1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 }; 278 279 /* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284 enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290 }; 291 292 293 /* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297 struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300 }; 301 #define NETDEV_BOOT_SETUP_MAX 8 302 303 int __init netdev_boot_setup(char *str); 304 305 struct gro_list { 306 struct list_head list; 307 int count; 308 }; 309 310 /* 311 * size of gro hash buckets, must less than bit number of 312 * napi_struct::gro_bitmask 313 */ 314 #define GRO_HASH_BUCKETS 8 315 316 /* 317 * Structure for NAPI scheduling similar to tasklet but with weighting 318 */ 319 struct napi_struct { 320 /* The poll_list must only be managed by the entity which 321 * changes the state of the NAPI_STATE_SCHED bit. This means 322 * whoever atomically sets that bit can add this napi_struct 323 * to the per-CPU poll_list, and whoever clears that bit 324 * can remove from the list right before clearing the bit. 325 */ 326 struct list_head poll_list; 327 328 unsigned long state; 329 int weight; 330 unsigned long gro_bitmask; 331 int (*poll)(struct napi_struct *, int); 332 #ifdef CONFIG_NETPOLL 333 int poll_owner; 334 #endif 335 struct net_device *dev; 336 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 337 struct sk_buff *skb; 338 struct hrtimer timer; 339 struct list_head dev_list; 340 struct hlist_node napi_hash_node; 341 unsigned int napi_id; 342 }; 343 344 enum { 345 NAPI_STATE_SCHED, /* Poll is scheduled */ 346 NAPI_STATE_MISSED, /* reschedule a napi */ 347 NAPI_STATE_DISABLE, /* Disable pending */ 348 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 349 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 350 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 351 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 352 }; 353 354 enum { 355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 359 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 362 }; 363 364 enum gro_result { 365 GRO_MERGED, 366 GRO_MERGED_FREE, 367 GRO_HELD, 368 GRO_NORMAL, 369 GRO_DROP, 370 GRO_CONSUMED, 371 }; 372 typedef enum gro_result gro_result_t; 373 374 /* 375 * enum rx_handler_result - Possible return values for rx_handlers. 376 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 377 * further. 378 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 379 * case skb->dev was changed by rx_handler. 380 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 381 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 382 * 383 * rx_handlers are functions called from inside __netif_receive_skb(), to do 384 * special processing of the skb, prior to delivery to protocol handlers. 385 * 386 * Currently, a net_device can only have a single rx_handler registered. Trying 387 * to register a second rx_handler will return -EBUSY. 388 * 389 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 390 * To unregister a rx_handler on a net_device, use 391 * netdev_rx_handler_unregister(). 392 * 393 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 394 * do with the skb. 395 * 396 * If the rx_handler consumed the skb in some way, it should return 397 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 398 * the skb to be delivered in some other way. 399 * 400 * If the rx_handler changed skb->dev, to divert the skb to another 401 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 402 * new device will be called if it exists. 403 * 404 * If the rx_handler decides the skb should be ignored, it should return 405 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 406 * are registered on exact device (ptype->dev == skb->dev). 407 * 408 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 409 * delivered, it should return RX_HANDLER_PASS. 410 * 411 * A device without a registered rx_handler will behave as if rx_handler 412 * returned RX_HANDLER_PASS. 413 */ 414 415 enum rx_handler_result { 416 RX_HANDLER_CONSUMED, 417 RX_HANDLER_ANOTHER, 418 RX_HANDLER_EXACT, 419 RX_HANDLER_PASS, 420 }; 421 typedef enum rx_handler_result rx_handler_result_t; 422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 423 424 void __napi_schedule(struct napi_struct *n); 425 void __napi_schedule_irqoff(struct napi_struct *n); 426 427 static inline bool napi_disable_pending(struct napi_struct *n) 428 { 429 return test_bit(NAPI_STATE_DISABLE, &n->state); 430 } 431 432 bool napi_schedule_prep(struct napi_struct *n); 433 434 /** 435 * napi_schedule - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Schedule NAPI poll routine to be called if it is not already 439 * running. 440 */ 441 static inline void napi_schedule(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule(n); 445 } 446 447 /** 448 * napi_schedule_irqoff - schedule NAPI poll 449 * @n: NAPI context 450 * 451 * Variant of napi_schedule(), assuming hard irqs are masked. 452 */ 453 static inline void napi_schedule_irqoff(struct napi_struct *n) 454 { 455 if (napi_schedule_prep(n)) 456 __napi_schedule_irqoff(n); 457 } 458 459 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 460 static inline bool napi_reschedule(struct napi_struct *napi) 461 { 462 if (napi_schedule_prep(napi)) { 463 __napi_schedule(napi); 464 return true; 465 } 466 return false; 467 } 468 469 bool napi_complete_done(struct napi_struct *n, int work_done); 470 /** 471 * napi_complete - NAPI processing complete 472 * @n: NAPI context 473 * 474 * Mark NAPI processing as complete. 475 * Consider using napi_complete_done() instead. 476 * Return false if device should avoid rearming interrupts. 477 */ 478 static inline bool napi_complete(struct napi_struct *n) 479 { 480 return napi_complete_done(n, 0); 481 } 482 483 /** 484 * napi_hash_del - remove a NAPI from global table 485 * @napi: NAPI context 486 * 487 * Warning: caller must observe RCU grace period 488 * before freeing memory containing @napi, if 489 * this function returns true. 490 * Note: core networking stack automatically calls it 491 * from netif_napi_del(). 492 * Drivers might want to call this helper to combine all 493 * the needed RCU grace periods into a single one. 494 */ 495 bool napi_hash_del(struct napi_struct *napi); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: NAPI context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 void napi_disable(struct napi_struct *n); 505 506 /** 507 * napi_enable - enable NAPI scheduling 508 * @n: NAPI context 509 * 510 * Resume NAPI from being scheduled on this context. 511 * Must be paired with napi_disable. 512 */ 513 static inline void napi_enable(struct napi_struct *n) 514 { 515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 516 smp_mb__before_atomic(); 517 clear_bit(NAPI_STATE_SCHED, &n->state); 518 clear_bit(NAPI_STATE_NPSVC, &n->state); 519 } 520 521 /** 522 * napi_synchronize - wait until NAPI is not running 523 * @n: NAPI context 524 * 525 * Wait until NAPI is done being scheduled on this context. 526 * Waits till any outstanding processing completes but 527 * does not disable future activations. 528 */ 529 static inline void napi_synchronize(const struct napi_struct *n) 530 { 531 if (IS_ENABLED(CONFIG_SMP)) 532 while (test_bit(NAPI_STATE_SCHED, &n->state)) 533 msleep(1); 534 else 535 barrier(); 536 } 537 538 /** 539 * napi_if_scheduled_mark_missed - if napi is running, set the 540 * NAPIF_STATE_MISSED 541 * @n: NAPI context 542 * 543 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 544 * NAPI is scheduled. 545 **/ 546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 547 { 548 unsigned long val, new; 549 550 do { 551 val = READ_ONCE(n->state); 552 if (val & NAPIF_STATE_DISABLE) 553 return true; 554 555 if (!(val & NAPIF_STATE_SCHED)) 556 return false; 557 558 new = val | NAPIF_STATE_MISSED; 559 } while (cmpxchg(&n->state, val, new) != val); 560 561 return true; 562 } 563 564 enum netdev_queue_state_t { 565 __QUEUE_STATE_DRV_XOFF, 566 __QUEUE_STATE_STACK_XOFF, 567 __QUEUE_STATE_FROZEN, 568 }; 569 570 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 571 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 572 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 573 574 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 576 QUEUE_STATE_FROZEN) 577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 578 QUEUE_STATE_FROZEN) 579 580 /* 581 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 582 * netif_tx_* functions below are used to manipulate this flag. The 583 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 584 * queue independently. The netif_xmit_*stopped functions below are called 585 * to check if the queue has been stopped by the driver or stack (either 586 * of the XOFF bits are set in the state). Drivers should not need to call 587 * netif_xmit*stopped functions, they should only be using netif_tx_*. 588 */ 589 590 struct netdev_queue { 591 /* 592 * read-mostly part 593 */ 594 struct net_device *dev; 595 struct Qdisc __rcu *qdisc; 596 struct Qdisc *qdisc_sleeping; 597 #ifdef CONFIG_SYSFS 598 struct kobject kobj; 599 #endif 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 int numa_node; 602 #endif 603 unsigned long tx_maxrate; 604 /* 605 * Number of TX timeouts for this queue 606 * (/sys/class/net/DEV/Q/trans_timeout) 607 */ 608 unsigned long trans_timeout; 609 610 /* Subordinate device that the queue has been assigned to */ 611 struct net_device *sb_dev; 612 #ifdef CONFIG_XDP_SOCKETS 613 struct xdp_umem *umem; 614 #endif 615 /* 616 * write-mostly part 617 */ 618 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 619 int xmit_lock_owner; 620 /* 621 * Time (in jiffies) of last Tx 622 */ 623 unsigned long trans_start; 624 625 unsigned long state; 626 627 #ifdef CONFIG_BQL 628 struct dql dql; 629 #endif 630 } ____cacheline_aligned_in_smp; 631 632 extern int sysctl_fb_tunnels_only_for_init_net; 633 634 static inline bool net_has_fallback_tunnels(const struct net *net) 635 { 636 return net == &init_net || 637 !IS_ENABLED(CONFIG_SYSCTL) || 638 !sysctl_fb_tunnels_only_for_init_net; 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[0]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[0]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[0] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xdp_umem *umem; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[0]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 }; 849 850 /* These structures hold the attributes of bpf state that are being passed 851 * to the netdevice through the bpf op. 852 */ 853 enum bpf_netdev_command { 854 /* Set or clear a bpf program used in the earliest stages of packet 855 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 856 * is responsible for calling bpf_prog_put on any old progs that are 857 * stored. In case of error, the callee need not release the new prog 858 * reference, but on success it takes ownership and must bpf_prog_put 859 * when it is no longer used. 860 */ 861 XDP_SETUP_PROG, 862 XDP_SETUP_PROG_HW, 863 XDP_QUERY_PROG, 864 XDP_QUERY_PROG_HW, 865 /* BPF program for offload callbacks, invoked at program load time. */ 866 BPF_OFFLOAD_VERIFIER_PREP, 867 BPF_OFFLOAD_TRANSLATE, 868 BPF_OFFLOAD_DESTROY, 869 BPF_OFFLOAD_MAP_ALLOC, 870 BPF_OFFLOAD_MAP_FREE, 871 XDP_QUERY_XSK_UMEM, 872 XDP_SETUP_XSK_UMEM, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 879 struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_VERIFIER_PREP */ 895 struct { 896 struct bpf_prog *prog; 897 const struct bpf_prog_offload_ops *ops; /* callee set */ 898 } verifier; 899 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 900 struct { 901 struct bpf_prog *prog; 902 } offload; 903 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 904 struct { 905 struct bpf_offloaded_map *offmap; 906 }; 907 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */ 908 struct { 909 struct xdp_umem *umem; /* out for query*/ 910 u16 queue_id; /* in for query */ 911 } xsk; 912 }; 913 }; 914 915 #ifdef CONFIG_XFRM_OFFLOAD 916 struct xfrmdev_ops { 917 int (*xdo_dev_state_add) (struct xfrm_state *x); 918 void (*xdo_dev_state_delete) (struct xfrm_state *x); 919 void (*xdo_dev_state_free) (struct xfrm_state *x); 920 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 921 struct xfrm_state *x); 922 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 923 }; 924 #endif 925 926 #if IS_ENABLED(CONFIG_TLS_DEVICE) 927 enum tls_offload_ctx_dir { 928 TLS_OFFLOAD_CTX_DIR_RX, 929 TLS_OFFLOAD_CTX_DIR_TX, 930 }; 931 932 struct tls_crypto_info; 933 struct tls_context; 934 935 struct tlsdev_ops { 936 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 937 enum tls_offload_ctx_dir direction, 938 struct tls_crypto_info *crypto_info, 939 u32 start_offload_tcp_sn); 940 void (*tls_dev_del)(struct net_device *netdev, 941 struct tls_context *ctx, 942 enum tls_offload_ctx_dir direction); 943 void (*tls_dev_resync_rx)(struct net_device *netdev, 944 struct sock *sk, u32 seq, u64 rcd_sn); 945 }; 946 #endif 947 948 struct dev_ifalias { 949 struct rcu_head rcuhead; 950 char ifalias[]; 951 }; 952 953 /* 954 * This structure defines the management hooks for network devices. 955 * The following hooks can be defined; unless noted otherwise, they are 956 * optional and can be filled with a null pointer. 957 * 958 * int (*ndo_init)(struct net_device *dev); 959 * This function is called once when a network device is registered. 960 * The network device can use this for any late stage initialization 961 * or semantic validation. It can fail with an error code which will 962 * be propagated back to register_netdev. 963 * 964 * void (*ndo_uninit)(struct net_device *dev); 965 * This function is called when device is unregistered or when registration 966 * fails. It is not called if init fails. 967 * 968 * int (*ndo_open)(struct net_device *dev); 969 * This function is called when a network device transitions to the up 970 * state. 971 * 972 * int (*ndo_stop)(struct net_device *dev); 973 * This function is called when a network device transitions to the down 974 * state. 975 * 976 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 977 * struct net_device *dev); 978 * Called when a packet needs to be transmitted. 979 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 980 * the queue before that can happen; it's for obsolete devices and weird 981 * corner cases, but the stack really does a non-trivial amount 982 * of useless work if you return NETDEV_TX_BUSY. 983 * Required; cannot be NULL. 984 * 985 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 986 * struct net_device *dev 987 * netdev_features_t features); 988 * Called by core transmit path to determine if device is capable of 989 * performing offload operations on a given packet. This is to give 990 * the device an opportunity to implement any restrictions that cannot 991 * be otherwise expressed by feature flags. The check is called with 992 * the set of features that the stack has calculated and it returns 993 * those the driver believes to be appropriate. 994 * 995 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 996 * struct net_device *sb_dev, 997 * select_queue_fallback_t fallback); 998 * Called to decide which queue to use when device supports multiple 999 * transmit queues. 1000 * 1001 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1002 * This function is called to allow device receiver to make 1003 * changes to configuration when multicast or promiscuous is enabled. 1004 * 1005 * void (*ndo_set_rx_mode)(struct net_device *dev); 1006 * This function is called device changes address list filtering. 1007 * If driver handles unicast address filtering, it should set 1008 * IFF_UNICAST_FLT in its priv_flags. 1009 * 1010 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1011 * This function is called when the Media Access Control address 1012 * needs to be changed. If this interface is not defined, the 1013 * MAC address can not be changed. 1014 * 1015 * int (*ndo_validate_addr)(struct net_device *dev); 1016 * Test if Media Access Control address is valid for the device. 1017 * 1018 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1019 * Called when a user requests an ioctl which can't be handled by 1020 * the generic interface code. If not defined ioctls return 1021 * not supported error code. 1022 * 1023 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1024 * Used to set network devices bus interface parameters. This interface 1025 * is retained for legacy reasons; new devices should use the bus 1026 * interface (PCI) for low level management. 1027 * 1028 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1029 * Called when a user wants to change the Maximum Transfer Unit 1030 * of a device. 1031 * 1032 * void (*ndo_tx_timeout)(struct net_device *dev); 1033 * Callback used when the transmitter has not made any progress 1034 * for dev->watchdog ticks. 1035 * 1036 * void (*ndo_get_stats64)(struct net_device *dev, 1037 * struct rtnl_link_stats64 *storage); 1038 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1039 * Called when a user wants to get the network device usage 1040 * statistics. Drivers must do one of the following: 1041 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1042 * rtnl_link_stats64 structure passed by the caller. 1043 * 2. Define @ndo_get_stats to update a net_device_stats structure 1044 * (which should normally be dev->stats) and return a pointer to 1045 * it. The structure may be changed asynchronously only if each 1046 * field is written atomically. 1047 * 3. Update dev->stats asynchronously and atomically, and define 1048 * neither operation. 1049 * 1050 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1051 * Return true if this device supports offload stats of this attr_id. 1052 * 1053 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1054 * void *attr_data) 1055 * Get statistics for offload operations by attr_id. Write it into the 1056 * attr_data pointer. 1057 * 1058 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1059 * If device supports VLAN filtering this function is called when a 1060 * VLAN id is registered. 1061 * 1062 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1063 * If device supports VLAN filtering this function is called when a 1064 * VLAN id is unregistered. 1065 * 1066 * void (*ndo_poll_controller)(struct net_device *dev); 1067 * 1068 * SR-IOV management functions. 1069 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1070 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1071 * u8 qos, __be16 proto); 1072 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1073 * int max_tx_rate); 1074 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1075 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1076 * int (*ndo_get_vf_config)(struct net_device *dev, 1077 * int vf, struct ifla_vf_info *ivf); 1078 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1079 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1080 * struct nlattr *port[]); 1081 * 1082 * Enable or disable the VF ability to query its RSS Redirection Table and 1083 * Hash Key. This is needed since on some devices VF share this information 1084 * with PF and querying it may introduce a theoretical security risk. 1085 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1086 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1087 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1088 * void *type_data); 1089 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1090 * This is always called from the stack with the rtnl lock held and netif 1091 * tx queues stopped. This allows the netdevice to perform queue 1092 * management safely. 1093 * 1094 * Fiber Channel over Ethernet (FCoE) offload functions. 1095 * int (*ndo_fcoe_enable)(struct net_device *dev); 1096 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1097 * so the underlying device can perform whatever needed configuration or 1098 * initialization to support acceleration of FCoE traffic. 1099 * 1100 * int (*ndo_fcoe_disable)(struct net_device *dev); 1101 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1102 * so the underlying device can perform whatever needed clean-ups to 1103 * stop supporting acceleration of FCoE traffic. 1104 * 1105 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1106 * struct scatterlist *sgl, unsigned int sgc); 1107 * Called when the FCoE Initiator wants to initialize an I/O that 1108 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1109 * perform necessary setup and returns 1 to indicate the device is set up 1110 * successfully to perform DDP on this I/O, otherwise this returns 0. 1111 * 1112 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1113 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1114 * indicated by the FC exchange id 'xid', so the underlying device can 1115 * clean up and reuse resources for later DDP requests. 1116 * 1117 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1118 * struct scatterlist *sgl, unsigned int sgc); 1119 * Called when the FCoE Target wants to initialize an I/O that 1120 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1121 * perform necessary setup and returns 1 to indicate the device is set up 1122 * successfully to perform DDP on this I/O, otherwise this returns 0. 1123 * 1124 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1125 * struct netdev_fcoe_hbainfo *hbainfo); 1126 * Called when the FCoE Protocol stack wants information on the underlying 1127 * device. This information is utilized by the FCoE protocol stack to 1128 * register attributes with Fiber Channel management service as per the 1129 * FC-GS Fabric Device Management Information(FDMI) specification. 1130 * 1131 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1132 * Called when the underlying device wants to override default World Wide 1133 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1134 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1135 * protocol stack to use. 1136 * 1137 * RFS acceleration. 1138 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1139 * u16 rxq_index, u32 flow_id); 1140 * Set hardware filter for RFS. rxq_index is the target queue index; 1141 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1142 * Return the filter ID on success, or a negative error code. 1143 * 1144 * Slave management functions (for bridge, bonding, etc). 1145 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1146 * Called to make another netdev an underling. 1147 * 1148 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1149 * Called to release previously enslaved netdev. 1150 * 1151 * Feature/offload setting functions. 1152 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1153 * netdev_features_t features); 1154 * Adjusts the requested feature flags according to device-specific 1155 * constraints, and returns the resulting flags. Must not modify 1156 * the device state. 1157 * 1158 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1159 * Called to update device configuration to new features. Passed 1160 * feature set might be less than what was returned by ndo_fix_features()). 1161 * Must return >0 or -errno if it changed dev->features itself. 1162 * 1163 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1164 * struct net_device *dev, 1165 * const unsigned char *addr, u16 vid, u16 flags) 1166 * Adds an FDB entry to dev for addr. 1167 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1168 * struct net_device *dev, 1169 * const unsigned char *addr, u16 vid) 1170 * Deletes the FDB entry from dev coresponding to addr. 1171 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1172 * struct net_device *dev, struct net_device *filter_dev, 1173 * int *idx) 1174 * Used to add FDB entries to dump requests. Implementers should add 1175 * entries to skb and update idx with the number of entries. 1176 * 1177 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1178 * u16 flags) 1179 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1180 * struct net_device *dev, u32 filter_mask, 1181 * int nlflags) 1182 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1183 * u16 flags); 1184 * 1185 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1186 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1187 * which do not represent real hardware may define this to allow their 1188 * userspace components to manage their virtual carrier state. Devices 1189 * that determine carrier state from physical hardware properties (eg 1190 * network cables) or protocol-dependent mechanisms (eg 1191 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1192 * 1193 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1194 * struct netdev_phys_item_id *ppid); 1195 * Called to get ID of physical port of this device. If driver does 1196 * not implement this, it is assumed that the hw is not able to have 1197 * multiple net devices on single physical port. 1198 * 1199 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1200 * struct udp_tunnel_info *ti); 1201 * Called by UDP tunnel to notify a driver about the UDP port and socket 1202 * address family that a UDP tunnel is listnening to. It is called only 1203 * when a new port starts listening. The operation is protected by the 1204 * RTNL. 1205 * 1206 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1207 * struct udp_tunnel_info *ti); 1208 * Called by UDP tunnel to notify the driver about a UDP port and socket 1209 * address family that the UDP tunnel is not listening to anymore. The 1210 * operation is protected by the RTNL. 1211 * 1212 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1213 * struct net_device *dev) 1214 * Called by upper layer devices to accelerate switching or other 1215 * station functionality into hardware. 'pdev is the lowerdev 1216 * to use for the offload and 'dev' is the net device that will 1217 * back the offload. Returns a pointer to the private structure 1218 * the upper layer will maintain. 1219 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1220 * Called by upper layer device to delete the station created 1221 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1222 * the station and priv is the structure returned by the add 1223 * operation. 1224 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1225 * int queue_index, u32 maxrate); 1226 * Called when a user wants to set a max-rate limitation of specific 1227 * TX queue. 1228 * int (*ndo_get_iflink)(const struct net_device *dev); 1229 * Called to get the iflink value of this device. 1230 * void (*ndo_change_proto_down)(struct net_device *dev, 1231 * bool proto_down); 1232 * This function is used to pass protocol port error state information 1233 * to the switch driver. The switch driver can react to the proto_down 1234 * by doing a phys down on the associated switch port. 1235 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1236 * This function is used to get egress tunnel information for given skb. 1237 * This is useful for retrieving outer tunnel header parameters while 1238 * sampling packet. 1239 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1240 * This function is used to specify the headroom that the skb must 1241 * consider when allocation skb during packet reception. Setting 1242 * appropriate rx headroom value allows avoiding skb head copy on 1243 * forward. Setting a negative value resets the rx headroom to the 1244 * default value. 1245 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1246 * This function is used to set or query state related to XDP on the 1247 * netdevice and manage BPF offload. See definition of 1248 * enum bpf_netdev_command for details. 1249 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1250 * u32 flags); 1251 * This function is used to submit @n XDP packets for transmit on a 1252 * netdevice. Returns number of frames successfully transmitted, frames 1253 * that got dropped are freed/returned via xdp_return_frame(). 1254 * Returns negative number, means general error invoking ndo, meaning 1255 * no frames were xmit'ed and core-caller will free all frames. 1256 */ 1257 struct net_device_ops { 1258 int (*ndo_init)(struct net_device *dev); 1259 void (*ndo_uninit)(struct net_device *dev); 1260 int (*ndo_open)(struct net_device *dev); 1261 int (*ndo_stop)(struct net_device *dev); 1262 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1263 struct net_device *dev); 1264 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1265 struct net_device *dev, 1266 netdev_features_t features); 1267 u16 (*ndo_select_queue)(struct net_device *dev, 1268 struct sk_buff *skb, 1269 struct net_device *sb_dev, 1270 select_queue_fallback_t fallback); 1271 void (*ndo_change_rx_flags)(struct net_device *dev, 1272 int flags); 1273 void (*ndo_set_rx_mode)(struct net_device *dev); 1274 int (*ndo_set_mac_address)(struct net_device *dev, 1275 void *addr); 1276 int (*ndo_validate_addr)(struct net_device *dev); 1277 int (*ndo_do_ioctl)(struct net_device *dev, 1278 struct ifreq *ifr, int cmd); 1279 int (*ndo_set_config)(struct net_device *dev, 1280 struct ifmap *map); 1281 int (*ndo_change_mtu)(struct net_device *dev, 1282 int new_mtu); 1283 int (*ndo_neigh_setup)(struct net_device *dev, 1284 struct neigh_parms *); 1285 void (*ndo_tx_timeout) (struct net_device *dev); 1286 1287 void (*ndo_get_stats64)(struct net_device *dev, 1288 struct rtnl_link_stats64 *storage); 1289 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1290 int (*ndo_get_offload_stats)(int attr_id, 1291 const struct net_device *dev, 1292 void *attr_data); 1293 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1294 1295 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1296 __be16 proto, u16 vid); 1297 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1298 __be16 proto, u16 vid); 1299 #ifdef CONFIG_NET_POLL_CONTROLLER 1300 void (*ndo_poll_controller)(struct net_device *dev); 1301 int (*ndo_netpoll_setup)(struct net_device *dev, 1302 struct netpoll_info *info); 1303 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1304 #endif 1305 int (*ndo_set_vf_mac)(struct net_device *dev, 1306 int queue, u8 *mac); 1307 int (*ndo_set_vf_vlan)(struct net_device *dev, 1308 int queue, u16 vlan, 1309 u8 qos, __be16 proto); 1310 int (*ndo_set_vf_rate)(struct net_device *dev, 1311 int vf, int min_tx_rate, 1312 int max_tx_rate); 1313 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1314 int vf, bool setting); 1315 int (*ndo_set_vf_trust)(struct net_device *dev, 1316 int vf, bool setting); 1317 int (*ndo_get_vf_config)(struct net_device *dev, 1318 int vf, 1319 struct ifla_vf_info *ivf); 1320 int (*ndo_set_vf_link_state)(struct net_device *dev, 1321 int vf, int link_state); 1322 int (*ndo_get_vf_stats)(struct net_device *dev, 1323 int vf, 1324 struct ifla_vf_stats 1325 *vf_stats); 1326 int (*ndo_set_vf_port)(struct net_device *dev, 1327 int vf, 1328 struct nlattr *port[]); 1329 int (*ndo_get_vf_port)(struct net_device *dev, 1330 int vf, struct sk_buff *skb); 1331 int (*ndo_set_vf_guid)(struct net_device *dev, 1332 int vf, u64 guid, 1333 int guid_type); 1334 int (*ndo_set_vf_rss_query_en)( 1335 struct net_device *dev, 1336 int vf, bool setting); 1337 int (*ndo_setup_tc)(struct net_device *dev, 1338 enum tc_setup_type type, 1339 void *type_data); 1340 #if IS_ENABLED(CONFIG_FCOE) 1341 int (*ndo_fcoe_enable)(struct net_device *dev); 1342 int (*ndo_fcoe_disable)(struct net_device *dev); 1343 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1344 u16 xid, 1345 struct scatterlist *sgl, 1346 unsigned int sgc); 1347 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1348 u16 xid); 1349 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1350 u16 xid, 1351 struct scatterlist *sgl, 1352 unsigned int sgc); 1353 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1354 struct netdev_fcoe_hbainfo *hbainfo); 1355 #endif 1356 1357 #if IS_ENABLED(CONFIG_LIBFCOE) 1358 #define NETDEV_FCOE_WWNN 0 1359 #define NETDEV_FCOE_WWPN 1 1360 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1361 u64 *wwn, int type); 1362 #endif 1363 1364 #ifdef CONFIG_RFS_ACCEL 1365 int (*ndo_rx_flow_steer)(struct net_device *dev, 1366 const struct sk_buff *skb, 1367 u16 rxq_index, 1368 u32 flow_id); 1369 #endif 1370 int (*ndo_add_slave)(struct net_device *dev, 1371 struct net_device *slave_dev, 1372 struct netlink_ext_ack *extack); 1373 int (*ndo_del_slave)(struct net_device *dev, 1374 struct net_device *slave_dev); 1375 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1376 netdev_features_t features); 1377 int (*ndo_set_features)(struct net_device *dev, 1378 netdev_features_t features); 1379 int (*ndo_neigh_construct)(struct net_device *dev, 1380 struct neighbour *n); 1381 void (*ndo_neigh_destroy)(struct net_device *dev, 1382 struct neighbour *n); 1383 1384 int (*ndo_fdb_add)(struct ndmsg *ndm, 1385 struct nlattr *tb[], 1386 struct net_device *dev, 1387 const unsigned char *addr, 1388 u16 vid, 1389 u16 flags); 1390 int (*ndo_fdb_del)(struct ndmsg *ndm, 1391 struct nlattr *tb[], 1392 struct net_device *dev, 1393 const unsigned char *addr, 1394 u16 vid); 1395 int (*ndo_fdb_dump)(struct sk_buff *skb, 1396 struct netlink_callback *cb, 1397 struct net_device *dev, 1398 struct net_device *filter_dev, 1399 int *idx); 1400 1401 int (*ndo_bridge_setlink)(struct net_device *dev, 1402 struct nlmsghdr *nlh, 1403 u16 flags); 1404 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1405 u32 pid, u32 seq, 1406 struct net_device *dev, 1407 u32 filter_mask, 1408 int nlflags); 1409 int (*ndo_bridge_dellink)(struct net_device *dev, 1410 struct nlmsghdr *nlh, 1411 u16 flags); 1412 int (*ndo_change_carrier)(struct net_device *dev, 1413 bool new_carrier); 1414 int (*ndo_get_phys_port_id)(struct net_device *dev, 1415 struct netdev_phys_item_id *ppid); 1416 int (*ndo_get_phys_port_name)(struct net_device *dev, 1417 char *name, size_t len); 1418 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1419 struct udp_tunnel_info *ti); 1420 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1421 struct udp_tunnel_info *ti); 1422 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1423 struct net_device *dev); 1424 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1425 void *priv); 1426 1427 int (*ndo_get_lock_subclass)(struct net_device *dev); 1428 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1429 int queue_index, 1430 u32 maxrate); 1431 int (*ndo_get_iflink)(const struct net_device *dev); 1432 int (*ndo_change_proto_down)(struct net_device *dev, 1433 bool proto_down); 1434 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1435 struct sk_buff *skb); 1436 void (*ndo_set_rx_headroom)(struct net_device *dev, 1437 int needed_headroom); 1438 int (*ndo_bpf)(struct net_device *dev, 1439 struct netdev_bpf *bpf); 1440 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1441 struct xdp_frame **xdp, 1442 u32 flags); 1443 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1444 u32 queue_id); 1445 }; 1446 1447 /** 1448 * enum net_device_priv_flags - &struct net_device priv_flags 1449 * 1450 * These are the &struct net_device, they are only set internally 1451 * by drivers and used in the kernel. These flags are invisible to 1452 * userspace; this means that the order of these flags can change 1453 * during any kernel release. 1454 * 1455 * You should have a pretty good reason to be extending these flags. 1456 * 1457 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1458 * @IFF_EBRIDGE: Ethernet bridging device 1459 * @IFF_BONDING: bonding master or slave 1460 * @IFF_ISATAP: ISATAP interface (RFC4214) 1461 * @IFF_WAN_HDLC: WAN HDLC device 1462 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1463 * release skb->dst 1464 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1465 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1466 * @IFF_MACVLAN_PORT: device used as macvlan port 1467 * @IFF_BRIDGE_PORT: device used as bridge port 1468 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1469 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1470 * @IFF_UNICAST_FLT: Supports unicast filtering 1471 * @IFF_TEAM_PORT: device used as team port 1472 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1473 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1474 * change when it's running 1475 * @IFF_MACVLAN: Macvlan device 1476 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1477 * underlying stacked devices 1478 * @IFF_L3MDEV_MASTER: device is an L3 master device 1479 * @IFF_NO_QUEUE: device can run without qdisc attached 1480 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1481 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1482 * @IFF_TEAM: device is a team device 1483 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1484 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1485 * entity (i.e. the master device for bridged veth) 1486 * @IFF_MACSEC: device is a MACsec device 1487 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1488 * @IFF_FAILOVER: device is a failover master device 1489 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1490 */ 1491 enum netdev_priv_flags { 1492 IFF_802_1Q_VLAN = 1<<0, 1493 IFF_EBRIDGE = 1<<1, 1494 IFF_BONDING = 1<<2, 1495 IFF_ISATAP = 1<<3, 1496 IFF_WAN_HDLC = 1<<4, 1497 IFF_XMIT_DST_RELEASE = 1<<5, 1498 IFF_DONT_BRIDGE = 1<<6, 1499 IFF_DISABLE_NETPOLL = 1<<7, 1500 IFF_MACVLAN_PORT = 1<<8, 1501 IFF_BRIDGE_PORT = 1<<9, 1502 IFF_OVS_DATAPATH = 1<<10, 1503 IFF_TX_SKB_SHARING = 1<<11, 1504 IFF_UNICAST_FLT = 1<<12, 1505 IFF_TEAM_PORT = 1<<13, 1506 IFF_SUPP_NOFCS = 1<<14, 1507 IFF_LIVE_ADDR_CHANGE = 1<<15, 1508 IFF_MACVLAN = 1<<16, 1509 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1510 IFF_L3MDEV_MASTER = 1<<18, 1511 IFF_NO_QUEUE = 1<<19, 1512 IFF_OPENVSWITCH = 1<<20, 1513 IFF_L3MDEV_SLAVE = 1<<21, 1514 IFF_TEAM = 1<<22, 1515 IFF_RXFH_CONFIGURED = 1<<23, 1516 IFF_PHONY_HEADROOM = 1<<24, 1517 IFF_MACSEC = 1<<25, 1518 IFF_NO_RX_HANDLER = 1<<26, 1519 IFF_FAILOVER = 1<<27, 1520 IFF_FAILOVER_SLAVE = 1<<28, 1521 }; 1522 1523 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1524 #define IFF_EBRIDGE IFF_EBRIDGE 1525 #define IFF_BONDING IFF_BONDING 1526 #define IFF_ISATAP IFF_ISATAP 1527 #define IFF_WAN_HDLC IFF_WAN_HDLC 1528 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1529 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1530 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1531 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1532 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1533 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1534 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1535 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1536 #define IFF_TEAM_PORT IFF_TEAM_PORT 1537 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1538 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1539 #define IFF_MACVLAN IFF_MACVLAN 1540 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1541 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1542 #define IFF_NO_QUEUE IFF_NO_QUEUE 1543 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1544 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1545 #define IFF_TEAM IFF_TEAM 1546 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1547 #define IFF_MACSEC IFF_MACSEC 1548 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1549 #define IFF_FAILOVER IFF_FAILOVER 1550 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1551 1552 /** 1553 * struct net_device - The DEVICE structure. 1554 * 1555 * Actually, this whole structure is a big mistake. It mixes I/O 1556 * data with strictly "high-level" data, and it has to know about 1557 * almost every data structure used in the INET module. 1558 * 1559 * @name: This is the first field of the "visible" part of this structure 1560 * (i.e. as seen by users in the "Space.c" file). It is the name 1561 * of the interface. 1562 * 1563 * @name_hlist: Device name hash chain, please keep it close to name[] 1564 * @ifalias: SNMP alias 1565 * @mem_end: Shared memory end 1566 * @mem_start: Shared memory start 1567 * @base_addr: Device I/O address 1568 * @irq: Device IRQ number 1569 * 1570 * @state: Generic network queuing layer state, see netdev_state_t 1571 * @dev_list: The global list of network devices 1572 * @napi_list: List entry used for polling NAPI devices 1573 * @unreg_list: List entry when we are unregistering the 1574 * device; see the function unregister_netdev 1575 * @close_list: List entry used when we are closing the device 1576 * @ptype_all: Device-specific packet handlers for all protocols 1577 * @ptype_specific: Device-specific, protocol-specific packet handlers 1578 * 1579 * @adj_list: Directly linked devices, like slaves for bonding 1580 * @features: Currently active device features 1581 * @hw_features: User-changeable features 1582 * 1583 * @wanted_features: User-requested features 1584 * @vlan_features: Mask of features inheritable by VLAN devices 1585 * 1586 * @hw_enc_features: Mask of features inherited by encapsulating devices 1587 * This field indicates what encapsulation 1588 * offloads the hardware is capable of doing, 1589 * and drivers will need to set them appropriately. 1590 * 1591 * @mpls_features: Mask of features inheritable by MPLS 1592 * 1593 * @ifindex: interface index 1594 * @group: The group the device belongs to 1595 * 1596 * @stats: Statistics struct, which was left as a legacy, use 1597 * rtnl_link_stats64 instead 1598 * 1599 * @rx_dropped: Dropped packets by core network, 1600 * do not use this in drivers 1601 * @tx_dropped: Dropped packets by core network, 1602 * do not use this in drivers 1603 * @rx_nohandler: nohandler dropped packets by core network on 1604 * inactive devices, do not use this in drivers 1605 * @carrier_up_count: Number of times the carrier has been up 1606 * @carrier_down_count: Number of times the carrier has been down 1607 * 1608 * @wireless_handlers: List of functions to handle Wireless Extensions, 1609 * instead of ioctl, 1610 * see <net/iw_handler.h> for details. 1611 * @wireless_data: Instance data managed by the core of wireless extensions 1612 * 1613 * @netdev_ops: Includes several pointers to callbacks, 1614 * if one wants to override the ndo_*() functions 1615 * @ethtool_ops: Management operations 1616 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1617 * discovery handling. Necessary for e.g. 6LoWPAN. 1618 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1619 * of Layer 2 headers. 1620 * 1621 * @flags: Interface flags (a la BSD) 1622 * @priv_flags: Like 'flags' but invisible to userspace, 1623 * see if.h for the definitions 1624 * @gflags: Global flags ( kept as legacy ) 1625 * @padded: How much padding added by alloc_netdev() 1626 * @operstate: RFC2863 operstate 1627 * @link_mode: Mapping policy to operstate 1628 * @if_port: Selectable AUI, TP, ... 1629 * @dma: DMA channel 1630 * @mtu: Interface MTU value 1631 * @min_mtu: Interface Minimum MTU value 1632 * @max_mtu: Interface Maximum MTU value 1633 * @type: Interface hardware type 1634 * @hard_header_len: Maximum hardware header length. 1635 * @min_header_len: Minimum hardware header length 1636 * 1637 * @needed_headroom: Extra headroom the hardware may need, but not in all 1638 * cases can this be guaranteed 1639 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1640 * cases can this be guaranteed. Some cases also use 1641 * LL_MAX_HEADER instead to allocate the skb 1642 * 1643 * interface address info: 1644 * 1645 * @perm_addr: Permanent hw address 1646 * @addr_assign_type: Hw address assignment type 1647 * @addr_len: Hardware address length 1648 * @neigh_priv_len: Used in neigh_alloc() 1649 * @dev_id: Used to differentiate devices that share 1650 * the same link layer address 1651 * @dev_port: Used to differentiate devices that share 1652 * the same function 1653 * @addr_list_lock: XXX: need comments on this one 1654 * @uc_promisc: Counter that indicates promiscuous mode 1655 * has been enabled due to the need to listen to 1656 * additional unicast addresses in a device that 1657 * does not implement ndo_set_rx_mode() 1658 * @uc: unicast mac addresses 1659 * @mc: multicast mac addresses 1660 * @dev_addrs: list of device hw addresses 1661 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1662 * @promiscuity: Number of times the NIC is told to work in 1663 * promiscuous mode; if it becomes 0 the NIC will 1664 * exit promiscuous mode 1665 * @allmulti: Counter, enables or disables allmulticast mode 1666 * 1667 * @vlan_info: VLAN info 1668 * @dsa_ptr: dsa specific data 1669 * @tipc_ptr: TIPC specific data 1670 * @atalk_ptr: AppleTalk link 1671 * @ip_ptr: IPv4 specific data 1672 * @dn_ptr: DECnet specific data 1673 * @ip6_ptr: IPv6 specific data 1674 * @ax25_ptr: AX.25 specific data 1675 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1676 * 1677 * @dev_addr: Hw address (before bcast, 1678 * because most packets are unicast) 1679 * 1680 * @_rx: Array of RX queues 1681 * @num_rx_queues: Number of RX queues 1682 * allocated at register_netdev() time 1683 * @real_num_rx_queues: Number of RX queues currently active in device 1684 * 1685 * @rx_handler: handler for received packets 1686 * @rx_handler_data: XXX: need comments on this one 1687 * @miniq_ingress: ingress/clsact qdisc specific data for 1688 * ingress processing 1689 * @ingress_queue: XXX: need comments on this one 1690 * @broadcast: hw bcast address 1691 * 1692 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1693 * indexed by RX queue number. Assigned by driver. 1694 * This must only be set if the ndo_rx_flow_steer 1695 * operation is defined 1696 * @index_hlist: Device index hash chain 1697 * 1698 * @_tx: Array of TX queues 1699 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1700 * @real_num_tx_queues: Number of TX queues currently active in device 1701 * @qdisc: Root qdisc from userspace point of view 1702 * @tx_queue_len: Max frames per queue allowed 1703 * @tx_global_lock: XXX: need comments on this one 1704 * 1705 * @xps_maps: XXX: need comments on this one 1706 * @miniq_egress: clsact qdisc specific data for 1707 * egress processing 1708 * @watchdog_timeo: Represents the timeout that is used by 1709 * the watchdog (see dev_watchdog()) 1710 * @watchdog_timer: List of timers 1711 * 1712 * @pcpu_refcnt: Number of references to this device 1713 * @todo_list: Delayed register/unregister 1714 * @link_watch_list: XXX: need comments on this one 1715 * 1716 * @reg_state: Register/unregister state machine 1717 * @dismantle: Device is going to be freed 1718 * @rtnl_link_state: This enum represents the phases of creating 1719 * a new link 1720 * 1721 * @needs_free_netdev: Should unregister perform free_netdev? 1722 * @priv_destructor: Called from unregister 1723 * @npinfo: XXX: need comments on this one 1724 * @nd_net: Network namespace this network device is inside 1725 * 1726 * @ml_priv: Mid-layer private 1727 * @lstats: Loopback statistics 1728 * @tstats: Tunnel statistics 1729 * @dstats: Dummy statistics 1730 * @vstats: Virtual ethernet statistics 1731 * 1732 * @garp_port: GARP 1733 * @mrp_port: MRP 1734 * 1735 * @dev: Class/net/name entry 1736 * @sysfs_groups: Space for optional device, statistics and wireless 1737 * sysfs groups 1738 * 1739 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1740 * @rtnl_link_ops: Rtnl_link_ops 1741 * 1742 * @gso_max_size: Maximum size of generic segmentation offload 1743 * @gso_max_segs: Maximum number of segments that can be passed to the 1744 * NIC for GSO 1745 * 1746 * @dcbnl_ops: Data Center Bridging netlink ops 1747 * @num_tc: Number of traffic classes in the net device 1748 * @tc_to_txq: XXX: need comments on this one 1749 * @prio_tc_map: XXX: need comments on this one 1750 * 1751 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1752 * 1753 * @priomap: XXX: need comments on this one 1754 * @phydev: Physical device may attach itself 1755 * for hardware timestamping 1756 * @sfp_bus: attached &struct sfp_bus structure. 1757 * 1758 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1759 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1760 * 1761 * @proto_down: protocol port state information can be sent to the 1762 * switch driver and used to set the phys state of the 1763 * switch port. 1764 * 1765 * @wol_enabled: Wake-on-LAN is enabled 1766 * 1767 * FIXME: cleanup struct net_device such that network protocol info 1768 * moves out. 1769 */ 1770 1771 struct net_device { 1772 char name[IFNAMSIZ]; 1773 struct hlist_node name_hlist; 1774 struct dev_ifalias __rcu *ifalias; 1775 /* 1776 * I/O specific fields 1777 * FIXME: Merge these and struct ifmap into one 1778 */ 1779 unsigned long mem_end; 1780 unsigned long mem_start; 1781 unsigned long base_addr; 1782 int irq; 1783 1784 /* 1785 * Some hardware also needs these fields (state,dev_list, 1786 * napi_list,unreg_list,close_list) but they are not 1787 * part of the usual set specified in Space.c. 1788 */ 1789 1790 unsigned long state; 1791 1792 struct list_head dev_list; 1793 struct list_head napi_list; 1794 struct list_head unreg_list; 1795 struct list_head close_list; 1796 struct list_head ptype_all; 1797 struct list_head ptype_specific; 1798 1799 struct { 1800 struct list_head upper; 1801 struct list_head lower; 1802 } adj_list; 1803 1804 netdev_features_t features; 1805 netdev_features_t hw_features; 1806 netdev_features_t wanted_features; 1807 netdev_features_t vlan_features; 1808 netdev_features_t hw_enc_features; 1809 netdev_features_t mpls_features; 1810 netdev_features_t gso_partial_features; 1811 1812 int ifindex; 1813 int group; 1814 1815 struct net_device_stats stats; 1816 1817 atomic_long_t rx_dropped; 1818 atomic_long_t tx_dropped; 1819 atomic_long_t rx_nohandler; 1820 1821 /* Stats to monitor link on/off, flapping */ 1822 atomic_t carrier_up_count; 1823 atomic_t carrier_down_count; 1824 1825 #ifdef CONFIG_WIRELESS_EXT 1826 const struct iw_handler_def *wireless_handlers; 1827 struct iw_public_data *wireless_data; 1828 #endif 1829 const struct net_device_ops *netdev_ops; 1830 const struct ethtool_ops *ethtool_ops; 1831 #ifdef CONFIG_NET_SWITCHDEV 1832 const struct switchdev_ops *switchdev_ops; 1833 #endif 1834 #ifdef CONFIG_NET_L3_MASTER_DEV 1835 const struct l3mdev_ops *l3mdev_ops; 1836 #endif 1837 #if IS_ENABLED(CONFIG_IPV6) 1838 const struct ndisc_ops *ndisc_ops; 1839 #endif 1840 1841 #ifdef CONFIG_XFRM_OFFLOAD 1842 const struct xfrmdev_ops *xfrmdev_ops; 1843 #endif 1844 1845 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1846 const struct tlsdev_ops *tlsdev_ops; 1847 #endif 1848 1849 const struct header_ops *header_ops; 1850 1851 unsigned int flags; 1852 unsigned int priv_flags; 1853 1854 unsigned short gflags; 1855 unsigned short padded; 1856 1857 unsigned char operstate; 1858 unsigned char link_mode; 1859 1860 unsigned char if_port; 1861 unsigned char dma; 1862 1863 unsigned int mtu; 1864 unsigned int min_mtu; 1865 unsigned int max_mtu; 1866 unsigned short type; 1867 unsigned short hard_header_len; 1868 unsigned char min_header_len; 1869 1870 unsigned short needed_headroom; 1871 unsigned short needed_tailroom; 1872 1873 /* Interface address info. */ 1874 unsigned char perm_addr[MAX_ADDR_LEN]; 1875 unsigned char addr_assign_type; 1876 unsigned char addr_len; 1877 unsigned short neigh_priv_len; 1878 unsigned short dev_id; 1879 unsigned short dev_port; 1880 spinlock_t addr_list_lock; 1881 unsigned char name_assign_type; 1882 bool uc_promisc; 1883 struct netdev_hw_addr_list uc; 1884 struct netdev_hw_addr_list mc; 1885 struct netdev_hw_addr_list dev_addrs; 1886 1887 #ifdef CONFIG_SYSFS 1888 struct kset *queues_kset; 1889 #endif 1890 unsigned int promiscuity; 1891 unsigned int allmulti; 1892 1893 1894 /* Protocol-specific pointers */ 1895 1896 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1897 struct vlan_info __rcu *vlan_info; 1898 #endif 1899 #if IS_ENABLED(CONFIG_NET_DSA) 1900 struct dsa_port *dsa_ptr; 1901 #endif 1902 #if IS_ENABLED(CONFIG_TIPC) 1903 struct tipc_bearer __rcu *tipc_ptr; 1904 #endif 1905 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1906 void *atalk_ptr; 1907 #endif 1908 struct in_device __rcu *ip_ptr; 1909 #if IS_ENABLED(CONFIG_DECNET) 1910 struct dn_dev __rcu *dn_ptr; 1911 #endif 1912 struct inet6_dev __rcu *ip6_ptr; 1913 #if IS_ENABLED(CONFIG_AX25) 1914 void *ax25_ptr; 1915 #endif 1916 struct wireless_dev *ieee80211_ptr; 1917 struct wpan_dev *ieee802154_ptr; 1918 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1919 struct mpls_dev __rcu *mpls_ptr; 1920 #endif 1921 1922 /* 1923 * Cache lines mostly used on receive path (including eth_type_trans()) 1924 */ 1925 /* Interface address info used in eth_type_trans() */ 1926 unsigned char *dev_addr; 1927 1928 struct netdev_rx_queue *_rx; 1929 unsigned int num_rx_queues; 1930 unsigned int real_num_rx_queues; 1931 1932 struct bpf_prog __rcu *xdp_prog; 1933 unsigned long gro_flush_timeout; 1934 rx_handler_func_t __rcu *rx_handler; 1935 void __rcu *rx_handler_data; 1936 1937 #ifdef CONFIG_NET_CLS_ACT 1938 struct mini_Qdisc __rcu *miniq_ingress; 1939 #endif 1940 struct netdev_queue __rcu *ingress_queue; 1941 #ifdef CONFIG_NETFILTER_INGRESS 1942 struct nf_hook_entries __rcu *nf_hooks_ingress; 1943 #endif 1944 1945 unsigned char broadcast[MAX_ADDR_LEN]; 1946 #ifdef CONFIG_RFS_ACCEL 1947 struct cpu_rmap *rx_cpu_rmap; 1948 #endif 1949 struct hlist_node index_hlist; 1950 1951 /* 1952 * Cache lines mostly used on transmit path 1953 */ 1954 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1955 unsigned int num_tx_queues; 1956 unsigned int real_num_tx_queues; 1957 struct Qdisc *qdisc; 1958 #ifdef CONFIG_NET_SCHED 1959 DECLARE_HASHTABLE (qdisc_hash, 4); 1960 #endif 1961 unsigned int tx_queue_len; 1962 spinlock_t tx_global_lock; 1963 int watchdog_timeo; 1964 1965 #ifdef CONFIG_XPS 1966 struct xps_dev_maps __rcu *xps_cpus_map; 1967 struct xps_dev_maps __rcu *xps_rxqs_map; 1968 #endif 1969 #ifdef CONFIG_NET_CLS_ACT 1970 struct mini_Qdisc __rcu *miniq_egress; 1971 #endif 1972 1973 /* These may be needed for future network-power-down code. */ 1974 struct timer_list watchdog_timer; 1975 1976 int __percpu *pcpu_refcnt; 1977 struct list_head todo_list; 1978 1979 struct list_head link_watch_list; 1980 1981 enum { NETREG_UNINITIALIZED=0, 1982 NETREG_REGISTERED, /* completed register_netdevice */ 1983 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1984 NETREG_UNREGISTERED, /* completed unregister todo */ 1985 NETREG_RELEASED, /* called free_netdev */ 1986 NETREG_DUMMY, /* dummy device for NAPI poll */ 1987 } reg_state:8; 1988 1989 bool dismantle; 1990 1991 enum { 1992 RTNL_LINK_INITIALIZED, 1993 RTNL_LINK_INITIALIZING, 1994 } rtnl_link_state:16; 1995 1996 bool needs_free_netdev; 1997 void (*priv_destructor)(struct net_device *dev); 1998 1999 #ifdef CONFIG_NETPOLL 2000 struct netpoll_info __rcu *npinfo; 2001 #endif 2002 2003 possible_net_t nd_net; 2004 2005 /* mid-layer private */ 2006 union { 2007 void *ml_priv; 2008 struct pcpu_lstats __percpu *lstats; 2009 struct pcpu_sw_netstats __percpu *tstats; 2010 struct pcpu_dstats __percpu *dstats; 2011 }; 2012 2013 #if IS_ENABLED(CONFIG_GARP) 2014 struct garp_port __rcu *garp_port; 2015 #endif 2016 #if IS_ENABLED(CONFIG_MRP) 2017 struct mrp_port __rcu *mrp_port; 2018 #endif 2019 2020 struct device dev; 2021 const struct attribute_group *sysfs_groups[4]; 2022 const struct attribute_group *sysfs_rx_queue_group; 2023 2024 const struct rtnl_link_ops *rtnl_link_ops; 2025 2026 /* for setting kernel sock attribute on TCP connection setup */ 2027 #define GSO_MAX_SIZE 65536 2028 unsigned int gso_max_size; 2029 #define GSO_MAX_SEGS 65535 2030 u16 gso_max_segs; 2031 2032 #ifdef CONFIG_DCB 2033 const struct dcbnl_rtnl_ops *dcbnl_ops; 2034 #endif 2035 s16 num_tc; 2036 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2037 u8 prio_tc_map[TC_BITMASK + 1]; 2038 2039 #if IS_ENABLED(CONFIG_FCOE) 2040 unsigned int fcoe_ddp_xid; 2041 #endif 2042 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2043 struct netprio_map __rcu *priomap; 2044 #endif 2045 struct phy_device *phydev; 2046 struct sfp_bus *sfp_bus; 2047 struct lock_class_key *qdisc_tx_busylock; 2048 struct lock_class_key *qdisc_running_key; 2049 bool proto_down; 2050 unsigned wol_enabled:1; 2051 }; 2052 #define to_net_dev(d) container_of(d, struct net_device, dev) 2053 2054 static inline bool netif_elide_gro(const struct net_device *dev) 2055 { 2056 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2057 return true; 2058 return false; 2059 } 2060 2061 #define NETDEV_ALIGN 32 2062 2063 static inline 2064 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2065 { 2066 return dev->prio_tc_map[prio & TC_BITMASK]; 2067 } 2068 2069 static inline 2070 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2071 { 2072 if (tc >= dev->num_tc) 2073 return -EINVAL; 2074 2075 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2076 return 0; 2077 } 2078 2079 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2080 void netdev_reset_tc(struct net_device *dev); 2081 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2082 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2083 2084 static inline 2085 int netdev_get_num_tc(struct net_device *dev) 2086 { 2087 return dev->num_tc; 2088 } 2089 2090 void netdev_unbind_sb_channel(struct net_device *dev, 2091 struct net_device *sb_dev); 2092 int netdev_bind_sb_channel_queue(struct net_device *dev, 2093 struct net_device *sb_dev, 2094 u8 tc, u16 count, u16 offset); 2095 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2096 static inline int netdev_get_sb_channel(struct net_device *dev) 2097 { 2098 return max_t(int, -dev->num_tc, 0); 2099 } 2100 2101 static inline 2102 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2103 unsigned int index) 2104 { 2105 return &dev->_tx[index]; 2106 } 2107 2108 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2109 const struct sk_buff *skb) 2110 { 2111 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2112 } 2113 2114 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2115 void (*f)(struct net_device *, 2116 struct netdev_queue *, 2117 void *), 2118 void *arg) 2119 { 2120 unsigned int i; 2121 2122 for (i = 0; i < dev->num_tx_queues; i++) 2123 f(dev, &dev->_tx[i], arg); 2124 } 2125 2126 #define netdev_lockdep_set_classes(dev) \ 2127 { \ 2128 static struct lock_class_key qdisc_tx_busylock_key; \ 2129 static struct lock_class_key qdisc_running_key; \ 2130 static struct lock_class_key qdisc_xmit_lock_key; \ 2131 static struct lock_class_key dev_addr_list_lock_key; \ 2132 unsigned int i; \ 2133 \ 2134 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2135 (dev)->qdisc_running_key = &qdisc_running_key; \ 2136 lockdep_set_class(&(dev)->addr_list_lock, \ 2137 &dev_addr_list_lock_key); \ 2138 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2139 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2140 &qdisc_xmit_lock_key); \ 2141 } 2142 2143 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2144 struct sk_buff *skb, 2145 struct net_device *sb_dev); 2146 2147 /* returns the headroom that the master device needs to take in account 2148 * when forwarding to this dev 2149 */ 2150 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2151 { 2152 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2153 } 2154 2155 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2156 { 2157 if (dev->netdev_ops->ndo_set_rx_headroom) 2158 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2159 } 2160 2161 /* set the device rx headroom to the dev's default */ 2162 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2163 { 2164 netdev_set_rx_headroom(dev, -1); 2165 } 2166 2167 /* 2168 * Net namespace inlines 2169 */ 2170 static inline 2171 struct net *dev_net(const struct net_device *dev) 2172 { 2173 return read_pnet(&dev->nd_net); 2174 } 2175 2176 static inline 2177 void dev_net_set(struct net_device *dev, struct net *net) 2178 { 2179 write_pnet(&dev->nd_net, net); 2180 } 2181 2182 /** 2183 * netdev_priv - access network device private data 2184 * @dev: network device 2185 * 2186 * Get network device private data 2187 */ 2188 static inline void *netdev_priv(const struct net_device *dev) 2189 { 2190 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2191 } 2192 2193 /* Set the sysfs physical device reference for the network logical device 2194 * if set prior to registration will cause a symlink during initialization. 2195 */ 2196 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2197 2198 /* Set the sysfs device type for the network logical device to allow 2199 * fine-grained identification of different network device types. For 2200 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2201 */ 2202 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2203 2204 /* Default NAPI poll() weight 2205 * Device drivers are strongly advised to not use bigger value 2206 */ 2207 #define NAPI_POLL_WEIGHT 64 2208 2209 /** 2210 * netif_napi_add - initialize a NAPI context 2211 * @dev: network device 2212 * @napi: NAPI context 2213 * @poll: polling function 2214 * @weight: default weight 2215 * 2216 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2217 * *any* of the other NAPI-related functions. 2218 */ 2219 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2220 int (*poll)(struct napi_struct *, int), int weight); 2221 2222 /** 2223 * netif_tx_napi_add - initialize a NAPI context 2224 * @dev: network device 2225 * @napi: NAPI context 2226 * @poll: polling function 2227 * @weight: default weight 2228 * 2229 * This variant of netif_napi_add() should be used from drivers using NAPI 2230 * to exclusively poll a TX queue. 2231 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2232 */ 2233 static inline void netif_tx_napi_add(struct net_device *dev, 2234 struct napi_struct *napi, 2235 int (*poll)(struct napi_struct *, int), 2236 int weight) 2237 { 2238 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2239 netif_napi_add(dev, napi, poll, weight); 2240 } 2241 2242 /** 2243 * netif_napi_del - remove a NAPI context 2244 * @napi: NAPI context 2245 * 2246 * netif_napi_del() removes a NAPI context from the network device NAPI list 2247 */ 2248 void netif_napi_del(struct napi_struct *napi); 2249 2250 struct napi_gro_cb { 2251 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2252 void *frag0; 2253 2254 /* Length of frag0. */ 2255 unsigned int frag0_len; 2256 2257 /* This indicates where we are processing relative to skb->data. */ 2258 int data_offset; 2259 2260 /* This is non-zero if the packet cannot be merged with the new skb. */ 2261 u16 flush; 2262 2263 /* Save the IP ID here and check when we get to the transport layer */ 2264 u16 flush_id; 2265 2266 /* Number of segments aggregated. */ 2267 u16 count; 2268 2269 /* Start offset for remote checksum offload */ 2270 u16 gro_remcsum_start; 2271 2272 /* jiffies when first packet was created/queued */ 2273 unsigned long age; 2274 2275 /* Used in ipv6_gro_receive() and foo-over-udp */ 2276 u16 proto; 2277 2278 /* This is non-zero if the packet may be of the same flow. */ 2279 u8 same_flow:1; 2280 2281 /* Used in tunnel GRO receive */ 2282 u8 encap_mark:1; 2283 2284 /* GRO checksum is valid */ 2285 u8 csum_valid:1; 2286 2287 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2288 u8 csum_cnt:3; 2289 2290 /* Free the skb? */ 2291 u8 free:2; 2292 #define NAPI_GRO_FREE 1 2293 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2294 2295 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2296 u8 is_ipv6:1; 2297 2298 /* Used in GRE, set in fou/gue_gro_receive */ 2299 u8 is_fou:1; 2300 2301 /* Used to determine if flush_id can be ignored */ 2302 u8 is_atomic:1; 2303 2304 /* Number of gro_receive callbacks this packet already went through */ 2305 u8 recursion_counter:4; 2306 2307 /* 1 bit hole */ 2308 2309 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2310 __wsum csum; 2311 2312 /* used in skb_gro_receive() slow path */ 2313 struct sk_buff *last; 2314 }; 2315 2316 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2317 2318 #define GRO_RECURSION_LIMIT 15 2319 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2320 { 2321 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2322 } 2323 2324 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2325 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2326 struct list_head *head, 2327 struct sk_buff *skb) 2328 { 2329 if (unlikely(gro_recursion_inc_test(skb))) { 2330 NAPI_GRO_CB(skb)->flush |= 1; 2331 return NULL; 2332 } 2333 2334 return cb(head, skb); 2335 } 2336 2337 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2338 struct sk_buff *); 2339 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2340 struct sock *sk, 2341 struct list_head *head, 2342 struct sk_buff *skb) 2343 { 2344 if (unlikely(gro_recursion_inc_test(skb))) { 2345 NAPI_GRO_CB(skb)->flush |= 1; 2346 return NULL; 2347 } 2348 2349 return cb(sk, head, skb); 2350 } 2351 2352 struct packet_type { 2353 __be16 type; /* This is really htons(ether_type). */ 2354 bool ignore_outgoing; 2355 struct net_device *dev; /* NULL is wildcarded here */ 2356 int (*func) (struct sk_buff *, 2357 struct net_device *, 2358 struct packet_type *, 2359 struct net_device *); 2360 void (*list_func) (struct list_head *, 2361 struct packet_type *, 2362 struct net_device *); 2363 bool (*id_match)(struct packet_type *ptype, 2364 struct sock *sk); 2365 void *af_packet_priv; 2366 struct list_head list; 2367 }; 2368 2369 struct offload_callbacks { 2370 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2371 netdev_features_t features); 2372 struct sk_buff *(*gro_receive)(struct list_head *head, 2373 struct sk_buff *skb); 2374 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2375 }; 2376 2377 struct packet_offload { 2378 __be16 type; /* This is really htons(ether_type). */ 2379 u16 priority; 2380 struct offload_callbacks callbacks; 2381 struct list_head list; 2382 }; 2383 2384 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2385 struct pcpu_sw_netstats { 2386 u64 rx_packets; 2387 u64 rx_bytes; 2388 u64 tx_packets; 2389 u64 tx_bytes; 2390 struct u64_stats_sync syncp; 2391 }; 2392 2393 struct pcpu_lstats { 2394 u64 packets; 2395 u64 bytes; 2396 struct u64_stats_sync syncp; 2397 }; 2398 2399 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2400 ({ \ 2401 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2402 if (pcpu_stats) { \ 2403 int __cpu; \ 2404 for_each_possible_cpu(__cpu) { \ 2405 typeof(type) *stat; \ 2406 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2407 u64_stats_init(&stat->syncp); \ 2408 } \ 2409 } \ 2410 pcpu_stats; \ 2411 }) 2412 2413 #define netdev_alloc_pcpu_stats(type) \ 2414 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2415 2416 enum netdev_lag_tx_type { 2417 NETDEV_LAG_TX_TYPE_UNKNOWN, 2418 NETDEV_LAG_TX_TYPE_RANDOM, 2419 NETDEV_LAG_TX_TYPE_BROADCAST, 2420 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2421 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2422 NETDEV_LAG_TX_TYPE_HASH, 2423 }; 2424 2425 enum netdev_lag_hash { 2426 NETDEV_LAG_HASH_NONE, 2427 NETDEV_LAG_HASH_L2, 2428 NETDEV_LAG_HASH_L34, 2429 NETDEV_LAG_HASH_L23, 2430 NETDEV_LAG_HASH_E23, 2431 NETDEV_LAG_HASH_E34, 2432 NETDEV_LAG_HASH_UNKNOWN, 2433 }; 2434 2435 struct netdev_lag_upper_info { 2436 enum netdev_lag_tx_type tx_type; 2437 enum netdev_lag_hash hash_type; 2438 }; 2439 2440 struct netdev_lag_lower_state_info { 2441 u8 link_up : 1, 2442 tx_enabled : 1; 2443 }; 2444 2445 #include <linux/notifier.h> 2446 2447 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2448 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2449 * adding new types. 2450 */ 2451 enum netdev_cmd { 2452 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2453 NETDEV_DOWN, 2454 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2455 detected a hardware crash and restarted 2456 - we can use this eg to kick tcp sessions 2457 once done */ 2458 NETDEV_CHANGE, /* Notify device state change */ 2459 NETDEV_REGISTER, 2460 NETDEV_UNREGISTER, 2461 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2462 NETDEV_CHANGEADDR, 2463 NETDEV_GOING_DOWN, 2464 NETDEV_CHANGENAME, 2465 NETDEV_FEAT_CHANGE, 2466 NETDEV_BONDING_FAILOVER, 2467 NETDEV_PRE_UP, 2468 NETDEV_PRE_TYPE_CHANGE, 2469 NETDEV_POST_TYPE_CHANGE, 2470 NETDEV_POST_INIT, 2471 NETDEV_RELEASE, 2472 NETDEV_NOTIFY_PEERS, 2473 NETDEV_JOIN, 2474 NETDEV_CHANGEUPPER, 2475 NETDEV_RESEND_IGMP, 2476 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2477 NETDEV_CHANGEINFODATA, 2478 NETDEV_BONDING_INFO, 2479 NETDEV_PRECHANGEUPPER, 2480 NETDEV_CHANGELOWERSTATE, 2481 NETDEV_UDP_TUNNEL_PUSH_INFO, 2482 NETDEV_UDP_TUNNEL_DROP_INFO, 2483 NETDEV_CHANGE_TX_QUEUE_LEN, 2484 NETDEV_CVLAN_FILTER_PUSH_INFO, 2485 NETDEV_CVLAN_FILTER_DROP_INFO, 2486 NETDEV_SVLAN_FILTER_PUSH_INFO, 2487 NETDEV_SVLAN_FILTER_DROP_INFO, 2488 }; 2489 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2490 2491 int register_netdevice_notifier(struct notifier_block *nb); 2492 int unregister_netdevice_notifier(struct notifier_block *nb); 2493 2494 struct netdev_notifier_info { 2495 struct net_device *dev; 2496 struct netlink_ext_ack *extack; 2497 }; 2498 2499 struct netdev_notifier_change_info { 2500 struct netdev_notifier_info info; /* must be first */ 2501 unsigned int flags_changed; 2502 }; 2503 2504 struct netdev_notifier_changeupper_info { 2505 struct netdev_notifier_info info; /* must be first */ 2506 struct net_device *upper_dev; /* new upper dev */ 2507 bool master; /* is upper dev master */ 2508 bool linking; /* is the notification for link or unlink */ 2509 void *upper_info; /* upper dev info */ 2510 }; 2511 2512 struct netdev_notifier_changelowerstate_info { 2513 struct netdev_notifier_info info; /* must be first */ 2514 void *lower_state_info; /* is lower dev state */ 2515 }; 2516 2517 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2518 struct net_device *dev) 2519 { 2520 info->dev = dev; 2521 info->extack = NULL; 2522 } 2523 2524 static inline struct net_device * 2525 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2526 { 2527 return info->dev; 2528 } 2529 2530 static inline struct netlink_ext_ack * 2531 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2532 { 2533 return info->extack; 2534 } 2535 2536 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2537 2538 2539 extern rwlock_t dev_base_lock; /* Device list lock */ 2540 2541 #define for_each_netdev(net, d) \ 2542 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2543 #define for_each_netdev_reverse(net, d) \ 2544 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2545 #define for_each_netdev_rcu(net, d) \ 2546 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2547 #define for_each_netdev_safe(net, d, n) \ 2548 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2549 #define for_each_netdev_continue(net, d) \ 2550 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2551 #define for_each_netdev_continue_rcu(net, d) \ 2552 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2553 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2554 for_each_netdev_rcu(&init_net, slave) \ 2555 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2556 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2557 2558 static inline struct net_device *next_net_device(struct net_device *dev) 2559 { 2560 struct list_head *lh; 2561 struct net *net; 2562 2563 net = dev_net(dev); 2564 lh = dev->dev_list.next; 2565 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2566 } 2567 2568 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2569 { 2570 struct list_head *lh; 2571 struct net *net; 2572 2573 net = dev_net(dev); 2574 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2575 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2576 } 2577 2578 static inline struct net_device *first_net_device(struct net *net) 2579 { 2580 return list_empty(&net->dev_base_head) ? NULL : 2581 net_device_entry(net->dev_base_head.next); 2582 } 2583 2584 static inline struct net_device *first_net_device_rcu(struct net *net) 2585 { 2586 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2587 2588 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2589 } 2590 2591 int netdev_boot_setup_check(struct net_device *dev); 2592 unsigned long netdev_boot_base(const char *prefix, int unit); 2593 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2594 const char *hwaddr); 2595 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2596 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2597 void dev_add_pack(struct packet_type *pt); 2598 void dev_remove_pack(struct packet_type *pt); 2599 void __dev_remove_pack(struct packet_type *pt); 2600 void dev_add_offload(struct packet_offload *po); 2601 void dev_remove_offload(struct packet_offload *po); 2602 2603 int dev_get_iflink(const struct net_device *dev); 2604 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2605 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2606 unsigned short mask); 2607 struct net_device *dev_get_by_name(struct net *net, const char *name); 2608 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2609 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2610 int dev_alloc_name(struct net_device *dev, const char *name); 2611 int dev_open(struct net_device *dev); 2612 void dev_close(struct net_device *dev); 2613 void dev_close_many(struct list_head *head, bool unlink); 2614 void dev_disable_lro(struct net_device *dev); 2615 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2616 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2617 struct net_device *sb_dev, 2618 select_queue_fallback_t fallback); 2619 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2620 struct net_device *sb_dev, 2621 select_queue_fallback_t fallback); 2622 int dev_queue_xmit(struct sk_buff *skb); 2623 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2624 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2625 int register_netdevice(struct net_device *dev); 2626 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2627 void unregister_netdevice_many(struct list_head *head); 2628 static inline void unregister_netdevice(struct net_device *dev) 2629 { 2630 unregister_netdevice_queue(dev, NULL); 2631 } 2632 2633 int netdev_refcnt_read(const struct net_device *dev); 2634 void free_netdev(struct net_device *dev); 2635 void netdev_freemem(struct net_device *dev); 2636 void synchronize_net(void); 2637 int init_dummy_netdev(struct net_device *dev); 2638 2639 DECLARE_PER_CPU(int, xmit_recursion); 2640 #define XMIT_RECURSION_LIMIT 10 2641 2642 static inline int dev_recursion_level(void) 2643 { 2644 return this_cpu_read(xmit_recursion); 2645 } 2646 2647 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2648 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2649 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2650 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2651 int netdev_get_name(struct net *net, char *name, int ifindex); 2652 int dev_restart(struct net_device *dev); 2653 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2654 2655 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2656 { 2657 return NAPI_GRO_CB(skb)->data_offset; 2658 } 2659 2660 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2661 { 2662 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2663 } 2664 2665 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2666 { 2667 NAPI_GRO_CB(skb)->data_offset += len; 2668 } 2669 2670 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2671 unsigned int offset) 2672 { 2673 return NAPI_GRO_CB(skb)->frag0 + offset; 2674 } 2675 2676 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2677 { 2678 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2679 } 2680 2681 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2682 { 2683 NAPI_GRO_CB(skb)->frag0 = NULL; 2684 NAPI_GRO_CB(skb)->frag0_len = 0; 2685 } 2686 2687 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2688 unsigned int offset) 2689 { 2690 if (!pskb_may_pull(skb, hlen)) 2691 return NULL; 2692 2693 skb_gro_frag0_invalidate(skb); 2694 return skb->data + offset; 2695 } 2696 2697 static inline void *skb_gro_network_header(struct sk_buff *skb) 2698 { 2699 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2700 skb_network_offset(skb); 2701 } 2702 2703 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2704 const void *start, unsigned int len) 2705 { 2706 if (NAPI_GRO_CB(skb)->csum_valid) 2707 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2708 csum_partial(start, len, 0)); 2709 } 2710 2711 /* GRO checksum functions. These are logical equivalents of the normal 2712 * checksum functions (in skbuff.h) except that they operate on the GRO 2713 * offsets and fields in sk_buff. 2714 */ 2715 2716 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2717 2718 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2719 { 2720 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2721 } 2722 2723 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2724 bool zero_okay, 2725 __sum16 check) 2726 { 2727 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2728 skb_checksum_start_offset(skb) < 2729 skb_gro_offset(skb)) && 2730 !skb_at_gro_remcsum_start(skb) && 2731 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2732 (!zero_okay || check)); 2733 } 2734 2735 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2736 __wsum psum) 2737 { 2738 if (NAPI_GRO_CB(skb)->csum_valid && 2739 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2740 return 0; 2741 2742 NAPI_GRO_CB(skb)->csum = psum; 2743 2744 return __skb_gro_checksum_complete(skb); 2745 } 2746 2747 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2748 { 2749 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2750 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2751 NAPI_GRO_CB(skb)->csum_cnt--; 2752 } else { 2753 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2754 * verified a new top level checksum or an encapsulated one 2755 * during GRO. This saves work if we fallback to normal path. 2756 */ 2757 __skb_incr_checksum_unnecessary(skb); 2758 } 2759 } 2760 2761 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2762 compute_pseudo) \ 2763 ({ \ 2764 __sum16 __ret = 0; \ 2765 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2766 __ret = __skb_gro_checksum_validate_complete(skb, \ 2767 compute_pseudo(skb, proto)); \ 2768 if (!__ret) \ 2769 skb_gro_incr_csum_unnecessary(skb); \ 2770 __ret; \ 2771 }) 2772 2773 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2774 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2775 2776 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2777 compute_pseudo) \ 2778 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2779 2780 #define skb_gro_checksum_simple_validate(skb) \ 2781 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2782 2783 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2784 { 2785 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2786 !NAPI_GRO_CB(skb)->csum_valid); 2787 } 2788 2789 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2790 __sum16 check, __wsum pseudo) 2791 { 2792 NAPI_GRO_CB(skb)->csum = ~pseudo; 2793 NAPI_GRO_CB(skb)->csum_valid = 1; 2794 } 2795 2796 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2797 do { \ 2798 if (__skb_gro_checksum_convert_check(skb)) \ 2799 __skb_gro_checksum_convert(skb, check, \ 2800 compute_pseudo(skb, proto)); \ 2801 } while (0) 2802 2803 struct gro_remcsum { 2804 int offset; 2805 __wsum delta; 2806 }; 2807 2808 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2809 { 2810 grc->offset = 0; 2811 grc->delta = 0; 2812 } 2813 2814 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2815 unsigned int off, size_t hdrlen, 2816 int start, int offset, 2817 struct gro_remcsum *grc, 2818 bool nopartial) 2819 { 2820 __wsum delta; 2821 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2822 2823 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2824 2825 if (!nopartial) { 2826 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2827 return ptr; 2828 } 2829 2830 ptr = skb_gro_header_fast(skb, off); 2831 if (skb_gro_header_hard(skb, off + plen)) { 2832 ptr = skb_gro_header_slow(skb, off + plen, off); 2833 if (!ptr) 2834 return NULL; 2835 } 2836 2837 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2838 start, offset); 2839 2840 /* Adjust skb->csum since we changed the packet */ 2841 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2842 2843 grc->offset = off + hdrlen + offset; 2844 grc->delta = delta; 2845 2846 return ptr; 2847 } 2848 2849 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2850 struct gro_remcsum *grc) 2851 { 2852 void *ptr; 2853 size_t plen = grc->offset + sizeof(u16); 2854 2855 if (!grc->delta) 2856 return; 2857 2858 ptr = skb_gro_header_fast(skb, grc->offset); 2859 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2860 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2861 if (!ptr) 2862 return; 2863 } 2864 2865 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2866 } 2867 2868 #ifdef CONFIG_XFRM_OFFLOAD 2869 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2870 { 2871 if (PTR_ERR(pp) != -EINPROGRESS) 2872 NAPI_GRO_CB(skb)->flush |= flush; 2873 } 2874 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2875 struct sk_buff *pp, 2876 int flush, 2877 struct gro_remcsum *grc) 2878 { 2879 if (PTR_ERR(pp) != -EINPROGRESS) { 2880 NAPI_GRO_CB(skb)->flush |= flush; 2881 skb_gro_remcsum_cleanup(skb, grc); 2882 skb->remcsum_offload = 0; 2883 } 2884 } 2885 #else 2886 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2887 { 2888 NAPI_GRO_CB(skb)->flush |= flush; 2889 } 2890 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2891 struct sk_buff *pp, 2892 int flush, 2893 struct gro_remcsum *grc) 2894 { 2895 NAPI_GRO_CB(skb)->flush |= flush; 2896 skb_gro_remcsum_cleanup(skb, grc); 2897 skb->remcsum_offload = 0; 2898 } 2899 #endif 2900 2901 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2902 unsigned short type, 2903 const void *daddr, const void *saddr, 2904 unsigned int len) 2905 { 2906 if (!dev->header_ops || !dev->header_ops->create) 2907 return 0; 2908 2909 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2910 } 2911 2912 static inline int dev_parse_header(const struct sk_buff *skb, 2913 unsigned char *haddr) 2914 { 2915 const struct net_device *dev = skb->dev; 2916 2917 if (!dev->header_ops || !dev->header_ops->parse) 2918 return 0; 2919 return dev->header_ops->parse(skb, haddr); 2920 } 2921 2922 /* ll_header must have at least hard_header_len allocated */ 2923 static inline bool dev_validate_header(const struct net_device *dev, 2924 char *ll_header, int len) 2925 { 2926 if (likely(len >= dev->hard_header_len)) 2927 return true; 2928 if (len < dev->min_header_len) 2929 return false; 2930 2931 if (capable(CAP_SYS_RAWIO)) { 2932 memset(ll_header + len, 0, dev->hard_header_len - len); 2933 return true; 2934 } 2935 2936 if (dev->header_ops && dev->header_ops->validate) 2937 return dev->header_ops->validate(ll_header, len); 2938 2939 return false; 2940 } 2941 2942 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2943 int len, int size); 2944 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2945 static inline int unregister_gifconf(unsigned int family) 2946 { 2947 return register_gifconf(family, NULL); 2948 } 2949 2950 #ifdef CONFIG_NET_FLOW_LIMIT 2951 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2952 struct sd_flow_limit { 2953 u64 count; 2954 unsigned int num_buckets; 2955 unsigned int history_head; 2956 u16 history[FLOW_LIMIT_HISTORY]; 2957 u8 buckets[]; 2958 }; 2959 2960 extern int netdev_flow_limit_table_len; 2961 #endif /* CONFIG_NET_FLOW_LIMIT */ 2962 2963 /* 2964 * Incoming packets are placed on per-CPU queues 2965 */ 2966 struct softnet_data { 2967 struct list_head poll_list; 2968 struct sk_buff_head process_queue; 2969 2970 /* stats */ 2971 unsigned int processed; 2972 unsigned int time_squeeze; 2973 unsigned int received_rps; 2974 #ifdef CONFIG_RPS 2975 struct softnet_data *rps_ipi_list; 2976 #endif 2977 #ifdef CONFIG_NET_FLOW_LIMIT 2978 struct sd_flow_limit __rcu *flow_limit; 2979 #endif 2980 struct Qdisc *output_queue; 2981 struct Qdisc **output_queue_tailp; 2982 struct sk_buff *completion_queue; 2983 #ifdef CONFIG_XFRM_OFFLOAD 2984 struct sk_buff_head xfrm_backlog; 2985 #endif 2986 #ifdef CONFIG_RPS 2987 /* input_queue_head should be written by cpu owning this struct, 2988 * and only read by other cpus. Worth using a cache line. 2989 */ 2990 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2991 2992 /* Elements below can be accessed between CPUs for RPS/RFS */ 2993 call_single_data_t csd ____cacheline_aligned_in_smp; 2994 struct softnet_data *rps_ipi_next; 2995 unsigned int cpu; 2996 unsigned int input_queue_tail; 2997 #endif 2998 unsigned int dropped; 2999 struct sk_buff_head input_pkt_queue; 3000 struct napi_struct backlog; 3001 3002 }; 3003 3004 static inline void input_queue_head_incr(struct softnet_data *sd) 3005 { 3006 #ifdef CONFIG_RPS 3007 sd->input_queue_head++; 3008 #endif 3009 } 3010 3011 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3012 unsigned int *qtail) 3013 { 3014 #ifdef CONFIG_RPS 3015 *qtail = ++sd->input_queue_tail; 3016 #endif 3017 } 3018 3019 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3020 3021 void __netif_schedule(struct Qdisc *q); 3022 void netif_schedule_queue(struct netdev_queue *txq); 3023 3024 static inline void netif_tx_schedule_all(struct net_device *dev) 3025 { 3026 unsigned int i; 3027 3028 for (i = 0; i < dev->num_tx_queues; i++) 3029 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3030 } 3031 3032 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3033 { 3034 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3035 } 3036 3037 /** 3038 * netif_start_queue - allow transmit 3039 * @dev: network device 3040 * 3041 * Allow upper layers to call the device hard_start_xmit routine. 3042 */ 3043 static inline void netif_start_queue(struct net_device *dev) 3044 { 3045 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3046 } 3047 3048 static inline void netif_tx_start_all_queues(struct net_device *dev) 3049 { 3050 unsigned int i; 3051 3052 for (i = 0; i < dev->num_tx_queues; i++) { 3053 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3054 netif_tx_start_queue(txq); 3055 } 3056 } 3057 3058 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3059 3060 /** 3061 * netif_wake_queue - restart transmit 3062 * @dev: network device 3063 * 3064 * Allow upper layers to call the device hard_start_xmit routine. 3065 * Used for flow control when transmit resources are available. 3066 */ 3067 static inline void netif_wake_queue(struct net_device *dev) 3068 { 3069 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3070 } 3071 3072 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3073 { 3074 unsigned int i; 3075 3076 for (i = 0; i < dev->num_tx_queues; i++) { 3077 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3078 netif_tx_wake_queue(txq); 3079 } 3080 } 3081 3082 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3083 { 3084 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3085 } 3086 3087 /** 3088 * netif_stop_queue - stop transmitted packets 3089 * @dev: network device 3090 * 3091 * Stop upper layers calling the device hard_start_xmit routine. 3092 * Used for flow control when transmit resources are unavailable. 3093 */ 3094 static inline void netif_stop_queue(struct net_device *dev) 3095 { 3096 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3097 } 3098 3099 void netif_tx_stop_all_queues(struct net_device *dev); 3100 3101 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3102 { 3103 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3104 } 3105 3106 /** 3107 * netif_queue_stopped - test if transmit queue is flowblocked 3108 * @dev: network device 3109 * 3110 * Test if transmit queue on device is currently unable to send. 3111 */ 3112 static inline bool netif_queue_stopped(const struct net_device *dev) 3113 { 3114 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3115 } 3116 3117 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3118 { 3119 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3120 } 3121 3122 static inline bool 3123 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3124 { 3125 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3126 } 3127 3128 static inline bool 3129 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3130 { 3131 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3132 } 3133 3134 /** 3135 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3136 * @dev_queue: pointer to transmit queue 3137 * 3138 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3139 * to give appropriate hint to the CPU. 3140 */ 3141 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3142 { 3143 #ifdef CONFIG_BQL 3144 prefetchw(&dev_queue->dql.num_queued); 3145 #endif 3146 } 3147 3148 /** 3149 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3150 * @dev_queue: pointer to transmit queue 3151 * 3152 * BQL enabled drivers might use this helper in their TX completion path, 3153 * to give appropriate hint to the CPU. 3154 */ 3155 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3156 { 3157 #ifdef CONFIG_BQL 3158 prefetchw(&dev_queue->dql.limit); 3159 #endif 3160 } 3161 3162 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3163 unsigned int bytes) 3164 { 3165 #ifdef CONFIG_BQL 3166 dql_queued(&dev_queue->dql, bytes); 3167 3168 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3169 return; 3170 3171 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3172 3173 /* 3174 * The XOFF flag must be set before checking the dql_avail below, 3175 * because in netdev_tx_completed_queue we update the dql_completed 3176 * before checking the XOFF flag. 3177 */ 3178 smp_mb(); 3179 3180 /* check again in case another CPU has just made room avail */ 3181 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3182 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3183 #endif 3184 } 3185 3186 /** 3187 * netdev_sent_queue - report the number of bytes queued to hardware 3188 * @dev: network device 3189 * @bytes: number of bytes queued to the hardware device queue 3190 * 3191 * Report the number of bytes queued for sending/completion to the network 3192 * device hardware queue. @bytes should be a good approximation and should 3193 * exactly match netdev_completed_queue() @bytes 3194 */ 3195 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3196 { 3197 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3198 } 3199 3200 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3201 unsigned int pkts, unsigned int bytes) 3202 { 3203 #ifdef CONFIG_BQL 3204 if (unlikely(!bytes)) 3205 return; 3206 3207 dql_completed(&dev_queue->dql, bytes); 3208 3209 /* 3210 * Without the memory barrier there is a small possiblity that 3211 * netdev_tx_sent_queue will miss the update and cause the queue to 3212 * be stopped forever 3213 */ 3214 smp_mb(); 3215 3216 if (dql_avail(&dev_queue->dql) < 0) 3217 return; 3218 3219 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3220 netif_schedule_queue(dev_queue); 3221 #endif 3222 } 3223 3224 /** 3225 * netdev_completed_queue - report bytes and packets completed by device 3226 * @dev: network device 3227 * @pkts: actual number of packets sent over the medium 3228 * @bytes: actual number of bytes sent over the medium 3229 * 3230 * Report the number of bytes and packets transmitted by the network device 3231 * hardware queue over the physical medium, @bytes must exactly match the 3232 * @bytes amount passed to netdev_sent_queue() 3233 */ 3234 static inline void netdev_completed_queue(struct net_device *dev, 3235 unsigned int pkts, unsigned int bytes) 3236 { 3237 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3238 } 3239 3240 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3241 { 3242 #ifdef CONFIG_BQL 3243 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3244 dql_reset(&q->dql); 3245 #endif 3246 } 3247 3248 /** 3249 * netdev_reset_queue - reset the packets and bytes count of a network device 3250 * @dev_queue: network device 3251 * 3252 * Reset the bytes and packet count of a network device and clear the 3253 * software flow control OFF bit for this network device 3254 */ 3255 static inline void netdev_reset_queue(struct net_device *dev_queue) 3256 { 3257 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3258 } 3259 3260 /** 3261 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3262 * @dev: network device 3263 * @queue_index: given tx queue index 3264 * 3265 * Returns 0 if given tx queue index >= number of device tx queues, 3266 * otherwise returns the originally passed tx queue index. 3267 */ 3268 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3269 { 3270 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3271 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3272 dev->name, queue_index, 3273 dev->real_num_tx_queues); 3274 return 0; 3275 } 3276 3277 return queue_index; 3278 } 3279 3280 /** 3281 * netif_running - test if up 3282 * @dev: network device 3283 * 3284 * Test if the device has been brought up. 3285 */ 3286 static inline bool netif_running(const struct net_device *dev) 3287 { 3288 return test_bit(__LINK_STATE_START, &dev->state); 3289 } 3290 3291 /* 3292 * Routines to manage the subqueues on a device. We only need start, 3293 * stop, and a check if it's stopped. All other device management is 3294 * done at the overall netdevice level. 3295 * Also test the device if we're multiqueue. 3296 */ 3297 3298 /** 3299 * netif_start_subqueue - allow sending packets on subqueue 3300 * @dev: network device 3301 * @queue_index: sub queue index 3302 * 3303 * Start individual transmit queue of a device with multiple transmit queues. 3304 */ 3305 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3306 { 3307 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3308 3309 netif_tx_start_queue(txq); 3310 } 3311 3312 /** 3313 * netif_stop_subqueue - stop sending packets on subqueue 3314 * @dev: network device 3315 * @queue_index: sub queue index 3316 * 3317 * Stop individual transmit queue of a device with multiple transmit queues. 3318 */ 3319 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3320 { 3321 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3322 netif_tx_stop_queue(txq); 3323 } 3324 3325 /** 3326 * netif_subqueue_stopped - test status of subqueue 3327 * @dev: network device 3328 * @queue_index: sub queue index 3329 * 3330 * Check individual transmit queue of a device with multiple transmit queues. 3331 */ 3332 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3333 u16 queue_index) 3334 { 3335 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3336 3337 return netif_tx_queue_stopped(txq); 3338 } 3339 3340 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3341 struct sk_buff *skb) 3342 { 3343 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3344 } 3345 3346 /** 3347 * netif_wake_subqueue - allow sending packets on subqueue 3348 * @dev: network device 3349 * @queue_index: sub queue index 3350 * 3351 * Resume individual transmit queue of a device with multiple transmit queues. 3352 */ 3353 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3354 { 3355 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3356 3357 netif_tx_wake_queue(txq); 3358 } 3359 3360 #ifdef CONFIG_XPS 3361 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3362 u16 index); 3363 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3364 u16 index, bool is_rxqs_map); 3365 3366 /** 3367 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3368 * @j: CPU/Rx queue index 3369 * @mask: bitmask of all cpus/rx queues 3370 * @nr_bits: number of bits in the bitmask 3371 * 3372 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3373 */ 3374 static inline bool netif_attr_test_mask(unsigned long j, 3375 const unsigned long *mask, 3376 unsigned int nr_bits) 3377 { 3378 cpu_max_bits_warn(j, nr_bits); 3379 return test_bit(j, mask); 3380 } 3381 3382 /** 3383 * netif_attr_test_online - Test for online CPU/Rx queue 3384 * @j: CPU/Rx queue index 3385 * @online_mask: bitmask for CPUs/Rx queues that are online 3386 * @nr_bits: number of bits in the bitmask 3387 * 3388 * Returns true if a CPU/Rx queue is online. 3389 */ 3390 static inline bool netif_attr_test_online(unsigned long j, 3391 const unsigned long *online_mask, 3392 unsigned int nr_bits) 3393 { 3394 cpu_max_bits_warn(j, nr_bits); 3395 3396 if (online_mask) 3397 return test_bit(j, online_mask); 3398 3399 return (j < nr_bits); 3400 } 3401 3402 /** 3403 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3404 * @n: CPU/Rx queue index 3405 * @srcp: the cpumask/Rx queue mask pointer 3406 * @nr_bits: number of bits in the bitmask 3407 * 3408 * Returns >= nr_bits if no further CPUs/Rx queues set. 3409 */ 3410 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3411 unsigned int nr_bits) 3412 { 3413 /* -1 is a legal arg here. */ 3414 if (n != -1) 3415 cpu_max_bits_warn(n, nr_bits); 3416 3417 if (srcp) 3418 return find_next_bit(srcp, nr_bits, n + 1); 3419 3420 return n + 1; 3421 } 3422 3423 /** 3424 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3425 * @n: CPU/Rx queue index 3426 * @src1p: the first CPUs/Rx queues mask pointer 3427 * @src2p: the second CPUs/Rx queues mask pointer 3428 * @nr_bits: number of bits in the bitmask 3429 * 3430 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3431 */ 3432 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3433 const unsigned long *src2p, 3434 unsigned int nr_bits) 3435 { 3436 /* -1 is a legal arg here. */ 3437 if (n != -1) 3438 cpu_max_bits_warn(n, nr_bits); 3439 3440 if (src1p && src2p) 3441 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3442 else if (src1p) 3443 return find_next_bit(src1p, nr_bits, n + 1); 3444 else if (src2p) 3445 return find_next_bit(src2p, nr_bits, n + 1); 3446 3447 return n + 1; 3448 } 3449 #else 3450 static inline int netif_set_xps_queue(struct net_device *dev, 3451 const struct cpumask *mask, 3452 u16 index) 3453 { 3454 return 0; 3455 } 3456 3457 static inline int __netif_set_xps_queue(struct net_device *dev, 3458 const unsigned long *mask, 3459 u16 index, bool is_rxqs_map) 3460 { 3461 return 0; 3462 } 3463 #endif 3464 3465 /** 3466 * netif_is_multiqueue - test if device has multiple transmit queues 3467 * @dev: network device 3468 * 3469 * Check if device has multiple transmit queues 3470 */ 3471 static inline bool netif_is_multiqueue(const struct net_device *dev) 3472 { 3473 return dev->num_tx_queues > 1; 3474 } 3475 3476 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3477 3478 #ifdef CONFIG_SYSFS 3479 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3480 #else 3481 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3482 unsigned int rxqs) 3483 { 3484 dev->real_num_rx_queues = rxqs; 3485 return 0; 3486 } 3487 #endif 3488 3489 static inline struct netdev_rx_queue * 3490 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3491 { 3492 return dev->_rx + rxq; 3493 } 3494 3495 #ifdef CONFIG_SYSFS 3496 static inline unsigned int get_netdev_rx_queue_index( 3497 struct netdev_rx_queue *queue) 3498 { 3499 struct net_device *dev = queue->dev; 3500 int index = queue - dev->_rx; 3501 3502 BUG_ON(index >= dev->num_rx_queues); 3503 return index; 3504 } 3505 #endif 3506 3507 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3508 int netif_get_num_default_rss_queues(void); 3509 3510 enum skb_free_reason { 3511 SKB_REASON_CONSUMED, 3512 SKB_REASON_DROPPED, 3513 }; 3514 3515 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3516 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3517 3518 /* 3519 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3520 * interrupt context or with hardware interrupts being disabled. 3521 * (in_irq() || irqs_disabled()) 3522 * 3523 * We provide four helpers that can be used in following contexts : 3524 * 3525 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3526 * replacing kfree_skb(skb) 3527 * 3528 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3529 * Typically used in place of consume_skb(skb) in TX completion path 3530 * 3531 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3532 * replacing kfree_skb(skb) 3533 * 3534 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3535 * and consumed a packet. Used in place of consume_skb(skb) 3536 */ 3537 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3538 { 3539 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3540 } 3541 3542 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3543 { 3544 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3545 } 3546 3547 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3548 { 3549 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3550 } 3551 3552 static inline void dev_consume_skb_any(struct sk_buff *skb) 3553 { 3554 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3555 } 3556 3557 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3558 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3559 int netif_rx(struct sk_buff *skb); 3560 int netif_rx_ni(struct sk_buff *skb); 3561 int netif_receive_skb(struct sk_buff *skb); 3562 int netif_receive_skb_core(struct sk_buff *skb); 3563 void netif_receive_skb_list(struct list_head *head); 3564 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3565 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3566 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3567 gro_result_t napi_gro_frags(struct napi_struct *napi); 3568 struct packet_offload *gro_find_receive_by_type(__be16 type); 3569 struct packet_offload *gro_find_complete_by_type(__be16 type); 3570 3571 static inline void napi_free_frags(struct napi_struct *napi) 3572 { 3573 kfree_skb(napi->skb); 3574 napi->skb = NULL; 3575 } 3576 3577 bool netdev_is_rx_handler_busy(struct net_device *dev); 3578 int netdev_rx_handler_register(struct net_device *dev, 3579 rx_handler_func_t *rx_handler, 3580 void *rx_handler_data); 3581 void netdev_rx_handler_unregister(struct net_device *dev); 3582 3583 bool dev_valid_name(const char *name); 3584 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3585 bool *need_copyout); 3586 int dev_ifconf(struct net *net, struct ifconf *, int); 3587 int dev_ethtool(struct net *net, struct ifreq *); 3588 unsigned int dev_get_flags(const struct net_device *); 3589 int __dev_change_flags(struct net_device *, unsigned int flags); 3590 int dev_change_flags(struct net_device *, unsigned int); 3591 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3592 unsigned int gchanges); 3593 int dev_change_name(struct net_device *, const char *); 3594 int dev_set_alias(struct net_device *, const char *, size_t); 3595 int dev_get_alias(const struct net_device *, char *, size_t); 3596 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3597 int __dev_set_mtu(struct net_device *, int); 3598 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3599 struct netlink_ext_ack *extack); 3600 int dev_set_mtu(struct net_device *, int); 3601 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3602 void dev_set_group(struct net_device *, int); 3603 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3604 int dev_change_carrier(struct net_device *, bool new_carrier); 3605 int dev_get_phys_port_id(struct net_device *dev, 3606 struct netdev_phys_item_id *ppid); 3607 int dev_get_phys_port_name(struct net_device *dev, 3608 char *name, size_t len); 3609 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3610 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3611 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3612 struct netdev_queue *txq, int *ret); 3613 3614 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3615 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3616 int fd, u32 flags); 3617 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3618 enum bpf_netdev_command cmd); 3619 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3620 3621 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3622 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3623 bool is_skb_forwardable(const struct net_device *dev, 3624 const struct sk_buff *skb); 3625 3626 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3627 struct sk_buff *skb) 3628 { 3629 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3630 unlikely(!is_skb_forwardable(dev, skb))) { 3631 atomic_long_inc(&dev->rx_dropped); 3632 kfree_skb(skb); 3633 return NET_RX_DROP; 3634 } 3635 3636 skb_scrub_packet(skb, true); 3637 skb->priority = 0; 3638 return 0; 3639 } 3640 3641 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3642 3643 extern int netdev_budget; 3644 extern unsigned int netdev_budget_usecs; 3645 3646 /* Called by rtnetlink.c:rtnl_unlock() */ 3647 void netdev_run_todo(void); 3648 3649 /** 3650 * dev_put - release reference to device 3651 * @dev: network device 3652 * 3653 * Release reference to device to allow it to be freed. 3654 */ 3655 static inline void dev_put(struct net_device *dev) 3656 { 3657 this_cpu_dec(*dev->pcpu_refcnt); 3658 } 3659 3660 /** 3661 * dev_hold - get reference to device 3662 * @dev: network device 3663 * 3664 * Hold reference to device to keep it from being freed. 3665 */ 3666 static inline void dev_hold(struct net_device *dev) 3667 { 3668 this_cpu_inc(*dev->pcpu_refcnt); 3669 } 3670 3671 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3672 * and _off may be called from IRQ context, but it is caller 3673 * who is responsible for serialization of these calls. 3674 * 3675 * The name carrier is inappropriate, these functions should really be 3676 * called netif_lowerlayer_*() because they represent the state of any 3677 * kind of lower layer not just hardware media. 3678 */ 3679 3680 void linkwatch_init_dev(struct net_device *dev); 3681 void linkwatch_fire_event(struct net_device *dev); 3682 void linkwatch_forget_dev(struct net_device *dev); 3683 3684 /** 3685 * netif_carrier_ok - test if carrier present 3686 * @dev: network device 3687 * 3688 * Check if carrier is present on device 3689 */ 3690 static inline bool netif_carrier_ok(const struct net_device *dev) 3691 { 3692 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3693 } 3694 3695 unsigned long dev_trans_start(struct net_device *dev); 3696 3697 void __netdev_watchdog_up(struct net_device *dev); 3698 3699 void netif_carrier_on(struct net_device *dev); 3700 3701 void netif_carrier_off(struct net_device *dev); 3702 3703 /** 3704 * netif_dormant_on - mark device as dormant. 3705 * @dev: network device 3706 * 3707 * Mark device as dormant (as per RFC2863). 3708 * 3709 * The dormant state indicates that the relevant interface is not 3710 * actually in a condition to pass packets (i.e., it is not 'up') but is 3711 * in a "pending" state, waiting for some external event. For "on- 3712 * demand" interfaces, this new state identifies the situation where the 3713 * interface is waiting for events to place it in the up state. 3714 */ 3715 static inline void netif_dormant_on(struct net_device *dev) 3716 { 3717 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3718 linkwatch_fire_event(dev); 3719 } 3720 3721 /** 3722 * netif_dormant_off - set device as not dormant. 3723 * @dev: network device 3724 * 3725 * Device is not in dormant state. 3726 */ 3727 static inline void netif_dormant_off(struct net_device *dev) 3728 { 3729 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3730 linkwatch_fire_event(dev); 3731 } 3732 3733 /** 3734 * netif_dormant - test if device is dormant 3735 * @dev: network device 3736 * 3737 * Check if device is dormant. 3738 */ 3739 static inline bool netif_dormant(const struct net_device *dev) 3740 { 3741 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3742 } 3743 3744 3745 /** 3746 * netif_oper_up - test if device is operational 3747 * @dev: network device 3748 * 3749 * Check if carrier is operational 3750 */ 3751 static inline bool netif_oper_up(const struct net_device *dev) 3752 { 3753 return (dev->operstate == IF_OPER_UP || 3754 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3755 } 3756 3757 /** 3758 * netif_device_present - is device available or removed 3759 * @dev: network device 3760 * 3761 * Check if device has not been removed from system. 3762 */ 3763 static inline bool netif_device_present(struct net_device *dev) 3764 { 3765 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3766 } 3767 3768 void netif_device_detach(struct net_device *dev); 3769 3770 void netif_device_attach(struct net_device *dev); 3771 3772 /* 3773 * Network interface message level settings 3774 */ 3775 3776 enum { 3777 NETIF_MSG_DRV = 0x0001, 3778 NETIF_MSG_PROBE = 0x0002, 3779 NETIF_MSG_LINK = 0x0004, 3780 NETIF_MSG_TIMER = 0x0008, 3781 NETIF_MSG_IFDOWN = 0x0010, 3782 NETIF_MSG_IFUP = 0x0020, 3783 NETIF_MSG_RX_ERR = 0x0040, 3784 NETIF_MSG_TX_ERR = 0x0080, 3785 NETIF_MSG_TX_QUEUED = 0x0100, 3786 NETIF_MSG_INTR = 0x0200, 3787 NETIF_MSG_TX_DONE = 0x0400, 3788 NETIF_MSG_RX_STATUS = 0x0800, 3789 NETIF_MSG_PKTDATA = 0x1000, 3790 NETIF_MSG_HW = 0x2000, 3791 NETIF_MSG_WOL = 0x4000, 3792 }; 3793 3794 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3795 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3796 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3797 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3798 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3799 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3800 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3801 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3802 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3803 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3804 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3805 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3806 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3807 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3808 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3809 3810 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3811 { 3812 /* use default */ 3813 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3814 return default_msg_enable_bits; 3815 if (debug_value == 0) /* no output */ 3816 return 0; 3817 /* set low N bits */ 3818 return (1 << debug_value) - 1; 3819 } 3820 3821 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3822 { 3823 spin_lock(&txq->_xmit_lock); 3824 txq->xmit_lock_owner = cpu; 3825 } 3826 3827 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3828 { 3829 __acquire(&txq->_xmit_lock); 3830 return true; 3831 } 3832 3833 static inline void __netif_tx_release(struct netdev_queue *txq) 3834 { 3835 __release(&txq->_xmit_lock); 3836 } 3837 3838 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3839 { 3840 spin_lock_bh(&txq->_xmit_lock); 3841 txq->xmit_lock_owner = smp_processor_id(); 3842 } 3843 3844 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3845 { 3846 bool ok = spin_trylock(&txq->_xmit_lock); 3847 if (likely(ok)) 3848 txq->xmit_lock_owner = smp_processor_id(); 3849 return ok; 3850 } 3851 3852 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3853 { 3854 txq->xmit_lock_owner = -1; 3855 spin_unlock(&txq->_xmit_lock); 3856 } 3857 3858 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3859 { 3860 txq->xmit_lock_owner = -1; 3861 spin_unlock_bh(&txq->_xmit_lock); 3862 } 3863 3864 static inline void txq_trans_update(struct netdev_queue *txq) 3865 { 3866 if (txq->xmit_lock_owner != -1) 3867 txq->trans_start = jiffies; 3868 } 3869 3870 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3871 static inline void netif_trans_update(struct net_device *dev) 3872 { 3873 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3874 3875 if (txq->trans_start != jiffies) 3876 txq->trans_start = jiffies; 3877 } 3878 3879 /** 3880 * netif_tx_lock - grab network device transmit lock 3881 * @dev: network device 3882 * 3883 * Get network device transmit lock 3884 */ 3885 static inline void netif_tx_lock(struct net_device *dev) 3886 { 3887 unsigned int i; 3888 int cpu; 3889 3890 spin_lock(&dev->tx_global_lock); 3891 cpu = smp_processor_id(); 3892 for (i = 0; i < dev->num_tx_queues; i++) { 3893 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3894 3895 /* We are the only thread of execution doing a 3896 * freeze, but we have to grab the _xmit_lock in 3897 * order to synchronize with threads which are in 3898 * the ->hard_start_xmit() handler and already 3899 * checked the frozen bit. 3900 */ 3901 __netif_tx_lock(txq, cpu); 3902 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3903 __netif_tx_unlock(txq); 3904 } 3905 } 3906 3907 static inline void netif_tx_lock_bh(struct net_device *dev) 3908 { 3909 local_bh_disable(); 3910 netif_tx_lock(dev); 3911 } 3912 3913 static inline void netif_tx_unlock(struct net_device *dev) 3914 { 3915 unsigned int i; 3916 3917 for (i = 0; i < dev->num_tx_queues; i++) { 3918 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3919 3920 /* No need to grab the _xmit_lock here. If the 3921 * queue is not stopped for another reason, we 3922 * force a schedule. 3923 */ 3924 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3925 netif_schedule_queue(txq); 3926 } 3927 spin_unlock(&dev->tx_global_lock); 3928 } 3929 3930 static inline void netif_tx_unlock_bh(struct net_device *dev) 3931 { 3932 netif_tx_unlock(dev); 3933 local_bh_enable(); 3934 } 3935 3936 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3937 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3938 __netif_tx_lock(txq, cpu); \ 3939 } else { \ 3940 __netif_tx_acquire(txq); \ 3941 } \ 3942 } 3943 3944 #define HARD_TX_TRYLOCK(dev, txq) \ 3945 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3946 __netif_tx_trylock(txq) : \ 3947 __netif_tx_acquire(txq)) 3948 3949 #define HARD_TX_UNLOCK(dev, txq) { \ 3950 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3951 __netif_tx_unlock(txq); \ 3952 } else { \ 3953 __netif_tx_release(txq); \ 3954 } \ 3955 } 3956 3957 static inline void netif_tx_disable(struct net_device *dev) 3958 { 3959 unsigned int i; 3960 int cpu; 3961 3962 local_bh_disable(); 3963 cpu = smp_processor_id(); 3964 for (i = 0; i < dev->num_tx_queues; i++) { 3965 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3966 3967 __netif_tx_lock(txq, cpu); 3968 netif_tx_stop_queue(txq); 3969 __netif_tx_unlock(txq); 3970 } 3971 local_bh_enable(); 3972 } 3973 3974 static inline void netif_addr_lock(struct net_device *dev) 3975 { 3976 spin_lock(&dev->addr_list_lock); 3977 } 3978 3979 static inline void netif_addr_lock_nested(struct net_device *dev) 3980 { 3981 int subclass = SINGLE_DEPTH_NESTING; 3982 3983 if (dev->netdev_ops->ndo_get_lock_subclass) 3984 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3985 3986 spin_lock_nested(&dev->addr_list_lock, subclass); 3987 } 3988 3989 static inline void netif_addr_lock_bh(struct net_device *dev) 3990 { 3991 spin_lock_bh(&dev->addr_list_lock); 3992 } 3993 3994 static inline void netif_addr_unlock(struct net_device *dev) 3995 { 3996 spin_unlock(&dev->addr_list_lock); 3997 } 3998 3999 static inline void netif_addr_unlock_bh(struct net_device *dev) 4000 { 4001 spin_unlock_bh(&dev->addr_list_lock); 4002 } 4003 4004 /* 4005 * dev_addrs walker. Should be used only for read access. Call with 4006 * rcu_read_lock held. 4007 */ 4008 #define for_each_dev_addr(dev, ha) \ 4009 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4010 4011 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4012 4013 void ether_setup(struct net_device *dev); 4014 4015 /* Support for loadable net-drivers */ 4016 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4017 unsigned char name_assign_type, 4018 void (*setup)(struct net_device *), 4019 unsigned int txqs, unsigned int rxqs); 4020 int dev_get_valid_name(struct net *net, struct net_device *dev, 4021 const char *name); 4022 4023 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4024 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4025 4026 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4027 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4028 count) 4029 4030 int register_netdev(struct net_device *dev); 4031 void unregister_netdev(struct net_device *dev); 4032 4033 /* General hardware address lists handling functions */ 4034 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4035 struct netdev_hw_addr_list *from_list, int addr_len); 4036 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4037 struct netdev_hw_addr_list *from_list, int addr_len); 4038 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4039 struct net_device *dev, 4040 int (*sync)(struct net_device *, const unsigned char *), 4041 int (*unsync)(struct net_device *, 4042 const unsigned char *)); 4043 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4044 struct net_device *dev, 4045 int (*unsync)(struct net_device *, 4046 const unsigned char *)); 4047 void __hw_addr_init(struct netdev_hw_addr_list *list); 4048 4049 /* Functions used for device addresses handling */ 4050 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4051 unsigned char addr_type); 4052 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4053 unsigned char addr_type); 4054 void dev_addr_flush(struct net_device *dev); 4055 int dev_addr_init(struct net_device *dev); 4056 4057 /* Functions used for unicast addresses handling */ 4058 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4059 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4060 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4061 int dev_uc_sync(struct net_device *to, struct net_device *from); 4062 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4063 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4064 void dev_uc_flush(struct net_device *dev); 4065 void dev_uc_init(struct net_device *dev); 4066 4067 /** 4068 * __dev_uc_sync - Synchonize device's unicast list 4069 * @dev: device to sync 4070 * @sync: function to call if address should be added 4071 * @unsync: function to call if address should be removed 4072 * 4073 * Add newly added addresses to the interface, and release 4074 * addresses that have been deleted. 4075 */ 4076 static inline int __dev_uc_sync(struct net_device *dev, 4077 int (*sync)(struct net_device *, 4078 const unsigned char *), 4079 int (*unsync)(struct net_device *, 4080 const unsigned char *)) 4081 { 4082 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4083 } 4084 4085 /** 4086 * __dev_uc_unsync - Remove synchronized addresses from device 4087 * @dev: device to sync 4088 * @unsync: function to call if address should be removed 4089 * 4090 * Remove all addresses that were added to the device by dev_uc_sync(). 4091 */ 4092 static inline void __dev_uc_unsync(struct net_device *dev, 4093 int (*unsync)(struct net_device *, 4094 const unsigned char *)) 4095 { 4096 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4097 } 4098 4099 /* Functions used for multicast addresses handling */ 4100 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4101 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4102 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4103 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4104 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4105 int dev_mc_sync(struct net_device *to, struct net_device *from); 4106 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4107 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4108 void dev_mc_flush(struct net_device *dev); 4109 void dev_mc_init(struct net_device *dev); 4110 4111 /** 4112 * __dev_mc_sync - Synchonize device's multicast list 4113 * @dev: device to sync 4114 * @sync: function to call if address should be added 4115 * @unsync: function to call if address should be removed 4116 * 4117 * Add newly added addresses to the interface, and release 4118 * addresses that have been deleted. 4119 */ 4120 static inline int __dev_mc_sync(struct net_device *dev, 4121 int (*sync)(struct net_device *, 4122 const unsigned char *), 4123 int (*unsync)(struct net_device *, 4124 const unsigned char *)) 4125 { 4126 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4127 } 4128 4129 /** 4130 * __dev_mc_unsync - Remove synchronized addresses from device 4131 * @dev: device to sync 4132 * @unsync: function to call if address should be removed 4133 * 4134 * Remove all addresses that were added to the device by dev_mc_sync(). 4135 */ 4136 static inline void __dev_mc_unsync(struct net_device *dev, 4137 int (*unsync)(struct net_device *, 4138 const unsigned char *)) 4139 { 4140 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4141 } 4142 4143 /* Functions used for secondary unicast and multicast support */ 4144 void dev_set_rx_mode(struct net_device *dev); 4145 void __dev_set_rx_mode(struct net_device *dev); 4146 int dev_set_promiscuity(struct net_device *dev, int inc); 4147 int dev_set_allmulti(struct net_device *dev, int inc); 4148 void netdev_state_change(struct net_device *dev); 4149 void netdev_notify_peers(struct net_device *dev); 4150 void netdev_features_change(struct net_device *dev); 4151 /* Load a device via the kmod */ 4152 void dev_load(struct net *net, const char *name); 4153 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4154 struct rtnl_link_stats64 *storage); 4155 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4156 const struct net_device_stats *netdev_stats); 4157 4158 extern int netdev_max_backlog; 4159 extern int netdev_tstamp_prequeue; 4160 extern int weight_p; 4161 extern int dev_weight_rx_bias; 4162 extern int dev_weight_tx_bias; 4163 extern int dev_rx_weight; 4164 extern int dev_tx_weight; 4165 4166 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4167 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4168 struct list_head **iter); 4169 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4170 struct list_head **iter); 4171 4172 /* iterate through upper list, must be called under RCU read lock */ 4173 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4174 for (iter = &(dev)->adj_list.upper, \ 4175 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4176 updev; \ 4177 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4178 4179 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4180 int (*fn)(struct net_device *upper_dev, 4181 void *data), 4182 void *data); 4183 4184 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4185 struct net_device *upper_dev); 4186 4187 bool netdev_has_any_upper_dev(struct net_device *dev); 4188 4189 void *netdev_lower_get_next_private(struct net_device *dev, 4190 struct list_head **iter); 4191 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4192 struct list_head **iter); 4193 4194 #define netdev_for_each_lower_private(dev, priv, iter) \ 4195 for (iter = (dev)->adj_list.lower.next, \ 4196 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4197 priv; \ 4198 priv = netdev_lower_get_next_private(dev, &(iter))) 4199 4200 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4201 for (iter = &(dev)->adj_list.lower, \ 4202 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4203 priv; \ 4204 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4205 4206 void *netdev_lower_get_next(struct net_device *dev, 4207 struct list_head **iter); 4208 4209 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4210 for (iter = (dev)->adj_list.lower.next, \ 4211 ldev = netdev_lower_get_next(dev, &(iter)); \ 4212 ldev; \ 4213 ldev = netdev_lower_get_next(dev, &(iter))) 4214 4215 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4216 struct list_head **iter); 4217 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4218 struct list_head **iter); 4219 4220 int netdev_walk_all_lower_dev(struct net_device *dev, 4221 int (*fn)(struct net_device *lower_dev, 4222 void *data), 4223 void *data); 4224 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4225 int (*fn)(struct net_device *lower_dev, 4226 void *data), 4227 void *data); 4228 4229 void *netdev_adjacent_get_private(struct list_head *adj_list); 4230 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4231 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4232 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4233 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4234 struct netlink_ext_ack *extack); 4235 int netdev_master_upper_dev_link(struct net_device *dev, 4236 struct net_device *upper_dev, 4237 void *upper_priv, void *upper_info, 4238 struct netlink_ext_ack *extack); 4239 void netdev_upper_dev_unlink(struct net_device *dev, 4240 struct net_device *upper_dev); 4241 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4242 void *netdev_lower_dev_get_private(struct net_device *dev, 4243 struct net_device *lower_dev); 4244 void netdev_lower_state_changed(struct net_device *lower_dev, 4245 void *lower_state_info); 4246 4247 /* RSS keys are 40 or 52 bytes long */ 4248 #define NETDEV_RSS_KEY_LEN 52 4249 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4250 void netdev_rss_key_fill(void *buffer, size_t len); 4251 4252 int dev_get_nest_level(struct net_device *dev); 4253 int skb_checksum_help(struct sk_buff *skb); 4254 int skb_crc32c_csum_help(struct sk_buff *skb); 4255 int skb_csum_hwoffload_help(struct sk_buff *skb, 4256 const netdev_features_t features); 4257 4258 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4259 netdev_features_t features, bool tx_path); 4260 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4261 netdev_features_t features); 4262 4263 struct netdev_bonding_info { 4264 ifslave slave; 4265 ifbond master; 4266 }; 4267 4268 struct netdev_notifier_bonding_info { 4269 struct netdev_notifier_info info; /* must be first */ 4270 struct netdev_bonding_info bonding_info; 4271 }; 4272 4273 void netdev_bonding_info_change(struct net_device *dev, 4274 struct netdev_bonding_info *bonding_info); 4275 4276 static inline 4277 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4278 { 4279 return __skb_gso_segment(skb, features, true); 4280 } 4281 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4282 4283 static inline bool can_checksum_protocol(netdev_features_t features, 4284 __be16 protocol) 4285 { 4286 if (protocol == htons(ETH_P_FCOE)) 4287 return !!(features & NETIF_F_FCOE_CRC); 4288 4289 /* Assume this is an IP checksum (not SCTP CRC) */ 4290 4291 if (features & NETIF_F_HW_CSUM) { 4292 /* Can checksum everything */ 4293 return true; 4294 } 4295 4296 switch (protocol) { 4297 case htons(ETH_P_IP): 4298 return !!(features & NETIF_F_IP_CSUM); 4299 case htons(ETH_P_IPV6): 4300 return !!(features & NETIF_F_IPV6_CSUM); 4301 default: 4302 return false; 4303 } 4304 } 4305 4306 #ifdef CONFIG_BUG 4307 void netdev_rx_csum_fault(struct net_device *dev); 4308 #else 4309 static inline void netdev_rx_csum_fault(struct net_device *dev) 4310 { 4311 } 4312 #endif 4313 /* rx skb timestamps */ 4314 void net_enable_timestamp(void); 4315 void net_disable_timestamp(void); 4316 4317 #ifdef CONFIG_PROC_FS 4318 int __init dev_proc_init(void); 4319 #else 4320 #define dev_proc_init() 0 4321 #endif 4322 4323 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4324 struct sk_buff *skb, struct net_device *dev, 4325 bool more) 4326 { 4327 skb->xmit_more = more ? 1 : 0; 4328 return ops->ndo_start_xmit(skb, dev); 4329 } 4330 4331 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4332 struct netdev_queue *txq, bool more) 4333 { 4334 const struct net_device_ops *ops = dev->netdev_ops; 4335 int rc; 4336 4337 rc = __netdev_start_xmit(ops, skb, dev, more); 4338 if (rc == NETDEV_TX_OK) 4339 txq_trans_update(txq); 4340 4341 return rc; 4342 } 4343 4344 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4345 const void *ns); 4346 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4347 const void *ns); 4348 4349 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4350 { 4351 return netdev_class_create_file_ns(class_attr, NULL); 4352 } 4353 4354 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4355 { 4356 netdev_class_remove_file_ns(class_attr, NULL); 4357 } 4358 4359 extern const struct kobj_ns_type_operations net_ns_type_operations; 4360 4361 const char *netdev_drivername(const struct net_device *dev); 4362 4363 void linkwatch_run_queue(void); 4364 4365 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4366 netdev_features_t f2) 4367 { 4368 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4369 if (f1 & NETIF_F_HW_CSUM) 4370 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4371 else 4372 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4373 } 4374 4375 return f1 & f2; 4376 } 4377 4378 static inline netdev_features_t netdev_get_wanted_features( 4379 struct net_device *dev) 4380 { 4381 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4382 } 4383 netdev_features_t netdev_increment_features(netdev_features_t all, 4384 netdev_features_t one, netdev_features_t mask); 4385 4386 /* Allow TSO being used on stacked device : 4387 * Performing the GSO segmentation before last device 4388 * is a performance improvement. 4389 */ 4390 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4391 netdev_features_t mask) 4392 { 4393 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4394 } 4395 4396 int __netdev_update_features(struct net_device *dev); 4397 void netdev_update_features(struct net_device *dev); 4398 void netdev_change_features(struct net_device *dev); 4399 4400 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4401 struct net_device *dev); 4402 4403 netdev_features_t passthru_features_check(struct sk_buff *skb, 4404 struct net_device *dev, 4405 netdev_features_t features); 4406 netdev_features_t netif_skb_features(struct sk_buff *skb); 4407 4408 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4409 { 4410 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4411 4412 /* check flags correspondence */ 4413 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4414 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4415 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4416 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4417 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4418 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4419 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4420 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4421 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4422 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4423 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4424 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4425 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4426 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4427 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4428 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4429 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4430 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4431 4432 return (features & feature) == feature; 4433 } 4434 4435 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4436 { 4437 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4438 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4439 } 4440 4441 static inline bool netif_needs_gso(struct sk_buff *skb, 4442 netdev_features_t features) 4443 { 4444 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4445 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4446 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4447 } 4448 4449 static inline void netif_set_gso_max_size(struct net_device *dev, 4450 unsigned int size) 4451 { 4452 dev->gso_max_size = size; 4453 } 4454 4455 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4456 int pulled_hlen, u16 mac_offset, 4457 int mac_len) 4458 { 4459 skb->protocol = protocol; 4460 skb->encapsulation = 1; 4461 skb_push(skb, pulled_hlen); 4462 skb_reset_transport_header(skb); 4463 skb->mac_header = mac_offset; 4464 skb->network_header = skb->mac_header + mac_len; 4465 skb->mac_len = mac_len; 4466 } 4467 4468 static inline bool netif_is_macsec(const struct net_device *dev) 4469 { 4470 return dev->priv_flags & IFF_MACSEC; 4471 } 4472 4473 static inline bool netif_is_macvlan(const struct net_device *dev) 4474 { 4475 return dev->priv_flags & IFF_MACVLAN; 4476 } 4477 4478 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4479 { 4480 return dev->priv_flags & IFF_MACVLAN_PORT; 4481 } 4482 4483 static inline bool netif_is_bond_master(const struct net_device *dev) 4484 { 4485 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4486 } 4487 4488 static inline bool netif_is_bond_slave(const struct net_device *dev) 4489 { 4490 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4491 } 4492 4493 static inline bool netif_supports_nofcs(struct net_device *dev) 4494 { 4495 return dev->priv_flags & IFF_SUPP_NOFCS; 4496 } 4497 4498 static inline bool netif_is_l3_master(const struct net_device *dev) 4499 { 4500 return dev->priv_flags & IFF_L3MDEV_MASTER; 4501 } 4502 4503 static inline bool netif_is_l3_slave(const struct net_device *dev) 4504 { 4505 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4506 } 4507 4508 static inline bool netif_is_bridge_master(const struct net_device *dev) 4509 { 4510 return dev->priv_flags & IFF_EBRIDGE; 4511 } 4512 4513 static inline bool netif_is_bridge_port(const struct net_device *dev) 4514 { 4515 return dev->priv_flags & IFF_BRIDGE_PORT; 4516 } 4517 4518 static inline bool netif_is_ovs_master(const struct net_device *dev) 4519 { 4520 return dev->priv_flags & IFF_OPENVSWITCH; 4521 } 4522 4523 static inline bool netif_is_ovs_port(const struct net_device *dev) 4524 { 4525 return dev->priv_flags & IFF_OVS_DATAPATH; 4526 } 4527 4528 static inline bool netif_is_team_master(const struct net_device *dev) 4529 { 4530 return dev->priv_flags & IFF_TEAM; 4531 } 4532 4533 static inline bool netif_is_team_port(const struct net_device *dev) 4534 { 4535 return dev->priv_flags & IFF_TEAM_PORT; 4536 } 4537 4538 static inline bool netif_is_lag_master(const struct net_device *dev) 4539 { 4540 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4541 } 4542 4543 static inline bool netif_is_lag_port(const struct net_device *dev) 4544 { 4545 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4546 } 4547 4548 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4549 { 4550 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4551 } 4552 4553 static inline bool netif_is_failover(const struct net_device *dev) 4554 { 4555 return dev->priv_flags & IFF_FAILOVER; 4556 } 4557 4558 static inline bool netif_is_failover_slave(const struct net_device *dev) 4559 { 4560 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4561 } 4562 4563 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4564 static inline void netif_keep_dst(struct net_device *dev) 4565 { 4566 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4567 } 4568 4569 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4570 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4571 { 4572 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4573 return dev->priv_flags & IFF_MACSEC; 4574 } 4575 4576 extern struct pernet_operations __net_initdata loopback_net_ops; 4577 4578 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4579 4580 /* netdev_printk helpers, similar to dev_printk */ 4581 4582 static inline const char *netdev_name(const struct net_device *dev) 4583 { 4584 if (!dev->name[0] || strchr(dev->name, '%')) 4585 return "(unnamed net_device)"; 4586 return dev->name; 4587 } 4588 4589 static inline bool netdev_unregistering(const struct net_device *dev) 4590 { 4591 return dev->reg_state == NETREG_UNREGISTERING; 4592 } 4593 4594 static inline const char *netdev_reg_state(const struct net_device *dev) 4595 { 4596 switch (dev->reg_state) { 4597 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4598 case NETREG_REGISTERED: return ""; 4599 case NETREG_UNREGISTERING: return " (unregistering)"; 4600 case NETREG_UNREGISTERED: return " (unregistered)"; 4601 case NETREG_RELEASED: return " (released)"; 4602 case NETREG_DUMMY: return " (dummy)"; 4603 } 4604 4605 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4606 return " (unknown)"; 4607 } 4608 4609 __printf(3, 4) 4610 void netdev_printk(const char *level, const struct net_device *dev, 4611 const char *format, ...); 4612 __printf(2, 3) 4613 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4614 __printf(2, 3) 4615 void netdev_alert(const struct net_device *dev, const char *format, ...); 4616 __printf(2, 3) 4617 void netdev_crit(const struct net_device *dev, const char *format, ...); 4618 __printf(2, 3) 4619 void netdev_err(const struct net_device *dev, const char *format, ...); 4620 __printf(2, 3) 4621 void netdev_warn(const struct net_device *dev, const char *format, ...); 4622 __printf(2, 3) 4623 void netdev_notice(const struct net_device *dev, const char *format, ...); 4624 __printf(2, 3) 4625 void netdev_info(const struct net_device *dev, const char *format, ...); 4626 4627 #define netdev_level_once(level, dev, fmt, ...) \ 4628 do { \ 4629 static bool __print_once __read_mostly; \ 4630 \ 4631 if (!__print_once) { \ 4632 __print_once = true; \ 4633 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4634 } \ 4635 } while (0) 4636 4637 #define netdev_emerg_once(dev, fmt, ...) \ 4638 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4639 #define netdev_alert_once(dev, fmt, ...) \ 4640 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4641 #define netdev_crit_once(dev, fmt, ...) \ 4642 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4643 #define netdev_err_once(dev, fmt, ...) \ 4644 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4645 #define netdev_warn_once(dev, fmt, ...) \ 4646 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4647 #define netdev_notice_once(dev, fmt, ...) \ 4648 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4649 #define netdev_info_once(dev, fmt, ...) \ 4650 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4651 4652 #define MODULE_ALIAS_NETDEV(device) \ 4653 MODULE_ALIAS("netdev-" device) 4654 4655 #if defined(CONFIG_DYNAMIC_DEBUG) 4656 #define netdev_dbg(__dev, format, args...) \ 4657 do { \ 4658 dynamic_netdev_dbg(__dev, format, ##args); \ 4659 } while (0) 4660 #elif defined(DEBUG) 4661 #define netdev_dbg(__dev, format, args...) \ 4662 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4663 #else 4664 #define netdev_dbg(__dev, format, args...) \ 4665 ({ \ 4666 if (0) \ 4667 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4668 }) 4669 #endif 4670 4671 #if defined(VERBOSE_DEBUG) 4672 #define netdev_vdbg netdev_dbg 4673 #else 4674 4675 #define netdev_vdbg(dev, format, args...) \ 4676 ({ \ 4677 if (0) \ 4678 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4679 0; \ 4680 }) 4681 #endif 4682 4683 /* 4684 * netdev_WARN() acts like dev_printk(), but with the key difference 4685 * of using a WARN/WARN_ON to get the message out, including the 4686 * file/line information and a backtrace. 4687 */ 4688 #define netdev_WARN(dev, format, args...) \ 4689 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4690 netdev_reg_state(dev), ##args) 4691 4692 #define netdev_WARN_ONCE(dev, format, args...) \ 4693 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4694 netdev_reg_state(dev), ##args) 4695 4696 /* netif printk helpers, similar to netdev_printk */ 4697 4698 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4699 do { \ 4700 if (netif_msg_##type(priv)) \ 4701 netdev_printk(level, (dev), fmt, ##args); \ 4702 } while (0) 4703 4704 #define netif_level(level, priv, type, dev, fmt, args...) \ 4705 do { \ 4706 if (netif_msg_##type(priv)) \ 4707 netdev_##level(dev, fmt, ##args); \ 4708 } while (0) 4709 4710 #define netif_emerg(priv, type, dev, fmt, args...) \ 4711 netif_level(emerg, priv, type, dev, fmt, ##args) 4712 #define netif_alert(priv, type, dev, fmt, args...) \ 4713 netif_level(alert, priv, type, dev, fmt, ##args) 4714 #define netif_crit(priv, type, dev, fmt, args...) \ 4715 netif_level(crit, priv, type, dev, fmt, ##args) 4716 #define netif_err(priv, type, dev, fmt, args...) \ 4717 netif_level(err, priv, type, dev, fmt, ##args) 4718 #define netif_warn(priv, type, dev, fmt, args...) \ 4719 netif_level(warn, priv, type, dev, fmt, ##args) 4720 #define netif_notice(priv, type, dev, fmt, args...) \ 4721 netif_level(notice, priv, type, dev, fmt, ##args) 4722 #define netif_info(priv, type, dev, fmt, args...) \ 4723 netif_level(info, priv, type, dev, fmt, ##args) 4724 4725 #if defined(CONFIG_DYNAMIC_DEBUG) 4726 #define netif_dbg(priv, type, netdev, format, args...) \ 4727 do { \ 4728 if (netif_msg_##type(priv)) \ 4729 dynamic_netdev_dbg(netdev, format, ##args); \ 4730 } while (0) 4731 #elif defined(DEBUG) 4732 #define netif_dbg(priv, type, dev, format, args...) \ 4733 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4734 #else 4735 #define netif_dbg(priv, type, dev, format, args...) \ 4736 ({ \ 4737 if (0) \ 4738 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4739 0; \ 4740 }) 4741 #endif 4742 4743 /* if @cond then downgrade to debug, else print at @level */ 4744 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4745 do { \ 4746 if (cond) \ 4747 netif_dbg(priv, type, netdev, fmt, ##args); \ 4748 else \ 4749 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4750 } while (0) 4751 4752 #if defined(VERBOSE_DEBUG) 4753 #define netif_vdbg netif_dbg 4754 #else 4755 #define netif_vdbg(priv, type, dev, format, args...) \ 4756 ({ \ 4757 if (0) \ 4758 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4759 0; \ 4760 }) 4761 #endif 4762 4763 /* 4764 * The list of packet types we will receive (as opposed to discard) 4765 * and the routines to invoke. 4766 * 4767 * Why 16. Because with 16 the only overlap we get on a hash of the 4768 * low nibble of the protocol value is RARP/SNAP/X.25. 4769 * 4770 * 0800 IP 4771 * 0001 802.3 4772 * 0002 AX.25 4773 * 0004 802.2 4774 * 8035 RARP 4775 * 0005 SNAP 4776 * 0805 X.25 4777 * 0806 ARP 4778 * 8137 IPX 4779 * 0009 Localtalk 4780 * 86DD IPv6 4781 */ 4782 #define PTYPE_HASH_SIZE (16) 4783 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4784 4785 #endif /* _LINUX_NETDEVICE_H */ 4786