xref: /openbmc/linux/include/linux/netdevice.h (revision 8622a0e5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 #define MAX_NEST_DEV 8
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously; in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK		0xf0
108 
109 enum netdev_tx {
110 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
111 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
112 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 /*
135  *	Compute the worst-case header length according to the protocols
136  *	used.
137  */
138 
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key_false rps_needed;
196 extern struct static_key_false rfs_needed;
197 #endif
198 
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202 
203 struct netdev_hw_addr {
204 	struct list_head	list;
205 	unsigned char		addr[MAX_ADDR_LEN];
206 	unsigned char		type;
207 #define NETDEV_HW_ADDR_T_LAN		1
208 #define NETDEV_HW_ADDR_T_SAN		2
209 #define NETDEV_HW_ADDR_T_SLAVE		3
210 #define NETDEV_HW_ADDR_T_UNICAST	4
211 #define NETDEV_HW_ADDR_T_MULTICAST	5
212 	bool			global_use;
213 	int			sync_cnt;
214 	int			refcount;
215 	int			synced;
216 	struct rcu_head		rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220 	struct list_head	list;
221 	int			count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 	list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240 	unsigned int	hh_len;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 	__be16	(*parse_protocol)(const struct sk_buff *skb);
276 };
277 
278 /* These flag bits are private to the generic network queueing
279  * layer; they may not be explicitly referenced by any other
280  * code.
281  */
282 
283 enum netdev_state_t {
284 	__LINK_STATE_START,
285 	__LINK_STATE_PRESENT,
286 	__LINK_STATE_NOCARRIER,
287 	__LINK_STATE_LINKWATCH_PENDING,
288 	__LINK_STATE_DORMANT,
289 };
290 
291 
292 /*
293  * This structure holds boot-time configured netdevice settings. They
294  * are then used in the device probing.
295  */
296 struct netdev_boot_setup {
297 	char name[IFNAMSIZ];
298 	struct ifmap map;
299 };
300 #define NETDEV_BOOT_SETUP_MAX 8
301 
302 int __init netdev_boot_setup(char *str);
303 
304 struct gro_list {
305 	struct list_head	list;
306 	int			count;
307 };
308 
309 /*
310  * size of gro hash buckets, must less than bit number of
311  * napi_struct::gro_bitmask
312  */
313 #define GRO_HASH_BUCKETS	8
314 
315 /*
316  * Structure for NAPI scheduling similar to tasklet but with weighting
317  */
318 struct napi_struct {
319 	/* The poll_list must only be managed by the entity which
320 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
321 	 * whoever atomically sets that bit can add this napi_struct
322 	 * to the per-CPU poll_list, and whoever clears that bit
323 	 * can remove from the list right before clearing the bit.
324 	 */
325 	struct list_head	poll_list;
326 
327 	unsigned long		state;
328 	int			weight;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 };
344 
345 enum {
346 	NAPI_STATE_SCHED,	/* Poll is scheduled */
347 	NAPI_STATE_MISSED,	/* reschedule a napi */
348 	NAPI_STATE_DISABLE,	/* Disable pending */
349 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
350 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
351 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
352 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
353 };
354 
355 enum {
356 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
357 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
358 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
359 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
360 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
361 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
362 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
363 };
364 
365 enum gro_result {
366 	GRO_MERGED,
367 	GRO_MERGED_FREE,
368 	GRO_HELD,
369 	GRO_NORMAL,
370 	GRO_DROP,
371 	GRO_CONSUMED,
372 };
373 typedef enum gro_result gro_result_t;
374 
375 /*
376  * enum rx_handler_result - Possible return values for rx_handlers.
377  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
378  * further.
379  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
380  * case skb->dev was changed by rx_handler.
381  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
382  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
383  *
384  * rx_handlers are functions called from inside __netif_receive_skb(), to do
385  * special processing of the skb, prior to delivery to protocol handlers.
386  *
387  * Currently, a net_device can only have a single rx_handler registered. Trying
388  * to register a second rx_handler will return -EBUSY.
389  *
390  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
391  * To unregister a rx_handler on a net_device, use
392  * netdev_rx_handler_unregister().
393  *
394  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
395  * do with the skb.
396  *
397  * If the rx_handler consumed the skb in some way, it should return
398  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
399  * the skb to be delivered in some other way.
400  *
401  * If the rx_handler changed skb->dev, to divert the skb to another
402  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
403  * new device will be called if it exists.
404  *
405  * If the rx_handler decides the skb should be ignored, it should return
406  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
407  * are registered on exact device (ptype->dev == skb->dev).
408  *
409  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
410  * delivered, it should return RX_HANDLER_PASS.
411  *
412  * A device without a registered rx_handler will behave as if rx_handler
413  * returned RX_HANDLER_PASS.
414  */
415 
416 enum rx_handler_result {
417 	RX_HANDLER_CONSUMED,
418 	RX_HANDLER_ANOTHER,
419 	RX_HANDLER_EXACT,
420 	RX_HANDLER_PASS,
421 };
422 typedef enum rx_handler_result rx_handler_result_t;
423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
424 
425 void __napi_schedule(struct napi_struct *n);
426 void __napi_schedule_irqoff(struct napi_struct *n);
427 
428 static inline bool napi_disable_pending(struct napi_struct *n)
429 {
430 	return test_bit(NAPI_STATE_DISABLE, &n->state);
431 }
432 
433 bool napi_schedule_prep(struct napi_struct *n);
434 
435 /**
436  *	napi_schedule - schedule NAPI poll
437  *	@n: NAPI context
438  *
439  * Schedule NAPI poll routine to be called if it is not already
440  * running.
441  */
442 static inline void napi_schedule(struct napi_struct *n)
443 {
444 	if (napi_schedule_prep(n))
445 		__napi_schedule(n);
446 }
447 
448 /**
449  *	napi_schedule_irqoff - schedule NAPI poll
450  *	@n: NAPI context
451  *
452  * Variant of napi_schedule(), assuming hard irqs are masked.
453  */
454 static inline void napi_schedule_irqoff(struct napi_struct *n)
455 {
456 	if (napi_schedule_prep(n))
457 		__napi_schedule_irqoff(n);
458 }
459 
460 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
461 static inline bool napi_reschedule(struct napi_struct *napi)
462 {
463 	if (napi_schedule_prep(napi)) {
464 		__napi_schedule(napi);
465 		return true;
466 	}
467 	return false;
468 }
469 
470 bool napi_complete_done(struct napi_struct *n, int work_done);
471 /**
472  *	napi_complete - NAPI processing complete
473  *	@n: NAPI context
474  *
475  * Mark NAPI processing as complete.
476  * Consider using napi_complete_done() instead.
477  * Return false if device should avoid rearming interrupts.
478  */
479 static inline bool napi_complete(struct napi_struct *n)
480 {
481 	return napi_complete_done(n, 0);
482 }
483 
484 /**
485  *	napi_hash_del - remove a NAPI from global table
486  *	@napi: NAPI context
487  *
488  * Warning: caller must observe RCU grace period
489  * before freeing memory containing @napi, if
490  * this function returns true.
491  * Note: core networking stack automatically calls it
492  * from netif_napi_del().
493  * Drivers might want to call this helper to combine all
494  * the needed RCU grace periods into a single one.
495  */
496 bool napi_hash_del(struct napi_struct *napi);
497 
498 /**
499  *	napi_disable - prevent NAPI from scheduling
500  *	@n: NAPI context
501  *
502  * Stop NAPI from being scheduled on this context.
503  * Waits till any outstanding processing completes.
504  */
505 void napi_disable(struct napi_struct *n);
506 
507 /**
508  *	napi_enable - enable NAPI scheduling
509  *	@n: NAPI context
510  *
511  * Resume NAPI from being scheduled on this context.
512  * Must be paired with napi_disable.
513  */
514 static inline void napi_enable(struct napi_struct *n)
515 {
516 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 	smp_mb__before_atomic();
518 	clear_bit(NAPI_STATE_SCHED, &n->state);
519 	clear_bit(NAPI_STATE_NPSVC, &n->state);
520 }
521 
522 /**
523  *	napi_synchronize - wait until NAPI is not running
524  *	@n: NAPI context
525  *
526  * Wait until NAPI is done being scheduled on this context.
527  * Waits till any outstanding processing completes but
528  * does not disable future activations.
529  */
530 static inline void napi_synchronize(const struct napi_struct *n)
531 {
532 	if (IS_ENABLED(CONFIG_SMP))
533 		while (test_bit(NAPI_STATE_SCHED, &n->state))
534 			msleep(1);
535 	else
536 		barrier();
537 }
538 
539 /**
540  *	napi_if_scheduled_mark_missed - if napi is running, set the
541  *	NAPIF_STATE_MISSED
542  *	@n: NAPI context
543  *
544  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545  * NAPI is scheduled.
546  **/
547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548 {
549 	unsigned long val, new;
550 
551 	do {
552 		val = READ_ONCE(n->state);
553 		if (val & NAPIF_STATE_DISABLE)
554 			return true;
555 
556 		if (!(val & NAPIF_STATE_SCHED))
557 			return false;
558 
559 		new = val | NAPIF_STATE_MISSED;
560 	} while (cmpxchg(&n->state, val, new) != val);
561 
562 	return true;
563 }
564 
565 enum netdev_queue_state_t {
566 	__QUEUE_STATE_DRV_XOFF,
567 	__QUEUE_STATE_STACK_XOFF,
568 	__QUEUE_STATE_FROZEN,
569 };
570 
571 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
572 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
574 
575 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 
581 /*
582  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
583  * netif_tx_* functions below are used to manipulate this flag.  The
584  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585  * queue independently.  The netif_xmit_*stopped functions below are called
586  * to check if the queue has been stopped by the driver or stack (either
587  * of the XOFF bits are set in the state).  Drivers should not need to call
588  * netif_xmit*stopped functions, they should only be using netif_tx_*.
589  */
590 
591 struct netdev_queue {
592 /*
593  * read-mostly part
594  */
595 	struct net_device	*dev;
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	unsigned long		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xdp_umem         *umem;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 static inline bool net_has_fallback_tunnels(const struct net *net)
637 {
638 	return net == &init_net ||
639 	       !IS_ENABLED(CONFIG_SYSCTL) ||
640 	       !sysctl_fb_tunnels_only_for_init_net;
641 }
642 
643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
644 {
645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 	return q->numa_node;
647 #else
648 	return NUMA_NO_NODE;
649 #endif
650 }
651 
652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
653 {
654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
655 	q->numa_node = node;
656 #endif
657 }
658 
659 #ifdef CONFIG_RPS
660 /*
661  * This structure holds an RPS map which can be of variable length.  The
662  * map is an array of CPUs.
663  */
664 struct rps_map {
665 	unsigned int len;
666 	struct rcu_head rcu;
667 	u16 cpus[];
668 };
669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
670 
671 /*
672  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
673  * tail pointer for that CPU's input queue at the time of last enqueue, and
674  * a hardware filter index.
675  */
676 struct rps_dev_flow {
677 	u16 cpu;
678 	u16 filter;
679 	unsigned int last_qtail;
680 };
681 #define RPS_NO_FILTER 0xffff
682 
683 /*
684  * The rps_dev_flow_table structure contains a table of flow mappings.
685  */
686 struct rps_dev_flow_table {
687 	unsigned int mask;
688 	struct rcu_head rcu;
689 	struct rps_dev_flow flows[];
690 };
691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
692     ((_num) * sizeof(struct rps_dev_flow)))
693 
694 /*
695  * The rps_sock_flow_table contains mappings of flows to the last CPU
696  * on which they were processed by the application (set in recvmsg).
697  * Each entry is a 32bit value. Upper part is the high-order bits
698  * of flow hash, lower part is CPU number.
699  * rps_cpu_mask is used to partition the space, depending on number of
700  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
701  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
702  * meaning we use 32-6=26 bits for the hash.
703  */
704 struct rps_sock_flow_table {
705 	u32	mask;
706 
707 	u32	ents[] ____cacheline_aligned_in_smp;
708 };
709 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
710 
711 #define RPS_NO_CPU 0xffff
712 
713 extern u32 rps_cpu_mask;
714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
715 
716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
717 					u32 hash)
718 {
719 	if (table && hash) {
720 		unsigned int index = hash & table->mask;
721 		u32 val = hash & ~rps_cpu_mask;
722 
723 		/* We only give a hint, preemption can change CPU under us */
724 		val |= raw_smp_processor_id();
725 
726 		if (table->ents[index] != val)
727 			table->ents[index] = val;
728 	}
729 }
730 
731 #ifdef CONFIG_RFS_ACCEL
732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
733 			 u16 filter_id);
734 #endif
735 #endif /* CONFIG_RPS */
736 
737 /* This structure contains an instance of an RX queue. */
738 struct netdev_rx_queue {
739 #ifdef CONFIG_RPS
740 	struct rps_map __rcu		*rps_map;
741 	struct rps_dev_flow_table __rcu	*rps_flow_table;
742 #endif
743 	struct kobject			kobj;
744 	struct net_device		*dev;
745 	struct xdp_rxq_info		xdp_rxq;
746 #ifdef CONFIG_XDP_SOCKETS
747 	struct xdp_umem                 *umem;
748 #endif
749 } ____cacheline_aligned_in_smp;
750 
751 /*
752  * RX queue sysfs structures and functions.
753  */
754 struct rx_queue_attribute {
755 	struct attribute attr;
756 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
757 	ssize_t (*store)(struct netdev_rx_queue *queue,
758 			 const char *buf, size_t len);
759 };
760 
761 #ifdef CONFIG_XPS
762 /*
763  * This structure holds an XPS map which can be of variable length.  The
764  * map is an array of queues.
765  */
766 struct xps_map {
767 	unsigned int len;
768 	unsigned int alloc_len;
769 	struct rcu_head rcu;
770 	u16 queues[];
771 };
772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
774        - sizeof(struct xps_map)) / sizeof(u16))
775 
776 /*
777  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
778  */
779 struct xps_dev_maps {
780 	struct rcu_head rcu;
781 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
782 };
783 
784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
785 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
786 
787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
788 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
789 
790 #endif /* CONFIG_XPS */
791 
792 #define TC_MAX_QUEUE	16
793 #define TC_BITMASK	15
794 /* HW offloaded queuing disciplines txq count and offset maps */
795 struct netdev_tc_txq {
796 	u16 count;
797 	u16 offset;
798 };
799 
800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
801 /*
802  * This structure is to hold information about the device
803  * configured to run FCoE protocol stack.
804  */
805 struct netdev_fcoe_hbainfo {
806 	char	manufacturer[64];
807 	char	serial_number[64];
808 	char	hardware_version[64];
809 	char	driver_version[64];
810 	char	optionrom_version[64];
811 	char	firmware_version[64];
812 	char	model[256];
813 	char	model_description[256];
814 };
815 #endif
816 
817 #define MAX_PHYS_ITEM_ID_LEN 32
818 
819 /* This structure holds a unique identifier to identify some
820  * physical item (port for example) used by a netdevice.
821  */
822 struct netdev_phys_item_id {
823 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
824 	unsigned char id_len;
825 };
826 
827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
828 					    struct netdev_phys_item_id *b)
829 {
830 	return a->id_len == b->id_len &&
831 	       memcmp(a->id, b->id, a->id_len) == 0;
832 }
833 
834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
835 				       struct sk_buff *skb,
836 				       struct net_device *sb_dev);
837 
838 enum tc_setup_type {
839 	TC_SETUP_QDISC_MQPRIO,
840 	TC_SETUP_CLSU32,
841 	TC_SETUP_CLSFLOWER,
842 	TC_SETUP_CLSMATCHALL,
843 	TC_SETUP_CLSBPF,
844 	TC_SETUP_BLOCK,
845 	TC_SETUP_QDISC_CBS,
846 	TC_SETUP_QDISC_RED,
847 	TC_SETUP_QDISC_PRIO,
848 	TC_SETUP_QDISC_MQ,
849 	TC_SETUP_QDISC_ETF,
850 	TC_SETUP_ROOT_QDISC,
851 	TC_SETUP_QDISC_GRED,
852 	TC_SETUP_QDISC_TAPRIO,
853 	TC_SETUP_FT,
854 	TC_SETUP_QDISC_ETS,
855 	TC_SETUP_QDISC_TBF,
856 	TC_SETUP_QDISC_FIFO,
857 };
858 
859 /* These structures hold the attributes of bpf state that are being passed
860  * to the netdevice through the bpf op.
861  */
862 enum bpf_netdev_command {
863 	/* Set or clear a bpf program used in the earliest stages of packet
864 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
865 	 * is responsible for calling bpf_prog_put on any old progs that are
866 	 * stored. In case of error, the callee need not release the new prog
867 	 * reference, but on success it takes ownership and must bpf_prog_put
868 	 * when it is no longer used.
869 	 */
870 	XDP_SETUP_PROG,
871 	XDP_SETUP_PROG_HW,
872 	XDP_QUERY_PROG,
873 	XDP_QUERY_PROG_HW,
874 	/* BPF program for offload callbacks, invoked at program load time. */
875 	BPF_OFFLOAD_MAP_ALLOC,
876 	BPF_OFFLOAD_MAP_FREE,
877 	XDP_SETUP_XSK_UMEM,
878 };
879 
880 struct bpf_prog_offload_ops;
881 struct netlink_ext_ack;
882 struct xdp_umem;
883 struct xdp_dev_bulk_queue;
884 
885 struct netdev_bpf {
886 	enum bpf_netdev_command command;
887 	union {
888 		/* XDP_SETUP_PROG */
889 		struct {
890 			u32 flags;
891 			struct bpf_prog *prog;
892 			struct netlink_ext_ack *extack;
893 		};
894 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
895 		struct {
896 			u32 prog_id;
897 			/* flags with which program was installed */
898 			u32 prog_flags;
899 		};
900 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
901 		struct {
902 			struct bpf_offloaded_map *offmap;
903 		};
904 		/* XDP_SETUP_XSK_UMEM */
905 		struct {
906 			struct xdp_umem *umem;
907 			u16 queue_id;
908 		} xsk;
909 	};
910 };
911 
912 /* Flags for ndo_xsk_wakeup. */
913 #define XDP_WAKEUP_RX (1 << 0)
914 #define XDP_WAKEUP_TX (1 << 1)
915 
916 #ifdef CONFIG_XFRM_OFFLOAD
917 struct xfrmdev_ops {
918 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
919 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
920 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
921 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
922 				       struct xfrm_state *x);
923 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
924 };
925 #endif
926 
927 struct dev_ifalias {
928 	struct rcu_head rcuhead;
929 	char ifalias[];
930 };
931 
932 struct devlink;
933 struct tlsdev_ops;
934 
935 struct netdev_name_node {
936 	struct hlist_node hlist;
937 	struct list_head list;
938 	struct net_device *dev;
939 	const char *name;
940 };
941 
942 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
943 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
944 
945 struct netdev_net_notifier {
946 	struct list_head list;
947 	struct notifier_block *nb;
948 };
949 
950 /*
951  * This structure defines the management hooks for network devices.
952  * The following hooks can be defined; unless noted otherwise, they are
953  * optional and can be filled with a null pointer.
954  *
955  * int (*ndo_init)(struct net_device *dev);
956  *     This function is called once when a network device is registered.
957  *     The network device can use this for any late stage initialization
958  *     or semantic validation. It can fail with an error code which will
959  *     be propagated back to register_netdev.
960  *
961  * void (*ndo_uninit)(struct net_device *dev);
962  *     This function is called when device is unregistered or when registration
963  *     fails. It is not called if init fails.
964  *
965  * int (*ndo_open)(struct net_device *dev);
966  *     This function is called when a network device transitions to the up
967  *     state.
968  *
969  * int (*ndo_stop)(struct net_device *dev);
970  *     This function is called when a network device transitions to the down
971  *     state.
972  *
973  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
974  *                               struct net_device *dev);
975  *	Called when a packet needs to be transmitted.
976  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
977  *	the queue before that can happen; it's for obsolete devices and weird
978  *	corner cases, but the stack really does a non-trivial amount
979  *	of useless work if you return NETDEV_TX_BUSY.
980  *	Required; cannot be NULL.
981  *
982  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
983  *					   struct net_device *dev
984  *					   netdev_features_t features);
985  *	Called by core transmit path to determine if device is capable of
986  *	performing offload operations on a given packet. This is to give
987  *	the device an opportunity to implement any restrictions that cannot
988  *	be otherwise expressed by feature flags. The check is called with
989  *	the set of features that the stack has calculated and it returns
990  *	those the driver believes to be appropriate.
991  *
992  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
993  *                         struct net_device *sb_dev);
994  *	Called to decide which queue to use when device supports multiple
995  *	transmit queues.
996  *
997  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
998  *	This function is called to allow device receiver to make
999  *	changes to configuration when multicast or promiscuous is enabled.
1000  *
1001  * void (*ndo_set_rx_mode)(struct net_device *dev);
1002  *	This function is called device changes address list filtering.
1003  *	If driver handles unicast address filtering, it should set
1004  *	IFF_UNICAST_FLT in its priv_flags.
1005  *
1006  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1007  *	This function  is called when the Media Access Control address
1008  *	needs to be changed. If this interface is not defined, the
1009  *	MAC address can not be changed.
1010  *
1011  * int (*ndo_validate_addr)(struct net_device *dev);
1012  *	Test if Media Access Control address is valid for the device.
1013  *
1014  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1015  *	Called when a user requests an ioctl which can't be handled by
1016  *	the generic interface code. If not defined ioctls return
1017  *	not supported error code.
1018  *
1019  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1020  *	Used to set network devices bus interface parameters. This interface
1021  *	is retained for legacy reasons; new devices should use the bus
1022  *	interface (PCI) for low level management.
1023  *
1024  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1025  *	Called when a user wants to change the Maximum Transfer Unit
1026  *	of a device.
1027  *
1028  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1029  *	Callback used when the transmitter has not made any progress
1030  *	for dev->watchdog ticks.
1031  *
1032  * void (*ndo_get_stats64)(struct net_device *dev,
1033  *                         struct rtnl_link_stats64 *storage);
1034  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1035  *	Called when a user wants to get the network device usage
1036  *	statistics. Drivers must do one of the following:
1037  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1038  *	   rtnl_link_stats64 structure passed by the caller.
1039  *	2. Define @ndo_get_stats to update a net_device_stats structure
1040  *	   (which should normally be dev->stats) and return a pointer to
1041  *	   it. The structure may be changed asynchronously only if each
1042  *	   field is written atomically.
1043  *	3. Update dev->stats asynchronously and atomically, and define
1044  *	   neither operation.
1045  *
1046  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1047  *	Return true if this device supports offload stats of this attr_id.
1048  *
1049  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1050  *	void *attr_data)
1051  *	Get statistics for offload operations by attr_id. Write it into the
1052  *	attr_data pointer.
1053  *
1054  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1055  *	If device supports VLAN filtering this function is called when a
1056  *	VLAN id is registered.
1057  *
1058  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1059  *	If device supports VLAN filtering this function is called when a
1060  *	VLAN id is unregistered.
1061  *
1062  * void (*ndo_poll_controller)(struct net_device *dev);
1063  *
1064  *	SR-IOV management functions.
1065  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1066  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1067  *			  u8 qos, __be16 proto);
1068  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1069  *			  int max_tx_rate);
1070  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1071  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1072  * int (*ndo_get_vf_config)(struct net_device *dev,
1073  *			    int vf, struct ifla_vf_info *ivf);
1074  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1075  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1076  *			  struct nlattr *port[]);
1077  *
1078  *      Enable or disable the VF ability to query its RSS Redirection Table and
1079  *      Hash Key. This is needed since on some devices VF share this information
1080  *      with PF and querying it may introduce a theoretical security risk.
1081  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1082  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1083  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1084  *		       void *type_data);
1085  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1086  *	This is always called from the stack with the rtnl lock held and netif
1087  *	tx queues stopped. This allows the netdevice to perform queue
1088  *	management safely.
1089  *
1090  *	Fiber Channel over Ethernet (FCoE) offload functions.
1091  * int (*ndo_fcoe_enable)(struct net_device *dev);
1092  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1093  *	so the underlying device can perform whatever needed configuration or
1094  *	initialization to support acceleration of FCoE traffic.
1095  *
1096  * int (*ndo_fcoe_disable)(struct net_device *dev);
1097  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1098  *	so the underlying device can perform whatever needed clean-ups to
1099  *	stop supporting acceleration of FCoE traffic.
1100  *
1101  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1102  *			     struct scatterlist *sgl, unsigned int sgc);
1103  *	Called when the FCoE Initiator wants to initialize an I/O that
1104  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1105  *	perform necessary setup and returns 1 to indicate the device is set up
1106  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1107  *
1108  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1109  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1110  *	indicated by the FC exchange id 'xid', so the underlying device can
1111  *	clean up and reuse resources for later DDP requests.
1112  *
1113  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1114  *			      struct scatterlist *sgl, unsigned int sgc);
1115  *	Called when the FCoE Target wants to initialize an I/O that
1116  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1117  *	perform necessary setup and returns 1 to indicate the device is set up
1118  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1119  *
1120  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1121  *			       struct netdev_fcoe_hbainfo *hbainfo);
1122  *	Called when the FCoE Protocol stack wants information on the underlying
1123  *	device. This information is utilized by the FCoE protocol stack to
1124  *	register attributes with Fiber Channel management service as per the
1125  *	FC-GS Fabric Device Management Information(FDMI) specification.
1126  *
1127  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1128  *	Called when the underlying device wants to override default World Wide
1129  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1130  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1131  *	protocol stack to use.
1132  *
1133  *	RFS acceleration.
1134  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1135  *			    u16 rxq_index, u32 flow_id);
1136  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1137  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1138  *	Return the filter ID on success, or a negative error code.
1139  *
1140  *	Slave management functions (for bridge, bonding, etc).
1141  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1142  *	Called to make another netdev an underling.
1143  *
1144  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1145  *	Called to release previously enslaved netdev.
1146  *
1147  *      Feature/offload setting functions.
1148  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1149  *		netdev_features_t features);
1150  *	Adjusts the requested feature flags according to device-specific
1151  *	constraints, and returns the resulting flags. Must not modify
1152  *	the device state.
1153  *
1154  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1155  *	Called to update device configuration to new features. Passed
1156  *	feature set might be less than what was returned by ndo_fix_features()).
1157  *	Must return >0 or -errno if it changed dev->features itself.
1158  *
1159  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1160  *		      struct net_device *dev,
1161  *		      const unsigned char *addr, u16 vid, u16 flags,
1162  *		      struct netlink_ext_ack *extack);
1163  *	Adds an FDB entry to dev for addr.
1164  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1165  *		      struct net_device *dev,
1166  *		      const unsigned char *addr, u16 vid)
1167  *	Deletes the FDB entry from dev coresponding to addr.
1168  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1169  *		       struct net_device *dev, struct net_device *filter_dev,
1170  *		       int *idx)
1171  *	Used to add FDB entries to dump requests. Implementers should add
1172  *	entries to skb and update idx with the number of entries.
1173  *
1174  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1175  *			     u16 flags, struct netlink_ext_ack *extack)
1176  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1177  *			     struct net_device *dev, u32 filter_mask,
1178  *			     int nlflags)
1179  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1180  *			     u16 flags);
1181  *
1182  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1183  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1184  *	which do not represent real hardware may define this to allow their
1185  *	userspace components to manage their virtual carrier state. Devices
1186  *	that determine carrier state from physical hardware properties (eg
1187  *	network cables) or protocol-dependent mechanisms (eg
1188  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1189  *
1190  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1191  *			       struct netdev_phys_item_id *ppid);
1192  *	Called to get ID of physical port of this device. If driver does
1193  *	not implement this, it is assumed that the hw is not able to have
1194  *	multiple net devices on single physical port.
1195  *
1196  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1197  *				 struct netdev_phys_item_id *ppid)
1198  *	Called to get the parent ID of the physical port of this device.
1199  *
1200  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1201  *			      struct udp_tunnel_info *ti);
1202  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1203  *	address family that a UDP tunnel is listnening to. It is called only
1204  *	when a new port starts listening. The operation is protected by the
1205  *	RTNL.
1206  *
1207  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1208  *			      struct udp_tunnel_info *ti);
1209  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1210  *	address family that the UDP tunnel is not listening to anymore. The
1211  *	operation is protected by the RTNL.
1212  *
1213  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1214  *				 struct net_device *dev)
1215  *	Called by upper layer devices to accelerate switching or other
1216  *	station functionality into hardware. 'pdev is the lowerdev
1217  *	to use for the offload and 'dev' is the net device that will
1218  *	back the offload. Returns a pointer to the private structure
1219  *	the upper layer will maintain.
1220  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1221  *	Called by upper layer device to delete the station created
1222  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1223  *	the station and priv is the structure returned by the add
1224  *	operation.
1225  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1226  *			     int queue_index, u32 maxrate);
1227  *	Called when a user wants to set a max-rate limitation of specific
1228  *	TX queue.
1229  * int (*ndo_get_iflink)(const struct net_device *dev);
1230  *	Called to get the iflink value of this device.
1231  * void (*ndo_change_proto_down)(struct net_device *dev,
1232  *				 bool proto_down);
1233  *	This function is used to pass protocol port error state information
1234  *	to the switch driver. The switch driver can react to the proto_down
1235  *      by doing a phys down on the associated switch port.
1236  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1237  *	This function is used to get egress tunnel information for given skb.
1238  *	This is useful for retrieving outer tunnel header parameters while
1239  *	sampling packet.
1240  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1241  *	This function is used to specify the headroom that the skb must
1242  *	consider when allocation skb during packet reception. Setting
1243  *	appropriate rx headroom value allows avoiding skb head copy on
1244  *	forward. Setting a negative value resets the rx headroom to the
1245  *	default value.
1246  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1247  *	This function is used to set or query state related to XDP on the
1248  *	netdevice and manage BPF offload. See definition of
1249  *	enum bpf_netdev_command for details.
1250  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1251  *			u32 flags);
1252  *	This function is used to submit @n XDP packets for transmit on a
1253  *	netdevice. Returns number of frames successfully transmitted, frames
1254  *	that got dropped are freed/returned via xdp_return_frame().
1255  *	Returns negative number, means general error invoking ndo, meaning
1256  *	no frames were xmit'ed and core-caller will free all frames.
1257  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1258  *      This function is used to wake up the softirq, ksoftirqd or kthread
1259  *	responsible for sending and/or receiving packets on a specific
1260  *	queue id bound to an AF_XDP socket. The flags field specifies if
1261  *	only RX, only Tx, or both should be woken up using the flags
1262  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1263  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1264  *	Get devlink port instance associated with a given netdev.
1265  *	Called with a reference on the netdevice and devlink locks only,
1266  *	rtnl_lock is not held.
1267  */
1268 struct net_device_ops {
1269 	int			(*ndo_init)(struct net_device *dev);
1270 	void			(*ndo_uninit)(struct net_device *dev);
1271 	int			(*ndo_open)(struct net_device *dev);
1272 	int			(*ndo_stop)(struct net_device *dev);
1273 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1274 						  struct net_device *dev);
1275 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1276 						      struct net_device *dev,
1277 						      netdev_features_t features);
1278 	u16			(*ndo_select_queue)(struct net_device *dev,
1279 						    struct sk_buff *skb,
1280 						    struct net_device *sb_dev);
1281 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1282 						       int flags);
1283 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1284 	int			(*ndo_set_mac_address)(struct net_device *dev,
1285 						       void *addr);
1286 	int			(*ndo_validate_addr)(struct net_device *dev);
1287 	int			(*ndo_do_ioctl)(struct net_device *dev,
1288 					        struct ifreq *ifr, int cmd);
1289 	int			(*ndo_set_config)(struct net_device *dev,
1290 					          struct ifmap *map);
1291 	int			(*ndo_change_mtu)(struct net_device *dev,
1292 						  int new_mtu);
1293 	int			(*ndo_neigh_setup)(struct net_device *dev,
1294 						   struct neigh_parms *);
1295 	void			(*ndo_tx_timeout) (struct net_device *dev,
1296 						   unsigned int txqueue);
1297 
1298 	void			(*ndo_get_stats64)(struct net_device *dev,
1299 						   struct rtnl_link_stats64 *storage);
1300 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1301 	int			(*ndo_get_offload_stats)(int attr_id,
1302 							 const struct net_device *dev,
1303 							 void *attr_data);
1304 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1305 
1306 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1307 						       __be16 proto, u16 vid);
1308 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1309 						        __be16 proto, u16 vid);
1310 #ifdef CONFIG_NET_POLL_CONTROLLER
1311 	void                    (*ndo_poll_controller)(struct net_device *dev);
1312 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1313 						     struct netpoll_info *info);
1314 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1315 #endif
1316 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1317 						  int queue, u8 *mac);
1318 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1319 						   int queue, u16 vlan,
1320 						   u8 qos, __be16 proto);
1321 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1322 						   int vf, int min_tx_rate,
1323 						   int max_tx_rate);
1324 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1325 						       int vf, bool setting);
1326 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1327 						    int vf, bool setting);
1328 	int			(*ndo_get_vf_config)(struct net_device *dev,
1329 						     int vf,
1330 						     struct ifla_vf_info *ivf);
1331 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1332 							 int vf, int link_state);
1333 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1334 						    int vf,
1335 						    struct ifla_vf_stats
1336 						    *vf_stats);
1337 	int			(*ndo_set_vf_port)(struct net_device *dev,
1338 						   int vf,
1339 						   struct nlattr *port[]);
1340 	int			(*ndo_get_vf_port)(struct net_device *dev,
1341 						   int vf, struct sk_buff *skb);
1342 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1343 						   int vf,
1344 						   struct ifla_vf_guid *node_guid,
1345 						   struct ifla_vf_guid *port_guid);
1346 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1347 						   int vf, u64 guid,
1348 						   int guid_type);
1349 	int			(*ndo_set_vf_rss_query_en)(
1350 						   struct net_device *dev,
1351 						   int vf, bool setting);
1352 	int			(*ndo_setup_tc)(struct net_device *dev,
1353 						enum tc_setup_type type,
1354 						void *type_data);
1355 #if IS_ENABLED(CONFIG_FCOE)
1356 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1357 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1358 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1359 						      u16 xid,
1360 						      struct scatterlist *sgl,
1361 						      unsigned int sgc);
1362 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1363 						     u16 xid);
1364 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1365 						       u16 xid,
1366 						       struct scatterlist *sgl,
1367 						       unsigned int sgc);
1368 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1369 							struct netdev_fcoe_hbainfo *hbainfo);
1370 #endif
1371 
1372 #if IS_ENABLED(CONFIG_LIBFCOE)
1373 #define NETDEV_FCOE_WWNN 0
1374 #define NETDEV_FCOE_WWPN 1
1375 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1376 						    u64 *wwn, int type);
1377 #endif
1378 
1379 #ifdef CONFIG_RFS_ACCEL
1380 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1381 						     const struct sk_buff *skb,
1382 						     u16 rxq_index,
1383 						     u32 flow_id);
1384 #endif
1385 	int			(*ndo_add_slave)(struct net_device *dev,
1386 						 struct net_device *slave_dev,
1387 						 struct netlink_ext_ack *extack);
1388 	int			(*ndo_del_slave)(struct net_device *dev,
1389 						 struct net_device *slave_dev);
1390 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1391 						    netdev_features_t features);
1392 	int			(*ndo_set_features)(struct net_device *dev,
1393 						    netdev_features_t features);
1394 	int			(*ndo_neigh_construct)(struct net_device *dev,
1395 						       struct neighbour *n);
1396 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1397 						     struct neighbour *n);
1398 
1399 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1400 					       struct nlattr *tb[],
1401 					       struct net_device *dev,
1402 					       const unsigned char *addr,
1403 					       u16 vid,
1404 					       u16 flags,
1405 					       struct netlink_ext_ack *extack);
1406 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1407 					       struct nlattr *tb[],
1408 					       struct net_device *dev,
1409 					       const unsigned char *addr,
1410 					       u16 vid);
1411 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1412 						struct netlink_callback *cb,
1413 						struct net_device *dev,
1414 						struct net_device *filter_dev,
1415 						int *idx);
1416 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1417 					       struct nlattr *tb[],
1418 					       struct net_device *dev,
1419 					       const unsigned char *addr,
1420 					       u16 vid, u32 portid, u32 seq,
1421 					       struct netlink_ext_ack *extack);
1422 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1423 						      struct nlmsghdr *nlh,
1424 						      u16 flags,
1425 						      struct netlink_ext_ack *extack);
1426 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1427 						      u32 pid, u32 seq,
1428 						      struct net_device *dev,
1429 						      u32 filter_mask,
1430 						      int nlflags);
1431 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1432 						      struct nlmsghdr *nlh,
1433 						      u16 flags);
1434 	int			(*ndo_change_carrier)(struct net_device *dev,
1435 						      bool new_carrier);
1436 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1437 							struct netdev_phys_item_id *ppid);
1438 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1439 							  struct netdev_phys_item_id *ppid);
1440 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1441 							  char *name, size_t len);
1442 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1443 						      struct udp_tunnel_info *ti);
1444 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1445 						      struct udp_tunnel_info *ti);
1446 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1447 							struct net_device *dev);
1448 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1449 							void *priv);
1450 
1451 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1452 						      int queue_index,
1453 						      u32 maxrate);
1454 	int			(*ndo_get_iflink)(const struct net_device *dev);
1455 	int			(*ndo_change_proto_down)(struct net_device *dev,
1456 							 bool proto_down);
1457 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1458 						       struct sk_buff *skb);
1459 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1460 						       int needed_headroom);
1461 	int			(*ndo_bpf)(struct net_device *dev,
1462 					   struct netdev_bpf *bpf);
1463 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1464 						struct xdp_frame **xdp,
1465 						u32 flags);
1466 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1467 						  u32 queue_id, u32 flags);
1468 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1469 };
1470 
1471 /**
1472  * enum net_device_priv_flags - &struct net_device priv_flags
1473  *
1474  * These are the &struct net_device, they are only set internally
1475  * by drivers and used in the kernel. These flags are invisible to
1476  * userspace; this means that the order of these flags can change
1477  * during any kernel release.
1478  *
1479  * You should have a pretty good reason to be extending these flags.
1480  *
1481  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1482  * @IFF_EBRIDGE: Ethernet bridging device
1483  * @IFF_BONDING: bonding master or slave
1484  * @IFF_ISATAP: ISATAP interface (RFC4214)
1485  * @IFF_WAN_HDLC: WAN HDLC device
1486  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1487  *	release skb->dst
1488  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1489  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1490  * @IFF_MACVLAN_PORT: device used as macvlan port
1491  * @IFF_BRIDGE_PORT: device used as bridge port
1492  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1493  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1494  * @IFF_UNICAST_FLT: Supports unicast filtering
1495  * @IFF_TEAM_PORT: device used as team port
1496  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1497  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1498  *	change when it's running
1499  * @IFF_MACVLAN: Macvlan device
1500  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1501  *	underlying stacked devices
1502  * @IFF_L3MDEV_MASTER: device is an L3 master device
1503  * @IFF_NO_QUEUE: device can run without qdisc attached
1504  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1505  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1506  * @IFF_TEAM: device is a team device
1507  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1508  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1509  *	entity (i.e. the master device for bridged veth)
1510  * @IFF_MACSEC: device is a MACsec device
1511  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1512  * @IFF_FAILOVER: device is a failover master device
1513  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1514  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1515  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1516  */
1517 enum netdev_priv_flags {
1518 	IFF_802_1Q_VLAN			= 1<<0,
1519 	IFF_EBRIDGE			= 1<<1,
1520 	IFF_BONDING			= 1<<2,
1521 	IFF_ISATAP			= 1<<3,
1522 	IFF_WAN_HDLC			= 1<<4,
1523 	IFF_XMIT_DST_RELEASE		= 1<<5,
1524 	IFF_DONT_BRIDGE			= 1<<6,
1525 	IFF_DISABLE_NETPOLL		= 1<<7,
1526 	IFF_MACVLAN_PORT		= 1<<8,
1527 	IFF_BRIDGE_PORT			= 1<<9,
1528 	IFF_OVS_DATAPATH		= 1<<10,
1529 	IFF_TX_SKB_SHARING		= 1<<11,
1530 	IFF_UNICAST_FLT			= 1<<12,
1531 	IFF_TEAM_PORT			= 1<<13,
1532 	IFF_SUPP_NOFCS			= 1<<14,
1533 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1534 	IFF_MACVLAN			= 1<<16,
1535 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1536 	IFF_L3MDEV_MASTER		= 1<<18,
1537 	IFF_NO_QUEUE			= 1<<19,
1538 	IFF_OPENVSWITCH			= 1<<20,
1539 	IFF_L3MDEV_SLAVE		= 1<<21,
1540 	IFF_TEAM			= 1<<22,
1541 	IFF_RXFH_CONFIGURED		= 1<<23,
1542 	IFF_PHONY_HEADROOM		= 1<<24,
1543 	IFF_MACSEC			= 1<<25,
1544 	IFF_NO_RX_HANDLER		= 1<<26,
1545 	IFF_FAILOVER			= 1<<27,
1546 	IFF_FAILOVER_SLAVE		= 1<<28,
1547 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1548 	IFF_LIVE_RENAME_OK		= 1<<30,
1549 };
1550 
1551 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1552 #define IFF_EBRIDGE			IFF_EBRIDGE
1553 #define IFF_BONDING			IFF_BONDING
1554 #define IFF_ISATAP			IFF_ISATAP
1555 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1556 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1557 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1558 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1559 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1560 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1561 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1562 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1563 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1564 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1565 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1566 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1567 #define IFF_MACVLAN			IFF_MACVLAN
1568 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1569 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1570 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1571 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1572 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1573 #define IFF_TEAM			IFF_TEAM
1574 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1575 #define IFF_MACSEC			IFF_MACSEC
1576 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1577 #define IFF_FAILOVER			IFF_FAILOVER
1578 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1579 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1580 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1581 
1582 /**
1583  *	struct net_device - The DEVICE structure.
1584  *
1585  *	Actually, this whole structure is a big mistake.  It mixes I/O
1586  *	data with strictly "high-level" data, and it has to know about
1587  *	almost every data structure used in the INET module.
1588  *
1589  *	@name:	This is the first field of the "visible" part of this structure
1590  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1591  *		of the interface.
1592  *
1593  *	@name_node:	Name hashlist node
1594  *	@ifalias:	SNMP alias
1595  *	@mem_end:	Shared memory end
1596  *	@mem_start:	Shared memory start
1597  *	@base_addr:	Device I/O address
1598  *	@irq:		Device IRQ number
1599  *
1600  *	@state:		Generic network queuing layer state, see netdev_state_t
1601  *	@dev_list:	The global list of network devices
1602  *	@napi_list:	List entry used for polling NAPI devices
1603  *	@unreg_list:	List entry  when we are unregistering the
1604  *			device; see the function unregister_netdev
1605  *	@close_list:	List entry used when we are closing the device
1606  *	@ptype_all:     Device-specific packet handlers for all protocols
1607  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1608  *
1609  *	@adj_list:	Directly linked devices, like slaves for bonding
1610  *	@features:	Currently active device features
1611  *	@hw_features:	User-changeable features
1612  *
1613  *	@wanted_features:	User-requested features
1614  *	@vlan_features:		Mask of features inheritable by VLAN devices
1615  *
1616  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1617  *				This field indicates what encapsulation
1618  *				offloads the hardware is capable of doing,
1619  *				and drivers will need to set them appropriately.
1620  *
1621  *	@mpls_features:	Mask of features inheritable by MPLS
1622  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1623  *
1624  *	@ifindex:	interface index
1625  *	@group:		The group the device belongs to
1626  *
1627  *	@stats:		Statistics struct, which was left as a legacy, use
1628  *			rtnl_link_stats64 instead
1629  *
1630  *	@rx_dropped:	Dropped packets by core network,
1631  *			do not use this in drivers
1632  *	@tx_dropped:	Dropped packets by core network,
1633  *			do not use this in drivers
1634  *	@rx_nohandler:	nohandler dropped packets by core network on
1635  *			inactive devices, do not use this in drivers
1636  *	@carrier_up_count:	Number of times the carrier has been up
1637  *	@carrier_down_count:	Number of times the carrier has been down
1638  *
1639  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1640  *				instead of ioctl,
1641  *				see <net/iw_handler.h> for details.
1642  *	@wireless_data:	Instance data managed by the core of wireless extensions
1643  *
1644  *	@netdev_ops:	Includes several pointers to callbacks,
1645  *			if one wants to override the ndo_*() functions
1646  *	@ethtool_ops:	Management operations
1647  *	@l3mdev_ops:	Layer 3 master device operations
1648  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1649  *			discovery handling. Necessary for e.g. 6LoWPAN.
1650  *	@xfrmdev_ops:	Transformation offload operations
1651  *	@tlsdev_ops:	Transport Layer Security offload operations
1652  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1653  *			of Layer 2 headers.
1654  *
1655  *	@flags:		Interface flags (a la BSD)
1656  *	@priv_flags:	Like 'flags' but invisible to userspace,
1657  *			see if.h for the definitions
1658  *	@gflags:	Global flags ( kept as legacy )
1659  *	@padded:	How much padding added by alloc_netdev()
1660  *	@operstate:	RFC2863 operstate
1661  *	@link_mode:	Mapping policy to operstate
1662  *	@if_port:	Selectable AUI, TP, ...
1663  *	@dma:		DMA channel
1664  *	@mtu:		Interface MTU value
1665  *	@min_mtu:	Interface Minimum MTU value
1666  *	@max_mtu:	Interface Maximum MTU value
1667  *	@type:		Interface hardware type
1668  *	@hard_header_len: Maximum hardware header length.
1669  *	@min_header_len:  Minimum hardware header length
1670  *
1671  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1672  *			  cases can this be guaranteed
1673  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1674  *			  cases can this be guaranteed. Some cases also use
1675  *			  LL_MAX_HEADER instead to allocate the skb
1676  *
1677  *	interface address info:
1678  *
1679  * 	@perm_addr:		Permanent hw address
1680  * 	@addr_assign_type:	Hw address assignment type
1681  * 	@addr_len:		Hardware address length
1682  *	@upper_level:		Maximum depth level of upper devices.
1683  *	@lower_level:		Maximum depth level of lower devices.
1684  *	@neigh_priv_len:	Used in neigh_alloc()
1685  * 	@dev_id:		Used to differentiate devices that share
1686  * 				the same link layer address
1687  * 	@dev_port:		Used to differentiate devices that share
1688  * 				the same function
1689  *	@addr_list_lock:	XXX: need comments on this one
1690  *	@name_assign_type:	network interface name assignment type
1691  *	@uc_promisc:		Counter that indicates promiscuous mode
1692  *				has been enabled due to the need to listen to
1693  *				additional unicast addresses in a device that
1694  *				does not implement ndo_set_rx_mode()
1695  *	@uc:			unicast mac addresses
1696  *	@mc:			multicast mac addresses
1697  *	@dev_addrs:		list of device hw addresses
1698  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1699  *	@promiscuity:		Number of times the NIC is told to work in
1700  *				promiscuous mode; if it becomes 0 the NIC will
1701  *				exit promiscuous mode
1702  *	@allmulti:		Counter, enables or disables allmulticast mode
1703  *
1704  *	@vlan_info:	VLAN info
1705  *	@dsa_ptr:	dsa specific data
1706  *	@tipc_ptr:	TIPC specific data
1707  *	@atalk_ptr:	AppleTalk link
1708  *	@ip_ptr:	IPv4 specific data
1709  *	@dn_ptr:	DECnet specific data
1710  *	@ip6_ptr:	IPv6 specific data
1711  *	@ax25_ptr:	AX.25 specific data
1712  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1713  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1714  *			 device struct
1715  *	@mpls_ptr:	mpls_dev struct pointer
1716  *
1717  *	@dev_addr:	Hw address (before bcast,
1718  *			because most packets are unicast)
1719  *
1720  *	@_rx:			Array of RX queues
1721  *	@num_rx_queues:		Number of RX queues
1722  *				allocated at register_netdev() time
1723  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1724  *	@xdp_prog:		XDP sockets filter program pointer
1725  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1726  *
1727  *	@rx_handler:		handler for received packets
1728  *	@rx_handler_data: 	XXX: need comments on this one
1729  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1730  *				ingress processing
1731  *	@ingress_queue:		XXX: need comments on this one
1732  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1733  *	@broadcast:		hw bcast address
1734  *
1735  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1736  *			indexed by RX queue number. Assigned by driver.
1737  *			This must only be set if the ndo_rx_flow_steer
1738  *			operation is defined
1739  *	@index_hlist:		Device index hash chain
1740  *
1741  *	@_tx:			Array of TX queues
1742  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1743  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1744  *	@qdisc:			Root qdisc from userspace point of view
1745  *	@tx_queue_len:		Max frames per queue allowed
1746  *	@tx_global_lock: 	XXX: need comments on this one
1747  *	@xdp_bulkq:		XDP device bulk queue
1748  *	@xps_cpus_map:		all CPUs map for XPS device
1749  *	@xps_rxqs_map:		all RXQs map for XPS device
1750  *
1751  *	@xps_maps:	XXX: need comments on this one
1752  *	@miniq_egress:		clsact qdisc specific data for
1753  *				egress processing
1754  *	@qdisc_hash:		qdisc hash table
1755  *	@watchdog_timeo:	Represents the timeout that is used by
1756  *				the watchdog (see dev_watchdog())
1757  *	@watchdog_timer:	List of timers
1758  *
1759  *	@pcpu_refcnt:		Number of references to this device
1760  *	@todo_list:		Delayed register/unregister
1761  *	@link_watch_list:	XXX: need comments on this one
1762  *
1763  *	@reg_state:		Register/unregister state machine
1764  *	@dismantle:		Device is going to be freed
1765  *	@rtnl_link_state:	This enum represents the phases of creating
1766  *				a new link
1767  *
1768  *	@needs_free_netdev:	Should unregister perform free_netdev?
1769  *	@priv_destructor:	Called from unregister
1770  *	@npinfo:		XXX: need comments on this one
1771  * 	@nd_net:		Network namespace this network device is inside
1772  *
1773  * 	@ml_priv:	Mid-layer private
1774  * 	@lstats:	Loopback statistics
1775  * 	@tstats:	Tunnel statistics
1776  * 	@dstats:	Dummy statistics
1777  * 	@vstats:	Virtual ethernet statistics
1778  *
1779  *	@garp_port:	GARP
1780  *	@mrp_port:	MRP
1781  *
1782  *	@dev:		Class/net/name entry
1783  *	@sysfs_groups:	Space for optional device, statistics and wireless
1784  *			sysfs groups
1785  *
1786  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1787  *	@rtnl_link_ops:	Rtnl_link_ops
1788  *
1789  *	@gso_max_size:	Maximum size of generic segmentation offload
1790  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1791  *			NIC for GSO
1792  *
1793  *	@dcbnl_ops:	Data Center Bridging netlink ops
1794  *	@num_tc:	Number of traffic classes in the net device
1795  *	@tc_to_txq:	XXX: need comments on this one
1796  *	@prio_tc_map:	XXX: need comments on this one
1797  *
1798  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1799  *
1800  *	@priomap:	XXX: need comments on this one
1801  *	@phydev:	Physical device may attach itself
1802  *			for hardware timestamping
1803  *	@sfp_bus:	attached &struct sfp_bus structure.
1804  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1805  *				spinlock
1806  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1807  *	@qdisc_xmit_lock_key:	lockdep class annotating
1808  *				netdev_queue->_xmit_lock spinlock
1809  *	@addr_list_lock_key:	lockdep class annotating
1810  *				net_device->addr_list_lock spinlock
1811  *
1812  *	@proto_down:	protocol port state information can be sent to the
1813  *			switch driver and used to set the phys state of the
1814  *			switch port.
1815  *
1816  *	@wol_enabled:	Wake-on-LAN is enabled
1817  *
1818  *	@net_notifier_list:	List of per-net netdev notifier block
1819  *				that follow this device when it is moved
1820  *				to another network namespace.
1821  *
1822  *	FIXME: cleanup struct net_device such that network protocol info
1823  *	moves out.
1824  */
1825 
1826 struct net_device {
1827 	char			name[IFNAMSIZ];
1828 	struct netdev_name_node	*name_node;
1829 	struct dev_ifalias	__rcu *ifalias;
1830 	/*
1831 	 *	I/O specific fields
1832 	 *	FIXME: Merge these and struct ifmap into one
1833 	 */
1834 	unsigned long		mem_end;
1835 	unsigned long		mem_start;
1836 	unsigned long		base_addr;
1837 	int			irq;
1838 
1839 	/*
1840 	 *	Some hardware also needs these fields (state,dev_list,
1841 	 *	napi_list,unreg_list,close_list) but they are not
1842 	 *	part of the usual set specified in Space.c.
1843 	 */
1844 
1845 	unsigned long		state;
1846 
1847 	struct list_head	dev_list;
1848 	struct list_head	napi_list;
1849 	struct list_head	unreg_list;
1850 	struct list_head	close_list;
1851 	struct list_head	ptype_all;
1852 	struct list_head	ptype_specific;
1853 
1854 	struct {
1855 		struct list_head upper;
1856 		struct list_head lower;
1857 	} adj_list;
1858 
1859 	netdev_features_t	features;
1860 	netdev_features_t	hw_features;
1861 	netdev_features_t	wanted_features;
1862 	netdev_features_t	vlan_features;
1863 	netdev_features_t	hw_enc_features;
1864 	netdev_features_t	mpls_features;
1865 	netdev_features_t	gso_partial_features;
1866 
1867 	int			ifindex;
1868 	int			group;
1869 
1870 	struct net_device_stats	stats;
1871 
1872 	atomic_long_t		rx_dropped;
1873 	atomic_long_t		tx_dropped;
1874 	atomic_long_t		rx_nohandler;
1875 
1876 	/* Stats to monitor link on/off, flapping */
1877 	atomic_t		carrier_up_count;
1878 	atomic_t		carrier_down_count;
1879 
1880 #ifdef CONFIG_WIRELESS_EXT
1881 	const struct iw_handler_def *wireless_handlers;
1882 	struct iw_public_data	*wireless_data;
1883 #endif
1884 	const struct net_device_ops *netdev_ops;
1885 	const struct ethtool_ops *ethtool_ops;
1886 #ifdef CONFIG_NET_L3_MASTER_DEV
1887 	const struct l3mdev_ops	*l3mdev_ops;
1888 #endif
1889 #if IS_ENABLED(CONFIG_IPV6)
1890 	const struct ndisc_ops *ndisc_ops;
1891 #endif
1892 
1893 #ifdef CONFIG_XFRM_OFFLOAD
1894 	const struct xfrmdev_ops *xfrmdev_ops;
1895 #endif
1896 
1897 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1898 	const struct tlsdev_ops *tlsdev_ops;
1899 #endif
1900 
1901 	const struct header_ops *header_ops;
1902 
1903 	unsigned int		flags;
1904 	unsigned int		priv_flags;
1905 
1906 	unsigned short		gflags;
1907 	unsigned short		padded;
1908 
1909 	unsigned char		operstate;
1910 	unsigned char		link_mode;
1911 
1912 	unsigned char		if_port;
1913 	unsigned char		dma;
1914 
1915 	/* Note : dev->mtu is often read without holding a lock.
1916 	 * Writers usually hold RTNL.
1917 	 * It is recommended to use READ_ONCE() to annotate the reads,
1918 	 * and to use WRITE_ONCE() to annotate the writes.
1919 	 */
1920 	unsigned int		mtu;
1921 	unsigned int		min_mtu;
1922 	unsigned int		max_mtu;
1923 	unsigned short		type;
1924 	unsigned short		hard_header_len;
1925 	unsigned char		min_header_len;
1926 
1927 	unsigned short		needed_headroom;
1928 	unsigned short		needed_tailroom;
1929 
1930 	/* Interface address info. */
1931 	unsigned char		perm_addr[MAX_ADDR_LEN];
1932 	unsigned char		addr_assign_type;
1933 	unsigned char		addr_len;
1934 	unsigned char		upper_level;
1935 	unsigned char		lower_level;
1936 	unsigned short		neigh_priv_len;
1937 	unsigned short          dev_id;
1938 	unsigned short          dev_port;
1939 	spinlock_t		addr_list_lock;
1940 	unsigned char		name_assign_type;
1941 	bool			uc_promisc;
1942 	struct netdev_hw_addr_list	uc;
1943 	struct netdev_hw_addr_list	mc;
1944 	struct netdev_hw_addr_list	dev_addrs;
1945 
1946 #ifdef CONFIG_SYSFS
1947 	struct kset		*queues_kset;
1948 #endif
1949 	unsigned int		promiscuity;
1950 	unsigned int		allmulti;
1951 
1952 
1953 	/* Protocol-specific pointers */
1954 
1955 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1956 	struct vlan_info __rcu	*vlan_info;
1957 #endif
1958 #if IS_ENABLED(CONFIG_NET_DSA)
1959 	struct dsa_port		*dsa_ptr;
1960 #endif
1961 #if IS_ENABLED(CONFIG_TIPC)
1962 	struct tipc_bearer __rcu *tipc_ptr;
1963 #endif
1964 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1965 	void 			*atalk_ptr;
1966 #endif
1967 	struct in_device __rcu	*ip_ptr;
1968 #if IS_ENABLED(CONFIG_DECNET)
1969 	struct dn_dev __rcu     *dn_ptr;
1970 #endif
1971 	struct inet6_dev __rcu	*ip6_ptr;
1972 #if IS_ENABLED(CONFIG_AX25)
1973 	void			*ax25_ptr;
1974 #endif
1975 	struct wireless_dev	*ieee80211_ptr;
1976 	struct wpan_dev		*ieee802154_ptr;
1977 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1978 	struct mpls_dev __rcu	*mpls_ptr;
1979 #endif
1980 
1981 /*
1982  * Cache lines mostly used on receive path (including eth_type_trans())
1983  */
1984 	/* Interface address info used in eth_type_trans() */
1985 	unsigned char		*dev_addr;
1986 
1987 	struct netdev_rx_queue	*_rx;
1988 	unsigned int		num_rx_queues;
1989 	unsigned int		real_num_rx_queues;
1990 
1991 	struct bpf_prog __rcu	*xdp_prog;
1992 	unsigned long		gro_flush_timeout;
1993 	rx_handler_func_t __rcu	*rx_handler;
1994 	void __rcu		*rx_handler_data;
1995 
1996 #ifdef CONFIG_NET_CLS_ACT
1997 	struct mini_Qdisc __rcu	*miniq_ingress;
1998 #endif
1999 	struct netdev_queue __rcu *ingress_queue;
2000 #ifdef CONFIG_NETFILTER_INGRESS
2001 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2002 #endif
2003 
2004 	unsigned char		broadcast[MAX_ADDR_LEN];
2005 #ifdef CONFIG_RFS_ACCEL
2006 	struct cpu_rmap		*rx_cpu_rmap;
2007 #endif
2008 	struct hlist_node	index_hlist;
2009 
2010 /*
2011  * Cache lines mostly used on transmit path
2012  */
2013 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2014 	unsigned int		num_tx_queues;
2015 	unsigned int		real_num_tx_queues;
2016 	struct Qdisc		*qdisc;
2017 	unsigned int		tx_queue_len;
2018 	spinlock_t		tx_global_lock;
2019 
2020 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2021 
2022 #ifdef CONFIG_XPS
2023 	struct xps_dev_maps __rcu *xps_cpus_map;
2024 	struct xps_dev_maps __rcu *xps_rxqs_map;
2025 #endif
2026 #ifdef CONFIG_NET_CLS_ACT
2027 	struct mini_Qdisc __rcu	*miniq_egress;
2028 #endif
2029 
2030 #ifdef CONFIG_NET_SCHED
2031 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2032 #endif
2033 	/* These may be needed for future network-power-down code. */
2034 	struct timer_list	watchdog_timer;
2035 	int			watchdog_timeo;
2036 
2037 	struct list_head	todo_list;
2038 	int __percpu		*pcpu_refcnt;
2039 
2040 	struct list_head	link_watch_list;
2041 
2042 	enum { NETREG_UNINITIALIZED=0,
2043 	       NETREG_REGISTERED,	/* completed register_netdevice */
2044 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2045 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2046 	       NETREG_RELEASED,		/* called free_netdev */
2047 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2048 	} reg_state:8;
2049 
2050 	bool dismantle;
2051 
2052 	enum {
2053 		RTNL_LINK_INITIALIZED,
2054 		RTNL_LINK_INITIALIZING,
2055 	} rtnl_link_state:16;
2056 
2057 	bool needs_free_netdev;
2058 	void (*priv_destructor)(struct net_device *dev);
2059 
2060 #ifdef CONFIG_NETPOLL
2061 	struct netpoll_info __rcu	*npinfo;
2062 #endif
2063 
2064 	possible_net_t			nd_net;
2065 
2066 	/* mid-layer private */
2067 	union {
2068 		void					*ml_priv;
2069 		struct pcpu_lstats __percpu		*lstats;
2070 		struct pcpu_sw_netstats __percpu	*tstats;
2071 		struct pcpu_dstats __percpu		*dstats;
2072 	};
2073 
2074 #if IS_ENABLED(CONFIG_GARP)
2075 	struct garp_port __rcu	*garp_port;
2076 #endif
2077 #if IS_ENABLED(CONFIG_MRP)
2078 	struct mrp_port __rcu	*mrp_port;
2079 #endif
2080 
2081 	struct device		dev;
2082 	const struct attribute_group *sysfs_groups[4];
2083 	const struct attribute_group *sysfs_rx_queue_group;
2084 
2085 	const struct rtnl_link_ops *rtnl_link_ops;
2086 
2087 	/* for setting kernel sock attribute on TCP connection setup */
2088 #define GSO_MAX_SIZE		65536
2089 	unsigned int		gso_max_size;
2090 #define GSO_MAX_SEGS		65535
2091 	u16			gso_max_segs;
2092 
2093 #ifdef CONFIG_DCB
2094 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2095 #endif
2096 	s16			num_tc;
2097 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2098 	u8			prio_tc_map[TC_BITMASK + 1];
2099 
2100 #if IS_ENABLED(CONFIG_FCOE)
2101 	unsigned int		fcoe_ddp_xid;
2102 #endif
2103 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2104 	struct netprio_map __rcu *priomap;
2105 #endif
2106 	struct phy_device	*phydev;
2107 	struct sfp_bus		*sfp_bus;
2108 	struct lock_class_key	qdisc_tx_busylock_key;
2109 	struct lock_class_key	qdisc_running_key;
2110 	struct lock_class_key	qdisc_xmit_lock_key;
2111 	struct lock_class_key	addr_list_lock_key;
2112 	bool			proto_down;
2113 	unsigned		wol_enabled:1;
2114 
2115 	struct list_head	net_notifier_list;
2116 };
2117 #define to_net_dev(d) container_of(d, struct net_device, dev)
2118 
2119 static inline bool netif_elide_gro(const struct net_device *dev)
2120 {
2121 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2122 		return true;
2123 	return false;
2124 }
2125 
2126 #define	NETDEV_ALIGN		32
2127 
2128 static inline
2129 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2130 {
2131 	return dev->prio_tc_map[prio & TC_BITMASK];
2132 }
2133 
2134 static inline
2135 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2136 {
2137 	if (tc >= dev->num_tc)
2138 		return -EINVAL;
2139 
2140 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2141 	return 0;
2142 }
2143 
2144 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2145 void netdev_reset_tc(struct net_device *dev);
2146 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2147 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2148 
2149 static inline
2150 int netdev_get_num_tc(struct net_device *dev)
2151 {
2152 	return dev->num_tc;
2153 }
2154 
2155 void netdev_unbind_sb_channel(struct net_device *dev,
2156 			      struct net_device *sb_dev);
2157 int netdev_bind_sb_channel_queue(struct net_device *dev,
2158 				 struct net_device *sb_dev,
2159 				 u8 tc, u16 count, u16 offset);
2160 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2161 static inline int netdev_get_sb_channel(struct net_device *dev)
2162 {
2163 	return max_t(int, -dev->num_tc, 0);
2164 }
2165 
2166 static inline
2167 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2168 					 unsigned int index)
2169 {
2170 	return &dev->_tx[index];
2171 }
2172 
2173 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2174 						    const struct sk_buff *skb)
2175 {
2176 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2177 }
2178 
2179 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2180 					    void (*f)(struct net_device *,
2181 						      struct netdev_queue *,
2182 						      void *),
2183 					    void *arg)
2184 {
2185 	unsigned int i;
2186 
2187 	for (i = 0; i < dev->num_tx_queues; i++)
2188 		f(dev, &dev->_tx[i], arg);
2189 }
2190 
2191 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2192 		     struct net_device *sb_dev);
2193 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2194 					 struct sk_buff *skb,
2195 					 struct net_device *sb_dev);
2196 
2197 /* returns the headroom that the master device needs to take in account
2198  * when forwarding to this dev
2199  */
2200 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2201 {
2202 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2203 }
2204 
2205 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2206 {
2207 	if (dev->netdev_ops->ndo_set_rx_headroom)
2208 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2209 }
2210 
2211 /* set the device rx headroom to the dev's default */
2212 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2213 {
2214 	netdev_set_rx_headroom(dev, -1);
2215 }
2216 
2217 /*
2218  * Net namespace inlines
2219  */
2220 static inline
2221 struct net *dev_net(const struct net_device *dev)
2222 {
2223 	return read_pnet(&dev->nd_net);
2224 }
2225 
2226 static inline
2227 void dev_net_set(struct net_device *dev, struct net *net)
2228 {
2229 	write_pnet(&dev->nd_net, net);
2230 }
2231 
2232 /**
2233  *	netdev_priv - access network device private data
2234  *	@dev: network device
2235  *
2236  * Get network device private data
2237  */
2238 static inline void *netdev_priv(const struct net_device *dev)
2239 {
2240 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2241 }
2242 
2243 /* Set the sysfs physical device reference for the network logical device
2244  * if set prior to registration will cause a symlink during initialization.
2245  */
2246 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2247 
2248 /* Set the sysfs device type for the network logical device to allow
2249  * fine-grained identification of different network device types. For
2250  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2251  */
2252 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2253 
2254 /* Default NAPI poll() weight
2255  * Device drivers are strongly advised to not use bigger value
2256  */
2257 #define NAPI_POLL_WEIGHT 64
2258 
2259 /**
2260  *	netif_napi_add - initialize a NAPI context
2261  *	@dev:  network device
2262  *	@napi: NAPI context
2263  *	@poll: polling function
2264  *	@weight: default weight
2265  *
2266  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2267  * *any* of the other NAPI-related functions.
2268  */
2269 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2270 		    int (*poll)(struct napi_struct *, int), int weight);
2271 
2272 /**
2273  *	netif_tx_napi_add - initialize a NAPI context
2274  *	@dev:  network device
2275  *	@napi: NAPI context
2276  *	@poll: polling function
2277  *	@weight: default weight
2278  *
2279  * This variant of netif_napi_add() should be used from drivers using NAPI
2280  * to exclusively poll a TX queue.
2281  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2282  */
2283 static inline void netif_tx_napi_add(struct net_device *dev,
2284 				     struct napi_struct *napi,
2285 				     int (*poll)(struct napi_struct *, int),
2286 				     int weight)
2287 {
2288 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2289 	netif_napi_add(dev, napi, poll, weight);
2290 }
2291 
2292 /**
2293  *  netif_napi_del - remove a NAPI context
2294  *  @napi: NAPI context
2295  *
2296  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2297  */
2298 void netif_napi_del(struct napi_struct *napi);
2299 
2300 struct napi_gro_cb {
2301 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2302 	void	*frag0;
2303 
2304 	/* Length of frag0. */
2305 	unsigned int frag0_len;
2306 
2307 	/* This indicates where we are processing relative to skb->data. */
2308 	int	data_offset;
2309 
2310 	/* This is non-zero if the packet cannot be merged with the new skb. */
2311 	u16	flush;
2312 
2313 	/* Save the IP ID here and check when we get to the transport layer */
2314 	u16	flush_id;
2315 
2316 	/* Number of segments aggregated. */
2317 	u16	count;
2318 
2319 	/* Start offset for remote checksum offload */
2320 	u16	gro_remcsum_start;
2321 
2322 	/* jiffies when first packet was created/queued */
2323 	unsigned long age;
2324 
2325 	/* Used in ipv6_gro_receive() and foo-over-udp */
2326 	u16	proto;
2327 
2328 	/* This is non-zero if the packet may be of the same flow. */
2329 	u8	same_flow:1;
2330 
2331 	/* Used in tunnel GRO receive */
2332 	u8	encap_mark:1;
2333 
2334 	/* GRO checksum is valid */
2335 	u8	csum_valid:1;
2336 
2337 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2338 	u8	csum_cnt:3;
2339 
2340 	/* Free the skb? */
2341 	u8	free:2;
2342 #define NAPI_GRO_FREE		  1
2343 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2344 
2345 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2346 	u8	is_ipv6:1;
2347 
2348 	/* Used in GRE, set in fou/gue_gro_receive */
2349 	u8	is_fou:1;
2350 
2351 	/* Used to determine if flush_id can be ignored */
2352 	u8	is_atomic:1;
2353 
2354 	/* Number of gro_receive callbacks this packet already went through */
2355 	u8 recursion_counter:4;
2356 
2357 	/* GRO is done by frag_list pointer chaining. */
2358 	u8	is_flist:1;
2359 
2360 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2361 	__wsum	csum;
2362 
2363 	/* used in skb_gro_receive() slow path */
2364 	struct sk_buff *last;
2365 };
2366 
2367 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2368 
2369 #define GRO_RECURSION_LIMIT 15
2370 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2371 {
2372 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2373 }
2374 
2375 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2376 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2377 					       struct list_head *head,
2378 					       struct sk_buff *skb)
2379 {
2380 	if (unlikely(gro_recursion_inc_test(skb))) {
2381 		NAPI_GRO_CB(skb)->flush |= 1;
2382 		return NULL;
2383 	}
2384 
2385 	return cb(head, skb);
2386 }
2387 
2388 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2389 					    struct sk_buff *);
2390 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2391 						  struct sock *sk,
2392 						  struct list_head *head,
2393 						  struct sk_buff *skb)
2394 {
2395 	if (unlikely(gro_recursion_inc_test(skb))) {
2396 		NAPI_GRO_CB(skb)->flush |= 1;
2397 		return NULL;
2398 	}
2399 
2400 	return cb(sk, head, skb);
2401 }
2402 
2403 struct packet_type {
2404 	__be16			type;	/* This is really htons(ether_type). */
2405 	bool			ignore_outgoing;
2406 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2407 	int			(*func) (struct sk_buff *,
2408 					 struct net_device *,
2409 					 struct packet_type *,
2410 					 struct net_device *);
2411 	void			(*list_func) (struct list_head *,
2412 					      struct packet_type *,
2413 					      struct net_device *);
2414 	bool			(*id_match)(struct packet_type *ptype,
2415 					    struct sock *sk);
2416 	void			*af_packet_priv;
2417 	struct list_head	list;
2418 };
2419 
2420 struct offload_callbacks {
2421 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2422 						netdev_features_t features);
2423 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2424 						struct sk_buff *skb);
2425 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2426 };
2427 
2428 struct packet_offload {
2429 	__be16			 type;	/* This is really htons(ether_type). */
2430 	u16			 priority;
2431 	struct offload_callbacks callbacks;
2432 	struct list_head	 list;
2433 };
2434 
2435 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2436 struct pcpu_sw_netstats {
2437 	u64     rx_packets;
2438 	u64     rx_bytes;
2439 	u64     tx_packets;
2440 	u64     tx_bytes;
2441 	struct u64_stats_sync   syncp;
2442 } __aligned(4 * sizeof(u64));
2443 
2444 struct pcpu_lstats {
2445 	u64_stats_t packets;
2446 	u64_stats_t bytes;
2447 	struct u64_stats_sync syncp;
2448 } __aligned(2 * sizeof(u64));
2449 
2450 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2451 
2452 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2453 {
2454 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2455 
2456 	u64_stats_update_begin(&lstats->syncp);
2457 	u64_stats_add(&lstats->bytes, len);
2458 	u64_stats_inc(&lstats->packets);
2459 	u64_stats_update_end(&lstats->syncp);
2460 }
2461 
2462 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2463 ({									\
2464 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2465 	if (pcpu_stats)	{						\
2466 		int __cpu;						\
2467 		for_each_possible_cpu(__cpu) {				\
2468 			typeof(type) *stat;				\
2469 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2470 			u64_stats_init(&stat->syncp);			\
2471 		}							\
2472 	}								\
2473 	pcpu_stats;							\
2474 })
2475 
2476 #define netdev_alloc_pcpu_stats(type)					\
2477 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2478 
2479 enum netdev_lag_tx_type {
2480 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2481 	NETDEV_LAG_TX_TYPE_RANDOM,
2482 	NETDEV_LAG_TX_TYPE_BROADCAST,
2483 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2484 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2485 	NETDEV_LAG_TX_TYPE_HASH,
2486 };
2487 
2488 enum netdev_lag_hash {
2489 	NETDEV_LAG_HASH_NONE,
2490 	NETDEV_LAG_HASH_L2,
2491 	NETDEV_LAG_HASH_L34,
2492 	NETDEV_LAG_HASH_L23,
2493 	NETDEV_LAG_HASH_E23,
2494 	NETDEV_LAG_HASH_E34,
2495 	NETDEV_LAG_HASH_UNKNOWN,
2496 };
2497 
2498 struct netdev_lag_upper_info {
2499 	enum netdev_lag_tx_type tx_type;
2500 	enum netdev_lag_hash hash_type;
2501 };
2502 
2503 struct netdev_lag_lower_state_info {
2504 	u8 link_up : 1,
2505 	   tx_enabled : 1;
2506 };
2507 
2508 #include <linux/notifier.h>
2509 
2510 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2511  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2512  * adding new types.
2513  */
2514 enum netdev_cmd {
2515 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2516 	NETDEV_DOWN,
2517 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2518 				   detected a hardware crash and restarted
2519 				   - we can use this eg to kick tcp sessions
2520 				   once done */
2521 	NETDEV_CHANGE,		/* Notify device state change */
2522 	NETDEV_REGISTER,
2523 	NETDEV_UNREGISTER,
2524 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2525 	NETDEV_CHANGEADDR,	/* notify after the address change */
2526 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2527 	NETDEV_GOING_DOWN,
2528 	NETDEV_CHANGENAME,
2529 	NETDEV_FEAT_CHANGE,
2530 	NETDEV_BONDING_FAILOVER,
2531 	NETDEV_PRE_UP,
2532 	NETDEV_PRE_TYPE_CHANGE,
2533 	NETDEV_POST_TYPE_CHANGE,
2534 	NETDEV_POST_INIT,
2535 	NETDEV_RELEASE,
2536 	NETDEV_NOTIFY_PEERS,
2537 	NETDEV_JOIN,
2538 	NETDEV_CHANGEUPPER,
2539 	NETDEV_RESEND_IGMP,
2540 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2541 	NETDEV_CHANGEINFODATA,
2542 	NETDEV_BONDING_INFO,
2543 	NETDEV_PRECHANGEUPPER,
2544 	NETDEV_CHANGELOWERSTATE,
2545 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2546 	NETDEV_UDP_TUNNEL_DROP_INFO,
2547 	NETDEV_CHANGE_TX_QUEUE_LEN,
2548 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2549 	NETDEV_CVLAN_FILTER_DROP_INFO,
2550 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2551 	NETDEV_SVLAN_FILTER_DROP_INFO,
2552 };
2553 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2554 
2555 int register_netdevice_notifier(struct notifier_block *nb);
2556 int unregister_netdevice_notifier(struct notifier_block *nb);
2557 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2558 int unregister_netdevice_notifier_net(struct net *net,
2559 				      struct notifier_block *nb);
2560 int register_netdevice_notifier_dev_net(struct net_device *dev,
2561 					struct notifier_block *nb,
2562 					struct netdev_net_notifier *nn);
2563 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2564 					  struct notifier_block *nb,
2565 					  struct netdev_net_notifier *nn);
2566 
2567 struct netdev_notifier_info {
2568 	struct net_device	*dev;
2569 	struct netlink_ext_ack	*extack;
2570 };
2571 
2572 struct netdev_notifier_info_ext {
2573 	struct netdev_notifier_info info; /* must be first */
2574 	union {
2575 		u32 mtu;
2576 	} ext;
2577 };
2578 
2579 struct netdev_notifier_change_info {
2580 	struct netdev_notifier_info info; /* must be first */
2581 	unsigned int flags_changed;
2582 };
2583 
2584 struct netdev_notifier_changeupper_info {
2585 	struct netdev_notifier_info info; /* must be first */
2586 	struct net_device *upper_dev; /* new upper dev */
2587 	bool master; /* is upper dev master */
2588 	bool linking; /* is the notification for link or unlink */
2589 	void *upper_info; /* upper dev info */
2590 };
2591 
2592 struct netdev_notifier_changelowerstate_info {
2593 	struct netdev_notifier_info info; /* must be first */
2594 	void *lower_state_info; /* is lower dev state */
2595 };
2596 
2597 struct netdev_notifier_pre_changeaddr_info {
2598 	struct netdev_notifier_info info; /* must be first */
2599 	const unsigned char *dev_addr;
2600 };
2601 
2602 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2603 					     struct net_device *dev)
2604 {
2605 	info->dev = dev;
2606 	info->extack = NULL;
2607 }
2608 
2609 static inline struct net_device *
2610 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2611 {
2612 	return info->dev;
2613 }
2614 
2615 static inline struct netlink_ext_ack *
2616 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2617 {
2618 	return info->extack;
2619 }
2620 
2621 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2622 
2623 
2624 extern rwlock_t				dev_base_lock;		/* Device list lock */
2625 
2626 #define for_each_netdev(net, d)		\
2627 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2628 #define for_each_netdev_reverse(net, d)	\
2629 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2630 #define for_each_netdev_rcu(net, d)		\
2631 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2632 #define for_each_netdev_safe(net, d, n)	\
2633 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2634 #define for_each_netdev_continue(net, d)		\
2635 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2636 #define for_each_netdev_continue_reverse(net, d)		\
2637 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2638 						     dev_list)
2639 #define for_each_netdev_continue_rcu(net, d)		\
2640 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2641 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2642 		for_each_netdev_rcu(&init_net, slave)	\
2643 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2644 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2645 
2646 static inline struct net_device *next_net_device(struct net_device *dev)
2647 {
2648 	struct list_head *lh;
2649 	struct net *net;
2650 
2651 	net = dev_net(dev);
2652 	lh = dev->dev_list.next;
2653 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2654 }
2655 
2656 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2657 {
2658 	struct list_head *lh;
2659 	struct net *net;
2660 
2661 	net = dev_net(dev);
2662 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2663 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2664 }
2665 
2666 static inline struct net_device *first_net_device(struct net *net)
2667 {
2668 	return list_empty(&net->dev_base_head) ? NULL :
2669 		net_device_entry(net->dev_base_head.next);
2670 }
2671 
2672 static inline struct net_device *first_net_device_rcu(struct net *net)
2673 {
2674 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2675 
2676 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2677 }
2678 
2679 int netdev_boot_setup_check(struct net_device *dev);
2680 unsigned long netdev_boot_base(const char *prefix, int unit);
2681 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2682 				       const char *hwaddr);
2683 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2684 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2685 void dev_add_pack(struct packet_type *pt);
2686 void dev_remove_pack(struct packet_type *pt);
2687 void __dev_remove_pack(struct packet_type *pt);
2688 void dev_add_offload(struct packet_offload *po);
2689 void dev_remove_offload(struct packet_offload *po);
2690 
2691 int dev_get_iflink(const struct net_device *dev);
2692 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2693 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2694 				      unsigned short mask);
2695 struct net_device *dev_get_by_name(struct net *net, const char *name);
2696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2697 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2698 int dev_alloc_name(struct net_device *dev, const char *name);
2699 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2700 void dev_close(struct net_device *dev);
2701 void dev_close_many(struct list_head *head, bool unlink);
2702 void dev_disable_lro(struct net_device *dev);
2703 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2704 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2705 		     struct net_device *sb_dev);
2706 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2707 		       struct net_device *sb_dev);
2708 int dev_queue_xmit(struct sk_buff *skb);
2709 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2710 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2711 int register_netdevice(struct net_device *dev);
2712 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2713 void unregister_netdevice_many(struct list_head *head);
2714 static inline void unregister_netdevice(struct net_device *dev)
2715 {
2716 	unregister_netdevice_queue(dev, NULL);
2717 }
2718 
2719 int netdev_refcnt_read(const struct net_device *dev);
2720 void free_netdev(struct net_device *dev);
2721 void netdev_freemem(struct net_device *dev);
2722 void synchronize_net(void);
2723 int init_dummy_netdev(struct net_device *dev);
2724 
2725 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2726 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2727 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2728 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2729 int netdev_get_name(struct net *net, char *name, int ifindex);
2730 int dev_restart(struct net_device *dev);
2731 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2732 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2733 
2734 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2735 {
2736 	return NAPI_GRO_CB(skb)->data_offset;
2737 }
2738 
2739 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2740 {
2741 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2742 }
2743 
2744 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2745 {
2746 	NAPI_GRO_CB(skb)->data_offset += len;
2747 }
2748 
2749 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2750 					unsigned int offset)
2751 {
2752 	return NAPI_GRO_CB(skb)->frag0 + offset;
2753 }
2754 
2755 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2756 {
2757 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2758 }
2759 
2760 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2761 {
2762 	NAPI_GRO_CB(skb)->frag0 = NULL;
2763 	NAPI_GRO_CB(skb)->frag0_len = 0;
2764 }
2765 
2766 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2767 					unsigned int offset)
2768 {
2769 	if (!pskb_may_pull(skb, hlen))
2770 		return NULL;
2771 
2772 	skb_gro_frag0_invalidate(skb);
2773 	return skb->data + offset;
2774 }
2775 
2776 static inline void *skb_gro_network_header(struct sk_buff *skb)
2777 {
2778 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2779 	       skb_network_offset(skb);
2780 }
2781 
2782 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2783 					const void *start, unsigned int len)
2784 {
2785 	if (NAPI_GRO_CB(skb)->csum_valid)
2786 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2787 						  csum_partial(start, len, 0));
2788 }
2789 
2790 /* GRO checksum functions. These are logical equivalents of the normal
2791  * checksum functions (in skbuff.h) except that they operate on the GRO
2792  * offsets and fields in sk_buff.
2793  */
2794 
2795 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2796 
2797 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2798 {
2799 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2800 }
2801 
2802 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2803 						      bool zero_okay,
2804 						      __sum16 check)
2805 {
2806 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2807 		skb_checksum_start_offset(skb) <
2808 		 skb_gro_offset(skb)) &&
2809 		!skb_at_gro_remcsum_start(skb) &&
2810 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2811 		(!zero_okay || check));
2812 }
2813 
2814 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2815 							   __wsum psum)
2816 {
2817 	if (NAPI_GRO_CB(skb)->csum_valid &&
2818 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2819 		return 0;
2820 
2821 	NAPI_GRO_CB(skb)->csum = psum;
2822 
2823 	return __skb_gro_checksum_complete(skb);
2824 }
2825 
2826 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2827 {
2828 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2829 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2830 		NAPI_GRO_CB(skb)->csum_cnt--;
2831 	} else {
2832 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2833 		 * verified a new top level checksum or an encapsulated one
2834 		 * during GRO. This saves work if we fallback to normal path.
2835 		 */
2836 		__skb_incr_checksum_unnecessary(skb);
2837 	}
2838 }
2839 
2840 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2841 				    compute_pseudo)			\
2842 ({									\
2843 	__sum16 __ret = 0;						\
2844 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2845 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2846 				compute_pseudo(skb, proto));		\
2847 	if (!__ret)							\
2848 		skb_gro_incr_csum_unnecessary(skb);			\
2849 	__ret;								\
2850 })
2851 
2852 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2853 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2854 
2855 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2856 					     compute_pseudo)		\
2857 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2858 
2859 #define skb_gro_checksum_simple_validate(skb)				\
2860 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2861 
2862 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2863 {
2864 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2865 		!NAPI_GRO_CB(skb)->csum_valid);
2866 }
2867 
2868 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2869 					      __wsum pseudo)
2870 {
2871 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2872 	NAPI_GRO_CB(skb)->csum_valid = 1;
2873 }
2874 
2875 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2876 do {									\
2877 	if (__skb_gro_checksum_convert_check(skb))			\
2878 		__skb_gro_checksum_convert(skb, 			\
2879 					   compute_pseudo(skb, proto));	\
2880 } while (0)
2881 
2882 struct gro_remcsum {
2883 	int offset;
2884 	__wsum delta;
2885 };
2886 
2887 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2888 {
2889 	grc->offset = 0;
2890 	grc->delta = 0;
2891 }
2892 
2893 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2894 					    unsigned int off, size_t hdrlen,
2895 					    int start, int offset,
2896 					    struct gro_remcsum *grc,
2897 					    bool nopartial)
2898 {
2899 	__wsum delta;
2900 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2901 
2902 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2903 
2904 	if (!nopartial) {
2905 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2906 		return ptr;
2907 	}
2908 
2909 	ptr = skb_gro_header_fast(skb, off);
2910 	if (skb_gro_header_hard(skb, off + plen)) {
2911 		ptr = skb_gro_header_slow(skb, off + plen, off);
2912 		if (!ptr)
2913 			return NULL;
2914 	}
2915 
2916 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2917 			       start, offset);
2918 
2919 	/* Adjust skb->csum since we changed the packet */
2920 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2921 
2922 	grc->offset = off + hdrlen + offset;
2923 	grc->delta = delta;
2924 
2925 	return ptr;
2926 }
2927 
2928 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2929 					   struct gro_remcsum *grc)
2930 {
2931 	void *ptr;
2932 	size_t plen = grc->offset + sizeof(u16);
2933 
2934 	if (!grc->delta)
2935 		return;
2936 
2937 	ptr = skb_gro_header_fast(skb, grc->offset);
2938 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2939 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2940 		if (!ptr)
2941 			return;
2942 	}
2943 
2944 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2945 }
2946 
2947 #ifdef CONFIG_XFRM_OFFLOAD
2948 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2949 {
2950 	if (PTR_ERR(pp) != -EINPROGRESS)
2951 		NAPI_GRO_CB(skb)->flush |= flush;
2952 }
2953 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2954 					       struct sk_buff *pp,
2955 					       int flush,
2956 					       struct gro_remcsum *grc)
2957 {
2958 	if (PTR_ERR(pp) != -EINPROGRESS) {
2959 		NAPI_GRO_CB(skb)->flush |= flush;
2960 		skb_gro_remcsum_cleanup(skb, grc);
2961 		skb->remcsum_offload = 0;
2962 	}
2963 }
2964 #else
2965 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2966 {
2967 	NAPI_GRO_CB(skb)->flush |= flush;
2968 }
2969 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2970 					       struct sk_buff *pp,
2971 					       int flush,
2972 					       struct gro_remcsum *grc)
2973 {
2974 	NAPI_GRO_CB(skb)->flush |= flush;
2975 	skb_gro_remcsum_cleanup(skb, grc);
2976 	skb->remcsum_offload = 0;
2977 }
2978 #endif
2979 
2980 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2981 				  unsigned short type,
2982 				  const void *daddr, const void *saddr,
2983 				  unsigned int len)
2984 {
2985 	if (!dev->header_ops || !dev->header_ops->create)
2986 		return 0;
2987 
2988 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2989 }
2990 
2991 static inline int dev_parse_header(const struct sk_buff *skb,
2992 				   unsigned char *haddr)
2993 {
2994 	const struct net_device *dev = skb->dev;
2995 
2996 	if (!dev->header_ops || !dev->header_ops->parse)
2997 		return 0;
2998 	return dev->header_ops->parse(skb, haddr);
2999 }
3000 
3001 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3002 {
3003 	const struct net_device *dev = skb->dev;
3004 
3005 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3006 		return 0;
3007 	return dev->header_ops->parse_protocol(skb);
3008 }
3009 
3010 /* ll_header must have at least hard_header_len allocated */
3011 static inline bool dev_validate_header(const struct net_device *dev,
3012 				       char *ll_header, int len)
3013 {
3014 	if (likely(len >= dev->hard_header_len))
3015 		return true;
3016 	if (len < dev->min_header_len)
3017 		return false;
3018 
3019 	if (capable(CAP_SYS_RAWIO)) {
3020 		memset(ll_header + len, 0, dev->hard_header_len - len);
3021 		return true;
3022 	}
3023 
3024 	if (dev->header_ops && dev->header_ops->validate)
3025 		return dev->header_ops->validate(ll_header, len);
3026 
3027 	return false;
3028 }
3029 
3030 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3031 			   int len, int size);
3032 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3033 static inline int unregister_gifconf(unsigned int family)
3034 {
3035 	return register_gifconf(family, NULL);
3036 }
3037 
3038 #ifdef CONFIG_NET_FLOW_LIMIT
3039 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3040 struct sd_flow_limit {
3041 	u64			count;
3042 	unsigned int		num_buckets;
3043 	unsigned int		history_head;
3044 	u16			history[FLOW_LIMIT_HISTORY];
3045 	u8			buckets[];
3046 };
3047 
3048 extern int netdev_flow_limit_table_len;
3049 #endif /* CONFIG_NET_FLOW_LIMIT */
3050 
3051 /*
3052  * Incoming packets are placed on per-CPU queues
3053  */
3054 struct softnet_data {
3055 	struct list_head	poll_list;
3056 	struct sk_buff_head	process_queue;
3057 
3058 	/* stats */
3059 	unsigned int		processed;
3060 	unsigned int		time_squeeze;
3061 	unsigned int		received_rps;
3062 #ifdef CONFIG_RPS
3063 	struct softnet_data	*rps_ipi_list;
3064 #endif
3065 #ifdef CONFIG_NET_FLOW_LIMIT
3066 	struct sd_flow_limit __rcu *flow_limit;
3067 #endif
3068 	struct Qdisc		*output_queue;
3069 	struct Qdisc		**output_queue_tailp;
3070 	struct sk_buff		*completion_queue;
3071 #ifdef CONFIG_XFRM_OFFLOAD
3072 	struct sk_buff_head	xfrm_backlog;
3073 #endif
3074 	/* written and read only by owning cpu: */
3075 	struct {
3076 		u16 recursion;
3077 		u8  more;
3078 	} xmit;
3079 #ifdef CONFIG_RPS
3080 	/* input_queue_head should be written by cpu owning this struct,
3081 	 * and only read by other cpus. Worth using a cache line.
3082 	 */
3083 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3084 
3085 	/* Elements below can be accessed between CPUs for RPS/RFS */
3086 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3087 	struct softnet_data	*rps_ipi_next;
3088 	unsigned int		cpu;
3089 	unsigned int		input_queue_tail;
3090 #endif
3091 	unsigned int		dropped;
3092 	struct sk_buff_head	input_pkt_queue;
3093 	struct napi_struct	backlog;
3094 
3095 };
3096 
3097 static inline void input_queue_head_incr(struct softnet_data *sd)
3098 {
3099 #ifdef CONFIG_RPS
3100 	sd->input_queue_head++;
3101 #endif
3102 }
3103 
3104 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3105 					      unsigned int *qtail)
3106 {
3107 #ifdef CONFIG_RPS
3108 	*qtail = ++sd->input_queue_tail;
3109 #endif
3110 }
3111 
3112 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3113 
3114 static inline int dev_recursion_level(void)
3115 {
3116 	return this_cpu_read(softnet_data.xmit.recursion);
3117 }
3118 
3119 #define XMIT_RECURSION_LIMIT	10
3120 static inline bool dev_xmit_recursion(void)
3121 {
3122 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3123 			XMIT_RECURSION_LIMIT);
3124 }
3125 
3126 static inline void dev_xmit_recursion_inc(void)
3127 {
3128 	__this_cpu_inc(softnet_data.xmit.recursion);
3129 }
3130 
3131 static inline void dev_xmit_recursion_dec(void)
3132 {
3133 	__this_cpu_dec(softnet_data.xmit.recursion);
3134 }
3135 
3136 void __netif_schedule(struct Qdisc *q);
3137 void netif_schedule_queue(struct netdev_queue *txq);
3138 
3139 static inline void netif_tx_schedule_all(struct net_device *dev)
3140 {
3141 	unsigned int i;
3142 
3143 	for (i = 0; i < dev->num_tx_queues; i++)
3144 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3145 }
3146 
3147 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3148 {
3149 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3150 }
3151 
3152 /**
3153  *	netif_start_queue - allow transmit
3154  *	@dev: network device
3155  *
3156  *	Allow upper layers to call the device hard_start_xmit routine.
3157  */
3158 static inline void netif_start_queue(struct net_device *dev)
3159 {
3160 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3161 }
3162 
3163 static inline void netif_tx_start_all_queues(struct net_device *dev)
3164 {
3165 	unsigned int i;
3166 
3167 	for (i = 0; i < dev->num_tx_queues; i++) {
3168 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3169 		netif_tx_start_queue(txq);
3170 	}
3171 }
3172 
3173 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3174 
3175 /**
3176  *	netif_wake_queue - restart transmit
3177  *	@dev: network device
3178  *
3179  *	Allow upper layers to call the device hard_start_xmit routine.
3180  *	Used for flow control when transmit resources are available.
3181  */
3182 static inline void netif_wake_queue(struct net_device *dev)
3183 {
3184 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3185 }
3186 
3187 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3188 {
3189 	unsigned int i;
3190 
3191 	for (i = 0; i < dev->num_tx_queues; i++) {
3192 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3193 		netif_tx_wake_queue(txq);
3194 	}
3195 }
3196 
3197 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3198 {
3199 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3200 }
3201 
3202 /**
3203  *	netif_stop_queue - stop transmitted packets
3204  *	@dev: network device
3205  *
3206  *	Stop upper layers calling the device hard_start_xmit routine.
3207  *	Used for flow control when transmit resources are unavailable.
3208  */
3209 static inline void netif_stop_queue(struct net_device *dev)
3210 {
3211 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3212 }
3213 
3214 void netif_tx_stop_all_queues(struct net_device *dev);
3215 void netdev_update_lockdep_key(struct net_device *dev);
3216 
3217 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3218 {
3219 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3220 }
3221 
3222 /**
3223  *	netif_queue_stopped - test if transmit queue is flowblocked
3224  *	@dev: network device
3225  *
3226  *	Test if transmit queue on device is currently unable to send.
3227  */
3228 static inline bool netif_queue_stopped(const struct net_device *dev)
3229 {
3230 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3231 }
3232 
3233 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3234 {
3235 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3236 }
3237 
3238 static inline bool
3239 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3240 {
3241 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3242 }
3243 
3244 static inline bool
3245 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3246 {
3247 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3248 }
3249 
3250 /**
3251  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3252  *	@dev_queue: pointer to transmit queue
3253  *
3254  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3255  * to give appropriate hint to the CPU.
3256  */
3257 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3258 {
3259 #ifdef CONFIG_BQL
3260 	prefetchw(&dev_queue->dql.num_queued);
3261 #endif
3262 }
3263 
3264 /**
3265  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3266  *	@dev_queue: pointer to transmit queue
3267  *
3268  * BQL enabled drivers might use this helper in their TX completion path,
3269  * to give appropriate hint to the CPU.
3270  */
3271 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3272 {
3273 #ifdef CONFIG_BQL
3274 	prefetchw(&dev_queue->dql.limit);
3275 #endif
3276 }
3277 
3278 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3279 					unsigned int bytes)
3280 {
3281 #ifdef CONFIG_BQL
3282 	dql_queued(&dev_queue->dql, bytes);
3283 
3284 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3285 		return;
3286 
3287 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3288 
3289 	/*
3290 	 * The XOFF flag must be set before checking the dql_avail below,
3291 	 * because in netdev_tx_completed_queue we update the dql_completed
3292 	 * before checking the XOFF flag.
3293 	 */
3294 	smp_mb();
3295 
3296 	/* check again in case another CPU has just made room avail */
3297 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3298 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3299 #endif
3300 }
3301 
3302 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3303  * that they should not test BQL status themselves.
3304  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3305  * skb of a batch.
3306  * Returns true if the doorbell must be used to kick the NIC.
3307  */
3308 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3309 					  unsigned int bytes,
3310 					  bool xmit_more)
3311 {
3312 	if (xmit_more) {
3313 #ifdef CONFIG_BQL
3314 		dql_queued(&dev_queue->dql, bytes);
3315 #endif
3316 		return netif_tx_queue_stopped(dev_queue);
3317 	}
3318 	netdev_tx_sent_queue(dev_queue, bytes);
3319 	return true;
3320 }
3321 
3322 /**
3323  * 	netdev_sent_queue - report the number of bytes queued to hardware
3324  * 	@dev: network device
3325  * 	@bytes: number of bytes queued to the hardware device queue
3326  *
3327  * 	Report the number of bytes queued for sending/completion to the network
3328  * 	device hardware queue. @bytes should be a good approximation and should
3329  * 	exactly match netdev_completed_queue() @bytes
3330  */
3331 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3332 {
3333 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3334 }
3335 
3336 static inline bool __netdev_sent_queue(struct net_device *dev,
3337 				       unsigned int bytes,
3338 				       bool xmit_more)
3339 {
3340 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3341 				      xmit_more);
3342 }
3343 
3344 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3345 					     unsigned int pkts, unsigned int bytes)
3346 {
3347 #ifdef CONFIG_BQL
3348 	if (unlikely(!bytes))
3349 		return;
3350 
3351 	dql_completed(&dev_queue->dql, bytes);
3352 
3353 	/*
3354 	 * Without the memory barrier there is a small possiblity that
3355 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3356 	 * be stopped forever
3357 	 */
3358 	smp_mb();
3359 
3360 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3361 		return;
3362 
3363 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3364 		netif_schedule_queue(dev_queue);
3365 #endif
3366 }
3367 
3368 /**
3369  * 	netdev_completed_queue - report bytes and packets completed by device
3370  * 	@dev: network device
3371  * 	@pkts: actual number of packets sent over the medium
3372  * 	@bytes: actual number of bytes sent over the medium
3373  *
3374  * 	Report the number of bytes and packets transmitted by the network device
3375  * 	hardware queue over the physical medium, @bytes must exactly match the
3376  * 	@bytes amount passed to netdev_sent_queue()
3377  */
3378 static inline void netdev_completed_queue(struct net_device *dev,
3379 					  unsigned int pkts, unsigned int bytes)
3380 {
3381 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3382 }
3383 
3384 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3385 {
3386 #ifdef CONFIG_BQL
3387 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3388 	dql_reset(&q->dql);
3389 #endif
3390 }
3391 
3392 /**
3393  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3394  * 	@dev_queue: network device
3395  *
3396  * 	Reset the bytes and packet count of a network device and clear the
3397  * 	software flow control OFF bit for this network device
3398  */
3399 static inline void netdev_reset_queue(struct net_device *dev_queue)
3400 {
3401 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3402 }
3403 
3404 /**
3405  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3406  * 	@dev: network device
3407  * 	@queue_index: given tx queue index
3408  *
3409  * 	Returns 0 if given tx queue index >= number of device tx queues,
3410  * 	otherwise returns the originally passed tx queue index.
3411  */
3412 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3413 {
3414 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3415 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3416 				     dev->name, queue_index,
3417 				     dev->real_num_tx_queues);
3418 		return 0;
3419 	}
3420 
3421 	return queue_index;
3422 }
3423 
3424 /**
3425  *	netif_running - test if up
3426  *	@dev: network device
3427  *
3428  *	Test if the device has been brought up.
3429  */
3430 static inline bool netif_running(const struct net_device *dev)
3431 {
3432 	return test_bit(__LINK_STATE_START, &dev->state);
3433 }
3434 
3435 /*
3436  * Routines to manage the subqueues on a device.  We only need start,
3437  * stop, and a check if it's stopped.  All other device management is
3438  * done at the overall netdevice level.
3439  * Also test the device if we're multiqueue.
3440  */
3441 
3442 /**
3443  *	netif_start_subqueue - allow sending packets on subqueue
3444  *	@dev: network device
3445  *	@queue_index: sub queue index
3446  *
3447  * Start individual transmit queue of a device with multiple transmit queues.
3448  */
3449 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3450 {
3451 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3452 
3453 	netif_tx_start_queue(txq);
3454 }
3455 
3456 /**
3457  *	netif_stop_subqueue - stop sending packets on subqueue
3458  *	@dev: network device
3459  *	@queue_index: sub queue index
3460  *
3461  * Stop individual transmit queue of a device with multiple transmit queues.
3462  */
3463 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3464 {
3465 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3466 	netif_tx_stop_queue(txq);
3467 }
3468 
3469 /**
3470  *	netif_subqueue_stopped - test status of subqueue
3471  *	@dev: network device
3472  *	@queue_index: sub queue index
3473  *
3474  * Check individual transmit queue of a device with multiple transmit queues.
3475  */
3476 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3477 					    u16 queue_index)
3478 {
3479 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3480 
3481 	return netif_tx_queue_stopped(txq);
3482 }
3483 
3484 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3485 					  struct sk_buff *skb)
3486 {
3487 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3488 }
3489 
3490 /**
3491  *	netif_wake_subqueue - allow sending packets on subqueue
3492  *	@dev: network device
3493  *	@queue_index: sub queue index
3494  *
3495  * Resume individual transmit queue of a device with multiple transmit queues.
3496  */
3497 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3498 {
3499 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3500 
3501 	netif_tx_wake_queue(txq);
3502 }
3503 
3504 #ifdef CONFIG_XPS
3505 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3506 			u16 index);
3507 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3508 			  u16 index, bool is_rxqs_map);
3509 
3510 /**
3511  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3512  *	@j: CPU/Rx queue index
3513  *	@mask: bitmask of all cpus/rx queues
3514  *	@nr_bits: number of bits in the bitmask
3515  *
3516  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3517  */
3518 static inline bool netif_attr_test_mask(unsigned long j,
3519 					const unsigned long *mask,
3520 					unsigned int nr_bits)
3521 {
3522 	cpu_max_bits_warn(j, nr_bits);
3523 	return test_bit(j, mask);
3524 }
3525 
3526 /**
3527  *	netif_attr_test_online - Test for online CPU/Rx queue
3528  *	@j: CPU/Rx queue index
3529  *	@online_mask: bitmask for CPUs/Rx queues that are online
3530  *	@nr_bits: number of bits in the bitmask
3531  *
3532  * Returns true if a CPU/Rx queue is online.
3533  */
3534 static inline bool netif_attr_test_online(unsigned long j,
3535 					  const unsigned long *online_mask,
3536 					  unsigned int nr_bits)
3537 {
3538 	cpu_max_bits_warn(j, nr_bits);
3539 
3540 	if (online_mask)
3541 		return test_bit(j, online_mask);
3542 
3543 	return (j < nr_bits);
3544 }
3545 
3546 /**
3547  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3548  *	@n: CPU/Rx queue index
3549  *	@srcp: the cpumask/Rx queue mask pointer
3550  *	@nr_bits: number of bits in the bitmask
3551  *
3552  * Returns >= nr_bits if no further CPUs/Rx queues set.
3553  */
3554 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3555 					       unsigned int nr_bits)
3556 {
3557 	/* -1 is a legal arg here. */
3558 	if (n != -1)
3559 		cpu_max_bits_warn(n, nr_bits);
3560 
3561 	if (srcp)
3562 		return find_next_bit(srcp, nr_bits, n + 1);
3563 
3564 	return n + 1;
3565 }
3566 
3567 /**
3568  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3569  *	@n: CPU/Rx queue index
3570  *	@src1p: the first CPUs/Rx queues mask pointer
3571  *	@src2p: the second CPUs/Rx queues mask pointer
3572  *	@nr_bits: number of bits in the bitmask
3573  *
3574  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3575  */
3576 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3577 					  const unsigned long *src2p,
3578 					  unsigned int nr_bits)
3579 {
3580 	/* -1 is a legal arg here. */
3581 	if (n != -1)
3582 		cpu_max_bits_warn(n, nr_bits);
3583 
3584 	if (src1p && src2p)
3585 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3586 	else if (src1p)
3587 		return find_next_bit(src1p, nr_bits, n + 1);
3588 	else if (src2p)
3589 		return find_next_bit(src2p, nr_bits, n + 1);
3590 
3591 	return n + 1;
3592 }
3593 #else
3594 static inline int netif_set_xps_queue(struct net_device *dev,
3595 				      const struct cpumask *mask,
3596 				      u16 index)
3597 {
3598 	return 0;
3599 }
3600 
3601 static inline int __netif_set_xps_queue(struct net_device *dev,
3602 					const unsigned long *mask,
3603 					u16 index, bool is_rxqs_map)
3604 {
3605 	return 0;
3606 }
3607 #endif
3608 
3609 /**
3610  *	netif_is_multiqueue - test if device has multiple transmit queues
3611  *	@dev: network device
3612  *
3613  * Check if device has multiple transmit queues
3614  */
3615 static inline bool netif_is_multiqueue(const struct net_device *dev)
3616 {
3617 	return dev->num_tx_queues > 1;
3618 }
3619 
3620 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3621 
3622 #ifdef CONFIG_SYSFS
3623 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3624 #else
3625 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3626 						unsigned int rxqs)
3627 {
3628 	dev->real_num_rx_queues = rxqs;
3629 	return 0;
3630 }
3631 #endif
3632 
3633 static inline struct netdev_rx_queue *
3634 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3635 {
3636 	return dev->_rx + rxq;
3637 }
3638 
3639 #ifdef CONFIG_SYSFS
3640 static inline unsigned int get_netdev_rx_queue_index(
3641 		struct netdev_rx_queue *queue)
3642 {
3643 	struct net_device *dev = queue->dev;
3644 	int index = queue - dev->_rx;
3645 
3646 	BUG_ON(index >= dev->num_rx_queues);
3647 	return index;
3648 }
3649 #endif
3650 
3651 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3652 int netif_get_num_default_rss_queues(void);
3653 
3654 enum skb_free_reason {
3655 	SKB_REASON_CONSUMED,
3656 	SKB_REASON_DROPPED,
3657 };
3658 
3659 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3660 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3661 
3662 /*
3663  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3664  * interrupt context or with hardware interrupts being disabled.
3665  * (in_irq() || irqs_disabled())
3666  *
3667  * We provide four helpers that can be used in following contexts :
3668  *
3669  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3670  *  replacing kfree_skb(skb)
3671  *
3672  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3673  *  Typically used in place of consume_skb(skb) in TX completion path
3674  *
3675  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3676  *  replacing kfree_skb(skb)
3677  *
3678  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3679  *  and consumed a packet. Used in place of consume_skb(skb)
3680  */
3681 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3682 {
3683 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3684 }
3685 
3686 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3687 {
3688 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3689 }
3690 
3691 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3692 {
3693 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3694 }
3695 
3696 static inline void dev_consume_skb_any(struct sk_buff *skb)
3697 {
3698 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3699 }
3700 
3701 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3702 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3703 int netif_rx(struct sk_buff *skb);
3704 int netif_rx_ni(struct sk_buff *skb);
3705 int netif_receive_skb(struct sk_buff *skb);
3706 int netif_receive_skb_core(struct sk_buff *skb);
3707 void netif_receive_skb_list(struct list_head *head);
3708 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3709 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3710 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3711 gro_result_t napi_gro_frags(struct napi_struct *napi);
3712 struct packet_offload *gro_find_receive_by_type(__be16 type);
3713 struct packet_offload *gro_find_complete_by_type(__be16 type);
3714 
3715 static inline void napi_free_frags(struct napi_struct *napi)
3716 {
3717 	kfree_skb(napi->skb);
3718 	napi->skb = NULL;
3719 }
3720 
3721 bool netdev_is_rx_handler_busy(struct net_device *dev);
3722 int netdev_rx_handler_register(struct net_device *dev,
3723 			       rx_handler_func_t *rx_handler,
3724 			       void *rx_handler_data);
3725 void netdev_rx_handler_unregister(struct net_device *dev);
3726 
3727 bool dev_valid_name(const char *name);
3728 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3729 		bool *need_copyout);
3730 int dev_ifconf(struct net *net, struct ifconf *, int);
3731 int dev_ethtool(struct net *net, struct ifreq *);
3732 unsigned int dev_get_flags(const struct net_device *);
3733 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3734 		       struct netlink_ext_ack *extack);
3735 int dev_change_flags(struct net_device *dev, unsigned int flags,
3736 		     struct netlink_ext_ack *extack);
3737 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3738 			unsigned int gchanges);
3739 int dev_change_name(struct net_device *, const char *);
3740 int dev_set_alias(struct net_device *, const char *, size_t);
3741 int dev_get_alias(const struct net_device *, char *, size_t);
3742 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3743 int __dev_set_mtu(struct net_device *, int);
3744 int dev_validate_mtu(struct net_device *dev, int mtu,
3745 		     struct netlink_ext_ack *extack);
3746 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3747 		    struct netlink_ext_ack *extack);
3748 int dev_set_mtu(struct net_device *, int);
3749 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3750 void dev_set_group(struct net_device *, int);
3751 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3752 			      struct netlink_ext_ack *extack);
3753 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3754 			struct netlink_ext_ack *extack);
3755 int dev_change_carrier(struct net_device *, bool new_carrier);
3756 int dev_get_phys_port_id(struct net_device *dev,
3757 			 struct netdev_phys_item_id *ppid);
3758 int dev_get_phys_port_name(struct net_device *dev,
3759 			   char *name, size_t len);
3760 int dev_get_port_parent_id(struct net_device *dev,
3761 			   struct netdev_phys_item_id *ppid, bool recurse);
3762 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3763 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3764 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3765 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3766 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3767 				    struct netdev_queue *txq, int *ret);
3768 
3769 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3770 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3771 		      int fd, u32 flags);
3772 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3773 		    enum bpf_netdev_command cmd);
3774 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3775 
3776 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3777 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3778 bool is_skb_forwardable(const struct net_device *dev,
3779 			const struct sk_buff *skb);
3780 
3781 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3782 					       struct sk_buff *skb)
3783 {
3784 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3785 	    unlikely(!is_skb_forwardable(dev, skb))) {
3786 		atomic_long_inc(&dev->rx_dropped);
3787 		kfree_skb(skb);
3788 		return NET_RX_DROP;
3789 	}
3790 
3791 	skb_scrub_packet(skb, true);
3792 	skb->priority = 0;
3793 	return 0;
3794 }
3795 
3796 bool dev_nit_active(struct net_device *dev);
3797 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3798 
3799 extern int		netdev_budget;
3800 extern unsigned int	netdev_budget_usecs;
3801 
3802 /* Called by rtnetlink.c:rtnl_unlock() */
3803 void netdev_run_todo(void);
3804 
3805 /**
3806  *	dev_put - release reference to device
3807  *	@dev: network device
3808  *
3809  * Release reference to device to allow it to be freed.
3810  */
3811 static inline void dev_put(struct net_device *dev)
3812 {
3813 	this_cpu_dec(*dev->pcpu_refcnt);
3814 }
3815 
3816 /**
3817  *	dev_hold - get reference to device
3818  *	@dev: network device
3819  *
3820  * Hold reference to device to keep it from being freed.
3821  */
3822 static inline void dev_hold(struct net_device *dev)
3823 {
3824 	this_cpu_inc(*dev->pcpu_refcnt);
3825 }
3826 
3827 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3828  * and _off may be called from IRQ context, but it is caller
3829  * who is responsible for serialization of these calls.
3830  *
3831  * The name carrier is inappropriate, these functions should really be
3832  * called netif_lowerlayer_*() because they represent the state of any
3833  * kind of lower layer not just hardware media.
3834  */
3835 
3836 void linkwatch_init_dev(struct net_device *dev);
3837 void linkwatch_fire_event(struct net_device *dev);
3838 void linkwatch_forget_dev(struct net_device *dev);
3839 
3840 /**
3841  *	netif_carrier_ok - test if carrier present
3842  *	@dev: network device
3843  *
3844  * Check if carrier is present on device
3845  */
3846 static inline bool netif_carrier_ok(const struct net_device *dev)
3847 {
3848 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3849 }
3850 
3851 unsigned long dev_trans_start(struct net_device *dev);
3852 
3853 void __netdev_watchdog_up(struct net_device *dev);
3854 
3855 void netif_carrier_on(struct net_device *dev);
3856 
3857 void netif_carrier_off(struct net_device *dev);
3858 
3859 /**
3860  *	netif_dormant_on - mark device as dormant.
3861  *	@dev: network device
3862  *
3863  * Mark device as dormant (as per RFC2863).
3864  *
3865  * The dormant state indicates that the relevant interface is not
3866  * actually in a condition to pass packets (i.e., it is not 'up') but is
3867  * in a "pending" state, waiting for some external event.  For "on-
3868  * demand" interfaces, this new state identifies the situation where the
3869  * interface is waiting for events to place it in the up state.
3870  */
3871 static inline void netif_dormant_on(struct net_device *dev)
3872 {
3873 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3874 		linkwatch_fire_event(dev);
3875 }
3876 
3877 /**
3878  *	netif_dormant_off - set device as not dormant.
3879  *	@dev: network device
3880  *
3881  * Device is not in dormant state.
3882  */
3883 static inline void netif_dormant_off(struct net_device *dev)
3884 {
3885 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3886 		linkwatch_fire_event(dev);
3887 }
3888 
3889 /**
3890  *	netif_dormant - test if device is dormant
3891  *	@dev: network device
3892  *
3893  * Check if device is dormant.
3894  */
3895 static inline bool netif_dormant(const struct net_device *dev)
3896 {
3897 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3898 }
3899 
3900 
3901 /**
3902  *	netif_oper_up - test if device is operational
3903  *	@dev: network device
3904  *
3905  * Check if carrier is operational
3906  */
3907 static inline bool netif_oper_up(const struct net_device *dev)
3908 {
3909 	return (dev->operstate == IF_OPER_UP ||
3910 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3911 }
3912 
3913 /**
3914  *	netif_device_present - is device available or removed
3915  *	@dev: network device
3916  *
3917  * Check if device has not been removed from system.
3918  */
3919 static inline bool netif_device_present(struct net_device *dev)
3920 {
3921 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3922 }
3923 
3924 void netif_device_detach(struct net_device *dev);
3925 
3926 void netif_device_attach(struct net_device *dev);
3927 
3928 /*
3929  * Network interface message level settings
3930  */
3931 
3932 enum {
3933 	NETIF_MSG_DRV_BIT,
3934 	NETIF_MSG_PROBE_BIT,
3935 	NETIF_MSG_LINK_BIT,
3936 	NETIF_MSG_TIMER_BIT,
3937 	NETIF_MSG_IFDOWN_BIT,
3938 	NETIF_MSG_IFUP_BIT,
3939 	NETIF_MSG_RX_ERR_BIT,
3940 	NETIF_MSG_TX_ERR_BIT,
3941 	NETIF_MSG_TX_QUEUED_BIT,
3942 	NETIF_MSG_INTR_BIT,
3943 	NETIF_MSG_TX_DONE_BIT,
3944 	NETIF_MSG_RX_STATUS_BIT,
3945 	NETIF_MSG_PKTDATA_BIT,
3946 	NETIF_MSG_HW_BIT,
3947 	NETIF_MSG_WOL_BIT,
3948 
3949 	/* When you add a new bit above, update netif_msg_class_names array
3950 	 * in net/ethtool/common.c
3951 	 */
3952 	NETIF_MSG_CLASS_COUNT,
3953 };
3954 /* Both ethtool_ops interface and internal driver implementation use u32 */
3955 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3956 
3957 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
3958 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3959 
3960 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
3961 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
3962 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
3963 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
3964 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
3965 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
3966 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
3967 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
3968 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
3969 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
3970 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
3971 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
3972 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
3973 #define NETIF_MSG_HW		__NETIF_MSG(HW)
3974 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
3975 
3976 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3977 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3978 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3979 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3980 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3981 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3982 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3983 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3984 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3985 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3986 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3987 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3988 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3989 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3990 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3991 
3992 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3993 {
3994 	/* use default */
3995 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3996 		return default_msg_enable_bits;
3997 	if (debug_value == 0)	/* no output */
3998 		return 0;
3999 	/* set low N bits */
4000 	return (1U << debug_value) - 1;
4001 }
4002 
4003 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4004 {
4005 	spin_lock(&txq->_xmit_lock);
4006 	txq->xmit_lock_owner = cpu;
4007 }
4008 
4009 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4010 {
4011 	__acquire(&txq->_xmit_lock);
4012 	return true;
4013 }
4014 
4015 static inline void __netif_tx_release(struct netdev_queue *txq)
4016 {
4017 	__release(&txq->_xmit_lock);
4018 }
4019 
4020 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4021 {
4022 	spin_lock_bh(&txq->_xmit_lock);
4023 	txq->xmit_lock_owner = smp_processor_id();
4024 }
4025 
4026 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4027 {
4028 	bool ok = spin_trylock(&txq->_xmit_lock);
4029 	if (likely(ok))
4030 		txq->xmit_lock_owner = smp_processor_id();
4031 	return ok;
4032 }
4033 
4034 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4035 {
4036 	txq->xmit_lock_owner = -1;
4037 	spin_unlock(&txq->_xmit_lock);
4038 }
4039 
4040 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4041 {
4042 	txq->xmit_lock_owner = -1;
4043 	spin_unlock_bh(&txq->_xmit_lock);
4044 }
4045 
4046 static inline void txq_trans_update(struct netdev_queue *txq)
4047 {
4048 	if (txq->xmit_lock_owner != -1)
4049 		txq->trans_start = jiffies;
4050 }
4051 
4052 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4053 static inline void netif_trans_update(struct net_device *dev)
4054 {
4055 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4056 
4057 	if (txq->trans_start != jiffies)
4058 		txq->trans_start = jiffies;
4059 }
4060 
4061 /**
4062  *	netif_tx_lock - grab network device transmit lock
4063  *	@dev: network device
4064  *
4065  * Get network device transmit lock
4066  */
4067 static inline void netif_tx_lock(struct net_device *dev)
4068 {
4069 	unsigned int i;
4070 	int cpu;
4071 
4072 	spin_lock(&dev->tx_global_lock);
4073 	cpu = smp_processor_id();
4074 	for (i = 0; i < dev->num_tx_queues; i++) {
4075 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4076 
4077 		/* We are the only thread of execution doing a
4078 		 * freeze, but we have to grab the _xmit_lock in
4079 		 * order to synchronize with threads which are in
4080 		 * the ->hard_start_xmit() handler and already
4081 		 * checked the frozen bit.
4082 		 */
4083 		__netif_tx_lock(txq, cpu);
4084 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4085 		__netif_tx_unlock(txq);
4086 	}
4087 }
4088 
4089 static inline void netif_tx_lock_bh(struct net_device *dev)
4090 {
4091 	local_bh_disable();
4092 	netif_tx_lock(dev);
4093 }
4094 
4095 static inline void netif_tx_unlock(struct net_device *dev)
4096 {
4097 	unsigned int i;
4098 
4099 	for (i = 0; i < dev->num_tx_queues; i++) {
4100 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4101 
4102 		/* No need to grab the _xmit_lock here.  If the
4103 		 * queue is not stopped for another reason, we
4104 		 * force a schedule.
4105 		 */
4106 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4107 		netif_schedule_queue(txq);
4108 	}
4109 	spin_unlock(&dev->tx_global_lock);
4110 }
4111 
4112 static inline void netif_tx_unlock_bh(struct net_device *dev)
4113 {
4114 	netif_tx_unlock(dev);
4115 	local_bh_enable();
4116 }
4117 
4118 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4119 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4120 		__netif_tx_lock(txq, cpu);		\
4121 	} else {					\
4122 		__netif_tx_acquire(txq);		\
4123 	}						\
4124 }
4125 
4126 #define HARD_TX_TRYLOCK(dev, txq)			\
4127 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4128 		__netif_tx_trylock(txq) :		\
4129 		__netif_tx_acquire(txq))
4130 
4131 #define HARD_TX_UNLOCK(dev, txq) {			\
4132 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4133 		__netif_tx_unlock(txq);			\
4134 	} else {					\
4135 		__netif_tx_release(txq);		\
4136 	}						\
4137 }
4138 
4139 static inline void netif_tx_disable(struct net_device *dev)
4140 {
4141 	unsigned int i;
4142 	int cpu;
4143 
4144 	local_bh_disable();
4145 	cpu = smp_processor_id();
4146 	for (i = 0; i < dev->num_tx_queues; i++) {
4147 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4148 
4149 		__netif_tx_lock(txq, cpu);
4150 		netif_tx_stop_queue(txq);
4151 		__netif_tx_unlock(txq);
4152 	}
4153 	local_bh_enable();
4154 }
4155 
4156 static inline void netif_addr_lock(struct net_device *dev)
4157 {
4158 	spin_lock(&dev->addr_list_lock);
4159 }
4160 
4161 static inline void netif_addr_lock_bh(struct net_device *dev)
4162 {
4163 	spin_lock_bh(&dev->addr_list_lock);
4164 }
4165 
4166 static inline void netif_addr_unlock(struct net_device *dev)
4167 {
4168 	spin_unlock(&dev->addr_list_lock);
4169 }
4170 
4171 static inline void netif_addr_unlock_bh(struct net_device *dev)
4172 {
4173 	spin_unlock_bh(&dev->addr_list_lock);
4174 }
4175 
4176 /*
4177  * dev_addrs walker. Should be used only for read access. Call with
4178  * rcu_read_lock held.
4179  */
4180 #define for_each_dev_addr(dev, ha) \
4181 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4182 
4183 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4184 
4185 void ether_setup(struct net_device *dev);
4186 
4187 /* Support for loadable net-drivers */
4188 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4189 				    unsigned char name_assign_type,
4190 				    void (*setup)(struct net_device *),
4191 				    unsigned int txqs, unsigned int rxqs);
4192 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4193 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4194 
4195 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4196 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4197 			 count)
4198 
4199 int register_netdev(struct net_device *dev);
4200 void unregister_netdev(struct net_device *dev);
4201 
4202 /* General hardware address lists handling functions */
4203 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4204 		   struct netdev_hw_addr_list *from_list, int addr_len);
4205 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4206 		      struct netdev_hw_addr_list *from_list, int addr_len);
4207 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4208 		       struct net_device *dev,
4209 		       int (*sync)(struct net_device *, const unsigned char *),
4210 		       int (*unsync)(struct net_device *,
4211 				     const unsigned char *));
4212 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4213 			   struct net_device *dev,
4214 			   int (*sync)(struct net_device *,
4215 				       const unsigned char *, int),
4216 			   int (*unsync)(struct net_device *,
4217 					 const unsigned char *, int));
4218 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4219 			      struct net_device *dev,
4220 			      int (*unsync)(struct net_device *,
4221 					    const unsigned char *, int));
4222 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4223 			  struct net_device *dev,
4224 			  int (*unsync)(struct net_device *,
4225 					const unsigned char *));
4226 void __hw_addr_init(struct netdev_hw_addr_list *list);
4227 
4228 /* Functions used for device addresses handling */
4229 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4230 		 unsigned char addr_type);
4231 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4232 		 unsigned char addr_type);
4233 void dev_addr_flush(struct net_device *dev);
4234 int dev_addr_init(struct net_device *dev);
4235 
4236 /* Functions used for unicast addresses handling */
4237 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4238 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4239 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4240 int dev_uc_sync(struct net_device *to, struct net_device *from);
4241 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4242 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4243 void dev_uc_flush(struct net_device *dev);
4244 void dev_uc_init(struct net_device *dev);
4245 
4246 /**
4247  *  __dev_uc_sync - Synchonize device's unicast list
4248  *  @dev:  device to sync
4249  *  @sync: function to call if address should be added
4250  *  @unsync: function to call if address should be removed
4251  *
4252  *  Add newly added addresses to the interface, and release
4253  *  addresses that have been deleted.
4254  */
4255 static inline int __dev_uc_sync(struct net_device *dev,
4256 				int (*sync)(struct net_device *,
4257 					    const unsigned char *),
4258 				int (*unsync)(struct net_device *,
4259 					      const unsigned char *))
4260 {
4261 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4262 }
4263 
4264 /**
4265  *  __dev_uc_unsync - Remove synchronized addresses from device
4266  *  @dev:  device to sync
4267  *  @unsync: function to call if address should be removed
4268  *
4269  *  Remove all addresses that were added to the device by dev_uc_sync().
4270  */
4271 static inline void __dev_uc_unsync(struct net_device *dev,
4272 				   int (*unsync)(struct net_device *,
4273 						 const unsigned char *))
4274 {
4275 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4276 }
4277 
4278 /* Functions used for multicast addresses handling */
4279 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4280 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4281 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4282 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4283 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4284 int dev_mc_sync(struct net_device *to, struct net_device *from);
4285 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4286 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4287 void dev_mc_flush(struct net_device *dev);
4288 void dev_mc_init(struct net_device *dev);
4289 
4290 /**
4291  *  __dev_mc_sync - Synchonize device's multicast list
4292  *  @dev:  device to sync
4293  *  @sync: function to call if address should be added
4294  *  @unsync: function to call if address should be removed
4295  *
4296  *  Add newly added addresses to the interface, and release
4297  *  addresses that have been deleted.
4298  */
4299 static inline int __dev_mc_sync(struct net_device *dev,
4300 				int (*sync)(struct net_device *,
4301 					    const unsigned char *),
4302 				int (*unsync)(struct net_device *,
4303 					      const unsigned char *))
4304 {
4305 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4306 }
4307 
4308 /**
4309  *  __dev_mc_unsync - Remove synchronized addresses from device
4310  *  @dev:  device to sync
4311  *  @unsync: function to call if address should be removed
4312  *
4313  *  Remove all addresses that were added to the device by dev_mc_sync().
4314  */
4315 static inline void __dev_mc_unsync(struct net_device *dev,
4316 				   int (*unsync)(struct net_device *,
4317 						 const unsigned char *))
4318 {
4319 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4320 }
4321 
4322 /* Functions used for secondary unicast and multicast support */
4323 void dev_set_rx_mode(struct net_device *dev);
4324 void __dev_set_rx_mode(struct net_device *dev);
4325 int dev_set_promiscuity(struct net_device *dev, int inc);
4326 int dev_set_allmulti(struct net_device *dev, int inc);
4327 void netdev_state_change(struct net_device *dev);
4328 void netdev_notify_peers(struct net_device *dev);
4329 void netdev_features_change(struct net_device *dev);
4330 /* Load a device via the kmod */
4331 void dev_load(struct net *net, const char *name);
4332 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4333 					struct rtnl_link_stats64 *storage);
4334 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4335 			     const struct net_device_stats *netdev_stats);
4336 
4337 extern int		netdev_max_backlog;
4338 extern int		netdev_tstamp_prequeue;
4339 extern int		weight_p;
4340 extern int		dev_weight_rx_bias;
4341 extern int		dev_weight_tx_bias;
4342 extern int		dev_rx_weight;
4343 extern int		dev_tx_weight;
4344 extern int		gro_normal_batch;
4345 
4346 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4347 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4348 						     struct list_head **iter);
4349 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4350 						     struct list_head **iter);
4351 
4352 /* iterate through upper list, must be called under RCU read lock */
4353 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4354 	for (iter = &(dev)->adj_list.upper, \
4355 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4356 	     updev; \
4357 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4358 
4359 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4360 				  int (*fn)(struct net_device *upper_dev,
4361 					    void *data),
4362 				  void *data);
4363 
4364 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4365 				  struct net_device *upper_dev);
4366 
4367 bool netdev_has_any_upper_dev(struct net_device *dev);
4368 
4369 void *netdev_lower_get_next_private(struct net_device *dev,
4370 				    struct list_head **iter);
4371 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4372 					struct list_head **iter);
4373 
4374 #define netdev_for_each_lower_private(dev, priv, iter) \
4375 	for (iter = (dev)->adj_list.lower.next, \
4376 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4377 	     priv; \
4378 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4379 
4380 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4381 	for (iter = &(dev)->adj_list.lower, \
4382 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4383 	     priv; \
4384 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4385 
4386 void *netdev_lower_get_next(struct net_device *dev,
4387 				struct list_head **iter);
4388 
4389 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4390 	for (iter = (dev)->adj_list.lower.next, \
4391 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4392 	     ldev; \
4393 	     ldev = netdev_lower_get_next(dev, &(iter)))
4394 
4395 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4396 					     struct list_head **iter);
4397 int netdev_walk_all_lower_dev(struct net_device *dev,
4398 			      int (*fn)(struct net_device *lower_dev,
4399 					void *data),
4400 			      void *data);
4401 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4402 				  int (*fn)(struct net_device *lower_dev,
4403 					    void *data),
4404 				  void *data);
4405 
4406 void *netdev_adjacent_get_private(struct list_head *adj_list);
4407 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4408 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4409 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4410 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4411 			  struct netlink_ext_ack *extack);
4412 int netdev_master_upper_dev_link(struct net_device *dev,
4413 				 struct net_device *upper_dev,
4414 				 void *upper_priv, void *upper_info,
4415 				 struct netlink_ext_ack *extack);
4416 void netdev_upper_dev_unlink(struct net_device *dev,
4417 			     struct net_device *upper_dev);
4418 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4419 				   struct net_device *new_dev,
4420 				   struct net_device *dev,
4421 				   struct netlink_ext_ack *extack);
4422 void netdev_adjacent_change_commit(struct net_device *old_dev,
4423 				   struct net_device *new_dev,
4424 				   struct net_device *dev);
4425 void netdev_adjacent_change_abort(struct net_device *old_dev,
4426 				  struct net_device *new_dev,
4427 				  struct net_device *dev);
4428 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4429 void *netdev_lower_dev_get_private(struct net_device *dev,
4430 				   struct net_device *lower_dev);
4431 void netdev_lower_state_changed(struct net_device *lower_dev,
4432 				void *lower_state_info);
4433 
4434 /* RSS keys are 40 or 52 bytes long */
4435 #define NETDEV_RSS_KEY_LEN 52
4436 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4437 void netdev_rss_key_fill(void *buffer, size_t len);
4438 
4439 int skb_checksum_help(struct sk_buff *skb);
4440 int skb_crc32c_csum_help(struct sk_buff *skb);
4441 int skb_csum_hwoffload_help(struct sk_buff *skb,
4442 			    const netdev_features_t features);
4443 
4444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4445 				  netdev_features_t features, bool tx_path);
4446 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4447 				    netdev_features_t features);
4448 
4449 struct netdev_bonding_info {
4450 	ifslave	slave;
4451 	ifbond	master;
4452 };
4453 
4454 struct netdev_notifier_bonding_info {
4455 	struct netdev_notifier_info info; /* must be first */
4456 	struct netdev_bonding_info  bonding_info;
4457 };
4458 
4459 void netdev_bonding_info_change(struct net_device *dev,
4460 				struct netdev_bonding_info *bonding_info);
4461 
4462 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4463 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4464 #else
4465 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4466 				  const void *data)
4467 {
4468 }
4469 #endif
4470 
4471 static inline
4472 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4473 {
4474 	return __skb_gso_segment(skb, features, true);
4475 }
4476 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4477 
4478 static inline bool can_checksum_protocol(netdev_features_t features,
4479 					 __be16 protocol)
4480 {
4481 	if (protocol == htons(ETH_P_FCOE))
4482 		return !!(features & NETIF_F_FCOE_CRC);
4483 
4484 	/* Assume this is an IP checksum (not SCTP CRC) */
4485 
4486 	if (features & NETIF_F_HW_CSUM) {
4487 		/* Can checksum everything */
4488 		return true;
4489 	}
4490 
4491 	switch (protocol) {
4492 	case htons(ETH_P_IP):
4493 		return !!(features & NETIF_F_IP_CSUM);
4494 	case htons(ETH_P_IPV6):
4495 		return !!(features & NETIF_F_IPV6_CSUM);
4496 	default:
4497 		return false;
4498 	}
4499 }
4500 
4501 #ifdef CONFIG_BUG
4502 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4503 #else
4504 static inline void netdev_rx_csum_fault(struct net_device *dev,
4505 					struct sk_buff *skb)
4506 {
4507 }
4508 #endif
4509 /* rx skb timestamps */
4510 void net_enable_timestamp(void);
4511 void net_disable_timestamp(void);
4512 
4513 #ifdef CONFIG_PROC_FS
4514 int __init dev_proc_init(void);
4515 #else
4516 #define dev_proc_init() 0
4517 #endif
4518 
4519 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4520 					      struct sk_buff *skb, struct net_device *dev,
4521 					      bool more)
4522 {
4523 	__this_cpu_write(softnet_data.xmit.more, more);
4524 	return ops->ndo_start_xmit(skb, dev);
4525 }
4526 
4527 static inline bool netdev_xmit_more(void)
4528 {
4529 	return __this_cpu_read(softnet_data.xmit.more);
4530 }
4531 
4532 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4533 					    struct netdev_queue *txq, bool more)
4534 {
4535 	const struct net_device_ops *ops = dev->netdev_ops;
4536 	netdev_tx_t rc;
4537 
4538 	rc = __netdev_start_xmit(ops, skb, dev, more);
4539 	if (rc == NETDEV_TX_OK)
4540 		txq_trans_update(txq);
4541 
4542 	return rc;
4543 }
4544 
4545 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4546 				const void *ns);
4547 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4548 				 const void *ns);
4549 
4550 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4551 {
4552 	return netdev_class_create_file_ns(class_attr, NULL);
4553 }
4554 
4555 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4556 {
4557 	netdev_class_remove_file_ns(class_attr, NULL);
4558 }
4559 
4560 extern const struct kobj_ns_type_operations net_ns_type_operations;
4561 
4562 const char *netdev_drivername(const struct net_device *dev);
4563 
4564 void linkwatch_run_queue(void);
4565 
4566 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4567 							  netdev_features_t f2)
4568 {
4569 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4570 		if (f1 & NETIF_F_HW_CSUM)
4571 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4572 		else
4573 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4574 	}
4575 
4576 	return f1 & f2;
4577 }
4578 
4579 static inline netdev_features_t netdev_get_wanted_features(
4580 	struct net_device *dev)
4581 {
4582 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4583 }
4584 netdev_features_t netdev_increment_features(netdev_features_t all,
4585 	netdev_features_t one, netdev_features_t mask);
4586 
4587 /* Allow TSO being used on stacked device :
4588  * Performing the GSO segmentation before last device
4589  * is a performance improvement.
4590  */
4591 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4592 							netdev_features_t mask)
4593 {
4594 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4595 }
4596 
4597 int __netdev_update_features(struct net_device *dev);
4598 void netdev_update_features(struct net_device *dev);
4599 void netdev_change_features(struct net_device *dev);
4600 
4601 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4602 					struct net_device *dev);
4603 
4604 netdev_features_t passthru_features_check(struct sk_buff *skb,
4605 					  struct net_device *dev,
4606 					  netdev_features_t features);
4607 netdev_features_t netif_skb_features(struct sk_buff *skb);
4608 
4609 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4610 {
4611 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4612 
4613 	/* check flags correspondence */
4614 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4615 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4616 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4617 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4618 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4619 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4620 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4621 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4622 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4623 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4624 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4625 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4626 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4627 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4628 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4629 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4630 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4631 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4632 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4633 
4634 	return (features & feature) == feature;
4635 }
4636 
4637 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4638 {
4639 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4640 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4641 }
4642 
4643 static inline bool netif_needs_gso(struct sk_buff *skb,
4644 				   netdev_features_t features)
4645 {
4646 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4647 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4648 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4649 }
4650 
4651 static inline void netif_set_gso_max_size(struct net_device *dev,
4652 					  unsigned int size)
4653 {
4654 	dev->gso_max_size = size;
4655 }
4656 
4657 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4658 					int pulled_hlen, u16 mac_offset,
4659 					int mac_len)
4660 {
4661 	skb->protocol = protocol;
4662 	skb->encapsulation = 1;
4663 	skb_push(skb, pulled_hlen);
4664 	skb_reset_transport_header(skb);
4665 	skb->mac_header = mac_offset;
4666 	skb->network_header = skb->mac_header + mac_len;
4667 	skb->mac_len = mac_len;
4668 }
4669 
4670 static inline bool netif_is_macsec(const struct net_device *dev)
4671 {
4672 	return dev->priv_flags & IFF_MACSEC;
4673 }
4674 
4675 static inline bool netif_is_macvlan(const struct net_device *dev)
4676 {
4677 	return dev->priv_flags & IFF_MACVLAN;
4678 }
4679 
4680 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4681 {
4682 	return dev->priv_flags & IFF_MACVLAN_PORT;
4683 }
4684 
4685 static inline bool netif_is_bond_master(const struct net_device *dev)
4686 {
4687 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4688 }
4689 
4690 static inline bool netif_is_bond_slave(const struct net_device *dev)
4691 {
4692 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4693 }
4694 
4695 static inline bool netif_supports_nofcs(struct net_device *dev)
4696 {
4697 	return dev->priv_flags & IFF_SUPP_NOFCS;
4698 }
4699 
4700 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4701 {
4702 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4703 }
4704 
4705 static inline bool netif_is_l3_master(const struct net_device *dev)
4706 {
4707 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4708 }
4709 
4710 static inline bool netif_is_l3_slave(const struct net_device *dev)
4711 {
4712 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4713 }
4714 
4715 static inline bool netif_is_bridge_master(const struct net_device *dev)
4716 {
4717 	return dev->priv_flags & IFF_EBRIDGE;
4718 }
4719 
4720 static inline bool netif_is_bridge_port(const struct net_device *dev)
4721 {
4722 	return dev->priv_flags & IFF_BRIDGE_PORT;
4723 }
4724 
4725 static inline bool netif_is_ovs_master(const struct net_device *dev)
4726 {
4727 	return dev->priv_flags & IFF_OPENVSWITCH;
4728 }
4729 
4730 static inline bool netif_is_ovs_port(const struct net_device *dev)
4731 {
4732 	return dev->priv_flags & IFF_OVS_DATAPATH;
4733 }
4734 
4735 static inline bool netif_is_team_master(const struct net_device *dev)
4736 {
4737 	return dev->priv_flags & IFF_TEAM;
4738 }
4739 
4740 static inline bool netif_is_team_port(const struct net_device *dev)
4741 {
4742 	return dev->priv_flags & IFF_TEAM_PORT;
4743 }
4744 
4745 static inline bool netif_is_lag_master(const struct net_device *dev)
4746 {
4747 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4748 }
4749 
4750 static inline bool netif_is_lag_port(const struct net_device *dev)
4751 {
4752 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4753 }
4754 
4755 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4756 {
4757 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4758 }
4759 
4760 static inline bool netif_is_failover(const struct net_device *dev)
4761 {
4762 	return dev->priv_flags & IFF_FAILOVER;
4763 }
4764 
4765 static inline bool netif_is_failover_slave(const struct net_device *dev)
4766 {
4767 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4768 }
4769 
4770 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4771 static inline void netif_keep_dst(struct net_device *dev)
4772 {
4773 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4774 }
4775 
4776 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4777 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4778 {
4779 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4780 	return dev->priv_flags & IFF_MACSEC;
4781 }
4782 
4783 extern struct pernet_operations __net_initdata loopback_net_ops;
4784 
4785 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4786 
4787 /* netdev_printk helpers, similar to dev_printk */
4788 
4789 static inline const char *netdev_name(const struct net_device *dev)
4790 {
4791 	if (!dev->name[0] || strchr(dev->name, '%'))
4792 		return "(unnamed net_device)";
4793 	return dev->name;
4794 }
4795 
4796 static inline bool netdev_unregistering(const struct net_device *dev)
4797 {
4798 	return dev->reg_state == NETREG_UNREGISTERING;
4799 }
4800 
4801 static inline const char *netdev_reg_state(const struct net_device *dev)
4802 {
4803 	switch (dev->reg_state) {
4804 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4805 	case NETREG_REGISTERED: return "";
4806 	case NETREG_UNREGISTERING: return " (unregistering)";
4807 	case NETREG_UNREGISTERED: return " (unregistered)";
4808 	case NETREG_RELEASED: return " (released)";
4809 	case NETREG_DUMMY: return " (dummy)";
4810 	}
4811 
4812 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4813 	return " (unknown)";
4814 }
4815 
4816 __printf(3, 4) __cold
4817 void netdev_printk(const char *level, const struct net_device *dev,
4818 		   const char *format, ...);
4819 __printf(2, 3) __cold
4820 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4821 __printf(2, 3) __cold
4822 void netdev_alert(const struct net_device *dev, const char *format, ...);
4823 __printf(2, 3) __cold
4824 void netdev_crit(const struct net_device *dev, const char *format, ...);
4825 __printf(2, 3) __cold
4826 void netdev_err(const struct net_device *dev, const char *format, ...);
4827 __printf(2, 3) __cold
4828 void netdev_warn(const struct net_device *dev, const char *format, ...);
4829 __printf(2, 3) __cold
4830 void netdev_notice(const struct net_device *dev, const char *format, ...);
4831 __printf(2, 3) __cold
4832 void netdev_info(const struct net_device *dev, const char *format, ...);
4833 
4834 #define netdev_level_once(level, dev, fmt, ...)			\
4835 do {								\
4836 	static bool __print_once __read_mostly;			\
4837 								\
4838 	if (!__print_once) {					\
4839 		__print_once = true;				\
4840 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4841 	}							\
4842 } while (0)
4843 
4844 #define netdev_emerg_once(dev, fmt, ...) \
4845 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4846 #define netdev_alert_once(dev, fmt, ...) \
4847 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4848 #define netdev_crit_once(dev, fmt, ...) \
4849 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4850 #define netdev_err_once(dev, fmt, ...) \
4851 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4852 #define netdev_warn_once(dev, fmt, ...) \
4853 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4854 #define netdev_notice_once(dev, fmt, ...) \
4855 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4856 #define netdev_info_once(dev, fmt, ...) \
4857 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4858 
4859 #define MODULE_ALIAS_NETDEV(device) \
4860 	MODULE_ALIAS("netdev-" device)
4861 
4862 #if defined(CONFIG_DYNAMIC_DEBUG)
4863 #define netdev_dbg(__dev, format, args...)			\
4864 do {								\
4865 	dynamic_netdev_dbg(__dev, format, ##args);		\
4866 } while (0)
4867 #elif defined(DEBUG)
4868 #define netdev_dbg(__dev, format, args...)			\
4869 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4870 #else
4871 #define netdev_dbg(__dev, format, args...)			\
4872 ({								\
4873 	if (0)							\
4874 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4875 })
4876 #endif
4877 
4878 #if defined(VERBOSE_DEBUG)
4879 #define netdev_vdbg	netdev_dbg
4880 #else
4881 
4882 #define netdev_vdbg(dev, format, args...)			\
4883 ({								\
4884 	if (0)							\
4885 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4886 	0;							\
4887 })
4888 #endif
4889 
4890 /*
4891  * netdev_WARN() acts like dev_printk(), but with the key difference
4892  * of using a WARN/WARN_ON to get the message out, including the
4893  * file/line information and a backtrace.
4894  */
4895 #define netdev_WARN(dev, format, args...)			\
4896 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4897 	     netdev_reg_state(dev), ##args)
4898 
4899 #define netdev_WARN_ONCE(dev, format, args...)				\
4900 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4901 		  netdev_reg_state(dev), ##args)
4902 
4903 /* netif printk helpers, similar to netdev_printk */
4904 
4905 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4906 do {					  			\
4907 	if (netif_msg_##type(priv))				\
4908 		netdev_printk(level, (dev), fmt, ##args);	\
4909 } while (0)
4910 
4911 #define netif_level(level, priv, type, dev, fmt, args...)	\
4912 do {								\
4913 	if (netif_msg_##type(priv))				\
4914 		netdev_##level(dev, fmt, ##args);		\
4915 } while (0)
4916 
4917 #define netif_emerg(priv, type, dev, fmt, args...)		\
4918 	netif_level(emerg, priv, type, dev, fmt, ##args)
4919 #define netif_alert(priv, type, dev, fmt, args...)		\
4920 	netif_level(alert, priv, type, dev, fmt, ##args)
4921 #define netif_crit(priv, type, dev, fmt, args...)		\
4922 	netif_level(crit, priv, type, dev, fmt, ##args)
4923 #define netif_err(priv, type, dev, fmt, args...)		\
4924 	netif_level(err, priv, type, dev, fmt, ##args)
4925 #define netif_warn(priv, type, dev, fmt, args...)		\
4926 	netif_level(warn, priv, type, dev, fmt, ##args)
4927 #define netif_notice(priv, type, dev, fmt, args...)		\
4928 	netif_level(notice, priv, type, dev, fmt, ##args)
4929 #define netif_info(priv, type, dev, fmt, args...)		\
4930 	netif_level(info, priv, type, dev, fmt, ##args)
4931 
4932 #if defined(CONFIG_DYNAMIC_DEBUG)
4933 #define netif_dbg(priv, type, netdev, format, args...)		\
4934 do {								\
4935 	if (netif_msg_##type(priv))				\
4936 		dynamic_netdev_dbg(netdev, format, ##args);	\
4937 } while (0)
4938 #elif defined(DEBUG)
4939 #define netif_dbg(priv, type, dev, format, args...)		\
4940 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4941 #else
4942 #define netif_dbg(priv, type, dev, format, args...)			\
4943 ({									\
4944 	if (0)								\
4945 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4946 	0;								\
4947 })
4948 #endif
4949 
4950 /* if @cond then downgrade to debug, else print at @level */
4951 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4952 	do {                                                              \
4953 		if (cond)                                                 \
4954 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4955 		else                                                      \
4956 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4957 	} while (0)
4958 
4959 #if defined(VERBOSE_DEBUG)
4960 #define netif_vdbg	netif_dbg
4961 #else
4962 #define netif_vdbg(priv, type, dev, format, args...)		\
4963 ({								\
4964 	if (0)							\
4965 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4966 	0;							\
4967 })
4968 #endif
4969 
4970 /*
4971  *	The list of packet types we will receive (as opposed to discard)
4972  *	and the routines to invoke.
4973  *
4974  *	Why 16. Because with 16 the only overlap we get on a hash of the
4975  *	low nibble of the protocol value is RARP/SNAP/X.25.
4976  *
4977  *		0800	IP
4978  *		0001	802.3
4979  *		0002	AX.25
4980  *		0004	802.2
4981  *		8035	RARP
4982  *		0005	SNAP
4983  *		0805	X.25
4984  *		0806	ARP
4985  *		8137	IPX
4986  *		0009	Localtalk
4987  *		86DD	IPv6
4988  */
4989 #define PTYPE_HASH_SIZE	(16)
4990 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4991 
4992 extern struct net_device *blackhole_netdev;
4993 
4994 #endif	/* _LINUX_NETDEVICE_H */
4995