xref: /openbmc/linux/include/linux/netdevice.h (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	unsigned int	hh_len;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 	__be16	(*parse_protocol)(const struct sk_buff *skb);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 struct gro_list {
303 	struct list_head	list;
304 	int			count;
305 };
306 
307 /*
308  * size of gro hash buckets, must less than bit number of
309  * napi_struct::gro_bitmask
310  */
311 #define GRO_HASH_BUCKETS	8
312 
313 /*
314  * Structure for NAPI scheduling similar to tasklet but with weighting
315  */
316 struct napi_struct {
317 	/* The poll_list must only be managed by the entity which
318 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
319 	 * whoever atomically sets that bit can add this napi_struct
320 	 * to the per-CPU poll_list, and whoever clears that bit
321 	 * can remove from the list right before clearing the bit.
322 	 */
323 	struct list_head	poll_list;
324 
325 	unsigned long		state;
326 	int			weight;
327 	unsigned long		gro_bitmask;
328 	int			(*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 	int			poll_owner;
331 #endif
332 	struct net_device	*dev;
333 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
334 	struct sk_buff		*skb;
335 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
336 	int			rx_count; /* length of rx_list */
337 	struct hrtimer		timer;
338 	struct list_head	dev_list;
339 	struct hlist_node	napi_hash_node;
340 	unsigned int		napi_id;
341 };
342 
343 enum {
344 	NAPI_STATE_SCHED,	/* Poll is scheduled */
345 	NAPI_STATE_MISSED,	/* reschedule a napi */
346 	NAPI_STATE_DISABLE,	/* Disable pending */
347 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
348 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
349 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351 };
352 
353 enum {
354 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
355 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
356 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
357 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
358 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
359 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361 };
362 
363 enum gro_result {
364 	GRO_MERGED,
365 	GRO_MERGED_FREE,
366 	GRO_HELD,
367 	GRO_NORMAL,
368 	GRO_DROP,
369 	GRO_CONSUMED,
370 };
371 typedef enum gro_result gro_result_t;
372 
373 /*
374  * enum rx_handler_result - Possible return values for rx_handlers.
375  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376  * further.
377  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378  * case skb->dev was changed by rx_handler.
379  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381  *
382  * rx_handlers are functions called from inside __netif_receive_skb(), to do
383  * special processing of the skb, prior to delivery to protocol handlers.
384  *
385  * Currently, a net_device can only have a single rx_handler registered. Trying
386  * to register a second rx_handler will return -EBUSY.
387  *
388  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389  * To unregister a rx_handler on a net_device, use
390  * netdev_rx_handler_unregister().
391  *
392  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393  * do with the skb.
394  *
395  * If the rx_handler consumed the skb in some way, it should return
396  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397  * the skb to be delivered in some other way.
398  *
399  * If the rx_handler changed skb->dev, to divert the skb to another
400  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401  * new device will be called if it exists.
402  *
403  * If the rx_handler decides the skb should be ignored, it should return
404  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405  * are registered on exact device (ptype->dev == skb->dev).
406  *
407  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408  * delivered, it should return RX_HANDLER_PASS.
409  *
410  * A device without a registered rx_handler will behave as if rx_handler
411  * returned RX_HANDLER_PASS.
412  */
413 
414 enum rx_handler_result {
415 	RX_HANDLER_CONSUMED,
416 	RX_HANDLER_ANOTHER,
417 	RX_HANDLER_EXACT,
418 	RX_HANDLER_PASS,
419 };
420 typedef enum rx_handler_result rx_handler_result_t;
421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422 
423 void __napi_schedule(struct napi_struct *n);
424 void __napi_schedule_irqoff(struct napi_struct *n);
425 
426 static inline bool napi_disable_pending(struct napi_struct *n)
427 {
428 	return test_bit(NAPI_STATE_DISABLE, &n->state);
429 }
430 
431 bool napi_schedule_prep(struct napi_struct *n);
432 
433 /**
434  *	napi_schedule - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Schedule NAPI poll routine to be called if it is not already
438  * running.
439  */
440 static inline void napi_schedule(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule(n);
444 }
445 
446 /**
447  *	napi_schedule_irqoff - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Variant of napi_schedule(), assuming hard irqs are masked.
451  */
452 static inline void napi_schedule_irqoff(struct napi_struct *n)
453 {
454 	if (napi_schedule_prep(n))
455 		__napi_schedule_irqoff(n);
456 }
457 
458 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
459 static inline bool napi_reschedule(struct napi_struct *napi)
460 {
461 	if (napi_schedule_prep(napi)) {
462 		__napi_schedule(napi);
463 		return true;
464 	}
465 	return false;
466 }
467 
468 bool napi_complete_done(struct napi_struct *n, int work_done);
469 /**
470  *	napi_complete - NAPI processing complete
471  *	@n: NAPI context
472  *
473  * Mark NAPI processing as complete.
474  * Consider using napi_complete_done() instead.
475  * Return false if device should avoid rearming interrupts.
476  */
477 static inline bool napi_complete(struct napi_struct *n)
478 {
479 	return napi_complete_done(n, 0);
480 }
481 
482 /**
483  *	napi_hash_del - remove a NAPI from global table
484  *	@napi: NAPI context
485  *
486  * Warning: caller must observe RCU grace period
487  * before freeing memory containing @napi, if
488  * this function returns true.
489  * Note: core networking stack automatically calls it
490  * from netif_napi_del().
491  * Drivers might want to call this helper to combine all
492  * the needed RCU grace periods into a single one.
493  */
494 bool napi_hash_del(struct napi_struct *napi);
495 
496 /**
497  *	napi_disable - prevent NAPI from scheduling
498  *	@n: NAPI context
499  *
500  * Stop NAPI from being scheduled on this context.
501  * Waits till any outstanding processing completes.
502  */
503 void napi_disable(struct napi_struct *n);
504 
505 /**
506  *	napi_enable - enable NAPI scheduling
507  *	@n: NAPI context
508  *
509  * Resume NAPI from being scheduled on this context.
510  * Must be paired with napi_disable.
511  */
512 static inline void napi_enable(struct napi_struct *n)
513 {
514 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 	smp_mb__before_atomic();
516 	clear_bit(NAPI_STATE_SCHED, &n->state);
517 	clear_bit(NAPI_STATE_NPSVC, &n->state);
518 }
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	struct Qdisc __rcu	*qdisc;
595 	struct Qdisc		*qdisc_sleeping;
596 #ifdef CONFIG_SYSFS
597 	struct kobject		kobj;
598 #endif
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	int			numa_node;
601 #endif
602 	unsigned long		tx_maxrate;
603 	/*
604 	 * Number of TX timeouts for this queue
605 	 * (/sys/class/net/DEV/Q/trans_timeout)
606 	 */
607 	unsigned long		trans_timeout;
608 
609 	/* Subordinate device that the queue has been assigned to */
610 	struct net_device	*sb_dev;
611 #ifdef CONFIG_XDP_SOCKETS
612 	struct xdp_umem         *umem;
613 #endif
614 /*
615  * write-mostly part
616  */
617 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
618 	int			xmit_lock_owner;
619 	/*
620 	 * Time (in jiffies) of last Tx
621 	 */
622 	unsigned long		trans_start;
623 
624 	unsigned long		state;
625 
626 #ifdef CONFIG_BQL
627 	struct dql		dql;
628 #endif
629 } ____cacheline_aligned_in_smp;
630 
631 extern int sysctl_fb_tunnels_only_for_init_net;
632 extern int sysctl_devconf_inherit_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 	TC_SETUP_QDISC_TBF,
854 };
855 
856 /* These structures hold the attributes of bpf state that are being passed
857  * to the netdevice through the bpf op.
858  */
859 enum bpf_netdev_command {
860 	/* Set or clear a bpf program used in the earliest stages of packet
861 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
862 	 * is responsible for calling bpf_prog_put on any old progs that are
863 	 * stored. In case of error, the callee need not release the new prog
864 	 * reference, but on success it takes ownership and must bpf_prog_put
865 	 * when it is no longer used.
866 	 */
867 	XDP_SETUP_PROG,
868 	XDP_SETUP_PROG_HW,
869 	XDP_QUERY_PROG,
870 	XDP_QUERY_PROG_HW,
871 	/* BPF program for offload callbacks, invoked at program load time. */
872 	BPF_OFFLOAD_MAP_ALLOC,
873 	BPF_OFFLOAD_MAP_FREE,
874 	XDP_SETUP_XSK_UMEM,
875 };
876 
877 struct bpf_prog_offload_ops;
878 struct netlink_ext_ack;
879 struct xdp_umem;
880 struct xdp_dev_bulk_queue;
881 
882 struct netdev_bpf {
883 	enum bpf_netdev_command command;
884 	union {
885 		/* XDP_SETUP_PROG */
886 		struct {
887 			u32 flags;
888 			struct bpf_prog *prog;
889 			struct netlink_ext_ack *extack;
890 		};
891 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
892 		struct {
893 			u32 prog_id;
894 			/* flags with which program was installed */
895 			u32 prog_flags;
896 		};
897 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
898 		struct {
899 			struct bpf_offloaded_map *offmap;
900 		};
901 		/* XDP_SETUP_XSK_UMEM */
902 		struct {
903 			struct xdp_umem *umem;
904 			u16 queue_id;
905 		} xsk;
906 	};
907 };
908 
909 /* Flags for ndo_xsk_wakeup. */
910 #define XDP_WAKEUP_RX (1 << 0)
911 #define XDP_WAKEUP_TX (1 << 1)
912 
913 #ifdef CONFIG_XFRM_OFFLOAD
914 struct xfrmdev_ops {
915 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
916 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
917 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
918 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
919 				       struct xfrm_state *x);
920 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
921 };
922 #endif
923 
924 struct dev_ifalias {
925 	struct rcu_head rcuhead;
926 	char ifalias[];
927 };
928 
929 struct devlink;
930 struct tlsdev_ops;
931 
932 struct netdev_name_node {
933 	struct hlist_node hlist;
934 	struct list_head list;
935 	struct net_device *dev;
936 	const char *name;
937 };
938 
939 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
940 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
941 
942 struct netdev_net_notifier {
943 	struct list_head list;
944 	struct notifier_block *nb;
945 };
946 
947 /*
948  * This structure defines the management hooks for network devices.
949  * The following hooks can be defined; unless noted otherwise, they are
950  * optional and can be filled with a null pointer.
951  *
952  * int (*ndo_init)(struct net_device *dev);
953  *     This function is called once when a network device is registered.
954  *     The network device can use this for any late stage initialization
955  *     or semantic validation. It can fail with an error code which will
956  *     be propagated back to register_netdev.
957  *
958  * void (*ndo_uninit)(struct net_device *dev);
959  *     This function is called when device is unregistered or when registration
960  *     fails. It is not called if init fails.
961  *
962  * int (*ndo_open)(struct net_device *dev);
963  *     This function is called when a network device transitions to the up
964  *     state.
965  *
966  * int (*ndo_stop)(struct net_device *dev);
967  *     This function is called when a network device transitions to the down
968  *     state.
969  *
970  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
971  *                               struct net_device *dev);
972  *	Called when a packet needs to be transmitted.
973  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
974  *	the queue before that can happen; it's for obsolete devices and weird
975  *	corner cases, but the stack really does a non-trivial amount
976  *	of useless work if you return NETDEV_TX_BUSY.
977  *	Required; cannot be NULL.
978  *
979  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
980  *					   struct net_device *dev
981  *					   netdev_features_t features);
982  *	Called by core transmit path to determine if device is capable of
983  *	performing offload operations on a given packet. This is to give
984  *	the device an opportunity to implement any restrictions that cannot
985  *	be otherwise expressed by feature flags. The check is called with
986  *	the set of features that the stack has calculated and it returns
987  *	those the driver believes to be appropriate.
988  *
989  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
990  *                         struct net_device *sb_dev);
991  *	Called to decide which queue to use when device supports multiple
992  *	transmit queues.
993  *
994  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
995  *	This function is called to allow device receiver to make
996  *	changes to configuration when multicast or promiscuous is enabled.
997  *
998  * void (*ndo_set_rx_mode)(struct net_device *dev);
999  *	This function is called device changes address list filtering.
1000  *	If driver handles unicast address filtering, it should set
1001  *	IFF_UNICAST_FLT in its priv_flags.
1002  *
1003  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1004  *	This function  is called when the Media Access Control address
1005  *	needs to be changed. If this interface is not defined, the
1006  *	MAC address can not be changed.
1007  *
1008  * int (*ndo_validate_addr)(struct net_device *dev);
1009  *	Test if Media Access Control address is valid for the device.
1010  *
1011  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1012  *	Called when a user requests an ioctl which can't be handled by
1013  *	the generic interface code. If not defined ioctls return
1014  *	not supported error code.
1015  *
1016  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1017  *	Used to set network devices bus interface parameters. This interface
1018  *	is retained for legacy reasons; new devices should use the bus
1019  *	interface (PCI) for low level management.
1020  *
1021  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1022  *	Called when a user wants to change the Maximum Transfer Unit
1023  *	of a device.
1024  *
1025  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1026  *	Callback used when the transmitter has not made any progress
1027  *	for dev->watchdog ticks.
1028  *
1029  * void (*ndo_get_stats64)(struct net_device *dev,
1030  *                         struct rtnl_link_stats64 *storage);
1031  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032  *	Called when a user wants to get the network device usage
1033  *	statistics. Drivers must do one of the following:
1034  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1035  *	   rtnl_link_stats64 structure passed by the caller.
1036  *	2. Define @ndo_get_stats to update a net_device_stats structure
1037  *	   (which should normally be dev->stats) and return a pointer to
1038  *	   it. The structure may be changed asynchronously only if each
1039  *	   field is written atomically.
1040  *	3. Update dev->stats asynchronously and atomically, and define
1041  *	   neither operation.
1042  *
1043  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1044  *	Return true if this device supports offload stats of this attr_id.
1045  *
1046  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1047  *	void *attr_data)
1048  *	Get statistics for offload operations by attr_id. Write it into the
1049  *	attr_data pointer.
1050  *
1051  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1052  *	If device supports VLAN filtering this function is called when a
1053  *	VLAN id is registered.
1054  *
1055  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1056  *	If device supports VLAN filtering this function is called when a
1057  *	VLAN id is unregistered.
1058  *
1059  * void (*ndo_poll_controller)(struct net_device *dev);
1060  *
1061  *	SR-IOV management functions.
1062  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1063  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1064  *			  u8 qos, __be16 proto);
1065  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1066  *			  int max_tx_rate);
1067  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1068  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1069  * int (*ndo_get_vf_config)(struct net_device *dev,
1070  *			    int vf, struct ifla_vf_info *ivf);
1071  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1072  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1073  *			  struct nlattr *port[]);
1074  *
1075  *      Enable or disable the VF ability to query its RSS Redirection Table and
1076  *      Hash Key. This is needed since on some devices VF share this information
1077  *      with PF and querying it may introduce a theoretical security risk.
1078  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1079  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1080  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1081  *		       void *type_data);
1082  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1083  *	This is always called from the stack with the rtnl lock held and netif
1084  *	tx queues stopped. This allows the netdevice to perform queue
1085  *	management safely.
1086  *
1087  *	Fiber Channel over Ethernet (FCoE) offload functions.
1088  * int (*ndo_fcoe_enable)(struct net_device *dev);
1089  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1090  *	so the underlying device can perform whatever needed configuration or
1091  *	initialization to support acceleration of FCoE traffic.
1092  *
1093  * int (*ndo_fcoe_disable)(struct net_device *dev);
1094  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1095  *	so the underlying device can perform whatever needed clean-ups to
1096  *	stop supporting acceleration of FCoE traffic.
1097  *
1098  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1099  *			     struct scatterlist *sgl, unsigned int sgc);
1100  *	Called when the FCoE Initiator wants to initialize an I/O that
1101  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1102  *	perform necessary setup and returns 1 to indicate the device is set up
1103  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1104  *
1105  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1106  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1107  *	indicated by the FC exchange id 'xid', so the underlying device can
1108  *	clean up and reuse resources for later DDP requests.
1109  *
1110  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1111  *			      struct scatterlist *sgl, unsigned int sgc);
1112  *	Called when the FCoE Target wants to initialize an I/O that
1113  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1114  *	perform necessary setup and returns 1 to indicate the device is set up
1115  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1116  *
1117  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1118  *			       struct netdev_fcoe_hbainfo *hbainfo);
1119  *	Called when the FCoE Protocol stack wants information on the underlying
1120  *	device. This information is utilized by the FCoE protocol stack to
1121  *	register attributes with Fiber Channel management service as per the
1122  *	FC-GS Fabric Device Management Information(FDMI) specification.
1123  *
1124  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1125  *	Called when the underlying device wants to override default World Wide
1126  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1127  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1128  *	protocol stack to use.
1129  *
1130  *	RFS acceleration.
1131  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1132  *			    u16 rxq_index, u32 flow_id);
1133  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1134  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1135  *	Return the filter ID on success, or a negative error code.
1136  *
1137  *	Slave management functions (for bridge, bonding, etc).
1138  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1139  *	Called to make another netdev an underling.
1140  *
1141  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1142  *	Called to release previously enslaved netdev.
1143  *
1144  *      Feature/offload setting functions.
1145  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1146  *		netdev_features_t features);
1147  *	Adjusts the requested feature flags according to device-specific
1148  *	constraints, and returns the resulting flags. Must not modify
1149  *	the device state.
1150  *
1151  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1152  *	Called to update device configuration to new features. Passed
1153  *	feature set might be less than what was returned by ndo_fix_features()).
1154  *	Must return >0 or -errno if it changed dev->features itself.
1155  *
1156  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1157  *		      struct net_device *dev,
1158  *		      const unsigned char *addr, u16 vid, u16 flags,
1159  *		      struct netlink_ext_ack *extack);
1160  *	Adds an FDB entry to dev for addr.
1161  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1162  *		      struct net_device *dev,
1163  *		      const unsigned char *addr, u16 vid)
1164  *	Deletes the FDB entry from dev coresponding to addr.
1165  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1166  *		       struct net_device *dev, struct net_device *filter_dev,
1167  *		       int *idx)
1168  *	Used to add FDB entries to dump requests. Implementers should add
1169  *	entries to skb and update idx with the number of entries.
1170  *
1171  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1172  *			     u16 flags, struct netlink_ext_ack *extack)
1173  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1174  *			     struct net_device *dev, u32 filter_mask,
1175  *			     int nlflags)
1176  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1177  *			     u16 flags);
1178  *
1179  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1180  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1181  *	which do not represent real hardware may define this to allow their
1182  *	userspace components to manage their virtual carrier state. Devices
1183  *	that determine carrier state from physical hardware properties (eg
1184  *	network cables) or protocol-dependent mechanisms (eg
1185  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1186  *
1187  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1188  *			       struct netdev_phys_item_id *ppid);
1189  *	Called to get ID of physical port of this device. If driver does
1190  *	not implement this, it is assumed that the hw is not able to have
1191  *	multiple net devices on single physical port.
1192  *
1193  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1194  *				 struct netdev_phys_item_id *ppid)
1195  *	Called to get the parent ID of the physical port of this device.
1196  *
1197  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1198  *			      struct udp_tunnel_info *ti);
1199  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1200  *	address family that a UDP tunnel is listnening to. It is called only
1201  *	when a new port starts listening. The operation is protected by the
1202  *	RTNL.
1203  *
1204  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1205  *			      struct udp_tunnel_info *ti);
1206  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1207  *	address family that the UDP tunnel is not listening to anymore. The
1208  *	operation is protected by the RTNL.
1209  *
1210  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1211  *				 struct net_device *dev)
1212  *	Called by upper layer devices to accelerate switching or other
1213  *	station functionality into hardware. 'pdev is the lowerdev
1214  *	to use for the offload and 'dev' is the net device that will
1215  *	back the offload. Returns a pointer to the private structure
1216  *	the upper layer will maintain.
1217  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1218  *	Called by upper layer device to delete the station created
1219  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1220  *	the station and priv is the structure returned by the add
1221  *	operation.
1222  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1223  *			     int queue_index, u32 maxrate);
1224  *	Called when a user wants to set a max-rate limitation of specific
1225  *	TX queue.
1226  * int (*ndo_get_iflink)(const struct net_device *dev);
1227  *	Called to get the iflink value of this device.
1228  * void (*ndo_change_proto_down)(struct net_device *dev,
1229  *				 bool proto_down);
1230  *	This function is used to pass protocol port error state information
1231  *	to the switch driver. The switch driver can react to the proto_down
1232  *      by doing a phys down on the associated switch port.
1233  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1234  *	This function is used to get egress tunnel information for given skb.
1235  *	This is useful for retrieving outer tunnel header parameters while
1236  *	sampling packet.
1237  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1238  *	This function is used to specify the headroom that the skb must
1239  *	consider when allocation skb during packet reception. Setting
1240  *	appropriate rx headroom value allows avoiding skb head copy on
1241  *	forward. Setting a negative value resets the rx headroom to the
1242  *	default value.
1243  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1244  *	This function is used to set or query state related to XDP on the
1245  *	netdevice and manage BPF offload. See definition of
1246  *	enum bpf_netdev_command for details.
1247  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1248  *			u32 flags);
1249  *	This function is used to submit @n XDP packets for transmit on a
1250  *	netdevice. Returns number of frames successfully transmitted, frames
1251  *	that got dropped are freed/returned via xdp_return_frame().
1252  *	Returns negative number, means general error invoking ndo, meaning
1253  *	no frames were xmit'ed and core-caller will free all frames.
1254  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1255  *      This function is used to wake up the softirq, ksoftirqd or kthread
1256  *	responsible for sending and/or receiving packets on a specific
1257  *	queue id bound to an AF_XDP socket. The flags field specifies if
1258  *	only RX, only Tx, or both should be woken up using the flags
1259  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1260  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1261  *	Get devlink port instance associated with a given netdev.
1262  *	Called with a reference on the netdevice and devlink locks only,
1263  *	rtnl_lock is not held.
1264  */
1265 struct net_device_ops {
1266 	int			(*ndo_init)(struct net_device *dev);
1267 	void			(*ndo_uninit)(struct net_device *dev);
1268 	int			(*ndo_open)(struct net_device *dev);
1269 	int			(*ndo_stop)(struct net_device *dev);
1270 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1271 						  struct net_device *dev);
1272 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1273 						      struct net_device *dev,
1274 						      netdev_features_t features);
1275 	u16			(*ndo_select_queue)(struct net_device *dev,
1276 						    struct sk_buff *skb,
1277 						    struct net_device *sb_dev);
1278 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1279 						       int flags);
1280 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1281 	int			(*ndo_set_mac_address)(struct net_device *dev,
1282 						       void *addr);
1283 	int			(*ndo_validate_addr)(struct net_device *dev);
1284 	int			(*ndo_do_ioctl)(struct net_device *dev,
1285 					        struct ifreq *ifr, int cmd);
1286 	int			(*ndo_set_config)(struct net_device *dev,
1287 					          struct ifmap *map);
1288 	int			(*ndo_change_mtu)(struct net_device *dev,
1289 						  int new_mtu);
1290 	int			(*ndo_neigh_setup)(struct net_device *dev,
1291 						   struct neigh_parms *);
1292 	void			(*ndo_tx_timeout) (struct net_device *dev,
1293 						   unsigned int txqueue);
1294 
1295 	void			(*ndo_get_stats64)(struct net_device *dev,
1296 						   struct rtnl_link_stats64 *storage);
1297 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1298 	int			(*ndo_get_offload_stats)(int attr_id,
1299 							 const struct net_device *dev,
1300 							 void *attr_data);
1301 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1302 
1303 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1304 						       __be16 proto, u16 vid);
1305 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1306 						        __be16 proto, u16 vid);
1307 #ifdef CONFIG_NET_POLL_CONTROLLER
1308 	void                    (*ndo_poll_controller)(struct net_device *dev);
1309 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1310 						     struct netpoll_info *info);
1311 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1312 #endif
1313 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1314 						  int queue, u8 *mac);
1315 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1316 						   int queue, u16 vlan,
1317 						   u8 qos, __be16 proto);
1318 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1319 						   int vf, int min_tx_rate,
1320 						   int max_tx_rate);
1321 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1322 						       int vf, bool setting);
1323 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1324 						    int vf, bool setting);
1325 	int			(*ndo_get_vf_config)(struct net_device *dev,
1326 						     int vf,
1327 						     struct ifla_vf_info *ivf);
1328 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1329 							 int vf, int link_state);
1330 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1331 						    int vf,
1332 						    struct ifla_vf_stats
1333 						    *vf_stats);
1334 	int			(*ndo_set_vf_port)(struct net_device *dev,
1335 						   int vf,
1336 						   struct nlattr *port[]);
1337 	int			(*ndo_get_vf_port)(struct net_device *dev,
1338 						   int vf, struct sk_buff *skb);
1339 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1340 						   int vf,
1341 						   struct ifla_vf_guid *node_guid,
1342 						   struct ifla_vf_guid *port_guid);
1343 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1344 						   int vf, u64 guid,
1345 						   int guid_type);
1346 	int			(*ndo_set_vf_rss_query_en)(
1347 						   struct net_device *dev,
1348 						   int vf, bool setting);
1349 	int			(*ndo_setup_tc)(struct net_device *dev,
1350 						enum tc_setup_type type,
1351 						void *type_data);
1352 #if IS_ENABLED(CONFIG_FCOE)
1353 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1354 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1355 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1356 						      u16 xid,
1357 						      struct scatterlist *sgl,
1358 						      unsigned int sgc);
1359 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1360 						     u16 xid);
1361 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1362 						       u16 xid,
1363 						       struct scatterlist *sgl,
1364 						       unsigned int sgc);
1365 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1366 							struct netdev_fcoe_hbainfo *hbainfo);
1367 #endif
1368 
1369 #if IS_ENABLED(CONFIG_LIBFCOE)
1370 #define NETDEV_FCOE_WWNN 0
1371 #define NETDEV_FCOE_WWPN 1
1372 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1373 						    u64 *wwn, int type);
1374 #endif
1375 
1376 #ifdef CONFIG_RFS_ACCEL
1377 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1378 						     const struct sk_buff *skb,
1379 						     u16 rxq_index,
1380 						     u32 flow_id);
1381 #endif
1382 	int			(*ndo_add_slave)(struct net_device *dev,
1383 						 struct net_device *slave_dev,
1384 						 struct netlink_ext_ack *extack);
1385 	int			(*ndo_del_slave)(struct net_device *dev,
1386 						 struct net_device *slave_dev);
1387 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1388 						    netdev_features_t features);
1389 	int			(*ndo_set_features)(struct net_device *dev,
1390 						    netdev_features_t features);
1391 	int			(*ndo_neigh_construct)(struct net_device *dev,
1392 						       struct neighbour *n);
1393 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1394 						     struct neighbour *n);
1395 
1396 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1397 					       struct nlattr *tb[],
1398 					       struct net_device *dev,
1399 					       const unsigned char *addr,
1400 					       u16 vid,
1401 					       u16 flags,
1402 					       struct netlink_ext_ack *extack);
1403 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1404 					       struct nlattr *tb[],
1405 					       struct net_device *dev,
1406 					       const unsigned char *addr,
1407 					       u16 vid);
1408 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1409 						struct netlink_callback *cb,
1410 						struct net_device *dev,
1411 						struct net_device *filter_dev,
1412 						int *idx);
1413 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1414 					       struct nlattr *tb[],
1415 					       struct net_device *dev,
1416 					       const unsigned char *addr,
1417 					       u16 vid, u32 portid, u32 seq,
1418 					       struct netlink_ext_ack *extack);
1419 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1420 						      struct nlmsghdr *nlh,
1421 						      u16 flags,
1422 						      struct netlink_ext_ack *extack);
1423 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1424 						      u32 pid, u32 seq,
1425 						      struct net_device *dev,
1426 						      u32 filter_mask,
1427 						      int nlflags);
1428 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1429 						      struct nlmsghdr *nlh,
1430 						      u16 flags);
1431 	int			(*ndo_change_carrier)(struct net_device *dev,
1432 						      bool new_carrier);
1433 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1434 							struct netdev_phys_item_id *ppid);
1435 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1436 							  struct netdev_phys_item_id *ppid);
1437 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1438 							  char *name, size_t len);
1439 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1440 						      struct udp_tunnel_info *ti);
1441 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1442 						      struct udp_tunnel_info *ti);
1443 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1444 							struct net_device *dev);
1445 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1446 							void *priv);
1447 
1448 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1449 						      int queue_index,
1450 						      u32 maxrate);
1451 	int			(*ndo_get_iflink)(const struct net_device *dev);
1452 	int			(*ndo_change_proto_down)(struct net_device *dev,
1453 							 bool proto_down);
1454 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1455 						       struct sk_buff *skb);
1456 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1457 						       int needed_headroom);
1458 	int			(*ndo_bpf)(struct net_device *dev,
1459 					   struct netdev_bpf *bpf);
1460 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1461 						struct xdp_frame **xdp,
1462 						u32 flags);
1463 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1464 						  u32 queue_id, u32 flags);
1465 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1466 };
1467 
1468 /**
1469  * enum net_device_priv_flags - &struct net_device priv_flags
1470  *
1471  * These are the &struct net_device, they are only set internally
1472  * by drivers and used in the kernel. These flags are invisible to
1473  * userspace; this means that the order of these flags can change
1474  * during any kernel release.
1475  *
1476  * You should have a pretty good reason to be extending these flags.
1477  *
1478  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1479  * @IFF_EBRIDGE: Ethernet bridging device
1480  * @IFF_BONDING: bonding master or slave
1481  * @IFF_ISATAP: ISATAP interface (RFC4214)
1482  * @IFF_WAN_HDLC: WAN HDLC device
1483  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1484  *	release skb->dst
1485  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1486  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1487  * @IFF_MACVLAN_PORT: device used as macvlan port
1488  * @IFF_BRIDGE_PORT: device used as bridge port
1489  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1490  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1491  * @IFF_UNICAST_FLT: Supports unicast filtering
1492  * @IFF_TEAM_PORT: device used as team port
1493  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1494  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1495  *	change when it's running
1496  * @IFF_MACVLAN: Macvlan device
1497  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1498  *	underlying stacked devices
1499  * @IFF_L3MDEV_MASTER: device is an L3 master device
1500  * @IFF_NO_QUEUE: device can run without qdisc attached
1501  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1502  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1503  * @IFF_TEAM: device is a team device
1504  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1505  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1506  *	entity (i.e. the master device for bridged veth)
1507  * @IFF_MACSEC: device is a MACsec device
1508  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1509  * @IFF_FAILOVER: device is a failover master device
1510  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1511  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1512  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1513  */
1514 enum netdev_priv_flags {
1515 	IFF_802_1Q_VLAN			= 1<<0,
1516 	IFF_EBRIDGE			= 1<<1,
1517 	IFF_BONDING			= 1<<2,
1518 	IFF_ISATAP			= 1<<3,
1519 	IFF_WAN_HDLC			= 1<<4,
1520 	IFF_XMIT_DST_RELEASE		= 1<<5,
1521 	IFF_DONT_BRIDGE			= 1<<6,
1522 	IFF_DISABLE_NETPOLL		= 1<<7,
1523 	IFF_MACVLAN_PORT		= 1<<8,
1524 	IFF_BRIDGE_PORT			= 1<<9,
1525 	IFF_OVS_DATAPATH		= 1<<10,
1526 	IFF_TX_SKB_SHARING		= 1<<11,
1527 	IFF_UNICAST_FLT			= 1<<12,
1528 	IFF_TEAM_PORT			= 1<<13,
1529 	IFF_SUPP_NOFCS			= 1<<14,
1530 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1531 	IFF_MACVLAN			= 1<<16,
1532 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1533 	IFF_L3MDEV_MASTER		= 1<<18,
1534 	IFF_NO_QUEUE			= 1<<19,
1535 	IFF_OPENVSWITCH			= 1<<20,
1536 	IFF_L3MDEV_SLAVE		= 1<<21,
1537 	IFF_TEAM			= 1<<22,
1538 	IFF_RXFH_CONFIGURED		= 1<<23,
1539 	IFF_PHONY_HEADROOM		= 1<<24,
1540 	IFF_MACSEC			= 1<<25,
1541 	IFF_NO_RX_HANDLER		= 1<<26,
1542 	IFF_FAILOVER			= 1<<27,
1543 	IFF_FAILOVER_SLAVE		= 1<<28,
1544 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1545 	IFF_LIVE_RENAME_OK		= 1<<30,
1546 };
1547 
1548 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1549 #define IFF_EBRIDGE			IFF_EBRIDGE
1550 #define IFF_BONDING			IFF_BONDING
1551 #define IFF_ISATAP			IFF_ISATAP
1552 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1553 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1554 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1555 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1556 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1557 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1558 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1559 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1560 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1561 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1562 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1563 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1564 #define IFF_MACVLAN			IFF_MACVLAN
1565 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1566 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1567 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1568 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1569 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1570 #define IFF_TEAM			IFF_TEAM
1571 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1572 #define IFF_MACSEC			IFF_MACSEC
1573 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1574 #define IFF_FAILOVER			IFF_FAILOVER
1575 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1576 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1577 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1578 
1579 /**
1580  *	struct net_device - The DEVICE structure.
1581  *
1582  *	Actually, this whole structure is a big mistake.  It mixes I/O
1583  *	data with strictly "high-level" data, and it has to know about
1584  *	almost every data structure used in the INET module.
1585  *
1586  *	@name:	This is the first field of the "visible" part of this structure
1587  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1588  *		of the interface.
1589  *
1590  *	@name_node:	Name hashlist node
1591  *	@ifalias:	SNMP alias
1592  *	@mem_end:	Shared memory end
1593  *	@mem_start:	Shared memory start
1594  *	@base_addr:	Device I/O address
1595  *	@irq:		Device IRQ number
1596  *
1597  *	@state:		Generic network queuing layer state, see netdev_state_t
1598  *	@dev_list:	The global list of network devices
1599  *	@napi_list:	List entry used for polling NAPI devices
1600  *	@unreg_list:	List entry  when we are unregistering the
1601  *			device; see the function unregister_netdev
1602  *	@close_list:	List entry used when we are closing the device
1603  *	@ptype_all:     Device-specific packet handlers for all protocols
1604  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1605  *
1606  *	@adj_list:	Directly linked devices, like slaves for bonding
1607  *	@features:	Currently active device features
1608  *	@hw_features:	User-changeable features
1609  *
1610  *	@wanted_features:	User-requested features
1611  *	@vlan_features:		Mask of features inheritable by VLAN devices
1612  *
1613  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1614  *				This field indicates what encapsulation
1615  *				offloads the hardware is capable of doing,
1616  *				and drivers will need to set them appropriately.
1617  *
1618  *	@mpls_features:	Mask of features inheritable by MPLS
1619  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1620  *
1621  *	@ifindex:	interface index
1622  *	@group:		The group the device belongs to
1623  *
1624  *	@stats:		Statistics struct, which was left as a legacy, use
1625  *			rtnl_link_stats64 instead
1626  *
1627  *	@rx_dropped:	Dropped packets by core network,
1628  *			do not use this in drivers
1629  *	@tx_dropped:	Dropped packets by core network,
1630  *			do not use this in drivers
1631  *	@rx_nohandler:	nohandler dropped packets by core network on
1632  *			inactive devices, do not use this in drivers
1633  *	@carrier_up_count:	Number of times the carrier has been up
1634  *	@carrier_down_count:	Number of times the carrier has been down
1635  *
1636  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1637  *				instead of ioctl,
1638  *				see <net/iw_handler.h> for details.
1639  *	@wireless_data:	Instance data managed by the core of wireless extensions
1640  *
1641  *	@netdev_ops:	Includes several pointers to callbacks,
1642  *			if one wants to override the ndo_*() functions
1643  *	@ethtool_ops:	Management operations
1644  *	@l3mdev_ops:	Layer 3 master device operations
1645  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1646  *			discovery handling. Necessary for e.g. 6LoWPAN.
1647  *	@xfrmdev_ops:	Transformation offload operations
1648  *	@tlsdev_ops:	Transport Layer Security offload operations
1649  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1650  *			of Layer 2 headers.
1651  *
1652  *	@flags:		Interface flags (a la BSD)
1653  *	@priv_flags:	Like 'flags' but invisible to userspace,
1654  *			see if.h for the definitions
1655  *	@gflags:	Global flags ( kept as legacy )
1656  *	@padded:	How much padding added by alloc_netdev()
1657  *	@operstate:	RFC2863 operstate
1658  *	@link_mode:	Mapping policy to operstate
1659  *	@if_port:	Selectable AUI, TP, ...
1660  *	@dma:		DMA channel
1661  *	@mtu:		Interface MTU value
1662  *	@min_mtu:	Interface Minimum MTU value
1663  *	@max_mtu:	Interface Maximum MTU value
1664  *	@type:		Interface hardware type
1665  *	@hard_header_len: Maximum hardware header length.
1666  *	@min_header_len:  Minimum hardware header length
1667  *
1668  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1669  *			  cases can this be guaranteed
1670  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1671  *			  cases can this be guaranteed. Some cases also use
1672  *			  LL_MAX_HEADER instead to allocate the skb
1673  *
1674  *	interface address info:
1675  *
1676  * 	@perm_addr:		Permanent hw address
1677  * 	@addr_assign_type:	Hw address assignment type
1678  * 	@addr_len:		Hardware address length
1679  *	@upper_level:		Maximum depth level of upper devices.
1680  *	@lower_level:		Maximum depth level of lower devices.
1681  *	@neigh_priv_len:	Used in neigh_alloc()
1682  * 	@dev_id:		Used to differentiate devices that share
1683  * 				the same link layer address
1684  * 	@dev_port:		Used to differentiate devices that share
1685  * 				the same function
1686  *	@addr_list_lock:	XXX: need comments on this one
1687  *	@name_assign_type:	network interface name assignment type
1688  *	@uc_promisc:		Counter that indicates promiscuous mode
1689  *				has been enabled due to the need to listen to
1690  *				additional unicast addresses in a device that
1691  *				does not implement ndo_set_rx_mode()
1692  *	@uc:			unicast mac addresses
1693  *	@mc:			multicast mac addresses
1694  *	@dev_addrs:		list of device hw addresses
1695  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1696  *	@promiscuity:		Number of times the NIC is told to work in
1697  *				promiscuous mode; if it becomes 0 the NIC will
1698  *				exit promiscuous mode
1699  *	@allmulti:		Counter, enables or disables allmulticast mode
1700  *
1701  *	@vlan_info:	VLAN info
1702  *	@dsa_ptr:	dsa specific data
1703  *	@tipc_ptr:	TIPC specific data
1704  *	@atalk_ptr:	AppleTalk link
1705  *	@ip_ptr:	IPv4 specific data
1706  *	@dn_ptr:	DECnet specific data
1707  *	@ip6_ptr:	IPv6 specific data
1708  *	@ax25_ptr:	AX.25 specific data
1709  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1710  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1711  *			 device struct
1712  *	@mpls_ptr:	mpls_dev struct pointer
1713  *
1714  *	@dev_addr:	Hw address (before bcast,
1715  *			because most packets are unicast)
1716  *
1717  *	@_rx:			Array of RX queues
1718  *	@num_rx_queues:		Number of RX queues
1719  *				allocated at register_netdev() time
1720  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1721  *	@xdp_prog:		XDP sockets filter program pointer
1722  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1723  *
1724  *	@rx_handler:		handler for received packets
1725  *	@rx_handler_data: 	XXX: need comments on this one
1726  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1727  *				ingress processing
1728  *	@ingress_queue:		XXX: need comments on this one
1729  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1730  *	@broadcast:		hw bcast address
1731  *
1732  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1733  *			indexed by RX queue number. Assigned by driver.
1734  *			This must only be set if the ndo_rx_flow_steer
1735  *			operation is defined
1736  *	@index_hlist:		Device index hash chain
1737  *
1738  *	@_tx:			Array of TX queues
1739  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1740  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1741  *	@qdisc:			Root qdisc from userspace point of view
1742  *	@tx_queue_len:		Max frames per queue allowed
1743  *	@tx_global_lock: 	XXX: need comments on this one
1744  *	@xdp_bulkq:		XDP device bulk queue
1745  *	@xps_cpus_map:		all CPUs map for XPS device
1746  *	@xps_rxqs_map:		all RXQs map for XPS device
1747  *
1748  *	@xps_maps:	XXX: need comments on this one
1749  *	@miniq_egress:		clsact qdisc specific data for
1750  *				egress processing
1751  *	@qdisc_hash:		qdisc hash table
1752  *	@watchdog_timeo:	Represents the timeout that is used by
1753  *				the watchdog (see dev_watchdog())
1754  *	@watchdog_timer:	List of timers
1755  *
1756  *	@pcpu_refcnt:		Number of references to this device
1757  *	@todo_list:		Delayed register/unregister
1758  *	@link_watch_list:	XXX: need comments on this one
1759  *
1760  *	@reg_state:		Register/unregister state machine
1761  *	@dismantle:		Device is going to be freed
1762  *	@rtnl_link_state:	This enum represents the phases of creating
1763  *				a new link
1764  *
1765  *	@needs_free_netdev:	Should unregister perform free_netdev?
1766  *	@priv_destructor:	Called from unregister
1767  *	@npinfo:		XXX: need comments on this one
1768  * 	@nd_net:		Network namespace this network device is inside
1769  *
1770  * 	@ml_priv:	Mid-layer private
1771  * 	@lstats:	Loopback statistics
1772  * 	@tstats:	Tunnel statistics
1773  * 	@dstats:	Dummy statistics
1774  * 	@vstats:	Virtual ethernet statistics
1775  *
1776  *	@garp_port:	GARP
1777  *	@mrp_port:	MRP
1778  *
1779  *	@dev:		Class/net/name entry
1780  *	@sysfs_groups:	Space for optional device, statistics and wireless
1781  *			sysfs groups
1782  *
1783  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1784  *	@rtnl_link_ops:	Rtnl_link_ops
1785  *
1786  *	@gso_max_size:	Maximum size of generic segmentation offload
1787  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1788  *			NIC for GSO
1789  *
1790  *	@dcbnl_ops:	Data Center Bridging netlink ops
1791  *	@num_tc:	Number of traffic classes in the net device
1792  *	@tc_to_txq:	XXX: need comments on this one
1793  *	@prio_tc_map:	XXX: need comments on this one
1794  *
1795  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1796  *
1797  *	@priomap:	XXX: need comments on this one
1798  *	@phydev:	Physical device may attach itself
1799  *			for hardware timestamping
1800  *	@sfp_bus:	attached &struct sfp_bus structure.
1801  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1802  *				spinlock
1803  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1804  *	@qdisc_xmit_lock_key:	lockdep class annotating
1805  *				netdev_queue->_xmit_lock spinlock
1806  *	@addr_list_lock_key:	lockdep class annotating
1807  *				net_device->addr_list_lock spinlock
1808  *
1809  *	@proto_down:	protocol port state information can be sent to the
1810  *			switch driver and used to set the phys state of the
1811  *			switch port.
1812  *
1813  *	@wol_enabled:	Wake-on-LAN is enabled
1814  *
1815  *	@net_notifier_list:	List of per-net netdev notifier block
1816  *				that follow this device when it is moved
1817  *				to another network namespace.
1818  *
1819  *	FIXME: cleanup struct net_device such that network protocol info
1820  *	moves out.
1821  */
1822 
1823 struct net_device {
1824 	char			name[IFNAMSIZ];
1825 	struct netdev_name_node	*name_node;
1826 	struct dev_ifalias	__rcu *ifalias;
1827 	/*
1828 	 *	I/O specific fields
1829 	 *	FIXME: Merge these and struct ifmap into one
1830 	 */
1831 	unsigned long		mem_end;
1832 	unsigned long		mem_start;
1833 	unsigned long		base_addr;
1834 	int			irq;
1835 
1836 	/*
1837 	 *	Some hardware also needs these fields (state,dev_list,
1838 	 *	napi_list,unreg_list,close_list) but they are not
1839 	 *	part of the usual set specified in Space.c.
1840 	 */
1841 
1842 	unsigned long		state;
1843 
1844 	struct list_head	dev_list;
1845 	struct list_head	napi_list;
1846 	struct list_head	unreg_list;
1847 	struct list_head	close_list;
1848 	struct list_head	ptype_all;
1849 	struct list_head	ptype_specific;
1850 
1851 	struct {
1852 		struct list_head upper;
1853 		struct list_head lower;
1854 	} adj_list;
1855 
1856 	netdev_features_t	features;
1857 	netdev_features_t	hw_features;
1858 	netdev_features_t	wanted_features;
1859 	netdev_features_t	vlan_features;
1860 	netdev_features_t	hw_enc_features;
1861 	netdev_features_t	mpls_features;
1862 	netdev_features_t	gso_partial_features;
1863 
1864 	int			ifindex;
1865 	int			group;
1866 
1867 	struct net_device_stats	stats;
1868 
1869 	atomic_long_t		rx_dropped;
1870 	atomic_long_t		tx_dropped;
1871 	atomic_long_t		rx_nohandler;
1872 
1873 	/* Stats to monitor link on/off, flapping */
1874 	atomic_t		carrier_up_count;
1875 	atomic_t		carrier_down_count;
1876 
1877 #ifdef CONFIG_WIRELESS_EXT
1878 	const struct iw_handler_def *wireless_handlers;
1879 	struct iw_public_data	*wireless_data;
1880 #endif
1881 	const struct net_device_ops *netdev_ops;
1882 	const struct ethtool_ops *ethtool_ops;
1883 #ifdef CONFIG_NET_L3_MASTER_DEV
1884 	const struct l3mdev_ops	*l3mdev_ops;
1885 #endif
1886 #if IS_ENABLED(CONFIG_IPV6)
1887 	const struct ndisc_ops *ndisc_ops;
1888 #endif
1889 
1890 #ifdef CONFIG_XFRM_OFFLOAD
1891 	const struct xfrmdev_ops *xfrmdev_ops;
1892 #endif
1893 
1894 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1895 	const struct tlsdev_ops *tlsdev_ops;
1896 #endif
1897 
1898 	const struct header_ops *header_ops;
1899 
1900 	unsigned int		flags;
1901 	unsigned int		priv_flags;
1902 
1903 	unsigned short		gflags;
1904 	unsigned short		padded;
1905 
1906 	unsigned char		operstate;
1907 	unsigned char		link_mode;
1908 
1909 	unsigned char		if_port;
1910 	unsigned char		dma;
1911 
1912 	/* Note : dev->mtu is often read without holding a lock.
1913 	 * Writers usually hold RTNL.
1914 	 * It is recommended to use READ_ONCE() to annotate the reads,
1915 	 * and to use WRITE_ONCE() to annotate the writes.
1916 	 */
1917 	unsigned int		mtu;
1918 	unsigned int		min_mtu;
1919 	unsigned int		max_mtu;
1920 	unsigned short		type;
1921 	unsigned short		hard_header_len;
1922 	unsigned char		min_header_len;
1923 
1924 	unsigned short		needed_headroom;
1925 	unsigned short		needed_tailroom;
1926 
1927 	/* Interface address info. */
1928 	unsigned char		perm_addr[MAX_ADDR_LEN];
1929 	unsigned char		addr_assign_type;
1930 	unsigned char		addr_len;
1931 	unsigned char		upper_level;
1932 	unsigned char		lower_level;
1933 	unsigned short		neigh_priv_len;
1934 	unsigned short          dev_id;
1935 	unsigned short          dev_port;
1936 	spinlock_t		addr_list_lock;
1937 	unsigned char		name_assign_type;
1938 	bool			uc_promisc;
1939 	struct netdev_hw_addr_list	uc;
1940 	struct netdev_hw_addr_list	mc;
1941 	struct netdev_hw_addr_list	dev_addrs;
1942 
1943 #ifdef CONFIG_SYSFS
1944 	struct kset		*queues_kset;
1945 #endif
1946 	unsigned int		promiscuity;
1947 	unsigned int		allmulti;
1948 
1949 
1950 	/* Protocol-specific pointers */
1951 
1952 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1953 	struct vlan_info __rcu	*vlan_info;
1954 #endif
1955 #if IS_ENABLED(CONFIG_NET_DSA)
1956 	struct dsa_port		*dsa_ptr;
1957 #endif
1958 #if IS_ENABLED(CONFIG_TIPC)
1959 	struct tipc_bearer __rcu *tipc_ptr;
1960 #endif
1961 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1962 	void 			*atalk_ptr;
1963 #endif
1964 	struct in_device __rcu	*ip_ptr;
1965 #if IS_ENABLED(CONFIG_DECNET)
1966 	struct dn_dev __rcu     *dn_ptr;
1967 #endif
1968 	struct inet6_dev __rcu	*ip6_ptr;
1969 #if IS_ENABLED(CONFIG_AX25)
1970 	void			*ax25_ptr;
1971 #endif
1972 	struct wireless_dev	*ieee80211_ptr;
1973 	struct wpan_dev		*ieee802154_ptr;
1974 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1975 	struct mpls_dev __rcu	*mpls_ptr;
1976 #endif
1977 
1978 /*
1979  * Cache lines mostly used on receive path (including eth_type_trans())
1980  */
1981 	/* Interface address info used in eth_type_trans() */
1982 	unsigned char		*dev_addr;
1983 
1984 	struct netdev_rx_queue	*_rx;
1985 	unsigned int		num_rx_queues;
1986 	unsigned int		real_num_rx_queues;
1987 
1988 	struct bpf_prog __rcu	*xdp_prog;
1989 	unsigned long		gro_flush_timeout;
1990 	rx_handler_func_t __rcu	*rx_handler;
1991 	void __rcu		*rx_handler_data;
1992 
1993 #ifdef CONFIG_NET_CLS_ACT
1994 	struct mini_Qdisc __rcu	*miniq_ingress;
1995 #endif
1996 	struct netdev_queue __rcu *ingress_queue;
1997 #ifdef CONFIG_NETFILTER_INGRESS
1998 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1999 #endif
2000 
2001 	unsigned char		broadcast[MAX_ADDR_LEN];
2002 #ifdef CONFIG_RFS_ACCEL
2003 	struct cpu_rmap		*rx_cpu_rmap;
2004 #endif
2005 	struct hlist_node	index_hlist;
2006 
2007 /*
2008  * Cache lines mostly used on transmit path
2009  */
2010 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2011 	unsigned int		num_tx_queues;
2012 	unsigned int		real_num_tx_queues;
2013 	struct Qdisc		*qdisc;
2014 	unsigned int		tx_queue_len;
2015 	spinlock_t		tx_global_lock;
2016 
2017 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2018 
2019 #ifdef CONFIG_XPS
2020 	struct xps_dev_maps __rcu *xps_cpus_map;
2021 	struct xps_dev_maps __rcu *xps_rxqs_map;
2022 #endif
2023 #ifdef CONFIG_NET_CLS_ACT
2024 	struct mini_Qdisc __rcu	*miniq_egress;
2025 #endif
2026 
2027 #ifdef CONFIG_NET_SCHED
2028 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2029 #endif
2030 	/* These may be needed for future network-power-down code. */
2031 	struct timer_list	watchdog_timer;
2032 	int			watchdog_timeo;
2033 
2034 	struct list_head	todo_list;
2035 	int __percpu		*pcpu_refcnt;
2036 
2037 	struct list_head	link_watch_list;
2038 
2039 	enum { NETREG_UNINITIALIZED=0,
2040 	       NETREG_REGISTERED,	/* completed register_netdevice */
2041 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2042 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2043 	       NETREG_RELEASED,		/* called free_netdev */
2044 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2045 	} reg_state:8;
2046 
2047 	bool dismantle;
2048 
2049 	enum {
2050 		RTNL_LINK_INITIALIZED,
2051 		RTNL_LINK_INITIALIZING,
2052 	} rtnl_link_state:16;
2053 
2054 	bool needs_free_netdev;
2055 	void (*priv_destructor)(struct net_device *dev);
2056 
2057 #ifdef CONFIG_NETPOLL
2058 	struct netpoll_info __rcu	*npinfo;
2059 #endif
2060 
2061 	possible_net_t			nd_net;
2062 
2063 	/* mid-layer private */
2064 	union {
2065 		void					*ml_priv;
2066 		struct pcpu_lstats __percpu		*lstats;
2067 		struct pcpu_sw_netstats __percpu	*tstats;
2068 		struct pcpu_dstats __percpu		*dstats;
2069 	};
2070 
2071 #if IS_ENABLED(CONFIG_GARP)
2072 	struct garp_port __rcu	*garp_port;
2073 #endif
2074 #if IS_ENABLED(CONFIG_MRP)
2075 	struct mrp_port __rcu	*mrp_port;
2076 #endif
2077 
2078 	struct device		dev;
2079 	const struct attribute_group *sysfs_groups[4];
2080 	const struct attribute_group *sysfs_rx_queue_group;
2081 
2082 	const struct rtnl_link_ops *rtnl_link_ops;
2083 
2084 	/* for setting kernel sock attribute on TCP connection setup */
2085 #define GSO_MAX_SIZE		65536
2086 	unsigned int		gso_max_size;
2087 #define GSO_MAX_SEGS		65535
2088 	u16			gso_max_segs;
2089 
2090 #ifdef CONFIG_DCB
2091 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2092 #endif
2093 	s16			num_tc;
2094 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2095 	u8			prio_tc_map[TC_BITMASK + 1];
2096 
2097 #if IS_ENABLED(CONFIG_FCOE)
2098 	unsigned int		fcoe_ddp_xid;
2099 #endif
2100 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2101 	struct netprio_map __rcu *priomap;
2102 #endif
2103 	struct phy_device	*phydev;
2104 	struct sfp_bus		*sfp_bus;
2105 	struct lock_class_key	qdisc_tx_busylock_key;
2106 	struct lock_class_key	qdisc_running_key;
2107 	struct lock_class_key	qdisc_xmit_lock_key;
2108 	struct lock_class_key	addr_list_lock_key;
2109 	bool			proto_down;
2110 	unsigned		wol_enabled:1;
2111 
2112 	struct list_head	net_notifier_list;
2113 };
2114 #define to_net_dev(d) container_of(d, struct net_device, dev)
2115 
2116 static inline bool netif_elide_gro(const struct net_device *dev)
2117 {
2118 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2119 		return true;
2120 	return false;
2121 }
2122 
2123 #define	NETDEV_ALIGN		32
2124 
2125 static inline
2126 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2127 {
2128 	return dev->prio_tc_map[prio & TC_BITMASK];
2129 }
2130 
2131 static inline
2132 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2133 {
2134 	if (tc >= dev->num_tc)
2135 		return -EINVAL;
2136 
2137 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2138 	return 0;
2139 }
2140 
2141 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2142 void netdev_reset_tc(struct net_device *dev);
2143 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2144 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2145 
2146 static inline
2147 int netdev_get_num_tc(struct net_device *dev)
2148 {
2149 	return dev->num_tc;
2150 }
2151 
2152 void netdev_unbind_sb_channel(struct net_device *dev,
2153 			      struct net_device *sb_dev);
2154 int netdev_bind_sb_channel_queue(struct net_device *dev,
2155 				 struct net_device *sb_dev,
2156 				 u8 tc, u16 count, u16 offset);
2157 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2158 static inline int netdev_get_sb_channel(struct net_device *dev)
2159 {
2160 	return max_t(int, -dev->num_tc, 0);
2161 }
2162 
2163 static inline
2164 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2165 					 unsigned int index)
2166 {
2167 	return &dev->_tx[index];
2168 }
2169 
2170 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2171 						    const struct sk_buff *skb)
2172 {
2173 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2174 }
2175 
2176 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2177 					    void (*f)(struct net_device *,
2178 						      struct netdev_queue *,
2179 						      void *),
2180 					    void *arg)
2181 {
2182 	unsigned int i;
2183 
2184 	for (i = 0; i < dev->num_tx_queues; i++)
2185 		f(dev, &dev->_tx[i], arg);
2186 }
2187 
2188 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2189 		     struct net_device *sb_dev);
2190 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2191 					 struct sk_buff *skb,
2192 					 struct net_device *sb_dev);
2193 
2194 /* returns the headroom that the master device needs to take in account
2195  * when forwarding to this dev
2196  */
2197 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2198 {
2199 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2200 }
2201 
2202 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2203 {
2204 	if (dev->netdev_ops->ndo_set_rx_headroom)
2205 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2206 }
2207 
2208 /* set the device rx headroom to the dev's default */
2209 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2210 {
2211 	netdev_set_rx_headroom(dev, -1);
2212 }
2213 
2214 /*
2215  * Net namespace inlines
2216  */
2217 static inline
2218 struct net *dev_net(const struct net_device *dev)
2219 {
2220 	return read_pnet(&dev->nd_net);
2221 }
2222 
2223 static inline
2224 void dev_net_set(struct net_device *dev, struct net *net)
2225 {
2226 	write_pnet(&dev->nd_net, net);
2227 }
2228 
2229 /**
2230  *	netdev_priv - access network device private data
2231  *	@dev: network device
2232  *
2233  * Get network device private data
2234  */
2235 static inline void *netdev_priv(const struct net_device *dev)
2236 {
2237 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2238 }
2239 
2240 /* Set the sysfs physical device reference for the network logical device
2241  * if set prior to registration will cause a symlink during initialization.
2242  */
2243 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2244 
2245 /* Set the sysfs device type for the network logical device to allow
2246  * fine-grained identification of different network device types. For
2247  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2248  */
2249 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2250 
2251 /* Default NAPI poll() weight
2252  * Device drivers are strongly advised to not use bigger value
2253  */
2254 #define NAPI_POLL_WEIGHT 64
2255 
2256 /**
2257  *	netif_napi_add - initialize a NAPI context
2258  *	@dev:  network device
2259  *	@napi: NAPI context
2260  *	@poll: polling function
2261  *	@weight: default weight
2262  *
2263  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2264  * *any* of the other NAPI-related functions.
2265  */
2266 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2267 		    int (*poll)(struct napi_struct *, int), int weight);
2268 
2269 /**
2270  *	netif_tx_napi_add - initialize a NAPI context
2271  *	@dev:  network device
2272  *	@napi: NAPI context
2273  *	@poll: polling function
2274  *	@weight: default weight
2275  *
2276  * This variant of netif_napi_add() should be used from drivers using NAPI
2277  * to exclusively poll a TX queue.
2278  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2279  */
2280 static inline void netif_tx_napi_add(struct net_device *dev,
2281 				     struct napi_struct *napi,
2282 				     int (*poll)(struct napi_struct *, int),
2283 				     int weight)
2284 {
2285 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2286 	netif_napi_add(dev, napi, poll, weight);
2287 }
2288 
2289 /**
2290  *  netif_napi_del - remove a NAPI context
2291  *  @napi: NAPI context
2292  *
2293  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2294  */
2295 void netif_napi_del(struct napi_struct *napi);
2296 
2297 struct napi_gro_cb {
2298 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2299 	void	*frag0;
2300 
2301 	/* Length of frag0. */
2302 	unsigned int frag0_len;
2303 
2304 	/* This indicates where we are processing relative to skb->data. */
2305 	int	data_offset;
2306 
2307 	/* This is non-zero if the packet cannot be merged with the new skb. */
2308 	u16	flush;
2309 
2310 	/* Save the IP ID here and check when we get to the transport layer */
2311 	u16	flush_id;
2312 
2313 	/* Number of segments aggregated. */
2314 	u16	count;
2315 
2316 	/* Start offset for remote checksum offload */
2317 	u16	gro_remcsum_start;
2318 
2319 	/* jiffies when first packet was created/queued */
2320 	unsigned long age;
2321 
2322 	/* Used in ipv6_gro_receive() and foo-over-udp */
2323 	u16	proto;
2324 
2325 	/* This is non-zero if the packet may be of the same flow. */
2326 	u8	same_flow:1;
2327 
2328 	/* Used in tunnel GRO receive */
2329 	u8	encap_mark:1;
2330 
2331 	/* GRO checksum is valid */
2332 	u8	csum_valid:1;
2333 
2334 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2335 	u8	csum_cnt:3;
2336 
2337 	/* Free the skb? */
2338 	u8	free:2;
2339 #define NAPI_GRO_FREE		  1
2340 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2341 
2342 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2343 	u8	is_ipv6:1;
2344 
2345 	/* Used in GRE, set in fou/gue_gro_receive */
2346 	u8	is_fou:1;
2347 
2348 	/* Used to determine if flush_id can be ignored */
2349 	u8	is_atomic:1;
2350 
2351 	/* Number of gro_receive callbacks this packet already went through */
2352 	u8 recursion_counter:4;
2353 
2354 	/* GRO is done by frag_list pointer chaining. */
2355 	u8	is_flist:1;
2356 
2357 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2358 	__wsum	csum;
2359 
2360 	/* used in skb_gro_receive() slow path */
2361 	struct sk_buff *last;
2362 };
2363 
2364 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2365 
2366 #define GRO_RECURSION_LIMIT 15
2367 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2368 {
2369 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2370 }
2371 
2372 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2373 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2374 					       struct list_head *head,
2375 					       struct sk_buff *skb)
2376 {
2377 	if (unlikely(gro_recursion_inc_test(skb))) {
2378 		NAPI_GRO_CB(skb)->flush |= 1;
2379 		return NULL;
2380 	}
2381 
2382 	return cb(head, skb);
2383 }
2384 
2385 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2386 					    struct sk_buff *);
2387 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2388 						  struct sock *sk,
2389 						  struct list_head *head,
2390 						  struct sk_buff *skb)
2391 {
2392 	if (unlikely(gro_recursion_inc_test(skb))) {
2393 		NAPI_GRO_CB(skb)->flush |= 1;
2394 		return NULL;
2395 	}
2396 
2397 	return cb(sk, head, skb);
2398 }
2399 
2400 struct packet_type {
2401 	__be16			type;	/* This is really htons(ether_type). */
2402 	bool			ignore_outgoing;
2403 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2404 	int			(*func) (struct sk_buff *,
2405 					 struct net_device *,
2406 					 struct packet_type *,
2407 					 struct net_device *);
2408 	void			(*list_func) (struct list_head *,
2409 					      struct packet_type *,
2410 					      struct net_device *);
2411 	bool			(*id_match)(struct packet_type *ptype,
2412 					    struct sock *sk);
2413 	void			*af_packet_priv;
2414 	struct list_head	list;
2415 };
2416 
2417 struct offload_callbacks {
2418 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2419 						netdev_features_t features);
2420 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2421 						struct sk_buff *skb);
2422 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2423 };
2424 
2425 struct packet_offload {
2426 	__be16			 type;	/* This is really htons(ether_type). */
2427 	u16			 priority;
2428 	struct offload_callbacks callbacks;
2429 	struct list_head	 list;
2430 };
2431 
2432 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2433 struct pcpu_sw_netstats {
2434 	u64     rx_packets;
2435 	u64     rx_bytes;
2436 	u64     tx_packets;
2437 	u64     tx_bytes;
2438 	struct u64_stats_sync   syncp;
2439 } __aligned(4 * sizeof(u64));
2440 
2441 struct pcpu_lstats {
2442 	u64_stats_t packets;
2443 	u64_stats_t bytes;
2444 	struct u64_stats_sync syncp;
2445 } __aligned(2 * sizeof(u64));
2446 
2447 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2448 
2449 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2450 {
2451 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2452 
2453 	u64_stats_update_begin(&lstats->syncp);
2454 	u64_stats_add(&lstats->bytes, len);
2455 	u64_stats_inc(&lstats->packets);
2456 	u64_stats_update_end(&lstats->syncp);
2457 }
2458 
2459 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2460 ({									\
2461 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2462 	if (pcpu_stats)	{						\
2463 		int __cpu;						\
2464 		for_each_possible_cpu(__cpu) {				\
2465 			typeof(type) *stat;				\
2466 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2467 			u64_stats_init(&stat->syncp);			\
2468 		}							\
2469 	}								\
2470 	pcpu_stats;							\
2471 })
2472 
2473 #define netdev_alloc_pcpu_stats(type)					\
2474 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2475 
2476 enum netdev_lag_tx_type {
2477 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2478 	NETDEV_LAG_TX_TYPE_RANDOM,
2479 	NETDEV_LAG_TX_TYPE_BROADCAST,
2480 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2481 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2482 	NETDEV_LAG_TX_TYPE_HASH,
2483 };
2484 
2485 enum netdev_lag_hash {
2486 	NETDEV_LAG_HASH_NONE,
2487 	NETDEV_LAG_HASH_L2,
2488 	NETDEV_LAG_HASH_L34,
2489 	NETDEV_LAG_HASH_L23,
2490 	NETDEV_LAG_HASH_E23,
2491 	NETDEV_LAG_HASH_E34,
2492 	NETDEV_LAG_HASH_UNKNOWN,
2493 };
2494 
2495 struct netdev_lag_upper_info {
2496 	enum netdev_lag_tx_type tx_type;
2497 	enum netdev_lag_hash hash_type;
2498 };
2499 
2500 struct netdev_lag_lower_state_info {
2501 	u8 link_up : 1,
2502 	   tx_enabled : 1;
2503 };
2504 
2505 #include <linux/notifier.h>
2506 
2507 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2508  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2509  * adding new types.
2510  */
2511 enum netdev_cmd {
2512 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2513 	NETDEV_DOWN,
2514 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2515 				   detected a hardware crash and restarted
2516 				   - we can use this eg to kick tcp sessions
2517 				   once done */
2518 	NETDEV_CHANGE,		/* Notify device state change */
2519 	NETDEV_REGISTER,
2520 	NETDEV_UNREGISTER,
2521 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2522 	NETDEV_CHANGEADDR,	/* notify after the address change */
2523 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2524 	NETDEV_GOING_DOWN,
2525 	NETDEV_CHANGENAME,
2526 	NETDEV_FEAT_CHANGE,
2527 	NETDEV_BONDING_FAILOVER,
2528 	NETDEV_PRE_UP,
2529 	NETDEV_PRE_TYPE_CHANGE,
2530 	NETDEV_POST_TYPE_CHANGE,
2531 	NETDEV_POST_INIT,
2532 	NETDEV_RELEASE,
2533 	NETDEV_NOTIFY_PEERS,
2534 	NETDEV_JOIN,
2535 	NETDEV_CHANGEUPPER,
2536 	NETDEV_RESEND_IGMP,
2537 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2538 	NETDEV_CHANGEINFODATA,
2539 	NETDEV_BONDING_INFO,
2540 	NETDEV_PRECHANGEUPPER,
2541 	NETDEV_CHANGELOWERSTATE,
2542 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2543 	NETDEV_UDP_TUNNEL_DROP_INFO,
2544 	NETDEV_CHANGE_TX_QUEUE_LEN,
2545 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2546 	NETDEV_CVLAN_FILTER_DROP_INFO,
2547 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2548 	NETDEV_SVLAN_FILTER_DROP_INFO,
2549 };
2550 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2551 
2552 int register_netdevice_notifier(struct notifier_block *nb);
2553 int unregister_netdevice_notifier(struct notifier_block *nb);
2554 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2555 int unregister_netdevice_notifier_net(struct net *net,
2556 				      struct notifier_block *nb);
2557 int register_netdevice_notifier_dev_net(struct net_device *dev,
2558 					struct notifier_block *nb,
2559 					struct netdev_net_notifier *nn);
2560 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2561 					  struct notifier_block *nb,
2562 					  struct netdev_net_notifier *nn);
2563 
2564 struct netdev_notifier_info {
2565 	struct net_device	*dev;
2566 	struct netlink_ext_ack	*extack;
2567 };
2568 
2569 struct netdev_notifier_info_ext {
2570 	struct netdev_notifier_info info; /* must be first */
2571 	union {
2572 		u32 mtu;
2573 	} ext;
2574 };
2575 
2576 struct netdev_notifier_change_info {
2577 	struct netdev_notifier_info info; /* must be first */
2578 	unsigned int flags_changed;
2579 };
2580 
2581 struct netdev_notifier_changeupper_info {
2582 	struct netdev_notifier_info info; /* must be first */
2583 	struct net_device *upper_dev; /* new upper dev */
2584 	bool master; /* is upper dev master */
2585 	bool linking; /* is the notification for link or unlink */
2586 	void *upper_info; /* upper dev info */
2587 };
2588 
2589 struct netdev_notifier_changelowerstate_info {
2590 	struct netdev_notifier_info info; /* must be first */
2591 	void *lower_state_info; /* is lower dev state */
2592 };
2593 
2594 struct netdev_notifier_pre_changeaddr_info {
2595 	struct netdev_notifier_info info; /* must be first */
2596 	const unsigned char *dev_addr;
2597 };
2598 
2599 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2600 					     struct net_device *dev)
2601 {
2602 	info->dev = dev;
2603 	info->extack = NULL;
2604 }
2605 
2606 static inline struct net_device *
2607 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2608 {
2609 	return info->dev;
2610 }
2611 
2612 static inline struct netlink_ext_ack *
2613 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2614 {
2615 	return info->extack;
2616 }
2617 
2618 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2619 
2620 
2621 extern rwlock_t				dev_base_lock;		/* Device list lock */
2622 
2623 #define for_each_netdev(net, d)		\
2624 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2625 #define for_each_netdev_reverse(net, d)	\
2626 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2627 #define for_each_netdev_rcu(net, d)		\
2628 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2629 #define for_each_netdev_safe(net, d, n)	\
2630 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2631 #define for_each_netdev_continue(net, d)		\
2632 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2633 #define for_each_netdev_continue_reverse(net, d)		\
2634 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2635 						     dev_list)
2636 #define for_each_netdev_continue_rcu(net, d)		\
2637 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2638 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2639 		for_each_netdev_rcu(&init_net, slave)	\
2640 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2641 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2642 
2643 static inline struct net_device *next_net_device(struct net_device *dev)
2644 {
2645 	struct list_head *lh;
2646 	struct net *net;
2647 
2648 	net = dev_net(dev);
2649 	lh = dev->dev_list.next;
2650 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2651 }
2652 
2653 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2654 {
2655 	struct list_head *lh;
2656 	struct net *net;
2657 
2658 	net = dev_net(dev);
2659 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2660 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2661 }
2662 
2663 static inline struct net_device *first_net_device(struct net *net)
2664 {
2665 	return list_empty(&net->dev_base_head) ? NULL :
2666 		net_device_entry(net->dev_base_head.next);
2667 }
2668 
2669 static inline struct net_device *first_net_device_rcu(struct net *net)
2670 {
2671 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2672 
2673 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2674 }
2675 
2676 int netdev_boot_setup_check(struct net_device *dev);
2677 unsigned long netdev_boot_base(const char *prefix, int unit);
2678 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2679 				       const char *hwaddr);
2680 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2681 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2682 void dev_add_pack(struct packet_type *pt);
2683 void dev_remove_pack(struct packet_type *pt);
2684 void __dev_remove_pack(struct packet_type *pt);
2685 void dev_add_offload(struct packet_offload *po);
2686 void dev_remove_offload(struct packet_offload *po);
2687 
2688 int dev_get_iflink(const struct net_device *dev);
2689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2690 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2691 				      unsigned short mask);
2692 struct net_device *dev_get_by_name(struct net *net, const char *name);
2693 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2694 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2695 int dev_alloc_name(struct net_device *dev, const char *name);
2696 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2697 void dev_close(struct net_device *dev);
2698 void dev_close_many(struct list_head *head, bool unlink);
2699 void dev_disable_lro(struct net_device *dev);
2700 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2701 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2702 		     struct net_device *sb_dev);
2703 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2704 		       struct net_device *sb_dev);
2705 int dev_queue_xmit(struct sk_buff *skb);
2706 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2707 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2708 int register_netdevice(struct net_device *dev);
2709 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2710 void unregister_netdevice_many(struct list_head *head);
2711 static inline void unregister_netdevice(struct net_device *dev)
2712 {
2713 	unregister_netdevice_queue(dev, NULL);
2714 }
2715 
2716 int netdev_refcnt_read(const struct net_device *dev);
2717 void free_netdev(struct net_device *dev);
2718 void netdev_freemem(struct net_device *dev);
2719 void synchronize_net(void);
2720 int init_dummy_netdev(struct net_device *dev);
2721 
2722 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2723 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2724 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2725 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2726 int netdev_get_name(struct net *net, char *name, int ifindex);
2727 int dev_restart(struct net_device *dev);
2728 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2729 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2730 
2731 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2732 {
2733 	return NAPI_GRO_CB(skb)->data_offset;
2734 }
2735 
2736 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2737 {
2738 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2739 }
2740 
2741 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2742 {
2743 	NAPI_GRO_CB(skb)->data_offset += len;
2744 }
2745 
2746 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2747 					unsigned int offset)
2748 {
2749 	return NAPI_GRO_CB(skb)->frag0 + offset;
2750 }
2751 
2752 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2753 {
2754 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2755 }
2756 
2757 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2758 {
2759 	NAPI_GRO_CB(skb)->frag0 = NULL;
2760 	NAPI_GRO_CB(skb)->frag0_len = 0;
2761 }
2762 
2763 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2764 					unsigned int offset)
2765 {
2766 	if (!pskb_may_pull(skb, hlen))
2767 		return NULL;
2768 
2769 	skb_gro_frag0_invalidate(skb);
2770 	return skb->data + offset;
2771 }
2772 
2773 static inline void *skb_gro_network_header(struct sk_buff *skb)
2774 {
2775 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2776 	       skb_network_offset(skb);
2777 }
2778 
2779 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2780 					const void *start, unsigned int len)
2781 {
2782 	if (NAPI_GRO_CB(skb)->csum_valid)
2783 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2784 						  csum_partial(start, len, 0));
2785 }
2786 
2787 /* GRO checksum functions. These are logical equivalents of the normal
2788  * checksum functions (in skbuff.h) except that they operate on the GRO
2789  * offsets and fields in sk_buff.
2790  */
2791 
2792 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2793 
2794 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2795 {
2796 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2797 }
2798 
2799 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2800 						      bool zero_okay,
2801 						      __sum16 check)
2802 {
2803 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2804 		skb_checksum_start_offset(skb) <
2805 		 skb_gro_offset(skb)) &&
2806 		!skb_at_gro_remcsum_start(skb) &&
2807 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2808 		(!zero_okay || check));
2809 }
2810 
2811 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2812 							   __wsum psum)
2813 {
2814 	if (NAPI_GRO_CB(skb)->csum_valid &&
2815 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2816 		return 0;
2817 
2818 	NAPI_GRO_CB(skb)->csum = psum;
2819 
2820 	return __skb_gro_checksum_complete(skb);
2821 }
2822 
2823 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2824 {
2825 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2826 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2827 		NAPI_GRO_CB(skb)->csum_cnt--;
2828 	} else {
2829 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2830 		 * verified a new top level checksum or an encapsulated one
2831 		 * during GRO. This saves work if we fallback to normal path.
2832 		 */
2833 		__skb_incr_checksum_unnecessary(skb);
2834 	}
2835 }
2836 
2837 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2838 				    compute_pseudo)			\
2839 ({									\
2840 	__sum16 __ret = 0;						\
2841 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2842 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2843 				compute_pseudo(skb, proto));		\
2844 	if (!__ret)							\
2845 		skb_gro_incr_csum_unnecessary(skb);			\
2846 	__ret;								\
2847 })
2848 
2849 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2850 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2851 
2852 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2853 					     compute_pseudo)		\
2854 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2855 
2856 #define skb_gro_checksum_simple_validate(skb)				\
2857 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2858 
2859 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2860 {
2861 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2862 		!NAPI_GRO_CB(skb)->csum_valid);
2863 }
2864 
2865 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2866 					      __wsum pseudo)
2867 {
2868 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2869 	NAPI_GRO_CB(skb)->csum_valid = 1;
2870 }
2871 
2872 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2873 do {									\
2874 	if (__skb_gro_checksum_convert_check(skb))			\
2875 		__skb_gro_checksum_convert(skb, 			\
2876 					   compute_pseudo(skb, proto));	\
2877 } while (0)
2878 
2879 struct gro_remcsum {
2880 	int offset;
2881 	__wsum delta;
2882 };
2883 
2884 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2885 {
2886 	grc->offset = 0;
2887 	grc->delta = 0;
2888 }
2889 
2890 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2891 					    unsigned int off, size_t hdrlen,
2892 					    int start, int offset,
2893 					    struct gro_remcsum *grc,
2894 					    bool nopartial)
2895 {
2896 	__wsum delta;
2897 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2898 
2899 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2900 
2901 	if (!nopartial) {
2902 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2903 		return ptr;
2904 	}
2905 
2906 	ptr = skb_gro_header_fast(skb, off);
2907 	if (skb_gro_header_hard(skb, off + plen)) {
2908 		ptr = skb_gro_header_slow(skb, off + plen, off);
2909 		if (!ptr)
2910 			return NULL;
2911 	}
2912 
2913 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2914 			       start, offset);
2915 
2916 	/* Adjust skb->csum since we changed the packet */
2917 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2918 
2919 	grc->offset = off + hdrlen + offset;
2920 	grc->delta = delta;
2921 
2922 	return ptr;
2923 }
2924 
2925 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2926 					   struct gro_remcsum *grc)
2927 {
2928 	void *ptr;
2929 	size_t plen = grc->offset + sizeof(u16);
2930 
2931 	if (!grc->delta)
2932 		return;
2933 
2934 	ptr = skb_gro_header_fast(skb, grc->offset);
2935 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2936 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2937 		if (!ptr)
2938 			return;
2939 	}
2940 
2941 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2942 }
2943 
2944 #ifdef CONFIG_XFRM_OFFLOAD
2945 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2946 {
2947 	if (PTR_ERR(pp) != -EINPROGRESS)
2948 		NAPI_GRO_CB(skb)->flush |= flush;
2949 }
2950 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2951 					       struct sk_buff *pp,
2952 					       int flush,
2953 					       struct gro_remcsum *grc)
2954 {
2955 	if (PTR_ERR(pp) != -EINPROGRESS) {
2956 		NAPI_GRO_CB(skb)->flush |= flush;
2957 		skb_gro_remcsum_cleanup(skb, grc);
2958 		skb->remcsum_offload = 0;
2959 	}
2960 }
2961 #else
2962 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2963 {
2964 	NAPI_GRO_CB(skb)->flush |= flush;
2965 }
2966 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2967 					       struct sk_buff *pp,
2968 					       int flush,
2969 					       struct gro_remcsum *grc)
2970 {
2971 	NAPI_GRO_CB(skb)->flush |= flush;
2972 	skb_gro_remcsum_cleanup(skb, grc);
2973 	skb->remcsum_offload = 0;
2974 }
2975 #endif
2976 
2977 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2978 				  unsigned short type,
2979 				  const void *daddr, const void *saddr,
2980 				  unsigned int len)
2981 {
2982 	if (!dev->header_ops || !dev->header_ops->create)
2983 		return 0;
2984 
2985 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2986 }
2987 
2988 static inline int dev_parse_header(const struct sk_buff *skb,
2989 				   unsigned char *haddr)
2990 {
2991 	const struct net_device *dev = skb->dev;
2992 
2993 	if (!dev->header_ops || !dev->header_ops->parse)
2994 		return 0;
2995 	return dev->header_ops->parse(skb, haddr);
2996 }
2997 
2998 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2999 {
3000 	const struct net_device *dev = skb->dev;
3001 
3002 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3003 		return 0;
3004 	return dev->header_ops->parse_protocol(skb);
3005 }
3006 
3007 /* ll_header must have at least hard_header_len allocated */
3008 static inline bool dev_validate_header(const struct net_device *dev,
3009 				       char *ll_header, int len)
3010 {
3011 	if (likely(len >= dev->hard_header_len))
3012 		return true;
3013 	if (len < dev->min_header_len)
3014 		return false;
3015 
3016 	if (capable(CAP_SYS_RAWIO)) {
3017 		memset(ll_header + len, 0, dev->hard_header_len - len);
3018 		return true;
3019 	}
3020 
3021 	if (dev->header_ops && dev->header_ops->validate)
3022 		return dev->header_ops->validate(ll_header, len);
3023 
3024 	return false;
3025 }
3026 
3027 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3028 			   int len, int size);
3029 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3030 static inline int unregister_gifconf(unsigned int family)
3031 {
3032 	return register_gifconf(family, NULL);
3033 }
3034 
3035 #ifdef CONFIG_NET_FLOW_LIMIT
3036 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3037 struct sd_flow_limit {
3038 	u64			count;
3039 	unsigned int		num_buckets;
3040 	unsigned int		history_head;
3041 	u16			history[FLOW_LIMIT_HISTORY];
3042 	u8			buckets[];
3043 };
3044 
3045 extern int netdev_flow_limit_table_len;
3046 #endif /* CONFIG_NET_FLOW_LIMIT */
3047 
3048 /*
3049  * Incoming packets are placed on per-CPU queues
3050  */
3051 struct softnet_data {
3052 	struct list_head	poll_list;
3053 	struct sk_buff_head	process_queue;
3054 
3055 	/* stats */
3056 	unsigned int		processed;
3057 	unsigned int		time_squeeze;
3058 	unsigned int		received_rps;
3059 #ifdef CONFIG_RPS
3060 	struct softnet_data	*rps_ipi_list;
3061 #endif
3062 #ifdef CONFIG_NET_FLOW_LIMIT
3063 	struct sd_flow_limit __rcu *flow_limit;
3064 #endif
3065 	struct Qdisc		*output_queue;
3066 	struct Qdisc		**output_queue_tailp;
3067 	struct sk_buff		*completion_queue;
3068 #ifdef CONFIG_XFRM_OFFLOAD
3069 	struct sk_buff_head	xfrm_backlog;
3070 #endif
3071 	/* written and read only by owning cpu: */
3072 	struct {
3073 		u16 recursion;
3074 		u8  more;
3075 	} xmit;
3076 #ifdef CONFIG_RPS
3077 	/* input_queue_head should be written by cpu owning this struct,
3078 	 * and only read by other cpus. Worth using a cache line.
3079 	 */
3080 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3081 
3082 	/* Elements below can be accessed between CPUs for RPS/RFS */
3083 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3084 	struct softnet_data	*rps_ipi_next;
3085 	unsigned int		cpu;
3086 	unsigned int		input_queue_tail;
3087 #endif
3088 	unsigned int		dropped;
3089 	struct sk_buff_head	input_pkt_queue;
3090 	struct napi_struct	backlog;
3091 
3092 };
3093 
3094 static inline void input_queue_head_incr(struct softnet_data *sd)
3095 {
3096 #ifdef CONFIG_RPS
3097 	sd->input_queue_head++;
3098 #endif
3099 }
3100 
3101 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3102 					      unsigned int *qtail)
3103 {
3104 #ifdef CONFIG_RPS
3105 	*qtail = ++sd->input_queue_tail;
3106 #endif
3107 }
3108 
3109 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3110 
3111 static inline int dev_recursion_level(void)
3112 {
3113 	return this_cpu_read(softnet_data.xmit.recursion);
3114 }
3115 
3116 #define XMIT_RECURSION_LIMIT	10
3117 static inline bool dev_xmit_recursion(void)
3118 {
3119 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3120 			XMIT_RECURSION_LIMIT);
3121 }
3122 
3123 static inline void dev_xmit_recursion_inc(void)
3124 {
3125 	__this_cpu_inc(softnet_data.xmit.recursion);
3126 }
3127 
3128 static inline void dev_xmit_recursion_dec(void)
3129 {
3130 	__this_cpu_dec(softnet_data.xmit.recursion);
3131 }
3132 
3133 void __netif_schedule(struct Qdisc *q);
3134 void netif_schedule_queue(struct netdev_queue *txq);
3135 
3136 static inline void netif_tx_schedule_all(struct net_device *dev)
3137 {
3138 	unsigned int i;
3139 
3140 	for (i = 0; i < dev->num_tx_queues; i++)
3141 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3142 }
3143 
3144 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3145 {
3146 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3147 }
3148 
3149 /**
3150  *	netif_start_queue - allow transmit
3151  *	@dev: network device
3152  *
3153  *	Allow upper layers to call the device hard_start_xmit routine.
3154  */
3155 static inline void netif_start_queue(struct net_device *dev)
3156 {
3157 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3158 }
3159 
3160 static inline void netif_tx_start_all_queues(struct net_device *dev)
3161 {
3162 	unsigned int i;
3163 
3164 	for (i = 0; i < dev->num_tx_queues; i++) {
3165 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3166 		netif_tx_start_queue(txq);
3167 	}
3168 }
3169 
3170 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3171 
3172 /**
3173  *	netif_wake_queue - restart transmit
3174  *	@dev: network device
3175  *
3176  *	Allow upper layers to call the device hard_start_xmit routine.
3177  *	Used for flow control when transmit resources are available.
3178  */
3179 static inline void netif_wake_queue(struct net_device *dev)
3180 {
3181 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3182 }
3183 
3184 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3185 {
3186 	unsigned int i;
3187 
3188 	for (i = 0; i < dev->num_tx_queues; i++) {
3189 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3190 		netif_tx_wake_queue(txq);
3191 	}
3192 }
3193 
3194 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3195 {
3196 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3197 }
3198 
3199 /**
3200  *	netif_stop_queue - stop transmitted packets
3201  *	@dev: network device
3202  *
3203  *	Stop upper layers calling the device hard_start_xmit routine.
3204  *	Used for flow control when transmit resources are unavailable.
3205  */
3206 static inline void netif_stop_queue(struct net_device *dev)
3207 {
3208 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3209 }
3210 
3211 void netif_tx_stop_all_queues(struct net_device *dev);
3212 void netdev_update_lockdep_key(struct net_device *dev);
3213 
3214 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3215 {
3216 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3217 }
3218 
3219 /**
3220  *	netif_queue_stopped - test if transmit queue is flowblocked
3221  *	@dev: network device
3222  *
3223  *	Test if transmit queue on device is currently unable to send.
3224  */
3225 static inline bool netif_queue_stopped(const struct net_device *dev)
3226 {
3227 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3228 }
3229 
3230 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3231 {
3232 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3233 }
3234 
3235 static inline bool
3236 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3237 {
3238 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3239 }
3240 
3241 static inline bool
3242 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3243 {
3244 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3245 }
3246 
3247 /**
3248  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3249  *	@dev_queue: pointer to transmit queue
3250  *
3251  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3252  * to give appropriate hint to the CPU.
3253  */
3254 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3255 {
3256 #ifdef CONFIG_BQL
3257 	prefetchw(&dev_queue->dql.num_queued);
3258 #endif
3259 }
3260 
3261 /**
3262  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3263  *	@dev_queue: pointer to transmit queue
3264  *
3265  * BQL enabled drivers might use this helper in their TX completion path,
3266  * to give appropriate hint to the CPU.
3267  */
3268 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3269 {
3270 #ifdef CONFIG_BQL
3271 	prefetchw(&dev_queue->dql.limit);
3272 #endif
3273 }
3274 
3275 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3276 					unsigned int bytes)
3277 {
3278 #ifdef CONFIG_BQL
3279 	dql_queued(&dev_queue->dql, bytes);
3280 
3281 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3282 		return;
3283 
3284 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3285 
3286 	/*
3287 	 * The XOFF flag must be set before checking the dql_avail below,
3288 	 * because in netdev_tx_completed_queue we update the dql_completed
3289 	 * before checking the XOFF flag.
3290 	 */
3291 	smp_mb();
3292 
3293 	/* check again in case another CPU has just made room avail */
3294 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3295 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3296 #endif
3297 }
3298 
3299 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3300  * that they should not test BQL status themselves.
3301  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3302  * skb of a batch.
3303  * Returns true if the doorbell must be used to kick the NIC.
3304  */
3305 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3306 					  unsigned int bytes,
3307 					  bool xmit_more)
3308 {
3309 	if (xmit_more) {
3310 #ifdef CONFIG_BQL
3311 		dql_queued(&dev_queue->dql, bytes);
3312 #endif
3313 		return netif_tx_queue_stopped(dev_queue);
3314 	}
3315 	netdev_tx_sent_queue(dev_queue, bytes);
3316 	return true;
3317 }
3318 
3319 /**
3320  * 	netdev_sent_queue - report the number of bytes queued to hardware
3321  * 	@dev: network device
3322  * 	@bytes: number of bytes queued to the hardware device queue
3323  *
3324  * 	Report the number of bytes queued for sending/completion to the network
3325  * 	device hardware queue. @bytes should be a good approximation and should
3326  * 	exactly match netdev_completed_queue() @bytes
3327  */
3328 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3329 {
3330 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3331 }
3332 
3333 static inline bool __netdev_sent_queue(struct net_device *dev,
3334 				       unsigned int bytes,
3335 				       bool xmit_more)
3336 {
3337 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3338 				      xmit_more);
3339 }
3340 
3341 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3342 					     unsigned int pkts, unsigned int bytes)
3343 {
3344 #ifdef CONFIG_BQL
3345 	if (unlikely(!bytes))
3346 		return;
3347 
3348 	dql_completed(&dev_queue->dql, bytes);
3349 
3350 	/*
3351 	 * Without the memory barrier there is a small possiblity that
3352 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3353 	 * be stopped forever
3354 	 */
3355 	smp_mb();
3356 
3357 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3358 		return;
3359 
3360 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3361 		netif_schedule_queue(dev_queue);
3362 #endif
3363 }
3364 
3365 /**
3366  * 	netdev_completed_queue - report bytes and packets completed by device
3367  * 	@dev: network device
3368  * 	@pkts: actual number of packets sent over the medium
3369  * 	@bytes: actual number of bytes sent over the medium
3370  *
3371  * 	Report the number of bytes and packets transmitted by the network device
3372  * 	hardware queue over the physical medium, @bytes must exactly match the
3373  * 	@bytes amount passed to netdev_sent_queue()
3374  */
3375 static inline void netdev_completed_queue(struct net_device *dev,
3376 					  unsigned int pkts, unsigned int bytes)
3377 {
3378 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3379 }
3380 
3381 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3382 {
3383 #ifdef CONFIG_BQL
3384 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3385 	dql_reset(&q->dql);
3386 #endif
3387 }
3388 
3389 /**
3390  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3391  * 	@dev_queue: network device
3392  *
3393  * 	Reset the bytes and packet count of a network device and clear the
3394  * 	software flow control OFF bit for this network device
3395  */
3396 static inline void netdev_reset_queue(struct net_device *dev_queue)
3397 {
3398 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3399 }
3400 
3401 /**
3402  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3403  * 	@dev: network device
3404  * 	@queue_index: given tx queue index
3405  *
3406  * 	Returns 0 if given tx queue index >= number of device tx queues,
3407  * 	otherwise returns the originally passed tx queue index.
3408  */
3409 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3410 {
3411 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3412 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3413 				     dev->name, queue_index,
3414 				     dev->real_num_tx_queues);
3415 		return 0;
3416 	}
3417 
3418 	return queue_index;
3419 }
3420 
3421 /**
3422  *	netif_running - test if up
3423  *	@dev: network device
3424  *
3425  *	Test if the device has been brought up.
3426  */
3427 static inline bool netif_running(const struct net_device *dev)
3428 {
3429 	return test_bit(__LINK_STATE_START, &dev->state);
3430 }
3431 
3432 /*
3433  * Routines to manage the subqueues on a device.  We only need start,
3434  * stop, and a check if it's stopped.  All other device management is
3435  * done at the overall netdevice level.
3436  * Also test the device if we're multiqueue.
3437  */
3438 
3439 /**
3440  *	netif_start_subqueue - allow sending packets on subqueue
3441  *	@dev: network device
3442  *	@queue_index: sub queue index
3443  *
3444  * Start individual transmit queue of a device with multiple transmit queues.
3445  */
3446 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3447 {
3448 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3449 
3450 	netif_tx_start_queue(txq);
3451 }
3452 
3453 /**
3454  *	netif_stop_subqueue - stop sending packets on subqueue
3455  *	@dev: network device
3456  *	@queue_index: sub queue index
3457  *
3458  * Stop individual transmit queue of a device with multiple transmit queues.
3459  */
3460 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3461 {
3462 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3463 	netif_tx_stop_queue(txq);
3464 }
3465 
3466 /**
3467  *	netif_subqueue_stopped - test status of subqueue
3468  *	@dev: network device
3469  *	@queue_index: sub queue index
3470  *
3471  * Check individual transmit queue of a device with multiple transmit queues.
3472  */
3473 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3474 					    u16 queue_index)
3475 {
3476 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3477 
3478 	return netif_tx_queue_stopped(txq);
3479 }
3480 
3481 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3482 					  struct sk_buff *skb)
3483 {
3484 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3485 }
3486 
3487 /**
3488  *	netif_wake_subqueue - allow sending packets on subqueue
3489  *	@dev: network device
3490  *	@queue_index: sub queue index
3491  *
3492  * Resume individual transmit queue of a device with multiple transmit queues.
3493  */
3494 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3495 {
3496 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3497 
3498 	netif_tx_wake_queue(txq);
3499 }
3500 
3501 #ifdef CONFIG_XPS
3502 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3503 			u16 index);
3504 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3505 			  u16 index, bool is_rxqs_map);
3506 
3507 /**
3508  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3509  *	@j: CPU/Rx queue index
3510  *	@mask: bitmask of all cpus/rx queues
3511  *	@nr_bits: number of bits in the bitmask
3512  *
3513  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3514  */
3515 static inline bool netif_attr_test_mask(unsigned long j,
3516 					const unsigned long *mask,
3517 					unsigned int nr_bits)
3518 {
3519 	cpu_max_bits_warn(j, nr_bits);
3520 	return test_bit(j, mask);
3521 }
3522 
3523 /**
3524  *	netif_attr_test_online - Test for online CPU/Rx queue
3525  *	@j: CPU/Rx queue index
3526  *	@online_mask: bitmask for CPUs/Rx queues that are online
3527  *	@nr_bits: number of bits in the bitmask
3528  *
3529  * Returns true if a CPU/Rx queue is online.
3530  */
3531 static inline bool netif_attr_test_online(unsigned long j,
3532 					  const unsigned long *online_mask,
3533 					  unsigned int nr_bits)
3534 {
3535 	cpu_max_bits_warn(j, nr_bits);
3536 
3537 	if (online_mask)
3538 		return test_bit(j, online_mask);
3539 
3540 	return (j < nr_bits);
3541 }
3542 
3543 /**
3544  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3545  *	@n: CPU/Rx queue index
3546  *	@srcp: the cpumask/Rx queue mask pointer
3547  *	@nr_bits: number of bits in the bitmask
3548  *
3549  * Returns >= nr_bits if no further CPUs/Rx queues set.
3550  */
3551 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3552 					       unsigned int nr_bits)
3553 {
3554 	/* -1 is a legal arg here. */
3555 	if (n != -1)
3556 		cpu_max_bits_warn(n, nr_bits);
3557 
3558 	if (srcp)
3559 		return find_next_bit(srcp, nr_bits, n + 1);
3560 
3561 	return n + 1;
3562 }
3563 
3564 /**
3565  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3566  *	@n: CPU/Rx queue index
3567  *	@src1p: the first CPUs/Rx queues mask pointer
3568  *	@src2p: the second CPUs/Rx queues mask pointer
3569  *	@nr_bits: number of bits in the bitmask
3570  *
3571  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3572  */
3573 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3574 					  const unsigned long *src2p,
3575 					  unsigned int nr_bits)
3576 {
3577 	/* -1 is a legal arg here. */
3578 	if (n != -1)
3579 		cpu_max_bits_warn(n, nr_bits);
3580 
3581 	if (src1p && src2p)
3582 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3583 	else if (src1p)
3584 		return find_next_bit(src1p, nr_bits, n + 1);
3585 	else if (src2p)
3586 		return find_next_bit(src2p, nr_bits, n + 1);
3587 
3588 	return n + 1;
3589 }
3590 #else
3591 static inline int netif_set_xps_queue(struct net_device *dev,
3592 				      const struct cpumask *mask,
3593 				      u16 index)
3594 {
3595 	return 0;
3596 }
3597 
3598 static inline int __netif_set_xps_queue(struct net_device *dev,
3599 					const unsigned long *mask,
3600 					u16 index, bool is_rxqs_map)
3601 {
3602 	return 0;
3603 }
3604 #endif
3605 
3606 /**
3607  *	netif_is_multiqueue - test if device has multiple transmit queues
3608  *	@dev: network device
3609  *
3610  * Check if device has multiple transmit queues
3611  */
3612 static inline bool netif_is_multiqueue(const struct net_device *dev)
3613 {
3614 	return dev->num_tx_queues > 1;
3615 }
3616 
3617 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3618 
3619 #ifdef CONFIG_SYSFS
3620 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3621 #else
3622 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3623 						unsigned int rxqs)
3624 {
3625 	dev->real_num_rx_queues = rxqs;
3626 	return 0;
3627 }
3628 #endif
3629 
3630 static inline struct netdev_rx_queue *
3631 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3632 {
3633 	return dev->_rx + rxq;
3634 }
3635 
3636 #ifdef CONFIG_SYSFS
3637 static inline unsigned int get_netdev_rx_queue_index(
3638 		struct netdev_rx_queue *queue)
3639 {
3640 	struct net_device *dev = queue->dev;
3641 	int index = queue - dev->_rx;
3642 
3643 	BUG_ON(index >= dev->num_rx_queues);
3644 	return index;
3645 }
3646 #endif
3647 
3648 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3649 int netif_get_num_default_rss_queues(void);
3650 
3651 enum skb_free_reason {
3652 	SKB_REASON_CONSUMED,
3653 	SKB_REASON_DROPPED,
3654 };
3655 
3656 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3657 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3658 
3659 /*
3660  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3661  * interrupt context or with hardware interrupts being disabled.
3662  * (in_irq() || irqs_disabled())
3663  *
3664  * We provide four helpers that can be used in following contexts :
3665  *
3666  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3667  *  replacing kfree_skb(skb)
3668  *
3669  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3670  *  Typically used in place of consume_skb(skb) in TX completion path
3671  *
3672  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3673  *  replacing kfree_skb(skb)
3674  *
3675  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3676  *  and consumed a packet. Used in place of consume_skb(skb)
3677  */
3678 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3679 {
3680 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3681 }
3682 
3683 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3684 {
3685 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3686 }
3687 
3688 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3689 {
3690 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3691 }
3692 
3693 static inline void dev_consume_skb_any(struct sk_buff *skb)
3694 {
3695 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3696 }
3697 
3698 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3699 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3700 int netif_rx(struct sk_buff *skb);
3701 int netif_rx_ni(struct sk_buff *skb);
3702 int netif_receive_skb(struct sk_buff *skb);
3703 int netif_receive_skb_core(struct sk_buff *skb);
3704 void netif_receive_skb_list(struct list_head *head);
3705 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3706 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3707 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3708 gro_result_t napi_gro_frags(struct napi_struct *napi);
3709 struct packet_offload *gro_find_receive_by_type(__be16 type);
3710 struct packet_offload *gro_find_complete_by_type(__be16 type);
3711 
3712 static inline void napi_free_frags(struct napi_struct *napi)
3713 {
3714 	kfree_skb(napi->skb);
3715 	napi->skb = NULL;
3716 }
3717 
3718 bool netdev_is_rx_handler_busy(struct net_device *dev);
3719 int netdev_rx_handler_register(struct net_device *dev,
3720 			       rx_handler_func_t *rx_handler,
3721 			       void *rx_handler_data);
3722 void netdev_rx_handler_unregister(struct net_device *dev);
3723 
3724 bool dev_valid_name(const char *name);
3725 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3726 		bool *need_copyout);
3727 int dev_ifconf(struct net *net, struct ifconf *, int);
3728 int dev_ethtool(struct net *net, struct ifreq *);
3729 unsigned int dev_get_flags(const struct net_device *);
3730 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3731 		       struct netlink_ext_ack *extack);
3732 int dev_change_flags(struct net_device *dev, unsigned int flags,
3733 		     struct netlink_ext_ack *extack);
3734 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3735 			unsigned int gchanges);
3736 int dev_change_name(struct net_device *, const char *);
3737 int dev_set_alias(struct net_device *, const char *, size_t);
3738 int dev_get_alias(const struct net_device *, char *, size_t);
3739 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3740 int __dev_set_mtu(struct net_device *, int);
3741 int dev_validate_mtu(struct net_device *dev, int mtu,
3742 		     struct netlink_ext_ack *extack);
3743 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3744 		    struct netlink_ext_ack *extack);
3745 int dev_set_mtu(struct net_device *, int);
3746 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3747 void dev_set_group(struct net_device *, int);
3748 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3749 			      struct netlink_ext_ack *extack);
3750 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3751 			struct netlink_ext_ack *extack);
3752 int dev_change_carrier(struct net_device *, bool new_carrier);
3753 int dev_get_phys_port_id(struct net_device *dev,
3754 			 struct netdev_phys_item_id *ppid);
3755 int dev_get_phys_port_name(struct net_device *dev,
3756 			   char *name, size_t len);
3757 int dev_get_port_parent_id(struct net_device *dev,
3758 			   struct netdev_phys_item_id *ppid, bool recurse);
3759 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3760 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3761 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3762 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3763 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3764 				    struct netdev_queue *txq, int *ret);
3765 
3766 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3767 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3768 		      int fd, u32 flags);
3769 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3770 		    enum bpf_netdev_command cmd);
3771 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3772 
3773 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3774 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3775 bool is_skb_forwardable(const struct net_device *dev,
3776 			const struct sk_buff *skb);
3777 
3778 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3779 					       struct sk_buff *skb)
3780 {
3781 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3782 	    unlikely(!is_skb_forwardable(dev, skb))) {
3783 		atomic_long_inc(&dev->rx_dropped);
3784 		kfree_skb(skb);
3785 		return NET_RX_DROP;
3786 	}
3787 
3788 	skb_scrub_packet(skb, true);
3789 	skb->priority = 0;
3790 	return 0;
3791 }
3792 
3793 bool dev_nit_active(struct net_device *dev);
3794 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3795 
3796 extern int		netdev_budget;
3797 extern unsigned int	netdev_budget_usecs;
3798 
3799 /* Called by rtnetlink.c:rtnl_unlock() */
3800 void netdev_run_todo(void);
3801 
3802 /**
3803  *	dev_put - release reference to device
3804  *	@dev: network device
3805  *
3806  * Release reference to device to allow it to be freed.
3807  */
3808 static inline void dev_put(struct net_device *dev)
3809 {
3810 	this_cpu_dec(*dev->pcpu_refcnt);
3811 }
3812 
3813 /**
3814  *	dev_hold - get reference to device
3815  *	@dev: network device
3816  *
3817  * Hold reference to device to keep it from being freed.
3818  */
3819 static inline void dev_hold(struct net_device *dev)
3820 {
3821 	this_cpu_inc(*dev->pcpu_refcnt);
3822 }
3823 
3824 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3825  * and _off may be called from IRQ context, but it is caller
3826  * who is responsible for serialization of these calls.
3827  *
3828  * The name carrier is inappropriate, these functions should really be
3829  * called netif_lowerlayer_*() because they represent the state of any
3830  * kind of lower layer not just hardware media.
3831  */
3832 
3833 void linkwatch_init_dev(struct net_device *dev);
3834 void linkwatch_fire_event(struct net_device *dev);
3835 void linkwatch_forget_dev(struct net_device *dev);
3836 
3837 /**
3838  *	netif_carrier_ok - test if carrier present
3839  *	@dev: network device
3840  *
3841  * Check if carrier is present on device
3842  */
3843 static inline bool netif_carrier_ok(const struct net_device *dev)
3844 {
3845 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3846 }
3847 
3848 unsigned long dev_trans_start(struct net_device *dev);
3849 
3850 void __netdev_watchdog_up(struct net_device *dev);
3851 
3852 void netif_carrier_on(struct net_device *dev);
3853 
3854 void netif_carrier_off(struct net_device *dev);
3855 
3856 /**
3857  *	netif_dormant_on - mark device as dormant.
3858  *	@dev: network device
3859  *
3860  * Mark device as dormant (as per RFC2863).
3861  *
3862  * The dormant state indicates that the relevant interface is not
3863  * actually in a condition to pass packets (i.e., it is not 'up') but is
3864  * in a "pending" state, waiting for some external event.  For "on-
3865  * demand" interfaces, this new state identifies the situation where the
3866  * interface is waiting for events to place it in the up state.
3867  */
3868 static inline void netif_dormant_on(struct net_device *dev)
3869 {
3870 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3871 		linkwatch_fire_event(dev);
3872 }
3873 
3874 /**
3875  *	netif_dormant_off - set device as not dormant.
3876  *	@dev: network device
3877  *
3878  * Device is not in dormant state.
3879  */
3880 static inline void netif_dormant_off(struct net_device *dev)
3881 {
3882 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3883 		linkwatch_fire_event(dev);
3884 }
3885 
3886 /**
3887  *	netif_dormant - test if device is dormant
3888  *	@dev: network device
3889  *
3890  * Check if device is dormant.
3891  */
3892 static inline bool netif_dormant(const struct net_device *dev)
3893 {
3894 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3895 }
3896 
3897 
3898 /**
3899  *	netif_oper_up - test if device is operational
3900  *	@dev: network device
3901  *
3902  * Check if carrier is operational
3903  */
3904 static inline bool netif_oper_up(const struct net_device *dev)
3905 {
3906 	return (dev->operstate == IF_OPER_UP ||
3907 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3908 }
3909 
3910 /**
3911  *	netif_device_present - is device available or removed
3912  *	@dev: network device
3913  *
3914  * Check if device has not been removed from system.
3915  */
3916 static inline bool netif_device_present(struct net_device *dev)
3917 {
3918 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3919 }
3920 
3921 void netif_device_detach(struct net_device *dev);
3922 
3923 void netif_device_attach(struct net_device *dev);
3924 
3925 /*
3926  * Network interface message level settings
3927  */
3928 
3929 enum {
3930 	NETIF_MSG_DRV_BIT,
3931 	NETIF_MSG_PROBE_BIT,
3932 	NETIF_MSG_LINK_BIT,
3933 	NETIF_MSG_TIMER_BIT,
3934 	NETIF_MSG_IFDOWN_BIT,
3935 	NETIF_MSG_IFUP_BIT,
3936 	NETIF_MSG_RX_ERR_BIT,
3937 	NETIF_MSG_TX_ERR_BIT,
3938 	NETIF_MSG_TX_QUEUED_BIT,
3939 	NETIF_MSG_INTR_BIT,
3940 	NETIF_MSG_TX_DONE_BIT,
3941 	NETIF_MSG_RX_STATUS_BIT,
3942 	NETIF_MSG_PKTDATA_BIT,
3943 	NETIF_MSG_HW_BIT,
3944 	NETIF_MSG_WOL_BIT,
3945 
3946 	/* When you add a new bit above, update netif_msg_class_names array
3947 	 * in net/ethtool/common.c
3948 	 */
3949 	NETIF_MSG_CLASS_COUNT,
3950 };
3951 /* Both ethtool_ops interface and internal driver implementation use u32 */
3952 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3953 
3954 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
3955 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3956 
3957 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
3958 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
3959 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
3960 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
3961 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
3962 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
3963 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
3964 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
3965 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
3966 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
3967 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
3968 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
3969 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
3970 #define NETIF_MSG_HW		__NETIF_MSG(HW)
3971 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
3972 
3973 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3974 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3975 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3976 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3977 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3978 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3979 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3980 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3981 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3982 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3983 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3984 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3985 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3986 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3987 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3988 
3989 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3990 {
3991 	/* use default */
3992 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3993 		return default_msg_enable_bits;
3994 	if (debug_value == 0)	/* no output */
3995 		return 0;
3996 	/* set low N bits */
3997 	return (1U << debug_value) - 1;
3998 }
3999 
4000 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4001 {
4002 	spin_lock(&txq->_xmit_lock);
4003 	txq->xmit_lock_owner = cpu;
4004 }
4005 
4006 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4007 {
4008 	__acquire(&txq->_xmit_lock);
4009 	return true;
4010 }
4011 
4012 static inline void __netif_tx_release(struct netdev_queue *txq)
4013 {
4014 	__release(&txq->_xmit_lock);
4015 }
4016 
4017 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4018 {
4019 	spin_lock_bh(&txq->_xmit_lock);
4020 	txq->xmit_lock_owner = smp_processor_id();
4021 }
4022 
4023 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4024 {
4025 	bool ok = spin_trylock(&txq->_xmit_lock);
4026 	if (likely(ok))
4027 		txq->xmit_lock_owner = smp_processor_id();
4028 	return ok;
4029 }
4030 
4031 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4032 {
4033 	txq->xmit_lock_owner = -1;
4034 	spin_unlock(&txq->_xmit_lock);
4035 }
4036 
4037 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4038 {
4039 	txq->xmit_lock_owner = -1;
4040 	spin_unlock_bh(&txq->_xmit_lock);
4041 }
4042 
4043 static inline void txq_trans_update(struct netdev_queue *txq)
4044 {
4045 	if (txq->xmit_lock_owner != -1)
4046 		txq->trans_start = jiffies;
4047 }
4048 
4049 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4050 static inline void netif_trans_update(struct net_device *dev)
4051 {
4052 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4053 
4054 	if (txq->trans_start != jiffies)
4055 		txq->trans_start = jiffies;
4056 }
4057 
4058 /**
4059  *	netif_tx_lock - grab network device transmit lock
4060  *	@dev: network device
4061  *
4062  * Get network device transmit lock
4063  */
4064 static inline void netif_tx_lock(struct net_device *dev)
4065 {
4066 	unsigned int i;
4067 	int cpu;
4068 
4069 	spin_lock(&dev->tx_global_lock);
4070 	cpu = smp_processor_id();
4071 	for (i = 0; i < dev->num_tx_queues; i++) {
4072 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4073 
4074 		/* We are the only thread of execution doing a
4075 		 * freeze, but we have to grab the _xmit_lock in
4076 		 * order to synchronize with threads which are in
4077 		 * the ->hard_start_xmit() handler and already
4078 		 * checked the frozen bit.
4079 		 */
4080 		__netif_tx_lock(txq, cpu);
4081 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4082 		__netif_tx_unlock(txq);
4083 	}
4084 }
4085 
4086 static inline void netif_tx_lock_bh(struct net_device *dev)
4087 {
4088 	local_bh_disable();
4089 	netif_tx_lock(dev);
4090 }
4091 
4092 static inline void netif_tx_unlock(struct net_device *dev)
4093 {
4094 	unsigned int i;
4095 
4096 	for (i = 0; i < dev->num_tx_queues; i++) {
4097 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4098 
4099 		/* No need to grab the _xmit_lock here.  If the
4100 		 * queue is not stopped for another reason, we
4101 		 * force a schedule.
4102 		 */
4103 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4104 		netif_schedule_queue(txq);
4105 	}
4106 	spin_unlock(&dev->tx_global_lock);
4107 }
4108 
4109 static inline void netif_tx_unlock_bh(struct net_device *dev)
4110 {
4111 	netif_tx_unlock(dev);
4112 	local_bh_enable();
4113 }
4114 
4115 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4116 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4117 		__netif_tx_lock(txq, cpu);		\
4118 	} else {					\
4119 		__netif_tx_acquire(txq);		\
4120 	}						\
4121 }
4122 
4123 #define HARD_TX_TRYLOCK(dev, txq)			\
4124 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4125 		__netif_tx_trylock(txq) :		\
4126 		__netif_tx_acquire(txq))
4127 
4128 #define HARD_TX_UNLOCK(dev, txq) {			\
4129 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4130 		__netif_tx_unlock(txq);			\
4131 	} else {					\
4132 		__netif_tx_release(txq);		\
4133 	}						\
4134 }
4135 
4136 static inline void netif_tx_disable(struct net_device *dev)
4137 {
4138 	unsigned int i;
4139 	int cpu;
4140 
4141 	local_bh_disable();
4142 	cpu = smp_processor_id();
4143 	for (i = 0; i < dev->num_tx_queues; i++) {
4144 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4145 
4146 		__netif_tx_lock(txq, cpu);
4147 		netif_tx_stop_queue(txq);
4148 		__netif_tx_unlock(txq);
4149 	}
4150 	local_bh_enable();
4151 }
4152 
4153 static inline void netif_addr_lock(struct net_device *dev)
4154 {
4155 	spin_lock(&dev->addr_list_lock);
4156 }
4157 
4158 static inline void netif_addr_lock_bh(struct net_device *dev)
4159 {
4160 	spin_lock_bh(&dev->addr_list_lock);
4161 }
4162 
4163 static inline void netif_addr_unlock(struct net_device *dev)
4164 {
4165 	spin_unlock(&dev->addr_list_lock);
4166 }
4167 
4168 static inline void netif_addr_unlock_bh(struct net_device *dev)
4169 {
4170 	spin_unlock_bh(&dev->addr_list_lock);
4171 }
4172 
4173 /*
4174  * dev_addrs walker. Should be used only for read access. Call with
4175  * rcu_read_lock held.
4176  */
4177 #define for_each_dev_addr(dev, ha) \
4178 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4179 
4180 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4181 
4182 void ether_setup(struct net_device *dev);
4183 
4184 /* Support for loadable net-drivers */
4185 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4186 				    unsigned char name_assign_type,
4187 				    void (*setup)(struct net_device *),
4188 				    unsigned int txqs, unsigned int rxqs);
4189 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4190 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4191 
4192 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4193 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4194 			 count)
4195 
4196 int register_netdev(struct net_device *dev);
4197 void unregister_netdev(struct net_device *dev);
4198 
4199 /* General hardware address lists handling functions */
4200 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4201 		   struct netdev_hw_addr_list *from_list, int addr_len);
4202 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4203 		      struct netdev_hw_addr_list *from_list, int addr_len);
4204 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4205 		       struct net_device *dev,
4206 		       int (*sync)(struct net_device *, const unsigned char *),
4207 		       int (*unsync)(struct net_device *,
4208 				     const unsigned char *));
4209 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4210 			   struct net_device *dev,
4211 			   int (*sync)(struct net_device *,
4212 				       const unsigned char *, int),
4213 			   int (*unsync)(struct net_device *,
4214 					 const unsigned char *, int));
4215 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4216 			      struct net_device *dev,
4217 			      int (*unsync)(struct net_device *,
4218 					    const unsigned char *, int));
4219 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4220 			  struct net_device *dev,
4221 			  int (*unsync)(struct net_device *,
4222 					const unsigned char *));
4223 void __hw_addr_init(struct netdev_hw_addr_list *list);
4224 
4225 /* Functions used for device addresses handling */
4226 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4227 		 unsigned char addr_type);
4228 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4229 		 unsigned char addr_type);
4230 void dev_addr_flush(struct net_device *dev);
4231 int dev_addr_init(struct net_device *dev);
4232 
4233 /* Functions used for unicast addresses handling */
4234 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4235 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4236 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4237 int dev_uc_sync(struct net_device *to, struct net_device *from);
4238 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4239 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4240 void dev_uc_flush(struct net_device *dev);
4241 void dev_uc_init(struct net_device *dev);
4242 
4243 /**
4244  *  __dev_uc_sync - Synchonize device's unicast list
4245  *  @dev:  device to sync
4246  *  @sync: function to call if address should be added
4247  *  @unsync: function to call if address should be removed
4248  *
4249  *  Add newly added addresses to the interface, and release
4250  *  addresses that have been deleted.
4251  */
4252 static inline int __dev_uc_sync(struct net_device *dev,
4253 				int (*sync)(struct net_device *,
4254 					    const unsigned char *),
4255 				int (*unsync)(struct net_device *,
4256 					      const unsigned char *))
4257 {
4258 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4259 }
4260 
4261 /**
4262  *  __dev_uc_unsync - Remove synchronized addresses from device
4263  *  @dev:  device to sync
4264  *  @unsync: function to call if address should be removed
4265  *
4266  *  Remove all addresses that were added to the device by dev_uc_sync().
4267  */
4268 static inline void __dev_uc_unsync(struct net_device *dev,
4269 				   int (*unsync)(struct net_device *,
4270 						 const unsigned char *))
4271 {
4272 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4273 }
4274 
4275 /* Functions used for multicast addresses handling */
4276 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4277 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4278 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4279 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4280 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4281 int dev_mc_sync(struct net_device *to, struct net_device *from);
4282 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4283 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4284 void dev_mc_flush(struct net_device *dev);
4285 void dev_mc_init(struct net_device *dev);
4286 
4287 /**
4288  *  __dev_mc_sync - Synchonize device's multicast list
4289  *  @dev:  device to sync
4290  *  @sync: function to call if address should be added
4291  *  @unsync: function to call if address should be removed
4292  *
4293  *  Add newly added addresses to the interface, and release
4294  *  addresses that have been deleted.
4295  */
4296 static inline int __dev_mc_sync(struct net_device *dev,
4297 				int (*sync)(struct net_device *,
4298 					    const unsigned char *),
4299 				int (*unsync)(struct net_device *,
4300 					      const unsigned char *))
4301 {
4302 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4303 }
4304 
4305 /**
4306  *  __dev_mc_unsync - Remove synchronized addresses from device
4307  *  @dev:  device to sync
4308  *  @unsync: function to call if address should be removed
4309  *
4310  *  Remove all addresses that were added to the device by dev_mc_sync().
4311  */
4312 static inline void __dev_mc_unsync(struct net_device *dev,
4313 				   int (*unsync)(struct net_device *,
4314 						 const unsigned char *))
4315 {
4316 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4317 }
4318 
4319 /* Functions used for secondary unicast and multicast support */
4320 void dev_set_rx_mode(struct net_device *dev);
4321 void __dev_set_rx_mode(struct net_device *dev);
4322 int dev_set_promiscuity(struct net_device *dev, int inc);
4323 int dev_set_allmulti(struct net_device *dev, int inc);
4324 void netdev_state_change(struct net_device *dev);
4325 void netdev_notify_peers(struct net_device *dev);
4326 void netdev_features_change(struct net_device *dev);
4327 /* Load a device via the kmod */
4328 void dev_load(struct net *net, const char *name);
4329 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4330 					struct rtnl_link_stats64 *storage);
4331 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4332 			     const struct net_device_stats *netdev_stats);
4333 
4334 extern int		netdev_max_backlog;
4335 extern int		netdev_tstamp_prequeue;
4336 extern int		weight_p;
4337 extern int		dev_weight_rx_bias;
4338 extern int		dev_weight_tx_bias;
4339 extern int		dev_rx_weight;
4340 extern int		dev_tx_weight;
4341 extern int		gro_normal_batch;
4342 
4343 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4344 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4345 						     struct list_head **iter);
4346 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4347 						     struct list_head **iter);
4348 
4349 /* iterate through upper list, must be called under RCU read lock */
4350 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4351 	for (iter = &(dev)->adj_list.upper, \
4352 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4353 	     updev; \
4354 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4355 
4356 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4357 				  int (*fn)(struct net_device *upper_dev,
4358 					    void *data),
4359 				  void *data);
4360 
4361 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4362 				  struct net_device *upper_dev);
4363 
4364 bool netdev_has_any_upper_dev(struct net_device *dev);
4365 
4366 void *netdev_lower_get_next_private(struct net_device *dev,
4367 				    struct list_head **iter);
4368 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4369 					struct list_head **iter);
4370 
4371 #define netdev_for_each_lower_private(dev, priv, iter) \
4372 	for (iter = (dev)->adj_list.lower.next, \
4373 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4374 	     priv; \
4375 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4376 
4377 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4378 	for (iter = &(dev)->adj_list.lower, \
4379 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4380 	     priv; \
4381 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4382 
4383 void *netdev_lower_get_next(struct net_device *dev,
4384 				struct list_head **iter);
4385 
4386 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4387 	for (iter = (dev)->adj_list.lower.next, \
4388 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4389 	     ldev; \
4390 	     ldev = netdev_lower_get_next(dev, &(iter)))
4391 
4392 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4393 					     struct list_head **iter);
4394 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4395 						 struct list_head **iter);
4396 
4397 int netdev_walk_all_lower_dev(struct net_device *dev,
4398 			      int (*fn)(struct net_device *lower_dev,
4399 					void *data),
4400 			      void *data);
4401 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4402 				  int (*fn)(struct net_device *lower_dev,
4403 					    void *data),
4404 				  void *data);
4405 
4406 void *netdev_adjacent_get_private(struct list_head *adj_list);
4407 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4408 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4409 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4410 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4411 			  struct netlink_ext_ack *extack);
4412 int netdev_master_upper_dev_link(struct net_device *dev,
4413 				 struct net_device *upper_dev,
4414 				 void *upper_priv, void *upper_info,
4415 				 struct netlink_ext_ack *extack);
4416 void netdev_upper_dev_unlink(struct net_device *dev,
4417 			     struct net_device *upper_dev);
4418 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4419 				   struct net_device *new_dev,
4420 				   struct net_device *dev,
4421 				   struct netlink_ext_ack *extack);
4422 void netdev_adjacent_change_commit(struct net_device *old_dev,
4423 				   struct net_device *new_dev,
4424 				   struct net_device *dev);
4425 void netdev_adjacent_change_abort(struct net_device *old_dev,
4426 				  struct net_device *new_dev,
4427 				  struct net_device *dev);
4428 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4429 void *netdev_lower_dev_get_private(struct net_device *dev,
4430 				   struct net_device *lower_dev);
4431 void netdev_lower_state_changed(struct net_device *lower_dev,
4432 				void *lower_state_info);
4433 
4434 /* RSS keys are 40 or 52 bytes long */
4435 #define NETDEV_RSS_KEY_LEN 52
4436 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4437 void netdev_rss_key_fill(void *buffer, size_t len);
4438 
4439 int skb_checksum_help(struct sk_buff *skb);
4440 int skb_crc32c_csum_help(struct sk_buff *skb);
4441 int skb_csum_hwoffload_help(struct sk_buff *skb,
4442 			    const netdev_features_t features);
4443 
4444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4445 				  netdev_features_t features, bool tx_path);
4446 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4447 				    netdev_features_t features);
4448 
4449 struct netdev_bonding_info {
4450 	ifslave	slave;
4451 	ifbond	master;
4452 };
4453 
4454 struct netdev_notifier_bonding_info {
4455 	struct netdev_notifier_info info; /* must be first */
4456 	struct netdev_bonding_info  bonding_info;
4457 };
4458 
4459 void netdev_bonding_info_change(struct net_device *dev,
4460 				struct netdev_bonding_info *bonding_info);
4461 
4462 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4463 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4464 #else
4465 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4466 				  const void *data)
4467 {
4468 }
4469 #endif
4470 
4471 static inline
4472 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4473 {
4474 	return __skb_gso_segment(skb, features, true);
4475 }
4476 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4477 
4478 static inline bool can_checksum_protocol(netdev_features_t features,
4479 					 __be16 protocol)
4480 {
4481 	if (protocol == htons(ETH_P_FCOE))
4482 		return !!(features & NETIF_F_FCOE_CRC);
4483 
4484 	/* Assume this is an IP checksum (not SCTP CRC) */
4485 
4486 	if (features & NETIF_F_HW_CSUM) {
4487 		/* Can checksum everything */
4488 		return true;
4489 	}
4490 
4491 	switch (protocol) {
4492 	case htons(ETH_P_IP):
4493 		return !!(features & NETIF_F_IP_CSUM);
4494 	case htons(ETH_P_IPV6):
4495 		return !!(features & NETIF_F_IPV6_CSUM);
4496 	default:
4497 		return false;
4498 	}
4499 }
4500 
4501 #ifdef CONFIG_BUG
4502 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4503 #else
4504 static inline void netdev_rx_csum_fault(struct net_device *dev,
4505 					struct sk_buff *skb)
4506 {
4507 }
4508 #endif
4509 /* rx skb timestamps */
4510 void net_enable_timestamp(void);
4511 void net_disable_timestamp(void);
4512 
4513 #ifdef CONFIG_PROC_FS
4514 int __init dev_proc_init(void);
4515 #else
4516 #define dev_proc_init() 0
4517 #endif
4518 
4519 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4520 					      struct sk_buff *skb, struct net_device *dev,
4521 					      bool more)
4522 {
4523 	__this_cpu_write(softnet_data.xmit.more, more);
4524 	return ops->ndo_start_xmit(skb, dev);
4525 }
4526 
4527 static inline bool netdev_xmit_more(void)
4528 {
4529 	return __this_cpu_read(softnet_data.xmit.more);
4530 }
4531 
4532 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4533 					    struct netdev_queue *txq, bool more)
4534 {
4535 	const struct net_device_ops *ops = dev->netdev_ops;
4536 	netdev_tx_t rc;
4537 
4538 	rc = __netdev_start_xmit(ops, skb, dev, more);
4539 	if (rc == NETDEV_TX_OK)
4540 		txq_trans_update(txq);
4541 
4542 	return rc;
4543 }
4544 
4545 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4546 				const void *ns);
4547 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4548 				 const void *ns);
4549 
4550 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4551 {
4552 	return netdev_class_create_file_ns(class_attr, NULL);
4553 }
4554 
4555 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4556 {
4557 	netdev_class_remove_file_ns(class_attr, NULL);
4558 }
4559 
4560 extern const struct kobj_ns_type_operations net_ns_type_operations;
4561 
4562 const char *netdev_drivername(const struct net_device *dev);
4563 
4564 void linkwatch_run_queue(void);
4565 
4566 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4567 							  netdev_features_t f2)
4568 {
4569 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4570 		if (f1 & NETIF_F_HW_CSUM)
4571 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4572 		else
4573 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4574 	}
4575 
4576 	return f1 & f2;
4577 }
4578 
4579 static inline netdev_features_t netdev_get_wanted_features(
4580 	struct net_device *dev)
4581 {
4582 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4583 }
4584 netdev_features_t netdev_increment_features(netdev_features_t all,
4585 	netdev_features_t one, netdev_features_t mask);
4586 
4587 /* Allow TSO being used on stacked device :
4588  * Performing the GSO segmentation before last device
4589  * is a performance improvement.
4590  */
4591 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4592 							netdev_features_t mask)
4593 {
4594 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4595 }
4596 
4597 int __netdev_update_features(struct net_device *dev);
4598 void netdev_update_features(struct net_device *dev);
4599 void netdev_change_features(struct net_device *dev);
4600 
4601 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4602 					struct net_device *dev);
4603 
4604 netdev_features_t passthru_features_check(struct sk_buff *skb,
4605 					  struct net_device *dev,
4606 					  netdev_features_t features);
4607 netdev_features_t netif_skb_features(struct sk_buff *skb);
4608 
4609 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4610 {
4611 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4612 
4613 	/* check flags correspondence */
4614 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4615 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4616 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4617 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4618 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4619 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4620 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4621 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4622 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4623 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4624 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4625 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4626 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4627 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4628 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4629 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4630 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4631 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4632 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4633 
4634 	return (features & feature) == feature;
4635 }
4636 
4637 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4638 {
4639 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4640 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4641 }
4642 
4643 static inline bool netif_needs_gso(struct sk_buff *skb,
4644 				   netdev_features_t features)
4645 {
4646 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4647 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4648 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4649 }
4650 
4651 static inline void netif_set_gso_max_size(struct net_device *dev,
4652 					  unsigned int size)
4653 {
4654 	dev->gso_max_size = size;
4655 }
4656 
4657 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4658 					int pulled_hlen, u16 mac_offset,
4659 					int mac_len)
4660 {
4661 	skb->protocol = protocol;
4662 	skb->encapsulation = 1;
4663 	skb_push(skb, pulled_hlen);
4664 	skb_reset_transport_header(skb);
4665 	skb->mac_header = mac_offset;
4666 	skb->network_header = skb->mac_header + mac_len;
4667 	skb->mac_len = mac_len;
4668 }
4669 
4670 static inline bool netif_is_macsec(const struct net_device *dev)
4671 {
4672 	return dev->priv_flags & IFF_MACSEC;
4673 }
4674 
4675 static inline bool netif_is_macvlan(const struct net_device *dev)
4676 {
4677 	return dev->priv_flags & IFF_MACVLAN;
4678 }
4679 
4680 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4681 {
4682 	return dev->priv_flags & IFF_MACVLAN_PORT;
4683 }
4684 
4685 static inline bool netif_is_bond_master(const struct net_device *dev)
4686 {
4687 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4688 }
4689 
4690 static inline bool netif_is_bond_slave(const struct net_device *dev)
4691 {
4692 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4693 }
4694 
4695 static inline bool netif_supports_nofcs(struct net_device *dev)
4696 {
4697 	return dev->priv_flags & IFF_SUPP_NOFCS;
4698 }
4699 
4700 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4701 {
4702 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4703 }
4704 
4705 static inline bool netif_is_l3_master(const struct net_device *dev)
4706 {
4707 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4708 }
4709 
4710 static inline bool netif_is_l3_slave(const struct net_device *dev)
4711 {
4712 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4713 }
4714 
4715 static inline bool netif_is_bridge_master(const struct net_device *dev)
4716 {
4717 	return dev->priv_flags & IFF_EBRIDGE;
4718 }
4719 
4720 static inline bool netif_is_bridge_port(const struct net_device *dev)
4721 {
4722 	return dev->priv_flags & IFF_BRIDGE_PORT;
4723 }
4724 
4725 static inline bool netif_is_ovs_master(const struct net_device *dev)
4726 {
4727 	return dev->priv_flags & IFF_OPENVSWITCH;
4728 }
4729 
4730 static inline bool netif_is_ovs_port(const struct net_device *dev)
4731 {
4732 	return dev->priv_flags & IFF_OVS_DATAPATH;
4733 }
4734 
4735 static inline bool netif_is_team_master(const struct net_device *dev)
4736 {
4737 	return dev->priv_flags & IFF_TEAM;
4738 }
4739 
4740 static inline bool netif_is_team_port(const struct net_device *dev)
4741 {
4742 	return dev->priv_flags & IFF_TEAM_PORT;
4743 }
4744 
4745 static inline bool netif_is_lag_master(const struct net_device *dev)
4746 {
4747 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4748 }
4749 
4750 static inline bool netif_is_lag_port(const struct net_device *dev)
4751 {
4752 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4753 }
4754 
4755 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4756 {
4757 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4758 }
4759 
4760 static inline bool netif_is_failover(const struct net_device *dev)
4761 {
4762 	return dev->priv_flags & IFF_FAILOVER;
4763 }
4764 
4765 static inline bool netif_is_failover_slave(const struct net_device *dev)
4766 {
4767 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4768 }
4769 
4770 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4771 static inline void netif_keep_dst(struct net_device *dev)
4772 {
4773 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4774 }
4775 
4776 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4777 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4778 {
4779 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4780 	return dev->priv_flags & IFF_MACSEC;
4781 }
4782 
4783 extern struct pernet_operations __net_initdata loopback_net_ops;
4784 
4785 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4786 
4787 /* netdev_printk helpers, similar to dev_printk */
4788 
4789 static inline const char *netdev_name(const struct net_device *dev)
4790 {
4791 	if (!dev->name[0] || strchr(dev->name, '%'))
4792 		return "(unnamed net_device)";
4793 	return dev->name;
4794 }
4795 
4796 static inline bool netdev_unregistering(const struct net_device *dev)
4797 {
4798 	return dev->reg_state == NETREG_UNREGISTERING;
4799 }
4800 
4801 static inline const char *netdev_reg_state(const struct net_device *dev)
4802 {
4803 	switch (dev->reg_state) {
4804 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4805 	case NETREG_REGISTERED: return "";
4806 	case NETREG_UNREGISTERING: return " (unregistering)";
4807 	case NETREG_UNREGISTERED: return " (unregistered)";
4808 	case NETREG_RELEASED: return " (released)";
4809 	case NETREG_DUMMY: return " (dummy)";
4810 	}
4811 
4812 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4813 	return " (unknown)";
4814 }
4815 
4816 __printf(3, 4) __cold
4817 void netdev_printk(const char *level, const struct net_device *dev,
4818 		   const char *format, ...);
4819 __printf(2, 3) __cold
4820 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4821 __printf(2, 3) __cold
4822 void netdev_alert(const struct net_device *dev, const char *format, ...);
4823 __printf(2, 3) __cold
4824 void netdev_crit(const struct net_device *dev, const char *format, ...);
4825 __printf(2, 3) __cold
4826 void netdev_err(const struct net_device *dev, const char *format, ...);
4827 __printf(2, 3) __cold
4828 void netdev_warn(const struct net_device *dev, const char *format, ...);
4829 __printf(2, 3) __cold
4830 void netdev_notice(const struct net_device *dev, const char *format, ...);
4831 __printf(2, 3) __cold
4832 void netdev_info(const struct net_device *dev, const char *format, ...);
4833 
4834 #define netdev_level_once(level, dev, fmt, ...)			\
4835 do {								\
4836 	static bool __print_once __read_mostly;			\
4837 								\
4838 	if (!__print_once) {					\
4839 		__print_once = true;				\
4840 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4841 	}							\
4842 } while (0)
4843 
4844 #define netdev_emerg_once(dev, fmt, ...) \
4845 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4846 #define netdev_alert_once(dev, fmt, ...) \
4847 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4848 #define netdev_crit_once(dev, fmt, ...) \
4849 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4850 #define netdev_err_once(dev, fmt, ...) \
4851 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4852 #define netdev_warn_once(dev, fmt, ...) \
4853 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4854 #define netdev_notice_once(dev, fmt, ...) \
4855 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4856 #define netdev_info_once(dev, fmt, ...) \
4857 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4858 
4859 #define MODULE_ALIAS_NETDEV(device) \
4860 	MODULE_ALIAS("netdev-" device)
4861 
4862 #if defined(CONFIG_DYNAMIC_DEBUG)
4863 #define netdev_dbg(__dev, format, args...)			\
4864 do {								\
4865 	dynamic_netdev_dbg(__dev, format, ##args);		\
4866 } while (0)
4867 #elif defined(DEBUG)
4868 #define netdev_dbg(__dev, format, args...)			\
4869 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4870 #else
4871 #define netdev_dbg(__dev, format, args...)			\
4872 ({								\
4873 	if (0)							\
4874 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4875 })
4876 #endif
4877 
4878 #if defined(VERBOSE_DEBUG)
4879 #define netdev_vdbg	netdev_dbg
4880 #else
4881 
4882 #define netdev_vdbg(dev, format, args...)			\
4883 ({								\
4884 	if (0)							\
4885 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4886 	0;							\
4887 })
4888 #endif
4889 
4890 /*
4891  * netdev_WARN() acts like dev_printk(), but with the key difference
4892  * of using a WARN/WARN_ON to get the message out, including the
4893  * file/line information and a backtrace.
4894  */
4895 #define netdev_WARN(dev, format, args...)			\
4896 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4897 	     netdev_reg_state(dev), ##args)
4898 
4899 #define netdev_WARN_ONCE(dev, format, args...)				\
4900 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4901 		  netdev_reg_state(dev), ##args)
4902 
4903 /* netif printk helpers, similar to netdev_printk */
4904 
4905 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4906 do {					  			\
4907 	if (netif_msg_##type(priv))				\
4908 		netdev_printk(level, (dev), fmt, ##args);	\
4909 } while (0)
4910 
4911 #define netif_level(level, priv, type, dev, fmt, args...)	\
4912 do {								\
4913 	if (netif_msg_##type(priv))				\
4914 		netdev_##level(dev, fmt, ##args);		\
4915 } while (0)
4916 
4917 #define netif_emerg(priv, type, dev, fmt, args...)		\
4918 	netif_level(emerg, priv, type, dev, fmt, ##args)
4919 #define netif_alert(priv, type, dev, fmt, args...)		\
4920 	netif_level(alert, priv, type, dev, fmt, ##args)
4921 #define netif_crit(priv, type, dev, fmt, args...)		\
4922 	netif_level(crit, priv, type, dev, fmt, ##args)
4923 #define netif_err(priv, type, dev, fmt, args...)		\
4924 	netif_level(err, priv, type, dev, fmt, ##args)
4925 #define netif_warn(priv, type, dev, fmt, args...)		\
4926 	netif_level(warn, priv, type, dev, fmt, ##args)
4927 #define netif_notice(priv, type, dev, fmt, args...)		\
4928 	netif_level(notice, priv, type, dev, fmt, ##args)
4929 #define netif_info(priv, type, dev, fmt, args...)		\
4930 	netif_level(info, priv, type, dev, fmt, ##args)
4931 
4932 #if defined(CONFIG_DYNAMIC_DEBUG)
4933 #define netif_dbg(priv, type, netdev, format, args...)		\
4934 do {								\
4935 	if (netif_msg_##type(priv))				\
4936 		dynamic_netdev_dbg(netdev, format, ##args);	\
4937 } while (0)
4938 #elif defined(DEBUG)
4939 #define netif_dbg(priv, type, dev, format, args...)		\
4940 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4941 #else
4942 #define netif_dbg(priv, type, dev, format, args...)			\
4943 ({									\
4944 	if (0)								\
4945 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4946 	0;								\
4947 })
4948 #endif
4949 
4950 /* if @cond then downgrade to debug, else print at @level */
4951 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4952 	do {                                                              \
4953 		if (cond)                                                 \
4954 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4955 		else                                                      \
4956 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4957 	} while (0)
4958 
4959 #if defined(VERBOSE_DEBUG)
4960 #define netif_vdbg	netif_dbg
4961 #else
4962 #define netif_vdbg(priv, type, dev, format, args...)		\
4963 ({								\
4964 	if (0)							\
4965 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4966 	0;							\
4967 })
4968 #endif
4969 
4970 /*
4971  *	The list of packet types we will receive (as opposed to discard)
4972  *	and the routines to invoke.
4973  *
4974  *	Why 16. Because with 16 the only overlap we get on a hash of the
4975  *	low nibble of the protocol value is RARP/SNAP/X.25.
4976  *
4977  *		0800	IP
4978  *		0001	802.3
4979  *		0002	AX.25
4980  *		0004	802.2
4981  *		8035	RARP
4982  *		0005	SNAP
4983  *		0805	X.25
4984  *		0806	ARP
4985  *		8137	IPX
4986  *		0009	Localtalk
4987  *		86DD	IPv6
4988  */
4989 #define PTYPE_HASH_SIZE	(16)
4990 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4991 
4992 extern struct net_device *blackhole_netdev;
4993 
4994 #endif	/* _LINUX_NETDEVICE_H */
4995