xref: /openbmc/linux/include/linux/netdevice.h (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xdp_umem         *umem;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 extern int sysctl_devconf_inherit_init_net;
634 
635 static inline bool net_has_fallback_tunnels(const struct net *net)
636 {
637 	return net == &init_net ||
638 	       !IS_ENABLED(CONFIG_SYSCTL) ||
639 	       !sysctl_fb_tunnels_only_for_init_net;
640 }
641 
642 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
643 {
644 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
645 	return q->numa_node;
646 #else
647 	return NUMA_NO_NODE;
648 #endif
649 }
650 
651 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
652 {
653 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
654 	q->numa_node = node;
655 #endif
656 }
657 
658 #ifdef CONFIG_RPS
659 /*
660  * This structure holds an RPS map which can be of variable length.  The
661  * map is an array of CPUs.
662  */
663 struct rps_map {
664 	unsigned int len;
665 	struct rcu_head rcu;
666 	u16 cpus[0];
667 };
668 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
669 
670 /*
671  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
672  * tail pointer for that CPU's input queue at the time of last enqueue, and
673  * a hardware filter index.
674  */
675 struct rps_dev_flow {
676 	u16 cpu;
677 	u16 filter;
678 	unsigned int last_qtail;
679 };
680 #define RPS_NO_FILTER 0xffff
681 
682 /*
683  * The rps_dev_flow_table structure contains a table of flow mappings.
684  */
685 struct rps_dev_flow_table {
686 	unsigned int mask;
687 	struct rcu_head rcu;
688 	struct rps_dev_flow flows[0];
689 };
690 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
691     ((_num) * sizeof(struct rps_dev_flow)))
692 
693 /*
694  * The rps_sock_flow_table contains mappings of flows to the last CPU
695  * on which they were processed by the application (set in recvmsg).
696  * Each entry is a 32bit value. Upper part is the high-order bits
697  * of flow hash, lower part is CPU number.
698  * rps_cpu_mask is used to partition the space, depending on number of
699  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
700  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
701  * meaning we use 32-6=26 bits for the hash.
702  */
703 struct rps_sock_flow_table {
704 	u32	mask;
705 
706 	u32	ents[0] ____cacheline_aligned_in_smp;
707 };
708 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
709 
710 #define RPS_NO_CPU 0xffff
711 
712 extern u32 rps_cpu_mask;
713 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
714 
715 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
716 					u32 hash)
717 {
718 	if (table && hash) {
719 		unsigned int index = hash & table->mask;
720 		u32 val = hash & ~rps_cpu_mask;
721 
722 		/* We only give a hint, preemption can change CPU under us */
723 		val |= raw_smp_processor_id();
724 
725 		if (table->ents[index] != val)
726 			table->ents[index] = val;
727 	}
728 }
729 
730 #ifdef CONFIG_RFS_ACCEL
731 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
732 			 u16 filter_id);
733 #endif
734 #endif /* CONFIG_RPS */
735 
736 /* This structure contains an instance of an RX queue. */
737 struct netdev_rx_queue {
738 #ifdef CONFIG_RPS
739 	struct rps_map __rcu		*rps_map;
740 	struct rps_dev_flow_table __rcu	*rps_flow_table;
741 #endif
742 	struct kobject			kobj;
743 	struct net_device		*dev;
744 	struct xdp_rxq_info		xdp_rxq;
745 #ifdef CONFIG_XDP_SOCKETS
746 	struct xdp_umem                 *umem;
747 #endif
748 } ____cacheline_aligned_in_smp;
749 
750 /*
751  * RX queue sysfs structures and functions.
752  */
753 struct rx_queue_attribute {
754 	struct attribute attr;
755 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
756 	ssize_t (*store)(struct netdev_rx_queue *queue,
757 			 const char *buf, size_t len);
758 };
759 
760 #ifdef CONFIG_XPS
761 /*
762  * This structure holds an XPS map which can be of variable length.  The
763  * map is an array of queues.
764  */
765 struct xps_map {
766 	unsigned int len;
767 	unsigned int alloc_len;
768 	struct rcu_head rcu;
769 	u16 queues[0];
770 };
771 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
772 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
773        - sizeof(struct xps_map)) / sizeof(u16))
774 
775 /*
776  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
777  */
778 struct xps_dev_maps {
779 	struct rcu_head rcu;
780 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
781 };
782 
783 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
784 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
785 
786 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
787 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
788 
789 #endif /* CONFIG_XPS */
790 
791 #define TC_MAX_QUEUE	16
792 #define TC_BITMASK	15
793 /* HW offloaded queuing disciplines txq count and offset maps */
794 struct netdev_tc_txq {
795 	u16 count;
796 	u16 offset;
797 };
798 
799 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
800 /*
801  * This structure is to hold information about the device
802  * configured to run FCoE protocol stack.
803  */
804 struct netdev_fcoe_hbainfo {
805 	char	manufacturer[64];
806 	char	serial_number[64];
807 	char	hardware_version[64];
808 	char	driver_version[64];
809 	char	optionrom_version[64];
810 	char	firmware_version[64];
811 	char	model[256];
812 	char	model_description[256];
813 };
814 #endif
815 
816 #define MAX_PHYS_ITEM_ID_LEN 32
817 
818 /* This structure holds a unique identifier to identify some
819  * physical item (port for example) used by a netdevice.
820  */
821 struct netdev_phys_item_id {
822 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
823 	unsigned char id_len;
824 };
825 
826 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
827 					    struct netdev_phys_item_id *b)
828 {
829 	return a->id_len == b->id_len &&
830 	       memcmp(a->id, b->id, a->id_len) == 0;
831 }
832 
833 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
834 				       struct sk_buff *skb,
835 				       struct net_device *sb_dev);
836 
837 enum tc_setup_type {
838 	TC_SETUP_QDISC_MQPRIO,
839 	TC_SETUP_CLSU32,
840 	TC_SETUP_CLSFLOWER,
841 	TC_SETUP_CLSMATCHALL,
842 	TC_SETUP_CLSBPF,
843 	TC_SETUP_BLOCK,
844 	TC_SETUP_QDISC_CBS,
845 	TC_SETUP_QDISC_RED,
846 	TC_SETUP_QDISC_PRIO,
847 	TC_SETUP_QDISC_MQ,
848 	TC_SETUP_QDISC_ETF,
849 	TC_SETUP_ROOT_QDISC,
850 	TC_SETUP_QDISC_GRED,
851 };
852 
853 /* These structures hold the attributes of bpf state that are being passed
854  * to the netdevice through the bpf op.
855  */
856 enum bpf_netdev_command {
857 	/* Set or clear a bpf program used in the earliest stages of packet
858 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
859 	 * is responsible for calling bpf_prog_put on any old progs that are
860 	 * stored. In case of error, the callee need not release the new prog
861 	 * reference, but on success it takes ownership and must bpf_prog_put
862 	 * when it is no longer used.
863 	 */
864 	XDP_SETUP_PROG,
865 	XDP_SETUP_PROG_HW,
866 	XDP_QUERY_PROG,
867 	XDP_QUERY_PROG_HW,
868 	/* BPF program for offload callbacks, invoked at program load time. */
869 	BPF_OFFLOAD_MAP_ALLOC,
870 	BPF_OFFLOAD_MAP_FREE,
871 	XDP_QUERY_XSK_UMEM,
872 	XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880 	enum bpf_netdev_command command;
881 	union {
882 		/* XDP_SETUP_PROG */
883 		struct {
884 			u32 flags;
885 			struct bpf_prog *prog;
886 			struct netlink_ext_ack *extack;
887 		};
888 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 		struct {
890 			u32 prog_id;
891 			/* flags with which program was installed */
892 			u32 prog_flags;
893 		};
894 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
895 		struct {
896 			struct bpf_offloaded_map *offmap;
897 		};
898 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
899 		struct {
900 			struct xdp_umem *umem; /* out for query*/
901 			u16 queue_id; /* in for query */
902 		} xsk;
903 	};
904 };
905 
906 #ifdef CONFIG_XFRM_OFFLOAD
907 struct xfrmdev_ops {
908 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
909 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
910 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
911 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
912 				       struct xfrm_state *x);
913 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
914 };
915 #endif
916 
917 #if IS_ENABLED(CONFIG_TLS_DEVICE)
918 enum tls_offload_ctx_dir {
919 	TLS_OFFLOAD_CTX_DIR_RX,
920 	TLS_OFFLOAD_CTX_DIR_TX,
921 };
922 
923 struct tls_crypto_info;
924 struct tls_context;
925 
926 struct tlsdev_ops {
927 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
928 			   enum tls_offload_ctx_dir direction,
929 			   struct tls_crypto_info *crypto_info,
930 			   u32 start_offload_tcp_sn);
931 	void (*tls_dev_del)(struct net_device *netdev,
932 			    struct tls_context *ctx,
933 			    enum tls_offload_ctx_dir direction);
934 	void (*tls_dev_resync_rx)(struct net_device *netdev,
935 				  struct sock *sk, u32 seq, u64 rcd_sn);
936 };
937 #endif
938 
939 struct dev_ifalias {
940 	struct rcu_head rcuhead;
941 	char ifalias[];
942 };
943 
944 /*
945  * This structure defines the management hooks for network devices.
946  * The following hooks can be defined; unless noted otherwise, they are
947  * optional and can be filled with a null pointer.
948  *
949  * int (*ndo_init)(struct net_device *dev);
950  *     This function is called once when a network device is registered.
951  *     The network device can use this for any late stage initialization
952  *     or semantic validation. It can fail with an error code which will
953  *     be propagated back to register_netdev.
954  *
955  * void (*ndo_uninit)(struct net_device *dev);
956  *     This function is called when device is unregistered or when registration
957  *     fails. It is not called if init fails.
958  *
959  * int (*ndo_open)(struct net_device *dev);
960  *     This function is called when a network device transitions to the up
961  *     state.
962  *
963  * int (*ndo_stop)(struct net_device *dev);
964  *     This function is called when a network device transitions to the down
965  *     state.
966  *
967  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
968  *                               struct net_device *dev);
969  *	Called when a packet needs to be transmitted.
970  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
971  *	the queue before that can happen; it's for obsolete devices and weird
972  *	corner cases, but the stack really does a non-trivial amount
973  *	of useless work if you return NETDEV_TX_BUSY.
974  *	Required; cannot be NULL.
975  *
976  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
977  *					   struct net_device *dev
978  *					   netdev_features_t features);
979  *	Called by core transmit path to determine if device is capable of
980  *	performing offload operations on a given packet. This is to give
981  *	the device an opportunity to implement any restrictions that cannot
982  *	be otherwise expressed by feature flags. The check is called with
983  *	the set of features that the stack has calculated and it returns
984  *	those the driver believes to be appropriate.
985  *
986  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
987  *                         struct net_device *sb_dev,
988  *                         select_queue_fallback_t fallback);
989  *	Called to decide which queue to use when device supports multiple
990  *	transmit queues.
991  *
992  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
993  *	This function is called to allow device receiver to make
994  *	changes to configuration when multicast or promiscuous is enabled.
995  *
996  * void (*ndo_set_rx_mode)(struct net_device *dev);
997  *	This function is called device changes address list filtering.
998  *	If driver handles unicast address filtering, it should set
999  *	IFF_UNICAST_FLT in its priv_flags.
1000  *
1001  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1002  *	This function  is called when the Media Access Control address
1003  *	needs to be changed. If this interface is not defined, the
1004  *	MAC address can not be changed.
1005  *
1006  * int (*ndo_validate_addr)(struct net_device *dev);
1007  *	Test if Media Access Control address is valid for the device.
1008  *
1009  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1010  *	Called when a user requests an ioctl which can't be handled by
1011  *	the generic interface code. If not defined ioctls return
1012  *	not supported error code.
1013  *
1014  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1015  *	Used to set network devices bus interface parameters. This interface
1016  *	is retained for legacy reasons; new devices should use the bus
1017  *	interface (PCI) for low level management.
1018  *
1019  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1020  *	Called when a user wants to change the Maximum Transfer Unit
1021  *	of a device.
1022  *
1023  * void (*ndo_tx_timeout)(struct net_device *dev);
1024  *	Callback used when the transmitter has not made any progress
1025  *	for dev->watchdog ticks.
1026  *
1027  * void (*ndo_get_stats64)(struct net_device *dev,
1028  *                         struct rtnl_link_stats64 *storage);
1029  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1030  *	Called when a user wants to get the network device usage
1031  *	statistics. Drivers must do one of the following:
1032  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1033  *	   rtnl_link_stats64 structure passed by the caller.
1034  *	2. Define @ndo_get_stats to update a net_device_stats structure
1035  *	   (which should normally be dev->stats) and return a pointer to
1036  *	   it. The structure may be changed asynchronously only if each
1037  *	   field is written atomically.
1038  *	3. Update dev->stats asynchronously and atomically, and define
1039  *	   neither operation.
1040  *
1041  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1042  *	Return true if this device supports offload stats of this attr_id.
1043  *
1044  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1045  *	void *attr_data)
1046  *	Get statistics for offload operations by attr_id. Write it into the
1047  *	attr_data pointer.
1048  *
1049  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1050  *	If device supports VLAN filtering this function is called when a
1051  *	VLAN id is registered.
1052  *
1053  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1054  *	If device supports VLAN filtering this function is called when a
1055  *	VLAN id is unregistered.
1056  *
1057  * void (*ndo_poll_controller)(struct net_device *dev);
1058  *
1059  *	SR-IOV management functions.
1060  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1061  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1062  *			  u8 qos, __be16 proto);
1063  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1064  *			  int max_tx_rate);
1065  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1066  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1067  * int (*ndo_get_vf_config)(struct net_device *dev,
1068  *			    int vf, struct ifla_vf_info *ivf);
1069  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1070  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1071  *			  struct nlattr *port[]);
1072  *
1073  *      Enable or disable the VF ability to query its RSS Redirection Table and
1074  *      Hash Key. This is needed since on some devices VF share this information
1075  *      with PF and querying it may introduce a theoretical security risk.
1076  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1077  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1078  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1079  *		       void *type_data);
1080  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1081  *	This is always called from the stack with the rtnl lock held and netif
1082  *	tx queues stopped. This allows the netdevice to perform queue
1083  *	management safely.
1084  *
1085  *	Fiber Channel over Ethernet (FCoE) offload functions.
1086  * int (*ndo_fcoe_enable)(struct net_device *dev);
1087  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1088  *	so the underlying device can perform whatever needed configuration or
1089  *	initialization to support acceleration of FCoE traffic.
1090  *
1091  * int (*ndo_fcoe_disable)(struct net_device *dev);
1092  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1093  *	so the underlying device can perform whatever needed clean-ups to
1094  *	stop supporting acceleration of FCoE traffic.
1095  *
1096  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1097  *			     struct scatterlist *sgl, unsigned int sgc);
1098  *	Called when the FCoE Initiator wants to initialize an I/O that
1099  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1100  *	perform necessary setup and returns 1 to indicate the device is set up
1101  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1102  *
1103  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1104  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1105  *	indicated by the FC exchange id 'xid', so the underlying device can
1106  *	clean up and reuse resources for later DDP requests.
1107  *
1108  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1109  *			      struct scatterlist *sgl, unsigned int sgc);
1110  *	Called when the FCoE Target wants to initialize an I/O that
1111  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1112  *	perform necessary setup and returns 1 to indicate the device is set up
1113  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1114  *
1115  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1116  *			       struct netdev_fcoe_hbainfo *hbainfo);
1117  *	Called when the FCoE Protocol stack wants information on the underlying
1118  *	device. This information is utilized by the FCoE protocol stack to
1119  *	register attributes with Fiber Channel management service as per the
1120  *	FC-GS Fabric Device Management Information(FDMI) specification.
1121  *
1122  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1123  *	Called when the underlying device wants to override default World Wide
1124  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1125  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1126  *	protocol stack to use.
1127  *
1128  *	RFS acceleration.
1129  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1130  *			    u16 rxq_index, u32 flow_id);
1131  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1132  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1133  *	Return the filter ID on success, or a negative error code.
1134  *
1135  *	Slave management functions (for bridge, bonding, etc).
1136  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1137  *	Called to make another netdev an underling.
1138  *
1139  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1140  *	Called to release previously enslaved netdev.
1141  *
1142  *      Feature/offload setting functions.
1143  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1144  *		netdev_features_t features);
1145  *	Adjusts the requested feature flags according to device-specific
1146  *	constraints, and returns the resulting flags. Must not modify
1147  *	the device state.
1148  *
1149  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1150  *	Called to update device configuration to new features. Passed
1151  *	feature set might be less than what was returned by ndo_fix_features()).
1152  *	Must return >0 or -errno if it changed dev->features itself.
1153  *
1154  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1155  *		      struct net_device *dev,
1156  *		      const unsigned char *addr, u16 vid, u16 flags,
1157  *		      struct netlink_ext_ack *extack);
1158  *	Adds an FDB entry to dev for addr.
1159  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1160  *		      struct net_device *dev,
1161  *		      const unsigned char *addr, u16 vid)
1162  *	Deletes the FDB entry from dev coresponding to addr.
1163  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1164  *		       struct net_device *dev, struct net_device *filter_dev,
1165  *		       int *idx)
1166  *	Used to add FDB entries to dump requests. Implementers should add
1167  *	entries to skb and update idx with the number of entries.
1168  *
1169  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1170  *			     u16 flags, struct netlink_ext_ack *extack)
1171  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1172  *			     struct net_device *dev, u32 filter_mask,
1173  *			     int nlflags)
1174  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1175  *			     u16 flags);
1176  *
1177  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1178  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1179  *	which do not represent real hardware may define this to allow their
1180  *	userspace components to manage their virtual carrier state. Devices
1181  *	that determine carrier state from physical hardware properties (eg
1182  *	network cables) or protocol-dependent mechanisms (eg
1183  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1184  *
1185  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1186  *			       struct netdev_phys_item_id *ppid);
1187  *	Called to get ID of physical port of this device. If driver does
1188  *	not implement this, it is assumed that the hw is not able to have
1189  *	multiple net devices on single physical port.
1190  *
1191  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1192  *			      struct udp_tunnel_info *ti);
1193  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1194  *	address family that a UDP tunnel is listnening to. It is called only
1195  *	when a new port starts listening. The operation is protected by the
1196  *	RTNL.
1197  *
1198  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1199  *			      struct udp_tunnel_info *ti);
1200  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1201  *	address family that the UDP tunnel is not listening to anymore. The
1202  *	operation is protected by the RTNL.
1203  *
1204  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1205  *				 struct net_device *dev)
1206  *	Called by upper layer devices to accelerate switching or other
1207  *	station functionality into hardware. 'pdev is the lowerdev
1208  *	to use for the offload and 'dev' is the net device that will
1209  *	back the offload. Returns a pointer to the private structure
1210  *	the upper layer will maintain.
1211  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1212  *	Called by upper layer device to delete the station created
1213  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1214  *	the station and priv is the structure returned by the add
1215  *	operation.
1216  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1217  *			     int queue_index, u32 maxrate);
1218  *	Called when a user wants to set a max-rate limitation of specific
1219  *	TX queue.
1220  * int (*ndo_get_iflink)(const struct net_device *dev);
1221  *	Called to get the iflink value of this device.
1222  * void (*ndo_change_proto_down)(struct net_device *dev,
1223  *				 bool proto_down);
1224  *	This function is used to pass protocol port error state information
1225  *	to the switch driver. The switch driver can react to the proto_down
1226  *      by doing a phys down on the associated switch port.
1227  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1228  *	This function is used to get egress tunnel information for given skb.
1229  *	This is useful for retrieving outer tunnel header parameters while
1230  *	sampling packet.
1231  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1232  *	This function is used to specify the headroom that the skb must
1233  *	consider when allocation skb during packet reception. Setting
1234  *	appropriate rx headroom value allows avoiding skb head copy on
1235  *	forward. Setting a negative value resets the rx headroom to the
1236  *	default value.
1237  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1238  *	This function is used to set or query state related to XDP on the
1239  *	netdevice and manage BPF offload. See definition of
1240  *	enum bpf_netdev_command for details.
1241  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1242  *			u32 flags);
1243  *	This function is used to submit @n XDP packets for transmit on a
1244  *	netdevice. Returns number of frames successfully transmitted, frames
1245  *	that got dropped are freed/returned via xdp_return_frame().
1246  *	Returns negative number, means general error invoking ndo, meaning
1247  *	no frames were xmit'ed and core-caller will free all frames.
1248  */
1249 struct net_device_ops {
1250 	int			(*ndo_init)(struct net_device *dev);
1251 	void			(*ndo_uninit)(struct net_device *dev);
1252 	int			(*ndo_open)(struct net_device *dev);
1253 	int			(*ndo_stop)(struct net_device *dev);
1254 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1255 						  struct net_device *dev);
1256 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1257 						      struct net_device *dev,
1258 						      netdev_features_t features);
1259 	u16			(*ndo_select_queue)(struct net_device *dev,
1260 						    struct sk_buff *skb,
1261 						    struct net_device *sb_dev,
1262 						    select_queue_fallback_t fallback);
1263 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1264 						       int flags);
1265 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1266 	int			(*ndo_set_mac_address)(struct net_device *dev,
1267 						       void *addr);
1268 	int			(*ndo_validate_addr)(struct net_device *dev);
1269 	int			(*ndo_do_ioctl)(struct net_device *dev,
1270 					        struct ifreq *ifr, int cmd);
1271 	int			(*ndo_set_config)(struct net_device *dev,
1272 					          struct ifmap *map);
1273 	int			(*ndo_change_mtu)(struct net_device *dev,
1274 						  int new_mtu);
1275 	int			(*ndo_neigh_setup)(struct net_device *dev,
1276 						   struct neigh_parms *);
1277 	void			(*ndo_tx_timeout) (struct net_device *dev);
1278 
1279 	void			(*ndo_get_stats64)(struct net_device *dev,
1280 						   struct rtnl_link_stats64 *storage);
1281 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1282 	int			(*ndo_get_offload_stats)(int attr_id,
1283 							 const struct net_device *dev,
1284 							 void *attr_data);
1285 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1286 
1287 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1288 						       __be16 proto, u16 vid);
1289 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1290 						        __be16 proto, u16 vid);
1291 #ifdef CONFIG_NET_POLL_CONTROLLER
1292 	void                    (*ndo_poll_controller)(struct net_device *dev);
1293 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1294 						     struct netpoll_info *info);
1295 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1296 #endif
1297 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1298 						  int queue, u8 *mac);
1299 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1300 						   int queue, u16 vlan,
1301 						   u8 qos, __be16 proto);
1302 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1303 						   int vf, int min_tx_rate,
1304 						   int max_tx_rate);
1305 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1306 						       int vf, bool setting);
1307 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1308 						    int vf, bool setting);
1309 	int			(*ndo_get_vf_config)(struct net_device *dev,
1310 						     int vf,
1311 						     struct ifla_vf_info *ivf);
1312 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1313 							 int vf, int link_state);
1314 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1315 						    int vf,
1316 						    struct ifla_vf_stats
1317 						    *vf_stats);
1318 	int			(*ndo_set_vf_port)(struct net_device *dev,
1319 						   int vf,
1320 						   struct nlattr *port[]);
1321 	int			(*ndo_get_vf_port)(struct net_device *dev,
1322 						   int vf, struct sk_buff *skb);
1323 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1324 						   int vf, u64 guid,
1325 						   int guid_type);
1326 	int			(*ndo_set_vf_rss_query_en)(
1327 						   struct net_device *dev,
1328 						   int vf, bool setting);
1329 	int			(*ndo_setup_tc)(struct net_device *dev,
1330 						enum tc_setup_type type,
1331 						void *type_data);
1332 #if IS_ENABLED(CONFIG_FCOE)
1333 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1334 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1335 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1336 						      u16 xid,
1337 						      struct scatterlist *sgl,
1338 						      unsigned int sgc);
1339 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1340 						     u16 xid);
1341 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1342 						       u16 xid,
1343 						       struct scatterlist *sgl,
1344 						       unsigned int sgc);
1345 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1346 							struct netdev_fcoe_hbainfo *hbainfo);
1347 #endif
1348 
1349 #if IS_ENABLED(CONFIG_LIBFCOE)
1350 #define NETDEV_FCOE_WWNN 0
1351 #define NETDEV_FCOE_WWPN 1
1352 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1353 						    u64 *wwn, int type);
1354 #endif
1355 
1356 #ifdef CONFIG_RFS_ACCEL
1357 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1358 						     const struct sk_buff *skb,
1359 						     u16 rxq_index,
1360 						     u32 flow_id);
1361 #endif
1362 	int			(*ndo_add_slave)(struct net_device *dev,
1363 						 struct net_device *slave_dev,
1364 						 struct netlink_ext_ack *extack);
1365 	int			(*ndo_del_slave)(struct net_device *dev,
1366 						 struct net_device *slave_dev);
1367 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1368 						    netdev_features_t features);
1369 	int			(*ndo_set_features)(struct net_device *dev,
1370 						    netdev_features_t features);
1371 	int			(*ndo_neigh_construct)(struct net_device *dev,
1372 						       struct neighbour *n);
1373 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1374 						     struct neighbour *n);
1375 
1376 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1377 					       struct nlattr *tb[],
1378 					       struct net_device *dev,
1379 					       const unsigned char *addr,
1380 					       u16 vid,
1381 					       u16 flags,
1382 					       struct netlink_ext_ack *extack);
1383 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1384 					       struct nlattr *tb[],
1385 					       struct net_device *dev,
1386 					       const unsigned char *addr,
1387 					       u16 vid);
1388 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1389 						struct netlink_callback *cb,
1390 						struct net_device *dev,
1391 						struct net_device *filter_dev,
1392 						int *idx);
1393 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1394 					       struct nlattr *tb[],
1395 					       struct net_device *dev,
1396 					       const unsigned char *addr,
1397 					       u16 vid, u32 portid, u32 seq,
1398 					       struct netlink_ext_ack *extack);
1399 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1400 						      struct nlmsghdr *nlh,
1401 						      u16 flags,
1402 						      struct netlink_ext_ack *extack);
1403 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1404 						      u32 pid, u32 seq,
1405 						      struct net_device *dev,
1406 						      u32 filter_mask,
1407 						      int nlflags);
1408 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1409 						      struct nlmsghdr *nlh,
1410 						      u16 flags);
1411 	int			(*ndo_change_carrier)(struct net_device *dev,
1412 						      bool new_carrier);
1413 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1414 							struct netdev_phys_item_id *ppid);
1415 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1416 							  char *name, size_t len);
1417 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1418 						      struct udp_tunnel_info *ti);
1419 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1420 						      struct udp_tunnel_info *ti);
1421 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1422 							struct net_device *dev);
1423 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1424 							void *priv);
1425 
1426 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1427 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1428 						      int queue_index,
1429 						      u32 maxrate);
1430 	int			(*ndo_get_iflink)(const struct net_device *dev);
1431 	int			(*ndo_change_proto_down)(struct net_device *dev,
1432 							 bool proto_down);
1433 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1434 						       struct sk_buff *skb);
1435 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1436 						       int needed_headroom);
1437 	int			(*ndo_bpf)(struct net_device *dev,
1438 					   struct netdev_bpf *bpf);
1439 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1440 						struct xdp_frame **xdp,
1441 						u32 flags);
1442 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1443 						      u32 queue_id);
1444 };
1445 
1446 /**
1447  * enum net_device_priv_flags - &struct net_device priv_flags
1448  *
1449  * These are the &struct net_device, they are only set internally
1450  * by drivers and used in the kernel. These flags are invisible to
1451  * userspace; this means that the order of these flags can change
1452  * during any kernel release.
1453  *
1454  * You should have a pretty good reason to be extending these flags.
1455  *
1456  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1457  * @IFF_EBRIDGE: Ethernet bridging device
1458  * @IFF_BONDING: bonding master or slave
1459  * @IFF_ISATAP: ISATAP interface (RFC4214)
1460  * @IFF_WAN_HDLC: WAN HDLC device
1461  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1462  *	release skb->dst
1463  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1464  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1465  * @IFF_MACVLAN_PORT: device used as macvlan port
1466  * @IFF_BRIDGE_PORT: device used as bridge port
1467  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1468  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1469  * @IFF_UNICAST_FLT: Supports unicast filtering
1470  * @IFF_TEAM_PORT: device used as team port
1471  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1472  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1473  *	change when it's running
1474  * @IFF_MACVLAN: Macvlan device
1475  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1476  *	underlying stacked devices
1477  * @IFF_L3MDEV_MASTER: device is an L3 master device
1478  * @IFF_NO_QUEUE: device can run without qdisc attached
1479  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1480  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1481  * @IFF_TEAM: device is a team device
1482  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1483  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1484  *	entity (i.e. the master device for bridged veth)
1485  * @IFF_MACSEC: device is a MACsec device
1486  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1487  * @IFF_FAILOVER: device is a failover master device
1488  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1489  */
1490 enum netdev_priv_flags {
1491 	IFF_802_1Q_VLAN			= 1<<0,
1492 	IFF_EBRIDGE			= 1<<1,
1493 	IFF_BONDING			= 1<<2,
1494 	IFF_ISATAP			= 1<<3,
1495 	IFF_WAN_HDLC			= 1<<4,
1496 	IFF_XMIT_DST_RELEASE		= 1<<5,
1497 	IFF_DONT_BRIDGE			= 1<<6,
1498 	IFF_DISABLE_NETPOLL		= 1<<7,
1499 	IFF_MACVLAN_PORT		= 1<<8,
1500 	IFF_BRIDGE_PORT			= 1<<9,
1501 	IFF_OVS_DATAPATH		= 1<<10,
1502 	IFF_TX_SKB_SHARING		= 1<<11,
1503 	IFF_UNICAST_FLT			= 1<<12,
1504 	IFF_TEAM_PORT			= 1<<13,
1505 	IFF_SUPP_NOFCS			= 1<<14,
1506 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1507 	IFF_MACVLAN			= 1<<16,
1508 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1509 	IFF_L3MDEV_MASTER		= 1<<18,
1510 	IFF_NO_QUEUE			= 1<<19,
1511 	IFF_OPENVSWITCH			= 1<<20,
1512 	IFF_L3MDEV_SLAVE		= 1<<21,
1513 	IFF_TEAM			= 1<<22,
1514 	IFF_RXFH_CONFIGURED		= 1<<23,
1515 	IFF_PHONY_HEADROOM		= 1<<24,
1516 	IFF_MACSEC			= 1<<25,
1517 	IFF_NO_RX_HANDLER		= 1<<26,
1518 	IFF_FAILOVER			= 1<<27,
1519 	IFF_FAILOVER_SLAVE		= 1<<28,
1520 };
1521 
1522 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1523 #define IFF_EBRIDGE			IFF_EBRIDGE
1524 #define IFF_BONDING			IFF_BONDING
1525 #define IFF_ISATAP			IFF_ISATAP
1526 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1527 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1528 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1529 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1530 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1531 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1532 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1533 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1534 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1535 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1536 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1537 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1538 #define IFF_MACVLAN			IFF_MACVLAN
1539 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1540 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1541 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1542 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1543 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1544 #define IFF_TEAM			IFF_TEAM
1545 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1546 #define IFF_MACSEC			IFF_MACSEC
1547 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1548 #define IFF_FAILOVER			IFF_FAILOVER
1549 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1550 
1551 /**
1552  *	struct net_device - The DEVICE structure.
1553  *
1554  *	Actually, this whole structure is a big mistake.  It mixes I/O
1555  *	data with strictly "high-level" data, and it has to know about
1556  *	almost every data structure used in the INET module.
1557  *
1558  *	@name:	This is the first field of the "visible" part of this structure
1559  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1560  *		of the interface.
1561  *
1562  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1563  *	@ifalias:	SNMP alias
1564  *	@mem_end:	Shared memory end
1565  *	@mem_start:	Shared memory start
1566  *	@base_addr:	Device I/O address
1567  *	@irq:		Device IRQ number
1568  *
1569  *	@state:		Generic network queuing layer state, see netdev_state_t
1570  *	@dev_list:	The global list of network devices
1571  *	@napi_list:	List entry used for polling NAPI devices
1572  *	@unreg_list:	List entry  when we are unregistering the
1573  *			device; see the function unregister_netdev
1574  *	@close_list:	List entry used when we are closing the device
1575  *	@ptype_all:     Device-specific packet handlers for all protocols
1576  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1577  *
1578  *	@adj_list:	Directly linked devices, like slaves for bonding
1579  *	@features:	Currently active device features
1580  *	@hw_features:	User-changeable features
1581  *
1582  *	@wanted_features:	User-requested features
1583  *	@vlan_features:		Mask of features inheritable by VLAN devices
1584  *
1585  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1586  *				This field indicates what encapsulation
1587  *				offloads the hardware is capable of doing,
1588  *				and drivers will need to set them appropriately.
1589  *
1590  *	@mpls_features:	Mask of features inheritable by MPLS
1591  *
1592  *	@ifindex:	interface index
1593  *	@group:		The group the device belongs to
1594  *
1595  *	@stats:		Statistics struct, which was left as a legacy, use
1596  *			rtnl_link_stats64 instead
1597  *
1598  *	@rx_dropped:	Dropped packets by core network,
1599  *			do not use this in drivers
1600  *	@tx_dropped:	Dropped packets by core network,
1601  *			do not use this in drivers
1602  *	@rx_nohandler:	nohandler dropped packets by core network on
1603  *			inactive devices, do not use this in drivers
1604  *	@carrier_up_count:	Number of times the carrier has been up
1605  *	@carrier_down_count:	Number of times the carrier has been down
1606  *
1607  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1608  *				instead of ioctl,
1609  *				see <net/iw_handler.h> for details.
1610  *	@wireless_data:	Instance data managed by the core of wireless extensions
1611  *
1612  *	@netdev_ops:	Includes several pointers to callbacks,
1613  *			if one wants to override the ndo_*() functions
1614  *	@ethtool_ops:	Management operations
1615  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1616  *			discovery handling. Necessary for e.g. 6LoWPAN.
1617  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1618  *			of Layer 2 headers.
1619  *
1620  *	@flags:		Interface flags (a la BSD)
1621  *	@priv_flags:	Like 'flags' but invisible to userspace,
1622  *			see if.h for the definitions
1623  *	@gflags:	Global flags ( kept as legacy )
1624  *	@padded:	How much padding added by alloc_netdev()
1625  *	@operstate:	RFC2863 operstate
1626  *	@link_mode:	Mapping policy to operstate
1627  *	@if_port:	Selectable AUI, TP, ...
1628  *	@dma:		DMA channel
1629  *	@mtu:		Interface MTU value
1630  *	@min_mtu:	Interface Minimum MTU value
1631  *	@max_mtu:	Interface Maximum MTU value
1632  *	@type:		Interface hardware type
1633  *	@hard_header_len: Maximum hardware header length.
1634  *	@min_header_len:  Minimum hardware header length
1635  *
1636  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1637  *			  cases can this be guaranteed
1638  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1639  *			  cases can this be guaranteed. Some cases also use
1640  *			  LL_MAX_HEADER instead to allocate the skb
1641  *
1642  *	interface address info:
1643  *
1644  * 	@perm_addr:		Permanent hw address
1645  * 	@addr_assign_type:	Hw address assignment type
1646  * 	@addr_len:		Hardware address length
1647  *	@neigh_priv_len:	Used in neigh_alloc()
1648  * 	@dev_id:		Used to differentiate devices that share
1649  * 				the same link layer address
1650  * 	@dev_port:		Used to differentiate devices that share
1651  * 				the same function
1652  *	@addr_list_lock:	XXX: need comments on this one
1653  *	@uc_promisc:		Counter that indicates promiscuous mode
1654  *				has been enabled due to the need to listen to
1655  *				additional unicast addresses in a device that
1656  *				does not implement ndo_set_rx_mode()
1657  *	@uc:			unicast mac addresses
1658  *	@mc:			multicast mac addresses
1659  *	@dev_addrs:		list of device hw addresses
1660  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1661  *	@promiscuity:		Number of times the NIC is told to work in
1662  *				promiscuous mode; if it becomes 0 the NIC will
1663  *				exit promiscuous mode
1664  *	@allmulti:		Counter, enables or disables allmulticast mode
1665  *
1666  *	@vlan_info:	VLAN info
1667  *	@dsa_ptr:	dsa specific data
1668  *	@tipc_ptr:	TIPC specific data
1669  *	@atalk_ptr:	AppleTalk link
1670  *	@ip_ptr:	IPv4 specific data
1671  *	@dn_ptr:	DECnet specific data
1672  *	@ip6_ptr:	IPv6 specific data
1673  *	@ax25_ptr:	AX.25 specific data
1674  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1675  *
1676  *	@dev_addr:	Hw address (before bcast,
1677  *			because most packets are unicast)
1678  *
1679  *	@_rx:			Array of RX queues
1680  *	@num_rx_queues:		Number of RX queues
1681  *				allocated at register_netdev() time
1682  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1683  *
1684  *	@rx_handler:		handler for received packets
1685  *	@rx_handler_data: 	XXX: need comments on this one
1686  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1687  *				ingress processing
1688  *	@ingress_queue:		XXX: need comments on this one
1689  *	@broadcast:		hw bcast address
1690  *
1691  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1692  *			indexed by RX queue number. Assigned by driver.
1693  *			This must only be set if the ndo_rx_flow_steer
1694  *			operation is defined
1695  *	@index_hlist:		Device index hash chain
1696  *
1697  *	@_tx:			Array of TX queues
1698  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1699  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1700  *	@qdisc:			Root qdisc from userspace point of view
1701  *	@tx_queue_len:		Max frames per queue allowed
1702  *	@tx_global_lock: 	XXX: need comments on this one
1703  *
1704  *	@xps_maps:	XXX: need comments on this one
1705  *	@miniq_egress:		clsact qdisc specific data for
1706  *				egress processing
1707  *	@watchdog_timeo:	Represents the timeout that is used by
1708  *				the watchdog (see dev_watchdog())
1709  *	@watchdog_timer:	List of timers
1710  *
1711  *	@pcpu_refcnt:		Number of references to this device
1712  *	@todo_list:		Delayed register/unregister
1713  *	@link_watch_list:	XXX: need comments on this one
1714  *
1715  *	@reg_state:		Register/unregister state machine
1716  *	@dismantle:		Device is going to be freed
1717  *	@rtnl_link_state:	This enum represents the phases of creating
1718  *				a new link
1719  *
1720  *	@needs_free_netdev:	Should unregister perform free_netdev?
1721  *	@priv_destructor:	Called from unregister
1722  *	@npinfo:		XXX: need comments on this one
1723  * 	@nd_net:		Network namespace this network device is inside
1724  *
1725  * 	@ml_priv:	Mid-layer private
1726  * 	@lstats:	Loopback statistics
1727  * 	@tstats:	Tunnel statistics
1728  * 	@dstats:	Dummy statistics
1729  * 	@vstats:	Virtual ethernet statistics
1730  *
1731  *	@garp_port:	GARP
1732  *	@mrp_port:	MRP
1733  *
1734  *	@dev:		Class/net/name entry
1735  *	@sysfs_groups:	Space for optional device, statistics and wireless
1736  *			sysfs groups
1737  *
1738  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1739  *	@rtnl_link_ops:	Rtnl_link_ops
1740  *
1741  *	@gso_max_size:	Maximum size of generic segmentation offload
1742  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1743  *			NIC for GSO
1744  *
1745  *	@dcbnl_ops:	Data Center Bridging netlink ops
1746  *	@num_tc:	Number of traffic classes in the net device
1747  *	@tc_to_txq:	XXX: need comments on this one
1748  *	@prio_tc_map:	XXX: need comments on this one
1749  *
1750  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1751  *
1752  *	@priomap:	XXX: need comments on this one
1753  *	@phydev:	Physical device may attach itself
1754  *			for hardware timestamping
1755  *	@sfp_bus:	attached &struct sfp_bus structure.
1756  *
1757  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1758  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1759  *
1760  *	@proto_down:	protocol port state information can be sent to the
1761  *			switch driver and used to set the phys state of the
1762  *			switch port.
1763  *
1764  *	@wol_enabled:	Wake-on-LAN is enabled
1765  *
1766  *	FIXME: cleanup struct net_device such that network protocol info
1767  *	moves out.
1768  */
1769 
1770 struct net_device {
1771 	char			name[IFNAMSIZ];
1772 	struct hlist_node	name_hlist;
1773 	struct dev_ifalias	__rcu *ifalias;
1774 	/*
1775 	 *	I/O specific fields
1776 	 *	FIXME: Merge these and struct ifmap into one
1777 	 */
1778 	unsigned long		mem_end;
1779 	unsigned long		mem_start;
1780 	unsigned long		base_addr;
1781 	int			irq;
1782 
1783 	/*
1784 	 *	Some hardware also needs these fields (state,dev_list,
1785 	 *	napi_list,unreg_list,close_list) but they are not
1786 	 *	part of the usual set specified in Space.c.
1787 	 */
1788 
1789 	unsigned long		state;
1790 
1791 	struct list_head	dev_list;
1792 	struct list_head	napi_list;
1793 	struct list_head	unreg_list;
1794 	struct list_head	close_list;
1795 	struct list_head	ptype_all;
1796 	struct list_head	ptype_specific;
1797 
1798 	struct {
1799 		struct list_head upper;
1800 		struct list_head lower;
1801 	} adj_list;
1802 
1803 	netdev_features_t	features;
1804 	netdev_features_t	hw_features;
1805 	netdev_features_t	wanted_features;
1806 	netdev_features_t	vlan_features;
1807 	netdev_features_t	hw_enc_features;
1808 	netdev_features_t	mpls_features;
1809 	netdev_features_t	gso_partial_features;
1810 
1811 	int			ifindex;
1812 	int			group;
1813 
1814 	struct net_device_stats	stats;
1815 
1816 	atomic_long_t		rx_dropped;
1817 	atomic_long_t		tx_dropped;
1818 	atomic_long_t		rx_nohandler;
1819 
1820 	/* Stats to monitor link on/off, flapping */
1821 	atomic_t		carrier_up_count;
1822 	atomic_t		carrier_down_count;
1823 
1824 #ifdef CONFIG_WIRELESS_EXT
1825 	const struct iw_handler_def *wireless_handlers;
1826 	struct iw_public_data	*wireless_data;
1827 #endif
1828 	const struct net_device_ops *netdev_ops;
1829 	const struct ethtool_ops *ethtool_ops;
1830 #ifdef CONFIG_NET_SWITCHDEV
1831 	const struct switchdev_ops *switchdev_ops;
1832 #endif
1833 #ifdef CONFIG_NET_L3_MASTER_DEV
1834 	const struct l3mdev_ops	*l3mdev_ops;
1835 #endif
1836 #if IS_ENABLED(CONFIG_IPV6)
1837 	const struct ndisc_ops *ndisc_ops;
1838 #endif
1839 
1840 #ifdef CONFIG_XFRM_OFFLOAD
1841 	const struct xfrmdev_ops *xfrmdev_ops;
1842 #endif
1843 
1844 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1845 	const struct tlsdev_ops *tlsdev_ops;
1846 #endif
1847 
1848 	const struct header_ops *header_ops;
1849 
1850 	unsigned int		flags;
1851 	unsigned int		priv_flags;
1852 
1853 	unsigned short		gflags;
1854 	unsigned short		padded;
1855 
1856 	unsigned char		operstate;
1857 	unsigned char		link_mode;
1858 
1859 	unsigned char		if_port;
1860 	unsigned char		dma;
1861 
1862 	unsigned int		mtu;
1863 	unsigned int		min_mtu;
1864 	unsigned int		max_mtu;
1865 	unsigned short		type;
1866 	unsigned short		hard_header_len;
1867 	unsigned char		min_header_len;
1868 
1869 	unsigned short		needed_headroom;
1870 	unsigned short		needed_tailroom;
1871 
1872 	/* Interface address info. */
1873 	unsigned char		perm_addr[MAX_ADDR_LEN];
1874 	unsigned char		addr_assign_type;
1875 	unsigned char		addr_len;
1876 	unsigned short		neigh_priv_len;
1877 	unsigned short          dev_id;
1878 	unsigned short          dev_port;
1879 	spinlock_t		addr_list_lock;
1880 	unsigned char		name_assign_type;
1881 	bool			uc_promisc;
1882 	struct netdev_hw_addr_list	uc;
1883 	struct netdev_hw_addr_list	mc;
1884 	struct netdev_hw_addr_list	dev_addrs;
1885 
1886 #ifdef CONFIG_SYSFS
1887 	struct kset		*queues_kset;
1888 #endif
1889 	unsigned int		promiscuity;
1890 	unsigned int		allmulti;
1891 
1892 
1893 	/* Protocol-specific pointers */
1894 
1895 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1896 	struct vlan_info __rcu	*vlan_info;
1897 #endif
1898 #if IS_ENABLED(CONFIG_NET_DSA)
1899 	struct dsa_port		*dsa_ptr;
1900 #endif
1901 #if IS_ENABLED(CONFIG_TIPC)
1902 	struct tipc_bearer __rcu *tipc_ptr;
1903 #endif
1904 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1905 	void 			*atalk_ptr;
1906 #endif
1907 	struct in_device __rcu	*ip_ptr;
1908 #if IS_ENABLED(CONFIG_DECNET)
1909 	struct dn_dev __rcu     *dn_ptr;
1910 #endif
1911 	struct inet6_dev __rcu	*ip6_ptr;
1912 #if IS_ENABLED(CONFIG_AX25)
1913 	void			*ax25_ptr;
1914 #endif
1915 	struct wireless_dev	*ieee80211_ptr;
1916 	struct wpan_dev		*ieee802154_ptr;
1917 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1918 	struct mpls_dev __rcu	*mpls_ptr;
1919 #endif
1920 
1921 /*
1922  * Cache lines mostly used on receive path (including eth_type_trans())
1923  */
1924 	/* Interface address info used in eth_type_trans() */
1925 	unsigned char		*dev_addr;
1926 
1927 	struct netdev_rx_queue	*_rx;
1928 	unsigned int		num_rx_queues;
1929 	unsigned int		real_num_rx_queues;
1930 
1931 	struct bpf_prog __rcu	*xdp_prog;
1932 	unsigned long		gro_flush_timeout;
1933 	rx_handler_func_t __rcu	*rx_handler;
1934 	void __rcu		*rx_handler_data;
1935 
1936 #ifdef CONFIG_NET_CLS_ACT
1937 	struct mini_Qdisc __rcu	*miniq_ingress;
1938 #endif
1939 	struct netdev_queue __rcu *ingress_queue;
1940 #ifdef CONFIG_NETFILTER_INGRESS
1941 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1942 #endif
1943 
1944 	unsigned char		broadcast[MAX_ADDR_LEN];
1945 #ifdef CONFIG_RFS_ACCEL
1946 	struct cpu_rmap		*rx_cpu_rmap;
1947 #endif
1948 	struct hlist_node	index_hlist;
1949 
1950 /*
1951  * Cache lines mostly used on transmit path
1952  */
1953 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1954 	unsigned int		num_tx_queues;
1955 	unsigned int		real_num_tx_queues;
1956 	struct Qdisc		*qdisc;
1957 #ifdef CONFIG_NET_SCHED
1958 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1959 #endif
1960 	unsigned int		tx_queue_len;
1961 	spinlock_t		tx_global_lock;
1962 	int			watchdog_timeo;
1963 
1964 #ifdef CONFIG_XPS
1965 	struct xps_dev_maps __rcu *xps_cpus_map;
1966 	struct xps_dev_maps __rcu *xps_rxqs_map;
1967 #endif
1968 #ifdef CONFIG_NET_CLS_ACT
1969 	struct mini_Qdisc __rcu	*miniq_egress;
1970 #endif
1971 
1972 	/* These may be needed for future network-power-down code. */
1973 	struct timer_list	watchdog_timer;
1974 
1975 	int __percpu		*pcpu_refcnt;
1976 	struct list_head	todo_list;
1977 
1978 	struct list_head	link_watch_list;
1979 
1980 	enum { NETREG_UNINITIALIZED=0,
1981 	       NETREG_REGISTERED,	/* completed register_netdevice */
1982 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1983 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1984 	       NETREG_RELEASED,		/* called free_netdev */
1985 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1986 	} reg_state:8;
1987 
1988 	bool dismantle;
1989 
1990 	enum {
1991 		RTNL_LINK_INITIALIZED,
1992 		RTNL_LINK_INITIALIZING,
1993 	} rtnl_link_state:16;
1994 
1995 	bool needs_free_netdev;
1996 	void (*priv_destructor)(struct net_device *dev);
1997 
1998 #ifdef CONFIG_NETPOLL
1999 	struct netpoll_info __rcu	*npinfo;
2000 #endif
2001 
2002 	possible_net_t			nd_net;
2003 
2004 	/* mid-layer private */
2005 	union {
2006 		void					*ml_priv;
2007 		struct pcpu_lstats __percpu		*lstats;
2008 		struct pcpu_sw_netstats __percpu	*tstats;
2009 		struct pcpu_dstats __percpu		*dstats;
2010 	};
2011 
2012 #if IS_ENABLED(CONFIG_GARP)
2013 	struct garp_port __rcu	*garp_port;
2014 #endif
2015 #if IS_ENABLED(CONFIG_MRP)
2016 	struct mrp_port __rcu	*mrp_port;
2017 #endif
2018 
2019 	struct device		dev;
2020 	const struct attribute_group *sysfs_groups[4];
2021 	const struct attribute_group *sysfs_rx_queue_group;
2022 
2023 	const struct rtnl_link_ops *rtnl_link_ops;
2024 
2025 	/* for setting kernel sock attribute on TCP connection setup */
2026 #define GSO_MAX_SIZE		65536
2027 	unsigned int		gso_max_size;
2028 #define GSO_MAX_SEGS		65535
2029 	u16			gso_max_segs;
2030 
2031 #ifdef CONFIG_DCB
2032 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2033 #endif
2034 	s16			num_tc;
2035 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2036 	u8			prio_tc_map[TC_BITMASK + 1];
2037 
2038 #if IS_ENABLED(CONFIG_FCOE)
2039 	unsigned int		fcoe_ddp_xid;
2040 #endif
2041 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2042 	struct netprio_map __rcu *priomap;
2043 #endif
2044 	struct phy_device	*phydev;
2045 	struct sfp_bus		*sfp_bus;
2046 	struct lock_class_key	*qdisc_tx_busylock;
2047 	struct lock_class_key	*qdisc_running_key;
2048 	bool			proto_down;
2049 	unsigned		wol_enabled:1;
2050 };
2051 #define to_net_dev(d) container_of(d, struct net_device, dev)
2052 
2053 static inline bool netif_elide_gro(const struct net_device *dev)
2054 {
2055 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2056 		return true;
2057 	return false;
2058 }
2059 
2060 #define	NETDEV_ALIGN		32
2061 
2062 static inline
2063 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2064 {
2065 	return dev->prio_tc_map[prio & TC_BITMASK];
2066 }
2067 
2068 static inline
2069 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2070 {
2071 	if (tc >= dev->num_tc)
2072 		return -EINVAL;
2073 
2074 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2075 	return 0;
2076 }
2077 
2078 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2079 void netdev_reset_tc(struct net_device *dev);
2080 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2081 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2082 
2083 static inline
2084 int netdev_get_num_tc(struct net_device *dev)
2085 {
2086 	return dev->num_tc;
2087 }
2088 
2089 void netdev_unbind_sb_channel(struct net_device *dev,
2090 			      struct net_device *sb_dev);
2091 int netdev_bind_sb_channel_queue(struct net_device *dev,
2092 				 struct net_device *sb_dev,
2093 				 u8 tc, u16 count, u16 offset);
2094 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2095 static inline int netdev_get_sb_channel(struct net_device *dev)
2096 {
2097 	return max_t(int, -dev->num_tc, 0);
2098 }
2099 
2100 static inline
2101 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2102 					 unsigned int index)
2103 {
2104 	return &dev->_tx[index];
2105 }
2106 
2107 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2108 						    const struct sk_buff *skb)
2109 {
2110 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2111 }
2112 
2113 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2114 					    void (*f)(struct net_device *,
2115 						      struct netdev_queue *,
2116 						      void *),
2117 					    void *arg)
2118 {
2119 	unsigned int i;
2120 
2121 	for (i = 0; i < dev->num_tx_queues; i++)
2122 		f(dev, &dev->_tx[i], arg);
2123 }
2124 
2125 #define netdev_lockdep_set_classes(dev)				\
2126 {								\
2127 	static struct lock_class_key qdisc_tx_busylock_key;	\
2128 	static struct lock_class_key qdisc_running_key;		\
2129 	static struct lock_class_key qdisc_xmit_lock_key;	\
2130 	static struct lock_class_key dev_addr_list_lock_key;	\
2131 	unsigned int i;						\
2132 								\
2133 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2134 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2135 	lockdep_set_class(&(dev)->addr_list_lock,		\
2136 			  &dev_addr_list_lock_key); 		\
2137 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2138 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2139 				  &qdisc_xmit_lock_key);	\
2140 }
2141 
2142 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2143 				    struct sk_buff *skb,
2144 				    struct net_device *sb_dev);
2145 
2146 /* returns the headroom that the master device needs to take in account
2147  * when forwarding to this dev
2148  */
2149 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2150 {
2151 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2152 }
2153 
2154 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2155 {
2156 	if (dev->netdev_ops->ndo_set_rx_headroom)
2157 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2158 }
2159 
2160 /* set the device rx headroom to the dev's default */
2161 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2162 {
2163 	netdev_set_rx_headroom(dev, -1);
2164 }
2165 
2166 /*
2167  * Net namespace inlines
2168  */
2169 static inline
2170 struct net *dev_net(const struct net_device *dev)
2171 {
2172 	return read_pnet(&dev->nd_net);
2173 }
2174 
2175 static inline
2176 void dev_net_set(struct net_device *dev, struct net *net)
2177 {
2178 	write_pnet(&dev->nd_net, net);
2179 }
2180 
2181 /**
2182  *	netdev_priv - access network device private data
2183  *	@dev: network device
2184  *
2185  * Get network device private data
2186  */
2187 static inline void *netdev_priv(const struct net_device *dev)
2188 {
2189 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2190 }
2191 
2192 /* Set the sysfs physical device reference for the network logical device
2193  * if set prior to registration will cause a symlink during initialization.
2194  */
2195 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2196 
2197 /* Set the sysfs device type for the network logical device to allow
2198  * fine-grained identification of different network device types. For
2199  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2200  */
2201 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2202 
2203 /* Default NAPI poll() weight
2204  * Device drivers are strongly advised to not use bigger value
2205  */
2206 #define NAPI_POLL_WEIGHT 64
2207 
2208 /**
2209  *	netif_napi_add - initialize a NAPI context
2210  *	@dev:  network device
2211  *	@napi: NAPI context
2212  *	@poll: polling function
2213  *	@weight: default weight
2214  *
2215  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2216  * *any* of the other NAPI-related functions.
2217  */
2218 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2219 		    int (*poll)(struct napi_struct *, int), int weight);
2220 
2221 /**
2222  *	netif_tx_napi_add - initialize a NAPI context
2223  *	@dev:  network device
2224  *	@napi: NAPI context
2225  *	@poll: polling function
2226  *	@weight: default weight
2227  *
2228  * This variant of netif_napi_add() should be used from drivers using NAPI
2229  * to exclusively poll a TX queue.
2230  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2231  */
2232 static inline void netif_tx_napi_add(struct net_device *dev,
2233 				     struct napi_struct *napi,
2234 				     int (*poll)(struct napi_struct *, int),
2235 				     int weight)
2236 {
2237 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2238 	netif_napi_add(dev, napi, poll, weight);
2239 }
2240 
2241 /**
2242  *  netif_napi_del - remove a NAPI context
2243  *  @napi: NAPI context
2244  *
2245  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2246  */
2247 void netif_napi_del(struct napi_struct *napi);
2248 
2249 struct napi_gro_cb {
2250 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2251 	void	*frag0;
2252 
2253 	/* Length of frag0. */
2254 	unsigned int frag0_len;
2255 
2256 	/* This indicates where we are processing relative to skb->data. */
2257 	int	data_offset;
2258 
2259 	/* This is non-zero if the packet cannot be merged with the new skb. */
2260 	u16	flush;
2261 
2262 	/* Save the IP ID here and check when we get to the transport layer */
2263 	u16	flush_id;
2264 
2265 	/* Number of segments aggregated. */
2266 	u16	count;
2267 
2268 	/* Start offset for remote checksum offload */
2269 	u16	gro_remcsum_start;
2270 
2271 	/* jiffies when first packet was created/queued */
2272 	unsigned long age;
2273 
2274 	/* Used in ipv6_gro_receive() and foo-over-udp */
2275 	u16	proto;
2276 
2277 	/* This is non-zero if the packet may be of the same flow. */
2278 	u8	same_flow:1;
2279 
2280 	/* Used in tunnel GRO receive */
2281 	u8	encap_mark:1;
2282 
2283 	/* GRO checksum is valid */
2284 	u8	csum_valid:1;
2285 
2286 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2287 	u8	csum_cnt:3;
2288 
2289 	/* Free the skb? */
2290 	u8	free:2;
2291 #define NAPI_GRO_FREE		  1
2292 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2293 
2294 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2295 	u8	is_ipv6:1;
2296 
2297 	/* Used in GRE, set in fou/gue_gro_receive */
2298 	u8	is_fou:1;
2299 
2300 	/* Used to determine if flush_id can be ignored */
2301 	u8	is_atomic:1;
2302 
2303 	/* Number of gro_receive callbacks this packet already went through */
2304 	u8 recursion_counter:4;
2305 
2306 	/* 1 bit hole */
2307 
2308 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2309 	__wsum	csum;
2310 
2311 	/* used in skb_gro_receive() slow path */
2312 	struct sk_buff *last;
2313 };
2314 
2315 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2316 
2317 #define GRO_RECURSION_LIMIT 15
2318 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2319 {
2320 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2321 }
2322 
2323 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2324 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2325 					       struct list_head *head,
2326 					       struct sk_buff *skb)
2327 {
2328 	if (unlikely(gro_recursion_inc_test(skb))) {
2329 		NAPI_GRO_CB(skb)->flush |= 1;
2330 		return NULL;
2331 	}
2332 
2333 	return cb(head, skb);
2334 }
2335 
2336 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2337 					    struct sk_buff *);
2338 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2339 						  struct sock *sk,
2340 						  struct list_head *head,
2341 						  struct sk_buff *skb)
2342 {
2343 	if (unlikely(gro_recursion_inc_test(skb))) {
2344 		NAPI_GRO_CB(skb)->flush |= 1;
2345 		return NULL;
2346 	}
2347 
2348 	return cb(sk, head, skb);
2349 }
2350 
2351 struct packet_type {
2352 	__be16			type;	/* This is really htons(ether_type). */
2353 	bool			ignore_outgoing;
2354 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2355 	int			(*func) (struct sk_buff *,
2356 					 struct net_device *,
2357 					 struct packet_type *,
2358 					 struct net_device *);
2359 	void			(*list_func) (struct list_head *,
2360 					      struct packet_type *,
2361 					      struct net_device *);
2362 	bool			(*id_match)(struct packet_type *ptype,
2363 					    struct sock *sk);
2364 	void			*af_packet_priv;
2365 	struct list_head	list;
2366 };
2367 
2368 struct offload_callbacks {
2369 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2370 						netdev_features_t features);
2371 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2372 						struct sk_buff *skb);
2373 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2374 };
2375 
2376 struct packet_offload {
2377 	__be16			 type;	/* This is really htons(ether_type). */
2378 	u16			 priority;
2379 	struct offload_callbacks callbacks;
2380 	struct list_head	 list;
2381 };
2382 
2383 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2384 struct pcpu_sw_netstats {
2385 	u64     rx_packets;
2386 	u64     rx_bytes;
2387 	u64     tx_packets;
2388 	u64     tx_bytes;
2389 	struct u64_stats_sync   syncp;
2390 } __aligned(4 * sizeof(u64));
2391 
2392 struct pcpu_lstats {
2393 	u64 packets;
2394 	u64 bytes;
2395 	struct u64_stats_sync syncp;
2396 } __aligned(2 * sizeof(u64));
2397 
2398 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2399 ({									\
2400 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2401 	if (pcpu_stats)	{						\
2402 		int __cpu;						\
2403 		for_each_possible_cpu(__cpu) {				\
2404 			typeof(type) *stat;				\
2405 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2406 			u64_stats_init(&stat->syncp);			\
2407 		}							\
2408 	}								\
2409 	pcpu_stats;							\
2410 })
2411 
2412 #define netdev_alloc_pcpu_stats(type)					\
2413 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2414 
2415 enum netdev_lag_tx_type {
2416 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2417 	NETDEV_LAG_TX_TYPE_RANDOM,
2418 	NETDEV_LAG_TX_TYPE_BROADCAST,
2419 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2420 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2421 	NETDEV_LAG_TX_TYPE_HASH,
2422 };
2423 
2424 enum netdev_lag_hash {
2425 	NETDEV_LAG_HASH_NONE,
2426 	NETDEV_LAG_HASH_L2,
2427 	NETDEV_LAG_HASH_L34,
2428 	NETDEV_LAG_HASH_L23,
2429 	NETDEV_LAG_HASH_E23,
2430 	NETDEV_LAG_HASH_E34,
2431 	NETDEV_LAG_HASH_UNKNOWN,
2432 };
2433 
2434 struct netdev_lag_upper_info {
2435 	enum netdev_lag_tx_type tx_type;
2436 	enum netdev_lag_hash hash_type;
2437 };
2438 
2439 struct netdev_lag_lower_state_info {
2440 	u8 link_up : 1,
2441 	   tx_enabled : 1;
2442 };
2443 
2444 #include <linux/notifier.h>
2445 
2446 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2447  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2448  * adding new types.
2449  */
2450 enum netdev_cmd {
2451 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2452 	NETDEV_DOWN,
2453 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2454 				   detected a hardware crash and restarted
2455 				   - we can use this eg to kick tcp sessions
2456 				   once done */
2457 	NETDEV_CHANGE,		/* Notify device state change */
2458 	NETDEV_REGISTER,
2459 	NETDEV_UNREGISTER,
2460 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2461 	NETDEV_CHANGEADDR,	/* notify after the address change */
2462 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2463 	NETDEV_GOING_DOWN,
2464 	NETDEV_CHANGENAME,
2465 	NETDEV_FEAT_CHANGE,
2466 	NETDEV_BONDING_FAILOVER,
2467 	NETDEV_PRE_UP,
2468 	NETDEV_PRE_TYPE_CHANGE,
2469 	NETDEV_POST_TYPE_CHANGE,
2470 	NETDEV_POST_INIT,
2471 	NETDEV_RELEASE,
2472 	NETDEV_NOTIFY_PEERS,
2473 	NETDEV_JOIN,
2474 	NETDEV_CHANGEUPPER,
2475 	NETDEV_RESEND_IGMP,
2476 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2477 	NETDEV_CHANGEINFODATA,
2478 	NETDEV_BONDING_INFO,
2479 	NETDEV_PRECHANGEUPPER,
2480 	NETDEV_CHANGELOWERSTATE,
2481 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2482 	NETDEV_UDP_TUNNEL_DROP_INFO,
2483 	NETDEV_CHANGE_TX_QUEUE_LEN,
2484 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2485 	NETDEV_CVLAN_FILTER_DROP_INFO,
2486 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2487 	NETDEV_SVLAN_FILTER_DROP_INFO,
2488 };
2489 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2490 
2491 int register_netdevice_notifier(struct notifier_block *nb);
2492 int unregister_netdevice_notifier(struct notifier_block *nb);
2493 
2494 struct netdev_notifier_info {
2495 	struct net_device	*dev;
2496 	struct netlink_ext_ack	*extack;
2497 };
2498 
2499 struct netdev_notifier_info_ext {
2500 	struct netdev_notifier_info info; /* must be first */
2501 	union {
2502 		u32 mtu;
2503 	} ext;
2504 };
2505 
2506 struct netdev_notifier_change_info {
2507 	struct netdev_notifier_info info; /* must be first */
2508 	unsigned int flags_changed;
2509 };
2510 
2511 struct netdev_notifier_changeupper_info {
2512 	struct netdev_notifier_info info; /* must be first */
2513 	struct net_device *upper_dev; /* new upper dev */
2514 	bool master; /* is upper dev master */
2515 	bool linking; /* is the notification for link or unlink */
2516 	void *upper_info; /* upper dev info */
2517 };
2518 
2519 struct netdev_notifier_changelowerstate_info {
2520 	struct netdev_notifier_info info; /* must be first */
2521 	void *lower_state_info; /* is lower dev state */
2522 };
2523 
2524 struct netdev_notifier_pre_changeaddr_info {
2525 	struct netdev_notifier_info info; /* must be first */
2526 	const unsigned char *dev_addr;
2527 };
2528 
2529 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2530 					     struct net_device *dev)
2531 {
2532 	info->dev = dev;
2533 	info->extack = NULL;
2534 }
2535 
2536 static inline struct net_device *
2537 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2538 {
2539 	return info->dev;
2540 }
2541 
2542 static inline struct netlink_ext_ack *
2543 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2544 {
2545 	return info->extack;
2546 }
2547 
2548 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2549 
2550 
2551 extern rwlock_t				dev_base_lock;		/* Device list lock */
2552 
2553 #define for_each_netdev(net, d)		\
2554 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2555 #define for_each_netdev_reverse(net, d)	\
2556 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2557 #define for_each_netdev_rcu(net, d)		\
2558 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2559 #define for_each_netdev_safe(net, d, n)	\
2560 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2561 #define for_each_netdev_continue(net, d)		\
2562 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2563 #define for_each_netdev_continue_rcu(net, d)		\
2564 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2565 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2566 		for_each_netdev_rcu(&init_net, slave)	\
2567 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2568 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2569 
2570 static inline struct net_device *next_net_device(struct net_device *dev)
2571 {
2572 	struct list_head *lh;
2573 	struct net *net;
2574 
2575 	net = dev_net(dev);
2576 	lh = dev->dev_list.next;
2577 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2578 }
2579 
2580 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2581 {
2582 	struct list_head *lh;
2583 	struct net *net;
2584 
2585 	net = dev_net(dev);
2586 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2587 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2588 }
2589 
2590 static inline struct net_device *first_net_device(struct net *net)
2591 {
2592 	return list_empty(&net->dev_base_head) ? NULL :
2593 		net_device_entry(net->dev_base_head.next);
2594 }
2595 
2596 static inline struct net_device *first_net_device_rcu(struct net *net)
2597 {
2598 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2599 
2600 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2601 }
2602 
2603 int netdev_boot_setup_check(struct net_device *dev);
2604 unsigned long netdev_boot_base(const char *prefix, int unit);
2605 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2606 				       const char *hwaddr);
2607 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2608 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2609 void dev_add_pack(struct packet_type *pt);
2610 void dev_remove_pack(struct packet_type *pt);
2611 void __dev_remove_pack(struct packet_type *pt);
2612 void dev_add_offload(struct packet_offload *po);
2613 void dev_remove_offload(struct packet_offload *po);
2614 
2615 int dev_get_iflink(const struct net_device *dev);
2616 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2617 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2618 				      unsigned short mask);
2619 struct net_device *dev_get_by_name(struct net *net, const char *name);
2620 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2621 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2622 int dev_alloc_name(struct net_device *dev, const char *name);
2623 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2624 void dev_close(struct net_device *dev);
2625 void dev_close_many(struct list_head *head, bool unlink);
2626 void dev_disable_lro(struct net_device *dev);
2627 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2628 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2629 		     struct net_device *sb_dev,
2630 		     select_queue_fallback_t fallback);
2631 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2632 		       struct net_device *sb_dev,
2633 		       select_queue_fallback_t fallback);
2634 int dev_queue_xmit(struct sk_buff *skb);
2635 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2636 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2637 int register_netdevice(struct net_device *dev);
2638 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2639 void unregister_netdevice_many(struct list_head *head);
2640 static inline void unregister_netdevice(struct net_device *dev)
2641 {
2642 	unregister_netdevice_queue(dev, NULL);
2643 }
2644 
2645 int netdev_refcnt_read(const struct net_device *dev);
2646 void free_netdev(struct net_device *dev);
2647 void netdev_freemem(struct net_device *dev);
2648 void synchronize_net(void);
2649 int init_dummy_netdev(struct net_device *dev);
2650 
2651 DECLARE_PER_CPU(int, xmit_recursion);
2652 #define XMIT_RECURSION_LIMIT	10
2653 
2654 static inline int dev_recursion_level(void)
2655 {
2656 	return this_cpu_read(xmit_recursion);
2657 }
2658 
2659 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2660 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2661 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2662 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2663 int netdev_get_name(struct net *net, char *name, int ifindex);
2664 int dev_restart(struct net_device *dev);
2665 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2666 
2667 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2668 {
2669 	return NAPI_GRO_CB(skb)->data_offset;
2670 }
2671 
2672 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2673 {
2674 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2675 }
2676 
2677 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2678 {
2679 	NAPI_GRO_CB(skb)->data_offset += len;
2680 }
2681 
2682 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2683 					unsigned int offset)
2684 {
2685 	return NAPI_GRO_CB(skb)->frag0 + offset;
2686 }
2687 
2688 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2689 {
2690 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2691 }
2692 
2693 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2694 {
2695 	NAPI_GRO_CB(skb)->frag0 = NULL;
2696 	NAPI_GRO_CB(skb)->frag0_len = 0;
2697 }
2698 
2699 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2700 					unsigned int offset)
2701 {
2702 	if (!pskb_may_pull(skb, hlen))
2703 		return NULL;
2704 
2705 	skb_gro_frag0_invalidate(skb);
2706 	return skb->data + offset;
2707 }
2708 
2709 static inline void *skb_gro_network_header(struct sk_buff *skb)
2710 {
2711 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2712 	       skb_network_offset(skb);
2713 }
2714 
2715 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2716 					const void *start, unsigned int len)
2717 {
2718 	if (NAPI_GRO_CB(skb)->csum_valid)
2719 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2720 						  csum_partial(start, len, 0));
2721 }
2722 
2723 /* GRO checksum functions. These are logical equivalents of the normal
2724  * checksum functions (in skbuff.h) except that they operate on the GRO
2725  * offsets and fields in sk_buff.
2726  */
2727 
2728 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2729 
2730 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2731 {
2732 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2733 }
2734 
2735 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2736 						      bool zero_okay,
2737 						      __sum16 check)
2738 {
2739 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2740 		skb_checksum_start_offset(skb) <
2741 		 skb_gro_offset(skb)) &&
2742 		!skb_at_gro_remcsum_start(skb) &&
2743 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2744 		(!zero_okay || check));
2745 }
2746 
2747 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2748 							   __wsum psum)
2749 {
2750 	if (NAPI_GRO_CB(skb)->csum_valid &&
2751 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2752 		return 0;
2753 
2754 	NAPI_GRO_CB(skb)->csum = psum;
2755 
2756 	return __skb_gro_checksum_complete(skb);
2757 }
2758 
2759 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2760 {
2761 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2762 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2763 		NAPI_GRO_CB(skb)->csum_cnt--;
2764 	} else {
2765 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2766 		 * verified a new top level checksum or an encapsulated one
2767 		 * during GRO. This saves work if we fallback to normal path.
2768 		 */
2769 		__skb_incr_checksum_unnecessary(skb);
2770 	}
2771 }
2772 
2773 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2774 				    compute_pseudo)			\
2775 ({									\
2776 	__sum16 __ret = 0;						\
2777 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2778 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2779 				compute_pseudo(skb, proto));		\
2780 	if (!__ret)							\
2781 		skb_gro_incr_csum_unnecessary(skb);			\
2782 	__ret;								\
2783 })
2784 
2785 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2786 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2787 
2788 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2789 					     compute_pseudo)		\
2790 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2791 
2792 #define skb_gro_checksum_simple_validate(skb)				\
2793 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2794 
2795 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2796 {
2797 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2798 		!NAPI_GRO_CB(skb)->csum_valid);
2799 }
2800 
2801 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2802 					      __sum16 check, __wsum pseudo)
2803 {
2804 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2805 	NAPI_GRO_CB(skb)->csum_valid = 1;
2806 }
2807 
2808 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2809 do {									\
2810 	if (__skb_gro_checksum_convert_check(skb))			\
2811 		__skb_gro_checksum_convert(skb, check,			\
2812 					   compute_pseudo(skb, proto));	\
2813 } while (0)
2814 
2815 struct gro_remcsum {
2816 	int offset;
2817 	__wsum delta;
2818 };
2819 
2820 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2821 {
2822 	grc->offset = 0;
2823 	grc->delta = 0;
2824 }
2825 
2826 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2827 					    unsigned int off, size_t hdrlen,
2828 					    int start, int offset,
2829 					    struct gro_remcsum *grc,
2830 					    bool nopartial)
2831 {
2832 	__wsum delta;
2833 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2834 
2835 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2836 
2837 	if (!nopartial) {
2838 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2839 		return ptr;
2840 	}
2841 
2842 	ptr = skb_gro_header_fast(skb, off);
2843 	if (skb_gro_header_hard(skb, off + plen)) {
2844 		ptr = skb_gro_header_slow(skb, off + plen, off);
2845 		if (!ptr)
2846 			return NULL;
2847 	}
2848 
2849 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2850 			       start, offset);
2851 
2852 	/* Adjust skb->csum since we changed the packet */
2853 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2854 
2855 	grc->offset = off + hdrlen + offset;
2856 	grc->delta = delta;
2857 
2858 	return ptr;
2859 }
2860 
2861 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2862 					   struct gro_remcsum *grc)
2863 {
2864 	void *ptr;
2865 	size_t plen = grc->offset + sizeof(u16);
2866 
2867 	if (!grc->delta)
2868 		return;
2869 
2870 	ptr = skb_gro_header_fast(skb, grc->offset);
2871 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2872 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2873 		if (!ptr)
2874 			return;
2875 	}
2876 
2877 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2878 }
2879 
2880 #ifdef CONFIG_XFRM_OFFLOAD
2881 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2882 {
2883 	if (PTR_ERR(pp) != -EINPROGRESS)
2884 		NAPI_GRO_CB(skb)->flush |= flush;
2885 }
2886 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2887 					       struct sk_buff *pp,
2888 					       int flush,
2889 					       struct gro_remcsum *grc)
2890 {
2891 	if (PTR_ERR(pp) != -EINPROGRESS) {
2892 		NAPI_GRO_CB(skb)->flush |= flush;
2893 		skb_gro_remcsum_cleanup(skb, grc);
2894 		skb->remcsum_offload = 0;
2895 	}
2896 }
2897 #else
2898 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2899 {
2900 	NAPI_GRO_CB(skb)->flush |= flush;
2901 }
2902 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2903 					       struct sk_buff *pp,
2904 					       int flush,
2905 					       struct gro_remcsum *grc)
2906 {
2907 	NAPI_GRO_CB(skb)->flush |= flush;
2908 	skb_gro_remcsum_cleanup(skb, grc);
2909 	skb->remcsum_offload = 0;
2910 }
2911 #endif
2912 
2913 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2914 				  unsigned short type,
2915 				  const void *daddr, const void *saddr,
2916 				  unsigned int len)
2917 {
2918 	if (!dev->header_ops || !dev->header_ops->create)
2919 		return 0;
2920 
2921 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2922 }
2923 
2924 static inline int dev_parse_header(const struct sk_buff *skb,
2925 				   unsigned char *haddr)
2926 {
2927 	const struct net_device *dev = skb->dev;
2928 
2929 	if (!dev->header_ops || !dev->header_ops->parse)
2930 		return 0;
2931 	return dev->header_ops->parse(skb, haddr);
2932 }
2933 
2934 /* ll_header must have at least hard_header_len allocated */
2935 static inline bool dev_validate_header(const struct net_device *dev,
2936 				       char *ll_header, int len)
2937 {
2938 	if (likely(len >= dev->hard_header_len))
2939 		return true;
2940 	if (len < dev->min_header_len)
2941 		return false;
2942 
2943 	if (capable(CAP_SYS_RAWIO)) {
2944 		memset(ll_header + len, 0, dev->hard_header_len - len);
2945 		return true;
2946 	}
2947 
2948 	if (dev->header_ops && dev->header_ops->validate)
2949 		return dev->header_ops->validate(ll_header, len);
2950 
2951 	return false;
2952 }
2953 
2954 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2955 			   int len, int size);
2956 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2957 static inline int unregister_gifconf(unsigned int family)
2958 {
2959 	return register_gifconf(family, NULL);
2960 }
2961 
2962 #ifdef CONFIG_NET_FLOW_LIMIT
2963 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2964 struct sd_flow_limit {
2965 	u64			count;
2966 	unsigned int		num_buckets;
2967 	unsigned int		history_head;
2968 	u16			history[FLOW_LIMIT_HISTORY];
2969 	u8			buckets[];
2970 };
2971 
2972 extern int netdev_flow_limit_table_len;
2973 #endif /* CONFIG_NET_FLOW_LIMIT */
2974 
2975 /*
2976  * Incoming packets are placed on per-CPU queues
2977  */
2978 struct softnet_data {
2979 	struct list_head	poll_list;
2980 	struct sk_buff_head	process_queue;
2981 
2982 	/* stats */
2983 	unsigned int		processed;
2984 	unsigned int		time_squeeze;
2985 	unsigned int		received_rps;
2986 #ifdef CONFIG_RPS
2987 	struct softnet_data	*rps_ipi_list;
2988 #endif
2989 #ifdef CONFIG_NET_FLOW_LIMIT
2990 	struct sd_flow_limit __rcu *flow_limit;
2991 #endif
2992 	struct Qdisc		*output_queue;
2993 	struct Qdisc		**output_queue_tailp;
2994 	struct sk_buff		*completion_queue;
2995 #ifdef CONFIG_XFRM_OFFLOAD
2996 	struct sk_buff_head	xfrm_backlog;
2997 #endif
2998 #ifdef CONFIG_RPS
2999 	/* input_queue_head should be written by cpu owning this struct,
3000 	 * and only read by other cpus. Worth using a cache line.
3001 	 */
3002 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3003 
3004 	/* Elements below can be accessed between CPUs for RPS/RFS */
3005 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3006 	struct softnet_data	*rps_ipi_next;
3007 	unsigned int		cpu;
3008 	unsigned int		input_queue_tail;
3009 #endif
3010 	unsigned int		dropped;
3011 	struct sk_buff_head	input_pkt_queue;
3012 	struct napi_struct	backlog;
3013 
3014 };
3015 
3016 static inline void input_queue_head_incr(struct softnet_data *sd)
3017 {
3018 #ifdef CONFIG_RPS
3019 	sd->input_queue_head++;
3020 #endif
3021 }
3022 
3023 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3024 					      unsigned int *qtail)
3025 {
3026 #ifdef CONFIG_RPS
3027 	*qtail = ++sd->input_queue_tail;
3028 #endif
3029 }
3030 
3031 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3032 
3033 void __netif_schedule(struct Qdisc *q);
3034 void netif_schedule_queue(struct netdev_queue *txq);
3035 
3036 static inline void netif_tx_schedule_all(struct net_device *dev)
3037 {
3038 	unsigned int i;
3039 
3040 	for (i = 0; i < dev->num_tx_queues; i++)
3041 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3042 }
3043 
3044 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3045 {
3046 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3047 }
3048 
3049 /**
3050  *	netif_start_queue - allow transmit
3051  *	@dev: network device
3052  *
3053  *	Allow upper layers to call the device hard_start_xmit routine.
3054  */
3055 static inline void netif_start_queue(struct net_device *dev)
3056 {
3057 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3058 }
3059 
3060 static inline void netif_tx_start_all_queues(struct net_device *dev)
3061 {
3062 	unsigned int i;
3063 
3064 	for (i = 0; i < dev->num_tx_queues; i++) {
3065 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3066 		netif_tx_start_queue(txq);
3067 	}
3068 }
3069 
3070 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3071 
3072 /**
3073  *	netif_wake_queue - restart transmit
3074  *	@dev: network device
3075  *
3076  *	Allow upper layers to call the device hard_start_xmit routine.
3077  *	Used for flow control when transmit resources are available.
3078  */
3079 static inline void netif_wake_queue(struct net_device *dev)
3080 {
3081 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3082 }
3083 
3084 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3085 {
3086 	unsigned int i;
3087 
3088 	for (i = 0; i < dev->num_tx_queues; i++) {
3089 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3090 		netif_tx_wake_queue(txq);
3091 	}
3092 }
3093 
3094 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3095 {
3096 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3097 }
3098 
3099 /**
3100  *	netif_stop_queue - stop transmitted packets
3101  *	@dev: network device
3102  *
3103  *	Stop upper layers calling the device hard_start_xmit routine.
3104  *	Used for flow control when transmit resources are unavailable.
3105  */
3106 static inline void netif_stop_queue(struct net_device *dev)
3107 {
3108 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3109 }
3110 
3111 void netif_tx_stop_all_queues(struct net_device *dev);
3112 
3113 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3114 {
3115 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3116 }
3117 
3118 /**
3119  *	netif_queue_stopped - test if transmit queue is flowblocked
3120  *	@dev: network device
3121  *
3122  *	Test if transmit queue on device is currently unable to send.
3123  */
3124 static inline bool netif_queue_stopped(const struct net_device *dev)
3125 {
3126 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3127 }
3128 
3129 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3130 {
3131 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3132 }
3133 
3134 static inline bool
3135 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3136 {
3137 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3138 }
3139 
3140 static inline bool
3141 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3142 {
3143 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3144 }
3145 
3146 /**
3147  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3148  *	@dev_queue: pointer to transmit queue
3149  *
3150  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3151  * to give appropriate hint to the CPU.
3152  */
3153 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3154 {
3155 #ifdef CONFIG_BQL
3156 	prefetchw(&dev_queue->dql.num_queued);
3157 #endif
3158 }
3159 
3160 /**
3161  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3162  *	@dev_queue: pointer to transmit queue
3163  *
3164  * BQL enabled drivers might use this helper in their TX completion path,
3165  * to give appropriate hint to the CPU.
3166  */
3167 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3168 {
3169 #ifdef CONFIG_BQL
3170 	prefetchw(&dev_queue->dql.limit);
3171 #endif
3172 }
3173 
3174 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3175 					unsigned int bytes)
3176 {
3177 #ifdef CONFIG_BQL
3178 	dql_queued(&dev_queue->dql, bytes);
3179 
3180 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3181 		return;
3182 
3183 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3184 
3185 	/*
3186 	 * The XOFF flag must be set before checking the dql_avail below,
3187 	 * because in netdev_tx_completed_queue we update the dql_completed
3188 	 * before checking the XOFF flag.
3189 	 */
3190 	smp_mb();
3191 
3192 	/* check again in case another CPU has just made room avail */
3193 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3194 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3195 #endif
3196 }
3197 
3198 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3199  * that they should not test BQL status themselves.
3200  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3201  * skb of a batch.
3202  * Returns true if the doorbell must be used to kick the NIC.
3203  */
3204 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3205 					  unsigned int bytes,
3206 					  bool xmit_more)
3207 {
3208 	if (xmit_more) {
3209 #ifdef CONFIG_BQL
3210 		dql_queued(&dev_queue->dql, bytes);
3211 #endif
3212 		return netif_tx_queue_stopped(dev_queue);
3213 	}
3214 	netdev_tx_sent_queue(dev_queue, bytes);
3215 	return true;
3216 }
3217 
3218 /**
3219  * 	netdev_sent_queue - report the number of bytes queued to hardware
3220  * 	@dev: network device
3221  * 	@bytes: number of bytes queued to the hardware device queue
3222  *
3223  * 	Report the number of bytes queued for sending/completion to the network
3224  * 	device hardware queue. @bytes should be a good approximation and should
3225  * 	exactly match netdev_completed_queue() @bytes
3226  */
3227 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3228 {
3229 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3230 }
3231 
3232 static inline bool __netdev_sent_queue(struct net_device *dev,
3233 				       unsigned int bytes,
3234 				       bool xmit_more)
3235 {
3236 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3237 				      xmit_more);
3238 }
3239 
3240 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3241 					     unsigned int pkts, unsigned int bytes)
3242 {
3243 #ifdef CONFIG_BQL
3244 	if (unlikely(!bytes))
3245 		return;
3246 
3247 	dql_completed(&dev_queue->dql, bytes);
3248 
3249 	/*
3250 	 * Without the memory barrier there is a small possiblity that
3251 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3252 	 * be stopped forever
3253 	 */
3254 	smp_mb();
3255 
3256 	if (dql_avail(&dev_queue->dql) < 0)
3257 		return;
3258 
3259 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3260 		netif_schedule_queue(dev_queue);
3261 #endif
3262 }
3263 
3264 /**
3265  * 	netdev_completed_queue - report bytes and packets completed by device
3266  * 	@dev: network device
3267  * 	@pkts: actual number of packets sent over the medium
3268  * 	@bytes: actual number of bytes sent over the medium
3269  *
3270  * 	Report the number of bytes and packets transmitted by the network device
3271  * 	hardware queue over the physical medium, @bytes must exactly match the
3272  * 	@bytes amount passed to netdev_sent_queue()
3273  */
3274 static inline void netdev_completed_queue(struct net_device *dev,
3275 					  unsigned int pkts, unsigned int bytes)
3276 {
3277 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3278 }
3279 
3280 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3281 {
3282 #ifdef CONFIG_BQL
3283 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3284 	dql_reset(&q->dql);
3285 #endif
3286 }
3287 
3288 /**
3289  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3290  * 	@dev_queue: network device
3291  *
3292  * 	Reset the bytes and packet count of a network device and clear the
3293  * 	software flow control OFF bit for this network device
3294  */
3295 static inline void netdev_reset_queue(struct net_device *dev_queue)
3296 {
3297 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3298 }
3299 
3300 /**
3301  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3302  * 	@dev: network device
3303  * 	@queue_index: given tx queue index
3304  *
3305  * 	Returns 0 if given tx queue index >= number of device tx queues,
3306  * 	otherwise returns the originally passed tx queue index.
3307  */
3308 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3309 {
3310 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3311 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3312 				     dev->name, queue_index,
3313 				     dev->real_num_tx_queues);
3314 		return 0;
3315 	}
3316 
3317 	return queue_index;
3318 }
3319 
3320 /**
3321  *	netif_running - test if up
3322  *	@dev: network device
3323  *
3324  *	Test if the device has been brought up.
3325  */
3326 static inline bool netif_running(const struct net_device *dev)
3327 {
3328 	return test_bit(__LINK_STATE_START, &dev->state);
3329 }
3330 
3331 /*
3332  * Routines to manage the subqueues on a device.  We only need start,
3333  * stop, and a check if it's stopped.  All other device management is
3334  * done at the overall netdevice level.
3335  * Also test the device if we're multiqueue.
3336  */
3337 
3338 /**
3339  *	netif_start_subqueue - allow sending packets on subqueue
3340  *	@dev: network device
3341  *	@queue_index: sub queue index
3342  *
3343  * Start individual transmit queue of a device with multiple transmit queues.
3344  */
3345 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3346 {
3347 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3348 
3349 	netif_tx_start_queue(txq);
3350 }
3351 
3352 /**
3353  *	netif_stop_subqueue - stop sending packets on subqueue
3354  *	@dev: network device
3355  *	@queue_index: sub queue index
3356  *
3357  * Stop individual transmit queue of a device with multiple transmit queues.
3358  */
3359 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3360 {
3361 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3362 	netif_tx_stop_queue(txq);
3363 }
3364 
3365 /**
3366  *	netif_subqueue_stopped - test status of subqueue
3367  *	@dev: network device
3368  *	@queue_index: sub queue index
3369  *
3370  * Check individual transmit queue of a device with multiple transmit queues.
3371  */
3372 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3373 					    u16 queue_index)
3374 {
3375 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3376 
3377 	return netif_tx_queue_stopped(txq);
3378 }
3379 
3380 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3381 					  struct sk_buff *skb)
3382 {
3383 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3384 }
3385 
3386 /**
3387  *	netif_wake_subqueue - allow sending packets on subqueue
3388  *	@dev: network device
3389  *	@queue_index: sub queue index
3390  *
3391  * Resume individual transmit queue of a device with multiple transmit queues.
3392  */
3393 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3394 {
3395 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3396 
3397 	netif_tx_wake_queue(txq);
3398 }
3399 
3400 #ifdef CONFIG_XPS
3401 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3402 			u16 index);
3403 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3404 			  u16 index, bool is_rxqs_map);
3405 
3406 /**
3407  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3408  *	@j: CPU/Rx queue index
3409  *	@mask: bitmask of all cpus/rx queues
3410  *	@nr_bits: number of bits in the bitmask
3411  *
3412  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3413  */
3414 static inline bool netif_attr_test_mask(unsigned long j,
3415 					const unsigned long *mask,
3416 					unsigned int nr_bits)
3417 {
3418 	cpu_max_bits_warn(j, nr_bits);
3419 	return test_bit(j, mask);
3420 }
3421 
3422 /**
3423  *	netif_attr_test_online - Test for online CPU/Rx queue
3424  *	@j: CPU/Rx queue index
3425  *	@online_mask: bitmask for CPUs/Rx queues that are online
3426  *	@nr_bits: number of bits in the bitmask
3427  *
3428  * Returns true if a CPU/Rx queue is online.
3429  */
3430 static inline bool netif_attr_test_online(unsigned long j,
3431 					  const unsigned long *online_mask,
3432 					  unsigned int nr_bits)
3433 {
3434 	cpu_max_bits_warn(j, nr_bits);
3435 
3436 	if (online_mask)
3437 		return test_bit(j, online_mask);
3438 
3439 	return (j < nr_bits);
3440 }
3441 
3442 /**
3443  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3444  *	@n: CPU/Rx queue index
3445  *	@srcp: the cpumask/Rx queue mask pointer
3446  *	@nr_bits: number of bits in the bitmask
3447  *
3448  * Returns >= nr_bits if no further CPUs/Rx queues set.
3449  */
3450 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3451 					       unsigned int nr_bits)
3452 {
3453 	/* -1 is a legal arg here. */
3454 	if (n != -1)
3455 		cpu_max_bits_warn(n, nr_bits);
3456 
3457 	if (srcp)
3458 		return find_next_bit(srcp, nr_bits, n + 1);
3459 
3460 	return n + 1;
3461 }
3462 
3463 /**
3464  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3465  *	@n: CPU/Rx queue index
3466  *	@src1p: the first CPUs/Rx queues mask pointer
3467  *	@src2p: the second CPUs/Rx queues mask pointer
3468  *	@nr_bits: number of bits in the bitmask
3469  *
3470  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3471  */
3472 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3473 					  const unsigned long *src2p,
3474 					  unsigned int nr_bits)
3475 {
3476 	/* -1 is a legal arg here. */
3477 	if (n != -1)
3478 		cpu_max_bits_warn(n, nr_bits);
3479 
3480 	if (src1p && src2p)
3481 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3482 	else if (src1p)
3483 		return find_next_bit(src1p, nr_bits, n + 1);
3484 	else if (src2p)
3485 		return find_next_bit(src2p, nr_bits, n + 1);
3486 
3487 	return n + 1;
3488 }
3489 #else
3490 static inline int netif_set_xps_queue(struct net_device *dev,
3491 				      const struct cpumask *mask,
3492 				      u16 index)
3493 {
3494 	return 0;
3495 }
3496 
3497 static inline int __netif_set_xps_queue(struct net_device *dev,
3498 					const unsigned long *mask,
3499 					u16 index, bool is_rxqs_map)
3500 {
3501 	return 0;
3502 }
3503 #endif
3504 
3505 /**
3506  *	netif_is_multiqueue - test if device has multiple transmit queues
3507  *	@dev: network device
3508  *
3509  * Check if device has multiple transmit queues
3510  */
3511 static inline bool netif_is_multiqueue(const struct net_device *dev)
3512 {
3513 	return dev->num_tx_queues > 1;
3514 }
3515 
3516 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3517 
3518 #ifdef CONFIG_SYSFS
3519 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3520 #else
3521 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3522 						unsigned int rxqs)
3523 {
3524 	dev->real_num_rx_queues = rxqs;
3525 	return 0;
3526 }
3527 #endif
3528 
3529 static inline struct netdev_rx_queue *
3530 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3531 {
3532 	return dev->_rx + rxq;
3533 }
3534 
3535 #ifdef CONFIG_SYSFS
3536 static inline unsigned int get_netdev_rx_queue_index(
3537 		struct netdev_rx_queue *queue)
3538 {
3539 	struct net_device *dev = queue->dev;
3540 	int index = queue - dev->_rx;
3541 
3542 	BUG_ON(index >= dev->num_rx_queues);
3543 	return index;
3544 }
3545 #endif
3546 
3547 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3548 int netif_get_num_default_rss_queues(void);
3549 
3550 enum skb_free_reason {
3551 	SKB_REASON_CONSUMED,
3552 	SKB_REASON_DROPPED,
3553 };
3554 
3555 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3556 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3557 
3558 /*
3559  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3560  * interrupt context or with hardware interrupts being disabled.
3561  * (in_irq() || irqs_disabled())
3562  *
3563  * We provide four helpers that can be used in following contexts :
3564  *
3565  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3566  *  replacing kfree_skb(skb)
3567  *
3568  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3569  *  Typically used in place of consume_skb(skb) in TX completion path
3570  *
3571  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3572  *  replacing kfree_skb(skb)
3573  *
3574  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3575  *  and consumed a packet. Used in place of consume_skb(skb)
3576  */
3577 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3578 {
3579 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3580 }
3581 
3582 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3583 {
3584 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3585 }
3586 
3587 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3588 {
3589 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3590 }
3591 
3592 static inline void dev_consume_skb_any(struct sk_buff *skb)
3593 {
3594 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3595 }
3596 
3597 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3598 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3599 int netif_rx(struct sk_buff *skb);
3600 int netif_rx_ni(struct sk_buff *skb);
3601 int netif_receive_skb(struct sk_buff *skb);
3602 int netif_receive_skb_core(struct sk_buff *skb);
3603 void netif_receive_skb_list(struct list_head *head);
3604 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3605 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3606 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3607 gro_result_t napi_gro_frags(struct napi_struct *napi);
3608 struct packet_offload *gro_find_receive_by_type(__be16 type);
3609 struct packet_offload *gro_find_complete_by_type(__be16 type);
3610 
3611 static inline void napi_free_frags(struct napi_struct *napi)
3612 {
3613 	kfree_skb(napi->skb);
3614 	napi->skb = NULL;
3615 }
3616 
3617 bool netdev_is_rx_handler_busy(struct net_device *dev);
3618 int netdev_rx_handler_register(struct net_device *dev,
3619 			       rx_handler_func_t *rx_handler,
3620 			       void *rx_handler_data);
3621 void netdev_rx_handler_unregister(struct net_device *dev);
3622 
3623 bool dev_valid_name(const char *name);
3624 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3625 		bool *need_copyout);
3626 int dev_ifconf(struct net *net, struct ifconf *, int);
3627 int dev_ethtool(struct net *net, struct ifreq *);
3628 unsigned int dev_get_flags(const struct net_device *);
3629 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3630 		       struct netlink_ext_ack *extack);
3631 int dev_change_flags(struct net_device *dev, unsigned int flags,
3632 		     struct netlink_ext_ack *extack);
3633 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3634 			unsigned int gchanges);
3635 int dev_change_name(struct net_device *, const char *);
3636 int dev_set_alias(struct net_device *, const char *, size_t);
3637 int dev_get_alias(const struct net_device *, char *, size_t);
3638 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3639 int __dev_set_mtu(struct net_device *, int);
3640 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3641 		    struct netlink_ext_ack *extack);
3642 int dev_set_mtu(struct net_device *, int);
3643 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3644 void dev_set_group(struct net_device *, int);
3645 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3646 			      struct netlink_ext_ack *extack);
3647 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3648 			struct netlink_ext_ack *extack);
3649 int dev_change_carrier(struct net_device *, bool new_carrier);
3650 int dev_get_phys_port_id(struct net_device *dev,
3651 			 struct netdev_phys_item_id *ppid);
3652 int dev_get_phys_port_name(struct net_device *dev,
3653 			   char *name, size_t len);
3654 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3655 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3656 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3657 				    struct netdev_queue *txq, int *ret);
3658 
3659 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3660 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3661 		      int fd, u32 flags);
3662 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3663 		    enum bpf_netdev_command cmd);
3664 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3665 
3666 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3667 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3668 bool is_skb_forwardable(const struct net_device *dev,
3669 			const struct sk_buff *skb);
3670 
3671 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3672 					       struct sk_buff *skb)
3673 {
3674 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3675 	    unlikely(!is_skb_forwardable(dev, skb))) {
3676 		atomic_long_inc(&dev->rx_dropped);
3677 		kfree_skb(skb);
3678 		return NET_RX_DROP;
3679 	}
3680 
3681 	skb_scrub_packet(skb, true);
3682 	skb->priority = 0;
3683 	return 0;
3684 }
3685 
3686 bool dev_nit_active(struct net_device *dev);
3687 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3688 
3689 extern int		netdev_budget;
3690 extern unsigned int	netdev_budget_usecs;
3691 
3692 /* Called by rtnetlink.c:rtnl_unlock() */
3693 void netdev_run_todo(void);
3694 
3695 /**
3696  *	dev_put - release reference to device
3697  *	@dev: network device
3698  *
3699  * Release reference to device to allow it to be freed.
3700  */
3701 static inline void dev_put(struct net_device *dev)
3702 {
3703 	this_cpu_dec(*dev->pcpu_refcnt);
3704 }
3705 
3706 /**
3707  *	dev_hold - get reference to device
3708  *	@dev: network device
3709  *
3710  * Hold reference to device to keep it from being freed.
3711  */
3712 static inline void dev_hold(struct net_device *dev)
3713 {
3714 	this_cpu_inc(*dev->pcpu_refcnt);
3715 }
3716 
3717 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3718  * and _off may be called from IRQ context, but it is caller
3719  * who is responsible for serialization of these calls.
3720  *
3721  * The name carrier is inappropriate, these functions should really be
3722  * called netif_lowerlayer_*() because they represent the state of any
3723  * kind of lower layer not just hardware media.
3724  */
3725 
3726 void linkwatch_init_dev(struct net_device *dev);
3727 void linkwatch_fire_event(struct net_device *dev);
3728 void linkwatch_forget_dev(struct net_device *dev);
3729 
3730 /**
3731  *	netif_carrier_ok - test if carrier present
3732  *	@dev: network device
3733  *
3734  * Check if carrier is present on device
3735  */
3736 static inline bool netif_carrier_ok(const struct net_device *dev)
3737 {
3738 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3739 }
3740 
3741 unsigned long dev_trans_start(struct net_device *dev);
3742 
3743 void __netdev_watchdog_up(struct net_device *dev);
3744 
3745 void netif_carrier_on(struct net_device *dev);
3746 
3747 void netif_carrier_off(struct net_device *dev);
3748 
3749 /**
3750  *	netif_dormant_on - mark device as dormant.
3751  *	@dev: network device
3752  *
3753  * Mark device as dormant (as per RFC2863).
3754  *
3755  * The dormant state indicates that the relevant interface is not
3756  * actually in a condition to pass packets (i.e., it is not 'up') but is
3757  * in a "pending" state, waiting for some external event.  For "on-
3758  * demand" interfaces, this new state identifies the situation where the
3759  * interface is waiting for events to place it in the up state.
3760  */
3761 static inline void netif_dormant_on(struct net_device *dev)
3762 {
3763 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3764 		linkwatch_fire_event(dev);
3765 }
3766 
3767 /**
3768  *	netif_dormant_off - set device as not dormant.
3769  *	@dev: network device
3770  *
3771  * Device is not in dormant state.
3772  */
3773 static inline void netif_dormant_off(struct net_device *dev)
3774 {
3775 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3776 		linkwatch_fire_event(dev);
3777 }
3778 
3779 /**
3780  *	netif_dormant - test if device is dormant
3781  *	@dev: network device
3782  *
3783  * Check if device is dormant.
3784  */
3785 static inline bool netif_dormant(const struct net_device *dev)
3786 {
3787 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3788 }
3789 
3790 
3791 /**
3792  *	netif_oper_up - test if device is operational
3793  *	@dev: network device
3794  *
3795  * Check if carrier is operational
3796  */
3797 static inline bool netif_oper_up(const struct net_device *dev)
3798 {
3799 	return (dev->operstate == IF_OPER_UP ||
3800 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3801 }
3802 
3803 /**
3804  *	netif_device_present - is device available or removed
3805  *	@dev: network device
3806  *
3807  * Check if device has not been removed from system.
3808  */
3809 static inline bool netif_device_present(struct net_device *dev)
3810 {
3811 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3812 }
3813 
3814 void netif_device_detach(struct net_device *dev);
3815 
3816 void netif_device_attach(struct net_device *dev);
3817 
3818 /*
3819  * Network interface message level settings
3820  */
3821 
3822 enum {
3823 	NETIF_MSG_DRV		= 0x0001,
3824 	NETIF_MSG_PROBE		= 0x0002,
3825 	NETIF_MSG_LINK		= 0x0004,
3826 	NETIF_MSG_TIMER		= 0x0008,
3827 	NETIF_MSG_IFDOWN	= 0x0010,
3828 	NETIF_MSG_IFUP		= 0x0020,
3829 	NETIF_MSG_RX_ERR	= 0x0040,
3830 	NETIF_MSG_TX_ERR	= 0x0080,
3831 	NETIF_MSG_TX_QUEUED	= 0x0100,
3832 	NETIF_MSG_INTR		= 0x0200,
3833 	NETIF_MSG_TX_DONE	= 0x0400,
3834 	NETIF_MSG_RX_STATUS	= 0x0800,
3835 	NETIF_MSG_PKTDATA	= 0x1000,
3836 	NETIF_MSG_HW		= 0x2000,
3837 	NETIF_MSG_WOL		= 0x4000,
3838 };
3839 
3840 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3841 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3842 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3843 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3844 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3845 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3846 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3847 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3848 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3849 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3850 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3851 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3852 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3853 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3854 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3855 
3856 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3857 {
3858 	/* use default */
3859 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3860 		return default_msg_enable_bits;
3861 	if (debug_value == 0)	/* no output */
3862 		return 0;
3863 	/* set low N bits */
3864 	return (1 << debug_value) - 1;
3865 }
3866 
3867 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3868 {
3869 	spin_lock(&txq->_xmit_lock);
3870 	txq->xmit_lock_owner = cpu;
3871 }
3872 
3873 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3874 {
3875 	__acquire(&txq->_xmit_lock);
3876 	return true;
3877 }
3878 
3879 static inline void __netif_tx_release(struct netdev_queue *txq)
3880 {
3881 	__release(&txq->_xmit_lock);
3882 }
3883 
3884 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3885 {
3886 	spin_lock_bh(&txq->_xmit_lock);
3887 	txq->xmit_lock_owner = smp_processor_id();
3888 }
3889 
3890 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3891 {
3892 	bool ok = spin_trylock(&txq->_xmit_lock);
3893 	if (likely(ok))
3894 		txq->xmit_lock_owner = smp_processor_id();
3895 	return ok;
3896 }
3897 
3898 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3899 {
3900 	txq->xmit_lock_owner = -1;
3901 	spin_unlock(&txq->_xmit_lock);
3902 }
3903 
3904 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3905 {
3906 	txq->xmit_lock_owner = -1;
3907 	spin_unlock_bh(&txq->_xmit_lock);
3908 }
3909 
3910 static inline void txq_trans_update(struct netdev_queue *txq)
3911 {
3912 	if (txq->xmit_lock_owner != -1)
3913 		txq->trans_start = jiffies;
3914 }
3915 
3916 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3917 static inline void netif_trans_update(struct net_device *dev)
3918 {
3919 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3920 
3921 	if (txq->trans_start != jiffies)
3922 		txq->trans_start = jiffies;
3923 }
3924 
3925 /**
3926  *	netif_tx_lock - grab network device transmit lock
3927  *	@dev: network device
3928  *
3929  * Get network device transmit lock
3930  */
3931 static inline void netif_tx_lock(struct net_device *dev)
3932 {
3933 	unsigned int i;
3934 	int cpu;
3935 
3936 	spin_lock(&dev->tx_global_lock);
3937 	cpu = smp_processor_id();
3938 	for (i = 0; i < dev->num_tx_queues; i++) {
3939 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3940 
3941 		/* We are the only thread of execution doing a
3942 		 * freeze, but we have to grab the _xmit_lock in
3943 		 * order to synchronize with threads which are in
3944 		 * the ->hard_start_xmit() handler and already
3945 		 * checked the frozen bit.
3946 		 */
3947 		__netif_tx_lock(txq, cpu);
3948 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3949 		__netif_tx_unlock(txq);
3950 	}
3951 }
3952 
3953 static inline void netif_tx_lock_bh(struct net_device *dev)
3954 {
3955 	local_bh_disable();
3956 	netif_tx_lock(dev);
3957 }
3958 
3959 static inline void netif_tx_unlock(struct net_device *dev)
3960 {
3961 	unsigned int i;
3962 
3963 	for (i = 0; i < dev->num_tx_queues; i++) {
3964 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3965 
3966 		/* No need to grab the _xmit_lock here.  If the
3967 		 * queue is not stopped for another reason, we
3968 		 * force a schedule.
3969 		 */
3970 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3971 		netif_schedule_queue(txq);
3972 	}
3973 	spin_unlock(&dev->tx_global_lock);
3974 }
3975 
3976 static inline void netif_tx_unlock_bh(struct net_device *dev)
3977 {
3978 	netif_tx_unlock(dev);
3979 	local_bh_enable();
3980 }
3981 
3982 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3983 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3984 		__netif_tx_lock(txq, cpu);		\
3985 	} else {					\
3986 		__netif_tx_acquire(txq);		\
3987 	}						\
3988 }
3989 
3990 #define HARD_TX_TRYLOCK(dev, txq)			\
3991 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3992 		__netif_tx_trylock(txq) :		\
3993 		__netif_tx_acquire(txq))
3994 
3995 #define HARD_TX_UNLOCK(dev, txq) {			\
3996 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3997 		__netif_tx_unlock(txq);			\
3998 	} else {					\
3999 		__netif_tx_release(txq);		\
4000 	}						\
4001 }
4002 
4003 static inline void netif_tx_disable(struct net_device *dev)
4004 {
4005 	unsigned int i;
4006 	int cpu;
4007 
4008 	local_bh_disable();
4009 	cpu = smp_processor_id();
4010 	for (i = 0; i < dev->num_tx_queues; i++) {
4011 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4012 
4013 		__netif_tx_lock(txq, cpu);
4014 		netif_tx_stop_queue(txq);
4015 		__netif_tx_unlock(txq);
4016 	}
4017 	local_bh_enable();
4018 }
4019 
4020 static inline void netif_addr_lock(struct net_device *dev)
4021 {
4022 	spin_lock(&dev->addr_list_lock);
4023 }
4024 
4025 static inline void netif_addr_lock_nested(struct net_device *dev)
4026 {
4027 	int subclass = SINGLE_DEPTH_NESTING;
4028 
4029 	if (dev->netdev_ops->ndo_get_lock_subclass)
4030 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4031 
4032 	spin_lock_nested(&dev->addr_list_lock, subclass);
4033 }
4034 
4035 static inline void netif_addr_lock_bh(struct net_device *dev)
4036 {
4037 	spin_lock_bh(&dev->addr_list_lock);
4038 }
4039 
4040 static inline void netif_addr_unlock(struct net_device *dev)
4041 {
4042 	spin_unlock(&dev->addr_list_lock);
4043 }
4044 
4045 static inline void netif_addr_unlock_bh(struct net_device *dev)
4046 {
4047 	spin_unlock_bh(&dev->addr_list_lock);
4048 }
4049 
4050 /*
4051  * dev_addrs walker. Should be used only for read access. Call with
4052  * rcu_read_lock held.
4053  */
4054 #define for_each_dev_addr(dev, ha) \
4055 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4056 
4057 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4058 
4059 void ether_setup(struct net_device *dev);
4060 
4061 /* Support for loadable net-drivers */
4062 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4063 				    unsigned char name_assign_type,
4064 				    void (*setup)(struct net_device *),
4065 				    unsigned int txqs, unsigned int rxqs);
4066 int dev_get_valid_name(struct net *net, struct net_device *dev,
4067 		       const char *name);
4068 
4069 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4070 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4071 
4072 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4073 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4074 			 count)
4075 
4076 int register_netdev(struct net_device *dev);
4077 void unregister_netdev(struct net_device *dev);
4078 
4079 /* General hardware address lists handling functions */
4080 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4081 		   struct netdev_hw_addr_list *from_list, int addr_len);
4082 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4083 		      struct netdev_hw_addr_list *from_list, int addr_len);
4084 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4085 		       struct net_device *dev,
4086 		       int (*sync)(struct net_device *, const unsigned char *),
4087 		       int (*unsync)(struct net_device *,
4088 				     const unsigned char *));
4089 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4090 			   struct net_device *dev,
4091 			   int (*sync)(struct net_device *,
4092 				       const unsigned char *, int),
4093 			   int (*unsync)(struct net_device *,
4094 					 const unsigned char *, int));
4095 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4096 			      struct net_device *dev,
4097 			      int (*unsync)(struct net_device *,
4098 					    const unsigned char *, int));
4099 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4100 			  struct net_device *dev,
4101 			  int (*unsync)(struct net_device *,
4102 					const unsigned char *));
4103 void __hw_addr_init(struct netdev_hw_addr_list *list);
4104 
4105 /* Functions used for device addresses handling */
4106 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4107 		 unsigned char addr_type);
4108 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4109 		 unsigned char addr_type);
4110 void dev_addr_flush(struct net_device *dev);
4111 int dev_addr_init(struct net_device *dev);
4112 
4113 /* Functions used for unicast addresses handling */
4114 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4115 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4116 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4117 int dev_uc_sync(struct net_device *to, struct net_device *from);
4118 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4119 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4120 void dev_uc_flush(struct net_device *dev);
4121 void dev_uc_init(struct net_device *dev);
4122 
4123 /**
4124  *  __dev_uc_sync - Synchonize device's unicast list
4125  *  @dev:  device to sync
4126  *  @sync: function to call if address should be added
4127  *  @unsync: function to call if address should be removed
4128  *
4129  *  Add newly added addresses to the interface, and release
4130  *  addresses that have been deleted.
4131  */
4132 static inline int __dev_uc_sync(struct net_device *dev,
4133 				int (*sync)(struct net_device *,
4134 					    const unsigned char *),
4135 				int (*unsync)(struct net_device *,
4136 					      const unsigned char *))
4137 {
4138 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4139 }
4140 
4141 /**
4142  *  __dev_uc_unsync - Remove synchronized addresses from device
4143  *  @dev:  device to sync
4144  *  @unsync: function to call if address should be removed
4145  *
4146  *  Remove all addresses that were added to the device by dev_uc_sync().
4147  */
4148 static inline void __dev_uc_unsync(struct net_device *dev,
4149 				   int (*unsync)(struct net_device *,
4150 						 const unsigned char *))
4151 {
4152 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4153 }
4154 
4155 /* Functions used for multicast addresses handling */
4156 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4157 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4158 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4159 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4160 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4161 int dev_mc_sync(struct net_device *to, struct net_device *from);
4162 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4163 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4164 void dev_mc_flush(struct net_device *dev);
4165 void dev_mc_init(struct net_device *dev);
4166 
4167 /**
4168  *  __dev_mc_sync - Synchonize device's multicast list
4169  *  @dev:  device to sync
4170  *  @sync: function to call if address should be added
4171  *  @unsync: function to call if address should be removed
4172  *
4173  *  Add newly added addresses to the interface, and release
4174  *  addresses that have been deleted.
4175  */
4176 static inline int __dev_mc_sync(struct net_device *dev,
4177 				int (*sync)(struct net_device *,
4178 					    const unsigned char *),
4179 				int (*unsync)(struct net_device *,
4180 					      const unsigned char *))
4181 {
4182 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4183 }
4184 
4185 /**
4186  *  __dev_mc_unsync - Remove synchronized addresses from device
4187  *  @dev:  device to sync
4188  *  @unsync: function to call if address should be removed
4189  *
4190  *  Remove all addresses that were added to the device by dev_mc_sync().
4191  */
4192 static inline void __dev_mc_unsync(struct net_device *dev,
4193 				   int (*unsync)(struct net_device *,
4194 						 const unsigned char *))
4195 {
4196 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4197 }
4198 
4199 /* Functions used for secondary unicast and multicast support */
4200 void dev_set_rx_mode(struct net_device *dev);
4201 void __dev_set_rx_mode(struct net_device *dev);
4202 int dev_set_promiscuity(struct net_device *dev, int inc);
4203 int dev_set_allmulti(struct net_device *dev, int inc);
4204 void netdev_state_change(struct net_device *dev);
4205 void netdev_notify_peers(struct net_device *dev);
4206 void netdev_features_change(struct net_device *dev);
4207 /* Load a device via the kmod */
4208 void dev_load(struct net *net, const char *name);
4209 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4210 					struct rtnl_link_stats64 *storage);
4211 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4212 			     const struct net_device_stats *netdev_stats);
4213 
4214 extern int		netdev_max_backlog;
4215 extern int		netdev_tstamp_prequeue;
4216 extern int		weight_p;
4217 extern int		dev_weight_rx_bias;
4218 extern int		dev_weight_tx_bias;
4219 extern int		dev_rx_weight;
4220 extern int		dev_tx_weight;
4221 
4222 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4223 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4224 						     struct list_head **iter);
4225 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4226 						     struct list_head **iter);
4227 
4228 /* iterate through upper list, must be called under RCU read lock */
4229 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4230 	for (iter = &(dev)->adj_list.upper, \
4231 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4232 	     updev; \
4233 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4234 
4235 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4236 				  int (*fn)(struct net_device *upper_dev,
4237 					    void *data),
4238 				  void *data);
4239 
4240 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4241 				  struct net_device *upper_dev);
4242 
4243 bool netdev_has_any_upper_dev(struct net_device *dev);
4244 
4245 void *netdev_lower_get_next_private(struct net_device *dev,
4246 				    struct list_head **iter);
4247 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4248 					struct list_head **iter);
4249 
4250 #define netdev_for_each_lower_private(dev, priv, iter) \
4251 	for (iter = (dev)->adj_list.lower.next, \
4252 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4253 	     priv; \
4254 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4255 
4256 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4257 	for (iter = &(dev)->adj_list.lower, \
4258 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4259 	     priv; \
4260 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4261 
4262 void *netdev_lower_get_next(struct net_device *dev,
4263 				struct list_head **iter);
4264 
4265 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4266 	for (iter = (dev)->adj_list.lower.next, \
4267 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4268 	     ldev; \
4269 	     ldev = netdev_lower_get_next(dev, &(iter)))
4270 
4271 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4272 					     struct list_head **iter);
4273 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4274 						 struct list_head **iter);
4275 
4276 int netdev_walk_all_lower_dev(struct net_device *dev,
4277 			      int (*fn)(struct net_device *lower_dev,
4278 					void *data),
4279 			      void *data);
4280 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4281 				  int (*fn)(struct net_device *lower_dev,
4282 					    void *data),
4283 				  void *data);
4284 
4285 void *netdev_adjacent_get_private(struct list_head *adj_list);
4286 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4287 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4288 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4289 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4290 			  struct netlink_ext_ack *extack);
4291 int netdev_master_upper_dev_link(struct net_device *dev,
4292 				 struct net_device *upper_dev,
4293 				 void *upper_priv, void *upper_info,
4294 				 struct netlink_ext_ack *extack);
4295 void netdev_upper_dev_unlink(struct net_device *dev,
4296 			     struct net_device *upper_dev);
4297 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4298 void *netdev_lower_dev_get_private(struct net_device *dev,
4299 				   struct net_device *lower_dev);
4300 void netdev_lower_state_changed(struct net_device *lower_dev,
4301 				void *lower_state_info);
4302 
4303 /* RSS keys are 40 or 52 bytes long */
4304 #define NETDEV_RSS_KEY_LEN 52
4305 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4306 void netdev_rss_key_fill(void *buffer, size_t len);
4307 
4308 int dev_get_nest_level(struct net_device *dev);
4309 int skb_checksum_help(struct sk_buff *skb);
4310 int skb_crc32c_csum_help(struct sk_buff *skb);
4311 int skb_csum_hwoffload_help(struct sk_buff *skb,
4312 			    const netdev_features_t features);
4313 
4314 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4315 				  netdev_features_t features, bool tx_path);
4316 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4317 				    netdev_features_t features);
4318 
4319 struct netdev_bonding_info {
4320 	ifslave	slave;
4321 	ifbond	master;
4322 };
4323 
4324 struct netdev_notifier_bonding_info {
4325 	struct netdev_notifier_info info; /* must be first */
4326 	struct netdev_bonding_info  bonding_info;
4327 };
4328 
4329 void netdev_bonding_info_change(struct net_device *dev,
4330 				struct netdev_bonding_info *bonding_info);
4331 
4332 static inline
4333 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4334 {
4335 	return __skb_gso_segment(skb, features, true);
4336 }
4337 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4338 
4339 static inline bool can_checksum_protocol(netdev_features_t features,
4340 					 __be16 protocol)
4341 {
4342 	if (protocol == htons(ETH_P_FCOE))
4343 		return !!(features & NETIF_F_FCOE_CRC);
4344 
4345 	/* Assume this is an IP checksum (not SCTP CRC) */
4346 
4347 	if (features & NETIF_F_HW_CSUM) {
4348 		/* Can checksum everything */
4349 		return true;
4350 	}
4351 
4352 	switch (protocol) {
4353 	case htons(ETH_P_IP):
4354 		return !!(features & NETIF_F_IP_CSUM);
4355 	case htons(ETH_P_IPV6):
4356 		return !!(features & NETIF_F_IPV6_CSUM);
4357 	default:
4358 		return false;
4359 	}
4360 }
4361 
4362 #ifdef CONFIG_BUG
4363 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4364 #else
4365 static inline void netdev_rx_csum_fault(struct net_device *dev,
4366 					struct sk_buff *skb)
4367 {
4368 }
4369 #endif
4370 /* rx skb timestamps */
4371 void net_enable_timestamp(void);
4372 void net_disable_timestamp(void);
4373 
4374 #ifdef CONFIG_PROC_FS
4375 int __init dev_proc_init(void);
4376 #else
4377 #define dev_proc_init() 0
4378 #endif
4379 
4380 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4381 					      struct sk_buff *skb, struct net_device *dev,
4382 					      bool more)
4383 {
4384 	skb->xmit_more = more ? 1 : 0;
4385 	return ops->ndo_start_xmit(skb, dev);
4386 }
4387 
4388 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4389 					    struct netdev_queue *txq, bool more)
4390 {
4391 	const struct net_device_ops *ops = dev->netdev_ops;
4392 	netdev_tx_t rc;
4393 
4394 	rc = __netdev_start_xmit(ops, skb, dev, more);
4395 	if (rc == NETDEV_TX_OK)
4396 		txq_trans_update(txq);
4397 
4398 	return rc;
4399 }
4400 
4401 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4402 				const void *ns);
4403 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4404 				 const void *ns);
4405 
4406 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4407 {
4408 	return netdev_class_create_file_ns(class_attr, NULL);
4409 }
4410 
4411 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4412 {
4413 	netdev_class_remove_file_ns(class_attr, NULL);
4414 }
4415 
4416 extern const struct kobj_ns_type_operations net_ns_type_operations;
4417 
4418 const char *netdev_drivername(const struct net_device *dev);
4419 
4420 void linkwatch_run_queue(void);
4421 
4422 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4423 							  netdev_features_t f2)
4424 {
4425 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4426 		if (f1 & NETIF_F_HW_CSUM)
4427 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4428 		else
4429 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4430 	}
4431 
4432 	return f1 & f2;
4433 }
4434 
4435 static inline netdev_features_t netdev_get_wanted_features(
4436 	struct net_device *dev)
4437 {
4438 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4439 }
4440 netdev_features_t netdev_increment_features(netdev_features_t all,
4441 	netdev_features_t one, netdev_features_t mask);
4442 
4443 /* Allow TSO being used on stacked device :
4444  * Performing the GSO segmentation before last device
4445  * is a performance improvement.
4446  */
4447 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4448 							netdev_features_t mask)
4449 {
4450 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4451 }
4452 
4453 int __netdev_update_features(struct net_device *dev);
4454 void netdev_update_features(struct net_device *dev);
4455 void netdev_change_features(struct net_device *dev);
4456 
4457 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4458 					struct net_device *dev);
4459 
4460 netdev_features_t passthru_features_check(struct sk_buff *skb,
4461 					  struct net_device *dev,
4462 					  netdev_features_t features);
4463 netdev_features_t netif_skb_features(struct sk_buff *skb);
4464 
4465 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4466 {
4467 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4468 
4469 	/* check flags correspondence */
4470 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4471 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4472 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4473 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4474 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4475 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4476 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4477 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4478 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4479 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4480 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4481 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4482 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4483 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4484 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4485 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4486 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4487 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4488 
4489 	return (features & feature) == feature;
4490 }
4491 
4492 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4493 {
4494 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4495 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4496 }
4497 
4498 static inline bool netif_needs_gso(struct sk_buff *skb,
4499 				   netdev_features_t features)
4500 {
4501 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4502 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4503 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4504 }
4505 
4506 static inline void netif_set_gso_max_size(struct net_device *dev,
4507 					  unsigned int size)
4508 {
4509 	dev->gso_max_size = size;
4510 }
4511 
4512 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4513 					int pulled_hlen, u16 mac_offset,
4514 					int mac_len)
4515 {
4516 	skb->protocol = protocol;
4517 	skb->encapsulation = 1;
4518 	skb_push(skb, pulled_hlen);
4519 	skb_reset_transport_header(skb);
4520 	skb->mac_header = mac_offset;
4521 	skb->network_header = skb->mac_header + mac_len;
4522 	skb->mac_len = mac_len;
4523 }
4524 
4525 static inline bool netif_is_macsec(const struct net_device *dev)
4526 {
4527 	return dev->priv_flags & IFF_MACSEC;
4528 }
4529 
4530 static inline bool netif_is_macvlan(const struct net_device *dev)
4531 {
4532 	return dev->priv_flags & IFF_MACVLAN;
4533 }
4534 
4535 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4536 {
4537 	return dev->priv_flags & IFF_MACVLAN_PORT;
4538 }
4539 
4540 static inline bool netif_is_bond_master(const struct net_device *dev)
4541 {
4542 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4543 }
4544 
4545 static inline bool netif_is_bond_slave(const struct net_device *dev)
4546 {
4547 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4548 }
4549 
4550 static inline bool netif_supports_nofcs(struct net_device *dev)
4551 {
4552 	return dev->priv_flags & IFF_SUPP_NOFCS;
4553 }
4554 
4555 static inline bool netif_is_l3_master(const struct net_device *dev)
4556 {
4557 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4558 }
4559 
4560 static inline bool netif_is_l3_slave(const struct net_device *dev)
4561 {
4562 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4563 }
4564 
4565 static inline bool netif_is_bridge_master(const struct net_device *dev)
4566 {
4567 	return dev->priv_flags & IFF_EBRIDGE;
4568 }
4569 
4570 static inline bool netif_is_bridge_port(const struct net_device *dev)
4571 {
4572 	return dev->priv_flags & IFF_BRIDGE_PORT;
4573 }
4574 
4575 static inline bool netif_is_ovs_master(const struct net_device *dev)
4576 {
4577 	return dev->priv_flags & IFF_OPENVSWITCH;
4578 }
4579 
4580 static inline bool netif_is_ovs_port(const struct net_device *dev)
4581 {
4582 	return dev->priv_flags & IFF_OVS_DATAPATH;
4583 }
4584 
4585 static inline bool netif_is_team_master(const struct net_device *dev)
4586 {
4587 	return dev->priv_flags & IFF_TEAM;
4588 }
4589 
4590 static inline bool netif_is_team_port(const struct net_device *dev)
4591 {
4592 	return dev->priv_flags & IFF_TEAM_PORT;
4593 }
4594 
4595 static inline bool netif_is_lag_master(const struct net_device *dev)
4596 {
4597 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4598 }
4599 
4600 static inline bool netif_is_lag_port(const struct net_device *dev)
4601 {
4602 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4603 }
4604 
4605 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4606 {
4607 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4608 }
4609 
4610 static inline bool netif_is_failover(const struct net_device *dev)
4611 {
4612 	return dev->priv_flags & IFF_FAILOVER;
4613 }
4614 
4615 static inline bool netif_is_failover_slave(const struct net_device *dev)
4616 {
4617 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4618 }
4619 
4620 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4621 static inline void netif_keep_dst(struct net_device *dev)
4622 {
4623 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4624 }
4625 
4626 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4627 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4628 {
4629 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4630 	return dev->priv_flags & IFF_MACSEC;
4631 }
4632 
4633 extern struct pernet_operations __net_initdata loopback_net_ops;
4634 
4635 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4636 
4637 /* netdev_printk helpers, similar to dev_printk */
4638 
4639 static inline const char *netdev_name(const struct net_device *dev)
4640 {
4641 	if (!dev->name[0] || strchr(dev->name, '%'))
4642 		return "(unnamed net_device)";
4643 	return dev->name;
4644 }
4645 
4646 static inline bool netdev_unregistering(const struct net_device *dev)
4647 {
4648 	return dev->reg_state == NETREG_UNREGISTERING;
4649 }
4650 
4651 static inline const char *netdev_reg_state(const struct net_device *dev)
4652 {
4653 	switch (dev->reg_state) {
4654 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4655 	case NETREG_REGISTERED: return "";
4656 	case NETREG_UNREGISTERING: return " (unregistering)";
4657 	case NETREG_UNREGISTERED: return " (unregistered)";
4658 	case NETREG_RELEASED: return " (released)";
4659 	case NETREG_DUMMY: return " (dummy)";
4660 	}
4661 
4662 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4663 	return " (unknown)";
4664 }
4665 
4666 __printf(3, 4)
4667 void netdev_printk(const char *level, const struct net_device *dev,
4668 		   const char *format, ...);
4669 __printf(2, 3)
4670 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4671 __printf(2, 3)
4672 void netdev_alert(const struct net_device *dev, const char *format, ...);
4673 __printf(2, 3)
4674 void netdev_crit(const struct net_device *dev, const char *format, ...);
4675 __printf(2, 3)
4676 void netdev_err(const struct net_device *dev, const char *format, ...);
4677 __printf(2, 3)
4678 void netdev_warn(const struct net_device *dev, const char *format, ...);
4679 __printf(2, 3)
4680 void netdev_notice(const struct net_device *dev, const char *format, ...);
4681 __printf(2, 3)
4682 void netdev_info(const struct net_device *dev, const char *format, ...);
4683 
4684 #define netdev_level_once(level, dev, fmt, ...)			\
4685 do {								\
4686 	static bool __print_once __read_mostly;			\
4687 								\
4688 	if (!__print_once) {					\
4689 		__print_once = true;				\
4690 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4691 	}							\
4692 } while (0)
4693 
4694 #define netdev_emerg_once(dev, fmt, ...) \
4695 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4696 #define netdev_alert_once(dev, fmt, ...) \
4697 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4698 #define netdev_crit_once(dev, fmt, ...) \
4699 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4700 #define netdev_err_once(dev, fmt, ...) \
4701 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4702 #define netdev_warn_once(dev, fmt, ...) \
4703 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4704 #define netdev_notice_once(dev, fmt, ...) \
4705 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4706 #define netdev_info_once(dev, fmt, ...) \
4707 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4708 
4709 #define MODULE_ALIAS_NETDEV(device) \
4710 	MODULE_ALIAS("netdev-" device)
4711 
4712 #if defined(CONFIG_DYNAMIC_DEBUG)
4713 #define netdev_dbg(__dev, format, args...)			\
4714 do {								\
4715 	dynamic_netdev_dbg(__dev, format, ##args);		\
4716 } while (0)
4717 #elif defined(DEBUG)
4718 #define netdev_dbg(__dev, format, args...)			\
4719 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4720 #else
4721 #define netdev_dbg(__dev, format, args...)			\
4722 ({								\
4723 	if (0)							\
4724 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4725 })
4726 #endif
4727 
4728 #if defined(VERBOSE_DEBUG)
4729 #define netdev_vdbg	netdev_dbg
4730 #else
4731 
4732 #define netdev_vdbg(dev, format, args...)			\
4733 ({								\
4734 	if (0)							\
4735 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4736 	0;							\
4737 })
4738 #endif
4739 
4740 /*
4741  * netdev_WARN() acts like dev_printk(), but with the key difference
4742  * of using a WARN/WARN_ON to get the message out, including the
4743  * file/line information and a backtrace.
4744  */
4745 #define netdev_WARN(dev, format, args...)			\
4746 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4747 	     netdev_reg_state(dev), ##args)
4748 
4749 #define netdev_WARN_ONCE(dev, format, args...)				\
4750 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4751 		  netdev_reg_state(dev), ##args)
4752 
4753 /* netif printk helpers, similar to netdev_printk */
4754 
4755 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4756 do {					  			\
4757 	if (netif_msg_##type(priv))				\
4758 		netdev_printk(level, (dev), fmt, ##args);	\
4759 } while (0)
4760 
4761 #define netif_level(level, priv, type, dev, fmt, args...)	\
4762 do {								\
4763 	if (netif_msg_##type(priv))				\
4764 		netdev_##level(dev, fmt, ##args);		\
4765 } while (0)
4766 
4767 #define netif_emerg(priv, type, dev, fmt, args...)		\
4768 	netif_level(emerg, priv, type, dev, fmt, ##args)
4769 #define netif_alert(priv, type, dev, fmt, args...)		\
4770 	netif_level(alert, priv, type, dev, fmt, ##args)
4771 #define netif_crit(priv, type, dev, fmt, args...)		\
4772 	netif_level(crit, priv, type, dev, fmt, ##args)
4773 #define netif_err(priv, type, dev, fmt, args...)		\
4774 	netif_level(err, priv, type, dev, fmt, ##args)
4775 #define netif_warn(priv, type, dev, fmt, args...)		\
4776 	netif_level(warn, priv, type, dev, fmt, ##args)
4777 #define netif_notice(priv, type, dev, fmt, args...)		\
4778 	netif_level(notice, priv, type, dev, fmt, ##args)
4779 #define netif_info(priv, type, dev, fmt, args...)		\
4780 	netif_level(info, priv, type, dev, fmt, ##args)
4781 
4782 #if defined(CONFIG_DYNAMIC_DEBUG)
4783 #define netif_dbg(priv, type, netdev, format, args...)		\
4784 do {								\
4785 	if (netif_msg_##type(priv))				\
4786 		dynamic_netdev_dbg(netdev, format, ##args);	\
4787 } while (0)
4788 #elif defined(DEBUG)
4789 #define netif_dbg(priv, type, dev, format, args...)		\
4790 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4791 #else
4792 #define netif_dbg(priv, type, dev, format, args...)			\
4793 ({									\
4794 	if (0)								\
4795 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4796 	0;								\
4797 })
4798 #endif
4799 
4800 /* if @cond then downgrade to debug, else print at @level */
4801 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4802 	do {                                                              \
4803 		if (cond)                                                 \
4804 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4805 		else                                                      \
4806 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4807 	} while (0)
4808 
4809 #if defined(VERBOSE_DEBUG)
4810 #define netif_vdbg	netif_dbg
4811 #else
4812 #define netif_vdbg(priv, type, dev, format, args...)		\
4813 ({								\
4814 	if (0)							\
4815 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4816 	0;							\
4817 })
4818 #endif
4819 
4820 /*
4821  *	The list of packet types we will receive (as opposed to discard)
4822  *	and the routines to invoke.
4823  *
4824  *	Why 16. Because with 16 the only overlap we get on a hash of the
4825  *	low nibble of the protocol value is RARP/SNAP/X.25.
4826  *
4827  *		0800	IP
4828  *		0001	802.3
4829  *		0002	AX.25
4830  *		0004	802.2
4831  *		8035	RARP
4832  *		0005	SNAP
4833  *		0805	X.25
4834  *		0806	ARP
4835  *		8137	IPX
4836  *		0009	Localtalk
4837  *		86DD	IPv6
4838  */
4839 #define PTYPE_HASH_SIZE	(16)
4840 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4841 
4842 #endif	/* _LINUX_NETDEVICE_H */
4843