1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos.h> 35 #include <linux/timer.h> 36 #include <linux/bug.h> 37 #include <linux/delay.h> 38 #include <linux/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/percpu.h> 43 #include <linux/rculist.h> 44 #include <linux/dmaengine.h> 45 #include <linux/workqueue.h> 46 #include <linux/dynamic_queue_limits.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 #include <net/netprio_cgroup.h> 55 56 #include <linux/netdev_features.h> 57 #include <linux/neighbour.h> 58 59 struct netpoll_info; 60 struct device; 61 struct phy_device; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* source back-compat hooks */ 65 #define SET_ETHTOOL_OPS(netdev,ops) \ 66 ( (netdev)->ethtool_ops = (ops) ) 67 68 /* hardware address assignment types */ 69 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 70 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 71 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously, in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107 /* Driver transmit return codes */ 108 #define NETDEV_TX_MASK 0xf0 109 110 enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 #endif 137 138 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 139 140 /* Initial net device group. All devices belong to group 0 by default. */ 141 #define INIT_NETDEV_GROUP 0 142 143 #ifdef __KERNEL__ 144 /* 145 * Compute the worst case header length according to the protocols 146 * used. 147 */ 148 149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 150 # if defined(CONFIG_MAC80211_MESH) 151 # define LL_MAX_HEADER 128 152 # else 153 # define LL_MAX_HEADER 96 154 # endif 155 #elif IS_ENABLED(CONFIG_TR) 156 # define LL_MAX_HEADER 48 157 #else 158 # define LL_MAX_HEADER 32 159 #endif 160 161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 163 #define MAX_HEADER LL_MAX_HEADER 164 #else 165 #define MAX_HEADER (LL_MAX_HEADER + 48) 166 #endif 167 168 /* 169 * Old network device statistics. Fields are native words 170 * (unsigned long) so they can be read and written atomically. 171 */ 172 173 struct net_device_stats { 174 unsigned long rx_packets; 175 unsigned long tx_packets; 176 unsigned long rx_bytes; 177 unsigned long tx_bytes; 178 unsigned long rx_errors; 179 unsigned long tx_errors; 180 unsigned long rx_dropped; 181 unsigned long tx_dropped; 182 unsigned long multicast; 183 unsigned long collisions; 184 unsigned long rx_length_errors; 185 unsigned long rx_over_errors; 186 unsigned long rx_crc_errors; 187 unsigned long rx_frame_errors; 188 unsigned long rx_fifo_errors; 189 unsigned long rx_missed_errors; 190 unsigned long tx_aborted_errors; 191 unsigned long tx_carrier_errors; 192 unsigned long tx_fifo_errors; 193 unsigned long tx_heartbeat_errors; 194 unsigned long tx_window_errors; 195 unsigned long rx_compressed; 196 unsigned long tx_compressed; 197 }; 198 199 #endif /* __KERNEL__ */ 200 201 202 /* Media selection options. */ 203 enum { 204 IF_PORT_UNKNOWN = 0, 205 IF_PORT_10BASE2, 206 IF_PORT_10BASET, 207 IF_PORT_AUI, 208 IF_PORT_100BASET, 209 IF_PORT_100BASETX, 210 IF_PORT_100BASEFX 211 }; 212 213 #ifdef __KERNEL__ 214 215 #include <linux/cache.h> 216 #include <linux/skbuff.h> 217 218 #ifdef CONFIG_RPS 219 #include <linux/static_key.h> 220 extern struct static_key rps_needed; 221 #endif 222 223 struct neighbour; 224 struct neigh_parms; 225 struct sk_buff; 226 227 struct netdev_hw_addr { 228 struct list_head list; 229 unsigned char addr[MAX_ADDR_LEN]; 230 unsigned char type; 231 #define NETDEV_HW_ADDR_T_LAN 1 232 #define NETDEV_HW_ADDR_T_SAN 2 233 #define NETDEV_HW_ADDR_T_SLAVE 3 234 #define NETDEV_HW_ADDR_T_UNICAST 4 235 #define NETDEV_HW_ADDR_T_MULTICAST 5 236 bool synced; 237 bool global_use; 238 int refcount; 239 struct rcu_head rcu_head; 240 }; 241 242 struct netdev_hw_addr_list { 243 struct list_head list; 244 int count; 245 }; 246 247 #define netdev_hw_addr_list_count(l) ((l)->count) 248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 249 #define netdev_hw_addr_list_for_each(ha, l) \ 250 list_for_each_entry(ha, &(l)->list, list) 251 252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 254 #define netdev_for_each_uc_addr(ha, dev) \ 255 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 256 257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 259 #define netdev_for_each_mc_addr(ha, dev) \ 260 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 261 262 struct hh_cache { 263 u16 hh_len; 264 u16 __pad; 265 seqlock_t hh_lock; 266 267 /* cached hardware header; allow for machine alignment needs. */ 268 #define HH_DATA_MOD 16 269 #define HH_DATA_OFF(__len) \ 270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 271 #define HH_DATA_ALIGN(__len) \ 272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 274 }; 275 276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 277 * Alternative is: 278 * dev->hard_header_len ? (dev->hard_header_len + 279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 280 * 281 * We could use other alignment values, but we must maintain the 282 * relationship HH alignment <= LL alignment. 283 */ 284 #define LL_RESERVED_SPACE(dev) \ 285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 288 289 struct header_ops { 290 int (*create) (struct sk_buff *skb, struct net_device *dev, 291 unsigned short type, const void *daddr, 292 const void *saddr, unsigned int len); 293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 294 int (*rebuild)(struct sk_buff *skb); 295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 296 void (*cache_update)(struct hh_cache *hh, 297 const struct net_device *dev, 298 const unsigned char *haddr); 299 }; 300 301 /* These flag bits are private to the generic network queueing 302 * layer, they may not be explicitly referenced by any other 303 * code. 304 */ 305 306 enum netdev_state_t { 307 __LINK_STATE_START, 308 __LINK_STATE_PRESENT, 309 __LINK_STATE_NOCARRIER, 310 __LINK_STATE_LINKWATCH_PENDING, 311 __LINK_STATE_DORMANT, 312 }; 313 314 315 /* 316 * This structure holds at boot time configured netdevice settings. They 317 * are then used in the device probing. 318 */ 319 struct netdev_boot_setup { 320 char name[IFNAMSIZ]; 321 struct ifmap map; 322 }; 323 #define NETDEV_BOOT_SETUP_MAX 8 324 325 extern int __init netdev_boot_setup(char *str); 326 327 /* 328 * Structure for NAPI scheduling similar to tasklet but with weighting 329 */ 330 struct napi_struct { 331 /* The poll_list must only be managed by the entity which 332 * changes the state of the NAPI_STATE_SCHED bit. This means 333 * whoever atomically sets that bit can add this napi_struct 334 * to the per-cpu poll_list, and whoever clears that bit 335 * can remove from the list right before clearing the bit. 336 */ 337 struct list_head poll_list; 338 339 unsigned long state; 340 int weight; 341 int (*poll)(struct napi_struct *, int); 342 #ifdef CONFIG_NETPOLL 343 spinlock_t poll_lock; 344 int poll_owner; 345 #endif 346 347 unsigned int gro_count; 348 349 struct net_device *dev; 350 struct list_head dev_list; 351 struct sk_buff *gro_list; 352 struct sk_buff *skb; 353 }; 354 355 enum { 356 NAPI_STATE_SCHED, /* Poll is scheduled */ 357 NAPI_STATE_DISABLE, /* Disable pending */ 358 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 359 }; 360 361 enum gro_result { 362 GRO_MERGED, 363 GRO_MERGED_FREE, 364 GRO_HELD, 365 GRO_NORMAL, 366 GRO_DROP, 367 }; 368 typedef enum gro_result gro_result_t; 369 370 /* 371 * enum rx_handler_result - Possible return values for rx_handlers. 372 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 373 * further. 374 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 375 * case skb->dev was changed by rx_handler. 376 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 377 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 378 * 379 * rx_handlers are functions called from inside __netif_receive_skb(), to do 380 * special processing of the skb, prior to delivery to protocol handlers. 381 * 382 * Currently, a net_device can only have a single rx_handler registered. Trying 383 * to register a second rx_handler will return -EBUSY. 384 * 385 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 386 * To unregister a rx_handler on a net_device, use 387 * netdev_rx_handler_unregister(). 388 * 389 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 390 * do with the skb. 391 * 392 * If the rx_handler consumed to skb in some way, it should return 393 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 394 * the skb to be delivered in some other ways. 395 * 396 * If the rx_handler changed skb->dev, to divert the skb to another 397 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 398 * new device will be called if it exists. 399 * 400 * If the rx_handler consider the skb should be ignored, it should return 401 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 402 * are registred on exact device (ptype->dev == skb->dev). 403 * 404 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 405 * delivered, it should return RX_HANDLER_PASS. 406 * 407 * A device without a registered rx_handler will behave as if rx_handler 408 * returned RX_HANDLER_PASS. 409 */ 410 411 enum rx_handler_result { 412 RX_HANDLER_CONSUMED, 413 RX_HANDLER_ANOTHER, 414 RX_HANDLER_EXACT, 415 RX_HANDLER_PASS, 416 }; 417 typedef enum rx_handler_result rx_handler_result_t; 418 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 419 420 extern void __napi_schedule(struct napi_struct *n); 421 422 static inline bool napi_disable_pending(struct napi_struct *n) 423 { 424 return test_bit(NAPI_STATE_DISABLE, &n->state); 425 } 426 427 /** 428 * napi_schedule_prep - check if napi can be scheduled 429 * @n: napi context 430 * 431 * Test if NAPI routine is already running, and if not mark 432 * it as running. This is used as a condition variable 433 * insure only one NAPI poll instance runs. We also make 434 * sure there is no pending NAPI disable. 435 */ 436 static inline bool napi_schedule_prep(struct napi_struct *n) 437 { 438 return !napi_disable_pending(n) && 439 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 440 } 441 442 /** 443 * napi_schedule - schedule NAPI poll 444 * @n: napi context 445 * 446 * Schedule NAPI poll routine to be called if it is not already 447 * running. 448 */ 449 static inline void napi_schedule(struct napi_struct *n) 450 { 451 if (napi_schedule_prep(n)) 452 __napi_schedule(n); 453 } 454 455 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 456 static inline bool napi_reschedule(struct napi_struct *napi) 457 { 458 if (napi_schedule_prep(napi)) { 459 __napi_schedule(napi); 460 return true; 461 } 462 return false; 463 } 464 465 /** 466 * napi_complete - NAPI processing complete 467 * @n: napi context 468 * 469 * Mark NAPI processing as complete. 470 */ 471 extern void __napi_complete(struct napi_struct *n); 472 extern void napi_complete(struct napi_struct *n); 473 474 /** 475 * napi_disable - prevent NAPI from scheduling 476 * @n: napi context 477 * 478 * Stop NAPI from being scheduled on this context. 479 * Waits till any outstanding processing completes. 480 */ 481 static inline void napi_disable(struct napi_struct *n) 482 { 483 set_bit(NAPI_STATE_DISABLE, &n->state); 484 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 485 msleep(1); 486 clear_bit(NAPI_STATE_DISABLE, &n->state); 487 } 488 489 /** 490 * napi_enable - enable NAPI scheduling 491 * @n: napi context 492 * 493 * Resume NAPI from being scheduled on this context. 494 * Must be paired with napi_disable. 495 */ 496 static inline void napi_enable(struct napi_struct *n) 497 { 498 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 499 smp_mb__before_clear_bit(); 500 clear_bit(NAPI_STATE_SCHED, &n->state); 501 } 502 503 #ifdef CONFIG_SMP 504 /** 505 * napi_synchronize - wait until NAPI is not running 506 * @n: napi context 507 * 508 * Wait until NAPI is done being scheduled on this context. 509 * Waits till any outstanding processing completes but 510 * does not disable future activations. 511 */ 512 static inline void napi_synchronize(const struct napi_struct *n) 513 { 514 while (test_bit(NAPI_STATE_SCHED, &n->state)) 515 msleep(1); 516 } 517 #else 518 # define napi_synchronize(n) barrier() 519 #endif 520 521 enum netdev_queue_state_t { 522 __QUEUE_STATE_DRV_XOFF, 523 __QUEUE_STATE_STACK_XOFF, 524 __QUEUE_STATE_FROZEN, 525 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 526 (1 << __QUEUE_STATE_STACK_XOFF)) 527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 528 (1 << __QUEUE_STATE_FROZEN)) 529 }; 530 /* 531 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 532 * netif_tx_* functions below are used to manipulate this flag. The 533 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 534 * queue independently. The netif_xmit_*stopped functions below are called 535 * to check if the queue has been stopped by the driver or stack (either 536 * of the XOFF bits are set in the state). Drivers should not need to call 537 * netif_xmit*stopped functions, they should only be using netif_tx_*. 538 */ 539 540 struct netdev_queue { 541 /* 542 * read mostly part 543 */ 544 struct net_device *dev; 545 struct Qdisc *qdisc; 546 struct Qdisc *qdisc_sleeping; 547 #ifdef CONFIG_SYSFS 548 struct kobject kobj; 549 #endif 550 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 551 int numa_node; 552 #endif 553 /* 554 * write mostly part 555 */ 556 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 557 int xmit_lock_owner; 558 /* 559 * please use this field instead of dev->trans_start 560 */ 561 unsigned long trans_start; 562 563 /* 564 * Number of TX timeouts for this queue 565 * (/sys/class/net/DEV/Q/trans_timeout) 566 */ 567 unsigned long trans_timeout; 568 569 unsigned long state; 570 571 #ifdef CONFIG_BQL 572 struct dql dql; 573 #endif 574 } ____cacheline_aligned_in_smp; 575 576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 577 { 578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 579 return q->numa_node; 580 #else 581 return NUMA_NO_NODE; 582 #endif 583 } 584 585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 586 { 587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 588 q->numa_node = node; 589 #endif 590 } 591 592 #ifdef CONFIG_RPS 593 /* 594 * This structure holds an RPS map which can be of variable length. The 595 * map is an array of CPUs. 596 */ 597 struct rps_map { 598 unsigned int len; 599 struct rcu_head rcu; 600 u16 cpus[0]; 601 }; 602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 603 604 /* 605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 606 * tail pointer for that CPU's input queue at the time of last enqueue, and 607 * a hardware filter index. 608 */ 609 struct rps_dev_flow { 610 u16 cpu; 611 u16 filter; 612 unsigned int last_qtail; 613 }; 614 #define RPS_NO_FILTER 0xffff 615 616 /* 617 * The rps_dev_flow_table structure contains a table of flow mappings. 618 */ 619 struct rps_dev_flow_table { 620 unsigned int mask; 621 struct rcu_head rcu; 622 struct work_struct free_work; 623 struct rps_dev_flow flows[0]; 624 }; 625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 626 ((_num) * sizeof(struct rps_dev_flow))) 627 628 /* 629 * The rps_sock_flow_table contains mappings of flows to the last CPU 630 * on which they were processed by the application (set in recvmsg). 631 */ 632 struct rps_sock_flow_table { 633 unsigned int mask; 634 u16 ents[0]; 635 }; 636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 637 ((_num) * sizeof(u16))) 638 639 #define RPS_NO_CPU 0xffff 640 641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 642 u32 hash) 643 { 644 if (table && hash) { 645 unsigned int cpu, index = hash & table->mask; 646 647 /* We only give a hint, preemption can change cpu under us */ 648 cpu = raw_smp_processor_id(); 649 650 if (table->ents[index] != cpu) 651 table->ents[index] = cpu; 652 } 653 } 654 655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 656 u32 hash) 657 { 658 if (table && hash) 659 table->ents[hash & table->mask] = RPS_NO_CPU; 660 } 661 662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 663 664 #ifdef CONFIG_RFS_ACCEL 665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 666 u32 flow_id, u16 filter_id); 667 #endif 668 669 /* This structure contains an instance of an RX queue. */ 670 struct netdev_rx_queue { 671 struct rps_map __rcu *rps_map; 672 struct rps_dev_flow_table __rcu *rps_flow_table; 673 struct kobject kobj; 674 struct net_device *dev; 675 } ____cacheline_aligned_in_smp; 676 #endif /* CONFIG_RPS */ 677 678 #ifdef CONFIG_XPS 679 /* 680 * This structure holds an XPS map which can be of variable length. The 681 * map is an array of queues. 682 */ 683 struct xps_map { 684 unsigned int len; 685 unsigned int alloc_len; 686 struct rcu_head rcu; 687 u16 queues[0]; 688 }; 689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 691 / sizeof(u16)) 692 693 /* 694 * This structure holds all XPS maps for device. Maps are indexed by CPU. 695 */ 696 struct xps_dev_maps { 697 struct rcu_head rcu; 698 struct xps_map __rcu *cpu_map[0]; 699 }; 700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 701 (nr_cpu_ids * sizeof(struct xps_map *))) 702 #endif /* CONFIG_XPS */ 703 704 #define TC_MAX_QUEUE 16 705 #define TC_BITMASK 15 706 /* HW offloaded queuing disciplines txq count and offset maps */ 707 struct netdev_tc_txq { 708 u16 count; 709 u16 offset; 710 }; 711 712 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 713 /* 714 * This structure is to hold information about the device 715 * configured to run FCoE protocol stack. 716 */ 717 struct netdev_fcoe_hbainfo { 718 char manufacturer[64]; 719 char serial_number[64]; 720 char hardware_version[64]; 721 char driver_version[64]; 722 char optionrom_version[64]; 723 char firmware_version[64]; 724 char model[256]; 725 char model_description[256]; 726 }; 727 #endif 728 729 /* 730 * This structure defines the management hooks for network devices. 731 * The following hooks can be defined; unless noted otherwise, they are 732 * optional and can be filled with a null pointer. 733 * 734 * int (*ndo_init)(struct net_device *dev); 735 * This function is called once when network device is registered. 736 * The network device can use this to any late stage initializaton 737 * or semantic validattion. It can fail with an error code which will 738 * be propogated back to register_netdev 739 * 740 * void (*ndo_uninit)(struct net_device *dev); 741 * This function is called when device is unregistered or when registration 742 * fails. It is not called if init fails. 743 * 744 * int (*ndo_open)(struct net_device *dev); 745 * This function is called when network device transistions to the up 746 * state. 747 * 748 * int (*ndo_stop)(struct net_device *dev); 749 * This function is called when network device transistions to the down 750 * state. 751 * 752 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 753 * struct net_device *dev); 754 * Called when a packet needs to be transmitted. 755 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 756 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 757 * Required can not be NULL. 758 * 759 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 760 * Called to decide which queue to when device supports multiple 761 * transmit queues. 762 * 763 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 764 * This function is called to allow device receiver to make 765 * changes to configuration when multicast or promiscious is enabled. 766 * 767 * void (*ndo_set_rx_mode)(struct net_device *dev); 768 * This function is called device changes address list filtering. 769 * If driver handles unicast address filtering, it should set 770 * IFF_UNICAST_FLT to its priv_flags. 771 * 772 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 773 * This function is called when the Media Access Control address 774 * needs to be changed. If this interface is not defined, the 775 * mac address can not be changed. 776 * 777 * int (*ndo_validate_addr)(struct net_device *dev); 778 * Test if Media Access Control address is valid for the device. 779 * 780 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 781 * Called when a user request an ioctl which can't be handled by 782 * the generic interface code. If not defined ioctl's return 783 * not supported error code. 784 * 785 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 786 * Used to set network devices bus interface parameters. This interface 787 * is retained for legacy reason, new devices should use the bus 788 * interface (PCI) for low level management. 789 * 790 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 791 * Called when a user wants to change the Maximum Transfer Unit 792 * of a device. If not defined, any request to change MTU will 793 * will return an error. 794 * 795 * void (*ndo_tx_timeout)(struct net_device *dev); 796 * Callback uses when the transmitter has not made any progress 797 * for dev->watchdog ticks. 798 * 799 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 800 * struct rtnl_link_stats64 *storage); 801 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 802 * Called when a user wants to get the network device usage 803 * statistics. Drivers must do one of the following: 804 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 805 * rtnl_link_stats64 structure passed by the caller. 806 * 2. Define @ndo_get_stats to update a net_device_stats structure 807 * (which should normally be dev->stats) and return a pointer to 808 * it. The structure may be changed asynchronously only if each 809 * field is written atomically. 810 * 3. Update dev->stats asynchronously and atomically, and define 811 * neither operation. 812 * 813 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 814 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 815 * this function is called when a VLAN id is registered. 816 * 817 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 818 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 819 * this function is called when a VLAN id is unregistered. 820 * 821 * void (*ndo_poll_controller)(struct net_device *dev); 822 * 823 * SR-IOV management functions. 824 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 825 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 826 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 827 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 828 * int (*ndo_get_vf_config)(struct net_device *dev, 829 * int vf, struct ifla_vf_info *ivf); 830 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 831 * struct nlattr *port[]); 832 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 833 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 834 * Called to setup 'tc' number of traffic classes in the net device. This 835 * is always called from the stack with the rtnl lock held and netif tx 836 * queues stopped. This allows the netdevice to perform queue management 837 * safely. 838 * 839 * Fiber Channel over Ethernet (FCoE) offload functions. 840 * int (*ndo_fcoe_enable)(struct net_device *dev); 841 * Called when the FCoE protocol stack wants to start using LLD for FCoE 842 * so the underlying device can perform whatever needed configuration or 843 * initialization to support acceleration of FCoE traffic. 844 * 845 * int (*ndo_fcoe_disable)(struct net_device *dev); 846 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 847 * so the underlying device can perform whatever needed clean-ups to 848 * stop supporting acceleration of FCoE traffic. 849 * 850 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 851 * struct scatterlist *sgl, unsigned int sgc); 852 * Called when the FCoE Initiator wants to initialize an I/O that 853 * is a possible candidate for Direct Data Placement (DDP). The LLD can 854 * perform necessary setup and returns 1 to indicate the device is set up 855 * successfully to perform DDP on this I/O, otherwise this returns 0. 856 * 857 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 858 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 859 * indicated by the FC exchange id 'xid', so the underlying device can 860 * clean up and reuse resources for later DDP requests. 861 * 862 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 863 * struct scatterlist *sgl, unsigned int sgc); 864 * Called when the FCoE Target wants to initialize an I/O that 865 * is a possible candidate for Direct Data Placement (DDP). The LLD can 866 * perform necessary setup and returns 1 to indicate the device is set up 867 * successfully to perform DDP on this I/O, otherwise this returns 0. 868 * 869 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 870 * struct netdev_fcoe_hbainfo *hbainfo); 871 * Called when the FCoE Protocol stack wants information on the underlying 872 * device. This information is utilized by the FCoE protocol stack to 873 * register attributes with Fiber Channel management service as per the 874 * FC-GS Fabric Device Management Information(FDMI) specification. 875 * 876 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 877 * Called when the underlying device wants to override default World Wide 878 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 879 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 880 * protocol stack to use. 881 * 882 * RFS acceleration. 883 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 884 * u16 rxq_index, u32 flow_id); 885 * Set hardware filter for RFS. rxq_index is the target queue index; 886 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 887 * Return the filter ID on success, or a negative error code. 888 * 889 * Slave management functions (for bridge, bonding, etc). User should 890 * call netdev_set_master() to set dev->master properly. 891 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 892 * Called to make another netdev an underling. 893 * 894 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 895 * Called to release previously enslaved netdev. 896 * 897 * Feature/offload setting functions. 898 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 899 * netdev_features_t features); 900 * Adjusts the requested feature flags according to device-specific 901 * constraints, and returns the resulting flags. Must not modify 902 * the device state. 903 * 904 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 905 * Called to update device configuration to new features. Passed 906 * feature set might be less than what was returned by ndo_fix_features()). 907 * Must return >0 or -errno if it changed dev->features itself. 908 * 909 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev, 910 * unsigned char *addr, u16 flags) 911 * Adds an FDB entry to dev for addr. 912 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev, 913 * unsigned char *addr) 914 * Deletes the FDB entry from dev coresponding to addr. 915 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 916 * struct net_device *dev, int idx) 917 * Used to add FDB entries to dump requests. Implementers should add 918 * entries to skb and update idx with the number of entries. 919 */ 920 struct net_device_ops { 921 int (*ndo_init)(struct net_device *dev); 922 void (*ndo_uninit)(struct net_device *dev); 923 int (*ndo_open)(struct net_device *dev); 924 int (*ndo_stop)(struct net_device *dev); 925 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 926 struct net_device *dev); 927 u16 (*ndo_select_queue)(struct net_device *dev, 928 struct sk_buff *skb); 929 void (*ndo_change_rx_flags)(struct net_device *dev, 930 int flags); 931 void (*ndo_set_rx_mode)(struct net_device *dev); 932 int (*ndo_set_mac_address)(struct net_device *dev, 933 void *addr); 934 int (*ndo_validate_addr)(struct net_device *dev); 935 int (*ndo_do_ioctl)(struct net_device *dev, 936 struct ifreq *ifr, int cmd); 937 int (*ndo_set_config)(struct net_device *dev, 938 struct ifmap *map); 939 int (*ndo_change_mtu)(struct net_device *dev, 940 int new_mtu); 941 int (*ndo_neigh_setup)(struct net_device *dev, 942 struct neigh_parms *); 943 void (*ndo_tx_timeout) (struct net_device *dev); 944 945 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 946 struct rtnl_link_stats64 *storage); 947 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 948 949 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 950 unsigned short vid); 951 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 952 unsigned short vid); 953 #ifdef CONFIG_NET_POLL_CONTROLLER 954 void (*ndo_poll_controller)(struct net_device *dev); 955 int (*ndo_netpoll_setup)(struct net_device *dev, 956 struct netpoll_info *info, 957 gfp_t gfp); 958 void (*ndo_netpoll_cleanup)(struct net_device *dev); 959 #endif 960 int (*ndo_set_vf_mac)(struct net_device *dev, 961 int queue, u8 *mac); 962 int (*ndo_set_vf_vlan)(struct net_device *dev, 963 int queue, u16 vlan, u8 qos); 964 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 965 int vf, int rate); 966 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 967 int vf, bool setting); 968 int (*ndo_get_vf_config)(struct net_device *dev, 969 int vf, 970 struct ifla_vf_info *ivf); 971 int (*ndo_set_vf_port)(struct net_device *dev, 972 int vf, 973 struct nlattr *port[]); 974 int (*ndo_get_vf_port)(struct net_device *dev, 975 int vf, struct sk_buff *skb); 976 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 977 #if IS_ENABLED(CONFIG_FCOE) 978 int (*ndo_fcoe_enable)(struct net_device *dev); 979 int (*ndo_fcoe_disable)(struct net_device *dev); 980 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 981 u16 xid, 982 struct scatterlist *sgl, 983 unsigned int sgc); 984 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 985 u16 xid); 986 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 987 u16 xid, 988 struct scatterlist *sgl, 989 unsigned int sgc); 990 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 991 struct netdev_fcoe_hbainfo *hbainfo); 992 #endif 993 994 #if IS_ENABLED(CONFIG_LIBFCOE) 995 #define NETDEV_FCOE_WWNN 0 996 #define NETDEV_FCOE_WWPN 1 997 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 998 u64 *wwn, int type); 999 #endif 1000 1001 #ifdef CONFIG_RFS_ACCEL 1002 int (*ndo_rx_flow_steer)(struct net_device *dev, 1003 const struct sk_buff *skb, 1004 u16 rxq_index, 1005 u32 flow_id); 1006 #endif 1007 int (*ndo_add_slave)(struct net_device *dev, 1008 struct net_device *slave_dev); 1009 int (*ndo_del_slave)(struct net_device *dev, 1010 struct net_device *slave_dev); 1011 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1012 netdev_features_t features); 1013 int (*ndo_set_features)(struct net_device *dev, 1014 netdev_features_t features); 1015 int (*ndo_neigh_construct)(struct neighbour *n); 1016 void (*ndo_neigh_destroy)(struct neighbour *n); 1017 1018 int (*ndo_fdb_add)(struct ndmsg *ndm, 1019 struct net_device *dev, 1020 unsigned char *addr, 1021 u16 flags); 1022 int (*ndo_fdb_del)(struct ndmsg *ndm, 1023 struct net_device *dev, 1024 unsigned char *addr); 1025 int (*ndo_fdb_dump)(struct sk_buff *skb, 1026 struct netlink_callback *cb, 1027 struct net_device *dev, 1028 int idx); 1029 }; 1030 1031 /* 1032 * The DEVICE structure. 1033 * Actually, this whole structure is a big mistake. It mixes I/O 1034 * data with strictly "high-level" data, and it has to know about 1035 * almost every data structure used in the INET module. 1036 * 1037 * FIXME: cleanup struct net_device such that network protocol info 1038 * moves out. 1039 */ 1040 1041 struct net_device { 1042 1043 /* 1044 * This is the first field of the "visible" part of this structure 1045 * (i.e. as seen by users in the "Space.c" file). It is the name 1046 * of the interface. 1047 */ 1048 char name[IFNAMSIZ]; 1049 1050 /* device name hash chain, please keep it close to name[] */ 1051 struct hlist_node name_hlist; 1052 1053 /* snmp alias */ 1054 char *ifalias; 1055 1056 /* 1057 * I/O specific fields 1058 * FIXME: Merge these and struct ifmap into one 1059 */ 1060 unsigned long mem_end; /* shared mem end */ 1061 unsigned long mem_start; /* shared mem start */ 1062 unsigned long base_addr; /* device I/O address */ 1063 unsigned int irq; /* device IRQ number */ 1064 1065 /* 1066 * Some hardware also needs these fields, but they are not 1067 * part of the usual set specified in Space.c. 1068 */ 1069 1070 unsigned long state; 1071 1072 struct list_head dev_list; 1073 struct list_head napi_list; 1074 struct list_head unreg_list; 1075 1076 /* currently active device features */ 1077 netdev_features_t features; 1078 /* user-changeable features */ 1079 netdev_features_t hw_features; 1080 /* user-requested features */ 1081 netdev_features_t wanted_features; 1082 /* mask of features inheritable by VLAN devices */ 1083 netdev_features_t vlan_features; 1084 1085 /* Interface index. Unique device identifier */ 1086 int ifindex; 1087 int iflink; 1088 1089 struct net_device_stats stats; 1090 atomic_long_t rx_dropped; /* dropped packets by core network 1091 * Do not use this in drivers. 1092 */ 1093 1094 #ifdef CONFIG_WIRELESS_EXT 1095 /* List of functions to handle Wireless Extensions (instead of ioctl). 1096 * See <net/iw_handler.h> for details. Jean II */ 1097 const struct iw_handler_def * wireless_handlers; 1098 /* Instance data managed by the core of Wireless Extensions. */ 1099 struct iw_public_data * wireless_data; 1100 #endif 1101 /* Management operations */ 1102 const struct net_device_ops *netdev_ops; 1103 const struct ethtool_ops *ethtool_ops; 1104 1105 /* Hardware header description */ 1106 const struct header_ops *header_ops; 1107 1108 unsigned int flags; /* interface flags (a la BSD) */ 1109 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1110 * See if.h for definitions. */ 1111 unsigned short gflags; 1112 unsigned short padded; /* How much padding added by alloc_netdev() */ 1113 1114 unsigned char operstate; /* RFC2863 operstate */ 1115 unsigned char link_mode; /* mapping policy to operstate */ 1116 1117 unsigned char if_port; /* Selectable AUI, TP,..*/ 1118 unsigned char dma; /* DMA channel */ 1119 1120 unsigned int mtu; /* interface MTU value */ 1121 unsigned short type; /* interface hardware type */ 1122 unsigned short hard_header_len; /* hardware hdr length */ 1123 1124 /* extra head- and tailroom the hardware may need, but not in all cases 1125 * can this be guaranteed, especially tailroom. Some cases also use 1126 * LL_MAX_HEADER instead to allocate the skb. 1127 */ 1128 unsigned short needed_headroom; 1129 unsigned short needed_tailroom; 1130 1131 /* Interface address info. */ 1132 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1133 unsigned char addr_assign_type; /* hw address assignment type */ 1134 unsigned char addr_len; /* hardware address length */ 1135 unsigned char neigh_priv_len; 1136 unsigned short dev_id; /* for shared network cards */ 1137 1138 spinlock_t addr_list_lock; 1139 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1140 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1141 bool uc_promisc; 1142 unsigned int promiscuity; 1143 unsigned int allmulti; 1144 1145 1146 /* Protocol specific pointers */ 1147 1148 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1149 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1150 #endif 1151 #if IS_ENABLED(CONFIG_NET_DSA) 1152 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1153 #endif 1154 void *atalk_ptr; /* AppleTalk link */ 1155 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1156 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1157 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1158 void *ax25_ptr; /* AX.25 specific data */ 1159 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1160 assign before registering */ 1161 1162 /* 1163 * Cache lines mostly used on receive path (including eth_type_trans()) 1164 */ 1165 unsigned long last_rx; /* Time of last Rx 1166 * This should not be set in 1167 * drivers, unless really needed, 1168 * because network stack (bonding) 1169 * use it if/when necessary, to 1170 * avoid dirtying this cache line. 1171 */ 1172 1173 struct net_device *master; /* Pointer to master device of a group, 1174 * which this device is member of. 1175 */ 1176 1177 /* Interface address info used in eth_type_trans() */ 1178 unsigned char *dev_addr; /* hw address, (before bcast 1179 because most packets are 1180 unicast) */ 1181 1182 struct netdev_hw_addr_list dev_addrs; /* list of device 1183 hw addresses */ 1184 1185 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1186 1187 #ifdef CONFIG_SYSFS 1188 struct kset *queues_kset; 1189 #endif 1190 1191 #ifdef CONFIG_RPS 1192 struct netdev_rx_queue *_rx; 1193 1194 /* Number of RX queues allocated at register_netdev() time */ 1195 unsigned int num_rx_queues; 1196 1197 /* Number of RX queues currently active in device */ 1198 unsigned int real_num_rx_queues; 1199 1200 #ifdef CONFIG_RFS_ACCEL 1201 /* CPU reverse-mapping for RX completion interrupts, indexed 1202 * by RX queue number. Assigned by driver. This must only be 1203 * set if the ndo_rx_flow_steer operation is defined. */ 1204 struct cpu_rmap *rx_cpu_rmap; 1205 #endif 1206 #endif 1207 1208 rx_handler_func_t __rcu *rx_handler; 1209 void __rcu *rx_handler_data; 1210 1211 struct netdev_queue __rcu *ingress_queue; 1212 1213 /* 1214 * Cache lines mostly used on transmit path 1215 */ 1216 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1217 1218 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1219 unsigned int num_tx_queues; 1220 1221 /* Number of TX queues currently active in device */ 1222 unsigned int real_num_tx_queues; 1223 1224 /* root qdisc from userspace point of view */ 1225 struct Qdisc *qdisc; 1226 1227 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1228 spinlock_t tx_global_lock; 1229 1230 #ifdef CONFIG_XPS 1231 struct xps_dev_maps __rcu *xps_maps; 1232 #endif 1233 1234 /* These may be needed for future network-power-down code. */ 1235 1236 /* 1237 * trans_start here is expensive for high speed devices on SMP, 1238 * please use netdev_queue->trans_start instead. 1239 */ 1240 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1241 1242 int watchdog_timeo; /* used by dev_watchdog() */ 1243 struct timer_list watchdog_timer; 1244 1245 /* Number of references to this device */ 1246 int __percpu *pcpu_refcnt; 1247 1248 /* delayed register/unregister */ 1249 struct list_head todo_list; 1250 /* device index hash chain */ 1251 struct hlist_node index_hlist; 1252 1253 struct list_head link_watch_list; 1254 1255 /* register/unregister state machine */ 1256 enum { NETREG_UNINITIALIZED=0, 1257 NETREG_REGISTERED, /* completed register_netdevice */ 1258 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1259 NETREG_UNREGISTERED, /* completed unregister todo */ 1260 NETREG_RELEASED, /* called free_netdev */ 1261 NETREG_DUMMY, /* dummy device for NAPI poll */ 1262 } reg_state:8; 1263 1264 bool dismantle; /* device is going do be freed */ 1265 1266 enum { 1267 RTNL_LINK_INITIALIZED, 1268 RTNL_LINK_INITIALIZING, 1269 } rtnl_link_state:16; 1270 1271 /* Called from unregister, can be used to call free_netdev */ 1272 void (*destructor)(struct net_device *dev); 1273 1274 #ifdef CONFIG_NETPOLL 1275 struct netpoll_info *npinfo; 1276 #endif 1277 1278 #ifdef CONFIG_NET_NS 1279 /* Network namespace this network device is inside */ 1280 struct net *nd_net; 1281 #endif 1282 1283 /* mid-layer private */ 1284 union { 1285 void *ml_priv; 1286 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1287 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1288 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1289 }; 1290 /* GARP */ 1291 struct garp_port __rcu *garp_port; 1292 1293 /* class/net/name entry */ 1294 struct device dev; 1295 /* space for optional device, statistics, and wireless sysfs groups */ 1296 const struct attribute_group *sysfs_groups[4]; 1297 1298 /* rtnetlink link ops */ 1299 const struct rtnl_link_ops *rtnl_link_ops; 1300 1301 /* for setting kernel sock attribute on TCP connection setup */ 1302 #define GSO_MAX_SIZE 65536 1303 unsigned int gso_max_size; 1304 #define GSO_MAX_SEGS 65535 1305 u16 gso_max_segs; 1306 1307 #ifdef CONFIG_DCB 1308 /* Data Center Bridging netlink ops */ 1309 const struct dcbnl_rtnl_ops *dcbnl_ops; 1310 #endif 1311 u8 num_tc; 1312 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1313 u8 prio_tc_map[TC_BITMASK + 1]; 1314 1315 #if IS_ENABLED(CONFIG_FCOE) 1316 /* max exchange id for FCoE LRO by ddp */ 1317 unsigned int fcoe_ddp_xid; 1318 #endif 1319 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1320 struct netprio_map __rcu *priomap; 1321 #endif 1322 /* phy device may attach itself for hardware timestamping */ 1323 struct phy_device *phydev; 1324 1325 /* group the device belongs to */ 1326 int group; 1327 1328 struct pm_qos_request pm_qos_req; 1329 }; 1330 #define to_net_dev(d) container_of(d, struct net_device, dev) 1331 1332 #define NETDEV_ALIGN 32 1333 1334 static inline 1335 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1336 { 1337 return dev->prio_tc_map[prio & TC_BITMASK]; 1338 } 1339 1340 static inline 1341 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1342 { 1343 if (tc >= dev->num_tc) 1344 return -EINVAL; 1345 1346 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1347 return 0; 1348 } 1349 1350 static inline 1351 void netdev_reset_tc(struct net_device *dev) 1352 { 1353 dev->num_tc = 0; 1354 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1355 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1356 } 1357 1358 static inline 1359 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1360 { 1361 if (tc >= dev->num_tc) 1362 return -EINVAL; 1363 1364 dev->tc_to_txq[tc].count = count; 1365 dev->tc_to_txq[tc].offset = offset; 1366 return 0; 1367 } 1368 1369 static inline 1370 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1371 { 1372 if (num_tc > TC_MAX_QUEUE) 1373 return -EINVAL; 1374 1375 dev->num_tc = num_tc; 1376 return 0; 1377 } 1378 1379 static inline 1380 int netdev_get_num_tc(struct net_device *dev) 1381 { 1382 return dev->num_tc; 1383 } 1384 1385 static inline 1386 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1387 unsigned int index) 1388 { 1389 return &dev->_tx[index]; 1390 } 1391 1392 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1393 void (*f)(struct net_device *, 1394 struct netdev_queue *, 1395 void *), 1396 void *arg) 1397 { 1398 unsigned int i; 1399 1400 for (i = 0; i < dev->num_tx_queues; i++) 1401 f(dev, &dev->_tx[i], arg); 1402 } 1403 1404 /* 1405 * Net namespace inlines 1406 */ 1407 static inline 1408 struct net *dev_net(const struct net_device *dev) 1409 { 1410 return read_pnet(&dev->nd_net); 1411 } 1412 1413 static inline 1414 void dev_net_set(struct net_device *dev, struct net *net) 1415 { 1416 #ifdef CONFIG_NET_NS 1417 release_net(dev->nd_net); 1418 dev->nd_net = hold_net(net); 1419 #endif 1420 } 1421 1422 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1423 { 1424 #ifdef CONFIG_NET_DSA_TAG_DSA 1425 if (dev->dsa_ptr != NULL) 1426 return dsa_uses_dsa_tags(dev->dsa_ptr); 1427 #endif 1428 1429 return 0; 1430 } 1431 1432 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1433 { 1434 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1435 if (dev->dsa_ptr != NULL) 1436 return dsa_uses_trailer_tags(dev->dsa_ptr); 1437 #endif 1438 1439 return 0; 1440 } 1441 1442 /** 1443 * netdev_priv - access network device private data 1444 * @dev: network device 1445 * 1446 * Get network device private data 1447 */ 1448 static inline void *netdev_priv(const struct net_device *dev) 1449 { 1450 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1451 } 1452 1453 /* Set the sysfs physical device reference for the network logical device 1454 * if set prior to registration will cause a symlink during initialization. 1455 */ 1456 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1457 1458 /* Set the sysfs device type for the network logical device to allow 1459 * fin grained indentification of different network device types. For 1460 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1461 */ 1462 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1463 1464 /** 1465 * netif_napi_add - initialize a napi context 1466 * @dev: network device 1467 * @napi: napi context 1468 * @poll: polling function 1469 * @weight: default weight 1470 * 1471 * netif_napi_add() must be used to initialize a napi context prior to calling 1472 * *any* of the other napi related functions. 1473 */ 1474 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1475 int (*poll)(struct napi_struct *, int), int weight); 1476 1477 /** 1478 * netif_napi_del - remove a napi context 1479 * @napi: napi context 1480 * 1481 * netif_napi_del() removes a napi context from the network device napi list 1482 */ 1483 void netif_napi_del(struct napi_struct *napi); 1484 1485 struct napi_gro_cb { 1486 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1487 void *frag0; 1488 1489 /* Length of frag0. */ 1490 unsigned int frag0_len; 1491 1492 /* This indicates where we are processing relative to skb->data. */ 1493 int data_offset; 1494 1495 /* This is non-zero if the packet may be of the same flow. */ 1496 int same_flow; 1497 1498 /* This is non-zero if the packet cannot be merged with the new skb. */ 1499 int flush; 1500 1501 /* Number of segments aggregated. */ 1502 int count; 1503 1504 /* Free the skb? */ 1505 int free; 1506 #define NAPI_GRO_FREE 1 1507 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1508 }; 1509 1510 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1511 1512 struct packet_type { 1513 __be16 type; /* This is really htons(ether_type). */ 1514 struct net_device *dev; /* NULL is wildcarded here */ 1515 int (*func) (struct sk_buff *, 1516 struct net_device *, 1517 struct packet_type *, 1518 struct net_device *); 1519 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1520 netdev_features_t features); 1521 int (*gso_send_check)(struct sk_buff *skb); 1522 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1523 struct sk_buff *skb); 1524 int (*gro_complete)(struct sk_buff *skb); 1525 bool (*id_match)(struct packet_type *ptype, 1526 struct sock *sk); 1527 void *af_packet_priv; 1528 struct list_head list; 1529 }; 1530 1531 #include <linux/notifier.h> 1532 1533 /* netdevice notifier chain. Please remember to update the rtnetlink 1534 * notification exclusion list in rtnetlink_event() when adding new 1535 * types. 1536 */ 1537 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1538 #define NETDEV_DOWN 0x0002 1539 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1540 detected a hardware crash and restarted 1541 - we can use this eg to kick tcp sessions 1542 once done */ 1543 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1544 #define NETDEV_REGISTER 0x0005 1545 #define NETDEV_UNREGISTER 0x0006 1546 #define NETDEV_CHANGEMTU 0x0007 1547 #define NETDEV_CHANGEADDR 0x0008 1548 #define NETDEV_GOING_DOWN 0x0009 1549 #define NETDEV_CHANGENAME 0x000A 1550 #define NETDEV_FEAT_CHANGE 0x000B 1551 #define NETDEV_BONDING_FAILOVER 0x000C 1552 #define NETDEV_PRE_UP 0x000D 1553 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1554 #define NETDEV_POST_TYPE_CHANGE 0x000F 1555 #define NETDEV_POST_INIT 0x0010 1556 #define NETDEV_UNREGISTER_BATCH 0x0011 1557 #define NETDEV_RELEASE 0x0012 1558 #define NETDEV_NOTIFY_PEERS 0x0013 1559 #define NETDEV_JOIN 0x0014 1560 1561 extern int register_netdevice_notifier(struct notifier_block *nb); 1562 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1563 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1564 1565 1566 extern rwlock_t dev_base_lock; /* Device list lock */ 1567 1568 1569 #define for_each_netdev(net, d) \ 1570 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1571 #define for_each_netdev_reverse(net, d) \ 1572 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1573 #define for_each_netdev_rcu(net, d) \ 1574 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1575 #define for_each_netdev_safe(net, d, n) \ 1576 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1577 #define for_each_netdev_continue(net, d) \ 1578 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1579 #define for_each_netdev_continue_rcu(net, d) \ 1580 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1581 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1582 1583 static inline struct net_device *next_net_device(struct net_device *dev) 1584 { 1585 struct list_head *lh; 1586 struct net *net; 1587 1588 net = dev_net(dev); 1589 lh = dev->dev_list.next; 1590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1591 } 1592 1593 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1594 { 1595 struct list_head *lh; 1596 struct net *net; 1597 1598 net = dev_net(dev); 1599 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1600 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1601 } 1602 1603 static inline struct net_device *first_net_device(struct net *net) 1604 { 1605 return list_empty(&net->dev_base_head) ? NULL : 1606 net_device_entry(net->dev_base_head.next); 1607 } 1608 1609 static inline struct net_device *first_net_device_rcu(struct net *net) 1610 { 1611 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1612 1613 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1614 } 1615 1616 extern int netdev_boot_setup_check(struct net_device *dev); 1617 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1618 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1619 const char *hwaddr); 1620 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1621 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1622 extern void dev_add_pack(struct packet_type *pt); 1623 extern void dev_remove_pack(struct packet_type *pt); 1624 extern void __dev_remove_pack(struct packet_type *pt); 1625 1626 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1627 unsigned short mask); 1628 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1629 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1630 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1631 extern int dev_alloc_name(struct net_device *dev, const char *name); 1632 extern int dev_open(struct net_device *dev); 1633 extern int dev_close(struct net_device *dev); 1634 extern void dev_disable_lro(struct net_device *dev); 1635 extern int dev_loopback_xmit(struct sk_buff *newskb); 1636 extern int dev_queue_xmit(struct sk_buff *skb); 1637 extern int register_netdevice(struct net_device *dev); 1638 extern void unregister_netdevice_queue(struct net_device *dev, 1639 struct list_head *head); 1640 extern void unregister_netdevice_many(struct list_head *head); 1641 static inline void unregister_netdevice(struct net_device *dev) 1642 { 1643 unregister_netdevice_queue(dev, NULL); 1644 } 1645 1646 extern int netdev_refcnt_read(const struct net_device *dev); 1647 extern void free_netdev(struct net_device *dev); 1648 extern void synchronize_net(void); 1649 extern int init_dummy_netdev(struct net_device *dev); 1650 extern void netdev_resync_ops(struct net_device *dev); 1651 1652 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1653 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1654 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1655 extern int dev_restart(struct net_device *dev); 1656 #ifdef CONFIG_NETPOLL_TRAP 1657 extern int netpoll_trap(void); 1658 #endif 1659 extern int skb_gro_receive(struct sk_buff **head, 1660 struct sk_buff *skb); 1661 extern void skb_gro_reset_offset(struct sk_buff *skb); 1662 1663 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1664 { 1665 return NAPI_GRO_CB(skb)->data_offset; 1666 } 1667 1668 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1669 { 1670 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1671 } 1672 1673 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1674 { 1675 NAPI_GRO_CB(skb)->data_offset += len; 1676 } 1677 1678 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1679 unsigned int offset) 1680 { 1681 return NAPI_GRO_CB(skb)->frag0 + offset; 1682 } 1683 1684 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1685 { 1686 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1687 } 1688 1689 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1690 unsigned int offset) 1691 { 1692 if (!pskb_may_pull(skb, hlen)) 1693 return NULL; 1694 1695 NAPI_GRO_CB(skb)->frag0 = NULL; 1696 NAPI_GRO_CB(skb)->frag0_len = 0; 1697 return skb->data + offset; 1698 } 1699 1700 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1701 { 1702 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1703 } 1704 1705 static inline void *skb_gro_network_header(struct sk_buff *skb) 1706 { 1707 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1708 skb_network_offset(skb); 1709 } 1710 1711 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1712 unsigned short type, 1713 const void *daddr, const void *saddr, 1714 unsigned int len) 1715 { 1716 if (!dev->header_ops || !dev->header_ops->create) 1717 return 0; 1718 1719 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1720 } 1721 1722 static inline int dev_parse_header(const struct sk_buff *skb, 1723 unsigned char *haddr) 1724 { 1725 const struct net_device *dev = skb->dev; 1726 1727 if (!dev->header_ops || !dev->header_ops->parse) 1728 return 0; 1729 return dev->header_ops->parse(skb, haddr); 1730 } 1731 1732 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1733 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1734 static inline int unregister_gifconf(unsigned int family) 1735 { 1736 return register_gifconf(family, NULL); 1737 } 1738 1739 /* 1740 * Incoming packets are placed on per-cpu queues 1741 */ 1742 struct softnet_data { 1743 struct Qdisc *output_queue; 1744 struct Qdisc **output_queue_tailp; 1745 struct list_head poll_list; 1746 struct sk_buff *completion_queue; 1747 struct sk_buff_head process_queue; 1748 1749 /* stats */ 1750 unsigned int processed; 1751 unsigned int time_squeeze; 1752 unsigned int cpu_collision; 1753 unsigned int received_rps; 1754 1755 #ifdef CONFIG_RPS 1756 struct softnet_data *rps_ipi_list; 1757 1758 /* Elements below can be accessed between CPUs for RPS */ 1759 struct call_single_data csd ____cacheline_aligned_in_smp; 1760 struct softnet_data *rps_ipi_next; 1761 unsigned int cpu; 1762 unsigned int input_queue_head; 1763 unsigned int input_queue_tail; 1764 #endif 1765 unsigned int dropped; 1766 struct sk_buff_head input_pkt_queue; 1767 struct napi_struct backlog; 1768 }; 1769 1770 static inline void input_queue_head_incr(struct softnet_data *sd) 1771 { 1772 #ifdef CONFIG_RPS 1773 sd->input_queue_head++; 1774 #endif 1775 } 1776 1777 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1778 unsigned int *qtail) 1779 { 1780 #ifdef CONFIG_RPS 1781 *qtail = ++sd->input_queue_tail; 1782 #endif 1783 } 1784 1785 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1786 1787 extern void __netif_schedule(struct Qdisc *q); 1788 1789 static inline void netif_schedule_queue(struct netdev_queue *txq) 1790 { 1791 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1792 __netif_schedule(txq->qdisc); 1793 } 1794 1795 static inline void netif_tx_schedule_all(struct net_device *dev) 1796 { 1797 unsigned int i; 1798 1799 for (i = 0; i < dev->num_tx_queues; i++) 1800 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1801 } 1802 1803 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1804 { 1805 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1806 } 1807 1808 /** 1809 * netif_start_queue - allow transmit 1810 * @dev: network device 1811 * 1812 * Allow upper layers to call the device hard_start_xmit routine. 1813 */ 1814 static inline void netif_start_queue(struct net_device *dev) 1815 { 1816 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1817 } 1818 1819 static inline void netif_tx_start_all_queues(struct net_device *dev) 1820 { 1821 unsigned int i; 1822 1823 for (i = 0; i < dev->num_tx_queues; i++) { 1824 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1825 netif_tx_start_queue(txq); 1826 } 1827 } 1828 1829 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1830 { 1831 #ifdef CONFIG_NETPOLL_TRAP 1832 if (netpoll_trap()) { 1833 netif_tx_start_queue(dev_queue); 1834 return; 1835 } 1836 #endif 1837 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1838 __netif_schedule(dev_queue->qdisc); 1839 } 1840 1841 /** 1842 * netif_wake_queue - restart transmit 1843 * @dev: network device 1844 * 1845 * Allow upper layers to call the device hard_start_xmit routine. 1846 * Used for flow control when transmit resources are available. 1847 */ 1848 static inline void netif_wake_queue(struct net_device *dev) 1849 { 1850 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1851 } 1852 1853 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1854 { 1855 unsigned int i; 1856 1857 for (i = 0; i < dev->num_tx_queues; i++) { 1858 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1859 netif_tx_wake_queue(txq); 1860 } 1861 } 1862 1863 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1864 { 1865 if (WARN_ON(!dev_queue)) { 1866 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1867 return; 1868 } 1869 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1870 } 1871 1872 /** 1873 * netif_stop_queue - stop transmitted packets 1874 * @dev: network device 1875 * 1876 * Stop upper layers calling the device hard_start_xmit routine. 1877 * Used for flow control when transmit resources are unavailable. 1878 */ 1879 static inline void netif_stop_queue(struct net_device *dev) 1880 { 1881 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1882 } 1883 1884 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1885 { 1886 unsigned int i; 1887 1888 for (i = 0; i < dev->num_tx_queues; i++) { 1889 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1890 netif_tx_stop_queue(txq); 1891 } 1892 } 1893 1894 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1895 { 1896 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1897 } 1898 1899 /** 1900 * netif_queue_stopped - test if transmit queue is flowblocked 1901 * @dev: network device 1902 * 1903 * Test if transmit queue on device is currently unable to send. 1904 */ 1905 static inline bool netif_queue_stopped(const struct net_device *dev) 1906 { 1907 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1908 } 1909 1910 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1911 { 1912 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1913 } 1914 1915 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1916 { 1917 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1918 } 1919 1920 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1921 unsigned int bytes) 1922 { 1923 #ifdef CONFIG_BQL 1924 dql_queued(&dev_queue->dql, bytes); 1925 1926 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1927 return; 1928 1929 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1930 1931 /* 1932 * The XOFF flag must be set before checking the dql_avail below, 1933 * because in netdev_tx_completed_queue we update the dql_completed 1934 * before checking the XOFF flag. 1935 */ 1936 smp_mb(); 1937 1938 /* check again in case another CPU has just made room avail */ 1939 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1940 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1941 #endif 1942 } 1943 1944 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1945 { 1946 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1947 } 1948 1949 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1950 unsigned int pkts, unsigned int bytes) 1951 { 1952 #ifdef CONFIG_BQL 1953 if (unlikely(!bytes)) 1954 return; 1955 1956 dql_completed(&dev_queue->dql, bytes); 1957 1958 /* 1959 * Without the memory barrier there is a small possiblity that 1960 * netdev_tx_sent_queue will miss the update and cause the queue to 1961 * be stopped forever 1962 */ 1963 smp_mb(); 1964 1965 if (dql_avail(&dev_queue->dql) < 0) 1966 return; 1967 1968 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1969 netif_schedule_queue(dev_queue); 1970 #endif 1971 } 1972 1973 static inline void netdev_completed_queue(struct net_device *dev, 1974 unsigned int pkts, unsigned int bytes) 1975 { 1976 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1977 } 1978 1979 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1980 { 1981 #ifdef CONFIG_BQL 1982 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 1983 dql_reset(&q->dql); 1984 #endif 1985 } 1986 1987 static inline void netdev_reset_queue(struct net_device *dev_queue) 1988 { 1989 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1990 } 1991 1992 /** 1993 * netif_running - test if up 1994 * @dev: network device 1995 * 1996 * Test if the device has been brought up. 1997 */ 1998 static inline bool netif_running(const struct net_device *dev) 1999 { 2000 return test_bit(__LINK_STATE_START, &dev->state); 2001 } 2002 2003 /* 2004 * Routines to manage the subqueues on a device. We only need start 2005 * stop, and a check if it's stopped. All other device management is 2006 * done at the overall netdevice level. 2007 * Also test the device if we're multiqueue. 2008 */ 2009 2010 /** 2011 * netif_start_subqueue - allow sending packets on subqueue 2012 * @dev: network device 2013 * @queue_index: sub queue index 2014 * 2015 * Start individual transmit queue of a device with multiple transmit queues. 2016 */ 2017 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2018 { 2019 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2020 2021 netif_tx_start_queue(txq); 2022 } 2023 2024 /** 2025 * netif_stop_subqueue - stop sending packets on subqueue 2026 * @dev: network device 2027 * @queue_index: sub queue index 2028 * 2029 * Stop individual transmit queue of a device with multiple transmit queues. 2030 */ 2031 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2032 { 2033 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2034 #ifdef CONFIG_NETPOLL_TRAP 2035 if (netpoll_trap()) 2036 return; 2037 #endif 2038 netif_tx_stop_queue(txq); 2039 } 2040 2041 /** 2042 * netif_subqueue_stopped - test status of subqueue 2043 * @dev: network device 2044 * @queue_index: sub queue index 2045 * 2046 * Check individual transmit queue of a device with multiple transmit queues. 2047 */ 2048 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2049 u16 queue_index) 2050 { 2051 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2052 2053 return netif_tx_queue_stopped(txq); 2054 } 2055 2056 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2057 struct sk_buff *skb) 2058 { 2059 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2060 } 2061 2062 /** 2063 * netif_wake_subqueue - allow sending packets on subqueue 2064 * @dev: network device 2065 * @queue_index: sub queue index 2066 * 2067 * Resume individual transmit queue of a device with multiple transmit queues. 2068 */ 2069 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2070 { 2071 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2072 #ifdef CONFIG_NETPOLL_TRAP 2073 if (netpoll_trap()) 2074 return; 2075 #endif 2076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2077 __netif_schedule(txq->qdisc); 2078 } 2079 2080 /* 2081 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2082 * as a distribution range limit for the returned value. 2083 */ 2084 static inline u16 skb_tx_hash(const struct net_device *dev, 2085 const struct sk_buff *skb) 2086 { 2087 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2088 } 2089 2090 /** 2091 * netif_is_multiqueue - test if device has multiple transmit queues 2092 * @dev: network device 2093 * 2094 * Check if device has multiple transmit queues 2095 */ 2096 static inline bool netif_is_multiqueue(const struct net_device *dev) 2097 { 2098 return dev->num_tx_queues > 1; 2099 } 2100 2101 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2102 unsigned int txq); 2103 2104 #ifdef CONFIG_RPS 2105 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2106 unsigned int rxq); 2107 #else 2108 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2109 unsigned int rxq) 2110 { 2111 return 0; 2112 } 2113 #endif 2114 2115 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2116 const struct net_device *from_dev) 2117 { 2118 int err; 2119 2120 err = netif_set_real_num_tx_queues(to_dev, 2121 from_dev->real_num_tx_queues); 2122 if (err) 2123 return err; 2124 #ifdef CONFIG_RPS 2125 return netif_set_real_num_rx_queues(to_dev, 2126 from_dev->real_num_rx_queues); 2127 #else 2128 return 0; 2129 #endif 2130 } 2131 2132 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2133 extern int netif_get_num_default_rss_queues(void); 2134 2135 /* Use this variant when it is known for sure that it 2136 * is executing from hardware interrupt context or with hardware interrupts 2137 * disabled. 2138 */ 2139 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2140 2141 /* Use this variant in places where it could be invoked 2142 * from either hardware interrupt or other context, with hardware interrupts 2143 * either disabled or enabled. 2144 */ 2145 extern void dev_kfree_skb_any(struct sk_buff *skb); 2146 2147 extern int netif_rx(struct sk_buff *skb); 2148 extern int netif_rx_ni(struct sk_buff *skb); 2149 extern int netif_receive_skb(struct sk_buff *skb); 2150 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2151 struct sk_buff *skb); 2152 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2153 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2154 struct sk_buff *skb); 2155 extern void napi_gro_flush(struct napi_struct *napi); 2156 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2157 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2158 struct sk_buff *skb, 2159 gro_result_t ret); 2160 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2161 2162 static inline void napi_free_frags(struct napi_struct *napi) 2163 { 2164 kfree_skb(napi->skb); 2165 napi->skb = NULL; 2166 } 2167 2168 extern int netdev_rx_handler_register(struct net_device *dev, 2169 rx_handler_func_t *rx_handler, 2170 void *rx_handler_data); 2171 extern void netdev_rx_handler_unregister(struct net_device *dev); 2172 2173 extern bool dev_valid_name(const char *name); 2174 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2175 extern int dev_ethtool(struct net *net, struct ifreq *); 2176 extern unsigned int dev_get_flags(const struct net_device *); 2177 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2178 extern int dev_change_flags(struct net_device *, unsigned int); 2179 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2180 extern int dev_change_name(struct net_device *, const char *); 2181 extern int dev_set_alias(struct net_device *, const char *, size_t); 2182 extern int dev_change_net_namespace(struct net_device *, 2183 struct net *, const char *); 2184 extern int dev_set_mtu(struct net_device *, int); 2185 extern void dev_set_group(struct net_device *, int); 2186 extern int dev_set_mac_address(struct net_device *, 2187 struct sockaddr *); 2188 extern int dev_hard_start_xmit(struct sk_buff *skb, 2189 struct net_device *dev, 2190 struct netdev_queue *txq); 2191 extern int dev_forward_skb(struct net_device *dev, 2192 struct sk_buff *skb); 2193 2194 extern int netdev_budget; 2195 2196 /* Called by rtnetlink.c:rtnl_unlock() */ 2197 extern void netdev_run_todo(void); 2198 2199 /** 2200 * dev_put - release reference to device 2201 * @dev: network device 2202 * 2203 * Release reference to device to allow it to be freed. 2204 */ 2205 static inline void dev_put(struct net_device *dev) 2206 { 2207 this_cpu_dec(*dev->pcpu_refcnt); 2208 } 2209 2210 /** 2211 * dev_hold - get reference to device 2212 * @dev: network device 2213 * 2214 * Hold reference to device to keep it from being freed. 2215 */ 2216 static inline void dev_hold(struct net_device *dev) 2217 { 2218 this_cpu_inc(*dev->pcpu_refcnt); 2219 } 2220 2221 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2222 * and _off may be called from IRQ context, but it is caller 2223 * who is responsible for serialization of these calls. 2224 * 2225 * The name carrier is inappropriate, these functions should really be 2226 * called netif_lowerlayer_*() because they represent the state of any 2227 * kind of lower layer not just hardware media. 2228 */ 2229 2230 extern void linkwatch_fire_event(struct net_device *dev); 2231 extern void linkwatch_forget_dev(struct net_device *dev); 2232 2233 /** 2234 * netif_carrier_ok - test if carrier present 2235 * @dev: network device 2236 * 2237 * Check if carrier is present on device 2238 */ 2239 static inline bool netif_carrier_ok(const struct net_device *dev) 2240 { 2241 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2242 } 2243 2244 extern unsigned long dev_trans_start(struct net_device *dev); 2245 2246 extern void __netdev_watchdog_up(struct net_device *dev); 2247 2248 extern void netif_carrier_on(struct net_device *dev); 2249 2250 extern void netif_carrier_off(struct net_device *dev); 2251 2252 extern void netif_notify_peers(struct net_device *dev); 2253 2254 /** 2255 * netif_dormant_on - mark device as dormant. 2256 * @dev: network device 2257 * 2258 * Mark device as dormant (as per RFC2863). 2259 * 2260 * The dormant state indicates that the relevant interface is not 2261 * actually in a condition to pass packets (i.e., it is not 'up') but is 2262 * in a "pending" state, waiting for some external event. For "on- 2263 * demand" interfaces, this new state identifies the situation where the 2264 * interface is waiting for events to place it in the up state. 2265 * 2266 */ 2267 static inline void netif_dormant_on(struct net_device *dev) 2268 { 2269 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2270 linkwatch_fire_event(dev); 2271 } 2272 2273 /** 2274 * netif_dormant_off - set device as not dormant. 2275 * @dev: network device 2276 * 2277 * Device is not in dormant state. 2278 */ 2279 static inline void netif_dormant_off(struct net_device *dev) 2280 { 2281 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2282 linkwatch_fire_event(dev); 2283 } 2284 2285 /** 2286 * netif_dormant - test if carrier present 2287 * @dev: network device 2288 * 2289 * Check if carrier is present on device 2290 */ 2291 static inline bool netif_dormant(const struct net_device *dev) 2292 { 2293 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2294 } 2295 2296 2297 /** 2298 * netif_oper_up - test if device is operational 2299 * @dev: network device 2300 * 2301 * Check if carrier is operational 2302 */ 2303 static inline bool netif_oper_up(const struct net_device *dev) 2304 { 2305 return (dev->operstate == IF_OPER_UP || 2306 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2307 } 2308 2309 /** 2310 * netif_device_present - is device available or removed 2311 * @dev: network device 2312 * 2313 * Check if device has not been removed from system. 2314 */ 2315 static inline bool netif_device_present(struct net_device *dev) 2316 { 2317 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2318 } 2319 2320 extern void netif_device_detach(struct net_device *dev); 2321 2322 extern void netif_device_attach(struct net_device *dev); 2323 2324 /* 2325 * Network interface message level settings 2326 */ 2327 2328 enum { 2329 NETIF_MSG_DRV = 0x0001, 2330 NETIF_MSG_PROBE = 0x0002, 2331 NETIF_MSG_LINK = 0x0004, 2332 NETIF_MSG_TIMER = 0x0008, 2333 NETIF_MSG_IFDOWN = 0x0010, 2334 NETIF_MSG_IFUP = 0x0020, 2335 NETIF_MSG_RX_ERR = 0x0040, 2336 NETIF_MSG_TX_ERR = 0x0080, 2337 NETIF_MSG_TX_QUEUED = 0x0100, 2338 NETIF_MSG_INTR = 0x0200, 2339 NETIF_MSG_TX_DONE = 0x0400, 2340 NETIF_MSG_RX_STATUS = 0x0800, 2341 NETIF_MSG_PKTDATA = 0x1000, 2342 NETIF_MSG_HW = 0x2000, 2343 NETIF_MSG_WOL = 0x4000, 2344 }; 2345 2346 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2347 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2348 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2349 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2350 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2351 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2352 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2353 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2354 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2355 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2356 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2357 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2358 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2359 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2360 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2361 2362 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2363 { 2364 /* use default */ 2365 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2366 return default_msg_enable_bits; 2367 if (debug_value == 0) /* no output */ 2368 return 0; 2369 /* set low N bits */ 2370 return (1 << debug_value) - 1; 2371 } 2372 2373 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2374 { 2375 spin_lock(&txq->_xmit_lock); 2376 txq->xmit_lock_owner = cpu; 2377 } 2378 2379 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2380 { 2381 spin_lock_bh(&txq->_xmit_lock); 2382 txq->xmit_lock_owner = smp_processor_id(); 2383 } 2384 2385 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2386 { 2387 bool ok = spin_trylock(&txq->_xmit_lock); 2388 if (likely(ok)) 2389 txq->xmit_lock_owner = smp_processor_id(); 2390 return ok; 2391 } 2392 2393 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2394 { 2395 txq->xmit_lock_owner = -1; 2396 spin_unlock(&txq->_xmit_lock); 2397 } 2398 2399 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2400 { 2401 txq->xmit_lock_owner = -1; 2402 spin_unlock_bh(&txq->_xmit_lock); 2403 } 2404 2405 static inline void txq_trans_update(struct netdev_queue *txq) 2406 { 2407 if (txq->xmit_lock_owner != -1) 2408 txq->trans_start = jiffies; 2409 } 2410 2411 /** 2412 * netif_tx_lock - grab network device transmit lock 2413 * @dev: network device 2414 * 2415 * Get network device transmit lock 2416 */ 2417 static inline void netif_tx_lock(struct net_device *dev) 2418 { 2419 unsigned int i; 2420 int cpu; 2421 2422 spin_lock(&dev->tx_global_lock); 2423 cpu = smp_processor_id(); 2424 for (i = 0; i < dev->num_tx_queues; i++) { 2425 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2426 2427 /* We are the only thread of execution doing a 2428 * freeze, but we have to grab the _xmit_lock in 2429 * order to synchronize with threads which are in 2430 * the ->hard_start_xmit() handler and already 2431 * checked the frozen bit. 2432 */ 2433 __netif_tx_lock(txq, cpu); 2434 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2435 __netif_tx_unlock(txq); 2436 } 2437 } 2438 2439 static inline void netif_tx_lock_bh(struct net_device *dev) 2440 { 2441 local_bh_disable(); 2442 netif_tx_lock(dev); 2443 } 2444 2445 static inline void netif_tx_unlock(struct net_device *dev) 2446 { 2447 unsigned int i; 2448 2449 for (i = 0; i < dev->num_tx_queues; i++) { 2450 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2451 2452 /* No need to grab the _xmit_lock here. If the 2453 * queue is not stopped for another reason, we 2454 * force a schedule. 2455 */ 2456 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2457 netif_schedule_queue(txq); 2458 } 2459 spin_unlock(&dev->tx_global_lock); 2460 } 2461 2462 static inline void netif_tx_unlock_bh(struct net_device *dev) 2463 { 2464 netif_tx_unlock(dev); 2465 local_bh_enable(); 2466 } 2467 2468 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2469 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2470 __netif_tx_lock(txq, cpu); \ 2471 } \ 2472 } 2473 2474 #define HARD_TX_UNLOCK(dev, txq) { \ 2475 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2476 __netif_tx_unlock(txq); \ 2477 } \ 2478 } 2479 2480 static inline void netif_tx_disable(struct net_device *dev) 2481 { 2482 unsigned int i; 2483 int cpu; 2484 2485 local_bh_disable(); 2486 cpu = smp_processor_id(); 2487 for (i = 0; i < dev->num_tx_queues; i++) { 2488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2489 2490 __netif_tx_lock(txq, cpu); 2491 netif_tx_stop_queue(txq); 2492 __netif_tx_unlock(txq); 2493 } 2494 local_bh_enable(); 2495 } 2496 2497 static inline void netif_addr_lock(struct net_device *dev) 2498 { 2499 spin_lock(&dev->addr_list_lock); 2500 } 2501 2502 static inline void netif_addr_lock_nested(struct net_device *dev) 2503 { 2504 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2505 } 2506 2507 static inline void netif_addr_lock_bh(struct net_device *dev) 2508 { 2509 spin_lock_bh(&dev->addr_list_lock); 2510 } 2511 2512 static inline void netif_addr_unlock(struct net_device *dev) 2513 { 2514 spin_unlock(&dev->addr_list_lock); 2515 } 2516 2517 static inline void netif_addr_unlock_bh(struct net_device *dev) 2518 { 2519 spin_unlock_bh(&dev->addr_list_lock); 2520 } 2521 2522 /* 2523 * dev_addrs walker. Should be used only for read access. Call with 2524 * rcu_read_lock held. 2525 */ 2526 #define for_each_dev_addr(dev, ha) \ 2527 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2528 2529 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2530 2531 extern void ether_setup(struct net_device *dev); 2532 2533 /* Support for loadable net-drivers */ 2534 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2535 void (*setup)(struct net_device *), 2536 unsigned int txqs, unsigned int rxqs); 2537 #define alloc_netdev(sizeof_priv, name, setup) \ 2538 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2539 2540 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2541 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2542 2543 extern int register_netdev(struct net_device *dev); 2544 extern void unregister_netdev(struct net_device *dev); 2545 2546 /* General hardware address lists handling functions */ 2547 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2548 struct netdev_hw_addr_list *from_list, 2549 int addr_len, unsigned char addr_type); 2550 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2551 struct netdev_hw_addr_list *from_list, 2552 int addr_len, unsigned char addr_type); 2553 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2554 struct netdev_hw_addr_list *from_list, 2555 int addr_len); 2556 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2557 struct netdev_hw_addr_list *from_list, 2558 int addr_len); 2559 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2560 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2561 2562 /* Functions used for device addresses handling */ 2563 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2564 unsigned char addr_type); 2565 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2566 unsigned char addr_type); 2567 extern int dev_addr_add_multiple(struct net_device *to_dev, 2568 struct net_device *from_dev, 2569 unsigned char addr_type); 2570 extern int dev_addr_del_multiple(struct net_device *to_dev, 2571 struct net_device *from_dev, 2572 unsigned char addr_type); 2573 extern void dev_addr_flush(struct net_device *dev); 2574 extern int dev_addr_init(struct net_device *dev); 2575 2576 /* Functions used for unicast addresses handling */ 2577 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2578 extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr); 2579 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2580 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2581 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2582 extern void dev_uc_flush(struct net_device *dev); 2583 extern void dev_uc_init(struct net_device *dev); 2584 2585 /* Functions used for multicast addresses handling */ 2586 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2587 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2588 extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr); 2589 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2590 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2591 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2592 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2593 extern void dev_mc_flush(struct net_device *dev); 2594 extern void dev_mc_init(struct net_device *dev); 2595 2596 /* Functions used for secondary unicast and multicast support */ 2597 extern void dev_set_rx_mode(struct net_device *dev); 2598 extern void __dev_set_rx_mode(struct net_device *dev); 2599 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2600 extern int dev_set_allmulti(struct net_device *dev, int inc); 2601 extern void netdev_state_change(struct net_device *dev); 2602 extern int netdev_bonding_change(struct net_device *dev, 2603 unsigned long event); 2604 extern void netdev_features_change(struct net_device *dev); 2605 /* Load a device via the kmod */ 2606 extern void dev_load(struct net *net, const char *name); 2607 extern void dev_mcast_init(void); 2608 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2609 struct rtnl_link_stats64 *storage); 2610 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2611 const struct net_device_stats *netdev_stats); 2612 2613 extern int netdev_max_backlog; 2614 extern int netdev_tstamp_prequeue; 2615 extern int weight_p; 2616 extern int bpf_jit_enable; 2617 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2618 extern int netdev_set_bond_master(struct net_device *dev, 2619 struct net_device *master); 2620 extern int skb_checksum_help(struct sk_buff *skb); 2621 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2622 netdev_features_t features); 2623 #ifdef CONFIG_BUG 2624 extern void netdev_rx_csum_fault(struct net_device *dev); 2625 #else 2626 static inline void netdev_rx_csum_fault(struct net_device *dev) 2627 { 2628 } 2629 #endif 2630 /* rx skb timestamps */ 2631 extern void net_enable_timestamp(void); 2632 extern void net_disable_timestamp(void); 2633 2634 #ifdef CONFIG_PROC_FS 2635 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2636 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2637 extern void dev_seq_stop(struct seq_file *seq, void *v); 2638 #endif 2639 2640 extern int netdev_class_create_file(struct class_attribute *class_attr); 2641 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2642 2643 extern struct kobj_ns_type_operations net_ns_type_operations; 2644 2645 extern const char *netdev_drivername(const struct net_device *dev); 2646 2647 extern void linkwatch_run_queue(void); 2648 2649 static inline netdev_features_t netdev_get_wanted_features( 2650 struct net_device *dev) 2651 { 2652 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2653 } 2654 netdev_features_t netdev_increment_features(netdev_features_t all, 2655 netdev_features_t one, netdev_features_t mask); 2656 int __netdev_update_features(struct net_device *dev); 2657 void netdev_update_features(struct net_device *dev); 2658 void netdev_change_features(struct net_device *dev); 2659 2660 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2661 struct net_device *dev); 2662 2663 netdev_features_t netif_skb_features(struct sk_buff *skb); 2664 2665 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2666 { 2667 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2668 2669 /* check flags correspondence */ 2670 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2671 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2672 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2673 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2674 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2675 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2676 2677 return (features & feature) == feature; 2678 } 2679 2680 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2681 { 2682 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2683 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2684 } 2685 2686 static inline bool netif_needs_gso(struct sk_buff *skb, 2687 netdev_features_t features) 2688 { 2689 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2690 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2691 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2692 } 2693 2694 static inline void netif_set_gso_max_size(struct net_device *dev, 2695 unsigned int size) 2696 { 2697 dev->gso_max_size = size; 2698 } 2699 2700 static inline bool netif_is_bond_slave(struct net_device *dev) 2701 { 2702 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2703 } 2704 2705 static inline bool netif_supports_nofcs(struct net_device *dev) 2706 { 2707 return dev->priv_flags & IFF_SUPP_NOFCS; 2708 } 2709 2710 extern struct pernet_operations __net_initdata loopback_net_ops; 2711 2712 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2713 2714 /* netdev_printk helpers, similar to dev_printk */ 2715 2716 static inline const char *netdev_name(const struct net_device *dev) 2717 { 2718 if (dev->reg_state != NETREG_REGISTERED) 2719 return "(unregistered net_device)"; 2720 return dev->name; 2721 } 2722 2723 extern int __netdev_printk(const char *level, const struct net_device *dev, 2724 struct va_format *vaf); 2725 2726 extern __printf(3, 4) 2727 int netdev_printk(const char *level, const struct net_device *dev, 2728 const char *format, ...); 2729 extern __printf(2, 3) 2730 int netdev_emerg(const struct net_device *dev, const char *format, ...); 2731 extern __printf(2, 3) 2732 int netdev_alert(const struct net_device *dev, const char *format, ...); 2733 extern __printf(2, 3) 2734 int netdev_crit(const struct net_device *dev, const char *format, ...); 2735 extern __printf(2, 3) 2736 int netdev_err(const struct net_device *dev, const char *format, ...); 2737 extern __printf(2, 3) 2738 int netdev_warn(const struct net_device *dev, const char *format, ...); 2739 extern __printf(2, 3) 2740 int netdev_notice(const struct net_device *dev, const char *format, ...); 2741 extern __printf(2, 3) 2742 int netdev_info(const struct net_device *dev, const char *format, ...); 2743 2744 #define MODULE_ALIAS_NETDEV(device) \ 2745 MODULE_ALIAS("netdev-" device) 2746 2747 #if defined(CONFIG_DYNAMIC_DEBUG) 2748 #define netdev_dbg(__dev, format, args...) \ 2749 do { \ 2750 dynamic_netdev_dbg(__dev, format, ##args); \ 2751 } while (0) 2752 #elif defined(DEBUG) 2753 #define netdev_dbg(__dev, format, args...) \ 2754 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2755 #else 2756 #define netdev_dbg(__dev, format, args...) \ 2757 ({ \ 2758 if (0) \ 2759 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2760 0; \ 2761 }) 2762 #endif 2763 2764 #if defined(VERBOSE_DEBUG) 2765 #define netdev_vdbg netdev_dbg 2766 #else 2767 2768 #define netdev_vdbg(dev, format, args...) \ 2769 ({ \ 2770 if (0) \ 2771 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2772 0; \ 2773 }) 2774 #endif 2775 2776 /* 2777 * netdev_WARN() acts like dev_printk(), but with the key difference 2778 * of using a WARN/WARN_ON to get the message out, including the 2779 * file/line information and a backtrace. 2780 */ 2781 #define netdev_WARN(dev, format, args...) \ 2782 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2783 2784 /* netif printk helpers, similar to netdev_printk */ 2785 2786 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2787 do { \ 2788 if (netif_msg_##type(priv)) \ 2789 netdev_printk(level, (dev), fmt, ##args); \ 2790 } while (0) 2791 2792 #define netif_level(level, priv, type, dev, fmt, args...) \ 2793 do { \ 2794 if (netif_msg_##type(priv)) \ 2795 netdev_##level(dev, fmt, ##args); \ 2796 } while (0) 2797 2798 #define netif_emerg(priv, type, dev, fmt, args...) \ 2799 netif_level(emerg, priv, type, dev, fmt, ##args) 2800 #define netif_alert(priv, type, dev, fmt, args...) \ 2801 netif_level(alert, priv, type, dev, fmt, ##args) 2802 #define netif_crit(priv, type, dev, fmt, args...) \ 2803 netif_level(crit, priv, type, dev, fmt, ##args) 2804 #define netif_err(priv, type, dev, fmt, args...) \ 2805 netif_level(err, priv, type, dev, fmt, ##args) 2806 #define netif_warn(priv, type, dev, fmt, args...) \ 2807 netif_level(warn, priv, type, dev, fmt, ##args) 2808 #define netif_notice(priv, type, dev, fmt, args...) \ 2809 netif_level(notice, priv, type, dev, fmt, ##args) 2810 #define netif_info(priv, type, dev, fmt, args...) \ 2811 netif_level(info, priv, type, dev, fmt, ##args) 2812 2813 #if defined(CONFIG_DYNAMIC_DEBUG) 2814 #define netif_dbg(priv, type, netdev, format, args...) \ 2815 do { \ 2816 if (netif_msg_##type(priv)) \ 2817 dynamic_netdev_dbg(netdev, format, ##args); \ 2818 } while (0) 2819 #elif defined(DEBUG) 2820 #define netif_dbg(priv, type, dev, format, args...) \ 2821 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2822 #else 2823 #define netif_dbg(priv, type, dev, format, args...) \ 2824 ({ \ 2825 if (0) \ 2826 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2827 0; \ 2828 }) 2829 #endif 2830 2831 #if defined(VERBOSE_DEBUG) 2832 #define netif_vdbg netif_dbg 2833 #else 2834 #define netif_vdbg(priv, type, dev, format, args...) \ 2835 ({ \ 2836 if (0) \ 2837 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2838 0; \ 2839 }) 2840 #endif 2841 2842 #endif /* __KERNEL__ */ 2843 2844 #endif /* _LINUX_NETDEVICE_H */ 2845