xref: /openbmc/linux/include/linux/netdevice.h (revision 8730046c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 				    const struct ethtool_ops *ops);
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously; in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90  * others are propagated to higher layers.
91  */
92 
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS	0x00
95 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
96 #define NET_XMIT_CN		0x02	/* congestion notification	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 	/*
122 	 * Positive cases with an skb consumed by a driver:
123 	 * - successful transmission (rc == NETDEV_TX_OK)
124 	 * - error while transmitting (rc < 0)
125 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 	 */
127 	if (likely(rc < NET_XMIT_MASK))
128 		return true;
129 
130 	return false;
131 }
132 
133 /*
134  *	Compute the worst-case header length according to the protocols
135  *	used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *	Old network device statistics. Fields are native words
159  *	(unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163 	unsigned long	rx_packets;
164 	unsigned long	tx_packets;
165 	unsigned long	rx_bytes;
166 	unsigned long	tx_bytes;
167 	unsigned long	rx_errors;
168 	unsigned long	tx_errors;
169 	unsigned long	rx_dropped;
170 	unsigned long	tx_dropped;
171 	unsigned long	multicast;
172 	unsigned long	collisions;
173 	unsigned long	rx_length_errors;
174 	unsigned long	rx_over_errors;
175 	unsigned long	rx_crc_errors;
176 	unsigned long	rx_frame_errors;
177 	unsigned long	rx_fifo_errors;
178 	unsigned long	rx_missed_errors;
179 	unsigned long	tx_aborted_errors;
180 	unsigned long	tx_carrier_errors;
181 	unsigned long	tx_fifo_errors;
182 	unsigned long	tx_heartbeat_errors;
183 	unsigned long	tx_window_errors;
184 	unsigned long	rx_compressed;
185 	unsigned long	tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 extern struct static_key rfs_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			global_use;
212 	int			sync_cnt;
213 	int			refcount;
214 	int			synced;
215 	struct rcu_head		rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219 	struct list_head	list;
220 	int			count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 	list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239 	u16		hh_len;
240 	u16		__pad;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-CPU poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
336 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
338 };
339 
340 enum {
341 	NAPIF_STATE_SCHED	 = (1UL << NAPI_STATE_SCHED),
342 	NAPIF_STATE_DISABLE	 = (1UL << NAPI_STATE_DISABLE),
343 	NAPIF_STATE_NPSVC	 = (1UL << NAPI_STATE_NPSVC),
344 	NAPIF_STATE_HASHED	 = (1UL << NAPI_STATE_HASHED),
345 	NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL),
346 	NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL),
347 };
348 
349 enum gro_result {
350 	GRO_MERGED,
351 	GRO_MERGED_FREE,
352 	GRO_HELD,
353 	GRO_NORMAL,
354 	GRO_DROP,
355 };
356 typedef enum gro_result gro_result_t;
357 
358 /*
359  * enum rx_handler_result - Possible return values for rx_handlers.
360  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
361  * further.
362  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
363  * case skb->dev was changed by rx_handler.
364  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
365  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
366  *
367  * rx_handlers are functions called from inside __netif_receive_skb(), to do
368  * special processing of the skb, prior to delivery to protocol handlers.
369  *
370  * Currently, a net_device can only have a single rx_handler registered. Trying
371  * to register a second rx_handler will return -EBUSY.
372  *
373  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
374  * To unregister a rx_handler on a net_device, use
375  * netdev_rx_handler_unregister().
376  *
377  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
378  * do with the skb.
379  *
380  * If the rx_handler consumed the skb in some way, it should return
381  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
382  * the skb to be delivered in some other way.
383  *
384  * If the rx_handler changed skb->dev, to divert the skb to another
385  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
386  * new device will be called if it exists.
387  *
388  * If the rx_handler decides the skb should be ignored, it should return
389  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
390  * are registered on exact device (ptype->dev == skb->dev).
391  *
392  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
393  * delivered, it should return RX_HANDLER_PASS.
394  *
395  * A device without a registered rx_handler will behave as if rx_handler
396  * returned RX_HANDLER_PASS.
397  */
398 
399 enum rx_handler_result {
400 	RX_HANDLER_CONSUMED,
401 	RX_HANDLER_ANOTHER,
402 	RX_HANDLER_EXACT,
403 	RX_HANDLER_PASS,
404 };
405 typedef enum rx_handler_result rx_handler_result_t;
406 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
407 
408 void __napi_schedule(struct napi_struct *n);
409 void __napi_schedule_irqoff(struct napi_struct *n);
410 
411 static inline bool napi_disable_pending(struct napi_struct *n)
412 {
413 	return test_bit(NAPI_STATE_DISABLE, &n->state);
414 }
415 
416 /**
417  *	napi_schedule_prep - check if NAPI can be scheduled
418  *	@n: NAPI context
419  *
420  * Test if NAPI routine is already running, and if not mark
421  * it as running.  This is used as a condition variable to
422  * insure only one NAPI poll instance runs.  We also make
423  * sure there is no pending NAPI disable.
424  */
425 static inline bool napi_schedule_prep(struct napi_struct *n)
426 {
427 	return !napi_disable_pending(n) &&
428 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
429 }
430 
431 /**
432  *	napi_schedule - schedule NAPI poll
433  *	@n: NAPI context
434  *
435  * Schedule NAPI poll routine to be called if it is not already
436  * running.
437  */
438 static inline void napi_schedule(struct napi_struct *n)
439 {
440 	if (napi_schedule_prep(n))
441 		__napi_schedule(n);
442 }
443 
444 /**
445  *	napi_schedule_irqoff - schedule NAPI poll
446  *	@n: NAPI context
447  *
448  * Variant of napi_schedule(), assuming hard irqs are masked.
449  */
450 static inline void napi_schedule_irqoff(struct napi_struct *n)
451 {
452 	if (napi_schedule_prep(n))
453 		__napi_schedule_irqoff(n);
454 }
455 
456 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
457 static inline bool napi_reschedule(struct napi_struct *napi)
458 {
459 	if (napi_schedule_prep(napi)) {
460 		__napi_schedule(napi);
461 		return true;
462 	}
463 	return false;
464 }
465 
466 bool __napi_complete(struct napi_struct *n);
467 bool napi_complete_done(struct napi_struct *n, int work_done);
468 /**
469  *	napi_complete - NAPI processing complete
470  *	@n: NAPI context
471  *
472  * Mark NAPI processing as complete.
473  * Consider using napi_complete_done() instead.
474  * Return false if device should avoid rearming interrupts.
475  */
476 static inline bool napi_complete(struct napi_struct *n)
477 {
478 	return napi_complete_done(n, 0);
479 }
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: NAPI context
484  *
485  * Warning: caller must observe RCU grace period
486  * before freeing memory containing @napi, if
487  * this function returns true.
488  * Note: core networking stack automatically calls it
489  * from netif_napi_del().
490  * Drivers might want to call this helper to combine all
491  * the needed RCU grace periods into a single one.
492  */
493 bool napi_hash_del(struct napi_struct *napi);
494 
495 /**
496  *	napi_disable - prevent NAPI from scheduling
497  *	@n: NAPI context
498  *
499  * Stop NAPI from being scheduled on this context.
500  * Waits till any outstanding processing completes.
501  */
502 void napi_disable(struct napi_struct *n);
503 
504 /**
505  *	napi_enable - enable NAPI scheduling
506  *	@n: NAPI context
507  *
508  * Resume NAPI from being scheduled on this context.
509  * Must be paired with napi_disable.
510  */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 	smp_mb__before_atomic();
515 	clear_bit(NAPI_STATE_SCHED, &n->state);
516 	clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518 
519 /**
520  *	napi_synchronize - wait until NAPI is not running
521  *	@n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 	if (IS_ENABLED(CONFIG_SMP))
530 		while (test_bit(NAPI_STATE_SCHED, &n->state))
531 			msleep(1);
532 	else
533 		barrier();
534 }
535 
536 enum netdev_queue_state_t {
537 	__QUEUE_STATE_DRV_XOFF,
538 	__QUEUE_STATE_STACK_XOFF,
539 	__QUEUE_STATE_FROZEN,
540 };
541 
542 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
545 
546 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 					QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 					QUEUE_STATE_FROZEN)
551 
552 /*
553  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
554  * netif_tx_* functions below are used to manipulate this flag.  The
555  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556  * queue independently.  The netif_xmit_*stopped functions below are called
557  * to check if the queue has been stopped by the driver or stack (either
558  * of the XOFF bits are set in the state).  Drivers should not need to call
559  * netif_xmit*stopped functions, they should only be using netif_tx_*.
560  */
561 
562 struct netdev_queue {
563 /*
564  * read-mostly part
565  */
566 	struct net_device	*dev;
567 	struct Qdisc __rcu	*qdisc;
568 	struct Qdisc		*qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 	struct kobject		kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 	int			numa_node;
574 #endif
575 	unsigned long		tx_maxrate;
576 	/*
577 	 * Number of TX timeouts for this queue
578 	 * (/sys/class/net/DEV/Q/trans_timeout)
579 	 */
580 	unsigned long		trans_timeout;
581 /*
582  * write-mostly part
583  */
584 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
585 	int			xmit_lock_owner;
586 	/*
587 	 * Time (in jiffies) of last Tx
588 	 */
589 	unsigned long		trans_start;
590 
591 	unsigned long		state;
592 
593 #ifdef CONFIG_BQL
594 	struct dql		dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 } ____cacheline_aligned_in_smp;
701 
702 /*
703  * RX queue sysfs structures and functions.
704  */
705 struct rx_queue_attribute {
706 	struct attribute attr;
707 	ssize_t (*show)(struct netdev_rx_queue *queue,
708 	    struct rx_queue_attribute *attr, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
736 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 /* These structures hold the attributes of qdisc and classifiers
785  * that are being passed to the netdevice through the setup_tc op.
786  */
787 enum {
788 	TC_SETUP_MQPRIO,
789 	TC_SETUP_CLSU32,
790 	TC_SETUP_CLSFLOWER,
791 	TC_SETUP_MATCHALL,
792 	TC_SETUP_CLSBPF,
793 };
794 
795 struct tc_cls_u32_offload;
796 
797 struct tc_to_netdev {
798 	unsigned int type;
799 	union {
800 		u8 tc;
801 		struct tc_cls_u32_offload *cls_u32;
802 		struct tc_cls_flower_offload *cls_flower;
803 		struct tc_cls_matchall_offload *cls_mall;
804 		struct tc_cls_bpf_offload *cls_bpf;
805 	};
806 	bool egress_dev;
807 };
808 
809 /* These structures hold the attributes of xdp state that are being passed
810  * to the netdevice through the xdp op.
811  */
812 enum xdp_netdev_command {
813 	/* Set or clear a bpf program used in the earliest stages of packet
814 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
815 	 * is responsible for calling bpf_prog_put on any old progs that are
816 	 * stored. In case of error, the callee need not release the new prog
817 	 * reference, but on success it takes ownership and must bpf_prog_put
818 	 * when it is no longer used.
819 	 */
820 	XDP_SETUP_PROG,
821 	/* Check if a bpf program is set on the device.  The callee should
822 	 * return true if a program is currently attached and running.
823 	 */
824 	XDP_QUERY_PROG,
825 };
826 
827 struct netdev_xdp {
828 	enum xdp_netdev_command command;
829 	union {
830 		/* XDP_SETUP_PROG */
831 		struct bpf_prog *prog;
832 		/* XDP_QUERY_PROG */
833 		bool prog_attached;
834 	};
835 };
836 
837 /*
838  * This structure defines the management hooks for network devices.
839  * The following hooks can be defined; unless noted otherwise, they are
840  * optional and can be filled with a null pointer.
841  *
842  * int (*ndo_init)(struct net_device *dev);
843  *     This function is called once when a network device is registered.
844  *     The network device can use this for any late stage initialization
845  *     or semantic validation. It can fail with an error code which will
846  *     be propagated back to register_netdev.
847  *
848  * void (*ndo_uninit)(struct net_device *dev);
849  *     This function is called when device is unregistered or when registration
850  *     fails. It is not called if init fails.
851  *
852  * int (*ndo_open)(struct net_device *dev);
853  *     This function is called when a network device transitions to the up
854  *     state.
855  *
856  * int (*ndo_stop)(struct net_device *dev);
857  *     This function is called when a network device transitions to the down
858  *     state.
859  *
860  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
861  *                               struct net_device *dev);
862  *	Called when a packet needs to be transmitted.
863  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
864  *	the queue before that can happen; it's for obsolete devices and weird
865  *	corner cases, but the stack really does a non-trivial amount
866  *	of useless work if you return NETDEV_TX_BUSY.
867  *	Required; cannot be NULL.
868  *
869  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
870  *		netdev_features_t features);
871  *	Adjusts the requested feature flags according to device-specific
872  *	constraints, and returns the resulting flags. Must not modify
873  *	the device state.
874  *
875  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
876  *                         void *accel_priv, select_queue_fallback_t fallback);
877  *	Called to decide which queue to use when device supports multiple
878  *	transmit queues.
879  *
880  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
881  *	This function is called to allow device receiver to make
882  *	changes to configuration when multicast or promiscuous is enabled.
883  *
884  * void (*ndo_set_rx_mode)(struct net_device *dev);
885  *	This function is called device changes address list filtering.
886  *	If driver handles unicast address filtering, it should set
887  *	IFF_UNICAST_FLT in its priv_flags.
888  *
889  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
890  *	This function  is called when the Media Access Control address
891  *	needs to be changed. If this interface is not defined, the
892  *	MAC address can not be changed.
893  *
894  * int (*ndo_validate_addr)(struct net_device *dev);
895  *	Test if Media Access Control address is valid for the device.
896  *
897  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
898  *	Called when a user requests an ioctl which can't be handled by
899  *	the generic interface code. If not defined ioctls return
900  *	not supported error code.
901  *
902  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
903  *	Used to set network devices bus interface parameters. This interface
904  *	is retained for legacy reasons; new devices should use the bus
905  *	interface (PCI) for low level management.
906  *
907  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
908  *	Called when a user wants to change the Maximum Transfer Unit
909  *	of a device. If not defined, any request to change MTU will
910  *	will return an error.
911  *
912  * void (*ndo_tx_timeout)(struct net_device *dev);
913  *	Callback used when the transmitter has not made any progress
914  *	for dev->watchdog ticks.
915  *
916  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
917  *                      struct rtnl_link_stats64 *storage);
918  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
919  *	Called when a user wants to get the network device usage
920  *	statistics. Drivers must do one of the following:
921  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
922  *	   rtnl_link_stats64 structure passed by the caller.
923  *	2. Define @ndo_get_stats to update a net_device_stats structure
924  *	   (which should normally be dev->stats) and return a pointer to
925  *	   it. The structure may be changed asynchronously only if each
926  *	   field is written atomically.
927  *	3. Update dev->stats asynchronously and atomically, and define
928  *	   neither operation.
929  *
930  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
931  *	Return true if this device supports offload stats of this attr_id.
932  *
933  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
934  *	void *attr_data)
935  *	Get statistics for offload operations by attr_id. Write it into the
936  *	attr_data pointer.
937  *
938  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
939  *	If device supports VLAN filtering this function is called when a
940  *	VLAN id is registered.
941  *
942  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
943  *	If device supports VLAN filtering this function is called when a
944  *	VLAN id is unregistered.
945  *
946  * void (*ndo_poll_controller)(struct net_device *dev);
947  *
948  *	SR-IOV management functions.
949  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
950  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
951  *			  u8 qos, __be16 proto);
952  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
953  *			  int max_tx_rate);
954  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
955  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
956  * int (*ndo_get_vf_config)(struct net_device *dev,
957  *			    int vf, struct ifla_vf_info *ivf);
958  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
959  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
960  *			  struct nlattr *port[]);
961  *
962  *      Enable or disable the VF ability to query its RSS Redirection Table and
963  *      Hash Key. This is needed since on some devices VF share this information
964  *      with PF and querying it may introduce a theoretical security risk.
965  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
966  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
967  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
968  * 	Called to setup 'tc' number of traffic classes in the net device. This
969  * 	is always called from the stack with the rtnl lock held and netif tx
970  * 	queues stopped. This allows the netdevice to perform queue management
971  * 	safely.
972  *
973  *	Fiber Channel over Ethernet (FCoE) offload functions.
974  * int (*ndo_fcoe_enable)(struct net_device *dev);
975  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
976  *	so the underlying device can perform whatever needed configuration or
977  *	initialization to support acceleration of FCoE traffic.
978  *
979  * int (*ndo_fcoe_disable)(struct net_device *dev);
980  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
981  *	so the underlying device can perform whatever needed clean-ups to
982  *	stop supporting acceleration of FCoE traffic.
983  *
984  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
985  *			     struct scatterlist *sgl, unsigned int sgc);
986  *	Called when the FCoE Initiator wants to initialize an I/O that
987  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
988  *	perform necessary setup and returns 1 to indicate the device is set up
989  *	successfully to perform DDP on this I/O, otherwise this returns 0.
990  *
991  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
992  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
993  *	indicated by the FC exchange id 'xid', so the underlying device can
994  *	clean up and reuse resources for later DDP requests.
995  *
996  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
997  *			      struct scatterlist *sgl, unsigned int sgc);
998  *	Called when the FCoE Target wants to initialize an I/O that
999  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1000  *	perform necessary setup and returns 1 to indicate the device is set up
1001  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1002  *
1003  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1004  *			       struct netdev_fcoe_hbainfo *hbainfo);
1005  *	Called when the FCoE Protocol stack wants information on the underlying
1006  *	device. This information is utilized by the FCoE protocol stack to
1007  *	register attributes with Fiber Channel management service as per the
1008  *	FC-GS Fabric Device Management Information(FDMI) specification.
1009  *
1010  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1011  *	Called when the underlying device wants to override default World Wide
1012  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1013  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1014  *	protocol stack to use.
1015  *
1016  *	RFS acceleration.
1017  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1018  *			    u16 rxq_index, u32 flow_id);
1019  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1020  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1021  *	Return the filter ID on success, or a negative error code.
1022  *
1023  *	Slave management functions (for bridge, bonding, etc).
1024  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1025  *	Called to make another netdev an underling.
1026  *
1027  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1028  *	Called to release previously enslaved netdev.
1029  *
1030  *      Feature/offload setting functions.
1031  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1032  *	Called to update device configuration to new features. Passed
1033  *	feature set might be less than what was returned by ndo_fix_features()).
1034  *	Must return >0 or -errno if it changed dev->features itself.
1035  *
1036  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1037  *		      struct net_device *dev,
1038  *		      const unsigned char *addr, u16 vid, u16 flags)
1039  *	Adds an FDB entry to dev for addr.
1040  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1041  *		      struct net_device *dev,
1042  *		      const unsigned char *addr, u16 vid)
1043  *	Deletes the FDB entry from dev coresponding to addr.
1044  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1045  *		       struct net_device *dev, struct net_device *filter_dev,
1046  *		       int *idx)
1047  *	Used to add FDB entries to dump requests. Implementers should add
1048  *	entries to skb and update idx with the number of entries.
1049  *
1050  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1051  *			     u16 flags)
1052  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1053  *			     struct net_device *dev, u32 filter_mask,
1054  *			     int nlflags)
1055  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1056  *			     u16 flags);
1057  *
1058  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1059  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1060  *	which do not represent real hardware may define this to allow their
1061  *	userspace components to manage their virtual carrier state. Devices
1062  *	that determine carrier state from physical hardware properties (eg
1063  *	network cables) or protocol-dependent mechanisms (eg
1064  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1065  *
1066  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1067  *			       struct netdev_phys_item_id *ppid);
1068  *	Called to get ID of physical port of this device. If driver does
1069  *	not implement this, it is assumed that the hw is not able to have
1070  *	multiple net devices on single physical port.
1071  *
1072  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1073  *			      struct udp_tunnel_info *ti);
1074  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1075  *	address family that a UDP tunnel is listnening to. It is called only
1076  *	when a new port starts listening. The operation is protected by the
1077  *	RTNL.
1078  *
1079  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1080  *			      struct udp_tunnel_info *ti);
1081  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1082  *	address family that the UDP tunnel is not listening to anymore. The
1083  *	operation is protected by the RTNL.
1084  *
1085  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1086  *				 struct net_device *dev)
1087  *	Called by upper layer devices to accelerate switching or other
1088  *	station functionality into hardware. 'pdev is the lowerdev
1089  *	to use for the offload and 'dev' is the net device that will
1090  *	back the offload. Returns a pointer to the private structure
1091  *	the upper layer will maintain.
1092  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1093  *	Called by upper layer device to delete the station created
1094  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1095  *	the station and priv is the structure returned by the add
1096  *	operation.
1097  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1098  *				      struct net_device *dev,
1099  *				      void *priv);
1100  *	Callback to use for xmit over the accelerated station. This
1101  *	is used in place of ndo_start_xmit on accelerated net
1102  *	devices.
1103  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1104  *					   struct net_device *dev
1105  *					   netdev_features_t features);
1106  *	Called by core transmit path to determine if device is capable of
1107  *	performing offload operations on a given packet. This is to give
1108  *	the device an opportunity to implement any restrictions that cannot
1109  *	be otherwise expressed by feature flags. The check is called with
1110  *	the set of features that the stack has calculated and it returns
1111  *	those the driver believes to be appropriate.
1112  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1113  *			     int queue_index, u32 maxrate);
1114  *	Called when a user wants to set a max-rate limitation of specific
1115  *	TX queue.
1116  * int (*ndo_get_iflink)(const struct net_device *dev);
1117  *	Called to get the iflink value of this device.
1118  * void (*ndo_change_proto_down)(struct net_device *dev,
1119  *				 bool proto_down);
1120  *	This function is used to pass protocol port error state information
1121  *	to the switch driver. The switch driver can react to the proto_down
1122  *      by doing a phys down on the associated switch port.
1123  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1124  *	This function is used to get egress tunnel information for given skb.
1125  *	This is useful for retrieving outer tunnel header parameters while
1126  *	sampling packet.
1127  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1128  *	This function is used to specify the headroom that the skb must
1129  *	consider when allocation skb during packet reception. Setting
1130  *	appropriate rx headroom value allows avoiding skb head copy on
1131  *	forward. Setting a negative value resets the rx headroom to the
1132  *	default value.
1133  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1134  *	This function is used to set or query state related to XDP on the
1135  *	netdevice. See definition of enum xdp_netdev_command for details.
1136  *
1137  */
1138 struct net_device_ops {
1139 	int			(*ndo_init)(struct net_device *dev);
1140 	void			(*ndo_uninit)(struct net_device *dev);
1141 	int			(*ndo_open)(struct net_device *dev);
1142 	int			(*ndo_stop)(struct net_device *dev);
1143 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1144 						  struct net_device *dev);
1145 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1146 						      struct net_device *dev,
1147 						      netdev_features_t features);
1148 	u16			(*ndo_select_queue)(struct net_device *dev,
1149 						    struct sk_buff *skb,
1150 						    void *accel_priv,
1151 						    select_queue_fallback_t fallback);
1152 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1153 						       int flags);
1154 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1155 	int			(*ndo_set_mac_address)(struct net_device *dev,
1156 						       void *addr);
1157 	int			(*ndo_validate_addr)(struct net_device *dev);
1158 	int			(*ndo_do_ioctl)(struct net_device *dev,
1159 					        struct ifreq *ifr, int cmd);
1160 	int			(*ndo_set_config)(struct net_device *dev,
1161 					          struct ifmap *map);
1162 	int			(*ndo_change_mtu)(struct net_device *dev,
1163 						  int new_mtu);
1164 	int			(*ndo_neigh_setup)(struct net_device *dev,
1165 						   struct neigh_parms *);
1166 	void			(*ndo_tx_timeout) (struct net_device *dev);
1167 
1168 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1169 						     struct rtnl_link_stats64 *storage);
1170 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1171 	int			(*ndo_get_offload_stats)(int attr_id,
1172 							 const struct net_device *dev,
1173 							 void *attr_data);
1174 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1175 
1176 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1177 						       __be16 proto, u16 vid);
1178 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1179 						        __be16 proto, u16 vid);
1180 #ifdef CONFIG_NET_POLL_CONTROLLER
1181 	void                    (*ndo_poll_controller)(struct net_device *dev);
1182 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1183 						     struct netpoll_info *info);
1184 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1185 #endif
1186 #ifdef CONFIG_NET_RX_BUSY_POLL
1187 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1188 #endif
1189 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1190 						  int queue, u8 *mac);
1191 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1192 						   int queue, u16 vlan,
1193 						   u8 qos, __be16 proto);
1194 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1195 						   int vf, int min_tx_rate,
1196 						   int max_tx_rate);
1197 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1198 						       int vf, bool setting);
1199 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1200 						    int vf, bool setting);
1201 	int			(*ndo_get_vf_config)(struct net_device *dev,
1202 						     int vf,
1203 						     struct ifla_vf_info *ivf);
1204 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1205 							 int vf, int link_state);
1206 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1207 						    int vf,
1208 						    struct ifla_vf_stats
1209 						    *vf_stats);
1210 	int			(*ndo_set_vf_port)(struct net_device *dev,
1211 						   int vf,
1212 						   struct nlattr *port[]);
1213 	int			(*ndo_get_vf_port)(struct net_device *dev,
1214 						   int vf, struct sk_buff *skb);
1215 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1216 						   int vf, u64 guid,
1217 						   int guid_type);
1218 	int			(*ndo_set_vf_rss_query_en)(
1219 						   struct net_device *dev,
1220 						   int vf, bool setting);
1221 	int			(*ndo_setup_tc)(struct net_device *dev,
1222 						u32 handle,
1223 						__be16 protocol,
1224 						struct tc_to_netdev *tc);
1225 #if IS_ENABLED(CONFIG_FCOE)
1226 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1227 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1228 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1229 						      u16 xid,
1230 						      struct scatterlist *sgl,
1231 						      unsigned int sgc);
1232 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1233 						     u16 xid);
1234 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1235 						       u16 xid,
1236 						       struct scatterlist *sgl,
1237 						       unsigned int sgc);
1238 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1239 							struct netdev_fcoe_hbainfo *hbainfo);
1240 #endif
1241 
1242 #if IS_ENABLED(CONFIG_LIBFCOE)
1243 #define NETDEV_FCOE_WWNN 0
1244 #define NETDEV_FCOE_WWPN 1
1245 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1246 						    u64 *wwn, int type);
1247 #endif
1248 
1249 #ifdef CONFIG_RFS_ACCEL
1250 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1251 						     const struct sk_buff *skb,
1252 						     u16 rxq_index,
1253 						     u32 flow_id);
1254 #endif
1255 	int			(*ndo_add_slave)(struct net_device *dev,
1256 						 struct net_device *slave_dev);
1257 	int			(*ndo_del_slave)(struct net_device *dev,
1258 						 struct net_device *slave_dev);
1259 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1260 						    netdev_features_t features);
1261 	int			(*ndo_set_features)(struct net_device *dev,
1262 						    netdev_features_t features);
1263 	int			(*ndo_neigh_construct)(struct net_device *dev,
1264 						       struct neighbour *n);
1265 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1266 						     struct neighbour *n);
1267 
1268 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1269 					       struct nlattr *tb[],
1270 					       struct net_device *dev,
1271 					       const unsigned char *addr,
1272 					       u16 vid,
1273 					       u16 flags);
1274 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1275 					       struct nlattr *tb[],
1276 					       struct net_device *dev,
1277 					       const unsigned char *addr,
1278 					       u16 vid);
1279 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1280 						struct netlink_callback *cb,
1281 						struct net_device *dev,
1282 						struct net_device *filter_dev,
1283 						int *idx);
1284 
1285 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1286 						      struct nlmsghdr *nlh,
1287 						      u16 flags);
1288 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1289 						      u32 pid, u32 seq,
1290 						      struct net_device *dev,
1291 						      u32 filter_mask,
1292 						      int nlflags);
1293 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1294 						      struct nlmsghdr *nlh,
1295 						      u16 flags);
1296 	int			(*ndo_change_carrier)(struct net_device *dev,
1297 						      bool new_carrier);
1298 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1299 							struct netdev_phys_item_id *ppid);
1300 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1301 							  char *name, size_t len);
1302 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1303 						      struct udp_tunnel_info *ti);
1304 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1305 						      struct udp_tunnel_info *ti);
1306 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1307 							struct net_device *dev);
1308 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1309 							void *priv);
1310 
1311 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1312 							struct net_device *dev,
1313 							void *priv);
1314 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1315 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1316 						      int queue_index,
1317 						      u32 maxrate);
1318 	int			(*ndo_get_iflink)(const struct net_device *dev);
1319 	int			(*ndo_change_proto_down)(struct net_device *dev,
1320 							 bool proto_down);
1321 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1322 						       struct sk_buff *skb);
1323 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1324 						       int needed_headroom);
1325 	int			(*ndo_xdp)(struct net_device *dev,
1326 					   struct netdev_xdp *xdp);
1327 };
1328 
1329 /**
1330  * enum net_device_priv_flags - &struct net_device priv_flags
1331  *
1332  * These are the &struct net_device, they are only set internally
1333  * by drivers and used in the kernel. These flags are invisible to
1334  * userspace; this means that the order of these flags can change
1335  * during any kernel release.
1336  *
1337  * You should have a pretty good reason to be extending these flags.
1338  *
1339  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1340  * @IFF_EBRIDGE: Ethernet bridging device
1341  * @IFF_BONDING: bonding master or slave
1342  * @IFF_ISATAP: ISATAP interface (RFC4214)
1343  * @IFF_WAN_HDLC: WAN HDLC device
1344  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1345  *	release skb->dst
1346  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1347  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1348  * @IFF_MACVLAN_PORT: device used as macvlan port
1349  * @IFF_BRIDGE_PORT: device used as bridge port
1350  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1351  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1352  * @IFF_UNICAST_FLT: Supports unicast filtering
1353  * @IFF_TEAM_PORT: device used as team port
1354  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1355  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1356  *	change when it's running
1357  * @IFF_MACVLAN: Macvlan device
1358  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1359  *	underlying stacked devices
1360  * @IFF_IPVLAN_MASTER: IPvlan master device
1361  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1362  * @IFF_L3MDEV_MASTER: device is an L3 master device
1363  * @IFF_NO_QUEUE: device can run without qdisc attached
1364  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1365  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1366  * @IFF_TEAM: device is a team device
1367  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1368  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1369  *	entity (i.e. the master device for bridged veth)
1370  * @IFF_MACSEC: device is a MACsec device
1371  */
1372 enum netdev_priv_flags {
1373 	IFF_802_1Q_VLAN			= 1<<0,
1374 	IFF_EBRIDGE			= 1<<1,
1375 	IFF_BONDING			= 1<<2,
1376 	IFF_ISATAP			= 1<<3,
1377 	IFF_WAN_HDLC			= 1<<4,
1378 	IFF_XMIT_DST_RELEASE		= 1<<5,
1379 	IFF_DONT_BRIDGE			= 1<<6,
1380 	IFF_DISABLE_NETPOLL		= 1<<7,
1381 	IFF_MACVLAN_PORT		= 1<<8,
1382 	IFF_BRIDGE_PORT			= 1<<9,
1383 	IFF_OVS_DATAPATH		= 1<<10,
1384 	IFF_TX_SKB_SHARING		= 1<<11,
1385 	IFF_UNICAST_FLT			= 1<<12,
1386 	IFF_TEAM_PORT			= 1<<13,
1387 	IFF_SUPP_NOFCS			= 1<<14,
1388 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1389 	IFF_MACVLAN			= 1<<16,
1390 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1391 	IFF_IPVLAN_MASTER		= 1<<18,
1392 	IFF_IPVLAN_SLAVE		= 1<<19,
1393 	IFF_L3MDEV_MASTER		= 1<<20,
1394 	IFF_NO_QUEUE			= 1<<21,
1395 	IFF_OPENVSWITCH			= 1<<22,
1396 	IFF_L3MDEV_SLAVE		= 1<<23,
1397 	IFF_TEAM			= 1<<24,
1398 	IFF_RXFH_CONFIGURED		= 1<<25,
1399 	IFF_PHONY_HEADROOM		= 1<<26,
1400 	IFF_MACSEC			= 1<<27,
1401 };
1402 
1403 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1404 #define IFF_EBRIDGE			IFF_EBRIDGE
1405 #define IFF_BONDING			IFF_BONDING
1406 #define IFF_ISATAP			IFF_ISATAP
1407 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1408 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1409 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1410 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1411 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1412 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1413 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1414 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1415 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1416 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1417 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1418 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1419 #define IFF_MACVLAN			IFF_MACVLAN
1420 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1421 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1422 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1423 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1424 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1425 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1426 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1427 #define IFF_TEAM			IFF_TEAM
1428 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1429 #define IFF_MACSEC			IFF_MACSEC
1430 
1431 /**
1432  *	struct net_device - The DEVICE structure.
1433  *		Actually, this whole structure is a big mistake.  It mixes I/O
1434  *		data with strictly "high-level" data, and it has to know about
1435  *		almost every data structure used in the INET module.
1436  *
1437  *	@name:	This is the first field of the "visible" part of this structure
1438  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1439  *	 	of the interface.
1440  *
1441  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1442  *	@ifalias:	SNMP alias
1443  *	@mem_end:	Shared memory end
1444  *	@mem_start:	Shared memory start
1445  *	@base_addr:	Device I/O address
1446  *	@irq:		Device IRQ number
1447  *
1448  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1449  *
1450  *	@state:		Generic network queuing layer state, see netdev_state_t
1451  *	@dev_list:	The global list of network devices
1452  *	@napi_list:	List entry used for polling NAPI devices
1453  *	@unreg_list:	List entry  when we are unregistering the
1454  *			device; see the function unregister_netdev
1455  *	@close_list:	List entry used when we are closing the device
1456  *	@ptype_all:     Device-specific packet handlers for all protocols
1457  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1458  *
1459  *	@adj_list:	Directly linked devices, like slaves for bonding
1460  *	@features:	Currently active device features
1461  *	@hw_features:	User-changeable features
1462  *
1463  *	@wanted_features:	User-requested features
1464  *	@vlan_features:		Mask of features inheritable by VLAN devices
1465  *
1466  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1467  *				This field indicates what encapsulation
1468  *				offloads the hardware is capable of doing,
1469  *				and drivers will need to set them appropriately.
1470  *
1471  *	@mpls_features:	Mask of features inheritable by MPLS
1472  *
1473  *	@ifindex:	interface index
1474  *	@group:		The group the device belongs to
1475  *
1476  *	@stats:		Statistics struct, which was left as a legacy, use
1477  *			rtnl_link_stats64 instead
1478  *
1479  *	@rx_dropped:	Dropped packets by core network,
1480  *			do not use this in drivers
1481  *	@tx_dropped:	Dropped packets by core network,
1482  *			do not use this in drivers
1483  *	@rx_nohandler:	nohandler dropped packets by core network on
1484  *			inactive devices, do not use this in drivers
1485  *
1486  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1487  *				instead of ioctl,
1488  *				see <net/iw_handler.h> for details.
1489  *	@wireless_data:	Instance data managed by the core of wireless extensions
1490  *
1491  *	@netdev_ops:	Includes several pointers to callbacks,
1492  *			if one wants to override the ndo_*() functions
1493  *	@ethtool_ops:	Management operations
1494  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1495  *			discovery handling. Necessary for e.g. 6LoWPAN.
1496  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1497  *			of Layer 2 headers.
1498  *
1499  *	@flags:		Interface flags (a la BSD)
1500  *	@priv_flags:	Like 'flags' but invisible to userspace,
1501  *			see if.h for the definitions
1502  *	@gflags:	Global flags ( kept as legacy )
1503  *	@padded:	How much padding added by alloc_netdev()
1504  *	@operstate:	RFC2863 operstate
1505  *	@link_mode:	Mapping policy to operstate
1506  *	@if_port:	Selectable AUI, TP, ...
1507  *	@dma:		DMA channel
1508  *	@mtu:		Interface MTU value
1509  *	@min_mtu:	Interface Minimum MTU value
1510  *	@max_mtu:	Interface Maximum MTU value
1511  *	@type:		Interface hardware type
1512  *	@hard_header_len: Maximum hardware header length.
1513  *
1514  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1515  *			  cases can this be guaranteed
1516  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1517  *			  cases can this be guaranteed. Some cases also use
1518  *			  LL_MAX_HEADER instead to allocate the skb
1519  *
1520  *	interface address info:
1521  *
1522  * 	@perm_addr:		Permanent hw address
1523  * 	@addr_assign_type:	Hw address assignment type
1524  * 	@addr_len:		Hardware address length
1525  *	@neigh_priv_len:	Used in neigh_alloc()
1526  * 	@dev_id:		Used to differentiate devices that share
1527  * 				the same link layer address
1528  * 	@dev_port:		Used to differentiate devices that share
1529  * 				the same function
1530  *	@addr_list_lock:	XXX: need comments on this one
1531  *	@uc_promisc:		Counter that indicates promiscuous mode
1532  *				has been enabled due to the need to listen to
1533  *				additional unicast addresses in a device that
1534  *				does not implement ndo_set_rx_mode()
1535  *	@uc:			unicast mac addresses
1536  *	@mc:			multicast mac addresses
1537  *	@dev_addrs:		list of device hw addresses
1538  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1539  *	@promiscuity:		Number of times the NIC is told to work in
1540  *				promiscuous mode; if it becomes 0 the NIC will
1541  *				exit promiscuous mode
1542  *	@allmulti:		Counter, enables or disables allmulticast mode
1543  *
1544  *	@vlan_info:	VLAN info
1545  *	@dsa_ptr:	dsa specific data
1546  *	@tipc_ptr:	TIPC specific data
1547  *	@atalk_ptr:	AppleTalk link
1548  *	@ip_ptr:	IPv4 specific data
1549  *	@dn_ptr:	DECnet specific data
1550  *	@ip6_ptr:	IPv6 specific data
1551  *	@ax25_ptr:	AX.25 specific data
1552  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1553  *
1554  *	@last_rx:	Time of last Rx
1555  *	@dev_addr:	Hw address (before bcast,
1556  *			because most packets are unicast)
1557  *
1558  *	@_rx:			Array of RX queues
1559  *	@num_rx_queues:		Number of RX queues
1560  *				allocated at register_netdev() time
1561  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1562  *
1563  *	@rx_handler:		handler for received packets
1564  *	@rx_handler_data: 	XXX: need comments on this one
1565  *	@ingress_queue:		XXX: need comments on this one
1566  *	@broadcast:		hw bcast address
1567  *
1568  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1569  *			indexed by RX queue number. Assigned by driver.
1570  *			This must only be set if the ndo_rx_flow_steer
1571  *			operation is defined
1572  *	@index_hlist:		Device index hash chain
1573  *
1574  *	@_tx:			Array of TX queues
1575  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1576  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1577  *	@qdisc:			Root qdisc from userspace point of view
1578  *	@tx_queue_len:		Max frames per queue allowed
1579  *	@tx_global_lock: 	XXX: need comments on this one
1580  *
1581  *	@xps_maps:	XXX: need comments on this one
1582  *
1583  *	@watchdog_timeo:	Represents the timeout that is used by
1584  *				the watchdog (see dev_watchdog())
1585  *	@watchdog_timer:	List of timers
1586  *
1587  *	@pcpu_refcnt:		Number of references to this device
1588  *	@todo_list:		Delayed register/unregister
1589  *	@link_watch_list:	XXX: need comments on this one
1590  *
1591  *	@reg_state:		Register/unregister state machine
1592  *	@dismantle:		Device is going to be freed
1593  *	@rtnl_link_state:	This enum represents the phases of creating
1594  *				a new link
1595  *
1596  *	@destructor:		Called from unregister,
1597  *				can be used to call free_netdev
1598  *	@npinfo:		XXX: need comments on this one
1599  * 	@nd_net:		Network namespace this network device is inside
1600  *
1601  * 	@ml_priv:	Mid-layer private
1602  * 	@lstats:	Loopback statistics
1603  * 	@tstats:	Tunnel statistics
1604  * 	@dstats:	Dummy statistics
1605  * 	@vstats:	Virtual ethernet statistics
1606  *
1607  *	@garp_port:	GARP
1608  *	@mrp_port:	MRP
1609  *
1610  *	@dev:		Class/net/name entry
1611  *	@sysfs_groups:	Space for optional device, statistics and wireless
1612  *			sysfs groups
1613  *
1614  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1615  *	@rtnl_link_ops:	Rtnl_link_ops
1616  *
1617  *	@gso_max_size:	Maximum size of generic segmentation offload
1618  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1619  *			NIC for GSO
1620  *
1621  *	@dcbnl_ops:	Data Center Bridging netlink ops
1622  *	@num_tc:	Number of traffic classes in the net device
1623  *	@tc_to_txq:	XXX: need comments on this one
1624  *	@prio_tc_map:	XXX: need comments on this one
1625  *
1626  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1627  *
1628  *	@priomap:	XXX: need comments on this one
1629  *	@phydev:	Physical device may attach itself
1630  *			for hardware timestamping
1631  *
1632  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1633  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1634  *
1635  *	@proto_down:	protocol port state information can be sent to the
1636  *			switch driver and used to set the phys state of the
1637  *			switch port.
1638  *
1639  *	FIXME: cleanup struct net_device such that network protocol info
1640  *	moves out.
1641  */
1642 
1643 struct net_device {
1644 	char			name[IFNAMSIZ];
1645 	struct hlist_node	name_hlist;
1646 	char 			*ifalias;
1647 	/*
1648 	 *	I/O specific fields
1649 	 *	FIXME: Merge these and struct ifmap into one
1650 	 */
1651 	unsigned long		mem_end;
1652 	unsigned long		mem_start;
1653 	unsigned long		base_addr;
1654 	int			irq;
1655 
1656 	atomic_t		carrier_changes;
1657 
1658 	/*
1659 	 *	Some hardware also needs these fields (state,dev_list,
1660 	 *	napi_list,unreg_list,close_list) but they are not
1661 	 *	part of the usual set specified in Space.c.
1662 	 */
1663 
1664 	unsigned long		state;
1665 
1666 	struct list_head	dev_list;
1667 	struct list_head	napi_list;
1668 	struct list_head	unreg_list;
1669 	struct list_head	close_list;
1670 	struct list_head	ptype_all;
1671 	struct list_head	ptype_specific;
1672 
1673 	struct {
1674 		struct list_head upper;
1675 		struct list_head lower;
1676 	} adj_list;
1677 
1678 	netdev_features_t	features;
1679 	netdev_features_t	hw_features;
1680 	netdev_features_t	wanted_features;
1681 	netdev_features_t	vlan_features;
1682 	netdev_features_t	hw_enc_features;
1683 	netdev_features_t	mpls_features;
1684 	netdev_features_t	gso_partial_features;
1685 
1686 	int			ifindex;
1687 	int			group;
1688 
1689 	struct net_device_stats	stats;
1690 
1691 	atomic_long_t		rx_dropped;
1692 	atomic_long_t		tx_dropped;
1693 	atomic_long_t		rx_nohandler;
1694 
1695 #ifdef CONFIG_WIRELESS_EXT
1696 	const struct iw_handler_def *wireless_handlers;
1697 	struct iw_public_data	*wireless_data;
1698 #endif
1699 	const struct net_device_ops *netdev_ops;
1700 	const struct ethtool_ops *ethtool_ops;
1701 #ifdef CONFIG_NET_SWITCHDEV
1702 	const struct switchdev_ops *switchdev_ops;
1703 #endif
1704 #ifdef CONFIG_NET_L3_MASTER_DEV
1705 	const struct l3mdev_ops	*l3mdev_ops;
1706 #endif
1707 #if IS_ENABLED(CONFIG_IPV6)
1708 	const struct ndisc_ops *ndisc_ops;
1709 #endif
1710 
1711 	const struct header_ops *header_ops;
1712 
1713 	unsigned int		flags;
1714 	unsigned int		priv_flags;
1715 
1716 	unsigned short		gflags;
1717 	unsigned short		padded;
1718 
1719 	unsigned char		operstate;
1720 	unsigned char		link_mode;
1721 
1722 	unsigned char		if_port;
1723 	unsigned char		dma;
1724 
1725 	unsigned int		mtu;
1726 	unsigned int		min_mtu;
1727 	unsigned int		max_mtu;
1728 	unsigned short		type;
1729 	unsigned short		hard_header_len;
1730 
1731 	unsigned short		needed_headroom;
1732 	unsigned short		needed_tailroom;
1733 
1734 	/* Interface address info. */
1735 	unsigned char		perm_addr[MAX_ADDR_LEN];
1736 	unsigned char		addr_assign_type;
1737 	unsigned char		addr_len;
1738 	unsigned short		neigh_priv_len;
1739 	unsigned short          dev_id;
1740 	unsigned short          dev_port;
1741 	spinlock_t		addr_list_lock;
1742 	unsigned char		name_assign_type;
1743 	bool			uc_promisc;
1744 	struct netdev_hw_addr_list	uc;
1745 	struct netdev_hw_addr_list	mc;
1746 	struct netdev_hw_addr_list	dev_addrs;
1747 
1748 #ifdef CONFIG_SYSFS
1749 	struct kset		*queues_kset;
1750 #endif
1751 	unsigned int		promiscuity;
1752 	unsigned int		allmulti;
1753 
1754 
1755 	/* Protocol-specific pointers */
1756 
1757 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1758 	struct vlan_info __rcu	*vlan_info;
1759 #endif
1760 #if IS_ENABLED(CONFIG_NET_DSA)
1761 	struct dsa_switch_tree	*dsa_ptr;
1762 #endif
1763 #if IS_ENABLED(CONFIG_TIPC)
1764 	struct tipc_bearer __rcu *tipc_ptr;
1765 #endif
1766 	void 			*atalk_ptr;
1767 	struct in_device __rcu	*ip_ptr;
1768 	struct dn_dev __rcu     *dn_ptr;
1769 	struct inet6_dev __rcu	*ip6_ptr;
1770 	void			*ax25_ptr;
1771 	struct wireless_dev	*ieee80211_ptr;
1772 	struct wpan_dev		*ieee802154_ptr;
1773 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1774 	struct mpls_dev __rcu	*mpls_ptr;
1775 #endif
1776 
1777 /*
1778  * Cache lines mostly used on receive path (including eth_type_trans())
1779  */
1780 	unsigned long		last_rx;
1781 
1782 	/* Interface address info used in eth_type_trans() */
1783 	unsigned char		*dev_addr;
1784 
1785 #ifdef CONFIG_SYSFS
1786 	struct netdev_rx_queue	*_rx;
1787 
1788 	unsigned int		num_rx_queues;
1789 	unsigned int		real_num_rx_queues;
1790 #endif
1791 
1792 	unsigned long		gro_flush_timeout;
1793 	rx_handler_func_t __rcu	*rx_handler;
1794 	void __rcu		*rx_handler_data;
1795 
1796 #ifdef CONFIG_NET_CLS_ACT
1797 	struct tcf_proto __rcu  *ingress_cl_list;
1798 #endif
1799 	struct netdev_queue __rcu *ingress_queue;
1800 #ifdef CONFIG_NETFILTER_INGRESS
1801 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1802 #endif
1803 
1804 	unsigned char		broadcast[MAX_ADDR_LEN];
1805 #ifdef CONFIG_RFS_ACCEL
1806 	struct cpu_rmap		*rx_cpu_rmap;
1807 #endif
1808 	struct hlist_node	index_hlist;
1809 
1810 /*
1811  * Cache lines mostly used on transmit path
1812  */
1813 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1814 	unsigned int		num_tx_queues;
1815 	unsigned int		real_num_tx_queues;
1816 	struct Qdisc		*qdisc;
1817 #ifdef CONFIG_NET_SCHED
1818 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1819 #endif
1820 	unsigned long		tx_queue_len;
1821 	spinlock_t		tx_global_lock;
1822 	int			watchdog_timeo;
1823 
1824 #ifdef CONFIG_XPS
1825 	struct xps_dev_maps __rcu *xps_maps;
1826 #endif
1827 #ifdef CONFIG_NET_CLS_ACT
1828 	struct tcf_proto __rcu  *egress_cl_list;
1829 #endif
1830 
1831 	/* These may be needed for future network-power-down code. */
1832 	struct timer_list	watchdog_timer;
1833 
1834 	int __percpu		*pcpu_refcnt;
1835 	struct list_head	todo_list;
1836 
1837 	struct list_head	link_watch_list;
1838 
1839 	enum { NETREG_UNINITIALIZED=0,
1840 	       NETREG_REGISTERED,	/* completed register_netdevice */
1841 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1842 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1843 	       NETREG_RELEASED,		/* called free_netdev */
1844 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1845 	} reg_state:8;
1846 
1847 	bool dismantle;
1848 
1849 	enum {
1850 		RTNL_LINK_INITIALIZED,
1851 		RTNL_LINK_INITIALIZING,
1852 	} rtnl_link_state:16;
1853 
1854 	void (*destructor)(struct net_device *dev);
1855 
1856 #ifdef CONFIG_NETPOLL
1857 	struct netpoll_info __rcu	*npinfo;
1858 #endif
1859 
1860 	possible_net_t			nd_net;
1861 
1862 	/* mid-layer private */
1863 	union {
1864 		void					*ml_priv;
1865 		struct pcpu_lstats __percpu		*lstats;
1866 		struct pcpu_sw_netstats __percpu	*tstats;
1867 		struct pcpu_dstats __percpu		*dstats;
1868 		struct pcpu_vstats __percpu		*vstats;
1869 	};
1870 
1871 	struct garp_port __rcu	*garp_port;
1872 	struct mrp_port __rcu	*mrp_port;
1873 
1874 	struct device		dev;
1875 	const struct attribute_group *sysfs_groups[4];
1876 	const struct attribute_group *sysfs_rx_queue_group;
1877 
1878 	const struct rtnl_link_ops *rtnl_link_ops;
1879 
1880 	/* for setting kernel sock attribute on TCP connection setup */
1881 #define GSO_MAX_SIZE		65536
1882 	unsigned int		gso_max_size;
1883 #define GSO_MAX_SEGS		65535
1884 	u16			gso_max_segs;
1885 
1886 #ifdef CONFIG_DCB
1887 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1888 #endif
1889 	u8			num_tc;
1890 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1891 	u8			prio_tc_map[TC_BITMASK + 1];
1892 
1893 #if IS_ENABLED(CONFIG_FCOE)
1894 	unsigned int		fcoe_ddp_xid;
1895 #endif
1896 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1897 	struct netprio_map __rcu *priomap;
1898 #endif
1899 	struct phy_device	*phydev;
1900 	struct lock_class_key	*qdisc_tx_busylock;
1901 	struct lock_class_key	*qdisc_running_key;
1902 	bool			proto_down;
1903 };
1904 #define to_net_dev(d) container_of(d, struct net_device, dev)
1905 
1906 #define	NETDEV_ALIGN		32
1907 
1908 static inline
1909 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1910 {
1911 	return dev->prio_tc_map[prio & TC_BITMASK];
1912 }
1913 
1914 static inline
1915 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1916 {
1917 	if (tc >= dev->num_tc)
1918 		return -EINVAL;
1919 
1920 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1921 	return 0;
1922 }
1923 
1924 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1925 void netdev_reset_tc(struct net_device *dev);
1926 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1927 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1928 
1929 static inline
1930 int netdev_get_num_tc(struct net_device *dev)
1931 {
1932 	return dev->num_tc;
1933 }
1934 
1935 static inline
1936 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1937 					 unsigned int index)
1938 {
1939 	return &dev->_tx[index];
1940 }
1941 
1942 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1943 						    const struct sk_buff *skb)
1944 {
1945 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1946 }
1947 
1948 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1949 					    void (*f)(struct net_device *,
1950 						      struct netdev_queue *,
1951 						      void *),
1952 					    void *arg)
1953 {
1954 	unsigned int i;
1955 
1956 	for (i = 0; i < dev->num_tx_queues; i++)
1957 		f(dev, &dev->_tx[i], arg);
1958 }
1959 
1960 #define netdev_lockdep_set_classes(dev)				\
1961 {								\
1962 	static struct lock_class_key qdisc_tx_busylock_key;	\
1963 	static struct lock_class_key qdisc_running_key;		\
1964 	static struct lock_class_key qdisc_xmit_lock_key;	\
1965 	static struct lock_class_key dev_addr_list_lock_key;	\
1966 	unsigned int i;						\
1967 								\
1968 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1969 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1970 	lockdep_set_class(&(dev)->addr_list_lock,		\
1971 			  &dev_addr_list_lock_key); 		\
1972 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1973 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1974 				  &qdisc_xmit_lock_key);	\
1975 }
1976 
1977 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1978 				    struct sk_buff *skb,
1979 				    void *accel_priv);
1980 
1981 /* returns the headroom that the master device needs to take in account
1982  * when forwarding to this dev
1983  */
1984 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1985 {
1986 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1987 }
1988 
1989 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1990 {
1991 	if (dev->netdev_ops->ndo_set_rx_headroom)
1992 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1993 }
1994 
1995 /* set the device rx headroom to the dev's default */
1996 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1997 {
1998 	netdev_set_rx_headroom(dev, -1);
1999 }
2000 
2001 /*
2002  * Net namespace inlines
2003  */
2004 static inline
2005 struct net *dev_net(const struct net_device *dev)
2006 {
2007 	return read_pnet(&dev->nd_net);
2008 }
2009 
2010 static inline
2011 void dev_net_set(struct net_device *dev, struct net *net)
2012 {
2013 	write_pnet(&dev->nd_net, net);
2014 }
2015 
2016 static inline bool netdev_uses_dsa(struct net_device *dev)
2017 {
2018 #if IS_ENABLED(CONFIG_NET_DSA)
2019 	if (dev->dsa_ptr != NULL)
2020 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2021 #endif
2022 	return false;
2023 }
2024 
2025 /**
2026  *	netdev_priv - access network device private data
2027  *	@dev: network device
2028  *
2029  * Get network device private data
2030  */
2031 static inline void *netdev_priv(const struct net_device *dev)
2032 {
2033 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2034 }
2035 
2036 /* Set the sysfs physical device reference for the network logical device
2037  * if set prior to registration will cause a symlink during initialization.
2038  */
2039 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2040 
2041 /* Set the sysfs device type for the network logical device to allow
2042  * fine-grained identification of different network device types. For
2043  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2044  */
2045 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2046 
2047 /* Default NAPI poll() weight
2048  * Device drivers are strongly advised to not use bigger value
2049  */
2050 #define NAPI_POLL_WEIGHT 64
2051 
2052 /**
2053  *	netif_napi_add - initialize a NAPI context
2054  *	@dev:  network device
2055  *	@napi: NAPI context
2056  *	@poll: polling function
2057  *	@weight: default weight
2058  *
2059  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2060  * *any* of the other NAPI-related functions.
2061  */
2062 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2063 		    int (*poll)(struct napi_struct *, int), int weight);
2064 
2065 /**
2066  *	netif_tx_napi_add - initialize a NAPI context
2067  *	@dev:  network device
2068  *	@napi: NAPI context
2069  *	@poll: polling function
2070  *	@weight: default weight
2071  *
2072  * This variant of netif_napi_add() should be used from drivers using NAPI
2073  * to exclusively poll a TX queue.
2074  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2075  */
2076 static inline void netif_tx_napi_add(struct net_device *dev,
2077 				     struct napi_struct *napi,
2078 				     int (*poll)(struct napi_struct *, int),
2079 				     int weight)
2080 {
2081 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2082 	netif_napi_add(dev, napi, poll, weight);
2083 }
2084 
2085 /**
2086  *  netif_napi_del - remove a NAPI context
2087  *  @napi: NAPI context
2088  *
2089  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2090  */
2091 void netif_napi_del(struct napi_struct *napi);
2092 
2093 struct napi_gro_cb {
2094 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2095 	void	*frag0;
2096 
2097 	/* Length of frag0. */
2098 	unsigned int frag0_len;
2099 
2100 	/* This indicates where we are processing relative to skb->data. */
2101 	int	data_offset;
2102 
2103 	/* This is non-zero if the packet cannot be merged with the new skb. */
2104 	u16	flush;
2105 
2106 	/* Save the IP ID here and check when we get to the transport layer */
2107 	u16	flush_id;
2108 
2109 	/* Number of segments aggregated. */
2110 	u16	count;
2111 
2112 	/* Start offset for remote checksum offload */
2113 	u16	gro_remcsum_start;
2114 
2115 	/* jiffies when first packet was created/queued */
2116 	unsigned long age;
2117 
2118 	/* Used in ipv6_gro_receive() and foo-over-udp */
2119 	u16	proto;
2120 
2121 	/* This is non-zero if the packet may be of the same flow. */
2122 	u8	same_flow:1;
2123 
2124 	/* Used in tunnel GRO receive */
2125 	u8	encap_mark:1;
2126 
2127 	/* GRO checksum is valid */
2128 	u8	csum_valid:1;
2129 
2130 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2131 	u8	csum_cnt:3;
2132 
2133 	/* Free the skb? */
2134 	u8	free:2;
2135 #define NAPI_GRO_FREE		  1
2136 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2137 
2138 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2139 	u8	is_ipv6:1;
2140 
2141 	/* Used in GRE, set in fou/gue_gro_receive */
2142 	u8	is_fou:1;
2143 
2144 	/* Used to determine if flush_id can be ignored */
2145 	u8	is_atomic:1;
2146 
2147 	/* Number of gro_receive callbacks this packet already went through */
2148 	u8 recursion_counter:4;
2149 
2150 	/* 1 bit hole */
2151 
2152 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2153 	__wsum	csum;
2154 
2155 	/* used in skb_gro_receive() slow path */
2156 	struct sk_buff *last;
2157 };
2158 
2159 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2160 
2161 #define GRO_RECURSION_LIMIT 15
2162 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2163 {
2164 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2165 }
2166 
2167 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2168 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2169 						struct sk_buff **head,
2170 						struct sk_buff *skb)
2171 {
2172 	if (unlikely(gro_recursion_inc_test(skb))) {
2173 		NAPI_GRO_CB(skb)->flush |= 1;
2174 		return NULL;
2175 	}
2176 
2177 	return cb(head, skb);
2178 }
2179 
2180 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2181 					     struct sk_buff *);
2182 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2183 						   struct sock *sk,
2184 						   struct sk_buff **head,
2185 						   struct sk_buff *skb)
2186 {
2187 	if (unlikely(gro_recursion_inc_test(skb))) {
2188 		NAPI_GRO_CB(skb)->flush |= 1;
2189 		return NULL;
2190 	}
2191 
2192 	return cb(sk, head, skb);
2193 }
2194 
2195 struct packet_type {
2196 	__be16			type;	/* This is really htons(ether_type). */
2197 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2198 	int			(*func) (struct sk_buff *,
2199 					 struct net_device *,
2200 					 struct packet_type *,
2201 					 struct net_device *);
2202 	bool			(*id_match)(struct packet_type *ptype,
2203 					    struct sock *sk);
2204 	void			*af_packet_priv;
2205 	struct list_head	list;
2206 };
2207 
2208 struct offload_callbacks {
2209 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2210 						netdev_features_t features);
2211 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2212 						 struct sk_buff *skb);
2213 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2214 };
2215 
2216 struct packet_offload {
2217 	__be16			 type;	/* This is really htons(ether_type). */
2218 	u16			 priority;
2219 	struct offload_callbacks callbacks;
2220 	struct list_head	 list;
2221 };
2222 
2223 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2224 struct pcpu_sw_netstats {
2225 	u64     rx_packets;
2226 	u64     rx_bytes;
2227 	u64     tx_packets;
2228 	u64     tx_bytes;
2229 	struct u64_stats_sync   syncp;
2230 };
2231 
2232 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2233 ({									\
2234 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2235 	if (pcpu_stats)	{						\
2236 		int __cpu;						\
2237 		for_each_possible_cpu(__cpu) {				\
2238 			typeof(type) *stat;				\
2239 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2240 			u64_stats_init(&stat->syncp);			\
2241 		}							\
2242 	}								\
2243 	pcpu_stats;							\
2244 })
2245 
2246 #define netdev_alloc_pcpu_stats(type)					\
2247 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2248 
2249 enum netdev_lag_tx_type {
2250 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2251 	NETDEV_LAG_TX_TYPE_RANDOM,
2252 	NETDEV_LAG_TX_TYPE_BROADCAST,
2253 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2254 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2255 	NETDEV_LAG_TX_TYPE_HASH,
2256 };
2257 
2258 struct netdev_lag_upper_info {
2259 	enum netdev_lag_tx_type tx_type;
2260 };
2261 
2262 struct netdev_lag_lower_state_info {
2263 	u8 link_up : 1,
2264 	   tx_enabled : 1;
2265 };
2266 
2267 #include <linux/notifier.h>
2268 
2269 /* netdevice notifier chain. Please remember to update the rtnetlink
2270  * notification exclusion list in rtnetlink_event() when adding new
2271  * types.
2272  */
2273 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2274 #define NETDEV_DOWN	0x0002
2275 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2276 				   detected a hardware crash and restarted
2277 				   - we can use this eg to kick tcp sessions
2278 				   once done */
2279 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2280 #define NETDEV_REGISTER 0x0005
2281 #define NETDEV_UNREGISTER	0x0006
2282 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2283 #define NETDEV_CHANGEADDR	0x0008
2284 #define NETDEV_GOING_DOWN	0x0009
2285 #define NETDEV_CHANGENAME	0x000A
2286 #define NETDEV_FEAT_CHANGE	0x000B
2287 #define NETDEV_BONDING_FAILOVER 0x000C
2288 #define NETDEV_PRE_UP		0x000D
2289 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2290 #define NETDEV_POST_TYPE_CHANGE	0x000F
2291 #define NETDEV_POST_INIT	0x0010
2292 #define NETDEV_UNREGISTER_FINAL 0x0011
2293 #define NETDEV_RELEASE		0x0012
2294 #define NETDEV_NOTIFY_PEERS	0x0013
2295 #define NETDEV_JOIN		0x0014
2296 #define NETDEV_CHANGEUPPER	0x0015
2297 #define NETDEV_RESEND_IGMP	0x0016
2298 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2299 #define NETDEV_CHANGEINFODATA	0x0018
2300 #define NETDEV_BONDING_INFO	0x0019
2301 #define NETDEV_PRECHANGEUPPER	0x001A
2302 #define NETDEV_CHANGELOWERSTATE	0x001B
2303 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2304 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2305 
2306 int register_netdevice_notifier(struct notifier_block *nb);
2307 int unregister_netdevice_notifier(struct notifier_block *nb);
2308 
2309 struct netdev_notifier_info {
2310 	struct net_device *dev;
2311 };
2312 
2313 struct netdev_notifier_change_info {
2314 	struct netdev_notifier_info info; /* must be first */
2315 	unsigned int flags_changed;
2316 };
2317 
2318 struct netdev_notifier_changeupper_info {
2319 	struct netdev_notifier_info info; /* must be first */
2320 	struct net_device *upper_dev; /* new upper dev */
2321 	bool master; /* is upper dev master */
2322 	bool linking; /* is the notification for link or unlink */
2323 	void *upper_info; /* upper dev info */
2324 };
2325 
2326 struct netdev_notifier_changelowerstate_info {
2327 	struct netdev_notifier_info info; /* must be first */
2328 	void *lower_state_info; /* is lower dev state */
2329 };
2330 
2331 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2332 					     struct net_device *dev)
2333 {
2334 	info->dev = dev;
2335 }
2336 
2337 static inline struct net_device *
2338 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2339 {
2340 	return info->dev;
2341 }
2342 
2343 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2344 
2345 
2346 extern rwlock_t				dev_base_lock;		/* Device list lock */
2347 
2348 #define for_each_netdev(net, d)		\
2349 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2350 #define for_each_netdev_reverse(net, d)	\
2351 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2352 #define for_each_netdev_rcu(net, d)		\
2353 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2354 #define for_each_netdev_safe(net, d, n)	\
2355 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2356 #define for_each_netdev_continue(net, d)		\
2357 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2358 #define for_each_netdev_continue_rcu(net, d)		\
2359 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2360 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2361 		for_each_netdev_rcu(&init_net, slave)	\
2362 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2363 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2364 
2365 static inline struct net_device *next_net_device(struct net_device *dev)
2366 {
2367 	struct list_head *lh;
2368 	struct net *net;
2369 
2370 	net = dev_net(dev);
2371 	lh = dev->dev_list.next;
2372 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2373 }
2374 
2375 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2376 {
2377 	struct list_head *lh;
2378 	struct net *net;
2379 
2380 	net = dev_net(dev);
2381 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2382 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2383 }
2384 
2385 static inline struct net_device *first_net_device(struct net *net)
2386 {
2387 	return list_empty(&net->dev_base_head) ? NULL :
2388 		net_device_entry(net->dev_base_head.next);
2389 }
2390 
2391 static inline struct net_device *first_net_device_rcu(struct net *net)
2392 {
2393 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2394 
2395 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2396 }
2397 
2398 int netdev_boot_setup_check(struct net_device *dev);
2399 unsigned long netdev_boot_base(const char *prefix, int unit);
2400 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2401 				       const char *hwaddr);
2402 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2403 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2404 void dev_add_pack(struct packet_type *pt);
2405 void dev_remove_pack(struct packet_type *pt);
2406 void __dev_remove_pack(struct packet_type *pt);
2407 void dev_add_offload(struct packet_offload *po);
2408 void dev_remove_offload(struct packet_offload *po);
2409 
2410 int dev_get_iflink(const struct net_device *dev);
2411 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2412 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2413 				      unsigned short mask);
2414 struct net_device *dev_get_by_name(struct net *net, const char *name);
2415 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2416 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2417 int dev_alloc_name(struct net_device *dev, const char *name);
2418 int dev_open(struct net_device *dev);
2419 int dev_close(struct net_device *dev);
2420 int dev_close_many(struct list_head *head, bool unlink);
2421 void dev_disable_lro(struct net_device *dev);
2422 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2423 int dev_queue_xmit(struct sk_buff *skb);
2424 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2425 int register_netdevice(struct net_device *dev);
2426 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2427 void unregister_netdevice_many(struct list_head *head);
2428 static inline void unregister_netdevice(struct net_device *dev)
2429 {
2430 	unregister_netdevice_queue(dev, NULL);
2431 }
2432 
2433 int netdev_refcnt_read(const struct net_device *dev);
2434 void free_netdev(struct net_device *dev);
2435 void netdev_freemem(struct net_device *dev);
2436 void synchronize_net(void);
2437 int init_dummy_netdev(struct net_device *dev);
2438 
2439 DECLARE_PER_CPU(int, xmit_recursion);
2440 #define XMIT_RECURSION_LIMIT	10
2441 
2442 static inline int dev_recursion_level(void)
2443 {
2444 	return this_cpu_read(xmit_recursion);
2445 }
2446 
2447 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2448 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2449 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2450 int netdev_get_name(struct net *net, char *name, int ifindex);
2451 int dev_restart(struct net_device *dev);
2452 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2453 
2454 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2455 {
2456 	return NAPI_GRO_CB(skb)->data_offset;
2457 }
2458 
2459 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2460 {
2461 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2462 }
2463 
2464 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2465 {
2466 	NAPI_GRO_CB(skb)->data_offset += len;
2467 }
2468 
2469 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2470 					unsigned int offset)
2471 {
2472 	return NAPI_GRO_CB(skb)->frag0 + offset;
2473 }
2474 
2475 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2476 {
2477 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2478 }
2479 
2480 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2481 {
2482 	NAPI_GRO_CB(skb)->frag0 = NULL;
2483 	NAPI_GRO_CB(skb)->frag0_len = 0;
2484 }
2485 
2486 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2487 					unsigned int offset)
2488 {
2489 	if (!pskb_may_pull(skb, hlen))
2490 		return NULL;
2491 
2492 	skb_gro_frag0_invalidate(skb);
2493 	return skb->data + offset;
2494 }
2495 
2496 static inline void *skb_gro_network_header(struct sk_buff *skb)
2497 {
2498 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2499 	       skb_network_offset(skb);
2500 }
2501 
2502 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2503 					const void *start, unsigned int len)
2504 {
2505 	if (NAPI_GRO_CB(skb)->csum_valid)
2506 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2507 						  csum_partial(start, len, 0));
2508 }
2509 
2510 /* GRO checksum functions. These are logical equivalents of the normal
2511  * checksum functions (in skbuff.h) except that they operate on the GRO
2512  * offsets and fields in sk_buff.
2513  */
2514 
2515 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2516 
2517 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2518 {
2519 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2520 }
2521 
2522 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2523 						      bool zero_okay,
2524 						      __sum16 check)
2525 {
2526 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2527 		skb_checksum_start_offset(skb) <
2528 		 skb_gro_offset(skb)) &&
2529 		!skb_at_gro_remcsum_start(skb) &&
2530 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2531 		(!zero_okay || check));
2532 }
2533 
2534 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2535 							   __wsum psum)
2536 {
2537 	if (NAPI_GRO_CB(skb)->csum_valid &&
2538 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2539 		return 0;
2540 
2541 	NAPI_GRO_CB(skb)->csum = psum;
2542 
2543 	return __skb_gro_checksum_complete(skb);
2544 }
2545 
2546 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2547 {
2548 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2549 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2550 		NAPI_GRO_CB(skb)->csum_cnt--;
2551 	} else {
2552 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2553 		 * verified a new top level checksum or an encapsulated one
2554 		 * during GRO. This saves work if we fallback to normal path.
2555 		 */
2556 		__skb_incr_checksum_unnecessary(skb);
2557 	}
2558 }
2559 
2560 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2561 				    compute_pseudo)			\
2562 ({									\
2563 	__sum16 __ret = 0;						\
2564 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2565 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2566 				compute_pseudo(skb, proto));		\
2567 	if (__ret)							\
2568 		__skb_mark_checksum_bad(skb);				\
2569 	else								\
2570 		skb_gro_incr_csum_unnecessary(skb);			\
2571 	__ret;								\
2572 })
2573 
2574 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2575 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2576 
2577 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2578 					     compute_pseudo)		\
2579 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2580 
2581 #define skb_gro_checksum_simple_validate(skb)				\
2582 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2583 
2584 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2585 {
2586 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2587 		!NAPI_GRO_CB(skb)->csum_valid);
2588 }
2589 
2590 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2591 					      __sum16 check, __wsum pseudo)
2592 {
2593 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2594 	NAPI_GRO_CB(skb)->csum_valid = 1;
2595 }
2596 
2597 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2598 do {									\
2599 	if (__skb_gro_checksum_convert_check(skb))			\
2600 		__skb_gro_checksum_convert(skb, check,			\
2601 					   compute_pseudo(skb, proto));	\
2602 } while (0)
2603 
2604 struct gro_remcsum {
2605 	int offset;
2606 	__wsum delta;
2607 };
2608 
2609 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2610 {
2611 	grc->offset = 0;
2612 	grc->delta = 0;
2613 }
2614 
2615 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2616 					    unsigned int off, size_t hdrlen,
2617 					    int start, int offset,
2618 					    struct gro_remcsum *grc,
2619 					    bool nopartial)
2620 {
2621 	__wsum delta;
2622 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2623 
2624 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2625 
2626 	if (!nopartial) {
2627 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2628 		return ptr;
2629 	}
2630 
2631 	ptr = skb_gro_header_fast(skb, off);
2632 	if (skb_gro_header_hard(skb, off + plen)) {
2633 		ptr = skb_gro_header_slow(skb, off + plen, off);
2634 		if (!ptr)
2635 			return NULL;
2636 	}
2637 
2638 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2639 			       start, offset);
2640 
2641 	/* Adjust skb->csum since we changed the packet */
2642 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2643 
2644 	grc->offset = off + hdrlen + offset;
2645 	grc->delta = delta;
2646 
2647 	return ptr;
2648 }
2649 
2650 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2651 					   struct gro_remcsum *grc)
2652 {
2653 	void *ptr;
2654 	size_t plen = grc->offset + sizeof(u16);
2655 
2656 	if (!grc->delta)
2657 		return;
2658 
2659 	ptr = skb_gro_header_fast(skb, grc->offset);
2660 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2661 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2662 		if (!ptr)
2663 			return;
2664 	}
2665 
2666 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2667 }
2668 
2669 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2670 				  unsigned short type,
2671 				  const void *daddr, const void *saddr,
2672 				  unsigned int len)
2673 {
2674 	if (!dev->header_ops || !dev->header_ops->create)
2675 		return 0;
2676 
2677 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2678 }
2679 
2680 static inline int dev_parse_header(const struct sk_buff *skb,
2681 				   unsigned char *haddr)
2682 {
2683 	const struct net_device *dev = skb->dev;
2684 
2685 	if (!dev->header_ops || !dev->header_ops->parse)
2686 		return 0;
2687 	return dev->header_ops->parse(skb, haddr);
2688 }
2689 
2690 /* ll_header must have at least hard_header_len allocated */
2691 static inline bool dev_validate_header(const struct net_device *dev,
2692 				       char *ll_header, int len)
2693 {
2694 	if (likely(len >= dev->hard_header_len))
2695 		return true;
2696 
2697 	if (capable(CAP_SYS_RAWIO)) {
2698 		memset(ll_header + len, 0, dev->hard_header_len - len);
2699 		return true;
2700 	}
2701 
2702 	if (dev->header_ops && dev->header_ops->validate)
2703 		return dev->header_ops->validate(ll_header, len);
2704 
2705 	return false;
2706 }
2707 
2708 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2709 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2710 static inline int unregister_gifconf(unsigned int family)
2711 {
2712 	return register_gifconf(family, NULL);
2713 }
2714 
2715 #ifdef CONFIG_NET_FLOW_LIMIT
2716 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2717 struct sd_flow_limit {
2718 	u64			count;
2719 	unsigned int		num_buckets;
2720 	unsigned int		history_head;
2721 	u16			history[FLOW_LIMIT_HISTORY];
2722 	u8			buckets[];
2723 };
2724 
2725 extern int netdev_flow_limit_table_len;
2726 #endif /* CONFIG_NET_FLOW_LIMIT */
2727 
2728 /*
2729  * Incoming packets are placed on per-CPU queues
2730  */
2731 struct softnet_data {
2732 	struct list_head	poll_list;
2733 	struct sk_buff_head	process_queue;
2734 
2735 	/* stats */
2736 	unsigned int		processed;
2737 	unsigned int		time_squeeze;
2738 	unsigned int		received_rps;
2739 #ifdef CONFIG_RPS
2740 	struct softnet_data	*rps_ipi_list;
2741 #endif
2742 #ifdef CONFIG_NET_FLOW_LIMIT
2743 	struct sd_flow_limit __rcu *flow_limit;
2744 #endif
2745 	struct Qdisc		*output_queue;
2746 	struct Qdisc		**output_queue_tailp;
2747 	struct sk_buff		*completion_queue;
2748 
2749 #ifdef CONFIG_RPS
2750 	/* input_queue_head should be written by cpu owning this struct,
2751 	 * and only read by other cpus. Worth using a cache line.
2752 	 */
2753 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2754 
2755 	/* Elements below can be accessed between CPUs for RPS/RFS */
2756 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2757 	struct softnet_data	*rps_ipi_next;
2758 	unsigned int		cpu;
2759 	unsigned int		input_queue_tail;
2760 #endif
2761 	unsigned int		dropped;
2762 	struct sk_buff_head	input_pkt_queue;
2763 	struct napi_struct	backlog;
2764 
2765 };
2766 
2767 static inline void input_queue_head_incr(struct softnet_data *sd)
2768 {
2769 #ifdef CONFIG_RPS
2770 	sd->input_queue_head++;
2771 #endif
2772 }
2773 
2774 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2775 					      unsigned int *qtail)
2776 {
2777 #ifdef CONFIG_RPS
2778 	*qtail = ++sd->input_queue_tail;
2779 #endif
2780 }
2781 
2782 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2783 
2784 void __netif_schedule(struct Qdisc *q);
2785 void netif_schedule_queue(struct netdev_queue *txq);
2786 
2787 static inline void netif_tx_schedule_all(struct net_device *dev)
2788 {
2789 	unsigned int i;
2790 
2791 	for (i = 0; i < dev->num_tx_queues; i++)
2792 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2793 }
2794 
2795 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2796 {
2797 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2798 }
2799 
2800 /**
2801  *	netif_start_queue - allow transmit
2802  *	@dev: network device
2803  *
2804  *	Allow upper layers to call the device hard_start_xmit routine.
2805  */
2806 static inline void netif_start_queue(struct net_device *dev)
2807 {
2808 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2809 }
2810 
2811 static inline void netif_tx_start_all_queues(struct net_device *dev)
2812 {
2813 	unsigned int i;
2814 
2815 	for (i = 0; i < dev->num_tx_queues; i++) {
2816 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2817 		netif_tx_start_queue(txq);
2818 	}
2819 }
2820 
2821 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2822 
2823 /**
2824  *	netif_wake_queue - restart transmit
2825  *	@dev: network device
2826  *
2827  *	Allow upper layers to call the device hard_start_xmit routine.
2828  *	Used for flow control when transmit resources are available.
2829  */
2830 static inline void netif_wake_queue(struct net_device *dev)
2831 {
2832 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2833 }
2834 
2835 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2836 {
2837 	unsigned int i;
2838 
2839 	for (i = 0; i < dev->num_tx_queues; i++) {
2840 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2841 		netif_tx_wake_queue(txq);
2842 	}
2843 }
2844 
2845 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2846 {
2847 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2848 }
2849 
2850 /**
2851  *	netif_stop_queue - stop transmitted packets
2852  *	@dev: network device
2853  *
2854  *	Stop upper layers calling the device hard_start_xmit routine.
2855  *	Used for flow control when transmit resources are unavailable.
2856  */
2857 static inline void netif_stop_queue(struct net_device *dev)
2858 {
2859 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2860 }
2861 
2862 void netif_tx_stop_all_queues(struct net_device *dev);
2863 
2864 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2865 {
2866 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2867 }
2868 
2869 /**
2870  *	netif_queue_stopped - test if transmit queue is flowblocked
2871  *	@dev: network device
2872  *
2873  *	Test if transmit queue on device is currently unable to send.
2874  */
2875 static inline bool netif_queue_stopped(const struct net_device *dev)
2876 {
2877 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2878 }
2879 
2880 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2881 {
2882 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2883 }
2884 
2885 static inline bool
2886 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2887 {
2888 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2889 }
2890 
2891 static inline bool
2892 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2893 {
2894 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2895 }
2896 
2897 /**
2898  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2899  *	@dev_queue: pointer to transmit queue
2900  *
2901  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2902  * to give appropriate hint to the CPU.
2903  */
2904 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2905 {
2906 #ifdef CONFIG_BQL
2907 	prefetchw(&dev_queue->dql.num_queued);
2908 #endif
2909 }
2910 
2911 /**
2912  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2913  *	@dev_queue: pointer to transmit queue
2914  *
2915  * BQL enabled drivers might use this helper in their TX completion path,
2916  * to give appropriate hint to the CPU.
2917  */
2918 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2919 {
2920 #ifdef CONFIG_BQL
2921 	prefetchw(&dev_queue->dql.limit);
2922 #endif
2923 }
2924 
2925 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2926 					unsigned int bytes)
2927 {
2928 #ifdef CONFIG_BQL
2929 	dql_queued(&dev_queue->dql, bytes);
2930 
2931 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2932 		return;
2933 
2934 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2935 
2936 	/*
2937 	 * The XOFF flag must be set before checking the dql_avail below,
2938 	 * because in netdev_tx_completed_queue we update the dql_completed
2939 	 * before checking the XOFF flag.
2940 	 */
2941 	smp_mb();
2942 
2943 	/* check again in case another CPU has just made room avail */
2944 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2945 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2946 #endif
2947 }
2948 
2949 /**
2950  * 	netdev_sent_queue - report the number of bytes queued to hardware
2951  * 	@dev: network device
2952  * 	@bytes: number of bytes queued to the hardware device queue
2953  *
2954  * 	Report the number of bytes queued for sending/completion to the network
2955  * 	device hardware queue. @bytes should be a good approximation and should
2956  * 	exactly match netdev_completed_queue() @bytes
2957  */
2958 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2959 {
2960 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2961 }
2962 
2963 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2964 					     unsigned int pkts, unsigned int bytes)
2965 {
2966 #ifdef CONFIG_BQL
2967 	if (unlikely(!bytes))
2968 		return;
2969 
2970 	dql_completed(&dev_queue->dql, bytes);
2971 
2972 	/*
2973 	 * Without the memory barrier there is a small possiblity that
2974 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2975 	 * be stopped forever
2976 	 */
2977 	smp_mb();
2978 
2979 	if (dql_avail(&dev_queue->dql) < 0)
2980 		return;
2981 
2982 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2983 		netif_schedule_queue(dev_queue);
2984 #endif
2985 }
2986 
2987 /**
2988  * 	netdev_completed_queue - report bytes and packets completed by device
2989  * 	@dev: network device
2990  * 	@pkts: actual number of packets sent over the medium
2991  * 	@bytes: actual number of bytes sent over the medium
2992  *
2993  * 	Report the number of bytes and packets transmitted by the network device
2994  * 	hardware queue over the physical medium, @bytes must exactly match the
2995  * 	@bytes amount passed to netdev_sent_queue()
2996  */
2997 static inline void netdev_completed_queue(struct net_device *dev,
2998 					  unsigned int pkts, unsigned int bytes)
2999 {
3000 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3001 }
3002 
3003 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3004 {
3005 #ifdef CONFIG_BQL
3006 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3007 	dql_reset(&q->dql);
3008 #endif
3009 }
3010 
3011 /**
3012  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3013  * 	@dev_queue: network device
3014  *
3015  * 	Reset the bytes and packet count of a network device and clear the
3016  * 	software flow control OFF bit for this network device
3017  */
3018 static inline void netdev_reset_queue(struct net_device *dev_queue)
3019 {
3020 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3021 }
3022 
3023 /**
3024  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3025  * 	@dev: network device
3026  * 	@queue_index: given tx queue index
3027  *
3028  * 	Returns 0 if given tx queue index >= number of device tx queues,
3029  * 	otherwise returns the originally passed tx queue index.
3030  */
3031 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3032 {
3033 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3034 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3035 				     dev->name, queue_index,
3036 				     dev->real_num_tx_queues);
3037 		return 0;
3038 	}
3039 
3040 	return queue_index;
3041 }
3042 
3043 /**
3044  *	netif_running - test if up
3045  *	@dev: network device
3046  *
3047  *	Test if the device has been brought up.
3048  */
3049 static inline bool netif_running(const struct net_device *dev)
3050 {
3051 	return test_bit(__LINK_STATE_START, &dev->state);
3052 }
3053 
3054 /*
3055  * Routines to manage the subqueues on a device.  We only need start,
3056  * stop, and a check if it's stopped.  All other device management is
3057  * done at the overall netdevice level.
3058  * Also test the device if we're multiqueue.
3059  */
3060 
3061 /**
3062  *	netif_start_subqueue - allow sending packets on subqueue
3063  *	@dev: network device
3064  *	@queue_index: sub queue index
3065  *
3066  * Start individual transmit queue of a device with multiple transmit queues.
3067  */
3068 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3069 {
3070 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3071 
3072 	netif_tx_start_queue(txq);
3073 }
3074 
3075 /**
3076  *	netif_stop_subqueue - stop sending packets on subqueue
3077  *	@dev: network device
3078  *	@queue_index: sub queue index
3079  *
3080  * Stop individual transmit queue of a device with multiple transmit queues.
3081  */
3082 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3083 {
3084 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3085 	netif_tx_stop_queue(txq);
3086 }
3087 
3088 /**
3089  *	netif_subqueue_stopped - test status of subqueue
3090  *	@dev: network device
3091  *	@queue_index: sub queue index
3092  *
3093  * Check individual transmit queue of a device with multiple transmit queues.
3094  */
3095 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3096 					    u16 queue_index)
3097 {
3098 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3099 
3100 	return netif_tx_queue_stopped(txq);
3101 }
3102 
3103 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3104 					  struct sk_buff *skb)
3105 {
3106 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3107 }
3108 
3109 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3110 
3111 #ifdef CONFIG_XPS
3112 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3113 			u16 index);
3114 #else
3115 static inline int netif_set_xps_queue(struct net_device *dev,
3116 				      const struct cpumask *mask,
3117 				      u16 index)
3118 {
3119 	return 0;
3120 }
3121 #endif
3122 
3123 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3124 		  unsigned int num_tx_queues);
3125 
3126 /*
3127  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3128  * as a distribution range limit for the returned value.
3129  */
3130 static inline u16 skb_tx_hash(const struct net_device *dev,
3131 			      struct sk_buff *skb)
3132 {
3133 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3134 }
3135 
3136 /**
3137  *	netif_is_multiqueue - test if device has multiple transmit queues
3138  *	@dev: network device
3139  *
3140  * Check if device has multiple transmit queues
3141  */
3142 static inline bool netif_is_multiqueue(const struct net_device *dev)
3143 {
3144 	return dev->num_tx_queues > 1;
3145 }
3146 
3147 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3148 
3149 #ifdef CONFIG_SYSFS
3150 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3151 #else
3152 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3153 						unsigned int rxq)
3154 {
3155 	return 0;
3156 }
3157 #endif
3158 
3159 #ifdef CONFIG_SYSFS
3160 static inline unsigned int get_netdev_rx_queue_index(
3161 		struct netdev_rx_queue *queue)
3162 {
3163 	struct net_device *dev = queue->dev;
3164 	int index = queue - dev->_rx;
3165 
3166 	BUG_ON(index >= dev->num_rx_queues);
3167 	return index;
3168 }
3169 #endif
3170 
3171 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3172 int netif_get_num_default_rss_queues(void);
3173 
3174 enum skb_free_reason {
3175 	SKB_REASON_CONSUMED,
3176 	SKB_REASON_DROPPED,
3177 };
3178 
3179 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3180 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3181 
3182 /*
3183  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3184  * interrupt context or with hardware interrupts being disabled.
3185  * (in_irq() || irqs_disabled())
3186  *
3187  * We provide four helpers that can be used in following contexts :
3188  *
3189  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3190  *  replacing kfree_skb(skb)
3191  *
3192  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3193  *  Typically used in place of consume_skb(skb) in TX completion path
3194  *
3195  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3196  *  replacing kfree_skb(skb)
3197  *
3198  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3199  *  and consumed a packet. Used in place of consume_skb(skb)
3200  */
3201 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3202 {
3203 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3204 }
3205 
3206 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3207 {
3208 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3209 }
3210 
3211 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3212 {
3213 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3214 }
3215 
3216 static inline void dev_consume_skb_any(struct sk_buff *skb)
3217 {
3218 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3219 }
3220 
3221 int netif_rx(struct sk_buff *skb);
3222 int netif_rx_ni(struct sk_buff *skb);
3223 int netif_receive_skb(struct sk_buff *skb);
3224 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3225 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3226 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3227 gro_result_t napi_gro_frags(struct napi_struct *napi);
3228 struct packet_offload *gro_find_receive_by_type(__be16 type);
3229 struct packet_offload *gro_find_complete_by_type(__be16 type);
3230 
3231 static inline void napi_free_frags(struct napi_struct *napi)
3232 {
3233 	kfree_skb(napi->skb);
3234 	napi->skb = NULL;
3235 }
3236 
3237 bool netdev_is_rx_handler_busy(struct net_device *dev);
3238 int netdev_rx_handler_register(struct net_device *dev,
3239 			       rx_handler_func_t *rx_handler,
3240 			       void *rx_handler_data);
3241 void netdev_rx_handler_unregister(struct net_device *dev);
3242 
3243 bool dev_valid_name(const char *name);
3244 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3245 int dev_ethtool(struct net *net, struct ifreq *);
3246 unsigned int dev_get_flags(const struct net_device *);
3247 int __dev_change_flags(struct net_device *, unsigned int flags);
3248 int dev_change_flags(struct net_device *, unsigned int);
3249 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3250 			unsigned int gchanges);
3251 int dev_change_name(struct net_device *, const char *);
3252 int dev_set_alias(struct net_device *, const char *, size_t);
3253 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3254 int dev_set_mtu(struct net_device *, int);
3255 void dev_set_group(struct net_device *, int);
3256 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3257 int dev_change_carrier(struct net_device *, bool new_carrier);
3258 int dev_get_phys_port_id(struct net_device *dev,
3259 			 struct netdev_phys_item_id *ppid);
3260 int dev_get_phys_port_name(struct net_device *dev,
3261 			   char *name, size_t len);
3262 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3263 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3264 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3265 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3266 				    struct netdev_queue *txq, int *ret);
3267 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3268 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3269 bool is_skb_forwardable(const struct net_device *dev,
3270 			const struct sk_buff *skb);
3271 
3272 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3273 					       struct sk_buff *skb)
3274 {
3275 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3276 	    unlikely(!is_skb_forwardable(dev, skb))) {
3277 		atomic_long_inc(&dev->rx_dropped);
3278 		kfree_skb(skb);
3279 		return NET_RX_DROP;
3280 	}
3281 
3282 	skb_scrub_packet(skb, true);
3283 	skb->priority = 0;
3284 	return 0;
3285 }
3286 
3287 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3288 
3289 extern int		netdev_budget;
3290 
3291 /* Called by rtnetlink.c:rtnl_unlock() */
3292 void netdev_run_todo(void);
3293 
3294 /**
3295  *	dev_put - release reference to device
3296  *	@dev: network device
3297  *
3298  * Release reference to device to allow it to be freed.
3299  */
3300 static inline void dev_put(struct net_device *dev)
3301 {
3302 	this_cpu_dec(*dev->pcpu_refcnt);
3303 }
3304 
3305 /**
3306  *	dev_hold - get reference to device
3307  *	@dev: network device
3308  *
3309  * Hold reference to device to keep it from being freed.
3310  */
3311 static inline void dev_hold(struct net_device *dev)
3312 {
3313 	this_cpu_inc(*dev->pcpu_refcnt);
3314 }
3315 
3316 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3317  * and _off may be called from IRQ context, but it is caller
3318  * who is responsible for serialization of these calls.
3319  *
3320  * The name carrier is inappropriate, these functions should really be
3321  * called netif_lowerlayer_*() because they represent the state of any
3322  * kind of lower layer not just hardware media.
3323  */
3324 
3325 void linkwatch_init_dev(struct net_device *dev);
3326 void linkwatch_fire_event(struct net_device *dev);
3327 void linkwatch_forget_dev(struct net_device *dev);
3328 
3329 /**
3330  *	netif_carrier_ok - test if carrier present
3331  *	@dev: network device
3332  *
3333  * Check if carrier is present on device
3334  */
3335 static inline bool netif_carrier_ok(const struct net_device *dev)
3336 {
3337 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3338 }
3339 
3340 unsigned long dev_trans_start(struct net_device *dev);
3341 
3342 void __netdev_watchdog_up(struct net_device *dev);
3343 
3344 void netif_carrier_on(struct net_device *dev);
3345 
3346 void netif_carrier_off(struct net_device *dev);
3347 
3348 /**
3349  *	netif_dormant_on - mark device as dormant.
3350  *	@dev: network device
3351  *
3352  * Mark device as dormant (as per RFC2863).
3353  *
3354  * The dormant state indicates that the relevant interface is not
3355  * actually in a condition to pass packets (i.e., it is not 'up') but is
3356  * in a "pending" state, waiting for some external event.  For "on-
3357  * demand" interfaces, this new state identifies the situation where the
3358  * interface is waiting for events to place it in the up state.
3359  */
3360 static inline void netif_dormant_on(struct net_device *dev)
3361 {
3362 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3363 		linkwatch_fire_event(dev);
3364 }
3365 
3366 /**
3367  *	netif_dormant_off - set device as not dormant.
3368  *	@dev: network device
3369  *
3370  * Device is not in dormant state.
3371  */
3372 static inline void netif_dormant_off(struct net_device *dev)
3373 {
3374 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3375 		linkwatch_fire_event(dev);
3376 }
3377 
3378 /**
3379  *	netif_dormant - test if carrier present
3380  *	@dev: network device
3381  *
3382  * Check if carrier is present on device
3383  */
3384 static inline bool netif_dormant(const struct net_device *dev)
3385 {
3386 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3387 }
3388 
3389 
3390 /**
3391  *	netif_oper_up - test if device is operational
3392  *	@dev: network device
3393  *
3394  * Check if carrier is operational
3395  */
3396 static inline bool netif_oper_up(const struct net_device *dev)
3397 {
3398 	return (dev->operstate == IF_OPER_UP ||
3399 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3400 }
3401 
3402 /**
3403  *	netif_device_present - is device available or removed
3404  *	@dev: network device
3405  *
3406  * Check if device has not been removed from system.
3407  */
3408 static inline bool netif_device_present(struct net_device *dev)
3409 {
3410 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3411 }
3412 
3413 void netif_device_detach(struct net_device *dev);
3414 
3415 void netif_device_attach(struct net_device *dev);
3416 
3417 /*
3418  * Network interface message level settings
3419  */
3420 
3421 enum {
3422 	NETIF_MSG_DRV		= 0x0001,
3423 	NETIF_MSG_PROBE		= 0x0002,
3424 	NETIF_MSG_LINK		= 0x0004,
3425 	NETIF_MSG_TIMER		= 0x0008,
3426 	NETIF_MSG_IFDOWN	= 0x0010,
3427 	NETIF_MSG_IFUP		= 0x0020,
3428 	NETIF_MSG_RX_ERR	= 0x0040,
3429 	NETIF_MSG_TX_ERR	= 0x0080,
3430 	NETIF_MSG_TX_QUEUED	= 0x0100,
3431 	NETIF_MSG_INTR		= 0x0200,
3432 	NETIF_MSG_TX_DONE	= 0x0400,
3433 	NETIF_MSG_RX_STATUS	= 0x0800,
3434 	NETIF_MSG_PKTDATA	= 0x1000,
3435 	NETIF_MSG_HW		= 0x2000,
3436 	NETIF_MSG_WOL		= 0x4000,
3437 };
3438 
3439 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3440 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3441 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3442 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3443 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3444 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3445 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3446 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3447 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3448 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3449 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3450 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3451 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3452 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3453 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3454 
3455 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3456 {
3457 	/* use default */
3458 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3459 		return default_msg_enable_bits;
3460 	if (debug_value == 0)	/* no output */
3461 		return 0;
3462 	/* set low N bits */
3463 	return (1 << debug_value) - 1;
3464 }
3465 
3466 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3467 {
3468 	spin_lock(&txq->_xmit_lock);
3469 	txq->xmit_lock_owner = cpu;
3470 }
3471 
3472 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3473 {
3474 	__acquire(&txq->_xmit_lock);
3475 	return true;
3476 }
3477 
3478 static inline void __netif_tx_release(struct netdev_queue *txq)
3479 {
3480 	__release(&txq->_xmit_lock);
3481 }
3482 
3483 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3484 {
3485 	spin_lock_bh(&txq->_xmit_lock);
3486 	txq->xmit_lock_owner = smp_processor_id();
3487 }
3488 
3489 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3490 {
3491 	bool ok = spin_trylock(&txq->_xmit_lock);
3492 	if (likely(ok))
3493 		txq->xmit_lock_owner = smp_processor_id();
3494 	return ok;
3495 }
3496 
3497 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3498 {
3499 	txq->xmit_lock_owner = -1;
3500 	spin_unlock(&txq->_xmit_lock);
3501 }
3502 
3503 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3504 {
3505 	txq->xmit_lock_owner = -1;
3506 	spin_unlock_bh(&txq->_xmit_lock);
3507 }
3508 
3509 static inline void txq_trans_update(struct netdev_queue *txq)
3510 {
3511 	if (txq->xmit_lock_owner != -1)
3512 		txq->trans_start = jiffies;
3513 }
3514 
3515 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3516 static inline void netif_trans_update(struct net_device *dev)
3517 {
3518 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3519 
3520 	if (txq->trans_start != jiffies)
3521 		txq->trans_start = jiffies;
3522 }
3523 
3524 /**
3525  *	netif_tx_lock - grab network device transmit lock
3526  *	@dev: network device
3527  *
3528  * Get network device transmit lock
3529  */
3530 static inline void netif_tx_lock(struct net_device *dev)
3531 {
3532 	unsigned int i;
3533 	int cpu;
3534 
3535 	spin_lock(&dev->tx_global_lock);
3536 	cpu = smp_processor_id();
3537 	for (i = 0; i < dev->num_tx_queues; i++) {
3538 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3539 
3540 		/* We are the only thread of execution doing a
3541 		 * freeze, but we have to grab the _xmit_lock in
3542 		 * order to synchronize with threads which are in
3543 		 * the ->hard_start_xmit() handler and already
3544 		 * checked the frozen bit.
3545 		 */
3546 		__netif_tx_lock(txq, cpu);
3547 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3548 		__netif_tx_unlock(txq);
3549 	}
3550 }
3551 
3552 static inline void netif_tx_lock_bh(struct net_device *dev)
3553 {
3554 	local_bh_disable();
3555 	netif_tx_lock(dev);
3556 }
3557 
3558 static inline void netif_tx_unlock(struct net_device *dev)
3559 {
3560 	unsigned int i;
3561 
3562 	for (i = 0; i < dev->num_tx_queues; i++) {
3563 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3564 
3565 		/* No need to grab the _xmit_lock here.  If the
3566 		 * queue is not stopped for another reason, we
3567 		 * force a schedule.
3568 		 */
3569 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3570 		netif_schedule_queue(txq);
3571 	}
3572 	spin_unlock(&dev->tx_global_lock);
3573 }
3574 
3575 static inline void netif_tx_unlock_bh(struct net_device *dev)
3576 {
3577 	netif_tx_unlock(dev);
3578 	local_bh_enable();
3579 }
3580 
3581 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3582 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3583 		__netif_tx_lock(txq, cpu);		\
3584 	} else {					\
3585 		__netif_tx_acquire(txq);		\
3586 	}						\
3587 }
3588 
3589 #define HARD_TX_TRYLOCK(dev, txq)			\
3590 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3591 		__netif_tx_trylock(txq) :		\
3592 		__netif_tx_acquire(txq))
3593 
3594 #define HARD_TX_UNLOCK(dev, txq) {			\
3595 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3596 		__netif_tx_unlock(txq);			\
3597 	} else {					\
3598 		__netif_tx_release(txq);		\
3599 	}						\
3600 }
3601 
3602 static inline void netif_tx_disable(struct net_device *dev)
3603 {
3604 	unsigned int i;
3605 	int cpu;
3606 
3607 	local_bh_disable();
3608 	cpu = smp_processor_id();
3609 	for (i = 0; i < dev->num_tx_queues; i++) {
3610 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3611 
3612 		__netif_tx_lock(txq, cpu);
3613 		netif_tx_stop_queue(txq);
3614 		__netif_tx_unlock(txq);
3615 	}
3616 	local_bh_enable();
3617 }
3618 
3619 static inline void netif_addr_lock(struct net_device *dev)
3620 {
3621 	spin_lock(&dev->addr_list_lock);
3622 }
3623 
3624 static inline void netif_addr_lock_nested(struct net_device *dev)
3625 {
3626 	int subclass = SINGLE_DEPTH_NESTING;
3627 
3628 	if (dev->netdev_ops->ndo_get_lock_subclass)
3629 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3630 
3631 	spin_lock_nested(&dev->addr_list_lock, subclass);
3632 }
3633 
3634 static inline void netif_addr_lock_bh(struct net_device *dev)
3635 {
3636 	spin_lock_bh(&dev->addr_list_lock);
3637 }
3638 
3639 static inline void netif_addr_unlock(struct net_device *dev)
3640 {
3641 	spin_unlock(&dev->addr_list_lock);
3642 }
3643 
3644 static inline void netif_addr_unlock_bh(struct net_device *dev)
3645 {
3646 	spin_unlock_bh(&dev->addr_list_lock);
3647 }
3648 
3649 /*
3650  * dev_addrs walker. Should be used only for read access. Call with
3651  * rcu_read_lock held.
3652  */
3653 #define for_each_dev_addr(dev, ha) \
3654 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3655 
3656 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3657 
3658 void ether_setup(struct net_device *dev);
3659 
3660 /* Support for loadable net-drivers */
3661 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3662 				    unsigned char name_assign_type,
3663 				    void (*setup)(struct net_device *),
3664 				    unsigned int txqs, unsigned int rxqs);
3665 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3666 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3667 
3668 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3669 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3670 			 count)
3671 
3672 int register_netdev(struct net_device *dev);
3673 void unregister_netdev(struct net_device *dev);
3674 
3675 /* General hardware address lists handling functions */
3676 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3677 		   struct netdev_hw_addr_list *from_list, int addr_len);
3678 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3679 		      struct netdev_hw_addr_list *from_list, int addr_len);
3680 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3681 		       struct net_device *dev,
3682 		       int (*sync)(struct net_device *, const unsigned char *),
3683 		       int (*unsync)(struct net_device *,
3684 				     const unsigned char *));
3685 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3686 			  struct net_device *dev,
3687 			  int (*unsync)(struct net_device *,
3688 					const unsigned char *));
3689 void __hw_addr_init(struct netdev_hw_addr_list *list);
3690 
3691 /* Functions used for device addresses handling */
3692 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3693 		 unsigned char addr_type);
3694 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3695 		 unsigned char addr_type);
3696 void dev_addr_flush(struct net_device *dev);
3697 int dev_addr_init(struct net_device *dev);
3698 
3699 /* Functions used for unicast addresses handling */
3700 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3701 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3702 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3703 int dev_uc_sync(struct net_device *to, struct net_device *from);
3704 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3705 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3706 void dev_uc_flush(struct net_device *dev);
3707 void dev_uc_init(struct net_device *dev);
3708 
3709 /**
3710  *  __dev_uc_sync - Synchonize device's unicast list
3711  *  @dev:  device to sync
3712  *  @sync: function to call if address should be added
3713  *  @unsync: function to call if address should be removed
3714  *
3715  *  Add newly added addresses to the interface, and release
3716  *  addresses that have been deleted.
3717  */
3718 static inline int __dev_uc_sync(struct net_device *dev,
3719 				int (*sync)(struct net_device *,
3720 					    const unsigned char *),
3721 				int (*unsync)(struct net_device *,
3722 					      const unsigned char *))
3723 {
3724 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3725 }
3726 
3727 /**
3728  *  __dev_uc_unsync - Remove synchronized addresses from device
3729  *  @dev:  device to sync
3730  *  @unsync: function to call if address should be removed
3731  *
3732  *  Remove all addresses that were added to the device by dev_uc_sync().
3733  */
3734 static inline void __dev_uc_unsync(struct net_device *dev,
3735 				   int (*unsync)(struct net_device *,
3736 						 const unsigned char *))
3737 {
3738 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3739 }
3740 
3741 /* Functions used for multicast addresses handling */
3742 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3743 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3744 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3745 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3746 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3747 int dev_mc_sync(struct net_device *to, struct net_device *from);
3748 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3749 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3750 void dev_mc_flush(struct net_device *dev);
3751 void dev_mc_init(struct net_device *dev);
3752 
3753 /**
3754  *  __dev_mc_sync - Synchonize device's multicast list
3755  *  @dev:  device to sync
3756  *  @sync: function to call if address should be added
3757  *  @unsync: function to call if address should be removed
3758  *
3759  *  Add newly added addresses to the interface, and release
3760  *  addresses that have been deleted.
3761  */
3762 static inline int __dev_mc_sync(struct net_device *dev,
3763 				int (*sync)(struct net_device *,
3764 					    const unsigned char *),
3765 				int (*unsync)(struct net_device *,
3766 					      const unsigned char *))
3767 {
3768 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3769 }
3770 
3771 /**
3772  *  __dev_mc_unsync - Remove synchronized addresses from device
3773  *  @dev:  device to sync
3774  *  @unsync: function to call if address should be removed
3775  *
3776  *  Remove all addresses that were added to the device by dev_mc_sync().
3777  */
3778 static inline void __dev_mc_unsync(struct net_device *dev,
3779 				   int (*unsync)(struct net_device *,
3780 						 const unsigned char *))
3781 {
3782 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3783 }
3784 
3785 /* Functions used for secondary unicast and multicast support */
3786 void dev_set_rx_mode(struct net_device *dev);
3787 void __dev_set_rx_mode(struct net_device *dev);
3788 int dev_set_promiscuity(struct net_device *dev, int inc);
3789 int dev_set_allmulti(struct net_device *dev, int inc);
3790 void netdev_state_change(struct net_device *dev);
3791 void netdev_notify_peers(struct net_device *dev);
3792 void netdev_features_change(struct net_device *dev);
3793 /* Load a device via the kmod */
3794 void dev_load(struct net *net, const char *name);
3795 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3796 					struct rtnl_link_stats64 *storage);
3797 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3798 			     const struct net_device_stats *netdev_stats);
3799 
3800 extern int		netdev_max_backlog;
3801 extern int		netdev_tstamp_prequeue;
3802 extern int		weight_p;
3803 
3804 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3805 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3806 						     struct list_head **iter);
3807 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3808 						     struct list_head **iter);
3809 
3810 /* iterate through upper list, must be called under RCU read lock */
3811 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3812 	for (iter = &(dev)->adj_list.upper, \
3813 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3814 	     updev; \
3815 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3816 
3817 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3818 				  int (*fn)(struct net_device *upper_dev,
3819 					    void *data),
3820 				  void *data);
3821 
3822 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3823 				  struct net_device *upper_dev);
3824 
3825 void *netdev_lower_get_next_private(struct net_device *dev,
3826 				    struct list_head **iter);
3827 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3828 					struct list_head **iter);
3829 
3830 #define netdev_for_each_lower_private(dev, priv, iter) \
3831 	for (iter = (dev)->adj_list.lower.next, \
3832 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3833 	     priv; \
3834 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3835 
3836 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3837 	for (iter = &(dev)->adj_list.lower, \
3838 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3839 	     priv; \
3840 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3841 
3842 void *netdev_lower_get_next(struct net_device *dev,
3843 				struct list_head **iter);
3844 
3845 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3846 	for (iter = (dev)->adj_list.lower.next, \
3847 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3848 	     ldev; \
3849 	     ldev = netdev_lower_get_next(dev, &(iter)))
3850 
3851 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3852 					     struct list_head **iter);
3853 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3854 						 struct list_head **iter);
3855 
3856 int netdev_walk_all_lower_dev(struct net_device *dev,
3857 			      int (*fn)(struct net_device *lower_dev,
3858 					void *data),
3859 			      void *data);
3860 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3861 				  int (*fn)(struct net_device *lower_dev,
3862 					    void *data),
3863 				  void *data);
3864 
3865 void *netdev_adjacent_get_private(struct list_head *adj_list);
3866 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3867 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3868 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3869 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3870 int netdev_master_upper_dev_link(struct net_device *dev,
3871 				 struct net_device *upper_dev,
3872 				 void *upper_priv, void *upper_info);
3873 void netdev_upper_dev_unlink(struct net_device *dev,
3874 			     struct net_device *upper_dev);
3875 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3876 void *netdev_lower_dev_get_private(struct net_device *dev,
3877 				   struct net_device *lower_dev);
3878 void netdev_lower_state_changed(struct net_device *lower_dev,
3879 				void *lower_state_info);
3880 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3881 					   struct neighbour *n);
3882 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3883 					  struct neighbour *n);
3884 
3885 /* RSS keys are 40 or 52 bytes long */
3886 #define NETDEV_RSS_KEY_LEN 52
3887 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3888 void netdev_rss_key_fill(void *buffer, size_t len);
3889 
3890 int dev_get_nest_level(struct net_device *dev);
3891 int skb_checksum_help(struct sk_buff *skb);
3892 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3893 				  netdev_features_t features, bool tx_path);
3894 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3895 				    netdev_features_t features);
3896 
3897 struct netdev_bonding_info {
3898 	ifslave	slave;
3899 	ifbond	master;
3900 };
3901 
3902 struct netdev_notifier_bonding_info {
3903 	struct netdev_notifier_info info; /* must be first */
3904 	struct netdev_bonding_info  bonding_info;
3905 };
3906 
3907 void netdev_bonding_info_change(struct net_device *dev,
3908 				struct netdev_bonding_info *bonding_info);
3909 
3910 static inline
3911 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3912 {
3913 	return __skb_gso_segment(skb, features, true);
3914 }
3915 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3916 
3917 static inline bool can_checksum_protocol(netdev_features_t features,
3918 					 __be16 protocol)
3919 {
3920 	if (protocol == htons(ETH_P_FCOE))
3921 		return !!(features & NETIF_F_FCOE_CRC);
3922 
3923 	/* Assume this is an IP checksum (not SCTP CRC) */
3924 
3925 	if (features & NETIF_F_HW_CSUM) {
3926 		/* Can checksum everything */
3927 		return true;
3928 	}
3929 
3930 	switch (protocol) {
3931 	case htons(ETH_P_IP):
3932 		return !!(features & NETIF_F_IP_CSUM);
3933 	case htons(ETH_P_IPV6):
3934 		return !!(features & NETIF_F_IPV6_CSUM);
3935 	default:
3936 		return false;
3937 	}
3938 }
3939 
3940 #ifdef CONFIG_BUG
3941 void netdev_rx_csum_fault(struct net_device *dev);
3942 #else
3943 static inline void netdev_rx_csum_fault(struct net_device *dev)
3944 {
3945 }
3946 #endif
3947 /* rx skb timestamps */
3948 void net_enable_timestamp(void);
3949 void net_disable_timestamp(void);
3950 
3951 #ifdef CONFIG_PROC_FS
3952 int __init dev_proc_init(void);
3953 #else
3954 #define dev_proc_init() 0
3955 #endif
3956 
3957 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3958 					      struct sk_buff *skb, struct net_device *dev,
3959 					      bool more)
3960 {
3961 	skb->xmit_more = more ? 1 : 0;
3962 	return ops->ndo_start_xmit(skb, dev);
3963 }
3964 
3965 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3966 					    struct netdev_queue *txq, bool more)
3967 {
3968 	const struct net_device_ops *ops = dev->netdev_ops;
3969 	int rc;
3970 
3971 	rc = __netdev_start_xmit(ops, skb, dev, more);
3972 	if (rc == NETDEV_TX_OK)
3973 		txq_trans_update(txq);
3974 
3975 	return rc;
3976 }
3977 
3978 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3979 				const void *ns);
3980 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3981 				 const void *ns);
3982 
3983 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3984 {
3985 	return netdev_class_create_file_ns(class_attr, NULL);
3986 }
3987 
3988 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3989 {
3990 	netdev_class_remove_file_ns(class_attr, NULL);
3991 }
3992 
3993 extern struct kobj_ns_type_operations net_ns_type_operations;
3994 
3995 const char *netdev_drivername(const struct net_device *dev);
3996 
3997 void linkwatch_run_queue(void);
3998 
3999 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4000 							  netdev_features_t f2)
4001 {
4002 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4003 		if (f1 & NETIF_F_HW_CSUM)
4004 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4005 		else
4006 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4007 	}
4008 
4009 	return f1 & f2;
4010 }
4011 
4012 static inline netdev_features_t netdev_get_wanted_features(
4013 	struct net_device *dev)
4014 {
4015 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4016 }
4017 netdev_features_t netdev_increment_features(netdev_features_t all,
4018 	netdev_features_t one, netdev_features_t mask);
4019 
4020 /* Allow TSO being used on stacked device :
4021  * Performing the GSO segmentation before last device
4022  * is a performance improvement.
4023  */
4024 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4025 							netdev_features_t mask)
4026 {
4027 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4028 }
4029 
4030 int __netdev_update_features(struct net_device *dev);
4031 void netdev_update_features(struct net_device *dev);
4032 void netdev_change_features(struct net_device *dev);
4033 
4034 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4035 					struct net_device *dev);
4036 
4037 netdev_features_t passthru_features_check(struct sk_buff *skb,
4038 					  struct net_device *dev,
4039 					  netdev_features_t features);
4040 netdev_features_t netif_skb_features(struct sk_buff *skb);
4041 
4042 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4043 {
4044 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4045 
4046 	/* check flags correspondence */
4047 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4048 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4049 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4050 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4051 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4052 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4053 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4054 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4055 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4056 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4057 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4058 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4059 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4060 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4061 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4062 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4063 
4064 	return (features & feature) == feature;
4065 }
4066 
4067 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4068 {
4069 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4070 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4071 }
4072 
4073 static inline bool netif_needs_gso(struct sk_buff *skb,
4074 				   netdev_features_t features)
4075 {
4076 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4077 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4078 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4079 }
4080 
4081 static inline void netif_set_gso_max_size(struct net_device *dev,
4082 					  unsigned int size)
4083 {
4084 	dev->gso_max_size = size;
4085 }
4086 
4087 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4088 					int pulled_hlen, u16 mac_offset,
4089 					int mac_len)
4090 {
4091 	skb->protocol = protocol;
4092 	skb->encapsulation = 1;
4093 	skb_push(skb, pulled_hlen);
4094 	skb_reset_transport_header(skb);
4095 	skb->mac_header = mac_offset;
4096 	skb->network_header = skb->mac_header + mac_len;
4097 	skb->mac_len = mac_len;
4098 }
4099 
4100 static inline bool netif_is_macsec(const struct net_device *dev)
4101 {
4102 	return dev->priv_flags & IFF_MACSEC;
4103 }
4104 
4105 static inline bool netif_is_macvlan(const struct net_device *dev)
4106 {
4107 	return dev->priv_flags & IFF_MACVLAN;
4108 }
4109 
4110 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4111 {
4112 	return dev->priv_flags & IFF_MACVLAN_PORT;
4113 }
4114 
4115 static inline bool netif_is_ipvlan(const struct net_device *dev)
4116 {
4117 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4118 }
4119 
4120 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4121 {
4122 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4123 }
4124 
4125 static inline bool netif_is_bond_master(const struct net_device *dev)
4126 {
4127 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4128 }
4129 
4130 static inline bool netif_is_bond_slave(const struct net_device *dev)
4131 {
4132 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4133 }
4134 
4135 static inline bool netif_supports_nofcs(struct net_device *dev)
4136 {
4137 	return dev->priv_flags & IFF_SUPP_NOFCS;
4138 }
4139 
4140 static inline bool netif_is_l3_master(const struct net_device *dev)
4141 {
4142 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4143 }
4144 
4145 static inline bool netif_is_l3_slave(const struct net_device *dev)
4146 {
4147 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4148 }
4149 
4150 static inline bool netif_is_bridge_master(const struct net_device *dev)
4151 {
4152 	return dev->priv_flags & IFF_EBRIDGE;
4153 }
4154 
4155 static inline bool netif_is_bridge_port(const struct net_device *dev)
4156 {
4157 	return dev->priv_flags & IFF_BRIDGE_PORT;
4158 }
4159 
4160 static inline bool netif_is_ovs_master(const struct net_device *dev)
4161 {
4162 	return dev->priv_flags & IFF_OPENVSWITCH;
4163 }
4164 
4165 static inline bool netif_is_team_master(const struct net_device *dev)
4166 {
4167 	return dev->priv_flags & IFF_TEAM;
4168 }
4169 
4170 static inline bool netif_is_team_port(const struct net_device *dev)
4171 {
4172 	return dev->priv_flags & IFF_TEAM_PORT;
4173 }
4174 
4175 static inline bool netif_is_lag_master(const struct net_device *dev)
4176 {
4177 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4178 }
4179 
4180 static inline bool netif_is_lag_port(const struct net_device *dev)
4181 {
4182 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4183 }
4184 
4185 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4186 {
4187 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4188 }
4189 
4190 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4191 static inline void netif_keep_dst(struct net_device *dev)
4192 {
4193 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4194 }
4195 
4196 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4197 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4198 {
4199 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4200 	return dev->priv_flags & IFF_MACSEC;
4201 }
4202 
4203 extern struct pernet_operations __net_initdata loopback_net_ops;
4204 
4205 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4206 
4207 /* netdev_printk helpers, similar to dev_printk */
4208 
4209 static inline const char *netdev_name(const struct net_device *dev)
4210 {
4211 	if (!dev->name[0] || strchr(dev->name, '%'))
4212 		return "(unnamed net_device)";
4213 	return dev->name;
4214 }
4215 
4216 static inline const char *netdev_reg_state(const struct net_device *dev)
4217 {
4218 	switch (dev->reg_state) {
4219 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4220 	case NETREG_REGISTERED: return "";
4221 	case NETREG_UNREGISTERING: return " (unregistering)";
4222 	case NETREG_UNREGISTERED: return " (unregistered)";
4223 	case NETREG_RELEASED: return " (released)";
4224 	case NETREG_DUMMY: return " (dummy)";
4225 	}
4226 
4227 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4228 	return " (unknown)";
4229 }
4230 
4231 __printf(3, 4)
4232 void netdev_printk(const char *level, const struct net_device *dev,
4233 		   const char *format, ...);
4234 __printf(2, 3)
4235 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4236 __printf(2, 3)
4237 void netdev_alert(const struct net_device *dev, const char *format, ...);
4238 __printf(2, 3)
4239 void netdev_crit(const struct net_device *dev, const char *format, ...);
4240 __printf(2, 3)
4241 void netdev_err(const struct net_device *dev, const char *format, ...);
4242 __printf(2, 3)
4243 void netdev_warn(const struct net_device *dev, const char *format, ...);
4244 __printf(2, 3)
4245 void netdev_notice(const struct net_device *dev, const char *format, ...);
4246 __printf(2, 3)
4247 void netdev_info(const struct net_device *dev, const char *format, ...);
4248 
4249 #define MODULE_ALIAS_NETDEV(device) \
4250 	MODULE_ALIAS("netdev-" device)
4251 
4252 #if defined(CONFIG_DYNAMIC_DEBUG)
4253 #define netdev_dbg(__dev, format, args...)			\
4254 do {								\
4255 	dynamic_netdev_dbg(__dev, format, ##args);		\
4256 } while (0)
4257 #elif defined(DEBUG)
4258 #define netdev_dbg(__dev, format, args...)			\
4259 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4260 #else
4261 #define netdev_dbg(__dev, format, args...)			\
4262 ({								\
4263 	if (0)							\
4264 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4265 })
4266 #endif
4267 
4268 #if defined(VERBOSE_DEBUG)
4269 #define netdev_vdbg	netdev_dbg
4270 #else
4271 
4272 #define netdev_vdbg(dev, format, args...)			\
4273 ({								\
4274 	if (0)							\
4275 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4276 	0;							\
4277 })
4278 #endif
4279 
4280 /*
4281  * netdev_WARN() acts like dev_printk(), but with the key difference
4282  * of using a WARN/WARN_ON to get the message out, including the
4283  * file/line information and a backtrace.
4284  */
4285 #define netdev_WARN(dev, format, args...)			\
4286 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4287 	     netdev_reg_state(dev), ##args)
4288 
4289 /* netif printk helpers, similar to netdev_printk */
4290 
4291 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4292 do {					  			\
4293 	if (netif_msg_##type(priv))				\
4294 		netdev_printk(level, (dev), fmt, ##args);	\
4295 } while (0)
4296 
4297 #define netif_level(level, priv, type, dev, fmt, args...)	\
4298 do {								\
4299 	if (netif_msg_##type(priv))				\
4300 		netdev_##level(dev, fmt, ##args);		\
4301 } while (0)
4302 
4303 #define netif_emerg(priv, type, dev, fmt, args...)		\
4304 	netif_level(emerg, priv, type, dev, fmt, ##args)
4305 #define netif_alert(priv, type, dev, fmt, args...)		\
4306 	netif_level(alert, priv, type, dev, fmt, ##args)
4307 #define netif_crit(priv, type, dev, fmt, args...)		\
4308 	netif_level(crit, priv, type, dev, fmt, ##args)
4309 #define netif_err(priv, type, dev, fmt, args...)		\
4310 	netif_level(err, priv, type, dev, fmt, ##args)
4311 #define netif_warn(priv, type, dev, fmt, args...)		\
4312 	netif_level(warn, priv, type, dev, fmt, ##args)
4313 #define netif_notice(priv, type, dev, fmt, args...)		\
4314 	netif_level(notice, priv, type, dev, fmt, ##args)
4315 #define netif_info(priv, type, dev, fmt, args...)		\
4316 	netif_level(info, priv, type, dev, fmt, ##args)
4317 
4318 #if defined(CONFIG_DYNAMIC_DEBUG)
4319 #define netif_dbg(priv, type, netdev, format, args...)		\
4320 do {								\
4321 	if (netif_msg_##type(priv))				\
4322 		dynamic_netdev_dbg(netdev, format, ##args);	\
4323 } while (0)
4324 #elif defined(DEBUG)
4325 #define netif_dbg(priv, type, dev, format, args...)		\
4326 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4327 #else
4328 #define netif_dbg(priv, type, dev, format, args...)			\
4329 ({									\
4330 	if (0)								\
4331 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4332 	0;								\
4333 })
4334 #endif
4335 
4336 #if defined(VERBOSE_DEBUG)
4337 #define netif_vdbg	netif_dbg
4338 #else
4339 #define netif_vdbg(priv, type, dev, format, args...)		\
4340 ({								\
4341 	if (0)							\
4342 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4343 	0;							\
4344 })
4345 #endif
4346 
4347 /*
4348  *	The list of packet types we will receive (as opposed to discard)
4349  *	and the routines to invoke.
4350  *
4351  *	Why 16. Because with 16 the only overlap we get on a hash of the
4352  *	low nibble of the protocol value is RARP/SNAP/X.25.
4353  *
4354  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4355  *             sure which should go first, but I bet it won't make much
4356  *             difference if we are running VLANs.  The good news is that
4357  *             this protocol won't be in the list unless compiled in, so
4358  *             the average user (w/out VLANs) will not be adversely affected.
4359  *             --BLG
4360  *
4361  *		0800	IP
4362  *		8100    802.1Q VLAN
4363  *		0001	802.3
4364  *		0002	AX.25
4365  *		0004	802.2
4366  *		8035	RARP
4367  *		0005	SNAP
4368  *		0805	X.25
4369  *		0806	ARP
4370  *		8137	IPX
4371  *		0009	Localtalk
4372  *		86DD	IPv6
4373  */
4374 #define PTYPE_HASH_SIZE	(16)
4375 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4376 
4377 #endif	/* _LINUX_NETDEVICE_H */
4378