xref: /openbmc/linux/include/linux/netdevice.h (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 struct xdp_buff;
70 
71 void netdev_set_default_ethtool_ops(struct net_device *dev,
72 				    const struct ethtool_ops *ops);
73 
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
76 #define NET_RX_DROP		1	/* packet dropped */
77 
78 /*
79  * Transmit return codes: transmit return codes originate from three different
80  * namespaces:
81  *
82  * - qdisc return codes
83  * - driver transmit return codes
84  * - errno values
85  *
86  * Drivers are allowed to return any one of those in their hard_start_xmit()
87  * function. Real network devices commonly used with qdiscs should only return
88  * the driver transmit return codes though - when qdiscs are used, the actual
89  * transmission happens asynchronously, so the value is not propagated to
90  * higher layers. Virtual network devices transmit synchronously; in this case
91  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
92  * others are propagated to higher layers.
93  */
94 
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS	0x00
97 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
98 #define NET_XMIT_CN		0x02	/* congestion notification	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 };
115 typedef enum netdev_tx netdev_tx_t;
116 
117 /*
118  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
119  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
120  */
121 static inline bool dev_xmit_complete(int rc)
122 {
123 	/*
124 	 * Positive cases with an skb consumed by a driver:
125 	 * - successful transmission (rc == NETDEV_TX_OK)
126 	 * - error while transmitting (rc < 0)
127 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
128 	 */
129 	if (likely(rc < NET_XMIT_MASK))
130 		return true;
131 
132 	return false;
133 }
134 
135 /*
136  *	Compute the worst-case header length according to the protocols
137  *	used.
138  */
139 
140 #if defined(CONFIG_HYPERV_NET)
141 # define LL_MAX_HEADER 128
142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
143 # if defined(CONFIG_MAC80211_MESH)
144 #  define LL_MAX_HEADER 128
145 # else
146 #  define LL_MAX_HEADER 96
147 # endif
148 #else
149 # define LL_MAX_HEADER 32
150 #endif
151 
152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
153     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
154 #define MAX_HEADER LL_MAX_HEADER
155 #else
156 #define MAX_HEADER (LL_MAX_HEADER + 48)
157 #endif
158 
159 /*
160  *	Old network device statistics. Fields are native words
161  *	(unsigned long) so they can be read and written atomically.
162  */
163 
164 struct net_device_stats {
165 	unsigned long	rx_packets;
166 	unsigned long	tx_packets;
167 	unsigned long	rx_bytes;
168 	unsigned long	tx_bytes;
169 	unsigned long	rx_errors;
170 	unsigned long	tx_errors;
171 	unsigned long	rx_dropped;
172 	unsigned long	tx_dropped;
173 	unsigned long	multicast;
174 	unsigned long	collisions;
175 	unsigned long	rx_length_errors;
176 	unsigned long	rx_over_errors;
177 	unsigned long	rx_crc_errors;
178 	unsigned long	rx_frame_errors;
179 	unsigned long	rx_fifo_errors;
180 	unsigned long	rx_missed_errors;
181 	unsigned long	tx_aborted_errors;
182 	unsigned long	tx_carrier_errors;
183 	unsigned long	tx_fifo_errors;
184 	unsigned long	tx_heartbeat_errors;
185 	unsigned long	tx_window_errors;
186 	unsigned long	rx_compressed;
187 	unsigned long	tx_compressed;
188 };
189 
190 
191 #include <linux/cache.h>
192 #include <linux/skbuff.h>
193 
194 #ifdef CONFIG_RPS
195 #include <linux/static_key.h>
196 extern struct static_key rps_needed;
197 extern struct static_key rfs_needed;
198 #endif
199 
200 struct neighbour;
201 struct neigh_parms;
202 struct sk_buff;
203 
204 struct netdev_hw_addr {
205 	struct list_head	list;
206 	unsigned char		addr[MAX_ADDR_LEN];
207 	unsigned char		type;
208 #define NETDEV_HW_ADDR_T_LAN		1
209 #define NETDEV_HW_ADDR_T_SAN		2
210 #define NETDEV_HW_ADDR_T_SLAVE		3
211 #define NETDEV_HW_ADDR_T_UNICAST	4
212 #define NETDEV_HW_ADDR_T_MULTICAST	5
213 	bool			global_use;
214 	int			sync_cnt;
215 	int			refcount;
216 	int			synced;
217 	struct rcu_head		rcu_head;
218 };
219 
220 struct netdev_hw_addr_list {
221 	struct list_head	list;
222 	int			count;
223 };
224 
225 #define netdev_hw_addr_list_count(l) ((l)->count)
226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
227 #define netdev_hw_addr_list_for_each(ha, l) \
228 	list_for_each_entry(ha, &(l)->list, list)
229 
230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
232 #define netdev_for_each_uc_addr(ha, dev) \
233 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
234 
235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
237 #define netdev_for_each_mc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
239 
240 struct hh_cache {
241 	unsigned int	hh_len;
242 	seqlock_t	hh_lock;
243 
244 	/* cached hardware header; allow for machine alignment needs.        */
245 #define HH_DATA_MOD	16
246 #define HH_DATA_OFF(__len) \
247 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
248 #define HH_DATA_ALIGN(__len) \
249 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
250 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
251 };
252 
253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
254  * Alternative is:
255  *   dev->hard_header_len ? (dev->hard_header_len +
256  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
257  *
258  * We could use other alignment values, but we must maintain the
259  * relationship HH alignment <= LL alignment.
260  */
261 #define LL_RESERVED_SPACE(dev) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
264 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265 
266 struct header_ops {
267 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
268 			   unsigned short type, const void *daddr,
269 			   const void *saddr, unsigned int len);
270 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
271 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 	void	(*cache_update)(struct hh_cache *hh,
273 				const struct net_device *dev,
274 				const unsigned char *haddr);
275 	bool	(*validate)(const char *ll_header, unsigned int len);
276 };
277 
278 /* These flag bits are private to the generic network queueing
279  * layer; they may not be explicitly referenced by any other
280  * code.
281  */
282 
283 enum netdev_state_t {
284 	__LINK_STATE_START,
285 	__LINK_STATE_PRESENT,
286 	__LINK_STATE_NOCARRIER,
287 	__LINK_STATE_LINKWATCH_PENDING,
288 	__LINK_STATE_DORMANT,
289 };
290 
291 
292 /*
293  * This structure holds boot-time configured netdevice settings. They
294  * are then used in the device probing.
295  */
296 struct netdev_boot_setup {
297 	char name[IFNAMSIZ];
298 	struct ifmap map;
299 };
300 #define NETDEV_BOOT_SETUP_MAX 8
301 
302 int __init netdev_boot_setup(char *str);
303 
304 /*
305  * Structure for NAPI scheduling similar to tasklet but with weighting
306  */
307 struct napi_struct {
308 	/* The poll_list must only be managed by the entity which
309 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
310 	 * whoever atomically sets that bit can add this napi_struct
311 	 * to the per-CPU poll_list, and whoever clears that bit
312 	 * can remove from the list right before clearing the bit.
313 	 */
314 	struct list_head	poll_list;
315 
316 	unsigned long		state;
317 	int			weight;
318 	unsigned int		gro_count;
319 	int			(*poll)(struct napi_struct *, int);
320 #ifdef CONFIG_NETPOLL
321 	int			poll_owner;
322 #endif
323 	struct net_device	*dev;
324 	struct sk_buff		*gro_list;
325 	struct sk_buff		*skb;
326 	struct hrtimer		timer;
327 	struct list_head	dev_list;
328 	struct hlist_node	napi_hash_node;
329 	unsigned int		napi_id;
330 };
331 
332 enum {
333 	NAPI_STATE_SCHED,	/* Poll is scheduled */
334 	NAPI_STATE_MISSED,	/* reschedule a napi */
335 	NAPI_STATE_DISABLE,	/* Disable pending */
336 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
337 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
338 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
339 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
340 };
341 
342 enum {
343 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
344 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
345 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
346 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
347 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
348 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
349 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
350 };
351 
352 enum gro_result {
353 	GRO_MERGED,
354 	GRO_MERGED_FREE,
355 	GRO_HELD,
356 	GRO_NORMAL,
357 	GRO_DROP,
358 	GRO_CONSUMED,
359 };
360 typedef enum gro_result gro_result_t;
361 
362 /*
363  * enum rx_handler_result - Possible return values for rx_handlers.
364  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
365  * further.
366  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
367  * case skb->dev was changed by rx_handler.
368  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
369  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
370  *
371  * rx_handlers are functions called from inside __netif_receive_skb(), to do
372  * special processing of the skb, prior to delivery to protocol handlers.
373  *
374  * Currently, a net_device can only have a single rx_handler registered. Trying
375  * to register a second rx_handler will return -EBUSY.
376  *
377  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
378  * To unregister a rx_handler on a net_device, use
379  * netdev_rx_handler_unregister().
380  *
381  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
382  * do with the skb.
383  *
384  * If the rx_handler consumed the skb in some way, it should return
385  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
386  * the skb to be delivered in some other way.
387  *
388  * If the rx_handler changed skb->dev, to divert the skb to another
389  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
390  * new device will be called if it exists.
391  *
392  * If the rx_handler decides the skb should be ignored, it should return
393  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
394  * are registered on exact device (ptype->dev == skb->dev).
395  *
396  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
397  * delivered, it should return RX_HANDLER_PASS.
398  *
399  * A device without a registered rx_handler will behave as if rx_handler
400  * returned RX_HANDLER_PASS.
401  */
402 
403 enum rx_handler_result {
404 	RX_HANDLER_CONSUMED,
405 	RX_HANDLER_ANOTHER,
406 	RX_HANDLER_EXACT,
407 	RX_HANDLER_PASS,
408 };
409 typedef enum rx_handler_result rx_handler_result_t;
410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
411 
412 void __napi_schedule(struct napi_struct *n);
413 void __napi_schedule_irqoff(struct napi_struct *n);
414 
415 static inline bool napi_disable_pending(struct napi_struct *n)
416 {
417 	return test_bit(NAPI_STATE_DISABLE, &n->state);
418 }
419 
420 bool napi_schedule_prep(struct napi_struct *n);
421 
422 /**
423  *	napi_schedule - schedule NAPI poll
424  *	@n: NAPI context
425  *
426  * Schedule NAPI poll routine to be called if it is not already
427  * running.
428  */
429 static inline void napi_schedule(struct napi_struct *n)
430 {
431 	if (napi_schedule_prep(n))
432 		__napi_schedule(n);
433 }
434 
435 /**
436  *	napi_schedule_irqoff - schedule NAPI poll
437  *	@n: NAPI context
438  *
439  * Variant of napi_schedule(), assuming hard irqs are masked.
440  */
441 static inline void napi_schedule_irqoff(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule_irqoff(n);
445 }
446 
447 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
448 static inline bool napi_reschedule(struct napi_struct *napi)
449 {
450 	if (napi_schedule_prep(napi)) {
451 		__napi_schedule(napi);
452 		return true;
453 	}
454 	return false;
455 }
456 
457 bool napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459  *	napi_complete - NAPI processing complete
460  *	@n: NAPI context
461  *
462  * Mark NAPI processing as complete.
463  * Consider using napi_complete_done() instead.
464  * Return false if device should avoid rearming interrupts.
465  */
466 static inline bool napi_complete(struct napi_struct *n)
467 {
468 	return napi_complete_done(n, 0);
469 }
470 
471 /**
472  *	napi_hash_del - remove a NAPI from global table
473  *	@napi: NAPI context
474  *
475  * Warning: caller must observe RCU grace period
476  * before freeing memory containing @napi, if
477  * this function returns true.
478  * Note: core networking stack automatically calls it
479  * from netif_napi_del().
480  * Drivers might want to call this helper to combine all
481  * the needed RCU grace periods into a single one.
482  */
483 bool napi_hash_del(struct napi_struct *napi);
484 
485 /**
486  *	napi_disable - prevent NAPI from scheduling
487  *	@n: NAPI context
488  *
489  * Stop NAPI from being scheduled on this context.
490  * Waits till any outstanding processing completes.
491  */
492 void napi_disable(struct napi_struct *n);
493 
494 /**
495  *	napi_enable - enable NAPI scheduling
496  *	@n: NAPI context
497  *
498  * Resume NAPI from being scheduled on this context.
499  * Must be paired with napi_disable.
500  */
501 static inline void napi_enable(struct napi_struct *n)
502 {
503 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
504 	smp_mb__before_atomic();
505 	clear_bit(NAPI_STATE_SCHED, &n->state);
506 	clear_bit(NAPI_STATE_NPSVC, &n->state);
507 }
508 
509 /**
510  *	napi_synchronize - wait until NAPI is not running
511  *	@n: NAPI context
512  *
513  * Wait until NAPI is done being scheduled on this context.
514  * Waits till any outstanding processing completes but
515  * does not disable future activations.
516  */
517 static inline void napi_synchronize(const struct napi_struct *n)
518 {
519 	if (IS_ENABLED(CONFIG_SMP))
520 		while (test_bit(NAPI_STATE_SCHED, &n->state))
521 			msleep(1);
522 	else
523 		barrier();
524 }
525 
526 enum netdev_queue_state_t {
527 	__QUEUE_STATE_DRV_XOFF,
528 	__QUEUE_STATE_STACK_XOFF,
529 	__QUEUE_STATE_FROZEN,
530 };
531 
532 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
533 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
534 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
535 
536 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
538 					QUEUE_STATE_FROZEN)
539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
540 					QUEUE_STATE_FROZEN)
541 
542 /*
543  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
544  * netif_tx_* functions below are used to manipulate this flag.  The
545  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
546  * queue independently.  The netif_xmit_*stopped functions below are called
547  * to check if the queue has been stopped by the driver or stack (either
548  * of the XOFF bits are set in the state).  Drivers should not need to call
549  * netif_xmit*stopped functions, they should only be using netif_tx_*.
550  */
551 
552 struct netdev_queue {
553 /*
554  * read-mostly part
555  */
556 	struct net_device	*dev;
557 	struct Qdisc __rcu	*qdisc;
558 	struct Qdisc		*qdisc_sleeping;
559 #ifdef CONFIG_SYSFS
560 	struct kobject		kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 	int			numa_node;
564 #endif
565 	unsigned long		tx_maxrate;
566 	/*
567 	 * Number of TX timeouts for this queue
568 	 * (/sys/class/net/DEV/Q/trans_timeout)
569 	 */
570 	unsigned long		trans_timeout;
571 /*
572  * write-mostly part
573  */
574 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
575 	int			xmit_lock_owner;
576 	/*
577 	 * Time (in jiffies) of last Tx
578 	 */
579 	unsigned long		trans_start;
580 
581 	unsigned long		state;
582 
583 #ifdef CONFIG_BQL
584 	struct dql		dql;
585 #endif
586 } ____cacheline_aligned_in_smp;
587 
588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 	return q->numa_node;
592 #else
593 	return NUMA_NO_NODE;
594 #endif
595 }
596 
597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	q->numa_node = node;
601 #endif
602 }
603 
604 #ifdef CONFIG_RPS
605 /*
606  * This structure holds an RPS map which can be of variable length.  The
607  * map is an array of CPUs.
608  */
609 struct rps_map {
610 	unsigned int len;
611 	struct rcu_head rcu;
612 	u16 cpus[0];
613 };
614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
615 
616 /*
617  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
618  * tail pointer for that CPU's input queue at the time of last enqueue, and
619  * a hardware filter index.
620  */
621 struct rps_dev_flow {
622 	u16 cpu;
623 	u16 filter;
624 	unsigned int last_qtail;
625 };
626 #define RPS_NO_FILTER 0xffff
627 
628 /*
629  * The rps_dev_flow_table structure contains a table of flow mappings.
630  */
631 struct rps_dev_flow_table {
632 	unsigned int mask;
633 	struct rcu_head rcu;
634 	struct rps_dev_flow flows[0];
635 };
636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
637     ((_num) * sizeof(struct rps_dev_flow)))
638 
639 /*
640  * The rps_sock_flow_table contains mappings of flows to the last CPU
641  * on which they were processed by the application (set in recvmsg).
642  * Each entry is a 32bit value. Upper part is the high-order bits
643  * of flow hash, lower part is CPU number.
644  * rps_cpu_mask is used to partition the space, depending on number of
645  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
646  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
647  * meaning we use 32-6=26 bits for the hash.
648  */
649 struct rps_sock_flow_table {
650 	u32	mask;
651 
652 	u32	ents[0] ____cacheline_aligned_in_smp;
653 };
654 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
655 
656 #define RPS_NO_CPU 0xffff
657 
658 extern u32 rps_cpu_mask;
659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
660 
661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
662 					u32 hash)
663 {
664 	if (table && hash) {
665 		unsigned int index = hash & table->mask;
666 		u32 val = hash & ~rps_cpu_mask;
667 
668 		/* We only give a hint, preemption can change CPU under us */
669 		val |= raw_smp_processor_id();
670 
671 		if (table->ents[index] != val)
672 			table->ents[index] = val;
673 	}
674 }
675 
676 #ifdef CONFIG_RFS_ACCEL
677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
678 			 u16 filter_id);
679 #endif
680 #endif /* CONFIG_RPS */
681 
682 /* This structure contains an instance of an RX queue. */
683 struct netdev_rx_queue {
684 #ifdef CONFIG_RPS
685 	struct rps_map __rcu		*rps_map;
686 	struct rps_dev_flow_table __rcu	*rps_flow_table;
687 #endif
688 	struct kobject			kobj;
689 	struct net_device		*dev;
690 	struct xdp_rxq_info		xdp_rxq;
691 } ____cacheline_aligned_in_smp;
692 
693 /*
694  * RX queue sysfs structures and functions.
695  */
696 struct rx_queue_attribute {
697 	struct attribute attr;
698 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
699 	ssize_t (*store)(struct netdev_rx_queue *queue,
700 			 const char *buf, size_t len);
701 };
702 
703 #ifdef CONFIG_XPS
704 /*
705  * This structure holds an XPS map which can be of variable length.  The
706  * map is an array of queues.
707  */
708 struct xps_map {
709 	unsigned int len;
710 	unsigned int alloc_len;
711 	struct rcu_head rcu;
712 	u16 queues[0];
713 };
714 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
715 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
716        - sizeof(struct xps_map)) / sizeof(u16))
717 
718 /*
719  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
720  */
721 struct xps_dev_maps {
722 	struct rcu_head rcu;
723 	struct xps_map __rcu *cpu_map[0];
724 };
725 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
726 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
727 #endif /* CONFIG_XPS */
728 
729 #define TC_MAX_QUEUE	16
730 #define TC_BITMASK	15
731 /* HW offloaded queuing disciplines txq count and offset maps */
732 struct netdev_tc_txq {
733 	u16 count;
734 	u16 offset;
735 };
736 
737 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
738 /*
739  * This structure is to hold information about the device
740  * configured to run FCoE protocol stack.
741  */
742 struct netdev_fcoe_hbainfo {
743 	char	manufacturer[64];
744 	char	serial_number[64];
745 	char	hardware_version[64];
746 	char	driver_version[64];
747 	char	optionrom_version[64];
748 	char	firmware_version[64];
749 	char	model[256];
750 	char	model_description[256];
751 };
752 #endif
753 
754 #define MAX_PHYS_ITEM_ID_LEN 32
755 
756 /* This structure holds a unique identifier to identify some
757  * physical item (port for example) used by a netdevice.
758  */
759 struct netdev_phys_item_id {
760 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
761 	unsigned char id_len;
762 };
763 
764 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
765 					    struct netdev_phys_item_id *b)
766 {
767 	return a->id_len == b->id_len &&
768 	       memcmp(a->id, b->id, a->id_len) == 0;
769 }
770 
771 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
772 				       struct sk_buff *skb);
773 
774 enum tc_setup_type {
775 	TC_SETUP_QDISC_MQPRIO,
776 	TC_SETUP_CLSU32,
777 	TC_SETUP_CLSFLOWER,
778 	TC_SETUP_CLSMATCHALL,
779 	TC_SETUP_CLSBPF,
780 	TC_SETUP_BLOCK,
781 	TC_SETUP_QDISC_CBS,
782 	TC_SETUP_QDISC_RED,
783 };
784 
785 /* These structures hold the attributes of bpf state that are being passed
786  * to the netdevice through the bpf op.
787  */
788 enum bpf_netdev_command {
789 	/* Set or clear a bpf program used in the earliest stages of packet
790 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
791 	 * is responsible for calling bpf_prog_put on any old progs that are
792 	 * stored. In case of error, the callee need not release the new prog
793 	 * reference, but on success it takes ownership and must bpf_prog_put
794 	 * when it is no longer used.
795 	 */
796 	XDP_SETUP_PROG,
797 	XDP_SETUP_PROG_HW,
798 	/* Check if a bpf program is set on the device.  The callee should
799 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
800 	 * is equivalent to XDP_ATTACHED_DRV.
801 	 */
802 	XDP_QUERY_PROG,
803 	/* BPF program for offload callbacks, invoked at program load time. */
804 	BPF_OFFLOAD_VERIFIER_PREP,
805 	BPF_OFFLOAD_TRANSLATE,
806 	BPF_OFFLOAD_DESTROY,
807 };
808 
809 struct bpf_prog_offload_ops;
810 struct netlink_ext_ack;
811 
812 struct netdev_bpf {
813 	enum bpf_netdev_command command;
814 	union {
815 		/* XDP_SETUP_PROG */
816 		struct {
817 			u32 flags;
818 			struct bpf_prog *prog;
819 			struct netlink_ext_ack *extack;
820 		};
821 		/* XDP_QUERY_PROG */
822 		struct {
823 			u8 prog_attached;
824 			u32 prog_id;
825 			/* flags with which program was installed */
826 			u32 prog_flags;
827 		};
828 		/* BPF_OFFLOAD_VERIFIER_PREP */
829 		struct {
830 			struct bpf_prog *prog;
831 			const struct bpf_prog_offload_ops *ops; /* callee set */
832 		} verifier;
833 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
834 		struct {
835 			struct bpf_prog *prog;
836 		} offload;
837 	};
838 };
839 
840 #ifdef CONFIG_XFRM_OFFLOAD
841 struct xfrmdev_ops {
842 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
843 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
844 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
845 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
846 				       struct xfrm_state *x);
847 };
848 #endif
849 
850 struct dev_ifalias {
851 	struct rcu_head rcuhead;
852 	char ifalias[];
853 };
854 
855 /*
856  * This structure defines the management hooks for network devices.
857  * The following hooks can be defined; unless noted otherwise, they are
858  * optional and can be filled with a null pointer.
859  *
860  * int (*ndo_init)(struct net_device *dev);
861  *     This function is called once when a network device is registered.
862  *     The network device can use this for any late stage initialization
863  *     or semantic validation. It can fail with an error code which will
864  *     be propagated back to register_netdev.
865  *
866  * void (*ndo_uninit)(struct net_device *dev);
867  *     This function is called when device is unregistered or when registration
868  *     fails. It is not called if init fails.
869  *
870  * int (*ndo_open)(struct net_device *dev);
871  *     This function is called when a network device transitions to the up
872  *     state.
873  *
874  * int (*ndo_stop)(struct net_device *dev);
875  *     This function is called when a network device transitions to the down
876  *     state.
877  *
878  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
879  *                               struct net_device *dev);
880  *	Called when a packet needs to be transmitted.
881  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
882  *	the queue before that can happen; it's for obsolete devices and weird
883  *	corner cases, but the stack really does a non-trivial amount
884  *	of useless work if you return NETDEV_TX_BUSY.
885  *	Required; cannot be NULL.
886  *
887  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
888  *					   struct net_device *dev
889  *					   netdev_features_t features);
890  *	Called by core transmit path to determine if device is capable of
891  *	performing offload operations on a given packet. This is to give
892  *	the device an opportunity to implement any restrictions that cannot
893  *	be otherwise expressed by feature flags. The check is called with
894  *	the set of features that the stack has calculated and it returns
895  *	those the driver believes to be appropriate.
896  *
897  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
898  *                         void *accel_priv, select_queue_fallback_t fallback);
899  *	Called to decide which queue to use when device supports multiple
900  *	transmit queues.
901  *
902  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
903  *	This function is called to allow device receiver to make
904  *	changes to configuration when multicast or promiscuous is enabled.
905  *
906  * void (*ndo_set_rx_mode)(struct net_device *dev);
907  *	This function is called device changes address list filtering.
908  *	If driver handles unicast address filtering, it should set
909  *	IFF_UNICAST_FLT in its priv_flags.
910  *
911  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
912  *	This function  is called when the Media Access Control address
913  *	needs to be changed. If this interface is not defined, the
914  *	MAC address can not be changed.
915  *
916  * int (*ndo_validate_addr)(struct net_device *dev);
917  *	Test if Media Access Control address is valid for the device.
918  *
919  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
920  *	Called when a user requests an ioctl which can't be handled by
921  *	the generic interface code. If not defined ioctls return
922  *	not supported error code.
923  *
924  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
925  *	Used to set network devices bus interface parameters. This interface
926  *	is retained for legacy reasons; new devices should use the bus
927  *	interface (PCI) for low level management.
928  *
929  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
930  *	Called when a user wants to change the Maximum Transfer Unit
931  *	of a device.
932  *
933  * void (*ndo_tx_timeout)(struct net_device *dev);
934  *	Callback used when the transmitter has not made any progress
935  *	for dev->watchdog ticks.
936  *
937  * void (*ndo_get_stats64)(struct net_device *dev,
938  *                         struct rtnl_link_stats64 *storage);
939  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
940  *	Called when a user wants to get the network device usage
941  *	statistics. Drivers must do one of the following:
942  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
943  *	   rtnl_link_stats64 structure passed by the caller.
944  *	2. Define @ndo_get_stats to update a net_device_stats structure
945  *	   (which should normally be dev->stats) and return a pointer to
946  *	   it. The structure may be changed asynchronously only if each
947  *	   field is written atomically.
948  *	3. Update dev->stats asynchronously and atomically, and define
949  *	   neither operation.
950  *
951  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
952  *	Return true if this device supports offload stats of this attr_id.
953  *
954  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
955  *	void *attr_data)
956  *	Get statistics for offload operations by attr_id. Write it into the
957  *	attr_data pointer.
958  *
959  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
960  *	If device supports VLAN filtering this function is called when a
961  *	VLAN id is registered.
962  *
963  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
964  *	If device supports VLAN filtering this function is called when a
965  *	VLAN id is unregistered.
966  *
967  * void (*ndo_poll_controller)(struct net_device *dev);
968  *
969  *	SR-IOV management functions.
970  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
971  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
972  *			  u8 qos, __be16 proto);
973  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
974  *			  int max_tx_rate);
975  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
976  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
977  * int (*ndo_get_vf_config)(struct net_device *dev,
978  *			    int vf, struct ifla_vf_info *ivf);
979  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
980  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
981  *			  struct nlattr *port[]);
982  *
983  *      Enable or disable the VF ability to query its RSS Redirection Table and
984  *      Hash Key. This is needed since on some devices VF share this information
985  *      with PF and querying it may introduce a theoretical security risk.
986  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
987  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
988  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
989  *		       void *type_data);
990  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
991  *	This is always called from the stack with the rtnl lock held and netif
992  *	tx queues stopped. This allows the netdevice to perform queue
993  *	management safely.
994  *
995  *	Fiber Channel over Ethernet (FCoE) offload functions.
996  * int (*ndo_fcoe_enable)(struct net_device *dev);
997  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
998  *	so the underlying device can perform whatever needed configuration or
999  *	initialization to support acceleration of FCoE traffic.
1000  *
1001  * int (*ndo_fcoe_disable)(struct net_device *dev);
1002  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1003  *	so the underlying device can perform whatever needed clean-ups to
1004  *	stop supporting acceleration of FCoE traffic.
1005  *
1006  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1007  *			     struct scatterlist *sgl, unsigned int sgc);
1008  *	Called when the FCoE Initiator wants to initialize an I/O that
1009  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1010  *	perform necessary setup and returns 1 to indicate the device is set up
1011  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1012  *
1013  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1014  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1015  *	indicated by the FC exchange id 'xid', so the underlying device can
1016  *	clean up and reuse resources for later DDP requests.
1017  *
1018  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1019  *			      struct scatterlist *sgl, unsigned int sgc);
1020  *	Called when the FCoE Target wants to initialize an I/O that
1021  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1022  *	perform necessary setup and returns 1 to indicate the device is set up
1023  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1024  *
1025  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1026  *			       struct netdev_fcoe_hbainfo *hbainfo);
1027  *	Called when the FCoE Protocol stack wants information on the underlying
1028  *	device. This information is utilized by the FCoE protocol stack to
1029  *	register attributes with Fiber Channel management service as per the
1030  *	FC-GS Fabric Device Management Information(FDMI) specification.
1031  *
1032  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1033  *	Called when the underlying device wants to override default World Wide
1034  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1035  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1036  *	protocol stack to use.
1037  *
1038  *	RFS acceleration.
1039  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1040  *			    u16 rxq_index, u32 flow_id);
1041  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1042  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1043  *	Return the filter ID on success, or a negative error code.
1044  *
1045  *	Slave management functions (for bridge, bonding, etc).
1046  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1047  *	Called to make another netdev an underling.
1048  *
1049  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1050  *	Called to release previously enslaved netdev.
1051  *
1052  *      Feature/offload setting functions.
1053  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1054  *		netdev_features_t features);
1055  *	Adjusts the requested feature flags according to device-specific
1056  *	constraints, and returns the resulting flags. Must not modify
1057  *	the device state.
1058  *
1059  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1060  *	Called to update device configuration to new features. Passed
1061  *	feature set might be less than what was returned by ndo_fix_features()).
1062  *	Must return >0 or -errno if it changed dev->features itself.
1063  *
1064  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1065  *		      struct net_device *dev,
1066  *		      const unsigned char *addr, u16 vid, u16 flags)
1067  *	Adds an FDB entry to dev for addr.
1068  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1069  *		      struct net_device *dev,
1070  *		      const unsigned char *addr, u16 vid)
1071  *	Deletes the FDB entry from dev coresponding to addr.
1072  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1073  *		       struct net_device *dev, struct net_device *filter_dev,
1074  *		       int *idx)
1075  *	Used to add FDB entries to dump requests. Implementers should add
1076  *	entries to skb and update idx with the number of entries.
1077  *
1078  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1079  *			     u16 flags)
1080  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1081  *			     struct net_device *dev, u32 filter_mask,
1082  *			     int nlflags)
1083  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1084  *			     u16 flags);
1085  *
1086  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1087  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1088  *	which do not represent real hardware may define this to allow their
1089  *	userspace components to manage their virtual carrier state. Devices
1090  *	that determine carrier state from physical hardware properties (eg
1091  *	network cables) or protocol-dependent mechanisms (eg
1092  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1093  *
1094  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1095  *			       struct netdev_phys_item_id *ppid);
1096  *	Called to get ID of physical port of this device. If driver does
1097  *	not implement this, it is assumed that the hw is not able to have
1098  *	multiple net devices on single physical port.
1099  *
1100  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1101  *			      struct udp_tunnel_info *ti);
1102  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1103  *	address family that a UDP tunnel is listnening to. It is called only
1104  *	when a new port starts listening. The operation is protected by the
1105  *	RTNL.
1106  *
1107  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1108  *			      struct udp_tunnel_info *ti);
1109  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1110  *	address family that the UDP tunnel is not listening to anymore. The
1111  *	operation is protected by the RTNL.
1112  *
1113  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1114  *				 struct net_device *dev)
1115  *	Called by upper layer devices to accelerate switching or other
1116  *	station functionality into hardware. 'pdev is the lowerdev
1117  *	to use for the offload and 'dev' is the net device that will
1118  *	back the offload. Returns a pointer to the private structure
1119  *	the upper layer will maintain.
1120  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1121  *	Called by upper layer device to delete the station created
1122  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1123  *	the station and priv is the structure returned by the add
1124  *	operation.
1125  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1126  *			     int queue_index, u32 maxrate);
1127  *	Called when a user wants to set a max-rate limitation of specific
1128  *	TX queue.
1129  * int (*ndo_get_iflink)(const struct net_device *dev);
1130  *	Called to get the iflink value of this device.
1131  * void (*ndo_change_proto_down)(struct net_device *dev,
1132  *				 bool proto_down);
1133  *	This function is used to pass protocol port error state information
1134  *	to the switch driver. The switch driver can react to the proto_down
1135  *      by doing a phys down on the associated switch port.
1136  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1137  *	This function is used to get egress tunnel information for given skb.
1138  *	This is useful for retrieving outer tunnel header parameters while
1139  *	sampling packet.
1140  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1141  *	This function is used to specify the headroom that the skb must
1142  *	consider when allocation skb during packet reception. Setting
1143  *	appropriate rx headroom value allows avoiding skb head copy on
1144  *	forward. Setting a negative value resets the rx headroom to the
1145  *	default value.
1146  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1147  *	This function is used to set or query state related to XDP on the
1148  *	netdevice and manage BPF offload. See definition of
1149  *	enum bpf_netdev_command for details.
1150  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1151  *	This function is used to submit a XDP packet for transmit on a
1152  *	netdevice.
1153  * void (*ndo_xdp_flush)(struct net_device *dev);
1154  *	This function is used to inform the driver to flush a particular
1155  *	xdp tx queue. Must be called on same CPU as xdp_xmit.
1156  */
1157 struct net_device_ops {
1158 	int			(*ndo_init)(struct net_device *dev);
1159 	void			(*ndo_uninit)(struct net_device *dev);
1160 	int			(*ndo_open)(struct net_device *dev);
1161 	int			(*ndo_stop)(struct net_device *dev);
1162 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1163 						  struct net_device *dev);
1164 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1165 						      struct net_device *dev,
1166 						      netdev_features_t features);
1167 	u16			(*ndo_select_queue)(struct net_device *dev,
1168 						    struct sk_buff *skb,
1169 						    void *accel_priv,
1170 						    select_queue_fallback_t fallback);
1171 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1172 						       int flags);
1173 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1174 	int			(*ndo_set_mac_address)(struct net_device *dev,
1175 						       void *addr);
1176 	int			(*ndo_validate_addr)(struct net_device *dev);
1177 	int			(*ndo_do_ioctl)(struct net_device *dev,
1178 					        struct ifreq *ifr, int cmd);
1179 	int			(*ndo_set_config)(struct net_device *dev,
1180 					          struct ifmap *map);
1181 	int			(*ndo_change_mtu)(struct net_device *dev,
1182 						  int new_mtu);
1183 	int			(*ndo_neigh_setup)(struct net_device *dev,
1184 						   struct neigh_parms *);
1185 	void			(*ndo_tx_timeout) (struct net_device *dev);
1186 
1187 	void			(*ndo_get_stats64)(struct net_device *dev,
1188 						   struct rtnl_link_stats64 *storage);
1189 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1190 	int			(*ndo_get_offload_stats)(int attr_id,
1191 							 const struct net_device *dev,
1192 							 void *attr_data);
1193 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1194 
1195 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1196 						       __be16 proto, u16 vid);
1197 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1198 						        __be16 proto, u16 vid);
1199 #ifdef CONFIG_NET_POLL_CONTROLLER
1200 	void                    (*ndo_poll_controller)(struct net_device *dev);
1201 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1202 						     struct netpoll_info *info);
1203 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1204 #endif
1205 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1206 						  int queue, u8 *mac);
1207 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1208 						   int queue, u16 vlan,
1209 						   u8 qos, __be16 proto);
1210 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1211 						   int vf, int min_tx_rate,
1212 						   int max_tx_rate);
1213 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1214 						       int vf, bool setting);
1215 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1216 						    int vf, bool setting);
1217 	int			(*ndo_get_vf_config)(struct net_device *dev,
1218 						     int vf,
1219 						     struct ifla_vf_info *ivf);
1220 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1221 							 int vf, int link_state);
1222 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1223 						    int vf,
1224 						    struct ifla_vf_stats
1225 						    *vf_stats);
1226 	int			(*ndo_set_vf_port)(struct net_device *dev,
1227 						   int vf,
1228 						   struct nlattr *port[]);
1229 	int			(*ndo_get_vf_port)(struct net_device *dev,
1230 						   int vf, struct sk_buff *skb);
1231 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1232 						   int vf, u64 guid,
1233 						   int guid_type);
1234 	int			(*ndo_set_vf_rss_query_en)(
1235 						   struct net_device *dev,
1236 						   int vf, bool setting);
1237 	int			(*ndo_setup_tc)(struct net_device *dev,
1238 						enum tc_setup_type type,
1239 						void *type_data);
1240 #if IS_ENABLED(CONFIG_FCOE)
1241 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1242 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1243 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1244 						      u16 xid,
1245 						      struct scatterlist *sgl,
1246 						      unsigned int sgc);
1247 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1248 						     u16 xid);
1249 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1250 						       u16 xid,
1251 						       struct scatterlist *sgl,
1252 						       unsigned int sgc);
1253 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1254 							struct netdev_fcoe_hbainfo *hbainfo);
1255 #endif
1256 
1257 #if IS_ENABLED(CONFIG_LIBFCOE)
1258 #define NETDEV_FCOE_WWNN 0
1259 #define NETDEV_FCOE_WWPN 1
1260 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1261 						    u64 *wwn, int type);
1262 #endif
1263 
1264 #ifdef CONFIG_RFS_ACCEL
1265 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1266 						     const struct sk_buff *skb,
1267 						     u16 rxq_index,
1268 						     u32 flow_id);
1269 #endif
1270 	int			(*ndo_add_slave)(struct net_device *dev,
1271 						 struct net_device *slave_dev,
1272 						 struct netlink_ext_ack *extack);
1273 	int			(*ndo_del_slave)(struct net_device *dev,
1274 						 struct net_device *slave_dev);
1275 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1276 						    netdev_features_t features);
1277 	int			(*ndo_set_features)(struct net_device *dev,
1278 						    netdev_features_t features);
1279 	int			(*ndo_neigh_construct)(struct net_device *dev,
1280 						       struct neighbour *n);
1281 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1282 						     struct neighbour *n);
1283 
1284 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1285 					       struct nlattr *tb[],
1286 					       struct net_device *dev,
1287 					       const unsigned char *addr,
1288 					       u16 vid,
1289 					       u16 flags);
1290 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1291 					       struct nlattr *tb[],
1292 					       struct net_device *dev,
1293 					       const unsigned char *addr,
1294 					       u16 vid);
1295 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1296 						struct netlink_callback *cb,
1297 						struct net_device *dev,
1298 						struct net_device *filter_dev,
1299 						int *idx);
1300 
1301 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1302 						      struct nlmsghdr *nlh,
1303 						      u16 flags);
1304 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1305 						      u32 pid, u32 seq,
1306 						      struct net_device *dev,
1307 						      u32 filter_mask,
1308 						      int nlflags);
1309 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1310 						      struct nlmsghdr *nlh,
1311 						      u16 flags);
1312 	int			(*ndo_change_carrier)(struct net_device *dev,
1313 						      bool new_carrier);
1314 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1315 							struct netdev_phys_item_id *ppid);
1316 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1317 							  char *name, size_t len);
1318 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1319 						      struct udp_tunnel_info *ti);
1320 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1321 						      struct udp_tunnel_info *ti);
1322 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1323 							struct net_device *dev);
1324 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1325 							void *priv);
1326 
1327 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1328 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1329 						      int queue_index,
1330 						      u32 maxrate);
1331 	int			(*ndo_get_iflink)(const struct net_device *dev);
1332 	int			(*ndo_change_proto_down)(struct net_device *dev,
1333 							 bool proto_down);
1334 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1335 						       struct sk_buff *skb);
1336 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1337 						       int needed_headroom);
1338 	int			(*ndo_bpf)(struct net_device *dev,
1339 					   struct netdev_bpf *bpf);
1340 	int			(*ndo_xdp_xmit)(struct net_device *dev,
1341 						struct xdp_buff *xdp);
1342 	void			(*ndo_xdp_flush)(struct net_device *dev);
1343 };
1344 
1345 /**
1346  * enum net_device_priv_flags - &struct net_device priv_flags
1347  *
1348  * These are the &struct net_device, they are only set internally
1349  * by drivers and used in the kernel. These flags are invisible to
1350  * userspace; this means that the order of these flags can change
1351  * during any kernel release.
1352  *
1353  * You should have a pretty good reason to be extending these flags.
1354  *
1355  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1356  * @IFF_EBRIDGE: Ethernet bridging device
1357  * @IFF_BONDING: bonding master or slave
1358  * @IFF_ISATAP: ISATAP interface (RFC4214)
1359  * @IFF_WAN_HDLC: WAN HDLC device
1360  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1361  *	release skb->dst
1362  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1363  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1364  * @IFF_MACVLAN_PORT: device used as macvlan port
1365  * @IFF_BRIDGE_PORT: device used as bridge port
1366  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1367  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1368  * @IFF_UNICAST_FLT: Supports unicast filtering
1369  * @IFF_TEAM_PORT: device used as team port
1370  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1371  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1372  *	change when it's running
1373  * @IFF_MACVLAN: Macvlan device
1374  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1375  *	underlying stacked devices
1376  * @IFF_IPVLAN_MASTER: IPvlan master device
1377  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1378  * @IFF_L3MDEV_MASTER: device is an L3 master device
1379  * @IFF_NO_QUEUE: device can run without qdisc attached
1380  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1381  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1382  * @IFF_TEAM: device is a team device
1383  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1384  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1385  *	entity (i.e. the master device for bridged veth)
1386  * @IFF_MACSEC: device is a MACsec device
1387  */
1388 enum netdev_priv_flags {
1389 	IFF_802_1Q_VLAN			= 1<<0,
1390 	IFF_EBRIDGE			= 1<<1,
1391 	IFF_BONDING			= 1<<2,
1392 	IFF_ISATAP			= 1<<3,
1393 	IFF_WAN_HDLC			= 1<<4,
1394 	IFF_XMIT_DST_RELEASE		= 1<<5,
1395 	IFF_DONT_BRIDGE			= 1<<6,
1396 	IFF_DISABLE_NETPOLL		= 1<<7,
1397 	IFF_MACVLAN_PORT		= 1<<8,
1398 	IFF_BRIDGE_PORT			= 1<<9,
1399 	IFF_OVS_DATAPATH		= 1<<10,
1400 	IFF_TX_SKB_SHARING		= 1<<11,
1401 	IFF_UNICAST_FLT			= 1<<12,
1402 	IFF_TEAM_PORT			= 1<<13,
1403 	IFF_SUPP_NOFCS			= 1<<14,
1404 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1405 	IFF_MACVLAN			= 1<<16,
1406 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1407 	IFF_IPVLAN_MASTER		= 1<<18,
1408 	IFF_IPVLAN_SLAVE		= 1<<19,
1409 	IFF_L3MDEV_MASTER		= 1<<20,
1410 	IFF_NO_QUEUE			= 1<<21,
1411 	IFF_OPENVSWITCH			= 1<<22,
1412 	IFF_L3MDEV_SLAVE		= 1<<23,
1413 	IFF_TEAM			= 1<<24,
1414 	IFF_RXFH_CONFIGURED		= 1<<25,
1415 	IFF_PHONY_HEADROOM		= 1<<26,
1416 	IFF_MACSEC			= 1<<27,
1417 };
1418 
1419 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1420 #define IFF_EBRIDGE			IFF_EBRIDGE
1421 #define IFF_BONDING			IFF_BONDING
1422 #define IFF_ISATAP			IFF_ISATAP
1423 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1424 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1425 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1426 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1427 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1428 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1429 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1430 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1431 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1432 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1433 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1434 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1435 #define IFF_MACVLAN			IFF_MACVLAN
1436 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1437 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1438 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1439 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1440 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1441 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1442 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1443 #define IFF_TEAM			IFF_TEAM
1444 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1445 #define IFF_MACSEC			IFF_MACSEC
1446 
1447 /**
1448  *	struct net_device - The DEVICE structure.
1449  *
1450  *	Actually, this whole structure is a big mistake.  It mixes I/O
1451  *	data with strictly "high-level" data, and it has to know about
1452  *	almost every data structure used in the INET module.
1453  *
1454  *	@name:	This is the first field of the "visible" part of this structure
1455  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1456  *		of the interface.
1457  *
1458  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1459  *	@ifalias:	SNMP alias
1460  *	@mem_end:	Shared memory end
1461  *	@mem_start:	Shared memory start
1462  *	@base_addr:	Device I/O address
1463  *	@irq:		Device IRQ number
1464  *
1465  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1466  *
1467  *	@state:		Generic network queuing layer state, see netdev_state_t
1468  *	@dev_list:	The global list of network devices
1469  *	@napi_list:	List entry used for polling NAPI devices
1470  *	@unreg_list:	List entry  when we are unregistering the
1471  *			device; see the function unregister_netdev
1472  *	@close_list:	List entry used when we are closing the device
1473  *	@ptype_all:     Device-specific packet handlers for all protocols
1474  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1475  *
1476  *	@adj_list:	Directly linked devices, like slaves for bonding
1477  *	@features:	Currently active device features
1478  *	@hw_features:	User-changeable features
1479  *
1480  *	@wanted_features:	User-requested features
1481  *	@vlan_features:		Mask of features inheritable by VLAN devices
1482  *
1483  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1484  *				This field indicates what encapsulation
1485  *				offloads the hardware is capable of doing,
1486  *				and drivers will need to set them appropriately.
1487  *
1488  *	@mpls_features:	Mask of features inheritable by MPLS
1489  *
1490  *	@ifindex:	interface index
1491  *	@group:		The group the device belongs to
1492  *
1493  *	@stats:		Statistics struct, which was left as a legacy, use
1494  *			rtnl_link_stats64 instead
1495  *
1496  *	@rx_dropped:	Dropped packets by core network,
1497  *			do not use this in drivers
1498  *	@tx_dropped:	Dropped packets by core network,
1499  *			do not use this in drivers
1500  *	@rx_nohandler:	nohandler dropped packets by core network on
1501  *			inactive devices, do not use this in drivers
1502  *
1503  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1504  *				instead of ioctl,
1505  *				see <net/iw_handler.h> for details.
1506  *	@wireless_data:	Instance data managed by the core of wireless extensions
1507  *
1508  *	@netdev_ops:	Includes several pointers to callbacks,
1509  *			if one wants to override the ndo_*() functions
1510  *	@ethtool_ops:	Management operations
1511  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1512  *			discovery handling. Necessary for e.g. 6LoWPAN.
1513  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1514  *			of Layer 2 headers.
1515  *
1516  *	@flags:		Interface flags (a la BSD)
1517  *	@priv_flags:	Like 'flags' but invisible to userspace,
1518  *			see if.h for the definitions
1519  *	@gflags:	Global flags ( kept as legacy )
1520  *	@padded:	How much padding added by alloc_netdev()
1521  *	@operstate:	RFC2863 operstate
1522  *	@link_mode:	Mapping policy to operstate
1523  *	@if_port:	Selectable AUI, TP, ...
1524  *	@dma:		DMA channel
1525  *	@mtu:		Interface MTU value
1526  *	@min_mtu:	Interface Minimum MTU value
1527  *	@max_mtu:	Interface Maximum MTU value
1528  *	@type:		Interface hardware type
1529  *	@hard_header_len: Maximum hardware header length.
1530  *	@min_header_len:  Minimum hardware header length
1531  *
1532  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1533  *			  cases can this be guaranteed
1534  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1535  *			  cases can this be guaranteed. Some cases also use
1536  *			  LL_MAX_HEADER instead to allocate the skb
1537  *
1538  *	interface address info:
1539  *
1540  * 	@perm_addr:		Permanent hw address
1541  * 	@addr_assign_type:	Hw address assignment type
1542  * 	@addr_len:		Hardware address length
1543  *	@neigh_priv_len:	Used in neigh_alloc()
1544  * 	@dev_id:		Used to differentiate devices that share
1545  * 				the same link layer address
1546  * 	@dev_port:		Used to differentiate devices that share
1547  * 				the same function
1548  *	@addr_list_lock:	XXX: need comments on this one
1549  *	@uc_promisc:		Counter that indicates promiscuous mode
1550  *				has been enabled due to the need to listen to
1551  *				additional unicast addresses in a device that
1552  *				does not implement ndo_set_rx_mode()
1553  *	@uc:			unicast mac addresses
1554  *	@mc:			multicast mac addresses
1555  *	@dev_addrs:		list of device hw addresses
1556  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1557  *	@promiscuity:		Number of times the NIC is told to work in
1558  *				promiscuous mode; if it becomes 0 the NIC will
1559  *				exit promiscuous mode
1560  *	@allmulti:		Counter, enables or disables allmulticast mode
1561  *
1562  *	@vlan_info:	VLAN info
1563  *	@dsa_ptr:	dsa specific data
1564  *	@tipc_ptr:	TIPC specific data
1565  *	@atalk_ptr:	AppleTalk link
1566  *	@ip_ptr:	IPv4 specific data
1567  *	@dn_ptr:	DECnet specific data
1568  *	@ip6_ptr:	IPv6 specific data
1569  *	@ax25_ptr:	AX.25 specific data
1570  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1571  *
1572  *	@dev_addr:	Hw address (before bcast,
1573  *			because most packets are unicast)
1574  *
1575  *	@_rx:			Array of RX queues
1576  *	@num_rx_queues:		Number of RX queues
1577  *				allocated at register_netdev() time
1578  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1579  *
1580  *	@rx_handler:		handler for received packets
1581  *	@rx_handler_data: 	XXX: need comments on this one
1582  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1583  *				ingress processing
1584  *	@ingress_queue:		XXX: need comments on this one
1585  *	@broadcast:		hw bcast address
1586  *
1587  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1588  *			indexed by RX queue number. Assigned by driver.
1589  *			This must only be set if the ndo_rx_flow_steer
1590  *			operation is defined
1591  *	@index_hlist:		Device index hash chain
1592  *
1593  *	@_tx:			Array of TX queues
1594  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1595  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1596  *	@qdisc:			Root qdisc from userspace point of view
1597  *	@tx_queue_len:		Max frames per queue allowed
1598  *	@tx_global_lock: 	XXX: need comments on this one
1599  *
1600  *	@xps_maps:	XXX: need comments on this one
1601  *	@miniq_egress:		clsact qdisc specific data for
1602  *				egress processing
1603  *	@watchdog_timeo:	Represents the timeout that is used by
1604  *				the watchdog (see dev_watchdog())
1605  *	@watchdog_timer:	List of timers
1606  *
1607  *	@pcpu_refcnt:		Number of references to this device
1608  *	@todo_list:		Delayed register/unregister
1609  *	@link_watch_list:	XXX: need comments on this one
1610  *
1611  *	@reg_state:		Register/unregister state machine
1612  *	@dismantle:		Device is going to be freed
1613  *	@rtnl_link_state:	This enum represents the phases of creating
1614  *				a new link
1615  *
1616  *	@needs_free_netdev:	Should unregister perform free_netdev?
1617  *	@priv_destructor:	Called from unregister
1618  *	@npinfo:		XXX: need comments on this one
1619  * 	@nd_net:		Network namespace this network device is inside
1620  *
1621  * 	@ml_priv:	Mid-layer private
1622  * 	@lstats:	Loopback statistics
1623  * 	@tstats:	Tunnel statistics
1624  * 	@dstats:	Dummy statistics
1625  * 	@vstats:	Virtual ethernet statistics
1626  *
1627  *	@garp_port:	GARP
1628  *	@mrp_port:	MRP
1629  *
1630  *	@dev:		Class/net/name entry
1631  *	@sysfs_groups:	Space for optional device, statistics and wireless
1632  *			sysfs groups
1633  *
1634  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1635  *	@rtnl_link_ops:	Rtnl_link_ops
1636  *
1637  *	@gso_max_size:	Maximum size of generic segmentation offload
1638  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1639  *			NIC for GSO
1640  *
1641  *	@dcbnl_ops:	Data Center Bridging netlink ops
1642  *	@num_tc:	Number of traffic classes in the net device
1643  *	@tc_to_txq:	XXX: need comments on this one
1644  *	@prio_tc_map:	XXX: need comments on this one
1645  *
1646  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1647  *
1648  *	@priomap:	XXX: need comments on this one
1649  *	@phydev:	Physical device may attach itself
1650  *			for hardware timestamping
1651  *
1652  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1653  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1654  *
1655  *	@proto_down:	protocol port state information can be sent to the
1656  *			switch driver and used to set the phys state of the
1657  *			switch port.
1658  *
1659  *	FIXME: cleanup struct net_device such that network protocol info
1660  *	moves out.
1661  */
1662 
1663 struct net_device {
1664 	char			name[IFNAMSIZ];
1665 	struct hlist_node	name_hlist;
1666 	struct dev_ifalias	__rcu *ifalias;
1667 	/*
1668 	 *	I/O specific fields
1669 	 *	FIXME: Merge these and struct ifmap into one
1670 	 */
1671 	unsigned long		mem_end;
1672 	unsigned long		mem_start;
1673 	unsigned long		base_addr;
1674 	int			irq;
1675 
1676 	atomic_t		carrier_changes;
1677 
1678 	/*
1679 	 *	Some hardware also needs these fields (state,dev_list,
1680 	 *	napi_list,unreg_list,close_list) but they are not
1681 	 *	part of the usual set specified in Space.c.
1682 	 */
1683 
1684 	unsigned long		state;
1685 
1686 	struct list_head	dev_list;
1687 	struct list_head	napi_list;
1688 	struct list_head	unreg_list;
1689 	struct list_head	close_list;
1690 	struct list_head	ptype_all;
1691 	struct list_head	ptype_specific;
1692 
1693 	struct {
1694 		struct list_head upper;
1695 		struct list_head lower;
1696 	} adj_list;
1697 
1698 	netdev_features_t	features;
1699 	netdev_features_t	hw_features;
1700 	netdev_features_t	wanted_features;
1701 	netdev_features_t	vlan_features;
1702 	netdev_features_t	hw_enc_features;
1703 	netdev_features_t	mpls_features;
1704 	netdev_features_t	gso_partial_features;
1705 
1706 	int			ifindex;
1707 	int			group;
1708 
1709 	struct net_device_stats	stats;
1710 
1711 	atomic_long_t		rx_dropped;
1712 	atomic_long_t		tx_dropped;
1713 	atomic_long_t		rx_nohandler;
1714 
1715 #ifdef CONFIG_WIRELESS_EXT
1716 	const struct iw_handler_def *wireless_handlers;
1717 	struct iw_public_data	*wireless_data;
1718 #endif
1719 	const struct net_device_ops *netdev_ops;
1720 	const struct ethtool_ops *ethtool_ops;
1721 #ifdef CONFIG_NET_SWITCHDEV
1722 	const struct switchdev_ops *switchdev_ops;
1723 #endif
1724 #ifdef CONFIG_NET_L3_MASTER_DEV
1725 	const struct l3mdev_ops	*l3mdev_ops;
1726 #endif
1727 #if IS_ENABLED(CONFIG_IPV6)
1728 	const struct ndisc_ops *ndisc_ops;
1729 #endif
1730 
1731 #ifdef CONFIG_XFRM_OFFLOAD
1732 	const struct xfrmdev_ops *xfrmdev_ops;
1733 #endif
1734 
1735 	const struct header_ops *header_ops;
1736 
1737 	unsigned int		flags;
1738 	unsigned int		priv_flags;
1739 
1740 	unsigned short		gflags;
1741 	unsigned short		padded;
1742 
1743 	unsigned char		operstate;
1744 	unsigned char		link_mode;
1745 
1746 	unsigned char		if_port;
1747 	unsigned char		dma;
1748 
1749 	unsigned int		mtu;
1750 	unsigned int		min_mtu;
1751 	unsigned int		max_mtu;
1752 	unsigned short		type;
1753 	unsigned short		hard_header_len;
1754 	unsigned char		min_header_len;
1755 
1756 	unsigned short		needed_headroom;
1757 	unsigned short		needed_tailroom;
1758 
1759 	/* Interface address info. */
1760 	unsigned char		perm_addr[MAX_ADDR_LEN];
1761 	unsigned char		addr_assign_type;
1762 	unsigned char		addr_len;
1763 	unsigned short		neigh_priv_len;
1764 	unsigned short          dev_id;
1765 	unsigned short          dev_port;
1766 	spinlock_t		addr_list_lock;
1767 	unsigned char		name_assign_type;
1768 	bool			uc_promisc;
1769 	struct netdev_hw_addr_list	uc;
1770 	struct netdev_hw_addr_list	mc;
1771 	struct netdev_hw_addr_list	dev_addrs;
1772 
1773 #ifdef CONFIG_SYSFS
1774 	struct kset		*queues_kset;
1775 #endif
1776 	unsigned int		promiscuity;
1777 	unsigned int		allmulti;
1778 
1779 
1780 	/* Protocol-specific pointers */
1781 
1782 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1783 	struct vlan_info __rcu	*vlan_info;
1784 #endif
1785 #if IS_ENABLED(CONFIG_NET_DSA)
1786 	struct dsa_port		*dsa_ptr;
1787 #endif
1788 #if IS_ENABLED(CONFIG_TIPC)
1789 	struct tipc_bearer __rcu *tipc_ptr;
1790 #endif
1791 	void 			*atalk_ptr;
1792 	struct in_device __rcu	*ip_ptr;
1793 	struct dn_dev __rcu     *dn_ptr;
1794 	struct inet6_dev __rcu	*ip6_ptr;
1795 	void			*ax25_ptr;
1796 	struct wireless_dev	*ieee80211_ptr;
1797 	struct wpan_dev		*ieee802154_ptr;
1798 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1799 	struct mpls_dev __rcu	*mpls_ptr;
1800 #endif
1801 
1802 /*
1803  * Cache lines mostly used on receive path (including eth_type_trans())
1804  */
1805 	/* Interface address info used in eth_type_trans() */
1806 	unsigned char		*dev_addr;
1807 
1808 #ifdef CONFIG_SYSFS
1809 	struct netdev_rx_queue	*_rx;
1810 
1811 	unsigned int		num_rx_queues;
1812 	unsigned int		real_num_rx_queues;
1813 #endif
1814 
1815 	struct bpf_prog __rcu	*xdp_prog;
1816 	unsigned long		gro_flush_timeout;
1817 	rx_handler_func_t __rcu	*rx_handler;
1818 	void __rcu		*rx_handler_data;
1819 
1820 #ifdef CONFIG_NET_CLS_ACT
1821 	struct mini_Qdisc __rcu	*miniq_ingress;
1822 #endif
1823 	struct netdev_queue __rcu *ingress_queue;
1824 #ifdef CONFIG_NETFILTER_INGRESS
1825 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1826 #endif
1827 
1828 	unsigned char		broadcast[MAX_ADDR_LEN];
1829 #ifdef CONFIG_RFS_ACCEL
1830 	struct cpu_rmap		*rx_cpu_rmap;
1831 #endif
1832 	struct hlist_node	index_hlist;
1833 
1834 /*
1835  * Cache lines mostly used on transmit path
1836  */
1837 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1838 	unsigned int		num_tx_queues;
1839 	unsigned int		real_num_tx_queues;
1840 	struct Qdisc		*qdisc;
1841 #ifdef CONFIG_NET_SCHED
1842 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1843 #endif
1844 	unsigned int		tx_queue_len;
1845 	spinlock_t		tx_global_lock;
1846 	int			watchdog_timeo;
1847 
1848 #ifdef CONFIG_XPS
1849 	struct xps_dev_maps __rcu *xps_maps;
1850 #endif
1851 #ifdef CONFIG_NET_CLS_ACT
1852 	struct mini_Qdisc __rcu	*miniq_egress;
1853 #endif
1854 
1855 	/* These may be needed for future network-power-down code. */
1856 	struct timer_list	watchdog_timer;
1857 
1858 	int __percpu		*pcpu_refcnt;
1859 	struct list_head	todo_list;
1860 
1861 	struct list_head	link_watch_list;
1862 
1863 	enum { NETREG_UNINITIALIZED=0,
1864 	       NETREG_REGISTERED,	/* completed register_netdevice */
1865 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1866 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1867 	       NETREG_RELEASED,		/* called free_netdev */
1868 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1869 	} reg_state:8;
1870 
1871 	bool dismantle;
1872 
1873 	enum {
1874 		RTNL_LINK_INITIALIZED,
1875 		RTNL_LINK_INITIALIZING,
1876 	} rtnl_link_state:16;
1877 
1878 	bool needs_free_netdev;
1879 	void (*priv_destructor)(struct net_device *dev);
1880 
1881 #ifdef CONFIG_NETPOLL
1882 	struct netpoll_info __rcu	*npinfo;
1883 #endif
1884 
1885 	possible_net_t			nd_net;
1886 
1887 	/* mid-layer private */
1888 	union {
1889 		void					*ml_priv;
1890 		struct pcpu_lstats __percpu		*lstats;
1891 		struct pcpu_sw_netstats __percpu	*tstats;
1892 		struct pcpu_dstats __percpu		*dstats;
1893 		struct pcpu_vstats __percpu		*vstats;
1894 	};
1895 
1896 #if IS_ENABLED(CONFIG_GARP)
1897 	struct garp_port __rcu	*garp_port;
1898 #endif
1899 #if IS_ENABLED(CONFIG_MRP)
1900 	struct mrp_port __rcu	*mrp_port;
1901 #endif
1902 
1903 	struct device		dev;
1904 	const struct attribute_group *sysfs_groups[4];
1905 	const struct attribute_group *sysfs_rx_queue_group;
1906 
1907 	const struct rtnl_link_ops *rtnl_link_ops;
1908 
1909 	/* for setting kernel sock attribute on TCP connection setup */
1910 #define GSO_MAX_SIZE		65536
1911 	unsigned int		gso_max_size;
1912 #define GSO_MAX_SEGS		65535
1913 	u16			gso_max_segs;
1914 
1915 #ifdef CONFIG_DCB
1916 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1917 #endif
1918 	u8			num_tc;
1919 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1920 	u8			prio_tc_map[TC_BITMASK + 1];
1921 
1922 #if IS_ENABLED(CONFIG_FCOE)
1923 	unsigned int		fcoe_ddp_xid;
1924 #endif
1925 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1926 	struct netprio_map __rcu *priomap;
1927 #endif
1928 	struct phy_device	*phydev;
1929 	struct lock_class_key	*qdisc_tx_busylock;
1930 	struct lock_class_key	*qdisc_running_key;
1931 	bool			proto_down;
1932 };
1933 #define to_net_dev(d) container_of(d, struct net_device, dev)
1934 
1935 static inline bool netif_elide_gro(const struct net_device *dev)
1936 {
1937 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1938 		return true;
1939 	return false;
1940 }
1941 
1942 #define	NETDEV_ALIGN		32
1943 
1944 static inline
1945 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1946 {
1947 	return dev->prio_tc_map[prio & TC_BITMASK];
1948 }
1949 
1950 static inline
1951 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1952 {
1953 	if (tc >= dev->num_tc)
1954 		return -EINVAL;
1955 
1956 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1957 	return 0;
1958 }
1959 
1960 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1961 void netdev_reset_tc(struct net_device *dev);
1962 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1963 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1964 
1965 static inline
1966 int netdev_get_num_tc(struct net_device *dev)
1967 {
1968 	return dev->num_tc;
1969 }
1970 
1971 static inline
1972 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1973 					 unsigned int index)
1974 {
1975 	return &dev->_tx[index];
1976 }
1977 
1978 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1979 						    const struct sk_buff *skb)
1980 {
1981 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1982 }
1983 
1984 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1985 					    void (*f)(struct net_device *,
1986 						      struct netdev_queue *,
1987 						      void *),
1988 					    void *arg)
1989 {
1990 	unsigned int i;
1991 
1992 	for (i = 0; i < dev->num_tx_queues; i++)
1993 		f(dev, &dev->_tx[i], arg);
1994 }
1995 
1996 #define netdev_lockdep_set_classes(dev)				\
1997 {								\
1998 	static struct lock_class_key qdisc_tx_busylock_key;	\
1999 	static struct lock_class_key qdisc_running_key;		\
2000 	static struct lock_class_key qdisc_xmit_lock_key;	\
2001 	static struct lock_class_key dev_addr_list_lock_key;	\
2002 	unsigned int i;						\
2003 								\
2004 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2005 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2006 	lockdep_set_class(&(dev)->addr_list_lock,		\
2007 			  &dev_addr_list_lock_key); 		\
2008 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2009 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2010 				  &qdisc_xmit_lock_key);	\
2011 }
2012 
2013 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2014 				    struct sk_buff *skb,
2015 				    void *accel_priv);
2016 
2017 /* returns the headroom that the master device needs to take in account
2018  * when forwarding to this dev
2019  */
2020 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2021 {
2022 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2023 }
2024 
2025 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2026 {
2027 	if (dev->netdev_ops->ndo_set_rx_headroom)
2028 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2029 }
2030 
2031 /* set the device rx headroom to the dev's default */
2032 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2033 {
2034 	netdev_set_rx_headroom(dev, -1);
2035 }
2036 
2037 /*
2038  * Net namespace inlines
2039  */
2040 static inline
2041 struct net *dev_net(const struct net_device *dev)
2042 {
2043 	return read_pnet(&dev->nd_net);
2044 }
2045 
2046 static inline
2047 void dev_net_set(struct net_device *dev, struct net *net)
2048 {
2049 	write_pnet(&dev->nd_net, net);
2050 }
2051 
2052 /**
2053  *	netdev_priv - access network device private data
2054  *	@dev: network device
2055  *
2056  * Get network device private data
2057  */
2058 static inline void *netdev_priv(const struct net_device *dev)
2059 {
2060 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2061 }
2062 
2063 /* Set the sysfs physical device reference for the network logical device
2064  * if set prior to registration will cause a symlink during initialization.
2065  */
2066 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2067 
2068 /* Set the sysfs device type for the network logical device to allow
2069  * fine-grained identification of different network device types. For
2070  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2071  */
2072 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2073 
2074 /* Default NAPI poll() weight
2075  * Device drivers are strongly advised to not use bigger value
2076  */
2077 #define NAPI_POLL_WEIGHT 64
2078 
2079 /**
2080  *	netif_napi_add - initialize a NAPI context
2081  *	@dev:  network device
2082  *	@napi: NAPI context
2083  *	@poll: polling function
2084  *	@weight: default weight
2085  *
2086  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2087  * *any* of the other NAPI-related functions.
2088  */
2089 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2090 		    int (*poll)(struct napi_struct *, int), int weight);
2091 
2092 /**
2093  *	netif_tx_napi_add - initialize a NAPI context
2094  *	@dev:  network device
2095  *	@napi: NAPI context
2096  *	@poll: polling function
2097  *	@weight: default weight
2098  *
2099  * This variant of netif_napi_add() should be used from drivers using NAPI
2100  * to exclusively poll a TX queue.
2101  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2102  */
2103 static inline void netif_tx_napi_add(struct net_device *dev,
2104 				     struct napi_struct *napi,
2105 				     int (*poll)(struct napi_struct *, int),
2106 				     int weight)
2107 {
2108 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2109 	netif_napi_add(dev, napi, poll, weight);
2110 }
2111 
2112 /**
2113  *  netif_napi_del - remove a NAPI context
2114  *  @napi: NAPI context
2115  *
2116  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2117  */
2118 void netif_napi_del(struct napi_struct *napi);
2119 
2120 struct napi_gro_cb {
2121 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2122 	void	*frag0;
2123 
2124 	/* Length of frag0. */
2125 	unsigned int frag0_len;
2126 
2127 	/* This indicates where we are processing relative to skb->data. */
2128 	int	data_offset;
2129 
2130 	/* This is non-zero if the packet cannot be merged with the new skb. */
2131 	u16	flush;
2132 
2133 	/* Save the IP ID here and check when we get to the transport layer */
2134 	u16	flush_id;
2135 
2136 	/* Number of segments aggregated. */
2137 	u16	count;
2138 
2139 	/* Start offset for remote checksum offload */
2140 	u16	gro_remcsum_start;
2141 
2142 	/* jiffies when first packet was created/queued */
2143 	unsigned long age;
2144 
2145 	/* Used in ipv6_gro_receive() and foo-over-udp */
2146 	u16	proto;
2147 
2148 	/* This is non-zero if the packet may be of the same flow. */
2149 	u8	same_flow:1;
2150 
2151 	/* Used in tunnel GRO receive */
2152 	u8	encap_mark:1;
2153 
2154 	/* GRO checksum is valid */
2155 	u8	csum_valid:1;
2156 
2157 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2158 	u8	csum_cnt:3;
2159 
2160 	/* Free the skb? */
2161 	u8	free:2;
2162 #define NAPI_GRO_FREE		  1
2163 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2164 
2165 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2166 	u8	is_ipv6:1;
2167 
2168 	/* Used in GRE, set in fou/gue_gro_receive */
2169 	u8	is_fou:1;
2170 
2171 	/* Used to determine if flush_id can be ignored */
2172 	u8	is_atomic:1;
2173 
2174 	/* Number of gro_receive callbacks this packet already went through */
2175 	u8 recursion_counter:4;
2176 
2177 	/* 1 bit hole */
2178 
2179 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2180 	__wsum	csum;
2181 
2182 	/* used in skb_gro_receive() slow path */
2183 	struct sk_buff *last;
2184 };
2185 
2186 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2187 
2188 #define GRO_RECURSION_LIMIT 15
2189 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2190 {
2191 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2192 }
2193 
2194 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2195 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2196 						struct sk_buff **head,
2197 						struct sk_buff *skb)
2198 {
2199 	if (unlikely(gro_recursion_inc_test(skb))) {
2200 		NAPI_GRO_CB(skb)->flush |= 1;
2201 		return NULL;
2202 	}
2203 
2204 	return cb(head, skb);
2205 }
2206 
2207 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2208 					     struct sk_buff *);
2209 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2210 						   struct sock *sk,
2211 						   struct sk_buff **head,
2212 						   struct sk_buff *skb)
2213 {
2214 	if (unlikely(gro_recursion_inc_test(skb))) {
2215 		NAPI_GRO_CB(skb)->flush |= 1;
2216 		return NULL;
2217 	}
2218 
2219 	return cb(sk, head, skb);
2220 }
2221 
2222 struct packet_type {
2223 	__be16			type;	/* This is really htons(ether_type). */
2224 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2225 	int			(*func) (struct sk_buff *,
2226 					 struct net_device *,
2227 					 struct packet_type *,
2228 					 struct net_device *);
2229 	bool			(*id_match)(struct packet_type *ptype,
2230 					    struct sock *sk);
2231 	void			*af_packet_priv;
2232 	struct list_head	list;
2233 };
2234 
2235 struct offload_callbacks {
2236 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2237 						netdev_features_t features);
2238 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2239 						 struct sk_buff *skb);
2240 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2241 };
2242 
2243 struct packet_offload {
2244 	__be16			 type;	/* This is really htons(ether_type). */
2245 	u16			 priority;
2246 	struct offload_callbacks callbacks;
2247 	struct list_head	 list;
2248 };
2249 
2250 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2251 struct pcpu_sw_netstats {
2252 	u64     rx_packets;
2253 	u64     rx_bytes;
2254 	u64     tx_packets;
2255 	u64     tx_bytes;
2256 	struct u64_stats_sync   syncp;
2257 };
2258 
2259 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2260 ({									\
2261 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2262 	if (pcpu_stats)	{						\
2263 		int __cpu;						\
2264 		for_each_possible_cpu(__cpu) {				\
2265 			typeof(type) *stat;				\
2266 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2267 			u64_stats_init(&stat->syncp);			\
2268 		}							\
2269 	}								\
2270 	pcpu_stats;							\
2271 })
2272 
2273 #define netdev_alloc_pcpu_stats(type)					\
2274 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2275 
2276 enum netdev_lag_tx_type {
2277 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2278 	NETDEV_LAG_TX_TYPE_RANDOM,
2279 	NETDEV_LAG_TX_TYPE_BROADCAST,
2280 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2281 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2282 	NETDEV_LAG_TX_TYPE_HASH,
2283 };
2284 
2285 struct netdev_lag_upper_info {
2286 	enum netdev_lag_tx_type tx_type;
2287 };
2288 
2289 struct netdev_lag_lower_state_info {
2290 	u8 link_up : 1,
2291 	   tx_enabled : 1;
2292 };
2293 
2294 #include <linux/notifier.h>
2295 
2296 /* netdevice notifier chain. Please remember to update the rtnetlink
2297  * notification exclusion list in rtnetlink_event() when adding new
2298  * types.
2299  */
2300 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2301 #define NETDEV_DOWN	0x0002
2302 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2303 				   detected a hardware crash and restarted
2304 				   - we can use this eg to kick tcp sessions
2305 				   once done */
2306 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2307 #define NETDEV_REGISTER 0x0005
2308 #define NETDEV_UNREGISTER	0x0006
2309 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2310 #define NETDEV_CHANGEADDR	0x0008
2311 #define NETDEV_GOING_DOWN	0x0009
2312 #define NETDEV_CHANGENAME	0x000A
2313 #define NETDEV_FEAT_CHANGE	0x000B
2314 #define NETDEV_BONDING_FAILOVER 0x000C
2315 #define NETDEV_PRE_UP		0x000D
2316 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2317 #define NETDEV_POST_TYPE_CHANGE	0x000F
2318 #define NETDEV_POST_INIT	0x0010
2319 #define NETDEV_UNREGISTER_FINAL 0x0011
2320 #define NETDEV_RELEASE		0x0012
2321 #define NETDEV_NOTIFY_PEERS	0x0013
2322 #define NETDEV_JOIN		0x0014
2323 #define NETDEV_CHANGEUPPER	0x0015
2324 #define NETDEV_RESEND_IGMP	0x0016
2325 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2326 #define NETDEV_CHANGEINFODATA	0x0018
2327 #define NETDEV_BONDING_INFO	0x0019
2328 #define NETDEV_PRECHANGEUPPER	0x001A
2329 #define NETDEV_CHANGELOWERSTATE	0x001B
2330 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2331 #define NETDEV_UDP_TUNNEL_DROP_INFO	0x001D
2332 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2333 
2334 int register_netdevice_notifier(struct notifier_block *nb);
2335 int unregister_netdevice_notifier(struct notifier_block *nb);
2336 
2337 struct netdev_notifier_info {
2338 	struct net_device	*dev;
2339 	struct netlink_ext_ack	*extack;
2340 };
2341 
2342 struct netdev_notifier_change_info {
2343 	struct netdev_notifier_info info; /* must be first */
2344 	unsigned int flags_changed;
2345 };
2346 
2347 struct netdev_notifier_changeupper_info {
2348 	struct netdev_notifier_info info; /* must be first */
2349 	struct net_device *upper_dev; /* new upper dev */
2350 	bool master; /* is upper dev master */
2351 	bool linking; /* is the notification for link or unlink */
2352 	void *upper_info; /* upper dev info */
2353 };
2354 
2355 struct netdev_notifier_changelowerstate_info {
2356 	struct netdev_notifier_info info; /* must be first */
2357 	void *lower_state_info; /* is lower dev state */
2358 };
2359 
2360 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2361 					     struct net_device *dev)
2362 {
2363 	info->dev = dev;
2364 	info->extack = NULL;
2365 }
2366 
2367 static inline struct net_device *
2368 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2369 {
2370 	return info->dev;
2371 }
2372 
2373 static inline struct netlink_ext_ack *
2374 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2375 {
2376 	return info->extack;
2377 }
2378 
2379 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2380 
2381 
2382 extern rwlock_t				dev_base_lock;		/* Device list lock */
2383 
2384 #define for_each_netdev(net, d)		\
2385 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2386 #define for_each_netdev_reverse(net, d)	\
2387 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2388 #define for_each_netdev_rcu(net, d)		\
2389 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2390 #define for_each_netdev_safe(net, d, n)	\
2391 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2392 #define for_each_netdev_continue(net, d)		\
2393 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2394 #define for_each_netdev_continue_rcu(net, d)		\
2395 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2396 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2397 		for_each_netdev_rcu(&init_net, slave)	\
2398 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2399 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2400 
2401 static inline struct net_device *next_net_device(struct net_device *dev)
2402 {
2403 	struct list_head *lh;
2404 	struct net *net;
2405 
2406 	net = dev_net(dev);
2407 	lh = dev->dev_list.next;
2408 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2409 }
2410 
2411 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2412 {
2413 	struct list_head *lh;
2414 	struct net *net;
2415 
2416 	net = dev_net(dev);
2417 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2418 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2419 }
2420 
2421 static inline struct net_device *first_net_device(struct net *net)
2422 {
2423 	return list_empty(&net->dev_base_head) ? NULL :
2424 		net_device_entry(net->dev_base_head.next);
2425 }
2426 
2427 static inline struct net_device *first_net_device_rcu(struct net *net)
2428 {
2429 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2430 
2431 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2432 }
2433 
2434 int netdev_boot_setup_check(struct net_device *dev);
2435 unsigned long netdev_boot_base(const char *prefix, int unit);
2436 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2437 				       const char *hwaddr);
2438 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2439 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2440 void dev_add_pack(struct packet_type *pt);
2441 void dev_remove_pack(struct packet_type *pt);
2442 void __dev_remove_pack(struct packet_type *pt);
2443 void dev_add_offload(struct packet_offload *po);
2444 void dev_remove_offload(struct packet_offload *po);
2445 
2446 int dev_get_iflink(const struct net_device *dev);
2447 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2448 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2449 				      unsigned short mask);
2450 struct net_device *dev_get_by_name(struct net *net, const char *name);
2451 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2452 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2453 int dev_alloc_name(struct net_device *dev, const char *name);
2454 int dev_open(struct net_device *dev);
2455 void dev_close(struct net_device *dev);
2456 void dev_close_many(struct list_head *head, bool unlink);
2457 void dev_disable_lro(struct net_device *dev);
2458 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2459 int dev_queue_xmit(struct sk_buff *skb);
2460 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2461 int register_netdevice(struct net_device *dev);
2462 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2463 void unregister_netdevice_many(struct list_head *head);
2464 static inline void unregister_netdevice(struct net_device *dev)
2465 {
2466 	unregister_netdevice_queue(dev, NULL);
2467 }
2468 
2469 int netdev_refcnt_read(const struct net_device *dev);
2470 void free_netdev(struct net_device *dev);
2471 void netdev_freemem(struct net_device *dev);
2472 void synchronize_net(void);
2473 int init_dummy_netdev(struct net_device *dev);
2474 
2475 DECLARE_PER_CPU(int, xmit_recursion);
2476 #define XMIT_RECURSION_LIMIT	10
2477 
2478 static inline int dev_recursion_level(void)
2479 {
2480 	return this_cpu_read(xmit_recursion);
2481 }
2482 
2483 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2484 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2485 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2486 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2487 int netdev_get_name(struct net *net, char *name, int ifindex);
2488 int dev_restart(struct net_device *dev);
2489 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2490 
2491 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2492 {
2493 	return NAPI_GRO_CB(skb)->data_offset;
2494 }
2495 
2496 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2497 {
2498 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2499 }
2500 
2501 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2502 {
2503 	NAPI_GRO_CB(skb)->data_offset += len;
2504 }
2505 
2506 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2507 					unsigned int offset)
2508 {
2509 	return NAPI_GRO_CB(skb)->frag0 + offset;
2510 }
2511 
2512 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2513 {
2514 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2515 }
2516 
2517 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2518 {
2519 	NAPI_GRO_CB(skb)->frag0 = NULL;
2520 	NAPI_GRO_CB(skb)->frag0_len = 0;
2521 }
2522 
2523 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2524 					unsigned int offset)
2525 {
2526 	if (!pskb_may_pull(skb, hlen))
2527 		return NULL;
2528 
2529 	skb_gro_frag0_invalidate(skb);
2530 	return skb->data + offset;
2531 }
2532 
2533 static inline void *skb_gro_network_header(struct sk_buff *skb)
2534 {
2535 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2536 	       skb_network_offset(skb);
2537 }
2538 
2539 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2540 					const void *start, unsigned int len)
2541 {
2542 	if (NAPI_GRO_CB(skb)->csum_valid)
2543 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2544 						  csum_partial(start, len, 0));
2545 }
2546 
2547 /* GRO checksum functions. These are logical equivalents of the normal
2548  * checksum functions (in skbuff.h) except that they operate on the GRO
2549  * offsets and fields in sk_buff.
2550  */
2551 
2552 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2553 
2554 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2555 {
2556 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2557 }
2558 
2559 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2560 						      bool zero_okay,
2561 						      __sum16 check)
2562 {
2563 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2564 		skb_checksum_start_offset(skb) <
2565 		 skb_gro_offset(skb)) &&
2566 		!skb_at_gro_remcsum_start(skb) &&
2567 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2568 		(!zero_okay || check));
2569 }
2570 
2571 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2572 							   __wsum psum)
2573 {
2574 	if (NAPI_GRO_CB(skb)->csum_valid &&
2575 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2576 		return 0;
2577 
2578 	NAPI_GRO_CB(skb)->csum = psum;
2579 
2580 	return __skb_gro_checksum_complete(skb);
2581 }
2582 
2583 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2584 {
2585 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2586 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2587 		NAPI_GRO_CB(skb)->csum_cnt--;
2588 	} else {
2589 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2590 		 * verified a new top level checksum or an encapsulated one
2591 		 * during GRO. This saves work if we fallback to normal path.
2592 		 */
2593 		__skb_incr_checksum_unnecessary(skb);
2594 	}
2595 }
2596 
2597 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2598 				    compute_pseudo)			\
2599 ({									\
2600 	__sum16 __ret = 0;						\
2601 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2602 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2603 				compute_pseudo(skb, proto));		\
2604 	if (!__ret)							\
2605 		skb_gro_incr_csum_unnecessary(skb);			\
2606 	__ret;								\
2607 })
2608 
2609 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2610 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2611 
2612 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2613 					     compute_pseudo)		\
2614 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2615 
2616 #define skb_gro_checksum_simple_validate(skb)				\
2617 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2618 
2619 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2620 {
2621 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2622 		!NAPI_GRO_CB(skb)->csum_valid);
2623 }
2624 
2625 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2626 					      __sum16 check, __wsum pseudo)
2627 {
2628 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2629 	NAPI_GRO_CB(skb)->csum_valid = 1;
2630 }
2631 
2632 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2633 do {									\
2634 	if (__skb_gro_checksum_convert_check(skb))			\
2635 		__skb_gro_checksum_convert(skb, check,			\
2636 					   compute_pseudo(skb, proto));	\
2637 } while (0)
2638 
2639 struct gro_remcsum {
2640 	int offset;
2641 	__wsum delta;
2642 };
2643 
2644 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2645 {
2646 	grc->offset = 0;
2647 	grc->delta = 0;
2648 }
2649 
2650 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2651 					    unsigned int off, size_t hdrlen,
2652 					    int start, int offset,
2653 					    struct gro_remcsum *grc,
2654 					    bool nopartial)
2655 {
2656 	__wsum delta;
2657 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2658 
2659 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2660 
2661 	if (!nopartial) {
2662 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2663 		return ptr;
2664 	}
2665 
2666 	ptr = skb_gro_header_fast(skb, off);
2667 	if (skb_gro_header_hard(skb, off + plen)) {
2668 		ptr = skb_gro_header_slow(skb, off + plen, off);
2669 		if (!ptr)
2670 			return NULL;
2671 	}
2672 
2673 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2674 			       start, offset);
2675 
2676 	/* Adjust skb->csum since we changed the packet */
2677 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2678 
2679 	grc->offset = off + hdrlen + offset;
2680 	grc->delta = delta;
2681 
2682 	return ptr;
2683 }
2684 
2685 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2686 					   struct gro_remcsum *grc)
2687 {
2688 	void *ptr;
2689 	size_t plen = grc->offset + sizeof(u16);
2690 
2691 	if (!grc->delta)
2692 		return;
2693 
2694 	ptr = skb_gro_header_fast(skb, grc->offset);
2695 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2696 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2697 		if (!ptr)
2698 			return;
2699 	}
2700 
2701 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2702 }
2703 
2704 #ifdef CONFIG_XFRM_OFFLOAD
2705 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2706 {
2707 	if (PTR_ERR(pp) != -EINPROGRESS)
2708 		NAPI_GRO_CB(skb)->flush |= flush;
2709 }
2710 #else
2711 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2712 {
2713 	NAPI_GRO_CB(skb)->flush |= flush;
2714 }
2715 #endif
2716 
2717 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2718 				  unsigned short type,
2719 				  const void *daddr, const void *saddr,
2720 				  unsigned int len)
2721 {
2722 	if (!dev->header_ops || !dev->header_ops->create)
2723 		return 0;
2724 
2725 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2726 }
2727 
2728 static inline int dev_parse_header(const struct sk_buff *skb,
2729 				   unsigned char *haddr)
2730 {
2731 	const struct net_device *dev = skb->dev;
2732 
2733 	if (!dev->header_ops || !dev->header_ops->parse)
2734 		return 0;
2735 	return dev->header_ops->parse(skb, haddr);
2736 }
2737 
2738 /* ll_header must have at least hard_header_len allocated */
2739 static inline bool dev_validate_header(const struct net_device *dev,
2740 				       char *ll_header, int len)
2741 {
2742 	if (likely(len >= dev->hard_header_len))
2743 		return true;
2744 	if (len < dev->min_header_len)
2745 		return false;
2746 
2747 	if (capable(CAP_SYS_RAWIO)) {
2748 		memset(ll_header + len, 0, dev->hard_header_len - len);
2749 		return true;
2750 	}
2751 
2752 	if (dev->header_ops && dev->header_ops->validate)
2753 		return dev->header_ops->validate(ll_header, len);
2754 
2755 	return false;
2756 }
2757 
2758 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2759 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2760 static inline int unregister_gifconf(unsigned int family)
2761 {
2762 	return register_gifconf(family, NULL);
2763 }
2764 
2765 #ifdef CONFIG_NET_FLOW_LIMIT
2766 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2767 struct sd_flow_limit {
2768 	u64			count;
2769 	unsigned int		num_buckets;
2770 	unsigned int		history_head;
2771 	u16			history[FLOW_LIMIT_HISTORY];
2772 	u8			buckets[];
2773 };
2774 
2775 extern int netdev_flow_limit_table_len;
2776 #endif /* CONFIG_NET_FLOW_LIMIT */
2777 
2778 /*
2779  * Incoming packets are placed on per-CPU queues
2780  */
2781 struct softnet_data {
2782 	struct list_head	poll_list;
2783 	struct sk_buff_head	process_queue;
2784 
2785 	/* stats */
2786 	unsigned int		processed;
2787 	unsigned int		time_squeeze;
2788 	unsigned int		received_rps;
2789 #ifdef CONFIG_RPS
2790 	struct softnet_data	*rps_ipi_list;
2791 #endif
2792 #ifdef CONFIG_NET_FLOW_LIMIT
2793 	struct sd_flow_limit __rcu *flow_limit;
2794 #endif
2795 	struct Qdisc		*output_queue;
2796 	struct Qdisc		**output_queue_tailp;
2797 	struct sk_buff		*completion_queue;
2798 #ifdef CONFIG_XFRM_OFFLOAD
2799 	struct sk_buff_head	xfrm_backlog;
2800 #endif
2801 #ifdef CONFIG_RPS
2802 	/* input_queue_head should be written by cpu owning this struct,
2803 	 * and only read by other cpus. Worth using a cache line.
2804 	 */
2805 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2806 
2807 	/* Elements below can be accessed between CPUs for RPS/RFS */
2808 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2809 	struct softnet_data	*rps_ipi_next;
2810 	unsigned int		cpu;
2811 	unsigned int		input_queue_tail;
2812 #endif
2813 	unsigned int		dropped;
2814 	struct sk_buff_head	input_pkt_queue;
2815 	struct napi_struct	backlog;
2816 
2817 };
2818 
2819 static inline void input_queue_head_incr(struct softnet_data *sd)
2820 {
2821 #ifdef CONFIG_RPS
2822 	sd->input_queue_head++;
2823 #endif
2824 }
2825 
2826 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2827 					      unsigned int *qtail)
2828 {
2829 #ifdef CONFIG_RPS
2830 	*qtail = ++sd->input_queue_tail;
2831 #endif
2832 }
2833 
2834 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2835 
2836 void __netif_schedule(struct Qdisc *q);
2837 void netif_schedule_queue(struct netdev_queue *txq);
2838 
2839 static inline void netif_tx_schedule_all(struct net_device *dev)
2840 {
2841 	unsigned int i;
2842 
2843 	for (i = 0; i < dev->num_tx_queues; i++)
2844 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2845 }
2846 
2847 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2848 {
2849 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2850 }
2851 
2852 /**
2853  *	netif_start_queue - allow transmit
2854  *	@dev: network device
2855  *
2856  *	Allow upper layers to call the device hard_start_xmit routine.
2857  */
2858 static inline void netif_start_queue(struct net_device *dev)
2859 {
2860 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2861 }
2862 
2863 static inline void netif_tx_start_all_queues(struct net_device *dev)
2864 {
2865 	unsigned int i;
2866 
2867 	for (i = 0; i < dev->num_tx_queues; i++) {
2868 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2869 		netif_tx_start_queue(txq);
2870 	}
2871 }
2872 
2873 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2874 
2875 /**
2876  *	netif_wake_queue - restart transmit
2877  *	@dev: network device
2878  *
2879  *	Allow upper layers to call the device hard_start_xmit routine.
2880  *	Used for flow control when transmit resources are available.
2881  */
2882 static inline void netif_wake_queue(struct net_device *dev)
2883 {
2884 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2885 }
2886 
2887 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2888 {
2889 	unsigned int i;
2890 
2891 	for (i = 0; i < dev->num_tx_queues; i++) {
2892 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2893 		netif_tx_wake_queue(txq);
2894 	}
2895 }
2896 
2897 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2898 {
2899 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2900 }
2901 
2902 /**
2903  *	netif_stop_queue - stop transmitted packets
2904  *	@dev: network device
2905  *
2906  *	Stop upper layers calling the device hard_start_xmit routine.
2907  *	Used for flow control when transmit resources are unavailable.
2908  */
2909 static inline void netif_stop_queue(struct net_device *dev)
2910 {
2911 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2912 }
2913 
2914 void netif_tx_stop_all_queues(struct net_device *dev);
2915 
2916 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2917 {
2918 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2919 }
2920 
2921 /**
2922  *	netif_queue_stopped - test if transmit queue is flowblocked
2923  *	@dev: network device
2924  *
2925  *	Test if transmit queue on device is currently unable to send.
2926  */
2927 static inline bool netif_queue_stopped(const struct net_device *dev)
2928 {
2929 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2930 }
2931 
2932 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2933 {
2934 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2935 }
2936 
2937 static inline bool
2938 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2939 {
2940 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2941 }
2942 
2943 static inline bool
2944 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2945 {
2946 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2947 }
2948 
2949 /**
2950  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2951  *	@dev_queue: pointer to transmit queue
2952  *
2953  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2954  * to give appropriate hint to the CPU.
2955  */
2956 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2957 {
2958 #ifdef CONFIG_BQL
2959 	prefetchw(&dev_queue->dql.num_queued);
2960 #endif
2961 }
2962 
2963 /**
2964  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2965  *	@dev_queue: pointer to transmit queue
2966  *
2967  * BQL enabled drivers might use this helper in their TX completion path,
2968  * to give appropriate hint to the CPU.
2969  */
2970 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2971 {
2972 #ifdef CONFIG_BQL
2973 	prefetchw(&dev_queue->dql.limit);
2974 #endif
2975 }
2976 
2977 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2978 					unsigned int bytes)
2979 {
2980 #ifdef CONFIG_BQL
2981 	dql_queued(&dev_queue->dql, bytes);
2982 
2983 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2984 		return;
2985 
2986 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2987 
2988 	/*
2989 	 * The XOFF flag must be set before checking the dql_avail below,
2990 	 * because in netdev_tx_completed_queue we update the dql_completed
2991 	 * before checking the XOFF flag.
2992 	 */
2993 	smp_mb();
2994 
2995 	/* check again in case another CPU has just made room avail */
2996 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2997 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2998 #endif
2999 }
3000 
3001 /**
3002  * 	netdev_sent_queue - report the number of bytes queued to hardware
3003  * 	@dev: network device
3004  * 	@bytes: number of bytes queued to the hardware device queue
3005  *
3006  * 	Report the number of bytes queued for sending/completion to the network
3007  * 	device hardware queue. @bytes should be a good approximation and should
3008  * 	exactly match netdev_completed_queue() @bytes
3009  */
3010 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3011 {
3012 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3013 }
3014 
3015 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3016 					     unsigned int pkts, unsigned int bytes)
3017 {
3018 #ifdef CONFIG_BQL
3019 	if (unlikely(!bytes))
3020 		return;
3021 
3022 	dql_completed(&dev_queue->dql, bytes);
3023 
3024 	/*
3025 	 * Without the memory barrier there is a small possiblity that
3026 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3027 	 * be stopped forever
3028 	 */
3029 	smp_mb();
3030 
3031 	if (dql_avail(&dev_queue->dql) < 0)
3032 		return;
3033 
3034 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3035 		netif_schedule_queue(dev_queue);
3036 #endif
3037 }
3038 
3039 /**
3040  * 	netdev_completed_queue - report bytes and packets completed by device
3041  * 	@dev: network device
3042  * 	@pkts: actual number of packets sent over the medium
3043  * 	@bytes: actual number of bytes sent over the medium
3044  *
3045  * 	Report the number of bytes and packets transmitted by the network device
3046  * 	hardware queue over the physical medium, @bytes must exactly match the
3047  * 	@bytes amount passed to netdev_sent_queue()
3048  */
3049 static inline void netdev_completed_queue(struct net_device *dev,
3050 					  unsigned int pkts, unsigned int bytes)
3051 {
3052 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3053 }
3054 
3055 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3056 {
3057 #ifdef CONFIG_BQL
3058 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3059 	dql_reset(&q->dql);
3060 #endif
3061 }
3062 
3063 /**
3064  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3065  * 	@dev_queue: network device
3066  *
3067  * 	Reset the bytes and packet count of a network device and clear the
3068  * 	software flow control OFF bit for this network device
3069  */
3070 static inline void netdev_reset_queue(struct net_device *dev_queue)
3071 {
3072 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3073 }
3074 
3075 /**
3076  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3077  * 	@dev: network device
3078  * 	@queue_index: given tx queue index
3079  *
3080  * 	Returns 0 if given tx queue index >= number of device tx queues,
3081  * 	otherwise returns the originally passed tx queue index.
3082  */
3083 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3084 {
3085 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3086 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3087 				     dev->name, queue_index,
3088 				     dev->real_num_tx_queues);
3089 		return 0;
3090 	}
3091 
3092 	return queue_index;
3093 }
3094 
3095 /**
3096  *	netif_running - test if up
3097  *	@dev: network device
3098  *
3099  *	Test if the device has been brought up.
3100  */
3101 static inline bool netif_running(const struct net_device *dev)
3102 {
3103 	return test_bit(__LINK_STATE_START, &dev->state);
3104 }
3105 
3106 /*
3107  * Routines to manage the subqueues on a device.  We only need start,
3108  * stop, and a check if it's stopped.  All other device management is
3109  * done at the overall netdevice level.
3110  * Also test the device if we're multiqueue.
3111  */
3112 
3113 /**
3114  *	netif_start_subqueue - allow sending packets on subqueue
3115  *	@dev: network device
3116  *	@queue_index: sub queue index
3117  *
3118  * Start individual transmit queue of a device with multiple transmit queues.
3119  */
3120 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3121 {
3122 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3123 
3124 	netif_tx_start_queue(txq);
3125 }
3126 
3127 /**
3128  *	netif_stop_subqueue - stop sending packets on subqueue
3129  *	@dev: network device
3130  *	@queue_index: sub queue index
3131  *
3132  * Stop individual transmit queue of a device with multiple transmit queues.
3133  */
3134 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3135 {
3136 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3137 	netif_tx_stop_queue(txq);
3138 }
3139 
3140 /**
3141  *	netif_subqueue_stopped - test status of subqueue
3142  *	@dev: network device
3143  *	@queue_index: sub queue index
3144  *
3145  * Check individual transmit queue of a device with multiple transmit queues.
3146  */
3147 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3148 					    u16 queue_index)
3149 {
3150 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3151 
3152 	return netif_tx_queue_stopped(txq);
3153 }
3154 
3155 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3156 					  struct sk_buff *skb)
3157 {
3158 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3159 }
3160 
3161 /**
3162  *	netif_wake_subqueue - allow sending packets on subqueue
3163  *	@dev: network device
3164  *	@queue_index: sub queue index
3165  *
3166  * Resume individual transmit queue of a device with multiple transmit queues.
3167  */
3168 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3169 {
3170 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3171 
3172 	netif_tx_wake_queue(txq);
3173 }
3174 
3175 #ifdef CONFIG_XPS
3176 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3177 			u16 index);
3178 #else
3179 static inline int netif_set_xps_queue(struct net_device *dev,
3180 				      const struct cpumask *mask,
3181 				      u16 index)
3182 {
3183 	return 0;
3184 }
3185 #endif
3186 
3187 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3188 		  unsigned int num_tx_queues);
3189 
3190 /*
3191  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3192  * as a distribution range limit for the returned value.
3193  */
3194 static inline u16 skb_tx_hash(const struct net_device *dev,
3195 			      struct sk_buff *skb)
3196 {
3197 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3198 }
3199 
3200 /**
3201  *	netif_is_multiqueue - test if device has multiple transmit queues
3202  *	@dev: network device
3203  *
3204  * Check if device has multiple transmit queues
3205  */
3206 static inline bool netif_is_multiqueue(const struct net_device *dev)
3207 {
3208 	return dev->num_tx_queues > 1;
3209 }
3210 
3211 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3212 
3213 #ifdef CONFIG_SYSFS
3214 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3215 #else
3216 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3217 						unsigned int rxq)
3218 {
3219 	return 0;
3220 }
3221 #endif
3222 
3223 #ifdef CONFIG_SYSFS
3224 static inline unsigned int get_netdev_rx_queue_index(
3225 		struct netdev_rx_queue *queue)
3226 {
3227 	struct net_device *dev = queue->dev;
3228 	int index = queue - dev->_rx;
3229 
3230 	BUG_ON(index >= dev->num_rx_queues);
3231 	return index;
3232 }
3233 #endif
3234 
3235 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3236 int netif_get_num_default_rss_queues(void);
3237 
3238 enum skb_free_reason {
3239 	SKB_REASON_CONSUMED,
3240 	SKB_REASON_DROPPED,
3241 };
3242 
3243 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3244 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3245 
3246 /*
3247  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3248  * interrupt context or with hardware interrupts being disabled.
3249  * (in_irq() || irqs_disabled())
3250  *
3251  * We provide four helpers that can be used in following contexts :
3252  *
3253  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3254  *  replacing kfree_skb(skb)
3255  *
3256  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3257  *  Typically used in place of consume_skb(skb) in TX completion path
3258  *
3259  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3260  *  replacing kfree_skb(skb)
3261  *
3262  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3263  *  and consumed a packet. Used in place of consume_skb(skb)
3264  */
3265 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3266 {
3267 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3268 }
3269 
3270 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3271 {
3272 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3273 }
3274 
3275 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3276 {
3277 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3278 }
3279 
3280 static inline void dev_consume_skb_any(struct sk_buff *skb)
3281 {
3282 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3283 }
3284 
3285 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3286 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3287 int netif_rx(struct sk_buff *skb);
3288 int netif_rx_ni(struct sk_buff *skb);
3289 int netif_receive_skb(struct sk_buff *skb);
3290 int netif_receive_skb_core(struct sk_buff *skb);
3291 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3292 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3293 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3294 gro_result_t napi_gro_frags(struct napi_struct *napi);
3295 struct packet_offload *gro_find_receive_by_type(__be16 type);
3296 struct packet_offload *gro_find_complete_by_type(__be16 type);
3297 
3298 static inline void napi_free_frags(struct napi_struct *napi)
3299 {
3300 	kfree_skb(napi->skb);
3301 	napi->skb = NULL;
3302 }
3303 
3304 bool netdev_is_rx_handler_busy(struct net_device *dev);
3305 int netdev_rx_handler_register(struct net_device *dev,
3306 			       rx_handler_func_t *rx_handler,
3307 			       void *rx_handler_data);
3308 void netdev_rx_handler_unregister(struct net_device *dev);
3309 
3310 bool dev_valid_name(const char *name);
3311 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3312 int dev_ethtool(struct net *net, struct ifreq *);
3313 unsigned int dev_get_flags(const struct net_device *);
3314 int __dev_change_flags(struct net_device *, unsigned int flags);
3315 int dev_change_flags(struct net_device *, unsigned int);
3316 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3317 			unsigned int gchanges);
3318 int dev_change_name(struct net_device *, const char *);
3319 int dev_set_alias(struct net_device *, const char *, size_t);
3320 int dev_get_alias(const struct net_device *, char *, size_t);
3321 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3322 int __dev_set_mtu(struct net_device *, int);
3323 int dev_set_mtu(struct net_device *, int);
3324 void dev_set_group(struct net_device *, int);
3325 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3326 int dev_change_carrier(struct net_device *, bool new_carrier);
3327 int dev_get_phys_port_id(struct net_device *dev,
3328 			 struct netdev_phys_item_id *ppid);
3329 int dev_get_phys_port_name(struct net_device *dev,
3330 			   char *name, size_t len);
3331 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3332 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3333 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3334 				    struct netdev_queue *txq, int *ret);
3335 
3336 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3337 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3338 		      int fd, u32 flags);
3339 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3340 		     struct netdev_bpf *xdp);
3341 
3342 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3343 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3344 bool is_skb_forwardable(const struct net_device *dev,
3345 			const struct sk_buff *skb);
3346 
3347 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3348 					       struct sk_buff *skb)
3349 {
3350 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3351 	    unlikely(!is_skb_forwardable(dev, skb))) {
3352 		atomic_long_inc(&dev->rx_dropped);
3353 		kfree_skb(skb);
3354 		return NET_RX_DROP;
3355 	}
3356 
3357 	skb_scrub_packet(skb, true);
3358 	skb->priority = 0;
3359 	return 0;
3360 }
3361 
3362 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3363 
3364 extern int		netdev_budget;
3365 extern unsigned int	netdev_budget_usecs;
3366 
3367 /* Called by rtnetlink.c:rtnl_unlock() */
3368 void netdev_run_todo(void);
3369 
3370 /**
3371  *	dev_put - release reference to device
3372  *	@dev: network device
3373  *
3374  * Release reference to device to allow it to be freed.
3375  */
3376 static inline void dev_put(struct net_device *dev)
3377 {
3378 	this_cpu_dec(*dev->pcpu_refcnt);
3379 }
3380 
3381 /**
3382  *	dev_hold - get reference to device
3383  *	@dev: network device
3384  *
3385  * Hold reference to device to keep it from being freed.
3386  */
3387 static inline void dev_hold(struct net_device *dev)
3388 {
3389 	this_cpu_inc(*dev->pcpu_refcnt);
3390 }
3391 
3392 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3393  * and _off may be called from IRQ context, but it is caller
3394  * who is responsible for serialization of these calls.
3395  *
3396  * The name carrier is inappropriate, these functions should really be
3397  * called netif_lowerlayer_*() because they represent the state of any
3398  * kind of lower layer not just hardware media.
3399  */
3400 
3401 void linkwatch_init_dev(struct net_device *dev);
3402 void linkwatch_fire_event(struct net_device *dev);
3403 void linkwatch_forget_dev(struct net_device *dev);
3404 
3405 /**
3406  *	netif_carrier_ok - test if carrier present
3407  *	@dev: network device
3408  *
3409  * Check if carrier is present on device
3410  */
3411 static inline bool netif_carrier_ok(const struct net_device *dev)
3412 {
3413 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3414 }
3415 
3416 unsigned long dev_trans_start(struct net_device *dev);
3417 
3418 void __netdev_watchdog_up(struct net_device *dev);
3419 
3420 void netif_carrier_on(struct net_device *dev);
3421 
3422 void netif_carrier_off(struct net_device *dev);
3423 
3424 /**
3425  *	netif_dormant_on - mark device as dormant.
3426  *	@dev: network device
3427  *
3428  * Mark device as dormant (as per RFC2863).
3429  *
3430  * The dormant state indicates that the relevant interface is not
3431  * actually in a condition to pass packets (i.e., it is not 'up') but is
3432  * in a "pending" state, waiting for some external event.  For "on-
3433  * demand" interfaces, this new state identifies the situation where the
3434  * interface is waiting for events to place it in the up state.
3435  */
3436 static inline void netif_dormant_on(struct net_device *dev)
3437 {
3438 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3439 		linkwatch_fire_event(dev);
3440 }
3441 
3442 /**
3443  *	netif_dormant_off - set device as not dormant.
3444  *	@dev: network device
3445  *
3446  * Device is not in dormant state.
3447  */
3448 static inline void netif_dormant_off(struct net_device *dev)
3449 {
3450 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3451 		linkwatch_fire_event(dev);
3452 }
3453 
3454 /**
3455  *	netif_dormant - test if device is dormant
3456  *	@dev: network device
3457  *
3458  * Check if device is dormant.
3459  */
3460 static inline bool netif_dormant(const struct net_device *dev)
3461 {
3462 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3463 }
3464 
3465 
3466 /**
3467  *	netif_oper_up - test if device is operational
3468  *	@dev: network device
3469  *
3470  * Check if carrier is operational
3471  */
3472 static inline bool netif_oper_up(const struct net_device *dev)
3473 {
3474 	return (dev->operstate == IF_OPER_UP ||
3475 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3476 }
3477 
3478 /**
3479  *	netif_device_present - is device available or removed
3480  *	@dev: network device
3481  *
3482  * Check if device has not been removed from system.
3483  */
3484 static inline bool netif_device_present(struct net_device *dev)
3485 {
3486 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3487 }
3488 
3489 void netif_device_detach(struct net_device *dev);
3490 
3491 void netif_device_attach(struct net_device *dev);
3492 
3493 /*
3494  * Network interface message level settings
3495  */
3496 
3497 enum {
3498 	NETIF_MSG_DRV		= 0x0001,
3499 	NETIF_MSG_PROBE		= 0x0002,
3500 	NETIF_MSG_LINK		= 0x0004,
3501 	NETIF_MSG_TIMER		= 0x0008,
3502 	NETIF_MSG_IFDOWN	= 0x0010,
3503 	NETIF_MSG_IFUP		= 0x0020,
3504 	NETIF_MSG_RX_ERR	= 0x0040,
3505 	NETIF_MSG_TX_ERR	= 0x0080,
3506 	NETIF_MSG_TX_QUEUED	= 0x0100,
3507 	NETIF_MSG_INTR		= 0x0200,
3508 	NETIF_MSG_TX_DONE	= 0x0400,
3509 	NETIF_MSG_RX_STATUS	= 0x0800,
3510 	NETIF_MSG_PKTDATA	= 0x1000,
3511 	NETIF_MSG_HW		= 0x2000,
3512 	NETIF_MSG_WOL		= 0x4000,
3513 };
3514 
3515 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3516 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3517 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3518 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3519 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3520 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3521 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3522 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3523 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3524 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3525 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3526 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3527 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3528 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3529 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3530 
3531 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3532 {
3533 	/* use default */
3534 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3535 		return default_msg_enable_bits;
3536 	if (debug_value == 0)	/* no output */
3537 		return 0;
3538 	/* set low N bits */
3539 	return (1 << debug_value) - 1;
3540 }
3541 
3542 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3543 {
3544 	spin_lock(&txq->_xmit_lock);
3545 	txq->xmit_lock_owner = cpu;
3546 }
3547 
3548 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3549 {
3550 	__acquire(&txq->_xmit_lock);
3551 	return true;
3552 }
3553 
3554 static inline void __netif_tx_release(struct netdev_queue *txq)
3555 {
3556 	__release(&txq->_xmit_lock);
3557 }
3558 
3559 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3560 {
3561 	spin_lock_bh(&txq->_xmit_lock);
3562 	txq->xmit_lock_owner = smp_processor_id();
3563 }
3564 
3565 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3566 {
3567 	bool ok = spin_trylock(&txq->_xmit_lock);
3568 	if (likely(ok))
3569 		txq->xmit_lock_owner = smp_processor_id();
3570 	return ok;
3571 }
3572 
3573 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3574 {
3575 	txq->xmit_lock_owner = -1;
3576 	spin_unlock(&txq->_xmit_lock);
3577 }
3578 
3579 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3580 {
3581 	txq->xmit_lock_owner = -1;
3582 	spin_unlock_bh(&txq->_xmit_lock);
3583 }
3584 
3585 static inline void txq_trans_update(struct netdev_queue *txq)
3586 {
3587 	if (txq->xmit_lock_owner != -1)
3588 		txq->trans_start = jiffies;
3589 }
3590 
3591 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3592 static inline void netif_trans_update(struct net_device *dev)
3593 {
3594 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3595 
3596 	if (txq->trans_start != jiffies)
3597 		txq->trans_start = jiffies;
3598 }
3599 
3600 /**
3601  *	netif_tx_lock - grab network device transmit lock
3602  *	@dev: network device
3603  *
3604  * Get network device transmit lock
3605  */
3606 static inline void netif_tx_lock(struct net_device *dev)
3607 {
3608 	unsigned int i;
3609 	int cpu;
3610 
3611 	spin_lock(&dev->tx_global_lock);
3612 	cpu = smp_processor_id();
3613 	for (i = 0; i < dev->num_tx_queues; i++) {
3614 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3615 
3616 		/* We are the only thread of execution doing a
3617 		 * freeze, but we have to grab the _xmit_lock in
3618 		 * order to synchronize with threads which are in
3619 		 * the ->hard_start_xmit() handler and already
3620 		 * checked the frozen bit.
3621 		 */
3622 		__netif_tx_lock(txq, cpu);
3623 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3624 		__netif_tx_unlock(txq);
3625 	}
3626 }
3627 
3628 static inline void netif_tx_lock_bh(struct net_device *dev)
3629 {
3630 	local_bh_disable();
3631 	netif_tx_lock(dev);
3632 }
3633 
3634 static inline void netif_tx_unlock(struct net_device *dev)
3635 {
3636 	unsigned int i;
3637 
3638 	for (i = 0; i < dev->num_tx_queues; i++) {
3639 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3640 
3641 		/* No need to grab the _xmit_lock here.  If the
3642 		 * queue is not stopped for another reason, we
3643 		 * force a schedule.
3644 		 */
3645 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3646 		netif_schedule_queue(txq);
3647 	}
3648 	spin_unlock(&dev->tx_global_lock);
3649 }
3650 
3651 static inline void netif_tx_unlock_bh(struct net_device *dev)
3652 {
3653 	netif_tx_unlock(dev);
3654 	local_bh_enable();
3655 }
3656 
3657 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3658 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3659 		__netif_tx_lock(txq, cpu);		\
3660 	} else {					\
3661 		__netif_tx_acquire(txq);		\
3662 	}						\
3663 }
3664 
3665 #define HARD_TX_TRYLOCK(dev, txq)			\
3666 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3667 		__netif_tx_trylock(txq) :		\
3668 		__netif_tx_acquire(txq))
3669 
3670 #define HARD_TX_UNLOCK(dev, txq) {			\
3671 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3672 		__netif_tx_unlock(txq);			\
3673 	} else {					\
3674 		__netif_tx_release(txq);		\
3675 	}						\
3676 }
3677 
3678 static inline void netif_tx_disable(struct net_device *dev)
3679 {
3680 	unsigned int i;
3681 	int cpu;
3682 
3683 	local_bh_disable();
3684 	cpu = smp_processor_id();
3685 	for (i = 0; i < dev->num_tx_queues; i++) {
3686 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3687 
3688 		__netif_tx_lock(txq, cpu);
3689 		netif_tx_stop_queue(txq);
3690 		__netif_tx_unlock(txq);
3691 	}
3692 	local_bh_enable();
3693 }
3694 
3695 static inline void netif_addr_lock(struct net_device *dev)
3696 {
3697 	spin_lock(&dev->addr_list_lock);
3698 }
3699 
3700 static inline void netif_addr_lock_nested(struct net_device *dev)
3701 {
3702 	int subclass = SINGLE_DEPTH_NESTING;
3703 
3704 	if (dev->netdev_ops->ndo_get_lock_subclass)
3705 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3706 
3707 	spin_lock_nested(&dev->addr_list_lock, subclass);
3708 }
3709 
3710 static inline void netif_addr_lock_bh(struct net_device *dev)
3711 {
3712 	spin_lock_bh(&dev->addr_list_lock);
3713 }
3714 
3715 static inline void netif_addr_unlock(struct net_device *dev)
3716 {
3717 	spin_unlock(&dev->addr_list_lock);
3718 }
3719 
3720 static inline void netif_addr_unlock_bh(struct net_device *dev)
3721 {
3722 	spin_unlock_bh(&dev->addr_list_lock);
3723 }
3724 
3725 /*
3726  * dev_addrs walker. Should be used only for read access. Call with
3727  * rcu_read_lock held.
3728  */
3729 #define for_each_dev_addr(dev, ha) \
3730 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3731 
3732 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3733 
3734 void ether_setup(struct net_device *dev);
3735 
3736 /* Support for loadable net-drivers */
3737 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3738 				    unsigned char name_assign_type,
3739 				    void (*setup)(struct net_device *),
3740 				    unsigned int txqs, unsigned int rxqs);
3741 int dev_get_valid_name(struct net *net, struct net_device *dev,
3742 		       const char *name);
3743 
3744 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3745 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3746 
3747 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3748 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3749 			 count)
3750 
3751 int register_netdev(struct net_device *dev);
3752 void unregister_netdev(struct net_device *dev);
3753 
3754 /* General hardware address lists handling functions */
3755 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3756 		   struct netdev_hw_addr_list *from_list, int addr_len);
3757 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3758 		      struct netdev_hw_addr_list *from_list, int addr_len);
3759 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3760 		       struct net_device *dev,
3761 		       int (*sync)(struct net_device *, const unsigned char *),
3762 		       int (*unsync)(struct net_device *,
3763 				     const unsigned char *));
3764 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3765 			  struct net_device *dev,
3766 			  int (*unsync)(struct net_device *,
3767 					const unsigned char *));
3768 void __hw_addr_init(struct netdev_hw_addr_list *list);
3769 
3770 /* Functions used for device addresses handling */
3771 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3772 		 unsigned char addr_type);
3773 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3774 		 unsigned char addr_type);
3775 void dev_addr_flush(struct net_device *dev);
3776 int dev_addr_init(struct net_device *dev);
3777 
3778 /* Functions used for unicast addresses handling */
3779 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3780 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3781 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3782 int dev_uc_sync(struct net_device *to, struct net_device *from);
3783 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3784 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3785 void dev_uc_flush(struct net_device *dev);
3786 void dev_uc_init(struct net_device *dev);
3787 
3788 /**
3789  *  __dev_uc_sync - Synchonize device's unicast list
3790  *  @dev:  device to sync
3791  *  @sync: function to call if address should be added
3792  *  @unsync: function to call if address should be removed
3793  *
3794  *  Add newly added addresses to the interface, and release
3795  *  addresses that have been deleted.
3796  */
3797 static inline int __dev_uc_sync(struct net_device *dev,
3798 				int (*sync)(struct net_device *,
3799 					    const unsigned char *),
3800 				int (*unsync)(struct net_device *,
3801 					      const unsigned char *))
3802 {
3803 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3804 }
3805 
3806 /**
3807  *  __dev_uc_unsync - Remove synchronized addresses from device
3808  *  @dev:  device to sync
3809  *  @unsync: function to call if address should be removed
3810  *
3811  *  Remove all addresses that were added to the device by dev_uc_sync().
3812  */
3813 static inline void __dev_uc_unsync(struct net_device *dev,
3814 				   int (*unsync)(struct net_device *,
3815 						 const unsigned char *))
3816 {
3817 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3818 }
3819 
3820 /* Functions used for multicast addresses handling */
3821 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3822 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3823 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3824 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3825 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3826 int dev_mc_sync(struct net_device *to, struct net_device *from);
3827 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3828 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3829 void dev_mc_flush(struct net_device *dev);
3830 void dev_mc_init(struct net_device *dev);
3831 
3832 /**
3833  *  __dev_mc_sync - Synchonize device's multicast list
3834  *  @dev:  device to sync
3835  *  @sync: function to call if address should be added
3836  *  @unsync: function to call if address should be removed
3837  *
3838  *  Add newly added addresses to the interface, and release
3839  *  addresses that have been deleted.
3840  */
3841 static inline int __dev_mc_sync(struct net_device *dev,
3842 				int (*sync)(struct net_device *,
3843 					    const unsigned char *),
3844 				int (*unsync)(struct net_device *,
3845 					      const unsigned char *))
3846 {
3847 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3848 }
3849 
3850 /**
3851  *  __dev_mc_unsync - Remove synchronized addresses from device
3852  *  @dev:  device to sync
3853  *  @unsync: function to call if address should be removed
3854  *
3855  *  Remove all addresses that were added to the device by dev_mc_sync().
3856  */
3857 static inline void __dev_mc_unsync(struct net_device *dev,
3858 				   int (*unsync)(struct net_device *,
3859 						 const unsigned char *))
3860 {
3861 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3862 }
3863 
3864 /* Functions used for secondary unicast and multicast support */
3865 void dev_set_rx_mode(struct net_device *dev);
3866 void __dev_set_rx_mode(struct net_device *dev);
3867 int dev_set_promiscuity(struct net_device *dev, int inc);
3868 int dev_set_allmulti(struct net_device *dev, int inc);
3869 void netdev_state_change(struct net_device *dev);
3870 void netdev_notify_peers(struct net_device *dev);
3871 void netdev_features_change(struct net_device *dev);
3872 /* Load a device via the kmod */
3873 void dev_load(struct net *net, const char *name);
3874 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3875 					struct rtnl_link_stats64 *storage);
3876 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3877 			     const struct net_device_stats *netdev_stats);
3878 
3879 extern int		netdev_max_backlog;
3880 extern int		netdev_tstamp_prequeue;
3881 extern int		weight_p;
3882 extern int		dev_weight_rx_bias;
3883 extern int		dev_weight_tx_bias;
3884 extern int		dev_rx_weight;
3885 extern int		dev_tx_weight;
3886 
3887 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3888 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3889 						     struct list_head **iter);
3890 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3891 						     struct list_head **iter);
3892 
3893 /* iterate through upper list, must be called under RCU read lock */
3894 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3895 	for (iter = &(dev)->adj_list.upper, \
3896 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3897 	     updev; \
3898 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3899 
3900 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3901 				  int (*fn)(struct net_device *upper_dev,
3902 					    void *data),
3903 				  void *data);
3904 
3905 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3906 				  struct net_device *upper_dev);
3907 
3908 bool netdev_has_any_upper_dev(struct net_device *dev);
3909 
3910 void *netdev_lower_get_next_private(struct net_device *dev,
3911 				    struct list_head **iter);
3912 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3913 					struct list_head **iter);
3914 
3915 #define netdev_for_each_lower_private(dev, priv, iter) \
3916 	for (iter = (dev)->adj_list.lower.next, \
3917 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3918 	     priv; \
3919 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3920 
3921 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3922 	for (iter = &(dev)->adj_list.lower, \
3923 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3924 	     priv; \
3925 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3926 
3927 void *netdev_lower_get_next(struct net_device *dev,
3928 				struct list_head **iter);
3929 
3930 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3931 	for (iter = (dev)->adj_list.lower.next, \
3932 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3933 	     ldev; \
3934 	     ldev = netdev_lower_get_next(dev, &(iter)))
3935 
3936 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3937 					     struct list_head **iter);
3938 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3939 						 struct list_head **iter);
3940 
3941 int netdev_walk_all_lower_dev(struct net_device *dev,
3942 			      int (*fn)(struct net_device *lower_dev,
3943 					void *data),
3944 			      void *data);
3945 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3946 				  int (*fn)(struct net_device *lower_dev,
3947 					    void *data),
3948 				  void *data);
3949 
3950 void *netdev_adjacent_get_private(struct list_head *adj_list);
3951 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3952 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3953 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3954 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
3955 			  struct netlink_ext_ack *extack);
3956 int netdev_master_upper_dev_link(struct net_device *dev,
3957 				 struct net_device *upper_dev,
3958 				 void *upper_priv, void *upper_info,
3959 				 struct netlink_ext_ack *extack);
3960 void netdev_upper_dev_unlink(struct net_device *dev,
3961 			     struct net_device *upper_dev);
3962 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3963 void *netdev_lower_dev_get_private(struct net_device *dev,
3964 				   struct net_device *lower_dev);
3965 void netdev_lower_state_changed(struct net_device *lower_dev,
3966 				void *lower_state_info);
3967 
3968 /* RSS keys are 40 or 52 bytes long */
3969 #define NETDEV_RSS_KEY_LEN 52
3970 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3971 void netdev_rss_key_fill(void *buffer, size_t len);
3972 
3973 int dev_get_nest_level(struct net_device *dev);
3974 int skb_checksum_help(struct sk_buff *skb);
3975 int skb_crc32c_csum_help(struct sk_buff *skb);
3976 int skb_csum_hwoffload_help(struct sk_buff *skb,
3977 			    const netdev_features_t features);
3978 
3979 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3980 				  netdev_features_t features, bool tx_path);
3981 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3982 				    netdev_features_t features);
3983 
3984 struct netdev_bonding_info {
3985 	ifslave	slave;
3986 	ifbond	master;
3987 };
3988 
3989 struct netdev_notifier_bonding_info {
3990 	struct netdev_notifier_info info; /* must be first */
3991 	struct netdev_bonding_info  bonding_info;
3992 };
3993 
3994 void netdev_bonding_info_change(struct net_device *dev,
3995 				struct netdev_bonding_info *bonding_info);
3996 
3997 static inline
3998 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3999 {
4000 	return __skb_gso_segment(skb, features, true);
4001 }
4002 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4003 
4004 static inline bool can_checksum_protocol(netdev_features_t features,
4005 					 __be16 protocol)
4006 {
4007 	if (protocol == htons(ETH_P_FCOE))
4008 		return !!(features & NETIF_F_FCOE_CRC);
4009 
4010 	/* Assume this is an IP checksum (not SCTP CRC) */
4011 
4012 	if (features & NETIF_F_HW_CSUM) {
4013 		/* Can checksum everything */
4014 		return true;
4015 	}
4016 
4017 	switch (protocol) {
4018 	case htons(ETH_P_IP):
4019 		return !!(features & NETIF_F_IP_CSUM);
4020 	case htons(ETH_P_IPV6):
4021 		return !!(features & NETIF_F_IPV6_CSUM);
4022 	default:
4023 		return false;
4024 	}
4025 }
4026 
4027 #ifdef CONFIG_BUG
4028 void netdev_rx_csum_fault(struct net_device *dev);
4029 #else
4030 static inline void netdev_rx_csum_fault(struct net_device *dev)
4031 {
4032 }
4033 #endif
4034 /* rx skb timestamps */
4035 void net_enable_timestamp(void);
4036 void net_disable_timestamp(void);
4037 
4038 #ifdef CONFIG_PROC_FS
4039 int __init dev_proc_init(void);
4040 #else
4041 #define dev_proc_init() 0
4042 #endif
4043 
4044 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4045 					      struct sk_buff *skb, struct net_device *dev,
4046 					      bool more)
4047 {
4048 	skb->xmit_more = more ? 1 : 0;
4049 	return ops->ndo_start_xmit(skb, dev);
4050 }
4051 
4052 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4053 					    struct netdev_queue *txq, bool more)
4054 {
4055 	const struct net_device_ops *ops = dev->netdev_ops;
4056 	int rc;
4057 
4058 	rc = __netdev_start_xmit(ops, skb, dev, more);
4059 	if (rc == NETDEV_TX_OK)
4060 		txq_trans_update(txq);
4061 
4062 	return rc;
4063 }
4064 
4065 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4066 				const void *ns);
4067 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4068 				 const void *ns);
4069 
4070 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4071 {
4072 	return netdev_class_create_file_ns(class_attr, NULL);
4073 }
4074 
4075 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4076 {
4077 	netdev_class_remove_file_ns(class_attr, NULL);
4078 }
4079 
4080 extern const struct kobj_ns_type_operations net_ns_type_operations;
4081 
4082 const char *netdev_drivername(const struct net_device *dev);
4083 
4084 void linkwatch_run_queue(void);
4085 
4086 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4087 							  netdev_features_t f2)
4088 {
4089 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4090 		if (f1 & NETIF_F_HW_CSUM)
4091 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4092 		else
4093 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4094 	}
4095 
4096 	return f1 & f2;
4097 }
4098 
4099 static inline netdev_features_t netdev_get_wanted_features(
4100 	struct net_device *dev)
4101 {
4102 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4103 }
4104 netdev_features_t netdev_increment_features(netdev_features_t all,
4105 	netdev_features_t one, netdev_features_t mask);
4106 
4107 /* Allow TSO being used on stacked device :
4108  * Performing the GSO segmentation before last device
4109  * is a performance improvement.
4110  */
4111 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4112 							netdev_features_t mask)
4113 {
4114 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4115 }
4116 
4117 int __netdev_update_features(struct net_device *dev);
4118 void netdev_update_features(struct net_device *dev);
4119 void netdev_change_features(struct net_device *dev);
4120 
4121 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4122 					struct net_device *dev);
4123 
4124 netdev_features_t passthru_features_check(struct sk_buff *skb,
4125 					  struct net_device *dev,
4126 					  netdev_features_t features);
4127 netdev_features_t netif_skb_features(struct sk_buff *skb);
4128 
4129 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4130 {
4131 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4132 
4133 	/* check flags correspondence */
4134 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4135 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4136 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4137 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4138 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4139 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4140 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4141 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4142 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4143 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4144 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4145 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4146 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4147 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4148 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4149 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4150 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4151 
4152 	return (features & feature) == feature;
4153 }
4154 
4155 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4156 {
4157 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4158 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4159 }
4160 
4161 static inline bool netif_needs_gso(struct sk_buff *skb,
4162 				   netdev_features_t features)
4163 {
4164 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4165 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4166 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4167 }
4168 
4169 static inline void netif_set_gso_max_size(struct net_device *dev,
4170 					  unsigned int size)
4171 {
4172 	dev->gso_max_size = size;
4173 }
4174 
4175 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4176 					int pulled_hlen, u16 mac_offset,
4177 					int mac_len)
4178 {
4179 	skb->protocol = protocol;
4180 	skb->encapsulation = 1;
4181 	skb_push(skb, pulled_hlen);
4182 	skb_reset_transport_header(skb);
4183 	skb->mac_header = mac_offset;
4184 	skb->network_header = skb->mac_header + mac_len;
4185 	skb->mac_len = mac_len;
4186 }
4187 
4188 static inline bool netif_is_macsec(const struct net_device *dev)
4189 {
4190 	return dev->priv_flags & IFF_MACSEC;
4191 }
4192 
4193 static inline bool netif_is_macvlan(const struct net_device *dev)
4194 {
4195 	return dev->priv_flags & IFF_MACVLAN;
4196 }
4197 
4198 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4199 {
4200 	return dev->priv_flags & IFF_MACVLAN_PORT;
4201 }
4202 
4203 static inline bool netif_is_ipvlan(const struct net_device *dev)
4204 {
4205 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4206 }
4207 
4208 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4209 {
4210 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4211 }
4212 
4213 static inline bool netif_is_bond_master(const struct net_device *dev)
4214 {
4215 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4216 }
4217 
4218 static inline bool netif_is_bond_slave(const struct net_device *dev)
4219 {
4220 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4221 }
4222 
4223 static inline bool netif_supports_nofcs(struct net_device *dev)
4224 {
4225 	return dev->priv_flags & IFF_SUPP_NOFCS;
4226 }
4227 
4228 static inline bool netif_is_l3_master(const struct net_device *dev)
4229 {
4230 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4231 }
4232 
4233 static inline bool netif_is_l3_slave(const struct net_device *dev)
4234 {
4235 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4236 }
4237 
4238 static inline bool netif_is_bridge_master(const struct net_device *dev)
4239 {
4240 	return dev->priv_flags & IFF_EBRIDGE;
4241 }
4242 
4243 static inline bool netif_is_bridge_port(const struct net_device *dev)
4244 {
4245 	return dev->priv_flags & IFF_BRIDGE_PORT;
4246 }
4247 
4248 static inline bool netif_is_ovs_master(const struct net_device *dev)
4249 {
4250 	return dev->priv_flags & IFF_OPENVSWITCH;
4251 }
4252 
4253 static inline bool netif_is_ovs_port(const struct net_device *dev)
4254 {
4255 	return dev->priv_flags & IFF_OVS_DATAPATH;
4256 }
4257 
4258 static inline bool netif_is_team_master(const struct net_device *dev)
4259 {
4260 	return dev->priv_flags & IFF_TEAM;
4261 }
4262 
4263 static inline bool netif_is_team_port(const struct net_device *dev)
4264 {
4265 	return dev->priv_flags & IFF_TEAM_PORT;
4266 }
4267 
4268 static inline bool netif_is_lag_master(const struct net_device *dev)
4269 {
4270 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4271 }
4272 
4273 static inline bool netif_is_lag_port(const struct net_device *dev)
4274 {
4275 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4276 }
4277 
4278 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4279 {
4280 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4281 }
4282 
4283 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4284 static inline void netif_keep_dst(struct net_device *dev)
4285 {
4286 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4287 }
4288 
4289 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4290 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4291 {
4292 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4293 	return dev->priv_flags & IFF_MACSEC;
4294 }
4295 
4296 extern struct pernet_operations __net_initdata loopback_net_ops;
4297 
4298 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4299 
4300 /* netdev_printk helpers, similar to dev_printk */
4301 
4302 static inline const char *netdev_name(const struct net_device *dev)
4303 {
4304 	if (!dev->name[0] || strchr(dev->name, '%'))
4305 		return "(unnamed net_device)";
4306 	return dev->name;
4307 }
4308 
4309 static inline bool netdev_unregistering(const struct net_device *dev)
4310 {
4311 	return dev->reg_state == NETREG_UNREGISTERING;
4312 }
4313 
4314 static inline const char *netdev_reg_state(const struct net_device *dev)
4315 {
4316 	switch (dev->reg_state) {
4317 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4318 	case NETREG_REGISTERED: return "";
4319 	case NETREG_UNREGISTERING: return " (unregistering)";
4320 	case NETREG_UNREGISTERED: return " (unregistered)";
4321 	case NETREG_RELEASED: return " (released)";
4322 	case NETREG_DUMMY: return " (dummy)";
4323 	}
4324 
4325 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4326 	return " (unknown)";
4327 }
4328 
4329 __printf(3, 4)
4330 void netdev_printk(const char *level, const struct net_device *dev,
4331 		   const char *format, ...);
4332 __printf(2, 3)
4333 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4334 __printf(2, 3)
4335 void netdev_alert(const struct net_device *dev, const char *format, ...);
4336 __printf(2, 3)
4337 void netdev_crit(const struct net_device *dev, const char *format, ...);
4338 __printf(2, 3)
4339 void netdev_err(const struct net_device *dev, const char *format, ...);
4340 __printf(2, 3)
4341 void netdev_warn(const struct net_device *dev, const char *format, ...);
4342 __printf(2, 3)
4343 void netdev_notice(const struct net_device *dev, const char *format, ...);
4344 __printf(2, 3)
4345 void netdev_info(const struct net_device *dev, const char *format, ...);
4346 
4347 #define netdev_level_once(level, dev, fmt, ...)			\
4348 do {								\
4349 	static bool __print_once __read_mostly;			\
4350 								\
4351 	if (!__print_once) {					\
4352 		__print_once = true;				\
4353 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4354 	}							\
4355 } while (0)
4356 
4357 #define netdev_emerg_once(dev, fmt, ...) \
4358 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4359 #define netdev_alert_once(dev, fmt, ...) \
4360 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4361 #define netdev_crit_once(dev, fmt, ...) \
4362 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4363 #define netdev_err_once(dev, fmt, ...) \
4364 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4365 #define netdev_warn_once(dev, fmt, ...) \
4366 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4367 #define netdev_notice_once(dev, fmt, ...) \
4368 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4369 #define netdev_info_once(dev, fmt, ...) \
4370 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4371 
4372 #define MODULE_ALIAS_NETDEV(device) \
4373 	MODULE_ALIAS("netdev-" device)
4374 
4375 #if defined(CONFIG_DYNAMIC_DEBUG)
4376 #define netdev_dbg(__dev, format, args...)			\
4377 do {								\
4378 	dynamic_netdev_dbg(__dev, format, ##args);		\
4379 } while (0)
4380 #elif defined(DEBUG)
4381 #define netdev_dbg(__dev, format, args...)			\
4382 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4383 #else
4384 #define netdev_dbg(__dev, format, args...)			\
4385 ({								\
4386 	if (0)							\
4387 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4388 })
4389 #endif
4390 
4391 #if defined(VERBOSE_DEBUG)
4392 #define netdev_vdbg	netdev_dbg
4393 #else
4394 
4395 #define netdev_vdbg(dev, format, args...)			\
4396 ({								\
4397 	if (0)							\
4398 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4399 	0;							\
4400 })
4401 #endif
4402 
4403 /*
4404  * netdev_WARN() acts like dev_printk(), but with the key difference
4405  * of using a WARN/WARN_ON to get the message out, including the
4406  * file/line information and a backtrace.
4407  */
4408 #define netdev_WARN(dev, format, args...)			\
4409 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4410 	     netdev_reg_state(dev), ##args)
4411 
4412 #define netdev_WARN_ONCE(dev, condition, format, arg...)		\
4413 	WARN_ONCE(1, "netdevice: %s%s\n" format, netdev_name(dev)	\
4414 		  netdev_reg_state(dev), ##args)
4415 
4416 /* netif printk helpers, similar to netdev_printk */
4417 
4418 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4419 do {					  			\
4420 	if (netif_msg_##type(priv))				\
4421 		netdev_printk(level, (dev), fmt, ##args);	\
4422 } while (0)
4423 
4424 #define netif_level(level, priv, type, dev, fmt, args...)	\
4425 do {								\
4426 	if (netif_msg_##type(priv))				\
4427 		netdev_##level(dev, fmt, ##args);		\
4428 } while (0)
4429 
4430 #define netif_emerg(priv, type, dev, fmt, args...)		\
4431 	netif_level(emerg, priv, type, dev, fmt, ##args)
4432 #define netif_alert(priv, type, dev, fmt, args...)		\
4433 	netif_level(alert, priv, type, dev, fmt, ##args)
4434 #define netif_crit(priv, type, dev, fmt, args...)		\
4435 	netif_level(crit, priv, type, dev, fmt, ##args)
4436 #define netif_err(priv, type, dev, fmt, args...)		\
4437 	netif_level(err, priv, type, dev, fmt, ##args)
4438 #define netif_warn(priv, type, dev, fmt, args...)		\
4439 	netif_level(warn, priv, type, dev, fmt, ##args)
4440 #define netif_notice(priv, type, dev, fmt, args...)		\
4441 	netif_level(notice, priv, type, dev, fmt, ##args)
4442 #define netif_info(priv, type, dev, fmt, args...)		\
4443 	netif_level(info, priv, type, dev, fmt, ##args)
4444 
4445 #if defined(CONFIG_DYNAMIC_DEBUG)
4446 #define netif_dbg(priv, type, netdev, format, args...)		\
4447 do {								\
4448 	if (netif_msg_##type(priv))				\
4449 		dynamic_netdev_dbg(netdev, format, ##args);	\
4450 } while (0)
4451 #elif defined(DEBUG)
4452 #define netif_dbg(priv, type, dev, format, args...)		\
4453 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4454 #else
4455 #define netif_dbg(priv, type, dev, format, args...)			\
4456 ({									\
4457 	if (0)								\
4458 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4459 	0;								\
4460 })
4461 #endif
4462 
4463 /* if @cond then downgrade to debug, else print at @level */
4464 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4465 	do {                                                              \
4466 		if (cond)                                                 \
4467 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4468 		else                                                      \
4469 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4470 	} while (0)
4471 
4472 #if defined(VERBOSE_DEBUG)
4473 #define netif_vdbg	netif_dbg
4474 #else
4475 #define netif_vdbg(priv, type, dev, format, args...)		\
4476 ({								\
4477 	if (0)							\
4478 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4479 	0;							\
4480 })
4481 #endif
4482 
4483 /*
4484  *	The list of packet types we will receive (as opposed to discard)
4485  *	and the routines to invoke.
4486  *
4487  *	Why 16. Because with 16 the only overlap we get on a hash of the
4488  *	low nibble of the protocol value is RARP/SNAP/X.25.
4489  *
4490  *		0800	IP
4491  *		0001	802.3
4492  *		0002	AX.25
4493  *		0004	802.2
4494  *		8035	RARP
4495  *		0005	SNAP
4496  *		0805	X.25
4497  *		0806	ARP
4498  *		8137	IPX
4499  *		0009	Localtalk
4500  *		86DD	IPv6
4501  */
4502 #define PTYPE_HASH_SIZE	(16)
4503 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4504 
4505 #endif	/* _LINUX_NETDEVICE_H */
4506