883 			u32 flags;
884 			struct bpf_prog *prog;
885 			struct netlink_ext_ack *extack;
886 		};
887 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
888 		struct {
889 			u32 prog_id;
890 			/* flags with which program was installed */
891 			u32 prog_flags;
892 		};
893 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
894 		struct {
895 			struct bpf_offloaded_map *offmap;
896 		};
897 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
898 		struct {
899 			struct xdp_umem *umem; /* out for query*/
900 			u16 queue_id; /* in for query */
901 		} xsk;
902 	};
903 };
904 
905 #ifdef CONFIG_XFRM_OFFLOAD
906 struct xfrmdev_ops {
907 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
908 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
909 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
910 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
911 				       struct xfrm_state *x);
912 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
913 };
914 #endif
915 
916 #if IS_ENABLED(CONFIG_TLS_DEVICE)
917 enum tls_offload_ctx_dir {
918 	TLS_OFFLOAD_CTX_DIR_RX,
919 	TLS_OFFLOAD_CTX_DIR_TX,
920 };
921 
922 struct tls_crypto_info;
923 struct tls_context;
924 
925 struct tlsdev_ops {
926 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
927 			   enum tls_offload_ctx_dir direction,
928 			   struct tls_crypto_info *crypto_info,
929 			   u32 start_offload_tcp_sn);
930 	void (*tls_dev_del)(struct net_device *netdev,
931 			    struct tls_context *ctx,
932 			    enum tls_offload_ctx_dir direction);
933 	void (*tls_dev_resync_rx)(struct net_device *netdev,
934 				  struct sock *sk, u32 seq, u64 rcd_sn);
935 };
936 #endif
937 
938 struct dev_ifalias {
939 	struct rcu_head rcuhead;
940 	char ifalias[];
941 };
942 
943 /*
944  * This structure defines the management hooks for network devices.
945  * The following hooks can be defined; unless noted otherwise, they are
946  * optional and can be filled with a null pointer.
947  *
948  * int (*ndo_init)(struct net_device *dev);
949  *     This function is called once when a network device is registered.
950  *     The network device can use this for any late stage initialization
951  *     or semantic validation. It can fail with an error code which will
952  *     be propagated back to register_netdev.
953  *
954  * void (*ndo_uninit)(struct net_device *dev);
955  *     This function is called when device is unregistered or when registration
956  *     fails. It is not called if init fails.
957  *
958  * int (*ndo_open)(struct net_device *dev);
959  *     This function is called when a network device transitions to the up
960  *     state.
961  *
962  * int (*ndo_stop)(struct net_device *dev);
963  *     This function is called when a network device transitions to the down
964  *     state.
965  *
966  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
967  *                               struct net_device *dev);
968  *	Called when a packet needs to be transmitted.
969  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
970  *	the queue before that can happen; it's for obsolete devices and weird
971  *	corner cases, but the stack really does a non-trivial amount
972  *	of useless work if you return NETDEV_TX_BUSY.
973  *	Required; cannot be NULL.
974  *
975  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
976  *					   struct net_device *dev
977  *					   netdev_features_t features);
978  *	Called by core transmit path to determine if device is capable of
979  *	performing offload operations on a given packet. This is to give
980  *	the device an opportunity to implement any restrictions that cannot
981  *	be otherwise expressed by feature flags. The check is called with
982  *	the set of features that the stack has calculated and it returns
983  *	those the driver believes to be appropriate.
984  *
985  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
986  *                         struct net_device *sb_dev,
987  *                         select_queue_fallback_t fallback);
988  *	Called to decide which queue to use when device supports multiple
989  *	transmit queues.
990  *
991  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
992  *	This function is called to allow device receiver to make
993  *	changes to configuration when multicast or promiscuous is enabled.
994  *
995  * void (*ndo_set_rx_mode)(struct net_device *dev);
996  *	This function is called device changes address list filtering.
997  *	If driver handles unicast address filtering, it should set
998  *	IFF_UNICAST_FLT in its priv_flags.
999  *
1000  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1001  *	This function  is called when the Media Access Control address
1002  *	needs to be changed. If this interface is not defined, the
1003  *	MAC address can not be changed.
1004  *
1005  * int (*ndo_validate_addr)(struct net_device *dev);
1006  *	Test if Media Access Control address is valid for the device.
1007  *
1008  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1009  *	Called when a user requests an ioctl which can't be handled by
1010  *	the generic interface code. If not defined ioctls return
1011  *	not supported error code.
1012  *
1013  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1014  *	Used to set network devices bus interface parameters. This interface
1015  *	is retained for legacy reasons; new devices should use the bus
1016  *	interface (PCI) for low level management.
1017  *
1018  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1019  *	Called when a user wants to change the Maximum Transfer Unit
1020  *	of a device.
1021  *
1022  * void (*ndo_tx_timeout)(struct net_device *dev);
1023  *	Callback used when the transmitter has not made any progress
1024  *	for dev->watchdog ticks.
1025  *
1026  * void (*ndo_get_stats64)(struct net_device *dev,
1027  *                         struct rtnl_link_stats64 *storage);
1028  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1029  *	Called when a user wants to get the network device usage
1030  *	statistics. Drivers must do one of the following:
1031  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1032  *	   rtnl_link_stats64 structure passed by the caller.
1033  *	2. Define @ndo_get_stats to update a net_device_stats structure
1034  *	   (which should normally be dev->stats) and return a pointer to
1035  *	   it. The structure may be changed asynchronously only if each
1036  *	   field is written atomically.
1037  *	3. Update dev->stats asynchronously and atomically, and define
1038  *	   neither operation.
1039  *
1040  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1041  *	Return true if this device supports offload stats of this attr_id.
1042  *
1043  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1044  *	void *attr_data)
1045  *	Get statistics for offload operations by attr_id. Write it into the
1046  *	attr_data pointer.
1047  *
1048  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1049  *	If device supports VLAN filtering this function is called when a
1050  *	VLAN id is registered.
1051  *
1052  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1053  *	If device supports VLAN filtering this function is called when a
1054  *	VLAN id is unregistered.
1055  *
1056  * void (*ndo_poll_controller)(struct net_device *dev);
1057  *
1058  *	SR-IOV management functions.
1059  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1060  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1061  *			  u8 qos, __be16 proto);
1062  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1063  *			  int max_tx_rate);
1064  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1065  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1066  * int (*ndo_get_vf_config)(struct net_device *dev,
1067  *			    int vf, struct ifla_vf_info *ivf);
1068  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1069  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1070  *			  struct nlattr *port[]);
1071  *
1072  *      Enable or disable the VF ability to query its RSS Redirection Table and
1073  *      Hash Key. This is needed since on some devices VF share this information
1074  *      with PF and querying it may introduce a theoretical security risk.
1075  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1077  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1078  *		       void *type_data);
1079  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1080  *	This is always called from the stack with the rtnl lock held and netif
1081  *	tx queues stopped. This allows the netdevice to perform queue
1082  *	management safely.
1083  *
1084  *	Fiber Channel over Ethernet (FCoE) offload functions.
1085  * int (*ndo_fcoe_enable)(struct net_device *dev);
1086  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1087  *	so the underlying device can perform whatever needed configuration or
1088  *	initialization to support acceleration of FCoE traffic.
1089  *
1090  * int (*ndo_fcoe_disable)(struct net_device *dev);
1091  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1092  *	so the underlying device can perform whatever needed clean-ups to
1093  *	stop supporting acceleration of FCoE traffic.
1094  *
1095  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1096  *			     struct scatterlist *sgl, unsigned int sgc);
1097  *	Called when the FCoE Initiator wants to initialize an I/O that
1098  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1099  *	perform necessary setup and returns 1 to indicate the device is set up
1100  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1101  *
1102  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1103  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1104  *	indicated by the FC exchange id 'xid', so the underlying device can
1105  *	clean up and reuse resources for later DDP requests.
1106  *
1107  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1108  *			      struct scatterlist *sgl, unsigned int sgc);
1109  *	Called when the FCoE Target wants to initialize an I/O that
1110  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1111  *	perform necessary setup and returns 1 to indicate the device is set up
1112  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1113  *
1114  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1115  *			       struct netdev_fcoe_hbainfo *hbainfo);
1116  *	Called when the FCoE Protocol stack wants information on the underlying
1117  *	device. This information is utilized by the FCoE protocol stack to
1118  *	register attributes with Fiber Channel management service as per the
1119  *	FC-GS Fabric Device Management Information(FDMI) specification.
1120  *
1121  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1122  *	Called when the underlying device wants to override default World Wide
1123  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1124  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1125  *	protocol stack to use.
1126  *
1127  *	RFS acceleration.
1128  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1129  *			    u16 rxq_index, u32 flow_id);
1130  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1131  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1132  *	Return the filter ID on success, or a negative error code.
1133  *
1134  *	Slave management functions (for bridge, bonding, etc).
1135  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1136  *	Called to make another netdev an underling.
1137  *
1138  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1139  *	Called to release previously enslaved netdev.
1140  *
1141  *      Feature/offload setting functions.
1142  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1143  *		netdev_features_t features);
1144  *	Adjusts the requested feature flags according to device-specific
1145  *	constraints, and returns the resulting flags. Must not modify
1146  *	the device state.
1147  *
1148  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1149  *	Called to update device configuration to new features. Passed
1150  *	feature set might be less than what was returned by ndo_fix_features()).
1151  *	Must return >0 or -errno if it changed dev->features itself.
1152  *
1153  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1154  *		      struct net_device *dev,
1155  *		      const unsigned char *addr, u16 vid, u16 flags)
1156  *	Adds an FDB entry to dev for addr.
1157  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1158  *		      struct net_device *dev,
1159  *		      const unsigned char *addr, u16 vid)
1160  *	Deletes the FDB entry from dev coresponding to addr.
1161  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1162  *		       struct net_device *dev, struct net_device *filter_dev,
1163  *		       int *idx)
1164  *	Used to add FDB entries to dump requests. Implementers should add
1165  *	entries to skb and update idx with the number of entries.
1166  *
1167  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1168  *			     u16 flags, struct netlink_ext_ack *extack)
1169  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1170  *			     struct net_device *dev, u32 filter_mask,
1171  *			     int nlflags)
1172  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1173  *			     u16 flags);
1174  *
1175  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1176  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1177  *	which do not represent real hardware may define this to allow their
1178  *	userspace components to manage their virtual carrier state. Devices
1179  *	that determine carrier state from physical hardware properties (eg
1180  *	network cables) or protocol-dependent mechanisms (eg
1181  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1182  *
1183  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1184  *			       struct netdev_phys_item_id *ppid);
1185  *	Called to get ID of physical port of this device. If driver does
1186  *	not implement this, it is assumed that the hw is not able to have
1187  *	multiple net devices on single physical port.
1188  *
1189  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1190  *			      struct udp_tunnel_info *ti);
1191  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1192  *	address family that a UDP tunnel is listnening to. It is called only
1193  *	when a new port starts listening. The operation is protected by the
1194  *	RTNL.
1195  *
1196  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1197  *			      struct udp_tunnel_info *ti);
1198  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1199  *	address family that the UDP tunnel is not listening to anymore. The
1200  *	operation is protected by the RTNL.
1201  *
1202  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1203  *				 struct net_device *dev)
1204  *	Called by upper layer devices to accelerate switching or other
1205  *	station functionality into hardware. 'pdev is the lowerdev
1206  *	to use for the offload and 'dev' is the net device that will
1207  *	back the offload. Returns a pointer to the private structure
1208  *	the upper layer will maintain.
1209  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1210  *	Called by upper layer device to delete the station created
1211  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1212  *	the station and priv is the structure returned by the add
1213  *	operation.
1214  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1215  *			     int queue_index, u32 maxrate);
1216  *	Called when a user wants to set a max-rate limitation of specific
1217  *	TX queue.
1218  * int (*ndo_get_iflink)(const struct net_device *dev);
1219  *	Called to get the iflink value of this device.
1220  * void (*ndo_change_proto_down)(struct net_device *dev,
1221  *				 bool proto_down);
1222  *	This function is used to pass protocol port error state information
1223  *	to the switch driver. The switch driver can react to the proto_down
1224  *      by doing a phys down on the associated switch port.
1225  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1226  *	This function is used to get egress tunnel information for given skb.
1227  *	This is useful for retrieving outer tunnel header parameters while
1228  *	sampling packet.
1229  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1230  *	This function is used to specify the headroom that the skb must
1231  *	consider when allocation skb during packet reception. Setting
1232  *	appropriate rx headroom value allows avoiding skb head copy on
1233  *	forward. Setting a negative value resets the rx headroom to the
1234  *	default value.
1235  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1236  *	This function is used to set or query state related to XDP on the
1237  *	netdevice and manage BPF offload. See definition of
1238  *	enum bpf_netdev_command for details.
1239  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1240  *			u32 flags);
1241  *	This function is used to submit @n XDP packets for transmit on a
1242  *	netdevice. Returns number of frames successfully transmitted, frames
1243  *	that got dropped are freed/returned via xdp_return_frame().
1244  *	Returns negative number, means general error invoking ndo, meaning
1245  *	no frames were xmit'ed and core-caller will free all frames.
1246  */
1247 struct net_device_ops {
1248 	int			(*ndo_init)(struct net_device *dev);
1249 	void			(*ndo_uninit)(struct net_device *dev);
1250 	int			(*ndo_open)(struct net_device *dev);
1251 	int			(*ndo_stop)(struct net_device *dev);
1252 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1253 						  struct net_device *dev);
1254 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1255 						      struct net_device *dev,
1256 						      netdev_features_t features);
1257 	u16			(*ndo_select_queue)(struct net_device *dev,
1258 						    struct sk_buff *skb,
1259 						    struct net_device *sb_dev,
1260 						    select_queue_fallback_t fallback);
1261 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1262 						       int flags);
1263 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1264 	int			(*ndo_set_mac_address)(struct net_device *dev,
1265 						       void *addr);
1266 	int			(*ndo_validate_addr)(struct net_device *dev);
1267 	int			(*ndo_do_ioctl)(struct net_device *dev,
1268 					        struct ifreq *ifr, int cmd);
1269 	int			(*ndo_set_config)(struct net_device *dev,
1270 					          struct ifmap *map);
1271 	int			(*ndo_change_mtu)(struct net_device *dev,
1272 						  int new_mtu);
1273 	int			(*ndo_neigh_setup)(struct net_device *dev,
1274 						   struct neigh_parms *);
1275 	void			(*ndo_tx_timeout) (struct net_device *dev);
1276 
1277 	void			(*ndo_get_stats64)(struct net_device *dev,
1278 						   struct rtnl_link_stats64 *storage);
1279 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1280 	int			(*ndo_get_offload_stats)(int attr_id,
1281 							 const struct net_device *dev,
1282 							 void *attr_data);
1283 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1284 
1285 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1286 						       __be16 proto, u16 vid);
1287 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1288 						        __be16 proto, u16 vid);
1289 #ifdef CONFIG_NET_POLL_CONTROLLER
1290 	void                    (*ndo_poll_controller)(struct net_device *dev);
1291 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1292 						     struct netpoll_info *info);
1293 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1294 #endif
1295 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1296 						  int queue, u8 *mac);
1297 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1298 						   int queue, u16 vlan,
1299 						   u8 qos, __be16 proto);
1300 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1301 						   int vf, int min_tx_rate,
1302 						   int max_tx_rate);
1303 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1304 						       int vf, bool setting);
1305 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1306 						    int vf, bool setting);
1307 	int			(*ndo_get_vf_config)(struct net_device *dev,
1308 						     int vf,
1309 						     struct ifla_vf_info *ivf);
1310 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1311 							 int vf, int link_state);
1312 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1313 						    int vf,
1314 						    struct ifla_vf_stats
1315 						    *vf_stats);
1316 	int			(*ndo_set_vf_port)(struct net_device *dev,
1317 						   int vf,
1318 						   struct nlattr *port[]);
1319 	int			(*ndo_get_vf_port)(struct net_device *dev,
1320 						   int vf, struct sk_buff *skb);
1321 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1322 						   int vf, u64 guid,
1323 						   int guid_type);
1324 	int			(*ndo_set_vf_rss_query_en)(
1325 						   struct net_device *dev,
1326 						   int vf, bool setting);
1327 	int			(*ndo_setup_tc)(struct net_device *dev,
1328 						enum tc_setup_type type,
1329 						void *type_data);
1330 #if IS_ENABLED(CONFIG_FCOE)
1331 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1332 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1333 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1334 						      u16 xid,
1335 						      struct scatterlist *sgl,
1336 						      unsigned int sgc);
1337 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1338 						     u16 xid);
1339 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1340 						       u16 xid,
1341 						       struct scatterlist *sgl,
1342 						       unsigned int sgc);
1343 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1344 							struct netdev_fcoe_hbainfo *hbainfo);
1345 #endif
1346 
1347 #if IS_ENABLED(CONFIG_LIBFCOE)
1348 #define NETDEV_FCOE_WWNN 0
1349 #define NETDEV_FCOE_WWPN 1
1350 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1351 						    u64 *wwn, int type);
1352 #endif
1353 
1354 #ifdef CONFIG_RFS_ACCEL
1355 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1356 						     const struct sk_buff *skb,
1357 						     u16 rxq_index,
1358 						     u32 flow_id);
1359 #endif
1360 	int			(*ndo_add_slave)(struct net_device *dev,
1361 						 struct net_device *slave_dev,
1362 						 struct netlink_ext_ack *extack);
1363 	int			(*ndo_del_slave)(struct net_device *dev,
1364 						 struct net_device *slave_dev);
1365 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1366 						    netdev_features_t features);
1367 	int			(*ndo_set_features)(struct net_device *dev,
1368 						    netdev_features_t features);
1369 	int			(*ndo_neigh_construct)(struct net_device *dev,
1370 						       struct neighbour *n);
1371 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1372 						     struct neighbour *n);
1373 
1374 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1375 					       struct nlattr *tb[],
1376 					       struct net_device *dev,
1377 					       const unsigned char *addr,
1378 					       u16 vid,
1379 					       u16 flags);
1380 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1381 					       struct nlattr *tb[],
1382 					       struct net_device *dev,
1383 					       const unsigned char *addr,
1384 					       u16 vid);
1385 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1386 						struct netlink_callback *cb,
1387 						struct net_device *dev,
1388 						struct net_device *filter_dev,
1389 						int *idx);
1390 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1391 					       struct nlattr *tb[],
1392 					       struct net_device *dev,
1393 					       const unsigned char *addr,
1394 					       u16 vid, u32 portid, u32 seq,
1395 					       struct netlink_ext_ack *extack);
1396 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1397 						      struct nlmsghdr *nlh,
1398 						      u16 flags,
1399 						      struct netlink_ext_ack *extack);
1400 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1401 						      u32 pid, u32 seq,
1402 						      struct net_device *dev,
1403 						      u32 filter_mask,
1404 						      int nlflags);
1405 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1406 						      struct nlmsghdr *nlh,
1407 						      u16 flags);
1408 	int			(*ndo_change_carrier)(struct net_device *dev,
1409 						      bool new_carrier);
1410 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1411 							struct netdev_phys_item_id *ppid);
1412 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1413 							  char *name, size_t len);
1414 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1415 						      struct udp_tunnel_info *ti);
1416 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1417 						      struct udp_tunnel_info *ti);
1418 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1419 							struct net_device *dev);
1420 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1421 							void *priv);
1422 
1423 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1424 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1425 						      int queue_index,
1426 						      u32 maxrate);
1427 	int			(*ndo_get_iflink)(const struct net_device *dev);
1428 	int			(*ndo_change_proto_down)(struct net_device *dev,
1429 							 bool proto_down);
1430 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1431 						       struct sk_buff *skb);
1432 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1433 						       int needed_headroom);
1434 	int			(*ndo_bpf)(struct net_device *dev,
1435 					   struct netdev_bpf *bpf);
1436 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1437 						struct xdp_frame **xdp,
1438 						u32 flags);
1439 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1440 						      u32 queue_id);
1441 };
1442 
1443 /**
1444  * enum net_device_priv_flags - &struct net_device priv_flags
1445  *
1446  * These are the &struct net_device, they are only set internally
1447  * by drivers and used in the kernel. These flags are invisible to
1448  * userspace; this means that the order of these flags can change
1449  * during any kernel release.
1450  *
1451  * You should have a pretty good reason to be extending these flags.
1452  *
1453  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1454  * @IFF_EBRIDGE: Ethernet bridging device
1455  * @IFF_BONDING: bonding master or slave
1456  * @IFF_ISATAP: ISATAP interface (RFC4214)
1457  * @IFF_WAN_HDLC: WAN HDLC device
1458  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1459  *	release skb->dst
1460  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1461  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1462  * @IFF_MACVLAN_PORT: device used as macvlan port
1463  * @IFF_BRIDGE_PORT: device used as bridge port
1464  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1465  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1466  * @IFF_UNICAST_FLT: Supports unicast filtering
1467  * @IFF_TEAM_PORT: device used as team port
1468  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1469  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1470  *	change when it's running
1471  * @IFF_MACVLAN: Macvlan device
1472  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1473  *	underlying stacked devices
1474  * @IFF_L3MDEV_MASTER: device is an L3 master device
1475  * @IFF_NO_QUEUE: device can run without qdisc attached
1476  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1477  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1478  * @IFF_TEAM: device is a team device
1479  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1480  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1481  *	entity (i.e. the master device for bridged veth)
1482  * @IFF_MACSEC: device is a MACsec device
1483  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1484  * @IFF_FAILOVER: device is a failover master device
1485  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1486  */
1487 enum netdev_priv_flags {
1488 	IFF_802_1Q_VLAN			= 1<<0,
1489 	IFF_EBRIDGE			= 1<<1,
1490 	IFF_BONDING			= 1<<2,
1491 	IFF_ISATAP			= 1<<3,
1492 	IFF_WAN_HDLC			= 1<<4,
1493 	IFF_XMIT_DST_RELEASE		= 1<<5,
1494 	IFF_DONT_BRIDGE			= 1<<6,
1495 	IFF_DISABLE_NETPOLL		= 1<<7,
1496 	IFF_MACVLAN_PORT		= 1<<8,
1497 	IFF_BRIDGE_PORT			= 1<<9,
1498 	IFF_OVS_DATAPATH		= 1<<10,
1499 	IFF_TX_SKB_SHARING		= 1<<11,
1500 	IFF_UNICAST_FLT			= 1<<12,
1501 	IFF_TEAM_PORT			= 1<<13,
1502 	IFF_SUPP_NOFCS			= 1<<14,
1503 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1504 	IFF_MACVLAN			= 1<<16,
1505 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1506 	IFF_L3MDEV_MASTER		= 1<<18,
1507 	IFF_NO_QUEUE			= 1<<19,
1508 	IFF_OPENVSWITCH			= 1<<20,
1509 	IFF_L3MDEV_SLAVE		= 1<<21,
1510 	IFF_TEAM			= 1<<22,
1511 	IFF_RXFH_CONFIGURED		= 1<<23,
1512 	IFF_PHONY_HEADROOM		= 1<<24,
1513 	IFF_MACSEC			= 1<<25,
1514 	IFF_NO_RX_HANDLER		= 1<<26,
1515 	IFF_FAILOVER			= 1<<27,
1516 	IFF_FAILOVER_SLAVE		= 1<<28,
1517 };
1518 
1519 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1520 #define IFF_EBRIDGE			IFF_EBRIDGE
1521 #define IFF_BONDING			IFF_BONDING
1522 #define IFF_ISATAP			IFF_ISATAP
1523 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1524 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1525 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1526 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1527 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1528 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1529 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1530 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1531 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1532 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1533 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1534 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1535 #define IFF_MACVLAN			IFF_MACVLAN
1536 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1537 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1538 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1539 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1540 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1541 #define IFF_TEAM			IFF_TEAM
1542 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1543 #define IFF_MACSEC			IFF_MACSEC
1544 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1545 #define IFF_FAILOVER			IFF_FAILOVER
1546 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1547 
1548 /**
1549  *	struct net_device - The DEVICE structure.
1550  *
1551  *	Actually, this whole structure is a big mistake.  It mixes I/O
1552  *	data with strictly "high-level" data, and it has to know about
1553  *	almost every data structure used in the INET module.
1554  *
1555  *	@name:	This is the first field of the "visible" part of this structure
1556  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1557  *		of the interface.
1558  *
1559  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1560  *	@ifalias:	SNMP alias
1561  *	@mem_end:	Shared memory end
1562  *	@mem_start:	Shared memory start
1563  *	@base_addr:	Device I/O address
1564  *	@irq:		Device IRQ number
1565  *
1566  *	@state:		Generic network queuing layer state, see netdev_state_t
1567  *	@dev_list:	The global list of network devices
1568  *	@napi_list:	List entry used for polling NAPI devices
1569  *	@unreg_list:	List entry  when we are unregistering the
1570  *			device; see the function unregister_netdev
1571  *	@close_list:	List entry used when we are closing the device
1572  *	@ptype_all:     Device-specific packet handlers for all protocols
1573  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1574  *
1575  *	@adj_list:	Directly linked devices, like slaves for bonding
1576  *	@features:	Currently active device features
1577  *	@hw_features:	User-changeable features
1578  *
1579  *	@wanted_features:	User-requested features
1580  *	@vlan_features:		Mask of features inheritable by VLAN devices
1581  *
1582  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1583  *				This field indicates what encapsulation
1584  *				offloads the hardware is capable of doing,
1585  *				and drivers will need to set them appropriately.
1586  *
1587  *	@mpls_features:	Mask of features inheritable by MPLS
1588  *
1589  *	@ifindex:	interface index
1590  *	@group:		The group the device belongs to
1591  *
1592  *	@stats:		Statistics struct, which was left as a legacy, use
1593  *			rtnl_link_stats64 instead
1594  *
1595  *	@rx_dropped:	Dropped packets by core network,
1596  *			do not use this in drivers
1597  *	@tx_dropped:	Dropped packets by core network,
1598  *			do not use this in drivers
1599  *	@rx_nohandler:	nohandler dropped packets by core network on
1600  *			inactive devices, do not use this in drivers
1601  *	@carrier_up_count:	Number of times the carrier has been up
1602  *	@carrier_down_count:	Number of times the carrier has been down
1603  *
1604  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1605  *				instead of ioctl,
1606  *				see <net/iw_handler.h> for details.
1607  *	@wireless_data:	Instance data managed by the core of wireless extensions
1608  *
1609  *	@netdev_ops:	Includes several pointers to callbacks,
1610  *			if one wants to override the ndo_*() functions
1611  *	@ethtool_ops:	Management operations
1612  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1613  *			discovery handling. Necessary for e.g. 6LoWPAN.
1614  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1615  *			of Layer 2 headers.
1616  *
1617  *	@flags:		Interface flags (a la BSD)
1618  *	@priv_flags:	Like 'flags' but invisible to userspace,
1619  *			see if.h for the definitions
1620  *	@gflags:	Global flags ( kept as legacy )
1621  *	@padded:	How much padding added by alloc_netdev()
1622  *	@operstate:	RFC2863 operstate
1623  *	@link_mode:	Mapping policy to operstate
1624  *	@if_port:	Selectable AUI, TP, ...
1625  *	@dma:		DMA channel
1626  *	@mtu:		Interface MTU value
1627  *	@min_mtu:	Interface Minimum MTU value
1628  *	@max_mtu:	Interface Maximum MTU value
1629  *	@type:		Interface hardware type
1630  *	@hard_header_len: Maximum hardware header length.
1631  *	@min_header_len:  Minimum hardware header length
1632  *
1633  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1634  *			  cases can this be guaranteed
1635  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1636  *			  cases can this be guaranteed. Some cases also use
1637  *			  LL_MAX_HEADER instead to allocate the skb
1638  *
1639  *	interface address info:
1640  *
1641  * 	@perm_addr:		Permanent hw address
1642  * 	@addr_assign_type:	Hw address assignment type
1643  * 	@addr_len:		Hardware address length
1644  *	@neigh_priv_len:	Used in neigh_alloc()
1645  * 	@dev_id:		Used to differentiate devices that share
1646  * 				the same link layer address
1647  * 	@dev_port:		Used to differentiate devices that share
1648  * 				the same function
1649  *	@addr_list_lock:	XXX: need comments on this one
1650  *	@uc_promisc:		Counter that indicates promiscuous mode
1651  *				has been enabled due to the need to listen to
1652  *				additional unicast addresses in a device that
1653  *				does not implement ndo_set_rx_mode()
1654  *	@uc:			unicast mac addresses
1655  *	@mc:			multicast mac addresses
1656  *	@dev_addrs:		list of device hw addresses
1657  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1658  *	@promiscuity:		Number of times the NIC is told to work in
1659  *				promiscuous mode; if it becomes 0 the NIC will
1660  *				exit promiscuous mode
1661  *	@allmulti:		Counter, enables or disables allmulticast mode
1662  *
1663  *	@vlan_info:	VLAN info
1664  *	@dsa_ptr:	dsa specific data
1665  *	@tipc_ptr:	TIPC specific data
1666  *	@atalk_ptr:	AppleTalk link
1667  *	@ip_ptr:	IPv4 specific data
1668  *	@dn_ptr:	DECnet specific data
1669  *	@ip6_ptr:	IPv6 specific data
1670  *	@ax25_ptr:	AX.25 specific data
1671  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1672  *
1673  *	@dev_addr:	Hw address (before bcast,
1674  *			because most packets are unicast)
1675  *
1676  *	@_rx:			Array of RX queues
1677  *	@num_rx_queues:		Number of RX queues
1678  *				allocated at register_netdev() time
1679  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1680  *
1681  *	@rx_handler:		handler for received packets
1682  *	@rx_handler_data: 	XXX: need comments on this one
1683  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1684  *				ingress processing
1685  *	@ingress_queue:		XXX: need comments on this one
1686  *	@broadcast:		hw bcast address
1687  *
1688  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1689  *			indexed by RX queue number. Assigned by driver.
1690  *			This must only be set if the ndo_rx_flow_steer
1691  *			operation is defined
1692  *	@index_hlist:		Device index hash chain
1693  *
1694  *	@_tx:			Array of TX queues
1695  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1696  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1697  *	@qdisc:			Root qdisc from userspace point of view
1698  *	@tx_queue_len:		Max frames per queue allowed
1699  *	@tx_global_lock: 	XXX: need comments on this one
1700  *
1701  *	@xps_maps:	XXX: need comments on this one
1702  *	@miniq_egress:		clsact qdisc specific data for
1703  *				egress processing
1704  *	@watchdog_timeo:	Represents the timeout that is used by
1705  *				the watchdog (see dev_watchdog())
1706  *	@watchdog_timer:	List of timers
1707  *
1708  *	@pcpu_refcnt:		Number of references to this device
1709  *	@todo_list:		Delayed register/unregister
1710  *	@link_watch_list:	XXX: need comments on this one
1711  *
1712  *	@reg_state:		Register/unregister state machine
1713  *	@dismantle:		Device is going to be freed
1714  *	@rtnl_link_state:	This enum represents the phases of creating
1715  *				a new link
1716  *
1717  *	@needs_free_netdev:	Should unregister perform free_netdev?
1718  *	@priv_destructor:	Called from unregister
1719  *	@npinfo:		XXX: need comments on this one
1720  * 	@nd_net:		Network namespace this network device is inside
1721  *
1722  * 	@ml_priv:	Mid-layer private
1723  * 	@lstats:	Loopback statistics
1724  * 	@tstats:	Tunnel statistics
1725  * 	@dstats:	Dummy statistics
1726  * 	@vstats:	Virtual ethernet statistics
1727  *
1728  *	@garp_port:	GARP
1729  *	@mrp_port:	MRP
1730  *
1731  *	@dev:		Class/net/name entry
1732  *	@sysfs_groups:	Space for optional device, statistics and wireless
1733  *			sysfs groups
1734  *
1735  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1736  *	@rtnl_link_ops:	Rtnl_link_ops
1737  *
1738  *	@gso_max_size:	Maximum size of generic segmentation offload
1739  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1740  *			NIC for GSO
1741  *
1742  *	@dcbnl_ops:	Data Center Bridging netlink ops
1743  *	@num_tc:	Number of traffic classes in the net device
1744  *	@tc_to_txq:	XXX: need comments on this one
1745  *	@prio_tc_map:	XXX: need comments on this one
1746  *
1747  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1748  *
1749  *	@priomap:	XXX: need comments on this one
1750  *	@phydev:	Physical device may attach itself
1751  *			for hardware timestamping
1752  *	@sfp_bus:	attached &struct sfp_bus structure.
1753  *
1754  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1755  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1756  *
1757  *	@proto_down:	protocol port state information can be sent to the
1758  *			switch driver and used to set the phys state of the
1759  *			switch port.
1760  *
1761  *	@wol_enabled:	Wake-on-LAN is enabled
1762  *
1763  *	FIXME: cleanup struct net_device such that network protocol info
1764  *	moves out.
1765  */
1766 
1767 struct net_device {
1768 	char			name[IFNAMSIZ];
1769 	struct hlist_node	name_hlist;
1770 	struct dev_ifalias	__rcu *ifalias;
1771 	/*
1772 	 *	I/O specific fields
1773 	 *	FIXME: Merge these and struct ifmap into one
1774 	 */
1775 	unsigned long		mem_end;
1776 	unsigned long		mem_start;
1777 	unsigned long		base_addr;
1778 	int			irq;
1779 
1780 	/*
1781 	 *	Some hardware also needs these fields (state,dev_list,
1782 	 *	napi_list,unreg_list,close_list) but they are not
1783 	 *	part of the usual set specified in Space.c.
1784 	 */
1785 
1786 	unsigned long		state;
1787 
1788 	struct list_head	dev_list;
1789 	struct list_head	napi_list;
1790 	struct list_head	unreg_list;
1791 	struct list_head	close_list;
1792 	struct list_head	ptype_all;
1793 	struct list_head	ptype_specific;
1794 
1795 	struct {
1796 		struct list_head upper;
1797 		struct list_head lower;
1798 	} adj_list;
1799 
1800 	netdev_features_t	features;
1801 	netdev_features_t	hw_features;
1802 	netdev_features_t	wanted_features;
1803 	netdev_features_t	vlan_features;
1804 	netdev_features_t	hw_enc_features;
1805 	netdev_features_t	mpls_features;
1806 	netdev_features_t	gso_partial_features;
1807 
1808 	int			ifindex;
1809 	int			group;
1810 
1811 	struct net_device_stats	stats;
1812 
1813 	atomic_long_t		rx_dropped;
1814 	atomic_long_t		tx_dropped;
1815 	atomic_long_t		rx_nohandler;
1816 
1817 	/* Stats to monitor link on/off, flapping */
1818 	atomic_t		carrier_up_count;
1819 	atomic_t		carrier_down_count;
1820 
1821 #ifdef CONFIG_WIRELESS_EXT
1822 	const struct iw_handler_def *wireless_handlers;
1823 	struct iw_public_data	*wireless_data;
1824 #endif
1825 	const struct net_device_ops *netdev_ops;
1826 	const struct ethtool_ops *ethtool_ops;
1827 #ifdef CONFIG_NET_SWITCHDEV
1828 	const struct switchdev_ops *switchdev_ops;
1829 #endif
1830 #ifdef CONFIG_NET_L3_MASTER_DEV
1831 	const struct l3mdev_ops	*l3mdev_ops;
1832 #endif
1833 #if IS_ENABLED(CONFIG_IPV6)
1834 	const struct ndisc_ops *ndisc_ops;
1835 #endif
1836 
1837 #ifdef CONFIG_XFRM_OFFLOAD
1838 	const struct xfrmdev_ops *xfrmdev_ops;
1839 #endif
1840 
1841 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1842 	const struct tlsdev_ops *tlsdev_ops;
1843 #endif
1844 
1845 	const struct header_ops *header_ops;
1846 
1847 	unsigned int		flags;
1848 	unsigned int		priv_flags;
1849 
1850 	unsigned short		gflags;
1851 	unsigned short		padded;
1852 
1853 	unsigned char		operstate;
1854 	unsigned char		link_mode;
1855 
1856 	unsigned char		if_port;
1857 	unsigned char		dma;
1858 
1859 	unsigned int		mtu;
1860 	unsigned int		min_mtu;
1861 	unsigned int		max_mtu;
1862 	unsigned short		type;
1863 	unsigned short		hard_header_len;
1864 	unsigned char		min_header_len;
1865 
1866 	unsigned short		needed_headroom;
1867 	unsigned short		needed_tailroom;
1868 
1869 	/* Interface address info. */
1870 	unsigned char		perm_addr[MAX_ADDR_LEN];
1871 	unsigned char		addr_assign_type;
1872 	unsigned char		addr_len;
1873 	unsigned short		neigh_priv_len;
1874 	unsigned short          dev_id;
1875 	unsigned short          dev_port;
1876 	spinlock_t		addr_list_lock;
1877 	unsigned char		name_assign_type;
1878 	bool			uc_promisc;
1879 	struct netdev_hw_addr_list	uc;
1880 	struct netdev_hw_addr_list	mc;
1881 	struct netdev_hw_addr_list	dev_addrs;
1882 
1883 #ifdef CONFIG_SYSFS
1884 	struct kset		*queues_kset;
1885 #endif
1886 	unsigned int		promiscuity;
1887 	unsigned int		allmulti;
1888 
1889 
1890 	/* Protocol-specific pointers */
1891 
1892 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1893 	struct vlan_info __rcu	*vlan_info;
1894 #endif
1895 #if IS_ENABLED(CONFIG_NET_DSA)
1896 	struct dsa_port		*dsa_ptr;
1897 #endif
1898 #if IS_ENABLED(CONFIG_TIPC)
1899 	struct tipc_bearer __rcu *tipc_ptr;
1900 #endif
1901 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1902 	void 			*atalk_ptr;
1903 #endif
1904 	struct in_device __rcu	*ip_ptr;
1905 #if IS_ENABLED(CONFIG_DECNET)
1906 	struct dn_dev __rcu     *dn_ptr;
1907 #endif
1908 	struct inet6_dev __rcu	*ip6_ptr;
1909 #if IS_ENABLED(CONFIG_AX25)
1910 	void			*ax25_ptr;
1911 #endif
1912 	struct wireless_dev	*ieee80211_ptr;
1913 	struct wpan_dev		*ieee802154_ptr;
1914 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1915 	struct mpls_dev __rcu	*mpls_ptr;
1916 #endif
1917 
1918 /*
1919  * Cache lines mostly used on receive path (including eth_type_trans())
1920  */
1921 	/* Interface address info used in eth_type_trans() */
1922 	unsigned char		*dev_addr;
1923 
1924 	struct netdev_rx_queue	*_rx;
1925 	unsigned int		num_rx_queues;
1926 	unsigned int		real_num_rx_queues;
1927 
1928 	struct bpf_prog __rcu	*xdp_prog;
1929 	unsigned long		gro_flush_timeout;
1930 	rx_handler_func_t __rcu	*rx_handler;
1931 	void __rcu		*rx_handler_data;
1932 
1933 #ifdef CONFIG_NET_CLS_ACT
1934 	struct mini_Qdisc __rcu	*miniq_ingress;
1935 #endif
1936 	struct netdev_queue __rcu *ingress_queue;
1937 #ifdef CONFIG_NETFILTER_INGRESS
1938 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1939 #endif
1940 
1941 	unsigned char		broadcast[MAX_ADDR_LEN];
1942 #ifdef CONFIG_RFS_ACCEL
1943 	struct cpu_rmap		*rx_cpu_rmap;
1944 #endif
1945 	struct hlist_node	index_hlist;
1946 
1947 /*
1948  * Cache lines mostly used on transmit path
1949  */
1950 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1951 	unsigned int		num_tx_queues;
1952 	unsigned int		real_num_tx_queues;
1953 	struct Qdisc		*qdisc;
1954 #ifdef CONFIG_NET_SCHED
1955 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1956 #endif
1957 	unsigned int		tx_queue_len;
1958 	spinlock_t		tx_global_lock;
1959 	int			watchdog_timeo;
1960 
1961 #ifdef CONFIG_XPS
1962 	struct xps_dev_maps __rcu *xps_cpus_map;
1963 	struct xps_dev_maps __rcu *xps_rxqs_map;
1964 #endif
1965 #ifdef CONFIG_NET_CLS_ACT
1966 	struct mini_Qdisc __rcu	*miniq_egress;
1967 #endif
1968 
1969 	/* These may be needed for future network-power-down code. */
1970 	struct timer_list	watchdog_timer;
1971 
1972 	int __percpu		*pcpu_refcnt;
1973 	struct list_head	todo_list;
1974 
1975 	struct list_head	link_watch_list;
1976 
1977 	enum { NETREG_UNINITIALIZED=0,
1978 	       NETREG_REGISTERED,	/* completed register_netdevice */
1979 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1980 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1981 	       NETREG_RELEASED,		/* called free_netdev */
1982 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1983 	} reg_state:8;
1984 
1985 	bool dismantle;
1986 
1987 	enum {
1988 		RTNL_LINK_INITIALIZED,
1989 		RTNL_LINK_INITIALIZING,
1990 	} rtnl_link_state:16;
1991 
1992 	bool needs_free_netdev;
1993 	void (*priv_destructor)(struct net_device *dev);
1994 
1995 #ifdef CONFIG_NETPOLL
1996 	struct netpoll_info __rcu	*npinfo;
1997 #endif
1998 
1999 	possible_net_t			nd_net;
2000 
2001 	/* mid-layer private */
2002 	union {
2003 		void					*ml_priv;
2004 		struct pcpu_lstats __percpu		*lstats;
2005 		struct pcpu_sw_netstats __percpu	*tstats;
2006 		struct pcpu_dstats __percpu		*dstats;
2007 	};
2008 
2009 #if IS_ENABLED(CONFIG_GARP)
2010 	struct garp_port __rcu	*garp_port;
2011 #endif
2012 #if IS_ENABLED(CONFIG_MRP)
2013 	struct mrp_port __rcu	*mrp_port;
2014 #endif
2015 
2016 	struct device		dev;
2017 	const struct attribute_group *sysfs_groups[4];
2018 	const struct attribute_group *sysfs_rx_queue_group;
2019 
2020 	const struct rtnl_link_ops *rtnl_link_ops;
2021 
2022 	/* for setting kernel sock attribute on TCP connection setup */
2023 #define GSO_MAX_SIZE		65536
2024 	unsigned int		gso_max_size;
2025 #define GSO_MAX_SEGS		65535
2026 	u16			gso_max_segs;
2027 
2028 #ifdef CONFIG_DCB
2029 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2030 #endif
2031 	s16			num_tc;
2032 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2033 	u8			prio_tc_map[TC_BITMASK + 1];
2034 
2035 #if IS_ENABLED(CONFIG_FCOE)
2036 	unsigned int		fcoe_ddp_xid;
2037 #endif
2038 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2039 	struct netprio_map __rcu *priomap;
2040 #endif
2041 	struct phy_device	*phydev;
2042 	struct sfp_bus		*sfp_bus;
2043 	struct lock_class_key	*qdisc_tx_busylock;
2044 	struct lock_class_key	*qdisc_running_key;
2045 	bool			proto_down;
2046 	unsigned		wol_enabled:1;
2047 };
2048 #define to_net_dev(d) container_of(d, struct net_device, dev)
2049 
2050 static inline bool netif_elide_gro(const struct net_device *dev)
2051 {
2052 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2053 		return true;
2054 	return false;
2055 }
2056 
2057 #define	NETDEV_ALIGN		32
2058 
2059 static inline
2060 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2061 {
2062 	return dev->prio_tc_map[prio & TC_BITMASK];
2063 }
2064 
2065 static inline
2066 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2067 {
2068 	if (tc >= dev->num_tc)
2069 		return -EINVAL;
2070 
2071 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2072 	return 0;
2073 }
2074 
2075 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2076 void netdev_reset_tc(struct net_device *dev);
2077 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2078 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2079 
2080 static inline
2081 int netdev_get_num_tc(struct net_device *dev)
2082 {
2083 	return dev->num_tc;
2084 }
2085 
2086 void netdev_unbind_sb_channel(struct net_device *dev,
2087 			      struct net_device *sb_dev);
2088 int netdev_bind_sb_channel_queue(struct net_device *dev,
2089 				 struct net_device *sb_dev,
2090 				 u8 tc, u16 count, u16 offset);
2091 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2092 static inline int netdev_get_sb_channel(struct net_device *dev)
2093 {
2094 	return max_t(int, -dev->num_tc, 0);
2095 }
2096 
2097 static inline
2098 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2099 					 unsigned int index)
2100 {
2101 	return &dev->_tx[index];
2102 }
2103 
2104 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2105 						    const struct sk_buff *skb)
2106 {
2107 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2108 }
2109 
2110 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2111 					    void (*f)(struct net_device *,
2112 						      struct netdev_queue *,
2113 						      void *),
2114 					    void *arg)
2115 {
2116 	unsigned int i;
2117 
2118 	for (i = 0; i < dev->num_tx_queues; i++)
2119 		f(dev, &dev->_tx[i], arg);
2120 }
2121 
2122 #define netdev_lockdep_set_classes(dev)				\
2123 {								\
2124 	static struct lock_class_key qdisc_tx_busylock_key;	\
2125 	static struct lock_class_key qdisc_running_key;		\
2126 	static struct lock_class_key qdisc_xmit_lock_key;	\
2127 	static struct lock_class_key dev_addr_list_lock_key;	\
2128 	unsigned int i;						\
2129 								\
2130 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2131 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2132 	lockdep_set_class(&(dev)->addr_list_lock,		\
2133 			  &dev_addr_list_lock_key); 		\
2134 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2135 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2136 				  &qdisc_xmit_lock_key);	\
2137 }
2138 
2139 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2140 				    struct sk_buff *skb,
2141 				    struct net_device *sb_dev);
2142 
2143 /* returns the headroom that the master device needs to take in account
2144  * when forwarding to this dev
2145  */
2146 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2147 {
2148 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2149 }
2150 
2151 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2152 {
2153 	if (dev->netdev_ops->ndo_set_rx_headroom)
2154 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2155 }
2156 
2157 /* set the device rx headroom to the dev's default */
2158 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2159 {
2160 	netdev_set_rx_headroom(dev, -1);
2161 }
2162 
2163 /*
2164  * Net namespace inlines
2165  */
2166 static inline
2167 struct net *dev_net(const struct net_device *dev)
2168 {
2169 	return read_pnet(&dev->nd_net);
2170 }
2171 
2172 static inline
2173 void dev_net_set(struct net_device *dev, struct net *net)
2174 {
2175 	write_pnet(&dev->nd_net, net);
2176 }
2177 
2178 /**
2179  *	netdev_priv - access network device private data
2180  *	@dev: network device
2181  *
2182  * Get network device private data
2183  */
2184 static inline void *netdev_priv(const struct net_device *dev)
2185 {
2186 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2187 }
2188 
2189 /* Set the sysfs physical device reference for the network logical device
2190  * if set prior to registration will cause a symlink during initialization.
2191  */
2192 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2193 
2194 /* Set the sysfs device type for the network logical device to allow
2195  * fine-grained identification of different network device types. For
2196  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2197  */
2198 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2199 
2200 /* Default NAPI poll() weight
2201  * Device drivers are strongly advised to not use bigger value
2202  */
2203 #define NAPI_POLL_WEIGHT 64
2204 
2205 /**
2206  *	netif_napi_add - initialize a NAPI context
2207  *	@dev:  network device
2208  *	@napi: NAPI context
2209  *	@poll: polling function
2210  *	@weight: default weight
2211  *
2212  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2213  * *any* of the other NAPI-related functions.
2214  */
2215 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2216 		    int (*poll)(struct napi_struct *, int), int weight);
2217 
2218 /**
2219  *	netif_tx_napi_add - initialize a NAPI context
2220  *	@dev:  network device
2221  *	@napi: NAPI context
2222  *	@poll: polling function
2223  *	@weight: default weight
2224  *
2225  * This variant of netif_napi_add() should be used from drivers using NAPI
2226  * to exclusively poll a TX queue.
2227  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2228  */
2229 static inline void netif_tx_napi_add(struct net_device *dev,
2230 				     struct napi_struct *napi,
2231 				     int (*poll)(struct napi_struct *, int),
2232 				     int weight)
2233 {
2234 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2235 	netif_napi_add(dev, napi, poll, weight);
2236 }
2237 
2238 /**
2239  *  netif_napi_del - remove a NAPI context
2240  *  @napi: NAPI context
2241  *
2242  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2243  */
2244 void netif_napi_del(struct napi_struct *napi);
2245 
2246 struct napi_gro_cb {
2247 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2248 	void	*frag0;
2249 
2250 	/* Length of frag0. */
2251 	unsigned int frag0_len;
2252 
2253 	/* This indicates where we are processing relative to skb->data. */
2254 	int	data_offset;
2255 
2256 	/* This is non-zero if the packet cannot be merged with the new skb. */
2257 	u16	flush;
2258 
2259 	/* Save the IP ID here and check when we get to the transport layer */
2260 	u16	flush_id;
2261 
2262 	/* Number of segments aggregated. */
2263 	u16	count;
2264 
2265 	/* Start offset for remote checksum offload */
2266 	u16	gro_remcsum_start;
2267 
2268 	/* jiffies when first packet was created/queued */
2269 	unsigned long age;
2270 
2271 	/* Used in ipv6_gro_receive() and foo-over-udp */
2272 	u16	proto;
2273 
2274 	/* This is non-zero if the packet may be of the same flow. */
2275 	u8	same_flow:1;
2276 
2277 	/* Used in tunnel GRO receive */
2278 	u8	encap_mark:1;
2279 
2280 	/* GRO checksum is valid */
2281 	u8	csum_valid:1;
2282 
2283 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2284 	u8	csum_cnt:3;
2285 
2286 	/* Free the skb? */
2287 	u8	free:2;
2288 #define NAPI_GRO_FREE		  1
2289 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2290 
2291 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2292 	u8	is_ipv6:1;
2293 
2294 	/* Used in GRE, set in fou/gue_gro_receive */
2295 	u8	is_fou:1;
2296 
2297 	/* Used to determine if flush_id can be ignored */
2298 	u8	is_atomic:1;
2299 
2300 	/* Number of gro_receive callbacks this packet already went through */
2301 	u8 recursion_counter:4;
2302 
2303 	/* 1 bit hole */
2304 
2305 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2306 	__wsum	csum;
2307 
2308 	/* used in skb_gro_receive() slow path */
2309 	struct sk_buff *last;
2310 };
2311 
2312 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2313 
2314 #define GRO_RECURSION_LIMIT 15
2315 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2316 {
2317 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2318 }
2319 
2320 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2321 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2322 					       struct list_head *head,
2323 					       struct sk_buff *skb)
2324 {
2325 	if (unlikely(gro_recursion_inc_test(skb))) {
2326 		NAPI_GRO_CB(skb)->flush |= 1;
2327 		return NULL;
2328 	}
2329 
2330 	return cb(head, skb);
2331 }
2332 
2333 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2334 					    struct sk_buff *);
2335 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2336 						  struct sock *sk,
2337 						  struct list_head *head,
2338 						  struct sk_buff *skb)
2339 {
2340 	if (unlikely(gro_recursion_inc_test(skb))) {
2341 		NAPI_GRO_CB(skb)->flush |= 1;
2342 		return NULL;
2343 	}
2344 
2345 	return cb(sk, head, skb);
2346 }
2347 
2348 struct packet_type {
2349 	__be16			type;	/* This is really htons(ether_type). */
2350 	bool			ignore_outgoing;
2351 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2352 	int			(*func) (struct sk_buff *,
2353 					 struct net_device *,
2354 					 struct packet_type *,
2355 					 struct net_device *);
2356 	void			(*list_func) (struct list_head *,
2357 					      struct packet_type *,
2358 					      struct net_device *);
2359 	bool			(*id_match)(struct packet_type *ptype,
2360 					    struct sock *sk);
2361 	void			*af_packet_priv;
2362 	struct list_head	list;
2363 };
2364 
2365 struct offload_callbacks {
2366 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2367 						netdev_features_t features);
2368 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2369 						struct sk_buff *skb);
2370 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2371 };
2372 
2373 struct packet_offload {
2374 	__be16			 type;	/* This is really htons(ether_type). */
2375 	u16			 priority;
2376 	struct offload_callbacks callbacks;
2377 	struct list_head	 list;
2378 };
2379 
2380 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2381 struct pcpu_sw_netstats {
2382 	u64     rx_packets;
2383 	u64     rx_bytes;
2384 	u64     tx_packets;
2385 	u64     tx_bytes;
2386 	struct u64_stats_sync   syncp;
2387 } __aligned(4 * sizeof(u64));
2388 
2389 struct pcpu_lstats {
2390 	u64 packets;
2391 	u64 bytes;
2392 	struct u64_stats_sync syncp;
2393 } __aligned(2 * sizeof(u64));
2394 
2395 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2396 ({									\
2397 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2398 	if (pcpu_stats)	{						\
2399 		int __cpu;						\
2400 		for_each_possible_cpu(__cpu) {				\
2401 			typeof(type) *stat;				\
2402 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2403 			u64_stats_init(&stat->syncp);			\
2404 		}							\
2405 	}								\
2406 	pcpu_stats;							\
2407 })
2408 
2409 #define netdev_alloc_pcpu_stats(type)					\
2410 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2411 
2412 enum netdev_lag_tx_type {
2413 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2414 	NETDEV_LAG_TX_TYPE_RANDOM,
2415 	NETDEV_LAG_TX_TYPE_BROADCAST,
2416 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2417 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2418 	NETDEV_LAG_TX_TYPE_HASH,
2419 };
2420 
2421 enum netdev_lag_hash {
2422 	NETDEV_LAG_HASH_NONE,
2423 	NETDEV_LAG_HASH_L2,
2424 	NETDEV_LAG_HASH_L34,
2425 	NETDEV_LAG_HASH_L23,
2426 	NETDEV_LAG_HASH_E23,
2427 	NETDEV_LAG_HASH_E34,
2428 	NETDEV_LAG_HASH_UNKNOWN,
2429 };
2430 
2431 struct netdev_lag_upper_info {
2432 	enum netdev_lag_tx_type tx_type;
2433 	enum netdev_lag_hash hash_type;
2434 };
2435 
2436 struct netdev_lag_lower_state_info {
2437 	u8 link_up : 1,
2438 	   tx_enabled : 1;
2439 };
2440 
2441 #include <linux/notifier.h>
2442 
2443 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2444  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2445  * adding new types.
2446  */
2447 enum netdev_cmd {
2448 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2449 	NETDEV_DOWN,
2450 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2451 				   detected a hardware crash and restarted
2452 				   - we can use this eg to kick tcp sessions
2453 				   once done */
2454 	NETDEV_CHANGE,		/* Notify device state change */
2455 	NETDEV_REGISTER,
2456 	NETDEV_UNREGISTER,
2457 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2458 	NETDEV_CHANGEADDR,	/* notify after the address change */
2459 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2460 	NETDEV_GOING_DOWN,
2461 	NETDEV_CHANGENAME,
2462 	NETDEV_FEAT_CHANGE,
2463 	NETDEV_BONDING_FAILOVER,
2464 	NETDEV_PRE_UP,
2465 	NETDEV_PRE_TYPE_CHANGE,
2466 	NETDEV_POST_TYPE_CHANGE,
2467 	NETDEV_POST_INIT,
2468 	NETDEV_RELEASE,
2469 	NETDEV_NOTIFY_PEERS,
2470 	NETDEV_JOIN,
2471 	NETDEV_CHANGEUPPER,
2472 	NETDEV_RESEND_IGMP,
2473 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2474 	NETDEV_CHANGEINFODATA,
2475 	NETDEV_BONDING_INFO,
2476 	NETDEV_PRECHANGEUPPER,
2477 	NETDEV_CHANGELOWERSTATE,
2478 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2479 	NETDEV_UDP_TUNNEL_DROP_INFO,
2480 	NETDEV_CHANGE_TX_QUEUE_LEN,
2481 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2482 	NETDEV_CVLAN_FILTER_DROP_INFO,
2483 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2484 	NETDEV_SVLAN_FILTER_DROP_INFO,
2485 };
2486 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2487 
2488 int register_netdevice_notifier(struct notifier_block *nb);
2489 int unregister_netdevice_notifier(struct notifier_block *nb);
2490 
2491 struct netdev_notifier_info {
2492 	struct net_device	*dev;
2493 	struct netlink_ext_ack	*extack;
2494 };
2495 
2496 struct netdev_notifier_info_ext {
2497 	struct netdev_notifier_info info; /* must be first */
2498 	union {
2499 		u32 mtu;
2500 	} ext;
2501 };
2502 
2503 struct netdev_notifier_change_info {
2504 	struct netdev_notifier_info info; /* must be first */
2505 	unsigned int flags_changed;
2506 };
2507 
2508 struct netdev_notifier_changeupper_info {
2509 	struct netdev_notifier_info info; /* must be first */
2510 	struct net_device *upper_dev; /* new upper dev */
2511 	bool master; /* is upper dev master */
2512 	bool linking; /* is the notification for link or unlink */
2513 	void *upper_info; /* upper dev info */
2514 };
2515 
2516 struct netdev_notifier_changelowerstate_info {
2517 	struct netdev_notifier_info info; /* must be first */
2518 	void *lower_state_info; /* is lower dev state */
2519 };
2520 
2521 struct netdev_notifier_pre_changeaddr_info {
2522 	struct netdev_notifier_info info; /* must be first */
2523 	const unsigned char *dev_addr;
2524 };
2525 
2526 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2527 					     struct net_device *dev)
2528 {
2529 	info->dev = dev;
2530 	info->extack = NULL;
2531 }
2532 
2533 static inline struct net_device *
2534 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2535 {
2536 	return info->dev;
2537 }
2538 
2539 static inline struct netlink_ext_ack *
2540 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2541 {
2542 	return info->extack;
2543 }
2544 
2545 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2546 
2547 
2548 extern rwlock_t				dev_base_lock;		/* Device list lock */
2549 
2550 #define for_each_netdev(net, d)		\
2551 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2552 #define for_each_netdev_reverse(net, d)	\
2553 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2554 #define for_each_netdev_rcu(net, d)		\
2555 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2556 #define for_each_netdev_safe(net, d, n)	\
2557 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2558 #define for_each_netdev_continue(net, d)		\
2559 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2560 #define for_each_netdev_continue_rcu(net, d)		\
2561 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2562 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2563 		for_each_netdev_rcu(&init_net, slave)	\
2564 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2565 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2566 
2567 static inline struct net_device *next_net_device(struct net_device *dev)
2568 {
2569 	struct list_head *lh;
2570 	struct net *net;
2571 
2572 	net = dev_net(dev);
2573 	lh = dev->dev_list.next;
2574 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2575 }
2576 
2577 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2578 {
2579 	struct list_head *lh;
2580 	struct net *net;
2581 
2582 	net = dev_net(dev);
2583 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2584 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2585 }
2586 
2587 static inline struct net_device *first_net_device(struct net *net)
2588 {
2589 	return list_empty(&net->dev_base_head) ? NULL :
2590 		net_device_entry(net->dev_base_head.next);
2591 }
2592 
2593 static inline struct net_device *first_net_device_rcu(struct net *net)
2594 {
2595 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2596 
2597 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2598 }
2599 
2600 int netdev_boot_setup_check(struct net_device *dev);
2601 unsigned long netdev_boot_base(const char *prefix, int unit);
2602 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2603 				       const char *hwaddr);
2604 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2605 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2606 void dev_add_pack(struct packet_type *pt);
2607 void dev_remove_pack(struct packet_type *pt);
2608 void __dev_remove_pack(struct packet_type *pt);
2609 void dev_add_offload(struct packet_offload *po);
2610 void dev_remove_offload(struct packet_offload *po);
2611 
2612 int dev_get_iflink(const struct net_device *dev);
2613 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2614 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2615 				      unsigned short mask);
2616 struct net_device *dev_get_by_name(struct net *net, const char *name);
2617 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2618 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2619 int dev_alloc_name(struct net_device *dev, const char *name);
2620 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2621 void dev_close(struct net_device *dev);
2622 void dev_close_many(struct list_head *head, bool unlink);
2623 void dev_disable_lro(struct net_device *dev);
2624 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2625 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2626 		     struct net_device *sb_dev,
2627 		     select_queue_fallback_t fallback);
2628 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2629 		       struct net_device *sb_dev,
2630 		       select_queue_fallback_t fallback);
2631 int dev_queue_xmit(struct sk_buff *skb);
2632 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2633 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2634 int register_netdevice(struct net_device *dev);
2635 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2636 void unregister_netdevice_many(struct list_head *head);
2637 static inline void unregister_netdevice(struct net_device *dev)
2638 {
2639 	unregister_netdevice_queue(dev, NULL);
2640 }
2641 
2642 int netdev_refcnt_read(const struct net_device *dev);
2643 void free_netdev(struct net_device *dev);
2644 void netdev_freemem(struct net_device *dev);
2645 void synchronize_net(void);
2646 int init_dummy_netdev(struct net_device *dev);
2647 
2648 DECLARE_PER_CPU(int, xmit_recursion);
2649 #define XMIT_RECURSION_LIMIT	10
2650 
2651 static inline int dev_recursion_level(void)
2652 {
2653 	return this_cpu_read(xmit_recursion);
2654 }
2655 
2656 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2657 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2658 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2659 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2660 int netdev_get_name(struct net *net, char *name, int ifindex);
2661 int dev_restart(struct net_device *dev);
2662 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2663 
2664 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2665 {
2666 	return NAPI_GRO_CB(skb)->data_offset;
2667 }
2668 
2669 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2670 {
2671 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2672 }
2673 
2674 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2675 {
2676 	NAPI_GRO_CB(skb)->data_offset += len;
2677 }
2678 
2679 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2680 					unsigned int offset)
2681 {
2682 	return NAPI_GRO_CB(skb)->frag0 + offset;
2683 }
2684 
2685 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2686 {
2687 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2688 }
2689 
2690 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2691 {
2692 	NAPI_GRO_CB(skb)->frag0 = NULL;
2693 	NAPI_GRO_CB(skb)->frag0_len = 0;
2694 }
2695 
2696 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2697 					unsigned int offset)
2698 {
2699 	if (!pskb_may_pull(skb, hlen))
2700 		return NULL;
2701 
2702 	skb_gro_frag0_invalidate(skb);
2703 	return skb->data + offset;
2704 }
2705 
2706 static inline void *skb_gro_network_header(struct sk_buff *skb)
2707 {
2708 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2709 	       skb_network_offset(skb);
2710 }
2711 
2712 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2713 					const void *start, unsigned int len)
2714 {
2715 	if (NAPI_GRO_CB(skb)->csum_valid)
2716 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2717 						  csum_partial(start, len, 0));
2718 }
2719 
2720 /* GRO checksum functions. These are logical equivalents of the normal
2721  * checksum functions (in skbuff.h) except that they operate on the GRO
2722  * offsets and fields in sk_buff.
2723  */
2724 
2725 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2726 
2727 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2728 {
2729 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2730 }
2731 
2732 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2733 						      bool zero_okay,
2734 						      __sum16 check)
2735 {
2736 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2737 		skb_checksum_start_offset(skb) <
2738 		 skb_gro_offset(skb)) &&
2739 		!skb_at_gro_remcsum_start(skb) &&
2740 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2741 		(!zero_okay || check));
2742 }
2743 
2744 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2745 							   __wsum psum)
2746 {
2747 	if (NAPI_GRO_CB(skb)->csum_valid &&
2748 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2749 		return 0;
2750 
2751 	NAPI_GRO_CB(skb)->csum = psum;
2752 
2753 	return __skb_gro_checksum_complete(skb);
2754 }
2755 
2756 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2757 {
2758 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2759 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2760 		NAPI_GRO_CB(skb)->csum_cnt--;
2761 	} else {
2762 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2763 		 * verified a new top level checksum or an encapsulated one
2764 		 * during GRO. This saves work if we fallback to normal path.
2765 		 */
2766 		__skb_incr_checksum_unnecessary(skb);
2767 	}
2768 }
2769 
2770 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2771 				    compute_pseudo)			\
2772 ({									\
2773 	__sum16 __ret = 0;						\
2774 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2775 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2776 				compute_pseudo(skb, proto));		\
2777 	if (!__ret)							\
2778 		skb_gro_incr_csum_unnecessary(skb);			\
2779 	__ret;								\
2780 })
2781 
2782 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2783 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2784 
2785 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2786 					     compute_pseudo)		\
2787 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2788 
2789 #define skb_gro_checksum_simple_validate(skb)				\
2790 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2791 
2792 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2793 {
2794 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2795 		!NAPI_GRO_CB(skb)->csum_valid);
2796 }
2797 
2798 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2799 					      __sum16 check, __wsum pseudo)
2800 {
2801 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2802 	NAPI_GRO_CB(skb)->csum_valid = 1;
2803 }
2804 
2805 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2806 do {									\
2807 	if (__skb_gro_checksum_convert_check(skb))			\
2808 		__skb_gro_checksum_convert(skb, check,			\
2809 					   compute_pseudo(skb, proto));	\
2810 } while (0)
2811 
2812 struct gro_remcsum {
2813 	int offset;
2814 	__wsum delta;
2815 };
2816 
2817 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2818 {
2819 	grc->offset = 0;
2820 	grc->delta = 0;
2821 }
2822 
2823 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2824 					    unsigned int off, size_t hdrlen,
2825 					    int start, int offset,
2826 					    struct gro_remcsum *grc,
2827 					    bool nopartial)
2828 {
2829 	__wsum delta;
2830 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2831 
2832 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2833 
2834 	if (!nopartial) {
2835 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2836 		return ptr;
2837 	}
2838 
2839 	ptr = skb_gro_header_fast(skb, off);
2840 	if (skb_gro_header_hard(skb, off + plen)) {
2841 		ptr = skb_gro_header_slow(skb, off + plen, off);
2842 		if (!ptr)
2843 			return NULL;
2844 	}
2845 
2846 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2847 			       start, offset);
2848 
2849 	/* Adjust skb->csum since we changed the packet */
2850 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2851 
2852 	grc->offset = off + hdrlen + offset;
2853 	grc->delta = delta;
2854 
2855 	return ptr;
2856 }
2857 
2858 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2859 					   struct gro_remcsum *grc)
2860 {
2861 	void *ptr;
2862 	size_t plen = grc->offset + sizeof(u16);
2863 
2864 	if (!grc->delta)
2865 		return;
2866 
2867 	ptr = skb_gro_header_fast(skb, grc->offset);
2868 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2869 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2870 		if (!ptr)
2871 			return;
2872 	}
2873 
2874 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2875 }
2876 
2877 #ifdef CONFIG_XFRM_OFFLOAD
2878 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2879 {
2880 	if (PTR_ERR(pp) != -EINPROGRESS)
2881 		NAPI_GRO_CB(skb)->flush |= flush;
2882 }
2883 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2884 					       struct sk_buff *pp,
2885 					       int flush,
2886 					       struct gro_remcsum *grc)
2887 {
2888 	if (PTR_ERR(pp) != -EINPROGRESS) {
2889 		NAPI_GRO_CB(skb)->flush |= flush;
2890 		skb_gro_remcsum_cleanup(skb, grc);
2891 		skb->remcsum_offload = 0;
2892 	}
2893 }
2894 #else
2895 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2896 {
2897 	NAPI_GRO_CB(skb)->flush |= flush;
2898 }
2899 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2900 					       struct sk_buff *pp,
2901 					       int flush,
2902 					       struct gro_remcsum *grc)
2903 {
2904 	NAPI_GRO_CB(skb)->flush |= flush;
2905 	skb_gro_remcsum_cleanup(skb, grc);
2906 	skb->remcsum_offload = 0;
2907 }
2908 #endif
2909 
2910 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2911 				  unsigned short type,
2912 				  const void *daddr, const void *saddr,
2913 				  unsigned int len)
2914 {
2915 	if (!dev->header_ops || !dev->header_ops->create)
2916 		return 0;
2917 
2918 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2919 }
2920 
2921 static inline int dev_parse_header(const struct sk_buff *skb,
2922 				   unsigned char *haddr)
2923 {
2924 	const struct net_device *dev = skb->dev;
2925 
2926 	if (!dev->header_ops || !dev->header_ops->parse)
2927 		return 0;
2928 	return dev->header_ops->parse(skb, haddr);
2929 }
2930 
2931 /* ll_header must have at least hard_header_len allocated */
2932 static inline bool dev_validate_header(const struct net_device *dev,
2933 				       char *ll_header, int len)
2934 {
2935 	if (likely(len >= dev->hard_header_len))
2936 		return true;
2937 	if (len < dev->min_header_len)
2938 		return false;
2939 
2940 	if (capable(CAP_SYS_RAWIO)) {
2941 		memset(ll_header + len, 0, dev->hard_header_len - len);
2942 		return true;
2943 	}
2944 
2945 	if (dev->header_ops && dev->header_ops->validate)
2946 		return dev->header_ops->validate(ll_header, len);
2947 
2948 	return false;
2949 }
2950 
2951 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2952 			   int len, int size);
2953 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2954 static inline int unregister_gifconf(unsigned int family)
2955 {
2956 	return register_gifconf(family, NULL);
2957 }
2958 
2959 #ifdef CONFIG_NET_FLOW_LIMIT
2960 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2961 struct sd_flow_limit {
2962 	u64			count;
2963 	unsigned int		num_buckets;
2964 	unsigned int		history_head;
2965 	u16			history[FLOW_LIMIT_HISTORY];
2966 	u8			buckets[];
2967 };
2968 
2969 extern int netdev_flow_limit_table_len;
2970 #endif /* CONFIG_NET_FLOW_LIMIT */
2971 
2972 /*
2973  * Incoming packets are placed on per-CPU queues
2974  */
2975 struct softnet_data {
2976 	struct list_head	poll_list;
2977 	struct sk_buff_head	process_queue;
2978 
2979 	/* stats */
2980 	unsigned int		processed;
2981 	unsigned int		time_squeeze;
2982 	unsigned int		received_rps;
2983 #ifdef CONFIG_RPS
2984 	struct softnet_data	*rps_ipi_list;
2985 #endif
2986 #ifdef CONFIG_NET_FLOW_LIMIT
2987 	struct sd_flow_limit __rcu *flow_limit;
2988 #endif
2989 	struct Qdisc		*output_queue;
2990 	struct Qdisc		**output_queue_tailp;
2991 	struct sk_buff		*completion_queue;
2992 #ifdef CONFIG_XFRM_OFFLOAD
2993 	struct sk_buff_head	xfrm_backlog;
2994 #endif
2995 #ifdef CONFIG_RPS
2996 	/* input_queue_head should be written by cpu owning this struct,
2997 	 * and only read by other cpus. Worth using a cache line.
2998 	 */
2999 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3000 
3001 	/* Elements below can be accessed between CPUs for RPS/RFS */
3002 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3003 	struct softnet_data	*rps_ipi_next;
3004 	unsigned int		cpu;
3005 	unsigned int		input_queue_tail;
3006 #endif
3007 	unsigned int		dropped;
3008 	struct sk_buff_head	input_pkt_queue;
3009 	struct napi_struct	backlog;
3010 
3011 };
3012 
3013 static inline void input_queue_head_incr(struct softnet_data *sd)
3014 {
3015 #ifdef CONFIG_RPS
3016 	sd->input_queue_head++;
3017 #endif
3018 }
3019 
3020 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3021 					      unsigned int *qtail)
3022 {
3023 #ifdef CONFIG_RPS
3024 	*qtail = ++sd->input_queue_tail;
3025 #endif
3026 }
3027 
3028 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3029 
3030 void __netif_schedule(struct Qdisc *q);
3031 void netif_schedule_queue(struct netdev_queue *txq);
3032 
3033 static inline void netif_tx_schedule_all(struct net_device *dev)
3034 {
3035 	unsigned int i;
3036 
3037 	for (i = 0; i < dev->num_tx_queues; i++)
3038 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3039 }
3040 
3041 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3042 {
3043 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3044 }
3045 
3046 /**
3047  *	netif_start_queue - allow transmit
3048  *	@dev: network device
3049  *
3050  *	Allow upper layers to call the device hard_start_xmit routine.
3051  */
3052 static inline void netif_start_queue(struct net_device *dev)
3053 {
3054 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3055 }
3056 
3057 static inline void netif_tx_start_all_queues(struct net_device *dev)
3058 {
3059 	unsigned int i;
3060 
3061 	for (i = 0; i < dev->num_tx_queues; i++) {
3062 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3063 		netif_tx_start_queue(txq);
3064 	}
3065 }
3066 
3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3068 
3069 /**
3070  *	netif_wake_queue - restart transmit
3071  *	@dev: network device
3072  *
3073  *	Allow upper layers to call the device hard_start_xmit routine.
3074  *	Used for flow control when transmit resources are available.
3075  */
3076 static inline void netif_wake_queue(struct net_device *dev)
3077 {
3078 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3079 }
3080 
3081 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3082 {
3083 	unsigned int i;
3084 
3085 	for (i = 0; i < dev->num_tx_queues; i++) {
3086 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3087 		netif_tx_wake_queue(txq);
3088 	}
3089 }
3090 
3091 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3092 {
3093 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3094 }
3095 
3096 /**
3097  *	netif_stop_queue - stop transmitted packets
3098  *	@dev: network device
3099  *
3100  *	Stop upper layers calling the device hard_start_xmit routine.
3101  *	Used for flow control when transmit resources are unavailable.
3102  */
3103 static inline void netif_stop_queue(struct net_device *dev)
3104 {
3105 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3106 }
3107 
3108 void netif_tx_stop_all_queues(struct net_device *dev);
3109 
3110 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3111 {
3112 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3113 }
3114 
3115 /**
3116  *	netif_queue_stopped - test if transmit queue is flowblocked
3117  *	@dev: network device
3118  *
3119  *	Test if transmit queue on device is currently unable to send.
3120  */
3121 static inline bool netif_queue_stopped(const struct net_device *dev)
3122 {
3123 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3124 }
3125 
3126 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3127 {
3128 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3129 }
3130 
3131 static inline bool
3132 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3133 {
3134 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3135 }
3136 
3137 static inline bool
3138 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3139 {
3140 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3141 }
3142 
3143 /**
3144  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3145  *	@dev_queue: pointer to transmit queue
3146  *
3147  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3148  * to give appropriate hint to the CPU.
3149  */
3150 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3151 {
3152 #ifdef CONFIG_BQL
3153 	prefetchw(&dev_queue->dql.num_queued);
3154 #endif
3155 }
3156 
3157 /**
3158  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3159  *	@dev_queue: pointer to transmit queue
3160  *
3161  * BQL enabled drivers might use this helper in their TX completion path,
3162  * to give appropriate hint to the CPU.
3163  */
3164 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3165 {
3166 #ifdef CONFIG_BQL
3167 	prefetchw(&dev_queue->dql.limit);
3168 #endif
3169 }
3170 
3171 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3172 					unsigned int bytes)
3173 {
3174 #ifdef CONFIG_BQL
3175 	dql_queued(&dev_queue->dql, bytes);
3176 
3177 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3178 		return;
3179 
3180 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3181 
3182 	/*
3183 	 * The XOFF flag must be set before checking the dql_avail below,
3184 	 * because in netdev_tx_completed_queue we update the dql_completed
3185 	 * before checking the XOFF flag.
3186 	 */
3187 	smp_mb();
3188 
3189 	/* check again in case another CPU has just made room avail */
3190 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3191 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3192 #endif
3193 }
3194 
3195 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3196  * that they should not test BQL status themselves.
3197  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3198  * skb of a batch.
3199  * Returns true if the doorbell must be used to kick the NIC.
3200  */
3201 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3202 					  unsigned int bytes,
3203 					  bool xmit_more)
3204 {
3205 	if (xmit_more) {
3206 #ifdef CONFIG_BQL
3207 		dql_queued(&dev_queue->dql, bytes);
3208 #endif
3209 		return netif_tx_queue_stopped(dev_queue);
3210 	}
3211 	netdev_tx_sent_queue(dev_queue, bytes);
3212 	return true;
3213 }
3214 
3215 /**
3216  * 	netdev_sent_queue - report the number of bytes queued to hardware
3217  * 	@dev: network device
3218  * 	@bytes: number of bytes queued to the hardware device queue
3219  *
3220  * 	Report the number of bytes queued for sending/completion to the network
3221  * 	device hardware queue. @bytes should be a good approximation and should
3222  * 	exactly match netdev_completed_queue() @bytes
3223  */
3224 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3225 {
3226 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3227 }
3228 
3229 static inline bool __netdev_sent_queue(struct net_device *dev,
3230 				       unsigned int bytes,
3231 				       bool xmit_more)
3232 {
3233 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3234 				      xmit_more);
3235 }
3236 
3237 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3238 					     unsigned int pkts, unsigned int bytes)
3239 {
3240 #ifdef CONFIG_BQL
3241 	if (unlikely(!bytes))
3242 		return;
3243 
3244 	dql_completed(&dev_queue->dql, bytes);
3245 
3246 	/*
3247 	 * Without the memory barrier there is a small possiblity that
3248 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3249 	 * be stopped forever
3250 	 */
3251 	smp_mb();
3252 
3253 	if (dql_avail(&dev_queue->dql) < 0)
3254 		return;
3255 
3256 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3257 		netif_schedule_queue(dev_queue);
3258 #endif
3259 }
3260 
3261 /**
3262  * 	netdev_completed_queue - report bytes and packets completed by device
3263  * 	@dev: network device
3264  * 	@pkts: actual number of packets sent over the medium
3265  * 	@bytes: actual number of bytes sent over the medium
3266  *
3267  * 	Report the number of bytes and packets transmitted by the network device
3268  * 	hardware queue over the physical medium, @bytes must exactly match the
3269  * 	@bytes amount passed to netdev_sent_queue()
3270  */
3271 static inline void netdev_completed_queue(struct net_device *dev,
3272 					  unsigned int pkts, unsigned int bytes)
3273 {
3274 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3275 }
3276 
3277 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3278 {
3279 #ifdef CONFIG_BQL
3280 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3281 	dql_reset(&q->dql);
3282 #endif
3283 }
3284 
3285 /**
3286  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3287  * 	@dev_queue: network device
3288  *
3289  * 	Reset the bytes and packet count of a network device and clear the
3290  * 	software flow control OFF bit for this network device
3291  */
3292 static inline void netdev_reset_queue(struct net_device *dev_queue)
3293 {
3294 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3295 }
3296 
3297 /**
3298  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3299  * 	@dev: network device
3300  * 	@queue_index: given tx queue index
3301  *
3302  * 	Returns 0 if given tx queue index >= number of device tx queues,
3303  * 	otherwise returns the originally passed tx queue index.
3304  */
3305 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3306 {
3307 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3308 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3309 				     dev->name, queue_index,
3310 				     dev->real_num_tx_queues);
3311 		return 0;
3312 	}
3313 
3314 	return queue_index;
3315 }
3316 
3317 /**
3318  *	netif_running - test if up
3319  *	@dev: network device
3320  *
3321  *	Test if the device has been brought up.
3322  */
3323 static inline bool netif_running(const struct net_device *dev)
3324 {
3325 	return test_bit(__LINK_STATE_START, &dev->state);
3326 }
3327 
3328 /*
3329  * Routines to manage the subqueues on a device.  We only need start,
3330  * stop, and a check if it's stopped.  All other device management is
3331  * done at the overall netdevice level.
3332  * Also test the device if we're multiqueue.
3333  */
3334 
3335 /**
3336  *	netif_start_subqueue - allow sending packets on subqueue
3337  *	@dev: network device
3338  *	@queue_index: sub queue index
3339  *
3340  * Start individual transmit queue of a device with multiple transmit queues.
3341  */
3342 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3343 {
3344 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3345 
3346 	netif_tx_start_queue(txq);
3347 }
3348 
3349 /**
3350  *	netif_stop_subqueue - stop sending packets on subqueue
3351  *	@dev: network device
3352  *	@queue_index: sub queue index
3353  *
3354  * Stop individual transmit queue of a device with multiple transmit queues.
3355  */
3356 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3357 {
3358 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3359 	netif_tx_stop_queue(txq);
3360 }
3361 
3362 /**
3363  *	netif_subqueue_stopped - test status of subqueue
3364  *	@dev: network device
3365  *	@queue_index: sub queue index
3366  *
3367  * Check individual transmit queue of a device with multiple transmit queues.
3368  */
3369 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3370 					    u16 queue_index)
3371 {
3372 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3373 
3374 	return netif_tx_queue_stopped(txq);
3375 }
3376 
3377 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3378 					  struct sk_buff *skb)
3379 {
3380 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3381 }
3382 
3383 /**
3384  *	netif_wake_subqueue - allow sending packets on subqueue
3385  *	@dev: network device
3386  *	@queue_index: sub queue index
3387  *
3388  * Resume individual transmit queue of a device with multiple transmit queues.
3389  */
3390 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3391 {
3392 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3393 
3394 	netif_tx_wake_queue(txq);
3395 }
3396 
3397 #ifdef CONFIG_XPS
3398 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3399 			u16 index);
3400 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3401 			  u16 index, bool is_rxqs_map);
3402 
3403 /**
3404  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3405  *	@j: CPU/Rx queue index
3406  *	@mask: bitmask of all cpus/rx queues
3407  *	@nr_bits: number of bits in the bitmask
3408  *
3409  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3410  */
3411 static inline bool netif_attr_test_mask(unsigned long j,
3412 					const unsigned long *mask,
3413 					unsigned int nr_bits)
3414 {
3415 	cpu_max_bits_warn(j, nr_bits);
3416 	return test_bit(j, mask);
3417 }
3418 
3419 /**
3420  *	netif_attr_test_online - Test for online CPU/Rx queue
3421  *	@j: CPU/Rx queue index
3422  *	@online_mask: bitmask for CPUs/Rx queues that are online
3423  *	@nr_bits: number of bits in the bitmask
3424  *
3425  * Returns true if a CPU/Rx queue is online.
3426  */
3427 static inline bool netif_attr_test_online(unsigned long j,
3428 					  const unsigned long *online_mask,
3429 					  unsigned int nr_bits)
3430 {
3431 	cpu_max_bits_warn(j, nr_bits);
3432 
3433 	if (online_mask)
3434 		return test_bit(j, online_mask);
3435 
3436 	return (j < nr_bits);
3437 }
3438 
3439 /**
3440  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3441  *	@n: CPU/Rx queue index
3442  *	@srcp: the cpumask/Rx queue mask pointer
3443  *	@nr_bits: number of bits in the bitmask
3444  *
3445  * Returns >= nr_bits if no further CPUs/Rx queues set.
3446  */
3447 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3448 					       unsigned int nr_bits)
3449 {
3450 	/* -1 is a legal arg here. */
3451 	if (n != -1)
3452 		cpu_max_bits_warn(n, nr_bits);
3453 
3454 	if (srcp)
3455 		return find_next_bit(srcp, nr_bits, n + 1);
3456 
3457 	return n + 1;
3458 }
3459 
3460 /**
3461  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3462  *	@n: CPU/Rx queue index
3463  *	@src1p: the first CPUs/Rx queues mask pointer
3464  *	@src2p: the second CPUs/Rx queues mask pointer
3465  *	@nr_bits: number of bits in the bitmask
3466  *
3467  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3468  */
3469 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3470 					  const unsigned long *src2p,
3471 					  unsigned int nr_bits)
3472 {
3473 	/* -1 is a legal arg here. */
3474 	if (n != -1)
3475 		cpu_max_bits_warn(n, nr_bits);
3476 
3477 	if (src1p && src2p)
3478 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3479 	else if (src1p)
3480 		return find_next_bit(src1p, nr_bits, n + 1);
3481 	else if (src2p)
3482 		return find_next_bit(src2p, nr_bits, n + 1);
3483 
3484 	return n + 1;
3485 }
3486 #else
3487 static inline int netif_set_xps_queue(struct net_device *dev,
3488 				      const struct cpumask *mask,
3489 				      u16 index)
3490 {
3491 	return 0;
3492 }
3493 
3494 static inline int __netif_set_xps_queue(struct net_device *dev,
3495 					const unsigned long *mask,
3496 					u16 index, bool is_rxqs_map)
3497 {
3498 	return 0;
3499 }
3500 #endif
3501 
3502 /**
3503  *	netif_is_multiqueue - test if device has multiple transmit queues
3504  *	@dev: network device
3505  *
3506  * Check if device has multiple transmit queues
3507  */
3508 static inline bool netif_is_multiqueue(const struct net_device *dev)
3509 {
3510 	return dev->num_tx_queues > 1;
3511 }
3512 
3513 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3514 
3515 #ifdef CONFIG_SYSFS
3516 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3517 #else
3518 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3519 						unsigned int rxqs)
3520 {
3521 	dev->real_num_rx_queues = rxqs;
3522 	return 0;
3523 }
3524 #endif
3525 
3526 static inline struct netdev_rx_queue *
3527 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3528 {
3529 	return dev->_rx + rxq;
3530 }
3531 
3532 #ifdef CONFIG_SYSFS
3533 static inline unsigned int get_netdev_rx_queue_index(
3534 		struct netdev_rx_queue *queue)
3535 {
3536 	struct net_device *dev = queue->dev;
3537 	int index = queue - dev->_rx;
3538 
3539 	BUG_ON(index >= dev->num_rx_queues);
3540 	return index;
3541 }
3542 #endif
3543 
3544 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3545 int netif_get_num_default_rss_queues(void);
3546 
3547 enum skb_free_reason {
3548 	SKB_REASON_CONSUMED,
3549 	SKB_REASON_DROPPED,
3550 };
3551 
3552 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3553 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3554 
3555 /*
3556  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3557  * interrupt context or with hardware interrupts being disabled.
3558  * (in_irq() || irqs_disabled())
3559  *
3560  * We provide four helpers that can be used in following contexts :
3561  *
3562  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3563  *  replacing kfree_skb(skb)
3564  *
3565  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3566  *  Typically used in place of consume_skb(skb) in TX completion path
3567  *
3568  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3569  *  replacing kfree_skb(skb)
3570  *
3571  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3572  *  and consumed a packet. Used in place of consume_skb(skb)
3573  */
3574 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3575 {
3576 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3577 }
3578 
3579 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3580 {
3581 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3582 }
3583 
3584 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3585 {
3586 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3587 }
3588 
3589 static inline void dev_consume_skb_any(struct sk_buff *skb)
3590 {
3591 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3592 }
3593 
3594 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3595 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3596 int netif_rx(struct sk_buff *skb);
3597 int netif_rx_ni(struct sk_buff *skb);
3598 int netif_receive_skb(struct sk_buff *skb);
3599 int netif_receive_skb_core(struct sk_buff *skb);
3600 void netif_receive_skb_list(struct list_head *head);
3601 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3602 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3603 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3604 gro_result_t napi_gro_frags(struct napi_struct *napi);
3605 struct packet_offload *gro_find_receive_by_type(__be16 type);
3606 struct packet_offload *gro_find_complete_by_type(__be16 type);
3607 
3608 static inline void napi_free_frags(struct napi_struct *napi)
3609 {
3610 	kfree_skb(napi->skb);
3611 	napi->skb = NULL;
3612 }
3613 
3614 bool netdev_is_rx_handler_busy(struct net_device *dev);
3615 int netdev_rx_handler_register(struct net_device *dev,
3616 			       rx_handler_func_t *rx_handler,
3617 			       void *rx_handler_data);
3618 void netdev_rx_handler_unregister(struct net_device *dev);
3619 
3620 bool dev_valid_name(const char *name);
3621 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3622 		bool *need_copyout);
3623 int dev_ifconf(struct net *net, struct ifconf *, int);
3624 int dev_ethtool(struct net *net, struct ifreq *);
3625 unsigned int dev_get_flags(const struct net_device *);
3626 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3627 		       struct netlink_ext_ack *extack);
3628 int dev_change_flags(struct net_device *dev, unsigned int flags,
3629 		     struct netlink_ext_ack *extack);
3630 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3631 			unsigned int gchanges);
3632 int dev_change_name(struct net_device *, const char *);
3633 int dev_set_alias(struct net_device *, const char *, size_t);
3634 int dev_get_alias(const struct net_device *, char *, size_t);
3635 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3636 int __dev_set_mtu(struct net_device *, int);
3637 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3638 		    struct netlink_ext_ack *extack);
3639 int dev_set_mtu(struct net_device *, int);
3640 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3641 void dev_set_group(struct net_device *, int);
3642 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3643 			      struct netlink_ext_ack *extack);
3644 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3645 			struct netlink_ext_ack *extack);
3646 int dev_change_carrier(struct net_device *, bool new_carrier);
3647 int dev_get_phys_port_id(struct net_device *dev,
3648 			 struct netdev_phys_item_id *ppid);
3649 int dev_get_phys_port_name(struct net_device *dev,
3650 			   char *name, size_t len);
3651 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3652 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3653 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3654 				    struct netdev_queue *txq, int *ret);
3655 
3656 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3657 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3658 		      int fd, u32 flags);
3659 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3660 		    enum bpf_netdev_command cmd);
3661 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3662 
3663 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3664 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3665 bool is_skb_forwardable(const struct net_device *dev,
3666 			const struct sk_buff *skb);
3667 
3668 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3669 					       struct sk_buff *skb)
3670 {
3671 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3672 	    unlikely(!is_skb_forwardable(dev, skb))) {
3673 		atomic_long_inc(&dev->rx_dropped);
3674 		kfree_skb(skb);
3675 		return NET_RX_DROP;
3676 	}
3677 
3678 	skb_scrub_packet(skb, true);
3679 	skb->priority = 0;
3680 	return 0;
3681 }
3682 
3683 bool dev_nit_active(struct net_device *dev);
3684 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3685 
3686 extern int		netdev_budget;
3687 extern unsigned int	netdev_budget_usecs;
3688 
3689 /* Called by rtnetlink.c:rtnl_unlock() */
3690 void netdev_run_todo(void);
3691 
3692 /**
3693  *	dev_put - release reference to device
3694  *	@dev: network device
3695  *
3696  * Release reference to device to allow it to be freed.
3697  */
3698 static inline void dev_put(struct net_device *dev)
3699 {
3700 	this_cpu_dec(*dev->pcpu_refcnt);
3701 }
3702 
3703 /**
3704  *	dev_hold - get reference to device
3705  *	@dev: network device
3706  *
3707  * Hold reference to device to keep it from being freed.
3708  */
3709 static inline void dev_hold(struct net_device *dev)
3710 {
3711 	this_cpu_inc(*dev->pcpu_refcnt);
3712 }
3713 
3714 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3715  * and _off may be called from IRQ context, but it is caller
3716  * who is responsible for serialization of these calls.
3717  *
3718  * The name carrier is inappropriate, these functions should really be
3719  * called netif_lowerlayer_*() because they represent the state of any
3720  * kind of lower layer not just hardware media.
3721  */
3722 
3723 void linkwatch_init_dev(struct net_device *dev);
3724 void linkwatch_fire_event(struct net_device *dev);
3725 void linkwatch_forget_dev(struct net_device *dev);
3726 
3727 /**
3728  *	netif_carrier_ok - test if carrier present
3729  *	@dev: network device
3730  *
3731  * Check if carrier is present on device
3732  */
3733 static inline bool netif_carrier_ok(const struct net_device *dev)
3734 {
3735 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3736 }
3737 
3738 unsigned long dev_trans_start(struct net_device *dev);
3739 
3740 void __netdev_watchdog_up(struct net_device *dev);
3741 
3742 void netif_carrier_on(struct net_device *dev);
3743 
3744 void netif_carrier_off(struct net_device *dev);
3745 
3746 /**
3747  *	netif_dormant_on - mark device as dormant.
3748  *	@dev: network device
3749  *
3750  * Mark device as dormant (as per RFC2863).
3751  *
3752  * The dormant state indicates that the relevant interface is not
3753  * actually in a condition to pass packets (i.e., it is not 'up') but is
3754  * in a "pending" state, waiting for some external event.  For "on-
3755  * demand" interfaces, this new state identifies the situation where the
3756  * interface is waiting for events to place it in the up state.
3757  */
3758 static inline void netif_dormant_on(struct net_device *dev)
3759 {
3760 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3761 		linkwatch_fire_event(dev);
3762 }
3763 
3764 /**
3765  *	netif_dormant_off - set device as not dormant.
3766  *	@dev: network device
3767  *
3768  * Device is not in dormant state.
3769  */
3770 static inline void netif_dormant_off(struct net_device *dev)
3771 {
3772 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3773 		linkwatch_fire_event(dev);
3774 }
3775 
3776 /**
3777  *	netif_dormant - test if device is dormant
3778  *	@dev: network device
3779  *
3780  * Check if device is dormant.
3781  */
3782 static inline bool netif_dormant(const struct net_device *dev)
3783 {
3784 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3785 }
3786 
3787 
3788 /**
3789  *	netif_oper_up - test if device is operational
3790  *	@dev: network device
3791  *
3792  * Check if carrier is operational
3793  */
3794 static inline bool netif_oper_up(const struct net_device *dev)
3795 {
3796 	return (dev->operstate == IF_OPER_UP ||
3797 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3798 }
3799 
3800 /**
3801  *	netif_device_present - is device available or removed
3802  *	@dev: network device
3803  *
3804  * Check if device has not been removed from system.
3805  */
3806 static inline bool netif_device_present(struct net_device *dev)
3807 {
3808 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3809 }
3810 
3811 void netif_device_detach(struct net_device *dev);
3812 
3813 void netif_device_attach(struct net_device *dev);
3814 
3815 /*
3816  * Network interface message level settings
3817  */
3818 
3819 enum {
3820 	NETIF_MSG_DRV		= 0x0001,
3821 	NETIF_MSG_PROBE		= 0x0002,
3822 	NETIF_MSG_LINK		= 0x0004,
3823 	NETIF_MSG_TIMER		= 0x0008,
3824 	NETIF_MSG_IFDOWN	= 0x0010,
3825 	NETIF_MSG_IFUP		= 0x0020,
3826 	NETIF_MSG_RX_ERR	= 0x0040,
3827 	NETIF_MSG_TX_ERR	= 0x0080,
3828 	NETIF_MSG_TX_QUEUED	= 0x0100,
3829 	NETIF_MSG_INTR		= 0x0200,
3830 	NETIF_MSG_TX_DONE	= 0x0400,
3831 	NETIF_MSG_RX_STATUS	= 0x0800,
3832 	NETIF_MSG_PKTDATA	= 0x1000,
3833 	NETIF_MSG_HW		= 0x2000,
3834 	NETIF_MSG_WOL		= 0x4000,
3835 };
3836 
3837 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3838 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3839 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3840 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3841 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3842 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3843 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3844 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3845 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3846 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3847 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3848 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3849 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3850 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3851 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3852 
3853 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3854 {
3855 	/* use default */
3856 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3857 		return default_msg_enable_bits;
3858 	if (debug_value == 0)	/* no output */
3859 		return 0;
3860 	/* set low N bits */
3861 	return (1 << debug_value) - 1;
3862 }
3863 
3864 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3865 {
3866 	spin_lock(&txq->_xmit_lock);
3867 	txq->xmit_lock_owner = cpu;
3868 }
3869 
3870 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3871 {
3872 	__acquire(&txq->_xmit_lock);
3873 	return true;
3874 }
3875 
3876 static inline void __netif_tx_release(struct netdev_queue *txq)
3877 {
3878 	__release(&txq->_xmit_lock);
3879 }
3880 
3881 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3882 {
3883 	spin_lock_bh(&txq->_xmit_lock);
3884 	txq->xmit_lock_owner = smp_processor_id();
3885 }
3886 
3887 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3888 {
3889 	bool ok = spin_trylock(&txq->_xmit_lock);
3890 	if (likely(ok))
3891 		txq->xmit_lock_owner = smp_processor_id();
3892 	return ok;
3893 }
3894 
3895 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3896 {
3897 	txq->xmit_lock_owner = -1;
3898 	spin_unlock(&txq->_xmit_lock);
3899 }
3900 
3901 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3902 {
3903 	txq->xmit_lock_owner = -1;
3904 	spin_unlock_bh(&txq->_xmit_lock);
3905 }
3906 
3907 static inline void txq_trans_update(struct netdev_queue *txq)
3908 {
3909 	if (txq->xmit_lock_owner != -1)
3910 		txq->trans_start = jiffies;
3911 }
3912 
3913 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3914 static inline void netif_trans_update(struct net_device *dev)
3915 {
3916 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3917 
3918 	if (txq->trans_start != jiffies)
3919 		txq->trans_start = jiffies;
3920 }
3921 
3922 /**
3923  *	netif_tx_lock - grab network device transmit lock
3924  *	@dev: network device
3925  *
3926  * Get network device transmit lock
3927  */
3928 static inline void netif_tx_lock(struct net_device *dev)
3929 {
3930 	unsigned int i;
3931 	int cpu;
3932 
3933 	spin_lock(&dev->tx_global_lock);
3934 	cpu = smp_processor_id();
3935 	for (i = 0; i < dev->num_tx_queues; i++) {
3936 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3937 
3938 		/* We are the only thread of execution doing a
3939 		 * freeze, but we have to grab the _xmit_lock in
3940 		 * order to synchronize with threads which are in
3941 		 * the ->hard_start_xmit() handler and already
3942 		 * checked the frozen bit.
3943 		 */
3944 		__netif_tx_lock(txq, cpu);
3945 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3946 		__netif_tx_unlock(txq);
3947 	}
3948 }
3949 
3950 static inline void netif_tx_lock_bh(struct net_device *dev)
3951 {
3952 	local_bh_disable();
3953 	netif_tx_lock(dev);
3954 }
3955 
3956 static inline void netif_tx_unlock(struct net_device *dev)
3957 {
3958 	unsigned int i;
3959 
3960 	for (i = 0; i < dev->num_tx_queues; i++) {
3961 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3962 
3963 		/* No need to grab the _xmit_lock here.  If the
3964 		 * queue is not stopped for another reason, we
3965 		 * force a schedule.
3966 		 */
3967 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3968 		netif_schedule_queue(txq);
3969 	}
3970 	spin_unlock(&dev->tx_global_lock);
3971 }
3972 
3973 static inline void netif_tx_unlock_bh(struct net_device *dev)
3974 {
3975 	netif_tx_unlock(dev);
3976 	local_bh_enable();
3977 }
3978 
3979 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3980 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3981 		__netif_tx_lock(txq, cpu);		\
3982 	} else {					\
3983 		__netif_tx_acquire(txq);		\
3984 	}						\
3985 }
3986 
3987 #define HARD_TX_TRYLOCK(dev, txq)			\
3988 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3989 		__netif_tx_trylock(txq) :		\
3990 		__netif_tx_acquire(txq))
3991 
3992 #define HARD_TX_UNLOCK(dev, txq) {			\
3993 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3994 		__netif_tx_unlock(txq);			\
3995 	} else {					\
3996 		__netif_tx_release(txq);		\
3997 	}						\
3998 }
3999 
4000 static inline void netif_tx_disable(struct net_device *dev)
4001 {
4002 	unsigned int i;
4003 	int cpu;
4004 
4005 	local_bh_disable();
4006 	cpu = smp_processor_id();
4007 	for (i = 0; i < dev->num_tx_queues; i++) {
4008 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4009 
4010 		__netif_tx_lock(txq, cpu);
4011 		netif_tx_stop_queue(txq);
4012 		__netif_tx_unlock(txq);
4013 	}
4014 	local_bh_enable();
4015 }
4016 
4017 static inline void netif_addr_lock(struct net_device *dev)
4018 {
4019 	spin_lock(&dev->addr_list_lock);
4020 }
4021 
4022 static inline void netif_addr_lock_nested(struct net_device *dev)
4023 {
4024 	int subclass = SINGLE_DEPTH_NESTING;
4025 
4026 	if (dev->netdev_ops->ndo_get_lock_subclass)
4027 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4028 
4029 	spin_lock_nested(&dev->addr_list_lock, subclass);
4030 }
4031 
4032 static inline void netif_addr_lock_bh(struct net_device *dev)
4033 {
4034 	spin_lock_bh(&dev->addr_list_lock);
4035 }
4036 
4037 static inline void netif_addr_unlock(struct net_device *dev)
4038 {
4039 	spin_unlock(&dev->addr_list_lock);
4040 }
4041 
4042 static inline void netif_addr_unlock_bh(struct net_device *dev)
4043 {
4044 	spin_unlock_bh(&dev->addr_list_lock);
4045 }
4046 
4047 /*
4048  * dev_addrs walker. Should be used only for read access. Call with
4049  * rcu_read_lock held.
4050  */
4051 #define for_each_dev_addr(dev, ha) \
4052 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4053 
4054 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4055 
4056 void ether_setup(struct net_device *dev);
4057 
4058 /* Support for loadable net-drivers */
4059 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4060 				    unsigned char name_assign_type,
4061 				    void (*setup)(struct net_device *),
4062 				    unsigned int txqs, unsigned int rxqs);
4063 int dev_get_valid_name(struct net *net, struct net_device *dev,
4064 		       const char *name);
4065 
4066 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4067 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4068 
4069 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4070 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4071 			 count)
4072 
4073 int register_netdev(struct net_device *dev);
4074 void unregister_netdev(struct net_device *dev);
4075 
4076 /* General hardware address lists handling functions */
4077 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4078 		   struct netdev_hw_addr_list *from_list, int addr_len);
4079 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4080 		      struct netdev_hw_addr_list *from_list, int addr_len);
4081 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4082 		       struct net_device *dev,
4083 		       int (*sync)(struct net_device *, const unsigned char *),
4084 		       int (*unsync)(struct net_device *,
4085 				     const unsigned char *));
4086 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4087 			   struct net_device *dev,
4088 			   int (*sync)(struct net_device *,
4089 				       const unsigned char *, int),
4090 			   int (*unsync)(struct net_device *,
4091 					 const unsigned char *, int));
4092 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4093 			      struct net_device *dev,
4094 			      int (*unsync)(struct net_device *,
4095 					    const unsigned char *, int));
4096 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4097 			  struct net_device *dev,
4098 			  int (*unsync)(struct net_device *,
4099 					const unsigned char *));
4100 void __hw_addr_init(struct netdev_hw_addr_list *list);
4101 
4102 /* Functions used for device addresses handling */
4103 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4104 		 unsigned char addr_type);
4105 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4106 		 unsigned char addr_type);
4107 void dev_addr_flush(struct net_device *dev);
4108 int dev_addr_init(struct net_device *dev);
4109 
4110 /* Functions used for unicast addresses handling */
4111 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4112 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4113 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4114 int dev_uc_sync(struct net_device *to, struct net_device *from);
4115 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4116 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4117 void dev_uc_flush(struct net_device *dev);
4118 void dev_uc_init(struct net_device *dev);
4119 
4120 /**
4121  *  __dev_uc_sync - Synchonize device's unicast list
4122  *  @dev:  device to sync
4123  *  @sync: function to call if address should be added
4124  *  @unsync: function to call if address should be removed
4125  *
4126  *  Add newly added addresses to the interface, and release
4127  *  addresses that have been deleted.
4128  */
4129 static inline int __dev_uc_sync(struct net_device *dev,
4130 				int (*sync)(struct net_device *,
4131 					    const unsigned char *),
4132 				int (*unsync)(struct net_device *,
4133 					      const unsigned char *))
4134 {
4135 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4136 }
4137 
4138 /**
4139  *  __dev_uc_unsync - Remove synchronized addresses from device
4140  *  @dev:  device to sync
4141  *  @unsync: function to call if address should be removed
4142  *
4143  *  Remove all addresses that were added to the device by dev_uc_sync().
4144  */
4145 static inline void __dev_uc_unsync(struct net_device *dev,
4146 				   int (*unsync)(struct net_device *,
4147 						 const unsigned char *))
4148 {
4149 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4150 }
4151 
4152 /* Functions used for multicast addresses handling */
4153 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4154 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4155 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4156 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4157 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4158 int dev_mc_sync(struct net_device *to, struct net_device *from);
4159 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4160 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4161 void dev_mc_flush(struct net_device *dev);
4162 void dev_mc_init(struct net_device *dev);
4163 
4164 /**
4165  *  __dev_mc_sync - Synchonize device's multicast list
4166  *  @dev:  device to sync
4167  *  @sync: function to call if address should be added
4168  *  @unsync: function to call if address should be removed
4169  *
4170  *  Add newly added addresses to the interface, and release
4171  *  addresses that have been deleted.
4172  */
4173 static inline int __dev_mc_sync(struct net_device *dev,
4174 				int (*sync)(struct net_device *,
4175 					    const unsigned char *),
4176 				int (*unsync)(struct net_device *,
4177 					      const unsigned char *))
4178 {
4179 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4180 }
4181 
4182 /**
4183  *  __dev_mc_unsync - Remove synchronized addresses from device
4184  *  @dev:  device to sync
4185  *  @unsync: function to call if address should be removed
4186  *
4187  *  Remove all addresses that were added to the device by dev_mc_sync().
4188  */
4189 static inline void __dev_mc_unsync(struct net_device *dev,
4190 				   int (*unsync)(struct net_device *,
4191 						 const unsigned char *))
4192 {
4193 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4194 }
4195 
4196 /* Functions used for secondary unicast and multicast support */
4197 void dev_set_rx_mode(struct net_device *dev);
4198 void __dev_set_rx_mode(struct net_device *dev);
4199 int dev_set_promiscuity(struct net_device *dev, int inc);
4200 int dev_set_allmulti(struct net_device *dev, int inc);
4201 void netdev_state_change(struct net_device *dev);
4202 void netdev_notify_peers(struct net_device *dev);
4203 void netdev_features_change(struct net_device *dev);
4204 /* Load a device via the kmod */
4205 void dev_load(struct net *net, const char *name);
4206 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4207 					struct rtnl_link_stats64 *storage);
4208 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4209 			     const struct net_device_stats *netdev_stats);
4210 
4211 extern int		netdev_max_backlog;
4212 extern int		netdev_tstamp_prequeue;
4213 extern int		weight_p;
4214 extern int		dev_weight_rx_bias;
4215 extern int		dev_weight_tx_bias;
4216 extern int		dev_rx_weight;
4217 extern int		dev_tx_weight;
4218 
4219 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4220 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4221 						     struct list_head **iter);
4222 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4223 						     struct list_head **iter);
4224 
4225 /* iterate through upper list, must be called under RCU read lock */
4226 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4227 	for (iter = &(dev)->adj_list.upper, \
4228 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4229 	     updev; \
4230 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4231 
4232 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4233 				  int (*fn)(struct net_device *upper_dev,
4234 					    void *data),
4235 				  void *data);
4236 
4237 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4238 				  struct net_device *upper_dev);
4239 
4240 bool netdev_has_any_upper_dev(struct net_device *dev);
4241 
4242 void *netdev_lower_get_next_private(struct net_device *dev,
4243 				    struct list_head **iter);
4244 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4245 					struct list_head **iter);
4246 
4247 #define netdev_for_each_lower_private(dev, priv, iter) \
4248 	for (iter = (dev)->adj_list.lower.next, \
4249 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4250 	     priv; \
4251 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4252 
4253 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4254 	for (iter = &(dev)->adj_list.lower, \
4255 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4256 	     priv; \
4257 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4258 
4259 void *netdev_lower_get_next(struct net_device *dev,
4260 				struct list_head **iter);
4261 
4262 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4263 	for (iter = (dev)->adj_list.lower.next, \
4264 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4265 	     ldev; \
4266 	     ldev = netdev_lower_get_next(dev, &(iter)))
4267 
4268 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4269 					     struct list_head **iter);
4270 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4271 						 struct list_head **iter);
4272 
4273 int netdev_walk_all_lower_dev(struct net_device *dev,
4274 			      int (*fn)(struct net_device *lower_dev,
4275 					void *data),
4276 			      void *data);
4277 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4278 				  int (*fn)(struct net_device *lower_dev,
4279 					    void *data),
4280 				  void *data);
4281 
4282 void *netdev_adjacent_get_private(struct list_head *adj_list);
4283 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4284 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4285 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4286 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4287 			  struct netlink_ext_ack *extack);
4288 int netdev_master_upper_dev_link(struct net_device *dev,
4289 				 struct net_device *upper_dev,
4290 				 void *upper_priv, void *upper_info,
4291 				 struct netlink_ext_ack *extack);
4292 void netdev_upper_dev_unlink(struct net_device *dev,
4293 			     struct net_device *upper_dev);
4294 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4295 void *netdev_lower_dev_get_private(struct net_device *dev,
4296 				   struct net_device *lower_dev);
4297 void netdev_lower_state_changed(struct net_device *lower_dev,
4298 				void *lower_state_info);
4299 
4300 /* RSS keys are 40 or 52 bytes long */
4301 #define NETDEV_RSS_KEY_LEN 52
4302 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4303 void netdev_rss_key_fill(void *buffer, size_t len);
4304 
4305 int dev_get_nest_level(struct net_device *dev);
4306 int skb_checksum_help(struct sk_buff *skb);
4307 int skb_crc32c_csum_help(struct sk_buff *skb);
4308 int skb_csum_hwoffload_help(struct sk_buff *skb,
4309 			    const netdev_features_t features);
4310 
4311 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4312 				  netdev_features_t features, bool tx_path);
4313 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4314 				    netdev_features_t features);
4315 
4316 struct netdev_bonding_info {
4317 	ifslave	slave;
4318 	ifbond	master;
4319 };
4320 
4321 struct netdev_notifier_bonding_info {
4322 	struct netdev_notifier_info info; /* must be first */
4323 	struct netdev_bonding_info  bonding_info;
4324 };
4325 
4326 void netdev_bonding_info_change(struct net_device *dev,
4327 				struct netdev_bonding_info *bonding_info);
4328 
4329 static inline
4330 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4331 {
4332 	return __skb_gso_segment(skb, features, true);
4333 }
4334 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4335 
4336 static inline bool can_checksum_protocol(netdev_features_t features,
4337 					 __be16 protocol)
4338 {
4339 	if (protocol == htons(ETH_P_FCOE))
4340 		return !!(features & NETIF_F_FCOE_CRC);
4341 
4342 	/* Assume this is an IP checksum (not SCTP CRC) */
4343 
4344 	if (features & NETIF_F_HW_CSUM) {
4345 		/* Can checksum everything */
4346 		return true;
4347 	}
4348 
4349 	switch (protocol) {
4350 	case htons(ETH_P_IP):
4351 		return !!(features & NETIF_F_IP_CSUM);
4352 	case htons(ETH_P_IPV6):
4353 		return !!(features & NETIF_F_IPV6_CSUM);
4354 	default:
4355 		return false;
4356 	}
4357 }
4358 
4359 #ifdef CONFIG_BUG
4360 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4361 #else
4362 static inline void netdev_rx_csum_fault(struct net_device *dev,
4363 					struct sk_buff *skb)
4364 {
4365 }
4366 #endif
4367 /* rx skb timestamps */
4368 void net_enable_timestamp(void);
4369 void net_disable_timestamp(void);
4370 
4371 #ifdef CONFIG_PROC_FS
4372 int __init dev_proc_init(void);
4373 #else
4374 #define dev_proc_init() 0
4375 #endif
4376 
4377 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4378 					      struct sk_buff *skb, struct net_device *dev,
4379 					      bool more)
4380 {
4381 	skb->xmit_more = more ? 1 : 0;
4382 	return ops->ndo_start_xmit(skb, dev);
4383 }
4384 
4385 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4386 					    struct netdev_queue *txq, bool more)
4387 {
4388 	const struct net_device_ops *ops = dev->netdev_ops;
4389 	netdev_tx_t rc;
4390 
4391 	rc = __netdev_start_xmit(ops, skb, dev, more);
4392 	if (rc == NETDEV_TX_OK)
4393 		txq_trans_update(txq);
4394 
4395 	return rc;
4396 }
4397 
4398 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4399 				const void *ns);
4400 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4401 				 const void *ns);
4402 
4403 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4404 {
4405 	return netdev_class_create_file_ns(class_attr, NULL);
4406 }
4407 
4408 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4409 {
4410 	netdev_class_remove_file_ns(class_attr, NULL);
4411 }
4412 
4413 extern const struct kobj_ns_type_operations net_ns_type_operations;
4414 
4415 const char *netdev_drivername(const struct net_device *dev);
4416 
4417 void linkwatch_run_queue(void);
4418 
4419 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4420 							  netdev_features_t f2)
4421 {
4422 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4423 		if (f1 & NETIF_F_HW_CSUM)
4424 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4425 		else
4426 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4427 	}
4428 
4429 	return f1 & f2;
4430 }
4431 
4432 static inline netdev_features_t netdev_get_wanted_features(
4433 	struct net_device *dev)
4434 {
4435 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4436 }
4437 netdev_features_t netdev_increment_features(netdev_features_t all,
4438 	netdev_features_t one, netdev_features_t mask);
4439 
4440 /* Allow TSO being used on stacked device :
4441  * Performing the GSO segmentation before last device
4442  * is a performance improvement.
4443  */
4444 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4445 							netdev_features_t mask)
4446 {
4447 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4448 }
4449 
4450 int __netdev_update_features(struct net_device *dev);
4451 void netdev_update_features(struct net_device *dev);
4452 void netdev_change_features(struct net_device *dev);
4453 
4454 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4455 					struct net_device *dev);
4456 
4457 netdev_features_t passthru_features_check(struct sk_buff *skb,
4458 					  struct net_device *dev,
4459 					  netdev_features_t features);
4460 netdev_features_t netif_skb_features(struct sk_buff *skb);
4461 
4462 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4463 {
4464 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4465 
4466 	/* check flags correspondence */
4467 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4468 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4469 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4470 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4471 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4472 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4473 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4474 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4475 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4476 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4477 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4478 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4479 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4480 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4481 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4482 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4483 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4484 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4485 
4486 	return (features & feature) == feature;
4487 }
4488 
4489 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4490 {
4491 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4492 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4493 }
4494 
4495 static inline bool netif_needs_gso(struct sk_buff *skb,
4496 				   netdev_features_t features)
4497 {
4498 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4499 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4500 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4501 }
4502 
4503 static inline void netif_set_gso_max_size(struct net_device *dev,
4504 					  unsigned int size)
4505 {
4506 	dev->gso_max_size = size;
4507 }
4508 
4509 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4510 					int pulled_hlen, u16 mac_offset,
4511 					int mac_len)
4512 {
4513 	skb->protocol = protocol;
4514 	skb->encapsulation = 1;
4515 	skb_push(skb, pulled_hlen);
4516 	skb_reset_transport_header(skb);
4517 	skb->mac_header = mac_offset;
4518 	skb->network_header = skb->mac_header + mac_len;
4519 	skb->mac_len = mac_len;
4520 }
4521 
4522 static inline bool netif_is_macsec(const struct net_device *dev)
4523 {
4524 	return dev->priv_flags & IFF_MACSEC;
4525 }
4526 
4527 static inline bool netif_is_macvlan(const struct net_device *dev)
4528 {
4529 	return dev->priv_flags & IFF_MACVLAN;
4530 }
4531 
4532 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4533 {
4534 	return dev->priv_flags & IFF_MACVLAN_PORT;
4535 }
4536 
4537 static inline bool netif_is_bond_master(const struct net_device *dev)
4538 {
4539 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4540 }
4541 
4542 static inline bool netif_is_bond_slave(const struct net_device *dev)
4543 {
4544 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4545 }
4546 
4547 static inline bool netif_supports_nofcs(struct net_device *dev)
4548 {
4549 	return dev->priv_flags & IFF_SUPP_NOFCS;
4550 }
4551 
4552 static inline bool netif_is_l3_master(const struct net_device *dev)
4553 {
4554 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4555 }
4556 
4557 static inline bool netif_is_l3_slave(const struct net_device *dev)
4558 {
4559 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4560 }
4561 
4562 static inline bool netif_is_bridge_master(const struct net_device *dev)
4563 {
4564 	return dev->priv_flags & IFF_EBRIDGE;
4565 }
4566 
4567 static inline bool netif_is_bridge_port(const struct net_device *dev)
4568 {
4569 	return dev->priv_flags & IFF_BRIDGE_PORT;
4570 }
4571 
4572 static inline bool netif_is_ovs_master(const struct net_device *dev)
4573 {
4574 	return dev->priv_flags & IFF_OPENVSWITCH;
4575 }
4576 
4577 static inline bool netif_is_ovs_port(const struct net_device *dev)
4578 {
4579 	return dev->priv_flags & IFF_OVS_DATAPATH;
4580 }
4581 
4582 static inline bool netif_is_team_master(const struct net_device *dev)
4583 {
4584 	return dev->priv_flags & IFF_TEAM;
4585 }
4586 
4587 static inline bool netif_is_team_port(const struct net_device *dev)
4588 {
4589 	return dev->priv_flags & IFF_TEAM_PORT;
4590 }
4591 
4592 static inline bool netif_is_lag_master(const struct net_device *dev)
4593 {
4594 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4595 }
4596 
4597 static inline bool netif_is_lag_port(const struct net_device *dev)
4598 {
4599 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4600 }
4601 
4602 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4603 {
4604 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4605 }
4606 
4607 static inline bool netif_is_failover(const struct net_device *dev)
4608 {
4609 	return dev->priv_flags & IFF_FAILOVER;
4610 }
4611 
4612 static inline bool netif_is_failover_slave(const struct net_device *dev)
4613 {
4614 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4615 }
4616 
4617 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4618 static inline void netif_keep_dst(struct net_device *dev)
4619 {
4620 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4621 }
4622 
4623 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4624 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4625 {
4626 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4627 	return dev->priv_flags & IFF_MACSEC;
4628 }
4629 
4630 extern struct pernet_operations __net_initdata loopback_net_ops;
4631 
4632 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4633 
4634 /* netdev_printk helpers, similar to dev_printk */
4635 
4636 static inline const char *netdev_name(const struct net_device *dev)
4637 {
4638 	if (!dev->name[0] || strchr(dev->name, '%'))
4639 		return "(unnamed net_device)";
4640 	return dev->name;
4641 }
4642 
4643 static inline bool netdev_unregistering(const struct net_device *dev)
4644 {
4645 	return dev->reg_state == NETREG_UNREGISTERING;
4646 }
4647 
4648 static inline const char *netdev_reg_state(const struct net_device *dev)
4649 {
4650 	switch (dev->reg_state) {
4651 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4652 	case NETREG_REGISTERED: return "";
4653 	case NETREG_UNREGISTERING: return " (unregistering)";
4654 	case NETREG_UNREGISTERED: return " (unregistered)";
4655 	case NETREG_RELEASED: return " (released)";
4656 	case NETREG_DUMMY: return " (dummy)";
4657 	}
4658 
4659 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4660 	return " (unknown)";
4661 }
4662 
4663 __printf(3, 4)
4664 void netdev_printk(const char *level, const struct net_device *dev,
4665 		   const char *format, ...);
4666 __printf(2, 3)
4667 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4668 __printf(2, 3)
4669 void netdev_alert(const struct net_device *dev, const char *format, ...);
4670 __printf(2, 3)
4671 void netdev_crit(const struct net_device *dev, const char *format, ...);
4672 __printf(2, 3)
4673 void netdev_err(const struct net_device *dev, const char *format, ...);
4674 __printf(2, 3)
4675 void netdev_warn(const struct net_device *dev, const char *format, ...);
4676 __printf(2, 3)
4677 void netdev_notice(const struct net_device *dev, const char *format, ...);
4678 __printf(2, 3)
4679 void netdev_info(const struct net_device *dev, const char *format, ...);
4680 
4681 #define netdev_level_once(level, dev, fmt, ...)			\
4682 do {								\
4683 	static bool __print_once __read_mostly;			\
4684 								\
4685 	if (!__print_once) {					\
4686 		__print_once = true;				\
4687 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4688 	}							\
4689 } while (0)
4690 
4691 #define netdev_emerg_once(dev, fmt, ...) \
4692 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4693 #define netdev_alert_once(dev, fmt, ...) \
4694 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4695 #define netdev_crit_once(dev, fmt, ...) \
4696 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4697 #define netdev_err_once(dev, fmt, ...) \
4698 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4699 #define netdev_warn_once(dev, fmt, ...) \
4700 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4701 #define netdev_notice_once(dev, fmt, ...) \
4702 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4703 #define netdev_info_once(dev, fmt, ...) \
4704 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4705 
4706 #define MODULE_ALIAS_NETDEV(device) \
4707 	MODULE_ALIAS("netdev-" device)
4708 
4709 #if defined(CONFIG_DYNAMIC_DEBUG)
4710 #define netdev_dbg(__dev, format, args...)			\
4711 do {								\
4712 	dynamic_netdev_dbg(__dev, format, ##args);		\
4713 } while (0)
4714 #elif defined(DEBUG)
4715 #define netdev_dbg(__dev, format, args...)			\
4716 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4717 #else
4718 #define netdev_dbg(__dev, format, args...)			\
4719 ({								\
4720 	if (0)							\
4721 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4722 })
4723 #endif
4724 
4725 #if defined(VERBOSE_DEBUG)
4726 #define netdev_vdbg	netdev_dbg
4727 #else
4728 
4729 #define netdev_vdbg(dev, format, args...)			\
4730 ({								\
4731 	if (0)							\
4732 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4733 	0;							\
4734 })
4735 #endif
4736 
4737 /*
4738  * netdev_WARN() acts like dev_printk(), but with the key difference
4739  * of using a WARN/WARN_ON to get the message out, including the
4740  * file/line information and a backtrace.
4741  */
4742 #define netdev_WARN(dev, format, args...)			\
4743 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4744 	     netdev_reg_state(dev), ##args)
4745 
4746 #define netdev_WARN_ONCE(dev, format, args...)				\
4747 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4748 		  netdev_reg_state(dev), ##args)
4749 
4750 /* netif printk helpers, similar to netdev_printk */
4751 
4752 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4753 do {					  			\
4754 	if (netif_msg_##type(priv))				\
4755 		netdev_printk(level, (dev), fmt, ##args);	\
4756 } while (0)
4757 
4758 #define netif_level(level, priv, type, dev, fmt, args...)	\
4759 do {								\
4760 	if (netif_msg_##type(priv))				\
4761 		netdev_##level(dev, fmt, ##args);		\
4762 } while (0)
4763 
4764 #define netif_emerg(priv, type, dev, fmt, args...)		\
4765 	netif_level(emerg, priv, type, dev, fmt, ##args)
4766 #define netif_alert(priv, type, dev, fmt, args...)		\
4767 	netif_level(alert, priv, type, dev, fmt, ##args)
4768 #define netif_crit(priv, type, dev, fmt, args...)		\
4769 	netif_level(crit, priv, type, dev, fmt, ##args)
4770 #define netif_err(priv, type, dev, fmt, args...)		\
4771 	netif_level(err, priv, type, dev, fmt, ##args)
4772 #define netif_warn(priv, type, dev, fmt, args...)		\
4773 	netif_level(warn, priv, type, dev, fmt, ##args)
4774 #define netif_notice(priv, type, dev, fmt, args...)		\
4775 	netif_level(notice, priv, type, dev, fmt, ##args)
4776 #define netif_info(priv, type, dev, fmt, args...)		\
4777 	netif_level(info, priv, type, dev, fmt, ##args)
4778 
4779 #if defined(CONFIG_DYNAMIC_DEBUG)
4780 #define netif_dbg(priv, type, netdev, format, args...)		\
4781 do {								\
4782 	if (netif_msg_##type(priv))				\
4783 		dynamic_netdev_dbg(netdev, format, ##args);	\
4784 } while (0)
4785 #elif defined(DEBUG)
4786 #define netif_dbg(priv, type, dev, format, args...)		\
4787 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4788 #else
4789 #define netif_dbg(priv, type, dev, format, args...)			\
4790 ({									\
4791 	if (0)								\
4792 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4793 	0;								\
4794 })
4795 #endif
4796 
4797 /* if @cond then downgrade to debug, else print at @level */
4798 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4799 	do {                                                              \
4800 		if (cond)                                                 \
4801 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4802 		else                                                      \
4803 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4804 	} while (0)
4805 
4806 #if defined(VERBOSE_DEBUG)
4807 #define netif_vdbg	netif_dbg
4808 #else
4809 #define netif_vdbg(priv, type, dev, format, args...)		\
4810 ({								\
4811 	if (0)							\
4812 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4813 	0;							\
4814 })
4815 #endif
4816 
4817 /*
4818  *	The list of packet types we will receive (as opposed to discard)
4819  *	and the routines to invoke.
4820  *
4821  *	Why 16. Because with 16 the only overlap we get on a hash of the
4822  *	low nibble of the protocol value is RARP/SNAP/X.25.
4823  *
4824  *		0800	IP
4825  *		0001	802.3
4826  *		0002	AX.25
4827  *		0004	802.2
4828  *		8035	RARP
4829  *		0005	SNAP
4830  *		0805	X.25
4831  *		0806	ARP
4832  *		8137	IPX
4833  *		0009	Localtalk
4834  *		86DD	IPv6
4835  */
4836 #define PTYPE_HASH_SIZE	(16)
4837 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4838 
4839 #endif	/* _LINUX_NETDEVICE_H */
4840