xref: /openbmc/linux/include/linux/netdevice.h (revision 8684014d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36 
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42 
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50 
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 				    const struct ethtool_ops *ops);
65 
66 /* Backlog congestion levels */
67 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
68 #define NET_RX_DROP		1	/* packet dropped */
69 
70 /*
71  * Transmit return codes: transmit return codes originate from three different
72  * namespaces:
73  *
74  * - qdisc return codes
75  * - driver transmit return codes
76  * - errno values
77  *
78  * Drivers are allowed to return any one of those in their hard_start_xmit()
79  * function. Real network devices commonly used with qdiscs should only return
80  * the driver transmit return codes though - when qdiscs are used, the actual
81  * transmission happens asynchronously, so the value is not propagated to
82  * higher layers. Virtual network devices transmit synchronously, in this case
83  * the driver transmit return codes are consumed by dev_queue_xmit(), all
84  * others are propagated to higher layers.
85  */
86 
87 /* qdisc ->enqueue() return codes. */
88 #define NET_XMIT_SUCCESS	0x00
89 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
90 #define NET_XMIT_CN		0x02	/* congestion notification	*/
91 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
92 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
93 
94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
95  * indicates that the device will soon be dropping packets, or already drops
96  * some packets of the same priority; prompting us to send less aggressively. */
97 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
98 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
99 
100 /* Driver transmit return codes */
101 #define NETDEV_TX_MASK		0xf0
102 
103 enum netdev_tx {
104 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
105 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
106 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
107 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
108 };
109 typedef enum netdev_tx netdev_tx_t;
110 
111 /*
112  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114  */
115 static inline bool dev_xmit_complete(int rc)
116 {
117 	/*
118 	 * Positive cases with an skb consumed by a driver:
119 	 * - successful transmission (rc == NETDEV_TX_OK)
120 	 * - error while transmitting (rc < 0)
121 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
122 	 */
123 	if (likely(rc < NET_XMIT_MASK))
124 		return true;
125 
126 	return false;
127 }
128 
129 /*
130  *	Compute the worst case header length according to the protocols
131  *	used.
132  */
133 
134 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135 # if defined(CONFIG_MAC80211_MESH)
136 #  define LL_MAX_HEADER 128
137 # else
138 #  define LL_MAX_HEADER 96
139 # endif
140 #else
141 # define LL_MAX_HEADER 32
142 #endif
143 
144 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146 #define MAX_HEADER LL_MAX_HEADER
147 #else
148 #define MAX_HEADER (LL_MAX_HEADER + 48)
149 #endif
150 
151 /*
152  *	Old network device statistics. Fields are native words
153  *	(unsigned long) so they can be read and written atomically.
154  */
155 
156 struct net_device_stats {
157 	unsigned long	rx_packets;
158 	unsigned long	tx_packets;
159 	unsigned long	rx_bytes;
160 	unsigned long	tx_bytes;
161 	unsigned long	rx_errors;
162 	unsigned long	tx_errors;
163 	unsigned long	rx_dropped;
164 	unsigned long	tx_dropped;
165 	unsigned long	multicast;
166 	unsigned long	collisions;
167 	unsigned long	rx_length_errors;
168 	unsigned long	rx_over_errors;
169 	unsigned long	rx_crc_errors;
170 	unsigned long	rx_frame_errors;
171 	unsigned long	rx_fifo_errors;
172 	unsigned long	rx_missed_errors;
173 	unsigned long	tx_aborted_errors;
174 	unsigned long	tx_carrier_errors;
175 	unsigned long	tx_fifo_errors;
176 	unsigned long	tx_heartbeat_errors;
177 	unsigned long	tx_window_errors;
178 	unsigned long	rx_compressed;
179 	unsigned long	tx_compressed;
180 };
181 
182 
183 #include <linux/cache.h>
184 #include <linux/skbuff.h>
185 
186 #ifdef CONFIG_RPS
187 #include <linux/static_key.h>
188 extern struct static_key rps_needed;
189 #endif
190 
191 struct neighbour;
192 struct neigh_parms;
193 struct sk_buff;
194 
195 struct netdev_hw_addr {
196 	struct list_head	list;
197 	unsigned char		addr[MAX_ADDR_LEN];
198 	unsigned char		type;
199 #define NETDEV_HW_ADDR_T_LAN		1
200 #define NETDEV_HW_ADDR_T_SAN		2
201 #define NETDEV_HW_ADDR_T_SLAVE		3
202 #define NETDEV_HW_ADDR_T_UNICAST	4
203 #define NETDEV_HW_ADDR_T_MULTICAST	5
204 	bool			global_use;
205 	int			sync_cnt;
206 	int			refcount;
207 	int			synced;
208 	struct rcu_head		rcu_head;
209 };
210 
211 struct netdev_hw_addr_list {
212 	struct list_head	list;
213 	int			count;
214 };
215 
216 #define netdev_hw_addr_list_count(l) ((l)->count)
217 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218 #define netdev_hw_addr_list_for_each(ha, l) \
219 	list_for_each_entry(ha, &(l)->list, list)
220 
221 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223 #define netdev_for_each_uc_addr(ha, dev) \
224 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225 
226 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228 #define netdev_for_each_mc_addr(ha, dev) \
229 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230 
231 struct hh_cache {
232 	u16		hh_len;
233 	u16		__pad;
234 	seqlock_t	hh_lock;
235 
236 	/* cached hardware header; allow for machine alignment needs.        */
237 #define HH_DATA_MOD	16
238 #define HH_DATA_OFF(__len) \
239 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240 #define HH_DATA_ALIGN(__len) \
241 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243 };
244 
245 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246  * Alternative is:
247  *   dev->hard_header_len ? (dev->hard_header_len +
248  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249  *
250  * We could use other alignment values, but we must maintain the
251  * relationship HH alignment <= LL alignment.
252  */
253 #define LL_RESERVED_SPACE(dev) \
254 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257 
258 struct header_ops {
259 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
260 			   unsigned short type, const void *daddr,
261 			   const void *saddr, unsigned int len);
262 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
263 	int	(*rebuild)(struct sk_buff *skb);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	while (test_bit(NAPI_STATE_SCHED, &n->state))
524 		msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)	barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531 	__QUEUE_STATE_DRV_XOFF,
532 	__QUEUE_STATE_STACK_XOFF,
533 	__QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560 	struct net_device	*dev;
561 	struct Qdisc __rcu	*qdisc;
562 	struct Qdisc		*qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 	struct kobject		kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 	int			numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573 	int			xmit_lock_owner;
574 	/*
575 	 * please use this field instead of dev->trans_start
576 	 */
577 	unsigned long		trans_start;
578 
579 	/*
580 	 * Number of TX timeouts for this queue
581 	 * (/sys/class/net/DEV/Q/trans_timeout)
582 	 */
583 	unsigned long		trans_timeout;
584 
585 	unsigned long		state;
586 
587 #ifdef CONFIG_BQL
588 	struct dql		dql;
589 #endif
590 } ____cacheline_aligned_in_smp;
591 
592 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
593 {
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	return q->numa_node;
596 #else
597 	return NUMA_NO_NODE;
598 #endif
599 }
600 
601 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
602 {
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 	q->numa_node = node;
605 #endif
606 }
607 
608 #ifdef CONFIG_RPS
609 /*
610  * This structure holds an RPS map which can be of variable length.  The
611  * map is an array of CPUs.
612  */
613 struct rps_map {
614 	unsigned int len;
615 	struct rcu_head rcu;
616 	u16 cpus[0];
617 };
618 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
619 
620 /*
621  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
622  * tail pointer for that CPU's input queue at the time of last enqueue, and
623  * a hardware filter index.
624  */
625 struct rps_dev_flow {
626 	u16 cpu;
627 	u16 filter;
628 	unsigned int last_qtail;
629 };
630 #define RPS_NO_FILTER 0xffff
631 
632 /*
633  * The rps_dev_flow_table structure contains a table of flow mappings.
634  */
635 struct rps_dev_flow_table {
636 	unsigned int mask;
637 	struct rcu_head rcu;
638 	struct rps_dev_flow flows[0];
639 };
640 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
641     ((_num) * sizeof(struct rps_dev_flow)))
642 
643 /*
644  * The rps_sock_flow_table contains mappings of flows to the last CPU
645  * on which they were processed by the application (set in recvmsg).
646  */
647 struct rps_sock_flow_table {
648 	unsigned int mask;
649 	u16 ents[0];
650 };
651 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
652     ((_num) * sizeof(u16)))
653 
654 #define RPS_NO_CPU 0xffff
655 
656 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
657 					u32 hash)
658 {
659 	if (table && hash) {
660 		unsigned int cpu, index = hash & table->mask;
661 
662 		/* We only give a hint, preemption can change cpu under us */
663 		cpu = raw_smp_processor_id();
664 
665 		if (table->ents[index] != cpu)
666 			table->ents[index] = cpu;
667 	}
668 }
669 
670 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
671 				       u32 hash)
672 {
673 	if (table && hash)
674 		table->ents[hash & table->mask] = RPS_NO_CPU;
675 }
676 
677 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
678 
679 #ifdef CONFIG_RFS_ACCEL
680 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
681 			 u16 filter_id);
682 #endif
683 #endif /* CONFIG_RPS */
684 
685 /* This structure contains an instance of an RX queue. */
686 struct netdev_rx_queue {
687 #ifdef CONFIG_RPS
688 	struct rps_map __rcu		*rps_map;
689 	struct rps_dev_flow_table __rcu	*rps_flow_table;
690 #endif
691 	struct kobject			kobj;
692 	struct net_device		*dev;
693 } ____cacheline_aligned_in_smp;
694 
695 /*
696  * RX queue sysfs structures and functions.
697  */
698 struct rx_queue_attribute {
699 	struct attribute attr;
700 	ssize_t (*show)(struct netdev_rx_queue *queue,
701 	    struct rx_queue_attribute *attr, char *buf);
702 	ssize_t (*store)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
704 };
705 
706 #ifdef CONFIG_XPS
707 /*
708  * This structure holds an XPS map which can be of variable length.  The
709  * map is an array of queues.
710  */
711 struct xps_map {
712 	unsigned int len;
713 	unsigned int alloc_len;
714 	struct rcu_head rcu;
715 	u16 queues[0];
716 };
717 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
718 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
719     / sizeof(u16))
720 
721 /*
722  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
723  */
724 struct xps_dev_maps {
725 	struct rcu_head rcu;
726 	struct xps_map __rcu *cpu_map[0];
727 };
728 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
729     (nr_cpu_ids * sizeof(struct xps_map *)))
730 #endif /* CONFIG_XPS */
731 
732 #define TC_MAX_QUEUE	16
733 #define TC_BITMASK	15
734 /* HW offloaded queuing disciplines txq count and offset maps */
735 struct netdev_tc_txq {
736 	u16 count;
737 	u16 offset;
738 };
739 
740 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
741 /*
742  * This structure is to hold information about the device
743  * configured to run FCoE protocol stack.
744  */
745 struct netdev_fcoe_hbainfo {
746 	char	manufacturer[64];
747 	char	serial_number[64];
748 	char	hardware_version[64];
749 	char	driver_version[64];
750 	char	optionrom_version[64];
751 	char	firmware_version[64];
752 	char	model[256];
753 	char	model_description[256];
754 };
755 #endif
756 
757 #define MAX_PHYS_ITEM_ID_LEN 32
758 
759 /* This structure holds a unique identifier to identify some
760  * physical item (port for example) used by a netdevice.
761  */
762 struct netdev_phys_item_id {
763 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
764 	unsigned char id_len;
765 };
766 
767 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
768 				       struct sk_buff *skb);
769 
770 /*
771  * This structure defines the management hooks for network devices.
772  * The following hooks can be defined; unless noted otherwise, they are
773  * optional and can be filled with a null pointer.
774  *
775  * int (*ndo_init)(struct net_device *dev);
776  *     This function is called once when network device is registered.
777  *     The network device can use this to any late stage initializaton
778  *     or semantic validattion. It can fail with an error code which will
779  *     be propogated back to register_netdev
780  *
781  * void (*ndo_uninit)(struct net_device *dev);
782  *     This function is called when device is unregistered or when registration
783  *     fails. It is not called if init fails.
784  *
785  * int (*ndo_open)(struct net_device *dev);
786  *     This function is called when network device transistions to the up
787  *     state.
788  *
789  * int (*ndo_stop)(struct net_device *dev);
790  *     This function is called when network device transistions to the down
791  *     state.
792  *
793  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
794  *                               struct net_device *dev);
795  *	Called when a packet needs to be transmitted.
796  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
797  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
798  *	Required can not be NULL.
799  *
800  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
801  *                         void *accel_priv, select_queue_fallback_t fallback);
802  *	Called to decide which queue to when device supports multiple
803  *	transmit queues.
804  *
805  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
806  *	This function is called to allow device receiver to make
807  *	changes to configuration when multicast or promiscious is enabled.
808  *
809  * void (*ndo_set_rx_mode)(struct net_device *dev);
810  *	This function is called device changes address list filtering.
811  *	If driver handles unicast address filtering, it should set
812  *	IFF_UNICAST_FLT to its priv_flags.
813  *
814  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
815  *	This function  is called when the Media Access Control address
816  *	needs to be changed. If this interface is not defined, the
817  *	mac address can not be changed.
818  *
819  * int (*ndo_validate_addr)(struct net_device *dev);
820  *	Test if Media Access Control address is valid for the device.
821  *
822  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
823  *	Called when a user request an ioctl which can't be handled by
824  *	the generic interface code. If not defined ioctl's return
825  *	not supported error code.
826  *
827  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
828  *	Used to set network devices bus interface parameters. This interface
829  *	is retained for legacy reason, new devices should use the bus
830  *	interface (PCI) for low level management.
831  *
832  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
833  *	Called when a user wants to change the Maximum Transfer Unit
834  *	of a device. If not defined, any request to change MTU will
835  *	will return an error.
836  *
837  * void (*ndo_tx_timeout)(struct net_device *dev);
838  *	Callback uses when the transmitter has not made any progress
839  *	for dev->watchdog ticks.
840  *
841  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
842  *                      struct rtnl_link_stats64 *storage);
843  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
844  *	Called when a user wants to get the network device usage
845  *	statistics. Drivers must do one of the following:
846  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
847  *	   rtnl_link_stats64 structure passed by the caller.
848  *	2. Define @ndo_get_stats to update a net_device_stats structure
849  *	   (which should normally be dev->stats) and return a pointer to
850  *	   it. The structure may be changed asynchronously only if each
851  *	   field is written atomically.
852  *	3. Update dev->stats asynchronously and atomically, and define
853  *	   neither operation.
854  *
855  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
856  *	If device support VLAN filtering this function is called when a
857  *	VLAN id is registered.
858  *
859  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
860  *	If device support VLAN filtering this function is called when a
861  *	VLAN id is unregistered.
862  *
863  * void (*ndo_poll_controller)(struct net_device *dev);
864  *
865  *	SR-IOV management functions.
866  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
867  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
868  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
869  *			  int max_tx_rate);
870  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
871  * int (*ndo_get_vf_config)(struct net_device *dev,
872  *			    int vf, struct ifla_vf_info *ivf);
873  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
874  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
875  *			  struct nlattr *port[]);
876  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
877  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
878  * 	Called to setup 'tc' number of traffic classes in the net device. This
879  * 	is always called from the stack with the rtnl lock held and netif tx
880  * 	queues stopped. This allows the netdevice to perform queue management
881  * 	safely.
882  *
883  *	Fiber Channel over Ethernet (FCoE) offload functions.
884  * int (*ndo_fcoe_enable)(struct net_device *dev);
885  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
886  *	so the underlying device can perform whatever needed configuration or
887  *	initialization to support acceleration of FCoE traffic.
888  *
889  * int (*ndo_fcoe_disable)(struct net_device *dev);
890  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
891  *	so the underlying device can perform whatever needed clean-ups to
892  *	stop supporting acceleration of FCoE traffic.
893  *
894  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
895  *			     struct scatterlist *sgl, unsigned int sgc);
896  *	Called when the FCoE Initiator wants to initialize an I/O that
897  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
898  *	perform necessary setup and returns 1 to indicate the device is set up
899  *	successfully to perform DDP on this I/O, otherwise this returns 0.
900  *
901  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
902  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
903  *	indicated by the FC exchange id 'xid', so the underlying device can
904  *	clean up and reuse resources for later DDP requests.
905  *
906  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
907  *			      struct scatterlist *sgl, unsigned int sgc);
908  *	Called when the FCoE Target wants to initialize an I/O that
909  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
910  *	perform necessary setup and returns 1 to indicate the device is set up
911  *	successfully to perform DDP on this I/O, otherwise this returns 0.
912  *
913  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
914  *			       struct netdev_fcoe_hbainfo *hbainfo);
915  *	Called when the FCoE Protocol stack wants information on the underlying
916  *	device. This information is utilized by the FCoE protocol stack to
917  *	register attributes with Fiber Channel management service as per the
918  *	FC-GS Fabric Device Management Information(FDMI) specification.
919  *
920  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
921  *	Called when the underlying device wants to override default World Wide
922  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
923  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
924  *	protocol stack to use.
925  *
926  *	RFS acceleration.
927  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
928  *			    u16 rxq_index, u32 flow_id);
929  *	Set hardware filter for RFS.  rxq_index is the target queue index;
930  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
931  *	Return the filter ID on success, or a negative error code.
932  *
933  *	Slave management functions (for bridge, bonding, etc).
934  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
935  *	Called to make another netdev an underling.
936  *
937  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
938  *	Called to release previously enslaved netdev.
939  *
940  *      Feature/offload setting functions.
941  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
942  *		netdev_features_t features);
943  *	Adjusts the requested feature flags according to device-specific
944  *	constraints, and returns the resulting flags. Must not modify
945  *	the device state.
946  *
947  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
948  *	Called to update device configuration to new features. Passed
949  *	feature set might be less than what was returned by ndo_fix_features()).
950  *	Must return >0 or -errno if it changed dev->features itself.
951  *
952  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
953  *		      struct net_device *dev,
954  *		      const unsigned char *addr, u16 vid, u16 flags)
955  *	Adds an FDB entry to dev for addr.
956  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
957  *		      struct net_device *dev,
958  *		      const unsigned char *addr, u16 vid)
959  *	Deletes the FDB entry from dev coresponding to addr.
960  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
961  *		       struct net_device *dev, struct net_device *filter_dev,
962  *		       int idx)
963  *	Used to add FDB entries to dump requests. Implementers should add
964  *	entries to skb and update idx with the number of entries.
965  *
966  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
967  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
968  *			     struct net_device *dev, u32 filter_mask)
969  *
970  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
971  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
972  *	which do not represent real hardware may define this to allow their
973  *	userspace components to manage their virtual carrier state. Devices
974  *	that determine carrier state from physical hardware properties (eg
975  *	network cables) or protocol-dependent mechanisms (eg
976  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
977  *
978  * int (*ndo_get_phys_port_id)(struct net_device *dev,
979  *			       struct netdev_phys_item_id *ppid);
980  *	Called to get ID of physical port of this device. If driver does
981  *	not implement this, it is assumed that the hw is not able to have
982  *	multiple net devices on single physical port.
983  *
984  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
985  *			      sa_family_t sa_family, __be16 port);
986  *	Called by vxlan to notiy a driver about the UDP port and socket
987  *	address family that vxlan is listnening to. It is called only when
988  *	a new port starts listening. The operation is protected by the
989  *	vxlan_net->sock_lock.
990  *
991  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
992  *			      sa_family_t sa_family, __be16 port);
993  *	Called by vxlan to notify the driver about a UDP port and socket
994  *	address family that vxlan is not listening to anymore. The operation
995  *	is protected by the vxlan_net->sock_lock.
996  *
997  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
998  *				 struct net_device *dev)
999  *	Called by upper layer devices to accelerate switching or other
1000  *	station functionality into hardware. 'pdev is the lowerdev
1001  *	to use for the offload and 'dev' is the net device that will
1002  *	back the offload. Returns a pointer to the private structure
1003  *	the upper layer will maintain.
1004  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1005  *	Called by upper layer device to delete the station created
1006  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1007  *	the station and priv is the structure returned by the add
1008  *	operation.
1009  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1010  *				      struct net_device *dev,
1011  *				      void *priv);
1012  *	Callback to use for xmit over the accelerated station. This
1013  *	is used in place of ndo_start_xmit on accelerated net
1014  *	devices.
1015  * bool	(*ndo_gso_check) (struct sk_buff *skb,
1016  *			  struct net_device *dev);
1017  *	Called by core transmit path to determine if device is capable of
1018  *	performing GSO on a packet. The device returns true if it is
1019  *	able to GSO the packet, false otherwise. If the return value is
1020  *	false the stack will do software GSO.
1021  *
1022  * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1023  *				   struct netdev_phys_item_id *psid);
1024  *	Called to get an ID of the switch chip this port is part of.
1025  *	If driver implements this, it indicates that it represents a port
1026  *	of a switch chip.
1027  * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1028  *	Called to notify switch device port of bridge port STP
1029  *	state change.
1030  */
1031 struct net_device_ops {
1032 	int			(*ndo_init)(struct net_device *dev);
1033 	void			(*ndo_uninit)(struct net_device *dev);
1034 	int			(*ndo_open)(struct net_device *dev);
1035 	int			(*ndo_stop)(struct net_device *dev);
1036 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1037 						   struct net_device *dev);
1038 	u16			(*ndo_select_queue)(struct net_device *dev,
1039 						    struct sk_buff *skb,
1040 						    void *accel_priv,
1041 						    select_queue_fallback_t fallback);
1042 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1043 						       int flags);
1044 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1045 	int			(*ndo_set_mac_address)(struct net_device *dev,
1046 						       void *addr);
1047 	int			(*ndo_validate_addr)(struct net_device *dev);
1048 	int			(*ndo_do_ioctl)(struct net_device *dev,
1049 					        struct ifreq *ifr, int cmd);
1050 	int			(*ndo_set_config)(struct net_device *dev,
1051 					          struct ifmap *map);
1052 	int			(*ndo_change_mtu)(struct net_device *dev,
1053 						  int new_mtu);
1054 	int			(*ndo_neigh_setup)(struct net_device *dev,
1055 						   struct neigh_parms *);
1056 	void			(*ndo_tx_timeout) (struct net_device *dev);
1057 
1058 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1059 						     struct rtnl_link_stats64 *storage);
1060 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1061 
1062 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1063 						       __be16 proto, u16 vid);
1064 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1065 						        __be16 proto, u16 vid);
1066 #ifdef CONFIG_NET_POLL_CONTROLLER
1067 	void                    (*ndo_poll_controller)(struct net_device *dev);
1068 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1069 						     struct netpoll_info *info);
1070 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1071 #endif
1072 #ifdef CONFIG_NET_RX_BUSY_POLL
1073 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1074 #endif
1075 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1076 						  int queue, u8 *mac);
1077 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1078 						   int queue, u16 vlan, u8 qos);
1079 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1080 						   int vf, int min_tx_rate,
1081 						   int max_tx_rate);
1082 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1083 						       int vf, bool setting);
1084 	int			(*ndo_get_vf_config)(struct net_device *dev,
1085 						     int vf,
1086 						     struct ifla_vf_info *ivf);
1087 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1088 							 int vf, int link_state);
1089 	int			(*ndo_set_vf_port)(struct net_device *dev,
1090 						   int vf,
1091 						   struct nlattr *port[]);
1092 	int			(*ndo_get_vf_port)(struct net_device *dev,
1093 						   int vf, struct sk_buff *skb);
1094 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1095 #if IS_ENABLED(CONFIG_FCOE)
1096 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1097 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1098 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1099 						      u16 xid,
1100 						      struct scatterlist *sgl,
1101 						      unsigned int sgc);
1102 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1103 						     u16 xid);
1104 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1105 						       u16 xid,
1106 						       struct scatterlist *sgl,
1107 						       unsigned int sgc);
1108 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1109 							struct netdev_fcoe_hbainfo *hbainfo);
1110 #endif
1111 
1112 #if IS_ENABLED(CONFIG_LIBFCOE)
1113 #define NETDEV_FCOE_WWNN 0
1114 #define NETDEV_FCOE_WWPN 1
1115 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1116 						    u64 *wwn, int type);
1117 #endif
1118 
1119 #ifdef CONFIG_RFS_ACCEL
1120 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1121 						     const struct sk_buff *skb,
1122 						     u16 rxq_index,
1123 						     u32 flow_id);
1124 #endif
1125 	int			(*ndo_add_slave)(struct net_device *dev,
1126 						 struct net_device *slave_dev);
1127 	int			(*ndo_del_slave)(struct net_device *dev,
1128 						 struct net_device *slave_dev);
1129 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1130 						    netdev_features_t features);
1131 	int			(*ndo_set_features)(struct net_device *dev,
1132 						    netdev_features_t features);
1133 	int			(*ndo_neigh_construct)(struct neighbour *n);
1134 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1135 
1136 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1137 					       struct nlattr *tb[],
1138 					       struct net_device *dev,
1139 					       const unsigned char *addr,
1140 					       u16 vid,
1141 					       u16 flags);
1142 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1143 					       struct nlattr *tb[],
1144 					       struct net_device *dev,
1145 					       const unsigned char *addr,
1146 					       u16 vid);
1147 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1148 						struct netlink_callback *cb,
1149 						struct net_device *dev,
1150 						struct net_device *filter_dev,
1151 						int idx);
1152 
1153 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1154 						      struct nlmsghdr *nlh);
1155 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1156 						      u32 pid, u32 seq,
1157 						      struct net_device *dev,
1158 						      u32 filter_mask);
1159 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1160 						      struct nlmsghdr *nlh);
1161 	int			(*ndo_change_carrier)(struct net_device *dev,
1162 						      bool new_carrier);
1163 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1164 							struct netdev_phys_item_id *ppid);
1165 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1166 						      sa_family_t sa_family,
1167 						      __be16 port);
1168 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1169 						      sa_family_t sa_family,
1170 						      __be16 port);
1171 
1172 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1173 							struct net_device *dev);
1174 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1175 							void *priv);
1176 
1177 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1178 							struct net_device *dev,
1179 							void *priv);
1180 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1181 	bool			(*ndo_gso_check) (struct sk_buff *skb,
1182 						  struct net_device *dev);
1183 #ifdef CONFIG_NET_SWITCHDEV
1184 	int			(*ndo_switch_parent_id_get)(struct net_device *dev,
1185 							    struct netdev_phys_item_id *psid);
1186 	int			(*ndo_switch_port_stp_update)(struct net_device *dev,
1187 							      u8 state);
1188 #endif
1189 };
1190 
1191 /**
1192  * enum net_device_priv_flags - &struct net_device priv_flags
1193  *
1194  * These are the &struct net_device, they are only set internally
1195  * by drivers and used in the kernel. These flags are invisible to
1196  * userspace, this means that the order of these flags can change
1197  * during any kernel release.
1198  *
1199  * You should have a pretty good reason to be extending these flags.
1200  *
1201  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1202  * @IFF_EBRIDGE: Ethernet bridging device
1203  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1204  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1205  * @IFF_MASTER_ALB: bonding master, balance-alb
1206  * @IFF_BONDING: bonding master or slave
1207  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1208  * @IFF_ISATAP: ISATAP interface (RFC4214)
1209  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1210  * @IFF_WAN_HDLC: WAN HDLC device
1211  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1212  *	release skb->dst
1213  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1214  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1215  * @IFF_MACVLAN_PORT: device used as macvlan port
1216  * @IFF_BRIDGE_PORT: device used as bridge port
1217  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1218  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1219  * @IFF_UNICAST_FLT: Supports unicast filtering
1220  * @IFF_TEAM_PORT: device used as team port
1221  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1222  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1223  *	change when it's running
1224  * @IFF_MACVLAN: Macvlan device
1225  */
1226 enum netdev_priv_flags {
1227 	IFF_802_1Q_VLAN			= 1<<0,
1228 	IFF_EBRIDGE			= 1<<1,
1229 	IFF_SLAVE_INACTIVE		= 1<<2,
1230 	IFF_MASTER_8023AD		= 1<<3,
1231 	IFF_MASTER_ALB			= 1<<4,
1232 	IFF_BONDING			= 1<<5,
1233 	IFF_SLAVE_NEEDARP		= 1<<6,
1234 	IFF_ISATAP			= 1<<7,
1235 	IFF_MASTER_ARPMON		= 1<<8,
1236 	IFF_WAN_HDLC			= 1<<9,
1237 	IFF_XMIT_DST_RELEASE		= 1<<10,
1238 	IFF_DONT_BRIDGE			= 1<<11,
1239 	IFF_DISABLE_NETPOLL		= 1<<12,
1240 	IFF_MACVLAN_PORT		= 1<<13,
1241 	IFF_BRIDGE_PORT			= 1<<14,
1242 	IFF_OVS_DATAPATH		= 1<<15,
1243 	IFF_TX_SKB_SHARING		= 1<<16,
1244 	IFF_UNICAST_FLT			= 1<<17,
1245 	IFF_TEAM_PORT			= 1<<18,
1246 	IFF_SUPP_NOFCS			= 1<<19,
1247 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1248 	IFF_MACVLAN			= 1<<21,
1249 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1250 	IFF_IPVLAN_MASTER		= 1<<23,
1251 	IFF_IPVLAN_SLAVE		= 1<<24,
1252 };
1253 
1254 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1255 #define IFF_EBRIDGE			IFF_EBRIDGE
1256 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1257 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1258 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1259 #define IFF_BONDING			IFF_BONDING
1260 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1261 #define IFF_ISATAP			IFF_ISATAP
1262 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1263 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1264 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1265 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1266 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1267 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1268 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1269 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1270 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1271 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1272 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1273 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1274 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1275 #define IFF_MACVLAN			IFF_MACVLAN
1276 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1277 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1278 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1279 
1280 /**
1281  *	struct net_device - The DEVICE structure.
1282  *		Actually, this whole structure is a big mistake.  It mixes I/O
1283  *		data with strictly "high-level" data, and it has to know about
1284  *		almost every data structure used in the INET module.
1285  *
1286  *	@name:	This is the first field of the "visible" part of this structure
1287  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1288  *	 	of the interface.
1289  *
1290  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1291  *	@ifalias:	SNMP alias
1292  *	@mem_end:	Shared memory end
1293  *	@mem_start:	Shared memory start
1294  *	@base_addr:	Device I/O address
1295  *	@irq:		Device IRQ number
1296  *
1297  *	@state:		Generic network queuing layer state, see netdev_state_t
1298  *	@dev_list:	The global list of network devices
1299  *	@napi_list:	List entry, that is used for polling napi devices
1300  *	@unreg_list:	List entry, that is used, when we are unregistering the
1301  *			device, see the function unregister_netdev
1302  *	@close_list:	List entry, that is used, when we are closing the device
1303  *
1304  *	@adj_list:	Directly linked devices, like slaves for bonding
1305  *	@all_adj_list:	All linked devices, *including* neighbours
1306  *	@features:	Currently active device features
1307  *	@hw_features:	User-changeable features
1308  *
1309  *	@wanted_features:	User-requested features
1310  *	@vlan_features:		Mask of features inheritable by VLAN devices
1311  *
1312  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1313  *				This field indicates what encapsulation
1314  *				offloads the hardware is capable of doing,
1315  *				and drivers will need to set them appropriately.
1316  *
1317  *	@mpls_features:	Mask of features inheritable by MPLS
1318  *
1319  *	@ifindex:	interface index
1320  *	@iflink:	unique device identifier
1321  *
1322  *	@stats:		Statistics struct, which was left as a legacy, use
1323  *			rtnl_link_stats64 instead
1324  *
1325  *	@rx_dropped:	Dropped packets by core network,
1326  *			do not use this in drivers
1327  *	@tx_dropped:	Dropped packets by core network,
1328  *			do not use this in drivers
1329  *
1330  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1331  *
1332  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1333  *				instead of ioctl,
1334  *				see <net/iw_handler.h> for details.
1335  *	@wireless_data:	Instance data managed by the core of wireless extensions
1336  *
1337  *	@netdev_ops:	Includes several pointers to callbacks,
1338  *			if one wants to override the ndo_*() functions
1339  *	@ethtool_ops:	Management operations
1340  *	@fwd_ops:	Management operations
1341  *	@header_ops:	Includes callbacks for creating,parsing,rebuilding,etc
1342  *			of Layer 2 headers.
1343  *
1344  *	@flags:		Interface flags (a la BSD)
1345  *	@priv_flags:	Like 'flags' but invisible to userspace,
1346  *			see if.h for the definitions
1347  *	@gflags:	Global flags ( kept as legacy )
1348  *	@padded:	How much padding added by alloc_netdev()
1349  *	@operstate:	RFC2863 operstate
1350  *	@link_mode:	Mapping policy to operstate
1351  *	@if_port:	Selectable AUI, TP, ...
1352  *	@dma:		DMA channel
1353  *	@mtu:		Interface MTU value
1354  *	@type:		Interface hardware type
1355  *	@hard_header_len: Hardware header length
1356  *
1357  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1358  *			  cases can this be guaranteed
1359  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1360  *			  cases can this be guaranteed. Some cases also use
1361  *			  LL_MAX_HEADER instead to allocate the skb
1362  *
1363  *	interface address info:
1364  *
1365  * 	@perm_addr:		Permanent hw address
1366  * 	@addr_assign_type:	Hw address assignment type
1367  * 	@addr_len:		Hardware address length
1368  * 	@neigh_priv_len;	Used in neigh_alloc(),
1369  * 				initialized only in atm/clip.c
1370  * 	@dev_id:		Used to differentiate devices that share
1371  * 				the same link layer address
1372  * 	@dev_port:		Used to differentiate devices that share
1373  * 				the same function
1374  *	@addr_list_lock:	XXX: need comments on this one
1375  *	@uc:			unicast mac addresses
1376  *	@mc:			multicast mac addresses
1377  *	@dev_addrs:		list of device hw addresses
1378  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1379  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1380  *				has been enabled due to the need to listen to
1381  *				additional unicast addresses in a device that
1382  *				does not implement ndo_set_rx_mode()
1383  *	@promiscuity:		Number of times, the NIC is told to work in
1384  *				Promiscuous mode, if it becomes 0 the NIC will
1385  *				exit from working in Promiscuous mode
1386  *	@allmulti:		Counter, enables or disables allmulticast mode
1387  *
1388  *	@vlan_info:	VLAN info
1389  *	@dsa_ptr:	dsa specific data
1390  *	@tipc_ptr:	TIPC specific data
1391  *	@atalk_ptr:	AppleTalk link
1392  *	@ip_ptr:	IPv4 specific data
1393  *	@dn_ptr:	DECnet specific data
1394  *	@ip6_ptr:	IPv6 specific data
1395  *	@ax25_ptr:	AX.25 specific data
1396  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1397  *
1398  *	@last_rx:	Time of last Rx
1399  *	@dev_addr:	Hw address (before bcast,
1400  *			because most packets are unicast)
1401  *
1402  *	@_rx:			Array of RX queues
1403  *	@num_rx_queues:		Number of RX queues
1404  *				allocated at register_netdev() time
1405  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1406  *
1407  *	@rx_handler:		handler for received packets
1408  *	@rx_handler_data: 	XXX: need comments on this one
1409  *	@ingress_queue:		XXX: need comments on this one
1410  *	@broadcast:		hw bcast address
1411  *
1412  *	@_tx:			Array of TX queues
1413  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1414  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1415  *	@qdisc:			Root qdisc from userspace point of view
1416  *	@tx_queue_len:		Max frames per queue allowed
1417  *	@tx_global_lock: 	XXX: need comments on this one
1418  *
1419  *	@xps_maps:	XXX: need comments on this one
1420  *
1421  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1422  *			indexed by RX queue number. Assigned by driver.
1423  *			This must only be set if the ndo_rx_flow_steer
1424  *			operation is defined
1425  *
1426  *	@trans_start:		Time (in jiffies) of last Tx
1427  *	@watchdog_timeo:	Represents the timeout that is used by
1428  *				the watchdog ( see dev_watchdog() )
1429  *	@watchdog_timer:	List of timers
1430  *
1431  *	@pcpu_refcnt:		Number of references to this device
1432  *	@todo_list:		Delayed register/unregister
1433  *	@index_hlist:		Device index hash chain
1434  *	@link_watch_list:	XXX: need comments on this one
1435  *
1436  *	@reg_state:		Register/unregister state machine
1437  *	@dismantle:		Device is going to be freed
1438  *	@rtnl_link_state:	This enum represents the phases of creating
1439  *				a new link
1440  *
1441  *	@destructor:		Called from unregister,
1442  *				can be used to call free_netdev
1443  *	@npinfo:		XXX: need comments on this one
1444  * 	@nd_net:		Network namespace this network device is inside
1445  *
1446  * 	@ml_priv:	Mid-layer private
1447  * 	@lstats:	Loopback statistics
1448  * 	@tstats:	Tunnel statistics
1449  * 	@dstats:	Dummy statistics
1450  * 	@vstats:	Virtual ethernet statistics
1451  *
1452  *	@garp_port:	GARP
1453  *	@mrp_port:	MRP
1454  *
1455  *	@dev:		Class/net/name entry
1456  *	@sysfs_groups:	Space for optional device, statistics and wireless
1457  *			sysfs groups
1458  *
1459  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1460  *	@rtnl_link_ops:	Rtnl_link_ops
1461  *
1462  *	@gso_max_size:	Maximum size of generic segmentation offload
1463  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1464  *			NIC for GSO
1465  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1466  *			NIC for GSO
1467  *
1468  *	@dcbnl_ops:	Data Center Bridging netlink ops
1469  *	@num_tc:	Number of traffic classes in the net device
1470  *	@tc_to_txq:	XXX: need comments on this one
1471  *	@prio_tc_map	XXX: need comments on this one
1472  *
1473  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1474  *
1475  *	@priomap:	XXX: need comments on this one
1476  *	@phydev:	Physical device may attach itself
1477  *			for hardware timestamping
1478  *
1479  *	@qdisc_tx_busylock:	XXX: need comments on this one
1480  *
1481  *	@group:		The group, that the device belongs to
1482  *	@pm_qos_req:	Power Management QoS object
1483  *
1484  *	FIXME: cleanup struct net_device such that network protocol info
1485  *	moves out.
1486  */
1487 
1488 struct net_device {
1489 	char			name[IFNAMSIZ];
1490 	struct hlist_node	name_hlist;
1491 	char 			*ifalias;
1492 	/*
1493 	 *	I/O specific fields
1494 	 *	FIXME: Merge these and struct ifmap into one
1495 	 */
1496 	unsigned long		mem_end;
1497 	unsigned long		mem_start;
1498 	unsigned long		base_addr;
1499 	int			irq;
1500 
1501 	/*
1502 	 *	Some hardware also needs these fields (state,dev_list,
1503 	 *	napi_list,unreg_list,close_list) but they are not
1504 	 *	part of the usual set specified in Space.c.
1505 	 */
1506 
1507 	unsigned long		state;
1508 
1509 	struct list_head	dev_list;
1510 	struct list_head	napi_list;
1511 	struct list_head	unreg_list;
1512 	struct list_head	close_list;
1513 
1514 	struct {
1515 		struct list_head upper;
1516 		struct list_head lower;
1517 	} adj_list;
1518 
1519 	struct {
1520 		struct list_head upper;
1521 		struct list_head lower;
1522 	} all_adj_list;
1523 
1524 	netdev_features_t	features;
1525 	netdev_features_t	hw_features;
1526 	netdev_features_t	wanted_features;
1527 	netdev_features_t	vlan_features;
1528 	netdev_features_t	hw_enc_features;
1529 	netdev_features_t	mpls_features;
1530 
1531 	int			ifindex;
1532 	int			iflink;
1533 
1534 	struct net_device_stats	stats;
1535 
1536 	atomic_long_t		rx_dropped;
1537 	atomic_long_t		tx_dropped;
1538 
1539 	atomic_t		carrier_changes;
1540 
1541 #ifdef CONFIG_WIRELESS_EXT
1542 	const struct iw_handler_def *	wireless_handlers;
1543 	struct iw_public_data *	wireless_data;
1544 #endif
1545 	const struct net_device_ops *netdev_ops;
1546 	const struct ethtool_ops *ethtool_ops;
1547 	const struct forwarding_accel_ops *fwd_ops;
1548 
1549 	const struct header_ops *header_ops;
1550 
1551 	unsigned int		flags;
1552 	unsigned int		priv_flags;
1553 
1554 	unsigned short		gflags;
1555 	unsigned short		padded;
1556 
1557 	unsigned char		operstate;
1558 	unsigned char		link_mode;
1559 
1560 	unsigned char		if_port;
1561 	unsigned char		dma;
1562 
1563 	unsigned int		mtu;
1564 	unsigned short		type;
1565 	unsigned short		hard_header_len;
1566 
1567 	unsigned short		needed_headroom;
1568 	unsigned short		needed_tailroom;
1569 
1570 	/* Interface address info. */
1571 	unsigned char		perm_addr[MAX_ADDR_LEN];
1572 	unsigned char		addr_assign_type;
1573 	unsigned char		addr_len;
1574 	unsigned short		neigh_priv_len;
1575 	unsigned short          dev_id;
1576 	unsigned short          dev_port;
1577 	spinlock_t		addr_list_lock;
1578 	struct netdev_hw_addr_list	uc;
1579 	struct netdev_hw_addr_list	mc;
1580 	struct netdev_hw_addr_list	dev_addrs;
1581 
1582 #ifdef CONFIG_SYSFS
1583 	struct kset		*queues_kset;
1584 #endif
1585 
1586 	unsigned char		name_assign_type;
1587 
1588 	bool			uc_promisc;
1589 	unsigned int		promiscuity;
1590 	unsigned int		allmulti;
1591 
1592 
1593 	/* Protocol specific pointers */
1594 
1595 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1596 	struct vlan_info __rcu	*vlan_info;
1597 #endif
1598 #if IS_ENABLED(CONFIG_NET_DSA)
1599 	struct dsa_switch_tree	*dsa_ptr;
1600 #endif
1601 #if IS_ENABLED(CONFIG_TIPC)
1602 	struct tipc_bearer __rcu *tipc_ptr;
1603 #endif
1604 	void 			*atalk_ptr;
1605 	struct in_device __rcu	*ip_ptr;
1606 	struct dn_dev __rcu     *dn_ptr;
1607 	struct inet6_dev __rcu	*ip6_ptr;
1608 	void			*ax25_ptr;
1609 	struct wireless_dev	*ieee80211_ptr;
1610 	struct wpan_dev		*ieee802154_ptr;
1611 
1612 /*
1613  * Cache lines mostly used on receive path (including eth_type_trans())
1614  */
1615 	unsigned long		last_rx;
1616 
1617 	/* Interface address info used in eth_type_trans() */
1618 	unsigned char		*dev_addr;
1619 
1620 
1621 #ifdef CONFIG_SYSFS
1622 	struct netdev_rx_queue	*_rx;
1623 
1624 	unsigned int		num_rx_queues;
1625 	unsigned int		real_num_rx_queues;
1626 
1627 #endif
1628 
1629 	unsigned long		gro_flush_timeout;
1630 	rx_handler_func_t __rcu	*rx_handler;
1631 	void __rcu		*rx_handler_data;
1632 
1633 	struct netdev_queue __rcu *ingress_queue;
1634 	unsigned char		broadcast[MAX_ADDR_LEN];
1635 
1636 
1637 /*
1638  * Cache lines mostly used on transmit path
1639  */
1640 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1641 	unsigned int		num_tx_queues;
1642 	unsigned int		real_num_tx_queues;
1643 	struct Qdisc		*qdisc;
1644 	unsigned long		tx_queue_len;
1645 	spinlock_t		tx_global_lock;
1646 
1647 #ifdef CONFIG_XPS
1648 	struct xps_dev_maps __rcu *xps_maps;
1649 #endif
1650 #ifdef CONFIG_RFS_ACCEL
1651 	struct cpu_rmap		*rx_cpu_rmap;
1652 #endif
1653 
1654 	/* These may be needed for future network-power-down code. */
1655 
1656 	/*
1657 	 * trans_start here is expensive for high speed devices on SMP,
1658 	 * please use netdev_queue->trans_start instead.
1659 	 */
1660 	unsigned long		trans_start;
1661 
1662 	int			watchdog_timeo;
1663 	struct timer_list	watchdog_timer;
1664 
1665 	int __percpu		*pcpu_refcnt;
1666 	struct list_head	todo_list;
1667 
1668 	struct hlist_node	index_hlist;
1669 	struct list_head	link_watch_list;
1670 
1671 	enum { NETREG_UNINITIALIZED=0,
1672 	       NETREG_REGISTERED,	/* completed register_netdevice */
1673 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1674 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1675 	       NETREG_RELEASED,		/* called free_netdev */
1676 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1677 	} reg_state:8;
1678 
1679 	bool dismantle;
1680 
1681 	enum {
1682 		RTNL_LINK_INITIALIZED,
1683 		RTNL_LINK_INITIALIZING,
1684 	} rtnl_link_state:16;
1685 
1686 	void (*destructor)(struct net_device *dev);
1687 
1688 #ifdef CONFIG_NETPOLL
1689 	struct netpoll_info __rcu	*npinfo;
1690 #endif
1691 
1692 #ifdef CONFIG_NET_NS
1693 	struct net		*nd_net;
1694 #endif
1695 
1696 	/* mid-layer private */
1697 	union {
1698 		void					*ml_priv;
1699 		struct pcpu_lstats __percpu		*lstats;
1700 		struct pcpu_sw_netstats __percpu	*tstats;
1701 		struct pcpu_dstats __percpu		*dstats;
1702 		struct pcpu_vstats __percpu		*vstats;
1703 	};
1704 
1705 	struct garp_port __rcu	*garp_port;
1706 	struct mrp_port __rcu	*mrp_port;
1707 
1708 	struct device	dev;
1709 	const struct attribute_group *sysfs_groups[4];
1710 	const struct attribute_group *sysfs_rx_queue_group;
1711 
1712 	const struct rtnl_link_ops *rtnl_link_ops;
1713 
1714 	/* for setting kernel sock attribute on TCP connection setup */
1715 #define GSO_MAX_SIZE		65536
1716 	unsigned int		gso_max_size;
1717 #define GSO_MAX_SEGS		65535
1718 	u16			gso_max_segs;
1719 	u16			gso_min_segs;
1720 #ifdef CONFIG_DCB
1721 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1722 #endif
1723 	u8 num_tc;
1724 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1725 	u8 prio_tc_map[TC_BITMASK + 1];
1726 
1727 #if IS_ENABLED(CONFIG_FCOE)
1728 	unsigned int		fcoe_ddp_xid;
1729 #endif
1730 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1731 	struct netprio_map __rcu *priomap;
1732 #endif
1733 	struct phy_device *phydev;
1734 	struct lock_class_key *qdisc_tx_busylock;
1735 	int group;
1736 	struct pm_qos_request	pm_qos_req;
1737 };
1738 #define to_net_dev(d) container_of(d, struct net_device, dev)
1739 
1740 #define	NETDEV_ALIGN		32
1741 
1742 static inline
1743 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1744 {
1745 	return dev->prio_tc_map[prio & TC_BITMASK];
1746 }
1747 
1748 static inline
1749 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1750 {
1751 	if (tc >= dev->num_tc)
1752 		return -EINVAL;
1753 
1754 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1755 	return 0;
1756 }
1757 
1758 static inline
1759 void netdev_reset_tc(struct net_device *dev)
1760 {
1761 	dev->num_tc = 0;
1762 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1763 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1764 }
1765 
1766 static inline
1767 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1768 {
1769 	if (tc >= dev->num_tc)
1770 		return -EINVAL;
1771 
1772 	dev->tc_to_txq[tc].count = count;
1773 	dev->tc_to_txq[tc].offset = offset;
1774 	return 0;
1775 }
1776 
1777 static inline
1778 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1779 {
1780 	if (num_tc > TC_MAX_QUEUE)
1781 		return -EINVAL;
1782 
1783 	dev->num_tc = num_tc;
1784 	return 0;
1785 }
1786 
1787 static inline
1788 int netdev_get_num_tc(struct net_device *dev)
1789 {
1790 	return dev->num_tc;
1791 }
1792 
1793 static inline
1794 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1795 					 unsigned int index)
1796 {
1797 	return &dev->_tx[index];
1798 }
1799 
1800 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1801 						    const struct sk_buff *skb)
1802 {
1803 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1804 }
1805 
1806 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1807 					    void (*f)(struct net_device *,
1808 						      struct netdev_queue *,
1809 						      void *),
1810 					    void *arg)
1811 {
1812 	unsigned int i;
1813 
1814 	for (i = 0; i < dev->num_tx_queues; i++)
1815 		f(dev, &dev->_tx[i], arg);
1816 }
1817 
1818 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1819 				    struct sk_buff *skb,
1820 				    void *accel_priv);
1821 
1822 /*
1823  * Net namespace inlines
1824  */
1825 static inline
1826 struct net *dev_net(const struct net_device *dev)
1827 {
1828 	return read_pnet(&dev->nd_net);
1829 }
1830 
1831 static inline
1832 void dev_net_set(struct net_device *dev, struct net *net)
1833 {
1834 #ifdef CONFIG_NET_NS
1835 	release_net(dev->nd_net);
1836 	dev->nd_net = hold_net(net);
1837 #endif
1838 }
1839 
1840 static inline bool netdev_uses_dsa(struct net_device *dev)
1841 {
1842 #if IS_ENABLED(CONFIG_NET_DSA)
1843 	if (dev->dsa_ptr != NULL)
1844 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1845 #endif
1846 	return false;
1847 }
1848 
1849 /**
1850  *	netdev_priv - access network device private data
1851  *	@dev: network device
1852  *
1853  * Get network device private data
1854  */
1855 static inline void *netdev_priv(const struct net_device *dev)
1856 {
1857 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1858 }
1859 
1860 /* Set the sysfs physical device reference for the network logical device
1861  * if set prior to registration will cause a symlink during initialization.
1862  */
1863 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1864 
1865 /* Set the sysfs device type for the network logical device to allow
1866  * fine-grained identification of different network device types. For
1867  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1868  */
1869 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1870 
1871 /* Default NAPI poll() weight
1872  * Device drivers are strongly advised to not use bigger value
1873  */
1874 #define NAPI_POLL_WEIGHT 64
1875 
1876 /**
1877  *	netif_napi_add - initialize a napi context
1878  *	@dev:  network device
1879  *	@napi: napi context
1880  *	@poll: polling function
1881  *	@weight: default weight
1882  *
1883  * netif_napi_add() must be used to initialize a napi context prior to calling
1884  * *any* of the other napi related functions.
1885  */
1886 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1887 		    int (*poll)(struct napi_struct *, int), int weight);
1888 
1889 /**
1890  *  netif_napi_del - remove a napi context
1891  *  @napi: napi context
1892  *
1893  *  netif_napi_del() removes a napi context from the network device napi list
1894  */
1895 void netif_napi_del(struct napi_struct *napi);
1896 
1897 struct napi_gro_cb {
1898 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1899 	void *frag0;
1900 
1901 	/* Length of frag0. */
1902 	unsigned int frag0_len;
1903 
1904 	/* This indicates where we are processing relative to skb->data. */
1905 	int data_offset;
1906 
1907 	/* This is non-zero if the packet cannot be merged with the new skb. */
1908 	u16	flush;
1909 
1910 	/* Save the IP ID here and check when we get to the transport layer */
1911 	u16	flush_id;
1912 
1913 	/* Number of segments aggregated. */
1914 	u16	count;
1915 
1916 	/* This is non-zero if the packet may be of the same flow. */
1917 	u8	same_flow;
1918 
1919 	/* Free the skb? */
1920 	u8	free;
1921 #define NAPI_GRO_FREE		  1
1922 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1923 
1924 	/* jiffies when first packet was created/queued */
1925 	unsigned long age;
1926 
1927 	/* Used in ipv6_gro_receive() and foo-over-udp */
1928 	u16	proto;
1929 
1930 	/* Used in udp_gro_receive */
1931 	u8	udp_mark:1;
1932 
1933 	/* GRO checksum is valid */
1934 	u8	csum_valid:1;
1935 
1936 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1937 	u8	csum_cnt:3;
1938 
1939 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1940 	u8	is_ipv6:1;
1941 
1942 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1943 	__wsum	csum;
1944 
1945 	/* used in skb_gro_receive() slow path */
1946 	struct sk_buff *last;
1947 };
1948 
1949 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1950 
1951 struct packet_type {
1952 	__be16			type;	/* This is really htons(ether_type). */
1953 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1954 	int			(*func) (struct sk_buff *,
1955 					 struct net_device *,
1956 					 struct packet_type *,
1957 					 struct net_device *);
1958 	bool			(*id_match)(struct packet_type *ptype,
1959 					    struct sock *sk);
1960 	void			*af_packet_priv;
1961 	struct list_head	list;
1962 };
1963 
1964 struct offload_callbacks {
1965 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1966 						netdev_features_t features);
1967 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1968 					       struct sk_buff *skb);
1969 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1970 };
1971 
1972 struct packet_offload {
1973 	__be16			 type;	/* This is really htons(ether_type). */
1974 	struct offload_callbacks callbacks;
1975 	struct list_head	 list;
1976 };
1977 
1978 struct udp_offload {
1979 	__be16			 port;
1980 	u8			 ipproto;
1981 	struct offload_callbacks callbacks;
1982 };
1983 
1984 /* often modified stats are per cpu, other are shared (netdev->stats) */
1985 struct pcpu_sw_netstats {
1986 	u64     rx_packets;
1987 	u64     rx_bytes;
1988 	u64     tx_packets;
1989 	u64     tx_bytes;
1990 	struct u64_stats_sync   syncp;
1991 };
1992 
1993 #define netdev_alloc_pcpu_stats(type)				\
1994 ({								\
1995 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1996 	if (pcpu_stats)	{					\
1997 		int i;						\
1998 		for_each_possible_cpu(i) {			\
1999 			typeof(type) *stat;			\
2000 			stat = per_cpu_ptr(pcpu_stats, i);	\
2001 			u64_stats_init(&stat->syncp);		\
2002 		}						\
2003 	}							\
2004 	pcpu_stats;						\
2005 })
2006 
2007 #include <linux/notifier.h>
2008 
2009 /* netdevice notifier chain. Please remember to update the rtnetlink
2010  * notification exclusion list in rtnetlink_event() when adding new
2011  * types.
2012  */
2013 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2014 #define NETDEV_DOWN	0x0002
2015 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2016 				   detected a hardware crash and restarted
2017 				   - we can use this eg to kick tcp sessions
2018 				   once done */
2019 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2020 #define NETDEV_REGISTER 0x0005
2021 #define NETDEV_UNREGISTER	0x0006
2022 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2023 #define NETDEV_CHANGEADDR	0x0008
2024 #define NETDEV_GOING_DOWN	0x0009
2025 #define NETDEV_CHANGENAME	0x000A
2026 #define NETDEV_FEAT_CHANGE	0x000B
2027 #define NETDEV_BONDING_FAILOVER 0x000C
2028 #define NETDEV_PRE_UP		0x000D
2029 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2030 #define NETDEV_POST_TYPE_CHANGE	0x000F
2031 #define NETDEV_POST_INIT	0x0010
2032 #define NETDEV_UNREGISTER_FINAL 0x0011
2033 #define NETDEV_RELEASE		0x0012
2034 #define NETDEV_NOTIFY_PEERS	0x0013
2035 #define NETDEV_JOIN		0x0014
2036 #define NETDEV_CHANGEUPPER	0x0015
2037 #define NETDEV_RESEND_IGMP	0x0016
2038 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2039 #define NETDEV_CHANGEINFODATA	0x0018
2040 
2041 int register_netdevice_notifier(struct notifier_block *nb);
2042 int unregister_netdevice_notifier(struct notifier_block *nb);
2043 
2044 struct netdev_notifier_info {
2045 	struct net_device *dev;
2046 };
2047 
2048 struct netdev_notifier_change_info {
2049 	struct netdev_notifier_info info; /* must be first */
2050 	unsigned int flags_changed;
2051 };
2052 
2053 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2054 					     struct net_device *dev)
2055 {
2056 	info->dev = dev;
2057 }
2058 
2059 static inline struct net_device *
2060 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2061 {
2062 	return info->dev;
2063 }
2064 
2065 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2066 
2067 
2068 extern rwlock_t				dev_base_lock;		/* Device list lock */
2069 
2070 #define for_each_netdev(net, d)		\
2071 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2072 #define for_each_netdev_reverse(net, d)	\
2073 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2074 #define for_each_netdev_rcu(net, d)		\
2075 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2076 #define for_each_netdev_safe(net, d, n)	\
2077 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2078 #define for_each_netdev_continue(net, d)		\
2079 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2080 #define for_each_netdev_continue_rcu(net, d)		\
2081 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2082 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2083 		for_each_netdev_rcu(&init_net, slave)	\
2084 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
2085 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2086 
2087 static inline struct net_device *next_net_device(struct net_device *dev)
2088 {
2089 	struct list_head *lh;
2090 	struct net *net;
2091 
2092 	net = dev_net(dev);
2093 	lh = dev->dev_list.next;
2094 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2095 }
2096 
2097 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2098 {
2099 	struct list_head *lh;
2100 	struct net *net;
2101 
2102 	net = dev_net(dev);
2103 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2104 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2105 }
2106 
2107 static inline struct net_device *first_net_device(struct net *net)
2108 {
2109 	return list_empty(&net->dev_base_head) ? NULL :
2110 		net_device_entry(net->dev_base_head.next);
2111 }
2112 
2113 static inline struct net_device *first_net_device_rcu(struct net *net)
2114 {
2115 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2116 
2117 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2118 }
2119 
2120 int netdev_boot_setup_check(struct net_device *dev);
2121 unsigned long netdev_boot_base(const char *prefix, int unit);
2122 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2123 				       const char *hwaddr);
2124 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2125 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2126 void dev_add_pack(struct packet_type *pt);
2127 void dev_remove_pack(struct packet_type *pt);
2128 void __dev_remove_pack(struct packet_type *pt);
2129 void dev_add_offload(struct packet_offload *po);
2130 void dev_remove_offload(struct packet_offload *po);
2131 
2132 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2133 				      unsigned short mask);
2134 struct net_device *dev_get_by_name(struct net *net, const char *name);
2135 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2136 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2137 int dev_alloc_name(struct net_device *dev, const char *name);
2138 int dev_open(struct net_device *dev);
2139 int dev_close(struct net_device *dev);
2140 void dev_disable_lro(struct net_device *dev);
2141 int dev_loopback_xmit(struct sk_buff *newskb);
2142 int dev_queue_xmit(struct sk_buff *skb);
2143 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2144 int register_netdevice(struct net_device *dev);
2145 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2146 void unregister_netdevice_many(struct list_head *head);
2147 static inline void unregister_netdevice(struct net_device *dev)
2148 {
2149 	unregister_netdevice_queue(dev, NULL);
2150 }
2151 
2152 int netdev_refcnt_read(const struct net_device *dev);
2153 void free_netdev(struct net_device *dev);
2154 void netdev_freemem(struct net_device *dev);
2155 void synchronize_net(void);
2156 int init_dummy_netdev(struct net_device *dev);
2157 
2158 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2159 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2160 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2161 int netdev_get_name(struct net *net, char *name, int ifindex);
2162 int dev_restart(struct net_device *dev);
2163 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2164 
2165 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2166 {
2167 	return NAPI_GRO_CB(skb)->data_offset;
2168 }
2169 
2170 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2171 {
2172 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2173 }
2174 
2175 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2176 {
2177 	NAPI_GRO_CB(skb)->data_offset += len;
2178 }
2179 
2180 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2181 					unsigned int offset)
2182 {
2183 	return NAPI_GRO_CB(skb)->frag0 + offset;
2184 }
2185 
2186 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2187 {
2188 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2189 }
2190 
2191 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2192 					unsigned int offset)
2193 {
2194 	if (!pskb_may_pull(skb, hlen))
2195 		return NULL;
2196 
2197 	NAPI_GRO_CB(skb)->frag0 = NULL;
2198 	NAPI_GRO_CB(skb)->frag0_len = 0;
2199 	return skb->data + offset;
2200 }
2201 
2202 static inline void *skb_gro_network_header(struct sk_buff *skb)
2203 {
2204 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2205 	       skb_network_offset(skb);
2206 }
2207 
2208 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2209 					const void *start, unsigned int len)
2210 {
2211 	if (NAPI_GRO_CB(skb)->csum_valid)
2212 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2213 						  csum_partial(start, len, 0));
2214 }
2215 
2216 /* GRO checksum functions. These are logical equivalents of the normal
2217  * checksum functions (in skbuff.h) except that they operate on the GRO
2218  * offsets and fields in sk_buff.
2219  */
2220 
2221 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2222 
2223 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2224 						      bool zero_okay,
2225 						      __sum16 check)
2226 {
2227 	return (skb->ip_summed != CHECKSUM_PARTIAL &&
2228 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2229 		(!zero_okay || check));
2230 }
2231 
2232 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2233 							   __wsum psum)
2234 {
2235 	if (NAPI_GRO_CB(skb)->csum_valid &&
2236 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2237 		return 0;
2238 
2239 	NAPI_GRO_CB(skb)->csum = psum;
2240 
2241 	return __skb_gro_checksum_complete(skb);
2242 }
2243 
2244 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2245 {
2246 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2247 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2248 		NAPI_GRO_CB(skb)->csum_cnt--;
2249 	} else {
2250 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2251 		 * verified a new top level checksum or an encapsulated one
2252 		 * during GRO. This saves work if we fallback to normal path.
2253 		 */
2254 		__skb_incr_checksum_unnecessary(skb);
2255 	}
2256 }
2257 
2258 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2259 				    compute_pseudo)			\
2260 ({									\
2261 	__sum16 __ret = 0;						\
2262 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2263 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2264 				compute_pseudo(skb, proto));		\
2265 	if (__ret)							\
2266 		__skb_mark_checksum_bad(skb);				\
2267 	else								\
2268 		skb_gro_incr_csum_unnecessary(skb);			\
2269 	__ret;								\
2270 })
2271 
2272 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2273 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2274 
2275 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2276 					     compute_pseudo)		\
2277 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2278 
2279 #define skb_gro_checksum_simple_validate(skb)				\
2280 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2281 
2282 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2283 {
2284 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2285 		!NAPI_GRO_CB(skb)->csum_valid);
2286 }
2287 
2288 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2289 					      __sum16 check, __wsum pseudo)
2290 {
2291 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2292 	NAPI_GRO_CB(skb)->csum_valid = 1;
2293 }
2294 
2295 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2296 do {									\
2297 	if (__skb_gro_checksum_convert_check(skb))			\
2298 		__skb_gro_checksum_convert(skb, check,			\
2299 					   compute_pseudo(skb, proto));	\
2300 } while (0)
2301 
2302 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2303 				  unsigned short type,
2304 				  const void *daddr, const void *saddr,
2305 				  unsigned int len)
2306 {
2307 	if (!dev->header_ops || !dev->header_ops->create)
2308 		return 0;
2309 
2310 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2311 }
2312 
2313 static inline int dev_parse_header(const struct sk_buff *skb,
2314 				   unsigned char *haddr)
2315 {
2316 	const struct net_device *dev = skb->dev;
2317 
2318 	if (!dev->header_ops || !dev->header_ops->parse)
2319 		return 0;
2320 	return dev->header_ops->parse(skb, haddr);
2321 }
2322 
2323 static inline int dev_rebuild_header(struct sk_buff *skb)
2324 {
2325 	const struct net_device *dev = skb->dev;
2326 
2327 	if (!dev->header_ops || !dev->header_ops->rebuild)
2328 		return 0;
2329 	return dev->header_ops->rebuild(skb);
2330 }
2331 
2332 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2333 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2334 static inline int unregister_gifconf(unsigned int family)
2335 {
2336 	return register_gifconf(family, NULL);
2337 }
2338 
2339 #ifdef CONFIG_NET_FLOW_LIMIT
2340 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2341 struct sd_flow_limit {
2342 	u64			count;
2343 	unsigned int		num_buckets;
2344 	unsigned int		history_head;
2345 	u16			history[FLOW_LIMIT_HISTORY];
2346 	u8			buckets[];
2347 };
2348 
2349 extern int netdev_flow_limit_table_len;
2350 #endif /* CONFIG_NET_FLOW_LIMIT */
2351 
2352 /*
2353  * Incoming packets are placed on per-cpu queues
2354  */
2355 struct softnet_data {
2356 	struct list_head	poll_list;
2357 	struct sk_buff_head	process_queue;
2358 
2359 	/* stats */
2360 	unsigned int		processed;
2361 	unsigned int		time_squeeze;
2362 	unsigned int		cpu_collision;
2363 	unsigned int		received_rps;
2364 #ifdef CONFIG_RPS
2365 	struct softnet_data	*rps_ipi_list;
2366 #endif
2367 #ifdef CONFIG_NET_FLOW_LIMIT
2368 	struct sd_flow_limit __rcu *flow_limit;
2369 #endif
2370 	struct Qdisc		*output_queue;
2371 	struct Qdisc		**output_queue_tailp;
2372 	struct sk_buff		*completion_queue;
2373 
2374 #ifdef CONFIG_RPS
2375 	/* Elements below can be accessed between CPUs for RPS */
2376 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2377 	struct softnet_data	*rps_ipi_next;
2378 	unsigned int		cpu;
2379 	unsigned int		input_queue_head;
2380 	unsigned int		input_queue_tail;
2381 #endif
2382 	unsigned int		dropped;
2383 	struct sk_buff_head	input_pkt_queue;
2384 	struct napi_struct	backlog;
2385 
2386 };
2387 
2388 static inline void input_queue_head_incr(struct softnet_data *sd)
2389 {
2390 #ifdef CONFIG_RPS
2391 	sd->input_queue_head++;
2392 #endif
2393 }
2394 
2395 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2396 					      unsigned int *qtail)
2397 {
2398 #ifdef CONFIG_RPS
2399 	*qtail = ++sd->input_queue_tail;
2400 #endif
2401 }
2402 
2403 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2404 
2405 void __netif_schedule(struct Qdisc *q);
2406 void netif_schedule_queue(struct netdev_queue *txq);
2407 
2408 static inline void netif_tx_schedule_all(struct net_device *dev)
2409 {
2410 	unsigned int i;
2411 
2412 	for (i = 0; i < dev->num_tx_queues; i++)
2413 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2414 }
2415 
2416 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2417 {
2418 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2419 }
2420 
2421 /**
2422  *	netif_start_queue - allow transmit
2423  *	@dev: network device
2424  *
2425  *	Allow upper layers to call the device hard_start_xmit routine.
2426  */
2427 static inline void netif_start_queue(struct net_device *dev)
2428 {
2429 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2430 }
2431 
2432 static inline void netif_tx_start_all_queues(struct net_device *dev)
2433 {
2434 	unsigned int i;
2435 
2436 	for (i = 0; i < dev->num_tx_queues; i++) {
2437 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2438 		netif_tx_start_queue(txq);
2439 	}
2440 }
2441 
2442 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2443 
2444 /**
2445  *	netif_wake_queue - restart transmit
2446  *	@dev: network device
2447  *
2448  *	Allow upper layers to call the device hard_start_xmit routine.
2449  *	Used for flow control when transmit resources are available.
2450  */
2451 static inline void netif_wake_queue(struct net_device *dev)
2452 {
2453 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2454 }
2455 
2456 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2457 {
2458 	unsigned int i;
2459 
2460 	for (i = 0; i < dev->num_tx_queues; i++) {
2461 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2462 		netif_tx_wake_queue(txq);
2463 	}
2464 }
2465 
2466 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2467 {
2468 	if (WARN_ON(!dev_queue)) {
2469 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2470 		return;
2471 	}
2472 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2473 }
2474 
2475 /**
2476  *	netif_stop_queue - stop transmitted packets
2477  *	@dev: network device
2478  *
2479  *	Stop upper layers calling the device hard_start_xmit routine.
2480  *	Used for flow control when transmit resources are unavailable.
2481  */
2482 static inline void netif_stop_queue(struct net_device *dev)
2483 {
2484 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2485 }
2486 
2487 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2488 {
2489 	unsigned int i;
2490 
2491 	for (i = 0; i < dev->num_tx_queues; i++) {
2492 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2493 		netif_tx_stop_queue(txq);
2494 	}
2495 }
2496 
2497 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2498 {
2499 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2500 }
2501 
2502 /**
2503  *	netif_queue_stopped - test if transmit queue is flowblocked
2504  *	@dev: network device
2505  *
2506  *	Test if transmit queue on device is currently unable to send.
2507  */
2508 static inline bool netif_queue_stopped(const struct net_device *dev)
2509 {
2510 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2511 }
2512 
2513 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2514 {
2515 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2516 }
2517 
2518 static inline bool
2519 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2520 {
2521 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2522 }
2523 
2524 static inline bool
2525 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2526 {
2527 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2528 }
2529 
2530 /**
2531  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2532  *	@dev_queue: pointer to transmit queue
2533  *
2534  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2535  * to give appropriate hint to the cpu.
2536  */
2537 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2538 {
2539 #ifdef CONFIG_BQL
2540 	prefetchw(&dev_queue->dql.num_queued);
2541 #endif
2542 }
2543 
2544 /**
2545  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2546  *	@dev_queue: pointer to transmit queue
2547  *
2548  * BQL enabled drivers might use this helper in their TX completion path,
2549  * to give appropriate hint to the cpu.
2550  */
2551 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2552 {
2553 #ifdef CONFIG_BQL
2554 	prefetchw(&dev_queue->dql.limit);
2555 #endif
2556 }
2557 
2558 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2559 					unsigned int bytes)
2560 {
2561 #ifdef CONFIG_BQL
2562 	dql_queued(&dev_queue->dql, bytes);
2563 
2564 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2565 		return;
2566 
2567 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2568 
2569 	/*
2570 	 * The XOFF flag must be set before checking the dql_avail below,
2571 	 * because in netdev_tx_completed_queue we update the dql_completed
2572 	 * before checking the XOFF flag.
2573 	 */
2574 	smp_mb();
2575 
2576 	/* check again in case another CPU has just made room avail */
2577 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2578 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2579 #endif
2580 }
2581 
2582 /**
2583  * 	netdev_sent_queue - report the number of bytes queued to hardware
2584  * 	@dev: network device
2585  * 	@bytes: number of bytes queued to the hardware device queue
2586  *
2587  * 	Report the number of bytes queued for sending/completion to the network
2588  * 	device hardware queue. @bytes should be a good approximation and should
2589  * 	exactly match netdev_completed_queue() @bytes
2590  */
2591 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2592 {
2593 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2594 }
2595 
2596 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2597 					     unsigned int pkts, unsigned int bytes)
2598 {
2599 #ifdef CONFIG_BQL
2600 	if (unlikely(!bytes))
2601 		return;
2602 
2603 	dql_completed(&dev_queue->dql, bytes);
2604 
2605 	/*
2606 	 * Without the memory barrier there is a small possiblity that
2607 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2608 	 * be stopped forever
2609 	 */
2610 	smp_mb();
2611 
2612 	if (dql_avail(&dev_queue->dql) < 0)
2613 		return;
2614 
2615 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2616 		netif_schedule_queue(dev_queue);
2617 #endif
2618 }
2619 
2620 /**
2621  * 	netdev_completed_queue - report bytes and packets completed by device
2622  * 	@dev: network device
2623  * 	@pkts: actual number of packets sent over the medium
2624  * 	@bytes: actual number of bytes sent over the medium
2625  *
2626  * 	Report the number of bytes and packets transmitted by the network device
2627  * 	hardware queue over the physical medium, @bytes must exactly match the
2628  * 	@bytes amount passed to netdev_sent_queue()
2629  */
2630 static inline void netdev_completed_queue(struct net_device *dev,
2631 					  unsigned int pkts, unsigned int bytes)
2632 {
2633 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2634 }
2635 
2636 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2637 {
2638 #ifdef CONFIG_BQL
2639 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2640 	dql_reset(&q->dql);
2641 #endif
2642 }
2643 
2644 /**
2645  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2646  * 	@dev_queue: network device
2647  *
2648  * 	Reset the bytes and packet count of a network device and clear the
2649  * 	software flow control OFF bit for this network device
2650  */
2651 static inline void netdev_reset_queue(struct net_device *dev_queue)
2652 {
2653 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2654 }
2655 
2656 /**
2657  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2658  * 	@dev: network device
2659  * 	@queue_index: given tx queue index
2660  *
2661  * 	Returns 0 if given tx queue index >= number of device tx queues,
2662  * 	otherwise returns the originally passed tx queue index.
2663  */
2664 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2665 {
2666 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2667 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2668 				     dev->name, queue_index,
2669 				     dev->real_num_tx_queues);
2670 		return 0;
2671 	}
2672 
2673 	return queue_index;
2674 }
2675 
2676 /**
2677  *	netif_running - test if up
2678  *	@dev: network device
2679  *
2680  *	Test if the device has been brought up.
2681  */
2682 static inline bool netif_running(const struct net_device *dev)
2683 {
2684 	return test_bit(__LINK_STATE_START, &dev->state);
2685 }
2686 
2687 /*
2688  * Routines to manage the subqueues on a device.  We only need start
2689  * stop, and a check if it's stopped.  All other device management is
2690  * done at the overall netdevice level.
2691  * Also test the device if we're multiqueue.
2692  */
2693 
2694 /**
2695  *	netif_start_subqueue - allow sending packets on subqueue
2696  *	@dev: network device
2697  *	@queue_index: sub queue index
2698  *
2699  * Start individual transmit queue of a device with multiple transmit queues.
2700  */
2701 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2702 {
2703 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2704 
2705 	netif_tx_start_queue(txq);
2706 }
2707 
2708 /**
2709  *	netif_stop_subqueue - stop sending packets on subqueue
2710  *	@dev: network device
2711  *	@queue_index: sub queue index
2712  *
2713  * Stop individual transmit queue of a device with multiple transmit queues.
2714  */
2715 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2716 {
2717 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2718 	netif_tx_stop_queue(txq);
2719 }
2720 
2721 /**
2722  *	netif_subqueue_stopped - test status of subqueue
2723  *	@dev: network device
2724  *	@queue_index: sub queue index
2725  *
2726  * Check individual transmit queue of a device with multiple transmit queues.
2727  */
2728 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2729 					    u16 queue_index)
2730 {
2731 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2732 
2733 	return netif_tx_queue_stopped(txq);
2734 }
2735 
2736 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2737 					  struct sk_buff *skb)
2738 {
2739 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2740 }
2741 
2742 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2743 
2744 #ifdef CONFIG_XPS
2745 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2746 			u16 index);
2747 #else
2748 static inline int netif_set_xps_queue(struct net_device *dev,
2749 				      const struct cpumask *mask,
2750 				      u16 index)
2751 {
2752 	return 0;
2753 }
2754 #endif
2755 
2756 /*
2757  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2758  * as a distribution range limit for the returned value.
2759  */
2760 static inline u16 skb_tx_hash(const struct net_device *dev,
2761 			      struct sk_buff *skb)
2762 {
2763 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2764 }
2765 
2766 /**
2767  *	netif_is_multiqueue - test if device has multiple transmit queues
2768  *	@dev: network device
2769  *
2770  * Check if device has multiple transmit queues
2771  */
2772 static inline bool netif_is_multiqueue(const struct net_device *dev)
2773 {
2774 	return dev->num_tx_queues > 1;
2775 }
2776 
2777 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2778 
2779 #ifdef CONFIG_SYSFS
2780 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2781 #else
2782 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2783 						unsigned int rxq)
2784 {
2785 	return 0;
2786 }
2787 #endif
2788 
2789 #ifdef CONFIG_SYSFS
2790 static inline unsigned int get_netdev_rx_queue_index(
2791 		struct netdev_rx_queue *queue)
2792 {
2793 	struct net_device *dev = queue->dev;
2794 	int index = queue - dev->_rx;
2795 
2796 	BUG_ON(index >= dev->num_rx_queues);
2797 	return index;
2798 }
2799 #endif
2800 
2801 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2802 int netif_get_num_default_rss_queues(void);
2803 
2804 enum skb_free_reason {
2805 	SKB_REASON_CONSUMED,
2806 	SKB_REASON_DROPPED,
2807 };
2808 
2809 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2810 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2811 
2812 /*
2813  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2814  * interrupt context or with hardware interrupts being disabled.
2815  * (in_irq() || irqs_disabled())
2816  *
2817  * We provide four helpers that can be used in following contexts :
2818  *
2819  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2820  *  replacing kfree_skb(skb)
2821  *
2822  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2823  *  Typically used in place of consume_skb(skb) in TX completion path
2824  *
2825  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2826  *  replacing kfree_skb(skb)
2827  *
2828  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2829  *  and consumed a packet. Used in place of consume_skb(skb)
2830  */
2831 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2832 {
2833 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2834 }
2835 
2836 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2837 {
2838 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2839 }
2840 
2841 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2842 {
2843 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2844 }
2845 
2846 static inline void dev_consume_skb_any(struct sk_buff *skb)
2847 {
2848 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2849 }
2850 
2851 int netif_rx(struct sk_buff *skb);
2852 int netif_rx_ni(struct sk_buff *skb);
2853 int netif_receive_skb(struct sk_buff *skb);
2854 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2855 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2856 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2857 gro_result_t napi_gro_frags(struct napi_struct *napi);
2858 struct packet_offload *gro_find_receive_by_type(__be16 type);
2859 struct packet_offload *gro_find_complete_by_type(__be16 type);
2860 
2861 static inline void napi_free_frags(struct napi_struct *napi)
2862 {
2863 	kfree_skb(napi->skb);
2864 	napi->skb = NULL;
2865 }
2866 
2867 int netdev_rx_handler_register(struct net_device *dev,
2868 			       rx_handler_func_t *rx_handler,
2869 			       void *rx_handler_data);
2870 void netdev_rx_handler_unregister(struct net_device *dev);
2871 
2872 bool dev_valid_name(const char *name);
2873 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2874 int dev_ethtool(struct net *net, struct ifreq *);
2875 unsigned int dev_get_flags(const struct net_device *);
2876 int __dev_change_flags(struct net_device *, unsigned int flags);
2877 int dev_change_flags(struct net_device *, unsigned int);
2878 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2879 			unsigned int gchanges);
2880 int dev_change_name(struct net_device *, const char *);
2881 int dev_set_alias(struct net_device *, const char *, size_t);
2882 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2883 int dev_set_mtu(struct net_device *, int);
2884 void dev_set_group(struct net_device *, int);
2885 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2886 int dev_change_carrier(struct net_device *, bool new_carrier);
2887 int dev_get_phys_port_id(struct net_device *dev,
2888 			 struct netdev_phys_item_id *ppid);
2889 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2890 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2891 				    struct netdev_queue *txq, int *ret);
2892 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2893 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2894 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2895 
2896 extern int		netdev_budget;
2897 
2898 /* Called by rtnetlink.c:rtnl_unlock() */
2899 void netdev_run_todo(void);
2900 
2901 /**
2902  *	dev_put - release reference to device
2903  *	@dev: network device
2904  *
2905  * Release reference to device to allow it to be freed.
2906  */
2907 static inline void dev_put(struct net_device *dev)
2908 {
2909 	this_cpu_dec(*dev->pcpu_refcnt);
2910 }
2911 
2912 /**
2913  *	dev_hold - get reference to device
2914  *	@dev: network device
2915  *
2916  * Hold reference to device to keep it from being freed.
2917  */
2918 static inline void dev_hold(struct net_device *dev)
2919 {
2920 	this_cpu_inc(*dev->pcpu_refcnt);
2921 }
2922 
2923 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2924  * and _off may be called from IRQ context, but it is caller
2925  * who is responsible for serialization of these calls.
2926  *
2927  * The name carrier is inappropriate, these functions should really be
2928  * called netif_lowerlayer_*() because they represent the state of any
2929  * kind of lower layer not just hardware media.
2930  */
2931 
2932 void linkwatch_init_dev(struct net_device *dev);
2933 void linkwatch_fire_event(struct net_device *dev);
2934 void linkwatch_forget_dev(struct net_device *dev);
2935 
2936 /**
2937  *	netif_carrier_ok - test if carrier present
2938  *	@dev: network device
2939  *
2940  * Check if carrier is present on device
2941  */
2942 static inline bool netif_carrier_ok(const struct net_device *dev)
2943 {
2944 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2945 }
2946 
2947 unsigned long dev_trans_start(struct net_device *dev);
2948 
2949 void __netdev_watchdog_up(struct net_device *dev);
2950 
2951 void netif_carrier_on(struct net_device *dev);
2952 
2953 void netif_carrier_off(struct net_device *dev);
2954 
2955 /**
2956  *	netif_dormant_on - mark device as dormant.
2957  *	@dev: network device
2958  *
2959  * Mark device as dormant (as per RFC2863).
2960  *
2961  * The dormant state indicates that the relevant interface is not
2962  * actually in a condition to pass packets (i.e., it is not 'up') but is
2963  * in a "pending" state, waiting for some external event.  For "on-
2964  * demand" interfaces, this new state identifies the situation where the
2965  * interface is waiting for events to place it in the up state.
2966  *
2967  */
2968 static inline void netif_dormant_on(struct net_device *dev)
2969 {
2970 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2971 		linkwatch_fire_event(dev);
2972 }
2973 
2974 /**
2975  *	netif_dormant_off - set device as not dormant.
2976  *	@dev: network device
2977  *
2978  * Device is not in dormant state.
2979  */
2980 static inline void netif_dormant_off(struct net_device *dev)
2981 {
2982 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2983 		linkwatch_fire_event(dev);
2984 }
2985 
2986 /**
2987  *	netif_dormant - test if carrier present
2988  *	@dev: network device
2989  *
2990  * Check if carrier is present on device
2991  */
2992 static inline bool netif_dormant(const struct net_device *dev)
2993 {
2994 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2995 }
2996 
2997 
2998 /**
2999  *	netif_oper_up - test if device is operational
3000  *	@dev: network device
3001  *
3002  * Check if carrier is operational
3003  */
3004 static inline bool netif_oper_up(const struct net_device *dev)
3005 {
3006 	return (dev->operstate == IF_OPER_UP ||
3007 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3008 }
3009 
3010 /**
3011  *	netif_device_present - is device available or removed
3012  *	@dev: network device
3013  *
3014  * Check if device has not been removed from system.
3015  */
3016 static inline bool netif_device_present(struct net_device *dev)
3017 {
3018 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3019 }
3020 
3021 void netif_device_detach(struct net_device *dev);
3022 
3023 void netif_device_attach(struct net_device *dev);
3024 
3025 /*
3026  * Network interface message level settings
3027  */
3028 
3029 enum {
3030 	NETIF_MSG_DRV		= 0x0001,
3031 	NETIF_MSG_PROBE		= 0x0002,
3032 	NETIF_MSG_LINK		= 0x0004,
3033 	NETIF_MSG_TIMER		= 0x0008,
3034 	NETIF_MSG_IFDOWN	= 0x0010,
3035 	NETIF_MSG_IFUP		= 0x0020,
3036 	NETIF_MSG_RX_ERR	= 0x0040,
3037 	NETIF_MSG_TX_ERR	= 0x0080,
3038 	NETIF_MSG_TX_QUEUED	= 0x0100,
3039 	NETIF_MSG_INTR		= 0x0200,
3040 	NETIF_MSG_TX_DONE	= 0x0400,
3041 	NETIF_MSG_RX_STATUS	= 0x0800,
3042 	NETIF_MSG_PKTDATA	= 0x1000,
3043 	NETIF_MSG_HW		= 0x2000,
3044 	NETIF_MSG_WOL		= 0x4000,
3045 };
3046 
3047 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3048 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3049 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3050 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3051 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3052 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3053 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3054 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3055 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3056 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3057 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3058 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3059 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3060 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3061 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3062 
3063 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3064 {
3065 	/* use default */
3066 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3067 		return default_msg_enable_bits;
3068 	if (debug_value == 0)	/* no output */
3069 		return 0;
3070 	/* set low N bits */
3071 	return (1 << debug_value) - 1;
3072 }
3073 
3074 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3075 {
3076 	spin_lock(&txq->_xmit_lock);
3077 	txq->xmit_lock_owner = cpu;
3078 }
3079 
3080 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3081 {
3082 	spin_lock_bh(&txq->_xmit_lock);
3083 	txq->xmit_lock_owner = smp_processor_id();
3084 }
3085 
3086 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3087 {
3088 	bool ok = spin_trylock(&txq->_xmit_lock);
3089 	if (likely(ok))
3090 		txq->xmit_lock_owner = smp_processor_id();
3091 	return ok;
3092 }
3093 
3094 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3095 {
3096 	txq->xmit_lock_owner = -1;
3097 	spin_unlock(&txq->_xmit_lock);
3098 }
3099 
3100 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3101 {
3102 	txq->xmit_lock_owner = -1;
3103 	spin_unlock_bh(&txq->_xmit_lock);
3104 }
3105 
3106 static inline void txq_trans_update(struct netdev_queue *txq)
3107 {
3108 	if (txq->xmit_lock_owner != -1)
3109 		txq->trans_start = jiffies;
3110 }
3111 
3112 /**
3113  *	netif_tx_lock - grab network device transmit lock
3114  *	@dev: network device
3115  *
3116  * Get network device transmit lock
3117  */
3118 static inline void netif_tx_lock(struct net_device *dev)
3119 {
3120 	unsigned int i;
3121 	int cpu;
3122 
3123 	spin_lock(&dev->tx_global_lock);
3124 	cpu = smp_processor_id();
3125 	for (i = 0; i < dev->num_tx_queues; i++) {
3126 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3127 
3128 		/* We are the only thread of execution doing a
3129 		 * freeze, but we have to grab the _xmit_lock in
3130 		 * order to synchronize with threads which are in
3131 		 * the ->hard_start_xmit() handler and already
3132 		 * checked the frozen bit.
3133 		 */
3134 		__netif_tx_lock(txq, cpu);
3135 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3136 		__netif_tx_unlock(txq);
3137 	}
3138 }
3139 
3140 static inline void netif_tx_lock_bh(struct net_device *dev)
3141 {
3142 	local_bh_disable();
3143 	netif_tx_lock(dev);
3144 }
3145 
3146 static inline void netif_tx_unlock(struct net_device *dev)
3147 {
3148 	unsigned int i;
3149 
3150 	for (i = 0; i < dev->num_tx_queues; i++) {
3151 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3152 
3153 		/* No need to grab the _xmit_lock here.  If the
3154 		 * queue is not stopped for another reason, we
3155 		 * force a schedule.
3156 		 */
3157 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3158 		netif_schedule_queue(txq);
3159 	}
3160 	spin_unlock(&dev->tx_global_lock);
3161 }
3162 
3163 static inline void netif_tx_unlock_bh(struct net_device *dev)
3164 {
3165 	netif_tx_unlock(dev);
3166 	local_bh_enable();
3167 }
3168 
3169 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3170 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3171 		__netif_tx_lock(txq, cpu);		\
3172 	}						\
3173 }
3174 
3175 #define HARD_TX_TRYLOCK(dev, txq)			\
3176 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3177 		__netif_tx_trylock(txq) :		\
3178 		true )
3179 
3180 #define HARD_TX_UNLOCK(dev, txq) {			\
3181 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3182 		__netif_tx_unlock(txq);			\
3183 	}						\
3184 }
3185 
3186 static inline void netif_tx_disable(struct net_device *dev)
3187 {
3188 	unsigned int i;
3189 	int cpu;
3190 
3191 	local_bh_disable();
3192 	cpu = smp_processor_id();
3193 	for (i = 0; i < dev->num_tx_queues; i++) {
3194 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3195 
3196 		__netif_tx_lock(txq, cpu);
3197 		netif_tx_stop_queue(txq);
3198 		__netif_tx_unlock(txq);
3199 	}
3200 	local_bh_enable();
3201 }
3202 
3203 static inline void netif_addr_lock(struct net_device *dev)
3204 {
3205 	spin_lock(&dev->addr_list_lock);
3206 }
3207 
3208 static inline void netif_addr_lock_nested(struct net_device *dev)
3209 {
3210 	int subclass = SINGLE_DEPTH_NESTING;
3211 
3212 	if (dev->netdev_ops->ndo_get_lock_subclass)
3213 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3214 
3215 	spin_lock_nested(&dev->addr_list_lock, subclass);
3216 }
3217 
3218 static inline void netif_addr_lock_bh(struct net_device *dev)
3219 {
3220 	spin_lock_bh(&dev->addr_list_lock);
3221 }
3222 
3223 static inline void netif_addr_unlock(struct net_device *dev)
3224 {
3225 	spin_unlock(&dev->addr_list_lock);
3226 }
3227 
3228 static inline void netif_addr_unlock_bh(struct net_device *dev)
3229 {
3230 	spin_unlock_bh(&dev->addr_list_lock);
3231 }
3232 
3233 /*
3234  * dev_addrs walker. Should be used only for read access. Call with
3235  * rcu_read_lock held.
3236  */
3237 #define for_each_dev_addr(dev, ha) \
3238 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3239 
3240 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3241 
3242 void ether_setup(struct net_device *dev);
3243 
3244 /* Support for loadable net-drivers */
3245 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3246 				    unsigned char name_assign_type,
3247 				    void (*setup)(struct net_device *),
3248 				    unsigned int txqs, unsigned int rxqs);
3249 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3250 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3251 
3252 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3253 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3254 			 count)
3255 
3256 int register_netdev(struct net_device *dev);
3257 void unregister_netdev(struct net_device *dev);
3258 
3259 /* General hardware address lists handling functions */
3260 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3261 		   struct netdev_hw_addr_list *from_list, int addr_len);
3262 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3263 		      struct netdev_hw_addr_list *from_list, int addr_len);
3264 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3265 		       struct net_device *dev,
3266 		       int (*sync)(struct net_device *, const unsigned char *),
3267 		       int (*unsync)(struct net_device *,
3268 				     const unsigned char *));
3269 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3270 			  struct net_device *dev,
3271 			  int (*unsync)(struct net_device *,
3272 					const unsigned char *));
3273 void __hw_addr_init(struct netdev_hw_addr_list *list);
3274 
3275 /* Functions used for device addresses handling */
3276 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3277 		 unsigned char addr_type);
3278 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3279 		 unsigned char addr_type);
3280 void dev_addr_flush(struct net_device *dev);
3281 int dev_addr_init(struct net_device *dev);
3282 
3283 /* Functions used for unicast addresses handling */
3284 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3285 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3286 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3287 int dev_uc_sync(struct net_device *to, struct net_device *from);
3288 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3289 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3290 void dev_uc_flush(struct net_device *dev);
3291 void dev_uc_init(struct net_device *dev);
3292 
3293 /**
3294  *  __dev_uc_sync - Synchonize device's unicast list
3295  *  @dev:  device to sync
3296  *  @sync: function to call if address should be added
3297  *  @unsync: function to call if address should be removed
3298  *
3299  *  Add newly added addresses to the interface, and release
3300  *  addresses that have been deleted.
3301  **/
3302 static inline int __dev_uc_sync(struct net_device *dev,
3303 				int (*sync)(struct net_device *,
3304 					    const unsigned char *),
3305 				int (*unsync)(struct net_device *,
3306 					      const unsigned char *))
3307 {
3308 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3309 }
3310 
3311 /**
3312  *  __dev_uc_unsync - Remove synchronized addresses from device
3313  *  @dev:  device to sync
3314  *  @unsync: function to call if address should be removed
3315  *
3316  *  Remove all addresses that were added to the device by dev_uc_sync().
3317  **/
3318 static inline void __dev_uc_unsync(struct net_device *dev,
3319 				   int (*unsync)(struct net_device *,
3320 						 const unsigned char *))
3321 {
3322 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3323 }
3324 
3325 /* Functions used for multicast addresses handling */
3326 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3327 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3328 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3329 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3330 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3331 int dev_mc_sync(struct net_device *to, struct net_device *from);
3332 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3333 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3334 void dev_mc_flush(struct net_device *dev);
3335 void dev_mc_init(struct net_device *dev);
3336 
3337 /**
3338  *  __dev_mc_sync - Synchonize device's multicast list
3339  *  @dev:  device to sync
3340  *  @sync: function to call if address should be added
3341  *  @unsync: function to call if address should be removed
3342  *
3343  *  Add newly added addresses to the interface, and release
3344  *  addresses that have been deleted.
3345  **/
3346 static inline int __dev_mc_sync(struct net_device *dev,
3347 				int (*sync)(struct net_device *,
3348 					    const unsigned char *),
3349 				int (*unsync)(struct net_device *,
3350 					      const unsigned char *))
3351 {
3352 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3353 }
3354 
3355 /**
3356  *  __dev_mc_unsync - Remove synchronized addresses from device
3357  *  @dev:  device to sync
3358  *  @unsync: function to call if address should be removed
3359  *
3360  *  Remove all addresses that were added to the device by dev_mc_sync().
3361  **/
3362 static inline void __dev_mc_unsync(struct net_device *dev,
3363 				   int (*unsync)(struct net_device *,
3364 						 const unsigned char *))
3365 {
3366 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3367 }
3368 
3369 /* Functions used for secondary unicast and multicast support */
3370 void dev_set_rx_mode(struct net_device *dev);
3371 void __dev_set_rx_mode(struct net_device *dev);
3372 int dev_set_promiscuity(struct net_device *dev, int inc);
3373 int dev_set_allmulti(struct net_device *dev, int inc);
3374 void netdev_state_change(struct net_device *dev);
3375 void netdev_notify_peers(struct net_device *dev);
3376 void netdev_features_change(struct net_device *dev);
3377 /* Load a device via the kmod */
3378 void dev_load(struct net *net, const char *name);
3379 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3380 					struct rtnl_link_stats64 *storage);
3381 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3382 			     const struct net_device_stats *netdev_stats);
3383 
3384 extern int		netdev_max_backlog;
3385 extern int		netdev_tstamp_prequeue;
3386 extern int		weight_p;
3387 extern int		bpf_jit_enable;
3388 
3389 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3390 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3391 						     struct list_head **iter);
3392 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3393 						     struct list_head **iter);
3394 
3395 /* iterate through upper list, must be called under RCU read lock */
3396 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3397 	for (iter = &(dev)->adj_list.upper, \
3398 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3399 	     updev; \
3400 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3401 
3402 /* iterate through upper list, must be called under RCU read lock */
3403 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3404 	for (iter = &(dev)->all_adj_list.upper, \
3405 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3406 	     updev; \
3407 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3408 
3409 void *netdev_lower_get_next_private(struct net_device *dev,
3410 				    struct list_head **iter);
3411 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3412 					struct list_head **iter);
3413 
3414 #define netdev_for_each_lower_private(dev, priv, iter) \
3415 	for (iter = (dev)->adj_list.lower.next, \
3416 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3417 	     priv; \
3418 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3419 
3420 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3421 	for (iter = &(dev)->adj_list.lower, \
3422 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3423 	     priv; \
3424 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3425 
3426 void *netdev_lower_get_next(struct net_device *dev,
3427 				struct list_head **iter);
3428 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3429 	for (iter = &(dev)->adj_list.lower, \
3430 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3431 	     ldev; \
3432 	     ldev = netdev_lower_get_next(dev, &(iter)))
3433 
3434 void *netdev_adjacent_get_private(struct list_head *adj_list);
3435 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3436 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3437 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3438 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3439 int netdev_master_upper_dev_link(struct net_device *dev,
3440 				 struct net_device *upper_dev);
3441 int netdev_master_upper_dev_link_private(struct net_device *dev,
3442 					 struct net_device *upper_dev,
3443 					 void *private);
3444 void netdev_upper_dev_unlink(struct net_device *dev,
3445 			     struct net_device *upper_dev);
3446 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3447 void *netdev_lower_dev_get_private(struct net_device *dev,
3448 				   struct net_device *lower_dev);
3449 
3450 /* RSS keys are 40 or 52 bytes long */
3451 #define NETDEV_RSS_KEY_LEN 52
3452 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3453 void netdev_rss_key_fill(void *buffer, size_t len);
3454 
3455 int dev_get_nest_level(struct net_device *dev,
3456 		       bool (*type_check)(struct net_device *dev));
3457 int skb_checksum_help(struct sk_buff *skb);
3458 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3459 				  netdev_features_t features, bool tx_path);
3460 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3461 				    netdev_features_t features);
3462 
3463 static inline
3464 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3465 {
3466 	return __skb_gso_segment(skb, features, true);
3467 }
3468 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3469 
3470 static inline bool can_checksum_protocol(netdev_features_t features,
3471 					 __be16 protocol)
3472 {
3473 	return ((features & NETIF_F_GEN_CSUM) ||
3474 		((features & NETIF_F_V4_CSUM) &&
3475 		 protocol == htons(ETH_P_IP)) ||
3476 		((features & NETIF_F_V6_CSUM) &&
3477 		 protocol == htons(ETH_P_IPV6)) ||
3478 		((features & NETIF_F_FCOE_CRC) &&
3479 		 protocol == htons(ETH_P_FCOE)));
3480 }
3481 
3482 #ifdef CONFIG_BUG
3483 void netdev_rx_csum_fault(struct net_device *dev);
3484 #else
3485 static inline void netdev_rx_csum_fault(struct net_device *dev)
3486 {
3487 }
3488 #endif
3489 /* rx skb timestamps */
3490 void net_enable_timestamp(void);
3491 void net_disable_timestamp(void);
3492 
3493 #ifdef CONFIG_PROC_FS
3494 int __init dev_proc_init(void);
3495 #else
3496 #define dev_proc_init() 0
3497 #endif
3498 
3499 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3500 					      struct sk_buff *skb, struct net_device *dev,
3501 					      bool more)
3502 {
3503 	skb->xmit_more = more ? 1 : 0;
3504 	return ops->ndo_start_xmit(skb, dev);
3505 }
3506 
3507 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3508 					    struct netdev_queue *txq, bool more)
3509 {
3510 	const struct net_device_ops *ops = dev->netdev_ops;
3511 	int rc;
3512 
3513 	rc = __netdev_start_xmit(ops, skb, dev, more);
3514 	if (rc == NETDEV_TX_OK)
3515 		txq_trans_update(txq);
3516 
3517 	return rc;
3518 }
3519 
3520 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3521 				const void *ns);
3522 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3523 				 const void *ns);
3524 
3525 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3526 {
3527 	return netdev_class_create_file_ns(class_attr, NULL);
3528 }
3529 
3530 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3531 {
3532 	netdev_class_remove_file_ns(class_attr, NULL);
3533 }
3534 
3535 extern struct kobj_ns_type_operations net_ns_type_operations;
3536 
3537 const char *netdev_drivername(const struct net_device *dev);
3538 
3539 void linkwatch_run_queue(void);
3540 
3541 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3542 							  netdev_features_t f2)
3543 {
3544 	if (f1 & NETIF_F_GEN_CSUM)
3545 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3546 	if (f2 & NETIF_F_GEN_CSUM)
3547 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3548 	f1 &= f2;
3549 	if (f1 & NETIF_F_GEN_CSUM)
3550 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3551 
3552 	return f1;
3553 }
3554 
3555 static inline netdev_features_t netdev_get_wanted_features(
3556 	struct net_device *dev)
3557 {
3558 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3559 }
3560 netdev_features_t netdev_increment_features(netdev_features_t all,
3561 	netdev_features_t one, netdev_features_t mask);
3562 
3563 /* Allow TSO being used on stacked device :
3564  * Performing the GSO segmentation before last device
3565  * is a performance improvement.
3566  */
3567 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3568 							netdev_features_t mask)
3569 {
3570 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3571 }
3572 
3573 int __netdev_update_features(struct net_device *dev);
3574 void netdev_update_features(struct net_device *dev);
3575 void netdev_change_features(struct net_device *dev);
3576 
3577 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3578 					struct net_device *dev);
3579 
3580 netdev_features_t netif_skb_features(struct sk_buff *skb);
3581 
3582 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3583 {
3584 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3585 
3586 	/* check flags correspondence */
3587 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3588 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3589 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3590 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3591 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3592 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3593 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3594 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3595 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3596 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3597 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3598 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3599 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3600 
3601 	return (features & feature) == feature;
3602 }
3603 
3604 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3605 {
3606 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3607 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3608 }
3609 
3610 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3611 				   netdev_features_t features)
3612 {
3613 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3614 		(dev->netdev_ops->ndo_gso_check &&
3615 		 !dev->netdev_ops->ndo_gso_check(skb, dev)) ||
3616 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3617 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3618 }
3619 
3620 static inline void netif_set_gso_max_size(struct net_device *dev,
3621 					  unsigned int size)
3622 {
3623 	dev->gso_max_size = size;
3624 }
3625 
3626 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3627 					int pulled_hlen, u16 mac_offset,
3628 					int mac_len)
3629 {
3630 	skb->protocol = protocol;
3631 	skb->encapsulation = 1;
3632 	skb_push(skb, pulled_hlen);
3633 	skb_reset_transport_header(skb);
3634 	skb->mac_header = mac_offset;
3635 	skb->network_header = skb->mac_header + mac_len;
3636 	skb->mac_len = mac_len;
3637 }
3638 
3639 static inline bool netif_is_macvlan(struct net_device *dev)
3640 {
3641 	return dev->priv_flags & IFF_MACVLAN;
3642 }
3643 
3644 static inline bool netif_is_macvlan_port(struct net_device *dev)
3645 {
3646 	return dev->priv_flags & IFF_MACVLAN_PORT;
3647 }
3648 
3649 static inline bool netif_is_ipvlan(struct net_device *dev)
3650 {
3651 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3652 }
3653 
3654 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3655 {
3656 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3657 }
3658 
3659 static inline bool netif_is_bond_master(struct net_device *dev)
3660 {
3661 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3662 }
3663 
3664 static inline bool netif_is_bond_slave(struct net_device *dev)
3665 {
3666 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3667 }
3668 
3669 static inline bool netif_supports_nofcs(struct net_device *dev)
3670 {
3671 	return dev->priv_flags & IFF_SUPP_NOFCS;
3672 }
3673 
3674 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3675 static inline void netif_keep_dst(struct net_device *dev)
3676 {
3677 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3678 }
3679 
3680 extern struct pernet_operations __net_initdata loopback_net_ops;
3681 
3682 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3683 
3684 /* netdev_printk helpers, similar to dev_printk */
3685 
3686 static inline const char *netdev_name(const struct net_device *dev)
3687 {
3688 	if (!dev->name[0] || strchr(dev->name, '%'))
3689 		return "(unnamed net_device)";
3690 	return dev->name;
3691 }
3692 
3693 static inline const char *netdev_reg_state(const struct net_device *dev)
3694 {
3695 	switch (dev->reg_state) {
3696 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3697 	case NETREG_REGISTERED: return "";
3698 	case NETREG_UNREGISTERING: return " (unregistering)";
3699 	case NETREG_UNREGISTERED: return " (unregistered)";
3700 	case NETREG_RELEASED: return " (released)";
3701 	case NETREG_DUMMY: return " (dummy)";
3702 	}
3703 
3704 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3705 	return " (unknown)";
3706 }
3707 
3708 __printf(3, 4)
3709 void netdev_printk(const char *level, const struct net_device *dev,
3710 		   const char *format, ...);
3711 __printf(2, 3)
3712 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3713 __printf(2, 3)
3714 void netdev_alert(const struct net_device *dev, const char *format, ...);
3715 __printf(2, 3)
3716 void netdev_crit(const struct net_device *dev, const char *format, ...);
3717 __printf(2, 3)
3718 void netdev_err(const struct net_device *dev, const char *format, ...);
3719 __printf(2, 3)
3720 void netdev_warn(const struct net_device *dev, const char *format, ...);
3721 __printf(2, 3)
3722 void netdev_notice(const struct net_device *dev, const char *format, ...);
3723 __printf(2, 3)
3724 void netdev_info(const struct net_device *dev, const char *format, ...);
3725 
3726 #define MODULE_ALIAS_NETDEV(device) \
3727 	MODULE_ALIAS("netdev-" device)
3728 
3729 #if defined(CONFIG_DYNAMIC_DEBUG)
3730 #define netdev_dbg(__dev, format, args...)			\
3731 do {								\
3732 	dynamic_netdev_dbg(__dev, format, ##args);		\
3733 } while (0)
3734 #elif defined(DEBUG)
3735 #define netdev_dbg(__dev, format, args...)			\
3736 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3737 #else
3738 #define netdev_dbg(__dev, format, args...)			\
3739 ({								\
3740 	if (0)							\
3741 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3742 })
3743 #endif
3744 
3745 #if defined(VERBOSE_DEBUG)
3746 #define netdev_vdbg	netdev_dbg
3747 #else
3748 
3749 #define netdev_vdbg(dev, format, args...)			\
3750 ({								\
3751 	if (0)							\
3752 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3753 	0;							\
3754 })
3755 #endif
3756 
3757 /*
3758  * netdev_WARN() acts like dev_printk(), but with the key difference
3759  * of using a WARN/WARN_ON to get the message out, including the
3760  * file/line information and a backtrace.
3761  */
3762 #define netdev_WARN(dev, format, args...)			\
3763 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3764 	     netdev_reg_state(dev), ##args)
3765 
3766 /* netif printk helpers, similar to netdev_printk */
3767 
3768 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3769 do {					  			\
3770 	if (netif_msg_##type(priv))				\
3771 		netdev_printk(level, (dev), fmt, ##args);	\
3772 } while (0)
3773 
3774 #define netif_level(level, priv, type, dev, fmt, args...)	\
3775 do {								\
3776 	if (netif_msg_##type(priv))				\
3777 		netdev_##level(dev, fmt, ##args);		\
3778 } while (0)
3779 
3780 #define netif_emerg(priv, type, dev, fmt, args...)		\
3781 	netif_level(emerg, priv, type, dev, fmt, ##args)
3782 #define netif_alert(priv, type, dev, fmt, args...)		\
3783 	netif_level(alert, priv, type, dev, fmt, ##args)
3784 #define netif_crit(priv, type, dev, fmt, args...)		\
3785 	netif_level(crit, priv, type, dev, fmt, ##args)
3786 #define netif_err(priv, type, dev, fmt, args...)		\
3787 	netif_level(err, priv, type, dev, fmt, ##args)
3788 #define netif_warn(priv, type, dev, fmt, args...)		\
3789 	netif_level(warn, priv, type, dev, fmt, ##args)
3790 #define netif_notice(priv, type, dev, fmt, args...)		\
3791 	netif_level(notice, priv, type, dev, fmt, ##args)
3792 #define netif_info(priv, type, dev, fmt, args...)		\
3793 	netif_level(info, priv, type, dev, fmt, ##args)
3794 
3795 #if defined(CONFIG_DYNAMIC_DEBUG)
3796 #define netif_dbg(priv, type, netdev, format, args...)		\
3797 do {								\
3798 	if (netif_msg_##type(priv))				\
3799 		dynamic_netdev_dbg(netdev, format, ##args);	\
3800 } while (0)
3801 #elif defined(DEBUG)
3802 #define netif_dbg(priv, type, dev, format, args...)		\
3803 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3804 #else
3805 #define netif_dbg(priv, type, dev, format, args...)			\
3806 ({									\
3807 	if (0)								\
3808 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3809 	0;								\
3810 })
3811 #endif
3812 
3813 #if defined(VERBOSE_DEBUG)
3814 #define netif_vdbg	netif_dbg
3815 #else
3816 #define netif_vdbg(priv, type, dev, format, args...)		\
3817 ({								\
3818 	if (0)							\
3819 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3820 	0;							\
3821 })
3822 #endif
3823 
3824 /*
3825  *	The list of packet types we will receive (as opposed to discard)
3826  *	and the routines to invoke.
3827  *
3828  *	Why 16. Because with 16 the only overlap we get on a hash of the
3829  *	low nibble of the protocol value is RARP/SNAP/X.25.
3830  *
3831  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3832  *             sure which should go first, but I bet it won't make much
3833  *             difference if we are running VLANs.  The good news is that
3834  *             this protocol won't be in the list unless compiled in, so
3835  *             the average user (w/out VLANs) will not be adversely affected.
3836  *             --BLG
3837  *
3838  *		0800	IP
3839  *		8100    802.1Q VLAN
3840  *		0001	802.3
3841  *		0002	AX.25
3842  *		0004	802.2
3843  *		8035	RARP
3844  *		0005	SNAP
3845  *		0805	X.25
3846  *		0806	ARP
3847  *		8137	IPX
3848  *		0009	Localtalk
3849  *		86DD	IPv6
3850  */
3851 #define PTYPE_HASH_SIZE	(16)
3852 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3853 
3854 #endif	/* _LINUX_NETDEVICE_H */
3855