xref: /openbmc/linux/include/linux/netdevice.h (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 					   const struct ethtool_ops *ops);
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 #define NET_ADDR_SET		3	/* address is set using
71 					 * dev_set_mac_address() */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #elif IS_ENABLED(CONFIG_TR)
148 # define LL_MAX_HEADER 48
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 #endif
199 
200 struct neighbour;
201 struct neigh_parms;
202 struct sk_buff;
203 
204 struct netdev_hw_addr {
205 	struct list_head	list;
206 	unsigned char		addr[MAX_ADDR_LEN];
207 	unsigned char		type;
208 #define NETDEV_HW_ADDR_T_LAN		1
209 #define NETDEV_HW_ADDR_T_SAN		2
210 #define NETDEV_HW_ADDR_T_SLAVE		3
211 #define NETDEV_HW_ADDR_T_UNICAST	4
212 #define NETDEV_HW_ADDR_T_MULTICAST	5
213 	bool			synced;
214 	bool			global_use;
215 	int			refcount;
216 	struct rcu_head		rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220 	struct list_head	list;
221 	int			count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 	list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240 	u16		hh_len;
241 	u16		__pad;
242 	seqlock_t	hh_lock;
243 
244 	/* cached hardware header; allow for machine alignment needs.        */
245 #define HH_DATA_MOD	16
246 #define HH_DATA_OFF(__len) \
247 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
248 #define HH_DATA_ALIGN(__len) \
249 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
250 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
251 };
252 
253 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
254  * Alternative is:
255  *   dev->hard_header_len ? (dev->hard_header_len +
256  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
257  *
258  * We could use other alignment values, but we must maintain the
259  * relationship HH alignment <= LL alignment.
260  */
261 #define LL_RESERVED_SPACE(dev) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
264 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265 
266 struct header_ops {
267 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
268 			   unsigned short type, const void *daddr,
269 			   const void *saddr, unsigned int len);
270 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
271 	int	(*rebuild)(struct sk_buff *skb);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 };
277 
278 /* These flag bits are private to the generic network queueing
279  * layer, they may not be explicitly referenced by any other
280  * code.
281  */
282 
283 enum netdev_state_t {
284 	__LINK_STATE_START,
285 	__LINK_STATE_PRESENT,
286 	__LINK_STATE_NOCARRIER,
287 	__LINK_STATE_LINKWATCH_PENDING,
288 	__LINK_STATE_DORMANT,
289 };
290 
291 
292 /*
293  * This structure holds at boot time configured netdevice settings. They
294  * are then used in the device probing.
295  */
296 struct netdev_boot_setup {
297 	char name[IFNAMSIZ];
298 	struct ifmap map;
299 };
300 #define NETDEV_BOOT_SETUP_MAX 8
301 
302 extern int __init netdev_boot_setup(char *str);
303 
304 /*
305  * Structure for NAPI scheduling similar to tasklet but with weighting
306  */
307 struct napi_struct {
308 	/* The poll_list must only be managed by the entity which
309 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
310 	 * whoever atomically sets that bit can add this napi_struct
311 	 * to the per-cpu poll_list, and whoever clears that bit
312 	 * can remove from the list right before clearing the bit.
313 	 */
314 	struct list_head	poll_list;
315 
316 	unsigned long		state;
317 	int			weight;
318 	unsigned int		gro_count;
319 	int			(*poll)(struct napi_struct *, int);
320 #ifdef CONFIG_NETPOLL
321 	spinlock_t		poll_lock;
322 	int			poll_owner;
323 #endif
324 	struct net_device	*dev;
325 	struct sk_buff		*gro_list;
326 	struct sk_buff		*skb;
327 	struct list_head	dev_list;
328 };
329 
330 enum {
331 	NAPI_STATE_SCHED,	/* Poll is scheduled */
332 	NAPI_STATE_DISABLE,	/* Disable pending */
333 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
334 };
335 
336 enum gro_result {
337 	GRO_MERGED,
338 	GRO_MERGED_FREE,
339 	GRO_HELD,
340 	GRO_NORMAL,
341 	GRO_DROP,
342 };
343 typedef enum gro_result gro_result_t;
344 
345 /*
346  * enum rx_handler_result - Possible return values for rx_handlers.
347  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
348  * further.
349  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
350  * case skb->dev was changed by rx_handler.
351  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
352  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
353  *
354  * rx_handlers are functions called from inside __netif_receive_skb(), to do
355  * special processing of the skb, prior to delivery to protocol handlers.
356  *
357  * Currently, a net_device can only have a single rx_handler registered. Trying
358  * to register a second rx_handler will return -EBUSY.
359  *
360  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
361  * To unregister a rx_handler on a net_device, use
362  * netdev_rx_handler_unregister().
363  *
364  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
365  * do with the skb.
366  *
367  * If the rx_handler consumed to skb in some way, it should return
368  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
369  * the skb to be delivered in some other ways.
370  *
371  * If the rx_handler changed skb->dev, to divert the skb to another
372  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
373  * new device will be called if it exists.
374  *
375  * If the rx_handler consider the skb should be ignored, it should return
376  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
377  * are registered on exact device (ptype->dev == skb->dev).
378  *
379  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
380  * delivered, it should return RX_HANDLER_PASS.
381  *
382  * A device without a registered rx_handler will behave as if rx_handler
383  * returned RX_HANDLER_PASS.
384  */
385 
386 enum rx_handler_result {
387 	RX_HANDLER_CONSUMED,
388 	RX_HANDLER_ANOTHER,
389 	RX_HANDLER_EXACT,
390 	RX_HANDLER_PASS,
391 };
392 typedef enum rx_handler_result rx_handler_result_t;
393 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
394 
395 extern void __napi_schedule(struct napi_struct *n);
396 
397 static inline bool napi_disable_pending(struct napi_struct *n)
398 {
399 	return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401 
402 /**
403  *	napi_schedule_prep - check if napi can be scheduled
404  *	@n: napi context
405  *
406  * Test if NAPI routine is already running, and if not mark
407  * it as running.  This is used as a condition variable
408  * insure only one NAPI poll instance runs.  We also make
409  * sure there is no pending NAPI disable.
410  */
411 static inline bool napi_schedule_prep(struct napi_struct *n)
412 {
413 	return !napi_disable_pending(n) &&
414 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416 
417 /**
418  *	napi_schedule - schedule NAPI poll
419  *	@n: napi context
420  *
421  * Schedule NAPI poll routine to be called if it is not already
422  * running.
423  */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 	if (napi_schedule_prep(n))
427 		__napi_schedule(n);
428 }
429 
430 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
431 static inline bool napi_reschedule(struct napi_struct *napi)
432 {
433 	if (napi_schedule_prep(napi)) {
434 		__napi_schedule(napi);
435 		return true;
436 	}
437 	return false;
438 }
439 
440 /**
441  *	napi_complete - NAPI processing complete
442  *	@n: napi context
443  *
444  * Mark NAPI processing as complete.
445  */
446 extern void __napi_complete(struct napi_struct *n);
447 extern void napi_complete(struct napi_struct *n);
448 
449 /**
450  *	napi_disable - prevent NAPI from scheduling
451  *	@n: napi context
452  *
453  * Stop NAPI from being scheduled on this context.
454  * Waits till any outstanding processing completes.
455  */
456 static inline void napi_disable(struct napi_struct *n)
457 {
458 	set_bit(NAPI_STATE_DISABLE, &n->state);
459 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
460 		msleep(1);
461 	clear_bit(NAPI_STATE_DISABLE, &n->state);
462 }
463 
464 /**
465  *	napi_enable - enable NAPI scheduling
466  *	@n: napi context
467  *
468  * Resume NAPI from being scheduled on this context.
469  * Must be paired with napi_disable.
470  */
471 static inline void napi_enable(struct napi_struct *n)
472 {
473 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
474 	smp_mb__before_clear_bit();
475 	clear_bit(NAPI_STATE_SCHED, &n->state);
476 }
477 
478 #ifdef CONFIG_SMP
479 /**
480  *	napi_synchronize - wait until NAPI is not running
481  *	@n: napi context
482  *
483  * Wait until NAPI is done being scheduled on this context.
484  * Waits till any outstanding processing completes but
485  * does not disable future activations.
486  */
487 static inline void napi_synchronize(const struct napi_struct *n)
488 {
489 	while (test_bit(NAPI_STATE_SCHED, &n->state))
490 		msleep(1);
491 }
492 #else
493 # define napi_synchronize(n)	barrier()
494 #endif
495 
496 enum netdev_queue_state_t {
497 	__QUEUE_STATE_DRV_XOFF,
498 	__QUEUE_STATE_STACK_XOFF,
499 	__QUEUE_STATE_FROZEN,
500 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
501 			      (1 << __QUEUE_STATE_STACK_XOFF))
502 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
503 					(1 << __QUEUE_STATE_FROZEN))
504 };
505 /*
506  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
507  * netif_tx_* functions below are used to manipulate this flag.  The
508  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
509  * queue independently.  The netif_xmit_*stopped functions below are called
510  * to check if the queue has been stopped by the driver or stack (either
511  * of the XOFF bits are set in the state).  Drivers should not need to call
512  * netif_xmit*stopped functions, they should only be using netif_tx_*.
513  */
514 
515 struct netdev_queue {
516 /*
517  * read mostly part
518  */
519 	struct net_device	*dev;
520 	struct Qdisc		*qdisc;
521 	struct Qdisc		*qdisc_sleeping;
522 #ifdef CONFIG_SYSFS
523 	struct kobject		kobj;
524 #endif
525 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
526 	int			numa_node;
527 #endif
528 /*
529  * write mostly part
530  */
531 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
532 	int			xmit_lock_owner;
533 	/*
534 	 * please use this field instead of dev->trans_start
535 	 */
536 	unsigned long		trans_start;
537 
538 	/*
539 	 * Number of TX timeouts for this queue
540 	 * (/sys/class/net/DEV/Q/trans_timeout)
541 	 */
542 	unsigned long		trans_timeout;
543 
544 	unsigned long		state;
545 
546 #ifdef CONFIG_BQL
547 	struct dql		dql;
548 #endif
549 } ____cacheline_aligned_in_smp;
550 
551 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
552 {
553 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 	return q->numa_node;
555 #else
556 	return NUMA_NO_NODE;
557 #endif
558 }
559 
560 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
561 {
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 	q->numa_node = node;
564 #endif
565 }
566 
567 #ifdef CONFIG_RPS
568 /*
569  * This structure holds an RPS map which can be of variable length.  The
570  * map is an array of CPUs.
571  */
572 struct rps_map {
573 	unsigned int len;
574 	struct rcu_head rcu;
575 	u16 cpus[0];
576 };
577 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
578 
579 /*
580  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
581  * tail pointer for that CPU's input queue at the time of last enqueue, and
582  * a hardware filter index.
583  */
584 struct rps_dev_flow {
585 	u16 cpu;
586 	u16 filter;
587 	unsigned int last_qtail;
588 };
589 #define RPS_NO_FILTER 0xffff
590 
591 /*
592  * The rps_dev_flow_table structure contains a table of flow mappings.
593  */
594 struct rps_dev_flow_table {
595 	unsigned int mask;
596 	struct rcu_head rcu;
597 	struct work_struct free_work;
598 	struct rps_dev_flow flows[0];
599 };
600 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
601     ((_num) * sizeof(struct rps_dev_flow)))
602 
603 /*
604  * The rps_sock_flow_table contains mappings of flows to the last CPU
605  * on which they were processed by the application (set in recvmsg).
606  */
607 struct rps_sock_flow_table {
608 	unsigned int mask;
609 	u16 ents[0];
610 };
611 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
612     ((_num) * sizeof(u16)))
613 
614 #define RPS_NO_CPU 0xffff
615 
616 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
617 					u32 hash)
618 {
619 	if (table && hash) {
620 		unsigned int cpu, index = hash & table->mask;
621 
622 		/* We only give a hint, preemption can change cpu under us */
623 		cpu = raw_smp_processor_id();
624 
625 		if (table->ents[index] != cpu)
626 			table->ents[index] = cpu;
627 	}
628 }
629 
630 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
631 				       u32 hash)
632 {
633 	if (table && hash)
634 		table->ents[hash & table->mask] = RPS_NO_CPU;
635 }
636 
637 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
638 
639 #ifdef CONFIG_RFS_ACCEL
640 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
641 				u32 flow_id, u16 filter_id);
642 #endif
643 
644 /* This structure contains an instance of an RX queue. */
645 struct netdev_rx_queue {
646 	struct rps_map __rcu		*rps_map;
647 	struct rps_dev_flow_table __rcu	*rps_flow_table;
648 	struct kobject			kobj;
649 	struct net_device		*dev;
650 } ____cacheline_aligned_in_smp;
651 #endif /* CONFIG_RPS */
652 
653 #ifdef CONFIG_XPS
654 /*
655  * This structure holds an XPS map which can be of variable length.  The
656  * map is an array of queues.
657  */
658 struct xps_map {
659 	unsigned int len;
660 	unsigned int alloc_len;
661 	struct rcu_head rcu;
662 	u16 queues[0];
663 };
664 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
665 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
666     / sizeof(u16))
667 
668 /*
669  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
670  */
671 struct xps_dev_maps {
672 	struct rcu_head rcu;
673 	struct xps_map __rcu *cpu_map[0];
674 };
675 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
676     (nr_cpu_ids * sizeof(struct xps_map *)))
677 #endif /* CONFIG_XPS */
678 
679 #define TC_MAX_QUEUE	16
680 #define TC_BITMASK	15
681 /* HW offloaded queuing disciplines txq count and offset maps */
682 struct netdev_tc_txq {
683 	u16 count;
684 	u16 offset;
685 };
686 
687 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
688 /*
689  * This structure is to hold information about the device
690  * configured to run FCoE protocol stack.
691  */
692 struct netdev_fcoe_hbainfo {
693 	char	manufacturer[64];
694 	char	serial_number[64];
695 	char	hardware_version[64];
696 	char	driver_version[64];
697 	char	optionrom_version[64];
698 	char	firmware_version[64];
699 	char	model[256];
700 	char	model_description[256];
701 };
702 #endif
703 
704 /*
705  * This structure defines the management hooks for network devices.
706  * The following hooks can be defined; unless noted otherwise, they are
707  * optional and can be filled with a null pointer.
708  *
709  * int (*ndo_init)(struct net_device *dev);
710  *     This function is called once when network device is registered.
711  *     The network device can use this to any late stage initializaton
712  *     or semantic validattion. It can fail with an error code which will
713  *     be propogated back to register_netdev
714  *
715  * void (*ndo_uninit)(struct net_device *dev);
716  *     This function is called when device is unregistered or when registration
717  *     fails. It is not called if init fails.
718  *
719  * int (*ndo_open)(struct net_device *dev);
720  *     This function is called when network device transistions to the up
721  *     state.
722  *
723  * int (*ndo_stop)(struct net_device *dev);
724  *     This function is called when network device transistions to the down
725  *     state.
726  *
727  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
728  *                               struct net_device *dev);
729  *	Called when a packet needs to be transmitted.
730  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
731  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
732  *	Required can not be NULL.
733  *
734  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
735  *	Called to decide which queue to when device supports multiple
736  *	transmit queues.
737  *
738  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
739  *	This function is called to allow device receiver to make
740  *	changes to configuration when multicast or promiscious is enabled.
741  *
742  * void (*ndo_set_rx_mode)(struct net_device *dev);
743  *	This function is called device changes address list filtering.
744  *	If driver handles unicast address filtering, it should set
745  *	IFF_UNICAST_FLT to its priv_flags.
746  *
747  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
748  *	This function  is called when the Media Access Control address
749  *	needs to be changed. If this interface is not defined, the
750  *	mac address can not be changed.
751  *
752  * int (*ndo_validate_addr)(struct net_device *dev);
753  *	Test if Media Access Control address is valid for the device.
754  *
755  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
756  *	Called when a user request an ioctl which can't be handled by
757  *	the generic interface code. If not defined ioctl's return
758  *	not supported error code.
759  *
760  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
761  *	Used to set network devices bus interface parameters. This interface
762  *	is retained for legacy reason, new devices should use the bus
763  *	interface (PCI) for low level management.
764  *
765  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
766  *	Called when a user wants to change the Maximum Transfer Unit
767  *	of a device. If not defined, any request to change MTU will
768  *	will return an error.
769  *
770  * void (*ndo_tx_timeout)(struct net_device *dev);
771  *	Callback uses when the transmitter has not made any progress
772  *	for dev->watchdog ticks.
773  *
774  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
775  *                      struct rtnl_link_stats64 *storage);
776  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
777  *	Called when a user wants to get the network device usage
778  *	statistics. Drivers must do one of the following:
779  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
780  *	   rtnl_link_stats64 structure passed by the caller.
781  *	2. Define @ndo_get_stats to update a net_device_stats structure
782  *	   (which should normally be dev->stats) and return a pointer to
783  *	   it. The structure may be changed asynchronously only if each
784  *	   field is written atomically.
785  *	3. Update dev->stats asynchronously and atomically, and define
786  *	   neither operation.
787  *
788  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
789  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
790  *	this function is called when a VLAN id is registered.
791  *
792  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
793  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
794  *	this function is called when a VLAN id is unregistered.
795  *
796  * void (*ndo_poll_controller)(struct net_device *dev);
797  *
798  *	SR-IOV management functions.
799  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
800  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
801  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
802  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
803  * int (*ndo_get_vf_config)(struct net_device *dev,
804  *			    int vf, struct ifla_vf_info *ivf);
805  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
806  *			  struct nlattr *port[]);
807  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
808  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
809  * 	Called to setup 'tc' number of traffic classes in the net device. This
810  * 	is always called from the stack with the rtnl lock held and netif tx
811  * 	queues stopped. This allows the netdevice to perform queue management
812  * 	safely.
813  *
814  *	Fiber Channel over Ethernet (FCoE) offload functions.
815  * int (*ndo_fcoe_enable)(struct net_device *dev);
816  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
817  *	so the underlying device can perform whatever needed configuration or
818  *	initialization to support acceleration of FCoE traffic.
819  *
820  * int (*ndo_fcoe_disable)(struct net_device *dev);
821  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
822  *	so the underlying device can perform whatever needed clean-ups to
823  *	stop supporting acceleration of FCoE traffic.
824  *
825  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
826  *			     struct scatterlist *sgl, unsigned int sgc);
827  *	Called when the FCoE Initiator wants to initialize an I/O that
828  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
829  *	perform necessary setup and returns 1 to indicate the device is set up
830  *	successfully to perform DDP on this I/O, otherwise this returns 0.
831  *
832  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
833  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
834  *	indicated by the FC exchange id 'xid', so the underlying device can
835  *	clean up and reuse resources for later DDP requests.
836  *
837  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
838  *			      struct scatterlist *sgl, unsigned int sgc);
839  *	Called when the FCoE Target wants to initialize an I/O that
840  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
841  *	perform necessary setup and returns 1 to indicate the device is set up
842  *	successfully to perform DDP on this I/O, otherwise this returns 0.
843  *
844  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
845  *			       struct netdev_fcoe_hbainfo *hbainfo);
846  *	Called when the FCoE Protocol stack wants information on the underlying
847  *	device. This information is utilized by the FCoE protocol stack to
848  *	register attributes with Fiber Channel management service as per the
849  *	FC-GS Fabric Device Management Information(FDMI) specification.
850  *
851  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
852  *	Called when the underlying device wants to override default World Wide
853  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
854  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
855  *	protocol stack to use.
856  *
857  *	RFS acceleration.
858  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
859  *			    u16 rxq_index, u32 flow_id);
860  *	Set hardware filter for RFS.  rxq_index is the target queue index;
861  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
862  *	Return the filter ID on success, or a negative error code.
863  *
864  *	Slave management functions (for bridge, bonding, etc).
865  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
866  *	Called to make another netdev an underling.
867  *
868  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
869  *	Called to release previously enslaved netdev.
870  *
871  *      Feature/offload setting functions.
872  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
873  *		netdev_features_t features);
874  *	Adjusts the requested feature flags according to device-specific
875  *	constraints, and returns the resulting flags. Must not modify
876  *	the device state.
877  *
878  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
879  *	Called to update device configuration to new features. Passed
880  *	feature set might be less than what was returned by ndo_fix_features()).
881  *	Must return >0 or -errno if it changed dev->features itself.
882  *
883  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
884  *		      struct net_device *dev,
885  *		      const unsigned char *addr, u16 flags)
886  *	Adds an FDB entry to dev for addr.
887  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
888  *		      struct net_device *dev,
889  *		      const unsigned char *addr)
890  *	Deletes the FDB entry from dev coresponding to addr.
891  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
892  *		       struct net_device *dev, int idx)
893  *	Used to add FDB entries to dump requests. Implementers should add
894  *	entries to skb and update idx with the number of entries.
895  *
896  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
897  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
898  *			     struct net_device *dev)
899  *
900  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
901  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
902  *	which do not represent real hardware may define this to allow their
903  *	userspace components to manage their virtual carrier state. Devices
904  *	that determine carrier state from physical hardware properties (eg
905  *	network cables) or protocol-dependent mechanisms (eg
906  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
907  */
908 struct net_device_ops {
909 	int			(*ndo_init)(struct net_device *dev);
910 	void			(*ndo_uninit)(struct net_device *dev);
911 	int			(*ndo_open)(struct net_device *dev);
912 	int			(*ndo_stop)(struct net_device *dev);
913 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
914 						   struct net_device *dev);
915 	u16			(*ndo_select_queue)(struct net_device *dev,
916 						    struct sk_buff *skb);
917 	void			(*ndo_change_rx_flags)(struct net_device *dev,
918 						       int flags);
919 	void			(*ndo_set_rx_mode)(struct net_device *dev);
920 	int			(*ndo_set_mac_address)(struct net_device *dev,
921 						       void *addr);
922 	int			(*ndo_validate_addr)(struct net_device *dev);
923 	int			(*ndo_do_ioctl)(struct net_device *dev,
924 					        struct ifreq *ifr, int cmd);
925 	int			(*ndo_set_config)(struct net_device *dev,
926 					          struct ifmap *map);
927 	int			(*ndo_change_mtu)(struct net_device *dev,
928 						  int new_mtu);
929 	int			(*ndo_neigh_setup)(struct net_device *dev,
930 						   struct neigh_parms *);
931 	void			(*ndo_tx_timeout) (struct net_device *dev);
932 
933 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
934 						     struct rtnl_link_stats64 *storage);
935 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
936 
937 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
938 						       unsigned short vid);
939 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
940 						        unsigned short vid);
941 #ifdef CONFIG_NET_POLL_CONTROLLER
942 	void                    (*ndo_poll_controller)(struct net_device *dev);
943 	int			(*ndo_netpoll_setup)(struct net_device *dev,
944 						     struct netpoll_info *info,
945 						     gfp_t gfp);
946 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
947 #endif
948 	int			(*ndo_set_vf_mac)(struct net_device *dev,
949 						  int queue, u8 *mac);
950 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
951 						   int queue, u16 vlan, u8 qos);
952 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
953 						      int vf, int rate);
954 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
955 						       int vf, bool setting);
956 	int			(*ndo_get_vf_config)(struct net_device *dev,
957 						     int vf,
958 						     struct ifla_vf_info *ivf);
959 	int			(*ndo_set_vf_port)(struct net_device *dev,
960 						   int vf,
961 						   struct nlattr *port[]);
962 	int			(*ndo_get_vf_port)(struct net_device *dev,
963 						   int vf, struct sk_buff *skb);
964 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
965 #if IS_ENABLED(CONFIG_FCOE)
966 	int			(*ndo_fcoe_enable)(struct net_device *dev);
967 	int			(*ndo_fcoe_disable)(struct net_device *dev);
968 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
969 						      u16 xid,
970 						      struct scatterlist *sgl,
971 						      unsigned int sgc);
972 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
973 						     u16 xid);
974 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
975 						       u16 xid,
976 						       struct scatterlist *sgl,
977 						       unsigned int sgc);
978 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
979 							struct netdev_fcoe_hbainfo *hbainfo);
980 #endif
981 
982 #if IS_ENABLED(CONFIG_LIBFCOE)
983 #define NETDEV_FCOE_WWNN 0
984 #define NETDEV_FCOE_WWPN 1
985 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
986 						    u64 *wwn, int type);
987 #endif
988 
989 #ifdef CONFIG_RFS_ACCEL
990 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
991 						     const struct sk_buff *skb,
992 						     u16 rxq_index,
993 						     u32 flow_id);
994 #endif
995 	int			(*ndo_add_slave)(struct net_device *dev,
996 						 struct net_device *slave_dev);
997 	int			(*ndo_del_slave)(struct net_device *dev,
998 						 struct net_device *slave_dev);
999 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1000 						    netdev_features_t features);
1001 	int			(*ndo_set_features)(struct net_device *dev,
1002 						    netdev_features_t features);
1003 	int			(*ndo_neigh_construct)(struct neighbour *n);
1004 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1005 
1006 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1007 					       struct nlattr *tb[],
1008 					       struct net_device *dev,
1009 					       const unsigned char *addr,
1010 					       u16 flags);
1011 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1012 					       struct nlattr *tb[],
1013 					       struct net_device *dev,
1014 					       const unsigned char *addr);
1015 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1016 						struct netlink_callback *cb,
1017 						struct net_device *dev,
1018 						int idx);
1019 
1020 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1021 						      struct nlmsghdr *nlh);
1022 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1023 						      u32 pid, u32 seq,
1024 						      struct net_device *dev,
1025 						      u32 filter_mask);
1026 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1027 						      struct nlmsghdr *nlh);
1028 	int			(*ndo_change_carrier)(struct net_device *dev,
1029 						      bool new_carrier);
1030 };
1031 
1032 /*
1033  *	The DEVICE structure.
1034  *	Actually, this whole structure is a big mistake.  It mixes I/O
1035  *	data with strictly "high-level" data, and it has to know about
1036  *	almost every data structure used in the INET module.
1037  *
1038  *	FIXME: cleanup struct net_device such that network protocol info
1039  *	moves out.
1040  */
1041 
1042 struct net_device {
1043 
1044 	/*
1045 	 * This is the first field of the "visible" part of this structure
1046 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1047 	 * of the interface.
1048 	 */
1049 	char			name[IFNAMSIZ];
1050 
1051 	/* device name hash chain, please keep it close to name[] */
1052 	struct hlist_node	name_hlist;
1053 
1054 	/* snmp alias */
1055 	char 			*ifalias;
1056 
1057 	/*
1058 	 *	I/O specific fields
1059 	 *	FIXME: Merge these and struct ifmap into one
1060 	 */
1061 	unsigned long		mem_end;	/* shared mem end	*/
1062 	unsigned long		mem_start;	/* shared mem start	*/
1063 	unsigned long		base_addr;	/* device I/O address	*/
1064 	unsigned int		irq;		/* device IRQ number	*/
1065 
1066 	/*
1067 	 *	Some hardware also needs these fields, but they are not
1068 	 *	part of the usual set specified in Space.c.
1069 	 */
1070 
1071 	unsigned long		state;
1072 
1073 	struct list_head	dev_list;
1074 	struct list_head	napi_list;
1075 	struct list_head	unreg_list;
1076 
1077 	/* currently active device features */
1078 	netdev_features_t	features;
1079 	/* user-changeable features */
1080 	netdev_features_t	hw_features;
1081 	/* user-requested features */
1082 	netdev_features_t	wanted_features;
1083 	/* mask of features inheritable by VLAN devices */
1084 	netdev_features_t	vlan_features;
1085 	/* mask of features inherited by encapsulating devices
1086 	 * This field indicates what encapsulation offloads
1087 	 * the hardware is capable of doing, and drivers will
1088 	 * need to set them appropriately.
1089 	 */
1090 	netdev_features_t	hw_enc_features;
1091 
1092 	/* Interface index. Unique device identifier	*/
1093 	int			ifindex;
1094 	int			iflink;
1095 
1096 	struct net_device_stats	stats;
1097 	atomic_long_t		rx_dropped; /* dropped packets by core network
1098 					     * Do not use this in drivers.
1099 					     */
1100 
1101 #ifdef CONFIG_WIRELESS_EXT
1102 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1103 	 * See <net/iw_handler.h> for details. Jean II */
1104 	const struct iw_handler_def *	wireless_handlers;
1105 	/* Instance data managed by the core of Wireless Extensions. */
1106 	struct iw_public_data *	wireless_data;
1107 #endif
1108 	/* Management operations */
1109 	const struct net_device_ops *netdev_ops;
1110 	const struct ethtool_ops *ethtool_ops;
1111 
1112 	/* Hardware header description */
1113 	const struct header_ops *header_ops;
1114 
1115 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1116 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1117 					     * See if.h for definitions. */
1118 	unsigned short		gflags;
1119 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1120 
1121 	unsigned char		operstate; /* RFC2863 operstate */
1122 	unsigned char		link_mode; /* mapping policy to operstate */
1123 
1124 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1125 	unsigned char		dma;		/* DMA channel		*/
1126 
1127 	unsigned int		mtu;	/* interface MTU value		*/
1128 	unsigned short		type;	/* interface hardware type	*/
1129 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1130 
1131 	/* extra head- and tailroom the hardware may need, but not in all cases
1132 	 * can this be guaranteed, especially tailroom. Some cases also use
1133 	 * LL_MAX_HEADER instead to allocate the skb.
1134 	 */
1135 	unsigned short		needed_headroom;
1136 	unsigned short		needed_tailroom;
1137 
1138 	/* Interface address info. */
1139 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1140 	unsigned char		addr_assign_type; /* hw address assignment type */
1141 	unsigned char		addr_len;	/* hardware address length	*/
1142 	unsigned char		neigh_priv_len;
1143 	unsigned short          dev_id;		/* for shared network cards */
1144 
1145 	spinlock_t		addr_list_lock;
1146 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1147 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1148 	bool			uc_promisc;
1149 	unsigned int		promiscuity;
1150 	unsigned int		allmulti;
1151 
1152 
1153 	/* Protocol specific pointers */
1154 
1155 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1156 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1157 #endif
1158 #if IS_ENABLED(CONFIG_NET_DSA)
1159 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1160 #endif
1161 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1162 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1163 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1164 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1165 	void			*ax25_ptr;	/* AX.25 specific data */
1166 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1167 						   assign before registering */
1168 
1169 /*
1170  * Cache lines mostly used on receive path (including eth_type_trans())
1171  */
1172 	unsigned long		last_rx;	/* Time of last Rx
1173 						 * This should not be set in
1174 						 * drivers, unless really needed,
1175 						 * because network stack (bonding)
1176 						 * use it if/when necessary, to
1177 						 * avoid dirtying this cache line.
1178 						 */
1179 
1180 	struct list_head	upper_dev_list; /* List of upper devices */
1181 
1182 	/* Interface address info used in eth_type_trans() */
1183 	unsigned char		*dev_addr;	/* hw address, (before bcast
1184 						   because most packets are
1185 						   unicast) */
1186 
1187 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1188 						      hw addresses */
1189 
1190 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1191 
1192 #ifdef CONFIG_SYSFS
1193 	struct kset		*queues_kset;
1194 #endif
1195 
1196 #ifdef CONFIG_RPS
1197 	struct netdev_rx_queue	*_rx;
1198 
1199 	/* Number of RX queues allocated at register_netdev() time */
1200 	unsigned int		num_rx_queues;
1201 
1202 	/* Number of RX queues currently active in device */
1203 	unsigned int		real_num_rx_queues;
1204 
1205 #ifdef CONFIG_RFS_ACCEL
1206 	/* CPU reverse-mapping for RX completion interrupts, indexed
1207 	 * by RX queue number.  Assigned by driver.  This must only be
1208 	 * set if the ndo_rx_flow_steer operation is defined. */
1209 	struct cpu_rmap		*rx_cpu_rmap;
1210 #endif
1211 #endif
1212 
1213 	rx_handler_func_t __rcu	*rx_handler;
1214 	void __rcu		*rx_handler_data;
1215 
1216 	struct netdev_queue __rcu *ingress_queue;
1217 
1218 /*
1219  * Cache lines mostly used on transmit path
1220  */
1221 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1222 
1223 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1224 	unsigned int		num_tx_queues;
1225 
1226 	/* Number of TX queues currently active in device  */
1227 	unsigned int		real_num_tx_queues;
1228 
1229 	/* root qdisc from userspace point of view */
1230 	struct Qdisc		*qdisc;
1231 
1232 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1233 	spinlock_t		tx_global_lock;
1234 
1235 #ifdef CONFIG_XPS
1236 	struct xps_dev_maps __rcu *xps_maps;
1237 #endif
1238 
1239 	/* These may be needed for future network-power-down code. */
1240 
1241 	/*
1242 	 * trans_start here is expensive for high speed devices on SMP,
1243 	 * please use netdev_queue->trans_start instead.
1244 	 */
1245 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1246 
1247 	int			watchdog_timeo; /* used by dev_watchdog() */
1248 	struct timer_list	watchdog_timer;
1249 
1250 	/* Number of references to this device */
1251 	int __percpu		*pcpu_refcnt;
1252 
1253 	/* delayed register/unregister */
1254 	struct list_head	todo_list;
1255 	/* device index hash chain */
1256 	struct hlist_node	index_hlist;
1257 
1258 	struct list_head	link_watch_list;
1259 
1260 	/* register/unregister state machine */
1261 	enum { NETREG_UNINITIALIZED=0,
1262 	       NETREG_REGISTERED,	/* completed register_netdevice */
1263 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1264 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1265 	       NETREG_RELEASED,		/* called free_netdev */
1266 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1267 	} reg_state:8;
1268 
1269 	bool dismantle; /* device is going do be freed */
1270 
1271 	enum {
1272 		RTNL_LINK_INITIALIZED,
1273 		RTNL_LINK_INITIALIZING,
1274 	} rtnl_link_state:16;
1275 
1276 	/* Called from unregister, can be used to call free_netdev */
1277 	void (*destructor)(struct net_device *dev);
1278 
1279 #ifdef CONFIG_NETPOLL
1280 	struct netpoll_info __rcu	*npinfo;
1281 #endif
1282 
1283 #ifdef CONFIG_NET_NS
1284 	/* Network namespace this network device is inside */
1285 	struct net		*nd_net;
1286 #endif
1287 
1288 	/* mid-layer private */
1289 	union {
1290 		void				*ml_priv;
1291 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1292 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1293 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1294 		struct pcpu_vstats __percpu	*vstats; /* veth stats */
1295 	};
1296 	/* GARP */
1297 	struct garp_port __rcu	*garp_port;
1298 	/* MRP */
1299 	struct mrp_port __rcu	*mrp_port;
1300 
1301 	/* class/net/name entry */
1302 	struct device		dev;
1303 	/* space for optional device, statistics, and wireless sysfs groups */
1304 	const struct attribute_group *sysfs_groups[4];
1305 
1306 	/* rtnetlink link ops */
1307 	const struct rtnl_link_ops *rtnl_link_ops;
1308 
1309 	/* for setting kernel sock attribute on TCP connection setup */
1310 #define GSO_MAX_SIZE		65536
1311 	unsigned int		gso_max_size;
1312 #define GSO_MAX_SEGS		65535
1313 	u16			gso_max_segs;
1314 
1315 #ifdef CONFIG_DCB
1316 	/* Data Center Bridging netlink ops */
1317 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1318 #endif
1319 	u8 num_tc;
1320 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1321 	u8 prio_tc_map[TC_BITMASK + 1];
1322 
1323 #if IS_ENABLED(CONFIG_FCOE)
1324 	/* max exchange id for FCoE LRO by ddp */
1325 	unsigned int		fcoe_ddp_xid;
1326 #endif
1327 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1328 	struct netprio_map __rcu *priomap;
1329 #endif
1330 	/* phy device may attach itself for hardware timestamping */
1331 	struct phy_device *phydev;
1332 
1333 	struct lock_class_key *qdisc_tx_busylock;
1334 
1335 	/* group the device belongs to */
1336 	int group;
1337 
1338 	struct pm_qos_request	pm_qos_req;
1339 };
1340 #define to_net_dev(d) container_of(d, struct net_device, dev)
1341 
1342 #define	NETDEV_ALIGN		32
1343 
1344 static inline
1345 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1346 {
1347 	return dev->prio_tc_map[prio & TC_BITMASK];
1348 }
1349 
1350 static inline
1351 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1352 {
1353 	if (tc >= dev->num_tc)
1354 		return -EINVAL;
1355 
1356 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1357 	return 0;
1358 }
1359 
1360 static inline
1361 void netdev_reset_tc(struct net_device *dev)
1362 {
1363 	dev->num_tc = 0;
1364 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1365 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1366 }
1367 
1368 static inline
1369 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1370 {
1371 	if (tc >= dev->num_tc)
1372 		return -EINVAL;
1373 
1374 	dev->tc_to_txq[tc].count = count;
1375 	dev->tc_to_txq[tc].offset = offset;
1376 	return 0;
1377 }
1378 
1379 static inline
1380 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1381 {
1382 	if (num_tc > TC_MAX_QUEUE)
1383 		return -EINVAL;
1384 
1385 	dev->num_tc = num_tc;
1386 	return 0;
1387 }
1388 
1389 static inline
1390 int netdev_get_num_tc(struct net_device *dev)
1391 {
1392 	return dev->num_tc;
1393 }
1394 
1395 static inline
1396 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1397 					 unsigned int index)
1398 {
1399 	return &dev->_tx[index];
1400 }
1401 
1402 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1403 					    void (*f)(struct net_device *,
1404 						      struct netdev_queue *,
1405 						      void *),
1406 					    void *arg)
1407 {
1408 	unsigned int i;
1409 
1410 	for (i = 0; i < dev->num_tx_queues; i++)
1411 		f(dev, &dev->_tx[i], arg);
1412 }
1413 
1414 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1415 					   struct sk_buff *skb);
1416 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1417 
1418 /*
1419  * Net namespace inlines
1420  */
1421 static inline
1422 struct net *dev_net(const struct net_device *dev)
1423 {
1424 	return read_pnet(&dev->nd_net);
1425 }
1426 
1427 static inline
1428 void dev_net_set(struct net_device *dev, struct net *net)
1429 {
1430 #ifdef CONFIG_NET_NS
1431 	release_net(dev->nd_net);
1432 	dev->nd_net = hold_net(net);
1433 #endif
1434 }
1435 
1436 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1437 {
1438 #ifdef CONFIG_NET_DSA_TAG_DSA
1439 	if (dev->dsa_ptr != NULL)
1440 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1441 #endif
1442 
1443 	return 0;
1444 }
1445 
1446 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1447 {
1448 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1449 	if (dev->dsa_ptr != NULL)
1450 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1451 #endif
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *	netdev_priv - access network device private data
1458  *	@dev: network device
1459  *
1460  * Get network device private data
1461  */
1462 static inline void *netdev_priv(const struct net_device *dev)
1463 {
1464 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1465 }
1466 
1467 /* Set the sysfs physical device reference for the network logical device
1468  * if set prior to registration will cause a symlink during initialization.
1469  */
1470 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1471 
1472 /* Set the sysfs device type for the network logical device to allow
1473  * fin grained indentification of different network device types. For
1474  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1475  */
1476 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1477 
1478 /**
1479  *	netif_napi_add - initialize a napi context
1480  *	@dev:  network device
1481  *	@napi: napi context
1482  *	@poll: polling function
1483  *	@weight: default weight
1484  *
1485  * netif_napi_add() must be used to initialize a napi context prior to calling
1486  * *any* of the other napi related functions.
1487  */
1488 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1489 		    int (*poll)(struct napi_struct *, int), int weight);
1490 
1491 /**
1492  *  netif_napi_del - remove a napi context
1493  *  @napi: napi context
1494  *
1495  *  netif_napi_del() removes a napi context from the network device napi list
1496  */
1497 void netif_napi_del(struct napi_struct *napi);
1498 
1499 struct napi_gro_cb {
1500 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1501 	void *frag0;
1502 
1503 	/* Length of frag0. */
1504 	unsigned int frag0_len;
1505 
1506 	/* This indicates where we are processing relative to skb->data. */
1507 	int data_offset;
1508 
1509 	/* This is non-zero if the packet cannot be merged with the new skb. */
1510 	int flush;
1511 
1512 	/* Number of segments aggregated. */
1513 	u16	count;
1514 
1515 	/* This is non-zero if the packet may be of the same flow. */
1516 	u8	same_flow;
1517 
1518 	/* Free the skb? */
1519 	u8	free;
1520 #define NAPI_GRO_FREE		  1
1521 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1522 
1523 	/* jiffies when first packet was created/queued */
1524 	unsigned long age;
1525 
1526 	/* Used in ipv6_gro_receive() */
1527 	int	proto;
1528 
1529 	/* used in skb_gro_receive() slow path */
1530 	struct sk_buff *last;
1531 };
1532 
1533 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1534 
1535 struct packet_type {
1536 	__be16			type;	/* This is really htons(ether_type). */
1537 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1538 	int			(*func) (struct sk_buff *,
1539 					 struct net_device *,
1540 					 struct packet_type *,
1541 					 struct net_device *);
1542 	bool			(*id_match)(struct packet_type *ptype,
1543 					    struct sock *sk);
1544 	void			*af_packet_priv;
1545 	struct list_head	list;
1546 };
1547 
1548 struct offload_callbacks {
1549 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1550 						netdev_features_t features);
1551 	int			(*gso_send_check)(struct sk_buff *skb);
1552 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1553 					       struct sk_buff *skb);
1554 	int			(*gro_complete)(struct sk_buff *skb);
1555 };
1556 
1557 struct packet_offload {
1558 	__be16			 type;	/* This is really htons(ether_type). */
1559 	struct offload_callbacks callbacks;
1560 	struct list_head	 list;
1561 };
1562 
1563 #include <linux/notifier.h>
1564 
1565 /* netdevice notifier chain. Please remember to update the rtnetlink
1566  * notification exclusion list in rtnetlink_event() when adding new
1567  * types.
1568  */
1569 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1570 #define NETDEV_DOWN	0x0002
1571 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1572 				   detected a hardware crash and restarted
1573 				   - we can use this eg to kick tcp sessions
1574 				   once done */
1575 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1576 #define NETDEV_REGISTER 0x0005
1577 #define NETDEV_UNREGISTER	0x0006
1578 #define NETDEV_CHANGEMTU	0x0007
1579 #define NETDEV_CHANGEADDR	0x0008
1580 #define NETDEV_GOING_DOWN	0x0009
1581 #define NETDEV_CHANGENAME	0x000A
1582 #define NETDEV_FEAT_CHANGE	0x000B
1583 #define NETDEV_BONDING_FAILOVER 0x000C
1584 #define NETDEV_PRE_UP		0x000D
1585 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1586 #define NETDEV_POST_TYPE_CHANGE	0x000F
1587 #define NETDEV_POST_INIT	0x0010
1588 #define NETDEV_UNREGISTER_FINAL 0x0011
1589 #define NETDEV_RELEASE		0x0012
1590 #define NETDEV_NOTIFY_PEERS	0x0013
1591 #define NETDEV_JOIN		0x0014
1592 
1593 extern int register_netdevice_notifier(struct notifier_block *nb);
1594 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1595 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1596 
1597 
1598 extern rwlock_t				dev_base_lock;		/* Device list lock */
1599 
1600 extern seqcount_t	devnet_rename_seq;	/* Device rename seq */
1601 
1602 
1603 #define for_each_netdev(net, d)		\
1604 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1605 #define for_each_netdev_reverse(net, d)	\
1606 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1607 #define for_each_netdev_rcu(net, d)		\
1608 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1609 #define for_each_netdev_safe(net, d, n)	\
1610 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1611 #define for_each_netdev_continue(net, d)		\
1612 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1613 #define for_each_netdev_continue_rcu(net, d)		\
1614 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1615 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1616 
1617 static inline struct net_device *next_net_device(struct net_device *dev)
1618 {
1619 	struct list_head *lh;
1620 	struct net *net;
1621 
1622 	net = dev_net(dev);
1623 	lh = dev->dev_list.next;
1624 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1625 }
1626 
1627 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1628 {
1629 	struct list_head *lh;
1630 	struct net *net;
1631 
1632 	net = dev_net(dev);
1633 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1634 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1635 }
1636 
1637 static inline struct net_device *first_net_device(struct net *net)
1638 {
1639 	return list_empty(&net->dev_base_head) ? NULL :
1640 		net_device_entry(net->dev_base_head.next);
1641 }
1642 
1643 static inline struct net_device *first_net_device_rcu(struct net *net)
1644 {
1645 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1646 
1647 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1648 }
1649 
1650 extern int 			netdev_boot_setup_check(struct net_device *dev);
1651 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1652 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1653 					      const char *hwaddr);
1654 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1655 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1656 extern void		dev_add_pack(struct packet_type *pt);
1657 extern void		dev_remove_pack(struct packet_type *pt);
1658 extern void		__dev_remove_pack(struct packet_type *pt);
1659 extern void		dev_add_offload(struct packet_offload *po);
1660 extern void		dev_remove_offload(struct packet_offload *po);
1661 extern void		__dev_remove_offload(struct packet_offload *po);
1662 
1663 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1664 						      unsigned short mask);
1665 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1666 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1667 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1668 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1669 extern int		dev_open(struct net_device *dev);
1670 extern int		dev_close(struct net_device *dev);
1671 extern void		dev_disable_lro(struct net_device *dev);
1672 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1673 extern int		dev_queue_xmit(struct sk_buff *skb);
1674 extern int		register_netdevice(struct net_device *dev);
1675 extern void		unregister_netdevice_queue(struct net_device *dev,
1676 						   struct list_head *head);
1677 extern void		unregister_netdevice_many(struct list_head *head);
1678 static inline void unregister_netdevice(struct net_device *dev)
1679 {
1680 	unregister_netdevice_queue(dev, NULL);
1681 }
1682 
1683 extern int 		netdev_refcnt_read(const struct net_device *dev);
1684 extern void		free_netdev(struct net_device *dev);
1685 extern void		synchronize_net(void);
1686 extern int		init_dummy_netdev(struct net_device *dev);
1687 extern void		netdev_resync_ops(struct net_device *dev);
1688 
1689 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1690 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1691 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1692 extern int		dev_restart(struct net_device *dev);
1693 #ifdef CONFIG_NETPOLL_TRAP
1694 extern int		netpoll_trap(void);
1695 #endif
1696 extern int	       skb_gro_receive(struct sk_buff **head,
1697 				       struct sk_buff *skb);
1698 
1699 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1700 {
1701 	return NAPI_GRO_CB(skb)->data_offset;
1702 }
1703 
1704 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1705 {
1706 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1707 }
1708 
1709 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1710 {
1711 	NAPI_GRO_CB(skb)->data_offset += len;
1712 }
1713 
1714 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1715 					unsigned int offset)
1716 {
1717 	return NAPI_GRO_CB(skb)->frag0 + offset;
1718 }
1719 
1720 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1721 {
1722 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1723 }
1724 
1725 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1726 					unsigned int offset)
1727 {
1728 	if (!pskb_may_pull(skb, hlen))
1729 		return NULL;
1730 
1731 	NAPI_GRO_CB(skb)->frag0 = NULL;
1732 	NAPI_GRO_CB(skb)->frag0_len = 0;
1733 	return skb->data + offset;
1734 }
1735 
1736 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1737 {
1738 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1739 }
1740 
1741 static inline void *skb_gro_network_header(struct sk_buff *skb)
1742 {
1743 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1744 	       skb_network_offset(skb);
1745 }
1746 
1747 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1748 				  unsigned short type,
1749 				  const void *daddr, const void *saddr,
1750 				  unsigned int len)
1751 {
1752 	if (!dev->header_ops || !dev->header_ops->create)
1753 		return 0;
1754 
1755 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1756 }
1757 
1758 static inline int dev_parse_header(const struct sk_buff *skb,
1759 				   unsigned char *haddr)
1760 {
1761 	const struct net_device *dev = skb->dev;
1762 
1763 	if (!dev->header_ops || !dev->header_ops->parse)
1764 		return 0;
1765 	return dev->header_ops->parse(skb, haddr);
1766 }
1767 
1768 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1769 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1770 static inline int unregister_gifconf(unsigned int family)
1771 {
1772 	return register_gifconf(family, NULL);
1773 }
1774 
1775 /*
1776  * Incoming packets are placed on per-cpu queues
1777  */
1778 struct softnet_data {
1779 	struct Qdisc		*output_queue;
1780 	struct Qdisc		**output_queue_tailp;
1781 	struct list_head	poll_list;
1782 	struct sk_buff		*completion_queue;
1783 	struct sk_buff_head	process_queue;
1784 
1785 	/* stats */
1786 	unsigned int		processed;
1787 	unsigned int		time_squeeze;
1788 	unsigned int		cpu_collision;
1789 	unsigned int		received_rps;
1790 
1791 #ifdef CONFIG_RPS
1792 	struct softnet_data	*rps_ipi_list;
1793 
1794 	/* Elements below can be accessed between CPUs for RPS */
1795 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1796 	struct softnet_data	*rps_ipi_next;
1797 	unsigned int		cpu;
1798 	unsigned int		input_queue_head;
1799 	unsigned int		input_queue_tail;
1800 #endif
1801 	unsigned int		dropped;
1802 	struct sk_buff_head	input_pkt_queue;
1803 	struct napi_struct	backlog;
1804 };
1805 
1806 static inline void input_queue_head_incr(struct softnet_data *sd)
1807 {
1808 #ifdef CONFIG_RPS
1809 	sd->input_queue_head++;
1810 #endif
1811 }
1812 
1813 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1814 					      unsigned int *qtail)
1815 {
1816 #ifdef CONFIG_RPS
1817 	*qtail = ++sd->input_queue_tail;
1818 #endif
1819 }
1820 
1821 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1822 
1823 extern void __netif_schedule(struct Qdisc *q);
1824 
1825 static inline void netif_schedule_queue(struct netdev_queue *txq)
1826 {
1827 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1828 		__netif_schedule(txq->qdisc);
1829 }
1830 
1831 static inline void netif_tx_schedule_all(struct net_device *dev)
1832 {
1833 	unsigned int i;
1834 
1835 	for (i = 0; i < dev->num_tx_queues; i++)
1836 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1837 }
1838 
1839 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1840 {
1841 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1842 }
1843 
1844 /**
1845  *	netif_start_queue - allow transmit
1846  *	@dev: network device
1847  *
1848  *	Allow upper layers to call the device hard_start_xmit routine.
1849  */
1850 static inline void netif_start_queue(struct net_device *dev)
1851 {
1852 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1853 }
1854 
1855 static inline void netif_tx_start_all_queues(struct net_device *dev)
1856 {
1857 	unsigned int i;
1858 
1859 	for (i = 0; i < dev->num_tx_queues; i++) {
1860 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1861 		netif_tx_start_queue(txq);
1862 	}
1863 }
1864 
1865 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1866 {
1867 #ifdef CONFIG_NETPOLL_TRAP
1868 	if (netpoll_trap()) {
1869 		netif_tx_start_queue(dev_queue);
1870 		return;
1871 	}
1872 #endif
1873 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1874 		__netif_schedule(dev_queue->qdisc);
1875 }
1876 
1877 /**
1878  *	netif_wake_queue - restart transmit
1879  *	@dev: network device
1880  *
1881  *	Allow upper layers to call the device hard_start_xmit routine.
1882  *	Used for flow control when transmit resources are available.
1883  */
1884 static inline void netif_wake_queue(struct net_device *dev)
1885 {
1886 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1887 }
1888 
1889 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1890 {
1891 	unsigned int i;
1892 
1893 	for (i = 0; i < dev->num_tx_queues; i++) {
1894 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1895 		netif_tx_wake_queue(txq);
1896 	}
1897 }
1898 
1899 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1900 {
1901 	if (WARN_ON(!dev_queue)) {
1902 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1903 		return;
1904 	}
1905 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1906 }
1907 
1908 /**
1909  *	netif_stop_queue - stop transmitted packets
1910  *	@dev: network device
1911  *
1912  *	Stop upper layers calling the device hard_start_xmit routine.
1913  *	Used for flow control when transmit resources are unavailable.
1914  */
1915 static inline void netif_stop_queue(struct net_device *dev)
1916 {
1917 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1918 }
1919 
1920 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1921 {
1922 	unsigned int i;
1923 
1924 	for (i = 0; i < dev->num_tx_queues; i++) {
1925 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1926 		netif_tx_stop_queue(txq);
1927 	}
1928 }
1929 
1930 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1931 {
1932 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1933 }
1934 
1935 /**
1936  *	netif_queue_stopped - test if transmit queue is flowblocked
1937  *	@dev: network device
1938  *
1939  *	Test if transmit queue on device is currently unable to send.
1940  */
1941 static inline bool netif_queue_stopped(const struct net_device *dev)
1942 {
1943 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1944 }
1945 
1946 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1947 {
1948 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1949 }
1950 
1951 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1952 {
1953 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1954 }
1955 
1956 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1957 					unsigned int bytes)
1958 {
1959 #ifdef CONFIG_BQL
1960 	dql_queued(&dev_queue->dql, bytes);
1961 
1962 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1963 		return;
1964 
1965 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1966 
1967 	/*
1968 	 * The XOFF flag must be set before checking the dql_avail below,
1969 	 * because in netdev_tx_completed_queue we update the dql_completed
1970 	 * before checking the XOFF flag.
1971 	 */
1972 	smp_mb();
1973 
1974 	/* check again in case another CPU has just made room avail */
1975 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1976 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1977 #endif
1978 }
1979 
1980 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1981 {
1982 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1983 }
1984 
1985 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1986 					     unsigned int pkts, unsigned int bytes)
1987 {
1988 #ifdef CONFIG_BQL
1989 	if (unlikely(!bytes))
1990 		return;
1991 
1992 	dql_completed(&dev_queue->dql, bytes);
1993 
1994 	/*
1995 	 * Without the memory barrier there is a small possiblity that
1996 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1997 	 * be stopped forever
1998 	 */
1999 	smp_mb();
2000 
2001 	if (dql_avail(&dev_queue->dql) < 0)
2002 		return;
2003 
2004 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2005 		netif_schedule_queue(dev_queue);
2006 #endif
2007 }
2008 
2009 static inline void netdev_completed_queue(struct net_device *dev,
2010 					  unsigned int pkts, unsigned int bytes)
2011 {
2012 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2013 }
2014 
2015 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2016 {
2017 #ifdef CONFIG_BQL
2018 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2019 	dql_reset(&q->dql);
2020 #endif
2021 }
2022 
2023 static inline void netdev_reset_queue(struct net_device *dev_queue)
2024 {
2025 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2026 }
2027 
2028 /**
2029  *	netif_running - test if up
2030  *	@dev: network device
2031  *
2032  *	Test if the device has been brought up.
2033  */
2034 static inline bool netif_running(const struct net_device *dev)
2035 {
2036 	return test_bit(__LINK_STATE_START, &dev->state);
2037 }
2038 
2039 /*
2040  * Routines to manage the subqueues on a device.  We only need start
2041  * stop, and a check if it's stopped.  All other device management is
2042  * done at the overall netdevice level.
2043  * Also test the device if we're multiqueue.
2044  */
2045 
2046 /**
2047  *	netif_start_subqueue - allow sending packets on subqueue
2048  *	@dev: network device
2049  *	@queue_index: sub queue index
2050  *
2051  * Start individual transmit queue of a device with multiple transmit queues.
2052  */
2053 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2054 {
2055 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2056 
2057 	netif_tx_start_queue(txq);
2058 }
2059 
2060 /**
2061  *	netif_stop_subqueue - stop sending packets on subqueue
2062  *	@dev: network device
2063  *	@queue_index: sub queue index
2064  *
2065  * Stop individual transmit queue of a device with multiple transmit queues.
2066  */
2067 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2068 {
2069 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2070 #ifdef CONFIG_NETPOLL_TRAP
2071 	if (netpoll_trap())
2072 		return;
2073 #endif
2074 	netif_tx_stop_queue(txq);
2075 }
2076 
2077 /**
2078  *	netif_subqueue_stopped - test status of subqueue
2079  *	@dev: network device
2080  *	@queue_index: sub queue index
2081  *
2082  * Check individual transmit queue of a device with multiple transmit queues.
2083  */
2084 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2085 					    u16 queue_index)
2086 {
2087 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2088 
2089 	return netif_tx_queue_stopped(txq);
2090 }
2091 
2092 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2093 					  struct sk_buff *skb)
2094 {
2095 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2096 }
2097 
2098 /**
2099  *	netif_wake_subqueue - allow sending packets on subqueue
2100  *	@dev: network device
2101  *	@queue_index: sub queue index
2102  *
2103  * Resume individual transmit queue of a device with multiple transmit queues.
2104  */
2105 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2106 {
2107 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2108 #ifdef CONFIG_NETPOLL_TRAP
2109 	if (netpoll_trap())
2110 		return;
2111 #endif
2112 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2113 		__netif_schedule(txq->qdisc);
2114 }
2115 
2116 #ifdef CONFIG_XPS
2117 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2118 			       u16 index);
2119 #else
2120 static inline int netif_set_xps_queue(struct net_device *dev,
2121 				      struct cpumask *mask,
2122 				      u16 index)
2123 {
2124 	return 0;
2125 }
2126 #endif
2127 
2128 /*
2129  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2130  * as a distribution range limit for the returned value.
2131  */
2132 static inline u16 skb_tx_hash(const struct net_device *dev,
2133 			      const struct sk_buff *skb)
2134 {
2135 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2136 }
2137 
2138 /**
2139  *	netif_is_multiqueue - test if device has multiple transmit queues
2140  *	@dev: network device
2141  *
2142  * Check if device has multiple transmit queues
2143  */
2144 static inline bool netif_is_multiqueue(const struct net_device *dev)
2145 {
2146 	return dev->num_tx_queues > 1;
2147 }
2148 
2149 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2150 					unsigned int txq);
2151 
2152 #ifdef CONFIG_RPS
2153 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2154 					unsigned int rxq);
2155 #else
2156 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2157 						unsigned int rxq)
2158 {
2159 	return 0;
2160 }
2161 #endif
2162 
2163 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2164 					     const struct net_device *from_dev)
2165 {
2166 	int err;
2167 
2168 	err = netif_set_real_num_tx_queues(to_dev,
2169 					   from_dev->real_num_tx_queues);
2170 	if (err)
2171 		return err;
2172 #ifdef CONFIG_RPS
2173 	return netif_set_real_num_rx_queues(to_dev,
2174 					    from_dev->real_num_rx_queues);
2175 #else
2176 	return 0;
2177 #endif
2178 }
2179 
2180 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2181 extern int netif_get_num_default_rss_queues(void);
2182 
2183 /* Use this variant when it is known for sure that it
2184  * is executing from hardware interrupt context or with hardware interrupts
2185  * disabled.
2186  */
2187 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2188 
2189 /* Use this variant in places where it could be invoked
2190  * from either hardware interrupt or other context, with hardware interrupts
2191  * either disabled or enabled.
2192  */
2193 extern void dev_kfree_skb_any(struct sk_buff *skb);
2194 
2195 extern int		netif_rx(struct sk_buff *skb);
2196 extern int		netif_rx_ni(struct sk_buff *skb);
2197 extern int		netif_receive_skb(struct sk_buff *skb);
2198 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2199 					 struct sk_buff *skb);
2200 extern void		napi_gro_flush(struct napi_struct *napi, bool flush_old);
2201 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2202 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2203 
2204 static inline void napi_free_frags(struct napi_struct *napi)
2205 {
2206 	kfree_skb(napi->skb);
2207 	napi->skb = NULL;
2208 }
2209 
2210 extern int netdev_rx_handler_register(struct net_device *dev,
2211 				      rx_handler_func_t *rx_handler,
2212 				      void *rx_handler_data);
2213 extern void netdev_rx_handler_unregister(struct net_device *dev);
2214 
2215 extern bool		dev_valid_name(const char *name);
2216 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2217 extern int		dev_ethtool(struct net *net, struct ifreq *);
2218 extern unsigned int	dev_get_flags(const struct net_device *);
2219 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2220 extern int		dev_change_flags(struct net_device *, unsigned int);
2221 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2222 extern int		dev_change_name(struct net_device *, const char *);
2223 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2224 extern int		dev_change_net_namespace(struct net_device *,
2225 						 struct net *, const char *);
2226 extern int		dev_set_mtu(struct net_device *, int);
2227 extern void		dev_set_group(struct net_device *, int);
2228 extern int		dev_set_mac_address(struct net_device *,
2229 					    struct sockaddr *);
2230 extern int		dev_change_carrier(struct net_device *,
2231 					   bool new_carrier);
2232 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2233 					    struct net_device *dev,
2234 					    struct netdev_queue *txq);
2235 extern int		dev_forward_skb(struct net_device *dev,
2236 					struct sk_buff *skb);
2237 
2238 extern int		netdev_budget;
2239 
2240 /* Called by rtnetlink.c:rtnl_unlock() */
2241 extern void netdev_run_todo(void);
2242 
2243 /**
2244  *	dev_put - release reference to device
2245  *	@dev: network device
2246  *
2247  * Release reference to device to allow it to be freed.
2248  */
2249 static inline void dev_put(struct net_device *dev)
2250 {
2251 	this_cpu_dec(*dev->pcpu_refcnt);
2252 }
2253 
2254 /**
2255  *	dev_hold - get reference to device
2256  *	@dev: network device
2257  *
2258  * Hold reference to device to keep it from being freed.
2259  */
2260 static inline void dev_hold(struct net_device *dev)
2261 {
2262 	this_cpu_inc(*dev->pcpu_refcnt);
2263 }
2264 
2265 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2266  * and _off may be called from IRQ context, but it is caller
2267  * who is responsible for serialization of these calls.
2268  *
2269  * The name carrier is inappropriate, these functions should really be
2270  * called netif_lowerlayer_*() because they represent the state of any
2271  * kind of lower layer not just hardware media.
2272  */
2273 
2274 extern void linkwatch_init_dev(struct net_device *dev);
2275 extern void linkwatch_fire_event(struct net_device *dev);
2276 extern void linkwatch_forget_dev(struct net_device *dev);
2277 
2278 /**
2279  *	netif_carrier_ok - test if carrier present
2280  *	@dev: network device
2281  *
2282  * Check if carrier is present on device
2283  */
2284 static inline bool netif_carrier_ok(const struct net_device *dev)
2285 {
2286 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2287 }
2288 
2289 extern unsigned long dev_trans_start(struct net_device *dev);
2290 
2291 extern void __netdev_watchdog_up(struct net_device *dev);
2292 
2293 extern void netif_carrier_on(struct net_device *dev);
2294 
2295 extern void netif_carrier_off(struct net_device *dev);
2296 
2297 /**
2298  *	netif_dormant_on - mark device as dormant.
2299  *	@dev: network device
2300  *
2301  * Mark device as dormant (as per RFC2863).
2302  *
2303  * The dormant state indicates that the relevant interface is not
2304  * actually in a condition to pass packets (i.e., it is not 'up') but is
2305  * in a "pending" state, waiting for some external event.  For "on-
2306  * demand" interfaces, this new state identifies the situation where the
2307  * interface is waiting for events to place it in the up state.
2308  *
2309  */
2310 static inline void netif_dormant_on(struct net_device *dev)
2311 {
2312 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2313 		linkwatch_fire_event(dev);
2314 }
2315 
2316 /**
2317  *	netif_dormant_off - set device as not dormant.
2318  *	@dev: network device
2319  *
2320  * Device is not in dormant state.
2321  */
2322 static inline void netif_dormant_off(struct net_device *dev)
2323 {
2324 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2325 		linkwatch_fire_event(dev);
2326 }
2327 
2328 /**
2329  *	netif_dormant - test if carrier present
2330  *	@dev: network device
2331  *
2332  * Check if carrier is present on device
2333  */
2334 static inline bool netif_dormant(const struct net_device *dev)
2335 {
2336 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2337 }
2338 
2339 
2340 /**
2341  *	netif_oper_up - test if device is operational
2342  *	@dev: network device
2343  *
2344  * Check if carrier is operational
2345  */
2346 static inline bool netif_oper_up(const struct net_device *dev)
2347 {
2348 	return (dev->operstate == IF_OPER_UP ||
2349 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2350 }
2351 
2352 /**
2353  *	netif_device_present - is device available or removed
2354  *	@dev: network device
2355  *
2356  * Check if device has not been removed from system.
2357  */
2358 static inline bool netif_device_present(struct net_device *dev)
2359 {
2360 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2361 }
2362 
2363 extern void netif_device_detach(struct net_device *dev);
2364 
2365 extern void netif_device_attach(struct net_device *dev);
2366 
2367 /*
2368  * Network interface message level settings
2369  */
2370 
2371 enum {
2372 	NETIF_MSG_DRV		= 0x0001,
2373 	NETIF_MSG_PROBE		= 0x0002,
2374 	NETIF_MSG_LINK		= 0x0004,
2375 	NETIF_MSG_TIMER		= 0x0008,
2376 	NETIF_MSG_IFDOWN	= 0x0010,
2377 	NETIF_MSG_IFUP		= 0x0020,
2378 	NETIF_MSG_RX_ERR	= 0x0040,
2379 	NETIF_MSG_TX_ERR	= 0x0080,
2380 	NETIF_MSG_TX_QUEUED	= 0x0100,
2381 	NETIF_MSG_INTR		= 0x0200,
2382 	NETIF_MSG_TX_DONE	= 0x0400,
2383 	NETIF_MSG_RX_STATUS	= 0x0800,
2384 	NETIF_MSG_PKTDATA	= 0x1000,
2385 	NETIF_MSG_HW		= 0x2000,
2386 	NETIF_MSG_WOL		= 0x4000,
2387 };
2388 
2389 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2390 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2391 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2392 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2393 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2394 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2395 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2396 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2397 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2398 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2399 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2400 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2401 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2402 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2403 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2404 
2405 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2406 {
2407 	/* use default */
2408 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2409 		return default_msg_enable_bits;
2410 	if (debug_value == 0)	/* no output */
2411 		return 0;
2412 	/* set low N bits */
2413 	return (1 << debug_value) - 1;
2414 }
2415 
2416 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2417 {
2418 	spin_lock(&txq->_xmit_lock);
2419 	txq->xmit_lock_owner = cpu;
2420 }
2421 
2422 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2423 {
2424 	spin_lock_bh(&txq->_xmit_lock);
2425 	txq->xmit_lock_owner = smp_processor_id();
2426 }
2427 
2428 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2429 {
2430 	bool ok = spin_trylock(&txq->_xmit_lock);
2431 	if (likely(ok))
2432 		txq->xmit_lock_owner = smp_processor_id();
2433 	return ok;
2434 }
2435 
2436 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2437 {
2438 	txq->xmit_lock_owner = -1;
2439 	spin_unlock(&txq->_xmit_lock);
2440 }
2441 
2442 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2443 {
2444 	txq->xmit_lock_owner = -1;
2445 	spin_unlock_bh(&txq->_xmit_lock);
2446 }
2447 
2448 static inline void txq_trans_update(struct netdev_queue *txq)
2449 {
2450 	if (txq->xmit_lock_owner != -1)
2451 		txq->trans_start = jiffies;
2452 }
2453 
2454 /**
2455  *	netif_tx_lock - grab network device transmit lock
2456  *	@dev: network device
2457  *
2458  * Get network device transmit lock
2459  */
2460 static inline void netif_tx_lock(struct net_device *dev)
2461 {
2462 	unsigned int i;
2463 	int cpu;
2464 
2465 	spin_lock(&dev->tx_global_lock);
2466 	cpu = smp_processor_id();
2467 	for (i = 0; i < dev->num_tx_queues; i++) {
2468 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2469 
2470 		/* We are the only thread of execution doing a
2471 		 * freeze, but we have to grab the _xmit_lock in
2472 		 * order to synchronize with threads which are in
2473 		 * the ->hard_start_xmit() handler and already
2474 		 * checked the frozen bit.
2475 		 */
2476 		__netif_tx_lock(txq, cpu);
2477 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2478 		__netif_tx_unlock(txq);
2479 	}
2480 }
2481 
2482 static inline void netif_tx_lock_bh(struct net_device *dev)
2483 {
2484 	local_bh_disable();
2485 	netif_tx_lock(dev);
2486 }
2487 
2488 static inline void netif_tx_unlock(struct net_device *dev)
2489 {
2490 	unsigned int i;
2491 
2492 	for (i = 0; i < dev->num_tx_queues; i++) {
2493 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2494 
2495 		/* No need to grab the _xmit_lock here.  If the
2496 		 * queue is not stopped for another reason, we
2497 		 * force a schedule.
2498 		 */
2499 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2500 		netif_schedule_queue(txq);
2501 	}
2502 	spin_unlock(&dev->tx_global_lock);
2503 }
2504 
2505 static inline void netif_tx_unlock_bh(struct net_device *dev)
2506 {
2507 	netif_tx_unlock(dev);
2508 	local_bh_enable();
2509 }
2510 
2511 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2512 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2513 		__netif_tx_lock(txq, cpu);		\
2514 	}						\
2515 }
2516 
2517 #define HARD_TX_UNLOCK(dev, txq) {			\
2518 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2519 		__netif_tx_unlock(txq);			\
2520 	}						\
2521 }
2522 
2523 static inline void netif_tx_disable(struct net_device *dev)
2524 {
2525 	unsigned int i;
2526 	int cpu;
2527 
2528 	local_bh_disable();
2529 	cpu = smp_processor_id();
2530 	for (i = 0; i < dev->num_tx_queues; i++) {
2531 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2532 
2533 		__netif_tx_lock(txq, cpu);
2534 		netif_tx_stop_queue(txq);
2535 		__netif_tx_unlock(txq);
2536 	}
2537 	local_bh_enable();
2538 }
2539 
2540 static inline void netif_addr_lock(struct net_device *dev)
2541 {
2542 	spin_lock(&dev->addr_list_lock);
2543 }
2544 
2545 static inline void netif_addr_lock_nested(struct net_device *dev)
2546 {
2547 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2548 }
2549 
2550 static inline void netif_addr_lock_bh(struct net_device *dev)
2551 {
2552 	spin_lock_bh(&dev->addr_list_lock);
2553 }
2554 
2555 static inline void netif_addr_unlock(struct net_device *dev)
2556 {
2557 	spin_unlock(&dev->addr_list_lock);
2558 }
2559 
2560 static inline void netif_addr_unlock_bh(struct net_device *dev)
2561 {
2562 	spin_unlock_bh(&dev->addr_list_lock);
2563 }
2564 
2565 /*
2566  * dev_addrs walker. Should be used only for read access. Call with
2567  * rcu_read_lock held.
2568  */
2569 #define for_each_dev_addr(dev, ha) \
2570 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2571 
2572 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2573 
2574 extern void		ether_setup(struct net_device *dev);
2575 
2576 /* Support for loadable net-drivers */
2577 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2578 				       void (*setup)(struct net_device *),
2579 				       unsigned int txqs, unsigned int rxqs);
2580 #define alloc_netdev(sizeof_priv, name, setup) \
2581 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2582 
2583 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2584 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2585 
2586 extern int		register_netdev(struct net_device *dev);
2587 extern void		unregister_netdev(struct net_device *dev);
2588 
2589 /* General hardware address lists handling functions */
2590 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2591 				  struct netdev_hw_addr_list *from_list,
2592 				  int addr_len, unsigned char addr_type);
2593 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2594 				   struct netdev_hw_addr_list *from_list,
2595 				   int addr_len, unsigned char addr_type);
2596 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2597 			  struct netdev_hw_addr_list *from_list,
2598 			  int addr_len);
2599 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2600 			     struct netdev_hw_addr_list *from_list,
2601 			     int addr_len);
2602 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2603 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2604 
2605 /* Functions used for device addresses handling */
2606 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2607 			unsigned char addr_type);
2608 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2609 			unsigned char addr_type);
2610 extern int dev_addr_add_multiple(struct net_device *to_dev,
2611 				 struct net_device *from_dev,
2612 				 unsigned char addr_type);
2613 extern int dev_addr_del_multiple(struct net_device *to_dev,
2614 				 struct net_device *from_dev,
2615 				 unsigned char addr_type);
2616 extern void dev_addr_flush(struct net_device *dev);
2617 extern int dev_addr_init(struct net_device *dev);
2618 
2619 /* Functions used for unicast addresses handling */
2620 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2621 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2622 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2623 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2624 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2625 extern void dev_uc_flush(struct net_device *dev);
2626 extern void dev_uc_init(struct net_device *dev);
2627 
2628 /* Functions used for multicast addresses handling */
2629 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2630 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2631 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2632 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2633 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2634 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2635 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2636 extern void dev_mc_flush(struct net_device *dev);
2637 extern void dev_mc_init(struct net_device *dev);
2638 
2639 /* Functions used for secondary unicast and multicast support */
2640 extern void		dev_set_rx_mode(struct net_device *dev);
2641 extern void		__dev_set_rx_mode(struct net_device *dev);
2642 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2643 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2644 extern void		netdev_state_change(struct net_device *dev);
2645 extern void		netdev_notify_peers(struct net_device *dev);
2646 extern void		netdev_features_change(struct net_device *dev);
2647 /* Load a device via the kmod */
2648 extern void		dev_load(struct net *net, const char *name);
2649 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2650 					       struct rtnl_link_stats64 *storage);
2651 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2652 				    const struct net_device_stats *netdev_stats);
2653 
2654 extern int		netdev_max_backlog;
2655 extern int		netdev_tstamp_prequeue;
2656 extern int		weight_p;
2657 extern int		bpf_jit_enable;
2658 
2659 extern bool netdev_has_upper_dev(struct net_device *dev,
2660 				 struct net_device *upper_dev);
2661 extern bool netdev_has_any_upper_dev(struct net_device *dev);
2662 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2663 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2664 extern int netdev_upper_dev_link(struct net_device *dev,
2665 				 struct net_device *upper_dev);
2666 extern int netdev_master_upper_dev_link(struct net_device *dev,
2667 					struct net_device *upper_dev);
2668 extern void netdev_upper_dev_unlink(struct net_device *dev,
2669 				    struct net_device *upper_dev);
2670 extern int skb_checksum_help(struct sk_buff *skb);
2671 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2672 	netdev_features_t features, bool tx_path);
2673 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2674 					  netdev_features_t features);
2675 
2676 static inline
2677 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2678 {
2679 	return __skb_gso_segment(skb, features, true);
2680 }
2681 
2682 #ifdef CONFIG_BUG
2683 extern void netdev_rx_csum_fault(struct net_device *dev);
2684 #else
2685 static inline void netdev_rx_csum_fault(struct net_device *dev)
2686 {
2687 }
2688 #endif
2689 /* rx skb timestamps */
2690 extern void		net_enable_timestamp(void);
2691 extern void		net_disable_timestamp(void);
2692 
2693 #ifdef CONFIG_PROC_FS
2694 extern int __init dev_proc_init(void);
2695 #else
2696 #define dev_proc_init() 0
2697 #endif
2698 
2699 extern int netdev_class_create_file(struct class_attribute *class_attr);
2700 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2701 
2702 extern struct kobj_ns_type_operations net_ns_type_operations;
2703 
2704 extern const char *netdev_drivername(const struct net_device *dev);
2705 
2706 extern void linkwatch_run_queue(void);
2707 
2708 static inline netdev_features_t netdev_get_wanted_features(
2709 	struct net_device *dev)
2710 {
2711 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2712 }
2713 netdev_features_t netdev_increment_features(netdev_features_t all,
2714 	netdev_features_t one, netdev_features_t mask);
2715 int __netdev_update_features(struct net_device *dev);
2716 void netdev_update_features(struct net_device *dev);
2717 void netdev_change_features(struct net_device *dev);
2718 
2719 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2720 					struct net_device *dev);
2721 
2722 netdev_features_t netif_skb_features(struct sk_buff *skb);
2723 
2724 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2725 {
2726 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2727 
2728 	/* check flags correspondence */
2729 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2730 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2731 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2732 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2733 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2734 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2735 
2736 	return (features & feature) == feature;
2737 }
2738 
2739 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2740 {
2741 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2742 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2743 }
2744 
2745 static inline bool netif_needs_gso(struct sk_buff *skb,
2746 				   netdev_features_t features)
2747 {
2748 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2749 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2750 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2751 }
2752 
2753 static inline void netif_set_gso_max_size(struct net_device *dev,
2754 					  unsigned int size)
2755 {
2756 	dev->gso_max_size = size;
2757 }
2758 
2759 static inline bool netif_is_bond_slave(struct net_device *dev)
2760 {
2761 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2762 }
2763 
2764 static inline bool netif_supports_nofcs(struct net_device *dev)
2765 {
2766 	return dev->priv_flags & IFF_SUPP_NOFCS;
2767 }
2768 
2769 extern struct pernet_operations __net_initdata loopback_net_ops;
2770 
2771 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2772 
2773 /* netdev_printk helpers, similar to dev_printk */
2774 
2775 static inline const char *netdev_name(const struct net_device *dev)
2776 {
2777 	if (dev->reg_state != NETREG_REGISTERED)
2778 		return "(unregistered net_device)";
2779 	return dev->name;
2780 }
2781 
2782 extern __printf(3, 4)
2783 int netdev_printk(const char *level, const struct net_device *dev,
2784 		  const char *format, ...);
2785 extern __printf(2, 3)
2786 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2787 extern __printf(2, 3)
2788 int netdev_alert(const struct net_device *dev, const char *format, ...);
2789 extern __printf(2, 3)
2790 int netdev_crit(const struct net_device *dev, const char *format, ...);
2791 extern __printf(2, 3)
2792 int netdev_err(const struct net_device *dev, const char *format, ...);
2793 extern __printf(2, 3)
2794 int netdev_warn(const struct net_device *dev, const char *format, ...);
2795 extern __printf(2, 3)
2796 int netdev_notice(const struct net_device *dev, const char *format, ...);
2797 extern __printf(2, 3)
2798 int netdev_info(const struct net_device *dev, const char *format, ...);
2799 
2800 #define MODULE_ALIAS_NETDEV(device) \
2801 	MODULE_ALIAS("netdev-" device)
2802 
2803 #if defined(CONFIG_DYNAMIC_DEBUG)
2804 #define netdev_dbg(__dev, format, args...)			\
2805 do {								\
2806 	dynamic_netdev_dbg(__dev, format, ##args);		\
2807 } while (0)
2808 #elif defined(DEBUG)
2809 #define netdev_dbg(__dev, format, args...)			\
2810 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2811 #else
2812 #define netdev_dbg(__dev, format, args...)			\
2813 ({								\
2814 	if (0)							\
2815 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2816 	0;							\
2817 })
2818 #endif
2819 
2820 #if defined(VERBOSE_DEBUG)
2821 #define netdev_vdbg	netdev_dbg
2822 #else
2823 
2824 #define netdev_vdbg(dev, format, args...)			\
2825 ({								\
2826 	if (0)							\
2827 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2828 	0;							\
2829 })
2830 #endif
2831 
2832 /*
2833  * netdev_WARN() acts like dev_printk(), but with the key difference
2834  * of using a WARN/WARN_ON to get the message out, including the
2835  * file/line information and a backtrace.
2836  */
2837 #define netdev_WARN(dev, format, args...)			\
2838 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2839 
2840 /* netif printk helpers, similar to netdev_printk */
2841 
2842 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2843 do {					  			\
2844 	if (netif_msg_##type(priv))				\
2845 		netdev_printk(level, (dev), fmt, ##args);	\
2846 } while (0)
2847 
2848 #define netif_level(level, priv, type, dev, fmt, args...)	\
2849 do {								\
2850 	if (netif_msg_##type(priv))				\
2851 		netdev_##level(dev, fmt, ##args);		\
2852 } while (0)
2853 
2854 #define netif_emerg(priv, type, dev, fmt, args...)		\
2855 	netif_level(emerg, priv, type, dev, fmt, ##args)
2856 #define netif_alert(priv, type, dev, fmt, args...)		\
2857 	netif_level(alert, priv, type, dev, fmt, ##args)
2858 #define netif_crit(priv, type, dev, fmt, args...)		\
2859 	netif_level(crit, priv, type, dev, fmt, ##args)
2860 #define netif_err(priv, type, dev, fmt, args...)		\
2861 	netif_level(err, priv, type, dev, fmt, ##args)
2862 #define netif_warn(priv, type, dev, fmt, args...)		\
2863 	netif_level(warn, priv, type, dev, fmt, ##args)
2864 #define netif_notice(priv, type, dev, fmt, args...)		\
2865 	netif_level(notice, priv, type, dev, fmt, ##args)
2866 #define netif_info(priv, type, dev, fmt, args...)		\
2867 	netif_level(info, priv, type, dev, fmt, ##args)
2868 
2869 #if defined(CONFIG_DYNAMIC_DEBUG)
2870 #define netif_dbg(priv, type, netdev, format, args...)		\
2871 do {								\
2872 	if (netif_msg_##type(priv))				\
2873 		dynamic_netdev_dbg(netdev, format, ##args);	\
2874 } while (0)
2875 #elif defined(DEBUG)
2876 #define netif_dbg(priv, type, dev, format, args...)		\
2877 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2878 #else
2879 #define netif_dbg(priv, type, dev, format, args...)			\
2880 ({									\
2881 	if (0)								\
2882 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2883 	0;								\
2884 })
2885 #endif
2886 
2887 #if defined(VERBOSE_DEBUG)
2888 #define netif_vdbg	netif_dbg
2889 #else
2890 #define netif_vdbg(priv, type, dev, format, args...)		\
2891 ({								\
2892 	if (0)							\
2893 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2894 	0;							\
2895 })
2896 #endif
2897 
2898 /*
2899  *	The list of packet types we will receive (as opposed to discard)
2900  *	and the routines to invoke.
2901  *
2902  *	Why 16. Because with 16 the only overlap we get on a hash of the
2903  *	low nibble of the protocol value is RARP/SNAP/X.25.
2904  *
2905  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
2906  *             sure which should go first, but I bet it won't make much
2907  *             difference if we are running VLANs.  The good news is that
2908  *             this protocol won't be in the list unless compiled in, so
2909  *             the average user (w/out VLANs) will not be adversely affected.
2910  *             --BLG
2911  *
2912  *		0800	IP
2913  *		8100    802.1Q VLAN
2914  *		0001	802.3
2915  *		0002	AX.25
2916  *		0004	802.2
2917  *		8035	RARP
2918  *		0005	SNAP
2919  *		0805	X.25
2920  *		0806	ARP
2921  *		8137	IPX
2922  *		0009	Localtalk
2923  *		86DD	IPv6
2924  */
2925 #define PTYPE_HASH_SIZE	(16)
2926 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
2927 
2928 #endif	/* _LINUX_NETDEVICE_H */
2929