xref: /openbmc/linux/include/linux/netdevice.h (revision 966a9b49033b472dcfb453abdc34bca7df17adce)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
257 	netdev_for_each_uc_addr((_ha), (_dev)) \
258 		if ((_ha)->sync_cnt)
259 
260 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
261 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
262 #define netdev_for_each_mc_addr(ha, dev) \
263 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
264 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
265 	netdev_for_each_mc_addr((_ha), (_dev)) \
266 		if ((_ha)->sync_cnt)
267 
268 struct hh_cache {
269 	unsigned int	hh_len;
270 	seqlock_t	hh_lock;
271 
272 	/* cached hardware header; allow for machine alignment needs.        */
273 #define HH_DATA_MOD	16
274 #define HH_DATA_OFF(__len) \
275 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
276 #define HH_DATA_ALIGN(__len) \
277 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
278 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
279 };
280 
281 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
282  * Alternative is:
283  *   dev->hard_header_len ? (dev->hard_header_len +
284  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
285  *
286  * We could use other alignment values, but we must maintain the
287  * relationship HH alignment <= LL alignment.
288  */
289 #define LL_RESERVED_SPACE(dev) \
290 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
291 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
292 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
293 
294 struct header_ops {
295 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
296 			   unsigned short type, const void *daddr,
297 			   const void *saddr, unsigned int len);
298 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
299 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
300 	void	(*cache_update)(struct hh_cache *hh,
301 				const struct net_device *dev,
302 				const unsigned char *haddr);
303 	bool	(*validate)(const char *ll_header, unsigned int len);
304 	__be16	(*parse_protocol)(const struct sk_buff *skb);
305 };
306 
307 /* These flag bits are private to the generic network queueing
308  * layer; they may not be explicitly referenced by any other
309  * code.
310  */
311 
312 enum netdev_state_t {
313 	__LINK_STATE_START,
314 	__LINK_STATE_PRESENT,
315 	__LINK_STATE_NOCARRIER,
316 	__LINK_STATE_LINKWATCH_PENDING,
317 	__LINK_STATE_DORMANT,
318 	__LINK_STATE_TESTING,
319 };
320 
321 struct gro_list {
322 	struct list_head	list;
323 	int			count;
324 };
325 
326 /*
327  * size of gro hash buckets, must less than bit number of
328  * napi_struct::gro_bitmask
329  */
330 #define GRO_HASH_BUCKETS	8
331 
332 /*
333  * Structure for NAPI scheduling similar to tasklet but with weighting
334  */
335 struct napi_struct {
336 	/* The poll_list must only be managed by the entity which
337 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
338 	 * whoever atomically sets that bit can add this napi_struct
339 	 * to the per-CPU poll_list, and whoever clears that bit
340 	 * can remove from the list right before clearing the bit.
341 	 */
342 	struct list_head	poll_list;
343 
344 	unsigned long		state;
345 	int			weight;
346 	int			defer_hard_irqs_count;
347 	unsigned long		gro_bitmask;
348 	int			(*poll)(struct napi_struct *, int);
349 #ifdef CONFIG_NETPOLL
350 	int			poll_owner;
351 #endif
352 	struct net_device	*dev;
353 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
354 	struct sk_buff		*skb;
355 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
356 	int			rx_count; /* length of rx_list */
357 	struct hrtimer		timer;
358 	struct list_head	dev_list;
359 	struct hlist_node	napi_hash_node;
360 	unsigned int		napi_id;
361 	struct task_struct	*thread;
362 };
363 
364 enum {
365 	NAPI_STATE_SCHED,		/* Poll is scheduled */
366 	NAPI_STATE_MISSED,		/* reschedule a napi */
367 	NAPI_STATE_DISABLE,		/* Disable pending */
368 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
369 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
370 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
371 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
372 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
373 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
374 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
375 };
376 
377 enum {
378 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
379 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
380 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
381 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
382 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
383 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
384 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
385 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
386 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
387 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
388 };
389 
390 enum gro_result {
391 	GRO_MERGED,
392 	GRO_MERGED_FREE,
393 	GRO_HELD,
394 	GRO_NORMAL,
395 	GRO_CONSUMED,
396 };
397 typedef enum gro_result gro_result_t;
398 
399 /*
400  * enum rx_handler_result - Possible return values for rx_handlers.
401  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
402  * further.
403  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
404  * case skb->dev was changed by rx_handler.
405  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
406  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
407  *
408  * rx_handlers are functions called from inside __netif_receive_skb(), to do
409  * special processing of the skb, prior to delivery to protocol handlers.
410  *
411  * Currently, a net_device can only have a single rx_handler registered. Trying
412  * to register a second rx_handler will return -EBUSY.
413  *
414  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
415  * To unregister a rx_handler on a net_device, use
416  * netdev_rx_handler_unregister().
417  *
418  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
419  * do with the skb.
420  *
421  * If the rx_handler consumed the skb in some way, it should return
422  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
423  * the skb to be delivered in some other way.
424  *
425  * If the rx_handler changed skb->dev, to divert the skb to another
426  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
427  * new device will be called if it exists.
428  *
429  * If the rx_handler decides the skb should be ignored, it should return
430  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
431  * are registered on exact device (ptype->dev == skb->dev).
432  *
433  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
434  * delivered, it should return RX_HANDLER_PASS.
435  *
436  * A device without a registered rx_handler will behave as if rx_handler
437  * returned RX_HANDLER_PASS.
438  */
439 
440 enum rx_handler_result {
441 	RX_HANDLER_CONSUMED,
442 	RX_HANDLER_ANOTHER,
443 	RX_HANDLER_EXACT,
444 	RX_HANDLER_PASS,
445 };
446 typedef enum rx_handler_result rx_handler_result_t;
447 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
448 
449 void __napi_schedule(struct napi_struct *n);
450 void __napi_schedule_irqoff(struct napi_struct *n);
451 
452 static inline bool napi_disable_pending(struct napi_struct *n)
453 {
454 	return test_bit(NAPI_STATE_DISABLE, &n->state);
455 }
456 
457 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
458 {
459 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
460 }
461 
462 bool napi_schedule_prep(struct napi_struct *n);
463 
464 /**
465  *	napi_schedule - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Schedule NAPI poll routine to be called if it is not already
469  * running.
470  */
471 static inline void napi_schedule(struct napi_struct *n)
472 {
473 	if (napi_schedule_prep(n))
474 		__napi_schedule(n);
475 }
476 
477 /**
478  *	napi_schedule_irqoff - schedule NAPI poll
479  *	@n: NAPI context
480  *
481  * Variant of napi_schedule(), assuming hard irqs are masked.
482  */
483 static inline void napi_schedule_irqoff(struct napi_struct *n)
484 {
485 	if (napi_schedule_prep(n))
486 		__napi_schedule_irqoff(n);
487 }
488 
489 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
490 static inline bool napi_reschedule(struct napi_struct *napi)
491 {
492 	if (napi_schedule_prep(napi)) {
493 		__napi_schedule(napi);
494 		return true;
495 	}
496 	return false;
497 }
498 
499 bool napi_complete_done(struct napi_struct *n, int work_done);
500 /**
501  *	napi_complete - NAPI processing complete
502  *	@n: NAPI context
503  *
504  * Mark NAPI processing as complete.
505  * Consider using napi_complete_done() instead.
506  * Return false if device should avoid rearming interrupts.
507  */
508 static inline bool napi_complete(struct napi_struct *n)
509 {
510 	return napi_complete_done(n, 0);
511 }
512 
513 int dev_set_threaded(struct net_device *dev, bool threaded);
514 
515 /**
516  *	napi_disable - prevent NAPI from scheduling
517  *	@n: NAPI context
518  *
519  * Stop NAPI from being scheduled on this context.
520  * Waits till any outstanding processing completes.
521  */
522 void napi_disable(struct napi_struct *n);
523 
524 void napi_enable(struct napi_struct *n);
525 
526 /**
527  *	napi_synchronize - wait until NAPI is not running
528  *	@n: NAPI context
529  *
530  * Wait until NAPI is done being scheduled on this context.
531  * Waits till any outstanding processing completes but
532  * does not disable future activations.
533  */
534 static inline void napi_synchronize(const struct napi_struct *n)
535 {
536 	if (IS_ENABLED(CONFIG_SMP))
537 		while (test_bit(NAPI_STATE_SCHED, &n->state))
538 			msleep(1);
539 	else
540 		barrier();
541 }
542 
543 /**
544  *	napi_if_scheduled_mark_missed - if napi is running, set the
545  *	NAPIF_STATE_MISSED
546  *	@n: NAPI context
547  *
548  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
549  * NAPI is scheduled.
550  **/
551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
552 {
553 	unsigned long val, new;
554 
555 	val = READ_ONCE(n->state);
556 	do {
557 		if (val & NAPIF_STATE_DISABLE)
558 			return true;
559 
560 		if (!(val & NAPIF_STATE_SCHED))
561 			return false;
562 
563 		new = val | NAPIF_STATE_MISSED;
564 	} while (!try_cmpxchg(&n->state, &val, new));
565 
566 	return true;
567 }
568 
569 enum netdev_queue_state_t {
570 	__QUEUE_STATE_DRV_XOFF,
571 	__QUEUE_STATE_STACK_XOFF,
572 	__QUEUE_STATE_FROZEN,
573 };
574 
575 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
576 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
577 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
578 
579 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
583 					QUEUE_STATE_FROZEN)
584 
585 /*
586  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
587  * netif_tx_* functions below are used to manipulate this flag.  The
588  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
589  * queue independently.  The netif_xmit_*stopped functions below are called
590  * to check if the queue has been stopped by the driver or stack (either
591  * of the XOFF bits are set in the state).  Drivers should not need to call
592  * netif_xmit*stopped functions, they should only be using netif_tx_*.
593  */
594 
595 struct netdev_queue {
596 /*
597  * read-mostly part
598  */
599 	struct net_device	*dev;
600 	netdevice_tracker	dev_tracker;
601 
602 	struct Qdisc __rcu	*qdisc;
603 	struct Qdisc		*qdisc_sleeping;
604 #ifdef CONFIG_SYSFS
605 	struct kobject		kobj;
606 #endif
607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 	int			numa_node;
609 #endif
610 	unsigned long		tx_maxrate;
611 	/*
612 	 * Number of TX timeouts for this queue
613 	 * (/sys/class/net/DEV/Q/trans_timeout)
614 	 */
615 	atomic_long_t		trans_timeout;
616 
617 	/* Subordinate device that the queue has been assigned to */
618 	struct net_device	*sb_dev;
619 #ifdef CONFIG_XDP_SOCKETS
620 	struct xsk_buff_pool    *pool;
621 #endif
622 /*
623  * write-mostly part
624  */
625 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
626 	int			xmit_lock_owner;
627 	/*
628 	 * Time (in jiffies) of last Tx
629 	 */
630 	unsigned long		trans_start;
631 
632 	unsigned long		state;
633 
634 #ifdef CONFIG_BQL
635 	struct dql		dql;
636 #endif
637 } ____cacheline_aligned_in_smp;
638 
639 extern int sysctl_fb_tunnels_only_for_init_net;
640 extern int sysctl_devconf_inherit_init_net;
641 
642 /*
643  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
644  *                                     == 1 : For initns only
645  *                                     == 2 : For none.
646  */
647 static inline bool net_has_fallback_tunnels(const struct net *net)
648 {
649 #if IS_ENABLED(CONFIG_SYSCTL)
650 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
651 
652 	return !fb_tunnels_only_for_init_net ||
653 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
654 #else
655 	return true;
656 #endif
657 }
658 
659 static inline int net_inherit_devconf(void)
660 {
661 #if IS_ENABLED(CONFIG_SYSCTL)
662 	return READ_ONCE(sysctl_devconf_inherit_init_net);
663 #else
664 	return 0;
665 #endif
666 }
667 
668 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
669 {
670 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
671 	return q->numa_node;
672 #else
673 	return NUMA_NO_NODE;
674 #endif
675 }
676 
677 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
678 {
679 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
680 	q->numa_node = node;
681 #endif
682 }
683 
684 #ifdef CONFIG_RPS
685 /*
686  * This structure holds an RPS map which can be of variable length.  The
687  * map is an array of CPUs.
688  */
689 struct rps_map {
690 	unsigned int len;
691 	struct rcu_head rcu;
692 	u16 cpus[];
693 };
694 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
695 
696 /*
697  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
698  * tail pointer for that CPU's input queue at the time of last enqueue, and
699  * a hardware filter index.
700  */
701 struct rps_dev_flow {
702 	u16 cpu;
703 	u16 filter;
704 	unsigned int last_qtail;
705 };
706 #define RPS_NO_FILTER 0xffff
707 
708 /*
709  * The rps_dev_flow_table structure contains a table of flow mappings.
710  */
711 struct rps_dev_flow_table {
712 	unsigned int mask;
713 	struct rcu_head rcu;
714 	struct rps_dev_flow flows[];
715 };
716 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
717     ((_num) * sizeof(struct rps_dev_flow)))
718 
719 /*
720  * The rps_sock_flow_table contains mappings of flows to the last CPU
721  * on which they were processed by the application (set in recvmsg).
722  * Each entry is a 32bit value. Upper part is the high-order bits
723  * of flow hash, lower part is CPU number.
724  * rps_cpu_mask is used to partition the space, depending on number of
725  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
726  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
727  * meaning we use 32-6=26 bits for the hash.
728  */
729 struct rps_sock_flow_table {
730 	u32	mask;
731 
732 	u32	ents[] ____cacheline_aligned_in_smp;
733 };
734 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
735 
736 #define RPS_NO_CPU 0xffff
737 
738 extern u32 rps_cpu_mask;
739 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
740 
741 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
742 					u32 hash)
743 {
744 	if (table && hash) {
745 		unsigned int index = hash & table->mask;
746 		u32 val = hash & ~rps_cpu_mask;
747 
748 		/* We only give a hint, preemption can change CPU under us */
749 		val |= raw_smp_processor_id();
750 
751 		if (table->ents[index] != val)
752 			table->ents[index] = val;
753 	}
754 }
755 
756 #ifdef CONFIG_RFS_ACCEL
757 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
758 			 u16 filter_id);
759 #endif
760 #endif /* CONFIG_RPS */
761 
762 /* This structure contains an instance of an RX queue. */
763 struct netdev_rx_queue {
764 	struct xdp_rxq_info		xdp_rxq;
765 #ifdef CONFIG_RPS
766 	struct rps_map __rcu		*rps_map;
767 	struct rps_dev_flow_table __rcu	*rps_flow_table;
768 #endif
769 	struct kobject			kobj;
770 	struct net_device		*dev;
771 	netdevice_tracker		dev_tracker;
772 
773 #ifdef CONFIG_XDP_SOCKETS
774 	struct xsk_buff_pool            *pool;
775 #endif
776 } ____cacheline_aligned_in_smp;
777 
778 /*
779  * RX queue sysfs structures and functions.
780  */
781 struct rx_queue_attribute {
782 	struct attribute attr;
783 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
784 	ssize_t (*store)(struct netdev_rx_queue *queue,
785 			 const char *buf, size_t len);
786 };
787 
788 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
789 enum xps_map_type {
790 	XPS_CPUS = 0,
791 	XPS_RXQS,
792 	XPS_MAPS_MAX,
793 };
794 
795 #ifdef CONFIG_XPS
796 /*
797  * This structure holds an XPS map which can be of variable length.  The
798  * map is an array of queues.
799  */
800 struct xps_map {
801 	unsigned int len;
802 	unsigned int alloc_len;
803 	struct rcu_head rcu;
804 	u16 queues[];
805 };
806 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
807 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
808        - sizeof(struct xps_map)) / sizeof(u16))
809 
810 /*
811  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
812  *
813  * We keep track of the number of cpus/rxqs used when the struct is allocated,
814  * in nr_ids. This will help not accessing out-of-bound memory.
815  *
816  * We keep track of the number of traffic classes used when the struct is
817  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
818  * not crossing its upper bound, as the original dev->num_tc can be updated in
819  * the meantime.
820  */
821 struct xps_dev_maps {
822 	struct rcu_head rcu;
823 	unsigned int nr_ids;
824 	s16 num_tc;
825 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
826 };
827 
828 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
829 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
830 
831 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
832 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
833 
834 #endif /* CONFIG_XPS */
835 
836 #define TC_MAX_QUEUE	16
837 #define TC_BITMASK	15
838 /* HW offloaded queuing disciplines txq count and offset maps */
839 struct netdev_tc_txq {
840 	u16 count;
841 	u16 offset;
842 };
843 
844 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
845 /*
846  * This structure is to hold information about the device
847  * configured to run FCoE protocol stack.
848  */
849 struct netdev_fcoe_hbainfo {
850 	char	manufacturer[64];
851 	char	serial_number[64];
852 	char	hardware_version[64];
853 	char	driver_version[64];
854 	char	optionrom_version[64];
855 	char	firmware_version[64];
856 	char	model[256];
857 	char	model_description[256];
858 };
859 #endif
860 
861 #define MAX_PHYS_ITEM_ID_LEN 32
862 
863 /* This structure holds a unique identifier to identify some
864  * physical item (port for example) used by a netdevice.
865  */
866 struct netdev_phys_item_id {
867 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
868 	unsigned char id_len;
869 };
870 
871 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
872 					    struct netdev_phys_item_id *b)
873 {
874 	return a->id_len == b->id_len &&
875 	       memcmp(a->id, b->id, a->id_len) == 0;
876 }
877 
878 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
879 				       struct sk_buff *skb,
880 				       struct net_device *sb_dev);
881 
882 enum net_device_path_type {
883 	DEV_PATH_ETHERNET = 0,
884 	DEV_PATH_VLAN,
885 	DEV_PATH_BRIDGE,
886 	DEV_PATH_PPPOE,
887 	DEV_PATH_DSA,
888 	DEV_PATH_MTK_WDMA,
889 };
890 
891 struct net_device_path {
892 	enum net_device_path_type	type;
893 	const struct net_device		*dev;
894 	union {
895 		struct {
896 			u16		id;
897 			__be16		proto;
898 			u8		h_dest[ETH_ALEN];
899 		} encap;
900 		struct {
901 			enum {
902 				DEV_PATH_BR_VLAN_KEEP,
903 				DEV_PATH_BR_VLAN_TAG,
904 				DEV_PATH_BR_VLAN_UNTAG,
905 				DEV_PATH_BR_VLAN_UNTAG_HW,
906 			}		vlan_mode;
907 			u16		vlan_id;
908 			__be16		vlan_proto;
909 		} bridge;
910 		struct {
911 			int port;
912 			u16 proto;
913 		} dsa;
914 		struct {
915 			u8 wdma_idx;
916 			u8 queue;
917 			u16 wcid;
918 			u8 bss;
919 		} mtk_wdma;
920 	};
921 };
922 
923 #define NET_DEVICE_PATH_STACK_MAX	5
924 #define NET_DEVICE_PATH_VLAN_MAX	2
925 
926 struct net_device_path_stack {
927 	int			num_paths;
928 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
929 };
930 
931 struct net_device_path_ctx {
932 	const struct net_device *dev;
933 	u8			daddr[ETH_ALEN];
934 
935 	int			num_vlans;
936 	struct {
937 		u16		id;
938 		__be16		proto;
939 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
940 };
941 
942 enum tc_setup_type {
943 	TC_QUERY_CAPS,
944 	TC_SETUP_QDISC_MQPRIO,
945 	TC_SETUP_CLSU32,
946 	TC_SETUP_CLSFLOWER,
947 	TC_SETUP_CLSMATCHALL,
948 	TC_SETUP_CLSBPF,
949 	TC_SETUP_BLOCK,
950 	TC_SETUP_QDISC_CBS,
951 	TC_SETUP_QDISC_RED,
952 	TC_SETUP_QDISC_PRIO,
953 	TC_SETUP_QDISC_MQ,
954 	TC_SETUP_QDISC_ETF,
955 	TC_SETUP_ROOT_QDISC,
956 	TC_SETUP_QDISC_GRED,
957 	TC_SETUP_QDISC_TAPRIO,
958 	TC_SETUP_FT,
959 	TC_SETUP_QDISC_ETS,
960 	TC_SETUP_QDISC_TBF,
961 	TC_SETUP_QDISC_FIFO,
962 	TC_SETUP_QDISC_HTB,
963 	TC_SETUP_ACT,
964 };
965 
966 /* These structures hold the attributes of bpf state that are being passed
967  * to the netdevice through the bpf op.
968  */
969 enum bpf_netdev_command {
970 	/* Set or clear a bpf program used in the earliest stages of packet
971 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
972 	 * is responsible for calling bpf_prog_put on any old progs that are
973 	 * stored. In case of error, the callee need not release the new prog
974 	 * reference, but on success it takes ownership and must bpf_prog_put
975 	 * when it is no longer used.
976 	 */
977 	XDP_SETUP_PROG,
978 	XDP_SETUP_PROG_HW,
979 	/* BPF program for offload callbacks, invoked at program load time. */
980 	BPF_OFFLOAD_MAP_ALLOC,
981 	BPF_OFFLOAD_MAP_FREE,
982 	XDP_SETUP_XSK_POOL,
983 };
984 
985 struct bpf_prog_offload_ops;
986 struct netlink_ext_ack;
987 struct xdp_umem;
988 struct xdp_dev_bulk_queue;
989 struct bpf_xdp_link;
990 
991 enum bpf_xdp_mode {
992 	XDP_MODE_SKB = 0,
993 	XDP_MODE_DRV = 1,
994 	XDP_MODE_HW = 2,
995 	__MAX_XDP_MODE
996 };
997 
998 struct bpf_xdp_entity {
999 	struct bpf_prog *prog;
1000 	struct bpf_xdp_link *link;
1001 };
1002 
1003 struct netdev_bpf {
1004 	enum bpf_netdev_command command;
1005 	union {
1006 		/* XDP_SETUP_PROG */
1007 		struct {
1008 			u32 flags;
1009 			struct bpf_prog *prog;
1010 			struct netlink_ext_ack *extack;
1011 		};
1012 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1013 		struct {
1014 			struct bpf_offloaded_map *offmap;
1015 		};
1016 		/* XDP_SETUP_XSK_POOL */
1017 		struct {
1018 			struct xsk_buff_pool *pool;
1019 			u16 queue_id;
1020 		} xsk;
1021 	};
1022 };
1023 
1024 /* Flags for ndo_xsk_wakeup. */
1025 #define XDP_WAKEUP_RX (1 << 0)
1026 #define XDP_WAKEUP_TX (1 << 1)
1027 
1028 #ifdef CONFIG_XFRM_OFFLOAD
1029 struct xfrmdev_ops {
1030 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1031 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1032 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1033 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1034 				       struct xfrm_state *x);
1035 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1036 };
1037 #endif
1038 
1039 struct dev_ifalias {
1040 	struct rcu_head rcuhead;
1041 	char ifalias[];
1042 };
1043 
1044 struct devlink;
1045 struct tlsdev_ops;
1046 
1047 struct netdev_net_notifier {
1048 	struct list_head list;
1049 	struct notifier_block *nb;
1050 };
1051 
1052 /*
1053  * This structure defines the management hooks for network devices.
1054  * The following hooks can be defined; unless noted otherwise, they are
1055  * optional and can be filled with a null pointer.
1056  *
1057  * int (*ndo_init)(struct net_device *dev);
1058  *     This function is called once when a network device is registered.
1059  *     The network device can use this for any late stage initialization
1060  *     or semantic validation. It can fail with an error code which will
1061  *     be propagated back to register_netdev.
1062  *
1063  * void (*ndo_uninit)(struct net_device *dev);
1064  *     This function is called when device is unregistered or when registration
1065  *     fails. It is not called if init fails.
1066  *
1067  * int (*ndo_open)(struct net_device *dev);
1068  *     This function is called when a network device transitions to the up
1069  *     state.
1070  *
1071  * int (*ndo_stop)(struct net_device *dev);
1072  *     This function is called when a network device transitions to the down
1073  *     state.
1074  *
1075  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1076  *                               struct net_device *dev);
1077  *	Called when a packet needs to be transmitted.
1078  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1079  *	the queue before that can happen; it's for obsolete devices and weird
1080  *	corner cases, but the stack really does a non-trivial amount
1081  *	of useless work if you return NETDEV_TX_BUSY.
1082  *	Required; cannot be NULL.
1083  *
1084  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1085  *					   struct net_device *dev
1086  *					   netdev_features_t features);
1087  *	Called by core transmit path to determine if device is capable of
1088  *	performing offload operations on a given packet. This is to give
1089  *	the device an opportunity to implement any restrictions that cannot
1090  *	be otherwise expressed by feature flags. The check is called with
1091  *	the set of features that the stack has calculated and it returns
1092  *	those the driver believes to be appropriate.
1093  *
1094  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1095  *                         struct net_device *sb_dev);
1096  *	Called to decide which queue to use when device supports multiple
1097  *	transmit queues.
1098  *
1099  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1100  *	This function is called to allow device receiver to make
1101  *	changes to configuration when multicast or promiscuous is enabled.
1102  *
1103  * void (*ndo_set_rx_mode)(struct net_device *dev);
1104  *	This function is called device changes address list filtering.
1105  *	If driver handles unicast address filtering, it should set
1106  *	IFF_UNICAST_FLT in its priv_flags.
1107  *
1108  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1109  *	This function  is called when the Media Access Control address
1110  *	needs to be changed. If this interface is not defined, the
1111  *	MAC address can not be changed.
1112  *
1113  * int (*ndo_validate_addr)(struct net_device *dev);
1114  *	Test if Media Access Control address is valid for the device.
1115  *
1116  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1117  *	Old-style ioctl entry point. This is used internally by the
1118  *	appletalk and ieee802154 subsystems but is no longer called by
1119  *	the device ioctl handler.
1120  *
1121  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1122  *	Used by the bonding driver for its device specific ioctls:
1123  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1124  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1125  *
1126  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1127  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1128  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1129  *
1130  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1131  *	Used to set network devices bus interface parameters. This interface
1132  *	is retained for legacy reasons; new devices should use the bus
1133  *	interface (PCI) for low level management.
1134  *
1135  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1136  *	Called when a user wants to change the Maximum Transfer Unit
1137  *	of a device.
1138  *
1139  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1140  *	Callback used when the transmitter has not made any progress
1141  *	for dev->watchdog ticks.
1142  *
1143  * void (*ndo_get_stats64)(struct net_device *dev,
1144  *                         struct rtnl_link_stats64 *storage);
1145  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1146  *	Called when a user wants to get the network device usage
1147  *	statistics. Drivers must do one of the following:
1148  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1149  *	   rtnl_link_stats64 structure passed by the caller.
1150  *	2. Define @ndo_get_stats to update a net_device_stats structure
1151  *	   (which should normally be dev->stats) and return a pointer to
1152  *	   it. The structure may be changed asynchronously only if each
1153  *	   field is written atomically.
1154  *	3. Update dev->stats asynchronously and atomically, and define
1155  *	   neither operation.
1156  *
1157  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1158  *	Return true if this device supports offload stats of this attr_id.
1159  *
1160  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1161  *	void *attr_data)
1162  *	Get statistics for offload operations by attr_id. Write it into the
1163  *	attr_data pointer.
1164  *
1165  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1166  *	If device supports VLAN filtering this function is called when a
1167  *	VLAN id is registered.
1168  *
1169  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1170  *	If device supports VLAN filtering this function is called when a
1171  *	VLAN id is unregistered.
1172  *
1173  * void (*ndo_poll_controller)(struct net_device *dev);
1174  *
1175  *	SR-IOV management functions.
1176  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1177  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1178  *			  u8 qos, __be16 proto);
1179  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1180  *			  int max_tx_rate);
1181  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1182  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1183  * int (*ndo_get_vf_config)(struct net_device *dev,
1184  *			    int vf, struct ifla_vf_info *ivf);
1185  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1186  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1187  *			  struct nlattr *port[]);
1188  *
1189  *      Enable or disable the VF ability to query its RSS Redirection Table and
1190  *      Hash Key. This is needed since on some devices VF share this information
1191  *      with PF and querying it may introduce a theoretical security risk.
1192  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1193  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1194  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1195  *		       void *type_data);
1196  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1197  *	This is always called from the stack with the rtnl lock held and netif
1198  *	tx queues stopped. This allows the netdevice to perform queue
1199  *	management safely.
1200  *
1201  *	Fiber Channel over Ethernet (FCoE) offload functions.
1202  * int (*ndo_fcoe_enable)(struct net_device *dev);
1203  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1204  *	so the underlying device can perform whatever needed configuration or
1205  *	initialization to support acceleration of FCoE traffic.
1206  *
1207  * int (*ndo_fcoe_disable)(struct net_device *dev);
1208  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1209  *	so the underlying device can perform whatever needed clean-ups to
1210  *	stop supporting acceleration of FCoE traffic.
1211  *
1212  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1213  *			     struct scatterlist *sgl, unsigned int sgc);
1214  *	Called when the FCoE Initiator wants to initialize an I/O that
1215  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1216  *	perform necessary setup and returns 1 to indicate the device is set up
1217  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1218  *
1219  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1220  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1221  *	indicated by the FC exchange id 'xid', so the underlying device can
1222  *	clean up and reuse resources for later DDP requests.
1223  *
1224  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1225  *			      struct scatterlist *sgl, unsigned int sgc);
1226  *	Called when the FCoE Target wants to initialize an I/O that
1227  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1228  *	perform necessary setup and returns 1 to indicate the device is set up
1229  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1230  *
1231  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1232  *			       struct netdev_fcoe_hbainfo *hbainfo);
1233  *	Called when the FCoE Protocol stack wants information on the underlying
1234  *	device. This information is utilized by the FCoE protocol stack to
1235  *	register attributes with Fiber Channel management service as per the
1236  *	FC-GS Fabric Device Management Information(FDMI) specification.
1237  *
1238  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1239  *	Called when the underlying device wants to override default World Wide
1240  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1241  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1242  *	protocol stack to use.
1243  *
1244  *	RFS acceleration.
1245  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1246  *			    u16 rxq_index, u32 flow_id);
1247  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1248  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1249  *	Return the filter ID on success, or a negative error code.
1250  *
1251  *	Slave management functions (for bridge, bonding, etc).
1252  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1253  *	Called to make another netdev an underling.
1254  *
1255  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1256  *	Called to release previously enslaved netdev.
1257  *
1258  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1259  *					    struct sk_buff *skb,
1260  *					    bool all_slaves);
1261  *	Get the xmit slave of master device. If all_slaves is true, function
1262  *	assume all the slaves can transmit.
1263  *
1264  *      Feature/offload setting functions.
1265  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1266  *		netdev_features_t features);
1267  *	Adjusts the requested feature flags according to device-specific
1268  *	constraints, and returns the resulting flags. Must not modify
1269  *	the device state.
1270  *
1271  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1272  *	Called to update device configuration to new features. Passed
1273  *	feature set might be less than what was returned by ndo_fix_features()).
1274  *	Must return >0 or -errno if it changed dev->features itself.
1275  *
1276  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1277  *		      struct net_device *dev,
1278  *		      const unsigned char *addr, u16 vid, u16 flags,
1279  *		      struct netlink_ext_ack *extack);
1280  *	Adds an FDB entry to dev for addr.
1281  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1282  *		      struct net_device *dev,
1283  *		      const unsigned char *addr, u16 vid)
1284  *	Deletes the FDB entry from dev coresponding to addr.
1285  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1286  *			   struct net_device *dev,
1287  *			   u16 vid,
1288  *			   struct netlink_ext_ack *extack);
1289  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1290  *		       struct net_device *dev, struct net_device *filter_dev,
1291  *		       int *idx)
1292  *	Used to add FDB entries to dump requests. Implementers should add
1293  *	entries to skb and update idx with the number of entries.
1294  *
1295  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1296  *			     u16 flags, struct netlink_ext_ack *extack)
1297  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1298  *			     struct net_device *dev, u32 filter_mask,
1299  *			     int nlflags)
1300  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1301  *			     u16 flags);
1302  *
1303  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1304  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1305  *	which do not represent real hardware may define this to allow their
1306  *	userspace components to manage their virtual carrier state. Devices
1307  *	that determine carrier state from physical hardware properties (eg
1308  *	network cables) or protocol-dependent mechanisms (eg
1309  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1310  *
1311  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1312  *			       struct netdev_phys_item_id *ppid);
1313  *	Called to get ID of physical port of this device. If driver does
1314  *	not implement this, it is assumed that the hw is not able to have
1315  *	multiple net devices on single physical port.
1316  *
1317  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1318  *				 struct netdev_phys_item_id *ppid)
1319  *	Called to get the parent ID of the physical port of this device.
1320  *
1321  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1322  *				 struct net_device *dev)
1323  *	Called by upper layer devices to accelerate switching or other
1324  *	station functionality into hardware. 'pdev is the lowerdev
1325  *	to use for the offload and 'dev' is the net device that will
1326  *	back the offload. Returns a pointer to the private structure
1327  *	the upper layer will maintain.
1328  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1329  *	Called by upper layer device to delete the station created
1330  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1331  *	the station and priv is the structure returned by the add
1332  *	operation.
1333  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1334  *			     int queue_index, u32 maxrate);
1335  *	Called when a user wants to set a max-rate limitation of specific
1336  *	TX queue.
1337  * int (*ndo_get_iflink)(const struct net_device *dev);
1338  *	Called to get the iflink value of this device.
1339  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1340  *	This function is used to get egress tunnel information for given skb.
1341  *	This is useful for retrieving outer tunnel header parameters while
1342  *	sampling packet.
1343  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1344  *	This function is used to specify the headroom that the skb must
1345  *	consider when allocation skb during packet reception. Setting
1346  *	appropriate rx headroom value allows avoiding skb head copy on
1347  *	forward. Setting a negative value resets the rx headroom to the
1348  *	default value.
1349  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1350  *	This function is used to set or query state related to XDP on the
1351  *	netdevice and manage BPF offload. See definition of
1352  *	enum bpf_netdev_command for details.
1353  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1354  *			u32 flags);
1355  *	This function is used to submit @n XDP packets for transmit on a
1356  *	netdevice. Returns number of frames successfully transmitted, frames
1357  *	that got dropped are freed/returned via xdp_return_frame().
1358  *	Returns negative number, means general error invoking ndo, meaning
1359  *	no frames were xmit'ed and core-caller will free all frames.
1360  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1361  *					        struct xdp_buff *xdp);
1362  *      Get the xmit slave of master device based on the xdp_buff.
1363  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1364  *      This function is used to wake up the softirq, ksoftirqd or kthread
1365  *	responsible for sending and/or receiving packets on a specific
1366  *	queue id bound to an AF_XDP socket. The flags field specifies if
1367  *	only RX, only Tx, or both should be woken up using the flags
1368  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1369  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1370  *			 int cmd);
1371  *	Add, change, delete or get information on an IPv4 tunnel.
1372  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1373  *	If a device is paired with a peer device, return the peer instance.
1374  *	The caller must be under RCU read context.
1375  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1376  *     Get the forwarding path to reach the real device from the HW destination address
1377  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1378  *			     const struct skb_shared_hwtstamps *hwtstamps,
1379  *			     bool cycles);
1380  *	Get hardware timestamp based on normal/adjustable time or free running
1381  *	cycle counter. This function is required if physical clock supports a
1382  *	free running cycle counter.
1383  */
1384 struct net_device_ops {
1385 	int			(*ndo_init)(struct net_device *dev);
1386 	void			(*ndo_uninit)(struct net_device *dev);
1387 	int			(*ndo_open)(struct net_device *dev);
1388 	int			(*ndo_stop)(struct net_device *dev);
1389 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1390 						  struct net_device *dev);
1391 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1392 						      struct net_device *dev,
1393 						      netdev_features_t features);
1394 	u16			(*ndo_select_queue)(struct net_device *dev,
1395 						    struct sk_buff *skb,
1396 						    struct net_device *sb_dev);
1397 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1398 						       int flags);
1399 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1400 	int			(*ndo_set_mac_address)(struct net_device *dev,
1401 						       void *addr);
1402 	int			(*ndo_validate_addr)(struct net_device *dev);
1403 	int			(*ndo_do_ioctl)(struct net_device *dev,
1404 					        struct ifreq *ifr, int cmd);
1405 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1406 						 struct ifreq *ifr, int cmd);
1407 	int			(*ndo_siocbond)(struct net_device *dev,
1408 						struct ifreq *ifr, int cmd);
1409 	int			(*ndo_siocwandev)(struct net_device *dev,
1410 						  struct if_settings *ifs);
1411 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1412 						      struct ifreq *ifr,
1413 						      void __user *data, int cmd);
1414 	int			(*ndo_set_config)(struct net_device *dev,
1415 					          struct ifmap *map);
1416 	int			(*ndo_change_mtu)(struct net_device *dev,
1417 						  int new_mtu);
1418 	int			(*ndo_neigh_setup)(struct net_device *dev,
1419 						   struct neigh_parms *);
1420 	void			(*ndo_tx_timeout) (struct net_device *dev,
1421 						   unsigned int txqueue);
1422 
1423 	void			(*ndo_get_stats64)(struct net_device *dev,
1424 						   struct rtnl_link_stats64 *storage);
1425 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1426 	int			(*ndo_get_offload_stats)(int attr_id,
1427 							 const struct net_device *dev,
1428 							 void *attr_data);
1429 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1430 
1431 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1432 						       __be16 proto, u16 vid);
1433 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1434 						        __be16 proto, u16 vid);
1435 #ifdef CONFIG_NET_POLL_CONTROLLER
1436 	void                    (*ndo_poll_controller)(struct net_device *dev);
1437 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1438 						     struct netpoll_info *info);
1439 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1440 #endif
1441 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1442 						  int queue, u8 *mac);
1443 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1444 						   int queue, u16 vlan,
1445 						   u8 qos, __be16 proto);
1446 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1447 						   int vf, int min_tx_rate,
1448 						   int max_tx_rate);
1449 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1450 						       int vf, bool setting);
1451 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1452 						    int vf, bool setting);
1453 	int			(*ndo_get_vf_config)(struct net_device *dev,
1454 						     int vf,
1455 						     struct ifla_vf_info *ivf);
1456 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1457 							 int vf, int link_state);
1458 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1459 						    int vf,
1460 						    struct ifla_vf_stats
1461 						    *vf_stats);
1462 	int			(*ndo_set_vf_port)(struct net_device *dev,
1463 						   int vf,
1464 						   struct nlattr *port[]);
1465 	int			(*ndo_get_vf_port)(struct net_device *dev,
1466 						   int vf, struct sk_buff *skb);
1467 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1468 						   int vf,
1469 						   struct ifla_vf_guid *node_guid,
1470 						   struct ifla_vf_guid *port_guid);
1471 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1472 						   int vf, u64 guid,
1473 						   int guid_type);
1474 	int			(*ndo_set_vf_rss_query_en)(
1475 						   struct net_device *dev,
1476 						   int vf, bool setting);
1477 	int			(*ndo_setup_tc)(struct net_device *dev,
1478 						enum tc_setup_type type,
1479 						void *type_data);
1480 #if IS_ENABLED(CONFIG_FCOE)
1481 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1482 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1483 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1484 						      u16 xid,
1485 						      struct scatterlist *sgl,
1486 						      unsigned int sgc);
1487 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1488 						     u16 xid);
1489 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1490 						       u16 xid,
1491 						       struct scatterlist *sgl,
1492 						       unsigned int sgc);
1493 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1494 							struct netdev_fcoe_hbainfo *hbainfo);
1495 #endif
1496 
1497 #if IS_ENABLED(CONFIG_LIBFCOE)
1498 #define NETDEV_FCOE_WWNN 0
1499 #define NETDEV_FCOE_WWPN 1
1500 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1501 						    u64 *wwn, int type);
1502 #endif
1503 
1504 #ifdef CONFIG_RFS_ACCEL
1505 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1506 						     const struct sk_buff *skb,
1507 						     u16 rxq_index,
1508 						     u32 flow_id);
1509 #endif
1510 	int			(*ndo_add_slave)(struct net_device *dev,
1511 						 struct net_device *slave_dev,
1512 						 struct netlink_ext_ack *extack);
1513 	int			(*ndo_del_slave)(struct net_device *dev,
1514 						 struct net_device *slave_dev);
1515 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1516 						      struct sk_buff *skb,
1517 						      bool all_slaves);
1518 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1519 							struct sock *sk);
1520 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1521 						    netdev_features_t features);
1522 	int			(*ndo_set_features)(struct net_device *dev,
1523 						    netdev_features_t features);
1524 	int			(*ndo_neigh_construct)(struct net_device *dev,
1525 						       struct neighbour *n);
1526 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1527 						     struct neighbour *n);
1528 
1529 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1530 					       struct nlattr *tb[],
1531 					       struct net_device *dev,
1532 					       const unsigned char *addr,
1533 					       u16 vid,
1534 					       u16 flags,
1535 					       struct netlink_ext_ack *extack);
1536 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1537 					       struct nlattr *tb[],
1538 					       struct net_device *dev,
1539 					       const unsigned char *addr,
1540 					       u16 vid, struct netlink_ext_ack *extack);
1541 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1542 						    struct nlattr *tb[],
1543 						    struct net_device *dev,
1544 						    u16 vid,
1545 						    struct netlink_ext_ack *extack);
1546 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1547 						struct netlink_callback *cb,
1548 						struct net_device *dev,
1549 						struct net_device *filter_dev,
1550 						int *idx);
1551 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1552 					       struct nlattr *tb[],
1553 					       struct net_device *dev,
1554 					       const unsigned char *addr,
1555 					       u16 vid, u32 portid, u32 seq,
1556 					       struct netlink_ext_ack *extack);
1557 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1558 						      struct nlmsghdr *nlh,
1559 						      u16 flags,
1560 						      struct netlink_ext_ack *extack);
1561 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1562 						      u32 pid, u32 seq,
1563 						      struct net_device *dev,
1564 						      u32 filter_mask,
1565 						      int nlflags);
1566 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1567 						      struct nlmsghdr *nlh,
1568 						      u16 flags);
1569 	int			(*ndo_change_carrier)(struct net_device *dev,
1570 						      bool new_carrier);
1571 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1572 							struct netdev_phys_item_id *ppid);
1573 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1574 							  struct netdev_phys_item_id *ppid);
1575 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1576 							  char *name, size_t len);
1577 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1578 							struct net_device *dev);
1579 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1580 							void *priv);
1581 
1582 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1583 						      int queue_index,
1584 						      u32 maxrate);
1585 	int			(*ndo_get_iflink)(const struct net_device *dev);
1586 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1587 						       struct sk_buff *skb);
1588 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1589 						       int needed_headroom);
1590 	int			(*ndo_bpf)(struct net_device *dev,
1591 					   struct netdev_bpf *bpf);
1592 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1593 						struct xdp_frame **xdp,
1594 						u32 flags);
1595 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1596 							  struct xdp_buff *xdp);
1597 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1598 						  u32 queue_id, u32 flags);
1599 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1600 						  struct ip_tunnel_parm *p, int cmd);
1601 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1602 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1603                                                          struct net_device_path *path);
1604 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1605 						  const struct skb_shared_hwtstamps *hwtstamps,
1606 						  bool cycles);
1607 };
1608 
1609 /**
1610  * enum netdev_priv_flags - &struct net_device priv_flags
1611  *
1612  * These are the &struct net_device, they are only set internally
1613  * by drivers and used in the kernel. These flags are invisible to
1614  * userspace; this means that the order of these flags can change
1615  * during any kernel release.
1616  *
1617  * You should have a pretty good reason to be extending these flags.
1618  *
1619  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1620  * @IFF_EBRIDGE: Ethernet bridging device
1621  * @IFF_BONDING: bonding master or slave
1622  * @IFF_ISATAP: ISATAP interface (RFC4214)
1623  * @IFF_WAN_HDLC: WAN HDLC device
1624  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1625  *	release skb->dst
1626  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1627  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1628  * @IFF_MACVLAN_PORT: device used as macvlan port
1629  * @IFF_BRIDGE_PORT: device used as bridge port
1630  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1631  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1632  * @IFF_UNICAST_FLT: Supports unicast filtering
1633  * @IFF_TEAM_PORT: device used as team port
1634  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1635  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1636  *	change when it's running
1637  * @IFF_MACVLAN: Macvlan device
1638  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1639  *	underlying stacked devices
1640  * @IFF_L3MDEV_MASTER: device is an L3 master device
1641  * @IFF_NO_QUEUE: device can run without qdisc attached
1642  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1643  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1644  * @IFF_TEAM: device is a team device
1645  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1646  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1647  *	entity (i.e. the master device for bridged veth)
1648  * @IFF_MACSEC: device is a MACsec device
1649  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1650  * @IFF_FAILOVER: device is a failover master device
1651  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1652  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1653  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1654  *	skb_headlen(skb) == 0 (data starts from frag0)
1655  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1656  */
1657 enum netdev_priv_flags {
1658 	IFF_802_1Q_VLAN			= 1<<0,
1659 	IFF_EBRIDGE			= 1<<1,
1660 	IFF_BONDING			= 1<<2,
1661 	IFF_ISATAP			= 1<<3,
1662 	IFF_WAN_HDLC			= 1<<4,
1663 	IFF_XMIT_DST_RELEASE		= 1<<5,
1664 	IFF_DONT_BRIDGE			= 1<<6,
1665 	IFF_DISABLE_NETPOLL		= 1<<7,
1666 	IFF_MACVLAN_PORT		= 1<<8,
1667 	IFF_BRIDGE_PORT			= 1<<9,
1668 	IFF_OVS_DATAPATH		= 1<<10,
1669 	IFF_TX_SKB_SHARING		= 1<<11,
1670 	IFF_UNICAST_FLT			= 1<<12,
1671 	IFF_TEAM_PORT			= 1<<13,
1672 	IFF_SUPP_NOFCS			= 1<<14,
1673 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1674 	IFF_MACVLAN			= 1<<16,
1675 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1676 	IFF_L3MDEV_MASTER		= 1<<18,
1677 	IFF_NO_QUEUE			= 1<<19,
1678 	IFF_OPENVSWITCH			= 1<<20,
1679 	IFF_L3MDEV_SLAVE		= 1<<21,
1680 	IFF_TEAM			= 1<<22,
1681 	IFF_RXFH_CONFIGURED		= 1<<23,
1682 	IFF_PHONY_HEADROOM		= 1<<24,
1683 	IFF_MACSEC			= 1<<25,
1684 	IFF_NO_RX_HANDLER		= 1<<26,
1685 	IFF_FAILOVER			= 1<<27,
1686 	IFF_FAILOVER_SLAVE		= 1<<28,
1687 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1688 	/* was IFF_LIVE_RENAME_OK */
1689 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1690 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1691 };
1692 
1693 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1694 #define IFF_EBRIDGE			IFF_EBRIDGE
1695 #define IFF_BONDING			IFF_BONDING
1696 #define IFF_ISATAP			IFF_ISATAP
1697 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1698 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1699 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1700 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1701 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1702 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1703 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1704 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1705 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1706 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1707 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1708 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1709 #define IFF_MACVLAN			IFF_MACVLAN
1710 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1711 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1712 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1713 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1714 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1715 #define IFF_TEAM			IFF_TEAM
1716 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1717 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1718 #define IFF_MACSEC			IFF_MACSEC
1719 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1720 #define IFF_FAILOVER			IFF_FAILOVER
1721 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1722 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1723 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1724 
1725 /* Specifies the type of the struct net_device::ml_priv pointer */
1726 enum netdev_ml_priv_type {
1727 	ML_PRIV_NONE,
1728 	ML_PRIV_CAN,
1729 };
1730 
1731 /**
1732  *	struct net_device - The DEVICE structure.
1733  *
1734  *	Actually, this whole structure is a big mistake.  It mixes I/O
1735  *	data with strictly "high-level" data, and it has to know about
1736  *	almost every data structure used in the INET module.
1737  *
1738  *	@name:	This is the first field of the "visible" part of this structure
1739  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1740  *		of the interface.
1741  *
1742  *	@name_node:	Name hashlist node
1743  *	@ifalias:	SNMP alias
1744  *	@mem_end:	Shared memory end
1745  *	@mem_start:	Shared memory start
1746  *	@base_addr:	Device I/O address
1747  *	@irq:		Device IRQ number
1748  *
1749  *	@state:		Generic network queuing layer state, see netdev_state_t
1750  *	@dev_list:	The global list of network devices
1751  *	@napi_list:	List entry used for polling NAPI devices
1752  *	@unreg_list:	List entry  when we are unregistering the
1753  *			device; see the function unregister_netdev
1754  *	@close_list:	List entry used when we are closing the device
1755  *	@ptype_all:     Device-specific packet handlers for all protocols
1756  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1757  *
1758  *	@adj_list:	Directly linked devices, like slaves for bonding
1759  *	@features:	Currently active device features
1760  *	@hw_features:	User-changeable features
1761  *
1762  *	@wanted_features:	User-requested features
1763  *	@vlan_features:		Mask of features inheritable by VLAN devices
1764  *
1765  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1766  *				This field indicates what encapsulation
1767  *				offloads the hardware is capable of doing,
1768  *				and drivers will need to set them appropriately.
1769  *
1770  *	@mpls_features:	Mask of features inheritable by MPLS
1771  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1772  *
1773  *	@ifindex:	interface index
1774  *	@group:		The group the device belongs to
1775  *
1776  *	@stats:		Statistics struct, which was left as a legacy, use
1777  *			rtnl_link_stats64 instead
1778  *
1779  *	@core_stats:	core networking counters,
1780  *			do not use this in drivers
1781  *	@carrier_up_count:	Number of times the carrier has been up
1782  *	@carrier_down_count:	Number of times the carrier has been down
1783  *
1784  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1785  *				instead of ioctl,
1786  *				see <net/iw_handler.h> for details.
1787  *	@wireless_data:	Instance data managed by the core of wireless extensions
1788  *
1789  *	@netdev_ops:	Includes several pointers to callbacks,
1790  *			if one wants to override the ndo_*() functions
1791  *	@ethtool_ops:	Management operations
1792  *	@l3mdev_ops:	Layer 3 master device operations
1793  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1794  *			discovery handling. Necessary for e.g. 6LoWPAN.
1795  *	@xfrmdev_ops:	Transformation offload operations
1796  *	@tlsdev_ops:	Transport Layer Security offload operations
1797  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1798  *			of Layer 2 headers.
1799  *
1800  *	@flags:		Interface flags (a la BSD)
1801  *	@priv_flags:	Like 'flags' but invisible to userspace,
1802  *			see if.h for the definitions
1803  *	@gflags:	Global flags ( kept as legacy )
1804  *	@padded:	How much padding added by alloc_netdev()
1805  *	@operstate:	RFC2863 operstate
1806  *	@link_mode:	Mapping policy to operstate
1807  *	@if_port:	Selectable AUI, TP, ...
1808  *	@dma:		DMA channel
1809  *	@mtu:		Interface MTU value
1810  *	@min_mtu:	Interface Minimum MTU value
1811  *	@max_mtu:	Interface Maximum MTU value
1812  *	@type:		Interface hardware type
1813  *	@hard_header_len: Maximum hardware header length.
1814  *	@min_header_len:  Minimum hardware header length
1815  *
1816  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1817  *			  cases can this be guaranteed
1818  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1819  *			  cases can this be guaranteed. Some cases also use
1820  *			  LL_MAX_HEADER instead to allocate the skb
1821  *
1822  *	interface address info:
1823  *
1824  * 	@perm_addr:		Permanent hw address
1825  * 	@addr_assign_type:	Hw address assignment type
1826  * 	@addr_len:		Hardware address length
1827  *	@upper_level:		Maximum depth level of upper devices.
1828  *	@lower_level:		Maximum depth level of lower devices.
1829  *	@neigh_priv_len:	Used in neigh_alloc()
1830  * 	@dev_id:		Used to differentiate devices that share
1831  * 				the same link layer address
1832  * 	@dev_port:		Used to differentiate devices that share
1833  * 				the same function
1834  *	@addr_list_lock:	XXX: need comments on this one
1835  *	@name_assign_type:	network interface name assignment type
1836  *	@uc_promisc:		Counter that indicates promiscuous mode
1837  *				has been enabled due to the need to listen to
1838  *				additional unicast addresses in a device that
1839  *				does not implement ndo_set_rx_mode()
1840  *	@uc:			unicast mac addresses
1841  *	@mc:			multicast mac addresses
1842  *	@dev_addrs:		list of device hw addresses
1843  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1844  *	@promiscuity:		Number of times the NIC is told to work in
1845  *				promiscuous mode; if it becomes 0 the NIC will
1846  *				exit promiscuous mode
1847  *	@allmulti:		Counter, enables or disables allmulticast mode
1848  *
1849  *	@vlan_info:	VLAN info
1850  *	@dsa_ptr:	dsa specific data
1851  *	@tipc_ptr:	TIPC specific data
1852  *	@atalk_ptr:	AppleTalk link
1853  *	@ip_ptr:	IPv4 specific data
1854  *	@ip6_ptr:	IPv6 specific data
1855  *	@ax25_ptr:	AX.25 specific data
1856  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1857  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1858  *			 device struct
1859  *	@mpls_ptr:	mpls_dev struct pointer
1860  *	@mctp_ptr:	MCTP specific data
1861  *
1862  *	@dev_addr:	Hw address (before bcast,
1863  *			because most packets are unicast)
1864  *
1865  *	@_rx:			Array of RX queues
1866  *	@num_rx_queues:		Number of RX queues
1867  *				allocated at register_netdev() time
1868  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1869  *	@xdp_prog:		XDP sockets filter program pointer
1870  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1871  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1872  *				allow to avoid NIC hard IRQ, on busy queues.
1873  *
1874  *	@rx_handler:		handler for received packets
1875  *	@rx_handler_data: 	XXX: need comments on this one
1876  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1877  *				ingress processing
1878  *	@ingress_queue:		XXX: need comments on this one
1879  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1880  *	@broadcast:		hw bcast address
1881  *
1882  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1883  *			indexed by RX queue number. Assigned by driver.
1884  *			This must only be set if the ndo_rx_flow_steer
1885  *			operation is defined
1886  *	@index_hlist:		Device index hash chain
1887  *
1888  *	@_tx:			Array of TX queues
1889  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1890  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1891  *	@qdisc:			Root qdisc from userspace point of view
1892  *	@tx_queue_len:		Max frames per queue allowed
1893  *	@tx_global_lock: 	XXX: need comments on this one
1894  *	@xdp_bulkq:		XDP device bulk queue
1895  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1896  *
1897  *	@xps_maps:	XXX: need comments on this one
1898  *	@miniq_egress:		clsact qdisc specific data for
1899  *				egress processing
1900  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1901  *	@qdisc_hash:		qdisc hash table
1902  *	@watchdog_timeo:	Represents the timeout that is used by
1903  *				the watchdog (see dev_watchdog())
1904  *	@watchdog_timer:	List of timers
1905  *
1906  *	@proto_down_reason:	reason a netdev interface is held down
1907  *	@pcpu_refcnt:		Number of references to this device
1908  *	@dev_refcnt:		Number of references to this device
1909  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1910  *	@todo_list:		Delayed register/unregister
1911  *	@link_watch_list:	XXX: need comments on this one
1912  *
1913  *	@reg_state:		Register/unregister state machine
1914  *	@dismantle:		Device is going to be freed
1915  *	@rtnl_link_state:	This enum represents the phases of creating
1916  *				a new link
1917  *
1918  *	@needs_free_netdev:	Should unregister perform free_netdev?
1919  *	@priv_destructor:	Called from unregister
1920  *	@npinfo:		XXX: need comments on this one
1921  * 	@nd_net:		Network namespace this network device is inside
1922  *
1923  * 	@ml_priv:	Mid-layer private
1924  *	@ml_priv_type:  Mid-layer private type
1925  * 	@lstats:	Loopback statistics
1926  * 	@tstats:	Tunnel statistics
1927  * 	@dstats:	Dummy statistics
1928  * 	@vstats:	Virtual ethernet statistics
1929  *
1930  *	@garp_port:	GARP
1931  *	@mrp_port:	MRP
1932  *
1933  *	@dm_private:	Drop monitor private
1934  *
1935  *	@dev:		Class/net/name entry
1936  *	@sysfs_groups:	Space for optional device, statistics and wireless
1937  *			sysfs groups
1938  *
1939  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1940  *	@rtnl_link_ops:	Rtnl_link_ops
1941  *
1942  *	@gso_max_size:	Maximum size of generic segmentation offload
1943  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1944  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1945  *			NIC for GSO
1946  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1947  *
1948  *	@dcbnl_ops:	Data Center Bridging netlink ops
1949  *	@num_tc:	Number of traffic classes in the net device
1950  *	@tc_to_txq:	XXX: need comments on this one
1951  *	@prio_tc_map:	XXX: need comments on this one
1952  *
1953  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1954  *
1955  *	@priomap:	XXX: need comments on this one
1956  *	@phydev:	Physical device may attach itself
1957  *			for hardware timestamping
1958  *	@sfp_bus:	attached &struct sfp_bus structure.
1959  *
1960  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1961  *
1962  *	@proto_down:	protocol port state information can be sent to the
1963  *			switch driver and used to set the phys state of the
1964  *			switch port.
1965  *
1966  *	@wol_enabled:	Wake-on-LAN is enabled
1967  *
1968  *	@threaded:	napi threaded mode is enabled
1969  *
1970  *	@net_notifier_list:	List of per-net netdev notifier block
1971  *				that follow this device when it is moved
1972  *				to another network namespace.
1973  *
1974  *	@macsec_ops:    MACsec offloading ops
1975  *
1976  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1977  *				offload capabilities of the device
1978  *	@udp_tunnel_nic:	UDP tunnel offload state
1979  *	@xdp_state:		stores info on attached XDP BPF programs
1980  *
1981  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1982  *			dev->addr_list_lock.
1983  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1984  *			keep a list of interfaces to be deleted.
1985  *	@gro_max_size:	Maximum size of aggregated packet in generic
1986  *			receive offload (GRO)
1987  *
1988  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1989  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1990  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1991  *	@dev_registered_tracker:	tracker for reference held while
1992  *					registered
1993  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1994  *
1995  *	@devlink_port:	Pointer to related devlink port structure.
1996  *			Assigned by a driver before netdev registration using
1997  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
1998  *			during the time netdevice is registered.
1999  *
2000  *	FIXME: cleanup struct net_device such that network protocol info
2001  *	moves out.
2002  */
2003 
2004 struct net_device {
2005 	char			name[IFNAMSIZ];
2006 	struct netdev_name_node	*name_node;
2007 	struct dev_ifalias	__rcu *ifalias;
2008 	/*
2009 	 *	I/O specific fields
2010 	 *	FIXME: Merge these and struct ifmap into one
2011 	 */
2012 	unsigned long		mem_end;
2013 	unsigned long		mem_start;
2014 	unsigned long		base_addr;
2015 
2016 	/*
2017 	 *	Some hardware also needs these fields (state,dev_list,
2018 	 *	napi_list,unreg_list,close_list) but they are not
2019 	 *	part of the usual set specified in Space.c.
2020 	 */
2021 
2022 	unsigned long		state;
2023 
2024 	struct list_head	dev_list;
2025 	struct list_head	napi_list;
2026 	struct list_head	unreg_list;
2027 	struct list_head	close_list;
2028 	struct list_head	ptype_all;
2029 	struct list_head	ptype_specific;
2030 
2031 	struct {
2032 		struct list_head upper;
2033 		struct list_head lower;
2034 	} adj_list;
2035 
2036 	/* Read-mostly cache-line for fast-path access */
2037 	unsigned int		flags;
2038 	unsigned long long	priv_flags;
2039 	const struct net_device_ops *netdev_ops;
2040 	int			ifindex;
2041 	unsigned short		gflags;
2042 	unsigned short		hard_header_len;
2043 
2044 	/* Note : dev->mtu is often read without holding a lock.
2045 	 * Writers usually hold RTNL.
2046 	 * It is recommended to use READ_ONCE() to annotate the reads,
2047 	 * and to use WRITE_ONCE() to annotate the writes.
2048 	 */
2049 	unsigned int		mtu;
2050 	unsigned short		needed_headroom;
2051 	unsigned short		needed_tailroom;
2052 
2053 	netdev_features_t	features;
2054 	netdev_features_t	hw_features;
2055 	netdev_features_t	wanted_features;
2056 	netdev_features_t	vlan_features;
2057 	netdev_features_t	hw_enc_features;
2058 	netdev_features_t	mpls_features;
2059 	netdev_features_t	gso_partial_features;
2060 
2061 	unsigned int		min_mtu;
2062 	unsigned int		max_mtu;
2063 	unsigned short		type;
2064 	unsigned char		min_header_len;
2065 	unsigned char		name_assign_type;
2066 
2067 	int			group;
2068 
2069 	struct net_device_stats	stats; /* not used by modern drivers */
2070 
2071 	struct net_device_core_stats __percpu *core_stats;
2072 
2073 	/* Stats to monitor link on/off, flapping */
2074 	atomic_t		carrier_up_count;
2075 	atomic_t		carrier_down_count;
2076 
2077 #ifdef CONFIG_WIRELESS_EXT
2078 	const struct iw_handler_def *wireless_handlers;
2079 	struct iw_public_data	*wireless_data;
2080 #endif
2081 	const struct ethtool_ops *ethtool_ops;
2082 #ifdef CONFIG_NET_L3_MASTER_DEV
2083 	const struct l3mdev_ops	*l3mdev_ops;
2084 #endif
2085 #if IS_ENABLED(CONFIG_IPV6)
2086 	const struct ndisc_ops *ndisc_ops;
2087 #endif
2088 
2089 #ifdef CONFIG_XFRM_OFFLOAD
2090 	const struct xfrmdev_ops *xfrmdev_ops;
2091 #endif
2092 
2093 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2094 	const struct tlsdev_ops *tlsdev_ops;
2095 #endif
2096 
2097 	const struct header_ops *header_ops;
2098 
2099 	unsigned char		operstate;
2100 	unsigned char		link_mode;
2101 
2102 	unsigned char		if_port;
2103 	unsigned char		dma;
2104 
2105 	/* Interface address info. */
2106 	unsigned char		perm_addr[MAX_ADDR_LEN];
2107 	unsigned char		addr_assign_type;
2108 	unsigned char		addr_len;
2109 	unsigned char		upper_level;
2110 	unsigned char		lower_level;
2111 
2112 	unsigned short		neigh_priv_len;
2113 	unsigned short          dev_id;
2114 	unsigned short          dev_port;
2115 	unsigned short		padded;
2116 
2117 	spinlock_t		addr_list_lock;
2118 	int			irq;
2119 
2120 	struct netdev_hw_addr_list	uc;
2121 	struct netdev_hw_addr_list	mc;
2122 	struct netdev_hw_addr_list	dev_addrs;
2123 
2124 #ifdef CONFIG_SYSFS
2125 	struct kset		*queues_kset;
2126 #endif
2127 #ifdef CONFIG_LOCKDEP
2128 	struct list_head	unlink_list;
2129 #endif
2130 	unsigned int		promiscuity;
2131 	unsigned int		allmulti;
2132 	bool			uc_promisc;
2133 #ifdef CONFIG_LOCKDEP
2134 	unsigned char		nested_level;
2135 #endif
2136 
2137 
2138 	/* Protocol-specific pointers */
2139 
2140 	struct in_device __rcu	*ip_ptr;
2141 	struct inet6_dev __rcu	*ip6_ptr;
2142 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2143 	struct vlan_info __rcu	*vlan_info;
2144 #endif
2145 #if IS_ENABLED(CONFIG_NET_DSA)
2146 	struct dsa_port		*dsa_ptr;
2147 #endif
2148 #if IS_ENABLED(CONFIG_TIPC)
2149 	struct tipc_bearer __rcu *tipc_ptr;
2150 #endif
2151 #if IS_ENABLED(CONFIG_ATALK)
2152 	void 			*atalk_ptr;
2153 #endif
2154 #if IS_ENABLED(CONFIG_AX25)
2155 	void			*ax25_ptr;
2156 #endif
2157 #if IS_ENABLED(CONFIG_CFG80211)
2158 	struct wireless_dev	*ieee80211_ptr;
2159 #endif
2160 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2161 	struct wpan_dev		*ieee802154_ptr;
2162 #endif
2163 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2164 	struct mpls_dev __rcu	*mpls_ptr;
2165 #endif
2166 #if IS_ENABLED(CONFIG_MCTP)
2167 	struct mctp_dev __rcu	*mctp_ptr;
2168 #endif
2169 
2170 /*
2171  * Cache lines mostly used on receive path (including eth_type_trans())
2172  */
2173 	/* Interface address info used in eth_type_trans() */
2174 	const unsigned char	*dev_addr;
2175 
2176 	struct netdev_rx_queue	*_rx;
2177 	unsigned int		num_rx_queues;
2178 	unsigned int		real_num_rx_queues;
2179 
2180 	struct bpf_prog __rcu	*xdp_prog;
2181 	unsigned long		gro_flush_timeout;
2182 	int			napi_defer_hard_irqs;
2183 #define GRO_LEGACY_MAX_SIZE	65536u
2184 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2185  * and shinfo->gso_segs is a 16bit field.
2186  */
2187 #define GRO_MAX_SIZE		(8 * 65535u)
2188 	unsigned int		gro_max_size;
2189 	rx_handler_func_t __rcu	*rx_handler;
2190 	void __rcu		*rx_handler_data;
2191 
2192 #ifdef CONFIG_NET_CLS_ACT
2193 	struct mini_Qdisc __rcu	*miniq_ingress;
2194 #endif
2195 	struct netdev_queue __rcu *ingress_queue;
2196 #ifdef CONFIG_NETFILTER_INGRESS
2197 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2198 #endif
2199 
2200 	unsigned char		broadcast[MAX_ADDR_LEN];
2201 #ifdef CONFIG_RFS_ACCEL
2202 	struct cpu_rmap		*rx_cpu_rmap;
2203 #endif
2204 	struct hlist_node	index_hlist;
2205 
2206 /*
2207  * Cache lines mostly used on transmit path
2208  */
2209 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2210 	unsigned int		num_tx_queues;
2211 	unsigned int		real_num_tx_queues;
2212 	struct Qdisc __rcu	*qdisc;
2213 	unsigned int		tx_queue_len;
2214 	spinlock_t		tx_global_lock;
2215 
2216 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2217 
2218 #ifdef CONFIG_XPS
2219 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2220 #endif
2221 #ifdef CONFIG_NET_CLS_ACT
2222 	struct mini_Qdisc __rcu	*miniq_egress;
2223 #endif
2224 #ifdef CONFIG_NETFILTER_EGRESS
2225 	struct nf_hook_entries __rcu *nf_hooks_egress;
2226 #endif
2227 
2228 #ifdef CONFIG_NET_SCHED
2229 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2230 #endif
2231 	/* These may be needed for future network-power-down code. */
2232 	struct timer_list	watchdog_timer;
2233 	int			watchdog_timeo;
2234 
2235 	u32                     proto_down_reason;
2236 
2237 	struct list_head	todo_list;
2238 
2239 #ifdef CONFIG_PCPU_DEV_REFCNT
2240 	int __percpu		*pcpu_refcnt;
2241 #else
2242 	refcount_t		dev_refcnt;
2243 #endif
2244 	struct ref_tracker_dir	refcnt_tracker;
2245 
2246 	struct list_head	link_watch_list;
2247 
2248 	enum { NETREG_UNINITIALIZED=0,
2249 	       NETREG_REGISTERED,	/* completed register_netdevice */
2250 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2251 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2252 	       NETREG_RELEASED,		/* called free_netdev */
2253 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2254 	} reg_state:8;
2255 
2256 	bool dismantle;
2257 
2258 	enum {
2259 		RTNL_LINK_INITIALIZED,
2260 		RTNL_LINK_INITIALIZING,
2261 	} rtnl_link_state:16;
2262 
2263 	bool needs_free_netdev;
2264 	void (*priv_destructor)(struct net_device *dev);
2265 
2266 #ifdef CONFIG_NETPOLL
2267 	struct netpoll_info __rcu	*npinfo;
2268 #endif
2269 
2270 	possible_net_t			nd_net;
2271 
2272 	/* mid-layer private */
2273 	void				*ml_priv;
2274 	enum netdev_ml_priv_type	ml_priv_type;
2275 
2276 	union {
2277 		struct pcpu_lstats __percpu		*lstats;
2278 		struct pcpu_sw_netstats __percpu	*tstats;
2279 		struct pcpu_dstats __percpu		*dstats;
2280 	};
2281 
2282 #if IS_ENABLED(CONFIG_GARP)
2283 	struct garp_port __rcu	*garp_port;
2284 #endif
2285 #if IS_ENABLED(CONFIG_MRP)
2286 	struct mrp_port __rcu	*mrp_port;
2287 #endif
2288 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2289 	struct dm_hw_stat_delta __rcu *dm_private;
2290 #endif
2291 	struct device		dev;
2292 	const struct attribute_group *sysfs_groups[4];
2293 	const struct attribute_group *sysfs_rx_queue_group;
2294 
2295 	const struct rtnl_link_ops *rtnl_link_ops;
2296 
2297 	/* for setting kernel sock attribute on TCP connection setup */
2298 #define GSO_MAX_SEGS		65535u
2299 #define GSO_LEGACY_MAX_SIZE	65536u
2300 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2301  * and shinfo->gso_segs is a 16bit field.
2302  */
2303 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2304 
2305 	unsigned int		gso_max_size;
2306 #define TSO_LEGACY_MAX_SIZE	65536
2307 #define TSO_MAX_SIZE		UINT_MAX
2308 	unsigned int		tso_max_size;
2309 	u16			gso_max_segs;
2310 #define TSO_MAX_SEGS		U16_MAX
2311 	u16			tso_max_segs;
2312 
2313 #ifdef CONFIG_DCB
2314 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2315 #endif
2316 	s16			num_tc;
2317 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2318 	u8			prio_tc_map[TC_BITMASK + 1];
2319 
2320 #if IS_ENABLED(CONFIG_FCOE)
2321 	unsigned int		fcoe_ddp_xid;
2322 #endif
2323 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2324 	struct netprio_map __rcu *priomap;
2325 #endif
2326 	struct phy_device	*phydev;
2327 	struct sfp_bus		*sfp_bus;
2328 	struct lock_class_key	*qdisc_tx_busylock;
2329 	bool			proto_down;
2330 	unsigned		wol_enabled:1;
2331 	unsigned		threaded:1;
2332 
2333 	struct list_head	net_notifier_list;
2334 
2335 #if IS_ENABLED(CONFIG_MACSEC)
2336 	/* MACsec management functions */
2337 	const struct macsec_ops *macsec_ops;
2338 #endif
2339 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2340 	struct udp_tunnel_nic	*udp_tunnel_nic;
2341 
2342 	/* protected by rtnl_lock */
2343 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2344 
2345 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2346 	netdevice_tracker	linkwatch_dev_tracker;
2347 	netdevice_tracker	watchdog_dev_tracker;
2348 	netdevice_tracker	dev_registered_tracker;
2349 	struct rtnl_hw_stats64	*offload_xstats_l3;
2350 
2351 	struct devlink_port	*devlink_port;
2352 };
2353 #define to_net_dev(d) container_of(d, struct net_device, dev)
2354 
2355 /*
2356  * Driver should use this to assign devlink port instance to a netdevice
2357  * before it registers the netdevice. Therefore devlink_port is static
2358  * during the netdev lifetime after it is registered.
2359  */
2360 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2361 ({								\
2362 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2363 	((dev)->devlink_port = (port));				\
2364 })
2365 
2366 static inline bool netif_elide_gro(const struct net_device *dev)
2367 {
2368 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2369 		return true;
2370 	return false;
2371 }
2372 
2373 #define	NETDEV_ALIGN		32
2374 
2375 static inline
2376 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2377 {
2378 	return dev->prio_tc_map[prio & TC_BITMASK];
2379 }
2380 
2381 static inline
2382 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2383 {
2384 	if (tc >= dev->num_tc)
2385 		return -EINVAL;
2386 
2387 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2388 	return 0;
2389 }
2390 
2391 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2392 void netdev_reset_tc(struct net_device *dev);
2393 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2395 
2396 static inline
2397 int netdev_get_num_tc(struct net_device *dev)
2398 {
2399 	return dev->num_tc;
2400 }
2401 
2402 static inline void net_prefetch(void *p)
2403 {
2404 	prefetch(p);
2405 #if L1_CACHE_BYTES < 128
2406 	prefetch((u8 *)p + L1_CACHE_BYTES);
2407 #endif
2408 }
2409 
2410 static inline void net_prefetchw(void *p)
2411 {
2412 	prefetchw(p);
2413 #if L1_CACHE_BYTES < 128
2414 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2415 #endif
2416 }
2417 
2418 void netdev_unbind_sb_channel(struct net_device *dev,
2419 			      struct net_device *sb_dev);
2420 int netdev_bind_sb_channel_queue(struct net_device *dev,
2421 				 struct net_device *sb_dev,
2422 				 u8 tc, u16 count, u16 offset);
2423 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2424 static inline int netdev_get_sb_channel(struct net_device *dev)
2425 {
2426 	return max_t(int, -dev->num_tc, 0);
2427 }
2428 
2429 static inline
2430 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2431 					 unsigned int index)
2432 {
2433 	return &dev->_tx[index];
2434 }
2435 
2436 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2437 						    const struct sk_buff *skb)
2438 {
2439 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2440 }
2441 
2442 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2443 					    void (*f)(struct net_device *,
2444 						      struct netdev_queue *,
2445 						      void *),
2446 					    void *arg)
2447 {
2448 	unsigned int i;
2449 
2450 	for (i = 0; i < dev->num_tx_queues; i++)
2451 		f(dev, &dev->_tx[i], arg);
2452 }
2453 
2454 #define netdev_lockdep_set_classes(dev)				\
2455 {								\
2456 	static struct lock_class_key qdisc_tx_busylock_key;	\
2457 	static struct lock_class_key qdisc_xmit_lock_key;	\
2458 	static struct lock_class_key dev_addr_list_lock_key;	\
2459 	unsigned int i;						\
2460 								\
2461 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2462 	lockdep_set_class(&(dev)->addr_list_lock,		\
2463 			  &dev_addr_list_lock_key);		\
2464 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2465 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2466 				  &qdisc_xmit_lock_key);	\
2467 }
2468 
2469 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2470 		     struct net_device *sb_dev);
2471 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2472 					 struct sk_buff *skb,
2473 					 struct net_device *sb_dev);
2474 
2475 /* returns the headroom that the master device needs to take in account
2476  * when forwarding to this dev
2477  */
2478 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2479 {
2480 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2481 }
2482 
2483 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2484 {
2485 	if (dev->netdev_ops->ndo_set_rx_headroom)
2486 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2487 }
2488 
2489 /* set the device rx headroom to the dev's default */
2490 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2491 {
2492 	netdev_set_rx_headroom(dev, -1);
2493 }
2494 
2495 static inline void *netdev_get_ml_priv(struct net_device *dev,
2496 				       enum netdev_ml_priv_type type)
2497 {
2498 	if (dev->ml_priv_type != type)
2499 		return NULL;
2500 
2501 	return dev->ml_priv;
2502 }
2503 
2504 static inline void netdev_set_ml_priv(struct net_device *dev,
2505 				      void *ml_priv,
2506 				      enum netdev_ml_priv_type type)
2507 {
2508 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2509 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2510 	     dev->ml_priv_type, type);
2511 	WARN(!dev->ml_priv_type && dev->ml_priv,
2512 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2513 
2514 	dev->ml_priv = ml_priv;
2515 	dev->ml_priv_type = type;
2516 }
2517 
2518 /*
2519  * Net namespace inlines
2520  */
2521 static inline
2522 struct net *dev_net(const struct net_device *dev)
2523 {
2524 	return read_pnet(&dev->nd_net);
2525 }
2526 
2527 static inline
2528 void dev_net_set(struct net_device *dev, struct net *net)
2529 {
2530 	write_pnet(&dev->nd_net, net);
2531 }
2532 
2533 /**
2534  *	netdev_priv - access network device private data
2535  *	@dev: network device
2536  *
2537  * Get network device private data
2538  */
2539 static inline void *netdev_priv(const struct net_device *dev)
2540 {
2541 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2542 }
2543 
2544 /* Set the sysfs physical device reference for the network logical device
2545  * if set prior to registration will cause a symlink during initialization.
2546  */
2547 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2548 
2549 /* Set the sysfs device type for the network logical device to allow
2550  * fine-grained identification of different network device types. For
2551  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2552  */
2553 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2554 
2555 /* Default NAPI poll() weight
2556  * Device drivers are strongly advised to not use bigger value
2557  */
2558 #define NAPI_POLL_WEIGHT 64
2559 
2560 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2561 			   int (*poll)(struct napi_struct *, int), int weight);
2562 
2563 /**
2564  * netif_napi_add() - initialize a NAPI context
2565  * @dev:  network device
2566  * @napi: NAPI context
2567  * @poll: polling function
2568  *
2569  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2570  * *any* of the other NAPI-related functions.
2571  */
2572 static inline void
2573 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2574 	       int (*poll)(struct napi_struct *, int))
2575 {
2576 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2577 }
2578 
2579 static inline void
2580 netif_napi_add_tx_weight(struct net_device *dev,
2581 			 struct napi_struct *napi,
2582 			 int (*poll)(struct napi_struct *, int),
2583 			 int weight)
2584 {
2585 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2586 	netif_napi_add_weight(dev, napi, poll, weight);
2587 }
2588 
2589 /**
2590  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2591  * @dev:  network device
2592  * @napi: NAPI context
2593  * @poll: polling function
2594  *
2595  * This variant of netif_napi_add() should be used from drivers using NAPI
2596  * to exclusively poll a TX queue.
2597  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2598  */
2599 static inline void netif_napi_add_tx(struct net_device *dev,
2600 				     struct napi_struct *napi,
2601 				     int (*poll)(struct napi_struct *, int))
2602 {
2603 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2604 }
2605 
2606 /**
2607  *  __netif_napi_del - remove a NAPI context
2608  *  @napi: NAPI context
2609  *
2610  * Warning: caller must observe RCU grace period before freeing memory
2611  * containing @napi. Drivers might want to call this helper to combine
2612  * all the needed RCU grace periods into a single one.
2613  */
2614 void __netif_napi_del(struct napi_struct *napi);
2615 
2616 /**
2617  *  netif_napi_del - remove a NAPI context
2618  *  @napi: NAPI context
2619  *
2620  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2621  */
2622 static inline void netif_napi_del(struct napi_struct *napi)
2623 {
2624 	__netif_napi_del(napi);
2625 	synchronize_net();
2626 }
2627 
2628 struct packet_type {
2629 	__be16			type;	/* This is really htons(ether_type). */
2630 	bool			ignore_outgoing;
2631 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2632 	netdevice_tracker	dev_tracker;
2633 	int			(*func) (struct sk_buff *,
2634 					 struct net_device *,
2635 					 struct packet_type *,
2636 					 struct net_device *);
2637 	void			(*list_func) (struct list_head *,
2638 					      struct packet_type *,
2639 					      struct net_device *);
2640 	bool			(*id_match)(struct packet_type *ptype,
2641 					    struct sock *sk);
2642 	struct net		*af_packet_net;
2643 	void			*af_packet_priv;
2644 	struct list_head	list;
2645 };
2646 
2647 struct offload_callbacks {
2648 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2649 						netdev_features_t features);
2650 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2651 						struct sk_buff *skb);
2652 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2653 };
2654 
2655 struct packet_offload {
2656 	__be16			 type;	/* This is really htons(ether_type). */
2657 	u16			 priority;
2658 	struct offload_callbacks callbacks;
2659 	struct list_head	 list;
2660 };
2661 
2662 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2663 struct pcpu_sw_netstats {
2664 	u64_stats_t		rx_packets;
2665 	u64_stats_t		rx_bytes;
2666 	u64_stats_t		tx_packets;
2667 	u64_stats_t		tx_bytes;
2668 	struct u64_stats_sync   syncp;
2669 } __aligned(4 * sizeof(u64));
2670 
2671 struct pcpu_lstats {
2672 	u64_stats_t packets;
2673 	u64_stats_t bytes;
2674 	struct u64_stats_sync syncp;
2675 } __aligned(2 * sizeof(u64));
2676 
2677 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2678 
2679 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2680 {
2681 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2682 
2683 	u64_stats_update_begin(&tstats->syncp);
2684 	u64_stats_add(&tstats->rx_bytes, len);
2685 	u64_stats_inc(&tstats->rx_packets);
2686 	u64_stats_update_end(&tstats->syncp);
2687 }
2688 
2689 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2690 					  unsigned int packets,
2691 					  unsigned int len)
2692 {
2693 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2694 
2695 	u64_stats_update_begin(&tstats->syncp);
2696 	u64_stats_add(&tstats->tx_bytes, len);
2697 	u64_stats_add(&tstats->tx_packets, packets);
2698 	u64_stats_update_end(&tstats->syncp);
2699 }
2700 
2701 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2702 {
2703 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2704 
2705 	u64_stats_update_begin(&lstats->syncp);
2706 	u64_stats_add(&lstats->bytes, len);
2707 	u64_stats_inc(&lstats->packets);
2708 	u64_stats_update_end(&lstats->syncp);
2709 }
2710 
2711 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2712 ({									\
2713 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2714 	if (pcpu_stats)	{						\
2715 		int __cpu;						\
2716 		for_each_possible_cpu(__cpu) {				\
2717 			typeof(type) *stat;				\
2718 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2719 			u64_stats_init(&stat->syncp);			\
2720 		}							\
2721 	}								\
2722 	pcpu_stats;							\
2723 })
2724 
2725 #define netdev_alloc_pcpu_stats(type)					\
2726 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2727 
2728 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2729 ({									\
2730 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2731 	if (pcpu_stats) {						\
2732 		int __cpu;						\
2733 		for_each_possible_cpu(__cpu) {				\
2734 			typeof(type) *stat;				\
2735 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2736 			u64_stats_init(&stat->syncp);			\
2737 		}							\
2738 	}								\
2739 	pcpu_stats;							\
2740 })
2741 
2742 enum netdev_lag_tx_type {
2743 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2744 	NETDEV_LAG_TX_TYPE_RANDOM,
2745 	NETDEV_LAG_TX_TYPE_BROADCAST,
2746 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2747 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2748 	NETDEV_LAG_TX_TYPE_HASH,
2749 };
2750 
2751 enum netdev_lag_hash {
2752 	NETDEV_LAG_HASH_NONE,
2753 	NETDEV_LAG_HASH_L2,
2754 	NETDEV_LAG_HASH_L34,
2755 	NETDEV_LAG_HASH_L23,
2756 	NETDEV_LAG_HASH_E23,
2757 	NETDEV_LAG_HASH_E34,
2758 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2759 	NETDEV_LAG_HASH_UNKNOWN,
2760 };
2761 
2762 struct netdev_lag_upper_info {
2763 	enum netdev_lag_tx_type tx_type;
2764 	enum netdev_lag_hash hash_type;
2765 };
2766 
2767 struct netdev_lag_lower_state_info {
2768 	u8 link_up : 1,
2769 	   tx_enabled : 1;
2770 };
2771 
2772 #include <linux/notifier.h>
2773 
2774 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2775  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2776  * adding new types.
2777  */
2778 enum netdev_cmd {
2779 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2780 	NETDEV_DOWN,
2781 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2782 				   detected a hardware crash and restarted
2783 				   - we can use this eg to kick tcp sessions
2784 				   once done */
2785 	NETDEV_CHANGE,		/* Notify device state change */
2786 	NETDEV_REGISTER,
2787 	NETDEV_UNREGISTER,
2788 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2789 	NETDEV_CHANGEADDR,	/* notify after the address change */
2790 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2791 	NETDEV_GOING_DOWN,
2792 	NETDEV_CHANGENAME,
2793 	NETDEV_FEAT_CHANGE,
2794 	NETDEV_BONDING_FAILOVER,
2795 	NETDEV_PRE_UP,
2796 	NETDEV_PRE_TYPE_CHANGE,
2797 	NETDEV_POST_TYPE_CHANGE,
2798 	NETDEV_POST_INIT,
2799 	NETDEV_PRE_UNINIT,
2800 	NETDEV_RELEASE,
2801 	NETDEV_NOTIFY_PEERS,
2802 	NETDEV_JOIN,
2803 	NETDEV_CHANGEUPPER,
2804 	NETDEV_RESEND_IGMP,
2805 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2806 	NETDEV_CHANGEINFODATA,
2807 	NETDEV_BONDING_INFO,
2808 	NETDEV_PRECHANGEUPPER,
2809 	NETDEV_CHANGELOWERSTATE,
2810 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2811 	NETDEV_UDP_TUNNEL_DROP_INFO,
2812 	NETDEV_CHANGE_TX_QUEUE_LEN,
2813 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2814 	NETDEV_CVLAN_FILTER_DROP_INFO,
2815 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2816 	NETDEV_SVLAN_FILTER_DROP_INFO,
2817 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2818 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2819 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2820 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2821 };
2822 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2823 
2824 int register_netdevice_notifier(struct notifier_block *nb);
2825 int unregister_netdevice_notifier(struct notifier_block *nb);
2826 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2827 int unregister_netdevice_notifier_net(struct net *net,
2828 				      struct notifier_block *nb);
2829 void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
2830 				 struct notifier_block *nb);
2831 int register_netdevice_notifier_dev_net(struct net_device *dev,
2832 					struct notifier_block *nb,
2833 					struct netdev_net_notifier *nn);
2834 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2835 					  struct notifier_block *nb,
2836 					  struct netdev_net_notifier *nn);
2837 
2838 struct netdev_notifier_info {
2839 	struct net_device	*dev;
2840 	struct netlink_ext_ack	*extack;
2841 };
2842 
2843 struct netdev_notifier_info_ext {
2844 	struct netdev_notifier_info info; /* must be first */
2845 	union {
2846 		u32 mtu;
2847 	} ext;
2848 };
2849 
2850 struct netdev_notifier_change_info {
2851 	struct netdev_notifier_info info; /* must be first */
2852 	unsigned int flags_changed;
2853 };
2854 
2855 struct netdev_notifier_changeupper_info {
2856 	struct netdev_notifier_info info; /* must be first */
2857 	struct net_device *upper_dev; /* new upper dev */
2858 	bool master; /* is upper dev master */
2859 	bool linking; /* is the notification for link or unlink */
2860 	void *upper_info; /* upper dev info */
2861 };
2862 
2863 struct netdev_notifier_changelowerstate_info {
2864 	struct netdev_notifier_info info; /* must be first */
2865 	void *lower_state_info; /* is lower dev state */
2866 };
2867 
2868 struct netdev_notifier_pre_changeaddr_info {
2869 	struct netdev_notifier_info info; /* must be first */
2870 	const unsigned char *dev_addr;
2871 };
2872 
2873 enum netdev_offload_xstats_type {
2874 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2875 };
2876 
2877 struct netdev_notifier_offload_xstats_info {
2878 	struct netdev_notifier_info info; /* must be first */
2879 	enum netdev_offload_xstats_type type;
2880 
2881 	union {
2882 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2883 		struct netdev_notifier_offload_xstats_rd *report_delta;
2884 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2885 		struct netdev_notifier_offload_xstats_ru *report_used;
2886 	};
2887 };
2888 
2889 int netdev_offload_xstats_enable(struct net_device *dev,
2890 				 enum netdev_offload_xstats_type type,
2891 				 struct netlink_ext_ack *extack);
2892 int netdev_offload_xstats_disable(struct net_device *dev,
2893 				  enum netdev_offload_xstats_type type);
2894 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2895 				   enum netdev_offload_xstats_type type);
2896 int netdev_offload_xstats_get(struct net_device *dev,
2897 			      enum netdev_offload_xstats_type type,
2898 			      struct rtnl_hw_stats64 *stats, bool *used,
2899 			      struct netlink_ext_ack *extack);
2900 void
2901 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2902 				   const struct rtnl_hw_stats64 *stats);
2903 void
2904 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2905 void netdev_offload_xstats_push_delta(struct net_device *dev,
2906 				      enum netdev_offload_xstats_type type,
2907 				      const struct rtnl_hw_stats64 *stats);
2908 
2909 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2910 					     struct net_device *dev)
2911 {
2912 	info->dev = dev;
2913 	info->extack = NULL;
2914 }
2915 
2916 static inline struct net_device *
2917 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2918 {
2919 	return info->dev;
2920 }
2921 
2922 static inline struct netlink_ext_ack *
2923 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2924 {
2925 	return info->extack;
2926 }
2927 
2928 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2929 
2930 
2931 extern rwlock_t				dev_base_lock;		/* Device list lock */
2932 
2933 #define for_each_netdev(net, d)		\
2934 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2935 #define for_each_netdev_reverse(net, d)	\
2936 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2937 #define for_each_netdev_rcu(net, d)		\
2938 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2939 #define for_each_netdev_safe(net, d, n)	\
2940 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2941 #define for_each_netdev_continue(net, d)		\
2942 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2943 #define for_each_netdev_continue_reverse(net, d)		\
2944 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2945 						     dev_list)
2946 #define for_each_netdev_continue_rcu(net, d)		\
2947 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2948 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2949 		for_each_netdev_rcu(&init_net, slave)	\
2950 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2951 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2952 
2953 static inline struct net_device *next_net_device(struct net_device *dev)
2954 {
2955 	struct list_head *lh;
2956 	struct net *net;
2957 
2958 	net = dev_net(dev);
2959 	lh = dev->dev_list.next;
2960 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2961 }
2962 
2963 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2964 {
2965 	struct list_head *lh;
2966 	struct net *net;
2967 
2968 	net = dev_net(dev);
2969 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2970 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2971 }
2972 
2973 static inline struct net_device *first_net_device(struct net *net)
2974 {
2975 	return list_empty(&net->dev_base_head) ? NULL :
2976 		net_device_entry(net->dev_base_head.next);
2977 }
2978 
2979 static inline struct net_device *first_net_device_rcu(struct net *net)
2980 {
2981 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2982 
2983 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2984 }
2985 
2986 int netdev_boot_setup_check(struct net_device *dev);
2987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2988 				       const char *hwaddr);
2989 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2990 void dev_add_pack(struct packet_type *pt);
2991 void dev_remove_pack(struct packet_type *pt);
2992 void __dev_remove_pack(struct packet_type *pt);
2993 void dev_add_offload(struct packet_offload *po);
2994 void dev_remove_offload(struct packet_offload *po);
2995 
2996 int dev_get_iflink(const struct net_device *dev);
2997 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2998 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2999 			  struct net_device_path_stack *stack);
3000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3001 				      unsigned short mask);
3002 struct net_device *dev_get_by_name(struct net *net, const char *name);
3003 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3004 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3005 bool netdev_name_in_use(struct net *net, const char *name);
3006 int dev_alloc_name(struct net_device *dev, const char *name);
3007 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3008 void dev_close(struct net_device *dev);
3009 void dev_close_many(struct list_head *head, bool unlink);
3010 void dev_disable_lro(struct net_device *dev);
3011 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3012 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3013 		     struct net_device *sb_dev);
3014 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3015 		       struct net_device *sb_dev);
3016 
3017 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3018 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3019 
3020 static inline int dev_queue_xmit(struct sk_buff *skb)
3021 {
3022 	return __dev_queue_xmit(skb, NULL);
3023 }
3024 
3025 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3026 				       struct net_device *sb_dev)
3027 {
3028 	return __dev_queue_xmit(skb, sb_dev);
3029 }
3030 
3031 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3032 {
3033 	int ret;
3034 
3035 	ret = __dev_direct_xmit(skb, queue_id);
3036 	if (!dev_xmit_complete(ret))
3037 		kfree_skb(skb);
3038 	return ret;
3039 }
3040 
3041 int register_netdevice(struct net_device *dev);
3042 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3043 void unregister_netdevice_many(struct list_head *head);
3044 static inline void unregister_netdevice(struct net_device *dev)
3045 {
3046 	unregister_netdevice_queue(dev, NULL);
3047 }
3048 
3049 int netdev_refcnt_read(const struct net_device *dev);
3050 void free_netdev(struct net_device *dev);
3051 void netdev_freemem(struct net_device *dev);
3052 int init_dummy_netdev(struct net_device *dev);
3053 
3054 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3055 					 struct sk_buff *skb,
3056 					 bool all_slaves);
3057 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3058 					    struct sock *sk);
3059 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3060 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3061 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3062 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3063 int dev_restart(struct net_device *dev);
3064 
3065 
3066 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3067 				  unsigned short type,
3068 				  const void *daddr, const void *saddr,
3069 				  unsigned int len)
3070 {
3071 	if (!dev->header_ops || !dev->header_ops->create)
3072 		return 0;
3073 
3074 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3075 }
3076 
3077 static inline int dev_parse_header(const struct sk_buff *skb,
3078 				   unsigned char *haddr)
3079 {
3080 	const struct net_device *dev = skb->dev;
3081 
3082 	if (!dev->header_ops || !dev->header_ops->parse)
3083 		return 0;
3084 	return dev->header_ops->parse(skb, haddr);
3085 }
3086 
3087 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3088 {
3089 	const struct net_device *dev = skb->dev;
3090 
3091 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3092 		return 0;
3093 	return dev->header_ops->parse_protocol(skb);
3094 }
3095 
3096 /* ll_header must have at least hard_header_len allocated */
3097 static inline bool dev_validate_header(const struct net_device *dev,
3098 				       char *ll_header, int len)
3099 {
3100 	if (likely(len >= dev->hard_header_len))
3101 		return true;
3102 	if (len < dev->min_header_len)
3103 		return false;
3104 
3105 	if (capable(CAP_SYS_RAWIO)) {
3106 		memset(ll_header + len, 0, dev->hard_header_len - len);
3107 		return true;
3108 	}
3109 
3110 	if (dev->header_ops && dev->header_ops->validate)
3111 		return dev->header_ops->validate(ll_header, len);
3112 
3113 	return false;
3114 }
3115 
3116 static inline bool dev_has_header(const struct net_device *dev)
3117 {
3118 	return dev->header_ops && dev->header_ops->create;
3119 }
3120 
3121 /*
3122  * Incoming packets are placed on per-CPU queues
3123  */
3124 struct softnet_data {
3125 	struct list_head	poll_list;
3126 	struct sk_buff_head	process_queue;
3127 
3128 	/* stats */
3129 	unsigned int		processed;
3130 	unsigned int		time_squeeze;
3131 	unsigned int		received_rps;
3132 #ifdef CONFIG_RPS
3133 	struct softnet_data	*rps_ipi_list;
3134 #endif
3135 #ifdef CONFIG_NET_FLOW_LIMIT
3136 	struct sd_flow_limit __rcu *flow_limit;
3137 #endif
3138 	struct Qdisc		*output_queue;
3139 	struct Qdisc		**output_queue_tailp;
3140 	struct sk_buff		*completion_queue;
3141 #ifdef CONFIG_XFRM_OFFLOAD
3142 	struct sk_buff_head	xfrm_backlog;
3143 #endif
3144 	/* written and read only by owning cpu: */
3145 	struct {
3146 		u16 recursion;
3147 		u8  more;
3148 #ifdef CONFIG_NET_EGRESS
3149 		u8  skip_txqueue;
3150 #endif
3151 	} xmit;
3152 #ifdef CONFIG_RPS
3153 	/* input_queue_head should be written by cpu owning this struct,
3154 	 * and only read by other cpus. Worth using a cache line.
3155 	 */
3156 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3157 
3158 	/* Elements below can be accessed between CPUs for RPS/RFS */
3159 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3160 	struct softnet_data	*rps_ipi_next;
3161 	unsigned int		cpu;
3162 	unsigned int		input_queue_tail;
3163 #endif
3164 	unsigned int		dropped;
3165 	struct sk_buff_head	input_pkt_queue;
3166 	struct napi_struct	backlog;
3167 
3168 	/* Another possibly contended cache line */
3169 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3170 	int			defer_count;
3171 	int			defer_ipi_scheduled;
3172 	struct sk_buff		*defer_list;
3173 	call_single_data_t	defer_csd;
3174 };
3175 
3176 static inline void input_queue_head_incr(struct softnet_data *sd)
3177 {
3178 #ifdef CONFIG_RPS
3179 	sd->input_queue_head++;
3180 #endif
3181 }
3182 
3183 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3184 					      unsigned int *qtail)
3185 {
3186 #ifdef CONFIG_RPS
3187 	*qtail = ++sd->input_queue_tail;
3188 #endif
3189 }
3190 
3191 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3192 
3193 static inline int dev_recursion_level(void)
3194 {
3195 	return this_cpu_read(softnet_data.xmit.recursion);
3196 }
3197 
3198 #define XMIT_RECURSION_LIMIT	8
3199 static inline bool dev_xmit_recursion(void)
3200 {
3201 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3202 			XMIT_RECURSION_LIMIT);
3203 }
3204 
3205 static inline void dev_xmit_recursion_inc(void)
3206 {
3207 	__this_cpu_inc(softnet_data.xmit.recursion);
3208 }
3209 
3210 static inline void dev_xmit_recursion_dec(void)
3211 {
3212 	__this_cpu_dec(softnet_data.xmit.recursion);
3213 }
3214 
3215 void __netif_schedule(struct Qdisc *q);
3216 void netif_schedule_queue(struct netdev_queue *txq);
3217 
3218 static inline void netif_tx_schedule_all(struct net_device *dev)
3219 {
3220 	unsigned int i;
3221 
3222 	for (i = 0; i < dev->num_tx_queues; i++)
3223 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3224 }
3225 
3226 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3227 {
3228 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3229 }
3230 
3231 /**
3232  *	netif_start_queue - allow transmit
3233  *	@dev: network device
3234  *
3235  *	Allow upper layers to call the device hard_start_xmit routine.
3236  */
3237 static inline void netif_start_queue(struct net_device *dev)
3238 {
3239 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3240 }
3241 
3242 static inline void netif_tx_start_all_queues(struct net_device *dev)
3243 {
3244 	unsigned int i;
3245 
3246 	for (i = 0; i < dev->num_tx_queues; i++) {
3247 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3248 		netif_tx_start_queue(txq);
3249 	}
3250 }
3251 
3252 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3253 
3254 /**
3255  *	netif_wake_queue - restart transmit
3256  *	@dev: network device
3257  *
3258  *	Allow upper layers to call the device hard_start_xmit routine.
3259  *	Used for flow control when transmit resources are available.
3260  */
3261 static inline void netif_wake_queue(struct net_device *dev)
3262 {
3263 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3264 }
3265 
3266 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3267 {
3268 	unsigned int i;
3269 
3270 	for (i = 0; i < dev->num_tx_queues; i++) {
3271 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3272 		netif_tx_wake_queue(txq);
3273 	}
3274 }
3275 
3276 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3277 {
3278 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3279 }
3280 
3281 /**
3282  *	netif_stop_queue - stop transmitted packets
3283  *	@dev: network device
3284  *
3285  *	Stop upper layers calling the device hard_start_xmit routine.
3286  *	Used for flow control when transmit resources are unavailable.
3287  */
3288 static inline void netif_stop_queue(struct net_device *dev)
3289 {
3290 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3291 }
3292 
3293 void netif_tx_stop_all_queues(struct net_device *dev);
3294 
3295 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3296 {
3297 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3298 }
3299 
3300 /**
3301  *	netif_queue_stopped - test if transmit queue is flowblocked
3302  *	@dev: network device
3303  *
3304  *	Test if transmit queue on device is currently unable to send.
3305  */
3306 static inline bool netif_queue_stopped(const struct net_device *dev)
3307 {
3308 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3309 }
3310 
3311 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3312 {
3313 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3314 }
3315 
3316 static inline bool
3317 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3318 {
3319 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3320 }
3321 
3322 static inline bool
3323 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3324 {
3325 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3326 }
3327 
3328 /**
3329  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3330  *	@dev_queue: pointer to transmit queue
3331  *	@min_limit: dql minimum limit
3332  *
3333  * Forces xmit_more() to return true until the minimum threshold
3334  * defined by @min_limit is reached (or until the tx queue is
3335  * empty). Warning: to be use with care, misuse will impact the
3336  * latency.
3337  */
3338 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3339 						  unsigned int min_limit)
3340 {
3341 #ifdef CONFIG_BQL
3342 	dev_queue->dql.min_limit = min_limit;
3343 #endif
3344 }
3345 
3346 /**
3347  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3348  *	@dev_queue: pointer to transmit queue
3349  *
3350  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3351  * to give appropriate hint to the CPU.
3352  */
3353 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3354 {
3355 #ifdef CONFIG_BQL
3356 	prefetchw(&dev_queue->dql.num_queued);
3357 #endif
3358 }
3359 
3360 /**
3361  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3362  *	@dev_queue: pointer to transmit queue
3363  *
3364  * BQL enabled drivers might use this helper in their TX completion path,
3365  * to give appropriate hint to the CPU.
3366  */
3367 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3368 {
3369 #ifdef CONFIG_BQL
3370 	prefetchw(&dev_queue->dql.limit);
3371 #endif
3372 }
3373 
3374 /**
3375  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3376  *	@dev_queue: network device queue
3377  *	@bytes: number of bytes queued to the device queue
3378  *
3379  *	Report the number of bytes queued for sending/completion to the network
3380  *	device hardware queue. @bytes should be a good approximation and should
3381  *	exactly match netdev_completed_queue() @bytes.
3382  *	This is typically called once per packet, from ndo_start_xmit().
3383  */
3384 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3385 					unsigned int bytes)
3386 {
3387 #ifdef CONFIG_BQL
3388 	dql_queued(&dev_queue->dql, bytes);
3389 
3390 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3391 		return;
3392 
3393 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3394 
3395 	/*
3396 	 * The XOFF flag must be set before checking the dql_avail below,
3397 	 * because in netdev_tx_completed_queue we update the dql_completed
3398 	 * before checking the XOFF flag.
3399 	 */
3400 	smp_mb();
3401 
3402 	/* check again in case another CPU has just made room avail */
3403 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3404 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3405 #endif
3406 }
3407 
3408 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3409  * that they should not test BQL status themselves.
3410  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3411  * skb of a batch.
3412  * Returns true if the doorbell must be used to kick the NIC.
3413  */
3414 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3415 					  unsigned int bytes,
3416 					  bool xmit_more)
3417 {
3418 	if (xmit_more) {
3419 #ifdef CONFIG_BQL
3420 		dql_queued(&dev_queue->dql, bytes);
3421 #endif
3422 		return netif_tx_queue_stopped(dev_queue);
3423 	}
3424 	netdev_tx_sent_queue(dev_queue, bytes);
3425 	return true;
3426 }
3427 
3428 /**
3429  *	netdev_sent_queue - report the number of bytes queued to hardware
3430  *	@dev: network device
3431  *	@bytes: number of bytes queued to the hardware device queue
3432  *
3433  *	Report the number of bytes queued for sending/completion to the network
3434  *	device hardware queue#0. @bytes should be a good approximation and should
3435  *	exactly match netdev_completed_queue() @bytes.
3436  *	This is typically called once per packet, from ndo_start_xmit().
3437  */
3438 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3439 {
3440 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3441 }
3442 
3443 static inline bool __netdev_sent_queue(struct net_device *dev,
3444 				       unsigned int bytes,
3445 				       bool xmit_more)
3446 {
3447 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3448 				      xmit_more);
3449 }
3450 
3451 /**
3452  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3453  *	@dev_queue: network device queue
3454  *	@pkts: number of packets (currently ignored)
3455  *	@bytes: number of bytes dequeued from the device queue
3456  *
3457  *	Must be called at most once per TX completion round (and not per
3458  *	individual packet), so that BQL can adjust its limits appropriately.
3459  */
3460 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3461 					     unsigned int pkts, unsigned int bytes)
3462 {
3463 #ifdef CONFIG_BQL
3464 	if (unlikely(!bytes))
3465 		return;
3466 
3467 	dql_completed(&dev_queue->dql, bytes);
3468 
3469 	/*
3470 	 * Without the memory barrier there is a small possiblity that
3471 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3472 	 * be stopped forever
3473 	 */
3474 	smp_mb();
3475 
3476 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3477 		return;
3478 
3479 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3480 		netif_schedule_queue(dev_queue);
3481 #endif
3482 }
3483 
3484 /**
3485  * 	netdev_completed_queue - report bytes and packets completed by device
3486  * 	@dev: network device
3487  * 	@pkts: actual number of packets sent over the medium
3488  * 	@bytes: actual number of bytes sent over the medium
3489  *
3490  * 	Report the number of bytes and packets transmitted by the network device
3491  * 	hardware queue over the physical medium, @bytes must exactly match the
3492  * 	@bytes amount passed to netdev_sent_queue()
3493  */
3494 static inline void netdev_completed_queue(struct net_device *dev,
3495 					  unsigned int pkts, unsigned int bytes)
3496 {
3497 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3498 }
3499 
3500 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3501 {
3502 #ifdef CONFIG_BQL
3503 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3504 	dql_reset(&q->dql);
3505 #endif
3506 }
3507 
3508 /**
3509  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3510  * 	@dev_queue: network device
3511  *
3512  * 	Reset the bytes and packet count of a network device and clear the
3513  * 	software flow control OFF bit for this network device
3514  */
3515 static inline void netdev_reset_queue(struct net_device *dev_queue)
3516 {
3517 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3518 }
3519 
3520 /**
3521  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3522  * 	@dev: network device
3523  * 	@queue_index: given tx queue index
3524  *
3525  * 	Returns 0 if given tx queue index >= number of device tx queues,
3526  * 	otherwise returns the originally passed tx queue index.
3527  */
3528 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3529 {
3530 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3531 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3532 				     dev->name, queue_index,
3533 				     dev->real_num_tx_queues);
3534 		return 0;
3535 	}
3536 
3537 	return queue_index;
3538 }
3539 
3540 /**
3541  *	netif_running - test if up
3542  *	@dev: network device
3543  *
3544  *	Test if the device has been brought up.
3545  */
3546 static inline bool netif_running(const struct net_device *dev)
3547 {
3548 	return test_bit(__LINK_STATE_START, &dev->state);
3549 }
3550 
3551 /*
3552  * Routines to manage the subqueues on a device.  We only need start,
3553  * stop, and a check if it's stopped.  All other device management is
3554  * done at the overall netdevice level.
3555  * Also test the device if we're multiqueue.
3556  */
3557 
3558 /**
3559  *	netif_start_subqueue - allow sending packets on subqueue
3560  *	@dev: network device
3561  *	@queue_index: sub queue index
3562  *
3563  * Start individual transmit queue of a device with multiple transmit queues.
3564  */
3565 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3566 {
3567 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3568 
3569 	netif_tx_start_queue(txq);
3570 }
3571 
3572 /**
3573  *	netif_stop_subqueue - stop sending packets on subqueue
3574  *	@dev: network device
3575  *	@queue_index: sub queue index
3576  *
3577  * Stop individual transmit queue of a device with multiple transmit queues.
3578  */
3579 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3580 {
3581 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3582 	netif_tx_stop_queue(txq);
3583 }
3584 
3585 /**
3586  *	__netif_subqueue_stopped - test status of subqueue
3587  *	@dev: network device
3588  *	@queue_index: sub queue index
3589  *
3590  * Check individual transmit queue of a device with multiple transmit queues.
3591  */
3592 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3593 					    u16 queue_index)
3594 {
3595 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3596 
3597 	return netif_tx_queue_stopped(txq);
3598 }
3599 
3600 /**
3601  *	netif_subqueue_stopped - test status of subqueue
3602  *	@dev: network device
3603  *	@skb: sub queue buffer pointer
3604  *
3605  * Check individual transmit queue of a device with multiple transmit queues.
3606  */
3607 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3608 					  struct sk_buff *skb)
3609 {
3610 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3611 }
3612 
3613 /**
3614  *	netif_wake_subqueue - allow sending packets on subqueue
3615  *	@dev: network device
3616  *	@queue_index: sub queue index
3617  *
3618  * Resume individual transmit queue of a device with multiple transmit queues.
3619  */
3620 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3621 {
3622 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3623 
3624 	netif_tx_wake_queue(txq);
3625 }
3626 
3627 #ifdef CONFIG_XPS
3628 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3629 			u16 index);
3630 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3631 			  u16 index, enum xps_map_type type);
3632 
3633 /**
3634  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3635  *	@j: CPU/Rx queue index
3636  *	@mask: bitmask of all cpus/rx queues
3637  *	@nr_bits: number of bits in the bitmask
3638  *
3639  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3640  */
3641 static inline bool netif_attr_test_mask(unsigned long j,
3642 					const unsigned long *mask,
3643 					unsigned int nr_bits)
3644 {
3645 	cpu_max_bits_warn(j, nr_bits);
3646 	return test_bit(j, mask);
3647 }
3648 
3649 /**
3650  *	netif_attr_test_online - Test for online CPU/Rx queue
3651  *	@j: CPU/Rx queue index
3652  *	@online_mask: bitmask for CPUs/Rx queues that are online
3653  *	@nr_bits: number of bits in the bitmask
3654  *
3655  * Returns true if a CPU/Rx queue is online.
3656  */
3657 static inline bool netif_attr_test_online(unsigned long j,
3658 					  const unsigned long *online_mask,
3659 					  unsigned int nr_bits)
3660 {
3661 	cpu_max_bits_warn(j, nr_bits);
3662 
3663 	if (online_mask)
3664 		return test_bit(j, online_mask);
3665 
3666 	return (j < nr_bits);
3667 }
3668 
3669 /**
3670  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3671  *	@n: CPU/Rx queue index
3672  *	@srcp: the cpumask/Rx queue mask pointer
3673  *	@nr_bits: number of bits in the bitmask
3674  *
3675  * Returns >= nr_bits if no further CPUs/Rx queues set.
3676  */
3677 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3678 					       unsigned int nr_bits)
3679 {
3680 	/* -1 is a legal arg here. */
3681 	if (n != -1)
3682 		cpu_max_bits_warn(n, nr_bits);
3683 
3684 	if (srcp)
3685 		return find_next_bit(srcp, nr_bits, n + 1);
3686 
3687 	return n + 1;
3688 }
3689 
3690 /**
3691  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3692  *	@n: CPU/Rx queue index
3693  *	@src1p: the first CPUs/Rx queues mask pointer
3694  *	@src2p: the second CPUs/Rx queues mask pointer
3695  *	@nr_bits: number of bits in the bitmask
3696  *
3697  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3698  */
3699 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3700 					  const unsigned long *src2p,
3701 					  unsigned int nr_bits)
3702 {
3703 	/* -1 is a legal arg here. */
3704 	if (n != -1)
3705 		cpu_max_bits_warn(n, nr_bits);
3706 
3707 	if (src1p && src2p)
3708 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3709 	else if (src1p)
3710 		return find_next_bit(src1p, nr_bits, n + 1);
3711 	else if (src2p)
3712 		return find_next_bit(src2p, nr_bits, n + 1);
3713 
3714 	return n + 1;
3715 }
3716 #else
3717 static inline int netif_set_xps_queue(struct net_device *dev,
3718 				      const struct cpumask *mask,
3719 				      u16 index)
3720 {
3721 	return 0;
3722 }
3723 
3724 static inline int __netif_set_xps_queue(struct net_device *dev,
3725 					const unsigned long *mask,
3726 					u16 index, enum xps_map_type type)
3727 {
3728 	return 0;
3729 }
3730 #endif
3731 
3732 /**
3733  *	netif_is_multiqueue - test if device has multiple transmit queues
3734  *	@dev: network device
3735  *
3736  * Check if device has multiple transmit queues
3737  */
3738 static inline bool netif_is_multiqueue(const struct net_device *dev)
3739 {
3740 	return dev->num_tx_queues > 1;
3741 }
3742 
3743 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3744 
3745 #ifdef CONFIG_SYSFS
3746 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3747 #else
3748 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3749 						unsigned int rxqs)
3750 {
3751 	dev->real_num_rx_queues = rxqs;
3752 	return 0;
3753 }
3754 #endif
3755 int netif_set_real_num_queues(struct net_device *dev,
3756 			      unsigned int txq, unsigned int rxq);
3757 
3758 static inline struct netdev_rx_queue *
3759 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3760 {
3761 	return dev->_rx + rxq;
3762 }
3763 
3764 #ifdef CONFIG_SYSFS
3765 static inline unsigned int get_netdev_rx_queue_index(
3766 		struct netdev_rx_queue *queue)
3767 {
3768 	struct net_device *dev = queue->dev;
3769 	int index = queue - dev->_rx;
3770 
3771 	BUG_ON(index >= dev->num_rx_queues);
3772 	return index;
3773 }
3774 #endif
3775 
3776 int netif_get_num_default_rss_queues(void);
3777 
3778 enum skb_free_reason {
3779 	SKB_REASON_CONSUMED,
3780 	SKB_REASON_DROPPED,
3781 };
3782 
3783 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3784 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3785 
3786 /*
3787  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3788  * interrupt context or with hardware interrupts being disabled.
3789  * (in_hardirq() || irqs_disabled())
3790  *
3791  * We provide four helpers that can be used in following contexts :
3792  *
3793  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3794  *  replacing kfree_skb(skb)
3795  *
3796  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3797  *  Typically used in place of consume_skb(skb) in TX completion path
3798  *
3799  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3800  *  replacing kfree_skb(skb)
3801  *
3802  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3803  *  and consumed a packet. Used in place of consume_skb(skb)
3804  */
3805 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3806 {
3807 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3808 }
3809 
3810 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3811 {
3812 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3813 }
3814 
3815 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3816 {
3817 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3818 }
3819 
3820 static inline void dev_consume_skb_any(struct sk_buff *skb)
3821 {
3822 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3823 }
3824 
3825 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3826 			     struct bpf_prog *xdp_prog);
3827 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3828 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3829 int netif_rx(struct sk_buff *skb);
3830 int __netif_rx(struct sk_buff *skb);
3831 
3832 int netif_receive_skb(struct sk_buff *skb);
3833 int netif_receive_skb_core(struct sk_buff *skb);
3834 void netif_receive_skb_list_internal(struct list_head *head);
3835 void netif_receive_skb_list(struct list_head *head);
3836 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3837 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3838 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3839 void napi_get_frags_check(struct napi_struct *napi);
3840 gro_result_t napi_gro_frags(struct napi_struct *napi);
3841 struct packet_offload *gro_find_receive_by_type(__be16 type);
3842 struct packet_offload *gro_find_complete_by_type(__be16 type);
3843 
3844 static inline void napi_free_frags(struct napi_struct *napi)
3845 {
3846 	kfree_skb(napi->skb);
3847 	napi->skb = NULL;
3848 }
3849 
3850 bool netdev_is_rx_handler_busy(struct net_device *dev);
3851 int netdev_rx_handler_register(struct net_device *dev,
3852 			       rx_handler_func_t *rx_handler,
3853 			       void *rx_handler_data);
3854 void netdev_rx_handler_unregister(struct net_device *dev);
3855 
3856 bool dev_valid_name(const char *name);
3857 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3858 {
3859 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3860 }
3861 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3862 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3863 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3864 		void __user *data, bool *need_copyout);
3865 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3866 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3867 unsigned int dev_get_flags(const struct net_device *);
3868 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3869 		       struct netlink_ext_ack *extack);
3870 int dev_change_flags(struct net_device *dev, unsigned int flags,
3871 		     struct netlink_ext_ack *extack);
3872 int dev_set_alias(struct net_device *, const char *, size_t);
3873 int dev_get_alias(const struct net_device *, char *, size_t);
3874 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3875 			       const char *pat, int new_ifindex);
3876 static inline
3877 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3878 			     const char *pat)
3879 {
3880 	return __dev_change_net_namespace(dev, net, pat, 0);
3881 }
3882 int __dev_set_mtu(struct net_device *, int);
3883 int dev_set_mtu(struct net_device *, int);
3884 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3885 			      struct netlink_ext_ack *extack);
3886 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3887 			struct netlink_ext_ack *extack);
3888 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3889 			     struct netlink_ext_ack *extack);
3890 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3891 int dev_get_port_parent_id(struct net_device *dev,
3892 			   struct netdev_phys_item_id *ppid, bool recurse);
3893 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3894 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3895 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3896 				    struct netdev_queue *txq, int *ret);
3897 
3898 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3899 u8 dev_xdp_prog_count(struct net_device *dev);
3900 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3901 
3902 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3903 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3904 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3905 bool is_skb_forwardable(const struct net_device *dev,
3906 			const struct sk_buff *skb);
3907 
3908 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3909 						 const struct sk_buff *skb,
3910 						 const bool check_mtu)
3911 {
3912 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3913 	unsigned int len;
3914 
3915 	if (!(dev->flags & IFF_UP))
3916 		return false;
3917 
3918 	if (!check_mtu)
3919 		return true;
3920 
3921 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3922 	if (skb->len <= len)
3923 		return true;
3924 
3925 	/* if TSO is enabled, we don't care about the length as the packet
3926 	 * could be forwarded without being segmented before
3927 	 */
3928 	if (skb_is_gso(skb))
3929 		return true;
3930 
3931 	return false;
3932 }
3933 
3934 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3935 
3936 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3937 {
3938 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3939 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3940 
3941 	if (likely(p))
3942 		return p;
3943 
3944 	return netdev_core_stats_alloc(dev);
3945 }
3946 
3947 #define DEV_CORE_STATS_INC(FIELD)						\
3948 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3949 {										\
3950 	struct net_device_core_stats __percpu *p;				\
3951 										\
3952 	p = dev_core_stats(dev);						\
3953 	if (p)									\
3954 		this_cpu_inc(p->FIELD);						\
3955 }
3956 DEV_CORE_STATS_INC(rx_dropped)
3957 DEV_CORE_STATS_INC(tx_dropped)
3958 DEV_CORE_STATS_INC(rx_nohandler)
3959 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3960 
3961 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3962 					       struct sk_buff *skb,
3963 					       const bool check_mtu)
3964 {
3965 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3966 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3967 		dev_core_stats_rx_dropped_inc(dev);
3968 		kfree_skb(skb);
3969 		return NET_RX_DROP;
3970 	}
3971 
3972 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3973 	skb->priority = 0;
3974 	return 0;
3975 }
3976 
3977 bool dev_nit_active(struct net_device *dev);
3978 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3979 
3980 static inline void __dev_put(struct net_device *dev)
3981 {
3982 	if (dev) {
3983 #ifdef CONFIG_PCPU_DEV_REFCNT
3984 		this_cpu_dec(*dev->pcpu_refcnt);
3985 #else
3986 		refcount_dec(&dev->dev_refcnt);
3987 #endif
3988 	}
3989 }
3990 
3991 static inline void __dev_hold(struct net_device *dev)
3992 {
3993 	if (dev) {
3994 #ifdef CONFIG_PCPU_DEV_REFCNT
3995 		this_cpu_inc(*dev->pcpu_refcnt);
3996 #else
3997 		refcount_inc(&dev->dev_refcnt);
3998 #endif
3999 	}
4000 }
4001 
4002 static inline void __netdev_tracker_alloc(struct net_device *dev,
4003 					  netdevice_tracker *tracker,
4004 					  gfp_t gfp)
4005 {
4006 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4007 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4008 #endif
4009 }
4010 
4011 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4012  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4013  */
4014 static inline void netdev_tracker_alloc(struct net_device *dev,
4015 					netdevice_tracker *tracker, gfp_t gfp)
4016 {
4017 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4018 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4019 	__netdev_tracker_alloc(dev, tracker, gfp);
4020 #endif
4021 }
4022 
4023 static inline void netdev_tracker_free(struct net_device *dev,
4024 				       netdevice_tracker *tracker)
4025 {
4026 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4027 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4028 #endif
4029 }
4030 
4031 static inline void netdev_hold(struct net_device *dev,
4032 			       netdevice_tracker *tracker, gfp_t gfp)
4033 {
4034 	if (dev) {
4035 		__dev_hold(dev);
4036 		__netdev_tracker_alloc(dev, tracker, gfp);
4037 	}
4038 }
4039 
4040 static inline void netdev_put(struct net_device *dev,
4041 			      netdevice_tracker *tracker)
4042 {
4043 	if (dev) {
4044 		netdev_tracker_free(dev, tracker);
4045 		__dev_put(dev);
4046 	}
4047 }
4048 
4049 /**
4050  *	dev_hold - get reference to device
4051  *	@dev: network device
4052  *
4053  * Hold reference to device to keep it from being freed.
4054  * Try using netdev_hold() instead.
4055  */
4056 static inline void dev_hold(struct net_device *dev)
4057 {
4058 	netdev_hold(dev, NULL, GFP_ATOMIC);
4059 }
4060 
4061 /**
4062  *	dev_put - release reference to device
4063  *	@dev: network device
4064  *
4065  * Release reference to device to allow it to be freed.
4066  * Try using netdev_put() instead.
4067  */
4068 static inline void dev_put(struct net_device *dev)
4069 {
4070 	netdev_put(dev, NULL);
4071 }
4072 
4073 static inline void netdev_ref_replace(struct net_device *odev,
4074 				      struct net_device *ndev,
4075 				      netdevice_tracker *tracker,
4076 				      gfp_t gfp)
4077 {
4078 	if (odev)
4079 		netdev_tracker_free(odev, tracker);
4080 
4081 	__dev_hold(ndev);
4082 	__dev_put(odev);
4083 
4084 	if (ndev)
4085 		__netdev_tracker_alloc(ndev, tracker, gfp);
4086 }
4087 
4088 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4089  * and _off may be called from IRQ context, but it is caller
4090  * who is responsible for serialization of these calls.
4091  *
4092  * The name carrier is inappropriate, these functions should really be
4093  * called netif_lowerlayer_*() because they represent the state of any
4094  * kind of lower layer not just hardware media.
4095  */
4096 void linkwatch_fire_event(struct net_device *dev);
4097 
4098 /**
4099  *	netif_carrier_ok - test if carrier present
4100  *	@dev: network device
4101  *
4102  * Check if carrier is present on device
4103  */
4104 static inline bool netif_carrier_ok(const struct net_device *dev)
4105 {
4106 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4107 }
4108 
4109 unsigned long dev_trans_start(struct net_device *dev);
4110 
4111 void __netdev_watchdog_up(struct net_device *dev);
4112 
4113 void netif_carrier_on(struct net_device *dev);
4114 void netif_carrier_off(struct net_device *dev);
4115 void netif_carrier_event(struct net_device *dev);
4116 
4117 /**
4118  *	netif_dormant_on - mark device as dormant.
4119  *	@dev: network device
4120  *
4121  * Mark device as dormant (as per RFC2863).
4122  *
4123  * The dormant state indicates that the relevant interface is not
4124  * actually in a condition to pass packets (i.e., it is not 'up') but is
4125  * in a "pending" state, waiting for some external event.  For "on-
4126  * demand" interfaces, this new state identifies the situation where the
4127  * interface is waiting for events to place it in the up state.
4128  */
4129 static inline void netif_dormant_on(struct net_device *dev)
4130 {
4131 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4132 		linkwatch_fire_event(dev);
4133 }
4134 
4135 /**
4136  *	netif_dormant_off - set device as not dormant.
4137  *	@dev: network device
4138  *
4139  * Device is not in dormant state.
4140  */
4141 static inline void netif_dormant_off(struct net_device *dev)
4142 {
4143 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4144 		linkwatch_fire_event(dev);
4145 }
4146 
4147 /**
4148  *	netif_dormant - test if device is dormant
4149  *	@dev: network device
4150  *
4151  * Check if device is dormant.
4152  */
4153 static inline bool netif_dormant(const struct net_device *dev)
4154 {
4155 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4156 }
4157 
4158 
4159 /**
4160  *	netif_testing_on - mark device as under test.
4161  *	@dev: network device
4162  *
4163  * Mark device as under test (as per RFC2863).
4164  *
4165  * The testing state indicates that some test(s) must be performed on
4166  * the interface. After completion, of the test, the interface state
4167  * will change to up, dormant, or down, as appropriate.
4168  */
4169 static inline void netif_testing_on(struct net_device *dev)
4170 {
4171 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4172 		linkwatch_fire_event(dev);
4173 }
4174 
4175 /**
4176  *	netif_testing_off - set device as not under test.
4177  *	@dev: network device
4178  *
4179  * Device is not in testing state.
4180  */
4181 static inline void netif_testing_off(struct net_device *dev)
4182 {
4183 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4184 		linkwatch_fire_event(dev);
4185 }
4186 
4187 /**
4188  *	netif_testing - test if device is under test
4189  *	@dev: network device
4190  *
4191  * Check if device is under test
4192  */
4193 static inline bool netif_testing(const struct net_device *dev)
4194 {
4195 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4196 }
4197 
4198 
4199 /**
4200  *	netif_oper_up - test if device is operational
4201  *	@dev: network device
4202  *
4203  * Check if carrier is operational
4204  */
4205 static inline bool netif_oper_up(const struct net_device *dev)
4206 {
4207 	return (dev->operstate == IF_OPER_UP ||
4208 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4209 }
4210 
4211 /**
4212  *	netif_device_present - is device available or removed
4213  *	@dev: network device
4214  *
4215  * Check if device has not been removed from system.
4216  */
4217 static inline bool netif_device_present(const struct net_device *dev)
4218 {
4219 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4220 }
4221 
4222 void netif_device_detach(struct net_device *dev);
4223 
4224 void netif_device_attach(struct net_device *dev);
4225 
4226 /*
4227  * Network interface message level settings
4228  */
4229 
4230 enum {
4231 	NETIF_MSG_DRV_BIT,
4232 	NETIF_MSG_PROBE_BIT,
4233 	NETIF_MSG_LINK_BIT,
4234 	NETIF_MSG_TIMER_BIT,
4235 	NETIF_MSG_IFDOWN_BIT,
4236 	NETIF_MSG_IFUP_BIT,
4237 	NETIF_MSG_RX_ERR_BIT,
4238 	NETIF_MSG_TX_ERR_BIT,
4239 	NETIF_MSG_TX_QUEUED_BIT,
4240 	NETIF_MSG_INTR_BIT,
4241 	NETIF_MSG_TX_DONE_BIT,
4242 	NETIF_MSG_RX_STATUS_BIT,
4243 	NETIF_MSG_PKTDATA_BIT,
4244 	NETIF_MSG_HW_BIT,
4245 	NETIF_MSG_WOL_BIT,
4246 
4247 	/* When you add a new bit above, update netif_msg_class_names array
4248 	 * in net/ethtool/common.c
4249 	 */
4250 	NETIF_MSG_CLASS_COUNT,
4251 };
4252 /* Both ethtool_ops interface and internal driver implementation use u32 */
4253 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4254 
4255 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4256 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4257 
4258 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4259 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4260 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4261 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4262 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4263 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4264 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4265 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4266 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4267 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4268 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4269 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4270 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4271 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4272 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4273 
4274 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4275 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4276 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4277 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4278 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4279 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4280 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4281 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4282 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4283 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4284 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4285 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4286 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4287 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4288 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4289 
4290 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4291 {
4292 	/* use default */
4293 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4294 		return default_msg_enable_bits;
4295 	if (debug_value == 0)	/* no output */
4296 		return 0;
4297 	/* set low N bits */
4298 	return (1U << debug_value) - 1;
4299 }
4300 
4301 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4302 {
4303 	spin_lock(&txq->_xmit_lock);
4304 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4305 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4306 }
4307 
4308 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4309 {
4310 	__acquire(&txq->_xmit_lock);
4311 	return true;
4312 }
4313 
4314 static inline void __netif_tx_release(struct netdev_queue *txq)
4315 {
4316 	__release(&txq->_xmit_lock);
4317 }
4318 
4319 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4320 {
4321 	spin_lock_bh(&txq->_xmit_lock);
4322 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4323 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4324 }
4325 
4326 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4327 {
4328 	bool ok = spin_trylock(&txq->_xmit_lock);
4329 
4330 	if (likely(ok)) {
4331 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4332 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4333 	}
4334 	return ok;
4335 }
4336 
4337 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4338 {
4339 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4340 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4341 	spin_unlock(&txq->_xmit_lock);
4342 }
4343 
4344 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4345 {
4346 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4347 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4348 	spin_unlock_bh(&txq->_xmit_lock);
4349 }
4350 
4351 /*
4352  * txq->trans_start can be read locklessly from dev_watchdog()
4353  */
4354 static inline void txq_trans_update(struct netdev_queue *txq)
4355 {
4356 	if (txq->xmit_lock_owner != -1)
4357 		WRITE_ONCE(txq->trans_start, jiffies);
4358 }
4359 
4360 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4361 {
4362 	unsigned long now = jiffies;
4363 
4364 	if (READ_ONCE(txq->trans_start) != now)
4365 		WRITE_ONCE(txq->trans_start, now);
4366 }
4367 
4368 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4369 static inline void netif_trans_update(struct net_device *dev)
4370 {
4371 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4372 
4373 	txq_trans_cond_update(txq);
4374 }
4375 
4376 /**
4377  *	netif_tx_lock - grab network device transmit lock
4378  *	@dev: network device
4379  *
4380  * Get network device transmit lock
4381  */
4382 void netif_tx_lock(struct net_device *dev);
4383 
4384 static inline void netif_tx_lock_bh(struct net_device *dev)
4385 {
4386 	local_bh_disable();
4387 	netif_tx_lock(dev);
4388 }
4389 
4390 void netif_tx_unlock(struct net_device *dev);
4391 
4392 static inline void netif_tx_unlock_bh(struct net_device *dev)
4393 {
4394 	netif_tx_unlock(dev);
4395 	local_bh_enable();
4396 }
4397 
4398 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4399 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4400 		__netif_tx_lock(txq, cpu);		\
4401 	} else {					\
4402 		__netif_tx_acquire(txq);		\
4403 	}						\
4404 }
4405 
4406 #define HARD_TX_TRYLOCK(dev, txq)			\
4407 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4408 		__netif_tx_trylock(txq) :		\
4409 		__netif_tx_acquire(txq))
4410 
4411 #define HARD_TX_UNLOCK(dev, txq) {			\
4412 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4413 		__netif_tx_unlock(txq);			\
4414 	} else {					\
4415 		__netif_tx_release(txq);		\
4416 	}						\
4417 }
4418 
4419 static inline void netif_tx_disable(struct net_device *dev)
4420 {
4421 	unsigned int i;
4422 	int cpu;
4423 
4424 	local_bh_disable();
4425 	cpu = smp_processor_id();
4426 	spin_lock(&dev->tx_global_lock);
4427 	for (i = 0; i < dev->num_tx_queues; i++) {
4428 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4429 
4430 		__netif_tx_lock(txq, cpu);
4431 		netif_tx_stop_queue(txq);
4432 		__netif_tx_unlock(txq);
4433 	}
4434 	spin_unlock(&dev->tx_global_lock);
4435 	local_bh_enable();
4436 }
4437 
4438 static inline void netif_addr_lock(struct net_device *dev)
4439 {
4440 	unsigned char nest_level = 0;
4441 
4442 #ifdef CONFIG_LOCKDEP
4443 	nest_level = dev->nested_level;
4444 #endif
4445 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4446 }
4447 
4448 static inline void netif_addr_lock_bh(struct net_device *dev)
4449 {
4450 	unsigned char nest_level = 0;
4451 
4452 #ifdef CONFIG_LOCKDEP
4453 	nest_level = dev->nested_level;
4454 #endif
4455 	local_bh_disable();
4456 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4457 }
4458 
4459 static inline void netif_addr_unlock(struct net_device *dev)
4460 {
4461 	spin_unlock(&dev->addr_list_lock);
4462 }
4463 
4464 static inline void netif_addr_unlock_bh(struct net_device *dev)
4465 {
4466 	spin_unlock_bh(&dev->addr_list_lock);
4467 }
4468 
4469 /*
4470  * dev_addrs walker. Should be used only for read access. Call with
4471  * rcu_read_lock held.
4472  */
4473 #define for_each_dev_addr(dev, ha) \
4474 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4475 
4476 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4477 
4478 void ether_setup(struct net_device *dev);
4479 
4480 /* Support for loadable net-drivers */
4481 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4482 				    unsigned char name_assign_type,
4483 				    void (*setup)(struct net_device *),
4484 				    unsigned int txqs, unsigned int rxqs);
4485 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4486 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4487 
4488 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4489 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4490 			 count)
4491 
4492 int register_netdev(struct net_device *dev);
4493 void unregister_netdev(struct net_device *dev);
4494 
4495 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4496 
4497 /* General hardware address lists handling functions */
4498 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4499 		   struct netdev_hw_addr_list *from_list, int addr_len);
4500 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4501 		      struct netdev_hw_addr_list *from_list, int addr_len);
4502 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4503 		       struct net_device *dev,
4504 		       int (*sync)(struct net_device *, const unsigned char *),
4505 		       int (*unsync)(struct net_device *,
4506 				     const unsigned char *));
4507 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4508 			   struct net_device *dev,
4509 			   int (*sync)(struct net_device *,
4510 				       const unsigned char *, int),
4511 			   int (*unsync)(struct net_device *,
4512 					 const unsigned char *, int));
4513 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4514 			      struct net_device *dev,
4515 			      int (*unsync)(struct net_device *,
4516 					    const unsigned char *, int));
4517 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4518 			  struct net_device *dev,
4519 			  int (*unsync)(struct net_device *,
4520 					const unsigned char *));
4521 void __hw_addr_init(struct netdev_hw_addr_list *list);
4522 
4523 /* Functions used for device addresses handling */
4524 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4525 		  const void *addr, size_t len);
4526 
4527 static inline void
4528 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4529 {
4530 	dev_addr_mod(dev, 0, addr, len);
4531 }
4532 
4533 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4534 {
4535 	__dev_addr_set(dev, addr, dev->addr_len);
4536 }
4537 
4538 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4539 		 unsigned char addr_type);
4540 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4541 		 unsigned char addr_type);
4542 
4543 /* Functions used for unicast addresses handling */
4544 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4545 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4546 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4547 int dev_uc_sync(struct net_device *to, struct net_device *from);
4548 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4549 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4550 void dev_uc_flush(struct net_device *dev);
4551 void dev_uc_init(struct net_device *dev);
4552 
4553 /**
4554  *  __dev_uc_sync - Synchonize device's unicast list
4555  *  @dev:  device to sync
4556  *  @sync: function to call if address should be added
4557  *  @unsync: function to call if address should be removed
4558  *
4559  *  Add newly added addresses to the interface, and release
4560  *  addresses that have been deleted.
4561  */
4562 static inline int __dev_uc_sync(struct net_device *dev,
4563 				int (*sync)(struct net_device *,
4564 					    const unsigned char *),
4565 				int (*unsync)(struct net_device *,
4566 					      const unsigned char *))
4567 {
4568 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4569 }
4570 
4571 /**
4572  *  __dev_uc_unsync - Remove synchronized addresses from device
4573  *  @dev:  device to sync
4574  *  @unsync: function to call if address should be removed
4575  *
4576  *  Remove all addresses that were added to the device by dev_uc_sync().
4577  */
4578 static inline void __dev_uc_unsync(struct net_device *dev,
4579 				   int (*unsync)(struct net_device *,
4580 						 const unsigned char *))
4581 {
4582 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4583 }
4584 
4585 /* Functions used for multicast addresses handling */
4586 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4587 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4588 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4589 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4590 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4591 int dev_mc_sync(struct net_device *to, struct net_device *from);
4592 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4593 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4594 void dev_mc_flush(struct net_device *dev);
4595 void dev_mc_init(struct net_device *dev);
4596 
4597 /**
4598  *  __dev_mc_sync - Synchonize device's multicast list
4599  *  @dev:  device to sync
4600  *  @sync: function to call if address should be added
4601  *  @unsync: function to call if address should be removed
4602  *
4603  *  Add newly added addresses to the interface, and release
4604  *  addresses that have been deleted.
4605  */
4606 static inline int __dev_mc_sync(struct net_device *dev,
4607 				int (*sync)(struct net_device *,
4608 					    const unsigned char *),
4609 				int (*unsync)(struct net_device *,
4610 					      const unsigned char *))
4611 {
4612 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4613 }
4614 
4615 /**
4616  *  __dev_mc_unsync - Remove synchronized addresses from device
4617  *  @dev:  device to sync
4618  *  @unsync: function to call if address should be removed
4619  *
4620  *  Remove all addresses that were added to the device by dev_mc_sync().
4621  */
4622 static inline void __dev_mc_unsync(struct net_device *dev,
4623 				   int (*unsync)(struct net_device *,
4624 						 const unsigned char *))
4625 {
4626 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4627 }
4628 
4629 /* Functions used for secondary unicast and multicast support */
4630 void dev_set_rx_mode(struct net_device *dev);
4631 int dev_set_promiscuity(struct net_device *dev, int inc);
4632 int dev_set_allmulti(struct net_device *dev, int inc);
4633 void netdev_state_change(struct net_device *dev);
4634 void __netdev_notify_peers(struct net_device *dev);
4635 void netdev_notify_peers(struct net_device *dev);
4636 void netdev_features_change(struct net_device *dev);
4637 /* Load a device via the kmod */
4638 void dev_load(struct net *net, const char *name);
4639 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4640 					struct rtnl_link_stats64 *storage);
4641 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4642 			     const struct net_device_stats *netdev_stats);
4643 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4644 			   const struct pcpu_sw_netstats __percpu *netstats);
4645 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4646 
4647 extern int		netdev_max_backlog;
4648 extern int		dev_rx_weight;
4649 extern int		dev_tx_weight;
4650 extern int		gro_normal_batch;
4651 
4652 enum {
4653 	NESTED_SYNC_IMM_BIT,
4654 	NESTED_SYNC_TODO_BIT,
4655 };
4656 
4657 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4658 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4659 
4660 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4661 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4662 
4663 struct netdev_nested_priv {
4664 	unsigned char flags;
4665 	void *data;
4666 };
4667 
4668 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4669 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4670 						     struct list_head **iter);
4671 
4672 /* iterate through upper list, must be called under RCU read lock */
4673 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4674 	for (iter = &(dev)->adj_list.upper, \
4675 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4676 	     updev; \
4677 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4678 
4679 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4680 				  int (*fn)(struct net_device *upper_dev,
4681 					    struct netdev_nested_priv *priv),
4682 				  struct netdev_nested_priv *priv);
4683 
4684 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4685 				  struct net_device *upper_dev);
4686 
4687 bool netdev_has_any_upper_dev(struct net_device *dev);
4688 
4689 void *netdev_lower_get_next_private(struct net_device *dev,
4690 				    struct list_head **iter);
4691 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4692 					struct list_head **iter);
4693 
4694 #define netdev_for_each_lower_private(dev, priv, iter) \
4695 	for (iter = (dev)->adj_list.lower.next, \
4696 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4697 	     priv; \
4698 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4699 
4700 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4701 	for (iter = &(dev)->adj_list.lower, \
4702 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4703 	     priv; \
4704 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4705 
4706 void *netdev_lower_get_next(struct net_device *dev,
4707 				struct list_head **iter);
4708 
4709 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4710 	for (iter = (dev)->adj_list.lower.next, \
4711 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4712 	     ldev; \
4713 	     ldev = netdev_lower_get_next(dev, &(iter)))
4714 
4715 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4716 					     struct list_head **iter);
4717 int netdev_walk_all_lower_dev(struct net_device *dev,
4718 			      int (*fn)(struct net_device *lower_dev,
4719 					struct netdev_nested_priv *priv),
4720 			      struct netdev_nested_priv *priv);
4721 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4722 				  int (*fn)(struct net_device *lower_dev,
4723 					    struct netdev_nested_priv *priv),
4724 				  struct netdev_nested_priv *priv);
4725 
4726 void *netdev_adjacent_get_private(struct list_head *adj_list);
4727 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4728 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4729 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4730 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4731 			  struct netlink_ext_ack *extack);
4732 int netdev_master_upper_dev_link(struct net_device *dev,
4733 				 struct net_device *upper_dev,
4734 				 void *upper_priv, void *upper_info,
4735 				 struct netlink_ext_ack *extack);
4736 void netdev_upper_dev_unlink(struct net_device *dev,
4737 			     struct net_device *upper_dev);
4738 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4739 				   struct net_device *new_dev,
4740 				   struct net_device *dev,
4741 				   struct netlink_ext_ack *extack);
4742 void netdev_adjacent_change_commit(struct net_device *old_dev,
4743 				   struct net_device *new_dev,
4744 				   struct net_device *dev);
4745 void netdev_adjacent_change_abort(struct net_device *old_dev,
4746 				  struct net_device *new_dev,
4747 				  struct net_device *dev);
4748 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4749 void *netdev_lower_dev_get_private(struct net_device *dev,
4750 				   struct net_device *lower_dev);
4751 void netdev_lower_state_changed(struct net_device *lower_dev,
4752 				void *lower_state_info);
4753 
4754 /* RSS keys are 40 or 52 bytes long */
4755 #define NETDEV_RSS_KEY_LEN 52
4756 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4757 void netdev_rss_key_fill(void *buffer, size_t len);
4758 
4759 int skb_checksum_help(struct sk_buff *skb);
4760 int skb_crc32c_csum_help(struct sk_buff *skb);
4761 int skb_csum_hwoffload_help(struct sk_buff *skb,
4762 			    const netdev_features_t features);
4763 
4764 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4765 				  netdev_features_t features, bool tx_path);
4766 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4767 				    netdev_features_t features, __be16 type);
4768 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4769 				    netdev_features_t features);
4770 
4771 struct netdev_bonding_info {
4772 	ifslave	slave;
4773 	ifbond	master;
4774 };
4775 
4776 struct netdev_notifier_bonding_info {
4777 	struct netdev_notifier_info info; /* must be first */
4778 	struct netdev_bonding_info  bonding_info;
4779 };
4780 
4781 void netdev_bonding_info_change(struct net_device *dev,
4782 				struct netdev_bonding_info *bonding_info);
4783 
4784 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4785 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4786 #else
4787 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4788 				  const void *data)
4789 {
4790 }
4791 #endif
4792 
4793 static inline
4794 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4795 {
4796 	return __skb_gso_segment(skb, features, true);
4797 }
4798 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4799 
4800 static inline bool can_checksum_protocol(netdev_features_t features,
4801 					 __be16 protocol)
4802 {
4803 	if (protocol == htons(ETH_P_FCOE))
4804 		return !!(features & NETIF_F_FCOE_CRC);
4805 
4806 	/* Assume this is an IP checksum (not SCTP CRC) */
4807 
4808 	if (features & NETIF_F_HW_CSUM) {
4809 		/* Can checksum everything */
4810 		return true;
4811 	}
4812 
4813 	switch (protocol) {
4814 	case htons(ETH_P_IP):
4815 		return !!(features & NETIF_F_IP_CSUM);
4816 	case htons(ETH_P_IPV6):
4817 		return !!(features & NETIF_F_IPV6_CSUM);
4818 	default:
4819 		return false;
4820 	}
4821 }
4822 
4823 #ifdef CONFIG_BUG
4824 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4825 #else
4826 static inline void netdev_rx_csum_fault(struct net_device *dev,
4827 					struct sk_buff *skb)
4828 {
4829 }
4830 #endif
4831 /* rx skb timestamps */
4832 void net_enable_timestamp(void);
4833 void net_disable_timestamp(void);
4834 
4835 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4836 					const struct skb_shared_hwtstamps *hwtstamps,
4837 					bool cycles)
4838 {
4839 	const struct net_device_ops *ops = dev->netdev_ops;
4840 
4841 	if (ops->ndo_get_tstamp)
4842 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4843 
4844 	return hwtstamps->hwtstamp;
4845 }
4846 
4847 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4848 					      struct sk_buff *skb, struct net_device *dev,
4849 					      bool more)
4850 {
4851 	__this_cpu_write(softnet_data.xmit.more, more);
4852 	return ops->ndo_start_xmit(skb, dev);
4853 }
4854 
4855 static inline bool netdev_xmit_more(void)
4856 {
4857 	return __this_cpu_read(softnet_data.xmit.more);
4858 }
4859 
4860 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4861 					    struct netdev_queue *txq, bool more)
4862 {
4863 	const struct net_device_ops *ops = dev->netdev_ops;
4864 	netdev_tx_t rc;
4865 
4866 	rc = __netdev_start_xmit(ops, skb, dev, more);
4867 	if (rc == NETDEV_TX_OK)
4868 		txq_trans_update(txq);
4869 
4870 	return rc;
4871 }
4872 
4873 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4874 				const void *ns);
4875 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4876 				 const void *ns);
4877 
4878 extern const struct kobj_ns_type_operations net_ns_type_operations;
4879 
4880 const char *netdev_drivername(const struct net_device *dev);
4881 
4882 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4883 							  netdev_features_t f2)
4884 {
4885 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4886 		if (f1 & NETIF_F_HW_CSUM)
4887 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4888 		else
4889 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4890 	}
4891 
4892 	return f1 & f2;
4893 }
4894 
4895 static inline netdev_features_t netdev_get_wanted_features(
4896 	struct net_device *dev)
4897 {
4898 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4899 }
4900 netdev_features_t netdev_increment_features(netdev_features_t all,
4901 	netdev_features_t one, netdev_features_t mask);
4902 
4903 /* Allow TSO being used on stacked device :
4904  * Performing the GSO segmentation before last device
4905  * is a performance improvement.
4906  */
4907 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4908 							netdev_features_t mask)
4909 {
4910 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4911 }
4912 
4913 int __netdev_update_features(struct net_device *dev);
4914 void netdev_update_features(struct net_device *dev);
4915 void netdev_change_features(struct net_device *dev);
4916 
4917 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4918 					struct net_device *dev);
4919 
4920 netdev_features_t passthru_features_check(struct sk_buff *skb,
4921 					  struct net_device *dev,
4922 					  netdev_features_t features);
4923 netdev_features_t netif_skb_features(struct sk_buff *skb);
4924 
4925 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4926 {
4927 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4928 
4929 	/* check flags correspondence */
4930 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4931 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4932 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4933 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4934 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4935 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4936 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4937 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4938 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4939 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4940 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4941 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4942 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4943 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4944 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4945 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4946 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4947 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4948 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4949 
4950 	return (features & feature) == feature;
4951 }
4952 
4953 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4954 {
4955 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4956 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4957 }
4958 
4959 static inline bool netif_needs_gso(struct sk_buff *skb,
4960 				   netdev_features_t features)
4961 {
4962 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4963 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4964 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4965 }
4966 
4967 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4968 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4969 void netif_inherit_tso_max(struct net_device *to,
4970 			   const struct net_device *from);
4971 
4972 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4973 					int pulled_hlen, u16 mac_offset,
4974 					int mac_len)
4975 {
4976 	skb->protocol = protocol;
4977 	skb->encapsulation = 1;
4978 	skb_push(skb, pulled_hlen);
4979 	skb_reset_transport_header(skb);
4980 	skb->mac_header = mac_offset;
4981 	skb->network_header = skb->mac_header + mac_len;
4982 	skb->mac_len = mac_len;
4983 }
4984 
4985 static inline bool netif_is_macsec(const struct net_device *dev)
4986 {
4987 	return dev->priv_flags & IFF_MACSEC;
4988 }
4989 
4990 static inline bool netif_is_macvlan(const struct net_device *dev)
4991 {
4992 	return dev->priv_flags & IFF_MACVLAN;
4993 }
4994 
4995 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4996 {
4997 	return dev->priv_flags & IFF_MACVLAN_PORT;
4998 }
4999 
5000 static inline bool netif_is_bond_master(const struct net_device *dev)
5001 {
5002 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5003 }
5004 
5005 static inline bool netif_is_bond_slave(const struct net_device *dev)
5006 {
5007 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5008 }
5009 
5010 static inline bool netif_supports_nofcs(struct net_device *dev)
5011 {
5012 	return dev->priv_flags & IFF_SUPP_NOFCS;
5013 }
5014 
5015 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5016 {
5017 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5018 }
5019 
5020 static inline bool netif_is_l3_master(const struct net_device *dev)
5021 {
5022 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5023 }
5024 
5025 static inline bool netif_is_l3_slave(const struct net_device *dev)
5026 {
5027 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5028 }
5029 
5030 static inline bool netif_is_bridge_master(const struct net_device *dev)
5031 {
5032 	return dev->priv_flags & IFF_EBRIDGE;
5033 }
5034 
5035 static inline bool netif_is_bridge_port(const struct net_device *dev)
5036 {
5037 	return dev->priv_flags & IFF_BRIDGE_PORT;
5038 }
5039 
5040 static inline bool netif_is_ovs_master(const struct net_device *dev)
5041 {
5042 	return dev->priv_flags & IFF_OPENVSWITCH;
5043 }
5044 
5045 static inline bool netif_is_ovs_port(const struct net_device *dev)
5046 {
5047 	return dev->priv_flags & IFF_OVS_DATAPATH;
5048 }
5049 
5050 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5051 {
5052 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5053 }
5054 
5055 static inline bool netif_is_team_master(const struct net_device *dev)
5056 {
5057 	return dev->priv_flags & IFF_TEAM;
5058 }
5059 
5060 static inline bool netif_is_team_port(const struct net_device *dev)
5061 {
5062 	return dev->priv_flags & IFF_TEAM_PORT;
5063 }
5064 
5065 static inline bool netif_is_lag_master(const struct net_device *dev)
5066 {
5067 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5068 }
5069 
5070 static inline bool netif_is_lag_port(const struct net_device *dev)
5071 {
5072 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5073 }
5074 
5075 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5076 {
5077 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5078 }
5079 
5080 static inline bool netif_is_failover(const struct net_device *dev)
5081 {
5082 	return dev->priv_flags & IFF_FAILOVER;
5083 }
5084 
5085 static inline bool netif_is_failover_slave(const struct net_device *dev)
5086 {
5087 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5088 }
5089 
5090 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5091 static inline void netif_keep_dst(struct net_device *dev)
5092 {
5093 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5094 }
5095 
5096 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5097 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5098 {
5099 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5100 	return netif_is_macsec(dev);
5101 }
5102 
5103 extern struct pernet_operations __net_initdata loopback_net_ops;
5104 
5105 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5106 
5107 /* netdev_printk helpers, similar to dev_printk */
5108 
5109 static inline const char *netdev_name(const struct net_device *dev)
5110 {
5111 	if (!dev->name[0] || strchr(dev->name, '%'))
5112 		return "(unnamed net_device)";
5113 	return dev->name;
5114 }
5115 
5116 static inline const char *netdev_reg_state(const struct net_device *dev)
5117 {
5118 	switch (dev->reg_state) {
5119 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5120 	case NETREG_REGISTERED: return "";
5121 	case NETREG_UNREGISTERING: return " (unregistering)";
5122 	case NETREG_UNREGISTERED: return " (unregistered)";
5123 	case NETREG_RELEASED: return " (released)";
5124 	case NETREG_DUMMY: return " (dummy)";
5125 	}
5126 
5127 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5128 	return " (unknown)";
5129 }
5130 
5131 #define MODULE_ALIAS_NETDEV(device) \
5132 	MODULE_ALIAS("netdev-" device)
5133 
5134 /*
5135  * netdev_WARN() acts like dev_printk(), but with the key difference
5136  * of using a WARN/WARN_ON to get the message out, including the
5137  * file/line information and a backtrace.
5138  */
5139 #define netdev_WARN(dev, format, args...)			\
5140 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5141 	     netdev_reg_state(dev), ##args)
5142 
5143 #define netdev_WARN_ONCE(dev, format, args...)				\
5144 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5145 		  netdev_reg_state(dev), ##args)
5146 
5147 /*
5148  *	The list of packet types we will receive (as opposed to discard)
5149  *	and the routines to invoke.
5150  *
5151  *	Why 16. Because with 16 the only overlap we get on a hash of the
5152  *	low nibble of the protocol value is RARP/SNAP/X.25.
5153  *
5154  *		0800	IP
5155  *		0001	802.3
5156  *		0002	AX.25
5157  *		0004	802.2
5158  *		8035	RARP
5159  *		0005	SNAP
5160  *		0805	X.25
5161  *		0806	ARP
5162  *		8137	IPX
5163  *		0009	Localtalk
5164  *		86DD	IPv6
5165  */
5166 #define PTYPE_HASH_SIZE	(16)
5167 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5168 
5169 extern struct list_head ptype_all __read_mostly;
5170 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5171 
5172 extern struct net_device *blackhole_netdev;
5173 
5174 #endif	/* _LINUX_NETDEVICE_H */
5175