1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 57 struct sfp_bus; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 /* UDP Tunnel offloads */ 64 struct udp_tunnel_info; 65 struct bpf_prog; 66 struct xdp_buff; 67 68 void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 #define MAX_NEST_DEV 8 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously; in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106 /* Driver transmit return codes */ 107 #define NETDEV_TX_MASK 0xf0 108 109 enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 /* 135 * Compute the worst-case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_HYPERV_NET) 140 # define LL_MAX_HEADER 128 141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key_false rps_needed; 196 extern struct static_key_false rfs_needed; 197 #endif 198 199 struct neighbour; 200 struct neigh_parms; 201 struct sk_buff; 202 203 struct netdev_hw_addr { 204 struct list_head list; 205 unsigned char addr[MAX_ADDR_LEN]; 206 unsigned char type; 207 #define NETDEV_HW_ADDR_T_LAN 1 208 #define NETDEV_HW_ADDR_T_SAN 2 209 #define NETDEV_HW_ADDR_T_SLAVE 3 210 #define NETDEV_HW_ADDR_T_UNICAST 4 211 #define NETDEV_HW_ADDR_T_MULTICAST 5 212 bool global_use; 213 int sync_cnt; 214 int refcount; 215 int synced; 216 struct rcu_head rcu_head; 217 }; 218 219 struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222 }; 223 224 #define netdev_hw_addr_list_count(l) ((l)->count) 225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226 #define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231 #define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236 #define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239 struct hh_cache { 240 unsigned int hh_len; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275 __be16 (*parse_protocol)(const struct sk_buff *skb); 276 }; 277 278 /* These flag bits are private to the generic network queueing 279 * layer; they may not be explicitly referenced by any other 280 * code. 281 */ 282 283 enum netdev_state_t { 284 __LINK_STATE_START, 285 __LINK_STATE_PRESENT, 286 __LINK_STATE_NOCARRIER, 287 __LINK_STATE_LINKWATCH_PENDING, 288 __LINK_STATE_DORMANT, 289 }; 290 291 292 /* 293 * This structure holds boot-time configured netdevice settings. They 294 * are then used in the device probing. 295 */ 296 struct netdev_boot_setup { 297 char name[IFNAMSIZ]; 298 struct ifmap map; 299 }; 300 #define NETDEV_BOOT_SETUP_MAX 8 301 302 int __init netdev_boot_setup(char *str); 303 304 struct gro_list { 305 struct list_head list; 306 int count; 307 }; 308 309 /* 310 * size of gro hash buckets, must less than bit number of 311 * napi_struct::gro_bitmask 312 */ 313 #define GRO_HASH_BUCKETS 8 314 315 /* 316 * Structure for NAPI scheduling similar to tasklet but with weighting 317 */ 318 struct napi_struct { 319 /* The poll_list must only be managed by the entity which 320 * changes the state of the NAPI_STATE_SCHED bit. This means 321 * whoever atomically sets that bit can add this napi_struct 322 * to the per-CPU poll_list, and whoever clears that bit 323 * can remove from the list right before clearing the bit. 324 */ 325 struct list_head poll_list; 326 327 unsigned long state; 328 int weight; 329 unsigned long gro_bitmask; 330 int (*poll)(struct napi_struct *, int); 331 #ifdef CONFIG_NETPOLL 332 int poll_owner; 333 #endif 334 struct net_device *dev; 335 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 336 struct sk_buff *skb; 337 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 338 int rx_count; /* length of rx_list */ 339 struct hrtimer timer; 340 struct list_head dev_list; 341 struct hlist_node napi_hash_node; 342 unsigned int napi_id; 343 }; 344 345 enum { 346 NAPI_STATE_SCHED, /* Poll is scheduled */ 347 NAPI_STATE_MISSED, /* reschedule a napi */ 348 NAPI_STATE_DISABLE, /* Disable pending */ 349 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 350 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 351 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 352 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 353 }; 354 355 enum { 356 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 357 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 358 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 359 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 360 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 361 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 362 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 363 }; 364 365 enum gro_result { 366 GRO_MERGED, 367 GRO_MERGED_FREE, 368 GRO_HELD, 369 GRO_NORMAL, 370 GRO_DROP, 371 GRO_CONSUMED, 372 }; 373 typedef enum gro_result gro_result_t; 374 375 /* 376 * enum rx_handler_result - Possible return values for rx_handlers. 377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 378 * further. 379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 380 * case skb->dev was changed by rx_handler. 381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 383 * 384 * rx_handlers are functions called from inside __netif_receive_skb(), to do 385 * special processing of the skb, prior to delivery to protocol handlers. 386 * 387 * Currently, a net_device can only have a single rx_handler registered. Trying 388 * to register a second rx_handler will return -EBUSY. 389 * 390 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 391 * To unregister a rx_handler on a net_device, use 392 * netdev_rx_handler_unregister(). 393 * 394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 395 * do with the skb. 396 * 397 * If the rx_handler consumed the skb in some way, it should return 398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 399 * the skb to be delivered in some other way. 400 * 401 * If the rx_handler changed skb->dev, to divert the skb to another 402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 403 * new device will be called if it exists. 404 * 405 * If the rx_handler decides the skb should be ignored, it should return 406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 407 * are registered on exact device (ptype->dev == skb->dev). 408 * 409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 410 * delivered, it should return RX_HANDLER_PASS. 411 * 412 * A device without a registered rx_handler will behave as if rx_handler 413 * returned RX_HANDLER_PASS. 414 */ 415 416 enum rx_handler_result { 417 RX_HANDLER_CONSUMED, 418 RX_HANDLER_ANOTHER, 419 RX_HANDLER_EXACT, 420 RX_HANDLER_PASS, 421 }; 422 typedef enum rx_handler_result rx_handler_result_t; 423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 424 425 void __napi_schedule(struct napi_struct *n); 426 void __napi_schedule_irqoff(struct napi_struct *n); 427 428 static inline bool napi_disable_pending(struct napi_struct *n) 429 { 430 return test_bit(NAPI_STATE_DISABLE, &n->state); 431 } 432 433 bool napi_schedule_prep(struct napi_struct *n); 434 435 /** 436 * napi_schedule - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Schedule NAPI poll routine to be called if it is not already 440 * running. 441 */ 442 static inline void napi_schedule(struct napi_struct *n) 443 { 444 if (napi_schedule_prep(n)) 445 __napi_schedule(n); 446 } 447 448 /** 449 * napi_schedule_irqoff - schedule NAPI poll 450 * @n: NAPI context 451 * 452 * Variant of napi_schedule(), assuming hard irqs are masked. 453 */ 454 static inline void napi_schedule_irqoff(struct napi_struct *n) 455 { 456 if (napi_schedule_prep(n)) 457 __napi_schedule_irqoff(n); 458 } 459 460 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 461 static inline bool napi_reschedule(struct napi_struct *napi) 462 { 463 if (napi_schedule_prep(napi)) { 464 __napi_schedule(napi); 465 return true; 466 } 467 return false; 468 } 469 470 bool napi_complete_done(struct napi_struct *n, int work_done); 471 /** 472 * napi_complete - NAPI processing complete 473 * @n: NAPI context 474 * 475 * Mark NAPI processing as complete. 476 * Consider using napi_complete_done() instead. 477 * Return false if device should avoid rearming interrupts. 478 */ 479 static inline bool napi_complete(struct napi_struct *n) 480 { 481 return napi_complete_done(n, 0); 482 } 483 484 /** 485 * napi_hash_del - remove a NAPI from global table 486 * @napi: NAPI context 487 * 488 * Warning: caller must observe RCU grace period 489 * before freeing memory containing @napi, if 490 * this function returns true. 491 * Note: core networking stack automatically calls it 492 * from netif_napi_del(). 493 * Drivers might want to call this helper to combine all 494 * the needed RCU grace periods into a single one. 495 */ 496 bool napi_hash_del(struct napi_struct *napi); 497 498 /** 499 * napi_disable - prevent NAPI from scheduling 500 * @n: NAPI context 501 * 502 * Stop NAPI from being scheduled on this context. 503 * Waits till any outstanding processing completes. 504 */ 505 void napi_disable(struct napi_struct *n); 506 507 /** 508 * napi_enable - enable NAPI scheduling 509 * @n: NAPI context 510 * 511 * Resume NAPI from being scheduled on this context. 512 * Must be paired with napi_disable. 513 */ 514 static inline void napi_enable(struct napi_struct *n) 515 { 516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 517 smp_mb__before_atomic(); 518 clear_bit(NAPI_STATE_SCHED, &n->state); 519 clear_bit(NAPI_STATE_NPSVC, &n->state); 520 } 521 522 /** 523 * napi_synchronize - wait until NAPI is not running 524 * @n: NAPI context 525 * 526 * Wait until NAPI is done being scheduled on this context. 527 * Waits till any outstanding processing completes but 528 * does not disable future activations. 529 */ 530 static inline void napi_synchronize(const struct napi_struct *n) 531 { 532 if (IS_ENABLED(CONFIG_SMP)) 533 while (test_bit(NAPI_STATE_SCHED, &n->state)) 534 msleep(1); 535 else 536 barrier(); 537 } 538 539 /** 540 * napi_if_scheduled_mark_missed - if napi is running, set the 541 * NAPIF_STATE_MISSED 542 * @n: NAPI context 543 * 544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 545 * NAPI is scheduled. 546 **/ 547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 548 { 549 unsigned long val, new; 550 551 do { 552 val = READ_ONCE(n->state); 553 if (val & NAPIF_STATE_DISABLE) 554 return true; 555 556 if (!(val & NAPIF_STATE_SCHED)) 557 return false; 558 559 new = val | NAPIF_STATE_MISSED; 560 } while (cmpxchg(&n->state, val, new) != val); 561 562 return true; 563 } 564 565 enum netdev_queue_state_t { 566 __QUEUE_STATE_DRV_XOFF, 567 __QUEUE_STATE_STACK_XOFF, 568 __QUEUE_STATE_FROZEN, 569 }; 570 571 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 572 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 573 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 574 575 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 579 QUEUE_STATE_FROZEN) 580 581 /* 582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 583 * netif_tx_* functions below are used to manipulate this flag. The 584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 585 * queue independently. The netif_xmit_*stopped functions below are called 586 * to check if the queue has been stopped by the driver or stack (either 587 * of the XOFF bits are set in the state). Drivers should not need to call 588 * netif_xmit*stopped functions, they should only be using netif_tx_*. 589 */ 590 591 struct netdev_queue { 592 /* 593 * read-mostly part 594 */ 595 struct net_device *dev; 596 struct Qdisc __rcu *qdisc; 597 struct Qdisc *qdisc_sleeping; 598 #ifdef CONFIG_SYSFS 599 struct kobject kobj; 600 #endif 601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 602 int numa_node; 603 #endif 604 unsigned long tx_maxrate; 605 /* 606 * Number of TX timeouts for this queue 607 * (/sys/class/net/DEV/Q/trans_timeout) 608 */ 609 unsigned long trans_timeout; 610 611 /* Subordinate device that the queue has been assigned to */ 612 struct net_device *sb_dev; 613 #ifdef CONFIG_XDP_SOCKETS 614 struct xdp_umem *umem; 615 #endif 616 /* 617 * write-mostly part 618 */ 619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 620 int xmit_lock_owner; 621 /* 622 * Time (in jiffies) of last Tx 623 */ 624 unsigned long trans_start; 625 626 unsigned long state; 627 628 #ifdef CONFIG_BQL 629 struct dql dql; 630 #endif 631 } ____cacheline_aligned_in_smp; 632 633 extern int sysctl_fb_tunnels_only_for_init_net; 634 extern int sysctl_devconf_inherit_init_net; 635 636 static inline bool net_has_fallback_tunnels(const struct net *net) 637 { 638 return net == &init_net || 639 !IS_ENABLED(CONFIG_SYSCTL) || 640 !sysctl_fb_tunnels_only_for_init_net; 641 } 642 643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 644 { 645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 646 return q->numa_node; 647 #else 648 return NUMA_NO_NODE; 649 #endif 650 } 651 652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 653 { 654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 q->numa_node = node; 656 #endif 657 } 658 659 #ifdef CONFIG_RPS 660 /* 661 * This structure holds an RPS map which can be of variable length. The 662 * map is an array of CPUs. 663 */ 664 struct rps_map { 665 unsigned int len; 666 struct rcu_head rcu; 667 u16 cpus[]; 668 }; 669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 670 671 /* 672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 673 * tail pointer for that CPU's input queue at the time of last enqueue, and 674 * a hardware filter index. 675 */ 676 struct rps_dev_flow { 677 u16 cpu; 678 u16 filter; 679 unsigned int last_qtail; 680 }; 681 #define RPS_NO_FILTER 0xffff 682 683 /* 684 * The rps_dev_flow_table structure contains a table of flow mappings. 685 */ 686 struct rps_dev_flow_table { 687 unsigned int mask; 688 struct rcu_head rcu; 689 struct rps_dev_flow flows[]; 690 }; 691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 692 ((_num) * sizeof(struct rps_dev_flow))) 693 694 /* 695 * The rps_sock_flow_table contains mappings of flows to the last CPU 696 * on which they were processed by the application (set in recvmsg). 697 * Each entry is a 32bit value. Upper part is the high-order bits 698 * of flow hash, lower part is CPU number. 699 * rps_cpu_mask is used to partition the space, depending on number of 700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 702 * meaning we use 32-6=26 bits for the hash. 703 */ 704 struct rps_sock_flow_table { 705 u32 mask; 706 707 u32 ents[] ____cacheline_aligned_in_smp; 708 }; 709 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 710 711 #define RPS_NO_CPU 0xffff 712 713 extern u32 rps_cpu_mask; 714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 715 716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 717 u32 hash) 718 { 719 if (table && hash) { 720 unsigned int index = hash & table->mask; 721 u32 val = hash & ~rps_cpu_mask; 722 723 /* We only give a hint, preemption can change CPU under us */ 724 val |= raw_smp_processor_id(); 725 726 if (table->ents[index] != val) 727 table->ents[index] = val; 728 } 729 } 730 731 #ifdef CONFIG_RFS_ACCEL 732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 733 u16 filter_id); 734 #endif 735 #endif /* CONFIG_RPS */ 736 737 /* This structure contains an instance of an RX queue. */ 738 struct netdev_rx_queue { 739 #ifdef CONFIG_RPS 740 struct rps_map __rcu *rps_map; 741 struct rps_dev_flow_table __rcu *rps_flow_table; 742 #endif 743 struct kobject kobj; 744 struct net_device *dev; 745 struct xdp_rxq_info xdp_rxq; 746 #ifdef CONFIG_XDP_SOCKETS 747 struct xdp_umem *umem; 748 #endif 749 } ____cacheline_aligned_in_smp; 750 751 /* 752 * RX queue sysfs structures and functions. 753 */ 754 struct rx_queue_attribute { 755 struct attribute attr; 756 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 757 ssize_t (*store)(struct netdev_rx_queue *queue, 758 const char *buf, size_t len); 759 }; 760 761 #ifdef CONFIG_XPS 762 /* 763 * This structure holds an XPS map which can be of variable length. The 764 * map is an array of queues. 765 */ 766 struct xps_map { 767 unsigned int len; 768 unsigned int alloc_len; 769 struct rcu_head rcu; 770 u16 queues[]; 771 }; 772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 774 - sizeof(struct xps_map)) / sizeof(u16)) 775 776 /* 777 * This structure holds all XPS maps for device. Maps are indexed by CPU. 778 */ 779 struct xps_dev_maps { 780 struct rcu_head rcu; 781 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 782 }; 783 784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 785 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 786 787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 788 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 789 790 #endif /* CONFIG_XPS */ 791 792 #define TC_MAX_QUEUE 16 793 #define TC_BITMASK 15 794 /* HW offloaded queuing disciplines txq count and offset maps */ 795 struct netdev_tc_txq { 796 u16 count; 797 u16 offset; 798 }; 799 800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 801 /* 802 * This structure is to hold information about the device 803 * configured to run FCoE protocol stack. 804 */ 805 struct netdev_fcoe_hbainfo { 806 char manufacturer[64]; 807 char serial_number[64]; 808 char hardware_version[64]; 809 char driver_version[64]; 810 char optionrom_version[64]; 811 char firmware_version[64]; 812 char model[256]; 813 char model_description[256]; 814 }; 815 #endif 816 817 #define MAX_PHYS_ITEM_ID_LEN 32 818 819 /* This structure holds a unique identifier to identify some 820 * physical item (port for example) used by a netdevice. 821 */ 822 struct netdev_phys_item_id { 823 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 824 unsigned char id_len; 825 }; 826 827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 828 struct netdev_phys_item_id *b) 829 { 830 return a->id_len == b->id_len && 831 memcmp(a->id, b->id, a->id_len) == 0; 832 } 833 834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 835 struct sk_buff *skb, 836 struct net_device *sb_dev); 837 838 enum tc_setup_type { 839 TC_SETUP_QDISC_MQPRIO, 840 TC_SETUP_CLSU32, 841 TC_SETUP_CLSFLOWER, 842 TC_SETUP_CLSMATCHALL, 843 TC_SETUP_CLSBPF, 844 TC_SETUP_BLOCK, 845 TC_SETUP_QDISC_CBS, 846 TC_SETUP_QDISC_RED, 847 TC_SETUP_QDISC_PRIO, 848 TC_SETUP_QDISC_MQ, 849 TC_SETUP_QDISC_ETF, 850 TC_SETUP_ROOT_QDISC, 851 TC_SETUP_QDISC_GRED, 852 TC_SETUP_QDISC_TAPRIO, 853 TC_SETUP_FT, 854 TC_SETUP_QDISC_ETS, 855 TC_SETUP_QDISC_TBF, 856 TC_SETUP_QDISC_FIFO, 857 }; 858 859 /* These structures hold the attributes of bpf state that are being passed 860 * to the netdevice through the bpf op. 861 */ 862 enum bpf_netdev_command { 863 /* Set or clear a bpf program used in the earliest stages of packet 864 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 865 * is responsible for calling bpf_prog_put on any old progs that are 866 * stored. In case of error, the callee need not release the new prog 867 * reference, but on success it takes ownership and must bpf_prog_put 868 * when it is no longer used. 869 */ 870 XDP_SETUP_PROG, 871 XDP_SETUP_PROG_HW, 872 XDP_QUERY_PROG, 873 XDP_QUERY_PROG_HW, 874 /* BPF program for offload callbacks, invoked at program load time. */ 875 BPF_OFFLOAD_MAP_ALLOC, 876 BPF_OFFLOAD_MAP_FREE, 877 XDP_SETUP_XSK_UMEM, 878 }; 879 880 struct bpf_prog_offload_ops; 881 struct netlink_ext_ack; 882 struct xdp_umem; 883 struct xdp_dev_bulk_queue; 884 885 struct netdev_bpf { 886 enum bpf_netdev_command command; 887 union { 888 /* XDP_SETUP_PROG */ 889 struct { 890 u32 flags; 891 struct bpf_prog *prog; 892 struct netlink_ext_ack *extack; 893 }; 894 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 895 struct { 896 u32 prog_id; 897 /* flags with which program was installed */ 898 u32 prog_flags; 899 }; 900 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 901 struct { 902 struct bpf_offloaded_map *offmap; 903 }; 904 /* XDP_SETUP_XSK_UMEM */ 905 struct { 906 struct xdp_umem *umem; 907 u16 queue_id; 908 } xsk; 909 }; 910 }; 911 912 /* Flags for ndo_xsk_wakeup. */ 913 #define XDP_WAKEUP_RX (1 << 0) 914 #define XDP_WAKEUP_TX (1 << 1) 915 916 #ifdef CONFIG_XFRM_OFFLOAD 917 struct xfrmdev_ops { 918 int (*xdo_dev_state_add) (struct xfrm_state *x); 919 void (*xdo_dev_state_delete) (struct xfrm_state *x); 920 void (*xdo_dev_state_free) (struct xfrm_state *x); 921 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 922 struct xfrm_state *x); 923 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 924 }; 925 #endif 926 927 struct dev_ifalias { 928 struct rcu_head rcuhead; 929 char ifalias[]; 930 }; 931 932 struct devlink; 933 struct tlsdev_ops; 934 935 struct netdev_name_node { 936 struct hlist_node hlist; 937 struct list_head list; 938 struct net_device *dev; 939 const char *name; 940 }; 941 942 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 943 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 944 945 struct netdev_net_notifier { 946 struct list_head list; 947 struct notifier_block *nb; 948 }; 949 950 /* 951 * This structure defines the management hooks for network devices. 952 * The following hooks can be defined; unless noted otherwise, they are 953 * optional and can be filled with a null pointer. 954 * 955 * int (*ndo_init)(struct net_device *dev); 956 * This function is called once when a network device is registered. 957 * The network device can use this for any late stage initialization 958 * or semantic validation. It can fail with an error code which will 959 * be propagated back to register_netdev. 960 * 961 * void (*ndo_uninit)(struct net_device *dev); 962 * This function is called when device is unregistered or when registration 963 * fails. It is not called if init fails. 964 * 965 * int (*ndo_open)(struct net_device *dev); 966 * This function is called when a network device transitions to the up 967 * state. 968 * 969 * int (*ndo_stop)(struct net_device *dev); 970 * This function is called when a network device transitions to the down 971 * state. 972 * 973 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 974 * struct net_device *dev); 975 * Called when a packet needs to be transmitted. 976 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 977 * the queue before that can happen; it's for obsolete devices and weird 978 * corner cases, but the stack really does a non-trivial amount 979 * of useless work if you return NETDEV_TX_BUSY. 980 * Required; cannot be NULL. 981 * 982 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 983 * struct net_device *dev 984 * netdev_features_t features); 985 * Called by core transmit path to determine if device is capable of 986 * performing offload operations on a given packet. This is to give 987 * the device an opportunity to implement any restrictions that cannot 988 * be otherwise expressed by feature flags. The check is called with 989 * the set of features that the stack has calculated and it returns 990 * those the driver believes to be appropriate. 991 * 992 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 993 * struct net_device *sb_dev); 994 * Called to decide which queue to use when device supports multiple 995 * transmit queues. 996 * 997 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 998 * This function is called to allow device receiver to make 999 * changes to configuration when multicast or promiscuous is enabled. 1000 * 1001 * void (*ndo_set_rx_mode)(struct net_device *dev); 1002 * This function is called device changes address list filtering. 1003 * If driver handles unicast address filtering, it should set 1004 * IFF_UNICAST_FLT in its priv_flags. 1005 * 1006 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1007 * This function is called when the Media Access Control address 1008 * needs to be changed. If this interface is not defined, the 1009 * MAC address can not be changed. 1010 * 1011 * int (*ndo_validate_addr)(struct net_device *dev); 1012 * Test if Media Access Control address is valid for the device. 1013 * 1014 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1015 * Called when a user requests an ioctl which can't be handled by 1016 * the generic interface code. If not defined ioctls return 1017 * not supported error code. 1018 * 1019 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1020 * Used to set network devices bus interface parameters. This interface 1021 * is retained for legacy reasons; new devices should use the bus 1022 * interface (PCI) for low level management. 1023 * 1024 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1025 * Called when a user wants to change the Maximum Transfer Unit 1026 * of a device. 1027 * 1028 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1029 * Callback used when the transmitter has not made any progress 1030 * for dev->watchdog ticks. 1031 * 1032 * void (*ndo_get_stats64)(struct net_device *dev, 1033 * struct rtnl_link_stats64 *storage); 1034 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1035 * Called when a user wants to get the network device usage 1036 * statistics. Drivers must do one of the following: 1037 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1038 * rtnl_link_stats64 structure passed by the caller. 1039 * 2. Define @ndo_get_stats to update a net_device_stats structure 1040 * (which should normally be dev->stats) and return a pointer to 1041 * it. The structure may be changed asynchronously only if each 1042 * field is written atomically. 1043 * 3. Update dev->stats asynchronously and atomically, and define 1044 * neither operation. 1045 * 1046 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1047 * Return true if this device supports offload stats of this attr_id. 1048 * 1049 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1050 * void *attr_data) 1051 * Get statistics for offload operations by attr_id. Write it into the 1052 * attr_data pointer. 1053 * 1054 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1055 * If device supports VLAN filtering this function is called when a 1056 * VLAN id is registered. 1057 * 1058 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1059 * If device supports VLAN filtering this function is called when a 1060 * VLAN id is unregistered. 1061 * 1062 * void (*ndo_poll_controller)(struct net_device *dev); 1063 * 1064 * SR-IOV management functions. 1065 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1066 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1067 * u8 qos, __be16 proto); 1068 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1069 * int max_tx_rate); 1070 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1071 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1072 * int (*ndo_get_vf_config)(struct net_device *dev, 1073 * int vf, struct ifla_vf_info *ivf); 1074 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1075 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1076 * struct nlattr *port[]); 1077 * 1078 * Enable or disable the VF ability to query its RSS Redirection Table and 1079 * Hash Key. This is needed since on some devices VF share this information 1080 * with PF and querying it may introduce a theoretical security risk. 1081 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1082 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1083 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1084 * void *type_data); 1085 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1086 * This is always called from the stack with the rtnl lock held and netif 1087 * tx queues stopped. This allows the netdevice to perform queue 1088 * management safely. 1089 * 1090 * Fiber Channel over Ethernet (FCoE) offload functions. 1091 * int (*ndo_fcoe_enable)(struct net_device *dev); 1092 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1093 * so the underlying device can perform whatever needed configuration or 1094 * initialization to support acceleration of FCoE traffic. 1095 * 1096 * int (*ndo_fcoe_disable)(struct net_device *dev); 1097 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1098 * so the underlying device can perform whatever needed clean-ups to 1099 * stop supporting acceleration of FCoE traffic. 1100 * 1101 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1102 * struct scatterlist *sgl, unsigned int sgc); 1103 * Called when the FCoE Initiator wants to initialize an I/O that 1104 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1105 * perform necessary setup and returns 1 to indicate the device is set up 1106 * successfully to perform DDP on this I/O, otherwise this returns 0. 1107 * 1108 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1109 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1110 * indicated by the FC exchange id 'xid', so the underlying device can 1111 * clean up and reuse resources for later DDP requests. 1112 * 1113 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1114 * struct scatterlist *sgl, unsigned int sgc); 1115 * Called when the FCoE Target wants to initialize an I/O that 1116 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1117 * perform necessary setup and returns 1 to indicate the device is set up 1118 * successfully to perform DDP on this I/O, otherwise this returns 0. 1119 * 1120 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1121 * struct netdev_fcoe_hbainfo *hbainfo); 1122 * Called when the FCoE Protocol stack wants information on the underlying 1123 * device. This information is utilized by the FCoE protocol stack to 1124 * register attributes with Fiber Channel management service as per the 1125 * FC-GS Fabric Device Management Information(FDMI) specification. 1126 * 1127 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1128 * Called when the underlying device wants to override default World Wide 1129 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1130 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1131 * protocol stack to use. 1132 * 1133 * RFS acceleration. 1134 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1135 * u16 rxq_index, u32 flow_id); 1136 * Set hardware filter for RFS. rxq_index is the target queue index; 1137 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1138 * Return the filter ID on success, or a negative error code. 1139 * 1140 * Slave management functions (for bridge, bonding, etc). 1141 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1142 * Called to make another netdev an underling. 1143 * 1144 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1145 * Called to release previously enslaved netdev. 1146 * 1147 * Feature/offload setting functions. 1148 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1149 * netdev_features_t features); 1150 * Adjusts the requested feature flags according to device-specific 1151 * constraints, and returns the resulting flags. Must not modify 1152 * the device state. 1153 * 1154 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1155 * Called to update device configuration to new features. Passed 1156 * feature set might be less than what was returned by ndo_fix_features()). 1157 * Must return >0 or -errno if it changed dev->features itself. 1158 * 1159 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1160 * struct net_device *dev, 1161 * const unsigned char *addr, u16 vid, u16 flags, 1162 * struct netlink_ext_ack *extack); 1163 * Adds an FDB entry to dev for addr. 1164 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1165 * struct net_device *dev, 1166 * const unsigned char *addr, u16 vid) 1167 * Deletes the FDB entry from dev coresponding to addr. 1168 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1169 * struct net_device *dev, struct net_device *filter_dev, 1170 * int *idx) 1171 * Used to add FDB entries to dump requests. Implementers should add 1172 * entries to skb and update idx with the number of entries. 1173 * 1174 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1175 * u16 flags, struct netlink_ext_ack *extack) 1176 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1177 * struct net_device *dev, u32 filter_mask, 1178 * int nlflags) 1179 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1180 * u16 flags); 1181 * 1182 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1183 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1184 * which do not represent real hardware may define this to allow their 1185 * userspace components to manage their virtual carrier state. Devices 1186 * that determine carrier state from physical hardware properties (eg 1187 * network cables) or protocol-dependent mechanisms (eg 1188 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1189 * 1190 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1191 * struct netdev_phys_item_id *ppid); 1192 * Called to get ID of physical port of this device. If driver does 1193 * not implement this, it is assumed that the hw is not able to have 1194 * multiple net devices on single physical port. 1195 * 1196 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1197 * struct netdev_phys_item_id *ppid) 1198 * Called to get the parent ID of the physical port of this device. 1199 * 1200 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1201 * struct udp_tunnel_info *ti); 1202 * Called by UDP tunnel to notify a driver about the UDP port and socket 1203 * address family that a UDP tunnel is listnening to. It is called only 1204 * when a new port starts listening. The operation is protected by the 1205 * RTNL. 1206 * 1207 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1208 * struct udp_tunnel_info *ti); 1209 * Called by UDP tunnel to notify the driver about a UDP port and socket 1210 * address family that the UDP tunnel is not listening to anymore. The 1211 * operation is protected by the RTNL. 1212 * 1213 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1214 * struct net_device *dev) 1215 * Called by upper layer devices to accelerate switching or other 1216 * station functionality into hardware. 'pdev is the lowerdev 1217 * to use for the offload and 'dev' is the net device that will 1218 * back the offload. Returns a pointer to the private structure 1219 * the upper layer will maintain. 1220 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1221 * Called by upper layer device to delete the station created 1222 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1223 * the station and priv is the structure returned by the add 1224 * operation. 1225 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1226 * int queue_index, u32 maxrate); 1227 * Called when a user wants to set a max-rate limitation of specific 1228 * TX queue. 1229 * int (*ndo_get_iflink)(const struct net_device *dev); 1230 * Called to get the iflink value of this device. 1231 * void (*ndo_change_proto_down)(struct net_device *dev, 1232 * bool proto_down); 1233 * This function is used to pass protocol port error state information 1234 * to the switch driver. The switch driver can react to the proto_down 1235 * by doing a phys down on the associated switch port. 1236 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1237 * This function is used to get egress tunnel information for given skb. 1238 * This is useful for retrieving outer tunnel header parameters while 1239 * sampling packet. 1240 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1241 * This function is used to specify the headroom that the skb must 1242 * consider when allocation skb during packet reception. Setting 1243 * appropriate rx headroom value allows avoiding skb head copy on 1244 * forward. Setting a negative value resets the rx headroom to the 1245 * default value. 1246 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1247 * This function is used to set or query state related to XDP on the 1248 * netdevice and manage BPF offload. See definition of 1249 * enum bpf_netdev_command for details. 1250 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1251 * u32 flags); 1252 * This function is used to submit @n XDP packets for transmit on a 1253 * netdevice. Returns number of frames successfully transmitted, frames 1254 * that got dropped are freed/returned via xdp_return_frame(). 1255 * Returns negative number, means general error invoking ndo, meaning 1256 * no frames were xmit'ed and core-caller will free all frames. 1257 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1258 * This function is used to wake up the softirq, ksoftirqd or kthread 1259 * responsible for sending and/or receiving packets on a specific 1260 * queue id bound to an AF_XDP socket. The flags field specifies if 1261 * only RX, only Tx, or both should be woken up using the flags 1262 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1263 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1264 * Get devlink port instance associated with a given netdev. 1265 * Called with a reference on the netdevice and devlink locks only, 1266 * rtnl_lock is not held. 1267 */ 1268 struct net_device_ops { 1269 int (*ndo_init)(struct net_device *dev); 1270 void (*ndo_uninit)(struct net_device *dev); 1271 int (*ndo_open)(struct net_device *dev); 1272 int (*ndo_stop)(struct net_device *dev); 1273 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1274 struct net_device *dev); 1275 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1276 struct net_device *dev, 1277 netdev_features_t features); 1278 u16 (*ndo_select_queue)(struct net_device *dev, 1279 struct sk_buff *skb, 1280 struct net_device *sb_dev); 1281 void (*ndo_change_rx_flags)(struct net_device *dev, 1282 int flags); 1283 void (*ndo_set_rx_mode)(struct net_device *dev); 1284 int (*ndo_set_mac_address)(struct net_device *dev, 1285 void *addr); 1286 int (*ndo_validate_addr)(struct net_device *dev); 1287 int (*ndo_do_ioctl)(struct net_device *dev, 1288 struct ifreq *ifr, int cmd); 1289 int (*ndo_set_config)(struct net_device *dev, 1290 struct ifmap *map); 1291 int (*ndo_change_mtu)(struct net_device *dev, 1292 int new_mtu); 1293 int (*ndo_neigh_setup)(struct net_device *dev, 1294 struct neigh_parms *); 1295 void (*ndo_tx_timeout) (struct net_device *dev, 1296 unsigned int txqueue); 1297 1298 void (*ndo_get_stats64)(struct net_device *dev, 1299 struct rtnl_link_stats64 *storage); 1300 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1301 int (*ndo_get_offload_stats)(int attr_id, 1302 const struct net_device *dev, 1303 void *attr_data); 1304 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1305 1306 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1307 __be16 proto, u16 vid); 1308 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1309 __be16 proto, u16 vid); 1310 #ifdef CONFIG_NET_POLL_CONTROLLER 1311 void (*ndo_poll_controller)(struct net_device *dev); 1312 int (*ndo_netpoll_setup)(struct net_device *dev, 1313 struct netpoll_info *info); 1314 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1315 #endif 1316 int (*ndo_set_vf_mac)(struct net_device *dev, 1317 int queue, u8 *mac); 1318 int (*ndo_set_vf_vlan)(struct net_device *dev, 1319 int queue, u16 vlan, 1320 u8 qos, __be16 proto); 1321 int (*ndo_set_vf_rate)(struct net_device *dev, 1322 int vf, int min_tx_rate, 1323 int max_tx_rate); 1324 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1325 int vf, bool setting); 1326 int (*ndo_set_vf_trust)(struct net_device *dev, 1327 int vf, bool setting); 1328 int (*ndo_get_vf_config)(struct net_device *dev, 1329 int vf, 1330 struct ifla_vf_info *ivf); 1331 int (*ndo_set_vf_link_state)(struct net_device *dev, 1332 int vf, int link_state); 1333 int (*ndo_get_vf_stats)(struct net_device *dev, 1334 int vf, 1335 struct ifla_vf_stats 1336 *vf_stats); 1337 int (*ndo_set_vf_port)(struct net_device *dev, 1338 int vf, 1339 struct nlattr *port[]); 1340 int (*ndo_get_vf_port)(struct net_device *dev, 1341 int vf, struct sk_buff *skb); 1342 int (*ndo_get_vf_guid)(struct net_device *dev, 1343 int vf, 1344 struct ifla_vf_guid *node_guid, 1345 struct ifla_vf_guid *port_guid); 1346 int (*ndo_set_vf_guid)(struct net_device *dev, 1347 int vf, u64 guid, 1348 int guid_type); 1349 int (*ndo_set_vf_rss_query_en)( 1350 struct net_device *dev, 1351 int vf, bool setting); 1352 int (*ndo_setup_tc)(struct net_device *dev, 1353 enum tc_setup_type type, 1354 void *type_data); 1355 #if IS_ENABLED(CONFIG_FCOE) 1356 int (*ndo_fcoe_enable)(struct net_device *dev); 1357 int (*ndo_fcoe_disable)(struct net_device *dev); 1358 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1359 u16 xid, 1360 struct scatterlist *sgl, 1361 unsigned int sgc); 1362 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1363 u16 xid); 1364 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1365 u16 xid, 1366 struct scatterlist *sgl, 1367 unsigned int sgc); 1368 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1369 struct netdev_fcoe_hbainfo *hbainfo); 1370 #endif 1371 1372 #if IS_ENABLED(CONFIG_LIBFCOE) 1373 #define NETDEV_FCOE_WWNN 0 1374 #define NETDEV_FCOE_WWPN 1 1375 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1376 u64 *wwn, int type); 1377 #endif 1378 1379 #ifdef CONFIG_RFS_ACCEL 1380 int (*ndo_rx_flow_steer)(struct net_device *dev, 1381 const struct sk_buff *skb, 1382 u16 rxq_index, 1383 u32 flow_id); 1384 #endif 1385 int (*ndo_add_slave)(struct net_device *dev, 1386 struct net_device *slave_dev, 1387 struct netlink_ext_ack *extack); 1388 int (*ndo_del_slave)(struct net_device *dev, 1389 struct net_device *slave_dev); 1390 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1391 netdev_features_t features); 1392 int (*ndo_set_features)(struct net_device *dev, 1393 netdev_features_t features); 1394 int (*ndo_neigh_construct)(struct net_device *dev, 1395 struct neighbour *n); 1396 void (*ndo_neigh_destroy)(struct net_device *dev, 1397 struct neighbour *n); 1398 1399 int (*ndo_fdb_add)(struct ndmsg *ndm, 1400 struct nlattr *tb[], 1401 struct net_device *dev, 1402 const unsigned char *addr, 1403 u16 vid, 1404 u16 flags, 1405 struct netlink_ext_ack *extack); 1406 int (*ndo_fdb_del)(struct ndmsg *ndm, 1407 struct nlattr *tb[], 1408 struct net_device *dev, 1409 const unsigned char *addr, 1410 u16 vid); 1411 int (*ndo_fdb_dump)(struct sk_buff *skb, 1412 struct netlink_callback *cb, 1413 struct net_device *dev, 1414 struct net_device *filter_dev, 1415 int *idx); 1416 int (*ndo_fdb_get)(struct sk_buff *skb, 1417 struct nlattr *tb[], 1418 struct net_device *dev, 1419 const unsigned char *addr, 1420 u16 vid, u32 portid, u32 seq, 1421 struct netlink_ext_ack *extack); 1422 int (*ndo_bridge_setlink)(struct net_device *dev, 1423 struct nlmsghdr *nlh, 1424 u16 flags, 1425 struct netlink_ext_ack *extack); 1426 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1427 u32 pid, u32 seq, 1428 struct net_device *dev, 1429 u32 filter_mask, 1430 int nlflags); 1431 int (*ndo_bridge_dellink)(struct net_device *dev, 1432 struct nlmsghdr *nlh, 1433 u16 flags); 1434 int (*ndo_change_carrier)(struct net_device *dev, 1435 bool new_carrier); 1436 int (*ndo_get_phys_port_id)(struct net_device *dev, 1437 struct netdev_phys_item_id *ppid); 1438 int (*ndo_get_port_parent_id)(struct net_device *dev, 1439 struct netdev_phys_item_id *ppid); 1440 int (*ndo_get_phys_port_name)(struct net_device *dev, 1441 char *name, size_t len); 1442 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1443 struct udp_tunnel_info *ti); 1444 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1445 struct udp_tunnel_info *ti); 1446 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1447 struct net_device *dev); 1448 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1449 void *priv); 1450 1451 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1452 int queue_index, 1453 u32 maxrate); 1454 int (*ndo_get_iflink)(const struct net_device *dev); 1455 int (*ndo_change_proto_down)(struct net_device *dev, 1456 bool proto_down); 1457 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1458 struct sk_buff *skb); 1459 void (*ndo_set_rx_headroom)(struct net_device *dev, 1460 int needed_headroom); 1461 int (*ndo_bpf)(struct net_device *dev, 1462 struct netdev_bpf *bpf); 1463 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1464 struct xdp_frame **xdp, 1465 u32 flags); 1466 int (*ndo_xsk_wakeup)(struct net_device *dev, 1467 u32 queue_id, u32 flags); 1468 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1469 }; 1470 1471 /** 1472 * enum net_device_priv_flags - &struct net_device priv_flags 1473 * 1474 * These are the &struct net_device, they are only set internally 1475 * by drivers and used in the kernel. These flags are invisible to 1476 * userspace; this means that the order of these flags can change 1477 * during any kernel release. 1478 * 1479 * You should have a pretty good reason to be extending these flags. 1480 * 1481 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1482 * @IFF_EBRIDGE: Ethernet bridging device 1483 * @IFF_BONDING: bonding master or slave 1484 * @IFF_ISATAP: ISATAP interface (RFC4214) 1485 * @IFF_WAN_HDLC: WAN HDLC device 1486 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1487 * release skb->dst 1488 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1489 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1490 * @IFF_MACVLAN_PORT: device used as macvlan port 1491 * @IFF_BRIDGE_PORT: device used as bridge port 1492 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1493 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1494 * @IFF_UNICAST_FLT: Supports unicast filtering 1495 * @IFF_TEAM_PORT: device used as team port 1496 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1497 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1498 * change when it's running 1499 * @IFF_MACVLAN: Macvlan device 1500 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1501 * underlying stacked devices 1502 * @IFF_L3MDEV_MASTER: device is an L3 master device 1503 * @IFF_NO_QUEUE: device can run without qdisc attached 1504 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1505 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1506 * @IFF_TEAM: device is a team device 1507 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1508 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1509 * entity (i.e. the master device for bridged veth) 1510 * @IFF_MACSEC: device is a MACsec device 1511 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1512 * @IFF_FAILOVER: device is a failover master device 1513 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1514 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1515 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1516 */ 1517 enum netdev_priv_flags { 1518 IFF_802_1Q_VLAN = 1<<0, 1519 IFF_EBRIDGE = 1<<1, 1520 IFF_BONDING = 1<<2, 1521 IFF_ISATAP = 1<<3, 1522 IFF_WAN_HDLC = 1<<4, 1523 IFF_XMIT_DST_RELEASE = 1<<5, 1524 IFF_DONT_BRIDGE = 1<<6, 1525 IFF_DISABLE_NETPOLL = 1<<7, 1526 IFF_MACVLAN_PORT = 1<<8, 1527 IFF_BRIDGE_PORT = 1<<9, 1528 IFF_OVS_DATAPATH = 1<<10, 1529 IFF_TX_SKB_SHARING = 1<<11, 1530 IFF_UNICAST_FLT = 1<<12, 1531 IFF_TEAM_PORT = 1<<13, 1532 IFF_SUPP_NOFCS = 1<<14, 1533 IFF_LIVE_ADDR_CHANGE = 1<<15, 1534 IFF_MACVLAN = 1<<16, 1535 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1536 IFF_L3MDEV_MASTER = 1<<18, 1537 IFF_NO_QUEUE = 1<<19, 1538 IFF_OPENVSWITCH = 1<<20, 1539 IFF_L3MDEV_SLAVE = 1<<21, 1540 IFF_TEAM = 1<<22, 1541 IFF_RXFH_CONFIGURED = 1<<23, 1542 IFF_PHONY_HEADROOM = 1<<24, 1543 IFF_MACSEC = 1<<25, 1544 IFF_NO_RX_HANDLER = 1<<26, 1545 IFF_FAILOVER = 1<<27, 1546 IFF_FAILOVER_SLAVE = 1<<28, 1547 IFF_L3MDEV_RX_HANDLER = 1<<29, 1548 IFF_LIVE_RENAME_OK = 1<<30, 1549 }; 1550 1551 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1552 #define IFF_EBRIDGE IFF_EBRIDGE 1553 #define IFF_BONDING IFF_BONDING 1554 #define IFF_ISATAP IFF_ISATAP 1555 #define IFF_WAN_HDLC IFF_WAN_HDLC 1556 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1557 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1558 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1559 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1560 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1561 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1562 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1563 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1564 #define IFF_TEAM_PORT IFF_TEAM_PORT 1565 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1566 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1567 #define IFF_MACVLAN IFF_MACVLAN 1568 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1569 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1570 #define IFF_NO_QUEUE IFF_NO_QUEUE 1571 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1572 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1573 #define IFF_TEAM IFF_TEAM 1574 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1575 #define IFF_MACSEC IFF_MACSEC 1576 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1577 #define IFF_FAILOVER IFF_FAILOVER 1578 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1579 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1580 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1581 1582 /** 1583 * struct net_device - The DEVICE structure. 1584 * 1585 * Actually, this whole structure is a big mistake. It mixes I/O 1586 * data with strictly "high-level" data, and it has to know about 1587 * almost every data structure used in the INET module. 1588 * 1589 * @name: This is the first field of the "visible" part of this structure 1590 * (i.e. as seen by users in the "Space.c" file). It is the name 1591 * of the interface. 1592 * 1593 * @name_node: Name hashlist node 1594 * @ifalias: SNMP alias 1595 * @mem_end: Shared memory end 1596 * @mem_start: Shared memory start 1597 * @base_addr: Device I/O address 1598 * @irq: Device IRQ number 1599 * 1600 * @state: Generic network queuing layer state, see netdev_state_t 1601 * @dev_list: The global list of network devices 1602 * @napi_list: List entry used for polling NAPI devices 1603 * @unreg_list: List entry when we are unregistering the 1604 * device; see the function unregister_netdev 1605 * @close_list: List entry used when we are closing the device 1606 * @ptype_all: Device-specific packet handlers for all protocols 1607 * @ptype_specific: Device-specific, protocol-specific packet handlers 1608 * 1609 * @adj_list: Directly linked devices, like slaves for bonding 1610 * @features: Currently active device features 1611 * @hw_features: User-changeable features 1612 * 1613 * @wanted_features: User-requested features 1614 * @vlan_features: Mask of features inheritable by VLAN devices 1615 * 1616 * @hw_enc_features: Mask of features inherited by encapsulating devices 1617 * This field indicates what encapsulation 1618 * offloads the hardware is capable of doing, 1619 * and drivers will need to set them appropriately. 1620 * 1621 * @mpls_features: Mask of features inheritable by MPLS 1622 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1623 * 1624 * @ifindex: interface index 1625 * @group: The group the device belongs to 1626 * 1627 * @stats: Statistics struct, which was left as a legacy, use 1628 * rtnl_link_stats64 instead 1629 * 1630 * @rx_dropped: Dropped packets by core network, 1631 * do not use this in drivers 1632 * @tx_dropped: Dropped packets by core network, 1633 * do not use this in drivers 1634 * @rx_nohandler: nohandler dropped packets by core network on 1635 * inactive devices, do not use this in drivers 1636 * @carrier_up_count: Number of times the carrier has been up 1637 * @carrier_down_count: Number of times the carrier has been down 1638 * 1639 * @wireless_handlers: List of functions to handle Wireless Extensions, 1640 * instead of ioctl, 1641 * see <net/iw_handler.h> for details. 1642 * @wireless_data: Instance data managed by the core of wireless extensions 1643 * 1644 * @netdev_ops: Includes several pointers to callbacks, 1645 * if one wants to override the ndo_*() functions 1646 * @ethtool_ops: Management operations 1647 * @l3mdev_ops: Layer 3 master device operations 1648 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1649 * discovery handling. Necessary for e.g. 6LoWPAN. 1650 * @xfrmdev_ops: Transformation offload operations 1651 * @tlsdev_ops: Transport Layer Security offload operations 1652 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1653 * of Layer 2 headers. 1654 * 1655 * @flags: Interface flags (a la BSD) 1656 * @priv_flags: Like 'flags' but invisible to userspace, 1657 * see if.h for the definitions 1658 * @gflags: Global flags ( kept as legacy ) 1659 * @padded: How much padding added by alloc_netdev() 1660 * @operstate: RFC2863 operstate 1661 * @link_mode: Mapping policy to operstate 1662 * @if_port: Selectable AUI, TP, ... 1663 * @dma: DMA channel 1664 * @mtu: Interface MTU value 1665 * @min_mtu: Interface Minimum MTU value 1666 * @max_mtu: Interface Maximum MTU value 1667 * @type: Interface hardware type 1668 * @hard_header_len: Maximum hardware header length. 1669 * @min_header_len: Minimum hardware header length 1670 * 1671 * @needed_headroom: Extra headroom the hardware may need, but not in all 1672 * cases can this be guaranteed 1673 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1674 * cases can this be guaranteed. Some cases also use 1675 * LL_MAX_HEADER instead to allocate the skb 1676 * 1677 * interface address info: 1678 * 1679 * @perm_addr: Permanent hw address 1680 * @addr_assign_type: Hw address assignment type 1681 * @addr_len: Hardware address length 1682 * @upper_level: Maximum depth level of upper devices. 1683 * @lower_level: Maximum depth level of lower devices. 1684 * @neigh_priv_len: Used in neigh_alloc() 1685 * @dev_id: Used to differentiate devices that share 1686 * the same link layer address 1687 * @dev_port: Used to differentiate devices that share 1688 * the same function 1689 * @addr_list_lock: XXX: need comments on this one 1690 * @name_assign_type: network interface name assignment type 1691 * @uc_promisc: Counter that indicates promiscuous mode 1692 * has been enabled due to the need to listen to 1693 * additional unicast addresses in a device that 1694 * does not implement ndo_set_rx_mode() 1695 * @uc: unicast mac addresses 1696 * @mc: multicast mac addresses 1697 * @dev_addrs: list of device hw addresses 1698 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1699 * @promiscuity: Number of times the NIC is told to work in 1700 * promiscuous mode; if it becomes 0 the NIC will 1701 * exit promiscuous mode 1702 * @allmulti: Counter, enables or disables allmulticast mode 1703 * 1704 * @vlan_info: VLAN info 1705 * @dsa_ptr: dsa specific data 1706 * @tipc_ptr: TIPC specific data 1707 * @atalk_ptr: AppleTalk link 1708 * @ip_ptr: IPv4 specific data 1709 * @dn_ptr: DECnet specific data 1710 * @ip6_ptr: IPv6 specific data 1711 * @ax25_ptr: AX.25 specific data 1712 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1713 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1714 * device struct 1715 * @mpls_ptr: mpls_dev struct pointer 1716 * 1717 * @dev_addr: Hw address (before bcast, 1718 * because most packets are unicast) 1719 * 1720 * @_rx: Array of RX queues 1721 * @num_rx_queues: Number of RX queues 1722 * allocated at register_netdev() time 1723 * @real_num_rx_queues: Number of RX queues currently active in device 1724 * @xdp_prog: XDP sockets filter program pointer 1725 * @gro_flush_timeout: timeout for GRO layer in NAPI 1726 * 1727 * @rx_handler: handler for received packets 1728 * @rx_handler_data: XXX: need comments on this one 1729 * @miniq_ingress: ingress/clsact qdisc specific data for 1730 * ingress processing 1731 * @ingress_queue: XXX: need comments on this one 1732 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1733 * @broadcast: hw bcast address 1734 * 1735 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1736 * indexed by RX queue number. Assigned by driver. 1737 * This must only be set if the ndo_rx_flow_steer 1738 * operation is defined 1739 * @index_hlist: Device index hash chain 1740 * 1741 * @_tx: Array of TX queues 1742 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1743 * @real_num_tx_queues: Number of TX queues currently active in device 1744 * @qdisc: Root qdisc from userspace point of view 1745 * @tx_queue_len: Max frames per queue allowed 1746 * @tx_global_lock: XXX: need comments on this one 1747 * @xdp_bulkq: XDP device bulk queue 1748 * @xps_cpus_map: all CPUs map for XPS device 1749 * @xps_rxqs_map: all RXQs map for XPS device 1750 * 1751 * @xps_maps: XXX: need comments on this one 1752 * @miniq_egress: clsact qdisc specific data for 1753 * egress processing 1754 * @qdisc_hash: qdisc hash table 1755 * @watchdog_timeo: Represents the timeout that is used by 1756 * the watchdog (see dev_watchdog()) 1757 * @watchdog_timer: List of timers 1758 * 1759 * @pcpu_refcnt: Number of references to this device 1760 * @todo_list: Delayed register/unregister 1761 * @link_watch_list: XXX: need comments on this one 1762 * 1763 * @reg_state: Register/unregister state machine 1764 * @dismantle: Device is going to be freed 1765 * @rtnl_link_state: This enum represents the phases of creating 1766 * a new link 1767 * 1768 * @needs_free_netdev: Should unregister perform free_netdev? 1769 * @priv_destructor: Called from unregister 1770 * @npinfo: XXX: need comments on this one 1771 * @nd_net: Network namespace this network device is inside 1772 * 1773 * @ml_priv: Mid-layer private 1774 * @lstats: Loopback statistics 1775 * @tstats: Tunnel statistics 1776 * @dstats: Dummy statistics 1777 * @vstats: Virtual ethernet statistics 1778 * 1779 * @garp_port: GARP 1780 * @mrp_port: MRP 1781 * 1782 * @dev: Class/net/name entry 1783 * @sysfs_groups: Space for optional device, statistics and wireless 1784 * sysfs groups 1785 * 1786 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1787 * @rtnl_link_ops: Rtnl_link_ops 1788 * 1789 * @gso_max_size: Maximum size of generic segmentation offload 1790 * @gso_max_segs: Maximum number of segments that can be passed to the 1791 * NIC for GSO 1792 * 1793 * @dcbnl_ops: Data Center Bridging netlink ops 1794 * @num_tc: Number of traffic classes in the net device 1795 * @tc_to_txq: XXX: need comments on this one 1796 * @prio_tc_map: XXX: need comments on this one 1797 * 1798 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1799 * 1800 * @priomap: XXX: need comments on this one 1801 * @phydev: Physical device may attach itself 1802 * for hardware timestamping 1803 * @sfp_bus: attached &struct sfp_bus structure. 1804 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock 1805 * spinlock 1806 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1807 * @qdisc_xmit_lock_key: lockdep class annotating 1808 * netdev_queue->_xmit_lock spinlock 1809 * @addr_list_lock_key: lockdep class annotating 1810 * net_device->addr_list_lock spinlock 1811 * 1812 * @proto_down: protocol port state information can be sent to the 1813 * switch driver and used to set the phys state of the 1814 * switch port. 1815 * 1816 * @wol_enabled: Wake-on-LAN is enabled 1817 * 1818 * @net_notifier_list: List of per-net netdev notifier block 1819 * that follow this device when it is moved 1820 * to another network namespace. 1821 * 1822 * FIXME: cleanup struct net_device such that network protocol info 1823 * moves out. 1824 */ 1825 1826 struct net_device { 1827 char name[IFNAMSIZ]; 1828 struct netdev_name_node *name_node; 1829 struct dev_ifalias __rcu *ifalias; 1830 /* 1831 * I/O specific fields 1832 * FIXME: Merge these and struct ifmap into one 1833 */ 1834 unsigned long mem_end; 1835 unsigned long mem_start; 1836 unsigned long base_addr; 1837 int irq; 1838 1839 /* 1840 * Some hardware also needs these fields (state,dev_list, 1841 * napi_list,unreg_list,close_list) but they are not 1842 * part of the usual set specified in Space.c. 1843 */ 1844 1845 unsigned long state; 1846 1847 struct list_head dev_list; 1848 struct list_head napi_list; 1849 struct list_head unreg_list; 1850 struct list_head close_list; 1851 struct list_head ptype_all; 1852 struct list_head ptype_specific; 1853 1854 struct { 1855 struct list_head upper; 1856 struct list_head lower; 1857 } adj_list; 1858 1859 netdev_features_t features; 1860 netdev_features_t hw_features; 1861 netdev_features_t wanted_features; 1862 netdev_features_t vlan_features; 1863 netdev_features_t hw_enc_features; 1864 netdev_features_t mpls_features; 1865 netdev_features_t gso_partial_features; 1866 1867 int ifindex; 1868 int group; 1869 1870 struct net_device_stats stats; 1871 1872 atomic_long_t rx_dropped; 1873 atomic_long_t tx_dropped; 1874 atomic_long_t rx_nohandler; 1875 1876 /* Stats to monitor link on/off, flapping */ 1877 atomic_t carrier_up_count; 1878 atomic_t carrier_down_count; 1879 1880 #ifdef CONFIG_WIRELESS_EXT 1881 const struct iw_handler_def *wireless_handlers; 1882 struct iw_public_data *wireless_data; 1883 #endif 1884 const struct net_device_ops *netdev_ops; 1885 const struct ethtool_ops *ethtool_ops; 1886 #ifdef CONFIG_NET_L3_MASTER_DEV 1887 const struct l3mdev_ops *l3mdev_ops; 1888 #endif 1889 #if IS_ENABLED(CONFIG_IPV6) 1890 const struct ndisc_ops *ndisc_ops; 1891 #endif 1892 1893 #ifdef CONFIG_XFRM_OFFLOAD 1894 const struct xfrmdev_ops *xfrmdev_ops; 1895 #endif 1896 1897 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1898 const struct tlsdev_ops *tlsdev_ops; 1899 #endif 1900 1901 const struct header_ops *header_ops; 1902 1903 unsigned int flags; 1904 unsigned int priv_flags; 1905 1906 unsigned short gflags; 1907 unsigned short padded; 1908 1909 unsigned char operstate; 1910 unsigned char link_mode; 1911 1912 unsigned char if_port; 1913 unsigned char dma; 1914 1915 /* Note : dev->mtu is often read without holding a lock. 1916 * Writers usually hold RTNL. 1917 * It is recommended to use READ_ONCE() to annotate the reads, 1918 * and to use WRITE_ONCE() to annotate the writes. 1919 */ 1920 unsigned int mtu; 1921 unsigned int min_mtu; 1922 unsigned int max_mtu; 1923 unsigned short type; 1924 unsigned short hard_header_len; 1925 unsigned char min_header_len; 1926 1927 unsigned short needed_headroom; 1928 unsigned short needed_tailroom; 1929 1930 /* Interface address info. */ 1931 unsigned char perm_addr[MAX_ADDR_LEN]; 1932 unsigned char addr_assign_type; 1933 unsigned char addr_len; 1934 unsigned char upper_level; 1935 unsigned char lower_level; 1936 unsigned short neigh_priv_len; 1937 unsigned short dev_id; 1938 unsigned short dev_port; 1939 spinlock_t addr_list_lock; 1940 unsigned char name_assign_type; 1941 bool uc_promisc; 1942 struct netdev_hw_addr_list uc; 1943 struct netdev_hw_addr_list mc; 1944 struct netdev_hw_addr_list dev_addrs; 1945 1946 #ifdef CONFIG_SYSFS 1947 struct kset *queues_kset; 1948 #endif 1949 unsigned int promiscuity; 1950 unsigned int allmulti; 1951 1952 1953 /* Protocol-specific pointers */ 1954 1955 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1956 struct vlan_info __rcu *vlan_info; 1957 #endif 1958 #if IS_ENABLED(CONFIG_NET_DSA) 1959 struct dsa_port *dsa_ptr; 1960 #endif 1961 #if IS_ENABLED(CONFIG_TIPC) 1962 struct tipc_bearer __rcu *tipc_ptr; 1963 #endif 1964 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1965 void *atalk_ptr; 1966 #endif 1967 struct in_device __rcu *ip_ptr; 1968 #if IS_ENABLED(CONFIG_DECNET) 1969 struct dn_dev __rcu *dn_ptr; 1970 #endif 1971 struct inet6_dev __rcu *ip6_ptr; 1972 #if IS_ENABLED(CONFIG_AX25) 1973 void *ax25_ptr; 1974 #endif 1975 struct wireless_dev *ieee80211_ptr; 1976 struct wpan_dev *ieee802154_ptr; 1977 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1978 struct mpls_dev __rcu *mpls_ptr; 1979 #endif 1980 1981 /* 1982 * Cache lines mostly used on receive path (including eth_type_trans()) 1983 */ 1984 /* Interface address info used in eth_type_trans() */ 1985 unsigned char *dev_addr; 1986 1987 struct netdev_rx_queue *_rx; 1988 unsigned int num_rx_queues; 1989 unsigned int real_num_rx_queues; 1990 1991 struct bpf_prog __rcu *xdp_prog; 1992 unsigned long gro_flush_timeout; 1993 rx_handler_func_t __rcu *rx_handler; 1994 void __rcu *rx_handler_data; 1995 1996 #ifdef CONFIG_NET_CLS_ACT 1997 struct mini_Qdisc __rcu *miniq_ingress; 1998 #endif 1999 struct netdev_queue __rcu *ingress_queue; 2000 #ifdef CONFIG_NETFILTER_INGRESS 2001 struct nf_hook_entries __rcu *nf_hooks_ingress; 2002 #endif 2003 2004 unsigned char broadcast[MAX_ADDR_LEN]; 2005 #ifdef CONFIG_RFS_ACCEL 2006 struct cpu_rmap *rx_cpu_rmap; 2007 #endif 2008 struct hlist_node index_hlist; 2009 2010 /* 2011 * Cache lines mostly used on transmit path 2012 */ 2013 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2014 unsigned int num_tx_queues; 2015 unsigned int real_num_tx_queues; 2016 struct Qdisc *qdisc; 2017 unsigned int tx_queue_len; 2018 spinlock_t tx_global_lock; 2019 2020 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2021 2022 #ifdef CONFIG_XPS 2023 struct xps_dev_maps __rcu *xps_cpus_map; 2024 struct xps_dev_maps __rcu *xps_rxqs_map; 2025 #endif 2026 #ifdef CONFIG_NET_CLS_ACT 2027 struct mini_Qdisc __rcu *miniq_egress; 2028 #endif 2029 2030 #ifdef CONFIG_NET_SCHED 2031 DECLARE_HASHTABLE (qdisc_hash, 4); 2032 #endif 2033 /* These may be needed for future network-power-down code. */ 2034 struct timer_list watchdog_timer; 2035 int watchdog_timeo; 2036 2037 struct list_head todo_list; 2038 int __percpu *pcpu_refcnt; 2039 2040 struct list_head link_watch_list; 2041 2042 enum { NETREG_UNINITIALIZED=0, 2043 NETREG_REGISTERED, /* completed register_netdevice */ 2044 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2045 NETREG_UNREGISTERED, /* completed unregister todo */ 2046 NETREG_RELEASED, /* called free_netdev */ 2047 NETREG_DUMMY, /* dummy device for NAPI poll */ 2048 } reg_state:8; 2049 2050 bool dismantle; 2051 2052 enum { 2053 RTNL_LINK_INITIALIZED, 2054 RTNL_LINK_INITIALIZING, 2055 } rtnl_link_state:16; 2056 2057 bool needs_free_netdev; 2058 void (*priv_destructor)(struct net_device *dev); 2059 2060 #ifdef CONFIG_NETPOLL 2061 struct netpoll_info __rcu *npinfo; 2062 #endif 2063 2064 possible_net_t nd_net; 2065 2066 /* mid-layer private */ 2067 union { 2068 void *ml_priv; 2069 struct pcpu_lstats __percpu *lstats; 2070 struct pcpu_sw_netstats __percpu *tstats; 2071 struct pcpu_dstats __percpu *dstats; 2072 }; 2073 2074 #if IS_ENABLED(CONFIG_GARP) 2075 struct garp_port __rcu *garp_port; 2076 #endif 2077 #if IS_ENABLED(CONFIG_MRP) 2078 struct mrp_port __rcu *mrp_port; 2079 #endif 2080 2081 struct device dev; 2082 const struct attribute_group *sysfs_groups[4]; 2083 const struct attribute_group *sysfs_rx_queue_group; 2084 2085 const struct rtnl_link_ops *rtnl_link_ops; 2086 2087 /* for setting kernel sock attribute on TCP connection setup */ 2088 #define GSO_MAX_SIZE 65536 2089 unsigned int gso_max_size; 2090 #define GSO_MAX_SEGS 65535 2091 u16 gso_max_segs; 2092 2093 #ifdef CONFIG_DCB 2094 const struct dcbnl_rtnl_ops *dcbnl_ops; 2095 #endif 2096 s16 num_tc; 2097 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2098 u8 prio_tc_map[TC_BITMASK + 1]; 2099 2100 #if IS_ENABLED(CONFIG_FCOE) 2101 unsigned int fcoe_ddp_xid; 2102 #endif 2103 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2104 struct netprio_map __rcu *priomap; 2105 #endif 2106 struct phy_device *phydev; 2107 struct sfp_bus *sfp_bus; 2108 struct lock_class_key qdisc_tx_busylock_key; 2109 struct lock_class_key qdisc_running_key; 2110 struct lock_class_key qdisc_xmit_lock_key; 2111 struct lock_class_key addr_list_lock_key; 2112 bool proto_down; 2113 unsigned wol_enabled:1; 2114 2115 struct list_head net_notifier_list; 2116 }; 2117 #define to_net_dev(d) container_of(d, struct net_device, dev) 2118 2119 static inline bool netif_elide_gro(const struct net_device *dev) 2120 { 2121 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2122 return true; 2123 return false; 2124 } 2125 2126 #define NETDEV_ALIGN 32 2127 2128 static inline 2129 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2130 { 2131 return dev->prio_tc_map[prio & TC_BITMASK]; 2132 } 2133 2134 static inline 2135 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2136 { 2137 if (tc >= dev->num_tc) 2138 return -EINVAL; 2139 2140 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2141 return 0; 2142 } 2143 2144 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2145 void netdev_reset_tc(struct net_device *dev); 2146 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2147 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2148 2149 static inline 2150 int netdev_get_num_tc(struct net_device *dev) 2151 { 2152 return dev->num_tc; 2153 } 2154 2155 void netdev_unbind_sb_channel(struct net_device *dev, 2156 struct net_device *sb_dev); 2157 int netdev_bind_sb_channel_queue(struct net_device *dev, 2158 struct net_device *sb_dev, 2159 u8 tc, u16 count, u16 offset); 2160 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2161 static inline int netdev_get_sb_channel(struct net_device *dev) 2162 { 2163 return max_t(int, -dev->num_tc, 0); 2164 } 2165 2166 static inline 2167 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2168 unsigned int index) 2169 { 2170 return &dev->_tx[index]; 2171 } 2172 2173 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2174 const struct sk_buff *skb) 2175 { 2176 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2177 } 2178 2179 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2180 void (*f)(struct net_device *, 2181 struct netdev_queue *, 2182 void *), 2183 void *arg) 2184 { 2185 unsigned int i; 2186 2187 for (i = 0; i < dev->num_tx_queues; i++) 2188 f(dev, &dev->_tx[i], arg); 2189 } 2190 2191 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2192 struct net_device *sb_dev); 2193 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2194 struct sk_buff *skb, 2195 struct net_device *sb_dev); 2196 2197 /* returns the headroom that the master device needs to take in account 2198 * when forwarding to this dev 2199 */ 2200 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2201 { 2202 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2203 } 2204 2205 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2206 { 2207 if (dev->netdev_ops->ndo_set_rx_headroom) 2208 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2209 } 2210 2211 /* set the device rx headroom to the dev's default */ 2212 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2213 { 2214 netdev_set_rx_headroom(dev, -1); 2215 } 2216 2217 /* 2218 * Net namespace inlines 2219 */ 2220 static inline 2221 struct net *dev_net(const struct net_device *dev) 2222 { 2223 return read_pnet(&dev->nd_net); 2224 } 2225 2226 static inline 2227 void dev_net_set(struct net_device *dev, struct net *net) 2228 { 2229 write_pnet(&dev->nd_net, net); 2230 } 2231 2232 /** 2233 * netdev_priv - access network device private data 2234 * @dev: network device 2235 * 2236 * Get network device private data 2237 */ 2238 static inline void *netdev_priv(const struct net_device *dev) 2239 { 2240 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2241 } 2242 2243 /* Set the sysfs physical device reference for the network logical device 2244 * if set prior to registration will cause a symlink during initialization. 2245 */ 2246 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2247 2248 /* Set the sysfs device type for the network logical device to allow 2249 * fine-grained identification of different network device types. For 2250 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2251 */ 2252 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2253 2254 /* Default NAPI poll() weight 2255 * Device drivers are strongly advised to not use bigger value 2256 */ 2257 #define NAPI_POLL_WEIGHT 64 2258 2259 /** 2260 * netif_napi_add - initialize a NAPI context 2261 * @dev: network device 2262 * @napi: NAPI context 2263 * @poll: polling function 2264 * @weight: default weight 2265 * 2266 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2267 * *any* of the other NAPI-related functions. 2268 */ 2269 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2270 int (*poll)(struct napi_struct *, int), int weight); 2271 2272 /** 2273 * netif_tx_napi_add - initialize a NAPI context 2274 * @dev: network device 2275 * @napi: NAPI context 2276 * @poll: polling function 2277 * @weight: default weight 2278 * 2279 * This variant of netif_napi_add() should be used from drivers using NAPI 2280 * to exclusively poll a TX queue. 2281 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2282 */ 2283 static inline void netif_tx_napi_add(struct net_device *dev, 2284 struct napi_struct *napi, 2285 int (*poll)(struct napi_struct *, int), 2286 int weight) 2287 { 2288 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2289 netif_napi_add(dev, napi, poll, weight); 2290 } 2291 2292 /** 2293 * netif_napi_del - remove a NAPI context 2294 * @napi: NAPI context 2295 * 2296 * netif_napi_del() removes a NAPI context from the network device NAPI list 2297 */ 2298 void netif_napi_del(struct napi_struct *napi); 2299 2300 struct napi_gro_cb { 2301 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2302 void *frag0; 2303 2304 /* Length of frag0. */ 2305 unsigned int frag0_len; 2306 2307 /* This indicates where we are processing relative to skb->data. */ 2308 int data_offset; 2309 2310 /* This is non-zero if the packet cannot be merged with the new skb. */ 2311 u16 flush; 2312 2313 /* Save the IP ID here and check when we get to the transport layer */ 2314 u16 flush_id; 2315 2316 /* Number of segments aggregated. */ 2317 u16 count; 2318 2319 /* Start offset for remote checksum offload */ 2320 u16 gro_remcsum_start; 2321 2322 /* jiffies when first packet was created/queued */ 2323 unsigned long age; 2324 2325 /* Used in ipv6_gro_receive() and foo-over-udp */ 2326 u16 proto; 2327 2328 /* This is non-zero if the packet may be of the same flow. */ 2329 u8 same_flow:1; 2330 2331 /* Used in tunnel GRO receive */ 2332 u8 encap_mark:1; 2333 2334 /* GRO checksum is valid */ 2335 u8 csum_valid:1; 2336 2337 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2338 u8 csum_cnt:3; 2339 2340 /* Free the skb? */ 2341 u8 free:2; 2342 #define NAPI_GRO_FREE 1 2343 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2344 2345 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2346 u8 is_ipv6:1; 2347 2348 /* Used in GRE, set in fou/gue_gro_receive */ 2349 u8 is_fou:1; 2350 2351 /* Used to determine if flush_id can be ignored */ 2352 u8 is_atomic:1; 2353 2354 /* Number of gro_receive callbacks this packet already went through */ 2355 u8 recursion_counter:4; 2356 2357 /* GRO is done by frag_list pointer chaining. */ 2358 u8 is_flist:1; 2359 2360 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2361 __wsum csum; 2362 2363 /* used in skb_gro_receive() slow path */ 2364 struct sk_buff *last; 2365 }; 2366 2367 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2368 2369 #define GRO_RECURSION_LIMIT 15 2370 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2371 { 2372 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2373 } 2374 2375 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2376 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2377 struct list_head *head, 2378 struct sk_buff *skb) 2379 { 2380 if (unlikely(gro_recursion_inc_test(skb))) { 2381 NAPI_GRO_CB(skb)->flush |= 1; 2382 return NULL; 2383 } 2384 2385 return cb(head, skb); 2386 } 2387 2388 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2389 struct sk_buff *); 2390 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2391 struct sock *sk, 2392 struct list_head *head, 2393 struct sk_buff *skb) 2394 { 2395 if (unlikely(gro_recursion_inc_test(skb))) { 2396 NAPI_GRO_CB(skb)->flush |= 1; 2397 return NULL; 2398 } 2399 2400 return cb(sk, head, skb); 2401 } 2402 2403 struct packet_type { 2404 __be16 type; /* This is really htons(ether_type). */ 2405 bool ignore_outgoing; 2406 struct net_device *dev; /* NULL is wildcarded here */ 2407 int (*func) (struct sk_buff *, 2408 struct net_device *, 2409 struct packet_type *, 2410 struct net_device *); 2411 void (*list_func) (struct list_head *, 2412 struct packet_type *, 2413 struct net_device *); 2414 bool (*id_match)(struct packet_type *ptype, 2415 struct sock *sk); 2416 void *af_packet_priv; 2417 struct list_head list; 2418 }; 2419 2420 struct offload_callbacks { 2421 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2422 netdev_features_t features); 2423 struct sk_buff *(*gro_receive)(struct list_head *head, 2424 struct sk_buff *skb); 2425 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2426 }; 2427 2428 struct packet_offload { 2429 __be16 type; /* This is really htons(ether_type). */ 2430 u16 priority; 2431 struct offload_callbacks callbacks; 2432 struct list_head list; 2433 }; 2434 2435 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2436 struct pcpu_sw_netstats { 2437 u64 rx_packets; 2438 u64 rx_bytes; 2439 u64 tx_packets; 2440 u64 tx_bytes; 2441 struct u64_stats_sync syncp; 2442 } __aligned(4 * sizeof(u64)); 2443 2444 struct pcpu_lstats { 2445 u64_stats_t packets; 2446 u64_stats_t bytes; 2447 struct u64_stats_sync syncp; 2448 } __aligned(2 * sizeof(u64)); 2449 2450 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2451 2452 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2453 { 2454 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2455 2456 u64_stats_update_begin(&lstats->syncp); 2457 u64_stats_add(&lstats->bytes, len); 2458 u64_stats_inc(&lstats->packets); 2459 u64_stats_update_end(&lstats->syncp); 2460 } 2461 2462 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2463 ({ \ 2464 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2465 if (pcpu_stats) { \ 2466 int __cpu; \ 2467 for_each_possible_cpu(__cpu) { \ 2468 typeof(type) *stat; \ 2469 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2470 u64_stats_init(&stat->syncp); \ 2471 } \ 2472 } \ 2473 pcpu_stats; \ 2474 }) 2475 2476 #define netdev_alloc_pcpu_stats(type) \ 2477 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2478 2479 enum netdev_lag_tx_type { 2480 NETDEV_LAG_TX_TYPE_UNKNOWN, 2481 NETDEV_LAG_TX_TYPE_RANDOM, 2482 NETDEV_LAG_TX_TYPE_BROADCAST, 2483 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2484 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2485 NETDEV_LAG_TX_TYPE_HASH, 2486 }; 2487 2488 enum netdev_lag_hash { 2489 NETDEV_LAG_HASH_NONE, 2490 NETDEV_LAG_HASH_L2, 2491 NETDEV_LAG_HASH_L34, 2492 NETDEV_LAG_HASH_L23, 2493 NETDEV_LAG_HASH_E23, 2494 NETDEV_LAG_HASH_E34, 2495 NETDEV_LAG_HASH_UNKNOWN, 2496 }; 2497 2498 struct netdev_lag_upper_info { 2499 enum netdev_lag_tx_type tx_type; 2500 enum netdev_lag_hash hash_type; 2501 }; 2502 2503 struct netdev_lag_lower_state_info { 2504 u8 link_up : 1, 2505 tx_enabled : 1; 2506 }; 2507 2508 #include <linux/notifier.h> 2509 2510 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2511 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2512 * adding new types. 2513 */ 2514 enum netdev_cmd { 2515 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2516 NETDEV_DOWN, 2517 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2518 detected a hardware crash and restarted 2519 - we can use this eg to kick tcp sessions 2520 once done */ 2521 NETDEV_CHANGE, /* Notify device state change */ 2522 NETDEV_REGISTER, 2523 NETDEV_UNREGISTER, 2524 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2525 NETDEV_CHANGEADDR, /* notify after the address change */ 2526 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2527 NETDEV_GOING_DOWN, 2528 NETDEV_CHANGENAME, 2529 NETDEV_FEAT_CHANGE, 2530 NETDEV_BONDING_FAILOVER, 2531 NETDEV_PRE_UP, 2532 NETDEV_PRE_TYPE_CHANGE, 2533 NETDEV_POST_TYPE_CHANGE, 2534 NETDEV_POST_INIT, 2535 NETDEV_RELEASE, 2536 NETDEV_NOTIFY_PEERS, 2537 NETDEV_JOIN, 2538 NETDEV_CHANGEUPPER, 2539 NETDEV_RESEND_IGMP, 2540 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2541 NETDEV_CHANGEINFODATA, 2542 NETDEV_BONDING_INFO, 2543 NETDEV_PRECHANGEUPPER, 2544 NETDEV_CHANGELOWERSTATE, 2545 NETDEV_UDP_TUNNEL_PUSH_INFO, 2546 NETDEV_UDP_TUNNEL_DROP_INFO, 2547 NETDEV_CHANGE_TX_QUEUE_LEN, 2548 NETDEV_CVLAN_FILTER_PUSH_INFO, 2549 NETDEV_CVLAN_FILTER_DROP_INFO, 2550 NETDEV_SVLAN_FILTER_PUSH_INFO, 2551 NETDEV_SVLAN_FILTER_DROP_INFO, 2552 }; 2553 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2554 2555 int register_netdevice_notifier(struct notifier_block *nb); 2556 int unregister_netdevice_notifier(struct notifier_block *nb); 2557 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2558 int unregister_netdevice_notifier_net(struct net *net, 2559 struct notifier_block *nb); 2560 int register_netdevice_notifier_dev_net(struct net_device *dev, 2561 struct notifier_block *nb, 2562 struct netdev_net_notifier *nn); 2563 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2564 struct notifier_block *nb, 2565 struct netdev_net_notifier *nn); 2566 2567 struct netdev_notifier_info { 2568 struct net_device *dev; 2569 struct netlink_ext_ack *extack; 2570 }; 2571 2572 struct netdev_notifier_info_ext { 2573 struct netdev_notifier_info info; /* must be first */ 2574 union { 2575 u32 mtu; 2576 } ext; 2577 }; 2578 2579 struct netdev_notifier_change_info { 2580 struct netdev_notifier_info info; /* must be first */ 2581 unsigned int flags_changed; 2582 }; 2583 2584 struct netdev_notifier_changeupper_info { 2585 struct netdev_notifier_info info; /* must be first */ 2586 struct net_device *upper_dev; /* new upper dev */ 2587 bool master; /* is upper dev master */ 2588 bool linking; /* is the notification for link or unlink */ 2589 void *upper_info; /* upper dev info */ 2590 }; 2591 2592 struct netdev_notifier_changelowerstate_info { 2593 struct netdev_notifier_info info; /* must be first */ 2594 void *lower_state_info; /* is lower dev state */ 2595 }; 2596 2597 struct netdev_notifier_pre_changeaddr_info { 2598 struct netdev_notifier_info info; /* must be first */ 2599 const unsigned char *dev_addr; 2600 }; 2601 2602 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2603 struct net_device *dev) 2604 { 2605 info->dev = dev; 2606 info->extack = NULL; 2607 } 2608 2609 static inline struct net_device * 2610 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2611 { 2612 return info->dev; 2613 } 2614 2615 static inline struct netlink_ext_ack * 2616 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2617 { 2618 return info->extack; 2619 } 2620 2621 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2622 2623 2624 extern rwlock_t dev_base_lock; /* Device list lock */ 2625 2626 #define for_each_netdev(net, d) \ 2627 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2628 #define for_each_netdev_reverse(net, d) \ 2629 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2630 #define for_each_netdev_rcu(net, d) \ 2631 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2632 #define for_each_netdev_safe(net, d, n) \ 2633 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2634 #define for_each_netdev_continue(net, d) \ 2635 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2636 #define for_each_netdev_continue_reverse(net, d) \ 2637 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2638 dev_list) 2639 #define for_each_netdev_continue_rcu(net, d) \ 2640 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2641 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2642 for_each_netdev_rcu(&init_net, slave) \ 2643 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2644 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2645 2646 static inline struct net_device *next_net_device(struct net_device *dev) 2647 { 2648 struct list_head *lh; 2649 struct net *net; 2650 2651 net = dev_net(dev); 2652 lh = dev->dev_list.next; 2653 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2654 } 2655 2656 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2657 { 2658 struct list_head *lh; 2659 struct net *net; 2660 2661 net = dev_net(dev); 2662 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2663 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2664 } 2665 2666 static inline struct net_device *first_net_device(struct net *net) 2667 { 2668 return list_empty(&net->dev_base_head) ? NULL : 2669 net_device_entry(net->dev_base_head.next); 2670 } 2671 2672 static inline struct net_device *first_net_device_rcu(struct net *net) 2673 { 2674 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2675 2676 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2677 } 2678 2679 int netdev_boot_setup_check(struct net_device *dev); 2680 unsigned long netdev_boot_base(const char *prefix, int unit); 2681 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2682 const char *hwaddr); 2683 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2684 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2685 void dev_add_pack(struct packet_type *pt); 2686 void dev_remove_pack(struct packet_type *pt); 2687 void __dev_remove_pack(struct packet_type *pt); 2688 void dev_add_offload(struct packet_offload *po); 2689 void dev_remove_offload(struct packet_offload *po); 2690 2691 int dev_get_iflink(const struct net_device *dev); 2692 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2693 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2694 unsigned short mask); 2695 struct net_device *dev_get_by_name(struct net *net, const char *name); 2696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2697 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2698 int dev_alloc_name(struct net_device *dev, const char *name); 2699 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2700 void dev_close(struct net_device *dev); 2701 void dev_close_many(struct list_head *head, bool unlink); 2702 void dev_disable_lro(struct net_device *dev); 2703 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2704 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2705 struct net_device *sb_dev); 2706 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2707 struct net_device *sb_dev); 2708 int dev_queue_xmit(struct sk_buff *skb); 2709 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2710 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2711 int register_netdevice(struct net_device *dev); 2712 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2713 void unregister_netdevice_many(struct list_head *head); 2714 static inline void unregister_netdevice(struct net_device *dev) 2715 { 2716 unregister_netdevice_queue(dev, NULL); 2717 } 2718 2719 int netdev_refcnt_read(const struct net_device *dev); 2720 void free_netdev(struct net_device *dev); 2721 void netdev_freemem(struct net_device *dev); 2722 void synchronize_net(void); 2723 int init_dummy_netdev(struct net_device *dev); 2724 2725 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2726 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2727 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2728 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2729 int netdev_get_name(struct net *net, char *name, int ifindex); 2730 int dev_restart(struct net_device *dev); 2731 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2732 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 2733 2734 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2735 { 2736 return NAPI_GRO_CB(skb)->data_offset; 2737 } 2738 2739 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2740 { 2741 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2742 } 2743 2744 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2745 { 2746 NAPI_GRO_CB(skb)->data_offset += len; 2747 } 2748 2749 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2750 unsigned int offset) 2751 { 2752 return NAPI_GRO_CB(skb)->frag0 + offset; 2753 } 2754 2755 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2756 { 2757 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2758 } 2759 2760 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2761 { 2762 NAPI_GRO_CB(skb)->frag0 = NULL; 2763 NAPI_GRO_CB(skb)->frag0_len = 0; 2764 } 2765 2766 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2767 unsigned int offset) 2768 { 2769 if (!pskb_may_pull(skb, hlen)) 2770 return NULL; 2771 2772 skb_gro_frag0_invalidate(skb); 2773 return skb->data + offset; 2774 } 2775 2776 static inline void *skb_gro_network_header(struct sk_buff *skb) 2777 { 2778 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2779 skb_network_offset(skb); 2780 } 2781 2782 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2783 const void *start, unsigned int len) 2784 { 2785 if (NAPI_GRO_CB(skb)->csum_valid) 2786 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2787 csum_partial(start, len, 0)); 2788 } 2789 2790 /* GRO checksum functions. These are logical equivalents of the normal 2791 * checksum functions (in skbuff.h) except that they operate on the GRO 2792 * offsets and fields in sk_buff. 2793 */ 2794 2795 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2796 2797 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2798 { 2799 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2800 } 2801 2802 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2803 bool zero_okay, 2804 __sum16 check) 2805 { 2806 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2807 skb_checksum_start_offset(skb) < 2808 skb_gro_offset(skb)) && 2809 !skb_at_gro_remcsum_start(skb) && 2810 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2811 (!zero_okay || check)); 2812 } 2813 2814 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2815 __wsum psum) 2816 { 2817 if (NAPI_GRO_CB(skb)->csum_valid && 2818 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2819 return 0; 2820 2821 NAPI_GRO_CB(skb)->csum = psum; 2822 2823 return __skb_gro_checksum_complete(skb); 2824 } 2825 2826 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2827 { 2828 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2829 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2830 NAPI_GRO_CB(skb)->csum_cnt--; 2831 } else { 2832 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2833 * verified a new top level checksum or an encapsulated one 2834 * during GRO. This saves work if we fallback to normal path. 2835 */ 2836 __skb_incr_checksum_unnecessary(skb); 2837 } 2838 } 2839 2840 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2841 compute_pseudo) \ 2842 ({ \ 2843 __sum16 __ret = 0; \ 2844 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2845 __ret = __skb_gro_checksum_validate_complete(skb, \ 2846 compute_pseudo(skb, proto)); \ 2847 if (!__ret) \ 2848 skb_gro_incr_csum_unnecessary(skb); \ 2849 __ret; \ 2850 }) 2851 2852 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2853 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2854 2855 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2856 compute_pseudo) \ 2857 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2858 2859 #define skb_gro_checksum_simple_validate(skb) \ 2860 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2861 2862 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2863 { 2864 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2865 !NAPI_GRO_CB(skb)->csum_valid); 2866 } 2867 2868 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2869 __wsum pseudo) 2870 { 2871 NAPI_GRO_CB(skb)->csum = ~pseudo; 2872 NAPI_GRO_CB(skb)->csum_valid = 1; 2873 } 2874 2875 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 2876 do { \ 2877 if (__skb_gro_checksum_convert_check(skb)) \ 2878 __skb_gro_checksum_convert(skb, \ 2879 compute_pseudo(skb, proto)); \ 2880 } while (0) 2881 2882 struct gro_remcsum { 2883 int offset; 2884 __wsum delta; 2885 }; 2886 2887 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2888 { 2889 grc->offset = 0; 2890 grc->delta = 0; 2891 } 2892 2893 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2894 unsigned int off, size_t hdrlen, 2895 int start, int offset, 2896 struct gro_remcsum *grc, 2897 bool nopartial) 2898 { 2899 __wsum delta; 2900 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2901 2902 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2903 2904 if (!nopartial) { 2905 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2906 return ptr; 2907 } 2908 2909 ptr = skb_gro_header_fast(skb, off); 2910 if (skb_gro_header_hard(skb, off + plen)) { 2911 ptr = skb_gro_header_slow(skb, off + plen, off); 2912 if (!ptr) 2913 return NULL; 2914 } 2915 2916 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2917 start, offset); 2918 2919 /* Adjust skb->csum since we changed the packet */ 2920 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2921 2922 grc->offset = off + hdrlen + offset; 2923 grc->delta = delta; 2924 2925 return ptr; 2926 } 2927 2928 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2929 struct gro_remcsum *grc) 2930 { 2931 void *ptr; 2932 size_t plen = grc->offset + sizeof(u16); 2933 2934 if (!grc->delta) 2935 return; 2936 2937 ptr = skb_gro_header_fast(skb, grc->offset); 2938 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2939 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2940 if (!ptr) 2941 return; 2942 } 2943 2944 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2945 } 2946 2947 #ifdef CONFIG_XFRM_OFFLOAD 2948 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2949 { 2950 if (PTR_ERR(pp) != -EINPROGRESS) 2951 NAPI_GRO_CB(skb)->flush |= flush; 2952 } 2953 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2954 struct sk_buff *pp, 2955 int flush, 2956 struct gro_remcsum *grc) 2957 { 2958 if (PTR_ERR(pp) != -EINPROGRESS) { 2959 NAPI_GRO_CB(skb)->flush |= flush; 2960 skb_gro_remcsum_cleanup(skb, grc); 2961 skb->remcsum_offload = 0; 2962 } 2963 } 2964 #else 2965 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2966 { 2967 NAPI_GRO_CB(skb)->flush |= flush; 2968 } 2969 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2970 struct sk_buff *pp, 2971 int flush, 2972 struct gro_remcsum *grc) 2973 { 2974 NAPI_GRO_CB(skb)->flush |= flush; 2975 skb_gro_remcsum_cleanup(skb, grc); 2976 skb->remcsum_offload = 0; 2977 } 2978 #endif 2979 2980 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2981 unsigned short type, 2982 const void *daddr, const void *saddr, 2983 unsigned int len) 2984 { 2985 if (!dev->header_ops || !dev->header_ops->create) 2986 return 0; 2987 2988 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2989 } 2990 2991 static inline int dev_parse_header(const struct sk_buff *skb, 2992 unsigned char *haddr) 2993 { 2994 const struct net_device *dev = skb->dev; 2995 2996 if (!dev->header_ops || !dev->header_ops->parse) 2997 return 0; 2998 return dev->header_ops->parse(skb, haddr); 2999 } 3000 3001 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3002 { 3003 const struct net_device *dev = skb->dev; 3004 3005 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3006 return 0; 3007 return dev->header_ops->parse_protocol(skb); 3008 } 3009 3010 /* ll_header must have at least hard_header_len allocated */ 3011 static inline bool dev_validate_header(const struct net_device *dev, 3012 char *ll_header, int len) 3013 { 3014 if (likely(len >= dev->hard_header_len)) 3015 return true; 3016 if (len < dev->min_header_len) 3017 return false; 3018 3019 if (capable(CAP_SYS_RAWIO)) { 3020 memset(ll_header + len, 0, dev->hard_header_len - len); 3021 return true; 3022 } 3023 3024 if (dev->header_ops && dev->header_ops->validate) 3025 return dev->header_ops->validate(ll_header, len); 3026 3027 return false; 3028 } 3029 3030 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 3031 int len, int size); 3032 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 3033 static inline int unregister_gifconf(unsigned int family) 3034 { 3035 return register_gifconf(family, NULL); 3036 } 3037 3038 #ifdef CONFIG_NET_FLOW_LIMIT 3039 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3040 struct sd_flow_limit { 3041 u64 count; 3042 unsigned int num_buckets; 3043 unsigned int history_head; 3044 u16 history[FLOW_LIMIT_HISTORY]; 3045 u8 buckets[]; 3046 }; 3047 3048 extern int netdev_flow_limit_table_len; 3049 #endif /* CONFIG_NET_FLOW_LIMIT */ 3050 3051 /* 3052 * Incoming packets are placed on per-CPU queues 3053 */ 3054 struct softnet_data { 3055 struct list_head poll_list; 3056 struct sk_buff_head process_queue; 3057 3058 /* stats */ 3059 unsigned int processed; 3060 unsigned int time_squeeze; 3061 unsigned int received_rps; 3062 #ifdef CONFIG_RPS 3063 struct softnet_data *rps_ipi_list; 3064 #endif 3065 #ifdef CONFIG_NET_FLOW_LIMIT 3066 struct sd_flow_limit __rcu *flow_limit; 3067 #endif 3068 struct Qdisc *output_queue; 3069 struct Qdisc **output_queue_tailp; 3070 struct sk_buff *completion_queue; 3071 #ifdef CONFIG_XFRM_OFFLOAD 3072 struct sk_buff_head xfrm_backlog; 3073 #endif 3074 /* written and read only by owning cpu: */ 3075 struct { 3076 u16 recursion; 3077 u8 more; 3078 } xmit; 3079 #ifdef CONFIG_RPS 3080 /* input_queue_head should be written by cpu owning this struct, 3081 * and only read by other cpus. Worth using a cache line. 3082 */ 3083 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3084 3085 /* Elements below can be accessed between CPUs for RPS/RFS */ 3086 call_single_data_t csd ____cacheline_aligned_in_smp; 3087 struct softnet_data *rps_ipi_next; 3088 unsigned int cpu; 3089 unsigned int input_queue_tail; 3090 #endif 3091 unsigned int dropped; 3092 struct sk_buff_head input_pkt_queue; 3093 struct napi_struct backlog; 3094 3095 }; 3096 3097 static inline void input_queue_head_incr(struct softnet_data *sd) 3098 { 3099 #ifdef CONFIG_RPS 3100 sd->input_queue_head++; 3101 #endif 3102 } 3103 3104 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3105 unsigned int *qtail) 3106 { 3107 #ifdef CONFIG_RPS 3108 *qtail = ++sd->input_queue_tail; 3109 #endif 3110 } 3111 3112 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3113 3114 static inline int dev_recursion_level(void) 3115 { 3116 return this_cpu_read(softnet_data.xmit.recursion); 3117 } 3118 3119 #define XMIT_RECURSION_LIMIT 10 3120 static inline bool dev_xmit_recursion(void) 3121 { 3122 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3123 XMIT_RECURSION_LIMIT); 3124 } 3125 3126 static inline void dev_xmit_recursion_inc(void) 3127 { 3128 __this_cpu_inc(softnet_data.xmit.recursion); 3129 } 3130 3131 static inline void dev_xmit_recursion_dec(void) 3132 { 3133 __this_cpu_dec(softnet_data.xmit.recursion); 3134 } 3135 3136 void __netif_schedule(struct Qdisc *q); 3137 void netif_schedule_queue(struct netdev_queue *txq); 3138 3139 static inline void netif_tx_schedule_all(struct net_device *dev) 3140 { 3141 unsigned int i; 3142 3143 for (i = 0; i < dev->num_tx_queues; i++) 3144 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3145 } 3146 3147 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3148 { 3149 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3150 } 3151 3152 /** 3153 * netif_start_queue - allow transmit 3154 * @dev: network device 3155 * 3156 * Allow upper layers to call the device hard_start_xmit routine. 3157 */ 3158 static inline void netif_start_queue(struct net_device *dev) 3159 { 3160 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3161 } 3162 3163 static inline void netif_tx_start_all_queues(struct net_device *dev) 3164 { 3165 unsigned int i; 3166 3167 for (i = 0; i < dev->num_tx_queues; i++) { 3168 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3169 netif_tx_start_queue(txq); 3170 } 3171 } 3172 3173 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3174 3175 /** 3176 * netif_wake_queue - restart transmit 3177 * @dev: network device 3178 * 3179 * Allow upper layers to call the device hard_start_xmit routine. 3180 * Used for flow control when transmit resources are available. 3181 */ 3182 static inline void netif_wake_queue(struct net_device *dev) 3183 { 3184 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3185 } 3186 3187 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3188 { 3189 unsigned int i; 3190 3191 for (i = 0; i < dev->num_tx_queues; i++) { 3192 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3193 netif_tx_wake_queue(txq); 3194 } 3195 } 3196 3197 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3198 { 3199 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3200 } 3201 3202 /** 3203 * netif_stop_queue - stop transmitted packets 3204 * @dev: network device 3205 * 3206 * Stop upper layers calling the device hard_start_xmit routine. 3207 * Used for flow control when transmit resources are unavailable. 3208 */ 3209 static inline void netif_stop_queue(struct net_device *dev) 3210 { 3211 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3212 } 3213 3214 void netif_tx_stop_all_queues(struct net_device *dev); 3215 void netdev_update_lockdep_key(struct net_device *dev); 3216 3217 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3218 { 3219 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3220 } 3221 3222 /** 3223 * netif_queue_stopped - test if transmit queue is flowblocked 3224 * @dev: network device 3225 * 3226 * Test if transmit queue on device is currently unable to send. 3227 */ 3228 static inline bool netif_queue_stopped(const struct net_device *dev) 3229 { 3230 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3231 } 3232 3233 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3234 { 3235 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3236 } 3237 3238 static inline bool 3239 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3240 { 3241 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3242 } 3243 3244 static inline bool 3245 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3246 { 3247 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3248 } 3249 3250 /** 3251 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3252 * @dev_queue: pointer to transmit queue 3253 * 3254 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3255 * to give appropriate hint to the CPU. 3256 */ 3257 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3258 { 3259 #ifdef CONFIG_BQL 3260 prefetchw(&dev_queue->dql.num_queued); 3261 #endif 3262 } 3263 3264 /** 3265 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3266 * @dev_queue: pointer to transmit queue 3267 * 3268 * BQL enabled drivers might use this helper in their TX completion path, 3269 * to give appropriate hint to the CPU. 3270 */ 3271 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3272 { 3273 #ifdef CONFIG_BQL 3274 prefetchw(&dev_queue->dql.limit); 3275 #endif 3276 } 3277 3278 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3279 unsigned int bytes) 3280 { 3281 #ifdef CONFIG_BQL 3282 dql_queued(&dev_queue->dql, bytes); 3283 3284 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3285 return; 3286 3287 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3288 3289 /* 3290 * The XOFF flag must be set before checking the dql_avail below, 3291 * because in netdev_tx_completed_queue we update the dql_completed 3292 * before checking the XOFF flag. 3293 */ 3294 smp_mb(); 3295 3296 /* check again in case another CPU has just made room avail */ 3297 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3298 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3299 #endif 3300 } 3301 3302 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3303 * that they should not test BQL status themselves. 3304 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3305 * skb of a batch. 3306 * Returns true if the doorbell must be used to kick the NIC. 3307 */ 3308 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3309 unsigned int bytes, 3310 bool xmit_more) 3311 { 3312 if (xmit_more) { 3313 #ifdef CONFIG_BQL 3314 dql_queued(&dev_queue->dql, bytes); 3315 #endif 3316 return netif_tx_queue_stopped(dev_queue); 3317 } 3318 netdev_tx_sent_queue(dev_queue, bytes); 3319 return true; 3320 } 3321 3322 /** 3323 * netdev_sent_queue - report the number of bytes queued to hardware 3324 * @dev: network device 3325 * @bytes: number of bytes queued to the hardware device queue 3326 * 3327 * Report the number of bytes queued for sending/completion to the network 3328 * device hardware queue. @bytes should be a good approximation and should 3329 * exactly match netdev_completed_queue() @bytes 3330 */ 3331 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3332 { 3333 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3334 } 3335 3336 static inline bool __netdev_sent_queue(struct net_device *dev, 3337 unsigned int bytes, 3338 bool xmit_more) 3339 { 3340 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3341 xmit_more); 3342 } 3343 3344 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3345 unsigned int pkts, unsigned int bytes) 3346 { 3347 #ifdef CONFIG_BQL 3348 if (unlikely(!bytes)) 3349 return; 3350 3351 dql_completed(&dev_queue->dql, bytes); 3352 3353 /* 3354 * Without the memory barrier there is a small possiblity that 3355 * netdev_tx_sent_queue will miss the update and cause the queue to 3356 * be stopped forever 3357 */ 3358 smp_mb(); 3359 3360 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3361 return; 3362 3363 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3364 netif_schedule_queue(dev_queue); 3365 #endif 3366 } 3367 3368 /** 3369 * netdev_completed_queue - report bytes and packets completed by device 3370 * @dev: network device 3371 * @pkts: actual number of packets sent over the medium 3372 * @bytes: actual number of bytes sent over the medium 3373 * 3374 * Report the number of bytes and packets transmitted by the network device 3375 * hardware queue over the physical medium, @bytes must exactly match the 3376 * @bytes amount passed to netdev_sent_queue() 3377 */ 3378 static inline void netdev_completed_queue(struct net_device *dev, 3379 unsigned int pkts, unsigned int bytes) 3380 { 3381 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3382 } 3383 3384 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3385 { 3386 #ifdef CONFIG_BQL 3387 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3388 dql_reset(&q->dql); 3389 #endif 3390 } 3391 3392 /** 3393 * netdev_reset_queue - reset the packets and bytes count of a network device 3394 * @dev_queue: network device 3395 * 3396 * Reset the bytes and packet count of a network device and clear the 3397 * software flow control OFF bit for this network device 3398 */ 3399 static inline void netdev_reset_queue(struct net_device *dev_queue) 3400 { 3401 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3402 } 3403 3404 /** 3405 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3406 * @dev: network device 3407 * @queue_index: given tx queue index 3408 * 3409 * Returns 0 if given tx queue index >= number of device tx queues, 3410 * otherwise returns the originally passed tx queue index. 3411 */ 3412 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3413 { 3414 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3415 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3416 dev->name, queue_index, 3417 dev->real_num_tx_queues); 3418 return 0; 3419 } 3420 3421 return queue_index; 3422 } 3423 3424 /** 3425 * netif_running - test if up 3426 * @dev: network device 3427 * 3428 * Test if the device has been brought up. 3429 */ 3430 static inline bool netif_running(const struct net_device *dev) 3431 { 3432 return test_bit(__LINK_STATE_START, &dev->state); 3433 } 3434 3435 /* 3436 * Routines to manage the subqueues on a device. We only need start, 3437 * stop, and a check if it's stopped. All other device management is 3438 * done at the overall netdevice level. 3439 * Also test the device if we're multiqueue. 3440 */ 3441 3442 /** 3443 * netif_start_subqueue - allow sending packets on subqueue 3444 * @dev: network device 3445 * @queue_index: sub queue index 3446 * 3447 * Start individual transmit queue of a device with multiple transmit queues. 3448 */ 3449 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3450 { 3451 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3452 3453 netif_tx_start_queue(txq); 3454 } 3455 3456 /** 3457 * netif_stop_subqueue - stop sending packets on subqueue 3458 * @dev: network device 3459 * @queue_index: sub queue index 3460 * 3461 * Stop individual transmit queue of a device with multiple transmit queues. 3462 */ 3463 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3464 { 3465 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3466 netif_tx_stop_queue(txq); 3467 } 3468 3469 /** 3470 * netif_subqueue_stopped - test status of subqueue 3471 * @dev: network device 3472 * @queue_index: sub queue index 3473 * 3474 * Check individual transmit queue of a device with multiple transmit queues. 3475 */ 3476 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3477 u16 queue_index) 3478 { 3479 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3480 3481 return netif_tx_queue_stopped(txq); 3482 } 3483 3484 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3485 struct sk_buff *skb) 3486 { 3487 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3488 } 3489 3490 /** 3491 * netif_wake_subqueue - allow sending packets on subqueue 3492 * @dev: network device 3493 * @queue_index: sub queue index 3494 * 3495 * Resume individual transmit queue of a device with multiple transmit queues. 3496 */ 3497 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3498 { 3499 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3500 3501 netif_tx_wake_queue(txq); 3502 } 3503 3504 #ifdef CONFIG_XPS 3505 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3506 u16 index); 3507 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3508 u16 index, bool is_rxqs_map); 3509 3510 /** 3511 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3512 * @j: CPU/Rx queue index 3513 * @mask: bitmask of all cpus/rx queues 3514 * @nr_bits: number of bits in the bitmask 3515 * 3516 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3517 */ 3518 static inline bool netif_attr_test_mask(unsigned long j, 3519 const unsigned long *mask, 3520 unsigned int nr_bits) 3521 { 3522 cpu_max_bits_warn(j, nr_bits); 3523 return test_bit(j, mask); 3524 } 3525 3526 /** 3527 * netif_attr_test_online - Test for online CPU/Rx queue 3528 * @j: CPU/Rx queue index 3529 * @online_mask: bitmask for CPUs/Rx queues that are online 3530 * @nr_bits: number of bits in the bitmask 3531 * 3532 * Returns true if a CPU/Rx queue is online. 3533 */ 3534 static inline bool netif_attr_test_online(unsigned long j, 3535 const unsigned long *online_mask, 3536 unsigned int nr_bits) 3537 { 3538 cpu_max_bits_warn(j, nr_bits); 3539 3540 if (online_mask) 3541 return test_bit(j, online_mask); 3542 3543 return (j < nr_bits); 3544 } 3545 3546 /** 3547 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3548 * @n: CPU/Rx queue index 3549 * @srcp: the cpumask/Rx queue mask pointer 3550 * @nr_bits: number of bits in the bitmask 3551 * 3552 * Returns >= nr_bits if no further CPUs/Rx queues set. 3553 */ 3554 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3555 unsigned int nr_bits) 3556 { 3557 /* -1 is a legal arg here. */ 3558 if (n != -1) 3559 cpu_max_bits_warn(n, nr_bits); 3560 3561 if (srcp) 3562 return find_next_bit(srcp, nr_bits, n + 1); 3563 3564 return n + 1; 3565 } 3566 3567 /** 3568 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3569 * @n: CPU/Rx queue index 3570 * @src1p: the first CPUs/Rx queues mask pointer 3571 * @src2p: the second CPUs/Rx queues mask pointer 3572 * @nr_bits: number of bits in the bitmask 3573 * 3574 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3575 */ 3576 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3577 const unsigned long *src2p, 3578 unsigned int nr_bits) 3579 { 3580 /* -1 is a legal arg here. */ 3581 if (n != -1) 3582 cpu_max_bits_warn(n, nr_bits); 3583 3584 if (src1p && src2p) 3585 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3586 else if (src1p) 3587 return find_next_bit(src1p, nr_bits, n + 1); 3588 else if (src2p) 3589 return find_next_bit(src2p, nr_bits, n + 1); 3590 3591 return n + 1; 3592 } 3593 #else 3594 static inline int netif_set_xps_queue(struct net_device *dev, 3595 const struct cpumask *mask, 3596 u16 index) 3597 { 3598 return 0; 3599 } 3600 3601 static inline int __netif_set_xps_queue(struct net_device *dev, 3602 const unsigned long *mask, 3603 u16 index, bool is_rxqs_map) 3604 { 3605 return 0; 3606 } 3607 #endif 3608 3609 /** 3610 * netif_is_multiqueue - test if device has multiple transmit queues 3611 * @dev: network device 3612 * 3613 * Check if device has multiple transmit queues 3614 */ 3615 static inline bool netif_is_multiqueue(const struct net_device *dev) 3616 { 3617 return dev->num_tx_queues > 1; 3618 } 3619 3620 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3621 3622 #ifdef CONFIG_SYSFS 3623 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3624 #else 3625 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3626 unsigned int rxqs) 3627 { 3628 dev->real_num_rx_queues = rxqs; 3629 return 0; 3630 } 3631 #endif 3632 3633 static inline struct netdev_rx_queue * 3634 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3635 { 3636 return dev->_rx + rxq; 3637 } 3638 3639 #ifdef CONFIG_SYSFS 3640 static inline unsigned int get_netdev_rx_queue_index( 3641 struct netdev_rx_queue *queue) 3642 { 3643 struct net_device *dev = queue->dev; 3644 int index = queue - dev->_rx; 3645 3646 BUG_ON(index >= dev->num_rx_queues); 3647 return index; 3648 } 3649 #endif 3650 3651 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3652 int netif_get_num_default_rss_queues(void); 3653 3654 enum skb_free_reason { 3655 SKB_REASON_CONSUMED, 3656 SKB_REASON_DROPPED, 3657 }; 3658 3659 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3660 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3661 3662 /* 3663 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3664 * interrupt context or with hardware interrupts being disabled. 3665 * (in_irq() || irqs_disabled()) 3666 * 3667 * We provide four helpers that can be used in following contexts : 3668 * 3669 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3670 * replacing kfree_skb(skb) 3671 * 3672 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3673 * Typically used in place of consume_skb(skb) in TX completion path 3674 * 3675 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3676 * replacing kfree_skb(skb) 3677 * 3678 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3679 * and consumed a packet. Used in place of consume_skb(skb) 3680 */ 3681 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3682 { 3683 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3684 } 3685 3686 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3687 { 3688 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3689 } 3690 3691 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3692 { 3693 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3694 } 3695 3696 static inline void dev_consume_skb_any(struct sk_buff *skb) 3697 { 3698 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3699 } 3700 3701 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3702 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3703 int netif_rx(struct sk_buff *skb); 3704 int netif_rx_ni(struct sk_buff *skb); 3705 int netif_receive_skb(struct sk_buff *skb); 3706 int netif_receive_skb_core(struct sk_buff *skb); 3707 void netif_receive_skb_list(struct list_head *head); 3708 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3709 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3710 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3711 gro_result_t napi_gro_frags(struct napi_struct *napi); 3712 struct packet_offload *gro_find_receive_by_type(__be16 type); 3713 struct packet_offload *gro_find_complete_by_type(__be16 type); 3714 3715 static inline void napi_free_frags(struct napi_struct *napi) 3716 { 3717 kfree_skb(napi->skb); 3718 napi->skb = NULL; 3719 } 3720 3721 bool netdev_is_rx_handler_busy(struct net_device *dev); 3722 int netdev_rx_handler_register(struct net_device *dev, 3723 rx_handler_func_t *rx_handler, 3724 void *rx_handler_data); 3725 void netdev_rx_handler_unregister(struct net_device *dev); 3726 3727 bool dev_valid_name(const char *name); 3728 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3729 bool *need_copyout); 3730 int dev_ifconf(struct net *net, struct ifconf *, int); 3731 int dev_ethtool(struct net *net, struct ifreq *); 3732 unsigned int dev_get_flags(const struct net_device *); 3733 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3734 struct netlink_ext_ack *extack); 3735 int dev_change_flags(struct net_device *dev, unsigned int flags, 3736 struct netlink_ext_ack *extack); 3737 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3738 unsigned int gchanges); 3739 int dev_change_name(struct net_device *, const char *); 3740 int dev_set_alias(struct net_device *, const char *, size_t); 3741 int dev_get_alias(const struct net_device *, char *, size_t); 3742 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3743 int __dev_set_mtu(struct net_device *, int); 3744 int dev_validate_mtu(struct net_device *dev, int mtu, 3745 struct netlink_ext_ack *extack); 3746 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3747 struct netlink_ext_ack *extack); 3748 int dev_set_mtu(struct net_device *, int); 3749 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3750 void dev_set_group(struct net_device *, int); 3751 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3752 struct netlink_ext_ack *extack); 3753 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3754 struct netlink_ext_ack *extack); 3755 int dev_change_carrier(struct net_device *, bool new_carrier); 3756 int dev_get_phys_port_id(struct net_device *dev, 3757 struct netdev_phys_item_id *ppid); 3758 int dev_get_phys_port_name(struct net_device *dev, 3759 char *name, size_t len); 3760 int dev_get_port_parent_id(struct net_device *dev, 3761 struct netdev_phys_item_id *ppid, bool recurse); 3762 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3763 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3764 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3765 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3766 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3767 struct netdev_queue *txq, int *ret); 3768 3769 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3770 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3771 int fd, u32 flags); 3772 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3773 enum bpf_netdev_command cmd); 3774 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3775 3776 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3777 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3778 bool is_skb_forwardable(const struct net_device *dev, 3779 const struct sk_buff *skb); 3780 3781 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3782 struct sk_buff *skb) 3783 { 3784 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3785 unlikely(!is_skb_forwardable(dev, skb))) { 3786 atomic_long_inc(&dev->rx_dropped); 3787 kfree_skb(skb); 3788 return NET_RX_DROP; 3789 } 3790 3791 skb_scrub_packet(skb, true); 3792 skb->priority = 0; 3793 return 0; 3794 } 3795 3796 bool dev_nit_active(struct net_device *dev); 3797 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3798 3799 extern int netdev_budget; 3800 extern unsigned int netdev_budget_usecs; 3801 3802 /* Called by rtnetlink.c:rtnl_unlock() */ 3803 void netdev_run_todo(void); 3804 3805 /** 3806 * dev_put - release reference to device 3807 * @dev: network device 3808 * 3809 * Release reference to device to allow it to be freed. 3810 */ 3811 static inline void dev_put(struct net_device *dev) 3812 { 3813 this_cpu_dec(*dev->pcpu_refcnt); 3814 } 3815 3816 /** 3817 * dev_hold - get reference to device 3818 * @dev: network device 3819 * 3820 * Hold reference to device to keep it from being freed. 3821 */ 3822 static inline void dev_hold(struct net_device *dev) 3823 { 3824 this_cpu_inc(*dev->pcpu_refcnt); 3825 } 3826 3827 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3828 * and _off may be called from IRQ context, but it is caller 3829 * who is responsible for serialization of these calls. 3830 * 3831 * The name carrier is inappropriate, these functions should really be 3832 * called netif_lowerlayer_*() because they represent the state of any 3833 * kind of lower layer not just hardware media. 3834 */ 3835 3836 void linkwatch_init_dev(struct net_device *dev); 3837 void linkwatch_fire_event(struct net_device *dev); 3838 void linkwatch_forget_dev(struct net_device *dev); 3839 3840 /** 3841 * netif_carrier_ok - test if carrier present 3842 * @dev: network device 3843 * 3844 * Check if carrier is present on device 3845 */ 3846 static inline bool netif_carrier_ok(const struct net_device *dev) 3847 { 3848 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3849 } 3850 3851 unsigned long dev_trans_start(struct net_device *dev); 3852 3853 void __netdev_watchdog_up(struct net_device *dev); 3854 3855 void netif_carrier_on(struct net_device *dev); 3856 3857 void netif_carrier_off(struct net_device *dev); 3858 3859 /** 3860 * netif_dormant_on - mark device as dormant. 3861 * @dev: network device 3862 * 3863 * Mark device as dormant (as per RFC2863). 3864 * 3865 * The dormant state indicates that the relevant interface is not 3866 * actually in a condition to pass packets (i.e., it is not 'up') but is 3867 * in a "pending" state, waiting for some external event. For "on- 3868 * demand" interfaces, this new state identifies the situation where the 3869 * interface is waiting for events to place it in the up state. 3870 */ 3871 static inline void netif_dormant_on(struct net_device *dev) 3872 { 3873 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3874 linkwatch_fire_event(dev); 3875 } 3876 3877 /** 3878 * netif_dormant_off - set device as not dormant. 3879 * @dev: network device 3880 * 3881 * Device is not in dormant state. 3882 */ 3883 static inline void netif_dormant_off(struct net_device *dev) 3884 { 3885 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3886 linkwatch_fire_event(dev); 3887 } 3888 3889 /** 3890 * netif_dormant - test if device is dormant 3891 * @dev: network device 3892 * 3893 * Check if device is dormant. 3894 */ 3895 static inline bool netif_dormant(const struct net_device *dev) 3896 { 3897 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3898 } 3899 3900 3901 /** 3902 * netif_oper_up - test if device is operational 3903 * @dev: network device 3904 * 3905 * Check if carrier is operational 3906 */ 3907 static inline bool netif_oper_up(const struct net_device *dev) 3908 { 3909 return (dev->operstate == IF_OPER_UP || 3910 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3911 } 3912 3913 /** 3914 * netif_device_present - is device available or removed 3915 * @dev: network device 3916 * 3917 * Check if device has not been removed from system. 3918 */ 3919 static inline bool netif_device_present(struct net_device *dev) 3920 { 3921 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3922 } 3923 3924 void netif_device_detach(struct net_device *dev); 3925 3926 void netif_device_attach(struct net_device *dev); 3927 3928 /* 3929 * Network interface message level settings 3930 */ 3931 3932 enum { 3933 NETIF_MSG_DRV_BIT, 3934 NETIF_MSG_PROBE_BIT, 3935 NETIF_MSG_LINK_BIT, 3936 NETIF_MSG_TIMER_BIT, 3937 NETIF_MSG_IFDOWN_BIT, 3938 NETIF_MSG_IFUP_BIT, 3939 NETIF_MSG_RX_ERR_BIT, 3940 NETIF_MSG_TX_ERR_BIT, 3941 NETIF_MSG_TX_QUEUED_BIT, 3942 NETIF_MSG_INTR_BIT, 3943 NETIF_MSG_TX_DONE_BIT, 3944 NETIF_MSG_RX_STATUS_BIT, 3945 NETIF_MSG_PKTDATA_BIT, 3946 NETIF_MSG_HW_BIT, 3947 NETIF_MSG_WOL_BIT, 3948 3949 /* When you add a new bit above, update netif_msg_class_names array 3950 * in net/ethtool/common.c 3951 */ 3952 NETIF_MSG_CLASS_COUNT, 3953 }; 3954 /* Both ethtool_ops interface and internal driver implementation use u32 */ 3955 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 3956 3957 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 3958 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 3959 3960 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 3961 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 3962 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 3963 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 3964 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 3965 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 3966 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 3967 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 3968 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 3969 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 3970 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 3971 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 3972 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 3973 #define NETIF_MSG_HW __NETIF_MSG(HW) 3974 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 3975 3976 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3977 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3978 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3979 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3980 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3981 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3982 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3983 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3984 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3985 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3986 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3987 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3988 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3989 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3990 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3991 3992 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3993 { 3994 /* use default */ 3995 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3996 return default_msg_enable_bits; 3997 if (debug_value == 0) /* no output */ 3998 return 0; 3999 /* set low N bits */ 4000 return (1U << debug_value) - 1; 4001 } 4002 4003 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4004 { 4005 spin_lock(&txq->_xmit_lock); 4006 txq->xmit_lock_owner = cpu; 4007 } 4008 4009 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4010 { 4011 __acquire(&txq->_xmit_lock); 4012 return true; 4013 } 4014 4015 static inline void __netif_tx_release(struct netdev_queue *txq) 4016 { 4017 __release(&txq->_xmit_lock); 4018 } 4019 4020 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4021 { 4022 spin_lock_bh(&txq->_xmit_lock); 4023 txq->xmit_lock_owner = smp_processor_id(); 4024 } 4025 4026 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4027 { 4028 bool ok = spin_trylock(&txq->_xmit_lock); 4029 if (likely(ok)) 4030 txq->xmit_lock_owner = smp_processor_id(); 4031 return ok; 4032 } 4033 4034 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4035 { 4036 txq->xmit_lock_owner = -1; 4037 spin_unlock(&txq->_xmit_lock); 4038 } 4039 4040 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4041 { 4042 txq->xmit_lock_owner = -1; 4043 spin_unlock_bh(&txq->_xmit_lock); 4044 } 4045 4046 static inline void txq_trans_update(struct netdev_queue *txq) 4047 { 4048 if (txq->xmit_lock_owner != -1) 4049 txq->trans_start = jiffies; 4050 } 4051 4052 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4053 static inline void netif_trans_update(struct net_device *dev) 4054 { 4055 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4056 4057 if (txq->trans_start != jiffies) 4058 txq->trans_start = jiffies; 4059 } 4060 4061 /** 4062 * netif_tx_lock - grab network device transmit lock 4063 * @dev: network device 4064 * 4065 * Get network device transmit lock 4066 */ 4067 static inline void netif_tx_lock(struct net_device *dev) 4068 { 4069 unsigned int i; 4070 int cpu; 4071 4072 spin_lock(&dev->tx_global_lock); 4073 cpu = smp_processor_id(); 4074 for (i = 0; i < dev->num_tx_queues; i++) { 4075 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4076 4077 /* We are the only thread of execution doing a 4078 * freeze, but we have to grab the _xmit_lock in 4079 * order to synchronize with threads which are in 4080 * the ->hard_start_xmit() handler and already 4081 * checked the frozen bit. 4082 */ 4083 __netif_tx_lock(txq, cpu); 4084 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4085 __netif_tx_unlock(txq); 4086 } 4087 } 4088 4089 static inline void netif_tx_lock_bh(struct net_device *dev) 4090 { 4091 local_bh_disable(); 4092 netif_tx_lock(dev); 4093 } 4094 4095 static inline void netif_tx_unlock(struct net_device *dev) 4096 { 4097 unsigned int i; 4098 4099 for (i = 0; i < dev->num_tx_queues; i++) { 4100 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4101 4102 /* No need to grab the _xmit_lock here. If the 4103 * queue is not stopped for another reason, we 4104 * force a schedule. 4105 */ 4106 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4107 netif_schedule_queue(txq); 4108 } 4109 spin_unlock(&dev->tx_global_lock); 4110 } 4111 4112 static inline void netif_tx_unlock_bh(struct net_device *dev) 4113 { 4114 netif_tx_unlock(dev); 4115 local_bh_enable(); 4116 } 4117 4118 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4119 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4120 __netif_tx_lock(txq, cpu); \ 4121 } else { \ 4122 __netif_tx_acquire(txq); \ 4123 } \ 4124 } 4125 4126 #define HARD_TX_TRYLOCK(dev, txq) \ 4127 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4128 __netif_tx_trylock(txq) : \ 4129 __netif_tx_acquire(txq)) 4130 4131 #define HARD_TX_UNLOCK(dev, txq) { \ 4132 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4133 __netif_tx_unlock(txq); \ 4134 } else { \ 4135 __netif_tx_release(txq); \ 4136 } \ 4137 } 4138 4139 static inline void netif_tx_disable(struct net_device *dev) 4140 { 4141 unsigned int i; 4142 int cpu; 4143 4144 local_bh_disable(); 4145 cpu = smp_processor_id(); 4146 for (i = 0; i < dev->num_tx_queues; i++) { 4147 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4148 4149 __netif_tx_lock(txq, cpu); 4150 netif_tx_stop_queue(txq); 4151 __netif_tx_unlock(txq); 4152 } 4153 local_bh_enable(); 4154 } 4155 4156 static inline void netif_addr_lock(struct net_device *dev) 4157 { 4158 spin_lock(&dev->addr_list_lock); 4159 } 4160 4161 static inline void netif_addr_lock_bh(struct net_device *dev) 4162 { 4163 spin_lock_bh(&dev->addr_list_lock); 4164 } 4165 4166 static inline void netif_addr_unlock(struct net_device *dev) 4167 { 4168 spin_unlock(&dev->addr_list_lock); 4169 } 4170 4171 static inline void netif_addr_unlock_bh(struct net_device *dev) 4172 { 4173 spin_unlock_bh(&dev->addr_list_lock); 4174 } 4175 4176 /* 4177 * dev_addrs walker. Should be used only for read access. Call with 4178 * rcu_read_lock held. 4179 */ 4180 #define for_each_dev_addr(dev, ha) \ 4181 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4182 4183 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4184 4185 void ether_setup(struct net_device *dev); 4186 4187 /* Support for loadable net-drivers */ 4188 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4189 unsigned char name_assign_type, 4190 void (*setup)(struct net_device *), 4191 unsigned int txqs, unsigned int rxqs); 4192 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4193 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4194 4195 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4196 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4197 count) 4198 4199 int register_netdev(struct net_device *dev); 4200 void unregister_netdev(struct net_device *dev); 4201 4202 /* General hardware address lists handling functions */ 4203 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4204 struct netdev_hw_addr_list *from_list, int addr_len); 4205 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4206 struct netdev_hw_addr_list *from_list, int addr_len); 4207 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4208 struct net_device *dev, 4209 int (*sync)(struct net_device *, const unsigned char *), 4210 int (*unsync)(struct net_device *, 4211 const unsigned char *)); 4212 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4213 struct net_device *dev, 4214 int (*sync)(struct net_device *, 4215 const unsigned char *, int), 4216 int (*unsync)(struct net_device *, 4217 const unsigned char *, int)); 4218 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4219 struct net_device *dev, 4220 int (*unsync)(struct net_device *, 4221 const unsigned char *, int)); 4222 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4223 struct net_device *dev, 4224 int (*unsync)(struct net_device *, 4225 const unsigned char *)); 4226 void __hw_addr_init(struct netdev_hw_addr_list *list); 4227 4228 /* Functions used for device addresses handling */ 4229 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4230 unsigned char addr_type); 4231 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4232 unsigned char addr_type); 4233 void dev_addr_flush(struct net_device *dev); 4234 int dev_addr_init(struct net_device *dev); 4235 4236 /* Functions used for unicast addresses handling */ 4237 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4238 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4239 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4240 int dev_uc_sync(struct net_device *to, struct net_device *from); 4241 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4242 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4243 void dev_uc_flush(struct net_device *dev); 4244 void dev_uc_init(struct net_device *dev); 4245 4246 /** 4247 * __dev_uc_sync - Synchonize device's unicast list 4248 * @dev: device to sync 4249 * @sync: function to call if address should be added 4250 * @unsync: function to call if address should be removed 4251 * 4252 * Add newly added addresses to the interface, and release 4253 * addresses that have been deleted. 4254 */ 4255 static inline int __dev_uc_sync(struct net_device *dev, 4256 int (*sync)(struct net_device *, 4257 const unsigned char *), 4258 int (*unsync)(struct net_device *, 4259 const unsigned char *)) 4260 { 4261 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4262 } 4263 4264 /** 4265 * __dev_uc_unsync - Remove synchronized addresses from device 4266 * @dev: device to sync 4267 * @unsync: function to call if address should be removed 4268 * 4269 * Remove all addresses that were added to the device by dev_uc_sync(). 4270 */ 4271 static inline void __dev_uc_unsync(struct net_device *dev, 4272 int (*unsync)(struct net_device *, 4273 const unsigned char *)) 4274 { 4275 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4276 } 4277 4278 /* Functions used for multicast addresses handling */ 4279 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4280 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4281 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4282 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4283 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4284 int dev_mc_sync(struct net_device *to, struct net_device *from); 4285 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4286 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4287 void dev_mc_flush(struct net_device *dev); 4288 void dev_mc_init(struct net_device *dev); 4289 4290 /** 4291 * __dev_mc_sync - Synchonize device's multicast list 4292 * @dev: device to sync 4293 * @sync: function to call if address should be added 4294 * @unsync: function to call if address should be removed 4295 * 4296 * Add newly added addresses to the interface, and release 4297 * addresses that have been deleted. 4298 */ 4299 static inline int __dev_mc_sync(struct net_device *dev, 4300 int (*sync)(struct net_device *, 4301 const unsigned char *), 4302 int (*unsync)(struct net_device *, 4303 const unsigned char *)) 4304 { 4305 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4306 } 4307 4308 /** 4309 * __dev_mc_unsync - Remove synchronized addresses from device 4310 * @dev: device to sync 4311 * @unsync: function to call if address should be removed 4312 * 4313 * Remove all addresses that were added to the device by dev_mc_sync(). 4314 */ 4315 static inline void __dev_mc_unsync(struct net_device *dev, 4316 int (*unsync)(struct net_device *, 4317 const unsigned char *)) 4318 { 4319 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4320 } 4321 4322 /* Functions used for secondary unicast and multicast support */ 4323 void dev_set_rx_mode(struct net_device *dev); 4324 void __dev_set_rx_mode(struct net_device *dev); 4325 int dev_set_promiscuity(struct net_device *dev, int inc); 4326 int dev_set_allmulti(struct net_device *dev, int inc); 4327 void netdev_state_change(struct net_device *dev); 4328 void netdev_notify_peers(struct net_device *dev); 4329 void netdev_features_change(struct net_device *dev); 4330 /* Load a device via the kmod */ 4331 void dev_load(struct net *net, const char *name); 4332 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4333 struct rtnl_link_stats64 *storage); 4334 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4335 const struct net_device_stats *netdev_stats); 4336 4337 extern int netdev_max_backlog; 4338 extern int netdev_tstamp_prequeue; 4339 extern int weight_p; 4340 extern int dev_weight_rx_bias; 4341 extern int dev_weight_tx_bias; 4342 extern int dev_rx_weight; 4343 extern int dev_tx_weight; 4344 extern int gro_normal_batch; 4345 4346 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4347 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4348 struct list_head **iter); 4349 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4350 struct list_head **iter); 4351 4352 /* iterate through upper list, must be called under RCU read lock */ 4353 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4354 for (iter = &(dev)->adj_list.upper, \ 4355 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4356 updev; \ 4357 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4358 4359 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4360 int (*fn)(struct net_device *upper_dev, 4361 void *data), 4362 void *data); 4363 4364 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4365 struct net_device *upper_dev); 4366 4367 bool netdev_has_any_upper_dev(struct net_device *dev); 4368 4369 void *netdev_lower_get_next_private(struct net_device *dev, 4370 struct list_head **iter); 4371 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4372 struct list_head **iter); 4373 4374 #define netdev_for_each_lower_private(dev, priv, iter) \ 4375 for (iter = (dev)->adj_list.lower.next, \ 4376 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4377 priv; \ 4378 priv = netdev_lower_get_next_private(dev, &(iter))) 4379 4380 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4381 for (iter = &(dev)->adj_list.lower, \ 4382 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4383 priv; \ 4384 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4385 4386 void *netdev_lower_get_next(struct net_device *dev, 4387 struct list_head **iter); 4388 4389 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4390 for (iter = (dev)->adj_list.lower.next, \ 4391 ldev = netdev_lower_get_next(dev, &(iter)); \ 4392 ldev; \ 4393 ldev = netdev_lower_get_next(dev, &(iter))) 4394 4395 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4396 struct list_head **iter); 4397 int netdev_walk_all_lower_dev(struct net_device *dev, 4398 int (*fn)(struct net_device *lower_dev, 4399 void *data), 4400 void *data); 4401 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4402 int (*fn)(struct net_device *lower_dev, 4403 void *data), 4404 void *data); 4405 4406 void *netdev_adjacent_get_private(struct list_head *adj_list); 4407 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4408 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4409 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4410 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4411 struct netlink_ext_ack *extack); 4412 int netdev_master_upper_dev_link(struct net_device *dev, 4413 struct net_device *upper_dev, 4414 void *upper_priv, void *upper_info, 4415 struct netlink_ext_ack *extack); 4416 void netdev_upper_dev_unlink(struct net_device *dev, 4417 struct net_device *upper_dev); 4418 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4419 struct net_device *new_dev, 4420 struct net_device *dev, 4421 struct netlink_ext_ack *extack); 4422 void netdev_adjacent_change_commit(struct net_device *old_dev, 4423 struct net_device *new_dev, 4424 struct net_device *dev); 4425 void netdev_adjacent_change_abort(struct net_device *old_dev, 4426 struct net_device *new_dev, 4427 struct net_device *dev); 4428 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4429 void *netdev_lower_dev_get_private(struct net_device *dev, 4430 struct net_device *lower_dev); 4431 void netdev_lower_state_changed(struct net_device *lower_dev, 4432 void *lower_state_info); 4433 4434 /* RSS keys are 40 or 52 bytes long */ 4435 #define NETDEV_RSS_KEY_LEN 52 4436 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4437 void netdev_rss_key_fill(void *buffer, size_t len); 4438 4439 int skb_checksum_help(struct sk_buff *skb); 4440 int skb_crc32c_csum_help(struct sk_buff *skb); 4441 int skb_csum_hwoffload_help(struct sk_buff *skb, 4442 const netdev_features_t features); 4443 4444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4445 netdev_features_t features, bool tx_path); 4446 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4447 netdev_features_t features); 4448 4449 struct netdev_bonding_info { 4450 ifslave slave; 4451 ifbond master; 4452 }; 4453 4454 struct netdev_notifier_bonding_info { 4455 struct netdev_notifier_info info; /* must be first */ 4456 struct netdev_bonding_info bonding_info; 4457 }; 4458 4459 void netdev_bonding_info_change(struct net_device *dev, 4460 struct netdev_bonding_info *bonding_info); 4461 4462 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4463 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4464 #else 4465 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4466 const void *data) 4467 { 4468 } 4469 #endif 4470 4471 static inline 4472 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4473 { 4474 return __skb_gso_segment(skb, features, true); 4475 } 4476 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4477 4478 static inline bool can_checksum_protocol(netdev_features_t features, 4479 __be16 protocol) 4480 { 4481 if (protocol == htons(ETH_P_FCOE)) 4482 return !!(features & NETIF_F_FCOE_CRC); 4483 4484 /* Assume this is an IP checksum (not SCTP CRC) */ 4485 4486 if (features & NETIF_F_HW_CSUM) { 4487 /* Can checksum everything */ 4488 return true; 4489 } 4490 4491 switch (protocol) { 4492 case htons(ETH_P_IP): 4493 return !!(features & NETIF_F_IP_CSUM); 4494 case htons(ETH_P_IPV6): 4495 return !!(features & NETIF_F_IPV6_CSUM); 4496 default: 4497 return false; 4498 } 4499 } 4500 4501 #ifdef CONFIG_BUG 4502 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4503 #else 4504 static inline void netdev_rx_csum_fault(struct net_device *dev, 4505 struct sk_buff *skb) 4506 { 4507 } 4508 #endif 4509 /* rx skb timestamps */ 4510 void net_enable_timestamp(void); 4511 void net_disable_timestamp(void); 4512 4513 #ifdef CONFIG_PROC_FS 4514 int __init dev_proc_init(void); 4515 #else 4516 #define dev_proc_init() 0 4517 #endif 4518 4519 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4520 struct sk_buff *skb, struct net_device *dev, 4521 bool more) 4522 { 4523 __this_cpu_write(softnet_data.xmit.more, more); 4524 return ops->ndo_start_xmit(skb, dev); 4525 } 4526 4527 static inline bool netdev_xmit_more(void) 4528 { 4529 return __this_cpu_read(softnet_data.xmit.more); 4530 } 4531 4532 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4533 struct netdev_queue *txq, bool more) 4534 { 4535 const struct net_device_ops *ops = dev->netdev_ops; 4536 netdev_tx_t rc; 4537 4538 rc = __netdev_start_xmit(ops, skb, dev, more); 4539 if (rc == NETDEV_TX_OK) 4540 txq_trans_update(txq); 4541 4542 return rc; 4543 } 4544 4545 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4546 const void *ns); 4547 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4548 const void *ns); 4549 4550 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4551 { 4552 return netdev_class_create_file_ns(class_attr, NULL); 4553 } 4554 4555 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4556 { 4557 netdev_class_remove_file_ns(class_attr, NULL); 4558 } 4559 4560 extern const struct kobj_ns_type_operations net_ns_type_operations; 4561 4562 const char *netdev_drivername(const struct net_device *dev); 4563 4564 void linkwatch_run_queue(void); 4565 4566 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4567 netdev_features_t f2) 4568 { 4569 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4570 if (f1 & NETIF_F_HW_CSUM) 4571 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4572 else 4573 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4574 } 4575 4576 return f1 & f2; 4577 } 4578 4579 static inline netdev_features_t netdev_get_wanted_features( 4580 struct net_device *dev) 4581 { 4582 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4583 } 4584 netdev_features_t netdev_increment_features(netdev_features_t all, 4585 netdev_features_t one, netdev_features_t mask); 4586 4587 /* Allow TSO being used on stacked device : 4588 * Performing the GSO segmentation before last device 4589 * is a performance improvement. 4590 */ 4591 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4592 netdev_features_t mask) 4593 { 4594 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4595 } 4596 4597 int __netdev_update_features(struct net_device *dev); 4598 void netdev_update_features(struct net_device *dev); 4599 void netdev_change_features(struct net_device *dev); 4600 4601 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4602 struct net_device *dev); 4603 4604 netdev_features_t passthru_features_check(struct sk_buff *skb, 4605 struct net_device *dev, 4606 netdev_features_t features); 4607 netdev_features_t netif_skb_features(struct sk_buff *skb); 4608 4609 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4610 { 4611 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4612 4613 /* check flags correspondence */ 4614 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4615 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4616 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4617 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4618 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4619 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4620 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4621 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4622 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4623 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4624 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4625 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4626 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4627 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4628 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4629 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4630 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4631 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4632 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4633 4634 return (features & feature) == feature; 4635 } 4636 4637 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4638 { 4639 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4640 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4641 } 4642 4643 static inline bool netif_needs_gso(struct sk_buff *skb, 4644 netdev_features_t features) 4645 { 4646 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4647 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4648 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4649 } 4650 4651 static inline void netif_set_gso_max_size(struct net_device *dev, 4652 unsigned int size) 4653 { 4654 dev->gso_max_size = size; 4655 } 4656 4657 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4658 int pulled_hlen, u16 mac_offset, 4659 int mac_len) 4660 { 4661 skb->protocol = protocol; 4662 skb->encapsulation = 1; 4663 skb_push(skb, pulled_hlen); 4664 skb_reset_transport_header(skb); 4665 skb->mac_header = mac_offset; 4666 skb->network_header = skb->mac_header + mac_len; 4667 skb->mac_len = mac_len; 4668 } 4669 4670 static inline bool netif_is_macsec(const struct net_device *dev) 4671 { 4672 return dev->priv_flags & IFF_MACSEC; 4673 } 4674 4675 static inline bool netif_is_macvlan(const struct net_device *dev) 4676 { 4677 return dev->priv_flags & IFF_MACVLAN; 4678 } 4679 4680 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4681 { 4682 return dev->priv_flags & IFF_MACVLAN_PORT; 4683 } 4684 4685 static inline bool netif_is_bond_master(const struct net_device *dev) 4686 { 4687 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4688 } 4689 4690 static inline bool netif_is_bond_slave(const struct net_device *dev) 4691 { 4692 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4693 } 4694 4695 static inline bool netif_supports_nofcs(struct net_device *dev) 4696 { 4697 return dev->priv_flags & IFF_SUPP_NOFCS; 4698 } 4699 4700 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4701 { 4702 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4703 } 4704 4705 static inline bool netif_is_l3_master(const struct net_device *dev) 4706 { 4707 return dev->priv_flags & IFF_L3MDEV_MASTER; 4708 } 4709 4710 static inline bool netif_is_l3_slave(const struct net_device *dev) 4711 { 4712 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4713 } 4714 4715 static inline bool netif_is_bridge_master(const struct net_device *dev) 4716 { 4717 return dev->priv_flags & IFF_EBRIDGE; 4718 } 4719 4720 static inline bool netif_is_bridge_port(const struct net_device *dev) 4721 { 4722 return dev->priv_flags & IFF_BRIDGE_PORT; 4723 } 4724 4725 static inline bool netif_is_ovs_master(const struct net_device *dev) 4726 { 4727 return dev->priv_flags & IFF_OPENVSWITCH; 4728 } 4729 4730 static inline bool netif_is_ovs_port(const struct net_device *dev) 4731 { 4732 return dev->priv_flags & IFF_OVS_DATAPATH; 4733 } 4734 4735 static inline bool netif_is_team_master(const struct net_device *dev) 4736 { 4737 return dev->priv_flags & IFF_TEAM; 4738 } 4739 4740 static inline bool netif_is_team_port(const struct net_device *dev) 4741 { 4742 return dev->priv_flags & IFF_TEAM_PORT; 4743 } 4744 4745 static inline bool netif_is_lag_master(const struct net_device *dev) 4746 { 4747 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4748 } 4749 4750 static inline bool netif_is_lag_port(const struct net_device *dev) 4751 { 4752 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4753 } 4754 4755 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4756 { 4757 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4758 } 4759 4760 static inline bool netif_is_failover(const struct net_device *dev) 4761 { 4762 return dev->priv_flags & IFF_FAILOVER; 4763 } 4764 4765 static inline bool netif_is_failover_slave(const struct net_device *dev) 4766 { 4767 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4768 } 4769 4770 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4771 static inline void netif_keep_dst(struct net_device *dev) 4772 { 4773 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4774 } 4775 4776 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4777 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4778 { 4779 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4780 return dev->priv_flags & IFF_MACSEC; 4781 } 4782 4783 extern struct pernet_operations __net_initdata loopback_net_ops; 4784 4785 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4786 4787 /* netdev_printk helpers, similar to dev_printk */ 4788 4789 static inline const char *netdev_name(const struct net_device *dev) 4790 { 4791 if (!dev->name[0] || strchr(dev->name, '%')) 4792 return "(unnamed net_device)"; 4793 return dev->name; 4794 } 4795 4796 static inline bool netdev_unregistering(const struct net_device *dev) 4797 { 4798 return dev->reg_state == NETREG_UNREGISTERING; 4799 } 4800 4801 static inline const char *netdev_reg_state(const struct net_device *dev) 4802 { 4803 switch (dev->reg_state) { 4804 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4805 case NETREG_REGISTERED: return ""; 4806 case NETREG_UNREGISTERING: return " (unregistering)"; 4807 case NETREG_UNREGISTERED: return " (unregistered)"; 4808 case NETREG_RELEASED: return " (released)"; 4809 case NETREG_DUMMY: return " (dummy)"; 4810 } 4811 4812 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4813 return " (unknown)"; 4814 } 4815 4816 __printf(3, 4) __cold 4817 void netdev_printk(const char *level, const struct net_device *dev, 4818 const char *format, ...); 4819 __printf(2, 3) __cold 4820 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4821 __printf(2, 3) __cold 4822 void netdev_alert(const struct net_device *dev, const char *format, ...); 4823 __printf(2, 3) __cold 4824 void netdev_crit(const struct net_device *dev, const char *format, ...); 4825 __printf(2, 3) __cold 4826 void netdev_err(const struct net_device *dev, const char *format, ...); 4827 __printf(2, 3) __cold 4828 void netdev_warn(const struct net_device *dev, const char *format, ...); 4829 __printf(2, 3) __cold 4830 void netdev_notice(const struct net_device *dev, const char *format, ...); 4831 __printf(2, 3) __cold 4832 void netdev_info(const struct net_device *dev, const char *format, ...); 4833 4834 #define netdev_level_once(level, dev, fmt, ...) \ 4835 do { \ 4836 static bool __print_once __read_mostly; \ 4837 \ 4838 if (!__print_once) { \ 4839 __print_once = true; \ 4840 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4841 } \ 4842 } while (0) 4843 4844 #define netdev_emerg_once(dev, fmt, ...) \ 4845 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4846 #define netdev_alert_once(dev, fmt, ...) \ 4847 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4848 #define netdev_crit_once(dev, fmt, ...) \ 4849 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4850 #define netdev_err_once(dev, fmt, ...) \ 4851 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4852 #define netdev_warn_once(dev, fmt, ...) \ 4853 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4854 #define netdev_notice_once(dev, fmt, ...) \ 4855 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4856 #define netdev_info_once(dev, fmt, ...) \ 4857 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4858 4859 #define MODULE_ALIAS_NETDEV(device) \ 4860 MODULE_ALIAS("netdev-" device) 4861 4862 #if defined(CONFIG_DYNAMIC_DEBUG) 4863 #define netdev_dbg(__dev, format, args...) \ 4864 do { \ 4865 dynamic_netdev_dbg(__dev, format, ##args); \ 4866 } while (0) 4867 #elif defined(DEBUG) 4868 #define netdev_dbg(__dev, format, args...) \ 4869 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4870 #else 4871 #define netdev_dbg(__dev, format, args...) \ 4872 ({ \ 4873 if (0) \ 4874 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4875 }) 4876 #endif 4877 4878 #if defined(VERBOSE_DEBUG) 4879 #define netdev_vdbg netdev_dbg 4880 #else 4881 4882 #define netdev_vdbg(dev, format, args...) \ 4883 ({ \ 4884 if (0) \ 4885 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4886 0; \ 4887 }) 4888 #endif 4889 4890 /* 4891 * netdev_WARN() acts like dev_printk(), but with the key difference 4892 * of using a WARN/WARN_ON to get the message out, including the 4893 * file/line information and a backtrace. 4894 */ 4895 #define netdev_WARN(dev, format, args...) \ 4896 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4897 netdev_reg_state(dev), ##args) 4898 4899 #define netdev_WARN_ONCE(dev, format, args...) \ 4900 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4901 netdev_reg_state(dev), ##args) 4902 4903 /* netif printk helpers, similar to netdev_printk */ 4904 4905 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4906 do { \ 4907 if (netif_msg_##type(priv)) \ 4908 netdev_printk(level, (dev), fmt, ##args); \ 4909 } while (0) 4910 4911 #define netif_level(level, priv, type, dev, fmt, args...) \ 4912 do { \ 4913 if (netif_msg_##type(priv)) \ 4914 netdev_##level(dev, fmt, ##args); \ 4915 } while (0) 4916 4917 #define netif_emerg(priv, type, dev, fmt, args...) \ 4918 netif_level(emerg, priv, type, dev, fmt, ##args) 4919 #define netif_alert(priv, type, dev, fmt, args...) \ 4920 netif_level(alert, priv, type, dev, fmt, ##args) 4921 #define netif_crit(priv, type, dev, fmt, args...) \ 4922 netif_level(crit, priv, type, dev, fmt, ##args) 4923 #define netif_err(priv, type, dev, fmt, args...) \ 4924 netif_level(err, priv, type, dev, fmt, ##args) 4925 #define netif_warn(priv, type, dev, fmt, args...) \ 4926 netif_level(warn, priv, type, dev, fmt, ##args) 4927 #define netif_notice(priv, type, dev, fmt, args...) \ 4928 netif_level(notice, priv, type, dev, fmt, ##args) 4929 #define netif_info(priv, type, dev, fmt, args...) \ 4930 netif_level(info, priv, type, dev, fmt, ##args) 4931 4932 #if defined(CONFIG_DYNAMIC_DEBUG) 4933 #define netif_dbg(priv, type, netdev, format, args...) \ 4934 do { \ 4935 if (netif_msg_##type(priv)) \ 4936 dynamic_netdev_dbg(netdev, format, ##args); \ 4937 } while (0) 4938 #elif defined(DEBUG) 4939 #define netif_dbg(priv, type, dev, format, args...) \ 4940 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4941 #else 4942 #define netif_dbg(priv, type, dev, format, args...) \ 4943 ({ \ 4944 if (0) \ 4945 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4946 0; \ 4947 }) 4948 #endif 4949 4950 /* if @cond then downgrade to debug, else print at @level */ 4951 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4952 do { \ 4953 if (cond) \ 4954 netif_dbg(priv, type, netdev, fmt, ##args); \ 4955 else \ 4956 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4957 } while (0) 4958 4959 #if defined(VERBOSE_DEBUG) 4960 #define netif_vdbg netif_dbg 4961 #else 4962 #define netif_vdbg(priv, type, dev, format, args...) \ 4963 ({ \ 4964 if (0) \ 4965 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4966 0; \ 4967 }) 4968 #endif 4969 4970 /* 4971 * The list of packet types we will receive (as opposed to discard) 4972 * and the routines to invoke. 4973 * 4974 * Why 16. Because with 16 the only overlap we get on a hash of the 4975 * low nibble of the protocol value is RARP/SNAP/X.25. 4976 * 4977 * 0800 IP 4978 * 0001 802.3 4979 * 0002 AX.25 4980 * 0004 802.2 4981 * 8035 RARP 4982 * 0005 SNAP 4983 * 0805 X.25 4984 * 0806 ARP 4985 * 8137 IPX 4986 * 0009 Localtalk 4987 * 86DD IPv6 4988 */ 4989 #define PTYPE_HASH_SIZE (16) 4990 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4991 4992 extern struct net_device *blackhole_netdev; 4993 4994 #endif /* _LINUX_NETDEVICE_H */ 4995