1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 54 struct netpoll_info; 55 struct device; 56 struct ethtool_ops; 57 struct phy_device; 58 struct dsa_port; 59 struct ip_tunnel_parm; 60 struct macsec_context; 61 struct macsec_ops; 62 struct netdev_name_node; 63 struct sd_flow_limit; 64 struct sfp_bus; 65 /* 802.11 specific */ 66 struct wireless_dev; 67 /* 802.15.4 specific */ 68 struct wpan_dev; 69 struct mpls_dev; 70 /* UDP Tunnel offloads */ 71 struct udp_tunnel_info; 72 struct udp_tunnel_nic_info; 73 struct udp_tunnel_nic; 74 struct bpf_prog; 75 struct xdp_buff; 76 77 void synchronize_net(void); 78 void netdev_set_default_ethtool_ops(struct net_device *dev, 79 const struct ethtool_ops *ops); 80 81 /* Backlog congestion levels */ 82 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 83 #define NET_RX_DROP 1 /* packet dropped */ 84 85 #define MAX_NEST_DEV 8 86 87 /* 88 * Transmit return codes: transmit return codes originate from three different 89 * namespaces: 90 * 91 * - qdisc return codes 92 * - driver transmit return codes 93 * - errno values 94 * 95 * Drivers are allowed to return any one of those in their hard_start_xmit() 96 * function. Real network devices commonly used with qdiscs should only return 97 * the driver transmit return codes though - when qdiscs are used, the actual 98 * transmission happens asynchronously, so the value is not propagated to 99 * higher layers. Virtual network devices transmit synchronously; in this case 100 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 101 * others are propagated to higher layers. 102 */ 103 104 /* qdisc ->enqueue() return codes. */ 105 #define NET_XMIT_SUCCESS 0x00 106 #define NET_XMIT_DROP 0x01 /* skb dropped */ 107 #define NET_XMIT_CN 0x02 /* congestion notification */ 108 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 109 110 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 111 * indicates that the device will soon be dropping packets, or already drops 112 * some packets of the same priority; prompting us to send less aggressively. */ 113 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 114 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 115 116 /* Driver transmit return codes */ 117 #define NETDEV_TX_MASK 0xf0 118 119 enum netdev_tx { 120 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 121 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 122 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 123 }; 124 typedef enum netdev_tx netdev_tx_t; 125 126 /* 127 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 128 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 129 */ 130 static inline bool dev_xmit_complete(int rc) 131 { 132 /* 133 * Positive cases with an skb consumed by a driver: 134 * - successful transmission (rc == NETDEV_TX_OK) 135 * - error while transmitting (rc < 0) 136 * - error while queueing to a different device (rc & NET_XMIT_MASK) 137 */ 138 if (likely(rc < NET_XMIT_MASK)) 139 return true; 140 141 return false; 142 } 143 144 /* 145 * Compute the worst-case header length according to the protocols 146 * used. 147 */ 148 149 #if defined(CONFIG_HYPERV_NET) 150 # define LL_MAX_HEADER 128 151 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 152 # if defined(CONFIG_MAC80211_MESH) 153 # define LL_MAX_HEADER 128 154 # else 155 # define LL_MAX_HEADER 96 156 # endif 157 #else 158 # define LL_MAX_HEADER 32 159 #endif 160 161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 163 #define MAX_HEADER LL_MAX_HEADER 164 #else 165 #define MAX_HEADER (LL_MAX_HEADER + 48) 166 #endif 167 168 /* 169 * Old network device statistics. Fields are native words 170 * (unsigned long) so they can be read and written atomically. 171 */ 172 173 struct net_device_stats { 174 unsigned long rx_packets; 175 unsigned long tx_packets; 176 unsigned long rx_bytes; 177 unsigned long tx_bytes; 178 unsigned long rx_errors; 179 unsigned long tx_errors; 180 unsigned long rx_dropped; 181 unsigned long tx_dropped; 182 unsigned long multicast; 183 unsigned long collisions; 184 unsigned long rx_length_errors; 185 unsigned long rx_over_errors; 186 unsigned long rx_crc_errors; 187 unsigned long rx_frame_errors; 188 unsigned long rx_fifo_errors; 189 unsigned long rx_missed_errors; 190 unsigned long tx_aborted_errors; 191 unsigned long tx_carrier_errors; 192 unsigned long tx_fifo_errors; 193 unsigned long tx_heartbeat_errors; 194 unsigned long tx_window_errors; 195 unsigned long rx_compressed; 196 unsigned long tx_compressed; 197 }; 198 199 /* per-cpu stats, allocated on demand. 200 * Try to fit them in a single cache line, for dev_get_stats() sake. 201 */ 202 struct net_device_core_stats { 203 local_t rx_dropped; 204 local_t tx_dropped; 205 local_t rx_nohandler; 206 local_t rx_otherhost_dropped; 207 } __aligned(4 * sizeof(local_t)); 208 209 #include <linux/cache.h> 210 #include <linux/skbuff.h> 211 212 #ifdef CONFIG_RPS 213 #include <linux/static_key.h> 214 extern struct static_key_false rps_needed; 215 extern struct static_key_false rfs_needed; 216 #endif 217 218 struct neighbour; 219 struct neigh_parms; 220 struct sk_buff; 221 222 struct netdev_hw_addr { 223 struct list_head list; 224 struct rb_node node; 225 unsigned char addr[MAX_ADDR_LEN]; 226 unsigned char type; 227 #define NETDEV_HW_ADDR_T_LAN 1 228 #define NETDEV_HW_ADDR_T_SAN 2 229 #define NETDEV_HW_ADDR_T_UNICAST 3 230 #define NETDEV_HW_ADDR_T_MULTICAST 4 231 bool global_use; 232 int sync_cnt; 233 int refcount; 234 int synced; 235 struct rcu_head rcu_head; 236 }; 237 238 struct netdev_hw_addr_list { 239 struct list_head list; 240 int count; 241 242 /* Auxiliary tree for faster lookup on addition and deletion */ 243 struct rb_root tree; 244 }; 245 246 #define netdev_hw_addr_list_count(l) ((l)->count) 247 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 248 #define netdev_hw_addr_list_for_each(ha, l) \ 249 list_for_each_entry(ha, &(l)->list, list) 250 251 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 252 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 253 #define netdev_for_each_uc_addr(ha, dev) \ 254 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 255 256 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 257 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 258 #define netdev_for_each_mc_addr(ha, dev) \ 259 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 260 261 struct hh_cache { 262 unsigned int hh_len; 263 seqlock_t hh_lock; 264 265 /* cached hardware header; allow for machine alignment needs. */ 266 #define HH_DATA_MOD 16 267 #define HH_DATA_OFF(__len) \ 268 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 269 #define HH_DATA_ALIGN(__len) \ 270 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 271 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 272 }; 273 274 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 275 * Alternative is: 276 * dev->hard_header_len ? (dev->hard_header_len + 277 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 278 * 279 * We could use other alignment values, but we must maintain the 280 * relationship HH alignment <= LL alignment. 281 */ 282 #define LL_RESERVED_SPACE(dev) \ 283 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 285 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 286 287 struct header_ops { 288 int (*create) (struct sk_buff *skb, struct net_device *dev, 289 unsigned short type, const void *daddr, 290 const void *saddr, unsigned int len); 291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 292 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 293 void (*cache_update)(struct hh_cache *hh, 294 const struct net_device *dev, 295 const unsigned char *haddr); 296 bool (*validate)(const char *ll_header, unsigned int len); 297 __be16 (*parse_protocol)(const struct sk_buff *skb); 298 }; 299 300 /* These flag bits are private to the generic network queueing 301 * layer; they may not be explicitly referenced by any other 302 * code. 303 */ 304 305 enum netdev_state_t { 306 __LINK_STATE_START, 307 __LINK_STATE_PRESENT, 308 __LINK_STATE_NOCARRIER, 309 __LINK_STATE_LINKWATCH_PENDING, 310 __LINK_STATE_DORMANT, 311 __LINK_STATE_TESTING, 312 }; 313 314 struct gro_list { 315 struct list_head list; 316 int count; 317 }; 318 319 /* 320 * size of gro hash buckets, must less than bit number of 321 * napi_struct::gro_bitmask 322 */ 323 #define GRO_HASH_BUCKETS 8 324 325 /* 326 * Structure for NAPI scheduling similar to tasklet but with weighting 327 */ 328 struct napi_struct { 329 /* The poll_list must only be managed by the entity which 330 * changes the state of the NAPI_STATE_SCHED bit. This means 331 * whoever atomically sets that bit can add this napi_struct 332 * to the per-CPU poll_list, and whoever clears that bit 333 * can remove from the list right before clearing the bit. 334 */ 335 struct list_head poll_list; 336 337 unsigned long state; 338 int weight; 339 int defer_hard_irqs_count; 340 unsigned long gro_bitmask; 341 int (*poll)(struct napi_struct *, int); 342 #ifdef CONFIG_NETPOLL 343 int poll_owner; 344 #endif 345 struct net_device *dev; 346 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 347 struct sk_buff *skb; 348 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 349 int rx_count; /* length of rx_list */ 350 struct hrtimer timer; 351 struct list_head dev_list; 352 struct hlist_node napi_hash_node; 353 unsigned int napi_id; 354 struct task_struct *thread; 355 }; 356 357 enum { 358 NAPI_STATE_SCHED, /* Poll is scheduled */ 359 NAPI_STATE_MISSED, /* reschedule a napi */ 360 NAPI_STATE_DISABLE, /* Disable pending */ 361 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 362 NAPI_STATE_LISTED, /* NAPI added to system lists */ 363 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 364 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 365 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 366 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 367 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 368 }; 369 370 enum { 371 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 372 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 373 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 374 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 375 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 376 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 377 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 378 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 379 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 380 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 381 }; 382 383 enum gro_result { 384 GRO_MERGED, 385 GRO_MERGED_FREE, 386 GRO_HELD, 387 GRO_NORMAL, 388 GRO_CONSUMED, 389 }; 390 typedef enum gro_result gro_result_t; 391 392 /* 393 * enum rx_handler_result - Possible return values for rx_handlers. 394 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 395 * further. 396 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 397 * case skb->dev was changed by rx_handler. 398 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 399 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 400 * 401 * rx_handlers are functions called from inside __netif_receive_skb(), to do 402 * special processing of the skb, prior to delivery to protocol handlers. 403 * 404 * Currently, a net_device can only have a single rx_handler registered. Trying 405 * to register a second rx_handler will return -EBUSY. 406 * 407 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 408 * To unregister a rx_handler on a net_device, use 409 * netdev_rx_handler_unregister(). 410 * 411 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 412 * do with the skb. 413 * 414 * If the rx_handler consumed the skb in some way, it should return 415 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 416 * the skb to be delivered in some other way. 417 * 418 * If the rx_handler changed skb->dev, to divert the skb to another 419 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 420 * new device will be called if it exists. 421 * 422 * If the rx_handler decides the skb should be ignored, it should return 423 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 424 * are registered on exact device (ptype->dev == skb->dev). 425 * 426 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 427 * delivered, it should return RX_HANDLER_PASS. 428 * 429 * A device without a registered rx_handler will behave as if rx_handler 430 * returned RX_HANDLER_PASS. 431 */ 432 433 enum rx_handler_result { 434 RX_HANDLER_CONSUMED, 435 RX_HANDLER_ANOTHER, 436 RX_HANDLER_EXACT, 437 RX_HANDLER_PASS, 438 }; 439 typedef enum rx_handler_result rx_handler_result_t; 440 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 441 442 void __napi_schedule(struct napi_struct *n); 443 void __napi_schedule_irqoff(struct napi_struct *n); 444 445 static inline bool napi_disable_pending(struct napi_struct *n) 446 { 447 return test_bit(NAPI_STATE_DISABLE, &n->state); 448 } 449 450 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 451 { 452 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 453 } 454 455 bool napi_schedule_prep(struct napi_struct *n); 456 457 /** 458 * napi_schedule - schedule NAPI poll 459 * @n: NAPI context 460 * 461 * Schedule NAPI poll routine to be called if it is not already 462 * running. 463 */ 464 static inline void napi_schedule(struct napi_struct *n) 465 { 466 if (napi_schedule_prep(n)) 467 __napi_schedule(n); 468 } 469 470 /** 471 * napi_schedule_irqoff - schedule NAPI poll 472 * @n: NAPI context 473 * 474 * Variant of napi_schedule(), assuming hard irqs are masked. 475 */ 476 static inline void napi_schedule_irqoff(struct napi_struct *n) 477 { 478 if (napi_schedule_prep(n)) 479 __napi_schedule_irqoff(n); 480 } 481 482 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 483 static inline bool napi_reschedule(struct napi_struct *napi) 484 { 485 if (napi_schedule_prep(napi)) { 486 __napi_schedule(napi); 487 return true; 488 } 489 return false; 490 } 491 492 bool napi_complete_done(struct napi_struct *n, int work_done); 493 /** 494 * napi_complete - NAPI processing complete 495 * @n: NAPI context 496 * 497 * Mark NAPI processing as complete. 498 * Consider using napi_complete_done() instead. 499 * Return false if device should avoid rearming interrupts. 500 */ 501 static inline bool napi_complete(struct napi_struct *n) 502 { 503 return napi_complete_done(n, 0); 504 } 505 506 int dev_set_threaded(struct net_device *dev, bool threaded); 507 508 /** 509 * napi_disable - prevent NAPI from scheduling 510 * @n: NAPI context 511 * 512 * Stop NAPI from being scheduled on this context. 513 * Waits till any outstanding processing completes. 514 */ 515 void napi_disable(struct napi_struct *n); 516 517 void napi_enable(struct napi_struct *n); 518 519 /** 520 * napi_synchronize - wait until NAPI is not running 521 * @n: NAPI context 522 * 523 * Wait until NAPI is done being scheduled on this context. 524 * Waits till any outstanding processing completes but 525 * does not disable future activations. 526 */ 527 static inline void napi_synchronize(const struct napi_struct *n) 528 { 529 if (IS_ENABLED(CONFIG_SMP)) 530 while (test_bit(NAPI_STATE_SCHED, &n->state)) 531 msleep(1); 532 else 533 barrier(); 534 } 535 536 /** 537 * napi_if_scheduled_mark_missed - if napi is running, set the 538 * NAPIF_STATE_MISSED 539 * @n: NAPI context 540 * 541 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 542 * NAPI is scheduled. 543 **/ 544 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 545 { 546 unsigned long val, new; 547 548 do { 549 val = READ_ONCE(n->state); 550 if (val & NAPIF_STATE_DISABLE) 551 return true; 552 553 if (!(val & NAPIF_STATE_SCHED)) 554 return false; 555 556 new = val | NAPIF_STATE_MISSED; 557 } while (cmpxchg(&n->state, val, new) != val); 558 559 return true; 560 } 561 562 enum netdev_queue_state_t { 563 __QUEUE_STATE_DRV_XOFF, 564 __QUEUE_STATE_STACK_XOFF, 565 __QUEUE_STATE_FROZEN, 566 }; 567 568 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 569 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 570 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 571 572 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 573 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 574 QUEUE_STATE_FROZEN) 575 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 576 QUEUE_STATE_FROZEN) 577 578 /* 579 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 580 * netif_tx_* functions below are used to manipulate this flag. The 581 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 582 * queue independently. The netif_xmit_*stopped functions below are called 583 * to check if the queue has been stopped by the driver or stack (either 584 * of the XOFF bits are set in the state). Drivers should not need to call 585 * netif_xmit*stopped functions, they should only be using netif_tx_*. 586 */ 587 588 struct netdev_queue { 589 /* 590 * read-mostly part 591 */ 592 struct net_device *dev; 593 netdevice_tracker dev_tracker; 594 595 struct Qdisc __rcu *qdisc; 596 struct Qdisc *qdisc_sleeping; 597 #ifdef CONFIG_SYSFS 598 struct kobject kobj; 599 #endif 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 int numa_node; 602 #endif 603 unsigned long tx_maxrate; 604 /* 605 * Number of TX timeouts for this queue 606 * (/sys/class/net/DEV/Q/trans_timeout) 607 */ 608 atomic_long_t trans_timeout; 609 610 /* Subordinate device that the queue has been assigned to */ 611 struct net_device *sb_dev; 612 #ifdef CONFIG_XDP_SOCKETS 613 struct xsk_buff_pool *pool; 614 #endif 615 /* 616 * write-mostly part 617 */ 618 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 619 int xmit_lock_owner; 620 /* 621 * Time (in jiffies) of last Tx 622 */ 623 unsigned long trans_start; 624 625 unsigned long state; 626 627 #ifdef CONFIG_BQL 628 struct dql dql; 629 #endif 630 } ____cacheline_aligned_in_smp; 631 632 extern int sysctl_fb_tunnels_only_for_init_net; 633 extern int sysctl_devconf_inherit_init_net; 634 635 /* 636 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 637 * == 1 : For initns only 638 * == 2 : For none. 639 */ 640 static inline bool net_has_fallback_tunnels(const struct net *net) 641 { 642 return !IS_ENABLED(CONFIG_SYSCTL) || 643 !sysctl_fb_tunnels_only_for_init_net || 644 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); 645 } 646 647 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 648 { 649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 650 return q->numa_node; 651 #else 652 return NUMA_NO_NODE; 653 #endif 654 } 655 656 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 657 { 658 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 659 q->numa_node = node; 660 #endif 661 } 662 663 #ifdef CONFIG_RPS 664 /* 665 * This structure holds an RPS map which can be of variable length. The 666 * map is an array of CPUs. 667 */ 668 struct rps_map { 669 unsigned int len; 670 struct rcu_head rcu; 671 u16 cpus[]; 672 }; 673 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 674 675 /* 676 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 677 * tail pointer for that CPU's input queue at the time of last enqueue, and 678 * a hardware filter index. 679 */ 680 struct rps_dev_flow { 681 u16 cpu; 682 u16 filter; 683 unsigned int last_qtail; 684 }; 685 #define RPS_NO_FILTER 0xffff 686 687 /* 688 * The rps_dev_flow_table structure contains a table of flow mappings. 689 */ 690 struct rps_dev_flow_table { 691 unsigned int mask; 692 struct rcu_head rcu; 693 struct rps_dev_flow flows[]; 694 }; 695 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 696 ((_num) * sizeof(struct rps_dev_flow))) 697 698 /* 699 * The rps_sock_flow_table contains mappings of flows to the last CPU 700 * on which they were processed by the application (set in recvmsg). 701 * Each entry is a 32bit value. Upper part is the high-order bits 702 * of flow hash, lower part is CPU number. 703 * rps_cpu_mask is used to partition the space, depending on number of 704 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 705 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 706 * meaning we use 32-6=26 bits for the hash. 707 */ 708 struct rps_sock_flow_table { 709 u32 mask; 710 711 u32 ents[] ____cacheline_aligned_in_smp; 712 }; 713 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 714 715 #define RPS_NO_CPU 0xffff 716 717 extern u32 rps_cpu_mask; 718 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 719 720 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 721 u32 hash) 722 { 723 if (table && hash) { 724 unsigned int index = hash & table->mask; 725 u32 val = hash & ~rps_cpu_mask; 726 727 /* We only give a hint, preemption can change CPU under us */ 728 val |= raw_smp_processor_id(); 729 730 if (table->ents[index] != val) 731 table->ents[index] = val; 732 } 733 } 734 735 #ifdef CONFIG_RFS_ACCEL 736 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 737 u16 filter_id); 738 #endif 739 #endif /* CONFIG_RPS */ 740 741 /* This structure contains an instance of an RX queue. */ 742 struct netdev_rx_queue { 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_RPS 745 struct rps_map __rcu *rps_map; 746 struct rps_dev_flow_table __rcu *rps_flow_table; 747 #endif 748 struct kobject kobj; 749 struct net_device *dev; 750 netdevice_tracker dev_tracker; 751 752 #ifdef CONFIG_XDP_SOCKETS 753 struct xsk_buff_pool *pool; 754 #endif 755 } ____cacheline_aligned_in_smp; 756 757 /* 758 * RX queue sysfs structures and functions. 759 */ 760 struct rx_queue_attribute { 761 struct attribute attr; 762 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 763 ssize_t (*store)(struct netdev_rx_queue *queue, 764 const char *buf, size_t len); 765 }; 766 767 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 768 enum xps_map_type { 769 XPS_CPUS = 0, 770 XPS_RXQS, 771 XPS_MAPS_MAX, 772 }; 773 774 #ifdef CONFIG_XPS 775 /* 776 * This structure holds an XPS map which can be of variable length. The 777 * map is an array of queues. 778 */ 779 struct xps_map { 780 unsigned int len; 781 unsigned int alloc_len; 782 struct rcu_head rcu; 783 u16 queues[]; 784 }; 785 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 786 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 787 - sizeof(struct xps_map)) / sizeof(u16)) 788 789 /* 790 * This structure holds all XPS maps for device. Maps are indexed by CPU. 791 * 792 * We keep track of the number of cpus/rxqs used when the struct is allocated, 793 * in nr_ids. This will help not accessing out-of-bound memory. 794 * 795 * We keep track of the number of traffic classes used when the struct is 796 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 797 * not crossing its upper bound, as the original dev->num_tc can be updated in 798 * the meantime. 799 */ 800 struct xps_dev_maps { 801 struct rcu_head rcu; 802 unsigned int nr_ids; 803 s16 num_tc; 804 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 805 }; 806 807 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 808 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 809 810 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 811 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 812 813 #endif /* CONFIG_XPS */ 814 815 #define TC_MAX_QUEUE 16 816 #define TC_BITMASK 15 817 /* HW offloaded queuing disciplines txq count and offset maps */ 818 struct netdev_tc_txq { 819 u16 count; 820 u16 offset; 821 }; 822 823 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 824 /* 825 * This structure is to hold information about the device 826 * configured to run FCoE protocol stack. 827 */ 828 struct netdev_fcoe_hbainfo { 829 char manufacturer[64]; 830 char serial_number[64]; 831 char hardware_version[64]; 832 char driver_version[64]; 833 char optionrom_version[64]; 834 char firmware_version[64]; 835 char model[256]; 836 char model_description[256]; 837 }; 838 #endif 839 840 #define MAX_PHYS_ITEM_ID_LEN 32 841 842 /* This structure holds a unique identifier to identify some 843 * physical item (port for example) used by a netdevice. 844 */ 845 struct netdev_phys_item_id { 846 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 847 unsigned char id_len; 848 }; 849 850 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 851 struct netdev_phys_item_id *b) 852 { 853 return a->id_len == b->id_len && 854 memcmp(a->id, b->id, a->id_len) == 0; 855 } 856 857 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 858 struct sk_buff *skb, 859 struct net_device *sb_dev); 860 861 enum net_device_path_type { 862 DEV_PATH_ETHERNET = 0, 863 DEV_PATH_VLAN, 864 DEV_PATH_BRIDGE, 865 DEV_PATH_PPPOE, 866 DEV_PATH_DSA, 867 DEV_PATH_MTK_WDMA, 868 }; 869 870 struct net_device_path { 871 enum net_device_path_type type; 872 const struct net_device *dev; 873 union { 874 struct { 875 u16 id; 876 __be16 proto; 877 u8 h_dest[ETH_ALEN]; 878 } encap; 879 struct { 880 enum { 881 DEV_PATH_BR_VLAN_KEEP, 882 DEV_PATH_BR_VLAN_TAG, 883 DEV_PATH_BR_VLAN_UNTAG, 884 DEV_PATH_BR_VLAN_UNTAG_HW, 885 } vlan_mode; 886 u16 vlan_id; 887 __be16 vlan_proto; 888 } bridge; 889 struct { 890 int port; 891 u16 proto; 892 } dsa; 893 struct { 894 u8 wdma_idx; 895 u8 queue; 896 u16 wcid; 897 u8 bss; 898 } mtk_wdma; 899 }; 900 }; 901 902 #define NET_DEVICE_PATH_STACK_MAX 5 903 #define NET_DEVICE_PATH_VLAN_MAX 2 904 905 struct net_device_path_stack { 906 int num_paths; 907 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 908 }; 909 910 struct net_device_path_ctx { 911 const struct net_device *dev; 912 const u8 *daddr; 913 914 int num_vlans; 915 struct { 916 u16 id; 917 __be16 proto; 918 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 919 }; 920 921 enum tc_setup_type { 922 TC_SETUP_QDISC_MQPRIO, 923 TC_SETUP_CLSU32, 924 TC_SETUP_CLSFLOWER, 925 TC_SETUP_CLSMATCHALL, 926 TC_SETUP_CLSBPF, 927 TC_SETUP_BLOCK, 928 TC_SETUP_QDISC_CBS, 929 TC_SETUP_QDISC_RED, 930 TC_SETUP_QDISC_PRIO, 931 TC_SETUP_QDISC_MQ, 932 TC_SETUP_QDISC_ETF, 933 TC_SETUP_ROOT_QDISC, 934 TC_SETUP_QDISC_GRED, 935 TC_SETUP_QDISC_TAPRIO, 936 TC_SETUP_FT, 937 TC_SETUP_QDISC_ETS, 938 TC_SETUP_QDISC_TBF, 939 TC_SETUP_QDISC_FIFO, 940 TC_SETUP_QDISC_HTB, 941 TC_SETUP_ACT, 942 }; 943 944 /* These structures hold the attributes of bpf state that are being passed 945 * to the netdevice through the bpf op. 946 */ 947 enum bpf_netdev_command { 948 /* Set or clear a bpf program used in the earliest stages of packet 949 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 950 * is responsible for calling bpf_prog_put on any old progs that are 951 * stored. In case of error, the callee need not release the new prog 952 * reference, but on success it takes ownership and must bpf_prog_put 953 * when it is no longer used. 954 */ 955 XDP_SETUP_PROG, 956 XDP_SETUP_PROG_HW, 957 /* BPF program for offload callbacks, invoked at program load time. */ 958 BPF_OFFLOAD_MAP_ALLOC, 959 BPF_OFFLOAD_MAP_FREE, 960 XDP_SETUP_XSK_POOL, 961 }; 962 963 struct bpf_prog_offload_ops; 964 struct netlink_ext_ack; 965 struct xdp_umem; 966 struct xdp_dev_bulk_queue; 967 struct bpf_xdp_link; 968 969 enum bpf_xdp_mode { 970 XDP_MODE_SKB = 0, 971 XDP_MODE_DRV = 1, 972 XDP_MODE_HW = 2, 973 __MAX_XDP_MODE 974 }; 975 976 struct bpf_xdp_entity { 977 struct bpf_prog *prog; 978 struct bpf_xdp_link *link; 979 }; 980 981 struct netdev_bpf { 982 enum bpf_netdev_command command; 983 union { 984 /* XDP_SETUP_PROG */ 985 struct { 986 u32 flags; 987 struct bpf_prog *prog; 988 struct netlink_ext_ack *extack; 989 }; 990 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 991 struct { 992 struct bpf_offloaded_map *offmap; 993 }; 994 /* XDP_SETUP_XSK_POOL */ 995 struct { 996 struct xsk_buff_pool *pool; 997 u16 queue_id; 998 } xsk; 999 }; 1000 }; 1001 1002 /* Flags for ndo_xsk_wakeup. */ 1003 #define XDP_WAKEUP_RX (1 << 0) 1004 #define XDP_WAKEUP_TX (1 << 1) 1005 1006 #ifdef CONFIG_XFRM_OFFLOAD 1007 struct xfrmdev_ops { 1008 int (*xdo_dev_state_add) (struct xfrm_state *x); 1009 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1010 void (*xdo_dev_state_free) (struct xfrm_state *x); 1011 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1012 struct xfrm_state *x); 1013 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1014 }; 1015 #endif 1016 1017 struct dev_ifalias { 1018 struct rcu_head rcuhead; 1019 char ifalias[]; 1020 }; 1021 1022 struct devlink; 1023 struct tlsdev_ops; 1024 1025 struct netdev_net_notifier { 1026 struct list_head list; 1027 struct notifier_block *nb; 1028 }; 1029 1030 /* 1031 * This structure defines the management hooks for network devices. 1032 * The following hooks can be defined; unless noted otherwise, they are 1033 * optional and can be filled with a null pointer. 1034 * 1035 * int (*ndo_init)(struct net_device *dev); 1036 * This function is called once when a network device is registered. 1037 * The network device can use this for any late stage initialization 1038 * or semantic validation. It can fail with an error code which will 1039 * be propagated back to register_netdev. 1040 * 1041 * void (*ndo_uninit)(struct net_device *dev); 1042 * This function is called when device is unregistered or when registration 1043 * fails. It is not called if init fails. 1044 * 1045 * int (*ndo_open)(struct net_device *dev); 1046 * This function is called when a network device transitions to the up 1047 * state. 1048 * 1049 * int (*ndo_stop)(struct net_device *dev); 1050 * This function is called when a network device transitions to the down 1051 * state. 1052 * 1053 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1054 * struct net_device *dev); 1055 * Called when a packet needs to be transmitted. 1056 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1057 * the queue before that can happen; it's for obsolete devices and weird 1058 * corner cases, but the stack really does a non-trivial amount 1059 * of useless work if you return NETDEV_TX_BUSY. 1060 * Required; cannot be NULL. 1061 * 1062 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1063 * struct net_device *dev 1064 * netdev_features_t features); 1065 * Called by core transmit path to determine if device is capable of 1066 * performing offload operations on a given packet. This is to give 1067 * the device an opportunity to implement any restrictions that cannot 1068 * be otherwise expressed by feature flags. The check is called with 1069 * the set of features that the stack has calculated and it returns 1070 * those the driver believes to be appropriate. 1071 * 1072 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1073 * struct net_device *sb_dev); 1074 * Called to decide which queue to use when device supports multiple 1075 * transmit queues. 1076 * 1077 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1078 * This function is called to allow device receiver to make 1079 * changes to configuration when multicast or promiscuous is enabled. 1080 * 1081 * void (*ndo_set_rx_mode)(struct net_device *dev); 1082 * This function is called device changes address list filtering. 1083 * If driver handles unicast address filtering, it should set 1084 * IFF_UNICAST_FLT in its priv_flags. 1085 * 1086 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1087 * This function is called when the Media Access Control address 1088 * needs to be changed. If this interface is not defined, the 1089 * MAC address can not be changed. 1090 * 1091 * int (*ndo_validate_addr)(struct net_device *dev); 1092 * Test if Media Access Control address is valid for the device. 1093 * 1094 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1095 * Old-style ioctl entry point. This is used internally by the 1096 * appletalk and ieee802154 subsystems but is no longer called by 1097 * the device ioctl handler. 1098 * 1099 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1100 * Used by the bonding driver for its device specific ioctls: 1101 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1102 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1103 * 1104 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1105 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1106 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1107 * 1108 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1109 * Used to set network devices bus interface parameters. This interface 1110 * is retained for legacy reasons; new devices should use the bus 1111 * interface (PCI) for low level management. 1112 * 1113 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1114 * Called when a user wants to change the Maximum Transfer Unit 1115 * of a device. 1116 * 1117 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1118 * Callback used when the transmitter has not made any progress 1119 * for dev->watchdog ticks. 1120 * 1121 * void (*ndo_get_stats64)(struct net_device *dev, 1122 * struct rtnl_link_stats64 *storage); 1123 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1124 * Called when a user wants to get the network device usage 1125 * statistics. Drivers must do one of the following: 1126 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1127 * rtnl_link_stats64 structure passed by the caller. 1128 * 2. Define @ndo_get_stats to update a net_device_stats structure 1129 * (which should normally be dev->stats) and return a pointer to 1130 * it. The structure may be changed asynchronously only if each 1131 * field is written atomically. 1132 * 3. Update dev->stats asynchronously and atomically, and define 1133 * neither operation. 1134 * 1135 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1136 * Return true if this device supports offload stats of this attr_id. 1137 * 1138 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1139 * void *attr_data) 1140 * Get statistics for offload operations by attr_id. Write it into the 1141 * attr_data pointer. 1142 * 1143 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1144 * If device supports VLAN filtering this function is called when a 1145 * VLAN id is registered. 1146 * 1147 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1148 * If device supports VLAN filtering this function is called when a 1149 * VLAN id is unregistered. 1150 * 1151 * void (*ndo_poll_controller)(struct net_device *dev); 1152 * 1153 * SR-IOV management functions. 1154 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1155 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1156 * u8 qos, __be16 proto); 1157 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1158 * int max_tx_rate); 1159 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1160 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1161 * int (*ndo_get_vf_config)(struct net_device *dev, 1162 * int vf, struct ifla_vf_info *ivf); 1163 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1164 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1165 * struct nlattr *port[]); 1166 * 1167 * Enable or disable the VF ability to query its RSS Redirection Table and 1168 * Hash Key. This is needed since on some devices VF share this information 1169 * with PF and querying it may introduce a theoretical security risk. 1170 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1171 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1172 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1173 * void *type_data); 1174 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1175 * This is always called from the stack with the rtnl lock held and netif 1176 * tx queues stopped. This allows the netdevice to perform queue 1177 * management safely. 1178 * 1179 * Fiber Channel over Ethernet (FCoE) offload functions. 1180 * int (*ndo_fcoe_enable)(struct net_device *dev); 1181 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1182 * so the underlying device can perform whatever needed configuration or 1183 * initialization to support acceleration of FCoE traffic. 1184 * 1185 * int (*ndo_fcoe_disable)(struct net_device *dev); 1186 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1187 * so the underlying device can perform whatever needed clean-ups to 1188 * stop supporting acceleration of FCoE traffic. 1189 * 1190 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1191 * struct scatterlist *sgl, unsigned int sgc); 1192 * Called when the FCoE Initiator wants to initialize an I/O that 1193 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1194 * perform necessary setup and returns 1 to indicate the device is set up 1195 * successfully to perform DDP on this I/O, otherwise this returns 0. 1196 * 1197 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1198 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1199 * indicated by the FC exchange id 'xid', so the underlying device can 1200 * clean up and reuse resources for later DDP requests. 1201 * 1202 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1203 * struct scatterlist *sgl, unsigned int sgc); 1204 * Called when the FCoE Target wants to initialize an I/O that 1205 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1206 * perform necessary setup and returns 1 to indicate the device is set up 1207 * successfully to perform DDP on this I/O, otherwise this returns 0. 1208 * 1209 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1210 * struct netdev_fcoe_hbainfo *hbainfo); 1211 * Called when the FCoE Protocol stack wants information on the underlying 1212 * device. This information is utilized by the FCoE protocol stack to 1213 * register attributes with Fiber Channel management service as per the 1214 * FC-GS Fabric Device Management Information(FDMI) specification. 1215 * 1216 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1217 * Called when the underlying device wants to override default World Wide 1218 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1219 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1220 * protocol stack to use. 1221 * 1222 * RFS acceleration. 1223 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1224 * u16 rxq_index, u32 flow_id); 1225 * Set hardware filter for RFS. rxq_index is the target queue index; 1226 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1227 * Return the filter ID on success, or a negative error code. 1228 * 1229 * Slave management functions (for bridge, bonding, etc). 1230 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1231 * Called to make another netdev an underling. 1232 * 1233 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1234 * Called to release previously enslaved netdev. 1235 * 1236 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1237 * struct sk_buff *skb, 1238 * bool all_slaves); 1239 * Get the xmit slave of master device. If all_slaves is true, function 1240 * assume all the slaves can transmit. 1241 * 1242 * Feature/offload setting functions. 1243 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1244 * netdev_features_t features); 1245 * Adjusts the requested feature flags according to device-specific 1246 * constraints, and returns the resulting flags. Must not modify 1247 * the device state. 1248 * 1249 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1250 * Called to update device configuration to new features. Passed 1251 * feature set might be less than what was returned by ndo_fix_features()). 1252 * Must return >0 or -errno if it changed dev->features itself. 1253 * 1254 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1255 * struct net_device *dev, 1256 * const unsigned char *addr, u16 vid, u16 flags, 1257 * struct netlink_ext_ack *extack); 1258 * Adds an FDB entry to dev for addr. 1259 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1260 * struct net_device *dev, 1261 * const unsigned char *addr, u16 vid) 1262 * Deletes the FDB entry from dev coresponding to addr. 1263 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1264 * struct net_device *dev, struct net_device *filter_dev, 1265 * int *idx) 1266 * Used to add FDB entries to dump requests. Implementers should add 1267 * entries to skb and update idx with the number of entries. 1268 * 1269 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1270 * u16 flags, struct netlink_ext_ack *extack) 1271 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1272 * struct net_device *dev, u32 filter_mask, 1273 * int nlflags) 1274 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1275 * u16 flags); 1276 * 1277 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1278 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1279 * which do not represent real hardware may define this to allow their 1280 * userspace components to manage their virtual carrier state. Devices 1281 * that determine carrier state from physical hardware properties (eg 1282 * network cables) or protocol-dependent mechanisms (eg 1283 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1284 * 1285 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1286 * struct netdev_phys_item_id *ppid); 1287 * Called to get ID of physical port of this device. If driver does 1288 * not implement this, it is assumed that the hw is not able to have 1289 * multiple net devices on single physical port. 1290 * 1291 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1292 * struct netdev_phys_item_id *ppid) 1293 * Called to get the parent ID of the physical port of this device. 1294 * 1295 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1296 * struct net_device *dev) 1297 * Called by upper layer devices to accelerate switching or other 1298 * station functionality into hardware. 'pdev is the lowerdev 1299 * to use for the offload and 'dev' is the net device that will 1300 * back the offload. Returns a pointer to the private structure 1301 * the upper layer will maintain. 1302 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1303 * Called by upper layer device to delete the station created 1304 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1305 * the station and priv is the structure returned by the add 1306 * operation. 1307 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1308 * int queue_index, u32 maxrate); 1309 * Called when a user wants to set a max-rate limitation of specific 1310 * TX queue. 1311 * int (*ndo_get_iflink)(const struct net_device *dev); 1312 * Called to get the iflink value of this device. 1313 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1314 * This function is used to get egress tunnel information for given skb. 1315 * This is useful for retrieving outer tunnel header parameters while 1316 * sampling packet. 1317 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1318 * This function is used to specify the headroom that the skb must 1319 * consider when allocation skb during packet reception. Setting 1320 * appropriate rx headroom value allows avoiding skb head copy on 1321 * forward. Setting a negative value resets the rx headroom to the 1322 * default value. 1323 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1324 * This function is used to set or query state related to XDP on the 1325 * netdevice and manage BPF offload. See definition of 1326 * enum bpf_netdev_command for details. 1327 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1328 * u32 flags); 1329 * This function is used to submit @n XDP packets for transmit on a 1330 * netdevice. Returns number of frames successfully transmitted, frames 1331 * that got dropped are freed/returned via xdp_return_frame(). 1332 * Returns negative number, means general error invoking ndo, meaning 1333 * no frames were xmit'ed and core-caller will free all frames. 1334 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1335 * struct xdp_buff *xdp); 1336 * Get the xmit slave of master device based on the xdp_buff. 1337 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1338 * This function is used to wake up the softirq, ksoftirqd or kthread 1339 * responsible for sending and/or receiving packets on a specific 1340 * queue id bound to an AF_XDP socket. The flags field specifies if 1341 * only RX, only Tx, or both should be woken up using the flags 1342 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1343 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1344 * Get devlink port instance associated with a given netdev. 1345 * Called with a reference on the netdevice and devlink locks only, 1346 * rtnl_lock is not held. 1347 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1348 * int cmd); 1349 * Add, change, delete or get information on an IPv4 tunnel. 1350 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1351 * If a device is paired with a peer device, return the peer instance. 1352 * The caller must be under RCU read context. 1353 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1354 * Get the forwarding path to reach the real device from the HW destination address 1355 */ 1356 struct net_device_ops { 1357 int (*ndo_init)(struct net_device *dev); 1358 void (*ndo_uninit)(struct net_device *dev); 1359 int (*ndo_open)(struct net_device *dev); 1360 int (*ndo_stop)(struct net_device *dev); 1361 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1362 struct net_device *dev); 1363 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1364 struct net_device *dev, 1365 netdev_features_t features); 1366 u16 (*ndo_select_queue)(struct net_device *dev, 1367 struct sk_buff *skb, 1368 struct net_device *sb_dev); 1369 void (*ndo_change_rx_flags)(struct net_device *dev, 1370 int flags); 1371 void (*ndo_set_rx_mode)(struct net_device *dev); 1372 int (*ndo_set_mac_address)(struct net_device *dev, 1373 void *addr); 1374 int (*ndo_validate_addr)(struct net_device *dev); 1375 int (*ndo_do_ioctl)(struct net_device *dev, 1376 struct ifreq *ifr, int cmd); 1377 int (*ndo_eth_ioctl)(struct net_device *dev, 1378 struct ifreq *ifr, int cmd); 1379 int (*ndo_siocbond)(struct net_device *dev, 1380 struct ifreq *ifr, int cmd); 1381 int (*ndo_siocwandev)(struct net_device *dev, 1382 struct if_settings *ifs); 1383 int (*ndo_siocdevprivate)(struct net_device *dev, 1384 struct ifreq *ifr, 1385 void __user *data, int cmd); 1386 int (*ndo_set_config)(struct net_device *dev, 1387 struct ifmap *map); 1388 int (*ndo_change_mtu)(struct net_device *dev, 1389 int new_mtu); 1390 int (*ndo_neigh_setup)(struct net_device *dev, 1391 struct neigh_parms *); 1392 void (*ndo_tx_timeout) (struct net_device *dev, 1393 unsigned int txqueue); 1394 1395 void (*ndo_get_stats64)(struct net_device *dev, 1396 struct rtnl_link_stats64 *storage); 1397 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1398 int (*ndo_get_offload_stats)(int attr_id, 1399 const struct net_device *dev, 1400 void *attr_data); 1401 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1402 1403 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1404 __be16 proto, u16 vid); 1405 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1406 __be16 proto, u16 vid); 1407 #ifdef CONFIG_NET_POLL_CONTROLLER 1408 void (*ndo_poll_controller)(struct net_device *dev); 1409 int (*ndo_netpoll_setup)(struct net_device *dev, 1410 struct netpoll_info *info); 1411 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1412 #endif 1413 int (*ndo_set_vf_mac)(struct net_device *dev, 1414 int queue, u8 *mac); 1415 int (*ndo_set_vf_vlan)(struct net_device *dev, 1416 int queue, u16 vlan, 1417 u8 qos, __be16 proto); 1418 int (*ndo_set_vf_rate)(struct net_device *dev, 1419 int vf, int min_tx_rate, 1420 int max_tx_rate); 1421 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1422 int vf, bool setting); 1423 int (*ndo_set_vf_trust)(struct net_device *dev, 1424 int vf, bool setting); 1425 int (*ndo_get_vf_config)(struct net_device *dev, 1426 int vf, 1427 struct ifla_vf_info *ivf); 1428 int (*ndo_set_vf_link_state)(struct net_device *dev, 1429 int vf, int link_state); 1430 int (*ndo_get_vf_stats)(struct net_device *dev, 1431 int vf, 1432 struct ifla_vf_stats 1433 *vf_stats); 1434 int (*ndo_set_vf_port)(struct net_device *dev, 1435 int vf, 1436 struct nlattr *port[]); 1437 int (*ndo_get_vf_port)(struct net_device *dev, 1438 int vf, struct sk_buff *skb); 1439 int (*ndo_get_vf_guid)(struct net_device *dev, 1440 int vf, 1441 struct ifla_vf_guid *node_guid, 1442 struct ifla_vf_guid *port_guid); 1443 int (*ndo_set_vf_guid)(struct net_device *dev, 1444 int vf, u64 guid, 1445 int guid_type); 1446 int (*ndo_set_vf_rss_query_en)( 1447 struct net_device *dev, 1448 int vf, bool setting); 1449 int (*ndo_setup_tc)(struct net_device *dev, 1450 enum tc_setup_type type, 1451 void *type_data); 1452 #if IS_ENABLED(CONFIG_FCOE) 1453 int (*ndo_fcoe_enable)(struct net_device *dev); 1454 int (*ndo_fcoe_disable)(struct net_device *dev); 1455 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1456 u16 xid, 1457 struct scatterlist *sgl, 1458 unsigned int sgc); 1459 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1460 u16 xid); 1461 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1462 u16 xid, 1463 struct scatterlist *sgl, 1464 unsigned int sgc); 1465 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1466 struct netdev_fcoe_hbainfo *hbainfo); 1467 #endif 1468 1469 #if IS_ENABLED(CONFIG_LIBFCOE) 1470 #define NETDEV_FCOE_WWNN 0 1471 #define NETDEV_FCOE_WWPN 1 1472 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1473 u64 *wwn, int type); 1474 #endif 1475 1476 #ifdef CONFIG_RFS_ACCEL 1477 int (*ndo_rx_flow_steer)(struct net_device *dev, 1478 const struct sk_buff *skb, 1479 u16 rxq_index, 1480 u32 flow_id); 1481 #endif 1482 int (*ndo_add_slave)(struct net_device *dev, 1483 struct net_device *slave_dev, 1484 struct netlink_ext_ack *extack); 1485 int (*ndo_del_slave)(struct net_device *dev, 1486 struct net_device *slave_dev); 1487 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1488 struct sk_buff *skb, 1489 bool all_slaves); 1490 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1491 struct sock *sk); 1492 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1493 netdev_features_t features); 1494 int (*ndo_set_features)(struct net_device *dev, 1495 netdev_features_t features); 1496 int (*ndo_neigh_construct)(struct net_device *dev, 1497 struct neighbour *n); 1498 void (*ndo_neigh_destroy)(struct net_device *dev, 1499 struct neighbour *n); 1500 1501 int (*ndo_fdb_add)(struct ndmsg *ndm, 1502 struct nlattr *tb[], 1503 struct net_device *dev, 1504 const unsigned char *addr, 1505 u16 vid, 1506 u16 flags, 1507 struct netlink_ext_ack *extack); 1508 int (*ndo_fdb_del)(struct ndmsg *ndm, 1509 struct nlattr *tb[], 1510 struct net_device *dev, 1511 const unsigned char *addr, 1512 u16 vid); 1513 int (*ndo_fdb_dump)(struct sk_buff *skb, 1514 struct netlink_callback *cb, 1515 struct net_device *dev, 1516 struct net_device *filter_dev, 1517 int *idx); 1518 int (*ndo_fdb_get)(struct sk_buff *skb, 1519 struct nlattr *tb[], 1520 struct net_device *dev, 1521 const unsigned char *addr, 1522 u16 vid, u32 portid, u32 seq, 1523 struct netlink_ext_ack *extack); 1524 int (*ndo_bridge_setlink)(struct net_device *dev, 1525 struct nlmsghdr *nlh, 1526 u16 flags, 1527 struct netlink_ext_ack *extack); 1528 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1529 u32 pid, u32 seq, 1530 struct net_device *dev, 1531 u32 filter_mask, 1532 int nlflags); 1533 int (*ndo_bridge_dellink)(struct net_device *dev, 1534 struct nlmsghdr *nlh, 1535 u16 flags); 1536 int (*ndo_change_carrier)(struct net_device *dev, 1537 bool new_carrier); 1538 int (*ndo_get_phys_port_id)(struct net_device *dev, 1539 struct netdev_phys_item_id *ppid); 1540 int (*ndo_get_port_parent_id)(struct net_device *dev, 1541 struct netdev_phys_item_id *ppid); 1542 int (*ndo_get_phys_port_name)(struct net_device *dev, 1543 char *name, size_t len); 1544 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1545 struct net_device *dev); 1546 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1547 void *priv); 1548 1549 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1550 int queue_index, 1551 u32 maxrate); 1552 int (*ndo_get_iflink)(const struct net_device *dev); 1553 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1554 struct sk_buff *skb); 1555 void (*ndo_set_rx_headroom)(struct net_device *dev, 1556 int needed_headroom); 1557 int (*ndo_bpf)(struct net_device *dev, 1558 struct netdev_bpf *bpf); 1559 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1560 struct xdp_frame **xdp, 1561 u32 flags); 1562 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1563 struct xdp_buff *xdp); 1564 int (*ndo_xsk_wakeup)(struct net_device *dev, 1565 u32 queue_id, u32 flags); 1566 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1567 int (*ndo_tunnel_ctl)(struct net_device *dev, 1568 struct ip_tunnel_parm *p, int cmd); 1569 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1570 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1571 struct net_device_path *path); 1572 }; 1573 1574 /** 1575 * enum netdev_priv_flags - &struct net_device priv_flags 1576 * 1577 * These are the &struct net_device, they are only set internally 1578 * by drivers and used in the kernel. These flags are invisible to 1579 * userspace; this means that the order of these flags can change 1580 * during any kernel release. 1581 * 1582 * You should have a pretty good reason to be extending these flags. 1583 * 1584 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1585 * @IFF_EBRIDGE: Ethernet bridging device 1586 * @IFF_BONDING: bonding master or slave 1587 * @IFF_ISATAP: ISATAP interface (RFC4214) 1588 * @IFF_WAN_HDLC: WAN HDLC device 1589 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1590 * release skb->dst 1591 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1592 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1593 * @IFF_MACVLAN_PORT: device used as macvlan port 1594 * @IFF_BRIDGE_PORT: device used as bridge port 1595 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1596 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1597 * @IFF_UNICAST_FLT: Supports unicast filtering 1598 * @IFF_TEAM_PORT: device used as team port 1599 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1600 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1601 * change when it's running 1602 * @IFF_MACVLAN: Macvlan device 1603 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1604 * underlying stacked devices 1605 * @IFF_L3MDEV_MASTER: device is an L3 master device 1606 * @IFF_NO_QUEUE: device can run without qdisc attached 1607 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1608 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1609 * @IFF_TEAM: device is a team device 1610 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1611 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1612 * entity (i.e. the master device for bridged veth) 1613 * @IFF_MACSEC: device is a MACsec device 1614 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1615 * @IFF_FAILOVER: device is a failover master device 1616 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1617 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1618 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1619 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1620 * skb_headlen(skb) == 0 (data starts from frag0) 1621 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1622 */ 1623 enum netdev_priv_flags { 1624 IFF_802_1Q_VLAN = 1<<0, 1625 IFF_EBRIDGE = 1<<1, 1626 IFF_BONDING = 1<<2, 1627 IFF_ISATAP = 1<<3, 1628 IFF_WAN_HDLC = 1<<4, 1629 IFF_XMIT_DST_RELEASE = 1<<5, 1630 IFF_DONT_BRIDGE = 1<<6, 1631 IFF_DISABLE_NETPOLL = 1<<7, 1632 IFF_MACVLAN_PORT = 1<<8, 1633 IFF_BRIDGE_PORT = 1<<9, 1634 IFF_OVS_DATAPATH = 1<<10, 1635 IFF_TX_SKB_SHARING = 1<<11, 1636 IFF_UNICAST_FLT = 1<<12, 1637 IFF_TEAM_PORT = 1<<13, 1638 IFF_SUPP_NOFCS = 1<<14, 1639 IFF_LIVE_ADDR_CHANGE = 1<<15, 1640 IFF_MACVLAN = 1<<16, 1641 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1642 IFF_L3MDEV_MASTER = 1<<18, 1643 IFF_NO_QUEUE = 1<<19, 1644 IFF_OPENVSWITCH = 1<<20, 1645 IFF_L3MDEV_SLAVE = 1<<21, 1646 IFF_TEAM = 1<<22, 1647 IFF_RXFH_CONFIGURED = 1<<23, 1648 IFF_PHONY_HEADROOM = 1<<24, 1649 IFF_MACSEC = 1<<25, 1650 IFF_NO_RX_HANDLER = 1<<26, 1651 IFF_FAILOVER = 1<<27, 1652 IFF_FAILOVER_SLAVE = 1<<28, 1653 IFF_L3MDEV_RX_HANDLER = 1<<29, 1654 IFF_LIVE_RENAME_OK = 1<<30, 1655 IFF_TX_SKB_NO_LINEAR = 1<<31, 1656 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1657 }; 1658 1659 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1660 #define IFF_EBRIDGE IFF_EBRIDGE 1661 #define IFF_BONDING IFF_BONDING 1662 #define IFF_ISATAP IFF_ISATAP 1663 #define IFF_WAN_HDLC IFF_WAN_HDLC 1664 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1665 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1666 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1667 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1668 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1669 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1670 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1671 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1672 #define IFF_TEAM_PORT IFF_TEAM_PORT 1673 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1674 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1675 #define IFF_MACVLAN IFF_MACVLAN 1676 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1677 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1678 #define IFF_NO_QUEUE IFF_NO_QUEUE 1679 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1680 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1681 #define IFF_TEAM IFF_TEAM 1682 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1683 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1684 #define IFF_MACSEC IFF_MACSEC 1685 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1686 #define IFF_FAILOVER IFF_FAILOVER 1687 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1688 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1689 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1690 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1691 1692 /* Specifies the type of the struct net_device::ml_priv pointer */ 1693 enum netdev_ml_priv_type { 1694 ML_PRIV_NONE, 1695 ML_PRIV_CAN, 1696 }; 1697 1698 /** 1699 * struct net_device - The DEVICE structure. 1700 * 1701 * Actually, this whole structure is a big mistake. It mixes I/O 1702 * data with strictly "high-level" data, and it has to know about 1703 * almost every data structure used in the INET module. 1704 * 1705 * @name: This is the first field of the "visible" part of this structure 1706 * (i.e. as seen by users in the "Space.c" file). It is the name 1707 * of the interface. 1708 * 1709 * @name_node: Name hashlist node 1710 * @ifalias: SNMP alias 1711 * @mem_end: Shared memory end 1712 * @mem_start: Shared memory start 1713 * @base_addr: Device I/O address 1714 * @irq: Device IRQ number 1715 * 1716 * @state: Generic network queuing layer state, see netdev_state_t 1717 * @dev_list: The global list of network devices 1718 * @napi_list: List entry used for polling NAPI devices 1719 * @unreg_list: List entry when we are unregistering the 1720 * device; see the function unregister_netdev 1721 * @close_list: List entry used when we are closing the device 1722 * @ptype_all: Device-specific packet handlers for all protocols 1723 * @ptype_specific: Device-specific, protocol-specific packet handlers 1724 * 1725 * @adj_list: Directly linked devices, like slaves for bonding 1726 * @features: Currently active device features 1727 * @hw_features: User-changeable features 1728 * 1729 * @wanted_features: User-requested features 1730 * @vlan_features: Mask of features inheritable by VLAN devices 1731 * 1732 * @hw_enc_features: Mask of features inherited by encapsulating devices 1733 * This field indicates what encapsulation 1734 * offloads the hardware is capable of doing, 1735 * and drivers will need to set them appropriately. 1736 * 1737 * @mpls_features: Mask of features inheritable by MPLS 1738 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1739 * 1740 * @ifindex: interface index 1741 * @group: The group the device belongs to 1742 * 1743 * @stats: Statistics struct, which was left as a legacy, use 1744 * rtnl_link_stats64 instead 1745 * 1746 * @core_stats: core networking counters, 1747 * do not use this in drivers 1748 * @carrier_up_count: Number of times the carrier has been up 1749 * @carrier_down_count: Number of times the carrier has been down 1750 * 1751 * @wireless_handlers: List of functions to handle Wireless Extensions, 1752 * instead of ioctl, 1753 * see <net/iw_handler.h> for details. 1754 * @wireless_data: Instance data managed by the core of wireless extensions 1755 * 1756 * @netdev_ops: Includes several pointers to callbacks, 1757 * if one wants to override the ndo_*() functions 1758 * @ethtool_ops: Management operations 1759 * @l3mdev_ops: Layer 3 master device operations 1760 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1761 * discovery handling. Necessary for e.g. 6LoWPAN. 1762 * @xfrmdev_ops: Transformation offload operations 1763 * @tlsdev_ops: Transport Layer Security offload operations 1764 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1765 * of Layer 2 headers. 1766 * 1767 * @flags: Interface flags (a la BSD) 1768 * @priv_flags: Like 'flags' but invisible to userspace, 1769 * see if.h for the definitions 1770 * @gflags: Global flags ( kept as legacy ) 1771 * @padded: How much padding added by alloc_netdev() 1772 * @operstate: RFC2863 operstate 1773 * @link_mode: Mapping policy to operstate 1774 * @if_port: Selectable AUI, TP, ... 1775 * @dma: DMA channel 1776 * @mtu: Interface MTU value 1777 * @min_mtu: Interface Minimum MTU value 1778 * @max_mtu: Interface Maximum MTU value 1779 * @type: Interface hardware type 1780 * @hard_header_len: Maximum hardware header length. 1781 * @min_header_len: Minimum hardware header length 1782 * 1783 * @needed_headroom: Extra headroom the hardware may need, but not in all 1784 * cases can this be guaranteed 1785 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1786 * cases can this be guaranteed. Some cases also use 1787 * LL_MAX_HEADER instead to allocate the skb 1788 * 1789 * interface address info: 1790 * 1791 * @perm_addr: Permanent hw address 1792 * @addr_assign_type: Hw address assignment type 1793 * @addr_len: Hardware address length 1794 * @upper_level: Maximum depth level of upper devices. 1795 * @lower_level: Maximum depth level of lower devices. 1796 * @neigh_priv_len: Used in neigh_alloc() 1797 * @dev_id: Used to differentiate devices that share 1798 * the same link layer address 1799 * @dev_port: Used to differentiate devices that share 1800 * the same function 1801 * @addr_list_lock: XXX: need comments on this one 1802 * @name_assign_type: network interface name assignment type 1803 * @uc_promisc: Counter that indicates promiscuous mode 1804 * has been enabled due to the need to listen to 1805 * additional unicast addresses in a device that 1806 * does not implement ndo_set_rx_mode() 1807 * @uc: unicast mac addresses 1808 * @mc: multicast mac addresses 1809 * @dev_addrs: list of device hw addresses 1810 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1811 * @promiscuity: Number of times the NIC is told to work in 1812 * promiscuous mode; if it becomes 0 the NIC will 1813 * exit promiscuous mode 1814 * @allmulti: Counter, enables or disables allmulticast mode 1815 * 1816 * @vlan_info: VLAN info 1817 * @dsa_ptr: dsa specific data 1818 * @tipc_ptr: TIPC specific data 1819 * @atalk_ptr: AppleTalk link 1820 * @ip_ptr: IPv4 specific data 1821 * @dn_ptr: DECnet specific data 1822 * @ip6_ptr: IPv6 specific data 1823 * @ax25_ptr: AX.25 specific data 1824 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1825 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1826 * device struct 1827 * @mpls_ptr: mpls_dev struct pointer 1828 * @mctp_ptr: MCTP specific data 1829 * 1830 * @dev_addr: Hw address (before bcast, 1831 * because most packets are unicast) 1832 * 1833 * @_rx: Array of RX queues 1834 * @num_rx_queues: Number of RX queues 1835 * allocated at register_netdev() time 1836 * @real_num_rx_queues: Number of RX queues currently active in device 1837 * @xdp_prog: XDP sockets filter program pointer 1838 * @gro_flush_timeout: timeout for GRO layer in NAPI 1839 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1840 * allow to avoid NIC hard IRQ, on busy queues. 1841 * 1842 * @rx_handler: handler for received packets 1843 * @rx_handler_data: XXX: need comments on this one 1844 * @miniq_ingress: ingress/clsact qdisc specific data for 1845 * ingress processing 1846 * @ingress_queue: XXX: need comments on this one 1847 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1848 * @broadcast: hw bcast address 1849 * 1850 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1851 * indexed by RX queue number. Assigned by driver. 1852 * This must only be set if the ndo_rx_flow_steer 1853 * operation is defined 1854 * @index_hlist: Device index hash chain 1855 * 1856 * @_tx: Array of TX queues 1857 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1858 * @real_num_tx_queues: Number of TX queues currently active in device 1859 * @qdisc: Root qdisc from userspace point of view 1860 * @tx_queue_len: Max frames per queue allowed 1861 * @tx_global_lock: XXX: need comments on this one 1862 * @xdp_bulkq: XDP device bulk queue 1863 * @xps_maps: all CPUs/RXQs maps for XPS device 1864 * 1865 * @xps_maps: XXX: need comments on this one 1866 * @miniq_egress: clsact qdisc specific data for 1867 * egress processing 1868 * @nf_hooks_egress: netfilter hooks executed for egress packets 1869 * @qdisc_hash: qdisc hash table 1870 * @watchdog_timeo: Represents the timeout that is used by 1871 * the watchdog (see dev_watchdog()) 1872 * @watchdog_timer: List of timers 1873 * 1874 * @proto_down_reason: reason a netdev interface is held down 1875 * @pcpu_refcnt: Number of references to this device 1876 * @dev_refcnt: Number of references to this device 1877 * @refcnt_tracker: Tracker directory for tracked references to this device 1878 * @todo_list: Delayed register/unregister 1879 * @link_watch_list: XXX: need comments on this one 1880 * 1881 * @reg_state: Register/unregister state machine 1882 * @dismantle: Device is going to be freed 1883 * @rtnl_link_state: This enum represents the phases of creating 1884 * a new link 1885 * 1886 * @needs_free_netdev: Should unregister perform free_netdev? 1887 * @priv_destructor: Called from unregister 1888 * @npinfo: XXX: need comments on this one 1889 * @nd_net: Network namespace this network device is inside 1890 * 1891 * @ml_priv: Mid-layer private 1892 * @ml_priv_type: Mid-layer private type 1893 * @lstats: Loopback statistics 1894 * @tstats: Tunnel statistics 1895 * @dstats: Dummy statistics 1896 * @vstats: Virtual ethernet statistics 1897 * 1898 * @garp_port: GARP 1899 * @mrp_port: MRP 1900 * 1901 * @dm_private: Drop monitor private 1902 * 1903 * @dev: Class/net/name entry 1904 * @sysfs_groups: Space for optional device, statistics and wireless 1905 * sysfs groups 1906 * 1907 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1908 * @rtnl_link_ops: Rtnl_link_ops 1909 * 1910 * @gso_max_size: Maximum size of generic segmentation offload 1911 * @gso_max_segs: Maximum number of segments that can be passed to the 1912 * NIC for GSO 1913 * 1914 * @dcbnl_ops: Data Center Bridging netlink ops 1915 * @num_tc: Number of traffic classes in the net device 1916 * @tc_to_txq: XXX: need comments on this one 1917 * @prio_tc_map: XXX: need comments on this one 1918 * 1919 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1920 * 1921 * @priomap: XXX: need comments on this one 1922 * @phydev: Physical device may attach itself 1923 * for hardware timestamping 1924 * @sfp_bus: attached &struct sfp_bus structure. 1925 * 1926 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1927 * 1928 * @proto_down: protocol port state information can be sent to the 1929 * switch driver and used to set the phys state of the 1930 * switch port. 1931 * 1932 * @wol_enabled: Wake-on-LAN is enabled 1933 * 1934 * @threaded: napi threaded mode is enabled 1935 * 1936 * @net_notifier_list: List of per-net netdev notifier block 1937 * that follow this device when it is moved 1938 * to another network namespace. 1939 * 1940 * @macsec_ops: MACsec offloading ops 1941 * 1942 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1943 * offload capabilities of the device 1944 * @udp_tunnel_nic: UDP tunnel offload state 1945 * @xdp_state: stores info on attached XDP BPF programs 1946 * 1947 * @nested_level: Used as a parameter of spin_lock_nested() of 1948 * dev->addr_list_lock. 1949 * @unlink_list: As netif_addr_lock() can be called recursively, 1950 * keep a list of interfaces to be deleted. 1951 * @gro_max_size: Maximum size of aggregated packet in generic 1952 * receive offload (GRO) 1953 * 1954 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 1955 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 1956 * @watchdog_dev_tracker: refcount tracker used by watchdog. 1957 * @dev_registered_tracker: tracker for reference held while 1958 * registered 1959 * @offload_xstats_l3: L3 HW stats for this netdevice. 1960 * 1961 * FIXME: cleanup struct net_device such that network protocol info 1962 * moves out. 1963 */ 1964 1965 struct net_device { 1966 char name[IFNAMSIZ]; 1967 struct netdev_name_node *name_node; 1968 struct dev_ifalias __rcu *ifalias; 1969 /* 1970 * I/O specific fields 1971 * FIXME: Merge these and struct ifmap into one 1972 */ 1973 unsigned long mem_end; 1974 unsigned long mem_start; 1975 unsigned long base_addr; 1976 1977 /* 1978 * Some hardware also needs these fields (state,dev_list, 1979 * napi_list,unreg_list,close_list) but they are not 1980 * part of the usual set specified in Space.c. 1981 */ 1982 1983 unsigned long state; 1984 1985 struct list_head dev_list; 1986 struct list_head napi_list; 1987 struct list_head unreg_list; 1988 struct list_head close_list; 1989 struct list_head ptype_all; 1990 struct list_head ptype_specific; 1991 1992 struct { 1993 struct list_head upper; 1994 struct list_head lower; 1995 } adj_list; 1996 1997 /* Read-mostly cache-line for fast-path access */ 1998 unsigned int flags; 1999 unsigned long long priv_flags; 2000 const struct net_device_ops *netdev_ops; 2001 int ifindex; 2002 unsigned short gflags; 2003 unsigned short hard_header_len; 2004 2005 /* Note : dev->mtu is often read without holding a lock. 2006 * Writers usually hold RTNL. 2007 * It is recommended to use READ_ONCE() to annotate the reads, 2008 * and to use WRITE_ONCE() to annotate the writes. 2009 */ 2010 unsigned int mtu; 2011 unsigned short needed_headroom; 2012 unsigned short needed_tailroom; 2013 2014 netdev_features_t features; 2015 netdev_features_t hw_features; 2016 netdev_features_t wanted_features; 2017 netdev_features_t vlan_features; 2018 netdev_features_t hw_enc_features; 2019 netdev_features_t mpls_features; 2020 netdev_features_t gso_partial_features; 2021 2022 unsigned int min_mtu; 2023 unsigned int max_mtu; 2024 unsigned short type; 2025 unsigned char min_header_len; 2026 unsigned char name_assign_type; 2027 2028 int group; 2029 2030 struct net_device_stats stats; /* not used by modern drivers */ 2031 2032 struct net_device_core_stats __percpu *core_stats; 2033 2034 /* Stats to monitor link on/off, flapping */ 2035 atomic_t carrier_up_count; 2036 atomic_t carrier_down_count; 2037 2038 #ifdef CONFIG_WIRELESS_EXT 2039 const struct iw_handler_def *wireless_handlers; 2040 struct iw_public_data *wireless_data; 2041 #endif 2042 const struct ethtool_ops *ethtool_ops; 2043 #ifdef CONFIG_NET_L3_MASTER_DEV 2044 const struct l3mdev_ops *l3mdev_ops; 2045 #endif 2046 #if IS_ENABLED(CONFIG_IPV6) 2047 const struct ndisc_ops *ndisc_ops; 2048 #endif 2049 2050 #ifdef CONFIG_XFRM_OFFLOAD 2051 const struct xfrmdev_ops *xfrmdev_ops; 2052 #endif 2053 2054 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2055 const struct tlsdev_ops *tlsdev_ops; 2056 #endif 2057 2058 const struct header_ops *header_ops; 2059 2060 unsigned char operstate; 2061 unsigned char link_mode; 2062 2063 unsigned char if_port; 2064 unsigned char dma; 2065 2066 /* Interface address info. */ 2067 unsigned char perm_addr[MAX_ADDR_LEN]; 2068 unsigned char addr_assign_type; 2069 unsigned char addr_len; 2070 unsigned char upper_level; 2071 unsigned char lower_level; 2072 2073 unsigned short neigh_priv_len; 2074 unsigned short dev_id; 2075 unsigned short dev_port; 2076 unsigned short padded; 2077 2078 spinlock_t addr_list_lock; 2079 int irq; 2080 2081 struct netdev_hw_addr_list uc; 2082 struct netdev_hw_addr_list mc; 2083 struct netdev_hw_addr_list dev_addrs; 2084 2085 #ifdef CONFIG_SYSFS 2086 struct kset *queues_kset; 2087 #endif 2088 #ifdef CONFIG_LOCKDEP 2089 struct list_head unlink_list; 2090 #endif 2091 unsigned int promiscuity; 2092 unsigned int allmulti; 2093 bool uc_promisc; 2094 #ifdef CONFIG_LOCKDEP 2095 unsigned char nested_level; 2096 #endif 2097 2098 2099 /* Protocol-specific pointers */ 2100 2101 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2102 struct vlan_info __rcu *vlan_info; 2103 #endif 2104 #if IS_ENABLED(CONFIG_NET_DSA) 2105 struct dsa_port *dsa_ptr; 2106 #endif 2107 #if IS_ENABLED(CONFIG_TIPC) 2108 struct tipc_bearer __rcu *tipc_ptr; 2109 #endif 2110 #if IS_ENABLED(CONFIG_ATALK) 2111 void *atalk_ptr; 2112 #endif 2113 struct in_device __rcu *ip_ptr; 2114 #if IS_ENABLED(CONFIG_DECNET) 2115 struct dn_dev __rcu *dn_ptr; 2116 #endif 2117 struct inet6_dev __rcu *ip6_ptr; 2118 #if IS_ENABLED(CONFIG_AX25) 2119 void *ax25_ptr; 2120 #endif 2121 struct wireless_dev *ieee80211_ptr; 2122 struct wpan_dev *ieee802154_ptr; 2123 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2124 struct mpls_dev __rcu *mpls_ptr; 2125 #endif 2126 #if IS_ENABLED(CONFIG_MCTP) 2127 struct mctp_dev __rcu *mctp_ptr; 2128 #endif 2129 2130 /* 2131 * Cache lines mostly used on receive path (including eth_type_trans()) 2132 */ 2133 /* Interface address info used in eth_type_trans() */ 2134 const unsigned char *dev_addr; 2135 2136 struct netdev_rx_queue *_rx; 2137 unsigned int num_rx_queues; 2138 unsigned int real_num_rx_queues; 2139 2140 struct bpf_prog __rcu *xdp_prog; 2141 unsigned long gro_flush_timeout; 2142 int napi_defer_hard_irqs; 2143 #define GRO_MAX_SIZE 65536 2144 unsigned int gro_max_size; 2145 rx_handler_func_t __rcu *rx_handler; 2146 void __rcu *rx_handler_data; 2147 2148 #ifdef CONFIG_NET_CLS_ACT 2149 struct mini_Qdisc __rcu *miniq_ingress; 2150 #endif 2151 struct netdev_queue __rcu *ingress_queue; 2152 #ifdef CONFIG_NETFILTER_INGRESS 2153 struct nf_hook_entries __rcu *nf_hooks_ingress; 2154 #endif 2155 2156 unsigned char broadcast[MAX_ADDR_LEN]; 2157 #ifdef CONFIG_RFS_ACCEL 2158 struct cpu_rmap *rx_cpu_rmap; 2159 #endif 2160 struct hlist_node index_hlist; 2161 2162 /* 2163 * Cache lines mostly used on transmit path 2164 */ 2165 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2166 unsigned int num_tx_queues; 2167 unsigned int real_num_tx_queues; 2168 struct Qdisc __rcu *qdisc; 2169 unsigned int tx_queue_len; 2170 spinlock_t tx_global_lock; 2171 2172 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2173 2174 #ifdef CONFIG_XPS 2175 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2176 #endif 2177 #ifdef CONFIG_NET_CLS_ACT 2178 struct mini_Qdisc __rcu *miniq_egress; 2179 #endif 2180 #ifdef CONFIG_NETFILTER_EGRESS 2181 struct nf_hook_entries __rcu *nf_hooks_egress; 2182 #endif 2183 2184 #ifdef CONFIG_NET_SCHED 2185 DECLARE_HASHTABLE (qdisc_hash, 4); 2186 #endif 2187 /* These may be needed for future network-power-down code. */ 2188 struct timer_list watchdog_timer; 2189 int watchdog_timeo; 2190 2191 u32 proto_down_reason; 2192 2193 struct list_head todo_list; 2194 2195 #ifdef CONFIG_PCPU_DEV_REFCNT 2196 int __percpu *pcpu_refcnt; 2197 #else 2198 refcount_t dev_refcnt; 2199 #endif 2200 struct ref_tracker_dir refcnt_tracker; 2201 2202 struct list_head link_watch_list; 2203 2204 enum { NETREG_UNINITIALIZED=0, 2205 NETREG_REGISTERED, /* completed register_netdevice */ 2206 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2207 NETREG_UNREGISTERED, /* completed unregister todo */ 2208 NETREG_RELEASED, /* called free_netdev */ 2209 NETREG_DUMMY, /* dummy device for NAPI poll */ 2210 } reg_state:8; 2211 2212 bool dismantle; 2213 2214 enum { 2215 RTNL_LINK_INITIALIZED, 2216 RTNL_LINK_INITIALIZING, 2217 } rtnl_link_state:16; 2218 2219 bool needs_free_netdev; 2220 void (*priv_destructor)(struct net_device *dev); 2221 2222 #ifdef CONFIG_NETPOLL 2223 struct netpoll_info __rcu *npinfo; 2224 #endif 2225 2226 possible_net_t nd_net; 2227 2228 /* mid-layer private */ 2229 void *ml_priv; 2230 enum netdev_ml_priv_type ml_priv_type; 2231 2232 union { 2233 struct pcpu_lstats __percpu *lstats; 2234 struct pcpu_sw_netstats __percpu *tstats; 2235 struct pcpu_dstats __percpu *dstats; 2236 }; 2237 2238 #if IS_ENABLED(CONFIG_GARP) 2239 struct garp_port __rcu *garp_port; 2240 #endif 2241 #if IS_ENABLED(CONFIG_MRP) 2242 struct mrp_port __rcu *mrp_port; 2243 #endif 2244 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2245 struct dm_hw_stat_delta __rcu *dm_private; 2246 #endif 2247 struct device dev; 2248 const struct attribute_group *sysfs_groups[4]; 2249 const struct attribute_group *sysfs_rx_queue_group; 2250 2251 const struct rtnl_link_ops *rtnl_link_ops; 2252 2253 /* for setting kernel sock attribute on TCP connection setup */ 2254 #define GSO_MAX_SIZE 65536 2255 unsigned int gso_max_size; 2256 #define GSO_MAX_SEGS 65535 2257 u16 gso_max_segs; 2258 2259 #ifdef CONFIG_DCB 2260 const struct dcbnl_rtnl_ops *dcbnl_ops; 2261 #endif 2262 s16 num_tc; 2263 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2264 u8 prio_tc_map[TC_BITMASK + 1]; 2265 2266 #if IS_ENABLED(CONFIG_FCOE) 2267 unsigned int fcoe_ddp_xid; 2268 #endif 2269 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2270 struct netprio_map __rcu *priomap; 2271 #endif 2272 struct phy_device *phydev; 2273 struct sfp_bus *sfp_bus; 2274 struct lock_class_key *qdisc_tx_busylock; 2275 bool proto_down; 2276 unsigned wol_enabled:1; 2277 unsigned threaded:1; 2278 2279 struct list_head net_notifier_list; 2280 2281 #if IS_ENABLED(CONFIG_MACSEC) 2282 /* MACsec management functions */ 2283 const struct macsec_ops *macsec_ops; 2284 #endif 2285 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2286 struct udp_tunnel_nic *udp_tunnel_nic; 2287 2288 /* protected by rtnl_lock */ 2289 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2290 2291 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2292 netdevice_tracker linkwatch_dev_tracker; 2293 netdevice_tracker watchdog_dev_tracker; 2294 netdevice_tracker dev_registered_tracker; 2295 struct rtnl_hw_stats64 *offload_xstats_l3; 2296 }; 2297 #define to_net_dev(d) container_of(d, struct net_device, dev) 2298 2299 static inline bool netif_elide_gro(const struct net_device *dev) 2300 { 2301 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2302 return true; 2303 return false; 2304 } 2305 2306 #define NETDEV_ALIGN 32 2307 2308 static inline 2309 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2310 { 2311 return dev->prio_tc_map[prio & TC_BITMASK]; 2312 } 2313 2314 static inline 2315 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2316 { 2317 if (tc >= dev->num_tc) 2318 return -EINVAL; 2319 2320 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2321 return 0; 2322 } 2323 2324 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2325 void netdev_reset_tc(struct net_device *dev); 2326 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2327 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2328 2329 static inline 2330 int netdev_get_num_tc(struct net_device *dev) 2331 { 2332 return dev->num_tc; 2333 } 2334 2335 static inline void net_prefetch(void *p) 2336 { 2337 prefetch(p); 2338 #if L1_CACHE_BYTES < 128 2339 prefetch((u8 *)p + L1_CACHE_BYTES); 2340 #endif 2341 } 2342 2343 static inline void net_prefetchw(void *p) 2344 { 2345 prefetchw(p); 2346 #if L1_CACHE_BYTES < 128 2347 prefetchw((u8 *)p + L1_CACHE_BYTES); 2348 #endif 2349 } 2350 2351 void netdev_unbind_sb_channel(struct net_device *dev, 2352 struct net_device *sb_dev); 2353 int netdev_bind_sb_channel_queue(struct net_device *dev, 2354 struct net_device *sb_dev, 2355 u8 tc, u16 count, u16 offset); 2356 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2357 static inline int netdev_get_sb_channel(struct net_device *dev) 2358 { 2359 return max_t(int, -dev->num_tc, 0); 2360 } 2361 2362 static inline 2363 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2364 unsigned int index) 2365 { 2366 return &dev->_tx[index]; 2367 } 2368 2369 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2370 const struct sk_buff *skb) 2371 { 2372 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2373 } 2374 2375 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2376 void (*f)(struct net_device *, 2377 struct netdev_queue *, 2378 void *), 2379 void *arg) 2380 { 2381 unsigned int i; 2382 2383 for (i = 0; i < dev->num_tx_queues; i++) 2384 f(dev, &dev->_tx[i], arg); 2385 } 2386 2387 #define netdev_lockdep_set_classes(dev) \ 2388 { \ 2389 static struct lock_class_key qdisc_tx_busylock_key; \ 2390 static struct lock_class_key qdisc_xmit_lock_key; \ 2391 static struct lock_class_key dev_addr_list_lock_key; \ 2392 unsigned int i; \ 2393 \ 2394 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2395 lockdep_set_class(&(dev)->addr_list_lock, \ 2396 &dev_addr_list_lock_key); \ 2397 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2398 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2399 &qdisc_xmit_lock_key); \ 2400 } 2401 2402 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2403 struct net_device *sb_dev); 2404 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2405 struct sk_buff *skb, 2406 struct net_device *sb_dev); 2407 2408 /* returns the headroom that the master device needs to take in account 2409 * when forwarding to this dev 2410 */ 2411 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2412 { 2413 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2414 } 2415 2416 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2417 { 2418 if (dev->netdev_ops->ndo_set_rx_headroom) 2419 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2420 } 2421 2422 /* set the device rx headroom to the dev's default */ 2423 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2424 { 2425 netdev_set_rx_headroom(dev, -1); 2426 } 2427 2428 static inline void *netdev_get_ml_priv(struct net_device *dev, 2429 enum netdev_ml_priv_type type) 2430 { 2431 if (dev->ml_priv_type != type) 2432 return NULL; 2433 2434 return dev->ml_priv; 2435 } 2436 2437 static inline void netdev_set_ml_priv(struct net_device *dev, 2438 void *ml_priv, 2439 enum netdev_ml_priv_type type) 2440 { 2441 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2442 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2443 dev->ml_priv_type, type); 2444 WARN(!dev->ml_priv_type && dev->ml_priv, 2445 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2446 2447 dev->ml_priv = ml_priv; 2448 dev->ml_priv_type = type; 2449 } 2450 2451 /* 2452 * Net namespace inlines 2453 */ 2454 static inline 2455 struct net *dev_net(const struct net_device *dev) 2456 { 2457 return read_pnet(&dev->nd_net); 2458 } 2459 2460 static inline 2461 void dev_net_set(struct net_device *dev, struct net *net) 2462 { 2463 write_pnet(&dev->nd_net, net); 2464 } 2465 2466 /** 2467 * netdev_priv - access network device private data 2468 * @dev: network device 2469 * 2470 * Get network device private data 2471 */ 2472 static inline void *netdev_priv(const struct net_device *dev) 2473 { 2474 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2475 } 2476 2477 /* Set the sysfs physical device reference for the network logical device 2478 * if set prior to registration will cause a symlink during initialization. 2479 */ 2480 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2481 2482 /* Set the sysfs device type for the network logical device to allow 2483 * fine-grained identification of different network device types. For 2484 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2485 */ 2486 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2487 2488 /* Default NAPI poll() weight 2489 * Device drivers are strongly advised to not use bigger value 2490 */ 2491 #define NAPI_POLL_WEIGHT 64 2492 2493 /** 2494 * netif_napi_add - initialize a NAPI context 2495 * @dev: network device 2496 * @napi: NAPI context 2497 * @poll: polling function 2498 * @weight: default weight 2499 * 2500 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2501 * *any* of the other NAPI-related functions. 2502 */ 2503 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2504 int (*poll)(struct napi_struct *, int), int weight); 2505 2506 /** 2507 * netif_tx_napi_add - initialize a NAPI context 2508 * @dev: network device 2509 * @napi: NAPI context 2510 * @poll: polling function 2511 * @weight: default weight 2512 * 2513 * This variant of netif_napi_add() should be used from drivers using NAPI 2514 * to exclusively poll a TX queue. 2515 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2516 */ 2517 static inline void netif_tx_napi_add(struct net_device *dev, 2518 struct napi_struct *napi, 2519 int (*poll)(struct napi_struct *, int), 2520 int weight) 2521 { 2522 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2523 netif_napi_add(dev, napi, poll, weight); 2524 } 2525 2526 /** 2527 * __netif_napi_del - remove a NAPI context 2528 * @napi: NAPI context 2529 * 2530 * Warning: caller must observe RCU grace period before freeing memory 2531 * containing @napi. Drivers might want to call this helper to combine 2532 * all the needed RCU grace periods into a single one. 2533 */ 2534 void __netif_napi_del(struct napi_struct *napi); 2535 2536 /** 2537 * netif_napi_del - remove a NAPI context 2538 * @napi: NAPI context 2539 * 2540 * netif_napi_del() removes a NAPI context from the network device NAPI list 2541 */ 2542 static inline void netif_napi_del(struct napi_struct *napi) 2543 { 2544 __netif_napi_del(napi); 2545 synchronize_net(); 2546 } 2547 2548 struct packet_type { 2549 __be16 type; /* This is really htons(ether_type). */ 2550 bool ignore_outgoing; 2551 struct net_device *dev; /* NULL is wildcarded here */ 2552 netdevice_tracker dev_tracker; 2553 int (*func) (struct sk_buff *, 2554 struct net_device *, 2555 struct packet_type *, 2556 struct net_device *); 2557 void (*list_func) (struct list_head *, 2558 struct packet_type *, 2559 struct net_device *); 2560 bool (*id_match)(struct packet_type *ptype, 2561 struct sock *sk); 2562 struct net *af_packet_net; 2563 void *af_packet_priv; 2564 struct list_head list; 2565 }; 2566 2567 struct offload_callbacks { 2568 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2569 netdev_features_t features); 2570 struct sk_buff *(*gro_receive)(struct list_head *head, 2571 struct sk_buff *skb); 2572 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2573 }; 2574 2575 struct packet_offload { 2576 __be16 type; /* This is really htons(ether_type). */ 2577 u16 priority; 2578 struct offload_callbacks callbacks; 2579 struct list_head list; 2580 }; 2581 2582 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2583 struct pcpu_sw_netstats { 2584 u64 rx_packets; 2585 u64 rx_bytes; 2586 u64 tx_packets; 2587 u64 tx_bytes; 2588 struct u64_stats_sync syncp; 2589 } __aligned(4 * sizeof(u64)); 2590 2591 struct pcpu_lstats { 2592 u64_stats_t packets; 2593 u64_stats_t bytes; 2594 struct u64_stats_sync syncp; 2595 } __aligned(2 * sizeof(u64)); 2596 2597 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2598 2599 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2600 { 2601 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2602 2603 u64_stats_update_begin(&tstats->syncp); 2604 tstats->rx_bytes += len; 2605 tstats->rx_packets++; 2606 u64_stats_update_end(&tstats->syncp); 2607 } 2608 2609 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2610 unsigned int packets, 2611 unsigned int len) 2612 { 2613 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2614 2615 u64_stats_update_begin(&tstats->syncp); 2616 tstats->tx_bytes += len; 2617 tstats->tx_packets += packets; 2618 u64_stats_update_end(&tstats->syncp); 2619 } 2620 2621 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2622 { 2623 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2624 2625 u64_stats_update_begin(&lstats->syncp); 2626 u64_stats_add(&lstats->bytes, len); 2627 u64_stats_inc(&lstats->packets); 2628 u64_stats_update_end(&lstats->syncp); 2629 } 2630 2631 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2632 ({ \ 2633 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2634 if (pcpu_stats) { \ 2635 int __cpu; \ 2636 for_each_possible_cpu(__cpu) { \ 2637 typeof(type) *stat; \ 2638 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2639 u64_stats_init(&stat->syncp); \ 2640 } \ 2641 } \ 2642 pcpu_stats; \ 2643 }) 2644 2645 #define netdev_alloc_pcpu_stats(type) \ 2646 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2647 2648 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2649 ({ \ 2650 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2651 if (pcpu_stats) { \ 2652 int __cpu; \ 2653 for_each_possible_cpu(__cpu) { \ 2654 typeof(type) *stat; \ 2655 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2656 u64_stats_init(&stat->syncp); \ 2657 } \ 2658 } \ 2659 pcpu_stats; \ 2660 }) 2661 2662 enum netdev_lag_tx_type { 2663 NETDEV_LAG_TX_TYPE_UNKNOWN, 2664 NETDEV_LAG_TX_TYPE_RANDOM, 2665 NETDEV_LAG_TX_TYPE_BROADCAST, 2666 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2667 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2668 NETDEV_LAG_TX_TYPE_HASH, 2669 }; 2670 2671 enum netdev_lag_hash { 2672 NETDEV_LAG_HASH_NONE, 2673 NETDEV_LAG_HASH_L2, 2674 NETDEV_LAG_HASH_L34, 2675 NETDEV_LAG_HASH_L23, 2676 NETDEV_LAG_HASH_E23, 2677 NETDEV_LAG_HASH_E34, 2678 NETDEV_LAG_HASH_VLAN_SRCMAC, 2679 NETDEV_LAG_HASH_UNKNOWN, 2680 }; 2681 2682 struct netdev_lag_upper_info { 2683 enum netdev_lag_tx_type tx_type; 2684 enum netdev_lag_hash hash_type; 2685 }; 2686 2687 struct netdev_lag_lower_state_info { 2688 u8 link_up : 1, 2689 tx_enabled : 1; 2690 }; 2691 2692 #include <linux/notifier.h> 2693 2694 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2695 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2696 * adding new types. 2697 */ 2698 enum netdev_cmd { 2699 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2700 NETDEV_DOWN, 2701 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2702 detected a hardware crash and restarted 2703 - we can use this eg to kick tcp sessions 2704 once done */ 2705 NETDEV_CHANGE, /* Notify device state change */ 2706 NETDEV_REGISTER, 2707 NETDEV_UNREGISTER, 2708 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2709 NETDEV_CHANGEADDR, /* notify after the address change */ 2710 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2711 NETDEV_GOING_DOWN, 2712 NETDEV_CHANGENAME, 2713 NETDEV_FEAT_CHANGE, 2714 NETDEV_BONDING_FAILOVER, 2715 NETDEV_PRE_UP, 2716 NETDEV_PRE_TYPE_CHANGE, 2717 NETDEV_POST_TYPE_CHANGE, 2718 NETDEV_POST_INIT, 2719 NETDEV_RELEASE, 2720 NETDEV_NOTIFY_PEERS, 2721 NETDEV_JOIN, 2722 NETDEV_CHANGEUPPER, 2723 NETDEV_RESEND_IGMP, 2724 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2725 NETDEV_CHANGEINFODATA, 2726 NETDEV_BONDING_INFO, 2727 NETDEV_PRECHANGEUPPER, 2728 NETDEV_CHANGELOWERSTATE, 2729 NETDEV_UDP_TUNNEL_PUSH_INFO, 2730 NETDEV_UDP_TUNNEL_DROP_INFO, 2731 NETDEV_CHANGE_TX_QUEUE_LEN, 2732 NETDEV_CVLAN_FILTER_PUSH_INFO, 2733 NETDEV_CVLAN_FILTER_DROP_INFO, 2734 NETDEV_SVLAN_FILTER_PUSH_INFO, 2735 NETDEV_SVLAN_FILTER_DROP_INFO, 2736 NETDEV_OFFLOAD_XSTATS_ENABLE, 2737 NETDEV_OFFLOAD_XSTATS_DISABLE, 2738 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2739 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2740 }; 2741 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2742 2743 int register_netdevice_notifier(struct notifier_block *nb); 2744 int unregister_netdevice_notifier(struct notifier_block *nb); 2745 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2746 int unregister_netdevice_notifier_net(struct net *net, 2747 struct notifier_block *nb); 2748 int register_netdevice_notifier_dev_net(struct net_device *dev, 2749 struct notifier_block *nb, 2750 struct netdev_net_notifier *nn); 2751 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2752 struct notifier_block *nb, 2753 struct netdev_net_notifier *nn); 2754 2755 struct netdev_notifier_info { 2756 struct net_device *dev; 2757 struct netlink_ext_ack *extack; 2758 }; 2759 2760 struct netdev_notifier_info_ext { 2761 struct netdev_notifier_info info; /* must be first */ 2762 union { 2763 u32 mtu; 2764 } ext; 2765 }; 2766 2767 struct netdev_notifier_change_info { 2768 struct netdev_notifier_info info; /* must be first */ 2769 unsigned int flags_changed; 2770 }; 2771 2772 struct netdev_notifier_changeupper_info { 2773 struct netdev_notifier_info info; /* must be first */ 2774 struct net_device *upper_dev; /* new upper dev */ 2775 bool master; /* is upper dev master */ 2776 bool linking; /* is the notification for link or unlink */ 2777 void *upper_info; /* upper dev info */ 2778 }; 2779 2780 struct netdev_notifier_changelowerstate_info { 2781 struct netdev_notifier_info info; /* must be first */ 2782 void *lower_state_info; /* is lower dev state */ 2783 }; 2784 2785 struct netdev_notifier_pre_changeaddr_info { 2786 struct netdev_notifier_info info; /* must be first */ 2787 const unsigned char *dev_addr; 2788 }; 2789 2790 enum netdev_offload_xstats_type { 2791 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2792 }; 2793 2794 struct netdev_notifier_offload_xstats_info { 2795 struct netdev_notifier_info info; /* must be first */ 2796 enum netdev_offload_xstats_type type; 2797 2798 union { 2799 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2800 struct netdev_notifier_offload_xstats_rd *report_delta; 2801 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2802 struct netdev_notifier_offload_xstats_ru *report_used; 2803 }; 2804 }; 2805 2806 int netdev_offload_xstats_enable(struct net_device *dev, 2807 enum netdev_offload_xstats_type type, 2808 struct netlink_ext_ack *extack); 2809 int netdev_offload_xstats_disable(struct net_device *dev, 2810 enum netdev_offload_xstats_type type); 2811 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2812 enum netdev_offload_xstats_type type); 2813 int netdev_offload_xstats_get(struct net_device *dev, 2814 enum netdev_offload_xstats_type type, 2815 struct rtnl_hw_stats64 *stats, bool *used, 2816 struct netlink_ext_ack *extack); 2817 void 2818 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2819 const struct rtnl_hw_stats64 *stats); 2820 void 2821 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2822 void netdev_offload_xstats_push_delta(struct net_device *dev, 2823 enum netdev_offload_xstats_type type, 2824 const struct rtnl_hw_stats64 *stats); 2825 2826 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2827 struct net_device *dev) 2828 { 2829 info->dev = dev; 2830 info->extack = NULL; 2831 } 2832 2833 static inline struct net_device * 2834 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2835 { 2836 return info->dev; 2837 } 2838 2839 static inline struct netlink_ext_ack * 2840 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2841 { 2842 return info->extack; 2843 } 2844 2845 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2846 2847 2848 extern rwlock_t dev_base_lock; /* Device list lock */ 2849 2850 #define for_each_netdev(net, d) \ 2851 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2852 #define for_each_netdev_reverse(net, d) \ 2853 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2854 #define for_each_netdev_rcu(net, d) \ 2855 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2856 #define for_each_netdev_safe(net, d, n) \ 2857 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2858 #define for_each_netdev_continue(net, d) \ 2859 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2860 #define for_each_netdev_continue_reverse(net, d) \ 2861 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2862 dev_list) 2863 #define for_each_netdev_continue_rcu(net, d) \ 2864 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2865 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2866 for_each_netdev_rcu(&init_net, slave) \ 2867 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2868 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2869 2870 static inline struct net_device *next_net_device(struct net_device *dev) 2871 { 2872 struct list_head *lh; 2873 struct net *net; 2874 2875 net = dev_net(dev); 2876 lh = dev->dev_list.next; 2877 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2878 } 2879 2880 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2881 { 2882 struct list_head *lh; 2883 struct net *net; 2884 2885 net = dev_net(dev); 2886 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2887 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2888 } 2889 2890 static inline struct net_device *first_net_device(struct net *net) 2891 { 2892 return list_empty(&net->dev_base_head) ? NULL : 2893 net_device_entry(net->dev_base_head.next); 2894 } 2895 2896 static inline struct net_device *first_net_device_rcu(struct net *net) 2897 { 2898 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2899 2900 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2901 } 2902 2903 int netdev_boot_setup_check(struct net_device *dev); 2904 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2905 const char *hwaddr); 2906 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2907 void dev_add_pack(struct packet_type *pt); 2908 void dev_remove_pack(struct packet_type *pt); 2909 void __dev_remove_pack(struct packet_type *pt); 2910 void dev_add_offload(struct packet_offload *po); 2911 void dev_remove_offload(struct packet_offload *po); 2912 2913 int dev_get_iflink(const struct net_device *dev); 2914 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2915 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 2916 struct net_device_path_stack *stack); 2917 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2918 unsigned short mask); 2919 struct net_device *dev_get_by_name(struct net *net, const char *name); 2920 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2921 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2922 bool netdev_name_in_use(struct net *net, const char *name); 2923 int dev_alloc_name(struct net_device *dev, const char *name); 2924 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2925 void dev_close(struct net_device *dev); 2926 void dev_close_many(struct list_head *head, bool unlink); 2927 void dev_disable_lro(struct net_device *dev); 2928 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2929 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2930 struct net_device *sb_dev); 2931 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2932 struct net_device *sb_dev); 2933 2934 int dev_queue_xmit(struct sk_buff *skb); 2935 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2936 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2937 2938 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 2939 { 2940 int ret; 2941 2942 ret = __dev_direct_xmit(skb, queue_id); 2943 if (!dev_xmit_complete(ret)) 2944 kfree_skb(skb); 2945 return ret; 2946 } 2947 2948 int register_netdevice(struct net_device *dev); 2949 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2950 void unregister_netdevice_many(struct list_head *head); 2951 static inline void unregister_netdevice(struct net_device *dev) 2952 { 2953 unregister_netdevice_queue(dev, NULL); 2954 } 2955 2956 int netdev_refcnt_read(const struct net_device *dev); 2957 void free_netdev(struct net_device *dev); 2958 void netdev_freemem(struct net_device *dev); 2959 int init_dummy_netdev(struct net_device *dev); 2960 2961 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2962 struct sk_buff *skb, 2963 bool all_slaves); 2964 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 2965 struct sock *sk); 2966 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2967 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2968 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2969 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2970 int dev_restart(struct net_device *dev); 2971 2972 2973 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2974 unsigned short type, 2975 const void *daddr, const void *saddr, 2976 unsigned int len) 2977 { 2978 if (!dev->header_ops || !dev->header_ops->create) 2979 return 0; 2980 2981 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2982 } 2983 2984 static inline int dev_parse_header(const struct sk_buff *skb, 2985 unsigned char *haddr) 2986 { 2987 const struct net_device *dev = skb->dev; 2988 2989 if (!dev->header_ops || !dev->header_ops->parse) 2990 return 0; 2991 return dev->header_ops->parse(skb, haddr); 2992 } 2993 2994 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2995 { 2996 const struct net_device *dev = skb->dev; 2997 2998 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2999 return 0; 3000 return dev->header_ops->parse_protocol(skb); 3001 } 3002 3003 /* ll_header must have at least hard_header_len allocated */ 3004 static inline bool dev_validate_header(const struct net_device *dev, 3005 char *ll_header, int len) 3006 { 3007 if (likely(len >= dev->hard_header_len)) 3008 return true; 3009 if (len < dev->min_header_len) 3010 return false; 3011 3012 if (capable(CAP_SYS_RAWIO)) { 3013 memset(ll_header + len, 0, dev->hard_header_len - len); 3014 return true; 3015 } 3016 3017 if (dev->header_ops && dev->header_ops->validate) 3018 return dev->header_ops->validate(ll_header, len); 3019 3020 return false; 3021 } 3022 3023 static inline bool dev_has_header(const struct net_device *dev) 3024 { 3025 return dev->header_ops && dev->header_ops->create; 3026 } 3027 3028 /* 3029 * Incoming packets are placed on per-CPU queues 3030 */ 3031 struct softnet_data { 3032 struct list_head poll_list; 3033 struct sk_buff_head process_queue; 3034 3035 /* stats */ 3036 unsigned int processed; 3037 unsigned int time_squeeze; 3038 unsigned int received_rps; 3039 #ifdef CONFIG_RPS 3040 struct softnet_data *rps_ipi_list; 3041 #endif 3042 #ifdef CONFIG_NET_FLOW_LIMIT 3043 struct sd_flow_limit __rcu *flow_limit; 3044 #endif 3045 struct Qdisc *output_queue; 3046 struct Qdisc **output_queue_tailp; 3047 struct sk_buff *completion_queue; 3048 #ifdef CONFIG_XFRM_OFFLOAD 3049 struct sk_buff_head xfrm_backlog; 3050 #endif 3051 /* written and read only by owning cpu: */ 3052 struct { 3053 u16 recursion; 3054 u8 more; 3055 } xmit; 3056 #ifdef CONFIG_RPS 3057 /* input_queue_head should be written by cpu owning this struct, 3058 * and only read by other cpus. Worth using a cache line. 3059 */ 3060 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3061 3062 /* Elements below can be accessed between CPUs for RPS/RFS */ 3063 call_single_data_t csd ____cacheline_aligned_in_smp; 3064 struct softnet_data *rps_ipi_next; 3065 unsigned int cpu; 3066 unsigned int input_queue_tail; 3067 #endif 3068 unsigned int dropped; 3069 struct sk_buff_head input_pkt_queue; 3070 struct napi_struct backlog; 3071 3072 }; 3073 3074 static inline void input_queue_head_incr(struct softnet_data *sd) 3075 { 3076 #ifdef CONFIG_RPS 3077 sd->input_queue_head++; 3078 #endif 3079 } 3080 3081 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3082 unsigned int *qtail) 3083 { 3084 #ifdef CONFIG_RPS 3085 *qtail = ++sd->input_queue_tail; 3086 #endif 3087 } 3088 3089 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3090 3091 static inline int dev_recursion_level(void) 3092 { 3093 return this_cpu_read(softnet_data.xmit.recursion); 3094 } 3095 3096 #define XMIT_RECURSION_LIMIT 8 3097 static inline bool dev_xmit_recursion(void) 3098 { 3099 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3100 XMIT_RECURSION_LIMIT); 3101 } 3102 3103 static inline void dev_xmit_recursion_inc(void) 3104 { 3105 __this_cpu_inc(softnet_data.xmit.recursion); 3106 } 3107 3108 static inline void dev_xmit_recursion_dec(void) 3109 { 3110 __this_cpu_dec(softnet_data.xmit.recursion); 3111 } 3112 3113 void __netif_schedule(struct Qdisc *q); 3114 void netif_schedule_queue(struct netdev_queue *txq); 3115 3116 static inline void netif_tx_schedule_all(struct net_device *dev) 3117 { 3118 unsigned int i; 3119 3120 for (i = 0; i < dev->num_tx_queues; i++) 3121 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3122 } 3123 3124 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3125 { 3126 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3127 } 3128 3129 /** 3130 * netif_start_queue - allow transmit 3131 * @dev: network device 3132 * 3133 * Allow upper layers to call the device hard_start_xmit routine. 3134 */ 3135 static inline void netif_start_queue(struct net_device *dev) 3136 { 3137 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3138 } 3139 3140 static inline void netif_tx_start_all_queues(struct net_device *dev) 3141 { 3142 unsigned int i; 3143 3144 for (i = 0; i < dev->num_tx_queues; i++) { 3145 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3146 netif_tx_start_queue(txq); 3147 } 3148 } 3149 3150 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3151 3152 /** 3153 * netif_wake_queue - restart transmit 3154 * @dev: network device 3155 * 3156 * Allow upper layers to call the device hard_start_xmit routine. 3157 * Used for flow control when transmit resources are available. 3158 */ 3159 static inline void netif_wake_queue(struct net_device *dev) 3160 { 3161 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3162 } 3163 3164 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3165 { 3166 unsigned int i; 3167 3168 for (i = 0; i < dev->num_tx_queues; i++) { 3169 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3170 netif_tx_wake_queue(txq); 3171 } 3172 } 3173 3174 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3175 { 3176 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3177 } 3178 3179 /** 3180 * netif_stop_queue - stop transmitted packets 3181 * @dev: network device 3182 * 3183 * Stop upper layers calling the device hard_start_xmit routine. 3184 * Used for flow control when transmit resources are unavailable. 3185 */ 3186 static inline void netif_stop_queue(struct net_device *dev) 3187 { 3188 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3189 } 3190 3191 void netif_tx_stop_all_queues(struct net_device *dev); 3192 3193 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3194 { 3195 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3196 } 3197 3198 /** 3199 * netif_queue_stopped - test if transmit queue is flowblocked 3200 * @dev: network device 3201 * 3202 * Test if transmit queue on device is currently unable to send. 3203 */ 3204 static inline bool netif_queue_stopped(const struct net_device *dev) 3205 { 3206 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3207 } 3208 3209 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3210 { 3211 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3212 } 3213 3214 static inline bool 3215 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3216 { 3217 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3218 } 3219 3220 static inline bool 3221 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3222 { 3223 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3224 } 3225 3226 /** 3227 * netdev_queue_set_dql_min_limit - set dql minimum limit 3228 * @dev_queue: pointer to transmit queue 3229 * @min_limit: dql minimum limit 3230 * 3231 * Forces xmit_more() to return true until the minimum threshold 3232 * defined by @min_limit is reached (or until the tx queue is 3233 * empty). Warning: to be use with care, misuse will impact the 3234 * latency. 3235 */ 3236 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3237 unsigned int min_limit) 3238 { 3239 #ifdef CONFIG_BQL 3240 dev_queue->dql.min_limit = min_limit; 3241 #endif 3242 } 3243 3244 /** 3245 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3246 * @dev_queue: pointer to transmit queue 3247 * 3248 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3249 * to give appropriate hint to the CPU. 3250 */ 3251 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3252 { 3253 #ifdef CONFIG_BQL 3254 prefetchw(&dev_queue->dql.num_queued); 3255 #endif 3256 } 3257 3258 /** 3259 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3260 * @dev_queue: pointer to transmit queue 3261 * 3262 * BQL enabled drivers might use this helper in their TX completion path, 3263 * to give appropriate hint to the CPU. 3264 */ 3265 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3266 { 3267 #ifdef CONFIG_BQL 3268 prefetchw(&dev_queue->dql.limit); 3269 #endif 3270 } 3271 3272 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3273 unsigned int bytes) 3274 { 3275 #ifdef CONFIG_BQL 3276 dql_queued(&dev_queue->dql, bytes); 3277 3278 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3279 return; 3280 3281 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3282 3283 /* 3284 * The XOFF flag must be set before checking the dql_avail below, 3285 * because in netdev_tx_completed_queue we update the dql_completed 3286 * before checking the XOFF flag. 3287 */ 3288 smp_mb(); 3289 3290 /* check again in case another CPU has just made room avail */ 3291 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3292 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3293 #endif 3294 } 3295 3296 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3297 * that they should not test BQL status themselves. 3298 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3299 * skb of a batch. 3300 * Returns true if the doorbell must be used to kick the NIC. 3301 */ 3302 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3303 unsigned int bytes, 3304 bool xmit_more) 3305 { 3306 if (xmit_more) { 3307 #ifdef CONFIG_BQL 3308 dql_queued(&dev_queue->dql, bytes); 3309 #endif 3310 return netif_tx_queue_stopped(dev_queue); 3311 } 3312 netdev_tx_sent_queue(dev_queue, bytes); 3313 return true; 3314 } 3315 3316 /** 3317 * netdev_sent_queue - report the number of bytes queued to hardware 3318 * @dev: network device 3319 * @bytes: number of bytes queued to the hardware device queue 3320 * 3321 * Report the number of bytes queued for sending/completion to the network 3322 * device hardware queue. @bytes should be a good approximation and should 3323 * exactly match netdev_completed_queue() @bytes 3324 */ 3325 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3326 { 3327 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3328 } 3329 3330 static inline bool __netdev_sent_queue(struct net_device *dev, 3331 unsigned int bytes, 3332 bool xmit_more) 3333 { 3334 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3335 xmit_more); 3336 } 3337 3338 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3339 unsigned int pkts, unsigned int bytes) 3340 { 3341 #ifdef CONFIG_BQL 3342 if (unlikely(!bytes)) 3343 return; 3344 3345 dql_completed(&dev_queue->dql, bytes); 3346 3347 /* 3348 * Without the memory barrier there is a small possiblity that 3349 * netdev_tx_sent_queue will miss the update and cause the queue to 3350 * be stopped forever 3351 */ 3352 smp_mb(); 3353 3354 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3355 return; 3356 3357 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3358 netif_schedule_queue(dev_queue); 3359 #endif 3360 } 3361 3362 /** 3363 * netdev_completed_queue - report bytes and packets completed by device 3364 * @dev: network device 3365 * @pkts: actual number of packets sent over the medium 3366 * @bytes: actual number of bytes sent over the medium 3367 * 3368 * Report the number of bytes and packets transmitted by the network device 3369 * hardware queue over the physical medium, @bytes must exactly match the 3370 * @bytes amount passed to netdev_sent_queue() 3371 */ 3372 static inline void netdev_completed_queue(struct net_device *dev, 3373 unsigned int pkts, unsigned int bytes) 3374 { 3375 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3376 } 3377 3378 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3379 { 3380 #ifdef CONFIG_BQL 3381 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3382 dql_reset(&q->dql); 3383 #endif 3384 } 3385 3386 /** 3387 * netdev_reset_queue - reset the packets and bytes count of a network device 3388 * @dev_queue: network device 3389 * 3390 * Reset the bytes and packet count of a network device and clear the 3391 * software flow control OFF bit for this network device 3392 */ 3393 static inline void netdev_reset_queue(struct net_device *dev_queue) 3394 { 3395 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3396 } 3397 3398 /** 3399 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3400 * @dev: network device 3401 * @queue_index: given tx queue index 3402 * 3403 * Returns 0 if given tx queue index >= number of device tx queues, 3404 * otherwise returns the originally passed tx queue index. 3405 */ 3406 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3407 { 3408 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3409 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3410 dev->name, queue_index, 3411 dev->real_num_tx_queues); 3412 return 0; 3413 } 3414 3415 return queue_index; 3416 } 3417 3418 /** 3419 * netif_running - test if up 3420 * @dev: network device 3421 * 3422 * Test if the device has been brought up. 3423 */ 3424 static inline bool netif_running(const struct net_device *dev) 3425 { 3426 return test_bit(__LINK_STATE_START, &dev->state); 3427 } 3428 3429 /* 3430 * Routines to manage the subqueues on a device. We only need start, 3431 * stop, and a check if it's stopped. All other device management is 3432 * done at the overall netdevice level. 3433 * Also test the device if we're multiqueue. 3434 */ 3435 3436 /** 3437 * netif_start_subqueue - allow sending packets on subqueue 3438 * @dev: network device 3439 * @queue_index: sub queue index 3440 * 3441 * Start individual transmit queue of a device with multiple transmit queues. 3442 */ 3443 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3444 { 3445 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3446 3447 netif_tx_start_queue(txq); 3448 } 3449 3450 /** 3451 * netif_stop_subqueue - stop sending packets on subqueue 3452 * @dev: network device 3453 * @queue_index: sub queue index 3454 * 3455 * Stop individual transmit queue of a device with multiple transmit queues. 3456 */ 3457 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3458 { 3459 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3460 netif_tx_stop_queue(txq); 3461 } 3462 3463 /** 3464 * __netif_subqueue_stopped - test status of subqueue 3465 * @dev: network device 3466 * @queue_index: sub queue index 3467 * 3468 * Check individual transmit queue of a device with multiple transmit queues. 3469 */ 3470 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3471 u16 queue_index) 3472 { 3473 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3474 3475 return netif_tx_queue_stopped(txq); 3476 } 3477 3478 /** 3479 * netif_subqueue_stopped - test status of subqueue 3480 * @dev: network device 3481 * @skb: sub queue buffer pointer 3482 * 3483 * Check individual transmit queue of a device with multiple transmit queues. 3484 */ 3485 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3486 struct sk_buff *skb) 3487 { 3488 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3489 } 3490 3491 /** 3492 * netif_wake_subqueue - allow sending packets on subqueue 3493 * @dev: network device 3494 * @queue_index: sub queue index 3495 * 3496 * Resume individual transmit queue of a device with multiple transmit queues. 3497 */ 3498 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3499 { 3500 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3501 3502 netif_tx_wake_queue(txq); 3503 } 3504 3505 #ifdef CONFIG_XPS 3506 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3507 u16 index); 3508 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3509 u16 index, enum xps_map_type type); 3510 3511 /** 3512 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3513 * @j: CPU/Rx queue index 3514 * @mask: bitmask of all cpus/rx queues 3515 * @nr_bits: number of bits in the bitmask 3516 * 3517 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3518 */ 3519 static inline bool netif_attr_test_mask(unsigned long j, 3520 const unsigned long *mask, 3521 unsigned int nr_bits) 3522 { 3523 cpu_max_bits_warn(j, nr_bits); 3524 return test_bit(j, mask); 3525 } 3526 3527 /** 3528 * netif_attr_test_online - Test for online CPU/Rx queue 3529 * @j: CPU/Rx queue index 3530 * @online_mask: bitmask for CPUs/Rx queues that are online 3531 * @nr_bits: number of bits in the bitmask 3532 * 3533 * Returns true if a CPU/Rx queue is online. 3534 */ 3535 static inline bool netif_attr_test_online(unsigned long j, 3536 const unsigned long *online_mask, 3537 unsigned int nr_bits) 3538 { 3539 cpu_max_bits_warn(j, nr_bits); 3540 3541 if (online_mask) 3542 return test_bit(j, online_mask); 3543 3544 return (j < nr_bits); 3545 } 3546 3547 /** 3548 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3549 * @n: CPU/Rx queue index 3550 * @srcp: the cpumask/Rx queue mask pointer 3551 * @nr_bits: number of bits in the bitmask 3552 * 3553 * Returns >= nr_bits if no further CPUs/Rx queues set. 3554 */ 3555 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3556 unsigned int nr_bits) 3557 { 3558 /* -1 is a legal arg here. */ 3559 if (n != -1) 3560 cpu_max_bits_warn(n, nr_bits); 3561 3562 if (srcp) 3563 return find_next_bit(srcp, nr_bits, n + 1); 3564 3565 return n + 1; 3566 } 3567 3568 /** 3569 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3570 * @n: CPU/Rx queue index 3571 * @src1p: the first CPUs/Rx queues mask pointer 3572 * @src2p: the second CPUs/Rx queues mask pointer 3573 * @nr_bits: number of bits in the bitmask 3574 * 3575 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3576 */ 3577 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3578 const unsigned long *src2p, 3579 unsigned int nr_bits) 3580 { 3581 /* -1 is a legal arg here. */ 3582 if (n != -1) 3583 cpu_max_bits_warn(n, nr_bits); 3584 3585 if (src1p && src2p) 3586 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3587 else if (src1p) 3588 return find_next_bit(src1p, nr_bits, n + 1); 3589 else if (src2p) 3590 return find_next_bit(src2p, nr_bits, n + 1); 3591 3592 return n + 1; 3593 } 3594 #else 3595 static inline int netif_set_xps_queue(struct net_device *dev, 3596 const struct cpumask *mask, 3597 u16 index) 3598 { 3599 return 0; 3600 } 3601 3602 static inline int __netif_set_xps_queue(struct net_device *dev, 3603 const unsigned long *mask, 3604 u16 index, enum xps_map_type type) 3605 { 3606 return 0; 3607 } 3608 #endif 3609 3610 /** 3611 * netif_is_multiqueue - test if device has multiple transmit queues 3612 * @dev: network device 3613 * 3614 * Check if device has multiple transmit queues 3615 */ 3616 static inline bool netif_is_multiqueue(const struct net_device *dev) 3617 { 3618 return dev->num_tx_queues > 1; 3619 } 3620 3621 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3622 3623 #ifdef CONFIG_SYSFS 3624 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3625 #else 3626 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3627 unsigned int rxqs) 3628 { 3629 dev->real_num_rx_queues = rxqs; 3630 return 0; 3631 } 3632 #endif 3633 int netif_set_real_num_queues(struct net_device *dev, 3634 unsigned int txq, unsigned int rxq); 3635 3636 static inline struct netdev_rx_queue * 3637 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3638 { 3639 return dev->_rx + rxq; 3640 } 3641 3642 #ifdef CONFIG_SYSFS 3643 static inline unsigned int get_netdev_rx_queue_index( 3644 struct netdev_rx_queue *queue) 3645 { 3646 struct net_device *dev = queue->dev; 3647 int index = queue - dev->_rx; 3648 3649 BUG_ON(index >= dev->num_rx_queues); 3650 return index; 3651 } 3652 #endif 3653 3654 int netif_get_num_default_rss_queues(void); 3655 3656 enum skb_free_reason { 3657 SKB_REASON_CONSUMED, 3658 SKB_REASON_DROPPED, 3659 }; 3660 3661 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3662 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3663 3664 /* 3665 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3666 * interrupt context or with hardware interrupts being disabled. 3667 * (in_hardirq() || irqs_disabled()) 3668 * 3669 * We provide four helpers that can be used in following contexts : 3670 * 3671 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3672 * replacing kfree_skb(skb) 3673 * 3674 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3675 * Typically used in place of consume_skb(skb) in TX completion path 3676 * 3677 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3678 * replacing kfree_skb(skb) 3679 * 3680 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3681 * and consumed a packet. Used in place of consume_skb(skb) 3682 */ 3683 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3684 { 3685 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3686 } 3687 3688 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3689 { 3690 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3691 } 3692 3693 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3694 { 3695 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3696 } 3697 3698 static inline void dev_consume_skb_any(struct sk_buff *skb) 3699 { 3700 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3701 } 3702 3703 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3704 struct bpf_prog *xdp_prog); 3705 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3706 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3707 int netif_rx(struct sk_buff *skb); 3708 int __netif_rx(struct sk_buff *skb); 3709 3710 int netif_receive_skb(struct sk_buff *skb); 3711 int netif_receive_skb_core(struct sk_buff *skb); 3712 void netif_receive_skb_list_internal(struct list_head *head); 3713 void netif_receive_skb_list(struct list_head *head); 3714 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3715 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3716 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3717 gro_result_t napi_gro_frags(struct napi_struct *napi); 3718 struct packet_offload *gro_find_receive_by_type(__be16 type); 3719 struct packet_offload *gro_find_complete_by_type(__be16 type); 3720 3721 static inline void napi_free_frags(struct napi_struct *napi) 3722 { 3723 kfree_skb(napi->skb); 3724 napi->skb = NULL; 3725 } 3726 3727 bool netdev_is_rx_handler_busy(struct net_device *dev); 3728 int netdev_rx_handler_register(struct net_device *dev, 3729 rx_handler_func_t *rx_handler, 3730 void *rx_handler_data); 3731 void netdev_rx_handler_unregister(struct net_device *dev); 3732 3733 bool dev_valid_name(const char *name); 3734 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3735 { 3736 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3737 } 3738 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3739 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3740 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3741 void __user *data, bool *need_copyout); 3742 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3743 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3744 unsigned int dev_get_flags(const struct net_device *); 3745 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3746 struct netlink_ext_ack *extack); 3747 int dev_change_flags(struct net_device *dev, unsigned int flags, 3748 struct netlink_ext_ack *extack); 3749 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3750 unsigned int gchanges); 3751 int dev_set_alias(struct net_device *, const char *, size_t); 3752 int dev_get_alias(const struct net_device *, char *, size_t); 3753 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3754 const char *pat, int new_ifindex); 3755 static inline 3756 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3757 const char *pat) 3758 { 3759 return __dev_change_net_namespace(dev, net, pat, 0); 3760 } 3761 int __dev_set_mtu(struct net_device *, int); 3762 int dev_set_mtu(struct net_device *, int); 3763 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3764 struct netlink_ext_ack *extack); 3765 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3766 struct netlink_ext_ack *extack); 3767 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3768 struct netlink_ext_ack *extack); 3769 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3770 int dev_get_port_parent_id(struct net_device *dev, 3771 struct netdev_phys_item_id *ppid, bool recurse); 3772 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3773 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3774 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3775 struct netdev_queue *txq, int *ret); 3776 3777 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3778 u8 dev_xdp_prog_count(struct net_device *dev); 3779 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3780 3781 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3782 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3783 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3784 bool is_skb_forwardable(const struct net_device *dev, 3785 const struct sk_buff *skb); 3786 3787 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3788 const struct sk_buff *skb, 3789 const bool check_mtu) 3790 { 3791 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3792 unsigned int len; 3793 3794 if (!(dev->flags & IFF_UP)) 3795 return false; 3796 3797 if (!check_mtu) 3798 return true; 3799 3800 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3801 if (skb->len <= len) 3802 return true; 3803 3804 /* if TSO is enabled, we don't care about the length as the packet 3805 * could be forwarded without being segmented before 3806 */ 3807 if (skb_is_gso(skb)) 3808 return true; 3809 3810 return false; 3811 } 3812 3813 struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev); 3814 3815 static inline struct net_device_core_stats *dev_core_stats(struct net_device *dev) 3816 { 3817 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 3818 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 3819 3820 if (likely(p)) 3821 return this_cpu_ptr(p); 3822 3823 return netdev_core_stats_alloc(dev); 3824 } 3825 3826 #define DEV_CORE_STATS_INC(FIELD) \ 3827 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3828 { \ 3829 struct net_device_core_stats *p; \ 3830 \ 3831 preempt_disable(); \ 3832 p = dev_core_stats(dev); \ 3833 \ 3834 if (p) \ 3835 local_inc(&p->FIELD); \ 3836 preempt_enable(); \ 3837 } 3838 DEV_CORE_STATS_INC(rx_dropped) 3839 DEV_CORE_STATS_INC(tx_dropped) 3840 DEV_CORE_STATS_INC(rx_nohandler) 3841 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3842 3843 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3844 struct sk_buff *skb, 3845 const bool check_mtu) 3846 { 3847 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3848 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3849 dev_core_stats_rx_dropped_inc(dev); 3850 kfree_skb(skb); 3851 return NET_RX_DROP; 3852 } 3853 3854 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 3855 skb->priority = 0; 3856 return 0; 3857 } 3858 3859 bool dev_nit_active(struct net_device *dev); 3860 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3861 3862 static inline void __dev_put(struct net_device *dev) 3863 { 3864 if (dev) { 3865 #ifdef CONFIG_PCPU_DEV_REFCNT 3866 this_cpu_dec(*dev->pcpu_refcnt); 3867 #else 3868 refcount_dec(&dev->dev_refcnt); 3869 #endif 3870 } 3871 } 3872 3873 static inline void __dev_hold(struct net_device *dev) 3874 { 3875 if (dev) { 3876 #ifdef CONFIG_PCPU_DEV_REFCNT 3877 this_cpu_inc(*dev->pcpu_refcnt); 3878 #else 3879 refcount_inc(&dev->dev_refcnt); 3880 #endif 3881 } 3882 } 3883 3884 static inline void __netdev_tracker_alloc(struct net_device *dev, 3885 netdevice_tracker *tracker, 3886 gfp_t gfp) 3887 { 3888 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 3889 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 3890 #endif 3891 } 3892 3893 /* netdev_tracker_alloc() can upgrade a prior untracked reference 3894 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 3895 */ 3896 static inline void netdev_tracker_alloc(struct net_device *dev, 3897 netdevice_tracker *tracker, gfp_t gfp) 3898 { 3899 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 3900 refcount_dec(&dev->refcnt_tracker.no_tracker); 3901 __netdev_tracker_alloc(dev, tracker, gfp); 3902 #endif 3903 } 3904 3905 static inline void netdev_tracker_free(struct net_device *dev, 3906 netdevice_tracker *tracker) 3907 { 3908 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 3909 ref_tracker_free(&dev->refcnt_tracker, tracker); 3910 #endif 3911 } 3912 3913 static inline void dev_hold_track(struct net_device *dev, 3914 netdevice_tracker *tracker, gfp_t gfp) 3915 { 3916 if (dev) { 3917 __dev_hold(dev); 3918 __netdev_tracker_alloc(dev, tracker, gfp); 3919 } 3920 } 3921 3922 static inline void dev_put_track(struct net_device *dev, 3923 netdevice_tracker *tracker) 3924 { 3925 if (dev) { 3926 netdev_tracker_free(dev, tracker); 3927 __dev_put(dev); 3928 } 3929 } 3930 3931 /** 3932 * dev_hold - get reference to device 3933 * @dev: network device 3934 * 3935 * Hold reference to device to keep it from being freed. 3936 * Try using dev_hold_track() instead. 3937 */ 3938 static inline void dev_hold(struct net_device *dev) 3939 { 3940 dev_hold_track(dev, NULL, GFP_ATOMIC); 3941 } 3942 3943 /** 3944 * dev_put - release reference to device 3945 * @dev: network device 3946 * 3947 * Release reference to device to allow it to be freed. 3948 * Try using dev_put_track() instead. 3949 */ 3950 static inline void dev_put(struct net_device *dev) 3951 { 3952 dev_put_track(dev, NULL); 3953 } 3954 3955 static inline void dev_replace_track(struct net_device *odev, 3956 struct net_device *ndev, 3957 netdevice_tracker *tracker, 3958 gfp_t gfp) 3959 { 3960 if (odev) 3961 netdev_tracker_free(odev, tracker); 3962 3963 __dev_hold(ndev); 3964 __dev_put(odev); 3965 3966 if (ndev) 3967 __netdev_tracker_alloc(ndev, tracker, gfp); 3968 } 3969 3970 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3971 * and _off may be called from IRQ context, but it is caller 3972 * who is responsible for serialization of these calls. 3973 * 3974 * The name carrier is inappropriate, these functions should really be 3975 * called netif_lowerlayer_*() because they represent the state of any 3976 * kind of lower layer not just hardware media. 3977 */ 3978 void linkwatch_fire_event(struct net_device *dev); 3979 3980 /** 3981 * netif_carrier_ok - test if carrier present 3982 * @dev: network device 3983 * 3984 * Check if carrier is present on device 3985 */ 3986 static inline bool netif_carrier_ok(const struct net_device *dev) 3987 { 3988 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3989 } 3990 3991 unsigned long dev_trans_start(struct net_device *dev); 3992 3993 void __netdev_watchdog_up(struct net_device *dev); 3994 3995 void netif_carrier_on(struct net_device *dev); 3996 void netif_carrier_off(struct net_device *dev); 3997 void netif_carrier_event(struct net_device *dev); 3998 3999 /** 4000 * netif_dormant_on - mark device as dormant. 4001 * @dev: network device 4002 * 4003 * Mark device as dormant (as per RFC2863). 4004 * 4005 * The dormant state indicates that the relevant interface is not 4006 * actually in a condition to pass packets (i.e., it is not 'up') but is 4007 * in a "pending" state, waiting for some external event. For "on- 4008 * demand" interfaces, this new state identifies the situation where the 4009 * interface is waiting for events to place it in the up state. 4010 */ 4011 static inline void netif_dormant_on(struct net_device *dev) 4012 { 4013 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4014 linkwatch_fire_event(dev); 4015 } 4016 4017 /** 4018 * netif_dormant_off - set device as not dormant. 4019 * @dev: network device 4020 * 4021 * Device is not in dormant state. 4022 */ 4023 static inline void netif_dormant_off(struct net_device *dev) 4024 { 4025 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4026 linkwatch_fire_event(dev); 4027 } 4028 4029 /** 4030 * netif_dormant - test if device is dormant 4031 * @dev: network device 4032 * 4033 * Check if device is dormant. 4034 */ 4035 static inline bool netif_dormant(const struct net_device *dev) 4036 { 4037 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4038 } 4039 4040 4041 /** 4042 * netif_testing_on - mark device as under test. 4043 * @dev: network device 4044 * 4045 * Mark device as under test (as per RFC2863). 4046 * 4047 * The testing state indicates that some test(s) must be performed on 4048 * the interface. After completion, of the test, the interface state 4049 * will change to up, dormant, or down, as appropriate. 4050 */ 4051 static inline void netif_testing_on(struct net_device *dev) 4052 { 4053 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4054 linkwatch_fire_event(dev); 4055 } 4056 4057 /** 4058 * netif_testing_off - set device as not under test. 4059 * @dev: network device 4060 * 4061 * Device is not in testing state. 4062 */ 4063 static inline void netif_testing_off(struct net_device *dev) 4064 { 4065 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4066 linkwatch_fire_event(dev); 4067 } 4068 4069 /** 4070 * netif_testing - test if device is under test 4071 * @dev: network device 4072 * 4073 * Check if device is under test 4074 */ 4075 static inline bool netif_testing(const struct net_device *dev) 4076 { 4077 return test_bit(__LINK_STATE_TESTING, &dev->state); 4078 } 4079 4080 4081 /** 4082 * netif_oper_up - test if device is operational 4083 * @dev: network device 4084 * 4085 * Check if carrier is operational 4086 */ 4087 static inline bool netif_oper_up(const struct net_device *dev) 4088 { 4089 return (dev->operstate == IF_OPER_UP || 4090 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4091 } 4092 4093 /** 4094 * netif_device_present - is device available or removed 4095 * @dev: network device 4096 * 4097 * Check if device has not been removed from system. 4098 */ 4099 static inline bool netif_device_present(const struct net_device *dev) 4100 { 4101 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4102 } 4103 4104 void netif_device_detach(struct net_device *dev); 4105 4106 void netif_device_attach(struct net_device *dev); 4107 4108 /* 4109 * Network interface message level settings 4110 */ 4111 4112 enum { 4113 NETIF_MSG_DRV_BIT, 4114 NETIF_MSG_PROBE_BIT, 4115 NETIF_MSG_LINK_BIT, 4116 NETIF_MSG_TIMER_BIT, 4117 NETIF_MSG_IFDOWN_BIT, 4118 NETIF_MSG_IFUP_BIT, 4119 NETIF_MSG_RX_ERR_BIT, 4120 NETIF_MSG_TX_ERR_BIT, 4121 NETIF_MSG_TX_QUEUED_BIT, 4122 NETIF_MSG_INTR_BIT, 4123 NETIF_MSG_TX_DONE_BIT, 4124 NETIF_MSG_RX_STATUS_BIT, 4125 NETIF_MSG_PKTDATA_BIT, 4126 NETIF_MSG_HW_BIT, 4127 NETIF_MSG_WOL_BIT, 4128 4129 /* When you add a new bit above, update netif_msg_class_names array 4130 * in net/ethtool/common.c 4131 */ 4132 NETIF_MSG_CLASS_COUNT, 4133 }; 4134 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4135 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4136 4137 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4138 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4139 4140 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4141 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4142 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4143 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4144 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4145 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4146 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4147 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4148 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4149 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4150 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4151 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4152 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4153 #define NETIF_MSG_HW __NETIF_MSG(HW) 4154 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4155 4156 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4157 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4158 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4159 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4160 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4161 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4162 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4163 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4164 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4165 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4166 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4167 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4168 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4169 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4170 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4171 4172 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4173 { 4174 /* use default */ 4175 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4176 return default_msg_enable_bits; 4177 if (debug_value == 0) /* no output */ 4178 return 0; 4179 /* set low N bits */ 4180 return (1U << debug_value) - 1; 4181 } 4182 4183 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4184 { 4185 spin_lock(&txq->_xmit_lock); 4186 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4187 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4188 } 4189 4190 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4191 { 4192 __acquire(&txq->_xmit_lock); 4193 return true; 4194 } 4195 4196 static inline void __netif_tx_release(struct netdev_queue *txq) 4197 { 4198 __release(&txq->_xmit_lock); 4199 } 4200 4201 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4202 { 4203 spin_lock_bh(&txq->_xmit_lock); 4204 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4205 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4206 } 4207 4208 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4209 { 4210 bool ok = spin_trylock(&txq->_xmit_lock); 4211 4212 if (likely(ok)) { 4213 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4214 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4215 } 4216 return ok; 4217 } 4218 4219 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4220 { 4221 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4222 WRITE_ONCE(txq->xmit_lock_owner, -1); 4223 spin_unlock(&txq->_xmit_lock); 4224 } 4225 4226 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4227 { 4228 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4229 WRITE_ONCE(txq->xmit_lock_owner, -1); 4230 spin_unlock_bh(&txq->_xmit_lock); 4231 } 4232 4233 /* 4234 * txq->trans_start can be read locklessly from dev_watchdog() 4235 */ 4236 static inline void txq_trans_update(struct netdev_queue *txq) 4237 { 4238 if (txq->xmit_lock_owner != -1) 4239 WRITE_ONCE(txq->trans_start, jiffies); 4240 } 4241 4242 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4243 { 4244 unsigned long now = jiffies; 4245 4246 if (READ_ONCE(txq->trans_start) != now) 4247 WRITE_ONCE(txq->trans_start, now); 4248 } 4249 4250 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4251 static inline void netif_trans_update(struct net_device *dev) 4252 { 4253 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4254 4255 txq_trans_cond_update(txq); 4256 } 4257 4258 /** 4259 * netif_tx_lock - grab network device transmit lock 4260 * @dev: network device 4261 * 4262 * Get network device transmit lock 4263 */ 4264 void netif_tx_lock(struct net_device *dev); 4265 4266 static inline void netif_tx_lock_bh(struct net_device *dev) 4267 { 4268 local_bh_disable(); 4269 netif_tx_lock(dev); 4270 } 4271 4272 void netif_tx_unlock(struct net_device *dev); 4273 4274 static inline void netif_tx_unlock_bh(struct net_device *dev) 4275 { 4276 netif_tx_unlock(dev); 4277 local_bh_enable(); 4278 } 4279 4280 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4281 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4282 __netif_tx_lock(txq, cpu); \ 4283 } else { \ 4284 __netif_tx_acquire(txq); \ 4285 } \ 4286 } 4287 4288 #define HARD_TX_TRYLOCK(dev, txq) \ 4289 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4290 __netif_tx_trylock(txq) : \ 4291 __netif_tx_acquire(txq)) 4292 4293 #define HARD_TX_UNLOCK(dev, txq) { \ 4294 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4295 __netif_tx_unlock(txq); \ 4296 } else { \ 4297 __netif_tx_release(txq); \ 4298 } \ 4299 } 4300 4301 static inline void netif_tx_disable(struct net_device *dev) 4302 { 4303 unsigned int i; 4304 int cpu; 4305 4306 local_bh_disable(); 4307 cpu = smp_processor_id(); 4308 spin_lock(&dev->tx_global_lock); 4309 for (i = 0; i < dev->num_tx_queues; i++) { 4310 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4311 4312 __netif_tx_lock(txq, cpu); 4313 netif_tx_stop_queue(txq); 4314 __netif_tx_unlock(txq); 4315 } 4316 spin_unlock(&dev->tx_global_lock); 4317 local_bh_enable(); 4318 } 4319 4320 static inline void netif_addr_lock(struct net_device *dev) 4321 { 4322 unsigned char nest_level = 0; 4323 4324 #ifdef CONFIG_LOCKDEP 4325 nest_level = dev->nested_level; 4326 #endif 4327 spin_lock_nested(&dev->addr_list_lock, nest_level); 4328 } 4329 4330 static inline void netif_addr_lock_bh(struct net_device *dev) 4331 { 4332 unsigned char nest_level = 0; 4333 4334 #ifdef CONFIG_LOCKDEP 4335 nest_level = dev->nested_level; 4336 #endif 4337 local_bh_disable(); 4338 spin_lock_nested(&dev->addr_list_lock, nest_level); 4339 } 4340 4341 static inline void netif_addr_unlock(struct net_device *dev) 4342 { 4343 spin_unlock(&dev->addr_list_lock); 4344 } 4345 4346 static inline void netif_addr_unlock_bh(struct net_device *dev) 4347 { 4348 spin_unlock_bh(&dev->addr_list_lock); 4349 } 4350 4351 /* 4352 * dev_addrs walker. Should be used only for read access. Call with 4353 * rcu_read_lock held. 4354 */ 4355 #define for_each_dev_addr(dev, ha) \ 4356 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4357 4358 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4359 4360 void ether_setup(struct net_device *dev); 4361 4362 /* Support for loadable net-drivers */ 4363 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4364 unsigned char name_assign_type, 4365 void (*setup)(struct net_device *), 4366 unsigned int txqs, unsigned int rxqs); 4367 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4368 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4369 4370 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4371 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4372 count) 4373 4374 int register_netdev(struct net_device *dev); 4375 void unregister_netdev(struct net_device *dev); 4376 4377 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4378 4379 /* General hardware address lists handling functions */ 4380 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4381 struct netdev_hw_addr_list *from_list, int addr_len); 4382 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4383 struct netdev_hw_addr_list *from_list, int addr_len); 4384 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4385 struct net_device *dev, 4386 int (*sync)(struct net_device *, const unsigned char *), 4387 int (*unsync)(struct net_device *, 4388 const unsigned char *)); 4389 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4390 struct net_device *dev, 4391 int (*sync)(struct net_device *, 4392 const unsigned char *, int), 4393 int (*unsync)(struct net_device *, 4394 const unsigned char *, int)); 4395 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4396 struct net_device *dev, 4397 int (*unsync)(struct net_device *, 4398 const unsigned char *, int)); 4399 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4400 struct net_device *dev, 4401 int (*unsync)(struct net_device *, 4402 const unsigned char *)); 4403 void __hw_addr_init(struct netdev_hw_addr_list *list); 4404 4405 /* Functions used for device addresses handling */ 4406 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4407 const void *addr, size_t len); 4408 4409 static inline void 4410 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4411 { 4412 dev_addr_mod(dev, 0, addr, len); 4413 } 4414 4415 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4416 { 4417 __dev_addr_set(dev, addr, dev->addr_len); 4418 } 4419 4420 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4421 unsigned char addr_type); 4422 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4423 unsigned char addr_type); 4424 4425 /* Functions used for unicast addresses handling */ 4426 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4427 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4428 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4429 int dev_uc_sync(struct net_device *to, struct net_device *from); 4430 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4431 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4432 void dev_uc_flush(struct net_device *dev); 4433 void dev_uc_init(struct net_device *dev); 4434 4435 /** 4436 * __dev_uc_sync - Synchonize device's unicast list 4437 * @dev: device to sync 4438 * @sync: function to call if address should be added 4439 * @unsync: function to call if address should be removed 4440 * 4441 * Add newly added addresses to the interface, and release 4442 * addresses that have been deleted. 4443 */ 4444 static inline int __dev_uc_sync(struct net_device *dev, 4445 int (*sync)(struct net_device *, 4446 const unsigned char *), 4447 int (*unsync)(struct net_device *, 4448 const unsigned char *)) 4449 { 4450 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4451 } 4452 4453 /** 4454 * __dev_uc_unsync - Remove synchronized addresses from device 4455 * @dev: device to sync 4456 * @unsync: function to call if address should be removed 4457 * 4458 * Remove all addresses that were added to the device by dev_uc_sync(). 4459 */ 4460 static inline void __dev_uc_unsync(struct net_device *dev, 4461 int (*unsync)(struct net_device *, 4462 const unsigned char *)) 4463 { 4464 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4465 } 4466 4467 /* Functions used for multicast addresses handling */ 4468 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4469 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4470 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4471 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4472 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4473 int dev_mc_sync(struct net_device *to, struct net_device *from); 4474 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4475 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4476 void dev_mc_flush(struct net_device *dev); 4477 void dev_mc_init(struct net_device *dev); 4478 4479 /** 4480 * __dev_mc_sync - Synchonize device's multicast list 4481 * @dev: device to sync 4482 * @sync: function to call if address should be added 4483 * @unsync: function to call if address should be removed 4484 * 4485 * Add newly added addresses to the interface, and release 4486 * addresses that have been deleted. 4487 */ 4488 static inline int __dev_mc_sync(struct net_device *dev, 4489 int (*sync)(struct net_device *, 4490 const unsigned char *), 4491 int (*unsync)(struct net_device *, 4492 const unsigned char *)) 4493 { 4494 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4495 } 4496 4497 /** 4498 * __dev_mc_unsync - Remove synchronized addresses from device 4499 * @dev: device to sync 4500 * @unsync: function to call if address should be removed 4501 * 4502 * Remove all addresses that were added to the device by dev_mc_sync(). 4503 */ 4504 static inline void __dev_mc_unsync(struct net_device *dev, 4505 int (*unsync)(struct net_device *, 4506 const unsigned char *)) 4507 { 4508 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4509 } 4510 4511 /* Functions used for secondary unicast and multicast support */ 4512 void dev_set_rx_mode(struct net_device *dev); 4513 int dev_set_promiscuity(struct net_device *dev, int inc); 4514 int dev_set_allmulti(struct net_device *dev, int inc); 4515 void netdev_state_change(struct net_device *dev); 4516 void __netdev_notify_peers(struct net_device *dev); 4517 void netdev_notify_peers(struct net_device *dev); 4518 void netdev_features_change(struct net_device *dev); 4519 /* Load a device via the kmod */ 4520 void dev_load(struct net *net, const char *name); 4521 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4522 struct rtnl_link_stats64 *storage); 4523 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4524 const struct net_device_stats *netdev_stats); 4525 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4526 const struct pcpu_sw_netstats __percpu *netstats); 4527 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4528 4529 extern int netdev_max_backlog; 4530 extern int dev_rx_weight; 4531 extern int dev_tx_weight; 4532 extern int gro_normal_batch; 4533 4534 enum { 4535 NESTED_SYNC_IMM_BIT, 4536 NESTED_SYNC_TODO_BIT, 4537 }; 4538 4539 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4540 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4541 4542 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4543 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4544 4545 struct netdev_nested_priv { 4546 unsigned char flags; 4547 void *data; 4548 }; 4549 4550 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4551 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4552 struct list_head **iter); 4553 4554 /* iterate through upper list, must be called under RCU read lock */ 4555 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4556 for (iter = &(dev)->adj_list.upper, \ 4557 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4558 updev; \ 4559 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4560 4561 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4562 int (*fn)(struct net_device *upper_dev, 4563 struct netdev_nested_priv *priv), 4564 struct netdev_nested_priv *priv); 4565 4566 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4567 struct net_device *upper_dev); 4568 4569 bool netdev_has_any_upper_dev(struct net_device *dev); 4570 4571 void *netdev_lower_get_next_private(struct net_device *dev, 4572 struct list_head **iter); 4573 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4574 struct list_head **iter); 4575 4576 #define netdev_for_each_lower_private(dev, priv, iter) \ 4577 for (iter = (dev)->adj_list.lower.next, \ 4578 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4579 priv; \ 4580 priv = netdev_lower_get_next_private(dev, &(iter))) 4581 4582 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4583 for (iter = &(dev)->adj_list.lower, \ 4584 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4585 priv; \ 4586 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4587 4588 void *netdev_lower_get_next(struct net_device *dev, 4589 struct list_head **iter); 4590 4591 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4592 for (iter = (dev)->adj_list.lower.next, \ 4593 ldev = netdev_lower_get_next(dev, &(iter)); \ 4594 ldev; \ 4595 ldev = netdev_lower_get_next(dev, &(iter))) 4596 4597 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4598 struct list_head **iter); 4599 int netdev_walk_all_lower_dev(struct net_device *dev, 4600 int (*fn)(struct net_device *lower_dev, 4601 struct netdev_nested_priv *priv), 4602 struct netdev_nested_priv *priv); 4603 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4604 int (*fn)(struct net_device *lower_dev, 4605 struct netdev_nested_priv *priv), 4606 struct netdev_nested_priv *priv); 4607 4608 void *netdev_adjacent_get_private(struct list_head *adj_list); 4609 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4610 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4611 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4612 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4613 struct netlink_ext_ack *extack); 4614 int netdev_master_upper_dev_link(struct net_device *dev, 4615 struct net_device *upper_dev, 4616 void *upper_priv, void *upper_info, 4617 struct netlink_ext_ack *extack); 4618 void netdev_upper_dev_unlink(struct net_device *dev, 4619 struct net_device *upper_dev); 4620 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4621 struct net_device *new_dev, 4622 struct net_device *dev, 4623 struct netlink_ext_ack *extack); 4624 void netdev_adjacent_change_commit(struct net_device *old_dev, 4625 struct net_device *new_dev, 4626 struct net_device *dev); 4627 void netdev_adjacent_change_abort(struct net_device *old_dev, 4628 struct net_device *new_dev, 4629 struct net_device *dev); 4630 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4631 void *netdev_lower_dev_get_private(struct net_device *dev, 4632 struct net_device *lower_dev); 4633 void netdev_lower_state_changed(struct net_device *lower_dev, 4634 void *lower_state_info); 4635 4636 /* RSS keys are 40 or 52 bytes long */ 4637 #define NETDEV_RSS_KEY_LEN 52 4638 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4639 void netdev_rss_key_fill(void *buffer, size_t len); 4640 4641 int skb_checksum_help(struct sk_buff *skb); 4642 int skb_crc32c_csum_help(struct sk_buff *skb); 4643 int skb_csum_hwoffload_help(struct sk_buff *skb, 4644 const netdev_features_t features); 4645 4646 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4647 netdev_features_t features, bool tx_path); 4648 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4649 netdev_features_t features, __be16 type); 4650 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4651 netdev_features_t features); 4652 4653 struct netdev_bonding_info { 4654 ifslave slave; 4655 ifbond master; 4656 }; 4657 4658 struct netdev_notifier_bonding_info { 4659 struct netdev_notifier_info info; /* must be first */ 4660 struct netdev_bonding_info bonding_info; 4661 }; 4662 4663 void netdev_bonding_info_change(struct net_device *dev, 4664 struct netdev_bonding_info *bonding_info); 4665 4666 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4667 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4668 #else 4669 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4670 const void *data) 4671 { 4672 } 4673 #endif 4674 4675 static inline 4676 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4677 { 4678 return __skb_gso_segment(skb, features, true); 4679 } 4680 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4681 4682 static inline bool can_checksum_protocol(netdev_features_t features, 4683 __be16 protocol) 4684 { 4685 if (protocol == htons(ETH_P_FCOE)) 4686 return !!(features & NETIF_F_FCOE_CRC); 4687 4688 /* Assume this is an IP checksum (not SCTP CRC) */ 4689 4690 if (features & NETIF_F_HW_CSUM) { 4691 /* Can checksum everything */ 4692 return true; 4693 } 4694 4695 switch (protocol) { 4696 case htons(ETH_P_IP): 4697 return !!(features & NETIF_F_IP_CSUM); 4698 case htons(ETH_P_IPV6): 4699 return !!(features & NETIF_F_IPV6_CSUM); 4700 default: 4701 return false; 4702 } 4703 } 4704 4705 #ifdef CONFIG_BUG 4706 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4707 #else 4708 static inline void netdev_rx_csum_fault(struct net_device *dev, 4709 struct sk_buff *skb) 4710 { 4711 } 4712 #endif 4713 /* rx skb timestamps */ 4714 void net_enable_timestamp(void); 4715 void net_disable_timestamp(void); 4716 4717 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4718 struct sk_buff *skb, struct net_device *dev, 4719 bool more) 4720 { 4721 __this_cpu_write(softnet_data.xmit.more, more); 4722 return ops->ndo_start_xmit(skb, dev); 4723 } 4724 4725 static inline bool netdev_xmit_more(void) 4726 { 4727 return __this_cpu_read(softnet_data.xmit.more); 4728 } 4729 4730 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4731 struct netdev_queue *txq, bool more) 4732 { 4733 const struct net_device_ops *ops = dev->netdev_ops; 4734 netdev_tx_t rc; 4735 4736 rc = __netdev_start_xmit(ops, skb, dev, more); 4737 if (rc == NETDEV_TX_OK) 4738 txq_trans_update(txq); 4739 4740 return rc; 4741 } 4742 4743 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4744 const void *ns); 4745 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4746 const void *ns); 4747 4748 extern const struct kobj_ns_type_operations net_ns_type_operations; 4749 4750 const char *netdev_drivername(const struct net_device *dev); 4751 4752 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4753 netdev_features_t f2) 4754 { 4755 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4756 if (f1 & NETIF_F_HW_CSUM) 4757 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4758 else 4759 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4760 } 4761 4762 return f1 & f2; 4763 } 4764 4765 static inline netdev_features_t netdev_get_wanted_features( 4766 struct net_device *dev) 4767 { 4768 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4769 } 4770 netdev_features_t netdev_increment_features(netdev_features_t all, 4771 netdev_features_t one, netdev_features_t mask); 4772 4773 /* Allow TSO being used on stacked device : 4774 * Performing the GSO segmentation before last device 4775 * is a performance improvement. 4776 */ 4777 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4778 netdev_features_t mask) 4779 { 4780 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4781 } 4782 4783 int __netdev_update_features(struct net_device *dev); 4784 void netdev_update_features(struct net_device *dev); 4785 void netdev_change_features(struct net_device *dev); 4786 4787 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4788 struct net_device *dev); 4789 4790 netdev_features_t passthru_features_check(struct sk_buff *skb, 4791 struct net_device *dev, 4792 netdev_features_t features); 4793 netdev_features_t netif_skb_features(struct sk_buff *skb); 4794 4795 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4796 { 4797 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4798 4799 /* check flags correspondence */ 4800 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4801 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4802 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4803 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4804 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4805 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4806 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4807 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4808 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4809 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4810 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4811 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4812 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4813 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4814 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4815 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4816 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4817 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4818 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4819 4820 return (features & feature) == feature; 4821 } 4822 4823 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4824 { 4825 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4826 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4827 } 4828 4829 static inline bool netif_needs_gso(struct sk_buff *skb, 4830 netdev_features_t features) 4831 { 4832 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4833 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4834 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4835 } 4836 4837 static inline void netif_set_gso_max_size(struct net_device *dev, 4838 unsigned int size) 4839 { 4840 /* dev->gso_max_size is read locklessly from sk_setup_caps() */ 4841 WRITE_ONCE(dev->gso_max_size, size); 4842 } 4843 4844 static inline void netif_set_gso_max_segs(struct net_device *dev, 4845 unsigned int segs) 4846 { 4847 /* dev->gso_max_segs is read locklessly from sk_setup_caps() */ 4848 WRITE_ONCE(dev->gso_max_segs, segs); 4849 } 4850 4851 static inline void netif_set_gro_max_size(struct net_device *dev, 4852 unsigned int size) 4853 { 4854 /* This pairs with the READ_ONCE() in skb_gro_receive() */ 4855 WRITE_ONCE(dev->gro_max_size, size); 4856 } 4857 4858 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4859 int pulled_hlen, u16 mac_offset, 4860 int mac_len) 4861 { 4862 skb->protocol = protocol; 4863 skb->encapsulation = 1; 4864 skb_push(skb, pulled_hlen); 4865 skb_reset_transport_header(skb); 4866 skb->mac_header = mac_offset; 4867 skb->network_header = skb->mac_header + mac_len; 4868 skb->mac_len = mac_len; 4869 } 4870 4871 static inline bool netif_is_macsec(const struct net_device *dev) 4872 { 4873 return dev->priv_flags & IFF_MACSEC; 4874 } 4875 4876 static inline bool netif_is_macvlan(const struct net_device *dev) 4877 { 4878 return dev->priv_flags & IFF_MACVLAN; 4879 } 4880 4881 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4882 { 4883 return dev->priv_flags & IFF_MACVLAN_PORT; 4884 } 4885 4886 static inline bool netif_is_bond_master(const struct net_device *dev) 4887 { 4888 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4889 } 4890 4891 static inline bool netif_is_bond_slave(const struct net_device *dev) 4892 { 4893 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4894 } 4895 4896 static inline bool netif_supports_nofcs(struct net_device *dev) 4897 { 4898 return dev->priv_flags & IFF_SUPP_NOFCS; 4899 } 4900 4901 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4902 { 4903 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4904 } 4905 4906 static inline bool netif_is_l3_master(const struct net_device *dev) 4907 { 4908 return dev->priv_flags & IFF_L3MDEV_MASTER; 4909 } 4910 4911 static inline bool netif_is_l3_slave(const struct net_device *dev) 4912 { 4913 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4914 } 4915 4916 static inline bool netif_is_bridge_master(const struct net_device *dev) 4917 { 4918 return dev->priv_flags & IFF_EBRIDGE; 4919 } 4920 4921 static inline bool netif_is_bridge_port(const struct net_device *dev) 4922 { 4923 return dev->priv_flags & IFF_BRIDGE_PORT; 4924 } 4925 4926 static inline bool netif_is_ovs_master(const struct net_device *dev) 4927 { 4928 return dev->priv_flags & IFF_OPENVSWITCH; 4929 } 4930 4931 static inline bool netif_is_ovs_port(const struct net_device *dev) 4932 { 4933 return dev->priv_flags & IFF_OVS_DATAPATH; 4934 } 4935 4936 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 4937 { 4938 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 4939 } 4940 4941 static inline bool netif_is_team_master(const struct net_device *dev) 4942 { 4943 return dev->priv_flags & IFF_TEAM; 4944 } 4945 4946 static inline bool netif_is_team_port(const struct net_device *dev) 4947 { 4948 return dev->priv_flags & IFF_TEAM_PORT; 4949 } 4950 4951 static inline bool netif_is_lag_master(const struct net_device *dev) 4952 { 4953 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4954 } 4955 4956 static inline bool netif_is_lag_port(const struct net_device *dev) 4957 { 4958 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4959 } 4960 4961 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4962 { 4963 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4964 } 4965 4966 static inline bool netif_is_failover(const struct net_device *dev) 4967 { 4968 return dev->priv_flags & IFF_FAILOVER; 4969 } 4970 4971 static inline bool netif_is_failover_slave(const struct net_device *dev) 4972 { 4973 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4974 } 4975 4976 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4977 static inline void netif_keep_dst(struct net_device *dev) 4978 { 4979 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4980 } 4981 4982 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4983 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4984 { 4985 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4986 return netif_is_macsec(dev); 4987 } 4988 4989 extern struct pernet_operations __net_initdata loopback_net_ops; 4990 4991 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4992 4993 /* netdev_printk helpers, similar to dev_printk */ 4994 4995 static inline const char *netdev_name(const struct net_device *dev) 4996 { 4997 if (!dev->name[0] || strchr(dev->name, '%')) 4998 return "(unnamed net_device)"; 4999 return dev->name; 5000 } 5001 5002 static inline bool netdev_unregistering(const struct net_device *dev) 5003 { 5004 return dev->reg_state == NETREG_UNREGISTERING; 5005 } 5006 5007 static inline const char *netdev_reg_state(const struct net_device *dev) 5008 { 5009 switch (dev->reg_state) { 5010 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5011 case NETREG_REGISTERED: return ""; 5012 case NETREG_UNREGISTERING: return " (unregistering)"; 5013 case NETREG_UNREGISTERED: return " (unregistered)"; 5014 case NETREG_RELEASED: return " (released)"; 5015 case NETREG_DUMMY: return " (dummy)"; 5016 } 5017 5018 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5019 return " (unknown)"; 5020 } 5021 5022 __printf(3, 4) __cold 5023 void netdev_printk(const char *level, const struct net_device *dev, 5024 const char *format, ...); 5025 __printf(2, 3) __cold 5026 void netdev_emerg(const struct net_device *dev, const char *format, ...); 5027 __printf(2, 3) __cold 5028 void netdev_alert(const struct net_device *dev, const char *format, ...); 5029 __printf(2, 3) __cold 5030 void netdev_crit(const struct net_device *dev, const char *format, ...); 5031 __printf(2, 3) __cold 5032 void netdev_err(const struct net_device *dev, const char *format, ...); 5033 __printf(2, 3) __cold 5034 void netdev_warn(const struct net_device *dev, const char *format, ...); 5035 __printf(2, 3) __cold 5036 void netdev_notice(const struct net_device *dev, const char *format, ...); 5037 __printf(2, 3) __cold 5038 void netdev_info(const struct net_device *dev, const char *format, ...); 5039 5040 #define netdev_level_once(level, dev, fmt, ...) \ 5041 do { \ 5042 static bool __section(".data.once") __print_once; \ 5043 \ 5044 if (!__print_once) { \ 5045 __print_once = true; \ 5046 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 5047 } \ 5048 } while (0) 5049 5050 #define netdev_emerg_once(dev, fmt, ...) \ 5051 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 5052 #define netdev_alert_once(dev, fmt, ...) \ 5053 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 5054 #define netdev_crit_once(dev, fmt, ...) \ 5055 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 5056 #define netdev_err_once(dev, fmt, ...) \ 5057 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 5058 #define netdev_warn_once(dev, fmt, ...) \ 5059 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 5060 #define netdev_notice_once(dev, fmt, ...) \ 5061 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 5062 #define netdev_info_once(dev, fmt, ...) \ 5063 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 5064 5065 #define MODULE_ALIAS_NETDEV(device) \ 5066 MODULE_ALIAS("netdev-" device) 5067 5068 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5069 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5070 #define netdev_dbg(__dev, format, args...) \ 5071 do { \ 5072 dynamic_netdev_dbg(__dev, format, ##args); \ 5073 } while (0) 5074 #elif defined(DEBUG) 5075 #define netdev_dbg(__dev, format, args...) \ 5076 netdev_printk(KERN_DEBUG, __dev, format, ##args) 5077 #else 5078 #define netdev_dbg(__dev, format, args...) \ 5079 ({ \ 5080 if (0) \ 5081 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 5082 }) 5083 #endif 5084 5085 #if defined(VERBOSE_DEBUG) 5086 #define netdev_vdbg netdev_dbg 5087 #else 5088 5089 #define netdev_vdbg(dev, format, args...) \ 5090 ({ \ 5091 if (0) \ 5092 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 5093 0; \ 5094 }) 5095 #endif 5096 5097 /* 5098 * netdev_WARN() acts like dev_printk(), but with the key difference 5099 * of using a WARN/WARN_ON to get the message out, including the 5100 * file/line information and a backtrace. 5101 */ 5102 #define netdev_WARN(dev, format, args...) \ 5103 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5104 netdev_reg_state(dev), ##args) 5105 5106 #define netdev_WARN_ONCE(dev, format, args...) \ 5107 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5108 netdev_reg_state(dev), ##args) 5109 5110 /* netif printk helpers, similar to netdev_printk */ 5111 5112 #define netif_printk(priv, type, level, dev, fmt, args...) \ 5113 do { \ 5114 if (netif_msg_##type(priv)) \ 5115 netdev_printk(level, (dev), fmt, ##args); \ 5116 } while (0) 5117 5118 #define netif_level(level, priv, type, dev, fmt, args...) \ 5119 do { \ 5120 if (netif_msg_##type(priv)) \ 5121 netdev_##level(dev, fmt, ##args); \ 5122 } while (0) 5123 5124 #define netif_emerg(priv, type, dev, fmt, args...) \ 5125 netif_level(emerg, priv, type, dev, fmt, ##args) 5126 #define netif_alert(priv, type, dev, fmt, args...) \ 5127 netif_level(alert, priv, type, dev, fmt, ##args) 5128 #define netif_crit(priv, type, dev, fmt, args...) \ 5129 netif_level(crit, priv, type, dev, fmt, ##args) 5130 #define netif_err(priv, type, dev, fmt, args...) \ 5131 netif_level(err, priv, type, dev, fmt, ##args) 5132 #define netif_warn(priv, type, dev, fmt, args...) \ 5133 netif_level(warn, priv, type, dev, fmt, ##args) 5134 #define netif_notice(priv, type, dev, fmt, args...) \ 5135 netif_level(notice, priv, type, dev, fmt, ##args) 5136 #define netif_info(priv, type, dev, fmt, args...) \ 5137 netif_level(info, priv, type, dev, fmt, ##args) 5138 5139 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5140 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5141 #define netif_dbg(priv, type, netdev, format, args...) \ 5142 do { \ 5143 if (netif_msg_##type(priv)) \ 5144 dynamic_netdev_dbg(netdev, format, ##args); \ 5145 } while (0) 5146 #elif defined(DEBUG) 5147 #define netif_dbg(priv, type, dev, format, args...) \ 5148 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5149 #else 5150 #define netif_dbg(priv, type, dev, format, args...) \ 5151 ({ \ 5152 if (0) \ 5153 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5154 0; \ 5155 }) 5156 #endif 5157 5158 /* if @cond then downgrade to debug, else print at @level */ 5159 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5160 do { \ 5161 if (cond) \ 5162 netif_dbg(priv, type, netdev, fmt, ##args); \ 5163 else \ 5164 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5165 } while (0) 5166 5167 #if defined(VERBOSE_DEBUG) 5168 #define netif_vdbg netif_dbg 5169 #else 5170 #define netif_vdbg(priv, type, dev, format, args...) \ 5171 ({ \ 5172 if (0) \ 5173 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5174 0; \ 5175 }) 5176 #endif 5177 5178 /* 5179 * The list of packet types we will receive (as opposed to discard) 5180 * and the routines to invoke. 5181 * 5182 * Why 16. Because with 16 the only overlap we get on a hash of the 5183 * low nibble of the protocol value is RARP/SNAP/X.25. 5184 * 5185 * 0800 IP 5186 * 0001 802.3 5187 * 0002 AX.25 5188 * 0004 802.2 5189 * 8035 RARP 5190 * 0005 SNAP 5191 * 0805 X.25 5192 * 0806 ARP 5193 * 8137 IPX 5194 * 0009 Localtalk 5195 * 86DD IPv6 5196 */ 5197 #define PTYPE_HASH_SIZE (16) 5198 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5199 5200 extern struct list_head ptype_all __read_mostly; 5201 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5202 5203 extern struct net_device *blackhole_netdev; 5204 5205 #endif /* _LINUX_NETDEVICE_H */ 5206