1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <uapi/linux/netdev.h> 51 #include <linux/hashtable.h> 52 #include <linux/rbtree.h> 53 #include <net/net_trackers.h> 54 #include <net/net_debug.h> 55 #include <net/dropreason-core.h> 56 57 struct netpoll_info; 58 struct device; 59 struct ethtool_ops; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_md; 80 81 void synchronize_net(void); 82 void netdev_set_default_ethtool_ops(struct net_device *dev, 83 const struct ethtool_ops *ops); 84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 85 86 /* Backlog congestion levels */ 87 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 88 #define NET_RX_DROP 1 /* packet dropped */ 89 90 #define MAX_NEST_DEV 8 91 92 /* 93 * Transmit return codes: transmit return codes originate from three different 94 * namespaces: 95 * 96 * - qdisc return codes 97 * - driver transmit return codes 98 * - errno values 99 * 100 * Drivers are allowed to return any one of those in their hard_start_xmit() 101 * function. Real network devices commonly used with qdiscs should only return 102 * the driver transmit return codes though - when qdiscs are used, the actual 103 * transmission happens asynchronously, so the value is not propagated to 104 * higher layers. Virtual network devices transmit synchronously; in this case 105 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 106 * others are propagated to higher layers. 107 */ 108 109 /* qdisc ->enqueue() return codes. */ 110 #define NET_XMIT_SUCCESS 0x00 111 #define NET_XMIT_DROP 0x01 /* skb dropped */ 112 #define NET_XMIT_CN 0x02 /* congestion notification */ 113 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 114 115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 116 * indicates that the device will soon be dropping packets, or already drops 117 * some packets of the same priority; prompting us to send less aggressively. */ 118 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 119 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 120 121 /* Driver transmit return codes */ 122 #define NETDEV_TX_MASK 0xf0 123 124 enum netdev_tx { 125 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 126 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 127 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 128 }; 129 typedef enum netdev_tx netdev_tx_t; 130 131 /* 132 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 133 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 134 */ 135 static inline bool dev_xmit_complete(int rc) 136 { 137 /* 138 * Positive cases with an skb consumed by a driver: 139 * - successful transmission (rc == NETDEV_TX_OK) 140 * - error while transmitting (rc < 0) 141 * - error while queueing to a different device (rc & NET_XMIT_MASK) 142 */ 143 if (likely(rc < NET_XMIT_MASK)) 144 return true; 145 146 return false; 147 } 148 149 /* 150 * Compute the worst-case header length according to the protocols 151 * used. 152 */ 153 154 #if defined(CONFIG_HYPERV_NET) 155 # define LL_MAX_HEADER 128 156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 157 # if defined(CONFIG_MAC80211_MESH) 158 # define LL_MAX_HEADER 128 159 # else 160 # define LL_MAX_HEADER 96 161 # endif 162 #else 163 # define LL_MAX_HEADER 32 164 #endif 165 166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 167 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 168 #define MAX_HEADER LL_MAX_HEADER 169 #else 170 #define MAX_HEADER (LL_MAX_HEADER + 48) 171 #endif 172 173 /* 174 * Old network device statistics. Fields are native words 175 * (unsigned long) so they can be read and written atomically. 176 */ 177 178 #define NET_DEV_STAT(FIELD) \ 179 union { \ 180 unsigned long FIELD; \ 181 atomic_long_t __##FIELD; \ 182 } 183 184 struct net_device_stats { 185 NET_DEV_STAT(rx_packets); 186 NET_DEV_STAT(tx_packets); 187 NET_DEV_STAT(rx_bytes); 188 NET_DEV_STAT(tx_bytes); 189 NET_DEV_STAT(rx_errors); 190 NET_DEV_STAT(tx_errors); 191 NET_DEV_STAT(rx_dropped); 192 NET_DEV_STAT(tx_dropped); 193 NET_DEV_STAT(multicast); 194 NET_DEV_STAT(collisions); 195 NET_DEV_STAT(rx_length_errors); 196 NET_DEV_STAT(rx_over_errors); 197 NET_DEV_STAT(rx_crc_errors); 198 NET_DEV_STAT(rx_frame_errors); 199 NET_DEV_STAT(rx_fifo_errors); 200 NET_DEV_STAT(rx_missed_errors); 201 NET_DEV_STAT(tx_aborted_errors); 202 NET_DEV_STAT(tx_carrier_errors); 203 NET_DEV_STAT(tx_fifo_errors); 204 NET_DEV_STAT(tx_heartbeat_errors); 205 NET_DEV_STAT(tx_window_errors); 206 NET_DEV_STAT(rx_compressed); 207 NET_DEV_STAT(tx_compressed); 208 }; 209 #undef NET_DEV_STAT 210 211 /* per-cpu stats, allocated on demand. 212 * Try to fit them in a single cache line, for dev_get_stats() sake. 213 */ 214 struct net_device_core_stats { 215 unsigned long rx_dropped; 216 unsigned long tx_dropped; 217 unsigned long rx_nohandler; 218 unsigned long rx_otherhost_dropped; 219 } __aligned(4 * sizeof(unsigned long)); 220 221 #include <linux/cache.h> 222 #include <linux/skbuff.h> 223 224 #ifdef CONFIG_RPS 225 #include <linux/static_key.h> 226 extern struct static_key_false rps_needed; 227 extern struct static_key_false rfs_needed; 228 #endif 229 230 struct neighbour; 231 struct neigh_parms; 232 struct sk_buff; 233 234 struct netdev_hw_addr { 235 struct list_head list; 236 struct rb_node node; 237 unsigned char addr[MAX_ADDR_LEN]; 238 unsigned char type; 239 #define NETDEV_HW_ADDR_T_LAN 1 240 #define NETDEV_HW_ADDR_T_SAN 2 241 #define NETDEV_HW_ADDR_T_UNICAST 3 242 #define NETDEV_HW_ADDR_T_MULTICAST 4 243 bool global_use; 244 int sync_cnt; 245 int refcount; 246 int synced; 247 struct rcu_head rcu_head; 248 }; 249 250 struct netdev_hw_addr_list { 251 struct list_head list; 252 int count; 253 254 /* Auxiliary tree for faster lookup on addition and deletion */ 255 struct rb_root tree; 256 }; 257 258 #define netdev_hw_addr_list_count(l) ((l)->count) 259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 260 #define netdev_hw_addr_list_for_each(ha, l) \ 261 list_for_each_entry(ha, &(l)->list, list) 262 263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 265 #define netdev_for_each_uc_addr(ha, dev) \ 266 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 268 netdev_for_each_uc_addr((_ha), (_dev)) \ 269 if ((_ha)->sync_cnt) 270 271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 273 #define netdev_for_each_mc_addr(ha, dev) \ 274 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 276 netdev_for_each_mc_addr((_ha), (_dev)) \ 277 if ((_ha)->sync_cnt) 278 279 struct hh_cache { 280 unsigned int hh_len; 281 seqlock_t hh_lock; 282 283 /* cached hardware header; allow for machine alignment needs. */ 284 #define HH_DATA_MOD 16 285 #define HH_DATA_OFF(__len) \ 286 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 287 #define HH_DATA_ALIGN(__len) \ 288 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 289 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 290 }; 291 292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 293 * Alternative is: 294 * dev->hard_header_len ? (dev->hard_header_len + 295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 296 * 297 * We could use other alignment values, but we must maintain the 298 * relationship HH alignment <= LL alignment. 299 */ 300 #define LL_RESERVED_SPACE(dev) \ 301 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 302 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 307 struct header_ops { 308 int (*create) (struct sk_buff *skb, struct net_device *dev, 309 unsigned short type, const void *daddr, 310 const void *saddr, unsigned int len); 311 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 312 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 313 void (*cache_update)(struct hh_cache *hh, 314 const struct net_device *dev, 315 const unsigned char *haddr); 316 bool (*validate)(const char *ll_header, unsigned int len); 317 __be16 (*parse_protocol)(const struct sk_buff *skb); 318 }; 319 320 /* These flag bits are private to the generic network queueing 321 * layer; they may not be explicitly referenced by any other 322 * code. 323 */ 324 325 enum netdev_state_t { 326 __LINK_STATE_START, 327 __LINK_STATE_PRESENT, 328 __LINK_STATE_NOCARRIER, 329 __LINK_STATE_LINKWATCH_PENDING, 330 __LINK_STATE_DORMANT, 331 __LINK_STATE_TESTING, 332 }; 333 334 struct gro_list { 335 struct list_head list; 336 int count; 337 }; 338 339 /* 340 * size of gro hash buckets, must less than bit number of 341 * napi_struct::gro_bitmask 342 */ 343 #define GRO_HASH_BUCKETS 8 344 345 /* 346 * Structure for NAPI scheduling similar to tasklet but with weighting 347 */ 348 struct napi_struct { 349 /* The poll_list must only be managed by the entity which 350 * changes the state of the NAPI_STATE_SCHED bit. This means 351 * whoever atomically sets that bit can add this napi_struct 352 * to the per-CPU poll_list, and whoever clears that bit 353 * can remove from the list right before clearing the bit. 354 */ 355 struct list_head poll_list; 356 357 unsigned long state; 358 int weight; 359 int defer_hard_irqs_count; 360 unsigned long gro_bitmask; 361 int (*poll)(struct napi_struct *, int); 362 #ifdef CONFIG_NETPOLL 363 /* CPU actively polling if netpoll is configured */ 364 int poll_owner; 365 #endif 366 /* CPU on which NAPI has been scheduled for processing */ 367 int list_owner; 368 struct net_device *dev; 369 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 370 struct sk_buff *skb; 371 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 372 int rx_count; /* length of rx_list */ 373 unsigned int napi_id; 374 struct hrtimer timer; 375 struct task_struct *thread; 376 /* control-path-only fields follow */ 377 struct list_head dev_list; 378 struct hlist_node napi_hash_node; 379 }; 380 381 enum { 382 NAPI_STATE_SCHED, /* Poll is scheduled */ 383 NAPI_STATE_MISSED, /* reschedule a napi */ 384 NAPI_STATE_DISABLE, /* Disable pending */ 385 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 386 NAPI_STATE_LISTED, /* NAPI added to system lists */ 387 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 388 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 389 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 390 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 391 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 392 }; 393 394 enum { 395 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 396 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 397 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 398 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 399 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 400 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 401 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 402 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 403 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 404 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 405 }; 406 407 enum gro_result { 408 GRO_MERGED, 409 GRO_MERGED_FREE, 410 GRO_HELD, 411 GRO_NORMAL, 412 GRO_CONSUMED, 413 }; 414 typedef enum gro_result gro_result_t; 415 416 /* 417 * enum rx_handler_result - Possible return values for rx_handlers. 418 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 419 * further. 420 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 421 * case skb->dev was changed by rx_handler. 422 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 423 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 424 * 425 * rx_handlers are functions called from inside __netif_receive_skb(), to do 426 * special processing of the skb, prior to delivery to protocol handlers. 427 * 428 * Currently, a net_device can only have a single rx_handler registered. Trying 429 * to register a second rx_handler will return -EBUSY. 430 * 431 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 432 * To unregister a rx_handler on a net_device, use 433 * netdev_rx_handler_unregister(). 434 * 435 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 436 * do with the skb. 437 * 438 * If the rx_handler consumed the skb in some way, it should return 439 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 440 * the skb to be delivered in some other way. 441 * 442 * If the rx_handler changed skb->dev, to divert the skb to another 443 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 444 * new device will be called if it exists. 445 * 446 * If the rx_handler decides the skb should be ignored, it should return 447 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 448 * are registered on exact device (ptype->dev == skb->dev). 449 * 450 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 451 * delivered, it should return RX_HANDLER_PASS. 452 * 453 * A device without a registered rx_handler will behave as if rx_handler 454 * returned RX_HANDLER_PASS. 455 */ 456 457 enum rx_handler_result { 458 RX_HANDLER_CONSUMED, 459 RX_HANDLER_ANOTHER, 460 RX_HANDLER_EXACT, 461 RX_HANDLER_PASS, 462 }; 463 typedef enum rx_handler_result rx_handler_result_t; 464 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 465 466 void __napi_schedule(struct napi_struct *n); 467 void __napi_schedule_irqoff(struct napi_struct *n); 468 469 static inline bool napi_disable_pending(struct napi_struct *n) 470 { 471 return test_bit(NAPI_STATE_DISABLE, &n->state); 472 } 473 474 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 475 { 476 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 477 } 478 479 bool napi_schedule_prep(struct napi_struct *n); 480 481 /** 482 * napi_schedule - schedule NAPI poll 483 * @n: NAPI context 484 * 485 * Schedule NAPI poll routine to be called if it is not already 486 * running. 487 */ 488 static inline void napi_schedule(struct napi_struct *n) 489 { 490 if (napi_schedule_prep(n)) 491 __napi_schedule(n); 492 } 493 494 /** 495 * napi_schedule_irqoff - schedule NAPI poll 496 * @n: NAPI context 497 * 498 * Variant of napi_schedule(), assuming hard irqs are masked. 499 */ 500 static inline void napi_schedule_irqoff(struct napi_struct *n) 501 { 502 if (napi_schedule_prep(n)) 503 __napi_schedule_irqoff(n); 504 } 505 506 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 507 static inline bool napi_reschedule(struct napi_struct *napi) 508 { 509 if (napi_schedule_prep(napi)) { 510 __napi_schedule(napi); 511 return true; 512 } 513 return false; 514 } 515 516 /** 517 * napi_complete_done - NAPI processing complete 518 * @n: NAPI context 519 * @work_done: number of packets processed 520 * 521 * Mark NAPI processing as complete. Should only be called if poll budget 522 * has not been completely consumed. 523 * Prefer over napi_complete(). 524 * Return false if device should avoid rearming interrupts. 525 */ 526 bool napi_complete_done(struct napi_struct *n, int work_done); 527 528 static inline bool napi_complete(struct napi_struct *n) 529 { 530 return napi_complete_done(n, 0); 531 } 532 533 int dev_set_threaded(struct net_device *dev, bool threaded); 534 535 /** 536 * napi_disable - prevent NAPI from scheduling 537 * @n: NAPI context 538 * 539 * Stop NAPI from being scheduled on this context. 540 * Waits till any outstanding processing completes. 541 */ 542 void napi_disable(struct napi_struct *n); 543 544 void napi_enable(struct napi_struct *n); 545 546 /** 547 * napi_synchronize - wait until NAPI is not running 548 * @n: NAPI context 549 * 550 * Wait until NAPI is done being scheduled on this context. 551 * Waits till any outstanding processing completes but 552 * does not disable future activations. 553 */ 554 static inline void napi_synchronize(const struct napi_struct *n) 555 { 556 if (IS_ENABLED(CONFIG_SMP)) 557 while (test_bit(NAPI_STATE_SCHED, &n->state)) 558 msleep(1); 559 else 560 barrier(); 561 } 562 563 /** 564 * napi_if_scheduled_mark_missed - if napi is running, set the 565 * NAPIF_STATE_MISSED 566 * @n: NAPI context 567 * 568 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 569 * NAPI is scheduled. 570 **/ 571 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 572 { 573 unsigned long val, new; 574 575 val = READ_ONCE(n->state); 576 do { 577 if (val & NAPIF_STATE_DISABLE) 578 return true; 579 580 if (!(val & NAPIF_STATE_SCHED)) 581 return false; 582 583 new = val | NAPIF_STATE_MISSED; 584 } while (!try_cmpxchg(&n->state, &val, new)); 585 586 return true; 587 } 588 589 enum netdev_queue_state_t { 590 __QUEUE_STATE_DRV_XOFF, 591 __QUEUE_STATE_STACK_XOFF, 592 __QUEUE_STATE_FROZEN, 593 }; 594 595 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 596 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 597 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 598 599 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 600 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 601 QUEUE_STATE_FROZEN) 602 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 603 QUEUE_STATE_FROZEN) 604 605 /* 606 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 607 * netif_tx_* functions below are used to manipulate this flag. The 608 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 609 * queue independently. The netif_xmit_*stopped functions below are called 610 * to check if the queue has been stopped by the driver or stack (either 611 * of the XOFF bits are set in the state). Drivers should not need to call 612 * netif_xmit*stopped functions, they should only be using netif_tx_*. 613 */ 614 615 struct netdev_queue { 616 /* 617 * read-mostly part 618 */ 619 struct net_device *dev; 620 netdevice_tracker dev_tracker; 621 622 struct Qdisc __rcu *qdisc; 623 struct Qdisc *qdisc_sleeping; 624 #ifdef CONFIG_SYSFS 625 struct kobject kobj; 626 #endif 627 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 628 int numa_node; 629 #endif 630 unsigned long tx_maxrate; 631 /* 632 * Number of TX timeouts for this queue 633 * (/sys/class/net/DEV/Q/trans_timeout) 634 */ 635 atomic_long_t trans_timeout; 636 637 /* Subordinate device that the queue has been assigned to */ 638 struct net_device *sb_dev; 639 #ifdef CONFIG_XDP_SOCKETS 640 struct xsk_buff_pool *pool; 641 #endif 642 /* 643 * write-mostly part 644 */ 645 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 646 int xmit_lock_owner; 647 /* 648 * Time (in jiffies) of last Tx 649 */ 650 unsigned long trans_start; 651 652 unsigned long state; 653 654 #ifdef CONFIG_BQL 655 struct dql dql; 656 #endif 657 } ____cacheline_aligned_in_smp; 658 659 extern int sysctl_fb_tunnels_only_for_init_net; 660 extern int sysctl_devconf_inherit_init_net; 661 662 /* 663 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 664 * == 1 : For initns only 665 * == 2 : For none. 666 */ 667 static inline bool net_has_fallback_tunnels(const struct net *net) 668 { 669 #if IS_ENABLED(CONFIG_SYSCTL) 670 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 671 672 return !fb_tunnels_only_for_init_net || 673 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 674 #else 675 return true; 676 #endif 677 } 678 679 static inline int net_inherit_devconf(void) 680 { 681 #if IS_ENABLED(CONFIG_SYSCTL) 682 return READ_ONCE(sysctl_devconf_inherit_init_net); 683 #else 684 return 0; 685 #endif 686 } 687 688 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 689 { 690 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 691 return q->numa_node; 692 #else 693 return NUMA_NO_NODE; 694 #endif 695 } 696 697 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 698 { 699 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 700 q->numa_node = node; 701 #endif 702 } 703 704 #ifdef CONFIG_RPS 705 /* 706 * This structure holds an RPS map which can be of variable length. The 707 * map is an array of CPUs. 708 */ 709 struct rps_map { 710 unsigned int len; 711 struct rcu_head rcu; 712 u16 cpus[]; 713 }; 714 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 715 716 /* 717 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 718 * tail pointer for that CPU's input queue at the time of last enqueue, and 719 * a hardware filter index. 720 */ 721 struct rps_dev_flow { 722 u16 cpu; 723 u16 filter; 724 unsigned int last_qtail; 725 }; 726 #define RPS_NO_FILTER 0xffff 727 728 /* 729 * The rps_dev_flow_table structure contains a table of flow mappings. 730 */ 731 struct rps_dev_flow_table { 732 unsigned int mask; 733 struct rcu_head rcu; 734 struct rps_dev_flow flows[]; 735 }; 736 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 737 ((_num) * sizeof(struct rps_dev_flow))) 738 739 /* 740 * The rps_sock_flow_table contains mappings of flows to the last CPU 741 * on which they were processed by the application (set in recvmsg). 742 * Each entry is a 32bit value. Upper part is the high-order bits 743 * of flow hash, lower part is CPU number. 744 * rps_cpu_mask is used to partition the space, depending on number of 745 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 746 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 747 * meaning we use 32-6=26 bits for the hash. 748 */ 749 struct rps_sock_flow_table { 750 u32 mask; 751 752 u32 ents[] ____cacheline_aligned_in_smp; 753 }; 754 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 755 756 #define RPS_NO_CPU 0xffff 757 758 extern u32 rps_cpu_mask; 759 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 760 761 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 762 u32 hash) 763 { 764 if (table && hash) { 765 unsigned int index = hash & table->mask; 766 u32 val = hash & ~rps_cpu_mask; 767 768 /* We only give a hint, preemption can change CPU under us */ 769 val |= raw_smp_processor_id(); 770 771 if (table->ents[index] != val) 772 table->ents[index] = val; 773 } 774 } 775 776 #ifdef CONFIG_RFS_ACCEL 777 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 778 u16 filter_id); 779 #endif 780 #endif /* CONFIG_RPS */ 781 782 /* This structure contains an instance of an RX queue. */ 783 struct netdev_rx_queue { 784 struct xdp_rxq_info xdp_rxq; 785 #ifdef CONFIG_RPS 786 struct rps_map __rcu *rps_map; 787 struct rps_dev_flow_table __rcu *rps_flow_table; 788 #endif 789 struct kobject kobj; 790 struct net_device *dev; 791 netdevice_tracker dev_tracker; 792 793 #ifdef CONFIG_XDP_SOCKETS 794 struct xsk_buff_pool *pool; 795 #endif 796 } ____cacheline_aligned_in_smp; 797 798 /* 799 * RX queue sysfs structures and functions. 800 */ 801 struct rx_queue_attribute { 802 struct attribute attr; 803 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 804 ssize_t (*store)(struct netdev_rx_queue *queue, 805 const char *buf, size_t len); 806 }; 807 808 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 809 enum xps_map_type { 810 XPS_CPUS = 0, 811 XPS_RXQS, 812 XPS_MAPS_MAX, 813 }; 814 815 #ifdef CONFIG_XPS 816 /* 817 * This structure holds an XPS map which can be of variable length. The 818 * map is an array of queues. 819 */ 820 struct xps_map { 821 unsigned int len; 822 unsigned int alloc_len; 823 struct rcu_head rcu; 824 u16 queues[]; 825 }; 826 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 827 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 828 - sizeof(struct xps_map)) / sizeof(u16)) 829 830 /* 831 * This structure holds all XPS maps for device. Maps are indexed by CPU. 832 * 833 * We keep track of the number of cpus/rxqs used when the struct is allocated, 834 * in nr_ids. This will help not accessing out-of-bound memory. 835 * 836 * We keep track of the number of traffic classes used when the struct is 837 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 838 * not crossing its upper bound, as the original dev->num_tc can be updated in 839 * the meantime. 840 */ 841 struct xps_dev_maps { 842 struct rcu_head rcu; 843 unsigned int nr_ids; 844 s16 num_tc; 845 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 846 }; 847 848 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 849 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 850 851 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 852 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 853 854 #endif /* CONFIG_XPS */ 855 856 #define TC_MAX_QUEUE 16 857 #define TC_BITMASK 15 858 /* HW offloaded queuing disciplines txq count and offset maps */ 859 struct netdev_tc_txq { 860 u16 count; 861 u16 offset; 862 }; 863 864 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 865 /* 866 * This structure is to hold information about the device 867 * configured to run FCoE protocol stack. 868 */ 869 struct netdev_fcoe_hbainfo { 870 char manufacturer[64]; 871 char serial_number[64]; 872 char hardware_version[64]; 873 char driver_version[64]; 874 char optionrom_version[64]; 875 char firmware_version[64]; 876 char model[256]; 877 char model_description[256]; 878 }; 879 #endif 880 881 #define MAX_PHYS_ITEM_ID_LEN 32 882 883 /* This structure holds a unique identifier to identify some 884 * physical item (port for example) used by a netdevice. 885 */ 886 struct netdev_phys_item_id { 887 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 888 unsigned char id_len; 889 }; 890 891 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 892 struct netdev_phys_item_id *b) 893 { 894 return a->id_len == b->id_len && 895 memcmp(a->id, b->id, a->id_len) == 0; 896 } 897 898 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 899 struct sk_buff *skb, 900 struct net_device *sb_dev); 901 902 enum net_device_path_type { 903 DEV_PATH_ETHERNET = 0, 904 DEV_PATH_VLAN, 905 DEV_PATH_BRIDGE, 906 DEV_PATH_PPPOE, 907 DEV_PATH_DSA, 908 DEV_PATH_MTK_WDMA, 909 }; 910 911 struct net_device_path { 912 enum net_device_path_type type; 913 const struct net_device *dev; 914 union { 915 struct { 916 u16 id; 917 __be16 proto; 918 u8 h_dest[ETH_ALEN]; 919 } encap; 920 struct { 921 enum { 922 DEV_PATH_BR_VLAN_KEEP, 923 DEV_PATH_BR_VLAN_TAG, 924 DEV_PATH_BR_VLAN_UNTAG, 925 DEV_PATH_BR_VLAN_UNTAG_HW, 926 } vlan_mode; 927 u16 vlan_id; 928 __be16 vlan_proto; 929 } bridge; 930 struct { 931 int port; 932 u16 proto; 933 } dsa; 934 struct { 935 u8 wdma_idx; 936 u8 queue; 937 u16 wcid; 938 u8 bss; 939 } mtk_wdma; 940 }; 941 }; 942 943 #define NET_DEVICE_PATH_STACK_MAX 5 944 #define NET_DEVICE_PATH_VLAN_MAX 2 945 946 struct net_device_path_stack { 947 int num_paths; 948 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 949 }; 950 951 struct net_device_path_ctx { 952 const struct net_device *dev; 953 u8 daddr[ETH_ALEN]; 954 955 int num_vlans; 956 struct { 957 u16 id; 958 __be16 proto; 959 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 960 }; 961 962 enum tc_setup_type { 963 TC_QUERY_CAPS, 964 TC_SETUP_QDISC_MQPRIO, 965 TC_SETUP_CLSU32, 966 TC_SETUP_CLSFLOWER, 967 TC_SETUP_CLSMATCHALL, 968 TC_SETUP_CLSBPF, 969 TC_SETUP_BLOCK, 970 TC_SETUP_QDISC_CBS, 971 TC_SETUP_QDISC_RED, 972 TC_SETUP_QDISC_PRIO, 973 TC_SETUP_QDISC_MQ, 974 TC_SETUP_QDISC_ETF, 975 TC_SETUP_ROOT_QDISC, 976 TC_SETUP_QDISC_GRED, 977 TC_SETUP_QDISC_TAPRIO, 978 TC_SETUP_FT, 979 TC_SETUP_QDISC_ETS, 980 TC_SETUP_QDISC_TBF, 981 TC_SETUP_QDISC_FIFO, 982 TC_SETUP_QDISC_HTB, 983 TC_SETUP_ACT, 984 }; 985 986 /* These structures hold the attributes of bpf state that are being passed 987 * to the netdevice through the bpf op. 988 */ 989 enum bpf_netdev_command { 990 /* Set or clear a bpf program used in the earliest stages of packet 991 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 992 * is responsible for calling bpf_prog_put on any old progs that are 993 * stored. In case of error, the callee need not release the new prog 994 * reference, but on success it takes ownership and must bpf_prog_put 995 * when it is no longer used. 996 */ 997 XDP_SETUP_PROG, 998 XDP_SETUP_PROG_HW, 999 /* BPF program for offload callbacks, invoked at program load time. */ 1000 BPF_OFFLOAD_MAP_ALLOC, 1001 BPF_OFFLOAD_MAP_FREE, 1002 XDP_SETUP_XSK_POOL, 1003 }; 1004 1005 struct bpf_prog_offload_ops; 1006 struct netlink_ext_ack; 1007 struct xdp_umem; 1008 struct xdp_dev_bulk_queue; 1009 struct bpf_xdp_link; 1010 1011 enum bpf_xdp_mode { 1012 XDP_MODE_SKB = 0, 1013 XDP_MODE_DRV = 1, 1014 XDP_MODE_HW = 2, 1015 __MAX_XDP_MODE 1016 }; 1017 1018 struct bpf_xdp_entity { 1019 struct bpf_prog *prog; 1020 struct bpf_xdp_link *link; 1021 }; 1022 1023 struct netdev_bpf { 1024 enum bpf_netdev_command command; 1025 union { 1026 /* XDP_SETUP_PROG */ 1027 struct { 1028 u32 flags; 1029 struct bpf_prog *prog; 1030 struct netlink_ext_ack *extack; 1031 }; 1032 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1033 struct { 1034 struct bpf_offloaded_map *offmap; 1035 }; 1036 /* XDP_SETUP_XSK_POOL */ 1037 struct { 1038 struct xsk_buff_pool *pool; 1039 u16 queue_id; 1040 } xsk; 1041 }; 1042 }; 1043 1044 /* Flags for ndo_xsk_wakeup. */ 1045 #define XDP_WAKEUP_RX (1 << 0) 1046 #define XDP_WAKEUP_TX (1 << 1) 1047 1048 #ifdef CONFIG_XFRM_OFFLOAD 1049 struct xfrmdev_ops { 1050 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1051 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1052 void (*xdo_dev_state_free) (struct xfrm_state *x); 1053 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1054 struct xfrm_state *x); 1055 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1056 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1057 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1058 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1059 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1060 }; 1061 #endif 1062 1063 struct dev_ifalias { 1064 struct rcu_head rcuhead; 1065 char ifalias[]; 1066 }; 1067 1068 struct devlink; 1069 struct tlsdev_ops; 1070 1071 struct netdev_net_notifier { 1072 struct list_head list; 1073 struct notifier_block *nb; 1074 }; 1075 1076 /* 1077 * This structure defines the management hooks for network devices. 1078 * The following hooks can be defined; unless noted otherwise, they are 1079 * optional and can be filled with a null pointer. 1080 * 1081 * int (*ndo_init)(struct net_device *dev); 1082 * This function is called once when a network device is registered. 1083 * The network device can use this for any late stage initialization 1084 * or semantic validation. It can fail with an error code which will 1085 * be propagated back to register_netdev. 1086 * 1087 * void (*ndo_uninit)(struct net_device *dev); 1088 * This function is called when device is unregistered or when registration 1089 * fails. It is not called if init fails. 1090 * 1091 * int (*ndo_open)(struct net_device *dev); 1092 * This function is called when a network device transitions to the up 1093 * state. 1094 * 1095 * int (*ndo_stop)(struct net_device *dev); 1096 * This function is called when a network device transitions to the down 1097 * state. 1098 * 1099 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1100 * struct net_device *dev); 1101 * Called when a packet needs to be transmitted. 1102 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1103 * the queue before that can happen; it's for obsolete devices and weird 1104 * corner cases, but the stack really does a non-trivial amount 1105 * of useless work if you return NETDEV_TX_BUSY. 1106 * Required; cannot be NULL. 1107 * 1108 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1109 * struct net_device *dev 1110 * netdev_features_t features); 1111 * Called by core transmit path to determine if device is capable of 1112 * performing offload operations on a given packet. This is to give 1113 * the device an opportunity to implement any restrictions that cannot 1114 * be otherwise expressed by feature flags. The check is called with 1115 * the set of features that the stack has calculated and it returns 1116 * those the driver believes to be appropriate. 1117 * 1118 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1119 * struct net_device *sb_dev); 1120 * Called to decide which queue to use when device supports multiple 1121 * transmit queues. 1122 * 1123 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1124 * This function is called to allow device receiver to make 1125 * changes to configuration when multicast or promiscuous is enabled. 1126 * 1127 * void (*ndo_set_rx_mode)(struct net_device *dev); 1128 * This function is called device changes address list filtering. 1129 * If driver handles unicast address filtering, it should set 1130 * IFF_UNICAST_FLT in its priv_flags. 1131 * 1132 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1133 * This function is called when the Media Access Control address 1134 * needs to be changed. If this interface is not defined, the 1135 * MAC address can not be changed. 1136 * 1137 * int (*ndo_validate_addr)(struct net_device *dev); 1138 * Test if Media Access Control address is valid for the device. 1139 * 1140 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1141 * Old-style ioctl entry point. This is used internally by the 1142 * appletalk and ieee802154 subsystems but is no longer called by 1143 * the device ioctl handler. 1144 * 1145 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1146 * Used by the bonding driver for its device specific ioctls: 1147 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1148 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1149 * 1150 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1151 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1152 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1153 * 1154 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1155 * Used to set network devices bus interface parameters. This interface 1156 * is retained for legacy reasons; new devices should use the bus 1157 * interface (PCI) for low level management. 1158 * 1159 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1160 * Called when a user wants to change the Maximum Transfer Unit 1161 * of a device. 1162 * 1163 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1164 * Callback used when the transmitter has not made any progress 1165 * for dev->watchdog ticks. 1166 * 1167 * void (*ndo_get_stats64)(struct net_device *dev, 1168 * struct rtnl_link_stats64 *storage); 1169 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1170 * Called when a user wants to get the network device usage 1171 * statistics. Drivers must do one of the following: 1172 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1173 * rtnl_link_stats64 structure passed by the caller. 1174 * 2. Define @ndo_get_stats to update a net_device_stats structure 1175 * (which should normally be dev->stats) and return a pointer to 1176 * it. The structure may be changed asynchronously only if each 1177 * field is written atomically. 1178 * 3. Update dev->stats asynchronously and atomically, and define 1179 * neither operation. 1180 * 1181 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1182 * Return true if this device supports offload stats of this attr_id. 1183 * 1184 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1185 * void *attr_data) 1186 * Get statistics for offload operations by attr_id. Write it into the 1187 * attr_data pointer. 1188 * 1189 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1190 * If device supports VLAN filtering this function is called when a 1191 * VLAN id is registered. 1192 * 1193 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1194 * If device supports VLAN filtering this function is called when a 1195 * VLAN id is unregistered. 1196 * 1197 * void (*ndo_poll_controller)(struct net_device *dev); 1198 * 1199 * SR-IOV management functions. 1200 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1201 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1202 * u8 qos, __be16 proto); 1203 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1204 * int max_tx_rate); 1205 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1206 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1207 * int (*ndo_get_vf_config)(struct net_device *dev, 1208 * int vf, struct ifla_vf_info *ivf); 1209 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1210 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1211 * struct nlattr *port[]); 1212 * 1213 * Enable or disable the VF ability to query its RSS Redirection Table and 1214 * Hash Key. This is needed since on some devices VF share this information 1215 * with PF and querying it may introduce a theoretical security risk. 1216 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1217 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1218 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1219 * void *type_data); 1220 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1221 * This is always called from the stack with the rtnl lock held and netif 1222 * tx queues stopped. This allows the netdevice to perform queue 1223 * management safely. 1224 * 1225 * Fiber Channel over Ethernet (FCoE) offload functions. 1226 * int (*ndo_fcoe_enable)(struct net_device *dev); 1227 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1228 * so the underlying device can perform whatever needed configuration or 1229 * initialization to support acceleration of FCoE traffic. 1230 * 1231 * int (*ndo_fcoe_disable)(struct net_device *dev); 1232 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1233 * so the underlying device can perform whatever needed clean-ups to 1234 * stop supporting acceleration of FCoE traffic. 1235 * 1236 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1237 * struct scatterlist *sgl, unsigned int sgc); 1238 * Called when the FCoE Initiator wants to initialize an I/O that 1239 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1240 * perform necessary setup and returns 1 to indicate the device is set up 1241 * successfully to perform DDP on this I/O, otherwise this returns 0. 1242 * 1243 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1244 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1245 * indicated by the FC exchange id 'xid', so the underlying device can 1246 * clean up and reuse resources for later DDP requests. 1247 * 1248 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1249 * struct scatterlist *sgl, unsigned int sgc); 1250 * Called when the FCoE Target wants to initialize an I/O that 1251 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1252 * perform necessary setup and returns 1 to indicate the device is set up 1253 * successfully to perform DDP on this I/O, otherwise this returns 0. 1254 * 1255 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1256 * struct netdev_fcoe_hbainfo *hbainfo); 1257 * Called when the FCoE Protocol stack wants information on the underlying 1258 * device. This information is utilized by the FCoE protocol stack to 1259 * register attributes with Fiber Channel management service as per the 1260 * FC-GS Fabric Device Management Information(FDMI) specification. 1261 * 1262 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1263 * Called when the underlying device wants to override default World Wide 1264 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1265 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1266 * protocol stack to use. 1267 * 1268 * RFS acceleration. 1269 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1270 * u16 rxq_index, u32 flow_id); 1271 * Set hardware filter for RFS. rxq_index is the target queue index; 1272 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1273 * Return the filter ID on success, or a negative error code. 1274 * 1275 * Slave management functions (for bridge, bonding, etc). 1276 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1277 * Called to make another netdev an underling. 1278 * 1279 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1280 * Called to release previously enslaved netdev. 1281 * 1282 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1283 * struct sk_buff *skb, 1284 * bool all_slaves); 1285 * Get the xmit slave of master device. If all_slaves is true, function 1286 * assume all the slaves can transmit. 1287 * 1288 * Feature/offload setting functions. 1289 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1290 * netdev_features_t features); 1291 * Adjusts the requested feature flags according to device-specific 1292 * constraints, and returns the resulting flags. Must not modify 1293 * the device state. 1294 * 1295 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1296 * Called to update device configuration to new features. Passed 1297 * feature set might be less than what was returned by ndo_fix_features()). 1298 * Must return >0 or -errno if it changed dev->features itself. 1299 * 1300 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1301 * struct net_device *dev, 1302 * const unsigned char *addr, u16 vid, u16 flags, 1303 * struct netlink_ext_ack *extack); 1304 * Adds an FDB entry to dev for addr. 1305 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1306 * struct net_device *dev, 1307 * const unsigned char *addr, u16 vid) 1308 * Deletes the FDB entry from dev coresponding to addr. 1309 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1310 * struct net_device *dev, 1311 * u16 vid, 1312 * struct netlink_ext_ack *extack); 1313 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1314 * struct net_device *dev, struct net_device *filter_dev, 1315 * int *idx) 1316 * Used to add FDB entries to dump requests. Implementers should add 1317 * entries to skb and update idx with the number of entries. 1318 * 1319 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1320 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1321 * Adds an MDB entry to dev. 1322 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1323 * struct netlink_ext_ack *extack); 1324 * Deletes the MDB entry from dev. 1325 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1326 * struct netlink_callback *cb); 1327 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1328 * callback is used by core rtnetlink code. 1329 * 1330 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1331 * u16 flags, struct netlink_ext_ack *extack) 1332 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1333 * struct net_device *dev, u32 filter_mask, 1334 * int nlflags) 1335 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1336 * u16 flags); 1337 * 1338 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1339 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1340 * which do not represent real hardware may define this to allow their 1341 * userspace components to manage their virtual carrier state. Devices 1342 * that determine carrier state from physical hardware properties (eg 1343 * network cables) or protocol-dependent mechanisms (eg 1344 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1345 * 1346 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1347 * struct netdev_phys_item_id *ppid); 1348 * Called to get ID of physical port of this device. If driver does 1349 * not implement this, it is assumed that the hw is not able to have 1350 * multiple net devices on single physical port. 1351 * 1352 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1353 * struct netdev_phys_item_id *ppid) 1354 * Called to get the parent ID of the physical port of this device. 1355 * 1356 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1357 * struct net_device *dev) 1358 * Called by upper layer devices to accelerate switching or other 1359 * station functionality into hardware. 'pdev is the lowerdev 1360 * to use for the offload and 'dev' is the net device that will 1361 * back the offload. Returns a pointer to the private structure 1362 * the upper layer will maintain. 1363 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1364 * Called by upper layer device to delete the station created 1365 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1366 * the station and priv is the structure returned by the add 1367 * operation. 1368 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1369 * int queue_index, u32 maxrate); 1370 * Called when a user wants to set a max-rate limitation of specific 1371 * TX queue. 1372 * int (*ndo_get_iflink)(const struct net_device *dev); 1373 * Called to get the iflink value of this device. 1374 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1375 * This function is used to get egress tunnel information for given skb. 1376 * This is useful for retrieving outer tunnel header parameters while 1377 * sampling packet. 1378 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1379 * This function is used to specify the headroom that the skb must 1380 * consider when allocation skb during packet reception. Setting 1381 * appropriate rx headroom value allows avoiding skb head copy on 1382 * forward. Setting a negative value resets the rx headroom to the 1383 * default value. 1384 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1385 * This function is used to set or query state related to XDP on the 1386 * netdevice and manage BPF offload. See definition of 1387 * enum bpf_netdev_command for details. 1388 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1389 * u32 flags); 1390 * This function is used to submit @n XDP packets for transmit on a 1391 * netdevice. Returns number of frames successfully transmitted, frames 1392 * that got dropped are freed/returned via xdp_return_frame(). 1393 * Returns negative number, means general error invoking ndo, meaning 1394 * no frames were xmit'ed and core-caller will free all frames. 1395 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1396 * struct xdp_buff *xdp); 1397 * Get the xmit slave of master device based on the xdp_buff. 1398 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1399 * This function is used to wake up the softirq, ksoftirqd or kthread 1400 * responsible for sending and/or receiving packets on a specific 1401 * queue id bound to an AF_XDP socket. The flags field specifies if 1402 * only RX, only Tx, or both should be woken up using the flags 1403 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1404 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1405 * int cmd); 1406 * Add, change, delete or get information on an IPv4 tunnel. 1407 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1408 * If a device is paired with a peer device, return the peer instance. 1409 * The caller must be under RCU read context. 1410 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1411 * Get the forwarding path to reach the real device from the HW destination address 1412 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1413 * const struct skb_shared_hwtstamps *hwtstamps, 1414 * bool cycles); 1415 * Get hardware timestamp based on normal/adjustable time or free running 1416 * cycle counter. This function is required if physical clock supports a 1417 * free running cycle counter. 1418 */ 1419 struct net_device_ops { 1420 int (*ndo_init)(struct net_device *dev); 1421 void (*ndo_uninit)(struct net_device *dev); 1422 int (*ndo_open)(struct net_device *dev); 1423 int (*ndo_stop)(struct net_device *dev); 1424 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1425 struct net_device *dev); 1426 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1427 struct net_device *dev, 1428 netdev_features_t features); 1429 u16 (*ndo_select_queue)(struct net_device *dev, 1430 struct sk_buff *skb, 1431 struct net_device *sb_dev); 1432 void (*ndo_change_rx_flags)(struct net_device *dev, 1433 int flags); 1434 void (*ndo_set_rx_mode)(struct net_device *dev); 1435 int (*ndo_set_mac_address)(struct net_device *dev, 1436 void *addr); 1437 int (*ndo_validate_addr)(struct net_device *dev); 1438 int (*ndo_do_ioctl)(struct net_device *dev, 1439 struct ifreq *ifr, int cmd); 1440 int (*ndo_eth_ioctl)(struct net_device *dev, 1441 struct ifreq *ifr, int cmd); 1442 int (*ndo_siocbond)(struct net_device *dev, 1443 struct ifreq *ifr, int cmd); 1444 int (*ndo_siocwandev)(struct net_device *dev, 1445 struct if_settings *ifs); 1446 int (*ndo_siocdevprivate)(struct net_device *dev, 1447 struct ifreq *ifr, 1448 void __user *data, int cmd); 1449 int (*ndo_set_config)(struct net_device *dev, 1450 struct ifmap *map); 1451 int (*ndo_change_mtu)(struct net_device *dev, 1452 int new_mtu); 1453 int (*ndo_neigh_setup)(struct net_device *dev, 1454 struct neigh_parms *); 1455 void (*ndo_tx_timeout) (struct net_device *dev, 1456 unsigned int txqueue); 1457 1458 void (*ndo_get_stats64)(struct net_device *dev, 1459 struct rtnl_link_stats64 *storage); 1460 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1461 int (*ndo_get_offload_stats)(int attr_id, 1462 const struct net_device *dev, 1463 void *attr_data); 1464 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1465 1466 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1467 __be16 proto, u16 vid); 1468 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1469 __be16 proto, u16 vid); 1470 #ifdef CONFIG_NET_POLL_CONTROLLER 1471 void (*ndo_poll_controller)(struct net_device *dev); 1472 int (*ndo_netpoll_setup)(struct net_device *dev, 1473 struct netpoll_info *info); 1474 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1475 #endif 1476 int (*ndo_set_vf_mac)(struct net_device *dev, 1477 int queue, u8 *mac); 1478 int (*ndo_set_vf_vlan)(struct net_device *dev, 1479 int queue, u16 vlan, 1480 u8 qos, __be16 proto); 1481 int (*ndo_set_vf_rate)(struct net_device *dev, 1482 int vf, int min_tx_rate, 1483 int max_tx_rate); 1484 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1485 int vf, bool setting); 1486 int (*ndo_set_vf_trust)(struct net_device *dev, 1487 int vf, bool setting); 1488 int (*ndo_get_vf_config)(struct net_device *dev, 1489 int vf, 1490 struct ifla_vf_info *ivf); 1491 int (*ndo_set_vf_link_state)(struct net_device *dev, 1492 int vf, int link_state); 1493 int (*ndo_get_vf_stats)(struct net_device *dev, 1494 int vf, 1495 struct ifla_vf_stats 1496 *vf_stats); 1497 int (*ndo_set_vf_port)(struct net_device *dev, 1498 int vf, 1499 struct nlattr *port[]); 1500 int (*ndo_get_vf_port)(struct net_device *dev, 1501 int vf, struct sk_buff *skb); 1502 int (*ndo_get_vf_guid)(struct net_device *dev, 1503 int vf, 1504 struct ifla_vf_guid *node_guid, 1505 struct ifla_vf_guid *port_guid); 1506 int (*ndo_set_vf_guid)(struct net_device *dev, 1507 int vf, u64 guid, 1508 int guid_type); 1509 int (*ndo_set_vf_rss_query_en)( 1510 struct net_device *dev, 1511 int vf, bool setting); 1512 int (*ndo_setup_tc)(struct net_device *dev, 1513 enum tc_setup_type type, 1514 void *type_data); 1515 #if IS_ENABLED(CONFIG_FCOE) 1516 int (*ndo_fcoe_enable)(struct net_device *dev); 1517 int (*ndo_fcoe_disable)(struct net_device *dev); 1518 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1519 u16 xid, 1520 struct scatterlist *sgl, 1521 unsigned int sgc); 1522 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1523 u16 xid); 1524 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1525 u16 xid, 1526 struct scatterlist *sgl, 1527 unsigned int sgc); 1528 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1529 struct netdev_fcoe_hbainfo *hbainfo); 1530 #endif 1531 1532 #if IS_ENABLED(CONFIG_LIBFCOE) 1533 #define NETDEV_FCOE_WWNN 0 1534 #define NETDEV_FCOE_WWPN 1 1535 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1536 u64 *wwn, int type); 1537 #endif 1538 1539 #ifdef CONFIG_RFS_ACCEL 1540 int (*ndo_rx_flow_steer)(struct net_device *dev, 1541 const struct sk_buff *skb, 1542 u16 rxq_index, 1543 u32 flow_id); 1544 #endif 1545 int (*ndo_add_slave)(struct net_device *dev, 1546 struct net_device *slave_dev, 1547 struct netlink_ext_ack *extack); 1548 int (*ndo_del_slave)(struct net_device *dev, 1549 struct net_device *slave_dev); 1550 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1551 struct sk_buff *skb, 1552 bool all_slaves); 1553 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1554 struct sock *sk); 1555 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1556 netdev_features_t features); 1557 int (*ndo_set_features)(struct net_device *dev, 1558 netdev_features_t features); 1559 int (*ndo_neigh_construct)(struct net_device *dev, 1560 struct neighbour *n); 1561 void (*ndo_neigh_destroy)(struct net_device *dev, 1562 struct neighbour *n); 1563 1564 int (*ndo_fdb_add)(struct ndmsg *ndm, 1565 struct nlattr *tb[], 1566 struct net_device *dev, 1567 const unsigned char *addr, 1568 u16 vid, 1569 u16 flags, 1570 struct netlink_ext_ack *extack); 1571 int (*ndo_fdb_del)(struct ndmsg *ndm, 1572 struct nlattr *tb[], 1573 struct net_device *dev, 1574 const unsigned char *addr, 1575 u16 vid, struct netlink_ext_ack *extack); 1576 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1577 struct nlattr *tb[], 1578 struct net_device *dev, 1579 u16 vid, 1580 struct netlink_ext_ack *extack); 1581 int (*ndo_fdb_dump)(struct sk_buff *skb, 1582 struct netlink_callback *cb, 1583 struct net_device *dev, 1584 struct net_device *filter_dev, 1585 int *idx); 1586 int (*ndo_fdb_get)(struct sk_buff *skb, 1587 struct nlattr *tb[], 1588 struct net_device *dev, 1589 const unsigned char *addr, 1590 u16 vid, u32 portid, u32 seq, 1591 struct netlink_ext_ack *extack); 1592 int (*ndo_mdb_add)(struct net_device *dev, 1593 struct nlattr *tb[], 1594 u16 nlmsg_flags, 1595 struct netlink_ext_ack *extack); 1596 int (*ndo_mdb_del)(struct net_device *dev, 1597 struct nlattr *tb[], 1598 struct netlink_ext_ack *extack); 1599 int (*ndo_mdb_dump)(struct net_device *dev, 1600 struct sk_buff *skb, 1601 struct netlink_callback *cb); 1602 int (*ndo_bridge_setlink)(struct net_device *dev, 1603 struct nlmsghdr *nlh, 1604 u16 flags, 1605 struct netlink_ext_ack *extack); 1606 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1607 u32 pid, u32 seq, 1608 struct net_device *dev, 1609 u32 filter_mask, 1610 int nlflags); 1611 int (*ndo_bridge_dellink)(struct net_device *dev, 1612 struct nlmsghdr *nlh, 1613 u16 flags); 1614 int (*ndo_change_carrier)(struct net_device *dev, 1615 bool new_carrier); 1616 int (*ndo_get_phys_port_id)(struct net_device *dev, 1617 struct netdev_phys_item_id *ppid); 1618 int (*ndo_get_port_parent_id)(struct net_device *dev, 1619 struct netdev_phys_item_id *ppid); 1620 int (*ndo_get_phys_port_name)(struct net_device *dev, 1621 char *name, size_t len); 1622 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1623 struct net_device *dev); 1624 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1625 void *priv); 1626 1627 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1628 int queue_index, 1629 u32 maxrate); 1630 int (*ndo_get_iflink)(const struct net_device *dev); 1631 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1632 struct sk_buff *skb); 1633 void (*ndo_set_rx_headroom)(struct net_device *dev, 1634 int needed_headroom); 1635 int (*ndo_bpf)(struct net_device *dev, 1636 struct netdev_bpf *bpf); 1637 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1638 struct xdp_frame **xdp, 1639 u32 flags); 1640 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1641 struct xdp_buff *xdp); 1642 int (*ndo_xsk_wakeup)(struct net_device *dev, 1643 u32 queue_id, u32 flags); 1644 int (*ndo_tunnel_ctl)(struct net_device *dev, 1645 struct ip_tunnel_parm *p, int cmd); 1646 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1647 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1648 struct net_device_path *path); 1649 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1650 const struct skb_shared_hwtstamps *hwtstamps, 1651 bool cycles); 1652 }; 1653 1654 struct xdp_metadata_ops { 1655 int (*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp); 1656 int (*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash, 1657 enum xdp_rss_hash_type *rss_type); 1658 }; 1659 1660 /** 1661 * enum netdev_priv_flags - &struct net_device priv_flags 1662 * 1663 * These are the &struct net_device, they are only set internally 1664 * by drivers and used in the kernel. These flags are invisible to 1665 * userspace; this means that the order of these flags can change 1666 * during any kernel release. 1667 * 1668 * You should have a pretty good reason to be extending these flags. 1669 * 1670 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1671 * @IFF_EBRIDGE: Ethernet bridging device 1672 * @IFF_BONDING: bonding master or slave 1673 * @IFF_ISATAP: ISATAP interface (RFC4214) 1674 * @IFF_WAN_HDLC: WAN HDLC device 1675 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1676 * release skb->dst 1677 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1678 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1679 * @IFF_MACVLAN_PORT: device used as macvlan port 1680 * @IFF_BRIDGE_PORT: device used as bridge port 1681 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1682 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1683 * @IFF_UNICAST_FLT: Supports unicast filtering 1684 * @IFF_TEAM_PORT: device used as team port 1685 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1686 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1687 * change when it's running 1688 * @IFF_MACVLAN: Macvlan device 1689 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1690 * underlying stacked devices 1691 * @IFF_L3MDEV_MASTER: device is an L3 master device 1692 * @IFF_NO_QUEUE: device can run without qdisc attached 1693 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1694 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1695 * @IFF_TEAM: device is a team device 1696 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1697 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1698 * entity (i.e. the master device for bridged veth) 1699 * @IFF_MACSEC: device is a MACsec device 1700 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1701 * @IFF_FAILOVER: device is a failover master device 1702 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1703 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1704 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1705 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1706 * skb_headlen(skb) == 0 (data starts from frag0) 1707 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1708 */ 1709 enum netdev_priv_flags { 1710 IFF_802_1Q_VLAN = 1<<0, 1711 IFF_EBRIDGE = 1<<1, 1712 IFF_BONDING = 1<<2, 1713 IFF_ISATAP = 1<<3, 1714 IFF_WAN_HDLC = 1<<4, 1715 IFF_XMIT_DST_RELEASE = 1<<5, 1716 IFF_DONT_BRIDGE = 1<<6, 1717 IFF_DISABLE_NETPOLL = 1<<7, 1718 IFF_MACVLAN_PORT = 1<<8, 1719 IFF_BRIDGE_PORT = 1<<9, 1720 IFF_OVS_DATAPATH = 1<<10, 1721 IFF_TX_SKB_SHARING = 1<<11, 1722 IFF_UNICAST_FLT = 1<<12, 1723 IFF_TEAM_PORT = 1<<13, 1724 IFF_SUPP_NOFCS = 1<<14, 1725 IFF_LIVE_ADDR_CHANGE = 1<<15, 1726 IFF_MACVLAN = 1<<16, 1727 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1728 IFF_L3MDEV_MASTER = 1<<18, 1729 IFF_NO_QUEUE = 1<<19, 1730 IFF_OPENVSWITCH = 1<<20, 1731 IFF_L3MDEV_SLAVE = 1<<21, 1732 IFF_TEAM = 1<<22, 1733 IFF_RXFH_CONFIGURED = 1<<23, 1734 IFF_PHONY_HEADROOM = 1<<24, 1735 IFF_MACSEC = 1<<25, 1736 IFF_NO_RX_HANDLER = 1<<26, 1737 IFF_FAILOVER = 1<<27, 1738 IFF_FAILOVER_SLAVE = 1<<28, 1739 IFF_L3MDEV_RX_HANDLER = 1<<29, 1740 IFF_NO_ADDRCONF = BIT_ULL(30), 1741 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1742 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1743 }; 1744 1745 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1746 #define IFF_EBRIDGE IFF_EBRIDGE 1747 #define IFF_BONDING IFF_BONDING 1748 #define IFF_ISATAP IFF_ISATAP 1749 #define IFF_WAN_HDLC IFF_WAN_HDLC 1750 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1751 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1752 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1753 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1754 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1755 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1756 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1757 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1758 #define IFF_TEAM_PORT IFF_TEAM_PORT 1759 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1760 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1761 #define IFF_MACVLAN IFF_MACVLAN 1762 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1763 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1764 #define IFF_NO_QUEUE IFF_NO_QUEUE 1765 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1766 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1767 #define IFF_TEAM IFF_TEAM 1768 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1769 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1770 #define IFF_MACSEC IFF_MACSEC 1771 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1772 #define IFF_FAILOVER IFF_FAILOVER 1773 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1774 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1775 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1776 1777 /* Specifies the type of the struct net_device::ml_priv pointer */ 1778 enum netdev_ml_priv_type { 1779 ML_PRIV_NONE, 1780 ML_PRIV_CAN, 1781 }; 1782 1783 /** 1784 * struct net_device - The DEVICE structure. 1785 * 1786 * Actually, this whole structure is a big mistake. It mixes I/O 1787 * data with strictly "high-level" data, and it has to know about 1788 * almost every data structure used in the INET module. 1789 * 1790 * @name: This is the first field of the "visible" part of this structure 1791 * (i.e. as seen by users in the "Space.c" file). It is the name 1792 * of the interface. 1793 * 1794 * @name_node: Name hashlist node 1795 * @ifalias: SNMP alias 1796 * @mem_end: Shared memory end 1797 * @mem_start: Shared memory start 1798 * @base_addr: Device I/O address 1799 * @irq: Device IRQ number 1800 * 1801 * @state: Generic network queuing layer state, see netdev_state_t 1802 * @dev_list: The global list of network devices 1803 * @napi_list: List entry used for polling NAPI devices 1804 * @unreg_list: List entry when we are unregistering the 1805 * device; see the function unregister_netdev 1806 * @close_list: List entry used when we are closing the device 1807 * @ptype_all: Device-specific packet handlers for all protocols 1808 * @ptype_specific: Device-specific, protocol-specific packet handlers 1809 * 1810 * @adj_list: Directly linked devices, like slaves for bonding 1811 * @features: Currently active device features 1812 * @hw_features: User-changeable features 1813 * 1814 * @wanted_features: User-requested features 1815 * @vlan_features: Mask of features inheritable by VLAN devices 1816 * 1817 * @hw_enc_features: Mask of features inherited by encapsulating devices 1818 * This field indicates what encapsulation 1819 * offloads the hardware is capable of doing, 1820 * and drivers will need to set them appropriately. 1821 * 1822 * @mpls_features: Mask of features inheritable by MPLS 1823 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1824 * 1825 * @ifindex: interface index 1826 * @group: The group the device belongs to 1827 * 1828 * @stats: Statistics struct, which was left as a legacy, use 1829 * rtnl_link_stats64 instead 1830 * 1831 * @core_stats: core networking counters, 1832 * do not use this in drivers 1833 * @carrier_up_count: Number of times the carrier has been up 1834 * @carrier_down_count: Number of times the carrier has been down 1835 * 1836 * @wireless_handlers: List of functions to handle Wireless Extensions, 1837 * instead of ioctl, 1838 * see <net/iw_handler.h> for details. 1839 * @wireless_data: Instance data managed by the core of wireless extensions 1840 * 1841 * @netdev_ops: Includes several pointers to callbacks, 1842 * if one wants to override the ndo_*() functions 1843 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1844 * @ethtool_ops: Management operations 1845 * @l3mdev_ops: Layer 3 master device operations 1846 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1847 * discovery handling. Necessary for e.g. 6LoWPAN. 1848 * @xfrmdev_ops: Transformation offload operations 1849 * @tlsdev_ops: Transport Layer Security offload operations 1850 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1851 * of Layer 2 headers. 1852 * 1853 * @flags: Interface flags (a la BSD) 1854 * @xdp_features: XDP capability supported by the device 1855 * @priv_flags: Like 'flags' but invisible to userspace, 1856 * see if.h for the definitions 1857 * @gflags: Global flags ( kept as legacy ) 1858 * @padded: How much padding added by alloc_netdev() 1859 * @operstate: RFC2863 operstate 1860 * @link_mode: Mapping policy to operstate 1861 * @if_port: Selectable AUI, TP, ... 1862 * @dma: DMA channel 1863 * @mtu: Interface MTU value 1864 * @min_mtu: Interface Minimum MTU value 1865 * @max_mtu: Interface Maximum MTU value 1866 * @type: Interface hardware type 1867 * @hard_header_len: Maximum hardware header length. 1868 * @min_header_len: Minimum hardware header length 1869 * 1870 * @needed_headroom: Extra headroom the hardware may need, but not in all 1871 * cases can this be guaranteed 1872 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1873 * cases can this be guaranteed. Some cases also use 1874 * LL_MAX_HEADER instead to allocate the skb 1875 * 1876 * interface address info: 1877 * 1878 * @perm_addr: Permanent hw address 1879 * @addr_assign_type: Hw address assignment type 1880 * @addr_len: Hardware address length 1881 * @upper_level: Maximum depth level of upper devices. 1882 * @lower_level: Maximum depth level of lower devices. 1883 * @neigh_priv_len: Used in neigh_alloc() 1884 * @dev_id: Used to differentiate devices that share 1885 * the same link layer address 1886 * @dev_port: Used to differentiate devices that share 1887 * the same function 1888 * @addr_list_lock: XXX: need comments on this one 1889 * @name_assign_type: network interface name assignment type 1890 * @uc_promisc: Counter that indicates promiscuous mode 1891 * has been enabled due to the need to listen to 1892 * additional unicast addresses in a device that 1893 * does not implement ndo_set_rx_mode() 1894 * @uc: unicast mac addresses 1895 * @mc: multicast mac addresses 1896 * @dev_addrs: list of device hw addresses 1897 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1898 * @promiscuity: Number of times the NIC is told to work in 1899 * promiscuous mode; if it becomes 0 the NIC will 1900 * exit promiscuous mode 1901 * @allmulti: Counter, enables or disables allmulticast mode 1902 * 1903 * @vlan_info: VLAN info 1904 * @dsa_ptr: dsa specific data 1905 * @tipc_ptr: TIPC specific data 1906 * @atalk_ptr: AppleTalk link 1907 * @ip_ptr: IPv4 specific data 1908 * @ip6_ptr: IPv6 specific data 1909 * @ax25_ptr: AX.25 specific data 1910 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1911 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1912 * device struct 1913 * @mpls_ptr: mpls_dev struct pointer 1914 * @mctp_ptr: MCTP specific data 1915 * 1916 * @dev_addr: Hw address (before bcast, 1917 * because most packets are unicast) 1918 * 1919 * @_rx: Array of RX queues 1920 * @num_rx_queues: Number of RX queues 1921 * allocated at register_netdev() time 1922 * @real_num_rx_queues: Number of RX queues currently active in device 1923 * @xdp_prog: XDP sockets filter program pointer 1924 * @gro_flush_timeout: timeout for GRO layer in NAPI 1925 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1926 * allow to avoid NIC hard IRQ, on busy queues. 1927 * 1928 * @rx_handler: handler for received packets 1929 * @rx_handler_data: XXX: need comments on this one 1930 * @miniq_ingress: ingress/clsact qdisc specific data for 1931 * ingress processing 1932 * @ingress_queue: XXX: need comments on this one 1933 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1934 * @broadcast: hw bcast address 1935 * 1936 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1937 * indexed by RX queue number. Assigned by driver. 1938 * This must only be set if the ndo_rx_flow_steer 1939 * operation is defined 1940 * @index_hlist: Device index hash chain 1941 * 1942 * @_tx: Array of TX queues 1943 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1944 * @real_num_tx_queues: Number of TX queues currently active in device 1945 * @qdisc: Root qdisc from userspace point of view 1946 * @tx_queue_len: Max frames per queue allowed 1947 * @tx_global_lock: XXX: need comments on this one 1948 * @xdp_bulkq: XDP device bulk queue 1949 * @xps_maps: all CPUs/RXQs maps for XPS device 1950 * 1951 * @xps_maps: XXX: need comments on this one 1952 * @miniq_egress: clsact qdisc specific data for 1953 * egress processing 1954 * @nf_hooks_egress: netfilter hooks executed for egress packets 1955 * @qdisc_hash: qdisc hash table 1956 * @watchdog_timeo: Represents the timeout that is used by 1957 * the watchdog (see dev_watchdog()) 1958 * @watchdog_timer: List of timers 1959 * 1960 * @proto_down_reason: reason a netdev interface is held down 1961 * @pcpu_refcnt: Number of references to this device 1962 * @dev_refcnt: Number of references to this device 1963 * @refcnt_tracker: Tracker directory for tracked references to this device 1964 * @todo_list: Delayed register/unregister 1965 * @link_watch_list: XXX: need comments on this one 1966 * 1967 * @reg_state: Register/unregister state machine 1968 * @dismantle: Device is going to be freed 1969 * @rtnl_link_state: This enum represents the phases of creating 1970 * a new link 1971 * 1972 * @needs_free_netdev: Should unregister perform free_netdev? 1973 * @priv_destructor: Called from unregister 1974 * @npinfo: XXX: need comments on this one 1975 * @nd_net: Network namespace this network device is inside 1976 * 1977 * @ml_priv: Mid-layer private 1978 * @ml_priv_type: Mid-layer private type 1979 * @lstats: Loopback statistics 1980 * @tstats: Tunnel statistics 1981 * @dstats: Dummy statistics 1982 * @vstats: Virtual ethernet statistics 1983 * 1984 * @garp_port: GARP 1985 * @mrp_port: MRP 1986 * 1987 * @dm_private: Drop monitor private 1988 * 1989 * @dev: Class/net/name entry 1990 * @sysfs_groups: Space for optional device, statistics and wireless 1991 * sysfs groups 1992 * 1993 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1994 * @rtnl_link_ops: Rtnl_link_ops 1995 * 1996 * @gso_max_size: Maximum size of generic segmentation offload 1997 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1998 * @gso_max_segs: Maximum number of segments that can be passed to the 1999 * NIC for GSO 2000 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2001 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2002 * for IPv4. 2003 * 2004 * @dcbnl_ops: Data Center Bridging netlink ops 2005 * @num_tc: Number of traffic classes in the net device 2006 * @tc_to_txq: XXX: need comments on this one 2007 * @prio_tc_map: XXX: need comments on this one 2008 * 2009 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2010 * 2011 * @priomap: XXX: need comments on this one 2012 * @phydev: Physical device may attach itself 2013 * for hardware timestamping 2014 * @sfp_bus: attached &struct sfp_bus structure. 2015 * 2016 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2017 * 2018 * @proto_down: protocol port state information can be sent to the 2019 * switch driver and used to set the phys state of the 2020 * switch port. 2021 * 2022 * @wol_enabled: Wake-on-LAN is enabled 2023 * 2024 * @threaded: napi threaded mode is enabled 2025 * 2026 * @net_notifier_list: List of per-net netdev notifier block 2027 * that follow this device when it is moved 2028 * to another network namespace. 2029 * 2030 * @macsec_ops: MACsec offloading ops 2031 * 2032 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2033 * offload capabilities of the device 2034 * @udp_tunnel_nic: UDP tunnel offload state 2035 * @xdp_state: stores info on attached XDP BPF programs 2036 * 2037 * @nested_level: Used as a parameter of spin_lock_nested() of 2038 * dev->addr_list_lock. 2039 * @unlink_list: As netif_addr_lock() can be called recursively, 2040 * keep a list of interfaces to be deleted. 2041 * @gro_max_size: Maximum size of aggregated packet in generic 2042 * receive offload (GRO) 2043 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2044 * receive offload (GRO), for IPv4. 2045 * 2046 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2047 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2048 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2049 * @dev_registered_tracker: tracker for reference held while 2050 * registered 2051 * @offload_xstats_l3: L3 HW stats for this netdevice. 2052 * 2053 * @devlink_port: Pointer to related devlink port structure. 2054 * Assigned by a driver before netdev registration using 2055 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2056 * during the time netdevice is registered. 2057 * 2058 * FIXME: cleanup struct net_device such that network protocol info 2059 * moves out. 2060 */ 2061 2062 struct net_device { 2063 char name[IFNAMSIZ]; 2064 struct netdev_name_node *name_node; 2065 struct dev_ifalias __rcu *ifalias; 2066 /* 2067 * I/O specific fields 2068 * FIXME: Merge these and struct ifmap into one 2069 */ 2070 unsigned long mem_end; 2071 unsigned long mem_start; 2072 unsigned long base_addr; 2073 2074 /* 2075 * Some hardware also needs these fields (state,dev_list, 2076 * napi_list,unreg_list,close_list) but they are not 2077 * part of the usual set specified in Space.c. 2078 */ 2079 2080 unsigned long state; 2081 2082 struct list_head dev_list; 2083 struct list_head napi_list; 2084 struct list_head unreg_list; 2085 struct list_head close_list; 2086 struct list_head ptype_all; 2087 struct list_head ptype_specific; 2088 2089 struct { 2090 struct list_head upper; 2091 struct list_head lower; 2092 } adj_list; 2093 2094 /* Read-mostly cache-line for fast-path access */ 2095 unsigned int flags; 2096 xdp_features_t xdp_features; 2097 unsigned long long priv_flags; 2098 const struct net_device_ops *netdev_ops; 2099 const struct xdp_metadata_ops *xdp_metadata_ops; 2100 int ifindex; 2101 unsigned short gflags; 2102 unsigned short hard_header_len; 2103 2104 /* Note : dev->mtu is often read without holding a lock. 2105 * Writers usually hold RTNL. 2106 * It is recommended to use READ_ONCE() to annotate the reads, 2107 * and to use WRITE_ONCE() to annotate the writes. 2108 */ 2109 unsigned int mtu; 2110 unsigned short needed_headroom; 2111 unsigned short needed_tailroom; 2112 2113 netdev_features_t features; 2114 netdev_features_t hw_features; 2115 netdev_features_t wanted_features; 2116 netdev_features_t vlan_features; 2117 netdev_features_t hw_enc_features; 2118 netdev_features_t mpls_features; 2119 netdev_features_t gso_partial_features; 2120 2121 unsigned int min_mtu; 2122 unsigned int max_mtu; 2123 unsigned short type; 2124 unsigned char min_header_len; 2125 unsigned char name_assign_type; 2126 2127 int group; 2128 2129 struct net_device_stats stats; /* not used by modern drivers */ 2130 2131 struct net_device_core_stats __percpu *core_stats; 2132 2133 /* Stats to monitor link on/off, flapping */ 2134 atomic_t carrier_up_count; 2135 atomic_t carrier_down_count; 2136 2137 #ifdef CONFIG_WIRELESS_EXT 2138 const struct iw_handler_def *wireless_handlers; 2139 struct iw_public_data *wireless_data; 2140 #endif 2141 const struct ethtool_ops *ethtool_ops; 2142 #ifdef CONFIG_NET_L3_MASTER_DEV 2143 const struct l3mdev_ops *l3mdev_ops; 2144 #endif 2145 #if IS_ENABLED(CONFIG_IPV6) 2146 const struct ndisc_ops *ndisc_ops; 2147 #endif 2148 2149 #ifdef CONFIG_XFRM_OFFLOAD 2150 const struct xfrmdev_ops *xfrmdev_ops; 2151 #endif 2152 2153 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2154 const struct tlsdev_ops *tlsdev_ops; 2155 #endif 2156 2157 const struct header_ops *header_ops; 2158 2159 unsigned char operstate; 2160 unsigned char link_mode; 2161 2162 unsigned char if_port; 2163 unsigned char dma; 2164 2165 /* Interface address info. */ 2166 unsigned char perm_addr[MAX_ADDR_LEN]; 2167 unsigned char addr_assign_type; 2168 unsigned char addr_len; 2169 unsigned char upper_level; 2170 unsigned char lower_level; 2171 2172 unsigned short neigh_priv_len; 2173 unsigned short dev_id; 2174 unsigned short dev_port; 2175 unsigned short padded; 2176 2177 spinlock_t addr_list_lock; 2178 int irq; 2179 2180 struct netdev_hw_addr_list uc; 2181 struct netdev_hw_addr_list mc; 2182 struct netdev_hw_addr_list dev_addrs; 2183 2184 #ifdef CONFIG_SYSFS 2185 struct kset *queues_kset; 2186 #endif 2187 #ifdef CONFIG_LOCKDEP 2188 struct list_head unlink_list; 2189 #endif 2190 unsigned int promiscuity; 2191 unsigned int allmulti; 2192 bool uc_promisc; 2193 #ifdef CONFIG_LOCKDEP 2194 unsigned char nested_level; 2195 #endif 2196 2197 2198 /* Protocol-specific pointers */ 2199 2200 struct in_device __rcu *ip_ptr; 2201 struct inet6_dev __rcu *ip6_ptr; 2202 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2203 struct vlan_info __rcu *vlan_info; 2204 #endif 2205 #if IS_ENABLED(CONFIG_NET_DSA) 2206 struct dsa_port *dsa_ptr; 2207 #endif 2208 #if IS_ENABLED(CONFIG_TIPC) 2209 struct tipc_bearer __rcu *tipc_ptr; 2210 #endif 2211 #if IS_ENABLED(CONFIG_ATALK) 2212 void *atalk_ptr; 2213 #endif 2214 #if IS_ENABLED(CONFIG_AX25) 2215 void *ax25_ptr; 2216 #endif 2217 #if IS_ENABLED(CONFIG_CFG80211) 2218 struct wireless_dev *ieee80211_ptr; 2219 #endif 2220 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2221 struct wpan_dev *ieee802154_ptr; 2222 #endif 2223 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2224 struct mpls_dev __rcu *mpls_ptr; 2225 #endif 2226 #if IS_ENABLED(CONFIG_MCTP) 2227 struct mctp_dev __rcu *mctp_ptr; 2228 #endif 2229 2230 /* 2231 * Cache lines mostly used on receive path (including eth_type_trans()) 2232 */ 2233 /* Interface address info used in eth_type_trans() */ 2234 const unsigned char *dev_addr; 2235 2236 struct netdev_rx_queue *_rx; 2237 unsigned int num_rx_queues; 2238 unsigned int real_num_rx_queues; 2239 2240 struct bpf_prog __rcu *xdp_prog; 2241 unsigned long gro_flush_timeout; 2242 int napi_defer_hard_irqs; 2243 #define GRO_LEGACY_MAX_SIZE 65536u 2244 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2245 * and shinfo->gso_segs is a 16bit field. 2246 */ 2247 #define GRO_MAX_SIZE (8 * 65535u) 2248 unsigned int gro_max_size; 2249 unsigned int gro_ipv4_max_size; 2250 rx_handler_func_t __rcu *rx_handler; 2251 void __rcu *rx_handler_data; 2252 2253 #ifdef CONFIG_NET_CLS_ACT 2254 struct mini_Qdisc __rcu *miniq_ingress; 2255 #endif 2256 struct netdev_queue __rcu *ingress_queue; 2257 #ifdef CONFIG_NETFILTER_INGRESS 2258 struct nf_hook_entries __rcu *nf_hooks_ingress; 2259 #endif 2260 2261 unsigned char broadcast[MAX_ADDR_LEN]; 2262 #ifdef CONFIG_RFS_ACCEL 2263 struct cpu_rmap *rx_cpu_rmap; 2264 #endif 2265 struct hlist_node index_hlist; 2266 2267 /* 2268 * Cache lines mostly used on transmit path 2269 */ 2270 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2271 unsigned int num_tx_queues; 2272 unsigned int real_num_tx_queues; 2273 struct Qdisc __rcu *qdisc; 2274 unsigned int tx_queue_len; 2275 spinlock_t tx_global_lock; 2276 2277 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2278 2279 #ifdef CONFIG_XPS 2280 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2281 #endif 2282 #ifdef CONFIG_NET_CLS_ACT 2283 struct mini_Qdisc __rcu *miniq_egress; 2284 #endif 2285 #ifdef CONFIG_NETFILTER_EGRESS 2286 struct nf_hook_entries __rcu *nf_hooks_egress; 2287 #endif 2288 2289 #ifdef CONFIG_NET_SCHED 2290 DECLARE_HASHTABLE (qdisc_hash, 4); 2291 #endif 2292 /* These may be needed for future network-power-down code. */ 2293 struct timer_list watchdog_timer; 2294 int watchdog_timeo; 2295 2296 u32 proto_down_reason; 2297 2298 struct list_head todo_list; 2299 2300 #ifdef CONFIG_PCPU_DEV_REFCNT 2301 int __percpu *pcpu_refcnt; 2302 #else 2303 refcount_t dev_refcnt; 2304 #endif 2305 struct ref_tracker_dir refcnt_tracker; 2306 2307 struct list_head link_watch_list; 2308 2309 enum { NETREG_UNINITIALIZED=0, 2310 NETREG_REGISTERED, /* completed register_netdevice */ 2311 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2312 NETREG_UNREGISTERED, /* completed unregister todo */ 2313 NETREG_RELEASED, /* called free_netdev */ 2314 NETREG_DUMMY, /* dummy device for NAPI poll */ 2315 } reg_state:8; 2316 2317 bool dismantle; 2318 2319 enum { 2320 RTNL_LINK_INITIALIZED, 2321 RTNL_LINK_INITIALIZING, 2322 } rtnl_link_state:16; 2323 2324 bool needs_free_netdev; 2325 void (*priv_destructor)(struct net_device *dev); 2326 2327 #ifdef CONFIG_NETPOLL 2328 struct netpoll_info __rcu *npinfo; 2329 #endif 2330 2331 possible_net_t nd_net; 2332 2333 /* mid-layer private */ 2334 void *ml_priv; 2335 enum netdev_ml_priv_type ml_priv_type; 2336 2337 union { 2338 struct pcpu_lstats __percpu *lstats; 2339 struct pcpu_sw_netstats __percpu *tstats; 2340 struct pcpu_dstats __percpu *dstats; 2341 }; 2342 2343 #if IS_ENABLED(CONFIG_GARP) 2344 struct garp_port __rcu *garp_port; 2345 #endif 2346 #if IS_ENABLED(CONFIG_MRP) 2347 struct mrp_port __rcu *mrp_port; 2348 #endif 2349 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2350 struct dm_hw_stat_delta __rcu *dm_private; 2351 #endif 2352 struct device dev; 2353 const struct attribute_group *sysfs_groups[4]; 2354 const struct attribute_group *sysfs_rx_queue_group; 2355 2356 const struct rtnl_link_ops *rtnl_link_ops; 2357 2358 /* for setting kernel sock attribute on TCP connection setup */ 2359 #define GSO_MAX_SEGS 65535u 2360 #define GSO_LEGACY_MAX_SIZE 65536u 2361 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2362 * and shinfo->gso_segs is a 16bit field. 2363 */ 2364 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2365 2366 unsigned int gso_max_size; 2367 #define TSO_LEGACY_MAX_SIZE 65536 2368 #define TSO_MAX_SIZE UINT_MAX 2369 unsigned int tso_max_size; 2370 u16 gso_max_segs; 2371 #define TSO_MAX_SEGS U16_MAX 2372 u16 tso_max_segs; 2373 unsigned int gso_ipv4_max_size; 2374 2375 #ifdef CONFIG_DCB 2376 const struct dcbnl_rtnl_ops *dcbnl_ops; 2377 #endif 2378 s16 num_tc; 2379 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2380 u8 prio_tc_map[TC_BITMASK + 1]; 2381 2382 #if IS_ENABLED(CONFIG_FCOE) 2383 unsigned int fcoe_ddp_xid; 2384 #endif 2385 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2386 struct netprio_map __rcu *priomap; 2387 #endif 2388 struct phy_device *phydev; 2389 struct sfp_bus *sfp_bus; 2390 struct lock_class_key *qdisc_tx_busylock; 2391 bool proto_down; 2392 unsigned wol_enabled:1; 2393 unsigned threaded:1; 2394 2395 struct list_head net_notifier_list; 2396 2397 #if IS_ENABLED(CONFIG_MACSEC) 2398 /* MACsec management functions */ 2399 const struct macsec_ops *macsec_ops; 2400 #endif 2401 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2402 struct udp_tunnel_nic *udp_tunnel_nic; 2403 2404 /* protected by rtnl_lock */ 2405 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2406 2407 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2408 netdevice_tracker linkwatch_dev_tracker; 2409 netdevice_tracker watchdog_dev_tracker; 2410 netdevice_tracker dev_registered_tracker; 2411 struct rtnl_hw_stats64 *offload_xstats_l3; 2412 2413 struct devlink_port *devlink_port; 2414 }; 2415 #define to_net_dev(d) container_of(d, struct net_device, dev) 2416 2417 /* 2418 * Driver should use this to assign devlink port instance to a netdevice 2419 * before it registers the netdevice. Therefore devlink_port is static 2420 * during the netdev lifetime after it is registered. 2421 */ 2422 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2423 ({ \ 2424 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2425 ((dev)->devlink_port = (port)); \ 2426 }) 2427 2428 static inline bool netif_elide_gro(const struct net_device *dev) 2429 { 2430 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2431 return true; 2432 return false; 2433 } 2434 2435 #define NETDEV_ALIGN 32 2436 2437 static inline 2438 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2439 { 2440 return dev->prio_tc_map[prio & TC_BITMASK]; 2441 } 2442 2443 static inline 2444 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2445 { 2446 if (tc >= dev->num_tc) 2447 return -EINVAL; 2448 2449 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2450 return 0; 2451 } 2452 2453 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2454 void netdev_reset_tc(struct net_device *dev); 2455 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2456 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2457 2458 static inline 2459 int netdev_get_num_tc(struct net_device *dev) 2460 { 2461 return dev->num_tc; 2462 } 2463 2464 static inline void net_prefetch(void *p) 2465 { 2466 prefetch(p); 2467 #if L1_CACHE_BYTES < 128 2468 prefetch((u8 *)p + L1_CACHE_BYTES); 2469 #endif 2470 } 2471 2472 static inline void net_prefetchw(void *p) 2473 { 2474 prefetchw(p); 2475 #if L1_CACHE_BYTES < 128 2476 prefetchw((u8 *)p + L1_CACHE_BYTES); 2477 #endif 2478 } 2479 2480 void netdev_unbind_sb_channel(struct net_device *dev, 2481 struct net_device *sb_dev); 2482 int netdev_bind_sb_channel_queue(struct net_device *dev, 2483 struct net_device *sb_dev, 2484 u8 tc, u16 count, u16 offset); 2485 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2486 static inline int netdev_get_sb_channel(struct net_device *dev) 2487 { 2488 return max_t(int, -dev->num_tc, 0); 2489 } 2490 2491 static inline 2492 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2493 unsigned int index) 2494 { 2495 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2496 return &dev->_tx[index]; 2497 } 2498 2499 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2500 const struct sk_buff *skb) 2501 { 2502 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2503 } 2504 2505 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2506 void (*f)(struct net_device *, 2507 struct netdev_queue *, 2508 void *), 2509 void *arg) 2510 { 2511 unsigned int i; 2512 2513 for (i = 0; i < dev->num_tx_queues; i++) 2514 f(dev, &dev->_tx[i], arg); 2515 } 2516 2517 #define netdev_lockdep_set_classes(dev) \ 2518 { \ 2519 static struct lock_class_key qdisc_tx_busylock_key; \ 2520 static struct lock_class_key qdisc_xmit_lock_key; \ 2521 static struct lock_class_key dev_addr_list_lock_key; \ 2522 unsigned int i; \ 2523 \ 2524 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2525 lockdep_set_class(&(dev)->addr_list_lock, \ 2526 &dev_addr_list_lock_key); \ 2527 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2528 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2529 &qdisc_xmit_lock_key); \ 2530 } 2531 2532 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2533 struct net_device *sb_dev); 2534 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2535 struct sk_buff *skb, 2536 struct net_device *sb_dev); 2537 2538 /* returns the headroom that the master device needs to take in account 2539 * when forwarding to this dev 2540 */ 2541 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2542 { 2543 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2544 } 2545 2546 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2547 { 2548 if (dev->netdev_ops->ndo_set_rx_headroom) 2549 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2550 } 2551 2552 /* set the device rx headroom to the dev's default */ 2553 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2554 { 2555 netdev_set_rx_headroom(dev, -1); 2556 } 2557 2558 static inline void *netdev_get_ml_priv(struct net_device *dev, 2559 enum netdev_ml_priv_type type) 2560 { 2561 if (dev->ml_priv_type != type) 2562 return NULL; 2563 2564 return dev->ml_priv; 2565 } 2566 2567 static inline void netdev_set_ml_priv(struct net_device *dev, 2568 void *ml_priv, 2569 enum netdev_ml_priv_type type) 2570 { 2571 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2572 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2573 dev->ml_priv_type, type); 2574 WARN(!dev->ml_priv_type && dev->ml_priv, 2575 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2576 2577 dev->ml_priv = ml_priv; 2578 dev->ml_priv_type = type; 2579 } 2580 2581 /* 2582 * Net namespace inlines 2583 */ 2584 static inline 2585 struct net *dev_net(const struct net_device *dev) 2586 { 2587 return read_pnet(&dev->nd_net); 2588 } 2589 2590 static inline 2591 void dev_net_set(struct net_device *dev, struct net *net) 2592 { 2593 write_pnet(&dev->nd_net, net); 2594 } 2595 2596 /** 2597 * netdev_priv - access network device private data 2598 * @dev: network device 2599 * 2600 * Get network device private data 2601 */ 2602 static inline void *netdev_priv(const struct net_device *dev) 2603 { 2604 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2605 } 2606 2607 /* Set the sysfs physical device reference for the network logical device 2608 * if set prior to registration will cause a symlink during initialization. 2609 */ 2610 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2611 2612 /* Set the sysfs device type for the network logical device to allow 2613 * fine-grained identification of different network device types. For 2614 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2615 */ 2616 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2617 2618 /* Default NAPI poll() weight 2619 * Device drivers are strongly advised to not use bigger value 2620 */ 2621 #define NAPI_POLL_WEIGHT 64 2622 2623 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2624 int (*poll)(struct napi_struct *, int), int weight); 2625 2626 /** 2627 * netif_napi_add() - initialize a NAPI context 2628 * @dev: network device 2629 * @napi: NAPI context 2630 * @poll: polling function 2631 * 2632 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2633 * *any* of the other NAPI-related functions. 2634 */ 2635 static inline void 2636 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2637 int (*poll)(struct napi_struct *, int)) 2638 { 2639 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2640 } 2641 2642 static inline void 2643 netif_napi_add_tx_weight(struct net_device *dev, 2644 struct napi_struct *napi, 2645 int (*poll)(struct napi_struct *, int), 2646 int weight) 2647 { 2648 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2649 netif_napi_add_weight(dev, napi, poll, weight); 2650 } 2651 2652 /** 2653 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2654 * @dev: network device 2655 * @napi: NAPI context 2656 * @poll: polling function 2657 * 2658 * This variant of netif_napi_add() should be used from drivers using NAPI 2659 * to exclusively poll a TX queue. 2660 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2661 */ 2662 static inline void netif_napi_add_tx(struct net_device *dev, 2663 struct napi_struct *napi, 2664 int (*poll)(struct napi_struct *, int)) 2665 { 2666 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2667 } 2668 2669 /** 2670 * __netif_napi_del - remove a NAPI context 2671 * @napi: NAPI context 2672 * 2673 * Warning: caller must observe RCU grace period before freeing memory 2674 * containing @napi. Drivers might want to call this helper to combine 2675 * all the needed RCU grace periods into a single one. 2676 */ 2677 void __netif_napi_del(struct napi_struct *napi); 2678 2679 /** 2680 * netif_napi_del - remove a NAPI context 2681 * @napi: NAPI context 2682 * 2683 * netif_napi_del() removes a NAPI context from the network device NAPI list 2684 */ 2685 static inline void netif_napi_del(struct napi_struct *napi) 2686 { 2687 __netif_napi_del(napi); 2688 synchronize_net(); 2689 } 2690 2691 struct packet_type { 2692 __be16 type; /* This is really htons(ether_type). */ 2693 bool ignore_outgoing; 2694 struct net_device *dev; /* NULL is wildcarded here */ 2695 netdevice_tracker dev_tracker; 2696 int (*func) (struct sk_buff *, 2697 struct net_device *, 2698 struct packet_type *, 2699 struct net_device *); 2700 void (*list_func) (struct list_head *, 2701 struct packet_type *, 2702 struct net_device *); 2703 bool (*id_match)(struct packet_type *ptype, 2704 struct sock *sk); 2705 struct net *af_packet_net; 2706 void *af_packet_priv; 2707 struct list_head list; 2708 }; 2709 2710 struct offload_callbacks { 2711 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2712 netdev_features_t features); 2713 struct sk_buff *(*gro_receive)(struct list_head *head, 2714 struct sk_buff *skb); 2715 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2716 }; 2717 2718 struct packet_offload { 2719 __be16 type; /* This is really htons(ether_type). */ 2720 u16 priority; 2721 struct offload_callbacks callbacks; 2722 struct list_head list; 2723 }; 2724 2725 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2726 struct pcpu_sw_netstats { 2727 u64_stats_t rx_packets; 2728 u64_stats_t rx_bytes; 2729 u64_stats_t tx_packets; 2730 u64_stats_t tx_bytes; 2731 struct u64_stats_sync syncp; 2732 } __aligned(4 * sizeof(u64)); 2733 2734 struct pcpu_lstats { 2735 u64_stats_t packets; 2736 u64_stats_t bytes; 2737 struct u64_stats_sync syncp; 2738 } __aligned(2 * sizeof(u64)); 2739 2740 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2741 2742 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2743 { 2744 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2745 2746 u64_stats_update_begin(&tstats->syncp); 2747 u64_stats_add(&tstats->rx_bytes, len); 2748 u64_stats_inc(&tstats->rx_packets); 2749 u64_stats_update_end(&tstats->syncp); 2750 } 2751 2752 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2753 unsigned int packets, 2754 unsigned int len) 2755 { 2756 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2757 2758 u64_stats_update_begin(&tstats->syncp); 2759 u64_stats_add(&tstats->tx_bytes, len); 2760 u64_stats_add(&tstats->tx_packets, packets); 2761 u64_stats_update_end(&tstats->syncp); 2762 } 2763 2764 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2765 { 2766 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2767 2768 u64_stats_update_begin(&lstats->syncp); 2769 u64_stats_add(&lstats->bytes, len); 2770 u64_stats_inc(&lstats->packets); 2771 u64_stats_update_end(&lstats->syncp); 2772 } 2773 2774 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2775 ({ \ 2776 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2777 if (pcpu_stats) { \ 2778 int __cpu; \ 2779 for_each_possible_cpu(__cpu) { \ 2780 typeof(type) *stat; \ 2781 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2782 u64_stats_init(&stat->syncp); \ 2783 } \ 2784 } \ 2785 pcpu_stats; \ 2786 }) 2787 2788 #define netdev_alloc_pcpu_stats(type) \ 2789 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2790 2791 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2792 ({ \ 2793 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2794 if (pcpu_stats) { \ 2795 int __cpu; \ 2796 for_each_possible_cpu(__cpu) { \ 2797 typeof(type) *stat; \ 2798 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2799 u64_stats_init(&stat->syncp); \ 2800 } \ 2801 } \ 2802 pcpu_stats; \ 2803 }) 2804 2805 enum netdev_lag_tx_type { 2806 NETDEV_LAG_TX_TYPE_UNKNOWN, 2807 NETDEV_LAG_TX_TYPE_RANDOM, 2808 NETDEV_LAG_TX_TYPE_BROADCAST, 2809 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2810 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2811 NETDEV_LAG_TX_TYPE_HASH, 2812 }; 2813 2814 enum netdev_lag_hash { 2815 NETDEV_LAG_HASH_NONE, 2816 NETDEV_LAG_HASH_L2, 2817 NETDEV_LAG_HASH_L34, 2818 NETDEV_LAG_HASH_L23, 2819 NETDEV_LAG_HASH_E23, 2820 NETDEV_LAG_HASH_E34, 2821 NETDEV_LAG_HASH_VLAN_SRCMAC, 2822 NETDEV_LAG_HASH_UNKNOWN, 2823 }; 2824 2825 struct netdev_lag_upper_info { 2826 enum netdev_lag_tx_type tx_type; 2827 enum netdev_lag_hash hash_type; 2828 }; 2829 2830 struct netdev_lag_lower_state_info { 2831 u8 link_up : 1, 2832 tx_enabled : 1; 2833 }; 2834 2835 #include <linux/notifier.h> 2836 2837 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2838 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2839 * adding new types. 2840 */ 2841 enum netdev_cmd { 2842 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2843 NETDEV_DOWN, 2844 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2845 detected a hardware crash and restarted 2846 - we can use this eg to kick tcp sessions 2847 once done */ 2848 NETDEV_CHANGE, /* Notify device state change */ 2849 NETDEV_REGISTER, 2850 NETDEV_UNREGISTER, 2851 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2852 NETDEV_CHANGEADDR, /* notify after the address change */ 2853 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2854 NETDEV_GOING_DOWN, 2855 NETDEV_CHANGENAME, 2856 NETDEV_FEAT_CHANGE, 2857 NETDEV_BONDING_FAILOVER, 2858 NETDEV_PRE_UP, 2859 NETDEV_PRE_TYPE_CHANGE, 2860 NETDEV_POST_TYPE_CHANGE, 2861 NETDEV_POST_INIT, 2862 NETDEV_PRE_UNINIT, 2863 NETDEV_RELEASE, 2864 NETDEV_NOTIFY_PEERS, 2865 NETDEV_JOIN, 2866 NETDEV_CHANGEUPPER, 2867 NETDEV_RESEND_IGMP, 2868 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2869 NETDEV_CHANGEINFODATA, 2870 NETDEV_BONDING_INFO, 2871 NETDEV_PRECHANGEUPPER, 2872 NETDEV_CHANGELOWERSTATE, 2873 NETDEV_UDP_TUNNEL_PUSH_INFO, 2874 NETDEV_UDP_TUNNEL_DROP_INFO, 2875 NETDEV_CHANGE_TX_QUEUE_LEN, 2876 NETDEV_CVLAN_FILTER_PUSH_INFO, 2877 NETDEV_CVLAN_FILTER_DROP_INFO, 2878 NETDEV_SVLAN_FILTER_PUSH_INFO, 2879 NETDEV_SVLAN_FILTER_DROP_INFO, 2880 NETDEV_OFFLOAD_XSTATS_ENABLE, 2881 NETDEV_OFFLOAD_XSTATS_DISABLE, 2882 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2883 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2884 NETDEV_XDP_FEAT_CHANGE, 2885 }; 2886 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2887 2888 int register_netdevice_notifier(struct notifier_block *nb); 2889 int unregister_netdevice_notifier(struct notifier_block *nb); 2890 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2891 int unregister_netdevice_notifier_net(struct net *net, 2892 struct notifier_block *nb); 2893 int register_netdevice_notifier_dev_net(struct net_device *dev, 2894 struct notifier_block *nb, 2895 struct netdev_net_notifier *nn); 2896 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2897 struct notifier_block *nb, 2898 struct netdev_net_notifier *nn); 2899 2900 struct netdev_notifier_info { 2901 struct net_device *dev; 2902 struct netlink_ext_ack *extack; 2903 }; 2904 2905 struct netdev_notifier_info_ext { 2906 struct netdev_notifier_info info; /* must be first */ 2907 union { 2908 u32 mtu; 2909 } ext; 2910 }; 2911 2912 struct netdev_notifier_change_info { 2913 struct netdev_notifier_info info; /* must be first */ 2914 unsigned int flags_changed; 2915 }; 2916 2917 struct netdev_notifier_changeupper_info { 2918 struct netdev_notifier_info info; /* must be first */ 2919 struct net_device *upper_dev; /* new upper dev */ 2920 bool master; /* is upper dev master */ 2921 bool linking; /* is the notification for link or unlink */ 2922 void *upper_info; /* upper dev info */ 2923 }; 2924 2925 struct netdev_notifier_changelowerstate_info { 2926 struct netdev_notifier_info info; /* must be first */ 2927 void *lower_state_info; /* is lower dev state */ 2928 }; 2929 2930 struct netdev_notifier_pre_changeaddr_info { 2931 struct netdev_notifier_info info; /* must be first */ 2932 const unsigned char *dev_addr; 2933 }; 2934 2935 enum netdev_offload_xstats_type { 2936 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2937 }; 2938 2939 struct netdev_notifier_offload_xstats_info { 2940 struct netdev_notifier_info info; /* must be first */ 2941 enum netdev_offload_xstats_type type; 2942 2943 union { 2944 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2945 struct netdev_notifier_offload_xstats_rd *report_delta; 2946 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2947 struct netdev_notifier_offload_xstats_ru *report_used; 2948 }; 2949 }; 2950 2951 int netdev_offload_xstats_enable(struct net_device *dev, 2952 enum netdev_offload_xstats_type type, 2953 struct netlink_ext_ack *extack); 2954 int netdev_offload_xstats_disable(struct net_device *dev, 2955 enum netdev_offload_xstats_type type); 2956 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2957 enum netdev_offload_xstats_type type); 2958 int netdev_offload_xstats_get(struct net_device *dev, 2959 enum netdev_offload_xstats_type type, 2960 struct rtnl_hw_stats64 *stats, bool *used, 2961 struct netlink_ext_ack *extack); 2962 void 2963 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2964 const struct rtnl_hw_stats64 *stats); 2965 void 2966 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2967 void netdev_offload_xstats_push_delta(struct net_device *dev, 2968 enum netdev_offload_xstats_type type, 2969 const struct rtnl_hw_stats64 *stats); 2970 2971 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2972 struct net_device *dev) 2973 { 2974 info->dev = dev; 2975 info->extack = NULL; 2976 } 2977 2978 static inline struct net_device * 2979 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2980 { 2981 return info->dev; 2982 } 2983 2984 static inline struct netlink_ext_ack * 2985 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2986 { 2987 return info->extack; 2988 } 2989 2990 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2991 int call_netdevice_notifiers_info(unsigned long val, 2992 struct netdev_notifier_info *info); 2993 2994 extern rwlock_t dev_base_lock; /* Device list lock */ 2995 2996 #define for_each_netdev(net, d) \ 2997 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2998 #define for_each_netdev_reverse(net, d) \ 2999 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3000 #define for_each_netdev_rcu(net, d) \ 3001 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3002 #define for_each_netdev_safe(net, d, n) \ 3003 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3004 #define for_each_netdev_continue(net, d) \ 3005 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3006 #define for_each_netdev_continue_reverse(net, d) \ 3007 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3008 dev_list) 3009 #define for_each_netdev_continue_rcu(net, d) \ 3010 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3011 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3012 for_each_netdev_rcu(&init_net, slave) \ 3013 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3014 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3015 3016 static inline struct net_device *next_net_device(struct net_device *dev) 3017 { 3018 struct list_head *lh; 3019 struct net *net; 3020 3021 net = dev_net(dev); 3022 lh = dev->dev_list.next; 3023 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3024 } 3025 3026 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3027 { 3028 struct list_head *lh; 3029 struct net *net; 3030 3031 net = dev_net(dev); 3032 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3033 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3034 } 3035 3036 static inline struct net_device *first_net_device(struct net *net) 3037 { 3038 return list_empty(&net->dev_base_head) ? NULL : 3039 net_device_entry(net->dev_base_head.next); 3040 } 3041 3042 static inline struct net_device *first_net_device_rcu(struct net *net) 3043 { 3044 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3045 3046 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3047 } 3048 3049 int netdev_boot_setup_check(struct net_device *dev); 3050 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3051 const char *hwaddr); 3052 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3053 void dev_add_pack(struct packet_type *pt); 3054 void dev_remove_pack(struct packet_type *pt); 3055 void __dev_remove_pack(struct packet_type *pt); 3056 void dev_add_offload(struct packet_offload *po); 3057 void dev_remove_offload(struct packet_offload *po); 3058 3059 int dev_get_iflink(const struct net_device *dev); 3060 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3061 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3062 struct net_device_path_stack *stack); 3063 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3064 unsigned short mask); 3065 struct net_device *dev_get_by_name(struct net *net, const char *name); 3066 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3067 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3068 bool netdev_name_in_use(struct net *net, const char *name); 3069 int dev_alloc_name(struct net_device *dev, const char *name); 3070 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3071 void dev_close(struct net_device *dev); 3072 void dev_close_many(struct list_head *head, bool unlink); 3073 void dev_disable_lro(struct net_device *dev); 3074 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3076 struct net_device *sb_dev); 3077 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3078 struct net_device *sb_dev); 3079 3080 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3081 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3082 3083 static inline int dev_queue_xmit(struct sk_buff *skb) 3084 { 3085 return __dev_queue_xmit(skb, NULL); 3086 } 3087 3088 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3089 struct net_device *sb_dev) 3090 { 3091 return __dev_queue_xmit(skb, sb_dev); 3092 } 3093 3094 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3095 { 3096 int ret; 3097 3098 ret = __dev_direct_xmit(skb, queue_id); 3099 if (!dev_xmit_complete(ret)) 3100 kfree_skb(skb); 3101 return ret; 3102 } 3103 3104 int register_netdevice(struct net_device *dev); 3105 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3106 void unregister_netdevice_many(struct list_head *head); 3107 static inline void unregister_netdevice(struct net_device *dev) 3108 { 3109 unregister_netdevice_queue(dev, NULL); 3110 } 3111 3112 int netdev_refcnt_read(const struct net_device *dev); 3113 void free_netdev(struct net_device *dev); 3114 void netdev_freemem(struct net_device *dev); 3115 int init_dummy_netdev(struct net_device *dev); 3116 3117 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3118 struct sk_buff *skb, 3119 bool all_slaves); 3120 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3121 struct sock *sk); 3122 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3123 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3124 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3125 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3126 int dev_restart(struct net_device *dev); 3127 3128 3129 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3130 unsigned short type, 3131 const void *daddr, const void *saddr, 3132 unsigned int len) 3133 { 3134 if (!dev->header_ops || !dev->header_ops->create) 3135 return 0; 3136 3137 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3138 } 3139 3140 static inline int dev_parse_header(const struct sk_buff *skb, 3141 unsigned char *haddr) 3142 { 3143 const struct net_device *dev = skb->dev; 3144 3145 if (!dev->header_ops || !dev->header_ops->parse) 3146 return 0; 3147 return dev->header_ops->parse(skb, haddr); 3148 } 3149 3150 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3151 { 3152 const struct net_device *dev = skb->dev; 3153 3154 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3155 return 0; 3156 return dev->header_ops->parse_protocol(skb); 3157 } 3158 3159 /* ll_header must have at least hard_header_len allocated */ 3160 static inline bool dev_validate_header(const struct net_device *dev, 3161 char *ll_header, int len) 3162 { 3163 if (likely(len >= dev->hard_header_len)) 3164 return true; 3165 if (len < dev->min_header_len) 3166 return false; 3167 3168 if (capable(CAP_SYS_RAWIO)) { 3169 memset(ll_header + len, 0, dev->hard_header_len - len); 3170 return true; 3171 } 3172 3173 if (dev->header_ops && dev->header_ops->validate) 3174 return dev->header_ops->validate(ll_header, len); 3175 3176 return false; 3177 } 3178 3179 static inline bool dev_has_header(const struct net_device *dev) 3180 { 3181 return dev->header_ops && dev->header_ops->create; 3182 } 3183 3184 /* 3185 * Incoming packets are placed on per-CPU queues 3186 */ 3187 struct softnet_data { 3188 struct list_head poll_list; 3189 struct sk_buff_head process_queue; 3190 3191 /* stats */ 3192 unsigned int processed; 3193 unsigned int time_squeeze; 3194 #ifdef CONFIG_RPS 3195 struct softnet_data *rps_ipi_list; 3196 #endif 3197 3198 bool in_net_rx_action; 3199 bool in_napi_threaded_poll; 3200 3201 #ifdef CONFIG_NET_FLOW_LIMIT 3202 struct sd_flow_limit __rcu *flow_limit; 3203 #endif 3204 struct Qdisc *output_queue; 3205 struct Qdisc **output_queue_tailp; 3206 struct sk_buff *completion_queue; 3207 #ifdef CONFIG_XFRM_OFFLOAD 3208 struct sk_buff_head xfrm_backlog; 3209 #endif 3210 /* written and read only by owning cpu: */ 3211 struct { 3212 u16 recursion; 3213 u8 more; 3214 #ifdef CONFIG_NET_EGRESS 3215 u8 skip_txqueue; 3216 #endif 3217 } xmit; 3218 #ifdef CONFIG_RPS 3219 /* input_queue_head should be written by cpu owning this struct, 3220 * and only read by other cpus. Worth using a cache line. 3221 */ 3222 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3223 3224 /* Elements below can be accessed between CPUs for RPS/RFS */ 3225 call_single_data_t csd ____cacheline_aligned_in_smp; 3226 struct softnet_data *rps_ipi_next; 3227 unsigned int cpu; 3228 unsigned int input_queue_tail; 3229 #endif 3230 unsigned int received_rps; 3231 unsigned int dropped; 3232 struct sk_buff_head input_pkt_queue; 3233 struct napi_struct backlog; 3234 3235 /* Another possibly contended cache line */ 3236 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3237 int defer_count; 3238 int defer_ipi_scheduled; 3239 struct sk_buff *defer_list; 3240 call_single_data_t defer_csd; 3241 }; 3242 3243 static inline void input_queue_head_incr(struct softnet_data *sd) 3244 { 3245 #ifdef CONFIG_RPS 3246 sd->input_queue_head++; 3247 #endif 3248 } 3249 3250 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3251 unsigned int *qtail) 3252 { 3253 #ifdef CONFIG_RPS 3254 *qtail = ++sd->input_queue_tail; 3255 #endif 3256 } 3257 3258 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3259 3260 static inline int dev_recursion_level(void) 3261 { 3262 return this_cpu_read(softnet_data.xmit.recursion); 3263 } 3264 3265 #define XMIT_RECURSION_LIMIT 8 3266 static inline bool dev_xmit_recursion(void) 3267 { 3268 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3269 XMIT_RECURSION_LIMIT); 3270 } 3271 3272 static inline void dev_xmit_recursion_inc(void) 3273 { 3274 __this_cpu_inc(softnet_data.xmit.recursion); 3275 } 3276 3277 static inline void dev_xmit_recursion_dec(void) 3278 { 3279 __this_cpu_dec(softnet_data.xmit.recursion); 3280 } 3281 3282 void __netif_schedule(struct Qdisc *q); 3283 void netif_schedule_queue(struct netdev_queue *txq); 3284 3285 static inline void netif_tx_schedule_all(struct net_device *dev) 3286 { 3287 unsigned int i; 3288 3289 for (i = 0; i < dev->num_tx_queues; i++) 3290 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3291 } 3292 3293 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3294 { 3295 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3296 } 3297 3298 /** 3299 * netif_start_queue - allow transmit 3300 * @dev: network device 3301 * 3302 * Allow upper layers to call the device hard_start_xmit routine. 3303 */ 3304 static inline void netif_start_queue(struct net_device *dev) 3305 { 3306 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3307 } 3308 3309 static inline void netif_tx_start_all_queues(struct net_device *dev) 3310 { 3311 unsigned int i; 3312 3313 for (i = 0; i < dev->num_tx_queues; i++) { 3314 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3315 netif_tx_start_queue(txq); 3316 } 3317 } 3318 3319 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3320 3321 /** 3322 * netif_wake_queue - restart transmit 3323 * @dev: network device 3324 * 3325 * Allow upper layers to call the device hard_start_xmit routine. 3326 * Used for flow control when transmit resources are available. 3327 */ 3328 static inline void netif_wake_queue(struct net_device *dev) 3329 { 3330 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3331 } 3332 3333 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3334 { 3335 unsigned int i; 3336 3337 for (i = 0; i < dev->num_tx_queues; i++) { 3338 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3339 netif_tx_wake_queue(txq); 3340 } 3341 } 3342 3343 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3344 { 3345 /* Must be an atomic op see netif_txq_try_stop() */ 3346 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3347 } 3348 3349 /** 3350 * netif_stop_queue - stop transmitted packets 3351 * @dev: network device 3352 * 3353 * Stop upper layers calling the device hard_start_xmit routine. 3354 * Used for flow control when transmit resources are unavailable. 3355 */ 3356 static inline void netif_stop_queue(struct net_device *dev) 3357 { 3358 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3359 } 3360 3361 void netif_tx_stop_all_queues(struct net_device *dev); 3362 3363 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3364 { 3365 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3366 } 3367 3368 /** 3369 * netif_queue_stopped - test if transmit queue is flowblocked 3370 * @dev: network device 3371 * 3372 * Test if transmit queue on device is currently unable to send. 3373 */ 3374 static inline bool netif_queue_stopped(const struct net_device *dev) 3375 { 3376 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3377 } 3378 3379 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3380 { 3381 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3382 } 3383 3384 static inline bool 3385 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3386 { 3387 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3388 } 3389 3390 static inline bool 3391 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3392 { 3393 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3394 } 3395 3396 /** 3397 * netdev_queue_set_dql_min_limit - set dql minimum limit 3398 * @dev_queue: pointer to transmit queue 3399 * @min_limit: dql minimum limit 3400 * 3401 * Forces xmit_more() to return true until the minimum threshold 3402 * defined by @min_limit is reached (or until the tx queue is 3403 * empty). Warning: to be use with care, misuse will impact the 3404 * latency. 3405 */ 3406 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3407 unsigned int min_limit) 3408 { 3409 #ifdef CONFIG_BQL 3410 dev_queue->dql.min_limit = min_limit; 3411 #endif 3412 } 3413 3414 /** 3415 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3416 * @dev_queue: pointer to transmit queue 3417 * 3418 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3419 * to give appropriate hint to the CPU. 3420 */ 3421 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3422 { 3423 #ifdef CONFIG_BQL 3424 prefetchw(&dev_queue->dql.num_queued); 3425 #endif 3426 } 3427 3428 /** 3429 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3430 * @dev_queue: pointer to transmit queue 3431 * 3432 * BQL enabled drivers might use this helper in their TX completion path, 3433 * to give appropriate hint to the CPU. 3434 */ 3435 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3436 { 3437 #ifdef CONFIG_BQL 3438 prefetchw(&dev_queue->dql.limit); 3439 #endif 3440 } 3441 3442 /** 3443 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3444 * @dev_queue: network device queue 3445 * @bytes: number of bytes queued to the device queue 3446 * 3447 * Report the number of bytes queued for sending/completion to the network 3448 * device hardware queue. @bytes should be a good approximation and should 3449 * exactly match netdev_completed_queue() @bytes. 3450 * This is typically called once per packet, from ndo_start_xmit(). 3451 */ 3452 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3453 unsigned int bytes) 3454 { 3455 #ifdef CONFIG_BQL 3456 dql_queued(&dev_queue->dql, bytes); 3457 3458 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3459 return; 3460 3461 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3462 3463 /* 3464 * The XOFF flag must be set before checking the dql_avail below, 3465 * because in netdev_tx_completed_queue we update the dql_completed 3466 * before checking the XOFF flag. 3467 */ 3468 smp_mb(); 3469 3470 /* check again in case another CPU has just made room avail */ 3471 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3472 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3473 #endif 3474 } 3475 3476 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3477 * that they should not test BQL status themselves. 3478 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3479 * skb of a batch. 3480 * Returns true if the doorbell must be used to kick the NIC. 3481 */ 3482 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3483 unsigned int bytes, 3484 bool xmit_more) 3485 { 3486 if (xmit_more) { 3487 #ifdef CONFIG_BQL 3488 dql_queued(&dev_queue->dql, bytes); 3489 #endif 3490 return netif_tx_queue_stopped(dev_queue); 3491 } 3492 netdev_tx_sent_queue(dev_queue, bytes); 3493 return true; 3494 } 3495 3496 /** 3497 * netdev_sent_queue - report the number of bytes queued to hardware 3498 * @dev: network device 3499 * @bytes: number of bytes queued to the hardware device queue 3500 * 3501 * Report the number of bytes queued for sending/completion to the network 3502 * device hardware queue#0. @bytes should be a good approximation and should 3503 * exactly match netdev_completed_queue() @bytes. 3504 * This is typically called once per packet, from ndo_start_xmit(). 3505 */ 3506 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3507 { 3508 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3509 } 3510 3511 static inline bool __netdev_sent_queue(struct net_device *dev, 3512 unsigned int bytes, 3513 bool xmit_more) 3514 { 3515 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3516 xmit_more); 3517 } 3518 3519 /** 3520 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3521 * @dev_queue: network device queue 3522 * @pkts: number of packets (currently ignored) 3523 * @bytes: number of bytes dequeued from the device queue 3524 * 3525 * Must be called at most once per TX completion round (and not per 3526 * individual packet), so that BQL can adjust its limits appropriately. 3527 */ 3528 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3529 unsigned int pkts, unsigned int bytes) 3530 { 3531 #ifdef CONFIG_BQL 3532 if (unlikely(!bytes)) 3533 return; 3534 3535 dql_completed(&dev_queue->dql, bytes); 3536 3537 /* 3538 * Without the memory barrier there is a small possiblity that 3539 * netdev_tx_sent_queue will miss the update and cause the queue to 3540 * be stopped forever 3541 */ 3542 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3543 3544 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3545 return; 3546 3547 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3548 netif_schedule_queue(dev_queue); 3549 #endif 3550 } 3551 3552 /** 3553 * netdev_completed_queue - report bytes and packets completed by device 3554 * @dev: network device 3555 * @pkts: actual number of packets sent over the medium 3556 * @bytes: actual number of bytes sent over the medium 3557 * 3558 * Report the number of bytes and packets transmitted by the network device 3559 * hardware queue over the physical medium, @bytes must exactly match the 3560 * @bytes amount passed to netdev_sent_queue() 3561 */ 3562 static inline void netdev_completed_queue(struct net_device *dev, 3563 unsigned int pkts, unsigned int bytes) 3564 { 3565 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3566 } 3567 3568 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3569 { 3570 #ifdef CONFIG_BQL 3571 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3572 dql_reset(&q->dql); 3573 #endif 3574 } 3575 3576 /** 3577 * netdev_reset_queue - reset the packets and bytes count of a network device 3578 * @dev_queue: network device 3579 * 3580 * Reset the bytes and packet count of a network device and clear the 3581 * software flow control OFF bit for this network device 3582 */ 3583 static inline void netdev_reset_queue(struct net_device *dev_queue) 3584 { 3585 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3586 } 3587 3588 /** 3589 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3590 * @dev: network device 3591 * @queue_index: given tx queue index 3592 * 3593 * Returns 0 if given tx queue index >= number of device tx queues, 3594 * otherwise returns the originally passed tx queue index. 3595 */ 3596 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3597 { 3598 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3599 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3600 dev->name, queue_index, 3601 dev->real_num_tx_queues); 3602 return 0; 3603 } 3604 3605 return queue_index; 3606 } 3607 3608 /** 3609 * netif_running - test if up 3610 * @dev: network device 3611 * 3612 * Test if the device has been brought up. 3613 */ 3614 static inline bool netif_running(const struct net_device *dev) 3615 { 3616 return test_bit(__LINK_STATE_START, &dev->state); 3617 } 3618 3619 /* 3620 * Routines to manage the subqueues on a device. We only need start, 3621 * stop, and a check if it's stopped. All other device management is 3622 * done at the overall netdevice level. 3623 * Also test the device if we're multiqueue. 3624 */ 3625 3626 /** 3627 * netif_start_subqueue - allow sending packets on subqueue 3628 * @dev: network device 3629 * @queue_index: sub queue index 3630 * 3631 * Start individual transmit queue of a device with multiple transmit queues. 3632 */ 3633 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3634 { 3635 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3636 3637 netif_tx_start_queue(txq); 3638 } 3639 3640 /** 3641 * netif_stop_subqueue - stop sending packets on subqueue 3642 * @dev: network device 3643 * @queue_index: sub queue index 3644 * 3645 * Stop individual transmit queue of a device with multiple transmit queues. 3646 */ 3647 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3648 { 3649 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3650 netif_tx_stop_queue(txq); 3651 } 3652 3653 /** 3654 * __netif_subqueue_stopped - test status of subqueue 3655 * @dev: network device 3656 * @queue_index: sub queue index 3657 * 3658 * Check individual transmit queue of a device with multiple transmit queues. 3659 */ 3660 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3661 u16 queue_index) 3662 { 3663 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3664 3665 return netif_tx_queue_stopped(txq); 3666 } 3667 3668 /** 3669 * netif_subqueue_stopped - test status of subqueue 3670 * @dev: network device 3671 * @skb: sub queue buffer pointer 3672 * 3673 * Check individual transmit queue of a device with multiple transmit queues. 3674 */ 3675 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3676 struct sk_buff *skb) 3677 { 3678 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3679 } 3680 3681 /** 3682 * netif_wake_subqueue - allow sending packets on subqueue 3683 * @dev: network device 3684 * @queue_index: sub queue index 3685 * 3686 * Resume individual transmit queue of a device with multiple transmit queues. 3687 */ 3688 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3689 { 3690 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3691 3692 netif_tx_wake_queue(txq); 3693 } 3694 3695 #ifdef CONFIG_XPS 3696 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3697 u16 index); 3698 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3699 u16 index, enum xps_map_type type); 3700 3701 /** 3702 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3703 * @j: CPU/Rx queue index 3704 * @mask: bitmask of all cpus/rx queues 3705 * @nr_bits: number of bits in the bitmask 3706 * 3707 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3708 */ 3709 static inline bool netif_attr_test_mask(unsigned long j, 3710 const unsigned long *mask, 3711 unsigned int nr_bits) 3712 { 3713 cpu_max_bits_warn(j, nr_bits); 3714 return test_bit(j, mask); 3715 } 3716 3717 /** 3718 * netif_attr_test_online - Test for online CPU/Rx queue 3719 * @j: CPU/Rx queue index 3720 * @online_mask: bitmask for CPUs/Rx queues that are online 3721 * @nr_bits: number of bits in the bitmask 3722 * 3723 * Returns true if a CPU/Rx queue is online. 3724 */ 3725 static inline bool netif_attr_test_online(unsigned long j, 3726 const unsigned long *online_mask, 3727 unsigned int nr_bits) 3728 { 3729 cpu_max_bits_warn(j, nr_bits); 3730 3731 if (online_mask) 3732 return test_bit(j, online_mask); 3733 3734 return (j < nr_bits); 3735 } 3736 3737 /** 3738 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3739 * @n: CPU/Rx queue index 3740 * @srcp: the cpumask/Rx queue mask pointer 3741 * @nr_bits: number of bits in the bitmask 3742 * 3743 * Returns >= nr_bits if no further CPUs/Rx queues set. 3744 */ 3745 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3746 unsigned int nr_bits) 3747 { 3748 /* -1 is a legal arg here. */ 3749 if (n != -1) 3750 cpu_max_bits_warn(n, nr_bits); 3751 3752 if (srcp) 3753 return find_next_bit(srcp, nr_bits, n + 1); 3754 3755 return n + 1; 3756 } 3757 3758 /** 3759 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3760 * @n: CPU/Rx queue index 3761 * @src1p: the first CPUs/Rx queues mask pointer 3762 * @src2p: the second CPUs/Rx queues mask pointer 3763 * @nr_bits: number of bits in the bitmask 3764 * 3765 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3766 */ 3767 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3768 const unsigned long *src2p, 3769 unsigned int nr_bits) 3770 { 3771 /* -1 is a legal arg here. */ 3772 if (n != -1) 3773 cpu_max_bits_warn(n, nr_bits); 3774 3775 if (src1p && src2p) 3776 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3777 else if (src1p) 3778 return find_next_bit(src1p, nr_bits, n + 1); 3779 else if (src2p) 3780 return find_next_bit(src2p, nr_bits, n + 1); 3781 3782 return n + 1; 3783 } 3784 #else 3785 static inline int netif_set_xps_queue(struct net_device *dev, 3786 const struct cpumask *mask, 3787 u16 index) 3788 { 3789 return 0; 3790 } 3791 3792 static inline int __netif_set_xps_queue(struct net_device *dev, 3793 const unsigned long *mask, 3794 u16 index, enum xps_map_type type) 3795 { 3796 return 0; 3797 } 3798 #endif 3799 3800 /** 3801 * netif_is_multiqueue - test if device has multiple transmit queues 3802 * @dev: network device 3803 * 3804 * Check if device has multiple transmit queues 3805 */ 3806 static inline bool netif_is_multiqueue(const struct net_device *dev) 3807 { 3808 return dev->num_tx_queues > 1; 3809 } 3810 3811 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3812 3813 #ifdef CONFIG_SYSFS 3814 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3815 #else 3816 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3817 unsigned int rxqs) 3818 { 3819 dev->real_num_rx_queues = rxqs; 3820 return 0; 3821 } 3822 #endif 3823 int netif_set_real_num_queues(struct net_device *dev, 3824 unsigned int txq, unsigned int rxq); 3825 3826 static inline struct netdev_rx_queue * 3827 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3828 { 3829 return dev->_rx + rxq; 3830 } 3831 3832 #ifdef CONFIG_SYSFS 3833 static inline unsigned int get_netdev_rx_queue_index( 3834 struct netdev_rx_queue *queue) 3835 { 3836 struct net_device *dev = queue->dev; 3837 int index = queue - dev->_rx; 3838 3839 BUG_ON(index >= dev->num_rx_queues); 3840 return index; 3841 } 3842 #endif 3843 3844 int netif_get_num_default_rss_queues(void); 3845 3846 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3847 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3848 3849 /* 3850 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3851 * interrupt context or with hardware interrupts being disabled. 3852 * (in_hardirq() || irqs_disabled()) 3853 * 3854 * We provide four helpers that can be used in following contexts : 3855 * 3856 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3857 * replacing kfree_skb(skb) 3858 * 3859 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3860 * Typically used in place of consume_skb(skb) in TX completion path 3861 * 3862 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3863 * replacing kfree_skb(skb) 3864 * 3865 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3866 * and consumed a packet. Used in place of consume_skb(skb) 3867 */ 3868 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3869 { 3870 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3871 } 3872 3873 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3874 { 3875 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3876 } 3877 3878 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3879 { 3880 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3881 } 3882 3883 static inline void dev_consume_skb_any(struct sk_buff *skb) 3884 { 3885 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3886 } 3887 3888 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3889 struct bpf_prog *xdp_prog); 3890 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3891 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3892 int netif_rx(struct sk_buff *skb); 3893 int __netif_rx(struct sk_buff *skb); 3894 3895 int netif_receive_skb(struct sk_buff *skb); 3896 int netif_receive_skb_core(struct sk_buff *skb); 3897 void netif_receive_skb_list_internal(struct list_head *head); 3898 void netif_receive_skb_list(struct list_head *head); 3899 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3900 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3901 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3902 void napi_get_frags_check(struct napi_struct *napi); 3903 gro_result_t napi_gro_frags(struct napi_struct *napi); 3904 struct packet_offload *gro_find_receive_by_type(__be16 type); 3905 struct packet_offload *gro_find_complete_by_type(__be16 type); 3906 3907 static inline void napi_free_frags(struct napi_struct *napi) 3908 { 3909 kfree_skb(napi->skb); 3910 napi->skb = NULL; 3911 } 3912 3913 bool netdev_is_rx_handler_busy(struct net_device *dev); 3914 int netdev_rx_handler_register(struct net_device *dev, 3915 rx_handler_func_t *rx_handler, 3916 void *rx_handler_data); 3917 void netdev_rx_handler_unregister(struct net_device *dev); 3918 3919 bool dev_valid_name(const char *name); 3920 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3921 { 3922 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3923 } 3924 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3925 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3926 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3927 void __user *data, bool *need_copyout); 3928 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3929 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3930 unsigned int dev_get_flags(const struct net_device *); 3931 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3932 struct netlink_ext_ack *extack); 3933 int dev_change_flags(struct net_device *dev, unsigned int flags, 3934 struct netlink_ext_ack *extack); 3935 int dev_set_alias(struct net_device *, const char *, size_t); 3936 int dev_get_alias(const struct net_device *, char *, size_t); 3937 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3938 const char *pat, int new_ifindex); 3939 static inline 3940 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3941 const char *pat) 3942 { 3943 return __dev_change_net_namespace(dev, net, pat, 0); 3944 } 3945 int __dev_set_mtu(struct net_device *, int); 3946 int dev_set_mtu(struct net_device *, int); 3947 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3948 struct netlink_ext_ack *extack); 3949 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3950 struct netlink_ext_ack *extack); 3951 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3952 struct netlink_ext_ack *extack); 3953 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3954 int dev_get_port_parent_id(struct net_device *dev, 3955 struct netdev_phys_item_id *ppid, bool recurse); 3956 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3957 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3958 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3959 struct netdev_queue *txq, int *ret); 3960 3961 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3962 u8 dev_xdp_prog_count(struct net_device *dev); 3963 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3964 3965 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3966 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3967 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3968 bool is_skb_forwardable(const struct net_device *dev, 3969 const struct sk_buff *skb); 3970 3971 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3972 const struct sk_buff *skb, 3973 const bool check_mtu) 3974 { 3975 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3976 unsigned int len; 3977 3978 if (!(dev->flags & IFF_UP)) 3979 return false; 3980 3981 if (!check_mtu) 3982 return true; 3983 3984 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3985 if (skb->len <= len) 3986 return true; 3987 3988 /* if TSO is enabled, we don't care about the length as the packet 3989 * could be forwarded without being segmented before 3990 */ 3991 if (skb_is_gso(skb)) 3992 return true; 3993 3994 return false; 3995 } 3996 3997 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3998 3999 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 4000 { 4001 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 4002 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 4003 4004 if (likely(p)) 4005 return p; 4006 4007 return netdev_core_stats_alloc(dev); 4008 } 4009 4010 #define DEV_CORE_STATS_INC(FIELD) \ 4011 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4012 { \ 4013 struct net_device_core_stats __percpu *p; \ 4014 \ 4015 p = dev_core_stats(dev); \ 4016 if (p) \ 4017 this_cpu_inc(p->FIELD); \ 4018 } 4019 DEV_CORE_STATS_INC(rx_dropped) 4020 DEV_CORE_STATS_INC(tx_dropped) 4021 DEV_CORE_STATS_INC(rx_nohandler) 4022 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4023 4024 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4025 struct sk_buff *skb, 4026 const bool check_mtu) 4027 { 4028 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4029 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4030 dev_core_stats_rx_dropped_inc(dev); 4031 kfree_skb(skb); 4032 return NET_RX_DROP; 4033 } 4034 4035 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4036 skb->priority = 0; 4037 return 0; 4038 } 4039 4040 bool dev_nit_active(struct net_device *dev); 4041 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4042 4043 static inline void __dev_put(struct net_device *dev) 4044 { 4045 if (dev) { 4046 #ifdef CONFIG_PCPU_DEV_REFCNT 4047 this_cpu_dec(*dev->pcpu_refcnt); 4048 #else 4049 refcount_dec(&dev->dev_refcnt); 4050 #endif 4051 } 4052 } 4053 4054 static inline void __dev_hold(struct net_device *dev) 4055 { 4056 if (dev) { 4057 #ifdef CONFIG_PCPU_DEV_REFCNT 4058 this_cpu_inc(*dev->pcpu_refcnt); 4059 #else 4060 refcount_inc(&dev->dev_refcnt); 4061 #endif 4062 } 4063 } 4064 4065 static inline void __netdev_tracker_alloc(struct net_device *dev, 4066 netdevice_tracker *tracker, 4067 gfp_t gfp) 4068 { 4069 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4070 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4071 #endif 4072 } 4073 4074 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4075 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4076 */ 4077 static inline void netdev_tracker_alloc(struct net_device *dev, 4078 netdevice_tracker *tracker, gfp_t gfp) 4079 { 4080 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4081 refcount_dec(&dev->refcnt_tracker.no_tracker); 4082 __netdev_tracker_alloc(dev, tracker, gfp); 4083 #endif 4084 } 4085 4086 static inline void netdev_tracker_free(struct net_device *dev, 4087 netdevice_tracker *tracker) 4088 { 4089 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4090 ref_tracker_free(&dev->refcnt_tracker, tracker); 4091 #endif 4092 } 4093 4094 static inline void netdev_hold(struct net_device *dev, 4095 netdevice_tracker *tracker, gfp_t gfp) 4096 { 4097 if (dev) { 4098 __dev_hold(dev); 4099 __netdev_tracker_alloc(dev, tracker, gfp); 4100 } 4101 } 4102 4103 static inline void netdev_put(struct net_device *dev, 4104 netdevice_tracker *tracker) 4105 { 4106 if (dev) { 4107 netdev_tracker_free(dev, tracker); 4108 __dev_put(dev); 4109 } 4110 } 4111 4112 /** 4113 * dev_hold - get reference to device 4114 * @dev: network device 4115 * 4116 * Hold reference to device to keep it from being freed. 4117 * Try using netdev_hold() instead. 4118 */ 4119 static inline void dev_hold(struct net_device *dev) 4120 { 4121 netdev_hold(dev, NULL, GFP_ATOMIC); 4122 } 4123 4124 /** 4125 * dev_put - release reference to device 4126 * @dev: network device 4127 * 4128 * Release reference to device to allow it to be freed. 4129 * Try using netdev_put() instead. 4130 */ 4131 static inline void dev_put(struct net_device *dev) 4132 { 4133 netdev_put(dev, NULL); 4134 } 4135 4136 static inline void netdev_ref_replace(struct net_device *odev, 4137 struct net_device *ndev, 4138 netdevice_tracker *tracker, 4139 gfp_t gfp) 4140 { 4141 if (odev) 4142 netdev_tracker_free(odev, tracker); 4143 4144 __dev_hold(ndev); 4145 __dev_put(odev); 4146 4147 if (ndev) 4148 __netdev_tracker_alloc(ndev, tracker, gfp); 4149 } 4150 4151 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4152 * and _off may be called from IRQ context, but it is caller 4153 * who is responsible for serialization of these calls. 4154 * 4155 * The name carrier is inappropriate, these functions should really be 4156 * called netif_lowerlayer_*() because they represent the state of any 4157 * kind of lower layer not just hardware media. 4158 */ 4159 void linkwatch_fire_event(struct net_device *dev); 4160 4161 /** 4162 * netif_carrier_ok - test if carrier present 4163 * @dev: network device 4164 * 4165 * Check if carrier is present on device 4166 */ 4167 static inline bool netif_carrier_ok(const struct net_device *dev) 4168 { 4169 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4170 } 4171 4172 unsigned long dev_trans_start(struct net_device *dev); 4173 4174 void __netdev_watchdog_up(struct net_device *dev); 4175 4176 void netif_carrier_on(struct net_device *dev); 4177 void netif_carrier_off(struct net_device *dev); 4178 void netif_carrier_event(struct net_device *dev); 4179 4180 /** 4181 * netif_dormant_on - mark device as dormant. 4182 * @dev: network device 4183 * 4184 * Mark device as dormant (as per RFC2863). 4185 * 4186 * The dormant state indicates that the relevant interface is not 4187 * actually in a condition to pass packets (i.e., it is not 'up') but is 4188 * in a "pending" state, waiting for some external event. For "on- 4189 * demand" interfaces, this new state identifies the situation where the 4190 * interface is waiting for events to place it in the up state. 4191 */ 4192 static inline void netif_dormant_on(struct net_device *dev) 4193 { 4194 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4195 linkwatch_fire_event(dev); 4196 } 4197 4198 /** 4199 * netif_dormant_off - set device as not dormant. 4200 * @dev: network device 4201 * 4202 * Device is not in dormant state. 4203 */ 4204 static inline void netif_dormant_off(struct net_device *dev) 4205 { 4206 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4207 linkwatch_fire_event(dev); 4208 } 4209 4210 /** 4211 * netif_dormant - test if device is dormant 4212 * @dev: network device 4213 * 4214 * Check if device is dormant. 4215 */ 4216 static inline bool netif_dormant(const struct net_device *dev) 4217 { 4218 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4219 } 4220 4221 4222 /** 4223 * netif_testing_on - mark device as under test. 4224 * @dev: network device 4225 * 4226 * Mark device as under test (as per RFC2863). 4227 * 4228 * The testing state indicates that some test(s) must be performed on 4229 * the interface. After completion, of the test, the interface state 4230 * will change to up, dormant, or down, as appropriate. 4231 */ 4232 static inline void netif_testing_on(struct net_device *dev) 4233 { 4234 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4235 linkwatch_fire_event(dev); 4236 } 4237 4238 /** 4239 * netif_testing_off - set device as not under test. 4240 * @dev: network device 4241 * 4242 * Device is not in testing state. 4243 */ 4244 static inline void netif_testing_off(struct net_device *dev) 4245 { 4246 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4247 linkwatch_fire_event(dev); 4248 } 4249 4250 /** 4251 * netif_testing - test if device is under test 4252 * @dev: network device 4253 * 4254 * Check if device is under test 4255 */ 4256 static inline bool netif_testing(const struct net_device *dev) 4257 { 4258 return test_bit(__LINK_STATE_TESTING, &dev->state); 4259 } 4260 4261 4262 /** 4263 * netif_oper_up - test if device is operational 4264 * @dev: network device 4265 * 4266 * Check if carrier is operational 4267 */ 4268 static inline bool netif_oper_up(const struct net_device *dev) 4269 { 4270 return (dev->operstate == IF_OPER_UP || 4271 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4272 } 4273 4274 /** 4275 * netif_device_present - is device available or removed 4276 * @dev: network device 4277 * 4278 * Check if device has not been removed from system. 4279 */ 4280 static inline bool netif_device_present(const struct net_device *dev) 4281 { 4282 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4283 } 4284 4285 void netif_device_detach(struct net_device *dev); 4286 4287 void netif_device_attach(struct net_device *dev); 4288 4289 /* 4290 * Network interface message level settings 4291 */ 4292 4293 enum { 4294 NETIF_MSG_DRV_BIT, 4295 NETIF_MSG_PROBE_BIT, 4296 NETIF_MSG_LINK_BIT, 4297 NETIF_MSG_TIMER_BIT, 4298 NETIF_MSG_IFDOWN_BIT, 4299 NETIF_MSG_IFUP_BIT, 4300 NETIF_MSG_RX_ERR_BIT, 4301 NETIF_MSG_TX_ERR_BIT, 4302 NETIF_MSG_TX_QUEUED_BIT, 4303 NETIF_MSG_INTR_BIT, 4304 NETIF_MSG_TX_DONE_BIT, 4305 NETIF_MSG_RX_STATUS_BIT, 4306 NETIF_MSG_PKTDATA_BIT, 4307 NETIF_MSG_HW_BIT, 4308 NETIF_MSG_WOL_BIT, 4309 4310 /* When you add a new bit above, update netif_msg_class_names array 4311 * in net/ethtool/common.c 4312 */ 4313 NETIF_MSG_CLASS_COUNT, 4314 }; 4315 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4316 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4317 4318 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4319 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4320 4321 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4322 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4323 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4324 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4325 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4326 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4327 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4328 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4329 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4330 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4331 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4332 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4333 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4334 #define NETIF_MSG_HW __NETIF_MSG(HW) 4335 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4336 4337 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4338 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4339 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4340 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4341 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4342 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4343 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4344 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4345 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4346 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4347 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4348 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4349 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4350 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4351 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4352 4353 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4354 { 4355 /* use default */ 4356 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4357 return default_msg_enable_bits; 4358 if (debug_value == 0) /* no output */ 4359 return 0; 4360 /* set low N bits */ 4361 return (1U << debug_value) - 1; 4362 } 4363 4364 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4365 { 4366 spin_lock(&txq->_xmit_lock); 4367 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4368 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4369 } 4370 4371 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4372 { 4373 __acquire(&txq->_xmit_lock); 4374 return true; 4375 } 4376 4377 static inline void __netif_tx_release(struct netdev_queue *txq) 4378 { 4379 __release(&txq->_xmit_lock); 4380 } 4381 4382 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4383 { 4384 spin_lock_bh(&txq->_xmit_lock); 4385 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4386 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4387 } 4388 4389 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4390 { 4391 bool ok = spin_trylock(&txq->_xmit_lock); 4392 4393 if (likely(ok)) { 4394 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4395 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4396 } 4397 return ok; 4398 } 4399 4400 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4401 { 4402 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4403 WRITE_ONCE(txq->xmit_lock_owner, -1); 4404 spin_unlock(&txq->_xmit_lock); 4405 } 4406 4407 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4408 { 4409 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4410 WRITE_ONCE(txq->xmit_lock_owner, -1); 4411 spin_unlock_bh(&txq->_xmit_lock); 4412 } 4413 4414 /* 4415 * txq->trans_start can be read locklessly from dev_watchdog() 4416 */ 4417 static inline void txq_trans_update(struct netdev_queue *txq) 4418 { 4419 if (txq->xmit_lock_owner != -1) 4420 WRITE_ONCE(txq->trans_start, jiffies); 4421 } 4422 4423 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4424 { 4425 unsigned long now = jiffies; 4426 4427 if (READ_ONCE(txq->trans_start) != now) 4428 WRITE_ONCE(txq->trans_start, now); 4429 } 4430 4431 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4432 static inline void netif_trans_update(struct net_device *dev) 4433 { 4434 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4435 4436 txq_trans_cond_update(txq); 4437 } 4438 4439 /** 4440 * netif_tx_lock - grab network device transmit lock 4441 * @dev: network device 4442 * 4443 * Get network device transmit lock 4444 */ 4445 void netif_tx_lock(struct net_device *dev); 4446 4447 static inline void netif_tx_lock_bh(struct net_device *dev) 4448 { 4449 local_bh_disable(); 4450 netif_tx_lock(dev); 4451 } 4452 4453 void netif_tx_unlock(struct net_device *dev); 4454 4455 static inline void netif_tx_unlock_bh(struct net_device *dev) 4456 { 4457 netif_tx_unlock(dev); 4458 local_bh_enable(); 4459 } 4460 4461 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4462 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4463 __netif_tx_lock(txq, cpu); \ 4464 } else { \ 4465 __netif_tx_acquire(txq); \ 4466 } \ 4467 } 4468 4469 #define HARD_TX_TRYLOCK(dev, txq) \ 4470 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4471 __netif_tx_trylock(txq) : \ 4472 __netif_tx_acquire(txq)) 4473 4474 #define HARD_TX_UNLOCK(dev, txq) { \ 4475 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4476 __netif_tx_unlock(txq); \ 4477 } else { \ 4478 __netif_tx_release(txq); \ 4479 } \ 4480 } 4481 4482 static inline void netif_tx_disable(struct net_device *dev) 4483 { 4484 unsigned int i; 4485 int cpu; 4486 4487 local_bh_disable(); 4488 cpu = smp_processor_id(); 4489 spin_lock(&dev->tx_global_lock); 4490 for (i = 0; i < dev->num_tx_queues; i++) { 4491 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4492 4493 __netif_tx_lock(txq, cpu); 4494 netif_tx_stop_queue(txq); 4495 __netif_tx_unlock(txq); 4496 } 4497 spin_unlock(&dev->tx_global_lock); 4498 local_bh_enable(); 4499 } 4500 4501 static inline void netif_addr_lock(struct net_device *dev) 4502 { 4503 unsigned char nest_level = 0; 4504 4505 #ifdef CONFIG_LOCKDEP 4506 nest_level = dev->nested_level; 4507 #endif 4508 spin_lock_nested(&dev->addr_list_lock, nest_level); 4509 } 4510 4511 static inline void netif_addr_lock_bh(struct net_device *dev) 4512 { 4513 unsigned char nest_level = 0; 4514 4515 #ifdef CONFIG_LOCKDEP 4516 nest_level = dev->nested_level; 4517 #endif 4518 local_bh_disable(); 4519 spin_lock_nested(&dev->addr_list_lock, nest_level); 4520 } 4521 4522 static inline void netif_addr_unlock(struct net_device *dev) 4523 { 4524 spin_unlock(&dev->addr_list_lock); 4525 } 4526 4527 static inline void netif_addr_unlock_bh(struct net_device *dev) 4528 { 4529 spin_unlock_bh(&dev->addr_list_lock); 4530 } 4531 4532 /* 4533 * dev_addrs walker. Should be used only for read access. Call with 4534 * rcu_read_lock held. 4535 */ 4536 #define for_each_dev_addr(dev, ha) \ 4537 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4538 4539 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4540 4541 void ether_setup(struct net_device *dev); 4542 4543 /* Support for loadable net-drivers */ 4544 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4545 unsigned char name_assign_type, 4546 void (*setup)(struct net_device *), 4547 unsigned int txqs, unsigned int rxqs); 4548 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4549 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4550 4551 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4552 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4553 count) 4554 4555 int register_netdev(struct net_device *dev); 4556 void unregister_netdev(struct net_device *dev); 4557 4558 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4559 4560 /* General hardware address lists handling functions */ 4561 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4562 struct netdev_hw_addr_list *from_list, int addr_len); 4563 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4564 struct netdev_hw_addr_list *from_list, int addr_len); 4565 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4566 struct net_device *dev, 4567 int (*sync)(struct net_device *, const unsigned char *), 4568 int (*unsync)(struct net_device *, 4569 const unsigned char *)); 4570 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4571 struct net_device *dev, 4572 int (*sync)(struct net_device *, 4573 const unsigned char *, int), 4574 int (*unsync)(struct net_device *, 4575 const unsigned char *, int)); 4576 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4577 struct net_device *dev, 4578 int (*unsync)(struct net_device *, 4579 const unsigned char *, int)); 4580 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4581 struct net_device *dev, 4582 int (*unsync)(struct net_device *, 4583 const unsigned char *)); 4584 void __hw_addr_init(struct netdev_hw_addr_list *list); 4585 4586 /* Functions used for device addresses handling */ 4587 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4588 const void *addr, size_t len); 4589 4590 static inline void 4591 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4592 { 4593 dev_addr_mod(dev, 0, addr, len); 4594 } 4595 4596 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4597 { 4598 __dev_addr_set(dev, addr, dev->addr_len); 4599 } 4600 4601 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4602 unsigned char addr_type); 4603 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4604 unsigned char addr_type); 4605 4606 /* Functions used for unicast addresses handling */ 4607 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4608 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4609 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4610 int dev_uc_sync(struct net_device *to, struct net_device *from); 4611 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4612 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4613 void dev_uc_flush(struct net_device *dev); 4614 void dev_uc_init(struct net_device *dev); 4615 4616 /** 4617 * __dev_uc_sync - Synchonize device's unicast list 4618 * @dev: device to sync 4619 * @sync: function to call if address should be added 4620 * @unsync: function to call if address should be removed 4621 * 4622 * Add newly added addresses to the interface, and release 4623 * addresses that have been deleted. 4624 */ 4625 static inline int __dev_uc_sync(struct net_device *dev, 4626 int (*sync)(struct net_device *, 4627 const unsigned char *), 4628 int (*unsync)(struct net_device *, 4629 const unsigned char *)) 4630 { 4631 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4632 } 4633 4634 /** 4635 * __dev_uc_unsync - Remove synchronized addresses from device 4636 * @dev: device to sync 4637 * @unsync: function to call if address should be removed 4638 * 4639 * Remove all addresses that were added to the device by dev_uc_sync(). 4640 */ 4641 static inline void __dev_uc_unsync(struct net_device *dev, 4642 int (*unsync)(struct net_device *, 4643 const unsigned char *)) 4644 { 4645 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4646 } 4647 4648 /* Functions used for multicast addresses handling */ 4649 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4650 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4651 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4652 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4653 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4654 int dev_mc_sync(struct net_device *to, struct net_device *from); 4655 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4656 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4657 void dev_mc_flush(struct net_device *dev); 4658 void dev_mc_init(struct net_device *dev); 4659 4660 /** 4661 * __dev_mc_sync - Synchonize device's multicast list 4662 * @dev: device to sync 4663 * @sync: function to call if address should be added 4664 * @unsync: function to call if address should be removed 4665 * 4666 * Add newly added addresses to the interface, and release 4667 * addresses that have been deleted. 4668 */ 4669 static inline int __dev_mc_sync(struct net_device *dev, 4670 int (*sync)(struct net_device *, 4671 const unsigned char *), 4672 int (*unsync)(struct net_device *, 4673 const unsigned char *)) 4674 { 4675 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4676 } 4677 4678 /** 4679 * __dev_mc_unsync - Remove synchronized addresses from device 4680 * @dev: device to sync 4681 * @unsync: function to call if address should be removed 4682 * 4683 * Remove all addresses that were added to the device by dev_mc_sync(). 4684 */ 4685 static inline void __dev_mc_unsync(struct net_device *dev, 4686 int (*unsync)(struct net_device *, 4687 const unsigned char *)) 4688 { 4689 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4690 } 4691 4692 /* Functions used for secondary unicast and multicast support */ 4693 void dev_set_rx_mode(struct net_device *dev); 4694 int dev_set_promiscuity(struct net_device *dev, int inc); 4695 int dev_set_allmulti(struct net_device *dev, int inc); 4696 void netdev_state_change(struct net_device *dev); 4697 void __netdev_notify_peers(struct net_device *dev); 4698 void netdev_notify_peers(struct net_device *dev); 4699 void netdev_features_change(struct net_device *dev); 4700 /* Load a device via the kmod */ 4701 void dev_load(struct net *net, const char *name); 4702 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4703 struct rtnl_link_stats64 *storage); 4704 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4705 const struct net_device_stats *netdev_stats); 4706 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4707 const struct pcpu_sw_netstats __percpu *netstats); 4708 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4709 4710 extern int netdev_max_backlog; 4711 extern int dev_rx_weight; 4712 extern int dev_tx_weight; 4713 extern int gro_normal_batch; 4714 4715 enum { 4716 NESTED_SYNC_IMM_BIT, 4717 NESTED_SYNC_TODO_BIT, 4718 }; 4719 4720 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4721 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4722 4723 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4724 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4725 4726 struct netdev_nested_priv { 4727 unsigned char flags; 4728 void *data; 4729 }; 4730 4731 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4732 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4733 struct list_head **iter); 4734 4735 /* iterate through upper list, must be called under RCU read lock */ 4736 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4737 for (iter = &(dev)->adj_list.upper, \ 4738 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4739 updev; \ 4740 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4741 4742 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4743 int (*fn)(struct net_device *upper_dev, 4744 struct netdev_nested_priv *priv), 4745 struct netdev_nested_priv *priv); 4746 4747 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4748 struct net_device *upper_dev); 4749 4750 bool netdev_has_any_upper_dev(struct net_device *dev); 4751 4752 void *netdev_lower_get_next_private(struct net_device *dev, 4753 struct list_head **iter); 4754 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4755 struct list_head **iter); 4756 4757 #define netdev_for_each_lower_private(dev, priv, iter) \ 4758 for (iter = (dev)->adj_list.lower.next, \ 4759 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4760 priv; \ 4761 priv = netdev_lower_get_next_private(dev, &(iter))) 4762 4763 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4764 for (iter = &(dev)->adj_list.lower, \ 4765 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4766 priv; \ 4767 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4768 4769 void *netdev_lower_get_next(struct net_device *dev, 4770 struct list_head **iter); 4771 4772 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4773 for (iter = (dev)->adj_list.lower.next, \ 4774 ldev = netdev_lower_get_next(dev, &(iter)); \ 4775 ldev; \ 4776 ldev = netdev_lower_get_next(dev, &(iter))) 4777 4778 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4779 struct list_head **iter); 4780 int netdev_walk_all_lower_dev(struct net_device *dev, 4781 int (*fn)(struct net_device *lower_dev, 4782 struct netdev_nested_priv *priv), 4783 struct netdev_nested_priv *priv); 4784 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4785 int (*fn)(struct net_device *lower_dev, 4786 struct netdev_nested_priv *priv), 4787 struct netdev_nested_priv *priv); 4788 4789 void *netdev_adjacent_get_private(struct list_head *adj_list); 4790 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4791 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4792 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4793 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4794 struct netlink_ext_ack *extack); 4795 int netdev_master_upper_dev_link(struct net_device *dev, 4796 struct net_device *upper_dev, 4797 void *upper_priv, void *upper_info, 4798 struct netlink_ext_ack *extack); 4799 void netdev_upper_dev_unlink(struct net_device *dev, 4800 struct net_device *upper_dev); 4801 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4802 struct net_device *new_dev, 4803 struct net_device *dev, 4804 struct netlink_ext_ack *extack); 4805 void netdev_adjacent_change_commit(struct net_device *old_dev, 4806 struct net_device *new_dev, 4807 struct net_device *dev); 4808 void netdev_adjacent_change_abort(struct net_device *old_dev, 4809 struct net_device *new_dev, 4810 struct net_device *dev); 4811 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4812 void *netdev_lower_dev_get_private(struct net_device *dev, 4813 struct net_device *lower_dev); 4814 void netdev_lower_state_changed(struct net_device *lower_dev, 4815 void *lower_state_info); 4816 4817 /* RSS keys are 40 or 52 bytes long */ 4818 #define NETDEV_RSS_KEY_LEN 52 4819 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4820 void netdev_rss_key_fill(void *buffer, size_t len); 4821 4822 int skb_checksum_help(struct sk_buff *skb); 4823 int skb_crc32c_csum_help(struct sk_buff *skb); 4824 int skb_csum_hwoffload_help(struct sk_buff *skb, 4825 const netdev_features_t features); 4826 4827 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4828 netdev_features_t features, bool tx_path); 4829 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4830 netdev_features_t features, __be16 type); 4831 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4832 netdev_features_t features); 4833 4834 struct netdev_bonding_info { 4835 ifslave slave; 4836 ifbond master; 4837 }; 4838 4839 struct netdev_notifier_bonding_info { 4840 struct netdev_notifier_info info; /* must be first */ 4841 struct netdev_bonding_info bonding_info; 4842 }; 4843 4844 void netdev_bonding_info_change(struct net_device *dev, 4845 struct netdev_bonding_info *bonding_info); 4846 4847 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4848 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4849 #else 4850 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4851 const void *data) 4852 { 4853 } 4854 #endif 4855 4856 static inline 4857 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4858 { 4859 return __skb_gso_segment(skb, features, true); 4860 } 4861 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4862 4863 static inline bool can_checksum_protocol(netdev_features_t features, 4864 __be16 protocol) 4865 { 4866 if (protocol == htons(ETH_P_FCOE)) 4867 return !!(features & NETIF_F_FCOE_CRC); 4868 4869 /* Assume this is an IP checksum (not SCTP CRC) */ 4870 4871 if (features & NETIF_F_HW_CSUM) { 4872 /* Can checksum everything */ 4873 return true; 4874 } 4875 4876 switch (protocol) { 4877 case htons(ETH_P_IP): 4878 return !!(features & NETIF_F_IP_CSUM); 4879 case htons(ETH_P_IPV6): 4880 return !!(features & NETIF_F_IPV6_CSUM); 4881 default: 4882 return false; 4883 } 4884 } 4885 4886 #ifdef CONFIG_BUG 4887 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4888 #else 4889 static inline void netdev_rx_csum_fault(struct net_device *dev, 4890 struct sk_buff *skb) 4891 { 4892 } 4893 #endif 4894 /* rx skb timestamps */ 4895 void net_enable_timestamp(void); 4896 void net_disable_timestamp(void); 4897 4898 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4899 const struct skb_shared_hwtstamps *hwtstamps, 4900 bool cycles) 4901 { 4902 const struct net_device_ops *ops = dev->netdev_ops; 4903 4904 if (ops->ndo_get_tstamp) 4905 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4906 4907 return hwtstamps->hwtstamp; 4908 } 4909 4910 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4911 struct sk_buff *skb, struct net_device *dev, 4912 bool more) 4913 { 4914 __this_cpu_write(softnet_data.xmit.more, more); 4915 return ops->ndo_start_xmit(skb, dev); 4916 } 4917 4918 static inline bool netdev_xmit_more(void) 4919 { 4920 return __this_cpu_read(softnet_data.xmit.more); 4921 } 4922 4923 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4924 struct netdev_queue *txq, bool more) 4925 { 4926 const struct net_device_ops *ops = dev->netdev_ops; 4927 netdev_tx_t rc; 4928 4929 rc = __netdev_start_xmit(ops, skb, dev, more); 4930 if (rc == NETDEV_TX_OK) 4931 txq_trans_update(txq); 4932 4933 return rc; 4934 } 4935 4936 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4937 const void *ns); 4938 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4939 const void *ns); 4940 4941 extern const struct kobj_ns_type_operations net_ns_type_operations; 4942 4943 const char *netdev_drivername(const struct net_device *dev); 4944 4945 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4946 netdev_features_t f2) 4947 { 4948 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4949 if (f1 & NETIF_F_HW_CSUM) 4950 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4951 else 4952 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4953 } 4954 4955 return f1 & f2; 4956 } 4957 4958 static inline netdev_features_t netdev_get_wanted_features( 4959 struct net_device *dev) 4960 { 4961 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4962 } 4963 netdev_features_t netdev_increment_features(netdev_features_t all, 4964 netdev_features_t one, netdev_features_t mask); 4965 4966 /* Allow TSO being used on stacked device : 4967 * Performing the GSO segmentation before last device 4968 * is a performance improvement. 4969 */ 4970 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4971 netdev_features_t mask) 4972 { 4973 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4974 } 4975 4976 int __netdev_update_features(struct net_device *dev); 4977 void netdev_update_features(struct net_device *dev); 4978 void netdev_change_features(struct net_device *dev); 4979 4980 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4981 struct net_device *dev); 4982 4983 netdev_features_t passthru_features_check(struct sk_buff *skb, 4984 struct net_device *dev, 4985 netdev_features_t features); 4986 netdev_features_t netif_skb_features(struct sk_buff *skb); 4987 4988 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4989 { 4990 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4991 4992 /* check flags correspondence */ 4993 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4994 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4995 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4996 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4997 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4998 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4999 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5000 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5001 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5002 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5003 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5004 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5005 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5006 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5007 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5008 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5009 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5010 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5011 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5012 5013 return (features & feature) == feature; 5014 } 5015 5016 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5017 { 5018 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5019 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5020 } 5021 5022 static inline bool netif_needs_gso(struct sk_buff *skb, 5023 netdev_features_t features) 5024 { 5025 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5026 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5027 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5028 } 5029 5030 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5031 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5032 void netif_inherit_tso_max(struct net_device *to, 5033 const struct net_device *from); 5034 5035 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 5036 int pulled_hlen, u16 mac_offset, 5037 int mac_len) 5038 { 5039 skb->protocol = protocol; 5040 skb->encapsulation = 1; 5041 skb_push(skb, pulled_hlen); 5042 skb_reset_transport_header(skb); 5043 skb->mac_header = mac_offset; 5044 skb->network_header = skb->mac_header + mac_len; 5045 skb->mac_len = mac_len; 5046 } 5047 5048 static inline bool netif_is_macsec(const struct net_device *dev) 5049 { 5050 return dev->priv_flags & IFF_MACSEC; 5051 } 5052 5053 static inline bool netif_is_macvlan(const struct net_device *dev) 5054 { 5055 return dev->priv_flags & IFF_MACVLAN; 5056 } 5057 5058 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5059 { 5060 return dev->priv_flags & IFF_MACVLAN_PORT; 5061 } 5062 5063 static inline bool netif_is_bond_master(const struct net_device *dev) 5064 { 5065 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5066 } 5067 5068 static inline bool netif_is_bond_slave(const struct net_device *dev) 5069 { 5070 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5071 } 5072 5073 static inline bool netif_supports_nofcs(struct net_device *dev) 5074 { 5075 return dev->priv_flags & IFF_SUPP_NOFCS; 5076 } 5077 5078 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5079 { 5080 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5081 } 5082 5083 static inline bool netif_is_l3_master(const struct net_device *dev) 5084 { 5085 return dev->priv_flags & IFF_L3MDEV_MASTER; 5086 } 5087 5088 static inline bool netif_is_l3_slave(const struct net_device *dev) 5089 { 5090 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5091 } 5092 5093 static inline bool netif_is_bridge_master(const struct net_device *dev) 5094 { 5095 return dev->priv_flags & IFF_EBRIDGE; 5096 } 5097 5098 static inline bool netif_is_bridge_port(const struct net_device *dev) 5099 { 5100 return dev->priv_flags & IFF_BRIDGE_PORT; 5101 } 5102 5103 static inline bool netif_is_ovs_master(const struct net_device *dev) 5104 { 5105 return dev->priv_flags & IFF_OPENVSWITCH; 5106 } 5107 5108 static inline bool netif_is_ovs_port(const struct net_device *dev) 5109 { 5110 return dev->priv_flags & IFF_OVS_DATAPATH; 5111 } 5112 5113 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5114 { 5115 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5116 } 5117 5118 static inline bool netif_is_team_master(const struct net_device *dev) 5119 { 5120 return dev->priv_flags & IFF_TEAM; 5121 } 5122 5123 static inline bool netif_is_team_port(const struct net_device *dev) 5124 { 5125 return dev->priv_flags & IFF_TEAM_PORT; 5126 } 5127 5128 static inline bool netif_is_lag_master(const struct net_device *dev) 5129 { 5130 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5131 } 5132 5133 static inline bool netif_is_lag_port(const struct net_device *dev) 5134 { 5135 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5136 } 5137 5138 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5139 { 5140 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5141 } 5142 5143 static inline bool netif_is_failover(const struct net_device *dev) 5144 { 5145 return dev->priv_flags & IFF_FAILOVER; 5146 } 5147 5148 static inline bool netif_is_failover_slave(const struct net_device *dev) 5149 { 5150 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5151 } 5152 5153 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5154 static inline void netif_keep_dst(struct net_device *dev) 5155 { 5156 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5157 } 5158 5159 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5160 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5161 { 5162 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5163 return netif_is_macsec(dev); 5164 } 5165 5166 extern struct pernet_operations __net_initdata loopback_net_ops; 5167 5168 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5169 5170 /* netdev_printk helpers, similar to dev_printk */ 5171 5172 static inline const char *netdev_name(const struct net_device *dev) 5173 { 5174 if (!dev->name[0] || strchr(dev->name, '%')) 5175 return "(unnamed net_device)"; 5176 return dev->name; 5177 } 5178 5179 static inline const char *netdev_reg_state(const struct net_device *dev) 5180 { 5181 switch (dev->reg_state) { 5182 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5183 case NETREG_REGISTERED: return ""; 5184 case NETREG_UNREGISTERING: return " (unregistering)"; 5185 case NETREG_UNREGISTERED: return " (unregistered)"; 5186 case NETREG_RELEASED: return " (released)"; 5187 case NETREG_DUMMY: return " (dummy)"; 5188 } 5189 5190 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5191 return " (unknown)"; 5192 } 5193 5194 #define MODULE_ALIAS_NETDEV(device) \ 5195 MODULE_ALIAS("netdev-" device) 5196 5197 /* 5198 * netdev_WARN() acts like dev_printk(), but with the key difference 5199 * of using a WARN/WARN_ON to get the message out, including the 5200 * file/line information and a backtrace. 5201 */ 5202 #define netdev_WARN(dev, format, args...) \ 5203 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5204 netdev_reg_state(dev), ##args) 5205 5206 #define netdev_WARN_ONCE(dev, format, args...) \ 5207 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5208 netdev_reg_state(dev), ##args) 5209 5210 /* 5211 * The list of packet types we will receive (as opposed to discard) 5212 * and the routines to invoke. 5213 * 5214 * Why 16. Because with 16 the only overlap we get on a hash of the 5215 * low nibble of the protocol value is RARP/SNAP/X.25. 5216 * 5217 * 0800 IP 5218 * 0001 802.3 5219 * 0002 AX.25 5220 * 0004 802.2 5221 * 8035 RARP 5222 * 0005 SNAP 5223 * 0805 X.25 5224 * 0806 ARP 5225 * 8137 IPX 5226 * 0009 Localtalk 5227 * 86DD IPv6 5228 */ 5229 #define PTYPE_HASH_SIZE (16) 5230 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5231 5232 extern struct list_head ptype_all __read_mostly; 5233 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5234 5235 extern struct net_device *blackhole_netdev; 5236 5237 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5238 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5239 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5240 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5241 5242 #endif /* _LINUX_NETDEVICE_H */ 5243