1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <net/net_namespace.h> 38 #ifdef CONFIG_DCB 39 #include <net/dcbnl.h> 40 #endif 41 #include <net/netprio_cgroup.h> 42 #include <net/xdp.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <linux/hashtable.h> 50 51 struct netpoll_info; 52 struct device; 53 struct ethtool_ops; 54 struct phy_device; 55 struct dsa_port; 56 struct ip_tunnel_parm; 57 struct macsec_context; 58 struct macsec_ops; 59 60 struct sfp_bus; 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct udp_tunnel_nic_info; 69 struct udp_tunnel_nic; 70 struct bpf_prog; 71 struct xdp_buff; 72 73 void synchronize_net(void); 74 void netdev_set_default_ethtool_ops(struct net_device *dev, 75 const struct ethtool_ops *ops); 76 77 /* Backlog congestion levels */ 78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 79 #define NET_RX_DROP 1 /* packet dropped */ 80 81 #define MAX_NEST_DEV 8 82 83 /* 84 * Transmit return codes: transmit return codes originate from three different 85 * namespaces: 86 * 87 * - qdisc return codes 88 * - driver transmit return codes 89 * - errno values 90 * 91 * Drivers are allowed to return any one of those in their hard_start_xmit() 92 * function. Real network devices commonly used with qdiscs should only return 93 * the driver transmit return codes though - when qdiscs are used, the actual 94 * transmission happens asynchronously, so the value is not propagated to 95 * higher layers. Virtual network devices transmit synchronously; in this case 96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 97 * others are propagated to higher layers. 98 */ 99 100 /* qdisc ->enqueue() return codes. */ 101 #define NET_XMIT_SUCCESS 0x00 102 #define NET_XMIT_DROP 0x01 /* skb dropped */ 103 #define NET_XMIT_CN 0x02 /* congestion notification */ 104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 105 106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 107 * indicates that the device will soon be dropping packets, or already drops 108 * some packets of the same priority; prompting us to send less aggressively. */ 109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 111 112 /* Driver transmit return codes */ 113 #define NETDEV_TX_MASK 0xf0 114 115 enum netdev_tx { 116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 117 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 119 }; 120 typedef enum netdev_tx netdev_tx_t; 121 122 /* 123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 125 */ 126 static inline bool dev_xmit_complete(int rc) 127 { 128 /* 129 * Positive cases with an skb consumed by a driver: 130 * - successful transmission (rc == NETDEV_TX_OK) 131 * - error while transmitting (rc < 0) 132 * - error while queueing to a different device (rc & NET_XMIT_MASK) 133 */ 134 if (likely(rc < NET_XMIT_MASK)) 135 return true; 136 137 return false; 138 } 139 140 /* 141 * Compute the worst-case header length according to the protocols 142 * used. 143 */ 144 145 #if defined(CONFIG_HYPERV_NET) 146 # define LL_MAX_HEADER 128 147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #else 154 # define LL_MAX_HEADER 32 155 #endif 156 157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 159 #define MAX_HEADER LL_MAX_HEADER 160 #else 161 #define MAX_HEADER (LL_MAX_HEADER + 48) 162 #endif 163 164 /* 165 * Old network device statistics. Fields are native words 166 * (unsigned long) so they can be read and written atomically. 167 */ 168 169 struct net_device_stats { 170 unsigned long rx_packets; 171 unsigned long tx_packets; 172 unsigned long rx_bytes; 173 unsigned long tx_bytes; 174 unsigned long rx_errors; 175 unsigned long tx_errors; 176 unsigned long rx_dropped; 177 unsigned long tx_dropped; 178 unsigned long multicast; 179 unsigned long collisions; 180 unsigned long rx_length_errors; 181 unsigned long rx_over_errors; 182 unsigned long rx_crc_errors; 183 unsigned long rx_frame_errors; 184 unsigned long rx_fifo_errors; 185 unsigned long rx_missed_errors; 186 unsigned long tx_aborted_errors; 187 unsigned long tx_carrier_errors; 188 unsigned long tx_fifo_errors; 189 unsigned long tx_heartbeat_errors; 190 unsigned long tx_window_errors; 191 unsigned long rx_compressed; 192 unsigned long tx_compressed; 193 }; 194 195 196 #include <linux/cache.h> 197 #include <linux/skbuff.h> 198 199 #ifdef CONFIG_RPS 200 #include <linux/static_key.h> 201 extern struct static_key_false rps_needed; 202 extern struct static_key_false rfs_needed; 203 #endif 204 205 struct neighbour; 206 struct neigh_parms; 207 struct sk_buff; 208 209 struct netdev_hw_addr { 210 struct list_head list; 211 unsigned char addr[MAX_ADDR_LEN]; 212 unsigned char type; 213 #define NETDEV_HW_ADDR_T_LAN 1 214 #define NETDEV_HW_ADDR_T_SAN 2 215 #define NETDEV_HW_ADDR_T_UNICAST 3 216 #define NETDEV_HW_ADDR_T_MULTICAST 4 217 bool global_use; 218 int sync_cnt; 219 int refcount; 220 int synced; 221 struct rcu_head rcu_head; 222 }; 223 224 struct netdev_hw_addr_list { 225 struct list_head list; 226 int count; 227 }; 228 229 #define netdev_hw_addr_list_count(l) ((l)->count) 230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 231 #define netdev_hw_addr_list_for_each(ha, l) \ 232 list_for_each_entry(ha, &(l)->list, list) 233 234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 236 #define netdev_for_each_uc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 238 239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 241 #define netdev_for_each_mc_addr(ha, dev) \ 242 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 243 244 struct hh_cache { 245 unsigned int hh_len; 246 seqlock_t hh_lock; 247 248 /* cached hardware header; allow for machine alignment needs. */ 249 #define HH_DATA_MOD 16 250 #define HH_DATA_OFF(__len) \ 251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 252 #define HH_DATA_ALIGN(__len) \ 253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 255 }; 256 257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 258 * Alternative is: 259 * dev->hard_header_len ? (dev->hard_header_len + 260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 261 * 262 * We could use other alignment values, but we must maintain the 263 * relationship HH alignment <= LL alignment. 264 */ 265 #define LL_RESERVED_SPACE(dev) \ 266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 269 270 struct header_ops { 271 int (*create) (struct sk_buff *skb, struct net_device *dev, 272 unsigned short type, const void *daddr, 273 const void *saddr, unsigned int len); 274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 276 void (*cache_update)(struct hh_cache *hh, 277 const struct net_device *dev, 278 const unsigned char *haddr); 279 bool (*validate)(const char *ll_header, unsigned int len); 280 __be16 (*parse_protocol)(const struct sk_buff *skb); 281 }; 282 283 /* These flag bits are private to the generic network queueing 284 * layer; they may not be explicitly referenced by any other 285 * code. 286 */ 287 288 enum netdev_state_t { 289 __LINK_STATE_START, 290 __LINK_STATE_PRESENT, 291 __LINK_STATE_NOCARRIER, 292 __LINK_STATE_LINKWATCH_PENDING, 293 __LINK_STATE_DORMANT, 294 __LINK_STATE_TESTING, 295 }; 296 297 298 /* 299 * This structure holds boot-time configured netdevice settings. They 300 * are then used in the device probing. 301 */ 302 struct netdev_boot_setup { 303 char name[IFNAMSIZ]; 304 struct ifmap map; 305 }; 306 #define NETDEV_BOOT_SETUP_MAX 8 307 308 int __init netdev_boot_setup(char *str); 309 310 struct gro_list { 311 struct list_head list; 312 int count; 313 }; 314 315 /* 316 * size of gro hash buckets, must less than bit number of 317 * napi_struct::gro_bitmask 318 */ 319 #define GRO_HASH_BUCKETS 8 320 321 /* 322 * Structure for NAPI scheduling similar to tasklet but with weighting 323 */ 324 struct napi_struct { 325 /* The poll_list must only be managed by the entity which 326 * changes the state of the NAPI_STATE_SCHED bit. This means 327 * whoever atomically sets that bit can add this napi_struct 328 * to the per-CPU poll_list, and whoever clears that bit 329 * can remove from the list right before clearing the bit. 330 */ 331 struct list_head poll_list; 332 333 unsigned long state; 334 int weight; 335 int defer_hard_irqs_count; 336 unsigned long gro_bitmask; 337 int (*poll)(struct napi_struct *, int); 338 #ifdef CONFIG_NETPOLL 339 int poll_owner; 340 #endif 341 struct net_device *dev; 342 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 343 struct sk_buff *skb; 344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 345 int rx_count; /* length of rx_list */ 346 struct hrtimer timer; 347 struct list_head dev_list; 348 struct hlist_node napi_hash_node; 349 unsigned int napi_id; 350 struct task_struct *thread; 351 }; 352 353 enum { 354 NAPI_STATE_SCHED, /* Poll is scheduled */ 355 NAPI_STATE_MISSED, /* reschedule a napi */ 356 NAPI_STATE_DISABLE, /* Disable pending */ 357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 358 NAPI_STATE_LISTED, /* NAPI added to system lists */ 359 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 360 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 361 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 362 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 363 }; 364 365 enum { 366 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 367 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 368 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 369 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 370 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 371 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 372 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 373 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 374 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 375 }; 376 377 enum gro_result { 378 GRO_MERGED, 379 GRO_MERGED_FREE, 380 GRO_HELD, 381 GRO_NORMAL, 382 GRO_CONSUMED, 383 }; 384 typedef enum gro_result gro_result_t; 385 386 /* 387 * enum rx_handler_result - Possible return values for rx_handlers. 388 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 389 * further. 390 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 391 * case skb->dev was changed by rx_handler. 392 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 393 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 394 * 395 * rx_handlers are functions called from inside __netif_receive_skb(), to do 396 * special processing of the skb, prior to delivery to protocol handlers. 397 * 398 * Currently, a net_device can only have a single rx_handler registered. Trying 399 * to register a second rx_handler will return -EBUSY. 400 * 401 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 402 * To unregister a rx_handler on a net_device, use 403 * netdev_rx_handler_unregister(). 404 * 405 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 406 * do with the skb. 407 * 408 * If the rx_handler consumed the skb in some way, it should return 409 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 410 * the skb to be delivered in some other way. 411 * 412 * If the rx_handler changed skb->dev, to divert the skb to another 413 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 414 * new device will be called if it exists. 415 * 416 * If the rx_handler decides the skb should be ignored, it should return 417 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 418 * are registered on exact device (ptype->dev == skb->dev). 419 * 420 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 421 * delivered, it should return RX_HANDLER_PASS. 422 * 423 * A device without a registered rx_handler will behave as if rx_handler 424 * returned RX_HANDLER_PASS. 425 */ 426 427 enum rx_handler_result { 428 RX_HANDLER_CONSUMED, 429 RX_HANDLER_ANOTHER, 430 RX_HANDLER_EXACT, 431 RX_HANDLER_PASS, 432 }; 433 typedef enum rx_handler_result rx_handler_result_t; 434 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 435 436 void __napi_schedule(struct napi_struct *n); 437 void __napi_schedule_irqoff(struct napi_struct *n); 438 439 static inline bool napi_disable_pending(struct napi_struct *n) 440 { 441 return test_bit(NAPI_STATE_DISABLE, &n->state); 442 } 443 444 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 445 { 446 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 447 } 448 449 bool napi_schedule_prep(struct napi_struct *n); 450 451 /** 452 * napi_schedule - schedule NAPI poll 453 * @n: NAPI context 454 * 455 * Schedule NAPI poll routine to be called if it is not already 456 * running. 457 */ 458 static inline void napi_schedule(struct napi_struct *n) 459 { 460 if (napi_schedule_prep(n)) 461 __napi_schedule(n); 462 } 463 464 /** 465 * napi_schedule_irqoff - schedule NAPI poll 466 * @n: NAPI context 467 * 468 * Variant of napi_schedule(), assuming hard irqs are masked. 469 */ 470 static inline void napi_schedule_irqoff(struct napi_struct *n) 471 { 472 if (napi_schedule_prep(n)) 473 __napi_schedule_irqoff(n); 474 } 475 476 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 477 static inline bool napi_reschedule(struct napi_struct *napi) 478 { 479 if (napi_schedule_prep(napi)) { 480 __napi_schedule(napi); 481 return true; 482 } 483 return false; 484 } 485 486 bool napi_complete_done(struct napi_struct *n, int work_done); 487 /** 488 * napi_complete - NAPI processing complete 489 * @n: NAPI context 490 * 491 * Mark NAPI processing as complete. 492 * Consider using napi_complete_done() instead. 493 * Return false if device should avoid rearming interrupts. 494 */ 495 static inline bool napi_complete(struct napi_struct *n) 496 { 497 return napi_complete_done(n, 0); 498 } 499 500 int dev_set_threaded(struct net_device *dev, bool threaded); 501 502 /** 503 * napi_disable - prevent NAPI from scheduling 504 * @n: NAPI context 505 * 506 * Stop NAPI from being scheduled on this context. 507 * Waits till any outstanding processing completes. 508 */ 509 void napi_disable(struct napi_struct *n); 510 511 void napi_enable(struct napi_struct *n); 512 513 /** 514 * napi_synchronize - wait until NAPI is not running 515 * @n: NAPI context 516 * 517 * Wait until NAPI is done being scheduled on this context. 518 * Waits till any outstanding processing completes but 519 * does not disable future activations. 520 */ 521 static inline void napi_synchronize(const struct napi_struct *n) 522 { 523 if (IS_ENABLED(CONFIG_SMP)) 524 while (test_bit(NAPI_STATE_SCHED, &n->state)) 525 msleep(1); 526 else 527 barrier(); 528 } 529 530 /** 531 * napi_if_scheduled_mark_missed - if napi is running, set the 532 * NAPIF_STATE_MISSED 533 * @n: NAPI context 534 * 535 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 536 * NAPI is scheduled. 537 **/ 538 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 539 { 540 unsigned long val, new; 541 542 do { 543 val = READ_ONCE(n->state); 544 if (val & NAPIF_STATE_DISABLE) 545 return true; 546 547 if (!(val & NAPIF_STATE_SCHED)) 548 return false; 549 550 new = val | NAPIF_STATE_MISSED; 551 } while (cmpxchg(&n->state, val, new) != val); 552 553 return true; 554 } 555 556 enum netdev_queue_state_t { 557 __QUEUE_STATE_DRV_XOFF, 558 __QUEUE_STATE_STACK_XOFF, 559 __QUEUE_STATE_FROZEN, 560 }; 561 562 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 563 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 564 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 565 566 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 567 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 568 QUEUE_STATE_FROZEN) 569 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 570 QUEUE_STATE_FROZEN) 571 572 /* 573 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 574 * netif_tx_* functions below are used to manipulate this flag. The 575 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 576 * queue independently. The netif_xmit_*stopped functions below are called 577 * to check if the queue has been stopped by the driver or stack (either 578 * of the XOFF bits are set in the state). Drivers should not need to call 579 * netif_xmit*stopped functions, they should only be using netif_tx_*. 580 */ 581 582 struct netdev_queue { 583 /* 584 * read-mostly part 585 */ 586 struct net_device *dev; 587 struct Qdisc __rcu *qdisc; 588 struct Qdisc *qdisc_sleeping; 589 #ifdef CONFIG_SYSFS 590 struct kobject kobj; 591 #endif 592 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 593 int numa_node; 594 #endif 595 unsigned long tx_maxrate; 596 /* 597 * Number of TX timeouts for this queue 598 * (/sys/class/net/DEV/Q/trans_timeout) 599 */ 600 unsigned long trans_timeout; 601 602 /* Subordinate device that the queue has been assigned to */ 603 struct net_device *sb_dev; 604 #ifdef CONFIG_XDP_SOCKETS 605 struct xsk_buff_pool *pool; 606 #endif 607 /* 608 * write-mostly part 609 */ 610 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 611 int xmit_lock_owner; 612 /* 613 * Time (in jiffies) of last Tx 614 */ 615 unsigned long trans_start; 616 617 unsigned long state; 618 619 #ifdef CONFIG_BQL 620 struct dql dql; 621 #endif 622 } ____cacheline_aligned_in_smp; 623 624 extern int sysctl_fb_tunnels_only_for_init_net; 625 extern int sysctl_devconf_inherit_init_net; 626 627 /* 628 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 629 * == 1 : For initns only 630 * == 2 : For none. 631 */ 632 static inline bool net_has_fallback_tunnels(const struct net *net) 633 { 634 return !IS_ENABLED(CONFIG_SYSCTL) || 635 !sysctl_fb_tunnels_only_for_init_net || 636 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); 637 } 638 639 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 640 { 641 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 642 return q->numa_node; 643 #else 644 return NUMA_NO_NODE; 645 #endif 646 } 647 648 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 649 { 650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 651 q->numa_node = node; 652 #endif 653 } 654 655 #ifdef CONFIG_RPS 656 /* 657 * This structure holds an RPS map which can be of variable length. The 658 * map is an array of CPUs. 659 */ 660 struct rps_map { 661 unsigned int len; 662 struct rcu_head rcu; 663 u16 cpus[]; 664 }; 665 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 666 667 /* 668 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 669 * tail pointer for that CPU's input queue at the time of last enqueue, and 670 * a hardware filter index. 671 */ 672 struct rps_dev_flow { 673 u16 cpu; 674 u16 filter; 675 unsigned int last_qtail; 676 }; 677 #define RPS_NO_FILTER 0xffff 678 679 /* 680 * The rps_dev_flow_table structure contains a table of flow mappings. 681 */ 682 struct rps_dev_flow_table { 683 unsigned int mask; 684 struct rcu_head rcu; 685 struct rps_dev_flow flows[]; 686 }; 687 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 688 ((_num) * sizeof(struct rps_dev_flow))) 689 690 /* 691 * The rps_sock_flow_table contains mappings of flows to the last CPU 692 * on which they were processed by the application (set in recvmsg). 693 * Each entry is a 32bit value. Upper part is the high-order bits 694 * of flow hash, lower part is CPU number. 695 * rps_cpu_mask is used to partition the space, depending on number of 696 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 697 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 698 * meaning we use 32-6=26 bits for the hash. 699 */ 700 struct rps_sock_flow_table { 701 u32 mask; 702 703 u32 ents[] ____cacheline_aligned_in_smp; 704 }; 705 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 706 707 #define RPS_NO_CPU 0xffff 708 709 extern u32 rps_cpu_mask; 710 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 711 712 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 713 u32 hash) 714 { 715 if (table && hash) { 716 unsigned int index = hash & table->mask; 717 u32 val = hash & ~rps_cpu_mask; 718 719 /* We only give a hint, preemption can change CPU under us */ 720 val |= raw_smp_processor_id(); 721 722 if (table->ents[index] != val) 723 table->ents[index] = val; 724 } 725 } 726 727 #ifdef CONFIG_RFS_ACCEL 728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 729 u16 filter_id); 730 #endif 731 #endif /* CONFIG_RPS */ 732 733 /* This structure contains an instance of an RX queue. */ 734 struct netdev_rx_queue { 735 #ifdef CONFIG_RPS 736 struct rps_map __rcu *rps_map; 737 struct rps_dev_flow_table __rcu *rps_flow_table; 738 #endif 739 struct kobject kobj; 740 struct net_device *dev; 741 struct xdp_rxq_info xdp_rxq; 742 #ifdef CONFIG_XDP_SOCKETS 743 struct xsk_buff_pool *pool; 744 #endif 745 } ____cacheline_aligned_in_smp; 746 747 /* 748 * RX queue sysfs structures and functions. 749 */ 750 struct rx_queue_attribute { 751 struct attribute attr; 752 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 753 ssize_t (*store)(struct netdev_rx_queue *queue, 754 const char *buf, size_t len); 755 }; 756 757 #ifdef CONFIG_XPS 758 /* 759 * This structure holds an XPS map which can be of variable length. The 760 * map is an array of queues. 761 */ 762 struct xps_map { 763 unsigned int len; 764 unsigned int alloc_len; 765 struct rcu_head rcu; 766 u16 queues[]; 767 }; 768 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 769 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 770 - sizeof(struct xps_map)) / sizeof(u16)) 771 772 /* 773 * This structure holds all XPS maps for device. Maps are indexed by CPU. 774 */ 775 struct xps_dev_maps { 776 struct rcu_head rcu; 777 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 778 }; 779 780 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 781 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 782 783 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 784 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 785 786 #endif /* CONFIG_XPS */ 787 788 #define TC_MAX_QUEUE 16 789 #define TC_BITMASK 15 790 /* HW offloaded queuing disciplines txq count and offset maps */ 791 struct netdev_tc_txq { 792 u16 count; 793 u16 offset; 794 }; 795 796 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 797 /* 798 * This structure is to hold information about the device 799 * configured to run FCoE protocol stack. 800 */ 801 struct netdev_fcoe_hbainfo { 802 char manufacturer[64]; 803 char serial_number[64]; 804 char hardware_version[64]; 805 char driver_version[64]; 806 char optionrom_version[64]; 807 char firmware_version[64]; 808 char model[256]; 809 char model_description[256]; 810 }; 811 #endif 812 813 #define MAX_PHYS_ITEM_ID_LEN 32 814 815 /* This structure holds a unique identifier to identify some 816 * physical item (port for example) used by a netdevice. 817 */ 818 struct netdev_phys_item_id { 819 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 820 unsigned char id_len; 821 }; 822 823 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 824 struct netdev_phys_item_id *b) 825 { 826 return a->id_len == b->id_len && 827 memcmp(a->id, b->id, a->id_len) == 0; 828 } 829 830 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 831 struct sk_buff *skb, 832 struct net_device *sb_dev); 833 834 enum tc_setup_type { 835 TC_SETUP_QDISC_MQPRIO, 836 TC_SETUP_CLSU32, 837 TC_SETUP_CLSFLOWER, 838 TC_SETUP_CLSMATCHALL, 839 TC_SETUP_CLSBPF, 840 TC_SETUP_BLOCK, 841 TC_SETUP_QDISC_CBS, 842 TC_SETUP_QDISC_RED, 843 TC_SETUP_QDISC_PRIO, 844 TC_SETUP_QDISC_MQ, 845 TC_SETUP_QDISC_ETF, 846 TC_SETUP_ROOT_QDISC, 847 TC_SETUP_QDISC_GRED, 848 TC_SETUP_QDISC_TAPRIO, 849 TC_SETUP_FT, 850 TC_SETUP_QDISC_ETS, 851 TC_SETUP_QDISC_TBF, 852 TC_SETUP_QDISC_FIFO, 853 TC_SETUP_QDISC_HTB, 854 }; 855 856 /* These structures hold the attributes of bpf state that are being passed 857 * to the netdevice through the bpf op. 858 */ 859 enum bpf_netdev_command { 860 /* Set or clear a bpf program used in the earliest stages of packet 861 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 862 * is responsible for calling bpf_prog_put on any old progs that are 863 * stored. In case of error, the callee need not release the new prog 864 * reference, but on success it takes ownership and must bpf_prog_put 865 * when it is no longer used. 866 */ 867 XDP_SETUP_PROG, 868 XDP_SETUP_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_POOL, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 struct xdp_dev_bulk_queue; 879 struct bpf_xdp_link; 880 881 enum bpf_xdp_mode { 882 XDP_MODE_SKB = 0, 883 XDP_MODE_DRV = 1, 884 XDP_MODE_HW = 2, 885 __MAX_XDP_MODE 886 }; 887 888 struct bpf_xdp_entity { 889 struct bpf_prog *prog; 890 struct bpf_xdp_link *link; 891 }; 892 893 struct netdev_bpf { 894 enum bpf_netdev_command command; 895 union { 896 /* XDP_SETUP_PROG */ 897 struct { 898 u32 flags; 899 struct bpf_prog *prog; 900 struct netlink_ext_ack *extack; 901 }; 902 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 903 struct { 904 struct bpf_offloaded_map *offmap; 905 }; 906 /* XDP_SETUP_XSK_POOL */ 907 struct { 908 struct xsk_buff_pool *pool; 909 u16 queue_id; 910 } xsk; 911 }; 912 }; 913 914 /* Flags for ndo_xsk_wakeup. */ 915 #define XDP_WAKEUP_RX (1 << 0) 916 #define XDP_WAKEUP_TX (1 << 1) 917 918 #ifdef CONFIG_XFRM_OFFLOAD 919 struct xfrmdev_ops { 920 int (*xdo_dev_state_add) (struct xfrm_state *x); 921 void (*xdo_dev_state_delete) (struct xfrm_state *x); 922 void (*xdo_dev_state_free) (struct xfrm_state *x); 923 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 924 struct xfrm_state *x); 925 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 926 }; 927 #endif 928 929 struct dev_ifalias { 930 struct rcu_head rcuhead; 931 char ifalias[]; 932 }; 933 934 struct devlink; 935 struct tlsdev_ops; 936 937 struct netdev_name_node { 938 struct hlist_node hlist; 939 struct list_head list; 940 struct net_device *dev; 941 const char *name; 942 }; 943 944 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 945 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 946 947 struct netdev_net_notifier { 948 struct list_head list; 949 struct notifier_block *nb; 950 }; 951 952 /* 953 * This structure defines the management hooks for network devices. 954 * The following hooks can be defined; unless noted otherwise, they are 955 * optional and can be filled with a null pointer. 956 * 957 * int (*ndo_init)(struct net_device *dev); 958 * This function is called once when a network device is registered. 959 * The network device can use this for any late stage initialization 960 * or semantic validation. It can fail with an error code which will 961 * be propagated back to register_netdev. 962 * 963 * void (*ndo_uninit)(struct net_device *dev); 964 * This function is called when device is unregistered or when registration 965 * fails. It is not called if init fails. 966 * 967 * int (*ndo_open)(struct net_device *dev); 968 * This function is called when a network device transitions to the up 969 * state. 970 * 971 * int (*ndo_stop)(struct net_device *dev); 972 * This function is called when a network device transitions to the down 973 * state. 974 * 975 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 976 * struct net_device *dev); 977 * Called when a packet needs to be transmitted. 978 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 979 * the queue before that can happen; it's for obsolete devices and weird 980 * corner cases, but the stack really does a non-trivial amount 981 * of useless work if you return NETDEV_TX_BUSY. 982 * Required; cannot be NULL. 983 * 984 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 985 * struct net_device *dev 986 * netdev_features_t features); 987 * Called by core transmit path to determine if device is capable of 988 * performing offload operations on a given packet. This is to give 989 * the device an opportunity to implement any restrictions that cannot 990 * be otherwise expressed by feature flags. The check is called with 991 * the set of features that the stack has calculated and it returns 992 * those the driver believes to be appropriate. 993 * 994 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 995 * struct net_device *sb_dev); 996 * Called to decide which queue to use when device supports multiple 997 * transmit queues. 998 * 999 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1000 * This function is called to allow device receiver to make 1001 * changes to configuration when multicast or promiscuous is enabled. 1002 * 1003 * void (*ndo_set_rx_mode)(struct net_device *dev); 1004 * This function is called device changes address list filtering. 1005 * If driver handles unicast address filtering, it should set 1006 * IFF_UNICAST_FLT in its priv_flags. 1007 * 1008 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1009 * This function is called when the Media Access Control address 1010 * needs to be changed. If this interface is not defined, the 1011 * MAC address can not be changed. 1012 * 1013 * int (*ndo_validate_addr)(struct net_device *dev); 1014 * Test if Media Access Control address is valid for the device. 1015 * 1016 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1017 * Called when a user requests an ioctl which can't be handled by 1018 * the generic interface code. If not defined ioctls return 1019 * not supported error code. 1020 * 1021 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1022 * Used to set network devices bus interface parameters. This interface 1023 * is retained for legacy reasons; new devices should use the bus 1024 * interface (PCI) for low level management. 1025 * 1026 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1027 * Called when a user wants to change the Maximum Transfer Unit 1028 * of a device. 1029 * 1030 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1031 * Callback used when the transmitter has not made any progress 1032 * for dev->watchdog ticks. 1033 * 1034 * void (*ndo_get_stats64)(struct net_device *dev, 1035 * struct rtnl_link_stats64 *storage); 1036 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1037 * Called when a user wants to get the network device usage 1038 * statistics. Drivers must do one of the following: 1039 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1040 * rtnl_link_stats64 structure passed by the caller. 1041 * 2. Define @ndo_get_stats to update a net_device_stats structure 1042 * (which should normally be dev->stats) and return a pointer to 1043 * it. The structure may be changed asynchronously only if each 1044 * field is written atomically. 1045 * 3. Update dev->stats asynchronously and atomically, and define 1046 * neither operation. 1047 * 1048 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1049 * Return true if this device supports offload stats of this attr_id. 1050 * 1051 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1052 * void *attr_data) 1053 * Get statistics for offload operations by attr_id. Write it into the 1054 * attr_data pointer. 1055 * 1056 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1057 * If device supports VLAN filtering this function is called when a 1058 * VLAN id is registered. 1059 * 1060 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1061 * If device supports VLAN filtering this function is called when a 1062 * VLAN id is unregistered. 1063 * 1064 * void (*ndo_poll_controller)(struct net_device *dev); 1065 * 1066 * SR-IOV management functions. 1067 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1068 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1069 * u8 qos, __be16 proto); 1070 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1071 * int max_tx_rate); 1072 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1073 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1074 * int (*ndo_get_vf_config)(struct net_device *dev, 1075 * int vf, struct ifla_vf_info *ivf); 1076 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1077 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1078 * struct nlattr *port[]); 1079 * 1080 * Enable or disable the VF ability to query its RSS Redirection Table and 1081 * Hash Key. This is needed since on some devices VF share this information 1082 * with PF and querying it may introduce a theoretical security risk. 1083 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1084 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1085 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1086 * void *type_data); 1087 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1088 * This is always called from the stack with the rtnl lock held and netif 1089 * tx queues stopped. This allows the netdevice to perform queue 1090 * management safely. 1091 * 1092 * Fiber Channel over Ethernet (FCoE) offload functions. 1093 * int (*ndo_fcoe_enable)(struct net_device *dev); 1094 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1095 * so the underlying device can perform whatever needed configuration or 1096 * initialization to support acceleration of FCoE traffic. 1097 * 1098 * int (*ndo_fcoe_disable)(struct net_device *dev); 1099 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1100 * so the underlying device can perform whatever needed clean-ups to 1101 * stop supporting acceleration of FCoE traffic. 1102 * 1103 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1104 * struct scatterlist *sgl, unsigned int sgc); 1105 * Called when the FCoE Initiator wants to initialize an I/O that 1106 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1107 * perform necessary setup and returns 1 to indicate the device is set up 1108 * successfully to perform DDP on this I/O, otherwise this returns 0. 1109 * 1110 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1111 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1112 * indicated by the FC exchange id 'xid', so the underlying device can 1113 * clean up and reuse resources for later DDP requests. 1114 * 1115 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1116 * struct scatterlist *sgl, unsigned int sgc); 1117 * Called when the FCoE Target wants to initialize an I/O that 1118 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1119 * perform necessary setup and returns 1 to indicate the device is set up 1120 * successfully to perform DDP on this I/O, otherwise this returns 0. 1121 * 1122 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1123 * struct netdev_fcoe_hbainfo *hbainfo); 1124 * Called when the FCoE Protocol stack wants information on the underlying 1125 * device. This information is utilized by the FCoE protocol stack to 1126 * register attributes with Fiber Channel management service as per the 1127 * FC-GS Fabric Device Management Information(FDMI) specification. 1128 * 1129 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1130 * Called when the underlying device wants to override default World Wide 1131 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1132 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1133 * protocol stack to use. 1134 * 1135 * RFS acceleration. 1136 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1137 * u16 rxq_index, u32 flow_id); 1138 * Set hardware filter for RFS. rxq_index is the target queue index; 1139 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1140 * Return the filter ID on success, or a negative error code. 1141 * 1142 * Slave management functions (for bridge, bonding, etc). 1143 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1144 * Called to make another netdev an underling. 1145 * 1146 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1147 * Called to release previously enslaved netdev. 1148 * 1149 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1150 * struct sk_buff *skb, 1151 * bool all_slaves); 1152 * Get the xmit slave of master device. If all_slaves is true, function 1153 * assume all the slaves can transmit. 1154 * 1155 * Feature/offload setting functions. 1156 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1157 * netdev_features_t features); 1158 * Adjusts the requested feature flags according to device-specific 1159 * constraints, and returns the resulting flags. Must not modify 1160 * the device state. 1161 * 1162 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1163 * Called to update device configuration to new features. Passed 1164 * feature set might be less than what was returned by ndo_fix_features()). 1165 * Must return >0 or -errno if it changed dev->features itself. 1166 * 1167 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1168 * struct net_device *dev, 1169 * const unsigned char *addr, u16 vid, u16 flags, 1170 * struct netlink_ext_ack *extack); 1171 * Adds an FDB entry to dev for addr. 1172 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1173 * struct net_device *dev, 1174 * const unsigned char *addr, u16 vid) 1175 * Deletes the FDB entry from dev coresponding to addr. 1176 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1177 * struct net_device *dev, struct net_device *filter_dev, 1178 * int *idx) 1179 * Used to add FDB entries to dump requests. Implementers should add 1180 * entries to skb and update idx with the number of entries. 1181 * 1182 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1183 * u16 flags, struct netlink_ext_ack *extack) 1184 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1185 * struct net_device *dev, u32 filter_mask, 1186 * int nlflags) 1187 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1188 * u16 flags); 1189 * 1190 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1191 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1192 * which do not represent real hardware may define this to allow their 1193 * userspace components to manage their virtual carrier state. Devices 1194 * that determine carrier state from physical hardware properties (eg 1195 * network cables) or protocol-dependent mechanisms (eg 1196 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1197 * 1198 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1199 * struct netdev_phys_item_id *ppid); 1200 * Called to get ID of physical port of this device. If driver does 1201 * not implement this, it is assumed that the hw is not able to have 1202 * multiple net devices on single physical port. 1203 * 1204 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1205 * struct netdev_phys_item_id *ppid) 1206 * Called to get the parent ID of the physical port of this device. 1207 * 1208 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1209 * struct net_device *dev) 1210 * Called by upper layer devices to accelerate switching or other 1211 * station functionality into hardware. 'pdev is the lowerdev 1212 * to use for the offload and 'dev' is the net device that will 1213 * back the offload. Returns a pointer to the private structure 1214 * the upper layer will maintain. 1215 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1216 * Called by upper layer device to delete the station created 1217 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1218 * the station and priv is the structure returned by the add 1219 * operation. 1220 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1221 * int queue_index, u32 maxrate); 1222 * Called when a user wants to set a max-rate limitation of specific 1223 * TX queue. 1224 * int (*ndo_get_iflink)(const struct net_device *dev); 1225 * Called to get the iflink value of this device. 1226 * void (*ndo_change_proto_down)(struct net_device *dev, 1227 * bool proto_down); 1228 * This function is used to pass protocol port error state information 1229 * to the switch driver. The switch driver can react to the proto_down 1230 * by doing a phys down on the associated switch port. 1231 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1232 * This function is used to get egress tunnel information for given skb. 1233 * This is useful for retrieving outer tunnel header parameters while 1234 * sampling packet. 1235 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1236 * This function is used to specify the headroom that the skb must 1237 * consider when allocation skb during packet reception. Setting 1238 * appropriate rx headroom value allows avoiding skb head copy on 1239 * forward. Setting a negative value resets the rx headroom to the 1240 * default value. 1241 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1242 * This function is used to set or query state related to XDP on the 1243 * netdevice and manage BPF offload. See definition of 1244 * enum bpf_netdev_command for details. 1245 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1246 * u32 flags); 1247 * This function is used to submit @n XDP packets for transmit on a 1248 * netdevice. Returns number of frames successfully transmitted, frames 1249 * that got dropped are freed/returned via xdp_return_frame(). 1250 * Returns negative number, means general error invoking ndo, meaning 1251 * no frames were xmit'ed and core-caller will free all frames. 1252 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1253 * This function is used to wake up the softirq, ksoftirqd or kthread 1254 * responsible for sending and/or receiving packets on a specific 1255 * queue id bound to an AF_XDP socket. The flags field specifies if 1256 * only RX, only Tx, or both should be woken up using the flags 1257 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1258 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1259 * Get devlink port instance associated with a given netdev. 1260 * Called with a reference on the netdevice and devlink locks only, 1261 * rtnl_lock is not held. 1262 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1263 * int cmd); 1264 * Add, change, delete or get information on an IPv4 tunnel. 1265 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1266 * If a device is paired with a peer device, return the peer instance. 1267 * The caller must be under RCU read context. 1268 */ 1269 struct net_device_ops { 1270 int (*ndo_init)(struct net_device *dev); 1271 void (*ndo_uninit)(struct net_device *dev); 1272 int (*ndo_open)(struct net_device *dev); 1273 int (*ndo_stop)(struct net_device *dev); 1274 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1275 struct net_device *dev); 1276 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1277 struct net_device *dev, 1278 netdev_features_t features); 1279 u16 (*ndo_select_queue)(struct net_device *dev, 1280 struct sk_buff *skb, 1281 struct net_device *sb_dev); 1282 void (*ndo_change_rx_flags)(struct net_device *dev, 1283 int flags); 1284 void (*ndo_set_rx_mode)(struct net_device *dev); 1285 int (*ndo_set_mac_address)(struct net_device *dev, 1286 void *addr); 1287 int (*ndo_validate_addr)(struct net_device *dev); 1288 int (*ndo_do_ioctl)(struct net_device *dev, 1289 struct ifreq *ifr, int cmd); 1290 int (*ndo_set_config)(struct net_device *dev, 1291 struct ifmap *map); 1292 int (*ndo_change_mtu)(struct net_device *dev, 1293 int new_mtu); 1294 int (*ndo_neigh_setup)(struct net_device *dev, 1295 struct neigh_parms *); 1296 void (*ndo_tx_timeout) (struct net_device *dev, 1297 unsigned int txqueue); 1298 1299 void (*ndo_get_stats64)(struct net_device *dev, 1300 struct rtnl_link_stats64 *storage); 1301 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1302 int (*ndo_get_offload_stats)(int attr_id, 1303 const struct net_device *dev, 1304 void *attr_data); 1305 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1306 1307 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1308 __be16 proto, u16 vid); 1309 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1310 __be16 proto, u16 vid); 1311 #ifdef CONFIG_NET_POLL_CONTROLLER 1312 void (*ndo_poll_controller)(struct net_device *dev); 1313 int (*ndo_netpoll_setup)(struct net_device *dev, 1314 struct netpoll_info *info); 1315 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1316 #endif 1317 int (*ndo_set_vf_mac)(struct net_device *dev, 1318 int queue, u8 *mac); 1319 int (*ndo_set_vf_vlan)(struct net_device *dev, 1320 int queue, u16 vlan, 1321 u8 qos, __be16 proto); 1322 int (*ndo_set_vf_rate)(struct net_device *dev, 1323 int vf, int min_tx_rate, 1324 int max_tx_rate); 1325 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1326 int vf, bool setting); 1327 int (*ndo_set_vf_trust)(struct net_device *dev, 1328 int vf, bool setting); 1329 int (*ndo_get_vf_config)(struct net_device *dev, 1330 int vf, 1331 struct ifla_vf_info *ivf); 1332 int (*ndo_set_vf_link_state)(struct net_device *dev, 1333 int vf, int link_state); 1334 int (*ndo_get_vf_stats)(struct net_device *dev, 1335 int vf, 1336 struct ifla_vf_stats 1337 *vf_stats); 1338 int (*ndo_set_vf_port)(struct net_device *dev, 1339 int vf, 1340 struct nlattr *port[]); 1341 int (*ndo_get_vf_port)(struct net_device *dev, 1342 int vf, struct sk_buff *skb); 1343 int (*ndo_get_vf_guid)(struct net_device *dev, 1344 int vf, 1345 struct ifla_vf_guid *node_guid, 1346 struct ifla_vf_guid *port_guid); 1347 int (*ndo_set_vf_guid)(struct net_device *dev, 1348 int vf, u64 guid, 1349 int guid_type); 1350 int (*ndo_set_vf_rss_query_en)( 1351 struct net_device *dev, 1352 int vf, bool setting); 1353 int (*ndo_setup_tc)(struct net_device *dev, 1354 enum tc_setup_type type, 1355 void *type_data); 1356 #if IS_ENABLED(CONFIG_FCOE) 1357 int (*ndo_fcoe_enable)(struct net_device *dev); 1358 int (*ndo_fcoe_disable)(struct net_device *dev); 1359 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1360 u16 xid, 1361 struct scatterlist *sgl, 1362 unsigned int sgc); 1363 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1364 u16 xid); 1365 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1366 u16 xid, 1367 struct scatterlist *sgl, 1368 unsigned int sgc); 1369 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1370 struct netdev_fcoe_hbainfo *hbainfo); 1371 #endif 1372 1373 #if IS_ENABLED(CONFIG_LIBFCOE) 1374 #define NETDEV_FCOE_WWNN 0 1375 #define NETDEV_FCOE_WWPN 1 1376 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1377 u64 *wwn, int type); 1378 #endif 1379 1380 #ifdef CONFIG_RFS_ACCEL 1381 int (*ndo_rx_flow_steer)(struct net_device *dev, 1382 const struct sk_buff *skb, 1383 u16 rxq_index, 1384 u32 flow_id); 1385 #endif 1386 int (*ndo_add_slave)(struct net_device *dev, 1387 struct net_device *slave_dev, 1388 struct netlink_ext_ack *extack); 1389 int (*ndo_del_slave)(struct net_device *dev, 1390 struct net_device *slave_dev); 1391 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1392 struct sk_buff *skb, 1393 bool all_slaves); 1394 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1395 struct sock *sk); 1396 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1397 netdev_features_t features); 1398 int (*ndo_set_features)(struct net_device *dev, 1399 netdev_features_t features); 1400 int (*ndo_neigh_construct)(struct net_device *dev, 1401 struct neighbour *n); 1402 void (*ndo_neigh_destroy)(struct net_device *dev, 1403 struct neighbour *n); 1404 1405 int (*ndo_fdb_add)(struct ndmsg *ndm, 1406 struct nlattr *tb[], 1407 struct net_device *dev, 1408 const unsigned char *addr, 1409 u16 vid, 1410 u16 flags, 1411 struct netlink_ext_ack *extack); 1412 int (*ndo_fdb_del)(struct ndmsg *ndm, 1413 struct nlattr *tb[], 1414 struct net_device *dev, 1415 const unsigned char *addr, 1416 u16 vid); 1417 int (*ndo_fdb_dump)(struct sk_buff *skb, 1418 struct netlink_callback *cb, 1419 struct net_device *dev, 1420 struct net_device *filter_dev, 1421 int *idx); 1422 int (*ndo_fdb_get)(struct sk_buff *skb, 1423 struct nlattr *tb[], 1424 struct net_device *dev, 1425 const unsigned char *addr, 1426 u16 vid, u32 portid, u32 seq, 1427 struct netlink_ext_ack *extack); 1428 int (*ndo_bridge_setlink)(struct net_device *dev, 1429 struct nlmsghdr *nlh, 1430 u16 flags, 1431 struct netlink_ext_ack *extack); 1432 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1433 u32 pid, u32 seq, 1434 struct net_device *dev, 1435 u32 filter_mask, 1436 int nlflags); 1437 int (*ndo_bridge_dellink)(struct net_device *dev, 1438 struct nlmsghdr *nlh, 1439 u16 flags); 1440 int (*ndo_change_carrier)(struct net_device *dev, 1441 bool new_carrier); 1442 int (*ndo_get_phys_port_id)(struct net_device *dev, 1443 struct netdev_phys_item_id *ppid); 1444 int (*ndo_get_port_parent_id)(struct net_device *dev, 1445 struct netdev_phys_item_id *ppid); 1446 int (*ndo_get_phys_port_name)(struct net_device *dev, 1447 char *name, size_t len); 1448 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1449 struct net_device *dev); 1450 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1451 void *priv); 1452 1453 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1454 int queue_index, 1455 u32 maxrate); 1456 int (*ndo_get_iflink)(const struct net_device *dev); 1457 int (*ndo_change_proto_down)(struct net_device *dev, 1458 bool proto_down); 1459 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1460 struct sk_buff *skb); 1461 void (*ndo_set_rx_headroom)(struct net_device *dev, 1462 int needed_headroom); 1463 int (*ndo_bpf)(struct net_device *dev, 1464 struct netdev_bpf *bpf); 1465 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1466 struct xdp_frame **xdp, 1467 u32 flags); 1468 int (*ndo_xsk_wakeup)(struct net_device *dev, 1469 u32 queue_id, u32 flags); 1470 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1471 int (*ndo_tunnel_ctl)(struct net_device *dev, 1472 struct ip_tunnel_parm *p, int cmd); 1473 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1474 }; 1475 1476 /** 1477 * enum netdev_priv_flags - &struct net_device priv_flags 1478 * 1479 * These are the &struct net_device, they are only set internally 1480 * by drivers and used in the kernel. These flags are invisible to 1481 * userspace; this means that the order of these flags can change 1482 * during any kernel release. 1483 * 1484 * You should have a pretty good reason to be extending these flags. 1485 * 1486 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1487 * @IFF_EBRIDGE: Ethernet bridging device 1488 * @IFF_BONDING: bonding master or slave 1489 * @IFF_ISATAP: ISATAP interface (RFC4214) 1490 * @IFF_WAN_HDLC: WAN HDLC device 1491 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1492 * release skb->dst 1493 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1494 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1495 * @IFF_MACVLAN_PORT: device used as macvlan port 1496 * @IFF_BRIDGE_PORT: device used as bridge port 1497 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1498 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1499 * @IFF_UNICAST_FLT: Supports unicast filtering 1500 * @IFF_TEAM_PORT: device used as team port 1501 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1502 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1503 * change when it's running 1504 * @IFF_MACVLAN: Macvlan device 1505 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1506 * underlying stacked devices 1507 * @IFF_L3MDEV_MASTER: device is an L3 master device 1508 * @IFF_NO_QUEUE: device can run without qdisc attached 1509 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1510 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1511 * @IFF_TEAM: device is a team device 1512 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1513 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1514 * entity (i.e. the master device for bridged veth) 1515 * @IFF_MACSEC: device is a MACsec device 1516 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1517 * @IFF_FAILOVER: device is a failover master device 1518 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1519 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1520 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1521 */ 1522 enum netdev_priv_flags { 1523 IFF_802_1Q_VLAN = 1<<0, 1524 IFF_EBRIDGE = 1<<1, 1525 IFF_BONDING = 1<<2, 1526 IFF_ISATAP = 1<<3, 1527 IFF_WAN_HDLC = 1<<4, 1528 IFF_XMIT_DST_RELEASE = 1<<5, 1529 IFF_DONT_BRIDGE = 1<<6, 1530 IFF_DISABLE_NETPOLL = 1<<7, 1531 IFF_MACVLAN_PORT = 1<<8, 1532 IFF_BRIDGE_PORT = 1<<9, 1533 IFF_OVS_DATAPATH = 1<<10, 1534 IFF_TX_SKB_SHARING = 1<<11, 1535 IFF_UNICAST_FLT = 1<<12, 1536 IFF_TEAM_PORT = 1<<13, 1537 IFF_SUPP_NOFCS = 1<<14, 1538 IFF_LIVE_ADDR_CHANGE = 1<<15, 1539 IFF_MACVLAN = 1<<16, 1540 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1541 IFF_L3MDEV_MASTER = 1<<18, 1542 IFF_NO_QUEUE = 1<<19, 1543 IFF_OPENVSWITCH = 1<<20, 1544 IFF_L3MDEV_SLAVE = 1<<21, 1545 IFF_TEAM = 1<<22, 1546 IFF_RXFH_CONFIGURED = 1<<23, 1547 IFF_PHONY_HEADROOM = 1<<24, 1548 IFF_MACSEC = 1<<25, 1549 IFF_NO_RX_HANDLER = 1<<26, 1550 IFF_FAILOVER = 1<<27, 1551 IFF_FAILOVER_SLAVE = 1<<28, 1552 IFF_L3MDEV_RX_HANDLER = 1<<29, 1553 IFF_LIVE_RENAME_OK = 1<<30, 1554 }; 1555 1556 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1557 #define IFF_EBRIDGE IFF_EBRIDGE 1558 #define IFF_BONDING IFF_BONDING 1559 #define IFF_ISATAP IFF_ISATAP 1560 #define IFF_WAN_HDLC IFF_WAN_HDLC 1561 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1562 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1563 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1564 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1565 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1566 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1567 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1568 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1569 #define IFF_TEAM_PORT IFF_TEAM_PORT 1570 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1571 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1572 #define IFF_MACVLAN IFF_MACVLAN 1573 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1574 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1575 #define IFF_NO_QUEUE IFF_NO_QUEUE 1576 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1577 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1578 #define IFF_TEAM IFF_TEAM 1579 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1580 #define IFF_MACSEC IFF_MACSEC 1581 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1582 #define IFF_FAILOVER IFF_FAILOVER 1583 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1584 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1585 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1586 1587 /* Specifies the type of the struct net_device::ml_priv pointer */ 1588 enum netdev_ml_priv_type { 1589 ML_PRIV_NONE, 1590 ML_PRIV_CAN, 1591 }; 1592 1593 /** 1594 * struct net_device - The DEVICE structure. 1595 * 1596 * Actually, this whole structure is a big mistake. It mixes I/O 1597 * data with strictly "high-level" data, and it has to know about 1598 * almost every data structure used in the INET module. 1599 * 1600 * @name: This is the first field of the "visible" part of this structure 1601 * (i.e. as seen by users in the "Space.c" file). It is the name 1602 * of the interface. 1603 * 1604 * @name_node: Name hashlist node 1605 * @ifalias: SNMP alias 1606 * @mem_end: Shared memory end 1607 * @mem_start: Shared memory start 1608 * @base_addr: Device I/O address 1609 * @irq: Device IRQ number 1610 * 1611 * @state: Generic network queuing layer state, see netdev_state_t 1612 * @dev_list: The global list of network devices 1613 * @napi_list: List entry used for polling NAPI devices 1614 * @unreg_list: List entry when we are unregistering the 1615 * device; see the function unregister_netdev 1616 * @close_list: List entry used when we are closing the device 1617 * @ptype_all: Device-specific packet handlers for all protocols 1618 * @ptype_specific: Device-specific, protocol-specific packet handlers 1619 * 1620 * @adj_list: Directly linked devices, like slaves for bonding 1621 * @features: Currently active device features 1622 * @hw_features: User-changeable features 1623 * 1624 * @wanted_features: User-requested features 1625 * @vlan_features: Mask of features inheritable by VLAN devices 1626 * 1627 * @hw_enc_features: Mask of features inherited by encapsulating devices 1628 * This field indicates what encapsulation 1629 * offloads the hardware is capable of doing, 1630 * and drivers will need to set them appropriately. 1631 * 1632 * @mpls_features: Mask of features inheritable by MPLS 1633 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1634 * 1635 * @ifindex: interface index 1636 * @group: The group the device belongs to 1637 * 1638 * @stats: Statistics struct, which was left as a legacy, use 1639 * rtnl_link_stats64 instead 1640 * 1641 * @rx_dropped: Dropped packets by core network, 1642 * do not use this in drivers 1643 * @tx_dropped: Dropped packets by core network, 1644 * do not use this in drivers 1645 * @rx_nohandler: nohandler dropped packets by core network on 1646 * inactive devices, do not use this in drivers 1647 * @carrier_up_count: Number of times the carrier has been up 1648 * @carrier_down_count: Number of times the carrier has been down 1649 * 1650 * @wireless_handlers: List of functions to handle Wireless Extensions, 1651 * instead of ioctl, 1652 * see <net/iw_handler.h> for details. 1653 * @wireless_data: Instance data managed by the core of wireless extensions 1654 * 1655 * @netdev_ops: Includes several pointers to callbacks, 1656 * if one wants to override the ndo_*() functions 1657 * @ethtool_ops: Management operations 1658 * @l3mdev_ops: Layer 3 master device operations 1659 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1660 * discovery handling. Necessary for e.g. 6LoWPAN. 1661 * @xfrmdev_ops: Transformation offload operations 1662 * @tlsdev_ops: Transport Layer Security offload operations 1663 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1664 * of Layer 2 headers. 1665 * 1666 * @flags: Interface flags (a la BSD) 1667 * @priv_flags: Like 'flags' but invisible to userspace, 1668 * see if.h for the definitions 1669 * @gflags: Global flags ( kept as legacy ) 1670 * @padded: How much padding added by alloc_netdev() 1671 * @operstate: RFC2863 operstate 1672 * @link_mode: Mapping policy to operstate 1673 * @if_port: Selectable AUI, TP, ... 1674 * @dma: DMA channel 1675 * @mtu: Interface MTU value 1676 * @min_mtu: Interface Minimum MTU value 1677 * @max_mtu: Interface Maximum MTU value 1678 * @type: Interface hardware type 1679 * @hard_header_len: Maximum hardware header length. 1680 * @min_header_len: Minimum hardware header length 1681 * 1682 * @needed_headroom: Extra headroom the hardware may need, but not in all 1683 * cases can this be guaranteed 1684 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1685 * cases can this be guaranteed. Some cases also use 1686 * LL_MAX_HEADER instead to allocate the skb 1687 * 1688 * interface address info: 1689 * 1690 * @perm_addr: Permanent hw address 1691 * @addr_assign_type: Hw address assignment type 1692 * @addr_len: Hardware address length 1693 * @upper_level: Maximum depth level of upper devices. 1694 * @lower_level: Maximum depth level of lower devices. 1695 * @neigh_priv_len: Used in neigh_alloc() 1696 * @dev_id: Used to differentiate devices that share 1697 * the same link layer address 1698 * @dev_port: Used to differentiate devices that share 1699 * the same function 1700 * @addr_list_lock: XXX: need comments on this one 1701 * @name_assign_type: network interface name assignment type 1702 * @uc_promisc: Counter that indicates promiscuous mode 1703 * has been enabled due to the need to listen to 1704 * additional unicast addresses in a device that 1705 * does not implement ndo_set_rx_mode() 1706 * @uc: unicast mac addresses 1707 * @mc: multicast mac addresses 1708 * @dev_addrs: list of device hw addresses 1709 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1710 * @promiscuity: Number of times the NIC is told to work in 1711 * promiscuous mode; if it becomes 0 the NIC will 1712 * exit promiscuous mode 1713 * @allmulti: Counter, enables or disables allmulticast mode 1714 * 1715 * @vlan_info: VLAN info 1716 * @dsa_ptr: dsa specific data 1717 * @tipc_ptr: TIPC specific data 1718 * @atalk_ptr: AppleTalk link 1719 * @ip_ptr: IPv4 specific data 1720 * @dn_ptr: DECnet specific data 1721 * @ip6_ptr: IPv6 specific data 1722 * @ax25_ptr: AX.25 specific data 1723 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1724 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1725 * device struct 1726 * @mpls_ptr: mpls_dev struct pointer 1727 * 1728 * @dev_addr: Hw address (before bcast, 1729 * because most packets are unicast) 1730 * 1731 * @_rx: Array of RX queues 1732 * @num_rx_queues: Number of RX queues 1733 * allocated at register_netdev() time 1734 * @real_num_rx_queues: Number of RX queues currently active in device 1735 * @xdp_prog: XDP sockets filter program pointer 1736 * @gro_flush_timeout: timeout for GRO layer in NAPI 1737 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1738 * allow to avoid NIC hard IRQ, on busy queues. 1739 * 1740 * @rx_handler: handler for received packets 1741 * @rx_handler_data: XXX: need comments on this one 1742 * @miniq_ingress: ingress/clsact qdisc specific data for 1743 * ingress processing 1744 * @ingress_queue: XXX: need comments on this one 1745 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1746 * @broadcast: hw bcast address 1747 * 1748 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1749 * indexed by RX queue number. Assigned by driver. 1750 * This must only be set if the ndo_rx_flow_steer 1751 * operation is defined 1752 * @index_hlist: Device index hash chain 1753 * 1754 * @_tx: Array of TX queues 1755 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1756 * @real_num_tx_queues: Number of TX queues currently active in device 1757 * @qdisc: Root qdisc from userspace point of view 1758 * @tx_queue_len: Max frames per queue allowed 1759 * @tx_global_lock: XXX: need comments on this one 1760 * @xdp_bulkq: XDP device bulk queue 1761 * @xps_cpus_map: all CPUs map for XPS device 1762 * @xps_rxqs_map: all RXQs map for XPS device 1763 * 1764 * @xps_maps: XXX: need comments on this one 1765 * @miniq_egress: clsact qdisc specific data for 1766 * egress processing 1767 * @qdisc_hash: qdisc hash table 1768 * @watchdog_timeo: Represents the timeout that is used by 1769 * the watchdog (see dev_watchdog()) 1770 * @watchdog_timer: List of timers 1771 * 1772 * @proto_down_reason: reason a netdev interface is held down 1773 * @pcpu_refcnt: Number of references to this device 1774 * @todo_list: Delayed register/unregister 1775 * @link_watch_list: XXX: need comments on this one 1776 * 1777 * @reg_state: Register/unregister state machine 1778 * @dismantle: Device is going to be freed 1779 * @rtnl_link_state: This enum represents the phases of creating 1780 * a new link 1781 * 1782 * @needs_free_netdev: Should unregister perform free_netdev? 1783 * @priv_destructor: Called from unregister 1784 * @npinfo: XXX: need comments on this one 1785 * @nd_net: Network namespace this network device is inside 1786 * 1787 * @ml_priv: Mid-layer private 1788 * @ml_priv_type: Mid-layer private type 1789 * @lstats: Loopback statistics 1790 * @tstats: Tunnel statistics 1791 * @dstats: Dummy statistics 1792 * @vstats: Virtual ethernet statistics 1793 * 1794 * @garp_port: GARP 1795 * @mrp_port: MRP 1796 * 1797 * @dev: Class/net/name entry 1798 * @sysfs_groups: Space for optional device, statistics and wireless 1799 * sysfs groups 1800 * 1801 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1802 * @rtnl_link_ops: Rtnl_link_ops 1803 * 1804 * @gso_max_size: Maximum size of generic segmentation offload 1805 * @gso_max_segs: Maximum number of segments that can be passed to the 1806 * NIC for GSO 1807 * 1808 * @dcbnl_ops: Data Center Bridging netlink ops 1809 * @num_tc: Number of traffic classes in the net device 1810 * @tc_to_txq: XXX: need comments on this one 1811 * @prio_tc_map: XXX: need comments on this one 1812 * 1813 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1814 * 1815 * @priomap: XXX: need comments on this one 1816 * @phydev: Physical device may attach itself 1817 * for hardware timestamping 1818 * @sfp_bus: attached &struct sfp_bus structure. 1819 * 1820 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1821 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1822 * 1823 * @proto_down: protocol port state information can be sent to the 1824 * switch driver and used to set the phys state of the 1825 * switch port. 1826 * 1827 * @wol_enabled: Wake-on-LAN is enabled 1828 * 1829 * @threaded: napi threaded mode is enabled 1830 * 1831 * @net_notifier_list: List of per-net netdev notifier block 1832 * that follow this device when it is moved 1833 * to another network namespace. 1834 * 1835 * @macsec_ops: MACsec offloading ops 1836 * 1837 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1838 * offload capabilities of the device 1839 * @udp_tunnel_nic: UDP tunnel offload state 1840 * @xdp_state: stores info on attached XDP BPF programs 1841 * 1842 * @nested_level: Used as as a parameter of spin_lock_nested() of 1843 * dev->addr_list_lock. 1844 * @unlink_list: As netif_addr_lock() can be called recursively, 1845 * keep a list of interfaces to be deleted. 1846 * 1847 * FIXME: cleanup struct net_device such that network protocol info 1848 * moves out. 1849 */ 1850 1851 struct net_device { 1852 char name[IFNAMSIZ]; 1853 struct netdev_name_node *name_node; 1854 struct dev_ifalias __rcu *ifalias; 1855 /* 1856 * I/O specific fields 1857 * FIXME: Merge these and struct ifmap into one 1858 */ 1859 unsigned long mem_end; 1860 unsigned long mem_start; 1861 unsigned long base_addr; 1862 1863 /* 1864 * Some hardware also needs these fields (state,dev_list, 1865 * napi_list,unreg_list,close_list) but they are not 1866 * part of the usual set specified in Space.c. 1867 */ 1868 1869 unsigned long state; 1870 1871 struct list_head dev_list; 1872 struct list_head napi_list; 1873 struct list_head unreg_list; 1874 struct list_head close_list; 1875 struct list_head ptype_all; 1876 struct list_head ptype_specific; 1877 1878 struct { 1879 struct list_head upper; 1880 struct list_head lower; 1881 } adj_list; 1882 1883 /* Read-mostly cache-line for fast-path access */ 1884 unsigned int flags; 1885 unsigned int priv_flags; 1886 const struct net_device_ops *netdev_ops; 1887 int ifindex; 1888 unsigned short gflags; 1889 unsigned short hard_header_len; 1890 1891 /* Note : dev->mtu is often read without holding a lock. 1892 * Writers usually hold RTNL. 1893 * It is recommended to use READ_ONCE() to annotate the reads, 1894 * and to use WRITE_ONCE() to annotate the writes. 1895 */ 1896 unsigned int mtu; 1897 unsigned short needed_headroom; 1898 unsigned short needed_tailroom; 1899 1900 netdev_features_t features; 1901 netdev_features_t hw_features; 1902 netdev_features_t wanted_features; 1903 netdev_features_t vlan_features; 1904 netdev_features_t hw_enc_features; 1905 netdev_features_t mpls_features; 1906 netdev_features_t gso_partial_features; 1907 1908 unsigned int min_mtu; 1909 unsigned int max_mtu; 1910 unsigned short type; 1911 unsigned char min_header_len; 1912 unsigned char name_assign_type; 1913 1914 int group; 1915 1916 struct net_device_stats stats; /* not used by modern drivers */ 1917 1918 atomic_long_t rx_dropped; 1919 atomic_long_t tx_dropped; 1920 atomic_long_t rx_nohandler; 1921 1922 /* Stats to monitor link on/off, flapping */ 1923 atomic_t carrier_up_count; 1924 atomic_t carrier_down_count; 1925 1926 #ifdef CONFIG_WIRELESS_EXT 1927 const struct iw_handler_def *wireless_handlers; 1928 struct iw_public_data *wireless_data; 1929 #endif 1930 const struct ethtool_ops *ethtool_ops; 1931 #ifdef CONFIG_NET_L3_MASTER_DEV 1932 const struct l3mdev_ops *l3mdev_ops; 1933 #endif 1934 #if IS_ENABLED(CONFIG_IPV6) 1935 const struct ndisc_ops *ndisc_ops; 1936 #endif 1937 1938 #ifdef CONFIG_XFRM_OFFLOAD 1939 const struct xfrmdev_ops *xfrmdev_ops; 1940 #endif 1941 1942 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1943 const struct tlsdev_ops *tlsdev_ops; 1944 #endif 1945 1946 const struct header_ops *header_ops; 1947 1948 unsigned char operstate; 1949 unsigned char link_mode; 1950 1951 unsigned char if_port; 1952 unsigned char dma; 1953 1954 /* Interface address info. */ 1955 unsigned char perm_addr[MAX_ADDR_LEN]; 1956 unsigned char addr_assign_type; 1957 unsigned char addr_len; 1958 unsigned char upper_level; 1959 unsigned char lower_level; 1960 1961 unsigned short neigh_priv_len; 1962 unsigned short dev_id; 1963 unsigned short dev_port; 1964 unsigned short padded; 1965 1966 spinlock_t addr_list_lock; 1967 int irq; 1968 1969 struct netdev_hw_addr_list uc; 1970 struct netdev_hw_addr_list mc; 1971 struct netdev_hw_addr_list dev_addrs; 1972 1973 #ifdef CONFIG_SYSFS 1974 struct kset *queues_kset; 1975 #endif 1976 #ifdef CONFIG_LOCKDEP 1977 struct list_head unlink_list; 1978 #endif 1979 unsigned int promiscuity; 1980 unsigned int allmulti; 1981 bool uc_promisc; 1982 #ifdef CONFIG_LOCKDEP 1983 unsigned char nested_level; 1984 #endif 1985 1986 1987 /* Protocol-specific pointers */ 1988 1989 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1990 struct vlan_info __rcu *vlan_info; 1991 #endif 1992 #if IS_ENABLED(CONFIG_NET_DSA) 1993 struct dsa_port *dsa_ptr; 1994 #endif 1995 #if IS_ENABLED(CONFIG_TIPC) 1996 struct tipc_bearer __rcu *tipc_ptr; 1997 #endif 1998 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1999 void *atalk_ptr; 2000 #endif 2001 struct in_device __rcu *ip_ptr; 2002 #if IS_ENABLED(CONFIG_DECNET) 2003 struct dn_dev __rcu *dn_ptr; 2004 #endif 2005 struct inet6_dev __rcu *ip6_ptr; 2006 #if IS_ENABLED(CONFIG_AX25) 2007 void *ax25_ptr; 2008 #endif 2009 struct wireless_dev *ieee80211_ptr; 2010 struct wpan_dev *ieee802154_ptr; 2011 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2012 struct mpls_dev __rcu *mpls_ptr; 2013 #endif 2014 2015 /* 2016 * Cache lines mostly used on receive path (including eth_type_trans()) 2017 */ 2018 /* Interface address info used in eth_type_trans() */ 2019 unsigned char *dev_addr; 2020 2021 struct netdev_rx_queue *_rx; 2022 unsigned int num_rx_queues; 2023 unsigned int real_num_rx_queues; 2024 2025 struct bpf_prog __rcu *xdp_prog; 2026 unsigned long gro_flush_timeout; 2027 int napi_defer_hard_irqs; 2028 rx_handler_func_t __rcu *rx_handler; 2029 void __rcu *rx_handler_data; 2030 2031 #ifdef CONFIG_NET_CLS_ACT 2032 struct mini_Qdisc __rcu *miniq_ingress; 2033 #endif 2034 struct netdev_queue __rcu *ingress_queue; 2035 #ifdef CONFIG_NETFILTER_INGRESS 2036 struct nf_hook_entries __rcu *nf_hooks_ingress; 2037 #endif 2038 2039 unsigned char broadcast[MAX_ADDR_LEN]; 2040 #ifdef CONFIG_RFS_ACCEL 2041 struct cpu_rmap *rx_cpu_rmap; 2042 #endif 2043 struct hlist_node index_hlist; 2044 2045 /* 2046 * Cache lines mostly used on transmit path 2047 */ 2048 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2049 unsigned int num_tx_queues; 2050 unsigned int real_num_tx_queues; 2051 struct Qdisc *qdisc; 2052 unsigned int tx_queue_len; 2053 spinlock_t tx_global_lock; 2054 2055 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2056 2057 #ifdef CONFIG_XPS 2058 struct xps_dev_maps __rcu *xps_cpus_map; 2059 struct xps_dev_maps __rcu *xps_rxqs_map; 2060 #endif 2061 #ifdef CONFIG_NET_CLS_ACT 2062 struct mini_Qdisc __rcu *miniq_egress; 2063 #endif 2064 2065 #ifdef CONFIG_NET_SCHED 2066 DECLARE_HASHTABLE (qdisc_hash, 4); 2067 #endif 2068 /* These may be needed for future network-power-down code. */ 2069 struct timer_list watchdog_timer; 2070 int watchdog_timeo; 2071 2072 u32 proto_down_reason; 2073 2074 struct list_head todo_list; 2075 int __percpu *pcpu_refcnt; 2076 2077 struct list_head link_watch_list; 2078 2079 enum { NETREG_UNINITIALIZED=0, 2080 NETREG_REGISTERED, /* completed register_netdevice */ 2081 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2082 NETREG_UNREGISTERED, /* completed unregister todo */ 2083 NETREG_RELEASED, /* called free_netdev */ 2084 NETREG_DUMMY, /* dummy device for NAPI poll */ 2085 } reg_state:8; 2086 2087 bool dismantle; 2088 2089 enum { 2090 RTNL_LINK_INITIALIZED, 2091 RTNL_LINK_INITIALIZING, 2092 } rtnl_link_state:16; 2093 2094 bool needs_free_netdev; 2095 void (*priv_destructor)(struct net_device *dev); 2096 2097 #ifdef CONFIG_NETPOLL 2098 struct netpoll_info __rcu *npinfo; 2099 #endif 2100 2101 possible_net_t nd_net; 2102 2103 /* mid-layer private */ 2104 void *ml_priv; 2105 enum netdev_ml_priv_type ml_priv_type; 2106 2107 union { 2108 struct pcpu_lstats __percpu *lstats; 2109 struct pcpu_sw_netstats __percpu *tstats; 2110 struct pcpu_dstats __percpu *dstats; 2111 }; 2112 2113 #if IS_ENABLED(CONFIG_GARP) 2114 struct garp_port __rcu *garp_port; 2115 #endif 2116 #if IS_ENABLED(CONFIG_MRP) 2117 struct mrp_port __rcu *mrp_port; 2118 #endif 2119 2120 struct device dev; 2121 const struct attribute_group *sysfs_groups[4]; 2122 const struct attribute_group *sysfs_rx_queue_group; 2123 2124 const struct rtnl_link_ops *rtnl_link_ops; 2125 2126 /* for setting kernel sock attribute on TCP connection setup */ 2127 #define GSO_MAX_SIZE 65536 2128 unsigned int gso_max_size; 2129 #define GSO_MAX_SEGS 65535 2130 u16 gso_max_segs; 2131 2132 #ifdef CONFIG_DCB 2133 const struct dcbnl_rtnl_ops *dcbnl_ops; 2134 #endif 2135 s16 num_tc; 2136 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2137 u8 prio_tc_map[TC_BITMASK + 1]; 2138 2139 #if IS_ENABLED(CONFIG_FCOE) 2140 unsigned int fcoe_ddp_xid; 2141 #endif 2142 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2143 struct netprio_map __rcu *priomap; 2144 #endif 2145 struct phy_device *phydev; 2146 struct sfp_bus *sfp_bus; 2147 struct lock_class_key *qdisc_tx_busylock; 2148 struct lock_class_key *qdisc_running_key; 2149 bool proto_down; 2150 unsigned wol_enabled:1; 2151 unsigned threaded:1; 2152 2153 struct list_head net_notifier_list; 2154 2155 #if IS_ENABLED(CONFIG_MACSEC) 2156 /* MACsec management functions */ 2157 const struct macsec_ops *macsec_ops; 2158 #endif 2159 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2160 struct udp_tunnel_nic *udp_tunnel_nic; 2161 2162 /* protected by rtnl_lock */ 2163 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2164 }; 2165 #define to_net_dev(d) container_of(d, struct net_device, dev) 2166 2167 static inline bool netif_elide_gro(const struct net_device *dev) 2168 { 2169 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2170 return true; 2171 return false; 2172 } 2173 2174 #define NETDEV_ALIGN 32 2175 2176 static inline 2177 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2178 { 2179 return dev->prio_tc_map[prio & TC_BITMASK]; 2180 } 2181 2182 static inline 2183 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2184 { 2185 if (tc >= dev->num_tc) 2186 return -EINVAL; 2187 2188 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2189 return 0; 2190 } 2191 2192 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2193 void netdev_reset_tc(struct net_device *dev); 2194 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2195 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2196 2197 static inline 2198 int netdev_get_num_tc(struct net_device *dev) 2199 { 2200 return dev->num_tc; 2201 } 2202 2203 static inline void net_prefetch(void *p) 2204 { 2205 prefetch(p); 2206 #if L1_CACHE_BYTES < 128 2207 prefetch((u8 *)p + L1_CACHE_BYTES); 2208 #endif 2209 } 2210 2211 static inline void net_prefetchw(void *p) 2212 { 2213 prefetchw(p); 2214 #if L1_CACHE_BYTES < 128 2215 prefetchw((u8 *)p + L1_CACHE_BYTES); 2216 #endif 2217 } 2218 2219 void netdev_unbind_sb_channel(struct net_device *dev, 2220 struct net_device *sb_dev); 2221 int netdev_bind_sb_channel_queue(struct net_device *dev, 2222 struct net_device *sb_dev, 2223 u8 tc, u16 count, u16 offset); 2224 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2225 static inline int netdev_get_sb_channel(struct net_device *dev) 2226 { 2227 return max_t(int, -dev->num_tc, 0); 2228 } 2229 2230 static inline 2231 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2232 unsigned int index) 2233 { 2234 return &dev->_tx[index]; 2235 } 2236 2237 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2238 const struct sk_buff *skb) 2239 { 2240 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2241 } 2242 2243 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2244 void (*f)(struct net_device *, 2245 struct netdev_queue *, 2246 void *), 2247 void *arg) 2248 { 2249 unsigned int i; 2250 2251 for (i = 0; i < dev->num_tx_queues; i++) 2252 f(dev, &dev->_tx[i], arg); 2253 } 2254 2255 #define netdev_lockdep_set_classes(dev) \ 2256 { \ 2257 static struct lock_class_key qdisc_tx_busylock_key; \ 2258 static struct lock_class_key qdisc_running_key; \ 2259 static struct lock_class_key qdisc_xmit_lock_key; \ 2260 static struct lock_class_key dev_addr_list_lock_key; \ 2261 unsigned int i; \ 2262 \ 2263 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2264 (dev)->qdisc_running_key = &qdisc_running_key; \ 2265 lockdep_set_class(&(dev)->addr_list_lock, \ 2266 &dev_addr_list_lock_key); \ 2267 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2268 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2269 &qdisc_xmit_lock_key); \ 2270 } 2271 2272 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2273 struct net_device *sb_dev); 2274 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2275 struct sk_buff *skb, 2276 struct net_device *sb_dev); 2277 2278 /* returns the headroom that the master device needs to take in account 2279 * when forwarding to this dev 2280 */ 2281 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2282 { 2283 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2284 } 2285 2286 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2287 { 2288 if (dev->netdev_ops->ndo_set_rx_headroom) 2289 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2290 } 2291 2292 /* set the device rx headroom to the dev's default */ 2293 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2294 { 2295 netdev_set_rx_headroom(dev, -1); 2296 } 2297 2298 static inline void *netdev_get_ml_priv(struct net_device *dev, 2299 enum netdev_ml_priv_type type) 2300 { 2301 if (dev->ml_priv_type != type) 2302 return NULL; 2303 2304 return dev->ml_priv; 2305 } 2306 2307 static inline void netdev_set_ml_priv(struct net_device *dev, 2308 void *ml_priv, 2309 enum netdev_ml_priv_type type) 2310 { 2311 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2312 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2313 dev->ml_priv_type, type); 2314 WARN(!dev->ml_priv_type && dev->ml_priv, 2315 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2316 2317 dev->ml_priv = ml_priv; 2318 dev->ml_priv_type = type; 2319 } 2320 2321 /* 2322 * Net namespace inlines 2323 */ 2324 static inline 2325 struct net *dev_net(const struct net_device *dev) 2326 { 2327 return read_pnet(&dev->nd_net); 2328 } 2329 2330 static inline 2331 void dev_net_set(struct net_device *dev, struct net *net) 2332 { 2333 write_pnet(&dev->nd_net, net); 2334 } 2335 2336 /** 2337 * netdev_priv - access network device private data 2338 * @dev: network device 2339 * 2340 * Get network device private data 2341 */ 2342 static inline void *netdev_priv(const struct net_device *dev) 2343 { 2344 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2345 } 2346 2347 /* Set the sysfs physical device reference for the network logical device 2348 * if set prior to registration will cause a symlink during initialization. 2349 */ 2350 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2351 2352 /* Set the sysfs device type for the network logical device to allow 2353 * fine-grained identification of different network device types. For 2354 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2355 */ 2356 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2357 2358 /* Default NAPI poll() weight 2359 * Device drivers are strongly advised to not use bigger value 2360 */ 2361 #define NAPI_POLL_WEIGHT 64 2362 2363 /** 2364 * netif_napi_add - initialize a NAPI context 2365 * @dev: network device 2366 * @napi: NAPI context 2367 * @poll: polling function 2368 * @weight: default weight 2369 * 2370 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2371 * *any* of the other NAPI-related functions. 2372 */ 2373 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2374 int (*poll)(struct napi_struct *, int), int weight); 2375 2376 /** 2377 * netif_tx_napi_add - initialize a NAPI context 2378 * @dev: network device 2379 * @napi: NAPI context 2380 * @poll: polling function 2381 * @weight: default weight 2382 * 2383 * This variant of netif_napi_add() should be used from drivers using NAPI 2384 * to exclusively poll a TX queue. 2385 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2386 */ 2387 static inline void netif_tx_napi_add(struct net_device *dev, 2388 struct napi_struct *napi, 2389 int (*poll)(struct napi_struct *, int), 2390 int weight) 2391 { 2392 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2393 netif_napi_add(dev, napi, poll, weight); 2394 } 2395 2396 /** 2397 * __netif_napi_del - remove a NAPI context 2398 * @napi: NAPI context 2399 * 2400 * Warning: caller must observe RCU grace period before freeing memory 2401 * containing @napi. Drivers might want to call this helper to combine 2402 * all the needed RCU grace periods into a single one. 2403 */ 2404 void __netif_napi_del(struct napi_struct *napi); 2405 2406 /** 2407 * netif_napi_del - remove a NAPI context 2408 * @napi: NAPI context 2409 * 2410 * netif_napi_del() removes a NAPI context from the network device NAPI list 2411 */ 2412 static inline void netif_napi_del(struct napi_struct *napi) 2413 { 2414 __netif_napi_del(napi); 2415 synchronize_net(); 2416 } 2417 2418 struct napi_gro_cb { 2419 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2420 void *frag0; 2421 2422 /* Length of frag0. */ 2423 unsigned int frag0_len; 2424 2425 /* This indicates where we are processing relative to skb->data. */ 2426 int data_offset; 2427 2428 /* This is non-zero if the packet cannot be merged with the new skb. */ 2429 u16 flush; 2430 2431 /* Save the IP ID here and check when we get to the transport layer */ 2432 u16 flush_id; 2433 2434 /* Number of segments aggregated. */ 2435 u16 count; 2436 2437 /* Start offset for remote checksum offload */ 2438 u16 gro_remcsum_start; 2439 2440 /* jiffies when first packet was created/queued */ 2441 unsigned long age; 2442 2443 /* Used in ipv6_gro_receive() and foo-over-udp */ 2444 u16 proto; 2445 2446 /* This is non-zero if the packet may be of the same flow. */ 2447 u8 same_flow:1; 2448 2449 /* Used in tunnel GRO receive */ 2450 u8 encap_mark:1; 2451 2452 /* GRO checksum is valid */ 2453 u8 csum_valid:1; 2454 2455 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2456 u8 csum_cnt:3; 2457 2458 /* Free the skb? */ 2459 u8 free:2; 2460 #define NAPI_GRO_FREE 1 2461 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2462 2463 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2464 u8 is_ipv6:1; 2465 2466 /* Used in GRE, set in fou/gue_gro_receive */ 2467 u8 is_fou:1; 2468 2469 /* Used to determine if flush_id can be ignored */ 2470 u8 is_atomic:1; 2471 2472 /* Number of gro_receive callbacks this packet already went through */ 2473 u8 recursion_counter:4; 2474 2475 /* GRO is done by frag_list pointer chaining. */ 2476 u8 is_flist:1; 2477 2478 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2479 __wsum csum; 2480 2481 /* used in skb_gro_receive() slow path */ 2482 struct sk_buff *last; 2483 }; 2484 2485 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2486 2487 #define GRO_RECURSION_LIMIT 15 2488 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2489 { 2490 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2491 } 2492 2493 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2494 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2495 struct list_head *head, 2496 struct sk_buff *skb) 2497 { 2498 if (unlikely(gro_recursion_inc_test(skb))) { 2499 NAPI_GRO_CB(skb)->flush |= 1; 2500 return NULL; 2501 } 2502 2503 return cb(head, skb); 2504 } 2505 2506 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2507 struct sk_buff *); 2508 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2509 struct sock *sk, 2510 struct list_head *head, 2511 struct sk_buff *skb) 2512 { 2513 if (unlikely(gro_recursion_inc_test(skb))) { 2514 NAPI_GRO_CB(skb)->flush |= 1; 2515 return NULL; 2516 } 2517 2518 return cb(sk, head, skb); 2519 } 2520 2521 struct packet_type { 2522 __be16 type; /* This is really htons(ether_type). */ 2523 bool ignore_outgoing; 2524 struct net_device *dev; /* NULL is wildcarded here */ 2525 int (*func) (struct sk_buff *, 2526 struct net_device *, 2527 struct packet_type *, 2528 struct net_device *); 2529 void (*list_func) (struct list_head *, 2530 struct packet_type *, 2531 struct net_device *); 2532 bool (*id_match)(struct packet_type *ptype, 2533 struct sock *sk); 2534 void *af_packet_priv; 2535 struct list_head list; 2536 }; 2537 2538 struct offload_callbacks { 2539 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2540 netdev_features_t features); 2541 struct sk_buff *(*gro_receive)(struct list_head *head, 2542 struct sk_buff *skb); 2543 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2544 }; 2545 2546 struct packet_offload { 2547 __be16 type; /* This is really htons(ether_type). */ 2548 u16 priority; 2549 struct offload_callbacks callbacks; 2550 struct list_head list; 2551 }; 2552 2553 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2554 struct pcpu_sw_netstats { 2555 u64 rx_packets; 2556 u64 rx_bytes; 2557 u64 tx_packets; 2558 u64 tx_bytes; 2559 struct u64_stats_sync syncp; 2560 } __aligned(4 * sizeof(u64)); 2561 2562 struct pcpu_lstats { 2563 u64_stats_t packets; 2564 u64_stats_t bytes; 2565 struct u64_stats_sync syncp; 2566 } __aligned(2 * sizeof(u64)); 2567 2568 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2569 2570 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2571 { 2572 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2573 2574 u64_stats_update_begin(&tstats->syncp); 2575 tstats->rx_bytes += len; 2576 tstats->rx_packets++; 2577 u64_stats_update_end(&tstats->syncp); 2578 } 2579 2580 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2581 unsigned int packets, 2582 unsigned int len) 2583 { 2584 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2585 2586 u64_stats_update_begin(&tstats->syncp); 2587 tstats->tx_bytes += len; 2588 tstats->tx_packets += packets; 2589 u64_stats_update_end(&tstats->syncp); 2590 } 2591 2592 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2593 { 2594 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2595 2596 u64_stats_update_begin(&lstats->syncp); 2597 u64_stats_add(&lstats->bytes, len); 2598 u64_stats_inc(&lstats->packets); 2599 u64_stats_update_end(&lstats->syncp); 2600 } 2601 2602 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2603 ({ \ 2604 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2605 if (pcpu_stats) { \ 2606 int __cpu; \ 2607 for_each_possible_cpu(__cpu) { \ 2608 typeof(type) *stat; \ 2609 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2610 u64_stats_init(&stat->syncp); \ 2611 } \ 2612 } \ 2613 pcpu_stats; \ 2614 }) 2615 2616 #define netdev_alloc_pcpu_stats(type) \ 2617 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2618 2619 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2620 ({ \ 2621 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2622 if (pcpu_stats) { \ 2623 int __cpu; \ 2624 for_each_possible_cpu(__cpu) { \ 2625 typeof(type) *stat; \ 2626 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2627 u64_stats_init(&stat->syncp); \ 2628 } \ 2629 } \ 2630 pcpu_stats; \ 2631 }) 2632 2633 enum netdev_lag_tx_type { 2634 NETDEV_LAG_TX_TYPE_UNKNOWN, 2635 NETDEV_LAG_TX_TYPE_RANDOM, 2636 NETDEV_LAG_TX_TYPE_BROADCAST, 2637 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2638 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2639 NETDEV_LAG_TX_TYPE_HASH, 2640 }; 2641 2642 enum netdev_lag_hash { 2643 NETDEV_LAG_HASH_NONE, 2644 NETDEV_LAG_HASH_L2, 2645 NETDEV_LAG_HASH_L34, 2646 NETDEV_LAG_HASH_L23, 2647 NETDEV_LAG_HASH_E23, 2648 NETDEV_LAG_HASH_E34, 2649 NETDEV_LAG_HASH_VLAN_SRCMAC, 2650 NETDEV_LAG_HASH_UNKNOWN, 2651 }; 2652 2653 struct netdev_lag_upper_info { 2654 enum netdev_lag_tx_type tx_type; 2655 enum netdev_lag_hash hash_type; 2656 }; 2657 2658 struct netdev_lag_lower_state_info { 2659 u8 link_up : 1, 2660 tx_enabled : 1; 2661 }; 2662 2663 #include <linux/notifier.h> 2664 2665 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2666 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2667 * adding new types. 2668 */ 2669 enum netdev_cmd { 2670 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2671 NETDEV_DOWN, 2672 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2673 detected a hardware crash and restarted 2674 - we can use this eg to kick tcp sessions 2675 once done */ 2676 NETDEV_CHANGE, /* Notify device state change */ 2677 NETDEV_REGISTER, 2678 NETDEV_UNREGISTER, 2679 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2680 NETDEV_CHANGEADDR, /* notify after the address change */ 2681 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2682 NETDEV_GOING_DOWN, 2683 NETDEV_CHANGENAME, 2684 NETDEV_FEAT_CHANGE, 2685 NETDEV_BONDING_FAILOVER, 2686 NETDEV_PRE_UP, 2687 NETDEV_PRE_TYPE_CHANGE, 2688 NETDEV_POST_TYPE_CHANGE, 2689 NETDEV_POST_INIT, 2690 NETDEV_RELEASE, 2691 NETDEV_NOTIFY_PEERS, 2692 NETDEV_JOIN, 2693 NETDEV_CHANGEUPPER, 2694 NETDEV_RESEND_IGMP, 2695 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2696 NETDEV_CHANGEINFODATA, 2697 NETDEV_BONDING_INFO, 2698 NETDEV_PRECHANGEUPPER, 2699 NETDEV_CHANGELOWERSTATE, 2700 NETDEV_UDP_TUNNEL_PUSH_INFO, 2701 NETDEV_UDP_TUNNEL_DROP_INFO, 2702 NETDEV_CHANGE_TX_QUEUE_LEN, 2703 NETDEV_CVLAN_FILTER_PUSH_INFO, 2704 NETDEV_CVLAN_FILTER_DROP_INFO, 2705 NETDEV_SVLAN_FILTER_PUSH_INFO, 2706 NETDEV_SVLAN_FILTER_DROP_INFO, 2707 }; 2708 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2709 2710 int register_netdevice_notifier(struct notifier_block *nb); 2711 int unregister_netdevice_notifier(struct notifier_block *nb); 2712 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2713 int unregister_netdevice_notifier_net(struct net *net, 2714 struct notifier_block *nb); 2715 int register_netdevice_notifier_dev_net(struct net_device *dev, 2716 struct notifier_block *nb, 2717 struct netdev_net_notifier *nn); 2718 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2719 struct notifier_block *nb, 2720 struct netdev_net_notifier *nn); 2721 2722 struct netdev_notifier_info { 2723 struct net_device *dev; 2724 struct netlink_ext_ack *extack; 2725 }; 2726 2727 struct netdev_notifier_info_ext { 2728 struct netdev_notifier_info info; /* must be first */ 2729 union { 2730 u32 mtu; 2731 } ext; 2732 }; 2733 2734 struct netdev_notifier_change_info { 2735 struct netdev_notifier_info info; /* must be first */ 2736 unsigned int flags_changed; 2737 }; 2738 2739 struct netdev_notifier_changeupper_info { 2740 struct netdev_notifier_info info; /* must be first */ 2741 struct net_device *upper_dev; /* new upper dev */ 2742 bool master; /* is upper dev master */ 2743 bool linking; /* is the notification for link or unlink */ 2744 void *upper_info; /* upper dev info */ 2745 }; 2746 2747 struct netdev_notifier_changelowerstate_info { 2748 struct netdev_notifier_info info; /* must be first */ 2749 void *lower_state_info; /* is lower dev state */ 2750 }; 2751 2752 struct netdev_notifier_pre_changeaddr_info { 2753 struct netdev_notifier_info info; /* must be first */ 2754 const unsigned char *dev_addr; 2755 }; 2756 2757 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2758 struct net_device *dev) 2759 { 2760 info->dev = dev; 2761 info->extack = NULL; 2762 } 2763 2764 static inline struct net_device * 2765 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2766 { 2767 return info->dev; 2768 } 2769 2770 static inline struct netlink_ext_ack * 2771 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2772 { 2773 return info->extack; 2774 } 2775 2776 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2777 2778 2779 extern rwlock_t dev_base_lock; /* Device list lock */ 2780 2781 #define for_each_netdev(net, d) \ 2782 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2783 #define for_each_netdev_reverse(net, d) \ 2784 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2785 #define for_each_netdev_rcu(net, d) \ 2786 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2787 #define for_each_netdev_safe(net, d, n) \ 2788 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2789 #define for_each_netdev_continue(net, d) \ 2790 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2791 #define for_each_netdev_continue_reverse(net, d) \ 2792 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2793 dev_list) 2794 #define for_each_netdev_continue_rcu(net, d) \ 2795 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2796 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2797 for_each_netdev_rcu(&init_net, slave) \ 2798 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2799 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2800 2801 static inline struct net_device *next_net_device(struct net_device *dev) 2802 { 2803 struct list_head *lh; 2804 struct net *net; 2805 2806 net = dev_net(dev); 2807 lh = dev->dev_list.next; 2808 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2809 } 2810 2811 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2812 { 2813 struct list_head *lh; 2814 struct net *net; 2815 2816 net = dev_net(dev); 2817 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2818 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2819 } 2820 2821 static inline struct net_device *first_net_device(struct net *net) 2822 { 2823 return list_empty(&net->dev_base_head) ? NULL : 2824 net_device_entry(net->dev_base_head.next); 2825 } 2826 2827 static inline struct net_device *first_net_device_rcu(struct net *net) 2828 { 2829 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2830 2831 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2832 } 2833 2834 int netdev_boot_setup_check(struct net_device *dev); 2835 unsigned long netdev_boot_base(const char *prefix, int unit); 2836 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2837 const char *hwaddr); 2838 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2839 void dev_add_pack(struct packet_type *pt); 2840 void dev_remove_pack(struct packet_type *pt); 2841 void __dev_remove_pack(struct packet_type *pt); 2842 void dev_add_offload(struct packet_offload *po); 2843 void dev_remove_offload(struct packet_offload *po); 2844 2845 int dev_get_iflink(const struct net_device *dev); 2846 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2847 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2848 unsigned short mask); 2849 struct net_device *dev_get_by_name(struct net *net, const char *name); 2850 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2851 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2852 int dev_alloc_name(struct net_device *dev, const char *name); 2853 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2854 void dev_close(struct net_device *dev); 2855 void dev_close_many(struct list_head *head, bool unlink); 2856 void dev_disable_lro(struct net_device *dev); 2857 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2858 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2859 struct net_device *sb_dev); 2860 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2861 struct net_device *sb_dev); 2862 2863 int dev_queue_xmit(struct sk_buff *skb); 2864 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2865 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2866 2867 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 2868 { 2869 int ret; 2870 2871 ret = __dev_direct_xmit(skb, queue_id); 2872 if (!dev_xmit_complete(ret)) 2873 kfree_skb(skb); 2874 return ret; 2875 } 2876 2877 int register_netdevice(struct net_device *dev); 2878 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2879 void unregister_netdevice_many(struct list_head *head); 2880 static inline void unregister_netdevice(struct net_device *dev) 2881 { 2882 unregister_netdevice_queue(dev, NULL); 2883 } 2884 2885 int netdev_refcnt_read(const struct net_device *dev); 2886 void free_netdev(struct net_device *dev); 2887 void netdev_freemem(struct net_device *dev); 2888 int init_dummy_netdev(struct net_device *dev); 2889 2890 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2891 struct sk_buff *skb, 2892 bool all_slaves); 2893 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 2894 struct sock *sk); 2895 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2896 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2897 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2898 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2899 int netdev_get_name(struct net *net, char *name, int ifindex); 2900 int dev_restart(struct net_device *dev); 2901 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2902 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 2903 2904 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2905 { 2906 return NAPI_GRO_CB(skb)->data_offset; 2907 } 2908 2909 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2910 { 2911 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2912 } 2913 2914 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2915 { 2916 NAPI_GRO_CB(skb)->data_offset += len; 2917 } 2918 2919 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2920 unsigned int offset) 2921 { 2922 return NAPI_GRO_CB(skb)->frag0 + offset; 2923 } 2924 2925 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2926 { 2927 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2928 } 2929 2930 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2931 { 2932 NAPI_GRO_CB(skb)->frag0 = NULL; 2933 NAPI_GRO_CB(skb)->frag0_len = 0; 2934 } 2935 2936 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2937 unsigned int offset) 2938 { 2939 if (!pskb_may_pull(skb, hlen)) 2940 return NULL; 2941 2942 skb_gro_frag0_invalidate(skb); 2943 return skb->data + offset; 2944 } 2945 2946 static inline void *skb_gro_network_header(struct sk_buff *skb) 2947 { 2948 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2949 skb_network_offset(skb); 2950 } 2951 2952 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2953 const void *start, unsigned int len) 2954 { 2955 if (NAPI_GRO_CB(skb)->csum_valid) 2956 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2957 csum_partial(start, len, 0)); 2958 } 2959 2960 /* GRO checksum functions. These are logical equivalents of the normal 2961 * checksum functions (in skbuff.h) except that they operate on the GRO 2962 * offsets and fields in sk_buff. 2963 */ 2964 2965 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2966 2967 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2968 { 2969 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2970 } 2971 2972 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2973 bool zero_okay, 2974 __sum16 check) 2975 { 2976 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2977 skb_checksum_start_offset(skb) < 2978 skb_gro_offset(skb)) && 2979 !skb_at_gro_remcsum_start(skb) && 2980 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2981 (!zero_okay || check)); 2982 } 2983 2984 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2985 __wsum psum) 2986 { 2987 if (NAPI_GRO_CB(skb)->csum_valid && 2988 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2989 return 0; 2990 2991 NAPI_GRO_CB(skb)->csum = psum; 2992 2993 return __skb_gro_checksum_complete(skb); 2994 } 2995 2996 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2997 { 2998 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2999 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 3000 NAPI_GRO_CB(skb)->csum_cnt--; 3001 } else { 3002 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 3003 * verified a new top level checksum or an encapsulated one 3004 * during GRO. This saves work if we fallback to normal path. 3005 */ 3006 __skb_incr_checksum_unnecessary(skb); 3007 } 3008 } 3009 3010 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 3011 compute_pseudo) \ 3012 ({ \ 3013 __sum16 __ret = 0; \ 3014 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 3015 __ret = __skb_gro_checksum_validate_complete(skb, \ 3016 compute_pseudo(skb, proto)); \ 3017 if (!__ret) \ 3018 skb_gro_incr_csum_unnecessary(skb); \ 3019 __ret; \ 3020 }) 3021 3022 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 3023 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 3024 3025 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 3026 compute_pseudo) \ 3027 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 3028 3029 #define skb_gro_checksum_simple_validate(skb) \ 3030 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 3031 3032 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 3033 { 3034 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 3035 !NAPI_GRO_CB(skb)->csum_valid); 3036 } 3037 3038 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 3039 __wsum pseudo) 3040 { 3041 NAPI_GRO_CB(skb)->csum = ~pseudo; 3042 NAPI_GRO_CB(skb)->csum_valid = 1; 3043 } 3044 3045 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 3046 do { \ 3047 if (__skb_gro_checksum_convert_check(skb)) \ 3048 __skb_gro_checksum_convert(skb, \ 3049 compute_pseudo(skb, proto)); \ 3050 } while (0) 3051 3052 struct gro_remcsum { 3053 int offset; 3054 __wsum delta; 3055 }; 3056 3057 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 3058 { 3059 grc->offset = 0; 3060 grc->delta = 0; 3061 } 3062 3063 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 3064 unsigned int off, size_t hdrlen, 3065 int start, int offset, 3066 struct gro_remcsum *grc, 3067 bool nopartial) 3068 { 3069 __wsum delta; 3070 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 3071 3072 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 3073 3074 if (!nopartial) { 3075 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 3076 return ptr; 3077 } 3078 3079 ptr = skb_gro_header_fast(skb, off); 3080 if (skb_gro_header_hard(skb, off + plen)) { 3081 ptr = skb_gro_header_slow(skb, off + plen, off); 3082 if (!ptr) 3083 return NULL; 3084 } 3085 3086 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 3087 start, offset); 3088 3089 /* Adjust skb->csum since we changed the packet */ 3090 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 3091 3092 grc->offset = off + hdrlen + offset; 3093 grc->delta = delta; 3094 3095 return ptr; 3096 } 3097 3098 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 3099 struct gro_remcsum *grc) 3100 { 3101 void *ptr; 3102 size_t plen = grc->offset + sizeof(u16); 3103 3104 if (!grc->delta) 3105 return; 3106 3107 ptr = skb_gro_header_fast(skb, grc->offset); 3108 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 3109 ptr = skb_gro_header_slow(skb, plen, grc->offset); 3110 if (!ptr) 3111 return; 3112 } 3113 3114 remcsum_unadjust((__sum16 *)ptr, grc->delta); 3115 } 3116 3117 #ifdef CONFIG_XFRM_OFFLOAD 3118 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3119 { 3120 if (PTR_ERR(pp) != -EINPROGRESS) 3121 NAPI_GRO_CB(skb)->flush |= flush; 3122 } 3123 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3124 struct sk_buff *pp, 3125 int flush, 3126 struct gro_remcsum *grc) 3127 { 3128 if (PTR_ERR(pp) != -EINPROGRESS) { 3129 NAPI_GRO_CB(skb)->flush |= flush; 3130 skb_gro_remcsum_cleanup(skb, grc); 3131 skb->remcsum_offload = 0; 3132 } 3133 } 3134 #else 3135 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3136 { 3137 NAPI_GRO_CB(skb)->flush |= flush; 3138 } 3139 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3140 struct sk_buff *pp, 3141 int flush, 3142 struct gro_remcsum *grc) 3143 { 3144 NAPI_GRO_CB(skb)->flush |= flush; 3145 skb_gro_remcsum_cleanup(skb, grc); 3146 skb->remcsum_offload = 0; 3147 } 3148 #endif 3149 3150 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3151 unsigned short type, 3152 const void *daddr, const void *saddr, 3153 unsigned int len) 3154 { 3155 if (!dev->header_ops || !dev->header_ops->create) 3156 return 0; 3157 3158 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3159 } 3160 3161 static inline int dev_parse_header(const struct sk_buff *skb, 3162 unsigned char *haddr) 3163 { 3164 const struct net_device *dev = skb->dev; 3165 3166 if (!dev->header_ops || !dev->header_ops->parse) 3167 return 0; 3168 return dev->header_ops->parse(skb, haddr); 3169 } 3170 3171 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3172 { 3173 const struct net_device *dev = skb->dev; 3174 3175 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3176 return 0; 3177 return dev->header_ops->parse_protocol(skb); 3178 } 3179 3180 /* ll_header must have at least hard_header_len allocated */ 3181 static inline bool dev_validate_header(const struct net_device *dev, 3182 char *ll_header, int len) 3183 { 3184 if (likely(len >= dev->hard_header_len)) 3185 return true; 3186 if (len < dev->min_header_len) 3187 return false; 3188 3189 if (capable(CAP_SYS_RAWIO)) { 3190 memset(ll_header + len, 0, dev->hard_header_len - len); 3191 return true; 3192 } 3193 3194 if (dev->header_ops && dev->header_ops->validate) 3195 return dev->header_ops->validate(ll_header, len); 3196 3197 return false; 3198 } 3199 3200 static inline bool dev_has_header(const struct net_device *dev) 3201 { 3202 return dev->header_ops && dev->header_ops->create; 3203 } 3204 3205 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 3206 int len, int size); 3207 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 3208 static inline int unregister_gifconf(unsigned int family) 3209 { 3210 return register_gifconf(family, NULL); 3211 } 3212 3213 #ifdef CONFIG_NET_FLOW_LIMIT 3214 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3215 struct sd_flow_limit { 3216 u64 count; 3217 unsigned int num_buckets; 3218 unsigned int history_head; 3219 u16 history[FLOW_LIMIT_HISTORY]; 3220 u8 buckets[]; 3221 }; 3222 3223 extern int netdev_flow_limit_table_len; 3224 #endif /* CONFIG_NET_FLOW_LIMIT */ 3225 3226 /* 3227 * Incoming packets are placed on per-CPU queues 3228 */ 3229 struct softnet_data { 3230 struct list_head poll_list; 3231 struct sk_buff_head process_queue; 3232 3233 /* stats */ 3234 unsigned int processed; 3235 unsigned int time_squeeze; 3236 unsigned int received_rps; 3237 #ifdef CONFIG_RPS 3238 struct softnet_data *rps_ipi_list; 3239 #endif 3240 #ifdef CONFIG_NET_FLOW_LIMIT 3241 struct sd_flow_limit __rcu *flow_limit; 3242 #endif 3243 struct Qdisc *output_queue; 3244 struct Qdisc **output_queue_tailp; 3245 struct sk_buff *completion_queue; 3246 #ifdef CONFIG_XFRM_OFFLOAD 3247 struct sk_buff_head xfrm_backlog; 3248 #endif 3249 /* written and read only by owning cpu: */ 3250 struct { 3251 u16 recursion; 3252 u8 more; 3253 } xmit; 3254 #ifdef CONFIG_RPS 3255 /* input_queue_head should be written by cpu owning this struct, 3256 * and only read by other cpus. Worth using a cache line. 3257 */ 3258 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3259 3260 /* Elements below can be accessed between CPUs for RPS/RFS */ 3261 call_single_data_t csd ____cacheline_aligned_in_smp; 3262 struct softnet_data *rps_ipi_next; 3263 unsigned int cpu; 3264 unsigned int input_queue_tail; 3265 #endif 3266 unsigned int dropped; 3267 struct sk_buff_head input_pkt_queue; 3268 struct napi_struct backlog; 3269 3270 }; 3271 3272 static inline void input_queue_head_incr(struct softnet_data *sd) 3273 { 3274 #ifdef CONFIG_RPS 3275 sd->input_queue_head++; 3276 #endif 3277 } 3278 3279 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3280 unsigned int *qtail) 3281 { 3282 #ifdef CONFIG_RPS 3283 *qtail = ++sd->input_queue_tail; 3284 #endif 3285 } 3286 3287 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3288 3289 static inline int dev_recursion_level(void) 3290 { 3291 return this_cpu_read(softnet_data.xmit.recursion); 3292 } 3293 3294 #define XMIT_RECURSION_LIMIT 8 3295 static inline bool dev_xmit_recursion(void) 3296 { 3297 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3298 XMIT_RECURSION_LIMIT); 3299 } 3300 3301 static inline void dev_xmit_recursion_inc(void) 3302 { 3303 __this_cpu_inc(softnet_data.xmit.recursion); 3304 } 3305 3306 static inline void dev_xmit_recursion_dec(void) 3307 { 3308 __this_cpu_dec(softnet_data.xmit.recursion); 3309 } 3310 3311 void __netif_schedule(struct Qdisc *q); 3312 void netif_schedule_queue(struct netdev_queue *txq); 3313 3314 static inline void netif_tx_schedule_all(struct net_device *dev) 3315 { 3316 unsigned int i; 3317 3318 for (i = 0; i < dev->num_tx_queues; i++) 3319 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3320 } 3321 3322 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3323 { 3324 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3325 } 3326 3327 /** 3328 * netif_start_queue - allow transmit 3329 * @dev: network device 3330 * 3331 * Allow upper layers to call the device hard_start_xmit routine. 3332 */ 3333 static inline void netif_start_queue(struct net_device *dev) 3334 { 3335 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3336 } 3337 3338 static inline void netif_tx_start_all_queues(struct net_device *dev) 3339 { 3340 unsigned int i; 3341 3342 for (i = 0; i < dev->num_tx_queues; i++) { 3343 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3344 netif_tx_start_queue(txq); 3345 } 3346 } 3347 3348 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3349 3350 /** 3351 * netif_wake_queue - restart transmit 3352 * @dev: network device 3353 * 3354 * Allow upper layers to call the device hard_start_xmit routine. 3355 * Used for flow control when transmit resources are available. 3356 */ 3357 static inline void netif_wake_queue(struct net_device *dev) 3358 { 3359 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3360 } 3361 3362 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3363 { 3364 unsigned int i; 3365 3366 for (i = 0; i < dev->num_tx_queues; i++) { 3367 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3368 netif_tx_wake_queue(txq); 3369 } 3370 } 3371 3372 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3373 { 3374 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3375 } 3376 3377 /** 3378 * netif_stop_queue - stop transmitted packets 3379 * @dev: network device 3380 * 3381 * Stop upper layers calling the device hard_start_xmit routine. 3382 * Used for flow control when transmit resources are unavailable. 3383 */ 3384 static inline void netif_stop_queue(struct net_device *dev) 3385 { 3386 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3387 } 3388 3389 void netif_tx_stop_all_queues(struct net_device *dev); 3390 3391 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3392 { 3393 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3394 } 3395 3396 /** 3397 * netif_queue_stopped - test if transmit queue is flowblocked 3398 * @dev: network device 3399 * 3400 * Test if transmit queue on device is currently unable to send. 3401 */ 3402 static inline bool netif_queue_stopped(const struct net_device *dev) 3403 { 3404 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3405 } 3406 3407 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3408 { 3409 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3410 } 3411 3412 static inline bool 3413 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3414 { 3415 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3416 } 3417 3418 static inline bool 3419 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3420 { 3421 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3422 } 3423 3424 /** 3425 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3426 * @dev_queue: pointer to transmit queue 3427 * 3428 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3429 * to give appropriate hint to the CPU. 3430 */ 3431 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3432 { 3433 #ifdef CONFIG_BQL 3434 prefetchw(&dev_queue->dql.num_queued); 3435 #endif 3436 } 3437 3438 /** 3439 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3440 * @dev_queue: pointer to transmit queue 3441 * 3442 * BQL enabled drivers might use this helper in their TX completion path, 3443 * to give appropriate hint to the CPU. 3444 */ 3445 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3446 { 3447 #ifdef CONFIG_BQL 3448 prefetchw(&dev_queue->dql.limit); 3449 #endif 3450 } 3451 3452 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3453 unsigned int bytes) 3454 { 3455 #ifdef CONFIG_BQL 3456 dql_queued(&dev_queue->dql, bytes); 3457 3458 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3459 return; 3460 3461 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3462 3463 /* 3464 * The XOFF flag must be set before checking the dql_avail below, 3465 * because in netdev_tx_completed_queue we update the dql_completed 3466 * before checking the XOFF flag. 3467 */ 3468 smp_mb(); 3469 3470 /* check again in case another CPU has just made room avail */ 3471 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3472 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3473 #endif 3474 } 3475 3476 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3477 * that they should not test BQL status themselves. 3478 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3479 * skb of a batch. 3480 * Returns true if the doorbell must be used to kick the NIC. 3481 */ 3482 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3483 unsigned int bytes, 3484 bool xmit_more) 3485 { 3486 if (xmit_more) { 3487 #ifdef CONFIG_BQL 3488 dql_queued(&dev_queue->dql, bytes); 3489 #endif 3490 return netif_tx_queue_stopped(dev_queue); 3491 } 3492 netdev_tx_sent_queue(dev_queue, bytes); 3493 return true; 3494 } 3495 3496 /** 3497 * netdev_sent_queue - report the number of bytes queued to hardware 3498 * @dev: network device 3499 * @bytes: number of bytes queued to the hardware device queue 3500 * 3501 * Report the number of bytes queued for sending/completion to the network 3502 * device hardware queue. @bytes should be a good approximation and should 3503 * exactly match netdev_completed_queue() @bytes 3504 */ 3505 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3506 { 3507 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3508 } 3509 3510 static inline bool __netdev_sent_queue(struct net_device *dev, 3511 unsigned int bytes, 3512 bool xmit_more) 3513 { 3514 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3515 xmit_more); 3516 } 3517 3518 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3519 unsigned int pkts, unsigned int bytes) 3520 { 3521 #ifdef CONFIG_BQL 3522 if (unlikely(!bytes)) 3523 return; 3524 3525 dql_completed(&dev_queue->dql, bytes); 3526 3527 /* 3528 * Without the memory barrier there is a small possiblity that 3529 * netdev_tx_sent_queue will miss the update and cause the queue to 3530 * be stopped forever 3531 */ 3532 smp_mb(); 3533 3534 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3535 return; 3536 3537 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3538 netif_schedule_queue(dev_queue); 3539 #endif 3540 } 3541 3542 /** 3543 * netdev_completed_queue - report bytes and packets completed by device 3544 * @dev: network device 3545 * @pkts: actual number of packets sent over the medium 3546 * @bytes: actual number of bytes sent over the medium 3547 * 3548 * Report the number of bytes and packets transmitted by the network device 3549 * hardware queue over the physical medium, @bytes must exactly match the 3550 * @bytes amount passed to netdev_sent_queue() 3551 */ 3552 static inline void netdev_completed_queue(struct net_device *dev, 3553 unsigned int pkts, unsigned int bytes) 3554 { 3555 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3556 } 3557 3558 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3559 { 3560 #ifdef CONFIG_BQL 3561 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3562 dql_reset(&q->dql); 3563 #endif 3564 } 3565 3566 /** 3567 * netdev_reset_queue - reset the packets and bytes count of a network device 3568 * @dev_queue: network device 3569 * 3570 * Reset the bytes and packet count of a network device and clear the 3571 * software flow control OFF bit for this network device 3572 */ 3573 static inline void netdev_reset_queue(struct net_device *dev_queue) 3574 { 3575 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3576 } 3577 3578 /** 3579 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3580 * @dev: network device 3581 * @queue_index: given tx queue index 3582 * 3583 * Returns 0 if given tx queue index >= number of device tx queues, 3584 * otherwise returns the originally passed tx queue index. 3585 */ 3586 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3587 { 3588 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3589 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3590 dev->name, queue_index, 3591 dev->real_num_tx_queues); 3592 return 0; 3593 } 3594 3595 return queue_index; 3596 } 3597 3598 /** 3599 * netif_running - test if up 3600 * @dev: network device 3601 * 3602 * Test if the device has been brought up. 3603 */ 3604 static inline bool netif_running(const struct net_device *dev) 3605 { 3606 return test_bit(__LINK_STATE_START, &dev->state); 3607 } 3608 3609 /* 3610 * Routines to manage the subqueues on a device. We only need start, 3611 * stop, and a check if it's stopped. All other device management is 3612 * done at the overall netdevice level. 3613 * Also test the device if we're multiqueue. 3614 */ 3615 3616 /** 3617 * netif_start_subqueue - allow sending packets on subqueue 3618 * @dev: network device 3619 * @queue_index: sub queue index 3620 * 3621 * Start individual transmit queue of a device with multiple transmit queues. 3622 */ 3623 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3624 { 3625 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3626 3627 netif_tx_start_queue(txq); 3628 } 3629 3630 /** 3631 * netif_stop_subqueue - stop sending packets on subqueue 3632 * @dev: network device 3633 * @queue_index: sub queue index 3634 * 3635 * Stop individual transmit queue of a device with multiple transmit queues. 3636 */ 3637 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3638 { 3639 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3640 netif_tx_stop_queue(txq); 3641 } 3642 3643 /** 3644 * __netif_subqueue_stopped - test status of subqueue 3645 * @dev: network device 3646 * @queue_index: sub queue index 3647 * 3648 * Check individual transmit queue of a device with multiple transmit queues. 3649 */ 3650 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3651 u16 queue_index) 3652 { 3653 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3654 3655 return netif_tx_queue_stopped(txq); 3656 } 3657 3658 /** 3659 * netif_subqueue_stopped - test status of subqueue 3660 * @dev: network device 3661 * @skb: sub queue buffer pointer 3662 * 3663 * Check individual transmit queue of a device with multiple transmit queues. 3664 */ 3665 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3666 struct sk_buff *skb) 3667 { 3668 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3669 } 3670 3671 /** 3672 * netif_wake_subqueue - allow sending packets on subqueue 3673 * @dev: network device 3674 * @queue_index: sub queue index 3675 * 3676 * Resume individual transmit queue of a device with multiple transmit queues. 3677 */ 3678 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3679 { 3680 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3681 3682 netif_tx_wake_queue(txq); 3683 } 3684 3685 #ifdef CONFIG_XPS 3686 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3687 u16 index); 3688 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3689 u16 index, bool is_rxqs_map); 3690 3691 /** 3692 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3693 * @j: CPU/Rx queue index 3694 * @mask: bitmask of all cpus/rx queues 3695 * @nr_bits: number of bits in the bitmask 3696 * 3697 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3698 */ 3699 static inline bool netif_attr_test_mask(unsigned long j, 3700 const unsigned long *mask, 3701 unsigned int nr_bits) 3702 { 3703 cpu_max_bits_warn(j, nr_bits); 3704 return test_bit(j, mask); 3705 } 3706 3707 /** 3708 * netif_attr_test_online - Test for online CPU/Rx queue 3709 * @j: CPU/Rx queue index 3710 * @online_mask: bitmask for CPUs/Rx queues that are online 3711 * @nr_bits: number of bits in the bitmask 3712 * 3713 * Returns true if a CPU/Rx queue is online. 3714 */ 3715 static inline bool netif_attr_test_online(unsigned long j, 3716 const unsigned long *online_mask, 3717 unsigned int nr_bits) 3718 { 3719 cpu_max_bits_warn(j, nr_bits); 3720 3721 if (online_mask) 3722 return test_bit(j, online_mask); 3723 3724 return (j < nr_bits); 3725 } 3726 3727 /** 3728 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3729 * @n: CPU/Rx queue index 3730 * @srcp: the cpumask/Rx queue mask pointer 3731 * @nr_bits: number of bits in the bitmask 3732 * 3733 * Returns >= nr_bits if no further CPUs/Rx queues set. 3734 */ 3735 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3736 unsigned int nr_bits) 3737 { 3738 /* -1 is a legal arg here. */ 3739 if (n != -1) 3740 cpu_max_bits_warn(n, nr_bits); 3741 3742 if (srcp) 3743 return find_next_bit(srcp, nr_bits, n + 1); 3744 3745 return n + 1; 3746 } 3747 3748 /** 3749 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3750 * @n: CPU/Rx queue index 3751 * @src1p: the first CPUs/Rx queues mask pointer 3752 * @src2p: the second CPUs/Rx queues mask pointer 3753 * @nr_bits: number of bits in the bitmask 3754 * 3755 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3756 */ 3757 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3758 const unsigned long *src2p, 3759 unsigned int nr_bits) 3760 { 3761 /* -1 is a legal arg here. */ 3762 if (n != -1) 3763 cpu_max_bits_warn(n, nr_bits); 3764 3765 if (src1p && src2p) 3766 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3767 else if (src1p) 3768 return find_next_bit(src1p, nr_bits, n + 1); 3769 else if (src2p) 3770 return find_next_bit(src2p, nr_bits, n + 1); 3771 3772 return n + 1; 3773 } 3774 #else 3775 static inline int netif_set_xps_queue(struct net_device *dev, 3776 const struct cpumask *mask, 3777 u16 index) 3778 { 3779 return 0; 3780 } 3781 3782 static inline int __netif_set_xps_queue(struct net_device *dev, 3783 const unsigned long *mask, 3784 u16 index, bool is_rxqs_map) 3785 { 3786 return 0; 3787 } 3788 #endif 3789 3790 /** 3791 * netif_is_multiqueue - test if device has multiple transmit queues 3792 * @dev: network device 3793 * 3794 * Check if device has multiple transmit queues 3795 */ 3796 static inline bool netif_is_multiqueue(const struct net_device *dev) 3797 { 3798 return dev->num_tx_queues > 1; 3799 } 3800 3801 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3802 3803 #ifdef CONFIG_SYSFS 3804 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3805 #else 3806 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3807 unsigned int rxqs) 3808 { 3809 dev->real_num_rx_queues = rxqs; 3810 return 0; 3811 } 3812 #endif 3813 3814 static inline struct netdev_rx_queue * 3815 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3816 { 3817 return dev->_rx + rxq; 3818 } 3819 3820 #ifdef CONFIG_SYSFS 3821 static inline unsigned int get_netdev_rx_queue_index( 3822 struct netdev_rx_queue *queue) 3823 { 3824 struct net_device *dev = queue->dev; 3825 int index = queue - dev->_rx; 3826 3827 BUG_ON(index >= dev->num_rx_queues); 3828 return index; 3829 } 3830 #endif 3831 3832 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3833 int netif_get_num_default_rss_queues(void); 3834 3835 enum skb_free_reason { 3836 SKB_REASON_CONSUMED, 3837 SKB_REASON_DROPPED, 3838 }; 3839 3840 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3841 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3842 3843 /* 3844 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3845 * interrupt context or with hardware interrupts being disabled. 3846 * (in_irq() || irqs_disabled()) 3847 * 3848 * We provide four helpers that can be used in following contexts : 3849 * 3850 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3851 * replacing kfree_skb(skb) 3852 * 3853 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3854 * Typically used in place of consume_skb(skb) in TX completion path 3855 * 3856 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3857 * replacing kfree_skb(skb) 3858 * 3859 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3860 * and consumed a packet. Used in place of consume_skb(skb) 3861 */ 3862 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3863 { 3864 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3865 } 3866 3867 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3868 { 3869 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3870 } 3871 3872 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3873 { 3874 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3875 } 3876 3877 static inline void dev_consume_skb_any(struct sk_buff *skb) 3878 { 3879 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3880 } 3881 3882 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3883 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3884 int netif_rx(struct sk_buff *skb); 3885 int netif_rx_ni(struct sk_buff *skb); 3886 int netif_rx_any_context(struct sk_buff *skb); 3887 int netif_receive_skb(struct sk_buff *skb); 3888 int netif_receive_skb_core(struct sk_buff *skb); 3889 void netif_receive_skb_list(struct list_head *head); 3890 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3891 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3892 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3893 gro_result_t napi_gro_frags(struct napi_struct *napi); 3894 struct packet_offload *gro_find_receive_by_type(__be16 type); 3895 struct packet_offload *gro_find_complete_by_type(__be16 type); 3896 3897 static inline void napi_free_frags(struct napi_struct *napi) 3898 { 3899 kfree_skb(napi->skb); 3900 napi->skb = NULL; 3901 } 3902 3903 bool netdev_is_rx_handler_busy(struct net_device *dev); 3904 int netdev_rx_handler_register(struct net_device *dev, 3905 rx_handler_func_t *rx_handler, 3906 void *rx_handler_data); 3907 void netdev_rx_handler_unregister(struct net_device *dev); 3908 3909 bool dev_valid_name(const char *name); 3910 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3911 bool *need_copyout); 3912 int dev_ifconf(struct net *net, struct ifconf *, int); 3913 int dev_ethtool(struct net *net, struct ifreq *); 3914 unsigned int dev_get_flags(const struct net_device *); 3915 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3916 struct netlink_ext_ack *extack); 3917 int dev_change_flags(struct net_device *dev, unsigned int flags, 3918 struct netlink_ext_ack *extack); 3919 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3920 unsigned int gchanges); 3921 int dev_change_name(struct net_device *, const char *); 3922 int dev_set_alias(struct net_device *, const char *, size_t); 3923 int dev_get_alias(const struct net_device *, char *, size_t); 3924 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3925 int __dev_set_mtu(struct net_device *, int); 3926 int dev_validate_mtu(struct net_device *dev, int mtu, 3927 struct netlink_ext_ack *extack); 3928 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3929 struct netlink_ext_ack *extack); 3930 int dev_set_mtu(struct net_device *, int); 3931 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3932 void dev_set_group(struct net_device *, int); 3933 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3934 struct netlink_ext_ack *extack); 3935 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3936 struct netlink_ext_ack *extack); 3937 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3938 struct netlink_ext_ack *extack); 3939 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3940 int dev_change_carrier(struct net_device *, bool new_carrier); 3941 int dev_get_phys_port_id(struct net_device *dev, 3942 struct netdev_phys_item_id *ppid); 3943 int dev_get_phys_port_name(struct net_device *dev, 3944 char *name, size_t len); 3945 int dev_get_port_parent_id(struct net_device *dev, 3946 struct netdev_phys_item_id *ppid, bool recurse); 3947 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3948 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3949 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3950 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 3951 u32 value); 3952 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3953 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3954 struct netdev_queue *txq, int *ret); 3955 3956 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3957 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3958 int fd, int expected_fd, u32 flags); 3959 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3960 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3961 3962 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3963 3964 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3965 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3966 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3967 bool is_skb_forwardable(const struct net_device *dev, 3968 const struct sk_buff *skb); 3969 3970 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3971 const struct sk_buff *skb, 3972 const bool check_mtu) 3973 { 3974 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3975 unsigned int len; 3976 3977 if (!(dev->flags & IFF_UP)) 3978 return false; 3979 3980 if (!check_mtu) 3981 return true; 3982 3983 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3984 if (skb->len <= len) 3985 return true; 3986 3987 /* if TSO is enabled, we don't care about the length as the packet 3988 * could be forwarded without being segmented before 3989 */ 3990 if (skb_is_gso(skb)) 3991 return true; 3992 3993 return false; 3994 } 3995 3996 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3997 struct sk_buff *skb, 3998 const bool check_mtu) 3999 { 4000 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4001 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4002 atomic_long_inc(&dev->rx_dropped); 4003 kfree_skb(skb); 4004 return NET_RX_DROP; 4005 } 4006 4007 skb_scrub_packet(skb, true); 4008 skb->priority = 0; 4009 return 0; 4010 } 4011 4012 bool dev_nit_active(struct net_device *dev); 4013 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4014 4015 extern int netdev_budget; 4016 extern unsigned int netdev_budget_usecs; 4017 4018 /* Called by rtnetlink.c:rtnl_unlock() */ 4019 void netdev_run_todo(void); 4020 4021 /** 4022 * dev_put - release reference to device 4023 * @dev: network device 4024 * 4025 * Release reference to device to allow it to be freed. 4026 */ 4027 static inline void dev_put(struct net_device *dev) 4028 { 4029 this_cpu_dec(*dev->pcpu_refcnt); 4030 } 4031 4032 /** 4033 * dev_hold - get reference to device 4034 * @dev: network device 4035 * 4036 * Hold reference to device to keep it from being freed. 4037 */ 4038 static inline void dev_hold(struct net_device *dev) 4039 { 4040 this_cpu_inc(*dev->pcpu_refcnt); 4041 } 4042 4043 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4044 * and _off may be called from IRQ context, but it is caller 4045 * who is responsible for serialization of these calls. 4046 * 4047 * The name carrier is inappropriate, these functions should really be 4048 * called netif_lowerlayer_*() because they represent the state of any 4049 * kind of lower layer not just hardware media. 4050 */ 4051 4052 void linkwatch_init_dev(struct net_device *dev); 4053 void linkwatch_fire_event(struct net_device *dev); 4054 void linkwatch_forget_dev(struct net_device *dev); 4055 4056 /** 4057 * netif_carrier_ok - test if carrier present 4058 * @dev: network device 4059 * 4060 * Check if carrier is present on device 4061 */ 4062 static inline bool netif_carrier_ok(const struct net_device *dev) 4063 { 4064 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4065 } 4066 4067 unsigned long dev_trans_start(struct net_device *dev); 4068 4069 void __netdev_watchdog_up(struct net_device *dev); 4070 4071 void netif_carrier_on(struct net_device *dev); 4072 4073 void netif_carrier_off(struct net_device *dev); 4074 4075 /** 4076 * netif_dormant_on - mark device as dormant. 4077 * @dev: network device 4078 * 4079 * Mark device as dormant (as per RFC2863). 4080 * 4081 * The dormant state indicates that the relevant interface is not 4082 * actually in a condition to pass packets (i.e., it is not 'up') but is 4083 * in a "pending" state, waiting for some external event. For "on- 4084 * demand" interfaces, this new state identifies the situation where the 4085 * interface is waiting for events to place it in the up state. 4086 */ 4087 static inline void netif_dormant_on(struct net_device *dev) 4088 { 4089 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4090 linkwatch_fire_event(dev); 4091 } 4092 4093 /** 4094 * netif_dormant_off - set device as not dormant. 4095 * @dev: network device 4096 * 4097 * Device is not in dormant state. 4098 */ 4099 static inline void netif_dormant_off(struct net_device *dev) 4100 { 4101 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4102 linkwatch_fire_event(dev); 4103 } 4104 4105 /** 4106 * netif_dormant - test if device is dormant 4107 * @dev: network device 4108 * 4109 * Check if device is dormant. 4110 */ 4111 static inline bool netif_dormant(const struct net_device *dev) 4112 { 4113 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4114 } 4115 4116 4117 /** 4118 * netif_testing_on - mark device as under test. 4119 * @dev: network device 4120 * 4121 * Mark device as under test (as per RFC2863). 4122 * 4123 * The testing state indicates that some test(s) must be performed on 4124 * the interface. After completion, of the test, the interface state 4125 * will change to up, dormant, or down, as appropriate. 4126 */ 4127 static inline void netif_testing_on(struct net_device *dev) 4128 { 4129 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4130 linkwatch_fire_event(dev); 4131 } 4132 4133 /** 4134 * netif_testing_off - set device as not under test. 4135 * @dev: network device 4136 * 4137 * Device is not in testing state. 4138 */ 4139 static inline void netif_testing_off(struct net_device *dev) 4140 { 4141 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4142 linkwatch_fire_event(dev); 4143 } 4144 4145 /** 4146 * netif_testing - test if device is under test 4147 * @dev: network device 4148 * 4149 * Check if device is under test 4150 */ 4151 static inline bool netif_testing(const struct net_device *dev) 4152 { 4153 return test_bit(__LINK_STATE_TESTING, &dev->state); 4154 } 4155 4156 4157 /** 4158 * netif_oper_up - test if device is operational 4159 * @dev: network device 4160 * 4161 * Check if carrier is operational 4162 */ 4163 static inline bool netif_oper_up(const struct net_device *dev) 4164 { 4165 return (dev->operstate == IF_OPER_UP || 4166 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4167 } 4168 4169 /** 4170 * netif_device_present - is device available or removed 4171 * @dev: network device 4172 * 4173 * Check if device has not been removed from system. 4174 */ 4175 static inline bool netif_device_present(struct net_device *dev) 4176 { 4177 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4178 } 4179 4180 void netif_device_detach(struct net_device *dev); 4181 4182 void netif_device_attach(struct net_device *dev); 4183 4184 /* 4185 * Network interface message level settings 4186 */ 4187 4188 enum { 4189 NETIF_MSG_DRV_BIT, 4190 NETIF_MSG_PROBE_BIT, 4191 NETIF_MSG_LINK_BIT, 4192 NETIF_MSG_TIMER_BIT, 4193 NETIF_MSG_IFDOWN_BIT, 4194 NETIF_MSG_IFUP_BIT, 4195 NETIF_MSG_RX_ERR_BIT, 4196 NETIF_MSG_TX_ERR_BIT, 4197 NETIF_MSG_TX_QUEUED_BIT, 4198 NETIF_MSG_INTR_BIT, 4199 NETIF_MSG_TX_DONE_BIT, 4200 NETIF_MSG_RX_STATUS_BIT, 4201 NETIF_MSG_PKTDATA_BIT, 4202 NETIF_MSG_HW_BIT, 4203 NETIF_MSG_WOL_BIT, 4204 4205 /* When you add a new bit above, update netif_msg_class_names array 4206 * in net/ethtool/common.c 4207 */ 4208 NETIF_MSG_CLASS_COUNT, 4209 }; 4210 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4211 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4212 4213 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4214 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4215 4216 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4217 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4218 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4219 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4220 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4221 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4222 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4223 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4224 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4225 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4226 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4227 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4228 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4229 #define NETIF_MSG_HW __NETIF_MSG(HW) 4230 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4231 4232 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4233 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4234 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4235 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4236 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4237 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4238 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4239 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4240 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4241 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4242 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4243 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4244 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4245 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4246 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4247 4248 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4249 { 4250 /* use default */ 4251 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4252 return default_msg_enable_bits; 4253 if (debug_value == 0) /* no output */ 4254 return 0; 4255 /* set low N bits */ 4256 return (1U << debug_value) - 1; 4257 } 4258 4259 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4260 { 4261 spin_lock(&txq->_xmit_lock); 4262 txq->xmit_lock_owner = cpu; 4263 } 4264 4265 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4266 { 4267 __acquire(&txq->_xmit_lock); 4268 return true; 4269 } 4270 4271 static inline void __netif_tx_release(struct netdev_queue *txq) 4272 { 4273 __release(&txq->_xmit_lock); 4274 } 4275 4276 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4277 { 4278 spin_lock_bh(&txq->_xmit_lock); 4279 txq->xmit_lock_owner = smp_processor_id(); 4280 } 4281 4282 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4283 { 4284 bool ok = spin_trylock(&txq->_xmit_lock); 4285 if (likely(ok)) 4286 txq->xmit_lock_owner = smp_processor_id(); 4287 return ok; 4288 } 4289 4290 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4291 { 4292 txq->xmit_lock_owner = -1; 4293 spin_unlock(&txq->_xmit_lock); 4294 } 4295 4296 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4297 { 4298 txq->xmit_lock_owner = -1; 4299 spin_unlock_bh(&txq->_xmit_lock); 4300 } 4301 4302 static inline void txq_trans_update(struct netdev_queue *txq) 4303 { 4304 if (txq->xmit_lock_owner != -1) 4305 txq->trans_start = jiffies; 4306 } 4307 4308 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4309 static inline void netif_trans_update(struct net_device *dev) 4310 { 4311 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4312 4313 if (txq->trans_start != jiffies) 4314 txq->trans_start = jiffies; 4315 } 4316 4317 /** 4318 * netif_tx_lock - grab network device transmit lock 4319 * @dev: network device 4320 * 4321 * Get network device transmit lock 4322 */ 4323 static inline void netif_tx_lock(struct net_device *dev) 4324 { 4325 unsigned int i; 4326 int cpu; 4327 4328 spin_lock(&dev->tx_global_lock); 4329 cpu = smp_processor_id(); 4330 for (i = 0; i < dev->num_tx_queues; i++) { 4331 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4332 4333 /* We are the only thread of execution doing a 4334 * freeze, but we have to grab the _xmit_lock in 4335 * order to synchronize with threads which are in 4336 * the ->hard_start_xmit() handler and already 4337 * checked the frozen bit. 4338 */ 4339 __netif_tx_lock(txq, cpu); 4340 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4341 __netif_tx_unlock(txq); 4342 } 4343 } 4344 4345 static inline void netif_tx_lock_bh(struct net_device *dev) 4346 { 4347 local_bh_disable(); 4348 netif_tx_lock(dev); 4349 } 4350 4351 static inline void netif_tx_unlock(struct net_device *dev) 4352 { 4353 unsigned int i; 4354 4355 for (i = 0; i < dev->num_tx_queues; i++) { 4356 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4357 4358 /* No need to grab the _xmit_lock here. If the 4359 * queue is not stopped for another reason, we 4360 * force a schedule. 4361 */ 4362 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4363 netif_schedule_queue(txq); 4364 } 4365 spin_unlock(&dev->tx_global_lock); 4366 } 4367 4368 static inline void netif_tx_unlock_bh(struct net_device *dev) 4369 { 4370 netif_tx_unlock(dev); 4371 local_bh_enable(); 4372 } 4373 4374 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4375 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4376 __netif_tx_lock(txq, cpu); \ 4377 } else { \ 4378 __netif_tx_acquire(txq); \ 4379 } \ 4380 } 4381 4382 #define HARD_TX_TRYLOCK(dev, txq) \ 4383 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4384 __netif_tx_trylock(txq) : \ 4385 __netif_tx_acquire(txq)) 4386 4387 #define HARD_TX_UNLOCK(dev, txq) { \ 4388 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4389 __netif_tx_unlock(txq); \ 4390 } else { \ 4391 __netif_tx_release(txq); \ 4392 } \ 4393 } 4394 4395 static inline void netif_tx_disable(struct net_device *dev) 4396 { 4397 unsigned int i; 4398 int cpu; 4399 4400 local_bh_disable(); 4401 cpu = smp_processor_id(); 4402 spin_lock(&dev->tx_global_lock); 4403 for (i = 0; i < dev->num_tx_queues; i++) { 4404 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4405 4406 __netif_tx_lock(txq, cpu); 4407 netif_tx_stop_queue(txq); 4408 __netif_tx_unlock(txq); 4409 } 4410 spin_unlock(&dev->tx_global_lock); 4411 local_bh_enable(); 4412 } 4413 4414 static inline void netif_addr_lock(struct net_device *dev) 4415 { 4416 unsigned char nest_level = 0; 4417 4418 #ifdef CONFIG_LOCKDEP 4419 nest_level = dev->nested_level; 4420 #endif 4421 spin_lock_nested(&dev->addr_list_lock, nest_level); 4422 } 4423 4424 static inline void netif_addr_lock_bh(struct net_device *dev) 4425 { 4426 unsigned char nest_level = 0; 4427 4428 #ifdef CONFIG_LOCKDEP 4429 nest_level = dev->nested_level; 4430 #endif 4431 local_bh_disable(); 4432 spin_lock_nested(&dev->addr_list_lock, nest_level); 4433 } 4434 4435 static inline void netif_addr_unlock(struct net_device *dev) 4436 { 4437 spin_unlock(&dev->addr_list_lock); 4438 } 4439 4440 static inline void netif_addr_unlock_bh(struct net_device *dev) 4441 { 4442 spin_unlock_bh(&dev->addr_list_lock); 4443 } 4444 4445 /* 4446 * dev_addrs walker. Should be used only for read access. Call with 4447 * rcu_read_lock held. 4448 */ 4449 #define for_each_dev_addr(dev, ha) \ 4450 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4451 4452 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4453 4454 void ether_setup(struct net_device *dev); 4455 4456 /* Support for loadable net-drivers */ 4457 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4458 unsigned char name_assign_type, 4459 void (*setup)(struct net_device *), 4460 unsigned int txqs, unsigned int rxqs); 4461 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4462 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4463 4464 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4465 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4466 count) 4467 4468 int register_netdev(struct net_device *dev); 4469 void unregister_netdev(struct net_device *dev); 4470 4471 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4472 4473 /* General hardware address lists handling functions */ 4474 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4475 struct netdev_hw_addr_list *from_list, int addr_len); 4476 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4477 struct netdev_hw_addr_list *from_list, int addr_len); 4478 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4479 struct net_device *dev, 4480 int (*sync)(struct net_device *, const unsigned char *), 4481 int (*unsync)(struct net_device *, 4482 const unsigned char *)); 4483 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4484 struct net_device *dev, 4485 int (*sync)(struct net_device *, 4486 const unsigned char *, int), 4487 int (*unsync)(struct net_device *, 4488 const unsigned char *, int)); 4489 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4490 struct net_device *dev, 4491 int (*unsync)(struct net_device *, 4492 const unsigned char *, int)); 4493 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4494 struct net_device *dev, 4495 int (*unsync)(struct net_device *, 4496 const unsigned char *)); 4497 void __hw_addr_init(struct netdev_hw_addr_list *list); 4498 4499 /* Functions used for device addresses handling */ 4500 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4501 unsigned char addr_type); 4502 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4503 unsigned char addr_type); 4504 void dev_addr_flush(struct net_device *dev); 4505 int dev_addr_init(struct net_device *dev); 4506 4507 /* Functions used for unicast addresses handling */ 4508 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4509 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4510 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4511 int dev_uc_sync(struct net_device *to, struct net_device *from); 4512 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4513 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4514 void dev_uc_flush(struct net_device *dev); 4515 void dev_uc_init(struct net_device *dev); 4516 4517 /** 4518 * __dev_uc_sync - Synchonize device's unicast list 4519 * @dev: device to sync 4520 * @sync: function to call if address should be added 4521 * @unsync: function to call if address should be removed 4522 * 4523 * Add newly added addresses to the interface, and release 4524 * addresses that have been deleted. 4525 */ 4526 static inline int __dev_uc_sync(struct net_device *dev, 4527 int (*sync)(struct net_device *, 4528 const unsigned char *), 4529 int (*unsync)(struct net_device *, 4530 const unsigned char *)) 4531 { 4532 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4533 } 4534 4535 /** 4536 * __dev_uc_unsync - Remove synchronized addresses from device 4537 * @dev: device to sync 4538 * @unsync: function to call if address should be removed 4539 * 4540 * Remove all addresses that were added to the device by dev_uc_sync(). 4541 */ 4542 static inline void __dev_uc_unsync(struct net_device *dev, 4543 int (*unsync)(struct net_device *, 4544 const unsigned char *)) 4545 { 4546 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4547 } 4548 4549 /* Functions used for multicast addresses handling */ 4550 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4551 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4552 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4553 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4554 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4555 int dev_mc_sync(struct net_device *to, struct net_device *from); 4556 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4557 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4558 void dev_mc_flush(struct net_device *dev); 4559 void dev_mc_init(struct net_device *dev); 4560 4561 /** 4562 * __dev_mc_sync - Synchonize device's multicast list 4563 * @dev: device to sync 4564 * @sync: function to call if address should be added 4565 * @unsync: function to call if address should be removed 4566 * 4567 * Add newly added addresses to the interface, and release 4568 * addresses that have been deleted. 4569 */ 4570 static inline int __dev_mc_sync(struct net_device *dev, 4571 int (*sync)(struct net_device *, 4572 const unsigned char *), 4573 int (*unsync)(struct net_device *, 4574 const unsigned char *)) 4575 { 4576 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4577 } 4578 4579 /** 4580 * __dev_mc_unsync - Remove synchronized addresses from device 4581 * @dev: device to sync 4582 * @unsync: function to call if address should be removed 4583 * 4584 * Remove all addresses that were added to the device by dev_mc_sync(). 4585 */ 4586 static inline void __dev_mc_unsync(struct net_device *dev, 4587 int (*unsync)(struct net_device *, 4588 const unsigned char *)) 4589 { 4590 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4591 } 4592 4593 /* Functions used for secondary unicast and multicast support */ 4594 void dev_set_rx_mode(struct net_device *dev); 4595 void __dev_set_rx_mode(struct net_device *dev); 4596 int dev_set_promiscuity(struct net_device *dev, int inc); 4597 int dev_set_allmulti(struct net_device *dev, int inc); 4598 void netdev_state_change(struct net_device *dev); 4599 void __netdev_notify_peers(struct net_device *dev); 4600 void netdev_notify_peers(struct net_device *dev); 4601 void netdev_features_change(struct net_device *dev); 4602 /* Load a device via the kmod */ 4603 void dev_load(struct net *net, const char *name); 4604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4605 struct rtnl_link_stats64 *storage); 4606 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4607 const struct net_device_stats *netdev_stats); 4608 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4609 const struct pcpu_sw_netstats __percpu *netstats); 4610 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4611 4612 extern int netdev_max_backlog; 4613 extern int netdev_tstamp_prequeue; 4614 extern int weight_p; 4615 extern int dev_weight_rx_bias; 4616 extern int dev_weight_tx_bias; 4617 extern int dev_rx_weight; 4618 extern int dev_tx_weight; 4619 extern int gro_normal_batch; 4620 4621 enum { 4622 NESTED_SYNC_IMM_BIT, 4623 NESTED_SYNC_TODO_BIT, 4624 }; 4625 4626 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4627 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4628 4629 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4630 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4631 4632 struct netdev_nested_priv { 4633 unsigned char flags; 4634 void *data; 4635 }; 4636 4637 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4638 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4639 struct list_head **iter); 4640 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4641 struct list_head **iter); 4642 4643 #ifdef CONFIG_LOCKDEP 4644 static LIST_HEAD(net_unlink_list); 4645 4646 static inline void net_unlink_todo(struct net_device *dev) 4647 { 4648 if (list_empty(&dev->unlink_list)) 4649 list_add_tail(&dev->unlink_list, &net_unlink_list); 4650 } 4651 #endif 4652 4653 /* iterate through upper list, must be called under RCU read lock */ 4654 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4655 for (iter = &(dev)->adj_list.upper, \ 4656 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4657 updev; \ 4658 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4659 4660 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4661 int (*fn)(struct net_device *upper_dev, 4662 struct netdev_nested_priv *priv), 4663 struct netdev_nested_priv *priv); 4664 4665 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4666 struct net_device *upper_dev); 4667 4668 bool netdev_has_any_upper_dev(struct net_device *dev); 4669 4670 void *netdev_lower_get_next_private(struct net_device *dev, 4671 struct list_head **iter); 4672 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4673 struct list_head **iter); 4674 4675 #define netdev_for_each_lower_private(dev, priv, iter) \ 4676 for (iter = (dev)->adj_list.lower.next, \ 4677 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4678 priv; \ 4679 priv = netdev_lower_get_next_private(dev, &(iter))) 4680 4681 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4682 for (iter = &(dev)->adj_list.lower, \ 4683 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4684 priv; \ 4685 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4686 4687 void *netdev_lower_get_next(struct net_device *dev, 4688 struct list_head **iter); 4689 4690 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4691 for (iter = (dev)->adj_list.lower.next, \ 4692 ldev = netdev_lower_get_next(dev, &(iter)); \ 4693 ldev; \ 4694 ldev = netdev_lower_get_next(dev, &(iter))) 4695 4696 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4697 struct list_head **iter); 4698 int netdev_walk_all_lower_dev(struct net_device *dev, 4699 int (*fn)(struct net_device *lower_dev, 4700 struct netdev_nested_priv *priv), 4701 struct netdev_nested_priv *priv); 4702 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4703 int (*fn)(struct net_device *lower_dev, 4704 struct netdev_nested_priv *priv), 4705 struct netdev_nested_priv *priv); 4706 4707 void *netdev_adjacent_get_private(struct list_head *adj_list); 4708 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4709 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4710 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4711 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4712 struct netlink_ext_ack *extack); 4713 int netdev_master_upper_dev_link(struct net_device *dev, 4714 struct net_device *upper_dev, 4715 void *upper_priv, void *upper_info, 4716 struct netlink_ext_ack *extack); 4717 void netdev_upper_dev_unlink(struct net_device *dev, 4718 struct net_device *upper_dev); 4719 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4720 struct net_device *new_dev, 4721 struct net_device *dev, 4722 struct netlink_ext_ack *extack); 4723 void netdev_adjacent_change_commit(struct net_device *old_dev, 4724 struct net_device *new_dev, 4725 struct net_device *dev); 4726 void netdev_adjacent_change_abort(struct net_device *old_dev, 4727 struct net_device *new_dev, 4728 struct net_device *dev); 4729 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4730 void *netdev_lower_dev_get_private(struct net_device *dev, 4731 struct net_device *lower_dev); 4732 void netdev_lower_state_changed(struct net_device *lower_dev, 4733 void *lower_state_info); 4734 4735 /* RSS keys are 40 or 52 bytes long */ 4736 #define NETDEV_RSS_KEY_LEN 52 4737 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4738 void netdev_rss_key_fill(void *buffer, size_t len); 4739 4740 int skb_checksum_help(struct sk_buff *skb); 4741 int skb_crc32c_csum_help(struct sk_buff *skb); 4742 int skb_csum_hwoffload_help(struct sk_buff *skb, 4743 const netdev_features_t features); 4744 4745 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4746 netdev_features_t features, bool tx_path); 4747 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4748 netdev_features_t features); 4749 4750 struct netdev_bonding_info { 4751 ifslave slave; 4752 ifbond master; 4753 }; 4754 4755 struct netdev_notifier_bonding_info { 4756 struct netdev_notifier_info info; /* must be first */ 4757 struct netdev_bonding_info bonding_info; 4758 }; 4759 4760 void netdev_bonding_info_change(struct net_device *dev, 4761 struct netdev_bonding_info *bonding_info); 4762 4763 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4764 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4765 #else 4766 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4767 const void *data) 4768 { 4769 } 4770 #endif 4771 4772 static inline 4773 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4774 { 4775 return __skb_gso_segment(skb, features, true); 4776 } 4777 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4778 4779 static inline bool can_checksum_protocol(netdev_features_t features, 4780 __be16 protocol) 4781 { 4782 if (protocol == htons(ETH_P_FCOE)) 4783 return !!(features & NETIF_F_FCOE_CRC); 4784 4785 /* Assume this is an IP checksum (not SCTP CRC) */ 4786 4787 if (features & NETIF_F_HW_CSUM) { 4788 /* Can checksum everything */ 4789 return true; 4790 } 4791 4792 switch (protocol) { 4793 case htons(ETH_P_IP): 4794 return !!(features & NETIF_F_IP_CSUM); 4795 case htons(ETH_P_IPV6): 4796 return !!(features & NETIF_F_IPV6_CSUM); 4797 default: 4798 return false; 4799 } 4800 } 4801 4802 #ifdef CONFIG_BUG 4803 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4804 #else 4805 static inline void netdev_rx_csum_fault(struct net_device *dev, 4806 struct sk_buff *skb) 4807 { 4808 } 4809 #endif 4810 /* rx skb timestamps */ 4811 void net_enable_timestamp(void); 4812 void net_disable_timestamp(void); 4813 4814 #ifdef CONFIG_PROC_FS 4815 int __init dev_proc_init(void); 4816 #else 4817 #define dev_proc_init() 0 4818 #endif 4819 4820 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4821 struct sk_buff *skb, struct net_device *dev, 4822 bool more) 4823 { 4824 __this_cpu_write(softnet_data.xmit.more, more); 4825 return ops->ndo_start_xmit(skb, dev); 4826 } 4827 4828 static inline bool netdev_xmit_more(void) 4829 { 4830 return __this_cpu_read(softnet_data.xmit.more); 4831 } 4832 4833 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4834 struct netdev_queue *txq, bool more) 4835 { 4836 const struct net_device_ops *ops = dev->netdev_ops; 4837 netdev_tx_t rc; 4838 4839 rc = __netdev_start_xmit(ops, skb, dev, more); 4840 if (rc == NETDEV_TX_OK) 4841 txq_trans_update(txq); 4842 4843 return rc; 4844 } 4845 4846 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4847 const void *ns); 4848 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4849 const void *ns); 4850 4851 extern const struct kobj_ns_type_operations net_ns_type_operations; 4852 4853 const char *netdev_drivername(const struct net_device *dev); 4854 4855 void linkwatch_run_queue(void); 4856 4857 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4858 netdev_features_t f2) 4859 { 4860 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4861 if (f1 & NETIF_F_HW_CSUM) 4862 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4863 else 4864 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4865 } 4866 4867 return f1 & f2; 4868 } 4869 4870 static inline netdev_features_t netdev_get_wanted_features( 4871 struct net_device *dev) 4872 { 4873 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4874 } 4875 netdev_features_t netdev_increment_features(netdev_features_t all, 4876 netdev_features_t one, netdev_features_t mask); 4877 4878 /* Allow TSO being used on stacked device : 4879 * Performing the GSO segmentation before last device 4880 * is a performance improvement. 4881 */ 4882 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4883 netdev_features_t mask) 4884 { 4885 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4886 } 4887 4888 int __netdev_update_features(struct net_device *dev); 4889 void netdev_update_features(struct net_device *dev); 4890 void netdev_change_features(struct net_device *dev); 4891 4892 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4893 struct net_device *dev); 4894 4895 netdev_features_t passthru_features_check(struct sk_buff *skb, 4896 struct net_device *dev, 4897 netdev_features_t features); 4898 netdev_features_t netif_skb_features(struct sk_buff *skb); 4899 4900 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4901 { 4902 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4903 4904 /* check flags correspondence */ 4905 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4906 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4907 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4908 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4909 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4910 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4911 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4912 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4913 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4914 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4915 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4916 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4917 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4918 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4919 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4920 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4921 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4922 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4923 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4924 4925 return (features & feature) == feature; 4926 } 4927 4928 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4929 { 4930 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4931 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4932 } 4933 4934 static inline bool netif_needs_gso(struct sk_buff *skb, 4935 netdev_features_t features) 4936 { 4937 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4938 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4939 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4940 } 4941 4942 static inline void netif_set_gso_max_size(struct net_device *dev, 4943 unsigned int size) 4944 { 4945 dev->gso_max_size = size; 4946 } 4947 4948 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4949 int pulled_hlen, u16 mac_offset, 4950 int mac_len) 4951 { 4952 skb->protocol = protocol; 4953 skb->encapsulation = 1; 4954 skb_push(skb, pulled_hlen); 4955 skb_reset_transport_header(skb); 4956 skb->mac_header = mac_offset; 4957 skb->network_header = skb->mac_header + mac_len; 4958 skb->mac_len = mac_len; 4959 } 4960 4961 static inline bool netif_is_macsec(const struct net_device *dev) 4962 { 4963 return dev->priv_flags & IFF_MACSEC; 4964 } 4965 4966 static inline bool netif_is_macvlan(const struct net_device *dev) 4967 { 4968 return dev->priv_flags & IFF_MACVLAN; 4969 } 4970 4971 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4972 { 4973 return dev->priv_flags & IFF_MACVLAN_PORT; 4974 } 4975 4976 static inline bool netif_is_bond_master(const struct net_device *dev) 4977 { 4978 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4979 } 4980 4981 static inline bool netif_is_bond_slave(const struct net_device *dev) 4982 { 4983 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4984 } 4985 4986 static inline bool netif_supports_nofcs(struct net_device *dev) 4987 { 4988 return dev->priv_flags & IFF_SUPP_NOFCS; 4989 } 4990 4991 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4992 { 4993 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4994 } 4995 4996 static inline bool netif_is_l3_master(const struct net_device *dev) 4997 { 4998 return dev->priv_flags & IFF_L3MDEV_MASTER; 4999 } 5000 5001 static inline bool netif_is_l3_slave(const struct net_device *dev) 5002 { 5003 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5004 } 5005 5006 static inline bool netif_is_bridge_master(const struct net_device *dev) 5007 { 5008 return dev->priv_flags & IFF_EBRIDGE; 5009 } 5010 5011 static inline bool netif_is_bridge_port(const struct net_device *dev) 5012 { 5013 return dev->priv_flags & IFF_BRIDGE_PORT; 5014 } 5015 5016 static inline bool netif_is_ovs_master(const struct net_device *dev) 5017 { 5018 return dev->priv_flags & IFF_OPENVSWITCH; 5019 } 5020 5021 static inline bool netif_is_ovs_port(const struct net_device *dev) 5022 { 5023 return dev->priv_flags & IFF_OVS_DATAPATH; 5024 } 5025 5026 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5027 { 5028 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5029 } 5030 5031 static inline bool netif_is_team_master(const struct net_device *dev) 5032 { 5033 return dev->priv_flags & IFF_TEAM; 5034 } 5035 5036 static inline bool netif_is_team_port(const struct net_device *dev) 5037 { 5038 return dev->priv_flags & IFF_TEAM_PORT; 5039 } 5040 5041 static inline bool netif_is_lag_master(const struct net_device *dev) 5042 { 5043 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5044 } 5045 5046 static inline bool netif_is_lag_port(const struct net_device *dev) 5047 { 5048 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5049 } 5050 5051 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5052 { 5053 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5054 } 5055 5056 static inline bool netif_is_failover(const struct net_device *dev) 5057 { 5058 return dev->priv_flags & IFF_FAILOVER; 5059 } 5060 5061 static inline bool netif_is_failover_slave(const struct net_device *dev) 5062 { 5063 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5064 } 5065 5066 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5067 static inline void netif_keep_dst(struct net_device *dev) 5068 { 5069 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5070 } 5071 5072 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5073 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5074 { 5075 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5076 return dev->priv_flags & IFF_MACSEC; 5077 } 5078 5079 extern struct pernet_operations __net_initdata loopback_net_ops; 5080 5081 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5082 5083 /* netdev_printk helpers, similar to dev_printk */ 5084 5085 static inline const char *netdev_name(const struct net_device *dev) 5086 { 5087 if (!dev->name[0] || strchr(dev->name, '%')) 5088 return "(unnamed net_device)"; 5089 return dev->name; 5090 } 5091 5092 static inline bool netdev_unregistering(const struct net_device *dev) 5093 { 5094 return dev->reg_state == NETREG_UNREGISTERING; 5095 } 5096 5097 static inline const char *netdev_reg_state(const struct net_device *dev) 5098 { 5099 switch (dev->reg_state) { 5100 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5101 case NETREG_REGISTERED: return ""; 5102 case NETREG_UNREGISTERING: return " (unregistering)"; 5103 case NETREG_UNREGISTERED: return " (unregistered)"; 5104 case NETREG_RELEASED: return " (released)"; 5105 case NETREG_DUMMY: return " (dummy)"; 5106 } 5107 5108 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5109 return " (unknown)"; 5110 } 5111 5112 __printf(3, 4) __cold 5113 void netdev_printk(const char *level, const struct net_device *dev, 5114 const char *format, ...); 5115 __printf(2, 3) __cold 5116 void netdev_emerg(const struct net_device *dev, const char *format, ...); 5117 __printf(2, 3) __cold 5118 void netdev_alert(const struct net_device *dev, const char *format, ...); 5119 __printf(2, 3) __cold 5120 void netdev_crit(const struct net_device *dev, const char *format, ...); 5121 __printf(2, 3) __cold 5122 void netdev_err(const struct net_device *dev, const char *format, ...); 5123 __printf(2, 3) __cold 5124 void netdev_warn(const struct net_device *dev, const char *format, ...); 5125 __printf(2, 3) __cold 5126 void netdev_notice(const struct net_device *dev, const char *format, ...); 5127 __printf(2, 3) __cold 5128 void netdev_info(const struct net_device *dev, const char *format, ...); 5129 5130 #define netdev_level_once(level, dev, fmt, ...) \ 5131 do { \ 5132 static bool __print_once __read_mostly; \ 5133 \ 5134 if (!__print_once) { \ 5135 __print_once = true; \ 5136 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 5137 } \ 5138 } while (0) 5139 5140 #define netdev_emerg_once(dev, fmt, ...) \ 5141 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 5142 #define netdev_alert_once(dev, fmt, ...) \ 5143 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 5144 #define netdev_crit_once(dev, fmt, ...) \ 5145 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 5146 #define netdev_err_once(dev, fmt, ...) \ 5147 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 5148 #define netdev_warn_once(dev, fmt, ...) \ 5149 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 5150 #define netdev_notice_once(dev, fmt, ...) \ 5151 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 5152 #define netdev_info_once(dev, fmt, ...) \ 5153 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 5154 5155 #define MODULE_ALIAS_NETDEV(device) \ 5156 MODULE_ALIAS("netdev-" device) 5157 5158 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5159 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5160 #define netdev_dbg(__dev, format, args...) \ 5161 do { \ 5162 dynamic_netdev_dbg(__dev, format, ##args); \ 5163 } while (0) 5164 #elif defined(DEBUG) 5165 #define netdev_dbg(__dev, format, args...) \ 5166 netdev_printk(KERN_DEBUG, __dev, format, ##args) 5167 #else 5168 #define netdev_dbg(__dev, format, args...) \ 5169 ({ \ 5170 if (0) \ 5171 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 5172 }) 5173 #endif 5174 5175 #if defined(VERBOSE_DEBUG) 5176 #define netdev_vdbg netdev_dbg 5177 #else 5178 5179 #define netdev_vdbg(dev, format, args...) \ 5180 ({ \ 5181 if (0) \ 5182 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 5183 0; \ 5184 }) 5185 #endif 5186 5187 /* 5188 * netdev_WARN() acts like dev_printk(), but with the key difference 5189 * of using a WARN/WARN_ON to get the message out, including the 5190 * file/line information and a backtrace. 5191 */ 5192 #define netdev_WARN(dev, format, args...) \ 5193 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5194 netdev_reg_state(dev), ##args) 5195 5196 #define netdev_WARN_ONCE(dev, format, args...) \ 5197 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5198 netdev_reg_state(dev), ##args) 5199 5200 /* netif printk helpers, similar to netdev_printk */ 5201 5202 #define netif_printk(priv, type, level, dev, fmt, args...) \ 5203 do { \ 5204 if (netif_msg_##type(priv)) \ 5205 netdev_printk(level, (dev), fmt, ##args); \ 5206 } while (0) 5207 5208 #define netif_level(level, priv, type, dev, fmt, args...) \ 5209 do { \ 5210 if (netif_msg_##type(priv)) \ 5211 netdev_##level(dev, fmt, ##args); \ 5212 } while (0) 5213 5214 #define netif_emerg(priv, type, dev, fmt, args...) \ 5215 netif_level(emerg, priv, type, dev, fmt, ##args) 5216 #define netif_alert(priv, type, dev, fmt, args...) \ 5217 netif_level(alert, priv, type, dev, fmt, ##args) 5218 #define netif_crit(priv, type, dev, fmt, args...) \ 5219 netif_level(crit, priv, type, dev, fmt, ##args) 5220 #define netif_err(priv, type, dev, fmt, args...) \ 5221 netif_level(err, priv, type, dev, fmt, ##args) 5222 #define netif_warn(priv, type, dev, fmt, args...) \ 5223 netif_level(warn, priv, type, dev, fmt, ##args) 5224 #define netif_notice(priv, type, dev, fmt, args...) \ 5225 netif_level(notice, priv, type, dev, fmt, ##args) 5226 #define netif_info(priv, type, dev, fmt, args...) \ 5227 netif_level(info, priv, type, dev, fmt, ##args) 5228 5229 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5230 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5231 #define netif_dbg(priv, type, netdev, format, args...) \ 5232 do { \ 5233 if (netif_msg_##type(priv)) \ 5234 dynamic_netdev_dbg(netdev, format, ##args); \ 5235 } while (0) 5236 #elif defined(DEBUG) 5237 #define netif_dbg(priv, type, dev, format, args...) \ 5238 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5239 #else 5240 #define netif_dbg(priv, type, dev, format, args...) \ 5241 ({ \ 5242 if (0) \ 5243 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5244 0; \ 5245 }) 5246 #endif 5247 5248 /* if @cond then downgrade to debug, else print at @level */ 5249 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5250 do { \ 5251 if (cond) \ 5252 netif_dbg(priv, type, netdev, fmt, ##args); \ 5253 else \ 5254 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5255 } while (0) 5256 5257 #if defined(VERBOSE_DEBUG) 5258 #define netif_vdbg netif_dbg 5259 #else 5260 #define netif_vdbg(priv, type, dev, format, args...) \ 5261 ({ \ 5262 if (0) \ 5263 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5264 0; \ 5265 }) 5266 #endif 5267 5268 /* 5269 * The list of packet types we will receive (as opposed to discard) 5270 * and the routines to invoke. 5271 * 5272 * Why 16. Because with 16 the only overlap we get on a hash of the 5273 * low nibble of the protocol value is RARP/SNAP/X.25. 5274 * 5275 * 0800 IP 5276 * 0001 802.3 5277 * 0002 AX.25 5278 * 0004 802.2 5279 * 8035 RARP 5280 * 0005 SNAP 5281 * 0805 X.25 5282 * 0806 ARP 5283 * 8137 IPX 5284 * 0009 Localtalk 5285 * 86DD IPv6 5286 */ 5287 #define PTYPE_HASH_SIZE (16) 5288 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5289 5290 extern struct net_device *blackhole_netdev; 5291 5292 #endif /* _LINUX_NETDEVICE_H */ 5293