xref: /openbmc/linux/include/linux/netdevice.h (revision 9cfc5c90)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 	clear_bit(NAPI_STATE_NPSVC, &n->state);
511 }
512 
513 #ifdef CONFIG_SMP
514 /**
515  *	napi_synchronize - wait until NAPI is not running
516  *	@n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 	while (test_bit(NAPI_STATE_SCHED, &n->state))
525 		msleep(1);
526 }
527 #else
528 # define napi_synchronize(n)	barrier()
529 #endif
530 
531 enum netdev_queue_state_t {
532 	__QUEUE_STATE_DRV_XOFF,
533 	__QUEUE_STATE_STACK_XOFF,
534 	__QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 					QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561 	struct net_device	*dev;
562 	struct Qdisc __rcu	*qdisc;
563 	struct Qdisc		*qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 	struct kobject		kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 	int			numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * please use this field instead of dev->trans_start
577 	 */
578 	unsigned long		trans_start;
579 
580 	/*
581 	 * Number of TX timeouts for this queue
582 	 * (/sys/class/net/DEV/Q/trans_timeout)
583 	 */
584 	unsigned long		trans_timeout;
585 
586 	unsigned long		state;
587 
588 #ifdef CONFIG_BQL
589 	struct dql		dql;
590 #endif
591 	unsigned long		tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593 
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 	return q->numa_node;
598 #else
599 	return NUMA_NO_NODE;
600 #endif
601 }
602 
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	q->numa_node = node;
607 #endif
608 }
609 
610 #ifdef CONFIG_RPS
611 /*
612  * This structure holds an RPS map which can be of variable length.  The
613  * map is an array of CPUs.
614  */
615 struct rps_map {
616 	unsigned int len;
617 	struct rcu_head rcu;
618 	u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621 
622 /*
623  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624  * tail pointer for that CPU's input queue at the time of last enqueue, and
625  * a hardware filter index.
626  */
627 struct rps_dev_flow {
628 	u16 cpu;
629 	u16 filter;
630 	unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633 
634 /*
635  * The rps_dev_flow_table structure contains a table of flow mappings.
636  */
637 struct rps_dev_flow_table {
638 	unsigned int mask;
639 	struct rcu_head rcu;
640 	struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643     ((_num) * sizeof(struct rps_dev_flow)))
644 
645 /*
646  * The rps_sock_flow_table contains mappings of flows to the last CPU
647  * on which they were processed by the application (set in recvmsg).
648  * Each entry is a 32bit value. Upper part is the high order bits
649  * of flow hash, lower part is cpu number.
650  * rps_cpu_mask is used to partition the space, depending on number of
651  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653  * meaning we use 32-6=26 bits for the hash.
654  */
655 struct rps_sock_flow_table {
656 	u32	mask;
657 
658 	u32	ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 
662 #define RPS_NO_CPU 0xffff
663 
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 					u32 hash)
669 {
670 	if (table && hash) {
671 		unsigned int index = hash & table->mask;
672 		u32 val = hash & ~rps_cpu_mask;
673 
674 		/* We only give a hint, preemption can change cpu under us */
675 		val |= raw_smp_processor_id();
676 
677 		if (table->ents[index] != val)
678 			table->ents[index] = val;
679 	}
680 }
681 
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 			 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687 
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 	struct rps_map __rcu		*rps_map;
692 	struct rps_dev_flow_table __rcu	*rps_flow_table;
693 #endif
694 	struct kobject			kobj;
695 	struct net_device		*dev;
696 } ____cacheline_aligned_in_smp;
697 
698 /*
699  * RX queue sysfs structures and functions.
700  */
701 struct rx_queue_attribute {
702 	struct attribute attr;
703 	ssize_t (*show)(struct netdev_rx_queue *queue,
704 	    struct rx_queue_attribute *attr, char *buf);
705 	ssize_t (*store)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708 
709 #ifdef CONFIG_XPS
710 /*
711  * This structure holds an XPS map which can be of variable length.  The
712  * map is an array of queues.
713  */
714 struct xps_map {
715 	unsigned int len;
716 	unsigned int alloc_len;
717 	struct rcu_head rcu;
718 	u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
722        - sizeof(struct xps_map)) / sizeof(u16))
723 
724 /*
725  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
726  */
727 struct xps_dev_maps {
728 	struct rcu_head rcu;
729 	struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
732     (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734 
735 #define TC_MAX_QUEUE	16
736 #define TC_BITMASK	15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 	u16 count;
740 	u16 offset;
741 };
742 
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745  * This structure is to hold information about the device
746  * configured to run FCoE protocol stack.
747  */
748 struct netdev_fcoe_hbainfo {
749 	char	manufacturer[64];
750 	char	serial_number[64];
751 	char	hardware_version[64];
752 	char	driver_version[64];
753 	char	optionrom_version[64];
754 	char	firmware_version[64];
755 	char	model[256];
756 	char	model_description[256];
757 };
758 #endif
759 
760 #define MAX_PHYS_ITEM_ID_LEN 32
761 
762 /* This structure holds a unique identifier to identify some
763  * physical item (port for example) used by a netdevice.
764  */
765 struct netdev_phys_item_id {
766 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 	unsigned char id_len;
768 };
769 
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 					    struct netdev_phys_item_id *b)
772 {
773 	return a->id_len == b->id_len &&
774 	       memcmp(a->id, b->id, a->id_len) == 0;
775 }
776 
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 				       struct sk_buff *skb);
779 
780 /*
781  * This structure defines the management hooks for network devices.
782  * The following hooks can be defined; unless noted otherwise, they are
783  * optional and can be filled with a null pointer.
784  *
785  * int (*ndo_init)(struct net_device *dev);
786  *     This function is called once when network device is registered.
787  *     The network device can use this to any late stage initializaton
788  *     or semantic validattion. It can fail with an error code which will
789  *     be propogated back to register_netdev
790  *
791  * void (*ndo_uninit)(struct net_device *dev);
792  *     This function is called when device is unregistered or when registration
793  *     fails. It is not called if init fails.
794  *
795  * int (*ndo_open)(struct net_device *dev);
796  *     This function is called when network device transistions to the up
797  *     state.
798  *
799  * int (*ndo_stop)(struct net_device *dev);
800  *     This function is called when network device transistions to the down
801  *     state.
802  *
803  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804  *                               struct net_device *dev);
805  *	Called when a packet needs to be transmitted.
806  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
807  *	the queue before that can happen; it's for obsolete devices and weird
808  *	corner cases, but the stack really does a non-trivial amount
809  *	of useless work if you return NETDEV_TX_BUSY.
810  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811  *	Required can not be NULL.
812  *
813  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814  *                         void *accel_priv, select_queue_fallback_t fallback);
815  *	Called to decide which queue to when device supports multiple
816  *	transmit queues.
817  *
818  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819  *	This function is called to allow device receiver to make
820  *	changes to configuration when multicast or promiscious is enabled.
821  *
822  * void (*ndo_set_rx_mode)(struct net_device *dev);
823  *	This function is called device changes address list filtering.
824  *	If driver handles unicast address filtering, it should set
825  *	IFF_UNICAST_FLT to its priv_flags.
826  *
827  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828  *	This function  is called when the Media Access Control address
829  *	needs to be changed. If this interface is not defined, the
830  *	mac address can not be changed.
831  *
832  * int (*ndo_validate_addr)(struct net_device *dev);
833  *	Test if Media Access Control address is valid for the device.
834  *
835  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836  *	Called when a user request an ioctl which can't be handled by
837  *	the generic interface code. If not defined ioctl's return
838  *	not supported error code.
839  *
840  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841  *	Used to set network devices bus interface parameters. This interface
842  *	is retained for legacy reason, new devices should use the bus
843  *	interface (PCI) for low level management.
844  *
845  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846  *	Called when a user wants to change the Maximum Transfer Unit
847  *	of a device. If not defined, any request to change MTU will
848  *	will return an error.
849  *
850  * void (*ndo_tx_timeout)(struct net_device *dev);
851  *	Callback uses when the transmitter has not made any progress
852  *	for dev->watchdog ticks.
853  *
854  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855  *                      struct rtnl_link_stats64 *storage);
856  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857  *	Called when a user wants to get the network device usage
858  *	statistics. Drivers must do one of the following:
859  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
860  *	   rtnl_link_stats64 structure passed by the caller.
861  *	2. Define @ndo_get_stats to update a net_device_stats structure
862  *	   (which should normally be dev->stats) and return a pointer to
863  *	   it. The structure may be changed asynchronously only if each
864  *	   field is written atomically.
865  *	3. Update dev->stats asynchronously and atomically, and define
866  *	   neither operation.
867  *
868  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869  *	If device support VLAN filtering this function is called when a
870  *	VLAN id is registered.
871  *
872  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873  *	If device support VLAN filtering this function is called when a
874  *	VLAN id is unregistered.
875  *
876  * void (*ndo_poll_controller)(struct net_device *dev);
877  *
878  *	SR-IOV management functions.
879  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882  *			  int max_tx_rate);
883  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
885  * int (*ndo_get_vf_config)(struct net_device *dev,
886  *			    int vf, struct ifla_vf_info *ivf);
887  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
888  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
889  *			  struct nlattr *port[]);
890  *
891  *      Enable or disable the VF ability to query its RSS Redirection Table and
892  *      Hash Key. This is needed since on some devices VF share this information
893  *      with PF and querying it may adduce a theoretical security risk.
894  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
895  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
896  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
897  * 	Called to setup 'tc' number of traffic classes in the net device. This
898  * 	is always called from the stack with the rtnl lock held and netif tx
899  * 	queues stopped. This allows the netdevice to perform queue management
900  * 	safely.
901  *
902  *	Fiber Channel over Ethernet (FCoE) offload functions.
903  * int (*ndo_fcoe_enable)(struct net_device *dev);
904  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
905  *	so the underlying device can perform whatever needed configuration or
906  *	initialization to support acceleration of FCoE traffic.
907  *
908  * int (*ndo_fcoe_disable)(struct net_device *dev);
909  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
910  *	so the underlying device can perform whatever needed clean-ups to
911  *	stop supporting acceleration of FCoE traffic.
912  *
913  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
914  *			     struct scatterlist *sgl, unsigned int sgc);
915  *	Called when the FCoE Initiator wants to initialize an I/O that
916  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
917  *	perform necessary setup and returns 1 to indicate the device is set up
918  *	successfully to perform DDP on this I/O, otherwise this returns 0.
919  *
920  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
921  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
922  *	indicated by the FC exchange id 'xid', so the underlying device can
923  *	clean up and reuse resources for later DDP requests.
924  *
925  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
926  *			      struct scatterlist *sgl, unsigned int sgc);
927  *	Called when the FCoE Target wants to initialize an I/O that
928  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
929  *	perform necessary setup and returns 1 to indicate the device is set up
930  *	successfully to perform DDP on this I/O, otherwise this returns 0.
931  *
932  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
933  *			       struct netdev_fcoe_hbainfo *hbainfo);
934  *	Called when the FCoE Protocol stack wants information on the underlying
935  *	device. This information is utilized by the FCoE protocol stack to
936  *	register attributes with Fiber Channel management service as per the
937  *	FC-GS Fabric Device Management Information(FDMI) specification.
938  *
939  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
940  *	Called when the underlying device wants to override default World Wide
941  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
942  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
943  *	protocol stack to use.
944  *
945  *	RFS acceleration.
946  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
947  *			    u16 rxq_index, u32 flow_id);
948  *	Set hardware filter for RFS.  rxq_index is the target queue index;
949  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
950  *	Return the filter ID on success, or a negative error code.
951  *
952  *	Slave management functions (for bridge, bonding, etc).
953  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
954  *	Called to make another netdev an underling.
955  *
956  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
957  *	Called to release previously enslaved netdev.
958  *
959  *      Feature/offload setting functions.
960  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
961  *		netdev_features_t features);
962  *	Adjusts the requested feature flags according to device-specific
963  *	constraints, and returns the resulting flags. Must not modify
964  *	the device state.
965  *
966  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
967  *	Called to update device configuration to new features. Passed
968  *	feature set might be less than what was returned by ndo_fix_features()).
969  *	Must return >0 or -errno if it changed dev->features itself.
970  *
971  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
972  *		      struct net_device *dev,
973  *		      const unsigned char *addr, u16 vid, u16 flags)
974  *	Adds an FDB entry to dev for addr.
975  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
976  *		      struct net_device *dev,
977  *		      const unsigned char *addr, u16 vid)
978  *	Deletes the FDB entry from dev coresponding to addr.
979  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
980  *		       struct net_device *dev, struct net_device *filter_dev,
981  *		       int idx)
982  *	Used to add FDB entries to dump requests. Implementers should add
983  *	entries to skb and update idx with the number of entries.
984  *
985  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
986  *			     u16 flags)
987  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
988  *			     struct net_device *dev, u32 filter_mask,
989  *			     int nlflags)
990  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
991  *			     u16 flags);
992  *
993  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
994  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
995  *	which do not represent real hardware may define this to allow their
996  *	userspace components to manage their virtual carrier state. Devices
997  *	that determine carrier state from physical hardware properties (eg
998  *	network cables) or protocol-dependent mechanisms (eg
999  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1000  *
1001  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1002  *			       struct netdev_phys_item_id *ppid);
1003  *	Called to get ID of physical port of this device. If driver does
1004  *	not implement this, it is assumed that the hw is not able to have
1005  *	multiple net devices on single physical port.
1006  *
1007  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1008  *			      sa_family_t sa_family, __be16 port);
1009  *	Called by vxlan to notiy a driver about the UDP port and socket
1010  *	address family that vxlan is listnening to. It is called only when
1011  *	a new port starts listening. The operation is protected by the
1012  *	vxlan_net->sock_lock.
1013  *
1014  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1015  *			      sa_family_t sa_family, __be16 port);
1016  *	Called by vxlan to notify the driver about a UDP port and socket
1017  *	address family that vxlan is not listening to anymore. The operation
1018  *	is protected by the vxlan_net->sock_lock.
1019  *
1020  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1021  *				 struct net_device *dev)
1022  *	Called by upper layer devices to accelerate switching or other
1023  *	station functionality into hardware. 'pdev is the lowerdev
1024  *	to use for the offload and 'dev' is the net device that will
1025  *	back the offload. Returns a pointer to the private structure
1026  *	the upper layer will maintain.
1027  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1028  *	Called by upper layer device to delete the station created
1029  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1030  *	the station and priv is the structure returned by the add
1031  *	operation.
1032  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1033  *				      struct net_device *dev,
1034  *				      void *priv);
1035  *	Callback to use for xmit over the accelerated station. This
1036  *	is used in place of ndo_start_xmit on accelerated net
1037  *	devices.
1038  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1039  *					    struct net_device *dev
1040  *					    netdev_features_t features);
1041  *	Called by core transmit path to determine if device is capable of
1042  *	performing offload operations on a given packet. This is to give
1043  *	the device an opportunity to implement any restrictions that cannot
1044  *	be otherwise expressed by feature flags. The check is called with
1045  *	the set of features that the stack has calculated and it returns
1046  *	those the driver believes to be appropriate.
1047  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1048  *			     int queue_index, u32 maxrate);
1049  *	Called when a user wants to set a max-rate limitation of specific
1050  *	TX queue.
1051  * int (*ndo_get_iflink)(const struct net_device *dev);
1052  *	Called to get the iflink value of this device.
1053  * void (*ndo_change_proto_down)(struct net_device *dev,
1054  *				  bool proto_down);
1055  *	This function is used to pass protocol port error state information
1056  *	to the switch driver. The switch driver can react to the proto_down
1057  *      by doing a phys down on the associated switch port.
1058  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1059  *	This function is used to get egress tunnel information for given skb.
1060  *	This is useful for retrieving outer tunnel header parameters while
1061  *	sampling packet.
1062  *
1063  */
1064 struct net_device_ops {
1065 	int			(*ndo_init)(struct net_device *dev);
1066 	void			(*ndo_uninit)(struct net_device *dev);
1067 	int			(*ndo_open)(struct net_device *dev);
1068 	int			(*ndo_stop)(struct net_device *dev);
1069 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1070 						   struct net_device *dev);
1071 	u16			(*ndo_select_queue)(struct net_device *dev,
1072 						    struct sk_buff *skb,
1073 						    void *accel_priv,
1074 						    select_queue_fallback_t fallback);
1075 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1076 						       int flags);
1077 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1078 	int			(*ndo_set_mac_address)(struct net_device *dev,
1079 						       void *addr);
1080 	int			(*ndo_validate_addr)(struct net_device *dev);
1081 	int			(*ndo_do_ioctl)(struct net_device *dev,
1082 					        struct ifreq *ifr, int cmd);
1083 	int			(*ndo_set_config)(struct net_device *dev,
1084 					          struct ifmap *map);
1085 	int			(*ndo_change_mtu)(struct net_device *dev,
1086 						  int new_mtu);
1087 	int			(*ndo_neigh_setup)(struct net_device *dev,
1088 						   struct neigh_parms *);
1089 	void			(*ndo_tx_timeout) (struct net_device *dev);
1090 
1091 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1092 						     struct rtnl_link_stats64 *storage);
1093 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1094 
1095 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1096 						       __be16 proto, u16 vid);
1097 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1098 						        __be16 proto, u16 vid);
1099 #ifdef CONFIG_NET_POLL_CONTROLLER
1100 	void                    (*ndo_poll_controller)(struct net_device *dev);
1101 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1102 						     struct netpoll_info *info);
1103 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1104 #endif
1105 #ifdef CONFIG_NET_RX_BUSY_POLL
1106 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1107 #endif
1108 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1109 						  int queue, u8 *mac);
1110 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1111 						   int queue, u16 vlan, u8 qos);
1112 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1113 						   int vf, int min_tx_rate,
1114 						   int max_tx_rate);
1115 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1116 						       int vf, bool setting);
1117 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1118 						    int vf, bool setting);
1119 	int			(*ndo_get_vf_config)(struct net_device *dev,
1120 						     int vf,
1121 						     struct ifla_vf_info *ivf);
1122 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1123 							 int vf, int link_state);
1124 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1125 						    int vf,
1126 						    struct ifla_vf_stats
1127 						    *vf_stats);
1128 	int			(*ndo_set_vf_port)(struct net_device *dev,
1129 						   int vf,
1130 						   struct nlattr *port[]);
1131 	int			(*ndo_get_vf_port)(struct net_device *dev,
1132 						   int vf, struct sk_buff *skb);
1133 	int			(*ndo_set_vf_rss_query_en)(
1134 						   struct net_device *dev,
1135 						   int vf, bool setting);
1136 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1137 #if IS_ENABLED(CONFIG_FCOE)
1138 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1139 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1140 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1141 						      u16 xid,
1142 						      struct scatterlist *sgl,
1143 						      unsigned int sgc);
1144 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1145 						     u16 xid);
1146 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1147 						       u16 xid,
1148 						       struct scatterlist *sgl,
1149 						       unsigned int sgc);
1150 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1151 							struct netdev_fcoe_hbainfo *hbainfo);
1152 #endif
1153 
1154 #if IS_ENABLED(CONFIG_LIBFCOE)
1155 #define NETDEV_FCOE_WWNN 0
1156 #define NETDEV_FCOE_WWPN 1
1157 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1158 						    u64 *wwn, int type);
1159 #endif
1160 
1161 #ifdef CONFIG_RFS_ACCEL
1162 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1163 						     const struct sk_buff *skb,
1164 						     u16 rxq_index,
1165 						     u32 flow_id);
1166 #endif
1167 	int			(*ndo_add_slave)(struct net_device *dev,
1168 						 struct net_device *slave_dev);
1169 	int			(*ndo_del_slave)(struct net_device *dev,
1170 						 struct net_device *slave_dev);
1171 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1172 						    netdev_features_t features);
1173 	int			(*ndo_set_features)(struct net_device *dev,
1174 						    netdev_features_t features);
1175 	int			(*ndo_neigh_construct)(struct neighbour *n);
1176 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1177 
1178 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1179 					       struct nlattr *tb[],
1180 					       struct net_device *dev,
1181 					       const unsigned char *addr,
1182 					       u16 vid,
1183 					       u16 flags);
1184 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1185 					       struct nlattr *tb[],
1186 					       struct net_device *dev,
1187 					       const unsigned char *addr,
1188 					       u16 vid);
1189 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1190 						struct netlink_callback *cb,
1191 						struct net_device *dev,
1192 						struct net_device *filter_dev,
1193 						int idx);
1194 
1195 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1196 						      struct nlmsghdr *nlh,
1197 						      u16 flags);
1198 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1199 						      u32 pid, u32 seq,
1200 						      struct net_device *dev,
1201 						      u32 filter_mask,
1202 						      int nlflags);
1203 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1204 						      struct nlmsghdr *nlh,
1205 						      u16 flags);
1206 	int			(*ndo_change_carrier)(struct net_device *dev,
1207 						      bool new_carrier);
1208 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1209 							struct netdev_phys_item_id *ppid);
1210 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1211 							  char *name, size_t len);
1212 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1213 						      sa_family_t sa_family,
1214 						      __be16 port);
1215 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1216 						      sa_family_t sa_family,
1217 						      __be16 port);
1218 
1219 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1220 							struct net_device *dev);
1221 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1222 							void *priv);
1223 
1224 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1225 							struct net_device *dev,
1226 							void *priv);
1227 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1228 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1229 						       struct net_device *dev,
1230 						       netdev_features_t features);
1231 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1232 						      int queue_index,
1233 						      u32 maxrate);
1234 	int			(*ndo_get_iflink)(const struct net_device *dev);
1235 	int			(*ndo_change_proto_down)(struct net_device *dev,
1236 							 bool proto_down);
1237 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1238 						       struct sk_buff *skb);
1239 };
1240 
1241 /**
1242  * enum net_device_priv_flags - &struct net_device priv_flags
1243  *
1244  * These are the &struct net_device, they are only set internally
1245  * by drivers and used in the kernel. These flags are invisible to
1246  * userspace, this means that the order of these flags can change
1247  * during any kernel release.
1248  *
1249  * You should have a pretty good reason to be extending these flags.
1250  *
1251  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1252  * @IFF_EBRIDGE: Ethernet bridging device
1253  * @IFF_BONDING: bonding master or slave
1254  * @IFF_ISATAP: ISATAP interface (RFC4214)
1255  * @IFF_WAN_HDLC: WAN HDLC device
1256  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1257  *	release skb->dst
1258  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1259  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1260  * @IFF_MACVLAN_PORT: device used as macvlan port
1261  * @IFF_BRIDGE_PORT: device used as bridge port
1262  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1263  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1264  * @IFF_UNICAST_FLT: Supports unicast filtering
1265  * @IFF_TEAM_PORT: device used as team port
1266  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1267  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1268  *	change when it's running
1269  * @IFF_MACVLAN: Macvlan device
1270  * @IFF_L3MDEV_MASTER: device is an L3 master device
1271  * @IFF_NO_QUEUE: device can run without qdisc attached
1272  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1273  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1274  */
1275 enum netdev_priv_flags {
1276 	IFF_802_1Q_VLAN			= 1<<0,
1277 	IFF_EBRIDGE			= 1<<1,
1278 	IFF_BONDING			= 1<<2,
1279 	IFF_ISATAP			= 1<<3,
1280 	IFF_WAN_HDLC			= 1<<4,
1281 	IFF_XMIT_DST_RELEASE		= 1<<5,
1282 	IFF_DONT_BRIDGE			= 1<<6,
1283 	IFF_DISABLE_NETPOLL		= 1<<7,
1284 	IFF_MACVLAN_PORT		= 1<<8,
1285 	IFF_BRIDGE_PORT			= 1<<9,
1286 	IFF_OVS_DATAPATH		= 1<<10,
1287 	IFF_TX_SKB_SHARING		= 1<<11,
1288 	IFF_UNICAST_FLT			= 1<<12,
1289 	IFF_TEAM_PORT			= 1<<13,
1290 	IFF_SUPP_NOFCS			= 1<<14,
1291 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1292 	IFF_MACVLAN			= 1<<16,
1293 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1294 	IFF_IPVLAN_MASTER		= 1<<18,
1295 	IFF_IPVLAN_SLAVE		= 1<<19,
1296 	IFF_L3MDEV_MASTER		= 1<<20,
1297 	IFF_NO_QUEUE			= 1<<21,
1298 	IFF_OPENVSWITCH			= 1<<22,
1299 	IFF_L3MDEV_SLAVE		= 1<<23,
1300 };
1301 
1302 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1303 #define IFF_EBRIDGE			IFF_EBRIDGE
1304 #define IFF_BONDING			IFF_BONDING
1305 #define IFF_ISATAP			IFF_ISATAP
1306 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1307 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1308 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1309 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1310 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1311 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1312 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1313 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1314 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1315 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1316 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1317 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1318 #define IFF_MACVLAN			IFF_MACVLAN
1319 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1320 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1321 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1322 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1323 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1324 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1325 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1326 
1327 /**
1328  *	struct net_device - The DEVICE structure.
1329  *		Actually, this whole structure is a big mistake.  It mixes I/O
1330  *		data with strictly "high-level" data, and it has to know about
1331  *		almost every data structure used in the INET module.
1332  *
1333  *	@name:	This is the first field of the "visible" part of this structure
1334  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1335  *	 	of the interface.
1336  *
1337  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1338  *	@ifalias:	SNMP alias
1339  *	@mem_end:	Shared memory end
1340  *	@mem_start:	Shared memory start
1341  *	@base_addr:	Device I/O address
1342  *	@irq:		Device IRQ number
1343  *
1344  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1345  *
1346  *	@state:		Generic network queuing layer state, see netdev_state_t
1347  *	@dev_list:	The global list of network devices
1348  *	@napi_list:	List entry, that is used for polling napi devices
1349  *	@unreg_list:	List entry, that is used, when we are unregistering the
1350  *			device, see the function unregister_netdev
1351  *	@close_list:	List entry, that is used, when we are closing the device
1352  *
1353  *	@adj_list:	Directly linked devices, like slaves for bonding
1354  *	@all_adj_list:	All linked devices, *including* neighbours
1355  *	@features:	Currently active device features
1356  *	@hw_features:	User-changeable features
1357  *
1358  *	@wanted_features:	User-requested features
1359  *	@vlan_features:		Mask of features inheritable by VLAN devices
1360  *
1361  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1362  *				This field indicates what encapsulation
1363  *				offloads the hardware is capable of doing,
1364  *				and drivers will need to set them appropriately.
1365  *
1366  *	@mpls_features:	Mask of features inheritable by MPLS
1367  *
1368  *	@ifindex:	interface index
1369  *	@group:		The group, that the device belongs to
1370  *
1371  *	@stats:		Statistics struct, which was left as a legacy, use
1372  *			rtnl_link_stats64 instead
1373  *
1374  *	@rx_dropped:	Dropped packets by core network,
1375  *			do not use this in drivers
1376  *	@tx_dropped:	Dropped packets by core network,
1377  *			do not use this in drivers
1378  *
1379  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1380  *				instead of ioctl,
1381  *				see <net/iw_handler.h> for details.
1382  *	@wireless_data:	Instance data managed by the core of wireless extensions
1383  *
1384  *	@netdev_ops:	Includes several pointers to callbacks,
1385  *			if one wants to override the ndo_*() functions
1386  *	@ethtool_ops:	Management operations
1387  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1388  *			of Layer 2 headers.
1389  *
1390  *	@flags:		Interface flags (a la BSD)
1391  *	@priv_flags:	Like 'flags' but invisible to userspace,
1392  *			see if.h for the definitions
1393  *	@gflags:	Global flags ( kept as legacy )
1394  *	@padded:	How much padding added by alloc_netdev()
1395  *	@operstate:	RFC2863 operstate
1396  *	@link_mode:	Mapping policy to operstate
1397  *	@if_port:	Selectable AUI, TP, ...
1398  *	@dma:		DMA channel
1399  *	@mtu:		Interface MTU value
1400  *	@type:		Interface hardware type
1401  *	@hard_header_len: Hardware header length
1402  *
1403  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1404  *			  cases can this be guaranteed
1405  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1406  *			  cases can this be guaranteed. Some cases also use
1407  *			  LL_MAX_HEADER instead to allocate the skb
1408  *
1409  *	interface address info:
1410  *
1411  * 	@perm_addr:		Permanent hw address
1412  * 	@addr_assign_type:	Hw address assignment type
1413  * 	@addr_len:		Hardware address length
1414  * 	@neigh_priv_len;	Used in neigh_alloc(),
1415  * 				initialized only in atm/clip.c
1416  * 	@dev_id:		Used to differentiate devices that share
1417  * 				the same link layer address
1418  * 	@dev_port:		Used to differentiate devices that share
1419  * 				the same function
1420  *	@addr_list_lock:	XXX: need comments on this one
1421  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1422  *				has been enabled due to the need to listen to
1423  *				additional unicast addresses in a device that
1424  *				does not implement ndo_set_rx_mode()
1425  *	@uc:			unicast mac addresses
1426  *	@mc:			multicast mac addresses
1427  *	@dev_addrs:		list of device hw addresses
1428  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1429  *	@promiscuity:		Number of times, the NIC is told to work in
1430  *				Promiscuous mode, if it becomes 0 the NIC will
1431  *				exit from working in Promiscuous mode
1432  *	@allmulti:		Counter, enables or disables allmulticast mode
1433  *
1434  *	@vlan_info:	VLAN info
1435  *	@dsa_ptr:	dsa specific data
1436  *	@tipc_ptr:	TIPC specific data
1437  *	@atalk_ptr:	AppleTalk link
1438  *	@ip_ptr:	IPv4 specific data
1439  *	@dn_ptr:	DECnet specific data
1440  *	@ip6_ptr:	IPv6 specific data
1441  *	@ax25_ptr:	AX.25 specific data
1442  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1443  *
1444  *	@last_rx:	Time of last Rx
1445  *	@dev_addr:	Hw address (before bcast,
1446  *			because most packets are unicast)
1447  *
1448  *	@_rx:			Array of RX queues
1449  *	@num_rx_queues:		Number of RX queues
1450  *				allocated at register_netdev() time
1451  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1452  *
1453  *	@rx_handler:		handler for received packets
1454  *	@rx_handler_data: 	XXX: need comments on this one
1455  *	@ingress_queue:		XXX: need comments on this one
1456  *	@broadcast:		hw bcast address
1457  *
1458  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1459  *			indexed by RX queue number. Assigned by driver.
1460  *			This must only be set if the ndo_rx_flow_steer
1461  *			operation is defined
1462  *	@index_hlist:		Device index hash chain
1463  *
1464  *	@_tx:			Array of TX queues
1465  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1466  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1467  *	@qdisc:			Root qdisc from userspace point of view
1468  *	@tx_queue_len:		Max frames per queue allowed
1469  *	@tx_global_lock: 	XXX: need comments on this one
1470  *
1471  *	@xps_maps:	XXX: need comments on this one
1472  *
1473  *	@offload_fwd_mark:	Offload device fwding mark
1474  *
1475  *	@trans_start:		Time (in jiffies) of last Tx
1476  *	@watchdog_timeo:	Represents the timeout that is used by
1477  *				the watchdog ( see dev_watchdog() )
1478  *	@watchdog_timer:	List of timers
1479  *
1480  *	@pcpu_refcnt:		Number of references to this device
1481  *	@todo_list:		Delayed register/unregister
1482  *	@link_watch_list:	XXX: need comments on this one
1483  *
1484  *	@reg_state:		Register/unregister state machine
1485  *	@dismantle:		Device is going to be freed
1486  *	@rtnl_link_state:	This enum represents the phases of creating
1487  *				a new link
1488  *
1489  *	@destructor:		Called from unregister,
1490  *				can be used to call free_netdev
1491  *	@npinfo:		XXX: need comments on this one
1492  * 	@nd_net:		Network namespace this network device is inside
1493  *
1494  * 	@ml_priv:	Mid-layer private
1495  * 	@lstats:	Loopback statistics
1496  * 	@tstats:	Tunnel statistics
1497  * 	@dstats:	Dummy statistics
1498  * 	@vstats:	Virtual ethernet statistics
1499  *
1500  *	@garp_port:	GARP
1501  *	@mrp_port:	MRP
1502  *
1503  *	@dev:		Class/net/name entry
1504  *	@sysfs_groups:	Space for optional device, statistics and wireless
1505  *			sysfs groups
1506  *
1507  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1508  *	@rtnl_link_ops:	Rtnl_link_ops
1509  *
1510  *	@gso_max_size:	Maximum size of generic segmentation offload
1511  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1512  *			NIC for GSO
1513  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1514  *			NIC for GSO
1515  *
1516  *	@dcbnl_ops:	Data Center Bridging netlink ops
1517  *	@num_tc:	Number of traffic classes in the net device
1518  *	@tc_to_txq:	XXX: need comments on this one
1519  *	@prio_tc_map	XXX: need comments on this one
1520  *
1521  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1522  *
1523  *	@priomap:	XXX: need comments on this one
1524  *	@phydev:	Physical device may attach itself
1525  *			for hardware timestamping
1526  *
1527  *	@qdisc_tx_busylock:	XXX: need comments on this one
1528  *
1529  *	@proto_down:	protocol port state information can be sent to the
1530  *			switch driver and used to set the phys state of the
1531  *			switch port.
1532  *
1533  *	FIXME: cleanup struct net_device such that network protocol info
1534  *	moves out.
1535  */
1536 
1537 struct net_device {
1538 	char			name[IFNAMSIZ];
1539 	struct hlist_node	name_hlist;
1540 	char 			*ifalias;
1541 	/*
1542 	 *	I/O specific fields
1543 	 *	FIXME: Merge these and struct ifmap into one
1544 	 */
1545 	unsigned long		mem_end;
1546 	unsigned long		mem_start;
1547 	unsigned long		base_addr;
1548 	int			irq;
1549 
1550 	atomic_t		carrier_changes;
1551 
1552 	/*
1553 	 *	Some hardware also needs these fields (state,dev_list,
1554 	 *	napi_list,unreg_list,close_list) but they are not
1555 	 *	part of the usual set specified in Space.c.
1556 	 */
1557 
1558 	unsigned long		state;
1559 
1560 	struct list_head	dev_list;
1561 	struct list_head	napi_list;
1562 	struct list_head	unreg_list;
1563 	struct list_head	close_list;
1564 	struct list_head	ptype_all;
1565 	struct list_head	ptype_specific;
1566 
1567 	struct {
1568 		struct list_head upper;
1569 		struct list_head lower;
1570 	} adj_list;
1571 
1572 	struct {
1573 		struct list_head upper;
1574 		struct list_head lower;
1575 	} all_adj_list;
1576 
1577 	netdev_features_t	features;
1578 	netdev_features_t	hw_features;
1579 	netdev_features_t	wanted_features;
1580 	netdev_features_t	vlan_features;
1581 	netdev_features_t	hw_enc_features;
1582 	netdev_features_t	mpls_features;
1583 
1584 	int			ifindex;
1585 	int			group;
1586 
1587 	struct net_device_stats	stats;
1588 
1589 	atomic_long_t		rx_dropped;
1590 	atomic_long_t		tx_dropped;
1591 
1592 #ifdef CONFIG_WIRELESS_EXT
1593 	const struct iw_handler_def *	wireless_handlers;
1594 	struct iw_public_data *	wireless_data;
1595 #endif
1596 	const struct net_device_ops *netdev_ops;
1597 	const struct ethtool_ops *ethtool_ops;
1598 #ifdef CONFIG_NET_SWITCHDEV
1599 	const struct switchdev_ops *switchdev_ops;
1600 #endif
1601 #ifdef CONFIG_NET_L3_MASTER_DEV
1602 	const struct l3mdev_ops	*l3mdev_ops;
1603 #endif
1604 
1605 	const struct header_ops *header_ops;
1606 
1607 	unsigned int		flags;
1608 	unsigned int		priv_flags;
1609 
1610 	unsigned short		gflags;
1611 	unsigned short		padded;
1612 
1613 	unsigned char		operstate;
1614 	unsigned char		link_mode;
1615 
1616 	unsigned char		if_port;
1617 	unsigned char		dma;
1618 
1619 	unsigned int		mtu;
1620 	unsigned short		type;
1621 	unsigned short		hard_header_len;
1622 
1623 	unsigned short		needed_headroom;
1624 	unsigned short		needed_tailroom;
1625 
1626 	/* Interface address info. */
1627 	unsigned char		perm_addr[MAX_ADDR_LEN];
1628 	unsigned char		addr_assign_type;
1629 	unsigned char		addr_len;
1630 	unsigned short		neigh_priv_len;
1631 	unsigned short          dev_id;
1632 	unsigned short          dev_port;
1633 	spinlock_t		addr_list_lock;
1634 	unsigned char		name_assign_type;
1635 	bool			uc_promisc;
1636 	struct netdev_hw_addr_list	uc;
1637 	struct netdev_hw_addr_list	mc;
1638 	struct netdev_hw_addr_list	dev_addrs;
1639 
1640 #ifdef CONFIG_SYSFS
1641 	struct kset		*queues_kset;
1642 #endif
1643 	unsigned int		promiscuity;
1644 	unsigned int		allmulti;
1645 
1646 
1647 	/* Protocol specific pointers */
1648 
1649 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1650 	struct vlan_info __rcu	*vlan_info;
1651 #endif
1652 #if IS_ENABLED(CONFIG_NET_DSA)
1653 	struct dsa_switch_tree	*dsa_ptr;
1654 #endif
1655 #if IS_ENABLED(CONFIG_TIPC)
1656 	struct tipc_bearer __rcu *tipc_ptr;
1657 #endif
1658 	void 			*atalk_ptr;
1659 	struct in_device __rcu	*ip_ptr;
1660 	struct dn_dev __rcu     *dn_ptr;
1661 	struct inet6_dev __rcu	*ip6_ptr;
1662 	void			*ax25_ptr;
1663 	struct wireless_dev	*ieee80211_ptr;
1664 	struct wpan_dev		*ieee802154_ptr;
1665 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1666 	struct mpls_dev __rcu	*mpls_ptr;
1667 #endif
1668 
1669 /*
1670  * Cache lines mostly used on receive path (including eth_type_trans())
1671  */
1672 	unsigned long		last_rx;
1673 
1674 	/* Interface address info used in eth_type_trans() */
1675 	unsigned char		*dev_addr;
1676 
1677 
1678 #ifdef CONFIG_SYSFS
1679 	struct netdev_rx_queue	*_rx;
1680 
1681 	unsigned int		num_rx_queues;
1682 	unsigned int		real_num_rx_queues;
1683 
1684 #endif
1685 
1686 	unsigned long		gro_flush_timeout;
1687 	rx_handler_func_t __rcu	*rx_handler;
1688 	void __rcu		*rx_handler_data;
1689 
1690 #ifdef CONFIG_NET_CLS_ACT
1691 	struct tcf_proto __rcu  *ingress_cl_list;
1692 #endif
1693 	struct netdev_queue __rcu *ingress_queue;
1694 #ifdef CONFIG_NETFILTER_INGRESS
1695 	struct list_head	nf_hooks_ingress;
1696 #endif
1697 
1698 	unsigned char		broadcast[MAX_ADDR_LEN];
1699 #ifdef CONFIG_RFS_ACCEL
1700 	struct cpu_rmap		*rx_cpu_rmap;
1701 #endif
1702 	struct hlist_node	index_hlist;
1703 
1704 /*
1705  * Cache lines mostly used on transmit path
1706  */
1707 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1708 	unsigned int		num_tx_queues;
1709 	unsigned int		real_num_tx_queues;
1710 	struct Qdisc		*qdisc;
1711 	unsigned long		tx_queue_len;
1712 	spinlock_t		tx_global_lock;
1713 	int			watchdog_timeo;
1714 
1715 #ifdef CONFIG_XPS
1716 	struct xps_dev_maps __rcu *xps_maps;
1717 #endif
1718 
1719 #ifdef CONFIG_NET_SWITCHDEV
1720 	u32			offload_fwd_mark;
1721 #endif
1722 
1723 	/* These may be needed for future network-power-down code. */
1724 
1725 	/*
1726 	 * trans_start here is expensive for high speed devices on SMP,
1727 	 * please use netdev_queue->trans_start instead.
1728 	 */
1729 	unsigned long		trans_start;
1730 
1731 	struct timer_list	watchdog_timer;
1732 
1733 	int __percpu		*pcpu_refcnt;
1734 	struct list_head	todo_list;
1735 
1736 	struct list_head	link_watch_list;
1737 
1738 	enum { NETREG_UNINITIALIZED=0,
1739 	       NETREG_REGISTERED,	/* completed register_netdevice */
1740 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1741 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1742 	       NETREG_RELEASED,		/* called free_netdev */
1743 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1744 	} reg_state:8;
1745 
1746 	bool dismantle;
1747 
1748 	enum {
1749 		RTNL_LINK_INITIALIZED,
1750 		RTNL_LINK_INITIALIZING,
1751 	} rtnl_link_state:16;
1752 
1753 	void (*destructor)(struct net_device *dev);
1754 
1755 #ifdef CONFIG_NETPOLL
1756 	struct netpoll_info __rcu	*npinfo;
1757 #endif
1758 
1759 	possible_net_t			nd_net;
1760 
1761 	/* mid-layer private */
1762 	union {
1763 		void					*ml_priv;
1764 		struct pcpu_lstats __percpu		*lstats;
1765 		struct pcpu_sw_netstats __percpu	*tstats;
1766 		struct pcpu_dstats __percpu		*dstats;
1767 		struct pcpu_vstats __percpu		*vstats;
1768 	};
1769 
1770 	struct garp_port __rcu	*garp_port;
1771 	struct mrp_port __rcu	*mrp_port;
1772 
1773 	struct device	dev;
1774 	const struct attribute_group *sysfs_groups[4];
1775 	const struct attribute_group *sysfs_rx_queue_group;
1776 
1777 	const struct rtnl_link_ops *rtnl_link_ops;
1778 
1779 	/* for setting kernel sock attribute on TCP connection setup */
1780 #define GSO_MAX_SIZE		65536
1781 	unsigned int		gso_max_size;
1782 #define GSO_MAX_SEGS		65535
1783 	u16			gso_max_segs;
1784 	u16			gso_min_segs;
1785 #ifdef CONFIG_DCB
1786 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1787 #endif
1788 	u8 num_tc;
1789 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1790 	u8 prio_tc_map[TC_BITMASK + 1];
1791 
1792 #if IS_ENABLED(CONFIG_FCOE)
1793 	unsigned int		fcoe_ddp_xid;
1794 #endif
1795 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1796 	struct netprio_map __rcu *priomap;
1797 #endif
1798 	struct phy_device *phydev;
1799 	struct lock_class_key *qdisc_tx_busylock;
1800 	bool proto_down;
1801 };
1802 #define to_net_dev(d) container_of(d, struct net_device, dev)
1803 
1804 #define	NETDEV_ALIGN		32
1805 
1806 static inline
1807 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1808 {
1809 	return dev->prio_tc_map[prio & TC_BITMASK];
1810 }
1811 
1812 static inline
1813 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1814 {
1815 	if (tc >= dev->num_tc)
1816 		return -EINVAL;
1817 
1818 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1819 	return 0;
1820 }
1821 
1822 static inline
1823 void netdev_reset_tc(struct net_device *dev)
1824 {
1825 	dev->num_tc = 0;
1826 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1827 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1828 }
1829 
1830 static inline
1831 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1832 {
1833 	if (tc >= dev->num_tc)
1834 		return -EINVAL;
1835 
1836 	dev->tc_to_txq[tc].count = count;
1837 	dev->tc_to_txq[tc].offset = offset;
1838 	return 0;
1839 }
1840 
1841 static inline
1842 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1843 {
1844 	if (num_tc > TC_MAX_QUEUE)
1845 		return -EINVAL;
1846 
1847 	dev->num_tc = num_tc;
1848 	return 0;
1849 }
1850 
1851 static inline
1852 int netdev_get_num_tc(struct net_device *dev)
1853 {
1854 	return dev->num_tc;
1855 }
1856 
1857 static inline
1858 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1859 					 unsigned int index)
1860 {
1861 	return &dev->_tx[index];
1862 }
1863 
1864 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1865 						    const struct sk_buff *skb)
1866 {
1867 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1868 }
1869 
1870 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1871 					    void (*f)(struct net_device *,
1872 						      struct netdev_queue *,
1873 						      void *),
1874 					    void *arg)
1875 {
1876 	unsigned int i;
1877 
1878 	for (i = 0; i < dev->num_tx_queues; i++)
1879 		f(dev, &dev->_tx[i], arg);
1880 }
1881 
1882 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1883 				    struct sk_buff *skb,
1884 				    void *accel_priv);
1885 
1886 /*
1887  * Net namespace inlines
1888  */
1889 static inline
1890 struct net *dev_net(const struct net_device *dev)
1891 {
1892 	return read_pnet(&dev->nd_net);
1893 }
1894 
1895 static inline
1896 void dev_net_set(struct net_device *dev, struct net *net)
1897 {
1898 	write_pnet(&dev->nd_net, net);
1899 }
1900 
1901 static inline bool netdev_uses_dsa(struct net_device *dev)
1902 {
1903 #if IS_ENABLED(CONFIG_NET_DSA)
1904 	if (dev->dsa_ptr != NULL)
1905 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1906 #endif
1907 	return false;
1908 }
1909 
1910 /**
1911  *	netdev_priv - access network device private data
1912  *	@dev: network device
1913  *
1914  * Get network device private data
1915  */
1916 static inline void *netdev_priv(const struct net_device *dev)
1917 {
1918 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1919 }
1920 
1921 /* Set the sysfs physical device reference for the network logical device
1922  * if set prior to registration will cause a symlink during initialization.
1923  */
1924 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1925 
1926 /* Set the sysfs device type for the network logical device to allow
1927  * fine-grained identification of different network device types. For
1928  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1929  */
1930 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1931 
1932 /* Default NAPI poll() weight
1933  * Device drivers are strongly advised to not use bigger value
1934  */
1935 #define NAPI_POLL_WEIGHT 64
1936 
1937 /**
1938  *	netif_napi_add - initialize a napi context
1939  *	@dev:  network device
1940  *	@napi: napi context
1941  *	@poll: polling function
1942  *	@weight: default weight
1943  *
1944  * netif_napi_add() must be used to initialize a napi context prior to calling
1945  * *any* of the other napi related functions.
1946  */
1947 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1948 		    int (*poll)(struct napi_struct *, int), int weight);
1949 
1950 /**
1951  *  netif_napi_del - remove a napi context
1952  *  @napi: napi context
1953  *
1954  *  netif_napi_del() removes a napi context from the network device napi list
1955  */
1956 void netif_napi_del(struct napi_struct *napi);
1957 
1958 struct napi_gro_cb {
1959 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1960 	void *frag0;
1961 
1962 	/* Length of frag0. */
1963 	unsigned int frag0_len;
1964 
1965 	/* This indicates where we are processing relative to skb->data. */
1966 	int data_offset;
1967 
1968 	/* This is non-zero if the packet cannot be merged with the new skb. */
1969 	u16	flush;
1970 
1971 	/* Save the IP ID here and check when we get to the transport layer */
1972 	u16	flush_id;
1973 
1974 	/* Number of segments aggregated. */
1975 	u16	count;
1976 
1977 	/* Start offset for remote checksum offload */
1978 	u16	gro_remcsum_start;
1979 
1980 	/* jiffies when first packet was created/queued */
1981 	unsigned long age;
1982 
1983 	/* Used in ipv6_gro_receive() and foo-over-udp */
1984 	u16	proto;
1985 
1986 	/* This is non-zero if the packet may be of the same flow. */
1987 	u8	same_flow:1;
1988 
1989 	/* Used in udp_gro_receive */
1990 	u8	udp_mark:1;
1991 
1992 	/* GRO checksum is valid */
1993 	u8	csum_valid:1;
1994 
1995 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1996 	u8	csum_cnt:3;
1997 
1998 	/* Free the skb? */
1999 	u8	free:2;
2000 #define NAPI_GRO_FREE		  1
2001 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2002 
2003 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2004 	u8	is_ipv6:1;
2005 
2006 	/* 7 bit hole */
2007 
2008 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2009 	__wsum	csum;
2010 
2011 	/* used in skb_gro_receive() slow path */
2012 	struct sk_buff *last;
2013 };
2014 
2015 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2016 
2017 struct packet_type {
2018 	__be16			type;	/* This is really htons(ether_type). */
2019 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2020 	int			(*func) (struct sk_buff *,
2021 					 struct net_device *,
2022 					 struct packet_type *,
2023 					 struct net_device *);
2024 	bool			(*id_match)(struct packet_type *ptype,
2025 					    struct sock *sk);
2026 	void			*af_packet_priv;
2027 	struct list_head	list;
2028 };
2029 
2030 struct offload_callbacks {
2031 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2032 						netdev_features_t features);
2033 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2034 						 struct sk_buff *skb);
2035 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2036 };
2037 
2038 struct packet_offload {
2039 	__be16			 type;	/* This is really htons(ether_type). */
2040 	u16			 priority;
2041 	struct offload_callbacks callbacks;
2042 	struct list_head	 list;
2043 };
2044 
2045 struct udp_offload;
2046 
2047 struct udp_offload_callbacks {
2048 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2049 						 struct sk_buff *skb,
2050 						 struct udp_offload *uoff);
2051 	int			(*gro_complete)(struct sk_buff *skb,
2052 						int nhoff,
2053 						struct udp_offload *uoff);
2054 };
2055 
2056 struct udp_offload {
2057 	__be16			 port;
2058 	u8			 ipproto;
2059 	struct udp_offload_callbacks callbacks;
2060 };
2061 
2062 /* often modified stats are per cpu, other are shared (netdev->stats) */
2063 struct pcpu_sw_netstats {
2064 	u64     rx_packets;
2065 	u64     rx_bytes;
2066 	u64     tx_packets;
2067 	u64     tx_bytes;
2068 	struct u64_stats_sync   syncp;
2069 };
2070 
2071 #define netdev_alloc_pcpu_stats(type)				\
2072 ({								\
2073 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2074 	if (pcpu_stats)	{					\
2075 		int __cpu;					\
2076 		for_each_possible_cpu(__cpu) {			\
2077 			typeof(type) *stat;			\
2078 			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2079 			u64_stats_init(&stat->syncp);		\
2080 		}						\
2081 	}							\
2082 	pcpu_stats;						\
2083 })
2084 
2085 #include <linux/notifier.h>
2086 
2087 /* netdevice notifier chain. Please remember to update the rtnetlink
2088  * notification exclusion list in rtnetlink_event() when adding new
2089  * types.
2090  */
2091 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2092 #define NETDEV_DOWN	0x0002
2093 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2094 				   detected a hardware crash and restarted
2095 				   - we can use this eg to kick tcp sessions
2096 				   once done */
2097 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2098 #define NETDEV_REGISTER 0x0005
2099 #define NETDEV_UNREGISTER	0x0006
2100 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2101 #define NETDEV_CHANGEADDR	0x0008
2102 #define NETDEV_GOING_DOWN	0x0009
2103 #define NETDEV_CHANGENAME	0x000A
2104 #define NETDEV_FEAT_CHANGE	0x000B
2105 #define NETDEV_BONDING_FAILOVER 0x000C
2106 #define NETDEV_PRE_UP		0x000D
2107 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2108 #define NETDEV_POST_TYPE_CHANGE	0x000F
2109 #define NETDEV_POST_INIT	0x0010
2110 #define NETDEV_UNREGISTER_FINAL 0x0011
2111 #define NETDEV_RELEASE		0x0012
2112 #define NETDEV_NOTIFY_PEERS	0x0013
2113 #define NETDEV_JOIN		0x0014
2114 #define NETDEV_CHANGEUPPER	0x0015
2115 #define NETDEV_RESEND_IGMP	0x0016
2116 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2117 #define NETDEV_CHANGEINFODATA	0x0018
2118 #define NETDEV_BONDING_INFO	0x0019
2119 #define NETDEV_PRECHANGEUPPER	0x001A
2120 
2121 int register_netdevice_notifier(struct notifier_block *nb);
2122 int unregister_netdevice_notifier(struct notifier_block *nb);
2123 
2124 struct netdev_notifier_info {
2125 	struct net_device *dev;
2126 };
2127 
2128 struct netdev_notifier_change_info {
2129 	struct netdev_notifier_info info; /* must be first */
2130 	unsigned int flags_changed;
2131 };
2132 
2133 struct netdev_notifier_changeupper_info {
2134 	struct netdev_notifier_info info; /* must be first */
2135 	struct net_device *upper_dev; /* new upper dev */
2136 	bool master; /* is upper dev master */
2137 	bool linking; /* is the nofication for link or unlink */
2138 };
2139 
2140 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2141 					     struct net_device *dev)
2142 {
2143 	info->dev = dev;
2144 }
2145 
2146 static inline struct net_device *
2147 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2148 {
2149 	return info->dev;
2150 }
2151 
2152 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2153 
2154 
2155 extern rwlock_t				dev_base_lock;		/* Device list lock */
2156 
2157 #define for_each_netdev(net, d)		\
2158 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2159 #define for_each_netdev_reverse(net, d)	\
2160 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2161 #define for_each_netdev_rcu(net, d)		\
2162 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2163 #define for_each_netdev_safe(net, d, n)	\
2164 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2165 #define for_each_netdev_continue(net, d)		\
2166 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2167 #define for_each_netdev_continue_rcu(net, d)		\
2168 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2169 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2170 		for_each_netdev_rcu(&init_net, slave)	\
2171 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2172 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2173 
2174 static inline struct net_device *next_net_device(struct net_device *dev)
2175 {
2176 	struct list_head *lh;
2177 	struct net *net;
2178 
2179 	net = dev_net(dev);
2180 	lh = dev->dev_list.next;
2181 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2182 }
2183 
2184 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2185 {
2186 	struct list_head *lh;
2187 	struct net *net;
2188 
2189 	net = dev_net(dev);
2190 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2191 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2192 }
2193 
2194 static inline struct net_device *first_net_device(struct net *net)
2195 {
2196 	return list_empty(&net->dev_base_head) ? NULL :
2197 		net_device_entry(net->dev_base_head.next);
2198 }
2199 
2200 static inline struct net_device *first_net_device_rcu(struct net *net)
2201 {
2202 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2203 
2204 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2205 }
2206 
2207 int netdev_boot_setup_check(struct net_device *dev);
2208 unsigned long netdev_boot_base(const char *prefix, int unit);
2209 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2210 				       const char *hwaddr);
2211 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2212 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2213 void dev_add_pack(struct packet_type *pt);
2214 void dev_remove_pack(struct packet_type *pt);
2215 void __dev_remove_pack(struct packet_type *pt);
2216 void dev_add_offload(struct packet_offload *po);
2217 void dev_remove_offload(struct packet_offload *po);
2218 
2219 int dev_get_iflink(const struct net_device *dev);
2220 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2221 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2222 				      unsigned short mask);
2223 struct net_device *dev_get_by_name(struct net *net, const char *name);
2224 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2225 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2226 int dev_alloc_name(struct net_device *dev, const char *name);
2227 int dev_open(struct net_device *dev);
2228 int dev_close(struct net_device *dev);
2229 int dev_close_many(struct list_head *head, bool unlink);
2230 void dev_disable_lro(struct net_device *dev);
2231 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2232 int dev_queue_xmit(struct sk_buff *skb);
2233 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2234 int register_netdevice(struct net_device *dev);
2235 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2236 void unregister_netdevice_many(struct list_head *head);
2237 static inline void unregister_netdevice(struct net_device *dev)
2238 {
2239 	unregister_netdevice_queue(dev, NULL);
2240 }
2241 
2242 int netdev_refcnt_read(const struct net_device *dev);
2243 void free_netdev(struct net_device *dev);
2244 void netdev_freemem(struct net_device *dev);
2245 void synchronize_net(void);
2246 int init_dummy_netdev(struct net_device *dev);
2247 
2248 DECLARE_PER_CPU(int, xmit_recursion);
2249 static inline int dev_recursion_level(void)
2250 {
2251 	return this_cpu_read(xmit_recursion);
2252 }
2253 
2254 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2255 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2256 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2257 int netdev_get_name(struct net *net, char *name, int ifindex);
2258 int dev_restart(struct net_device *dev);
2259 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2260 
2261 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2262 {
2263 	return NAPI_GRO_CB(skb)->data_offset;
2264 }
2265 
2266 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2267 {
2268 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2269 }
2270 
2271 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2272 {
2273 	NAPI_GRO_CB(skb)->data_offset += len;
2274 }
2275 
2276 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2277 					unsigned int offset)
2278 {
2279 	return NAPI_GRO_CB(skb)->frag0 + offset;
2280 }
2281 
2282 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2283 {
2284 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2285 }
2286 
2287 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2288 					unsigned int offset)
2289 {
2290 	if (!pskb_may_pull(skb, hlen))
2291 		return NULL;
2292 
2293 	NAPI_GRO_CB(skb)->frag0 = NULL;
2294 	NAPI_GRO_CB(skb)->frag0_len = 0;
2295 	return skb->data + offset;
2296 }
2297 
2298 static inline void *skb_gro_network_header(struct sk_buff *skb)
2299 {
2300 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2301 	       skb_network_offset(skb);
2302 }
2303 
2304 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2305 					const void *start, unsigned int len)
2306 {
2307 	if (NAPI_GRO_CB(skb)->csum_valid)
2308 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2309 						  csum_partial(start, len, 0));
2310 }
2311 
2312 /* GRO checksum functions. These are logical equivalents of the normal
2313  * checksum functions (in skbuff.h) except that they operate on the GRO
2314  * offsets and fields in sk_buff.
2315  */
2316 
2317 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2318 
2319 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2320 {
2321 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2322 }
2323 
2324 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2325 						      bool zero_okay,
2326 						      __sum16 check)
2327 {
2328 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2329 		skb_checksum_start_offset(skb) <
2330 		 skb_gro_offset(skb)) &&
2331 		!skb_at_gro_remcsum_start(skb) &&
2332 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2333 		(!zero_okay || check));
2334 }
2335 
2336 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2337 							   __wsum psum)
2338 {
2339 	if (NAPI_GRO_CB(skb)->csum_valid &&
2340 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2341 		return 0;
2342 
2343 	NAPI_GRO_CB(skb)->csum = psum;
2344 
2345 	return __skb_gro_checksum_complete(skb);
2346 }
2347 
2348 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2349 {
2350 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2351 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2352 		NAPI_GRO_CB(skb)->csum_cnt--;
2353 	} else {
2354 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2355 		 * verified a new top level checksum or an encapsulated one
2356 		 * during GRO. This saves work if we fallback to normal path.
2357 		 */
2358 		__skb_incr_checksum_unnecessary(skb);
2359 	}
2360 }
2361 
2362 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2363 				    compute_pseudo)			\
2364 ({									\
2365 	__sum16 __ret = 0;						\
2366 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2367 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2368 				compute_pseudo(skb, proto));		\
2369 	if (__ret)							\
2370 		__skb_mark_checksum_bad(skb);				\
2371 	else								\
2372 		skb_gro_incr_csum_unnecessary(skb);			\
2373 	__ret;								\
2374 })
2375 
2376 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2377 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2378 
2379 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2380 					     compute_pseudo)		\
2381 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2382 
2383 #define skb_gro_checksum_simple_validate(skb)				\
2384 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2385 
2386 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2387 {
2388 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2389 		!NAPI_GRO_CB(skb)->csum_valid);
2390 }
2391 
2392 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2393 					      __sum16 check, __wsum pseudo)
2394 {
2395 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2396 	NAPI_GRO_CB(skb)->csum_valid = 1;
2397 }
2398 
2399 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2400 do {									\
2401 	if (__skb_gro_checksum_convert_check(skb))			\
2402 		__skb_gro_checksum_convert(skb, check,			\
2403 					   compute_pseudo(skb, proto));	\
2404 } while (0)
2405 
2406 struct gro_remcsum {
2407 	int offset;
2408 	__wsum delta;
2409 };
2410 
2411 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2412 {
2413 	grc->offset = 0;
2414 	grc->delta = 0;
2415 }
2416 
2417 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2418 					    unsigned int off, size_t hdrlen,
2419 					    int start, int offset,
2420 					    struct gro_remcsum *grc,
2421 					    bool nopartial)
2422 {
2423 	__wsum delta;
2424 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2425 
2426 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2427 
2428 	if (!nopartial) {
2429 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2430 		return ptr;
2431 	}
2432 
2433 	ptr = skb_gro_header_fast(skb, off);
2434 	if (skb_gro_header_hard(skb, off + plen)) {
2435 		ptr = skb_gro_header_slow(skb, off + plen, off);
2436 		if (!ptr)
2437 			return NULL;
2438 	}
2439 
2440 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2441 			       start, offset);
2442 
2443 	/* Adjust skb->csum since we changed the packet */
2444 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2445 
2446 	grc->offset = off + hdrlen + offset;
2447 	grc->delta = delta;
2448 
2449 	return ptr;
2450 }
2451 
2452 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2453 					   struct gro_remcsum *grc)
2454 {
2455 	void *ptr;
2456 	size_t plen = grc->offset + sizeof(u16);
2457 
2458 	if (!grc->delta)
2459 		return;
2460 
2461 	ptr = skb_gro_header_fast(skb, grc->offset);
2462 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2463 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2464 		if (!ptr)
2465 			return;
2466 	}
2467 
2468 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2469 }
2470 
2471 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2472 				  unsigned short type,
2473 				  const void *daddr, const void *saddr,
2474 				  unsigned int len)
2475 {
2476 	if (!dev->header_ops || !dev->header_ops->create)
2477 		return 0;
2478 
2479 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2480 }
2481 
2482 static inline int dev_parse_header(const struct sk_buff *skb,
2483 				   unsigned char *haddr)
2484 {
2485 	const struct net_device *dev = skb->dev;
2486 
2487 	if (!dev->header_ops || !dev->header_ops->parse)
2488 		return 0;
2489 	return dev->header_ops->parse(skb, haddr);
2490 }
2491 
2492 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2493 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2494 static inline int unregister_gifconf(unsigned int family)
2495 {
2496 	return register_gifconf(family, NULL);
2497 }
2498 
2499 #ifdef CONFIG_NET_FLOW_LIMIT
2500 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2501 struct sd_flow_limit {
2502 	u64			count;
2503 	unsigned int		num_buckets;
2504 	unsigned int		history_head;
2505 	u16			history[FLOW_LIMIT_HISTORY];
2506 	u8			buckets[];
2507 };
2508 
2509 extern int netdev_flow_limit_table_len;
2510 #endif /* CONFIG_NET_FLOW_LIMIT */
2511 
2512 /*
2513  * Incoming packets are placed on per-cpu queues
2514  */
2515 struct softnet_data {
2516 	struct list_head	poll_list;
2517 	struct sk_buff_head	process_queue;
2518 
2519 	/* stats */
2520 	unsigned int		processed;
2521 	unsigned int		time_squeeze;
2522 	unsigned int		cpu_collision;
2523 	unsigned int		received_rps;
2524 #ifdef CONFIG_RPS
2525 	struct softnet_data	*rps_ipi_list;
2526 #endif
2527 #ifdef CONFIG_NET_FLOW_LIMIT
2528 	struct sd_flow_limit __rcu *flow_limit;
2529 #endif
2530 	struct Qdisc		*output_queue;
2531 	struct Qdisc		**output_queue_tailp;
2532 	struct sk_buff		*completion_queue;
2533 
2534 #ifdef CONFIG_RPS
2535 	/* Elements below can be accessed between CPUs for RPS */
2536 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2537 	struct softnet_data	*rps_ipi_next;
2538 	unsigned int		cpu;
2539 	unsigned int		input_queue_head;
2540 	unsigned int		input_queue_tail;
2541 #endif
2542 	unsigned int		dropped;
2543 	struct sk_buff_head	input_pkt_queue;
2544 	struct napi_struct	backlog;
2545 
2546 };
2547 
2548 static inline void input_queue_head_incr(struct softnet_data *sd)
2549 {
2550 #ifdef CONFIG_RPS
2551 	sd->input_queue_head++;
2552 #endif
2553 }
2554 
2555 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2556 					      unsigned int *qtail)
2557 {
2558 #ifdef CONFIG_RPS
2559 	*qtail = ++sd->input_queue_tail;
2560 #endif
2561 }
2562 
2563 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2564 
2565 void __netif_schedule(struct Qdisc *q);
2566 void netif_schedule_queue(struct netdev_queue *txq);
2567 
2568 static inline void netif_tx_schedule_all(struct net_device *dev)
2569 {
2570 	unsigned int i;
2571 
2572 	for (i = 0; i < dev->num_tx_queues; i++)
2573 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2574 }
2575 
2576 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2577 {
2578 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2579 }
2580 
2581 /**
2582  *	netif_start_queue - allow transmit
2583  *	@dev: network device
2584  *
2585  *	Allow upper layers to call the device hard_start_xmit routine.
2586  */
2587 static inline void netif_start_queue(struct net_device *dev)
2588 {
2589 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2590 }
2591 
2592 static inline void netif_tx_start_all_queues(struct net_device *dev)
2593 {
2594 	unsigned int i;
2595 
2596 	for (i = 0; i < dev->num_tx_queues; i++) {
2597 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2598 		netif_tx_start_queue(txq);
2599 	}
2600 }
2601 
2602 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2603 
2604 /**
2605  *	netif_wake_queue - restart transmit
2606  *	@dev: network device
2607  *
2608  *	Allow upper layers to call the device hard_start_xmit routine.
2609  *	Used for flow control when transmit resources are available.
2610  */
2611 static inline void netif_wake_queue(struct net_device *dev)
2612 {
2613 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2614 }
2615 
2616 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2617 {
2618 	unsigned int i;
2619 
2620 	for (i = 0; i < dev->num_tx_queues; i++) {
2621 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2622 		netif_tx_wake_queue(txq);
2623 	}
2624 }
2625 
2626 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2627 {
2628 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2629 }
2630 
2631 /**
2632  *	netif_stop_queue - stop transmitted packets
2633  *	@dev: network device
2634  *
2635  *	Stop upper layers calling the device hard_start_xmit routine.
2636  *	Used for flow control when transmit resources are unavailable.
2637  */
2638 static inline void netif_stop_queue(struct net_device *dev)
2639 {
2640 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2641 }
2642 
2643 void netif_tx_stop_all_queues(struct net_device *dev);
2644 
2645 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2646 {
2647 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2648 }
2649 
2650 /**
2651  *	netif_queue_stopped - test if transmit queue is flowblocked
2652  *	@dev: network device
2653  *
2654  *	Test if transmit queue on device is currently unable to send.
2655  */
2656 static inline bool netif_queue_stopped(const struct net_device *dev)
2657 {
2658 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2659 }
2660 
2661 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2662 {
2663 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2664 }
2665 
2666 static inline bool
2667 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2668 {
2669 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2670 }
2671 
2672 static inline bool
2673 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2674 {
2675 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2676 }
2677 
2678 /**
2679  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2680  *	@dev_queue: pointer to transmit queue
2681  *
2682  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2683  * to give appropriate hint to the cpu.
2684  */
2685 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2686 {
2687 #ifdef CONFIG_BQL
2688 	prefetchw(&dev_queue->dql.num_queued);
2689 #endif
2690 }
2691 
2692 /**
2693  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2694  *	@dev_queue: pointer to transmit queue
2695  *
2696  * BQL enabled drivers might use this helper in their TX completion path,
2697  * to give appropriate hint to the cpu.
2698  */
2699 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2700 {
2701 #ifdef CONFIG_BQL
2702 	prefetchw(&dev_queue->dql.limit);
2703 #endif
2704 }
2705 
2706 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2707 					unsigned int bytes)
2708 {
2709 #ifdef CONFIG_BQL
2710 	dql_queued(&dev_queue->dql, bytes);
2711 
2712 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2713 		return;
2714 
2715 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2716 
2717 	/*
2718 	 * The XOFF flag must be set before checking the dql_avail below,
2719 	 * because in netdev_tx_completed_queue we update the dql_completed
2720 	 * before checking the XOFF flag.
2721 	 */
2722 	smp_mb();
2723 
2724 	/* check again in case another CPU has just made room avail */
2725 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2726 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2727 #endif
2728 }
2729 
2730 /**
2731  * 	netdev_sent_queue - report the number of bytes queued to hardware
2732  * 	@dev: network device
2733  * 	@bytes: number of bytes queued to the hardware device queue
2734  *
2735  * 	Report the number of bytes queued for sending/completion to the network
2736  * 	device hardware queue. @bytes should be a good approximation and should
2737  * 	exactly match netdev_completed_queue() @bytes
2738  */
2739 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2740 {
2741 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2742 }
2743 
2744 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2745 					     unsigned int pkts, unsigned int bytes)
2746 {
2747 #ifdef CONFIG_BQL
2748 	if (unlikely(!bytes))
2749 		return;
2750 
2751 	dql_completed(&dev_queue->dql, bytes);
2752 
2753 	/*
2754 	 * Without the memory barrier there is a small possiblity that
2755 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2756 	 * be stopped forever
2757 	 */
2758 	smp_mb();
2759 
2760 	if (dql_avail(&dev_queue->dql) < 0)
2761 		return;
2762 
2763 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2764 		netif_schedule_queue(dev_queue);
2765 #endif
2766 }
2767 
2768 /**
2769  * 	netdev_completed_queue - report bytes and packets completed by device
2770  * 	@dev: network device
2771  * 	@pkts: actual number of packets sent over the medium
2772  * 	@bytes: actual number of bytes sent over the medium
2773  *
2774  * 	Report the number of bytes and packets transmitted by the network device
2775  * 	hardware queue over the physical medium, @bytes must exactly match the
2776  * 	@bytes amount passed to netdev_sent_queue()
2777  */
2778 static inline void netdev_completed_queue(struct net_device *dev,
2779 					  unsigned int pkts, unsigned int bytes)
2780 {
2781 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2782 }
2783 
2784 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2785 {
2786 #ifdef CONFIG_BQL
2787 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2788 	dql_reset(&q->dql);
2789 #endif
2790 }
2791 
2792 /**
2793  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2794  * 	@dev_queue: network device
2795  *
2796  * 	Reset the bytes and packet count of a network device and clear the
2797  * 	software flow control OFF bit for this network device
2798  */
2799 static inline void netdev_reset_queue(struct net_device *dev_queue)
2800 {
2801 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2802 }
2803 
2804 /**
2805  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2806  * 	@dev: network device
2807  * 	@queue_index: given tx queue index
2808  *
2809  * 	Returns 0 if given tx queue index >= number of device tx queues,
2810  * 	otherwise returns the originally passed tx queue index.
2811  */
2812 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2813 {
2814 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2815 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2816 				     dev->name, queue_index,
2817 				     dev->real_num_tx_queues);
2818 		return 0;
2819 	}
2820 
2821 	return queue_index;
2822 }
2823 
2824 /**
2825  *	netif_running - test if up
2826  *	@dev: network device
2827  *
2828  *	Test if the device has been brought up.
2829  */
2830 static inline bool netif_running(const struct net_device *dev)
2831 {
2832 	return test_bit(__LINK_STATE_START, &dev->state);
2833 }
2834 
2835 /*
2836  * Routines to manage the subqueues on a device.  We only need start
2837  * stop, and a check if it's stopped.  All other device management is
2838  * done at the overall netdevice level.
2839  * Also test the device if we're multiqueue.
2840  */
2841 
2842 /**
2843  *	netif_start_subqueue - allow sending packets on subqueue
2844  *	@dev: network device
2845  *	@queue_index: sub queue index
2846  *
2847  * Start individual transmit queue of a device with multiple transmit queues.
2848  */
2849 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2850 {
2851 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2852 
2853 	netif_tx_start_queue(txq);
2854 }
2855 
2856 /**
2857  *	netif_stop_subqueue - stop sending packets on subqueue
2858  *	@dev: network device
2859  *	@queue_index: sub queue index
2860  *
2861  * Stop individual transmit queue of a device with multiple transmit queues.
2862  */
2863 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2864 {
2865 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2866 	netif_tx_stop_queue(txq);
2867 }
2868 
2869 /**
2870  *	netif_subqueue_stopped - test status of subqueue
2871  *	@dev: network device
2872  *	@queue_index: sub queue index
2873  *
2874  * Check individual transmit queue of a device with multiple transmit queues.
2875  */
2876 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2877 					    u16 queue_index)
2878 {
2879 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2880 
2881 	return netif_tx_queue_stopped(txq);
2882 }
2883 
2884 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2885 					  struct sk_buff *skb)
2886 {
2887 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2888 }
2889 
2890 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2891 
2892 #ifdef CONFIG_XPS
2893 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2894 			u16 index);
2895 #else
2896 static inline int netif_set_xps_queue(struct net_device *dev,
2897 				      const struct cpumask *mask,
2898 				      u16 index)
2899 {
2900 	return 0;
2901 }
2902 #endif
2903 
2904 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2905 		  unsigned int num_tx_queues);
2906 
2907 /*
2908  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2909  * as a distribution range limit for the returned value.
2910  */
2911 static inline u16 skb_tx_hash(const struct net_device *dev,
2912 			      struct sk_buff *skb)
2913 {
2914 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2915 }
2916 
2917 /**
2918  *	netif_is_multiqueue - test if device has multiple transmit queues
2919  *	@dev: network device
2920  *
2921  * Check if device has multiple transmit queues
2922  */
2923 static inline bool netif_is_multiqueue(const struct net_device *dev)
2924 {
2925 	return dev->num_tx_queues > 1;
2926 }
2927 
2928 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2929 
2930 #ifdef CONFIG_SYSFS
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2932 #else
2933 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2934 						unsigned int rxq)
2935 {
2936 	return 0;
2937 }
2938 #endif
2939 
2940 #ifdef CONFIG_SYSFS
2941 static inline unsigned int get_netdev_rx_queue_index(
2942 		struct netdev_rx_queue *queue)
2943 {
2944 	struct net_device *dev = queue->dev;
2945 	int index = queue - dev->_rx;
2946 
2947 	BUG_ON(index >= dev->num_rx_queues);
2948 	return index;
2949 }
2950 #endif
2951 
2952 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2953 int netif_get_num_default_rss_queues(void);
2954 
2955 enum skb_free_reason {
2956 	SKB_REASON_CONSUMED,
2957 	SKB_REASON_DROPPED,
2958 };
2959 
2960 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2961 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2962 
2963 /*
2964  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2965  * interrupt context or with hardware interrupts being disabled.
2966  * (in_irq() || irqs_disabled())
2967  *
2968  * We provide four helpers that can be used in following contexts :
2969  *
2970  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2971  *  replacing kfree_skb(skb)
2972  *
2973  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2974  *  Typically used in place of consume_skb(skb) in TX completion path
2975  *
2976  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2977  *  replacing kfree_skb(skb)
2978  *
2979  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2980  *  and consumed a packet. Used in place of consume_skb(skb)
2981  */
2982 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2983 {
2984 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2985 }
2986 
2987 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2988 {
2989 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2990 }
2991 
2992 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2993 {
2994 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2995 }
2996 
2997 static inline void dev_consume_skb_any(struct sk_buff *skb)
2998 {
2999 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3000 }
3001 
3002 int netif_rx(struct sk_buff *skb);
3003 int netif_rx_ni(struct sk_buff *skb);
3004 int netif_receive_skb(struct sk_buff *skb);
3005 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3006 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3007 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3008 gro_result_t napi_gro_frags(struct napi_struct *napi);
3009 struct packet_offload *gro_find_receive_by_type(__be16 type);
3010 struct packet_offload *gro_find_complete_by_type(__be16 type);
3011 
3012 static inline void napi_free_frags(struct napi_struct *napi)
3013 {
3014 	kfree_skb(napi->skb);
3015 	napi->skb = NULL;
3016 }
3017 
3018 int netdev_rx_handler_register(struct net_device *dev,
3019 			       rx_handler_func_t *rx_handler,
3020 			       void *rx_handler_data);
3021 void netdev_rx_handler_unregister(struct net_device *dev);
3022 
3023 bool dev_valid_name(const char *name);
3024 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3025 int dev_ethtool(struct net *net, struct ifreq *);
3026 unsigned int dev_get_flags(const struct net_device *);
3027 int __dev_change_flags(struct net_device *, unsigned int flags);
3028 int dev_change_flags(struct net_device *, unsigned int);
3029 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3030 			unsigned int gchanges);
3031 int dev_change_name(struct net_device *, const char *);
3032 int dev_set_alias(struct net_device *, const char *, size_t);
3033 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3034 int dev_set_mtu(struct net_device *, int);
3035 void dev_set_group(struct net_device *, int);
3036 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3037 int dev_change_carrier(struct net_device *, bool new_carrier);
3038 int dev_get_phys_port_id(struct net_device *dev,
3039 			 struct netdev_phys_item_id *ppid);
3040 int dev_get_phys_port_name(struct net_device *dev,
3041 			   char *name, size_t len);
3042 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3043 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3044 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3045 				    struct netdev_queue *txq, int *ret);
3046 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3047 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3048 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3049 
3050 extern int		netdev_budget;
3051 
3052 /* Called by rtnetlink.c:rtnl_unlock() */
3053 void netdev_run_todo(void);
3054 
3055 /**
3056  *	dev_put - release reference to device
3057  *	@dev: network device
3058  *
3059  * Release reference to device to allow it to be freed.
3060  */
3061 static inline void dev_put(struct net_device *dev)
3062 {
3063 	this_cpu_dec(*dev->pcpu_refcnt);
3064 }
3065 
3066 /**
3067  *	dev_hold - get reference to device
3068  *	@dev: network device
3069  *
3070  * Hold reference to device to keep it from being freed.
3071  */
3072 static inline void dev_hold(struct net_device *dev)
3073 {
3074 	this_cpu_inc(*dev->pcpu_refcnt);
3075 }
3076 
3077 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3078  * and _off may be called from IRQ context, but it is caller
3079  * who is responsible for serialization of these calls.
3080  *
3081  * The name carrier is inappropriate, these functions should really be
3082  * called netif_lowerlayer_*() because they represent the state of any
3083  * kind of lower layer not just hardware media.
3084  */
3085 
3086 void linkwatch_init_dev(struct net_device *dev);
3087 void linkwatch_fire_event(struct net_device *dev);
3088 void linkwatch_forget_dev(struct net_device *dev);
3089 
3090 /**
3091  *	netif_carrier_ok - test if carrier present
3092  *	@dev: network device
3093  *
3094  * Check if carrier is present on device
3095  */
3096 static inline bool netif_carrier_ok(const struct net_device *dev)
3097 {
3098 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3099 }
3100 
3101 unsigned long dev_trans_start(struct net_device *dev);
3102 
3103 void __netdev_watchdog_up(struct net_device *dev);
3104 
3105 void netif_carrier_on(struct net_device *dev);
3106 
3107 void netif_carrier_off(struct net_device *dev);
3108 
3109 /**
3110  *	netif_dormant_on - mark device as dormant.
3111  *	@dev: network device
3112  *
3113  * Mark device as dormant (as per RFC2863).
3114  *
3115  * The dormant state indicates that the relevant interface is not
3116  * actually in a condition to pass packets (i.e., it is not 'up') but is
3117  * in a "pending" state, waiting for some external event.  For "on-
3118  * demand" interfaces, this new state identifies the situation where the
3119  * interface is waiting for events to place it in the up state.
3120  *
3121  */
3122 static inline void netif_dormant_on(struct net_device *dev)
3123 {
3124 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3125 		linkwatch_fire_event(dev);
3126 }
3127 
3128 /**
3129  *	netif_dormant_off - set device as not dormant.
3130  *	@dev: network device
3131  *
3132  * Device is not in dormant state.
3133  */
3134 static inline void netif_dormant_off(struct net_device *dev)
3135 {
3136 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3137 		linkwatch_fire_event(dev);
3138 }
3139 
3140 /**
3141  *	netif_dormant - test if carrier present
3142  *	@dev: network device
3143  *
3144  * Check if carrier is present on device
3145  */
3146 static inline bool netif_dormant(const struct net_device *dev)
3147 {
3148 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3149 }
3150 
3151 
3152 /**
3153  *	netif_oper_up - test if device is operational
3154  *	@dev: network device
3155  *
3156  * Check if carrier is operational
3157  */
3158 static inline bool netif_oper_up(const struct net_device *dev)
3159 {
3160 	return (dev->operstate == IF_OPER_UP ||
3161 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3162 }
3163 
3164 /**
3165  *	netif_device_present - is device available or removed
3166  *	@dev: network device
3167  *
3168  * Check if device has not been removed from system.
3169  */
3170 static inline bool netif_device_present(struct net_device *dev)
3171 {
3172 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3173 }
3174 
3175 void netif_device_detach(struct net_device *dev);
3176 
3177 void netif_device_attach(struct net_device *dev);
3178 
3179 /*
3180  * Network interface message level settings
3181  */
3182 
3183 enum {
3184 	NETIF_MSG_DRV		= 0x0001,
3185 	NETIF_MSG_PROBE		= 0x0002,
3186 	NETIF_MSG_LINK		= 0x0004,
3187 	NETIF_MSG_TIMER		= 0x0008,
3188 	NETIF_MSG_IFDOWN	= 0x0010,
3189 	NETIF_MSG_IFUP		= 0x0020,
3190 	NETIF_MSG_RX_ERR	= 0x0040,
3191 	NETIF_MSG_TX_ERR	= 0x0080,
3192 	NETIF_MSG_TX_QUEUED	= 0x0100,
3193 	NETIF_MSG_INTR		= 0x0200,
3194 	NETIF_MSG_TX_DONE	= 0x0400,
3195 	NETIF_MSG_RX_STATUS	= 0x0800,
3196 	NETIF_MSG_PKTDATA	= 0x1000,
3197 	NETIF_MSG_HW		= 0x2000,
3198 	NETIF_MSG_WOL		= 0x4000,
3199 };
3200 
3201 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3202 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3203 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3204 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3205 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3206 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3207 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3208 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3209 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3210 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3211 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3212 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3213 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3214 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3215 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3216 
3217 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3218 {
3219 	/* use default */
3220 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3221 		return default_msg_enable_bits;
3222 	if (debug_value == 0)	/* no output */
3223 		return 0;
3224 	/* set low N bits */
3225 	return (1 << debug_value) - 1;
3226 }
3227 
3228 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3229 {
3230 	spin_lock(&txq->_xmit_lock);
3231 	txq->xmit_lock_owner = cpu;
3232 }
3233 
3234 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3235 {
3236 	spin_lock_bh(&txq->_xmit_lock);
3237 	txq->xmit_lock_owner = smp_processor_id();
3238 }
3239 
3240 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3241 {
3242 	bool ok = spin_trylock(&txq->_xmit_lock);
3243 	if (likely(ok))
3244 		txq->xmit_lock_owner = smp_processor_id();
3245 	return ok;
3246 }
3247 
3248 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3249 {
3250 	txq->xmit_lock_owner = -1;
3251 	spin_unlock(&txq->_xmit_lock);
3252 }
3253 
3254 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3255 {
3256 	txq->xmit_lock_owner = -1;
3257 	spin_unlock_bh(&txq->_xmit_lock);
3258 }
3259 
3260 static inline void txq_trans_update(struct netdev_queue *txq)
3261 {
3262 	if (txq->xmit_lock_owner != -1)
3263 		txq->trans_start = jiffies;
3264 }
3265 
3266 /**
3267  *	netif_tx_lock - grab network device transmit lock
3268  *	@dev: network device
3269  *
3270  * Get network device transmit lock
3271  */
3272 static inline void netif_tx_lock(struct net_device *dev)
3273 {
3274 	unsigned int i;
3275 	int cpu;
3276 
3277 	spin_lock(&dev->tx_global_lock);
3278 	cpu = smp_processor_id();
3279 	for (i = 0; i < dev->num_tx_queues; i++) {
3280 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3281 
3282 		/* We are the only thread of execution doing a
3283 		 * freeze, but we have to grab the _xmit_lock in
3284 		 * order to synchronize with threads which are in
3285 		 * the ->hard_start_xmit() handler and already
3286 		 * checked the frozen bit.
3287 		 */
3288 		__netif_tx_lock(txq, cpu);
3289 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3290 		__netif_tx_unlock(txq);
3291 	}
3292 }
3293 
3294 static inline void netif_tx_lock_bh(struct net_device *dev)
3295 {
3296 	local_bh_disable();
3297 	netif_tx_lock(dev);
3298 }
3299 
3300 static inline void netif_tx_unlock(struct net_device *dev)
3301 {
3302 	unsigned int i;
3303 
3304 	for (i = 0; i < dev->num_tx_queues; i++) {
3305 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3306 
3307 		/* No need to grab the _xmit_lock here.  If the
3308 		 * queue is not stopped for another reason, we
3309 		 * force a schedule.
3310 		 */
3311 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3312 		netif_schedule_queue(txq);
3313 	}
3314 	spin_unlock(&dev->tx_global_lock);
3315 }
3316 
3317 static inline void netif_tx_unlock_bh(struct net_device *dev)
3318 {
3319 	netif_tx_unlock(dev);
3320 	local_bh_enable();
3321 }
3322 
3323 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3324 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3325 		__netif_tx_lock(txq, cpu);		\
3326 	}						\
3327 }
3328 
3329 #define HARD_TX_TRYLOCK(dev, txq)			\
3330 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3331 		__netif_tx_trylock(txq) :		\
3332 		true )
3333 
3334 #define HARD_TX_UNLOCK(dev, txq) {			\
3335 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3336 		__netif_tx_unlock(txq);			\
3337 	}						\
3338 }
3339 
3340 static inline void netif_tx_disable(struct net_device *dev)
3341 {
3342 	unsigned int i;
3343 	int cpu;
3344 
3345 	local_bh_disable();
3346 	cpu = smp_processor_id();
3347 	for (i = 0; i < dev->num_tx_queues; i++) {
3348 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3349 
3350 		__netif_tx_lock(txq, cpu);
3351 		netif_tx_stop_queue(txq);
3352 		__netif_tx_unlock(txq);
3353 	}
3354 	local_bh_enable();
3355 }
3356 
3357 static inline void netif_addr_lock(struct net_device *dev)
3358 {
3359 	spin_lock(&dev->addr_list_lock);
3360 }
3361 
3362 static inline void netif_addr_lock_nested(struct net_device *dev)
3363 {
3364 	int subclass = SINGLE_DEPTH_NESTING;
3365 
3366 	if (dev->netdev_ops->ndo_get_lock_subclass)
3367 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3368 
3369 	spin_lock_nested(&dev->addr_list_lock, subclass);
3370 }
3371 
3372 static inline void netif_addr_lock_bh(struct net_device *dev)
3373 {
3374 	spin_lock_bh(&dev->addr_list_lock);
3375 }
3376 
3377 static inline void netif_addr_unlock(struct net_device *dev)
3378 {
3379 	spin_unlock(&dev->addr_list_lock);
3380 }
3381 
3382 static inline void netif_addr_unlock_bh(struct net_device *dev)
3383 {
3384 	spin_unlock_bh(&dev->addr_list_lock);
3385 }
3386 
3387 /*
3388  * dev_addrs walker. Should be used only for read access. Call with
3389  * rcu_read_lock held.
3390  */
3391 #define for_each_dev_addr(dev, ha) \
3392 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3393 
3394 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3395 
3396 void ether_setup(struct net_device *dev);
3397 
3398 /* Support for loadable net-drivers */
3399 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3400 				    unsigned char name_assign_type,
3401 				    void (*setup)(struct net_device *),
3402 				    unsigned int txqs, unsigned int rxqs);
3403 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3404 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3405 
3406 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3407 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3408 			 count)
3409 
3410 int register_netdev(struct net_device *dev);
3411 void unregister_netdev(struct net_device *dev);
3412 
3413 /* General hardware address lists handling functions */
3414 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3415 		   struct netdev_hw_addr_list *from_list, int addr_len);
3416 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3417 		      struct netdev_hw_addr_list *from_list, int addr_len);
3418 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3419 		       struct net_device *dev,
3420 		       int (*sync)(struct net_device *, const unsigned char *),
3421 		       int (*unsync)(struct net_device *,
3422 				     const unsigned char *));
3423 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3424 			  struct net_device *dev,
3425 			  int (*unsync)(struct net_device *,
3426 					const unsigned char *));
3427 void __hw_addr_init(struct netdev_hw_addr_list *list);
3428 
3429 /* Functions used for device addresses handling */
3430 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3431 		 unsigned char addr_type);
3432 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3433 		 unsigned char addr_type);
3434 void dev_addr_flush(struct net_device *dev);
3435 int dev_addr_init(struct net_device *dev);
3436 
3437 /* Functions used for unicast addresses handling */
3438 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3439 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3440 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3441 int dev_uc_sync(struct net_device *to, struct net_device *from);
3442 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3443 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3444 void dev_uc_flush(struct net_device *dev);
3445 void dev_uc_init(struct net_device *dev);
3446 
3447 /**
3448  *  __dev_uc_sync - Synchonize device's unicast list
3449  *  @dev:  device to sync
3450  *  @sync: function to call if address should be added
3451  *  @unsync: function to call if address should be removed
3452  *
3453  *  Add newly added addresses to the interface, and release
3454  *  addresses that have been deleted.
3455  **/
3456 static inline int __dev_uc_sync(struct net_device *dev,
3457 				int (*sync)(struct net_device *,
3458 					    const unsigned char *),
3459 				int (*unsync)(struct net_device *,
3460 					      const unsigned char *))
3461 {
3462 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3463 }
3464 
3465 /**
3466  *  __dev_uc_unsync - Remove synchronized addresses from device
3467  *  @dev:  device to sync
3468  *  @unsync: function to call if address should be removed
3469  *
3470  *  Remove all addresses that were added to the device by dev_uc_sync().
3471  **/
3472 static inline void __dev_uc_unsync(struct net_device *dev,
3473 				   int (*unsync)(struct net_device *,
3474 						 const unsigned char *))
3475 {
3476 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3477 }
3478 
3479 /* Functions used for multicast addresses handling */
3480 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3481 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3482 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3483 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3484 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3485 int dev_mc_sync(struct net_device *to, struct net_device *from);
3486 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3487 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3488 void dev_mc_flush(struct net_device *dev);
3489 void dev_mc_init(struct net_device *dev);
3490 
3491 /**
3492  *  __dev_mc_sync - Synchonize device's multicast list
3493  *  @dev:  device to sync
3494  *  @sync: function to call if address should be added
3495  *  @unsync: function to call if address should be removed
3496  *
3497  *  Add newly added addresses to the interface, and release
3498  *  addresses that have been deleted.
3499  **/
3500 static inline int __dev_mc_sync(struct net_device *dev,
3501 				int (*sync)(struct net_device *,
3502 					    const unsigned char *),
3503 				int (*unsync)(struct net_device *,
3504 					      const unsigned char *))
3505 {
3506 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3507 }
3508 
3509 /**
3510  *  __dev_mc_unsync - Remove synchronized addresses from device
3511  *  @dev:  device to sync
3512  *  @unsync: function to call if address should be removed
3513  *
3514  *  Remove all addresses that were added to the device by dev_mc_sync().
3515  **/
3516 static inline void __dev_mc_unsync(struct net_device *dev,
3517 				   int (*unsync)(struct net_device *,
3518 						 const unsigned char *))
3519 {
3520 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3521 }
3522 
3523 /* Functions used for secondary unicast and multicast support */
3524 void dev_set_rx_mode(struct net_device *dev);
3525 void __dev_set_rx_mode(struct net_device *dev);
3526 int dev_set_promiscuity(struct net_device *dev, int inc);
3527 int dev_set_allmulti(struct net_device *dev, int inc);
3528 void netdev_state_change(struct net_device *dev);
3529 void netdev_notify_peers(struct net_device *dev);
3530 void netdev_features_change(struct net_device *dev);
3531 /* Load a device via the kmod */
3532 void dev_load(struct net *net, const char *name);
3533 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3534 					struct rtnl_link_stats64 *storage);
3535 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3536 			     const struct net_device_stats *netdev_stats);
3537 
3538 extern int		netdev_max_backlog;
3539 extern int		netdev_tstamp_prequeue;
3540 extern int		weight_p;
3541 extern int		bpf_jit_enable;
3542 
3543 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3544 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3545 						     struct list_head **iter);
3546 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3547 						     struct list_head **iter);
3548 
3549 /* iterate through upper list, must be called under RCU read lock */
3550 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3551 	for (iter = &(dev)->adj_list.upper, \
3552 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3553 	     updev; \
3554 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3555 
3556 /* iterate through upper list, must be called under RCU read lock */
3557 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3558 	for (iter = &(dev)->all_adj_list.upper, \
3559 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3560 	     updev; \
3561 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3562 
3563 void *netdev_lower_get_next_private(struct net_device *dev,
3564 				    struct list_head **iter);
3565 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3566 					struct list_head **iter);
3567 
3568 #define netdev_for_each_lower_private(dev, priv, iter) \
3569 	for (iter = (dev)->adj_list.lower.next, \
3570 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3571 	     priv; \
3572 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3573 
3574 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3575 	for (iter = &(dev)->adj_list.lower, \
3576 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3577 	     priv; \
3578 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3579 
3580 void *netdev_lower_get_next(struct net_device *dev,
3581 				struct list_head **iter);
3582 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3583 	for (iter = &(dev)->adj_list.lower, \
3584 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3585 	     ldev; \
3586 	     ldev = netdev_lower_get_next(dev, &(iter)))
3587 
3588 void *netdev_adjacent_get_private(struct list_head *adj_list);
3589 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3590 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3591 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3592 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3593 int netdev_master_upper_dev_link(struct net_device *dev,
3594 				 struct net_device *upper_dev);
3595 int netdev_master_upper_dev_link_private(struct net_device *dev,
3596 					 struct net_device *upper_dev,
3597 					 void *private);
3598 void netdev_upper_dev_unlink(struct net_device *dev,
3599 			     struct net_device *upper_dev);
3600 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3601 void *netdev_lower_dev_get_private(struct net_device *dev,
3602 				   struct net_device *lower_dev);
3603 
3604 /* RSS keys are 40 or 52 bytes long */
3605 #define NETDEV_RSS_KEY_LEN 52
3606 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3607 void netdev_rss_key_fill(void *buffer, size_t len);
3608 
3609 int dev_get_nest_level(struct net_device *dev,
3610 		       bool (*type_check)(struct net_device *dev));
3611 int skb_checksum_help(struct sk_buff *skb);
3612 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3613 				  netdev_features_t features, bool tx_path);
3614 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3615 				    netdev_features_t features);
3616 
3617 struct netdev_bonding_info {
3618 	ifslave	slave;
3619 	ifbond	master;
3620 };
3621 
3622 struct netdev_notifier_bonding_info {
3623 	struct netdev_notifier_info info; /* must be first */
3624 	struct netdev_bonding_info  bonding_info;
3625 };
3626 
3627 void netdev_bonding_info_change(struct net_device *dev,
3628 				struct netdev_bonding_info *bonding_info);
3629 
3630 static inline
3631 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3632 {
3633 	return __skb_gso_segment(skb, features, true);
3634 }
3635 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3636 
3637 static inline bool can_checksum_protocol(netdev_features_t features,
3638 					 __be16 protocol)
3639 {
3640 	return ((features & NETIF_F_GEN_CSUM) ||
3641 		((features & NETIF_F_V4_CSUM) &&
3642 		 protocol == htons(ETH_P_IP)) ||
3643 		((features & NETIF_F_V6_CSUM) &&
3644 		 protocol == htons(ETH_P_IPV6)) ||
3645 		((features & NETIF_F_FCOE_CRC) &&
3646 		 protocol == htons(ETH_P_FCOE)));
3647 }
3648 
3649 #ifdef CONFIG_BUG
3650 void netdev_rx_csum_fault(struct net_device *dev);
3651 #else
3652 static inline void netdev_rx_csum_fault(struct net_device *dev)
3653 {
3654 }
3655 #endif
3656 /* rx skb timestamps */
3657 void net_enable_timestamp(void);
3658 void net_disable_timestamp(void);
3659 
3660 #ifdef CONFIG_PROC_FS
3661 int __init dev_proc_init(void);
3662 #else
3663 #define dev_proc_init() 0
3664 #endif
3665 
3666 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3667 					      struct sk_buff *skb, struct net_device *dev,
3668 					      bool more)
3669 {
3670 	skb->xmit_more = more ? 1 : 0;
3671 	return ops->ndo_start_xmit(skb, dev);
3672 }
3673 
3674 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3675 					    struct netdev_queue *txq, bool more)
3676 {
3677 	const struct net_device_ops *ops = dev->netdev_ops;
3678 	int rc;
3679 
3680 	rc = __netdev_start_xmit(ops, skb, dev, more);
3681 	if (rc == NETDEV_TX_OK)
3682 		txq_trans_update(txq);
3683 
3684 	return rc;
3685 }
3686 
3687 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3688 				const void *ns);
3689 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3690 				 const void *ns);
3691 
3692 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3693 {
3694 	return netdev_class_create_file_ns(class_attr, NULL);
3695 }
3696 
3697 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3698 {
3699 	netdev_class_remove_file_ns(class_attr, NULL);
3700 }
3701 
3702 extern struct kobj_ns_type_operations net_ns_type_operations;
3703 
3704 const char *netdev_drivername(const struct net_device *dev);
3705 
3706 void linkwatch_run_queue(void);
3707 
3708 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3709 							  netdev_features_t f2)
3710 {
3711 	if (f1 & NETIF_F_GEN_CSUM)
3712 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3713 	if (f2 & NETIF_F_GEN_CSUM)
3714 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3715 	f1 &= f2;
3716 	if (f1 & NETIF_F_GEN_CSUM)
3717 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3718 
3719 	return f1;
3720 }
3721 
3722 static inline netdev_features_t netdev_get_wanted_features(
3723 	struct net_device *dev)
3724 {
3725 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3726 }
3727 netdev_features_t netdev_increment_features(netdev_features_t all,
3728 	netdev_features_t one, netdev_features_t mask);
3729 
3730 /* Allow TSO being used on stacked device :
3731  * Performing the GSO segmentation before last device
3732  * is a performance improvement.
3733  */
3734 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3735 							netdev_features_t mask)
3736 {
3737 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3738 }
3739 
3740 int __netdev_update_features(struct net_device *dev);
3741 void netdev_update_features(struct net_device *dev);
3742 void netdev_change_features(struct net_device *dev);
3743 
3744 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3745 					struct net_device *dev);
3746 
3747 netdev_features_t passthru_features_check(struct sk_buff *skb,
3748 					  struct net_device *dev,
3749 					  netdev_features_t features);
3750 netdev_features_t netif_skb_features(struct sk_buff *skb);
3751 
3752 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3753 {
3754 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3755 
3756 	/* check flags correspondence */
3757 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3758 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3759 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3760 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3761 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3762 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3763 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3764 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3765 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3766 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3767 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3768 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3769 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3770 
3771 	return (features & feature) == feature;
3772 }
3773 
3774 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3775 {
3776 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3777 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3778 }
3779 
3780 static inline bool netif_needs_gso(struct sk_buff *skb,
3781 				   netdev_features_t features)
3782 {
3783 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3784 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3785 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3786 }
3787 
3788 static inline void netif_set_gso_max_size(struct net_device *dev,
3789 					  unsigned int size)
3790 {
3791 	dev->gso_max_size = size;
3792 }
3793 
3794 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3795 					int pulled_hlen, u16 mac_offset,
3796 					int mac_len)
3797 {
3798 	skb->protocol = protocol;
3799 	skb->encapsulation = 1;
3800 	skb_push(skb, pulled_hlen);
3801 	skb_reset_transport_header(skb);
3802 	skb->mac_header = mac_offset;
3803 	skb->network_header = skb->mac_header + mac_len;
3804 	skb->mac_len = mac_len;
3805 }
3806 
3807 static inline bool netif_is_macvlan(struct net_device *dev)
3808 {
3809 	return dev->priv_flags & IFF_MACVLAN;
3810 }
3811 
3812 static inline bool netif_is_macvlan_port(struct net_device *dev)
3813 {
3814 	return dev->priv_flags & IFF_MACVLAN_PORT;
3815 }
3816 
3817 static inline bool netif_is_ipvlan(struct net_device *dev)
3818 {
3819 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3820 }
3821 
3822 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3823 {
3824 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3825 }
3826 
3827 static inline bool netif_is_bond_master(struct net_device *dev)
3828 {
3829 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3830 }
3831 
3832 static inline bool netif_is_bond_slave(struct net_device *dev)
3833 {
3834 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3835 }
3836 
3837 static inline bool netif_supports_nofcs(struct net_device *dev)
3838 {
3839 	return dev->priv_flags & IFF_SUPP_NOFCS;
3840 }
3841 
3842 static inline bool netif_is_l3_master(const struct net_device *dev)
3843 {
3844 	return dev->priv_flags & IFF_L3MDEV_MASTER;
3845 }
3846 
3847 static inline bool netif_is_l3_slave(const struct net_device *dev)
3848 {
3849 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
3850 }
3851 
3852 static inline bool netif_is_bridge_master(const struct net_device *dev)
3853 {
3854 	return dev->priv_flags & IFF_EBRIDGE;
3855 }
3856 
3857 static inline bool netif_is_ovs_master(const struct net_device *dev)
3858 {
3859 	return dev->priv_flags & IFF_OPENVSWITCH;
3860 }
3861 
3862 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3863 static inline void netif_keep_dst(struct net_device *dev)
3864 {
3865 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3866 }
3867 
3868 extern struct pernet_operations __net_initdata loopback_net_ops;
3869 
3870 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3871 
3872 /* netdev_printk helpers, similar to dev_printk */
3873 
3874 static inline const char *netdev_name(const struct net_device *dev)
3875 {
3876 	if (!dev->name[0] || strchr(dev->name, '%'))
3877 		return "(unnamed net_device)";
3878 	return dev->name;
3879 }
3880 
3881 static inline const char *netdev_reg_state(const struct net_device *dev)
3882 {
3883 	switch (dev->reg_state) {
3884 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3885 	case NETREG_REGISTERED: return "";
3886 	case NETREG_UNREGISTERING: return " (unregistering)";
3887 	case NETREG_UNREGISTERED: return " (unregistered)";
3888 	case NETREG_RELEASED: return " (released)";
3889 	case NETREG_DUMMY: return " (dummy)";
3890 	}
3891 
3892 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3893 	return " (unknown)";
3894 }
3895 
3896 __printf(3, 4)
3897 void netdev_printk(const char *level, const struct net_device *dev,
3898 		   const char *format, ...);
3899 __printf(2, 3)
3900 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3901 __printf(2, 3)
3902 void netdev_alert(const struct net_device *dev, const char *format, ...);
3903 __printf(2, 3)
3904 void netdev_crit(const struct net_device *dev, const char *format, ...);
3905 __printf(2, 3)
3906 void netdev_err(const struct net_device *dev, const char *format, ...);
3907 __printf(2, 3)
3908 void netdev_warn(const struct net_device *dev, const char *format, ...);
3909 __printf(2, 3)
3910 void netdev_notice(const struct net_device *dev, const char *format, ...);
3911 __printf(2, 3)
3912 void netdev_info(const struct net_device *dev, const char *format, ...);
3913 
3914 #define MODULE_ALIAS_NETDEV(device) \
3915 	MODULE_ALIAS("netdev-" device)
3916 
3917 #if defined(CONFIG_DYNAMIC_DEBUG)
3918 #define netdev_dbg(__dev, format, args...)			\
3919 do {								\
3920 	dynamic_netdev_dbg(__dev, format, ##args);		\
3921 } while (0)
3922 #elif defined(DEBUG)
3923 #define netdev_dbg(__dev, format, args...)			\
3924 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3925 #else
3926 #define netdev_dbg(__dev, format, args...)			\
3927 ({								\
3928 	if (0)							\
3929 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3930 })
3931 #endif
3932 
3933 #if defined(VERBOSE_DEBUG)
3934 #define netdev_vdbg	netdev_dbg
3935 #else
3936 
3937 #define netdev_vdbg(dev, format, args...)			\
3938 ({								\
3939 	if (0)							\
3940 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3941 	0;							\
3942 })
3943 #endif
3944 
3945 /*
3946  * netdev_WARN() acts like dev_printk(), but with the key difference
3947  * of using a WARN/WARN_ON to get the message out, including the
3948  * file/line information and a backtrace.
3949  */
3950 #define netdev_WARN(dev, format, args...)			\
3951 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3952 	     netdev_reg_state(dev), ##args)
3953 
3954 /* netif printk helpers, similar to netdev_printk */
3955 
3956 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3957 do {					  			\
3958 	if (netif_msg_##type(priv))				\
3959 		netdev_printk(level, (dev), fmt, ##args);	\
3960 } while (0)
3961 
3962 #define netif_level(level, priv, type, dev, fmt, args...)	\
3963 do {								\
3964 	if (netif_msg_##type(priv))				\
3965 		netdev_##level(dev, fmt, ##args);		\
3966 } while (0)
3967 
3968 #define netif_emerg(priv, type, dev, fmt, args...)		\
3969 	netif_level(emerg, priv, type, dev, fmt, ##args)
3970 #define netif_alert(priv, type, dev, fmt, args...)		\
3971 	netif_level(alert, priv, type, dev, fmt, ##args)
3972 #define netif_crit(priv, type, dev, fmt, args...)		\
3973 	netif_level(crit, priv, type, dev, fmt, ##args)
3974 #define netif_err(priv, type, dev, fmt, args...)		\
3975 	netif_level(err, priv, type, dev, fmt, ##args)
3976 #define netif_warn(priv, type, dev, fmt, args...)		\
3977 	netif_level(warn, priv, type, dev, fmt, ##args)
3978 #define netif_notice(priv, type, dev, fmt, args...)		\
3979 	netif_level(notice, priv, type, dev, fmt, ##args)
3980 #define netif_info(priv, type, dev, fmt, args...)		\
3981 	netif_level(info, priv, type, dev, fmt, ##args)
3982 
3983 #if defined(CONFIG_DYNAMIC_DEBUG)
3984 #define netif_dbg(priv, type, netdev, format, args...)		\
3985 do {								\
3986 	if (netif_msg_##type(priv))				\
3987 		dynamic_netdev_dbg(netdev, format, ##args);	\
3988 } while (0)
3989 #elif defined(DEBUG)
3990 #define netif_dbg(priv, type, dev, format, args...)		\
3991 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3992 #else
3993 #define netif_dbg(priv, type, dev, format, args...)			\
3994 ({									\
3995 	if (0)								\
3996 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3997 	0;								\
3998 })
3999 #endif
4000 
4001 #if defined(VERBOSE_DEBUG)
4002 #define netif_vdbg	netif_dbg
4003 #else
4004 #define netif_vdbg(priv, type, dev, format, args...)		\
4005 ({								\
4006 	if (0)							\
4007 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4008 	0;							\
4009 })
4010 #endif
4011 
4012 /*
4013  *	The list of packet types we will receive (as opposed to discard)
4014  *	and the routines to invoke.
4015  *
4016  *	Why 16. Because with 16 the only overlap we get on a hash of the
4017  *	low nibble of the protocol value is RARP/SNAP/X.25.
4018  *
4019  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4020  *             sure which should go first, but I bet it won't make much
4021  *             difference if we are running VLANs.  The good news is that
4022  *             this protocol won't be in the list unless compiled in, so
4023  *             the average user (w/out VLANs) will not be adversely affected.
4024  *             --BLG
4025  *
4026  *		0800	IP
4027  *		8100    802.1Q VLAN
4028  *		0001	802.3
4029  *		0002	AX.25
4030  *		0004	802.2
4031  *		8035	RARP
4032  *		0005	SNAP
4033  *		0805	X.25
4034  *		0806	ARP
4035  *		8137	IPX
4036  *		0009	Localtalk
4037  *		86DD	IPv6
4038  */
4039 #define PTYPE_HASH_SIZE	(16)
4040 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4041 
4042 #endif	/* _LINUX_NETDEVICE_H */
4043