1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 struct ip_tunnel_parm; 57 struct macsec_context; 58 struct macsec_ops; 59 60 struct sfp_bus; 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct bpf_prog; 69 struct xdp_buff; 70 71 void netdev_set_default_ethtool_ops(struct net_device *dev, 72 const struct ethtool_ops *ops); 73 74 /* Backlog congestion levels */ 75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76 #define NET_RX_DROP 1 /* packet dropped */ 77 78 #define MAX_NEST_DEV 8 79 80 /* 81 * Transmit return codes: transmit return codes originate from three different 82 * namespaces: 83 * 84 * - qdisc return codes 85 * - driver transmit return codes 86 * - errno values 87 * 88 * Drivers are allowed to return any one of those in their hard_start_xmit() 89 * function. Real network devices commonly used with qdiscs should only return 90 * the driver transmit return codes though - when qdiscs are used, the actual 91 * transmission happens asynchronously, so the value is not propagated to 92 * higher layers. Virtual network devices transmit synchronously; in this case 93 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 94 * others are propagated to higher layers. 95 */ 96 97 /* qdisc ->enqueue() return codes. */ 98 #define NET_XMIT_SUCCESS 0x00 99 #define NET_XMIT_DROP 0x01 /* skb dropped */ 100 #define NET_XMIT_CN 0x02 /* congestion notification */ 101 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 102 103 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 104 * indicates that the device will soon be dropping packets, or already drops 105 * some packets of the same priority; prompting us to send less aggressively. */ 106 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 107 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 108 109 /* Driver transmit return codes */ 110 #define NETDEV_TX_MASK 0xf0 111 112 enum netdev_tx { 113 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 114 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 115 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 116 }; 117 typedef enum netdev_tx netdev_tx_t; 118 119 /* 120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 122 */ 123 static inline bool dev_xmit_complete(int rc) 124 { 125 /* 126 * Positive cases with an skb consumed by a driver: 127 * - successful transmission (rc == NETDEV_TX_OK) 128 * - error while transmitting (rc < 0) 129 * - error while queueing to a different device (rc & NET_XMIT_MASK) 130 */ 131 if (likely(rc < NET_XMIT_MASK)) 132 return true; 133 134 return false; 135 } 136 137 /* 138 * Compute the worst-case header length according to the protocols 139 * used. 140 */ 141 142 #if defined(CONFIG_HYPERV_NET) 143 # define LL_MAX_HEADER 128 144 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 145 # if defined(CONFIG_MAC80211_MESH) 146 # define LL_MAX_HEADER 128 147 # else 148 # define LL_MAX_HEADER 96 149 # endif 150 #else 151 # define LL_MAX_HEADER 32 152 #endif 153 154 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 155 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 156 #define MAX_HEADER LL_MAX_HEADER 157 #else 158 #define MAX_HEADER (LL_MAX_HEADER + 48) 159 #endif 160 161 /* 162 * Old network device statistics. Fields are native words 163 * (unsigned long) so they can be read and written atomically. 164 */ 165 166 struct net_device_stats { 167 unsigned long rx_packets; 168 unsigned long tx_packets; 169 unsigned long rx_bytes; 170 unsigned long tx_bytes; 171 unsigned long rx_errors; 172 unsigned long tx_errors; 173 unsigned long rx_dropped; 174 unsigned long tx_dropped; 175 unsigned long multicast; 176 unsigned long collisions; 177 unsigned long rx_length_errors; 178 unsigned long rx_over_errors; 179 unsigned long rx_crc_errors; 180 unsigned long rx_frame_errors; 181 unsigned long rx_fifo_errors; 182 unsigned long rx_missed_errors; 183 unsigned long tx_aborted_errors; 184 unsigned long tx_carrier_errors; 185 unsigned long tx_fifo_errors; 186 unsigned long tx_heartbeat_errors; 187 unsigned long tx_window_errors; 188 unsigned long rx_compressed; 189 unsigned long tx_compressed; 190 }; 191 192 193 #include <linux/cache.h> 194 #include <linux/skbuff.h> 195 196 #ifdef CONFIG_RPS 197 #include <linux/static_key.h> 198 extern struct static_key_false rps_needed; 199 extern struct static_key_false rfs_needed; 200 #endif 201 202 struct neighbour; 203 struct neigh_parms; 204 struct sk_buff; 205 206 struct netdev_hw_addr { 207 struct list_head list; 208 unsigned char addr[MAX_ADDR_LEN]; 209 unsigned char type; 210 #define NETDEV_HW_ADDR_T_LAN 1 211 #define NETDEV_HW_ADDR_T_SAN 2 212 #define NETDEV_HW_ADDR_T_SLAVE 3 213 #define NETDEV_HW_ADDR_T_UNICAST 4 214 #define NETDEV_HW_ADDR_T_MULTICAST 5 215 bool global_use; 216 int sync_cnt; 217 int refcount; 218 int synced; 219 struct rcu_head rcu_head; 220 }; 221 222 struct netdev_hw_addr_list { 223 struct list_head list; 224 int count; 225 }; 226 227 #define netdev_hw_addr_list_count(l) ((l)->count) 228 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 229 #define netdev_hw_addr_list_for_each(ha, l) \ 230 list_for_each_entry(ha, &(l)->list, list) 231 232 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 233 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 234 #define netdev_for_each_uc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 236 237 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 238 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 239 #define netdev_for_each_mc_addr(ha, dev) \ 240 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 241 242 struct hh_cache { 243 unsigned int hh_len; 244 seqlock_t hh_lock; 245 246 /* cached hardware header; allow for machine alignment needs. */ 247 #define HH_DATA_MOD 16 248 #define HH_DATA_OFF(__len) \ 249 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 250 #define HH_DATA_ALIGN(__len) \ 251 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 252 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 253 }; 254 255 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 256 * Alternative is: 257 * dev->hard_header_len ? (dev->hard_header_len + 258 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 259 * 260 * We could use other alignment values, but we must maintain the 261 * relationship HH alignment <= LL alignment. 262 */ 263 #define LL_RESERVED_SPACE(dev) \ 264 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 265 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 266 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 267 268 struct header_ops { 269 int (*create) (struct sk_buff *skb, struct net_device *dev, 270 unsigned short type, const void *daddr, 271 const void *saddr, unsigned int len); 272 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 273 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 274 void (*cache_update)(struct hh_cache *hh, 275 const struct net_device *dev, 276 const unsigned char *haddr); 277 bool (*validate)(const char *ll_header, unsigned int len); 278 __be16 (*parse_protocol)(const struct sk_buff *skb); 279 }; 280 281 /* These flag bits are private to the generic network queueing 282 * layer; they may not be explicitly referenced by any other 283 * code. 284 */ 285 286 enum netdev_state_t { 287 __LINK_STATE_START, 288 __LINK_STATE_PRESENT, 289 __LINK_STATE_NOCARRIER, 290 __LINK_STATE_LINKWATCH_PENDING, 291 __LINK_STATE_DORMANT, 292 __LINK_STATE_TESTING, 293 }; 294 295 296 /* 297 * This structure holds boot-time configured netdevice settings. They 298 * are then used in the device probing. 299 */ 300 struct netdev_boot_setup { 301 char name[IFNAMSIZ]; 302 struct ifmap map; 303 }; 304 #define NETDEV_BOOT_SETUP_MAX 8 305 306 int __init netdev_boot_setup(char *str); 307 308 struct gro_list { 309 struct list_head list; 310 int count; 311 }; 312 313 /* 314 * size of gro hash buckets, must less than bit number of 315 * napi_struct::gro_bitmask 316 */ 317 #define GRO_HASH_BUCKETS 8 318 319 /* 320 * Structure for NAPI scheduling similar to tasklet but with weighting 321 */ 322 struct napi_struct { 323 /* The poll_list must only be managed by the entity which 324 * changes the state of the NAPI_STATE_SCHED bit. This means 325 * whoever atomically sets that bit can add this napi_struct 326 * to the per-CPU poll_list, and whoever clears that bit 327 * can remove from the list right before clearing the bit. 328 */ 329 struct list_head poll_list; 330 331 unsigned long state; 332 int weight; 333 int defer_hard_irqs_count; 334 unsigned long gro_bitmask; 335 int (*poll)(struct napi_struct *, int); 336 #ifdef CONFIG_NETPOLL 337 int poll_owner; 338 #endif 339 struct net_device *dev; 340 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 341 struct sk_buff *skb; 342 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 343 int rx_count; /* length of rx_list */ 344 struct hrtimer timer; 345 struct list_head dev_list; 346 struct hlist_node napi_hash_node; 347 unsigned int napi_id; 348 }; 349 350 enum { 351 NAPI_STATE_SCHED, /* Poll is scheduled */ 352 NAPI_STATE_MISSED, /* reschedule a napi */ 353 NAPI_STATE_DISABLE, /* Disable pending */ 354 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 355 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 356 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 357 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 358 }; 359 360 enum { 361 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 362 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 363 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 364 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 365 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 366 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 367 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 368 }; 369 370 enum gro_result { 371 GRO_MERGED, 372 GRO_MERGED_FREE, 373 GRO_HELD, 374 GRO_NORMAL, 375 GRO_DROP, 376 GRO_CONSUMED, 377 }; 378 typedef enum gro_result gro_result_t; 379 380 /* 381 * enum rx_handler_result - Possible return values for rx_handlers. 382 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 383 * further. 384 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 385 * case skb->dev was changed by rx_handler. 386 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 387 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 388 * 389 * rx_handlers are functions called from inside __netif_receive_skb(), to do 390 * special processing of the skb, prior to delivery to protocol handlers. 391 * 392 * Currently, a net_device can only have a single rx_handler registered. Trying 393 * to register a second rx_handler will return -EBUSY. 394 * 395 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 396 * To unregister a rx_handler on a net_device, use 397 * netdev_rx_handler_unregister(). 398 * 399 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 400 * do with the skb. 401 * 402 * If the rx_handler consumed the skb in some way, it should return 403 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 404 * the skb to be delivered in some other way. 405 * 406 * If the rx_handler changed skb->dev, to divert the skb to another 407 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 408 * new device will be called if it exists. 409 * 410 * If the rx_handler decides the skb should be ignored, it should return 411 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 412 * are registered on exact device (ptype->dev == skb->dev). 413 * 414 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 415 * delivered, it should return RX_HANDLER_PASS. 416 * 417 * A device without a registered rx_handler will behave as if rx_handler 418 * returned RX_HANDLER_PASS. 419 */ 420 421 enum rx_handler_result { 422 RX_HANDLER_CONSUMED, 423 RX_HANDLER_ANOTHER, 424 RX_HANDLER_EXACT, 425 RX_HANDLER_PASS, 426 }; 427 typedef enum rx_handler_result rx_handler_result_t; 428 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 429 430 void __napi_schedule(struct napi_struct *n); 431 void __napi_schedule_irqoff(struct napi_struct *n); 432 433 static inline bool napi_disable_pending(struct napi_struct *n) 434 { 435 return test_bit(NAPI_STATE_DISABLE, &n->state); 436 } 437 438 bool napi_schedule_prep(struct napi_struct *n); 439 440 /** 441 * napi_schedule - schedule NAPI poll 442 * @n: NAPI context 443 * 444 * Schedule NAPI poll routine to be called if it is not already 445 * running. 446 */ 447 static inline void napi_schedule(struct napi_struct *n) 448 { 449 if (napi_schedule_prep(n)) 450 __napi_schedule(n); 451 } 452 453 /** 454 * napi_schedule_irqoff - schedule NAPI poll 455 * @n: NAPI context 456 * 457 * Variant of napi_schedule(), assuming hard irqs are masked. 458 */ 459 static inline void napi_schedule_irqoff(struct napi_struct *n) 460 { 461 if (napi_schedule_prep(n)) 462 __napi_schedule_irqoff(n); 463 } 464 465 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 466 static inline bool napi_reschedule(struct napi_struct *napi) 467 { 468 if (napi_schedule_prep(napi)) { 469 __napi_schedule(napi); 470 return true; 471 } 472 return false; 473 } 474 475 bool napi_complete_done(struct napi_struct *n, int work_done); 476 /** 477 * napi_complete - NAPI processing complete 478 * @n: NAPI context 479 * 480 * Mark NAPI processing as complete. 481 * Consider using napi_complete_done() instead. 482 * Return false if device should avoid rearming interrupts. 483 */ 484 static inline bool napi_complete(struct napi_struct *n) 485 { 486 return napi_complete_done(n, 0); 487 } 488 489 /** 490 * napi_hash_del - remove a NAPI from global table 491 * @napi: NAPI context 492 * 493 * Warning: caller must observe RCU grace period 494 * before freeing memory containing @napi, if 495 * this function returns true. 496 * Note: core networking stack automatically calls it 497 * from netif_napi_del(). 498 * Drivers might want to call this helper to combine all 499 * the needed RCU grace periods into a single one. 500 */ 501 bool napi_hash_del(struct napi_struct *napi); 502 503 /** 504 * napi_disable - prevent NAPI from scheduling 505 * @n: NAPI context 506 * 507 * Stop NAPI from being scheduled on this context. 508 * Waits till any outstanding processing completes. 509 */ 510 void napi_disable(struct napi_struct *n); 511 512 /** 513 * napi_enable - enable NAPI scheduling 514 * @n: NAPI context 515 * 516 * Resume NAPI from being scheduled on this context. 517 * Must be paired with napi_disable. 518 */ 519 static inline void napi_enable(struct napi_struct *n) 520 { 521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 522 smp_mb__before_atomic(); 523 clear_bit(NAPI_STATE_SCHED, &n->state); 524 clear_bit(NAPI_STATE_NPSVC, &n->state); 525 } 526 527 /** 528 * napi_synchronize - wait until NAPI is not running 529 * @n: NAPI context 530 * 531 * Wait until NAPI is done being scheduled on this context. 532 * Waits till any outstanding processing completes but 533 * does not disable future activations. 534 */ 535 static inline void napi_synchronize(const struct napi_struct *n) 536 { 537 if (IS_ENABLED(CONFIG_SMP)) 538 while (test_bit(NAPI_STATE_SCHED, &n->state)) 539 msleep(1); 540 else 541 barrier(); 542 } 543 544 /** 545 * napi_if_scheduled_mark_missed - if napi is running, set the 546 * NAPIF_STATE_MISSED 547 * @n: NAPI context 548 * 549 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 550 * NAPI is scheduled. 551 **/ 552 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 553 { 554 unsigned long val, new; 555 556 do { 557 val = READ_ONCE(n->state); 558 if (val & NAPIF_STATE_DISABLE) 559 return true; 560 561 if (!(val & NAPIF_STATE_SCHED)) 562 return false; 563 564 new = val | NAPIF_STATE_MISSED; 565 } while (cmpxchg(&n->state, val, new) != val); 566 567 return true; 568 } 569 570 enum netdev_queue_state_t { 571 __QUEUE_STATE_DRV_XOFF, 572 __QUEUE_STATE_STACK_XOFF, 573 __QUEUE_STATE_FROZEN, 574 }; 575 576 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 577 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 578 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 579 580 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 581 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 582 QUEUE_STATE_FROZEN) 583 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 584 QUEUE_STATE_FROZEN) 585 586 /* 587 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 588 * netif_tx_* functions below are used to manipulate this flag. The 589 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 590 * queue independently. The netif_xmit_*stopped functions below are called 591 * to check if the queue has been stopped by the driver or stack (either 592 * of the XOFF bits are set in the state). Drivers should not need to call 593 * netif_xmit*stopped functions, they should only be using netif_tx_*. 594 */ 595 596 struct netdev_queue { 597 /* 598 * read-mostly part 599 */ 600 struct net_device *dev; 601 struct Qdisc __rcu *qdisc; 602 struct Qdisc *qdisc_sleeping; 603 #ifdef CONFIG_SYSFS 604 struct kobject kobj; 605 #endif 606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 607 int numa_node; 608 #endif 609 unsigned long tx_maxrate; 610 /* 611 * Number of TX timeouts for this queue 612 * (/sys/class/net/DEV/Q/trans_timeout) 613 */ 614 unsigned long trans_timeout; 615 616 /* Subordinate device that the queue has been assigned to */ 617 struct net_device *sb_dev; 618 #ifdef CONFIG_XDP_SOCKETS 619 struct xdp_umem *umem; 620 #endif 621 /* 622 * write-mostly part 623 */ 624 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 625 int xmit_lock_owner; 626 /* 627 * Time (in jiffies) of last Tx 628 */ 629 unsigned long trans_start; 630 631 unsigned long state; 632 633 #ifdef CONFIG_BQL 634 struct dql dql; 635 #endif 636 } ____cacheline_aligned_in_smp; 637 638 extern int sysctl_fb_tunnels_only_for_init_net; 639 extern int sysctl_devconf_inherit_init_net; 640 641 static inline bool net_has_fallback_tunnels(const struct net *net) 642 { 643 return net == &init_net || 644 !IS_ENABLED(CONFIG_SYSCTL) || 645 !sysctl_fb_tunnels_only_for_init_net; 646 } 647 648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 649 { 650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 651 return q->numa_node; 652 #else 653 return NUMA_NO_NODE; 654 #endif 655 } 656 657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 658 { 659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 660 q->numa_node = node; 661 #endif 662 } 663 664 #ifdef CONFIG_RPS 665 /* 666 * This structure holds an RPS map which can be of variable length. The 667 * map is an array of CPUs. 668 */ 669 struct rps_map { 670 unsigned int len; 671 struct rcu_head rcu; 672 u16 cpus[]; 673 }; 674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 675 676 /* 677 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 678 * tail pointer for that CPU's input queue at the time of last enqueue, and 679 * a hardware filter index. 680 */ 681 struct rps_dev_flow { 682 u16 cpu; 683 u16 filter; 684 unsigned int last_qtail; 685 }; 686 #define RPS_NO_FILTER 0xffff 687 688 /* 689 * The rps_dev_flow_table structure contains a table of flow mappings. 690 */ 691 struct rps_dev_flow_table { 692 unsigned int mask; 693 struct rcu_head rcu; 694 struct rps_dev_flow flows[]; 695 }; 696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 697 ((_num) * sizeof(struct rps_dev_flow))) 698 699 /* 700 * The rps_sock_flow_table contains mappings of flows to the last CPU 701 * on which they were processed by the application (set in recvmsg). 702 * Each entry is a 32bit value. Upper part is the high-order bits 703 * of flow hash, lower part is CPU number. 704 * rps_cpu_mask is used to partition the space, depending on number of 705 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 706 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 707 * meaning we use 32-6=26 bits for the hash. 708 */ 709 struct rps_sock_flow_table { 710 u32 mask; 711 712 u32 ents[] ____cacheline_aligned_in_smp; 713 }; 714 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 715 716 #define RPS_NO_CPU 0xffff 717 718 extern u32 rps_cpu_mask; 719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 720 721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 722 u32 hash) 723 { 724 if (table && hash) { 725 unsigned int index = hash & table->mask; 726 u32 val = hash & ~rps_cpu_mask; 727 728 /* We only give a hint, preemption can change CPU under us */ 729 val |= raw_smp_processor_id(); 730 731 if (table->ents[index] != val) 732 table->ents[index] = val; 733 } 734 } 735 736 #ifdef CONFIG_RFS_ACCEL 737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 738 u16 filter_id); 739 #endif 740 #endif /* CONFIG_RPS */ 741 742 /* This structure contains an instance of an RX queue. */ 743 struct netdev_rx_queue { 744 #ifdef CONFIG_RPS 745 struct rps_map __rcu *rps_map; 746 struct rps_dev_flow_table __rcu *rps_flow_table; 747 #endif 748 struct kobject kobj; 749 struct net_device *dev; 750 struct xdp_rxq_info xdp_rxq; 751 #ifdef CONFIG_XDP_SOCKETS 752 struct xdp_umem *umem; 753 #endif 754 } ____cacheline_aligned_in_smp; 755 756 /* 757 * RX queue sysfs structures and functions. 758 */ 759 struct rx_queue_attribute { 760 struct attribute attr; 761 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 762 ssize_t (*store)(struct netdev_rx_queue *queue, 763 const char *buf, size_t len); 764 }; 765 766 #ifdef CONFIG_XPS 767 /* 768 * This structure holds an XPS map which can be of variable length. The 769 * map is an array of queues. 770 */ 771 struct xps_map { 772 unsigned int len; 773 unsigned int alloc_len; 774 struct rcu_head rcu; 775 u16 queues[]; 776 }; 777 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 778 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 779 - sizeof(struct xps_map)) / sizeof(u16)) 780 781 /* 782 * This structure holds all XPS maps for device. Maps are indexed by CPU. 783 */ 784 struct xps_dev_maps { 785 struct rcu_head rcu; 786 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 787 }; 788 789 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 790 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 791 792 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 793 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 794 795 #endif /* CONFIG_XPS */ 796 797 #define TC_MAX_QUEUE 16 798 #define TC_BITMASK 15 799 /* HW offloaded queuing disciplines txq count and offset maps */ 800 struct netdev_tc_txq { 801 u16 count; 802 u16 offset; 803 }; 804 805 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 806 /* 807 * This structure is to hold information about the device 808 * configured to run FCoE protocol stack. 809 */ 810 struct netdev_fcoe_hbainfo { 811 char manufacturer[64]; 812 char serial_number[64]; 813 char hardware_version[64]; 814 char driver_version[64]; 815 char optionrom_version[64]; 816 char firmware_version[64]; 817 char model[256]; 818 char model_description[256]; 819 }; 820 #endif 821 822 #define MAX_PHYS_ITEM_ID_LEN 32 823 824 /* This structure holds a unique identifier to identify some 825 * physical item (port for example) used by a netdevice. 826 */ 827 struct netdev_phys_item_id { 828 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 829 unsigned char id_len; 830 }; 831 832 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 833 struct netdev_phys_item_id *b) 834 { 835 return a->id_len == b->id_len && 836 memcmp(a->id, b->id, a->id_len) == 0; 837 } 838 839 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 840 struct sk_buff *skb, 841 struct net_device *sb_dev); 842 843 enum tc_setup_type { 844 TC_SETUP_QDISC_MQPRIO, 845 TC_SETUP_CLSU32, 846 TC_SETUP_CLSFLOWER, 847 TC_SETUP_CLSMATCHALL, 848 TC_SETUP_CLSBPF, 849 TC_SETUP_BLOCK, 850 TC_SETUP_QDISC_CBS, 851 TC_SETUP_QDISC_RED, 852 TC_SETUP_QDISC_PRIO, 853 TC_SETUP_QDISC_MQ, 854 TC_SETUP_QDISC_ETF, 855 TC_SETUP_ROOT_QDISC, 856 TC_SETUP_QDISC_GRED, 857 TC_SETUP_QDISC_TAPRIO, 858 TC_SETUP_FT, 859 TC_SETUP_QDISC_ETS, 860 TC_SETUP_QDISC_TBF, 861 TC_SETUP_QDISC_FIFO, 862 }; 863 864 /* These structures hold the attributes of bpf state that are being passed 865 * to the netdevice through the bpf op. 866 */ 867 enum bpf_netdev_command { 868 /* Set or clear a bpf program used in the earliest stages of packet 869 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 870 * is responsible for calling bpf_prog_put on any old progs that are 871 * stored. In case of error, the callee need not release the new prog 872 * reference, but on success it takes ownership and must bpf_prog_put 873 * when it is no longer used. 874 */ 875 XDP_SETUP_PROG, 876 XDP_SETUP_PROG_HW, 877 XDP_QUERY_PROG, 878 XDP_QUERY_PROG_HW, 879 /* BPF program for offload callbacks, invoked at program load time. */ 880 BPF_OFFLOAD_MAP_ALLOC, 881 BPF_OFFLOAD_MAP_FREE, 882 XDP_SETUP_XSK_UMEM, 883 }; 884 885 struct bpf_prog_offload_ops; 886 struct netlink_ext_ack; 887 struct xdp_umem; 888 struct xdp_dev_bulk_queue; 889 890 struct netdev_bpf { 891 enum bpf_netdev_command command; 892 union { 893 /* XDP_SETUP_PROG */ 894 struct { 895 u32 flags; 896 struct bpf_prog *prog; 897 struct netlink_ext_ack *extack; 898 }; 899 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 900 struct { 901 u32 prog_id; 902 /* flags with which program was installed */ 903 u32 prog_flags; 904 }; 905 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 906 struct { 907 struct bpf_offloaded_map *offmap; 908 }; 909 /* XDP_SETUP_XSK_UMEM */ 910 struct { 911 struct xdp_umem *umem; 912 u16 queue_id; 913 } xsk; 914 }; 915 }; 916 917 /* Flags for ndo_xsk_wakeup. */ 918 #define XDP_WAKEUP_RX (1 << 0) 919 #define XDP_WAKEUP_TX (1 << 1) 920 921 #ifdef CONFIG_XFRM_OFFLOAD 922 struct xfrmdev_ops { 923 int (*xdo_dev_state_add) (struct xfrm_state *x); 924 void (*xdo_dev_state_delete) (struct xfrm_state *x); 925 void (*xdo_dev_state_free) (struct xfrm_state *x); 926 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 927 struct xfrm_state *x); 928 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 929 }; 930 #endif 931 932 struct dev_ifalias { 933 struct rcu_head rcuhead; 934 char ifalias[]; 935 }; 936 937 struct devlink; 938 struct tlsdev_ops; 939 940 struct netdev_name_node { 941 struct hlist_node hlist; 942 struct list_head list; 943 struct net_device *dev; 944 const char *name; 945 }; 946 947 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 948 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 949 950 struct netdev_net_notifier { 951 struct list_head list; 952 struct notifier_block *nb; 953 }; 954 955 /* 956 * This structure defines the management hooks for network devices. 957 * The following hooks can be defined; unless noted otherwise, they are 958 * optional and can be filled with a null pointer. 959 * 960 * int (*ndo_init)(struct net_device *dev); 961 * This function is called once when a network device is registered. 962 * The network device can use this for any late stage initialization 963 * or semantic validation. It can fail with an error code which will 964 * be propagated back to register_netdev. 965 * 966 * void (*ndo_uninit)(struct net_device *dev); 967 * This function is called when device is unregistered or when registration 968 * fails. It is not called if init fails. 969 * 970 * int (*ndo_open)(struct net_device *dev); 971 * This function is called when a network device transitions to the up 972 * state. 973 * 974 * int (*ndo_stop)(struct net_device *dev); 975 * This function is called when a network device transitions to the down 976 * state. 977 * 978 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 979 * struct net_device *dev); 980 * Called when a packet needs to be transmitted. 981 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 982 * the queue before that can happen; it's for obsolete devices and weird 983 * corner cases, but the stack really does a non-trivial amount 984 * of useless work if you return NETDEV_TX_BUSY. 985 * Required; cannot be NULL. 986 * 987 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 988 * struct net_device *dev 989 * netdev_features_t features); 990 * Called by core transmit path to determine if device is capable of 991 * performing offload operations on a given packet. This is to give 992 * the device an opportunity to implement any restrictions that cannot 993 * be otherwise expressed by feature flags. The check is called with 994 * the set of features that the stack has calculated and it returns 995 * those the driver believes to be appropriate. 996 * 997 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 998 * struct net_device *sb_dev); 999 * Called to decide which queue to use when device supports multiple 1000 * transmit queues. 1001 * 1002 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1003 * This function is called to allow device receiver to make 1004 * changes to configuration when multicast or promiscuous is enabled. 1005 * 1006 * void (*ndo_set_rx_mode)(struct net_device *dev); 1007 * This function is called device changes address list filtering. 1008 * If driver handles unicast address filtering, it should set 1009 * IFF_UNICAST_FLT in its priv_flags. 1010 * 1011 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1012 * This function is called when the Media Access Control address 1013 * needs to be changed. If this interface is not defined, the 1014 * MAC address can not be changed. 1015 * 1016 * int (*ndo_validate_addr)(struct net_device *dev); 1017 * Test if Media Access Control address is valid for the device. 1018 * 1019 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1020 * Called when a user requests an ioctl which can't be handled by 1021 * the generic interface code. If not defined ioctls return 1022 * not supported error code. 1023 * 1024 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1025 * Used to set network devices bus interface parameters. This interface 1026 * is retained for legacy reasons; new devices should use the bus 1027 * interface (PCI) for low level management. 1028 * 1029 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1030 * Called when a user wants to change the Maximum Transfer Unit 1031 * of a device. 1032 * 1033 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1034 * Callback used when the transmitter has not made any progress 1035 * for dev->watchdog ticks. 1036 * 1037 * void (*ndo_get_stats64)(struct net_device *dev, 1038 * struct rtnl_link_stats64 *storage); 1039 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1040 * Called when a user wants to get the network device usage 1041 * statistics. Drivers must do one of the following: 1042 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1043 * rtnl_link_stats64 structure passed by the caller. 1044 * 2. Define @ndo_get_stats to update a net_device_stats structure 1045 * (which should normally be dev->stats) and return a pointer to 1046 * it. The structure may be changed asynchronously only if each 1047 * field is written atomically. 1048 * 3. Update dev->stats asynchronously and atomically, and define 1049 * neither operation. 1050 * 1051 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1052 * Return true if this device supports offload stats of this attr_id. 1053 * 1054 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1055 * void *attr_data) 1056 * Get statistics for offload operations by attr_id. Write it into the 1057 * attr_data pointer. 1058 * 1059 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1060 * If device supports VLAN filtering this function is called when a 1061 * VLAN id is registered. 1062 * 1063 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1064 * If device supports VLAN filtering this function is called when a 1065 * VLAN id is unregistered. 1066 * 1067 * void (*ndo_poll_controller)(struct net_device *dev); 1068 * 1069 * SR-IOV management functions. 1070 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1071 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1072 * u8 qos, __be16 proto); 1073 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1074 * int max_tx_rate); 1075 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1076 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1077 * int (*ndo_get_vf_config)(struct net_device *dev, 1078 * int vf, struct ifla_vf_info *ivf); 1079 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1080 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1081 * struct nlattr *port[]); 1082 * 1083 * Enable or disable the VF ability to query its RSS Redirection Table and 1084 * Hash Key. This is needed since on some devices VF share this information 1085 * with PF and querying it may introduce a theoretical security risk. 1086 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1087 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1088 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1089 * void *type_data); 1090 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1091 * This is always called from the stack with the rtnl lock held and netif 1092 * tx queues stopped. This allows the netdevice to perform queue 1093 * management safely. 1094 * 1095 * Fiber Channel over Ethernet (FCoE) offload functions. 1096 * int (*ndo_fcoe_enable)(struct net_device *dev); 1097 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1098 * so the underlying device can perform whatever needed configuration or 1099 * initialization to support acceleration of FCoE traffic. 1100 * 1101 * int (*ndo_fcoe_disable)(struct net_device *dev); 1102 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1103 * so the underlying device can perform whatever needed clean-ups to 1104 * stop supporting acceleration of FCoE traffic. 1105 * 1106 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1107 * struct scatterlist *sgl, unsigned int sgc); 1108 * Called when the FCoE Initiator wants to initialize an I/O that 1109 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1110 * perform necessary setup and returns 1 to indicate the device is set up 1111 * successfully to perform DDP on this I/O, otherwise this returns 0. 1112 * 1113 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1114 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1115 * indicated by the FC exchange id 'xid', so the underlying device can 1116 * clean up and reuse resources for later DDP requests. 1117 * 1118 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1119 * struct scatterlist *sgl, unsigned int sgc); 1120 * Called when the FCoE Target wants to initialize an I/O that 1121 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1122 * perform necessary setup and returns 1 to indicate the device is set up 1123 * successfully to perform DDP on this I/O, otherwise this returns 0. 1124 * 1125 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1126 * struct netdev_fcoe_hbainfo *hbainfo); 1127 * Called when the FCoE Protocol stack wants information on the underlying 1128 * device. This information is utilized by the FCoE protocol stack to 1129 * register attributes with Fiber Channel management service as per the 1130 * FC-GS Fabric Device Management Information(FDMI) specification. 1131 * 1132 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1133 * Called when the underlying device wants to override default World Wide 1134 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1135 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1136 * protocol stack to use. 1137 * 1138 * RFS acceleration. 1139 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1140 * u16 rxq_index, u32 flow_id); 1141 * Set hardware filter for RFS. rxq_index is the target queue index; 1142 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1143 * Return the filter ID on success, or a negative error code. 1144 * 1145 * Slave management functions (for bridge, bonding, etc). 1146 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1147 * Called to make another netdev an underling. 1148 * 1149 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1150 * Called to release previously enslaved netdev. 1151 * 1152 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1153 * struct sk_buff *skb, 1154 * bool all_slaves); 1155 * Get the xmit slave of master device. If all_slaves is true, function 1156 * assume all the slaves can transmit. 1157 * 1158 * Feature/offload setting functions. 1159 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1160 * netdev_features_t features); 1161 * Adjusts the requested feature flags according to device-specific 1162 * constraints, and returns the resulting flags. Must not modify 1163 * the device state. 1164 * 1165 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1166 * Called to update device configuration to new features. Passed 1167 * feature set might be less than what was returned by ndo_fix_features()). 1168 * Must return >0 or -errno if it changed dev->features itself. 1169 * 1170 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1171 * struct net_device *dev, 1172 * const unsigned char *addr, u16 vid, u16 flags, 1173 * struct netlink_ext_ack *extack); 1174 * Adds an FDB entry to dev for addr. 1175 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1176 * struct net_device *dev, 1177 * const unsigned char *addr, u16 vid) 1178 * Deletes the FDB entry from dev coresponding to addr. 1179 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1180 * struct net_device *dev, struct net_device *filter_dev, 1181 * int *idx) 1182 * Used to add FDB entries to dump requests. Implementers should add 1183 * entries to skb and update idx with the number of entries. 1184 * 1185 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1186 * u16 flags, struct netlink_ext_ack *extack) 1187 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1188 * struct net_device *dev, u32 filter_mask, 1189 * int nlflags) 1190 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1191 * u16 flags); 1192 * 1193 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1194 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1195 * which do not represent real hardware may define this to allow their 1196 * userspace components to manage their virtual carrier state. Devices 1197 * that determine carrier state from physical hardware properties (eg 1198 * network cables) or protocol-dependent mechanisms (eg 1199 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1200 * 1201 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1202 * struct netdev_phys_item_id *ppid); 1203 * Called to get ID of physical port of this device. If driver does 1204 * not implement this, it is assumed that the hw is not able to have 1205 * multiple net devices on single physical port. 1206 * 1207 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1208 * struct netdev_phys_item_id *ppid) 1209 * Called to get the parent ID of the physical port of this device. 1210 * 1211 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1212 * struct udp_tunnel_info *ti); 1213 * Called by UDP tunnel to notify a driver about the UDP port and socket 1214 * address family that a UDP tunnel is listnening to. It is called only 1215 * when a new port starts listening. The operation is protected by the 1216 * RTNL. 1217 * 1218 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1219 * struct udp_tunnel_info *ti); 1220 * Called by UDP tunnel to notify the driver about a UDP port and socket 1221 * address family that the UDP tunnel is not listening to anymore. The 1222 * operation is protected by the RTNL. 1223 * 1224 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1225 * struct net_device *dev) 1226 * Called by upper layer devices to accelerate switching or other 1227 * station functionality into hardware. 'pdev is the lowerdev 1228 * to use for the offload and 'dev' is the net device that will 1229 * back the offload. Returns a pointer to the private structure 1230 * the upper layer will maintain. 1231 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1232 * Called by upper layer device to delete the station created 1233 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1234 * the station and priv is the structure returned by the add 1235 * operation. 1236 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1237 * int queue_index, u32 maxrate); 1238 * Called when a user wants to set a max-rate limitation of specific 1239 * TX queue. 1240 * int (*ndo_get_iflink)(const struct net_device *dev); 1241 * Called to get the iflink value of this device. 1242 * void (*ndo_change_proto_down)(struct net_device *dev, 1243 * bool proto_down); 1244 * This function is used to pass protocol port error state information 1245 * to the switch driver. The switch driver can react to the proto_down 1246 * by doing a phys down on the associated switch port. 1247 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1248 * This function is used to get egress tunnel information for given skb. 1249 * This is useful for retrieving outer tunnel header parameters while 1250 * sampling packet. 1251 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1252 * This function is used to specify the headroom that the skb must 1253 * consider when allocation skb during packet reception. Setting 1254 * appropriate rx headroom value allows avoiding skb head copy on 1255 * forward. Setting a negative value resets the rx headroom to the 1256 * default value. 1257 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1258 * This function is used to set or query state related to XDP on the 1259 * netdevice and manage BPF offload. See definition of 1260 * enum bpf_netdev_command for details. 1261 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1262 * u32 flags); 1263 * This function is used to submit @n XDP packets for transmit on a 1264 * netdevice. Returns number of frames successfully transmitted, frames 1265 * that got dropped are freed/returned via xdp_return_frame(). 1266 * Returns negative number, means general error invoking ndo, meaning 1267 * no frames were xmit'ed and core-caller will free all frames. 1268 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1269 * This function is used to wake up the softirq, ksoftirqd or kthread 1270 * responsible for sending and/or receiving packets on a specific 1271 * queue id bound to an AF_XDP socket. The flags field specifies if 1272 * only RX, only Tx, or both should be woken up using the flags 1273 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1274 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1275 * Get devlink port instance associated with a given netdev. 1276 * Called with a reference on the netdevice and devlink locks only, 1277 * rtnl_lock is not held. 1278 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1279 * int cmd); 1280 * Add, change, delete or get information on an IPv4 tunnel. 1281 */ 1282 struct net_device_ops { 1283 int (*ndo_init)(struct net_device *dev); 1284 void (*ndo_uninit)(struct net_device *dev); 1285 int (*ndo_open)(struct net_device *dev); 1286 int (*ndo_stop)(struct net_device *dev); 1287 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1288 struct net_device *dev); 1289 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1290 struct net_device *dev, 1291 netdev_features_t features); 1292 u16 (*ndo_select_queue)(struct net_device *dev, 1293 struct sk_buff *skb, 1294 struct net_device *sb_dev); 1295 void (*ndo_change_rx_flags)(struct net_device *dev, 1296 int flags); 1297 void (*ndo_set_rx_mode)(struct net_device *dev); 1298 int (*ndo_set_mac_address)(struct net_device *dev, 1299 void *addr); 1300 int (*ndo_validate_addr)(struct net_device *dev); 1301 int (*ndo_do_ioctl)(struct net_device *dev, 1302 struct ifreq *ifr, int cmd); 1303 int (*ndo_set_config)(struct net_device *dev, 1304 struct ifmap *map); 1305 int (*ndo_change_mtu)(struct net_device *dev, 1306 int new_mtu); 1307 int (*ndo_neigh_setup)(struct net_device *dev, 1308 struct neigh_parms *); 1309 void (*ndo_tx_timeout) (struct net_device *dev, 1310 unsigned int txqueue); 1311 1312 void (*ndo_get_stats64)(struct net_device *dev, 1313 struct rtnl_link_stats64 *storage); 1314 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1315 int (*ndo_get_offload_stats)(int attr_id, 1316 const struct net_device *dev, 1317 void *attr_data); 1318 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1319 1320 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1321 __be16 proto, u16 vid); 1322 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1323 __be16 proto, u16 vid); 1324 #ifdef CONFIG_NET_POLL_CONTROLLER 1325 void (*ndo_poll_controller)(struct net_device *dev); 1326 int (*ndo_netpoll_setup)(struct net_device *dev, 1327 struct netpoll_info *info); 1328 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1329 #endif 1330 int (*ndo_set_vf_mac)(struct net_device *dev, 1331 int queue, u8 *mac); 1332 int (*ndo_set_vf_vlan)(struct net_device *dev, 1333 int queue, u16 vlan, 1334 u8 qos, __be16 proto); 1335 int (*ndo_set_vf_rate)(struct net_device *dev, 1336 int vf, int min_tx_rate, 1337 int max_tx_rate); 1338 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1339 int vf, bool setting); 1340 int (*ndo_set_vf_trust)(struct net_device *dev, 1341 int vf, bool setting); 1342 int (*ndo_get_vf_config)(struct net_device *dev, 1343 int vf, 1344 struct ifla_vf_info *ivf); 1345 int (*ndo_set_vf_link_state)(struct net_device *dev, 1346 int vf, int link_state); 1347 int (*ndo_get_vf_stats)(struct net_device *dev, 1348 int vf, 1349 struct ifla_vf_stats 1350 *vf_stats); 1351 int (*ndo_set_vf_port)(struct net_device *dev, 1352 int vf, 1353 struct nlattr *port[]); 1354 int (*ndo_get_vf_port)(struct net_device *dev, 1355 int vf, struct sk_buff *skb); 1356 int (*ndo_get_vf_guid)(struct net_device *dev, 1357 int vf, 1358 struct ifla_vf_guid *node_guid, 1359 struct ifla_vf_guid *port_guid); 1360 int (*ndo_set_vf_guid)(struct net_device *dev, 1361 int vf, u64 guid, 1362 int guid_type); 1363 int (*ndo_set_vf_rss_query_en)( 1364 struct net_device *dev, 1365 int vf, bool setting); 1366 int (*ndo_setup_tc)(struct net_device *dev, 1367 enum tc_setup_type type, 1368 void *type_data); 1369 #if IS_ENABLED(CONFIG_FCOE) 1370 int (*ndo_fcoe_enable)(struct net_device *dev); 1371 int (*ndo_fcoe_disable)(struct net_device *dev); 1372 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1373 u16 xid, 1374 struct scatterlist *sgl, 1375 unsigned int sgc); 1376 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1377 u16 xid); 1378 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1379 u16 xid, 1380 struct scatterlist *sgl, 1381 unsigned int sgc); 1382 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1383 struct netdev_fcoe_hbainfo *hbainfo); 1384 #endif 1385 1386 #if IS_ENABLED(CONFIG_LIBFCOE) 1387 #define NETDEV_FCOE_WWNN 0 1388 #define NETDEV_FCOE_WWPN 1 1389 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1390 u64 *wwn, int type); 1391 #endif 1392 1393 #ifdef CONFIG_RFS_ACCEL 1394 int (*ndo_rx_flow_steer)(struct net_device *dev, 1395 const struct sk_buff *skb, 1396 u16 rxq_index, 1397 u32 flow_id); 1398 #endif 1399 int (*ndo_add_slave)(struct net_device *dev, 1400 struct net_device *slave_dev, 1401 struct netlink_ext_ack *extack); 1402 int (*ndo_del_slave)(struct net_device *dev, 1403 struct net_device *slave_dev); 1404 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1405 struct sk_buff *skb, 1406 bool all_slaves); 1407 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1408 netdev_features_t features); 1409 int (*ndo_set_features)(struct net_device *dev, 1410 netdev_features_t features); 1411 int (*ndo_neigh_construct)(struct net_device *dev, 1412 struct neighbour *n); 1413 void (*ndo_neigh_destroy)(struct net_device *dev, 1414 struct neighbour *n); 1415 1416 int (*ndo_fdb_add)(struct ndmsg *ndm, 1417 struct nlattr *tb[], 1418 struct net_device *dev, 1419 const unsigned char *addr, 1420 u16 vid, 1421 u16 flags, 1422 struct netlink_ext_ack *extack); 1423 int (*ndo_fdb_del)(struct ndmsg *ndm, 1424 struct nlattr *tb[], 1425 struct net_device *dev, 1426 const unsigned char *addr, 1427 u16 vid); 1428 int (*ndo_fdb_dump)(struct sk_buff *skb, 1429 struct netlink_callback *cb, 1430 struct net_device *dev, 1431 struct net_device *filter_dev, 1432 int *idx); 1433 int (*ndo_fdb_get)(struct sk_buff *skb, 1434 struct nlattr *tb[], 1435 struct net_device *dev, 1436 const unsigned char *addr, 1437 u16 vid, u32 portid, u32 seq, 1438 struct netlink_ext_ack *extack); 1439 int (*ndo_bridge_setlink)(struct net_device *dev, 1440 struct nlmsghdr *nlh, 1441 u16 flags, 1442 struct netlink_ext_ack *extack); 1443 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1444 u32 pid, u32 seq, 1445 struct net_device *dev, 1446 u32 filter_mask, 1447 int nlflags); 1448 int (*ndo_bridge_dellink)(struct net_device *dev, 1449 struct nlmsghdr *nlh, 1450 u16 flags); 1451 int (*ndo_change_carrier)(struct net_device *dev, 1452 bool new_carrier); 1453 int (*ndo_get_phys_port_id)(struct net_device *dev, 1454 struct netdev_phys_item_id *ppid); 1455 int (*ndo_get_port_parent_id)(struct net_device *dev, 1456 struct netdev_phys_item_id *ppid); 1457 int (*ndo_get_phys_port_name)(struct net_device *dev, 1458 char *name, size_t len); 1459 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1460 struct udp_tunnel_info *ti); 1461 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1462 struct udp_tunnel_info *ti); 1463 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1464 struct net_device *dev); 1465 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1466 void *priv); 1467 1468 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1469 int queue_index, 1470 u32 maxrate); 1471 int (*ndo_get_iflink)(const struct net_device *dev); 1472 int (*ndo_change_proto_down)(struct net_device *dev, 1473 bool proto_down); 1474 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1475 struct sk_buff *skb); 1476 void (*ndo_set_rx_headroom)(struct net_device *dev, 1477 int needed_headroom); 1478 int (*ndo_bpf)(struct net_device *dev, 1479 struct netdev_bpf *bpf); 1480 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1481 struct xdp_frame **xdp, 1482 u32 flags); 1483 int (*ndo_xsk_wakeup)(struct net_device *dev, 1484 u32 queue_id, u32 flags); 1485 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1486 int (*ndo_tunnel_ctl)(struct net_device *dev, 1487 struct ip_tunnel_parm *p, int cmd); 1488 }; 1489 1490 /** 1491 * enum net_device_priv_flags - &struct net_device priv_flags 1492 * 1493 * These are the &struct net_device, they are only set internally 1494 * by drivers and used in the kernel. These flags are invisible to 1495 * userspace; this means that the order of these flags can change 1496 * during any kernel release. 1497 * 1498 * You should have a pretty good reason to be extending these flags. 1499 * 1500 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1501 * @IFF_EBRIDGE: Ethernet bridging device 1502 * @IFF_BONDING: bonding master or slave 1503 * @IFF_ISATAP: ISATAP interface (RFC4214) 1504 * @IFF_WAN_HDLC: WAN HDLC device 1505 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1506 * release skb->dst 1507 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1508 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1509 * @IFF_MACVLAN_PORT: device used as macvlan port 1510 * @IFF_BRIDGE_PORT: device used as bridge port 1511 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1512 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1513 * @IFF_UNICAST_FLT: Supports unicast filtering 1514 * @IFF_TEAM_PORT: device used as team port 1515 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1516 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1517 * change when it's running 1518 * @IFF_MACVLAN: Macvlan device 1519 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1520 * underlying stacked devices 1521 * @IFF_L3MDEV_MASTER: device is an L3 master device 1522 * @IFF_NO_QUEUE: device can run without qdisc attached 1523 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1524 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1525 * @IFF_TEAM: device is a team device 1526 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1527 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1528 * entity (i.e. the master device for bridged veth) 1529 * @IFF_MACSEC: device is a MACsec device 1530 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1531 * @IFF_FAILOVER: device is a failover master device 1532 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1533 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1534 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1535 */ 1536 enum netdev_priv_flags { 1537 IFF_802_1Q_VLAN = 1<<0, 1538 IFF_EBRIDGE = 1<<1, 1539 IFF_BONDING = 1<<2, 1540 IFF_ISATAP = 1<<3, 1541 IFF_WAN_HDLC = 1<<4, 1542 IFF_XMIT_DST_RELEASE = 1<<5, 1543 IFF_DONT_BRIDGE = 1<<6, 1544 IFF_DISABLE_NETPOLL = 1<<7, 1545 IFF_MACVLAN_PORT = 1<<8, 1546 IFF_BRIDGE_PORT = 1<<9, 1547 IFF_OVS_DATAPATH = 1<<10, 1548 IFF_TX_SKB_SHARING = 1<<11, 1549 IFF_UNICAST_FLT = 1<<12, 1550 IFF_TEAM_PORT = 1<<13, 1551 IFF_SUPP_NOFCS = 1<<14, 1552 IFF_LIVE_ADDR_CHANGE = 1<<15, 1553 IFF_MACVLAN = 1<<16, 1554 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1555 IFF_L3MDEV_MASTER = 1<<18, 1556 IFF_NO_QUEUE = 1<<19, 1557 IFF_OPENVSWITCH = 1<<20, 1558 IFF_L3MDEV_SLAVE = 1<<21, 1559 IFF_TEAM = 1<<22, 1560 IFF_RXFH_CONFIGURED = 1<<23, 1561 IFF_PHONY_HEADROOM = 1<<24, 1562 IFF_MACSEC = 1<<25, 1563 IFF_NO_RX_HANDLER = 1<<26, 1564 IFF_FAILOVER = 1<<27, 1565 IFF_FAILOVER_SLAVE = 1<<28, 1566 IFF_L3MDEV_RX_HANDLER = 1<<29, 1567 IFF_LIVE_RENAME_OK = 1<<30, 1568 }; 1569 1570 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1571 #define IFF_EBRIDGE IFF_EBRIDGE 1572 #define IFF_BONDING IFF_BONDING 1573 #define IFF_ISATAP IFF_ISATAP 1574 #define IFF_WAN_HDLC IFF_WAN_HDLC 1575 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1576 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1577 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1578 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1579 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1580 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1581 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1582 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1583 #define IFF_TEAM_PORT IFF_TEAM_PORT 1584 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1585 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1586 #define IFF_MACVLAN IFF_MACVLAN 1587 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1588 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1589 #define IFF_NO_QUEUE IFF_NO_QUEUE 1590 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1591 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1592 #define IFF_TEAM IFF_TEAM 1593 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1594 #define IFF_MACSEC IFF_MACSEC 1595 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1596 #define IFF_FAILOVER IFF_FAILOVER 1597 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1598 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1599 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1600 1601 /** 1602 * struct net_device - The DEVICE structure. 1603 * 1604 * Actually, this whole structure is a big mistake. It mixes I/O 1605 * data with strictly "high-level" data, and it has to know about 1606 * almost every data structure used in the INET module. 1607 * 1608 * @name: This is the first field of the "visible" part of this structure 1609 * (i.e. as seen by users in the "Space.c" file). It is the name 1610 * of the interface. 1611 * 1612 * @name_node: Name hashlist node 1613 * @ifalias: SNMP alias 1614 * @mem_end: Shared memory end 1615 * @mem_start: Shared memory start 1616 * @base_addr: Device I/O address 1617 * @irq: Device IRQ number 1618 * 1619 * @state: Generic network queuing layer state, see netdev_state_t 1620 * @dev_list: The global list of network devices 1621 * @napi_list: List entry used for polling NAPI devices 1622 * @unreg_list: List entry when we are unregistering the 1623 * device; see the function unregister_netdev 1624 * @close_list: List entry used when we are closing the device 1625 * @ptype_all: Device-specific packet handlers for all protocols 1626 * @ptype_specific: Device-specific, protocol-specific packet handlers 1627 * 1628 * @adj_list: Directly linked devices, like slaves for bonding 1629 * @features: Currently active device features 1630 * @hw_features: User-changeable features 1631 * 1632 * @wanted_features: User-requested features 1633 * @vlan_features: Mask of features inheritable by VLAN devices 1634 * 1635 * @hw_enc_features: Mask of features inherited by encapsulating devices 1636 * This field indicates what encapsulation 1637 * offloads the hardware is capable of doing, 1638 * and drivers will need to set them appropriately. 1639 * 1640 * @mpls_features: Mask of features inheritable by MPLS 1641 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1642 * 1643 * @ifindex: interface index 1644 * @group: The group the device belongs to 1645 * 1646 * @stats: Statistics struct, which was left as a legacy, use 1647 * rtnl_link_stats64 instead 1648 * 1649 * @rx_dropped: Dropped packets by core network, 1650 * do not use this in drivers 1651 * @tx_dropped: Dropped packets by core network, 1652 * do not use this in drivers 1653 * @rx_nohandler: nohandler dropped packets by core network on 1654 * inactive devices, do not use this in drivers 1655 * @carrier_up_count: Number of times the carrier has been up 1656 * @carrier_down_count: Number of times the carrier has been down 1657 * 1658 * @wireless_handlers: List of functions to handle Wireless Extensions, 1659 * instead of ioctl, 1660 * see <net/iw_handler.h> for details. 1661 * @wireless_data: Instance data managed by the core of wireless extensions 1662 * 1663 * @netdev_ops: Includes several pointers to callbacks, 1664 * if one wants to override the ndo_*() functions 1665 * @ethtool_ops: Management operations 1666 * @l3mdev_ops: Layer 3 master device operations 1667 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1668 * discovery handling. Necessary for e.g. 6LoWPAN. 1669 * @xfrmdev_ops: Transformation offload operations 1670 * @tlsdev_ops: Transport Layer Security offload operations 1671 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1672 * of Layer 2 headers. 1673 * 1674 * @flags: Interface flags (a la BSD) 1675 * @priv_flags: Like 'flags' but invisible to userspace, 1676 * see if.h for the definitions 1677 * @gflags: Global flags ( kept as legacy ) 1678 * @padded: How much padding added by alloc_netdev() 1679 * @operstate: RFC2863 operstate 1680 * @link_mode: Mapping policy to operstate 1681 * @if_port: Selectable AUI, TP, ... 1682 * @dma: DMA channel 1683 * @mtu: Interface MTU value 1684 * @min_mtu: Interface Minimum MTU value 1685 * @max_mtu: Interface Maximum MTU value 1686 * @type: Interface hardware type 1687 * @hard_header_len: Maximum hardware header length. 1688 * @min_header_len: Minimum hardware header length 1689 * 1690 * @needed_headroom: Extra headroom the hardware may need, but not in all 1691 * cases can this be guaranteed 1692 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1693 * cases can this be guaranteed. Some cases also use 1694 * LL_MAX_HEADER instead to allocate the skb 1695 * 1696 * interface address info: 1697 * 1698 * @perm_addr: Permanent hw address 1699 * @addr_assign_type: Hw address assignment type 1700 * @addr_len: Hardware address length 1701 * @upper_level: Maximum depth level of upper devices. 1702 * @lower_level: Maximum depth level of lower devices. 1703 * @neigh_priv_len: Used in neigh_alloc() 1704 * @dev_id: Used to differentiate devices that share 1705 * the same link layer address 1706 * @dev_port: Used to differentiate devices that share 1707 * the same function 1708 * @addr_list_lock: XXX: need comments on this one 1709 * @name_assign_type: network interface name assignment type 1710 * @uc_promisc: Counter that indicates promiscuous mode 1711 * has been enabled due to the need to listen to 1712 * additional unicast addresses in a device that 1713 * does not implement ndo_set_rx_mode() 1714 * @uc: unicast mac addresses 1715 * @mc: multicast mac addresses 1716 * @dev_addrs: list of device hw addresses 1717 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1718 * @promiscuity: Number of times the NIC is told to work in 1719 * promiscuous mode; if it becomes 0 the NIC will 1720 * exit promiscuous mode 1721 * @allmulti: Counter, enables or disables allmulticast mode 1722 * 1723 * @vlan_info: VLAN info 1724 * @dsa_ptr: dsa specific data 1725 * @tipc_ptr: TIPC specific data 1726 * @atalk_ptr: AppleTalk link 1727 * @ip_ptr: IPv4 specific data 1728 * @dn_ptr: DECnet specific data 1729 * @ip6_ptr: IPv6 specific data 1730 * @ax25_ptr: AX.25 specific data 1731 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1732 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1733 * device struct 1734 * @mpls_ptr: mpls_dev struct pointer 1735 * 1736 * @dev_addr: Hw address (before bcast, 1737 * because most packets are unicast) 1738 * 1739 * @_rx: Array of RX queues 1740 * @num_rx_queues: Number of RX queues 1741 * allocated at register_netdev() time 1742 * @real_num_rx_queues: Number of RX queues currently active in device 1743 * @xdp_prog: XDP sockets filter program pointer 1744 * @gro_flush_timeout: timeout for GRO layer in NAPI 1745 * 1746 * @rx_handler: handler for received packets 1747 * @rx_handler_data: XXX: need comments on this one 1748 * @miniq_ingress: ingress/clsact qdisc specific data for 1749 * ingress processing 1750 * @ingress_queue: XXX: need comments on this one 1751 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1752 * @broadcast: hw bcast address 1753 * 1754 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1755 * indexed by RX queue number. Assigned by driver. 1756 * This must only be set if the ndo_rx_flow_steer 1757 * operation is defined 1758 * @index_hlist: Device index hash chain 1759 * 1760 * @_tx: Array of TX queues 1761 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1762 * @real_num_tx_queues: Number of TX queues currently active in device 1763 * @qdisc: Root qdisc from userspace point of view 1764 * @tx_queue_len: Max frames per queue allowed 1765 * @tx_global_lock: XXX: need comments on this one 1766 * @xdp_bulkq: XDP device bulk queue 1767 * @xps_cpus_map: all CPUs map for XPS device 1768 * @xps_rxqs_map: all RXQs map for XPS device 1769 * 1770 * @xps_maps: XXX: need comments on this one 1771 * @miniq_egress: clsact qdisc specific data for 1772 * egress processing 1773 * @qdisc_hash: qdisc hash table 1774 * @watchdog_timeo: Represents the timeout that is used by 1775 * the watchdog (see dev_watchdog()) 1776 * @watchdog_timer: List of timers 1777 * 1778 * @pcpu_refcnt: Number of references to this device 1779 * @todo_list: Delayed register/unregister 1780 * @link_watch_list: XXX: need comments on this one 1781 * 1782 * @reg_state: Register/unregister state machine 1783 * @dismantle: Device is going to be freed 1784 * @rtnl_link_state: This enum represents the phases of creating 1785 * a new link 1786 * 1787 * @needs_free_netdev: Should unregister perform free_netdev? 1788 * @priv_destructor: Called from unregister 1789 * @npinfo: XXX: need comments on this one 1790 * @nd_net: Network namespace this network device is inside 1791 * 1792 * @ml_priv: Mid-layer private 1793 * @lstats: Loopback statistics 1794 * @tstats: Tunnel statistics 1795 * @dstats: Dummy statistics 1796 * @vstats: Virtual ethernet statistics 1797 * 1798 * @garp_port: GARP 1799 * @mrp_port: MRP 1800 * 1801 * @dev: Class/net/name entry 1802 * @sysfs_groups: Space for optional device, statistics and wireless 1803 * sysfs groups 1804 * 1805 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1806 * @rtnl_link_ops: Rtnl_link_ops 1807 * 1808 * @gso_max_size: Maximum size of generic segmentation offload 1809 * @gso_max_segs: Maximum number of segments that can be passed to the 1810 * NIC for GSO 1811 * 1812 * @dcbnl_ops: Data Center Bridging netlink ops 1813 * @num_tc: Number of traffic classes in the net device 1814 * @tc_to_txq: XXX: need comments on this one 1815 * @prio_tc_map: XXX: need comments on this one 1816 * 1817 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1818 * 1819 * @priomap: XXX: need comments on this one 1820 * @phydev: Physical device may attach itself 1821 * for hardware timestamping 1822 * @sfp_bus: attached &struct sfp_bus structure. 1823 * 1824 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1825 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1826 * 1827 * @proto_down: protocol port state information can be sent to the 1828 * switch driver and used to set the phys state of the 1829 * switch port. 1830 * 1831 * @wol_enabled: Wake-on-LAN is enabled 1832 * 1833 * @net_notifier_list: List of per-net netdev notifier block 1834 * that follow this device when it is moved 1835 * to another network namespace. 1836 * 1837 * @macsec_ops: MACsec offloading ops 1838 * 1839 * FIXME: cleanup struct net_device such that network protocol info 1840 * moves out. 1841 */ 1842 1843 struct net_device { 1844 char name[IFNAMSIZ]; 1845 struct netdev_name_node *name_node; 1846 struct dev_ifalias __rcu *ifalias; 1847 /* 1848 * I/O specific fields 1849 * FIXME: Merge these and struct ifmap into one 1850 */ 1851 unsigned long mem_end; 1852 unsigned long mem_start; 1853 unsigned long base_addr; 1854 int irq; 1855 1856 /* 1857 * Some hardware also needs these fields (state,dev_list, 1858 * napi_list,unreg_list,close_list) but they are not 1859 * part of the usual set specified in Space.c. 1860 */ 1861 1862 unsigned long state; 1863 1864 struct list_head dev_list; 1865 struct list_head napi_list; 1866 struct list_head unreg_list; 1867 struct list_head close_list; 1868 struct list_head ptype_all; 1869 struct list_head ptype_specific; 1870 1871 struct { 1872 struct list_head upper; 1873 struct list_head lower; 1874 } adj_list; 1875 1876 netdev_features_t features; 1877 netdev_features_t hw_features; 1878 netdev_features_t wanted_features; 1879 netdev_features_t vlan_features; 1880 netdev_features_t hw_enc_features; 1881 netdev_features_t mpls_features; 1882 netdev_features_t gso_partial_features; 1883 1884 int ifindex; 1885 int group; 1886 1887 struct net_device_stats stats; 1888 1889 atomic_long_t rx_dropped; 1890 atomic_long_t tx_dropped; 1891 atomic_long_t rx_nohandler; 1892 1893 /* Stats to monitor link on/off, flapping */ 1894 atomic_t carrier_up_count; 1895 atomic_t carrier_down_count; 1896 1897 #ifdef CONFIG_WIRELESS_EXT 1898 const struct iw_handler_def *wireless_handlers; 1899 struct iw_public_data *wireless_data; 1900 #endif 1901 const struct net_device_ops *netdev_ops; 1902 const struct ethtool_ops *ethtool_ops; 1903 #ifdef CONFIG_NET_L3_MASTER_DEV 1904 const struct l3mdev_ops *l3mdev_ops; 1905 #endif 1906 #if IS_ENABLED(CONFIG_IPV6) 1907 const struct ndisc_ops *ndisc_ops; 1908 #endif 1909 1910 #ifdef CONFIG_XFRM_OFFLOAD 1911 const struct xfrmdev_ops *xfrmdev_ops; 1912 #endif 1913 1914 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1915 const struct tlsdev_ops *tlsdev_ops; 1916 #endif 1917 1918 const struct header_ops *header_ops; 1919 1920 unsigned int flags; 1921 unsigned int priv_flags; 1922 1923 unsigned short gflags; 1924 unsigned short padded; 1925 1926 unsigned char operstate; 1927 unsigned char link_mode; 1928 1929 unsigned char if_port; 1930 unsigned char dma; 1931 1932 /* Note : dev->mtu is often read without holding a lock. 1933 * Writers usually hold RTNL. 1934 * It is recommended to use READ_ONCE() to annotate the reads, 1935 * and to use WRITE_ONCE() to annotate the writes. 1936 */ 1937 unsigned int mtu; 1938 unsigned int min_mtu; 1939 unsigned int max_mtu; 1940 unsigned short type; 1941 unsigned short hard_header_len; 1942 unsigned char min_header_len; 1943 1944 unsigned short needed_headroom; 1945 unsigned short needed_tailroom; 1946 1947 /* Interface address info. */ 1948 unsigned char perm_addr[MAX_ADDR_LEN]; 1949 unsigned char addr_assign_type; 1950 unsigned char addr_len; 1951 unsigned char upper_level; 1952 unsigned char lower_level; 1953 unsigned short neigh_priv_len; 1954 unsigned short dev_id; 1955 unsigned short dev_port; 1956 spinlock_t addr_list_lock; 1957 unsigned char name_assign_type; 1958 bool uc_promisc; 1959 struct netdev_hw_addr_list uc; 1960 struct netdev_hw_addr_list mc; 1961 struct netdev_hw_addr_list dev_addrs; 1962 1963 #ifdef CONFIG_SYSFS 1964 struct kset *queues_kset; 1965 #endif 1966 unsigned int promiscuity; 1967 unsigned int allmulti; 1968 1969 1970 /* Protocol-specific pointers */ 1971 1972 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1973 struct vlan_info __rcu *vlan_info; 1974 #endif 1975 #if IS_ENABLED(CONFIG_NET_DSA) 1976 struct dsa_port *dsa_ptr; 1977 #endif 1978 #if IS_ENABLED(CONFIG_TIPC) 1979 struct tipc_bearer __rcu *tipc_ptr; 1980 #endif 1981 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1982 void *atalk_ptr; 1983 #endif 1984 struct in_device __rcu *ip_ptr; 1985 #if IS_ENABLED(CONFIG_DECNET) 1986 struct dn_dev __rcu *dn_ptr; 1987 #endif 1988 struct inet6_dev __rcu *ip6_ptr; 1989 #if IS_ENABLED(CONFIG_AX25) 1990 void *ax25_ptr; 1991 #endif 1992 struct wireless_dev *ieee80211_ptr; 1993 struct wpan_dev *ieee802154_ptr; 1994 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1995 struct mpls_dev __rcu *mpls_ptr; 1996 #endif 1997 1998 /* 1999 * Cache lines mostly used on receive path (including eth_type_trans()) 2000 */ 2001 /* Interface address info used in eth_type_trans() */ 2002 unsigned char *dev_addr; 2003 2004 struct netdev_rx_queue *_rx; 2005 unsigned int num_rx_queues; 2006 unsigned int real_num_rx_queues; 2007 2008 struct bpf_prog __rcu *xdp_prog; 2009 unsigned long gro_flush_timeout; 2010 int napi_defer_hard_irqs; 2011 rx_handler_func_t __rcu *rx_handler; 2012 void __rcu *rx_handler_data; 2013 2014 #ifdef CONFIG_NET_CLS_ACT 2015 struct mini_Qdisc __rcu *miniq_ingress; 2016 #endif 2017 struct netdev_queue __rcu *ingress_queue; 2018 #ifdef CONFIG_NETFILTER_INGRESS 2019 struct nf_hook_entries __rcu *nf_hooks_ingress; 2020 #endif 2021 2022 unsigned char broadcast[MAX_ADDR_LEN]; 2023 #ifdef CONFIG_RFS_ACCEL 2024 struct cpu_rmap *rx_cpu_rmap; 2025 #endif 2026 struct hlist_node index_hlist; 2027 2028 /* 2029 * Cache lines mostly used on transmit path 2030 */ 2031 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2032 unsigned int num_tx_queues; 2033 unsigned int real_num_tx_queues; 2034 struct Qdisc *qdisc; 2035 unsigned int tx_queue_len; 2036 spinlock_t tx_global_lock; 2037 2038 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2039 2040 #ifdef CONFIG_XPS 2041 struct xps_dev_maps __rcu *xps_cpus_map; 2042 struct xps_dev_maps __rcu *xps_rxqs_map; 2043 #endif 2044 #ifdef CONFIG_NET_CLS_ACT 2045 struct mini_Qdisc __rcu *miniq_egress; 2046 #endif 2047 2048 #ifdef CONFIG_NET_SCHED 2049 DECLARE_HASHTABLE (qdisc_hash, 4); 2050 #endif 2051 /* These may be needed for future network-power-down code. */ 2052 struct timer_list watchdog_timer; 2053 int watchdog_timeo; 2054 2055 struct list_head todo_list; 2056 int __percpu *pcpu_refcnt; 2057 2058 struct list_head link_watch_list; 2059 2060 enum { NETREG_UNINITIALIZED=0, 2061 NETREG_REGISTERED, /* completed register_netdevice */ 2062 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2063 NETREG_UNREGISTERED, /* completed unregister todo */ 2064 NETREG_RELEASED, /* called free_netdev */ 2065 NETREG_DUMMY, /* dummy device for NAPI poll */ 2066 } reg_state:8; 2067 2068 bool dismantle; 2069 2070 enum { 2071 RTNL_LINK_INITIALIZED, 2072 RTNL_LINK_INITIALIZING, 2073 } rtnl_link_state:16; 2074 2075 bool needs_free_netdev; 2076 void (*priv_destructor)(struct net_device *dev); 2077 2078 #ifdef CONFIG_NETPOLL 2079 struct netpoll_info __rcu *npinfo; 2080 #endif 2081 2082 possible_net_t nd_net; 2083 2084 /* mid-layer private */ 2085 union { 2086 void *ml_priv; 2087 struct pcpu_lstats __percpu *lstats; 2088 struct pcpu_sw_netstats __percpu *tstats; 2089 struct pcpu_dstats __percpu *dstats; 2090 }; 2091 2092 #if IS_ENABLED(CONFIG_GARP) 2093 struct garp_port __rcu *garp_port; 2094 #endif 2095 #if IS_ENABLED(CONFIG_MRP) 2096 struct mrp_port __rcu *mrp_port; 2097 #endif 2098 2099 struct device dev; 2100 const struct attribute_group *sysfs_groups[4]; 2101 const struct attribute_group *sysfs_rx_queue_group; 2102 2103 const struct rtnl_link_ops *rtnl_link_ops; 2104 2105 /* for setting kernel sock attribute on TCP connection setup */ 2106 #define GSO_MAX_SIZE 65536 2107 unsigned int gso_max_size; 2108 #define GSO_MAX_SEGS 65535 2109 u16 gso_max_segs; 2110 2111 #ifdef CONFIG_DCB 2112 const struct dcbnl_rtnl_ops *dcbnl_ops; 2113 #endif 2114 s16 num_tc; 2115 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2116 u8 prio_tc_map[TC_BITMASK + 1]; 2117 2118 #if IS_ENABLED(CONFIG_FCOE) 2119 unsigned int fcoe_ddp_xid; 2120 #endif 2121 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2122 struct netprio_map __rcu *priomap; 2123 #endif 2124 struct phy_device *phydev; 2125 struct sfp_bus *sfp_bus; 2126 struct lock_class_key *qdisc_tx_busylock; 2127 struct lock_class_key *qdisc_running_key; 2128 bool proto_down; 2129 unsigned wol_enabled:1; 2130 2131 struct list_head net_notifier_list; 2132 2133 #if IS_ENABLED(CONFIG_MACSEC) 2134 /* MACsec management functions */ 2135 const struct macsec_ops *macsec_ops; 2136 #endif 2137 }; 2138 #define to_net_dev(d) container_of(d, struct net_device, dev) 2139 2140 static inline bool netif_elide_gro(const struct net_device *dev) 2141 { 2142 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2143 return true; 2144 return false; 2145 } 2146 2147 #define NETDEV_ALIGN 32 2148 2149 static inline 2150 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2151 { 2152 return dev->prio_tc_map[prio & TC_BITMASK]; 2153 } 2154 2155 static inline 2156 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2157 { 2158 if (tc >= dev->num_tc) 2159 return -EINVAL; 2160 2161 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2162 return 0; 2163 } 2164 2165 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2166 void netdev_reset_tc(struct net_device *dev); 2167 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2168 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2169 2170 static inline 2171 int netdev_get_num_tc(struct net_device *dev) 2172 { 2173 return dev->num_tc; 2174 } 2175 2176 void netdev_unbind_sb_channel(struct net_device *dev, 2177 struct net_device *sb_dev); 2178 int netdev_bind_sb_channel_queue(struct net_device *dev, 2179 struct net_device *sb_dev, 2180 u8 tc, u16 count, u16 offset); 2181 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2182 static inline int netdev_get_sb_channel(struct net_device *dev) 2183 { 2184 return max_t(int, -dev->num_tc, 0); 2185 } 2186 2187 static inline 2188 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2189 unsigned int index) 2190 { 2191 return &dev->_tx[index]; 2192 } 2193 2194 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2195 const struct sk_buff *skb) 2196 { 2197 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2198 } 2199 2200 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2201 void (*f)(struct net_device *, 2202 struct netdev_queue *, 2203 void *), 2204 void *arg) 2205 { 2206 unsigned int i; 2207 2208 for (i = 0; i < dev->num_tx_queues; i++) 2209 f(dev, &dev->_tx[i], arg); 2210 } 2211 2212 #define netdev_lockdep_set_classes(dev) \ 2213 { \ 2214 static struct lock_class_key qdisc_tx_busylock_key; \ 2215 static struct lock_class_key qdisc_running_key; \ 2216 static struct lock_class_key qdisc_xmit_lock_key; \ 2217 static struct lock_class_key dev_addr_list_lock_key; \ 2218 unsigned int i; \ 2219 \ 2220 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2221 (dev)->qdisc_running_key = &qdisc_running_key; \ 2222 lockdep_set_class(&(dev)->addr_list_lock, \ 2223 &dev_addr_list_lock_key); \ 2224 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2225 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2226 &qdisc_xmit_lock_key); \ 2227 } 2228 2229 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2230 struct net_device *sb_dev); 2231 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2232 struct sk_buff *skb, 2233 struct net_device *sb_dev); 2234 2235 /* returns the headroom that the master device needs to take in account 2236 * when forwarding to this dev 2237 */ 2238 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2239 { 2240 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2241 } 2242 2243 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2244 { 2245 if (dev->netdev_ops->ndo_set_rx_headroom) 2246 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2247 } 2248 2249 /* set the device rx headroom to the dev's default */ 2250 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2251 { 2252 netdev_set_rx_headroom(dev, -1); 2253 } 2254 2255 /* 2256 * Net namespace inlines 2257 */ 2258 static inline 2259 struct net *dev_net(const struct net_device *dev) 2260 { 2261 return read_pnet(&dev->nd_net); 2262 } 2263 2264 static inline 2265 void dev_net_set(struct net_device *dev, struct net *net) 2266 { 2267 write_pnet(&dev->nd_net, net); 2268 } 2269 2270 /** 2271 * netdev_priv - access network device private data 2272 * @dev: network device 2273 * 2274 * Get network device private data 2275 */ 2276 static inline void *netdev_priv(const struct net_device *dev) 2277 { 2278 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2279 } 2280 2281 /* Set the sysfs physical device reference for the network logical device 2282 * if set prior to registration will cause a symlink during initialization. 2283 */ 2284 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2285 2286 /* Set the sysfs device type for the network logical device to allow 2287 * fine-grained identification of different network device types. For 2288 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2289 */ 2290 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2291 2292 /* Default NAPI poll() weight 2293 * Device drivers are strongly advised to not use bigger value 2294 */ 2295 #define NAPI_POLL_WEIGHT 64 2296 2297 /** 2298 * netif_napi_add - initialize a NAPI context 2299 * @dev: network device 2300 * @napi: NAPI context 2301 * @poll: polling function 2302 * @weight: default weight 2303 * 2304 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2305 * *any* of the other NAPI-related functions. 2306 */ 2307 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2308 int (*poll)(struct napi_struct *, int), int weight); 2309 2310 /** 2311 * netif_tx_napi_add - initialize a NAPI context 2312 * @dev: network device 2313 * @napi: NAPI context 2314 * @poll: polling function 2315 * @weight: default weight 2316 * 2317 * This variant of netif_napi_add() should be used from drivers using NAPI 2318 * to exclusively poll a TX queue. 2319 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2320 */ 2321 static inline void netif_tx_napi_add(struct net_device *dev, 2322 struct napi_struct *napi, 2323 int (*poll)(struct napi_struct *, int), 2324 int weight) 2325 { 2326 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2327 netif_napi_add(dev, napi, poll, weight); 2328 } 2329 2330 /** 2331 * netif_napi_del - remove a NAPI context 2332 * @napi: NAPI context 2333 * 2334 * netif_napi_del() removes a NAPI context from the network device NAPI list 2335 */ 2336 void netif_napi_del(struct napi_struct *napi); 2337 2338 struct napi_gro_cb { 2339 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2340 void *frag0; 2341 2342 /* Length of frag0. */ 2343 unsigned int frag0_len; 2344 2345 /* This indicates where we are processing relative to skb->data. */ 2346 int data_offset; 2347 2348 /* This is non-zero if the packet cannot be merged with the new skb. */ 2349 u16 flush; 2350 2351 /* Save the IP ID here and check when we get to the transport layer */ 2352 u16 flush_id; 2353 2354 /* Number of segments aggregated. */ 2355 u16 count; 2356 2357 /* Start offset for remote checksum offload */ 2358 u16 gro_remcsum_start; 2359 2360 /* jiffies when first packet was created/queued */ 2361 unsigned long age; 2362 2363 /* Used in ipv6_gro_receive() and foo-over-udp */ 2364 u16 proto; 2365 2366 /* This is non-zero if the packet may be of the same flow. */ 2367 u8 same_flow:1; 2368 2369 /* Used in tunnel GRO receive */ 2370 u8 encap_mark:1; 2371 2372 /* GRO checksum is valid */ 2373 u8 csum_valid:1; 2374 2375 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2376 u8 csum_cnt:3; 2377 2378 /* Free the skb? */ 2379 u8 free:2; 2380 #define NAPI_GRO_FREE 1 2381 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2382 2383 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2384 u8 is_ipv6:1; 2385 2386 /* Used in GRE, set in fou/gue_gro_receive */ 2387 u8 is_fou:1; 2388 2389 /* Used to determine if flush_id can be ignored */ 2390 u8 is_atomic:1; 2391 2392 /* Number of gro_receive callbacks this packet already went through */ 2393 u8 recursion_counter:4; 2394 2395 /* GRO is done by frag_list pointer chaining. */ 2396 u8 is_flist:1; 2397 2398 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2399 __wsum csum; 2400 2401 /* used in skb_gro_receive() slow path */ 2402 struct sk_buff *last; 2403 }; 2404 2405 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2406 2407 #define GRO_RECURSION_LIMIT 15 2408 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2409 { 2410 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2411 } 2412 2413 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2414 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2415 struct list_head *head, 2416 struct sk_buff *skb) 2417 { 2418 if (unlikely(gro_recursion_inc_test(skb))) { 2419 NAPI_GRO_CB(skb)->flush |= 1; 2420 return NULL; 2421 } 2422 2423 return cb(head, skb); 2424 } 2425 2426 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2427 struct sk_buff *); 2428 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2429 struct sock *sk, 2430 struct list_head *head, 2431 struct sk_buff *skb) 2432 { 2433 if (unlikely(gro_recursion_inc_test(skb))) { 2434 NAPI_GRO_CB(skb)->flush |= 1; 2435 return NULL; 2436 } 2437 2438 return cb(sk, head, skb); 2439 } 2440 2441 struct packet_type { 2442 __be16 type; /* This is really htons(ether_type). */ 2443 bool ignore_outgoing; 2444 struct net_device *dev; /* NULL is wildcarded here */ 2445 int (*func) (struct sk_buff *, 2446 struct net_device *, 2447 struct packet_type *, 2448 struct net_device *); 2449 void (*list_func) (struct list_head *, 2450 struct packet_type *, 2451 struct net_device *); 2452 bool (*id_match)(struct packet_type *ptype, 2453 struct sock *sk); 2454 void *af_packet_priv; 2455 struct list_head list; 2456 }; 2457 2458 struct offload_callbacks { 2459 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2460 netdev_features_t features); 2461 struct sk_buff *(*gro_receive)(struct list_head *head, 2462 struct sk_buff *skb); 2463 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2464 }; 2465 2466 struct packet_offload { 2467 __be16 type; /* This is really htons(ether_type). */ 2468 u16 priority; 2469 struct offload_callbacks callbacks; 2470 struct list_head list; 2471 }; 2472 2473 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2474 struct pcpu_sw_netstats { 2475 u64 rx_packets; 2476 u64 rx_bytes; 2477 u64 tx_packets; 2478 u64 tx_bytes; 2479 struct u64_stats_sync syncp; 2480 } __aligned(4 * sizeof(u64)); 2481 2482 struct pcpu_lstats { 2483 u64_stats_t packets; 2484 u64_stats_t bytes; 2485 struct u64_stats_sync syncp; 2486 } __aligned(2 * sizeof(u64)); 2487 2488 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2489 2490 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2491 { 2492 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2493 2494 u64_stats_update_begin(&lstats->syncp); 2495 u64_stats_add(&lstats->bytes, len); 2496 u64_stats_inc(&lstats->packets); 2497 u64_stats_update_end(&lstats->syncp); 2498 } 2499 2500 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2501 ({ \ 2502 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2503 if (pcpu_stats) { \ 2504 int __cpu; \ 2505 for_each_possible_cpu(__cpu) { \ 2506 typeof(type) *stat; \ 2507 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2508 u64_stats_init(&stat->syncp); \ 2509 } \ 2510 } \ 2511 pcpu_stats; \ 2512 }) 2513 2514 #define netdev_alloc_pcpu_stats(type) \ 2515 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2516 2517 enum netdev_lag_tx_type { 2518 NETDEV_LAG_TX_TYPE_UNKNOWN, 2519 NETDEV_LAG_TX_TYPE_RANDOM, 2520 NETDEV_LAG_TX_TYPE_BROADCAST, 2521 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2522 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2523 NETDEV_LAG_TX_TYPE_HASH, 2524 }; 2525 2526 enum netdev_lag_hash { 2527 NETDEV_LAG_HASH_NONE, 2528 NETDEV_LAG_HASH_L2, 2529 NETDEV_LAG_HASH_L34, 2530 NETDEV_LAG_HASH_L23, 2531 NETDEV_LAG_HASH_E23, 2532 NETDEV_LAG_HASH_E34, 2533 NETDEV_LAG_HASH_UNKNOWN, 2534 }; 2535 2536 struct netdev_lag_upper_info { 2537 enum netdev_lag_tx_type tx_type; 2538 enum netdev_lag_hash hash_type; 2539 }; 2540 2541 struct netdev_lag_lower_state_info { 2542 u8 link_up : 1, 2543 tx_enabled : 1; 2544 }; 2545 2546 #include <linux/notifier.h> 2547 2548 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2549 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2550 * adding new types. 2551 */ 2552 enum netdev_cmd { 2553 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2554 NETDEV_DOWN, 2555 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2556 detected a hardware crash and restarted 2557 - we can use this eg to kick tcp sessions 2558 once done */ 2559 NETDEV_CHANGE, /* Notify device state change */ 2560 NETDEV_REGISTER, 2561 NETDEV_UNREGISTER, 2562 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2563 NETDEV_CHANGEADDR, /* notify after the address change */ 2564 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2565 NETDEV_GOING_DOWN, 2566 NETDEV_CHANGENAME, 2567 NETDEV_FEAT_CHANGE, 2568 NETDEV_BONDING_FAILOVER, 2569 NETDEV_PRE_UP, 2570 NETDEV_PRE_TYPE_CHANGE, 2571 NETDEV_POST_TYPE_CHANGE, 2572 NETDEV_POST_INIT, 2573 NETDEV_RELEASE, 2574 NETDEV_NOTIFY_PEERS, 2575 NETDEV_JOIN, 2576 NETDEV_CHANGEUPPER, 2577 NETDEV_RESEND_IGMP, 2578 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2579 NETDEV_CHANGEINFODATA, 2580 NETDEV_BONDING_INFO, 2581 NETDEV_PRECHANGEUPPER, 2582 NETDEV_CHANGELOWERSTATE, 2583 NETDEV_UDP_TUNNEL_PUSH_INFO, 2584 NETDEV_UDP_TUNNEL_DROP_INFO, 2585 NETDEV_CHANGE_TX_QUEUE_LEN, 2586 NETDEV_CVLAN_FILTER_PUSH_INFO, 2587 NETDEV_CVLAN_FILTER_DROP_INFO, 2588 NETDEV_SVLAN_FILTER_PUSH_INFO, 2589 NETDEV_SVLAN_FILTER_DROP_INFO, 2590 }; 2591 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2592 2593 int register_netdevice_notifier(struct notifier_block *nb); 2594 int unregister_netdevice_notifier(struct notifier_block *nb); 2595 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2596 int unregister_netdevice_notifier_net(struct net *net, 2597 struct notifier_block *nb); 2598 int register_netdevice_notifier_dev_net(struct net_device *dev, 2599 struct notifier_block *nb, 2600 struct netdev_net_notifier *nn); 2601 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2602 struct notifier_block *nb, 2603 struct netdev_net_notifier *nn); 2604 2605 struct netdev_notifier_info { 2606 struct net_device *dev; 2607 struct netlink_ext_ack *extack; 2608 }; 2609 2610 struct netdev_notifier_info_ext { 2611 struct netdev_notifier_info info; /* must be first */ 2612 union { 2613 u32 mtu; 2614 } ext; 2615 }; 2616 2617 struct netdev_notifier_change_info { 2618 struct netdev_notifier_info info; /* must be first */ 2619 unsigned int flags_changed; 2620 }; 2621 2622 struct netdev_notifier_changeupper_info { 2623 struct netdev_notifier_info info; /* must be first */ 2624 struct net_device *upper_dev; /* new upper dev */ 2625 bool master; /* is upper dev master */ 2626 bool linking; /* is the notification for link or unlink */ 2627 void *upper_info; /* upper dev info */ 2628 }; 2629 2630 struct netdev_notifier_changelowerstate_info { 2631 struct netdev_notifier_info info; /* must be first */ 2632 void *lower_state_info; /* is lower dev state */ 2633 }; 2634 2635 struct netdev_notifier_pre_changeaddr_info { 2636 struct netdev_notifier_info info; /* must be first */ 2637 const unsigned char *dev_addr; 2638 }; 2639 2640 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2641 struct net_device *dev) 2642 { 2643 info->dev = dev; 2644 info->extack = NULL; 2645 } 2646 2647 static inline struct net_device * 2648 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2649 { 2650 return info->dev; 2651 } 2652 2653 static inline struct netlink_ext_ack * 2654 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2655 { 2656 return info->extack; 2657 } 2658 2659 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2660 2661 2662 extern rwlock_t dev_base_lock; /* Device list lock */ 2663 2664 #define for_each_netdev(net, d) \ 2665 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2666 #define for_each_netdev_reverse(net, d) \ 2667 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2668 #define for_each_netdev_rcu(net, d) \ 2669 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2670 #define for_each_netdev_safe(net, d, n) \ 2671 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2672 #define for_each_netdev_continue(net, d) \ 2673 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2674 #define for_each_netdev_continue_reverse(net, d) \ 2675 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2676 dev_list) 2677 #define for_each_netdev_continue_rcu(net, d) \ 2678 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2679 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2680 for_each_netdev_rcu(&init_net, slave) \ 2681 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2682 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2683 2684 static inline struct net_device *next_net_device(struct net_device *dev) 2685 { 2686 struct list_head *lh; 2687 struct net *net; 2688 2689 net = dev_net(dev); 2690 lh = dev->dev_list.next; 2691 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2692 } 2693 2694 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2695 { 2696 struct list_head *lh; 2697 struct net *net; 2698 2699 net = dev_net(dev); 2700 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2701 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2702 } 2703 2704 static inline struct net_device *first_net_device(struct net *net) 2705 { 2706 return list_empty(&net->dev_base_head) ? NULL : 2707 net_device_entry(net->dev_base_head.next); 2708 } 2709 2710 static inline struct net_device *first_net_device_rcu(struct net *net) 2711 { 2712 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2713 2714 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2715 } 2716 2717 int netdev_boot_setup_check(struct net_device *dev); 2718 unsigned long netdev_boot_base(const char *prefix, int unit); 2719 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2720 const char *hwaddr); 2721 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2722 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2723 void dev_add_pack(struct packet_type *pt); 2724 void dev_remove_pack(struct packet_type *pt); 2725 void __dev_remove_pack(struct packet_type *pt); 2726 void dev_add_offload(struct packet_offload *po); 2727 void dev_remove_offload(struct packet_offload *po); 2728 2729 int dev_get_iflink(const struct net_device *dev); 2730 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2731 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2732 unsigned short mask); 2733 struct net_device *dev_get_by_name(struct net *net, const char *name); 2734 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2735 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2736 int dev_alloc_name(struct net_device *dev, const char *name); 2737 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2738 void dev_close(struct net_device *dev); 2739 void dev_close_many(struct list_head *head, bool unlink); 2740 void dev_disable_lro(struct net_device *dev); 2741 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2742 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2743 struct net_device *sb_dev); 2744 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2745 struct net_device *sb_dev); 2746 int dev_queue_xmit(struct sk_buff *skb); 2747 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2748 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2749 int register_netdevice(struct net_device *dev); 2750 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2751 void unregister_netdevice_many(struct list_head *head); 2752 static inline void unregister_netdevice(struct net_device *dev) 2753 { 2754 unregister_netdevice_queue(dev, NULL); 2755 } 2756 2757 int netdev_refcnt_read(const struct net_device *dev); 2758 void free_netdev(struct net_device *dev); 2759 void netdev_freemem(struct net_device *dev); 2760 void synchronize_net(void); 2761 int init_dummy_netdev(struct net_device *dev); 2762 2763 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2764 struct sk_buff *skb, 2765 bool all_slaves); 2766 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2767 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2768 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2769 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2770 int netdev_get_name(struct net *net, char *name, int ifindex); 2771 int dev_restart(struct net_device *dev); 2772 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2773 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 2774 2775 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2776 { 2777 return NAPI_GRO_CB(skb)->data_offset; 2778 } 2779 2780 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2781 { 2782 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2783 } 2784 2785 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2786 { 2787 NAPI_GRO_CB(skb)->data_offset += len; 2788 } 2789 2790 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2791 unsigned int offset) 2792 { 2793 return NAPI_GRO_CB(skb)->frag0 + offset; 2794 } 2795 2796 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2797 { 2798 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2799 } 2800 2801 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2802 { 2803 NAPI_GRO_CB(skb)->frag0 = NULL; 2804 NAPI_GRO_CB(skb)->frag0_len = 0; 2805 } 2806 2807 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2808 unsigned int offset) 2809 { 2810 if (!pskb_may_pull(skb, hlen)) 2811 return NULL; 2812 2813 skb_gro_frag0_invalidate(skb); 2814 return skb->data + offset; 2815 } 2816 2817 static inline void *skb_gro_network_header(struct sk_buff *skb) 2818 { 2819 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2820 skb_network_offset(skb); 2821 } 2822 2823 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2824 const void *start, unsigned int len) 2825 { 2826 if (NAPI_GRO_CB(skb)->csum_valid) 2827 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2828 csum_partial(start, len, 0)); 2829 } 2830 2831 /* GRO checksum functions. These are logical equivalents of the normal 2832 * checksum functions (in skbuff.h) except that they operate on the GRO 2833 * offsets and fields in sk_buff. 2834 */ 2835 2836 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2837 2838 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2839 { 2840 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2841 } 2842 2843 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2844 bool zero_okay, 2845 __sum16 check) 2846 { 2847 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2848 skb_checksum_start_offset(skb) < 2849 skb_gro_offset(skb)) && 2850 !skb_at_gro_remcsum_start(skb) && 2851 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2852 (!zero_okay || check)); 2853 } 2854 2855 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2856 __wsum psum) 2857 { 2858 if (NAPI_GRO_CB(skb)->csum_valid && 2859 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2860 return 0; 2861 2862 NAPI_GRO_CB(skb)->csum = psum; 2863 2864 return __skb_gro_checksum_complete(skb); 2865 } 2866 2867 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2868 { 2869 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2870 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2871 NAPI_GRO_CB(skb)->csum_cnt--; 2872 } else { 2873 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2874 * verified a new top level checksum or an encapsulated one 2875 * during GRO. This saves work if we fallback to normal path. 2876 */ 2877 __skb_incr_checksum_unnecessary(skb); 2878 } 2879 } 2880 2881 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2882 compute_pseudo) \ 2883 ({ \ 2884 __sum16 __ret = 0; \ 2885 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2886 __ret = __skb_gro_checksum_validate_complete(skb, \ 2887 compute_pseudo(skb, proto)); \ 2888 if (!__ret) \ 2889 skb_gro_incr_csum_unnecessary(skb); \ 2890 __ret; \ 2891 }) 2892 2893 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2894 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2895 2896 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2897 compute_pseudo) \ 2898 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2899 2900 #define skb_gro_checksum_simple_validate(skb) \ 2901 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2902 2903 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2904 { 2905 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2906 !NAPI_GRO_CB(skb)->csum_valid); 2907 } 2908 2909 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2910 __wsum pseudo) 2911 { 2912 NAPI_GRO_CB(skb)->csum = ~pseudo; 2913 NAPI_GRO_CB(skb)->csum_valid = 1; 2914 } 2915 2916 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 2917 do { \ 2918 if (__skb_gro_checksum_convert_check(skb)) \ 2919 __skb_gro_checksum_convert(skb, \ 2920 compute_pseudo(skb, proto)); \ 2921 } while (0) 2922 2923 struct gro_remcsum { 2924 int offset; 2925 __wsum delta; 2926 }; 2927 2928 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2929 { 2930 grc->offset = 0; 2931 grc->delta = 0; 2932 } 2933 2934 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2935 unsigned int off, size_t hdrlen, 2936 int start, int offset, 2937 struct gro_remcsum *grc, 2938 bool nopartial) 2939 { 2940 __wsum delta; 2941 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2942 2943 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2944 2945 if (!nopartial) { 2946 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2947 return ptr; 2948 } 2949 2950 ptr = skb_gro_header_fast(skb, off); 2951 if (skb_gro_header_hard(skb, off + plen)) { 2952 ptr = skb_gro_header_slow(skb, off + plen, off); 2953 if (!ptr) 2954 return NULL; 2955 } 2956 2957 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2958 start, offset); 2959 2960 /* Adjust skb->csum since we changed the packet */ 2961 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2962 2963 grc->offset = off + hdrlen + offset; 2964 grc->delta = delta; 2965 2966 return ptr; 2967 } 2968 2969 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2970 struct gro_remcsum *grc) 2971 { 2972 void *ptr; 2973 size_t plen = grc->offset + sizeof(u16); 2974 2975 if (!grc->delta) 2976 return; 2977 2978 ptr = skb_gro_header_fast(skb, grc->offset); 2979 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2980 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2981 if (!ptr) 2982 return; 2983 } 2984 2985 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2986 } 2987 2988 #ifdef CONFIG_XFRM_OFFLOAD 2989 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2990 { 2991 if (PTR_ERR(pp) != -EINPROGRESS) 2992 NAPI_GRO_CB(skb)->flush |= flush; 2993 } 2994 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2995 struct sk_buff *pp, 2996 int flush, 2997 struct gro_remcsum *grc) 2998 { 2999 if (PTR_ERR(pp) != -EINPROGRESS) { 3000 NAPI_GRO_CB(skb)->flush |= flush; 3001 skb_gro_remcsum_cleanup(skb, grc); 3002 skb->remcsum_offload = 0; 3003 } 3004 } 3005 #else 3006 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3007 { 3008 NAPI_GRO_CB(skb)->flush |= flush; 3009 } 3010 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3011 struct sk_buff *pp, 3012 int flush, 3013 struct gro_remcsum *grc) 3014 { 3015 NAPI_GRO_CB(skb)->flush |= flush; 3016 skb_gro_remcsum_cleanup(skb, grc); 3017 skb->remcsum_offload = 0; 3018 } 3019 #endif 3020 3021 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3022 unsigned short type, 3023 const void *daddr, const void *saddr, 3024 unsigned int len) 3025 { 3026 if (!dev->header_ops || !dev->header_ops->create) 3027 return 0; 3028 3029 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3030 } 3031 3032 static inline int dev_parse_header(const struct sk_buff *skb, 3033 unsigned char *haddr) 3034 { 3035 const struct net_device *dev = skb->dev; 3036 3037 if (!dev->header_ops || !dev->header_ops->parse) 3038 return 0; 3039 return dev->header_ops->parse(skb, haddr); 3040 } 3041 3042 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3043 { 3044 const struct net_device *dev = skb->dev; 3045 3046 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3047 return 0; 3048 return dev->header_ops->parse_protocol(skb); 3049 } 3050 3051 /* ll_header must have at least hard_header_len allocated */ 3052 static inline bool dev_validate_header(const struct net_device *dev, 3053 char *ll_header, int len) 3054 { 3055 if (likely(len >= dev->hard_header_len)) 3056 return true; 3057 if (len < dev->min_header_len) 3058 return false; 3059 3060 if (capable(CAP_SYS_RAWIO)) { 3061 memset(ll_header + len, 0, dev->hard_header_len - len); 3062 return true; 3063 } 3064 3065 if (dev->header_ops && dev->header_ops->validate) 3066 return dev->header_ops->validate(ll_header, len); 3067 3068 return false; 3069 } 3070 3071 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 3072 int len, int size); 3073 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 3074 static inline int unregister_gifconf(unsigned int family) 3075 { 3076 return register_gifconf(family, NULL); 3077 } 3078 3079 #ifdef CONFIG_NET_FLOW_LIMIT 3080 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3081 struct sd_flow_limit { 3082 u64 count; 3083 unsigned int num_buckets; 3084 unsigned int history_head; 3085 u16 history[FLOW_LIMIT_HISTORY]; 3086 u8 buckets[]; 3087 }; 3088 3089 extern int netdev_flow_limit_table_len; 3090 #endif /* CONFIG_NET_FLOW_LIMIT */ 3091 3092 /* 3093 * Incoming packets are placed on per-CPU queues 3094 */ 3095 struct softnet_data { 3096 struct list_head poll_list; 3097 struct sk_buff_head process_queue; 3098 3099 /* stats */ 3100 unsigned int processed; 3101 unsigned int time_squeeze; 3102 unsigned int received_rps; 3103 #ifdef CONFIG_RPS 3104 struct softnet_data *rps_ipi_list; 3105 #endif 3106 #ifdef CONFIG_NET_FLOW_LIMIT 3107 struct sd_flow_limit __rcu *flow_limit; 3108 #endif 3109 struct Qdisc *output_queue; 3110 struct Qdisc **output_queue_tailp; 3111 struct sk_buff *completion_queue; 3112 #ifdef CONFIG_XFRM_OFFLOAD 3113 struct sk_buff_head xfrm_backlog; 3114 #endif 3115 /* written and read only by owning cpu: */ 3116 struct { 3117 u16 recursion; 3118 u8 more; 3119 } xmit; 3120 #ifdef CONFIG_RPS 3121 /* input_queue_head should be written by cpu owning this struct, 3122 * and only read by other cpus. Worth using a cache line. 3123 */ 3124 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3125 3126 /* Elements below can be accessed between CPUs for RPS/RFS */ 3127 call_single_data_t csd ____cacheline_aligned_in_smp; 3128 struct softnet_data *rps_ipi_next; 3129 unsigned int cpu; 3130 unsigned int input_queue_tail; 3131 #endif 3132 unsigned int dropped; 3133 struct sk_buff_head input_pkt_queue; 3134 struct napi_struct backlog; 3135 3136 }; 3137 3138 static inline void input_queue_head_incr(struct softnet_data *sd) 3139 { 3140 #ifdef CONFIG_RPS 3141 sd->input_queue_head++; 3142 #endif 3143 } 3144 3145 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3146 unsigned int *qtail) 3147 { 3148 #ifdef CONFIG_RPS 3149 *qtail = ++sd->input_queue_tail; 3150 #endif 3151 } 3152 3153 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3154 3155 static inline int dev_recursion_level(void) 3156 { 3157 return this_cpu_read(softnet_data.xmit.recursion); 3158 } 3159 3160 #define XMIT_RECURSION_LIMIT 10 3161 static inline bool dev_xmit_recursion(void) 3162 { 3163 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3164 XMIT_RECURSION_LIMIT); 3165 } 3166 3167 static inline void dev_xmit_recursion_inc(void) 3168 { 3169 __this_cpu_inc(softnet_data.xmit.recursion); 3170 } 3171 3172 static inline void dev_xmit_recursion_dec(void) 3173 { 3174 __this_cpu_dec(softnet_data.xmit.recursion); 3175 } 3176 3177 void __netif_schedule(struct Qdisc *q); 3178 void netif_schedule_queue(struct netdev_queue *txq); 3179 3180 static inline void netif_tx_schedule_all(struct net_device *dev) 3181 { 3182 unsigned int i; 3183 3184 for (i = 0; i < dev->num_tx_queues; i++) 3185 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3186 } 3187 3188 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3189 { 3190 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3191 } 3192 3193 /** 3194 * netif_start_queue - allow transmit 3195 * @dev: network device 3196 * 3197 * Allow upper layers to call the device hard_start_xmit routine. 3198 */ 3199 static inline void netif_start_queue(struct net_device *dev) 3200 { 3201 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3202 } 3203 3204 static inline void netif_tx_start_all_queues(struct net_device *dev) 3205 { 3206 unsigned int i; 3207 3208 for (i = 0; i < dev->num_tx_queues; i++) { 3209 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3210 netif_tx_start_queue(txq); 3211 } 3212 } 3213 3214 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3215 3216 /** 3217 * netif_wake_queue - restart transmit 3218 * @dev: network device 3219 * 3220 * Allow upper layers to call the device hard_start_xmit routine. 3221 * Used for flow control when transmit resources are available. 3222 */ 3223 static inline void netif_wake_queue(struct net_device *dev) 3224 { 3225 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3226 } 3227 3228 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3229 { 3230 unsigned int i; 3231 3232 for (i = 0; i < dev->num_tx_queues; i++) { 3233 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3234 netif_tx_wake_queue(txq); 3235 } 3236 } 3237 3238 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3239 { 3240 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3241 } 3242 3243 /** 3244 * netif_stop_queue - stop transmitted packets 3245 * @dev: network device 3246 * 3247 * Stop upper layers calling the device hard_start_xmit routine. 3248 * Used for flow control when transmit resources are unavailable. 3249 */ 3250 static inline void netif_stop_queue(struct net_device *dev) 3251 { 3252 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3253 } 3254 3255 void netif_tx_stop_all_queues(struct net_device *dev); 3256 3257 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3258 { 3259 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3260 } 3261 3262 /** 3263 * netif_queue_stopped - test if transmit queue is flowblocked 3264 * @dev: network device 3265 * 3266 * Test if transmit queue on device is currently unable to send. 3267 */ 3268 static inline bool netif_queue_stopped(const struct net_device *dev) 3269 { 3270 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3271 } 3272 3273 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3274 { 3275 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3276 } 3277 3278 static inline bool 3279 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3280 { 3281 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3282 } 3283 3284 static inline bool 3285 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3286 { 3287 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3288 } 3289 3290 /** 3291 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3292 * @dev_queue: pointer to transmit queue 3293 * 3294 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3295 * to give appropriate hint to the CPU. 3296 */ 3297 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3298 { 3299 #ifdef CONFIG_BQL 3300 prefetchw(&dev_queue->dql.num_queued); 3301 #endif 3302 } 3303 3304 /** 3305 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3306 * @dev_queue: pointer to transmit queue 3307 * 3308 * BQL enabled drivers might use this helper in their TX completion path, 3309 * to give appropriate hint to the CPU. 3310 */ 3311 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3312 { 3313 #ifdef CONFIG_BQL 3314 prefetchw(&dev_queue->dql.limit); 3315 #endif 3316 } 3317 3318 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3319 unsigned int bytes) 3320 { 3321 #ifdef CONFIG_BQL 3322 dql_queued(&dev_queue->dql, bytes); 3323 3324 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3325 return; 3326 3327 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3328 3329 /* 3330 * The XOFF flag must be set before checking the dql_avail below, 3331 * because in netdev_tx_completed_queue we update the dql_completed 3332 * before checking the XOFF flag. 3333 */ 3334 smp_mb(); 3335 3336 /* check again in case another CPU has just made room avail */ 3337 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3338 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3339 #endif 3340 } 3341 3342 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3343 * that they should not test BQL status themselves. 3344 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3345 * skb of a batch. 3346 * Returns true if the doorbell must be used to kick the NIC. 3347 */ 3348 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3349 unsigned int bytes, 3350 bool xmit_more) 3351 { 3352 if (xmit_more) { 3353 #ifdef CONFIG_BQL 3354 dql_queued(&dev_queue->dql, bytes); 3355 #endif 3356 return netif_tx_queue_stopped(dev_queue); 3357 } 3358 netdev_tx_sent_queue(dev_queue, bytes); 3359 return true; 3360 } 3361 3362 /** 3363 * netdev_sent_queue - report the number of bytes queued to hardware 3364 * @dev: network device 3365 * @bytes: number of bytes queued to the hardware device queue 3366 * 3367 * Report the number of bytes queued for sending/completion to the network 3368 * device hardware queue. @bytes should be a good approximation and should 3369 * exactly match netdev_completed_queue() @bytes 3370 */ 3371 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3372 { 3373 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3374 } 3375 3376 static inline bool __netdev_sent_queue(struct net_device *dev, 3377 unsigned int bytes, 3378 bool xmit_more) 3379 { 3380 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3381 xmit_more); 3382 } 3383 3384 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3385 unsigned int pkts, unsigned int bytes) 3386 { 3387 #ifdef CONFIG_BQL 3388 if (unlikely(!bytes)) 3389 return; 3390 3391 dql_completed(&dev_queue->dql, bytes); 3392 3393 /* 3394 * Without the memory barrier there is a small possiblity that 3395 * netdev_tx_sent_queue will miss the update and cause the queue to 3396 * be stopped forever 3397 */ 3398 smp_mb(); 3399 3400 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3401 return; 3402 3403 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3404 netif_schedule_queue(dev_queue); 3405 #endif 3406 } 3407 3408 /** 3409 * netdev_completed_queue - report bytes and packets completed by device 3410 * @dev: network device 3411 * @pkts: actual number of packets sent over the medium 3412 * @bytes: actual number of bytes sent over the medium 3413 * 3414 * Report the number of bytes and packets transmitted by the network device 3415 * hardware queue over the physical medium, @bytes must exactly match the 3416 * @bytes amount passed to netdev_sent_queue() 3417 */ 3418 static inline void netdev_completed_queue(struct net_device *dev, 3419 unsigned int pkts, unsigned int bytes) 3420 { 3421 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3422 } 3423 3424 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3425 { 3426 #ifdef CONFIG_BQL 3427 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3428 dql_reset(&q->dql); 3429 #endif 3430 } 3431 3432 /** 3433 * netdev_reset_queue - reset the packets and bytes count of a network device 3434 * @dev_queue: network device 3435 * 3436 * Reset the bytes and packet count of a network device and clear the 3437 * software flow control OFF bit for this network device 3438 */ 3439 static inline void netdev_reset_queue(struct net_device *dev_queue) 3440 { 3441 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3442 } 3443 3444 /** 3445 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3446 * @dev: network device 3447 * @queue_index: given tx queue index 3448 * 3449 * Returns 0 if given tx queue index >= number of device tx queues, 3450 * otherwise returns the originally passed tx queue index. 3451 */ 3452 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3453 { 3454 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3455 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3456 dev->name, queue_index, 3457 dev->real_num_tx_queues); 3458 return 0; 3459 } 3460 3461 return queue_index; 3462 } 3463 3464 /** 3465 * netif_running - test if up 3466 * @dev: network device 3467 * 3468 * Test if the device has been brought up. 3469 */ 3470 static inline bool netif_running(const struct net_device *dev) 3471 { 3472 return test_bit(__LINK_STATE_START, &dev->state); 3473 } 3474 3475 /* 3476 * Routines to manage the subqueues on a device. We only need start, 3477 * stop, and a check if it's stopped. All other device management is 3478 * done at the overall netdevice level. 3479 * Also test the device if we're multiqueue. 3480 */ 3481 3482 /** 3483 * netif_start_subqueue - allow sending packets on subqueue 3484 * @dev: network device 3485 * @queue_index: sub queue index 3486 * 3487 * Start individual transmit queue of a device with multiple transmit queues. 3488 */ 3489 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3490 { 3491 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3492 3493 netif_tx_start_queue(txq); 3494 } 3495 3496 /** 3497 * netif_stop_subqueue - stop sending packets on subqueue 3498 * @dev: network device 3499 * @queue_index: sub queue index 3500 * 3501 * Stop individual transmit queue of a device with multiple transmit queues. 3502 */ 3503 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3504 { 3505 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3506 netif_tx_stop_queue(txq); 3507 } 3508 3509 /** 3510 * netif_subqueue_stopped - test status of subqueue 3511 * @dev: network device 3512 * @queue_index: sub queue index 3513 * 3514 * Check individual transmit queue of a device with multiple transmit queues. 3515 */ 3516 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3517 u16 queue_index) 3518 { 3519 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3520 3521 return netif_tx_queue_stopped(txq); 3522 } 3523 3524 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3525 struct sk_buff *skb) 3526 { 3527 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3528 } 3529 3530 /** 3531 * netif_wake_subqueue - allow sending packets on subqueue 3532 * @dev: network device 3533 * @queue_index: sub queue index 3534 * 3535 * Resume individual transmit queue of a device with multiple transmit queues. 3536 */ 3537 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3538 { 3539 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3540 3541 netif_tx_wake_queue(txq); 3542 } 3543 3544 #ifdef CONFIG_XPS 3545 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3546 u16 index); 3547 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3548 u16 index, bool is_rxqs_map); 3549 3550 /** 3551 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3552 * @j: CPU/Rx queue index 3553 * @mask: bitmask of all cpus/rx queues 3554 * @nr_bits: number of bits in the bitmask 3555 * 3556 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3557 */ 3558 static inline bool netif_attr_test_mask(unsigned long j, 3559 const unsigned long *mask, 3560 unsigned int nr_bits) 3561 { 3562 cpu_max_bits_warn(j, nr_bits); 3563 return test_bit(j, mask); 3564 } 3565 3566 /** 3567 * netif_attr_test_online - Test for online CPU/Rx queue 3568 * @j: CPU/Rx queue index 3569 * @online_mask: bitmask for CPUs/Rx queues that are online 3570 * @nr_bits: number of bits in the bitmask 3571 * 3572 * Returns true if a CPU/Rx queue is online. 3573 */ 3574 static inline bool netif_attr_test_online(unsigned long j, 3575 const unsigned long *online_mask, 3576 unsigned int nr_bits) 3577 { 3578 cpu_max_bits_warn(j, nr_bits); 3579 3580 if (online_mask) 3581 return test_bit(j, online_mask); 3582 3583 return (j < nr_bits); 3584 } 3585 3586 /** 3587 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3588 * @n: CPU/Rx queue index 3589 * @srcp: the cpumask/Rx queue mask pointer 3590 * @nr_bits: number of bits in the bitmask 3591 * 3592 * Returns >= nr_bits if no further CPUs/Rx queues set. 3593 */ 3594 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3595 unsigned int nr_bits) 3596 { 3597 /* -1 is a legal arg here. */ 3598 if (n != -1) 3599 cpu_max_bits_warn(n, nr_bits); 3600 3601 if (srcp) 3602 return find_next_bit(srcp, nr_bits, n + 1); 3603 3604 return n + 1; 3605 } 3606 3607 /** 3608 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3609 * @n: CPU/Rx queue index 3610 * @src1p: the first CPUs/Rx queues mask pointer 3611 * @src2p: the second CPUs/Rx queues mask pointer 3612 * @nr_bits: number of bits in the bitmask 3613 * 3614 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3615 */ 3616 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3617 const unsigned long *src2p, 3618 unsigned int nr_bits) 3619 { 3620 /* -1 is a legal arg here. */ 3621 if (n != -1) 3622 cpu_max_bits_warn(n, nr_bits); 3623 3624 if (src1p && src2p) 3625 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3626 else if (src1p) 3627 return find_next_bit(src1p, nr_bits, n + 1); 3628 else if (src2p) 3629 return find_next_bit(src2p, nr_bits, n + 1); 3630 3631 return n + 1; 3632 } 3633 #else 3634 static inline int netif_set_xps_queue(struct net_device *dev, 3635 const struct cpumask *mask, 3636 u16 index) 3637 { 3638 return 0; 3639 } 3640 3641 static inline int __netif_set_xps_queue(struct net_device *dev, 3642 const unsigned long *mask, 3643 u16 index, bool is_rxqs_map) 3644 { 3645 return 0; 3646 } 3647 #endif 3648 3649 /** 3650 * netif_is_multiqueue - test if device has multiple transmit queues 3651 * @dev: network device 3652 * 3653 * Check if device has multiple transmit queues 3654 */ 3655 static inline bool netif_is_multiqueue(const struct net_device *dev) 3656 { 3657 return dev->num_tx_queues > 1; 3658 } 3659 3660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3661 3662 #ifdef CONFIG_SYSFS 3663 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3664 #else 3665 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3666 unsigned int rxqs) 3667 { 3668 dev->real_num_rx_queues = rxqs; 3669 return 0; 3670 } 3671 #endif 3672 3673 static inline struct netdev_rx_queue * 3674 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3675 { 3676 return dev->_rx + rxq; 3677 } 3678 3679 #ifdef CONFIG_SYSFS 3680 static inline unsigned int get_netdev_rx_queue_index( 3681 struct netdev_rx_queue *queue) 3682 { 3683 struct net_device *dev = queue->dev; 3684 int index = queue - dev->_rx; 3685 3686 BUG_ON(index >= dev->num_rx_queues); 3687 return index; 3688 } 3689 #endif 3690 3691 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3692 int netif_get_num_default_rss_queues(void); 3693 3694 enum skb_free_reason { 3695 SKB_REASON_CONSUMED, 3696 SKB_REASON_DROPPED, 3697 }; 3698 3699 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3700 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3701 3702 /* 3703 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3704 * interrupt context or with hardware interrupts being disabled. 3705 * (in_irq() || irqs_disabled()) 3706 * 3707 * We provide four helpers that can be used in following contexts : 3708 * 3709 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3710 * replacing kfree_skb(skb) 3711 * 3712 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3713 * Typically used in place of consume_skb(skb) in TX completion path 3714 * 3715 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3716 * replacing kfree_skb(skb) 3717 * 3718 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3719 * and consumed a packet. Used in place of consume_skb(skb) 3720 */ 3721 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3722 { 3723 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3724 } 3725 3726 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3727 { 3728 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3729 } 3730 3731 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3732 { 3733 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3734 } 3735 3736 static inline void dev_consume_skb_any(struct sk_buff *skb) 3737 { 3738 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3739 } 3740 3741 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3742 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3743 int netif_rx(struct sk_buff *skb); 3744 int netif_rx_ni(struct sk_buff *skb); 3745 int netif_receive_skb(struct sk_buff *skb); 3746 int netif_receive_skb_core(struct sk_buff *skb); 3747 void netif_receive_skb_list(struct list_head *head); 3748 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3749 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3750 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3751 gro_result_t napi_gro_frags(struct napi_struct *napi); 3752 struct packet_offload *gro_find_receive_by_type(__be16 type); 3753 struct packet_offload *gro_find_complete_by_type(__be16 type); 3754 3755 static inline void napi_free_frags(struct napi_struct *napi) 3756 { 3757 kfree_skb(napi->skb); 3758 napi->skb = NULL; 3759 } 3760 3761 bool netdev_is_rx_handler_busy(struct net_device *dev); 3762 int netdev_rx_handler_register(struct net_device *dev, 3763 rx_handler_func_t *rx_handler, 3764 void *rx_handler_data); 3765 void netdev_rx_handler_unregister(struct net_device *dev); 3766 3767 bool dev_valid_name(const char *name); 3768 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3769 bool *need_copyout); 3770 int dev_ifconf(struct net *net, struct ifconf *, int); 3771 int dev_ethtool(struct net *net, struct ifreq *); 3772 unsigned int dev_get_flags(const struct net_device *); 3773 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3774 struct netlink_ext_ack *extack); 3775 int dev_change_flags(struct net_device *dev, unsigned int flags, 3776 struct netlink_ext_ack *extack); 3777 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3778 unsigned int gchanges); 3779 int dev_change_name(struct net_device *, const char *); 3780 int dev_set_alias(struct net_device *, const char *, size_t); 3781 int dev_get_alias(const struct net_device *, char *, size_t); 3782 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3783 int __dev_set_mtu(struct net_device *, int); 3784 int dev_validate_mtu(struct net_device *dev, int mtu, 3785 struct netlink_ext_ack *extack); 3786 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3787 struct netlink_ext_ack *extack); 3788 int dev_set_mtu(struct net_device *, int); 3789 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3790 void dev_set_group(struct net_device *, int); 3791 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3792 struct netlink_ext_ack *extack); 3793 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3794 struct netlink_ext_ack *extack); 3795 int dev_change_carrier(struct net_device *, bool new_carrier); 3796 int dev_get_phys_port_id(struct net_device *dev, 3797 struct netdev_phys_item_id *ppid); 3798 int dev_get_phys_port_name(struct net_device *dev, 3799 char *name, size_t len); 3800 int dev_get_port_parent_id(struct net_device *dev, 3801 struct netdev_phys_item_id *ppid, bool recurse); 3802 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3803 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3804 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3805 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3806 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3807 struct netdev_queue *txq, int *ret); 3808 3809 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3810 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3811 int fd, int expected_fd, u32 flags); 3812 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3813 enum bpf_netdev_command cmd); 3814 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3815 3816 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3817 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3818 bool is_skb_forwardable(const struct net_device *dev, 3819 const struct sk_buff *skb); 3820 3821 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3822 struct sk_buff *skb) 3823 { 3824 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3825 unlikely(!is_skb_forwardable(dev, skb))) { 3826 atomic_long_inc(&dev->rx_dropped); 3827 kfree_skb(skb); 3828 return NET_RX_DROP; 3829 } 3830 3831 skb_scrub_packet(skb, true); 3832 skb->priority = 0; 3833 return 0; 3834 } 3835 3836 bool dev_nit_active(struct net_device *dev); 3837 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3838 3839 extern int netdev_budget; 3840 extern unsigned int netdev_budget_usecs; 3841 3842 /* Called by rtnetlink.c:rtnl_unlock() */ 3843 void netdev_run_todo(void); 3844 3845 /** 3846 * dev_put - release reference to device 3847 * @dev: network device 3848 * 3849 * Release reference to device to allow it to be freed. 3850 */ 3851 static inline void dev_put(struct net_device *dev) 3852 { 3853 this_cpu_dec(*dev->pcpu_refcnt); 3854 } 3855 3856 /** 3857 * dev_hold - get reference to device 3858 * @dev: network device 3859 * 3860 * Hold reference to device to keep it from being freed. 3861 */ 3862 static inline void dev_hold(struct net_device *dev) 3863 { 3864 this_cpu_inc(*dev->pcpu_refcnt); 3865 } 3866 3867 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3868 * and _off may be called from IRQ context, but it is caller 3869 * who is responsible for serialization of these calls. 3870 * 3871 * The name carrier is inappropriate, these functions should really be 3872 * called netif_lowerlayer_*() because they represent the state of any 3873 * kind of lower layer not just hardware media. 3874 */ 3875 3876 void linkwatch_init_dev(struct net_device *dev); 3877 void linkwatch_fire_event(struct net_device *dev); 3878 void linkwatch_forget_dev(struct net_device *dev); 3879 3880 /** 3881 * netif_carrier_ok - test if carrier present 3882 * @dev: network device 3883 * 3884 * Check if carrier is present on device 3885 */ 3886 static inline bool netif_carrier_ok(const struct net_device *dev) 3887 { 3888 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3889 } 3890 3891 unsigned long dev_trans_start(struct net_device *dev); 3892 3893 void __netdev_watchdog_up(struct net_device *dev); 3894 3895 void netif_carrier_on(struct net_device *dev); 3896 3897 void netif_carrier_off(struct net_device *dev); 3898 3899 /** 3900 * netif_dormant_on - mark device as dormant. 3901 * @dev: network device 3902 * 3903 * Mark device as dormant (as per RFC2863). 3904 * 3905 * The dormant state indicates that the relevant interface is not 3906 * actually in a condition to pass packets (i.e., it is not 'up') but is 3907 * in a "pending" state, waiting for some external event. For "on- 3908 * demand" interfaces, this new state identifies the situation where the 3909 * interface is waiting for events to place it in the up state. 3910 */ 3911 static inline void netif_dormant_on(struct net_device *dev) 3912 { 3913 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3914 linkwatch_fire_event(dev); 3915 } 3916 3917 /** 3918 * netif_dormant_off - set device as not dormant. 3919 * @dev: network device 3920 * 3921 * Device is not in dormant state. 3922 */ 3923 static inline void netif_dormant_off(struct net_device *dev) 3924 { 3925 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3926 linkwatch_fire_event(dev); 3927 } 3928 3929 /** 3930 * netif_dormant - test if device is dormant 3931 * @dev: network device 3932 * 3933 * Check if device is dormant. 3934 */ 3935 static inline bool netif_dormant(const struct net_device *dev) 3936 { 3937 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3938 } 3939 3940 3941 /** 3942 * netif_testing_on - mark device as under test. 3943 * @dev: network device 3944 * 3945 * Mark device as under test (as per RFC2863). 3946 * 3947 * The testing state indicates that some test(s) must be performed on 3948 * the interface. After completion, of the test, the interface state 3949 * will change to up, dormant, or down, as appropriate. 3950 */ 3951 static inline void netif_testing_on(struct net_device *dev) 3952 { 3953 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 3954 linkwatch_fire_event(dev); 3955 } 3956 3957 /** 3958 * netif_testing_off - set device as not under test. 3959 * @dev: network device 3960 * 3961 * Device is not in testing state. 3962 */ 3963 static inline void netif_testing_off(struct net_device *dev) 3964 { 3965 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 3966 linkwatch_fire_event(dev); 3967 } 3968 3969 /** 3970 * netif_testing - test if device is under test 3971 * @dev: network device 3972 * 3973 * Check if device is under test 3974 */ 3975 static inline bool netif_testing(const struct net_device *dev) 3976 { 3977 return test_bit(__LINK_STATE_TESTING, &dev->state); 3978 } 3979 3980 3981 /** 3982 * netif_oper_up - test if device is operational 3983 * @dev: network device 3984 * 3985 * Check if carrier is operational 3986 */ 3987 static inline bool netif_oper_up(const struct net_device *dev) 3988 { 3989 return (dev->operstate == IF_OPER_UP || 3990 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3991 } 3992 3993 /** 3994 * netif_device_present - is device available or removed 3995 * @dev: network device 3996 * 3997 * Check if device has not been removed from system. 3998 */ 3999 static inline bool netif_device_present(struct net_device *dev) 4000 { 4001 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4002 } 4003 4004 void netif_device_detach(struct net_device *dev); 4005 4006 void netif_device_attach(struct net_device *dev); 4007 4008 /* 4009 * Network interface message level settings 4010 */ 4011 4012 enum { 4013 NETIF_MSG_DRV_BIT, 4014 NETIF_MSG_PROBE_BIT, 4015 NETIF_MSG_LINK_BIT, 4016 NETIF_MSG_TIMER_BIT, 4017 NETIF_MSG_IFDOWN_BIT, 4018 NETIF_MSG_IFUP_BIT, 4019 NETIF_MSG_RX_ERR_BIT, 4020 NETIF_MSG_TX_ERR_BIT, 4021 NETIF_MSG_TX_QUEUED_BIT, 4022 NETIF_MSG_INTR_BIT, 4023 NETIF_MSG_TX_DONE_BIT, 4024 NETIF_MSG_RX_STATUS_BIT, 4025 NETIF_MSG_PKTDATA_BIT, 4026 NETIF_MSG_HW_BIT, 4027 NETIF_MSG_WOL_BIT, 4028 4029 /* When you add a new bit above, update netif_msg_class_names array 4030 * in net/ethtool/common.c 4031 */ 4032 NETIF_MSG_CLASS_COUNT, 4033 }; 4034 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4035 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4036 4037 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4038 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4039 4040 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4041 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4042 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4043 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4044 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4045 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4046 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4047 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4048 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4049 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4050 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4051 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4052 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4053 #define NETIF_MSG_HW __NETIF_MSG(HW) 4054 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4055 4056 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4057 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4058 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4059 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4060 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4061 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4062 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4063 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4064 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4065 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4066 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4067 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4068 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4069 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4070 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4071 4072 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4073 { 4074 /* use default */ 4075 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4076 return default_msg_enable_bits; 4077 if (debug_value == 0) /* no output */ 4078 return 0; 4079 /* set low N bits */ 4080 return (1U << debug_value) - 1; 4081 } 4082 4083 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4084 { 4085 spin_lock(&txq->_xmit_lock); 4086 txq->xmit_lock_owner = cpu; 4087 } 4088 4089 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4090 { 4091 __acquire(&txq->_xmit_lock); 4092 return true; 4093 } 4094 4095 static inline void __netif_tx_release(struct netdev_queue *txq) 4096 { 4097 __release(&txq->_xmit_lock); 4098 } 4099 4100 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4101 { 4102 spin_lock_bh(&txq->_xmit_lock); 4103 txq->xmit_lock_owner = smp_processor_id(); 4104 } 4105 4106 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4107 { 4108 bool ok = spin_trylock(&txq->_xmit_lock); 4109 if (likely(ok)) 4110 txq->xmit_lock_owner = smp_processor_id(); 4111 return ok; 4112 } 4113 4114 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4115 { 4116 txq->xmit_lock_owner = -1; 4117 spin_unlock(&txq->_xmit_lock); 4118 } 4119 4120 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4121 { 4122 txq->xmit_lock_owner = -1; 4123 spin_unlock_bh(&txq->_xmit_lock); 4124 } 4125 4126 static inline void txq_trans_update(struct netdev_queue *txq) 4127 { 4128 if (txq->xmit_lock_owner != -1) 4129 txq->trans_start = jiffies; 4130 } 4131 4132 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4133 static inline void netif_trans_update(struct net_device *dev) 4134 { 4135 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4136 4137 if (txq->trans_start != jiffies) 4138 txq->trans_start = jiffies; 4139 } 4140 4141 /** 4142 * netif_tx_lock - grab network device transmit lock 4143 * @dev: network device 4144 * 4145 * Get network device transmit lock 4146 */ 4147 static inline void netif_tx_lock(struct net_device *dev) 4148 { 4149 unsigned int i; 4150 int cpu; 4151 4152 spin_lock(&dev->tx_global_lock); 4153 cpu = smp_processor_id(); 4154 for (i = 0; i < dev->num_tx_queues; i++) { 4155 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4156 4157 /* We are the only thread of execution doing a 4158 * freeze, but we have to grab the _xmit_lock in 4159 * order to synchronize with threads which are in 4160 * the ->hard_start_xmit() handler and already 4161 * checked the frozen bit. 4162 */ 4163 __netif_tx_lock(txq, cpu); 4164 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4165 __netif_tx_unlock(txq); 4166 } 4167 } 4168 4169 static inline void netif_tx_lock_bh(struct net_device *dev) 4170 { 4171 local_bh_disable(); 4172 netif_tx_lock(dev); 4173 } 4174 4175 static inline void netif_tx_unlock(struct net_device *dev) 4176 { 4177 unsigned int i; 4178 4179 for (i = 0; i < dev->num_tx_queues; i++) { 4180 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4181 4182 /* No need to grab the _xmit_lock here. If the 4183 * queue is not stopped for another reason, we 4184 * force a schedule. 4185 */ 4186 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4187 netif_schedule_queue(txq); 4188 } 4189 spin_unlock(&dev->tx_global_lock); 4190 } 4191 4192 static inline void netif_tx_unlock_bh(struct net_device *dev) 4193 { 4194 netif_tx_unlock(dev); 4195 local_bh_enable(); 4196 } 4197 4198 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4199 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4200 __netif_tx_lock(txq, cpu); \ 4201 } else { \ 4202 __netif_tx_acquire(txq); \ 4203 } \ 4204 } 4205 4206 #define HARD_TX_TRYLOCK(dev, txq) \ 4207 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4208 __netif_tx_trylock(txq) : \ 4209 __netif_tx_acquire(txq)) 4210 4211 #define HARD_TX_UNLOCK(dev, txq) { \ 4212 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4213 __netif_tx_unlock(txq); \ 4214 } else { \ 4215 __netif_tx_release(txq); \ 4216 } \ 4217 } 4218 4219 static inline void netif_tx_disable(struct net_device *dev) 4220 { 4221 unsigned int i; 4222 int cpu; 4223 4224 local_bh_disable(); 4225 cpu = smp_processor_id(); 4226 for (i = 0; i < dev->num_tx_queues; i++) { 4227 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4228 4229 __netif_tx_lock(txq, cpu); 4230 netif_tx_stop_queue(txq); 4231 __netif_tx_unlock(txq); 4232 } 4233 local_bh_enable(); 4234 } 4235 4236 static inline void netif_addr_lock(struct net_device *dev) 4237 { 4238 spin_lock(&dev->addr_list_lock); 4239 } 4240 4241 static inline void netif_addr_lock_nested(struct net_device *dev) 4242 { 4243 spin_lock_nested(&dev->addr_list_lock, dev->lower_level); 4244 } 4245 4246 static inline void netif_addr_lock_bh(struct net_device *dev) 4247 { 4248 spin_lock_bh(&dev->addr_list_lock); 4249 } 4250 4251 static inline void netif_addr_unlock(struct net_device *dev) 4252 { 4253 spin_unlock(&dev->addr_list_lock); 4254 } 4255 4256 static inline void netif_addr_unlock_bh(struct net_device *dev) 4257 { 4258 spin_unlock_bh(&dev->addr_list_lock); 4259 } 4260 4261 /* 4262 * dev_addrs walker. Should be used only for read access. Call with 4263 * rcu_read_lock held. 4264 */ 4265 #define for_each_dev_addr(dev, ha) \ 4266 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4267 4268 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4269 4270 void ether_setup(struct net_device *dev); 4271 4272 /* Support for loadable net-drivers */ 4273 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4274 unsigned char name_assign_type, 4275 void (*setup)(struct net_device *), 4276 unsigned int txqs, unsigned int rxqs); 4277 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4278 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4279 4280 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4281 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4282 count) 4283 4284 int register_netdev(struct net_device *dev); 4285 void unregister_netdev(struct net_device *dev); 4286 4287 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4288 4289 /* General hardware address lists handling functions */ 4290 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4291 struct netdev_hw_addr_list *from_list, int addr_len); 4292 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4293 struct netdev_hw_addr_list *from_list, int addr_len); 4294 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4295 struct net_device *dev, 4296 int (*sync)(struct net_device *, const unsigned char *), 4297 int (*unsync)(struct net_device *, 4298 const unsigned char *)); 4299 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4300 struct net_device *dev, 4301 int (*sync)(struct net_device *, 4302 const unsigned char *, int), 4303 int (*unsync)(struct net_device *, 4304 const unsigned char *, int)); 4305 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4306 struct net_device *dev, 4307 int (*unsync)(struct net_device *, 4308 const unsigned char *, int)); 4309 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4310 struct net_device *dev, 4311 int (*unsync)(struct net_device *, 4312 const unsigned char *)); 4313 void __hw_addr_init(struct netdev_hw_addr_list *list); 4314 4315 /* Functions used for device addresses handling */ 4316 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4317 unsigned char addr_type); 4318 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4319 unsigned char addr_type); 4320 void dev_addr_flush(struct net_device *dev); 4321 int dev_addr_init(struct net_device *dev); 4322 4323 /* Functions used for unicast addresses handling */ 4324 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4325 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4326 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4327 int dev_uc_sync(struct net_device *to, struct net_device *from); 4328 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4329 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4330 void dev_uc_flush(struct net_device *dev); 4331 void dev_uc_init(struct net_device *dev); 4332 4333 /** 4334 * __dev_uc_sync - Synchonize device's unicast list 4335 * @dev: device to sync 4336 * @sync: function to call if address should be added 4337 * @unsync: function to call if address should be removed 4338 * 4339 * Add newly added addresses to the interface, and release 4340 * addresses that have been deleted. 4341 */ 4342 static inline int __dev_uc_sync(struct net_device *dev, 4343 int (*sync)(struct net_device *, 4344 const unsigned char *), 4345 int (*unsync)(struct net_device *, 4346 const unsigned char *)) 4347 { 4348 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4349 } 4350 4351 /** 4352 * __dev_uc_unsync - Remove synchronized addresses from device 4353 * @dev: device to sync 4354 * @unsync: function to call if address should be removed 4355 * 4356 * Remove all addresses that were added to the device by dev_uc_sync(). 4357 */ 4358 static inline void __dev_uc_unsync(struct net_device *dev, 4359 int (*unsync)(struct net_device *, 4360 const unsigned char *)) 4361 { 4362 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4363 } 4364 4365 /* Functions used for multicast addresses handling */ 4366 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4367 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4368 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4369 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4370 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4371 int dev_mc_sync(struct net_device *to, struct net_device *from); 4372 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4373 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4374 void dev_mc_flush(struct net_device *dev); 4375 void dev_mc_init(struct net_device *dev); 4376 4377 /** 4378 * __dev_mc_sync - Synchonize device's multicast list 4379 * @dev: device to sync 4380 * @sync: function to call if address should be added 4381 * @unsync: function to call if address should be removed 4382 * 4383 * Add newly added addresses to the interface, and release 4384 * addresses that have been deleted. 4385 */ 4386 static inline int __dev_mc_sync(struct net_device *dev, 4387 int (*sync)(struct net_device *, 4388 const unsigned char *), 4389 int (*unsync)(struct net_device *, 4390 const unsigned char *)) 4391 { 4392 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4393 } 4394 4395 /** 4396 * __dev_mc_unsync - Remove synchronized addresses from device 4397 * @dev: device to sync 4398 * @unsync: function to call if address should be removed 4399 * 4400 * Remove all addresses that were added to the device by dev_mc_sync(). 4401 */ 4402 static inline void __dev_mc_unsync(struct net_device *dev, 4403 int (*unsync)(struct net_device *, 4404 const unsigned char *)) 4405 { 4406 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4407 } 4408 4409 /* Functions used for secondary unicast and multicast support */ 4410 void dev_set_rx_mode(struct net_device *dev); 4411 void __dev_set_rx_mode(struct net_device *dev); 4412 int dev_set_promiscuity(struct net_device *dev, int inc); 4413 int dev_set_allmulti(struct net_device *dev, int inc); 4414 void netdev_state_change(struct net_device *dev); 4415 void netdev_notify_peers(struct net_device *dev); 4416 void netdev_features_change(struct net_device *dev); 4417 /* Load a device via the kmod */ 4418 void dev_load(struct net *net, const char *name); 4419 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4420 struct rtnl_link_stats64 *storage); 4421 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4422 const struct net_device_stats *netdev_stats); 4423 4424 extern int netdev_max_backlog; 4425 extern int netdev_tstamp_prequeue; 4426 extern int weight_p; 4427 extern int dev_weight_rx_bias; 4428 extern int dev_weight_tx_bias; 4429 extern int dev_rx_weight; 4430 extern int dev_tx_weight; 4431 extern int gro_normal_batch; 4432 4433 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4434 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4435 struct list_head **iter); 4436 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4437 struct list_head **iter); 4438 4439 /* iterate through upper list, must be called under RCU read lock */ 4440 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4441 for (iter = &(dev)->adj_list.upper, \ 4442 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4443 updev; \ 4444 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4445 4446 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4447 int (*fn)(struct net_device *upper_dev, 4448 void *data), 4449 void *data); 4450 4451 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4452 struct net_device *upper_dev); 4453 4454 bool netdev_has_any_upper_dev(struct net_device *dev); 4455 4456 void *netdev_lower_get_next_private(struct net_device *dev, 4457 struct list_head **iter); 4458 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4459 struct list_head **iter); 4460 4461 #define netdev_for_each_lower_private(dev, priv, iter) \ 4462 for (iter = (dev)->adj_list.lower.next, \ 4463 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4464 priv; \ 4465 priv = netdev_lower_get_next_private(dev, &(iter))) 4466 4467 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4468 for (iter = &(dev)->adj_list.lower, \ 4469 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4470 priv; \ 4471 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4472 4473 void *netdev_lower_get_next(struct net_device *dev, 4474 struct list_head **iter); 4475 4476 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4477 for (iter = (dev)->adj_list.lower.next, \ 4478 ldev = netdev_lower_get_next(dev, &(iter)); \ 4479 ldev; \ 4480 ldev = netdev_lower_get_next(dev, &(iter))) 4481 4482 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4483 struct list_head **iter); 4484 int netdev_walk_all_lower_dev(struct net_device *dev, 4485 int (*fn)(struct net_device *lower_dev, 4486 void *data), 4487 void *data); 4488 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4489 int (*fn)(struct net_device *lower_dev, 4490 void *data), 4491 void *data); 4492 4493 void *netdev_adjacent_get_private(struct list_head *adj_list); 4494 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4495 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4496 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4497 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4498 struct netlink_ext_ack *extack); 4499 int netdev_master_upper_dev_link(struct net_device *dev, 4500 struct net_device *upper_dev, 4501 void *upper_priv, void *upper_info, 4502 struct netlink_ext_ack *extack); 4503 void netdev_upper_dev_unlink(struct net_device *dev, 4504 struct net_device *upper_dev); 4505 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4506 struct net_device *new_dev, 4507 struct net_device *dev, 4508 struct netlink_ext_ack *extack); 4509 void netdev_adjacent_change_commit(struct net_device *old_dev, 4510 struct net_device *new_dev, 4511 struct net_device *dev); 4512 void netdev_adjacent_change_abort(struct net_device *old_dev, 4513 struct net_device *new_dev, 4514 struct net_device *dev); 4515 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4516 void *netdev_lower_dev_get_private(struct net_device *dev, 4517 struct net_device *lower_dev); 4518 void netdev_lower_state_changed(struct net_device *lower_dev, 4519 void *lower_state_info); 4520 4521 /* RSS keys are 40 or 52 bytes long */ 4522 #define NETDEV_RSS_KEY_LEN 52 4523 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4524 void netdev_rss_key_fill(void *buffer, size_t len); 4525 4526 int skb_checksum_help(struct sk_buff *skb); 4527 int skb_crc32c_csum_help(struct sk_buff *skb); 4528 int skb_csum_hwoffload_help(struct sk_buff *skb, 4529 const netdev_features_t features); 4530 4531 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4532 netdev_features_t features, bool tx_path); 4533 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4534 netdev_features_t features); 4535 4536 struct netdev_bonding_info { 4537 ifslave slave; 4538 ifbond master; 4539 }; 4540 4541 struct netdev_notifier_bonding_info { 4542 struct netdev_notifier_info info; /* must be first */ 4543 struct netdev_bonding_info bonding_info; 4544 }; 4545 4546 void netdev_bonding_info_change(struct net_device *dev, 4547 struct netdev_bonding_info *bonding_info); 4548 4549 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4550 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4551 #else 4552 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4553 const void *data) 4554 { 4555 } 4556 #endif 4557 4558 static inline 4559 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4560 { 4561 return __skb_gso_segment(skb, features, true); 4562 } 4563 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4564 4565 static inline bool can_checksum_protocol(netdev_features_t features, 4566 __be16 protocol) 4567 { 4568 if (protocol == htons(ETH_P_FCOE)) 4569 return !!(features & NETIF_F_FCOE_CRC); 4570 4571 /* Assume this is an IP checksum (not SCTP CRC) */ 4572 4573 if (features & NETIF_F_HW_CSUM) { 4574 /* Can checksum everything */ 4575 return true; 4576 } 4577 4578 switch (protocol) { 4579 case htons(ETH_P_IP): 4580 return !!(features & NETIF_F_IP_CSUM); 4581 case htons(ETH_P_IPV6): 4582 return !!(features & NETIF_F_IPV6_CSUM); 4583 default: 4584 return false; 4585 } 4586 } 4587 4588 #ifdef CONFIG_BUG 4589 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4590 #else 4591 static inline void netdev_rx_csum_fault(struct net_device *dev, 4592 struct sk_buff *skb) 4593 { 4594 } 4595 #endif 4596 /* rx skb timestamps */ 4597 void net_enable_timestamp(void); 4598 void net_disable_timestamp(void); 4599 4600 #ifdef CONFIG_PROC_FS 4601 int __init dev_proc_init(void); 4602 #else 4603 #define dev_proc_init() 0 4604 #endif 4605 4606 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4607 struct sk_buff *skb, struct net_device *dev, 4608 bool more) 4609 { 4610 __this_cpu_write(softnet_data.xmit.more, more); 4611 return ops->ndo_start_xmit(skb, dev); 4612 } 4613 4614 static inline bool netdev_xmit_more(void) 4615 { 4616 return __this_cpu_read(softnet_data.xmit.more); 4617 } 4618 4619 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4620 struct netdev_queue *txq, bool more) 4621 { 4622 const struct net_device_ops *ops = dev->netdev_ops; 4623 netdev_tx_t rc; 4624 4625 rc = __netdev_start_xmit(ops, skb, dev, more); 4626 if (rc == NETDEV_TX_OK) 4627 txq_trans_update(txq); 4628 4629 return rc; 4630 } 4631 4632 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4633 const void *ns); 4634 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4635 const void *ns); 4636 4637 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4638 { 4639 return netdev_class_create_file_ns(class_attr, NULL); 4640 } 4641 4642 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4643 { 4644 netdev_class_remove_file_ns(class_attr, NULL); 4645 } 4646 4647 extern const struct kobj_ns_type_operations net_ns_type_operations; 4648 4649 const char *netdev_drivername(const struct net_device *dev); 4650 4651 void linkwatch_run_queue(void); 4652 4653 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4654 netdev_features_t f2) 4655 { 4656 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4657 if (f1 & NETIF_F_HW_CSUM) 4658 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4659 else 4660 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4661 } 4662 4663 return f1 & f2; 4664 } 4665 4666 static inline netdev_features_t netdev_get_wanted_features( 4667 struct net_device *dev) 4668 { 4669 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4670 } 4671 netdev_features_t netdev_increment_features(netdev_features_t all, 4672 netdev_features_t one, netdev_features_t mask); 4673 4674 /* Allow TSO being used on stacked device : 4675 * Performing the GSO segmentation before last device 4676 * is a performance improvement. 4677 */ 4678 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4679 netdev_features_t mask) 4680 { 4681 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4682 } 4683 4684 int __netdev_update_features(struct net_device *dev); 4685 void netdev_update_features(struct net_device *dev); 4686 void netdev_change_features(struct net_device *dev); 4687 4688 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4689 struct net_device *dev); 4690 4691 netdev_features_t passthru_features_check(struct sk_buff *skb, 4692 struct net_device *dev, 4693 netdev_features_t features); 4694 netdev_features_t netif_skb_features(struct sk_buff *skb); 4695 4696 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4697 { 4698 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4699 4700 /* check flags correspondence */ 4701 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4702 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4703 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4704 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4705 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4706 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4707 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4708 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4709 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4710 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4711 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4712 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4713 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4714 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4715 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4716 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4717 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4718 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4719 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4720 4721 return (features & feature) == feature; 4722 } 4723 4724 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4725 { 4726 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4727 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4728 } 4729 4730 static inline bool netif_needs_gso(struct sk_buff *skb, 4731 netdev_features_t features) 4732 { 4733 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4734 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4735 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4736 } 4737 4738 static inline void netif_set_gso_max_size(struct net_device *dev, 4739 unsigned int size) 4740 { 4741 dev->gso_max_size = size; 4742 } 4743 4744 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4745 int pulled_hlen, u16 mac_offset, 4746 int mac_len) 4747 { 4748 skb->protocol = protocol; 4749 skb->encapsulation = 1; 4750 skb_push(skb, pulled_hlen); 4751 skb_reset_transport_header(skb); 4752 skb->mac_header = mac_offset; 4753 skb->network_header = skb->mac_header + mac_len; 4754 skb->mac_len = mac_len; 4755 } 4756 4757 static inline bool netif_is_macsec(const struct net_device *dev) 4758 { 4759 return dev->priv_flags & IFF_MACSEC; 4760 } 4761 4762 static inline bool netif_is_macvlan(const struct net_device *dev) 4763 { 4764 return dev->priv_flags & IFF_MACVLAN; 4765 } 4766 4767 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4768 { 4769 return dev->priv_flags & IFF_MACVLAN_PORT; 4770 } 4771 4772 static inline bool netif_is_bond_master(const struct net_device *dev) 4773 { 4774 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4775 } 4776 4777 static inline bool netif_is_bond_slave(const struct net_device *dev) 4778 { 4779 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4780 } 4781 4782 static inline bool netif_supports_nofcs(struct net_device *dev) 4783 { 4784 return dev->priv_flags & IFF_SUPP_NOFCS; 4785 } 4786 4787 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4788 { 4789 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4790 } 4791 4792 static inline bool netif_is_l3_master(const struct net_device *dev) 4793 { 4794 return dev->priv_flags & IFF_L3MDEV_MASTER; 4795 } 4796 4797 static inline bool netif_is_l3_slave(const struct net_device *dev) 4798 { 4799 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4800 } 4801 4802 static inline bool netif_is_bridge_master(const struct net_device *dev) 4803 { 4804 return dev->priv_flags & IFF_EBRIDGE; 4805 } 4806 4807 static inline bool netif_is_bridge_port(const struct net_device *dev) 4808 { 4809 return dev->priv_flags & IFF_BRIDGE_PORT; 4810 } 4811 4812 static inline bool netif_is_ovs_master(const struct net_device *dev) 4813 { 4814 return dev->priv_flags & IFF_OPENVSWITCH; 4815 } 4816 4817 static inline bool netif_is_ovs_port(const struct net_device *dev) 4818 { 4819 return dev->priv_flags & IFF_OVS_DATAPATH; 4820 } 4821 4822 static inline bool netif_is_team_master(const struct net_device *dev) 4823 { 4824 return dev->priv_flags & IFF_TEAM; 4825 } 4826 4827 static inline bool netif_is_team_port(const struct net_device *dev) 4828 { 4829 return dev->priv_flags & IFF_TEAM_PORT; 4830 } 4831 4832 static inline bool netif_is_lag_master(const struct net_device *dev) 4833 { 4834 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4835 } 4836 4837 static inline bool netif_is_lag_port(const struct net_device *dev) 4838 { 4839 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4840 } 4841 4842 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4843 { 4844 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4845 } 4846 4847 static inline bool netif_is_failover(const struct net_device *dev) 4848 { 4849 return dev->priv_flags & IFF_FAILOVER; 4850 } 4851 4852 static inline bool netif_is_failover_slave(const struct net_device *dev) 4853 { 4854 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4855 } 4856 4857 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4858 static inline void netif_keep_dst(struct net_device *dev) 4859 { 4860 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4861 } 4862 4863 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4864 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4865 { 4866 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4867 return dev->priv_flags & IFF_MACSEC; 4868 } 4869 4870 extern struct pernet_operations __net_initdata loopback_net_ops; 4871 4872 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4873 4874 /* netdev_printk helpers, similar to dev_printk */ 4875 4876 static inline const char *netdev_name(const struct net_device *dev) 4877 { 4878 if (!dev->name[0] || strchr(dev->name, '%')) 4879 return "(unnamed net_device)"; 4880 return dev->name; 4881 } 4882 4883 static inline bool netdev_unregistering(const struct net_device *dev) 4884 { 4885 return dev->reg_state == NETREG_UNREGISTERING; 4886 } 4887 4888 static inline const char *netdev_reg_state(const struct net_device *dev) 4889 { 4890 switch (dev->reg_state) { 4891 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4892 case NETREG_REGISTERED: return ""; 4893 case NETREG_UNREGISTERING: return " (unregistering)"; 4894 case NETREG_UNREGISTERED: return " (unregistered)"; 4895 case NETREG_RELEASED: return " (released)"; 4896 case NETREG_DUMMY: return " (dummy)"; 4897 } 4898 4899 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4900 return " (unknown)"; 4901 } 4902 4903 __printf(3, 4) __cold 4904 void netdev_printk(const char *level, const struct net_device *dev, 4905 const char *format, ...); 4906 __printf(2, 3) __cold 4907 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4908 __printf(2, 3) __cold 4909 void netdev_alert(const struct net_device *dev, const char *format, ...); 4910 __printf(2, 3) __cold 4911 void netdev_crit(const struct net_device *dev, const char *format, ...); 4912 __printf(2, 3) __cold 4913 void netdev_err(const struct net_device *dev, const char *format, ...); 4914 __printf(2, 3) __cold 4915 void netdev_warn(const struct net_device *dev, const char *format, ...); 4916 __printf(2, 3) __cold 4917 void netdev_notice(const struct net_device *dev, const char *format, ...); 4918 __printf(2, 3) __cold 4919 void netdev_info(const struct net_device *dev, const char *format, ...); 4920 4921 #define netdev_level_once(level, dev, fmt, ...) \ 4922 do { \ 4923 static bool __print_once __read_mostly; \ 4924 \ 4925 if (!__print_once) { \ 4926 __print_once = true; \ 4927 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4928 } \ 4929 } while (0) 4930 4931 #define netdev_emerg_once(dev, fmt, ...) \ 4932 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4933 #define netdev_alert_once(dev, fmt, ...) \ 4934 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4935 #define netdev_crit_once(dev, fmt, ...) \ 4936 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4937 #define netdev_err_once(dev, fmt, ...) \ 4938 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4939 #define netdev_warn_once(dev, fmt, ...) \ 4940 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4941 #define netdev_notice_once(dev, fmt, ...) \ 4942 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4943 #define netdev_info_once(dev, fmt, ...) \ 4944 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4945 4946 #define MODULE_ALIAS_NETDEV(device) \ 4947 MODULE_ALIAS("netdev-" device) 4948 4949 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 4950 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 4951 #define netdev_dbg(__dev, format, args...) \ 4952 do { \ 4953 dynamic_netdev_dbg(__dev, format, ##args); \ 4954 } while (0) 4955 #elif defined(DEBUG) 4956 #define netdev_dbg(__dev, format, args...) \ 4957 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4958 #else 4959 #define netdev_dbg(__dev, format, args...) \ 4960 ({ \ 4961 if (0) \ 4962 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4963 }) 4964 #endif 4965 4966 #if defined(VERBOSE_DEBUG) 4967 #define netdev_vdbg netdev_dbg 4968 #else 4969 4970 #define netdev_vdbg(dev, format, args...) \ 4971 ({ \ 4972 if (0) \ 4973 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4974 0; \ 4975 }) 4976 #endif 4977 4978 /* 4979 * netdev_WARN() acts like dev_printk(), but with the key difference 4980 * of using a WARN/WARN_ON to get the message out, including the 4981 * file/line information and a backtrace. 4982 */ 4983 #define netdev_WARN(dev, format, args...) \ 4984 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4985 netdev_reg_state(dev), ##args) 4986 4987 #define netdev_WARN_ONCE(dev, format, args...) \ 4988 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4989 netdev_reg_state(dev), ##args) 4990 4991 /* netif printk helpers, similar to netdev_printk */ 4992 4993 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4994 do { \ 4995 if (netif_msg_##type(priv)) \ 4996 netdev_printk(level, (dev), fmt, ##args); \ 4997 } while (0) 4998 4999 #define netif_level(level, priv, type, dev, fmt, args...) \ 5000 do { \ 5001 if (netif_msg_##type(priv)) \ 5002 netdev_##level(dev, fmt, ##args); \ 5003 } while (0) 5004 5005 #define netif_emerg(priv, type, dev, fmt, args...) \ 5006 netif_level(emerg, priv, type, dev, fmt, ##args) 5007 #define netif_alert(priv, type, dev, fmt, args...) \ 5008 netif_level(alert, priv, type, dev, fmt, ##args) 5009 #define netif_crit(priv, type, dev, fmt, args...) \ 5010 netif_level(crit, priv, type, dev, fmt, ##args) 5011 #define netif_err(priv, type, dev, fmt, args...) \ 5012 netif_level(err, priv, type, dev, fmt, ##args) 5013 #define netif_warn(priv, type, dev, fmt, args...) \ 5014 netif_level(warn, priv, type, dev, fmt, ##args) 5015 #define netif_notice(priv, type, dev, fmt, args...) \ 5016 netif_level(notice, priv, type, dev, fmt, ##args) 5017 #define netif_info(priv, type, dev, fmt, args...) \ 5018 netif_level(info, priv, type, dev, fmt, ##args) 5019 5020 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5021 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5022 #define netif_dbg(priv, type, netdev, format, args...) \ 5023 do { \ 5024 if (netif_msg_##type(priv)) \ 5025 dynamic_netdev_dbg(netdev, format, ##args); \ 5026 } while (0) 5027 #elif defined(DEBUG) 5028 #define netif_dbg(priv, type, dev, format, args...) \ 5029 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5030 #else 5031 #define netif_dbg(priv, type, dev, format, args...) \ 5032 ({ \ 5033 if (0) \ 5034 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5035 0; \ 5036 }) 5037 #endif 5038 5039 /* if @cond then downgrade to debug, else print at @level */ 5040 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5041 do { \ 5042 if (cond) \ 5043 netif_dbg(priv, type, netdev, fmt, ##args); \ 5044 else \ 5045 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5046 } while (0) 5047 5048 #if defined(VERBOSE_DEBUG) 5049 #define netif_vdbg netif_dbg 5050 #else 5051 #define netif_vdbg(priv, type, dev, format, args...) \ 5052 ({ \ 5053 if (0) \ 5054 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5055 0; \ 5056 }) 5057 #endif 5058 5059 /* 5060 * The list of packet types we will receive (as opposed to discard) 5061 * and the routines to invoke. 5062 * 5063 * Why 16. Because with 16 the only overlap we get on a hash of the 5064 * low nibble of the protocol value is RARP/SNAP/X.25. 5065 * 5066 * 0800 IP 5067 * 0001 802.3 5068 * 0002 AX.25 5069 * 0004 802.2 5070 * 8035 RARP 5071 * 0005 SNAP 5072 * 0805 X.25 5073 * 0806 ARP 5074 * 8137 IPX 5075 * 0009 Localtalk 5076 * 86DD IPv6 5077 */ 5078 #define PTYPE_HASH_SIZE (16) 5079 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5080 5081 extern struct net_device *blackhole_netdev; 5082 5083 #endif /* _LINUX_NETDEVICE_H */ 5084