1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 }; 278 279 /* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284 enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290 }; 291 292 293 /* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297 struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300 }; 301 #define NETDEV_BOOT_SETUP_MAX 8 302 303 int __init netdev_boot_setup(char *str); 304 305 struct gro_list { 306 struct list_head list; 307 int count; 308 }; 309 310 /* 311 * size of gro hash buckets, must less than bit number of 312 * napi_struct::gro_bitmask 313 */ 314 #define GRO_HASH_BUCKETS 8 315 316 /* 317 * Structure for NAPI scheduling similar to tasklet but with weighting 318 */ 319 struct napi_struct { 320 /* The poll_list must only be managed by the entity which 321 * changes the state of the NAPI_STATE_SCHED bit. This means 322 * whoever atomically sets that bit can add this napi_struct 323 * to the per-CPU poll_list, and whoever clears that bit 324 * can remove from the list right before clearing the bit. 325 */ 326 struct list_head poll_list; 327 328 unsigned long state; 329 int weight; 330 unsigned long gro_bitmask; 331 int (*poll)(struct napi_struct *, int); 332 #ifdef CONFIG_NETPOLL 333 int poll_owner; 334 #endif 335 struct net_device *dev; 336 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 337 struct sk_buff *skb; 338 struct hrtimer timer; 339 struct list_head dev_list; 340 struct hlist_node napi_hash_node; 341 unsigned int napi_id; 342 }; 343 344 enum { 345 NAPI_STATE_SCHED, /* Poll is scheduled */ 346 NAPI_STATE_MISSED, /* reschedule a napi */ 347 NAPI_STATE_DISABLE, /* Disable pending */ 348 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 349 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 350 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 351 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 352 }; 353 354 enum { 355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 359 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 362 }; 363 364 enum gro_result { 365 GRO_MERGED, 366 GRO_MERGED_FREE, 367 GRO_HELD, 368 GRO_NORMAL, 369 GRO_DROP, 370 GRO_CONSUMED, 371 }; 372 typedef enum gro_result gro_result_t; 373 374 /* 375 * enum rx_handler_result - Possible return values for rx_handlers. 376 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 377 * further. 378 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 379 * case skb->dev was changed by rx_handler. 380 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 381 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 382 * 383 * rx_handlers are functions called from inside __netif_receive_skb(), to do 384 * special processing of the skb, prior to delivery to protocol handlers. 385 * 386 * Currently, a net_device can only have a single rx_handler registered. Trying 387 * to register a second rx_handler will return -EBUSY. 388 * 389 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 390 * To unregister a rx_handler on a net_device, use 391 * netdev_rx_handler_unregister(). 392 * 393 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 394 * do with the skb. 395 * 396 * If the rx_handler consumed the skb in some way, it should return 397 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 398 * the skb to be delivered in some other way. 399 * 400 * If the rx_handler changed skb->dev, to divert the skb to another 401 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 402 * new device will be called if it exists. 403 * 404 * If the rx_handler decides the skb should be ignored, it should return 405 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 406 * are registered on exact device (ptype->dev == skb->dev). 407 * 408 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 409 * delivered, it should return RX_HANDLER_PASS. 410 * 411 * A device without a registered rx_handler will behave as if rx_handler 412 * returned RX_HANDLER_PASS. 413 */ 414 415 enum rx_handler_result { 416 RX_HANDLER_CONSUMED, 417 RX_HANDLER_ANOTHER, 418 RX_HANDLER_EXACT, 419 RX_HANDLER_PASS, 420 }; 421 typedef enum rx_handler_result rx_handler_result_t; 422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 423 424 void __napi_schedule(struct napi_struct *n); 425 void __napi_schedule_irqoff(struct napi_struct *n); 426 427 static inline bool napi_disable_pending(struct napi_struct *n) 428 { 429 return test_bit(NAPI_STATE_DISABLE, &n->state); 430 } 431 432 bool napi_schedule_prep(struct napi_struct *n); 433 434 /** 435 * napi_schedule - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Schedule NAPI poll routine to be called if it is not already 439 * running. 440 */ 441 static inline void napi_schedule(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule(n); 445 } 446 447 /** 448 * napi_schedule_irqoff - schedule NAPI poll 449 * @n: NAPI context 450 * 451 * Variant of napi_schedule(), assuming hard irqs are masked. 452 */ 453 static inline void napi_schedule_irqoff(struct napi_struct *n) 454 { 455 if (napi_schedule_prep(n)) 456 __napi_schedule_irqoff(n); 457 } 458 459 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 460 static inline bool napi_reschedule(struct napi_struct *napi) 461 { 462 if (napi_schedule_prep(napi)) { 463 __napi_schedule(napi); 464 return true; 465 } 466 return false; 467 } 468 469 bool napi_complete_done(struct napi_struct *n, int work_done); 470 /** 471 * napi_complete - NAPI processing complete 472 * @n: NAPI context 473 * 474 * Mark NAPI processing as complete. 475 * Consider using napi_complete_done() instead. 476 * Return false if device should avoid rearming interrupts. 477 */ 478 static inline bool napi_complete(struct napi_struct *n) 479 { 480 return napi_complete_done(n, 0); 481 } 482 483 /** 484 * napi_hash_del - remove a NAPI from global table 485 * @napi: NAPI context 486 * 487 * Warning: caller must observe RCU grace period 488 * before freeing memory containing @napi, if 489 * this function returns true. 490 * Note: core networking stack automatically calls it 491 * from netif_napi_del(). 492 * Drivers might want to call this helper to combine all 493 * the needed RCU grace periods into a single one. 494 */ 495 bool napi_hash_del(struct napi_struct *napi); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: NAPI context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 void napi_disable(struct napi_struct *n); 505 506 /** 507 * napi_enable - enable NAPI scheduling 508 * @n: NAPI context 509 * 510 * Resume NAPI from being scheduled on this context. 511 * Must be paired with napi_disable. 512 */ 513 static inline void napi_enable(struct napi_struct *n) 514 { 515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 516 smp_mb__before_atomic(); 517 clear_bit(NAPI_STATE_SCHED, &n->state); 518 clear_bit(NAPI_STATE_NPSVC, &n->state); 519 } 520 521 /** 522 * napi_synchronize - wait until NAPI is not running 523 * @n: NAPI context 524 * 525 * Wait until NAPI is done being scheduled on this context. 526 * Waits till any outstanding processing completes but 527 * does not disable future activations. 528 */ 529 static inline void napi_synchronize(const struct napi_struct *n) 530 { 531 if (IS_ENABLED(CONFIG_SMP)) 532 while (test_bit(NAPI_STATE_SCHED, &n->state)) 533 msleep(1); 534 else 535 barrier(); 536 } 537 538 enum netdev_queue_state_t { 539 __QUEUE_STATE_DRV_XOFF, 540 __QUEUE_STATE_STACK_XOFF, 541 __QUEUE_STATE_FROZEN, 542 }; 543 544 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 545 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 546 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 547 548 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 549 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 550 QUEUE_STATE_FROZEN) 551 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 552 QUEUE_STATE_FROZEN) 553 554 /* 555 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 556 * netif_tx_* functions below are used to manipulate this flag. The 557 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 558 * queue independently. The netif_xmit_*stopped functions below are called 559 * to check if the queue has been stopped by the driver or stack (either 560 * of the XOFF bits are set in the state). Drivers should not need to call 561 * netif_xmit*stopped functions, they should only be using netif_tx_*. 562 */ 563 564 struct netdev_queue { 565 /* 566 * read-mostly part 567 */ 568 struct net_device *dev; 569 struct Qdisc __rcu *qdisc; 570 struct Qdisc *qdisc_sleeping; 571 #ifdef CONFIG_SYSFS 572 struct kobject kobj; 573 #endif 574 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 575 int numa_node; 576 #endif 577 unsigned long tx_maxrate; 578 /* 579 * Number of TX timeouts for this queue 580 * (/sys/class/net/DEV/Q/trans_timeout) 581 */ 582 unsigned long trans_timeout; 583 584 /* Subordinate device that the queue has been assigned to */ 585 struct net_device *sb_dev; 586 /* 587 * write-mostly part 588 */ 589 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 590 int xmit_lock_owner; 591 /* 592 * Time (in jiffies) of last Tx 593 */ 594 unsigned long trans_start; 595 596 unsigned long state; 597 598 #ifdef CONFIG_BQL 599 struct dql dql; 600 #endif 601 } ____cacheline_aligned_in_smp; 602 603 extern int sysctl_fb_tunnels_only_for_init_net; 604 605 static inline bool net_has_fallback_tunnels(const struct net *net) 606 { 607 return net == &init_net || 608 !IS_ENABLED(CONFIG_SYSCTL) || 609 !sysctl_fb_tunnels_only_for_init_net; 610 } 611 612 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 613 { 614 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 615 return q->numa_node; 616 #else 617 return NUMA_NO_NODE; 618 #endif 619 } 620 621 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 622 { 623 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 624 q->numa_node = node; 625 #endif 626 } 627 628 #ifdef CONFIG_RPS 629 /* 630 * This structure holds an RPS map which can be of variable length. The 631 * map is an array of CPUs. 632 */ 633 struct rps_map { 634 unsigned int len; 635 struct rcu_head rcu; 636 u16 cpus[0]; 637 }; 638 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 639 640 /* 641 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 642 * tail pointer for that CPU's input queue at the time of last enqueue, and 643 * a hardware filter index. 644 */ 645 struct rps_dev_flow { 646 u16 cpu; 647 u16 filter; 648 unsigned int last_qtail; 649 }; 650 #define RPS_NO_FILTER 0xffff 651 652 /* 653 * The rps_dev_flow_table structure contains a table of flow mappings. 654 */ 655 struct rps_dev_flow_table { 656 unsigned int mask; 657 struct rcu_head rcu; 658 struct rps_dev_flow flows[0]; 659 }; 660 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 661 ((_num) * sizeof(struct rps_dev_flow))) 662 663 /* 664 * The rps_sock_flow_table contains mappings of flows to the last CPU 665 * on which they were processed by the application (set in recvmsg). 666 * Each entry is a 32bit value. Upper part is the high-order bits 667 * of flow hash, lower part is CPU number. 668 * rps_cpu_mask is used to partition the space, depending on number of 669 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 670 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 671 * meaning we use 32-6=26 bits for the hash. 672 */ 673 struct rps_sock_flow_table { 674 u32 mask; 675 676 u32 ents[0] ____cacheline_aligned_in_smp; 677 }; 678 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 679 680 #define RPS_NO_CPU 0xffff 681 682 extern u32 rps_cpu_mask; 683 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 684 685 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 686 u32 hash) 687 { 688 if (table && hash) { 689 unsigned int index = hash & table->mask; 690 u32 val = hash & ~rps_cpu_mask; 691 692 /* We only give a hint, preemption can change CPU under us */ 693 val |= raw_smp_processor_id(); 694 695 if (table->ents[index] != val) 696 table->ents[index] = val; 697 } 698 } 699 700 #ifdef CONFIG_RFS_ACCEL 701 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 702 u16 filter_id); 703 #endif 704 #endif /* CONFIG_RPS */ 705 706 /* This structure contains an instance of an RX queue. */ 707 struct netdev_rx_queue { 708 #ifdef CONFIG_RPS 709 struct rps_map __rcu *rps_map; 710 struct rps_dev_flow_table __rcu *rps_flow_table; 711 #endif 712 struct kobject kobj; 713 struct net_device *dev; 714 struct xdp_rxq_info xdp_rxq; 715 } ____cacheline_aligned_in_smp; 716 717 /* 718 * RX queue sysfs structures and functions. 719 */ 720 struct rx_queue_attribute { 721 struct attribute attr; 722 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 723 ssize_t (*store)(struct netdev_rx_queue *queue, 724 const char *buf, size_t len); 725 }; 726 727 #ifdef CONFIG_XPS 728 /* 729 * This structure holds an XPS map which can be of variable length. The 730 * map is an array of queues. 731 */ 732 struct xps_map { 733 unsigned int len; 734 unsigned int alloc_len; 735 struct rcu_head rcu; 736 u16 queues[0]; 737 }; 738 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 739 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 740 - sizeof(struct xps_map)) / sizeof(u16)) 741 742 /* 743 * This structure holds all XPS maps for device. Maps are indexed by CPU. 744 */ 745 struct xps_dev_maps { 746 struct rcu_head rcu; 747 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 748 }; 749 750 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 751 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 752 753 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 754 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 755 756 #endif /* CONFIG_XPS */ 757 758 #define TC_MAX_QUEUE 16 759 #define TC_BITMASK 15 760 /* HW offloaded queuing disciplines txq count and offset maps */ 761 struct netdev_tc_txq { 762 u16 count; 763 u16 offset; 764 }; 765 766 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 767 /* 768 * This structure is to hold information about the device 769 * configured to run FCoE protocol stack. 770 */ 771 struct netdev_fcoe_hbainfo { 772 char manufacturer[64]; 773 char serial_number[64]; 774 char hardware_version[64]; 775 char driver_version[64]; 776 char optionrom_version[64]; 777 char firmware_version[64]; 778 char model[256]; 779 char model_description[256]; 780 }; 781 #endif 782 783 #define MAX_PHYS_ITEM_ID_LEN 32 784 785 /* This structure holds a unique identifier to identify some 786 * physical item (port for example) used by a netdevice. 787 */ 788 struct netdev_phys_item_id { 789 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 790 unsigned char id_len; 791 }; 792 793 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 794 struct netdev_phys_item_id *b) 795 { 796 return a->id_len == b->id_len && 797 memcmp(a->id, b->id, a->id_len) == 0; 798 } 799 800 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 801 struct sk_buff *skb, 802 struct net_device *sb_dev); 803 804 enum tc_setup_type { 805 TC_SETUP_QDISC_MQPRIO, 806 TC_SETUP_CLSU32, 807 TC_SETUP_CLSFLOWER, 808 TC_SETUP_CLSMATCHALL, 809 TC_SETUP_CLSBPF, 810 TC_SETUP_BLOCK, 811 TC_SETUP_QDISC_CBS, 812 TC_SETUP_QDISC_RED, 813 TC_SETUP_QDISC_PRIO, 814 TC_SETUP_QDISC_MQ, 815 TC_SETUP_QDISC_ETF, 816 }; 817 818 /* These structures hold the attributes of bpf state that are being passed 819 * to the netdevice through the bpf op. 820 */ 821 enum bpf_netdev_command { 822 /* Set or clear a bpf program used in the earliest stages of packet 823 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 824 * is responsible for calling bpf_prog_put on any old progs that are 825 * stored. In case of error, the callee need not release the new prog 826 * reference, but on success it takes ownership and must bpf_prog_put 827 * when it is no longer used. 828 */ 829 XDP_SETUP_PROG, 830 XDP_SETUP_PROG_HW, 831 XDP_QUERY_PROG, 832 XDP_QUERY_PROG_HW, 833 /* BPF program for offload callbacks, invoked at program load time. */ 834 BPF_OFFLOAD_VERIFIER_PREP, 835 BPF_OFFLOAD_TRANSLATE, 836 BPF_OFFLOAD_DESTROY, 837 BPF_OFFLOAD_MAP_ALLOC, 838 BPF_OFFLOAD_MAP_FREE, 839 XDP_QUERY_XSK_UMEM, 840 XDP_SETUP_XSK_UMEM, 841 }; 842 843 struct bpf_prog_offload_ops; 844 struct netlink_ext_ack; 845 struct xdp_umem; 846 847 struct netdev_bpf { 848 enum bpf_netdev_command command; 849 union { 850 /* XDP_SETUP_PROG */ 851 struct { 852 u32 flags; 853 struct bpf_prog *prog; 854 struct netlink_ext_ack *extack; 855 }; 856 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 857 struct { 858 u32 prog_id; 859 /* flags with which program was installed */ 860 u32 prog_flags; 861 }; 862 /* BPF_OFFLOAD_VERIFIER_PREP */ 863 struct { 864 struct bpf_prog *prog; 865 const struct bpf_prog_offload_ops *ops; /* callee set */ 866 } verifier; 867 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 868 struct { 869 struct bpf_prog *prog; 870 } offload; 871 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 872 struct { 873 struct bpf_offloaded_map *offmap; 874 }; 875 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */ 876 struct { 877 struct xdp_umem *umem; /* out for query*/ 878 u16 queue_id; /* in for query */ 879 } xsk; 880 }; 881 }; 882 883 #ifdef CONFIG_XFRM_OFFLOAD 884 struct xfrmdev_ops { 885 int (*xdo_dev_state_add) (struct xfrm_state *x); 886 void (*xdo_dev_state_delete) (struct xfrm_state *x); 887 void (*xdo_dev_state_free) (struct xfrm_state *x); 888 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 889 struct xfrm_state *x); 890 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 891 }; 892 #endif 893 894 #if IS_ENABLED(CONFIG_TLS_DEVICE) 895 enum tls_offload_ctx_dir { 896 TLS_OFFLOAD_CTX_DIR_RX, 897 TLS_OFFLOAD_CTX_DIR_TX, 898 }; 899 900 struct tls_crypto_info; 901 struct tls_context; 902 903 struct tlsdev_ops { 904 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 905 enum tls_offload_ctx_dir direction, 906 struct tls_crypto_info *crypto_info, 907 u32 start_offload_tcp_sn); 908 void (*tls_dev_del)(struct net_device *netdev, 909 struct tls_context *ctx, 910 enum tls_offload_ctx_dir direction); 911 void (*tls_dev_resync_rx)(struct net_device *netdev, 912 struct sock *sk, u32 seq, u64 rcd_sn); 913 }; 914 #endif 915 916 struct dev_ifalias { 917 struct rcu_head rcuhead; 918 char ifalias[]; 919 }; 920 921 /* 922 * This structure defines the management hooks for network devices. 923 * The following hooks can be defined; unless noted otherwise, they are 924 * optional and can be filled with a null pointer. 925 * 926 * int (*ndo_init)(struct net_device *dev); 927 * This function is called once when a network device is registered. 928 * The network device can use this for any late stage initialization 929 * or semantic validation. It can fail with an error code which will 930 * be propagated back to register_netdev. 931 * 932 * void (*ndo_uninit)(struct net_device *dev); 933 * This function is called when device is unregistered or when registration 934 * fails. It is not called if init fails. 935 * 936 * int (*ndo_open)(struct net_device *dev); 937 * This function is called when a network device transitions to the up 938 * state. 939 * 940 * int (*ndo_stop)(struct net_device *dev); 941 * This function is called when a network device transitions to the down 942 * state. 943 * 944 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 945 * struct net_device *dev); 946 * Called when a packet needs to be transmitted. 947 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 948 * the queue before that can happen; it's for obsolete devices and weird 949 * corner cases, but the stack really does a non-trivial amount 950 * of useless work if you return NETDEV_TX_BUSY. 951 * Required; cannot be NULL. 952 * 953 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 954 * struct net_device *dev 955 * netdev_features_t features); 956 * Called by core transmit path to determine if device is capable of 957 * performing offload operations on a given packet. This is to give 958 * the device an opportunity to implement any restrictions that cannot 959 * be otherwise expressed by feature flags. The check is called with 960 * the set of features that the stack has calculated and it returns 961 * those the driver believes to be appropriate. 962 * 963 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 964 * struct net_device *sb_dev, 965 * select_queue_fallback_t fallback); 966 * Called to decide which queue to use when device supports multiple 967 * transmit queues. 968 * 969 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 970 * This function is called to allow device receiver to make 971 * changes to configuration when multicast or promiscuous is enabled. 972 * 973 * void (*ndo_set_rx_mode)(struct net_device *dev); 974 * This function is called device changes address list filtering. 975 * If driver handles unicast address filtering, it should set 976 * IFF_UNICAST_FLT in its priv_flags. 977 * 978 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 979 * This function is called when the Media Access Control address 980 * needs to be changed. If this interface is not defined, the 981 * MAC address can not be changed. 982 * 983 * int (*ndo_validate_addr)(struct net_device *dev); 984 * Test if Media Access Control address is valid for the device. 985 * 986 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 987 * Called when a user requests an ioctl which can't be handled by 988 * the generic interface code. If not defined ioctls return 989 * not supported error code. 990 * 991 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 992 * Used to set network devices bus interface parameters. This interface 993 * is retained for legacy reasons; new devices should use the bus 994 * interface (PCI) for low level management. 995 * 996 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 997 * Called when a user wants to change the Maximum Transfer Unit 998 * of a device. 999 * 1000 * void (*ndo_tx_timeout)(struct net_device *dev); 1001 * Callback used when the transmitter has not made any progress 1002 * for dev->watchdog ticks. 1003 * 1004 * void (*ndo_get_stats64)(struct net_device *dev, 1005 * struct rtnl_link_stats64 *storage); 1006 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1007 * Called when a user wants to get the network device usage 1008 * statistics. Drivers must do one of the following: 1009 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1010 * rtnl_link_stats64 structure passed by the caller. 1011 * 2. Define @ndo_get_stats to update a net_device_stats structure 1012 * (which should normally be dev->stats) and return a pointer to 1013 * it. The structure may be changed asynchronously only if each 1014 * field is written atomically. 1015 * 3. Update dev->stats asynchronously and atomically, and define 1016 * neither operation. 1017 * 1018 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1019 * Return true if this device supports offload stats of this attr_id. 1020 * 1021 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1022 * void *attr_data) 1023 * Get statistics for offload operations by attr_id. Write it into the 1024 * attr_data pointer. 1025 * 1026 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1027 * If device supports VLAN filtering this function is called when a 1028 * VLAN id is registered. 1029 * 1030 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1031 * If device supports VLAN filtering this function is called when a 1032 * VLAN id is unregistered. 1033 * 1034 * void (*ndo_poll_controller)(struct net_device *dev); 1035 * 1036 * SR-IOV management functions. 1037 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1038 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1039 * u8 qos, __be16 proto); 1040 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1041 * int max_tx_rate); 1042 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1043 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1044 * int (*ndo_get_vf_config)(struct net_device *dev, 1045 * int vf, struct ifla_vf_info *ivf); 1046 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1047 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1048 * struct nlattr *port[]); 1049 * 1050 * Enable or disable the VF ability to query its RSS Redirection Table and 1051 * Hash Key. This is needed since on some devices VF share this information 1052 * with PF and querying it may introduce a theoretical security risk. 1053 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1054 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1055 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1056 * void *type_data); 1057 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1058 * This is always called from the stack with the rtnl lock held and netif 1059 * tx queues stopped. This allows the netdevice to perform queue 1060 * management safely. 1061 * 1062 * Fiber Channel over Ethernet (FCoE) offload functions. 1063 * int (*ndo_fcoe_enable)(struct net_device *dev); 1064 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1065 * so the underlying device can perform whatever needed configuration or 1066 * initialization to support acceleration of FCoE traffic. 1067 * 1068 * int (*ndo_fcoe_disable)(struct net_device *dev); 1069 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1070 * so the underlying device can perform whatever needed clean-ups to 1071 * stop supporting acceleration of FCoE traffic. 1072 * 1073 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1074 * struct scatterlist *sgl, unsigned int sgc); 1075 * Called when the FCoE Initiator wants to initialize an I/O that 1076 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1077 * perform necessary setup and returns 1 to indicate the device is set up 1078 * successfully to perform DDP on this I/O, otherwise this returns 0. 1079 * 1080 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1081 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1082 * indicated by the FC exchange id 'xid', so the underlying device can 1083 * clean up and reuse resources for later DDP requests. 1084 * 1085 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1086 * struct scatterlist *sgl, unsigned int sgc); 1087 * Called when the FCoE Target wants to initialize an I/O that 1088 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1089 * perform necessary setup and returns 1 to indicate the device is set up 1090 * successfully to perform DDP on this I/O, otherwise this returns 0. 1091 * 1092 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1093 * struct netdev_fcoe_hbainfo *hbainfo); 1094 * Called when the FCoE Protocol stack wants information on the underlying 1095 * device. This information is utilized by the FCoE protocol stack to 1096 * register attributes with Fiber Channel management service as per the 1097 * FC-GS Fabric Device Management Information(FDMI) specification. 1098 * 1099 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1100 * Called when the underlying device wants to override default World Wide 1101 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1102 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1103 * protocol stack to use. 1104 * 1105 * RFS acceleration. 1106 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1107 * u16 rxq_index, u32 flow_id); 1108 * Set hardware filter for RFS. rxq_index is the target queue index; 1109 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1110 * Return the filter ID on success, or a negative error code. 1111 * 1112 * Slave management functions (for bridge, bonding, etc). 1113 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1114 * Called to make another netdev an underling. 1115 * 1116 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1117 * Called to release previously enslaved netdev. 1118 * 1119 * Feature/offload setting functions. 1120 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1121 * netdev_features_t features); 1122 * Adjusts the requested feature flags according to device-specific 1123 * constraints, and returns the resulting flags. Must not modify 1124 * the device state. 1125 * 1126 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1127 * Called to update device configuration to new features. Passed 1128 * feature set might be less than what was returned by ndo_fix_features()). 1129 * Must return >0 or -errno if it changed dev->features itself. 1130 * 1131 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1132 * struct net_device *dev, 1133 * const unsigned char *addr, u16 vid, u16 flags) 1134 * Adds an FDB entry to dev for addr. 1135 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1136 * struct net_device *dev, 1137 * const unsigned char *addr, u16 vid) 1138 * Deletes the FDB entry from dev coresponding to addr. 1139 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1140 * struct net_device *dev, struct net_device *filter_dev, 1141 * int *idx) 1142 * Used to add FDB entries to dump requests. Implementers should add 1143 * entries to skb and update idx with the number of entries. 1144 * 1145 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1146 * u16 flags) 1147 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1148 * struct net_device *dev, u32 filter_mask, 1149 * int nlflags) 1150 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1151 * u16 flags); 1152 * 1153 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1154 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1155 * which do not represent real hardware may define this to allow their 1156 * userspace components to manage their virtual carrier state. Devices 1157 * that determine carrier state from physical hardware properties (eg 1158 * network cables) or protocol-dependent mechanisms (eg 1159 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1160 * 1161 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1162 * struct netdev_phys_item_id *ppid); 1163 * Called to get ID of physical port of this device. If driver does 1164 * not implement this, it is assumed that the hw is not able to have 1165 * multiple net devices on single physical port. 1166 * 1167 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1168 * struct udp_tunnel_info *ti); 1169 * Called by UDP tunnel to notify a driver about the UDP port and socket 1170 * address family that a UDP tunnel is listnening to. It is called only 1171 * when a new port starts listening. The operation is protected by the 1172 * RTNL. 1173 * 1174 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1175 * struct udp_tunnel_info *ti); 1176 * Called by UDP tunnel to notify the driver about a UDP port and socket 1177 * address family that the UDP tunnel is not listening to anymore. The 1178 * operation is protected by the RTNL. 1179 * 1180 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1181 * struct net_device *dev) 1182 * Called by upper layer devices to accelerate switching or other 1183 * station functionality into hardware. 'pdev is the lowerdev 1184 * to use for the offload and 'dev' is the net device that will 1185 * back the offload. Returns a pointer to the private structure 1186 * the upper layer will maintain. 1187 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1188 * Called by upper layer device to delete the station created 1189 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1190 * the station and priv is the structure returned by the add 1191 * operation. 1192 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1193 * int queue_index, u32 maxrate); 1194 * Called when a user wants to set a max-rate limitation of specific 1195 * TX queue. 1196 * int (*ndo_get_iflink)(const struct net_device *dev); 1197 * Called to get the iflink value of this device. 1198 * void (*ndo_change_proto_down)(struct net_device *dev, 1199 * bool proto_down); 1200 * This function is used to pass protocol port error state information 1201 * to the switch driver. The switch driver can react to the proto_down 1202 * by doing a phys down on the associated switch port. 1203 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1204 * This function is used to get egress tunnel information for given skb. 1205 * This is useful for retrieving outer tunnel header parameters while 1206 * sampling packet. 1207 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1208 * This function is used to specify the headroom that the skb must 1209 * consider when allocation skb during packet reception. Setting 1210 * appropriate rx headroom value allows avoiding skb head copy on 1211 * forward. Setting a negative value resets the rx headroom to the 1212 * default value. 1213 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1214 * This function is used to set or query state related to XDP on the 1215 * netdevice and manage BPF offload. See definition of 1216 * enum bpf_netdev_command for details. 1217 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1218 * u32 flags); 1219 * This function is used to submit @n XDP packets for transmit on a 1220 * netdevice. Returns number of frames successfully transmitted, frames 1221 * that got dropped are freed/returned via xdp_return_frame(). 1222 * Returns negative number, means general error invoking ndo, meaning 1223 * no frames were xmit'ed and core-caller will free all frames. 1224 */ 1225 struct net_device_ops { 1226 int (*ndo_init)(struct net_device *dev); 1227 void (*ndo_uninit)(struct net_device *dev); 1228 int (*ndo_open)(struct net_device *dev); 1229 int (*ndo_stop)(struct net_device *dev); 1230 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1231 struct net_device *dev); 1232 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1233 struct net_device *dev, 1234 netdev_features_t features); 1235 u16 (*ndo_select_queue)(struct net_device *dev, 1236 struct sk_buff *skb, 1237 struct net_device *sb_dev, 1238 select_queue_fallback_t fallback); 1239 void (*ndo_change_rx_flags)(struct net_device *dev, 1240 int flags); 1241 void (*ndo_set_rx_mode)(struct net_device *dev); 1242 int (*ndo_set_mac_address)(struct net_device *dev, 1243 void *addr); 1244 int (*ndo_validate_addr)(struct net_device *dev); 1245 int (*ndo_do_ioctl)(struct net_device *dev, 1246 struct ifreq *ifr, int cmd); 1247 int (*ndo_set_config)(struct net_device *dev, 1248 struct ifmap *map); 1249 int (*ndo_change_mtu)(struct net_device *dev, 1250 int new_mtu); 1251 int (*ndo_neigh_setup)(struct net_device *dev, 1252 struct neigh_parms *); 1253 void (*ndo_tx_timeout) (struct net_device *dev); 1254 1255 void (*ndo_get_stats64)(struct net_device *dev, 1256 struct rtnl_link_stats64 *storage); 1257 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1258 int (*ndo_get_offload_stats)(int attr_id, 1259 const struct net_device *dev, 1260 void *attr_data); 1261 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1262 1263 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1264 __be16 proto, u16 vid); 1265 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1266 __be16 proto, u16 vid); 1267 #ifdef CONFIG_NET_POLL_CONTROLLER 1268 void (*ndo_poll_controller)(struct net_device *dev); 1269 int (*ndo_netpoll_setup)(struct net_device *dev, 1270 struct netpoll_info *info); 1271 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1272 #endif 1273 int (*ndo_set_vf_mac)(struct net_device *dev, 1274 int queue, u8 *mac); 1275 int (*ndo_set_vf_vlan)(struct net_device *dev, 1276 int queue, u16 vlan, 1277 u8 qos, __be16 proto); 1278 int (*ndo_set_vf_rate)(struct net_device *dev, 1279 int vf, int min_tx_rate, 1280 int max_tx_rate); 1281 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1282 int vf, bool setting); 1283 int (*ndo_set_vf_trust)(struct net_device *dev, 1284 int vf, bool setting); 1285 int (*ndo_get_vf_config)(struct net_device *dev, 1286 int vf, 1287 struct ifla_vf_info *ivf); 1288 int (*ndo_set_vf_link_state)(struct net_device *dev, 1289 int vf, int link_state); 1290 int (*ndo_get_vf_stats)(struct net_device *dev, 1291 int vf, 1292 struct ifla_vf_stats 1293 *vf_stats); 1294 int (*ndo_set_vf_port)(struct net_device *dev, 1295 int vf, 1296 struct nlattr *port[]); 1297 int (*ndo_get_vf_port)(struct net_device *dev, 1298 int vf, struct sk_buff *skb); 1299 int (*ndo_set_vf_guid)(struct net_device *dev, 1300 int vf, u64 guid, 1301 int guid_type); 1302 int (*ndo_set_vf_rss_query_en)( 1303 struct net_device *dev, 1304 int vf, bool setting); 1305 int (*ndo_setup_tc)(struct net_device *dev, 1306 enum tc_setup_type type, 1307 void *type_data); 1308 #if IS_ENABLED(CONFIG_FCOE) 1309 int (*ndo_fcoe_enable)(struct net_device *dev); 1310 int (*ndo_fcoe_disable)(struct net_device *dev); 1311 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1312 u16 xid, 1313 struct scatterlist *sgl, 1314 unsigned int sgc); 1315 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1316 u16 xid); 1317 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1318 u16 xid, 1319 struct scatterlist *sgl, 1320 unsigned int sgc); 1321 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1322 struct netdev_fcoe_hbainfo *hbainfo); 1323 #endif 1324 1325 #if IS_ENABLED(CONFIG_LIBFCOE) 1326 #define NETDEV_FCOE_WWNN 0 1327 #define NETDEV_FCOE_WWPN 1 1328 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1329 u64 *wwn, int type); 1330 #endif 1331 1332 #ifdef CONFIG_RFS_ACCEL 1333 int (*ndo_rx_flow_steer)(struct net_device *dev, 1334 const struct sk_buff *skb, 1335 u16 rxq_index, 1336 u32 flow_id); 1337 #endif 1338 int (*ndo_add_slave)(struct net_device *dev, 1339 struct net_device *slave_dev, 1340 struct netlink_ext_ack *extack); 1341 int (*ndo_del_slave)(struct net_device *dev, 1342 struct net_device *slave_dev); 1343 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1344 netdev_features_t features); 1345 int (*ndo_set_features)(struct net_device *dev, 1346 netdev_features_t features); 1347 int (*ndo_neigh_construct)(struct net_device *dev, 1348 struct neighbour *n); 1349 void (*ndo_neigh_destroy)(struct net_device *dev, 1350 struct neighbour *n); 1351 1352 int (*ndo_fdb_add)(struct ndmsg *ndm, 1353 struct nlattr *tb[], 1354 struct net_device *dev, 1355 const unsigned char *addr, 1356 u16 vid, 1357 u16 flags); 1358 int (*ndo_fdb_del)(struct ndmsg *ndm, 1359 struct nlattr *tb[], 1360 struct net_device *dev, 1361 const unsigned char *addr, 1362 u16 vid); 1363 int (*ndo_fdb_dump)(struct sk_buff *skb, 1364 struct netlink_callback *cb, 1365 struct net_device *dev, 1366 struct net_device *filter_dev, 1367 int *idx); 1368 1369 int (*ndo_bridge_setlink)(struct net_device *dev, 1370 struct nlmsghdr *nlh, 1371 u16 flags); 1372 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1373 u32 pid, u32 seq, 1374 struct net_device *dev, 1375 u32 filter_mask, 1376 int nlflags); 1377 int (*ndo_bridge_dellink)(struct net_device *dev, 1378 struct nlmsghdr *nlh, 1379 u16 flags); 1380 int (*ndo_change_carrier)(struct net_device *dev, 1381 bool new_carrier); 1382 int (*ndo_get_phys_port_id)(struct net_device *dev, 1383 struct netdev_phys_item_id *ppid); 1384 int (*ndo_get_phys_port_name)(struct net_device *dev, 1385 char *name, size_t len); 1386 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1387 struct udp_tunnel_info *ti); 1388 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1389 struct udp_tunnel_info *ti); 1390 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1391 struct net_device *dev); 1392 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1393 void *priv); 1394 1395 int (*ndo_get_lock_subclass)(struct net_device *dev); 1396 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1397 int queue_index, 1398 u32 maxrate); 1399 int (*ndo_get_iflink)(const struct net_device *dev); 1400 int (*ndo_change_proto_down)(struct net_device *dev, 1401 bool proto_down); 1402 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1403 struct sk_buff *skb); 1404 void (*ndo_set_rx_headroom)(struct net_device *dev, 1405 int needed_headroom); 1406 int (*ndo_bpf)(struct net_device *dev, 1407 struct netdev_bpf *bpf); 1408 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1409 struct xdp_frame **xdp, 1410 u32 flags); 1411 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1412 u32 queue_id); 1413 }; 1414 1415 /** 1416 * enum net_device_priv_flags - &struct net_device priv_flags 1417 * 1418 * These are the &struct net_device, they are only set internally 1419 * by drivers and used in the kernel. These flags are invisible to 1420 * userspace; this means that the order of these flags can change 1421 * during any kernel release. 1422 * 1423 * You should have a pretty good reason to be extending these flags. 1424 * 1425 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1426 * @IFF_EBRIDGE: Ethernet bridging device 1427 * @IFF_BONDING: bonding master or slave 1428 * @IFF_ISATAP: ISATAP interface (RFC4214) 1429 * @IFF_WAN_HDLC: WAN HDLC device 1430 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1431 * release skb->dst 1432 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1433 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1434 * @IFF_MACVLAN_PORT: device used as macvlan port 1435 * @IFF_BRIDGE_PORT: device used as bridge port 1436 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1437 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1438 * @IFF_UNICAST_FLT: Supports unicast filtering 1439 * @IFF_TEAM_PORT: device used as team port 1440 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1441 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1442 * change when it's running 1443 * @IFF_MACVLAN: Macvlan device 1444 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1445 * underlying stacked devices 1446 * @IFF_L3MDEV_MASTER: device is an L3 master device 1447 * @IFF_NO_QUEUE: device can run without qdisc attached 1448 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1449 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1450 * @IFF_TEAM: device is a team device 1451 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1452 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1453 * entity (i.e. the master device for bridged veth) 1454 * @IFF_MACSEC: device is a MACsec device 1455 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1456 * @IFF_FAILOVER: device is a failover master device 1457 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1458 */ 1459 enum netdev_priv_flags { 1460 IFF_802_1Q_VLAN = 1<<0, 1461 IFF_EBRIDGE = 1<<1, 1462 IFF_BONDING = 1<<2, 1463 IFF_ISATAP = 1<<3, 1464 IFF_WAN_HDLC = 1<<4, 1465 IFF_XMIT_DST_RELEASE = 1<<5, 1466 IFF_DONT_BRIDGE = 1<<6, 1467 IFF_DISABLE_NETPOLL = 1<<7, 1468 IFF_MACVLAN_PORT = 1<<8, 1469 IFF_BRIDGE_PORT = 1<<9, 1470 IFF_OVS_DATAPATH = 1<<10, 1471 IFF_TX_SKB_SHARING = 1<<11, 1472 IFF_UNICAST_FLT = 1<<12, 1473 IFF_TEAM_PORT = 1<<13, 1474 IFF_SUPP_NOFCS = 1<<14, 1475 IFF_LIVE_ADDR_CHANGE = 1<<15, 1476 IFF_MACVLAN = 1<<16, 1477 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1478 IFF_L3MDEV_MASTER = 1<<18, 1479 IFF_NO_QUEUE = 1<<19, 1480 IFF_OPENVSWITCH = 1<<20, 1481 IFF_L3MDEV_SLAVE = 1<<21, 1482 IFF_TEAM = 1<<22, 1483 IFF_RXFH_CONFIGURED = 1<<23, 1484 IFF_PHONY_HEADROOM = 1<<24, 1485 IFF_MACSEC = 1<<25, 1486 IFF_NO_RX_HANDLER = 1<<26, 1487 IFF_FAILOVER = 1<<27, 1488 IFF_FAILOVER_SLAVE = 1<<28, 1489 }; 1490 1491 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1492 #define IFF_EBRIDGE IFF_EBRIDGE 1493 #define IFF_BONDING IFF_BONDING 1494 #define IFF_ISATAP IFF_ISATAP 1495 #define IFF_WAN_HDLC IFF_WAN_HDLC 1496 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1497 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1498 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1499 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1500 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1501 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1502 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1503 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1504 #define IFF_TEAM_PORT IFF_TEAM_PORT 1505 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1506 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1507 #define IFF_MACVLAN IFF_MACVLAN 1508 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1509 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1510 #define IFF_NO_QUEUE IFF_NO_QUEUE 1511 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1512 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1513 #define IFF_TEAM IFF_TEAM 1514 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1515 #define IFF_MACSEC IFF_MACSEC 1516 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1517 #define IFF_FAILOVER IFF_FAILOVER 1518 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1519 1520 /** 1521 * struct net_device - The DEVICE structure. 1522 * 1523 * Actually, this whole structure is a big mistake. It mixes I/O 1524 * data with strictly "high-level" data, and it has to know about 1525 * almost every data structure used in the INET module. 1526 * 1527 * @name: This is the first field of the "visible" part of this structure 1528 * (i.e. as seen by users in the "Space.c" file). It is the name 1529 * of the interface. 1530 * 1531 * @name_hlist: Device name hash chain, please keep it close to name[] 1532 * @ifalias: SNMP alias 1533 * @mem_end: Shared memory end 1534 * @mem_start: Shared memory start 1535 * @base_addr: Device I/O address 1536 * @irq: Device IRQ number 1537 * 1538 * @state: Generic network queuing layer state, see netdev_state_t 1539 * @dev_list: The global list of network devices 1540 * @napi_list: List entry used for polling NAPI devices 1541 * @unreg_list: List entry when we are unregistering the 1542 * device; see the function unregister_netdev 1543 * @close_list: List entry used when we are closing the device 1544 * @ptype_all: Device-specific packet handlers for all protocols 1545 * @ptype_specific: Device-specific, protocol-specific packet handlers 1546 * 1547 * @adj_list: Directly linked devices, like slaves for bonding 1548 * @features: Currently active device features 1549 * @hw_features: User-changeable features 1550 * 1551 * @wanted_features: User-requested features 1552 * @vlan_features: Mask of features inheritable by VLAN devices 1553 * 1554 * @hw_enc_features: Mask of features inherited by encapsulating devices 1555 * This field indicates what encapsulation 1556 * offloads the hardware is capable of doing, 1557 * and drivers will need to set them appropriately. 1558 * 1559 * @mpls_features: Mask of features inheritable by MPLS 1560 * 1561 * @ifindex: interface index 1562 * @group: The group the device belongs to 1563 * 1564 * @stats: Statistics struct, which was left as a legacy, use 1565 * rtnl_link_stats64 instead 1566 * 1567 * @rx_dropped: Dropped packets by core network, 1568 * do not use this in drivers 1569 * @tx_dropped: Dropped packets by core network, 1570 * do not use this in drivers 1571 * @rx_nohandler: nohandler dropped packets by core network on 1572 * inactive devices, do not use this in drivers 1573 * @carrier_up_count: Number of times the carrier has been up 1574 * @carrier_down_count: Number of times the carrier has been down 1575 * 1576 * @wireless_handlers: List of functions to handle Wireless Extensions, 1577 * instead of ioctl, 1578 * see <net/iw_handler.h> for details. 1579 * @wireless_data: Instance data managed by the core of wireless extensions 1580 * 1581 * @netdev_ops: Includes several pointers to callbacks, 1582 * if one wants to override the ndo_*() functions 1583 * @ethtool_ops: Management operations 1584 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1585 * discovery handling. Necessary for e.g. 6LoWPAN. 1586 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1587 * of Layer 2 headers. 1588 * 1589 * @flags: Interface flags (a la BSD) 1590 * @priv_flags: Like 'flags' but invisible to userspace, 1591 * see if.h for the definitions 1592 * @gflags: Global flags ( kept as legacy ) 1593 * @padded: How much padding added by alloc_netdev() 1594 * @operstate: RFC2863 operstate 1595 * @link_mode: Mapping policy to operstate 1596 * @if_port: Selectable AUI, TP, ... 1597 * @dma: DMA channel 1598 * @mtu: Interface MTU value 1599 * @min_mtu: Interface Minimum MTU value 1600 * @max_mtu: Interface Maximum MTU value 1601 * @type: Interface hardware type 1602 * @hard_header_len: Maximum hardware header length. 1603 * @min_header_len: Minimum hardware header length 1604 * 1605 * @needed_headroom: Extra headroom the hardware may need, but not in all 1606 * cases can this be guaranteed 1607 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1608 * cases can this be guaranteed. Some cases also use 1609 * LL_MAX_HEADER instead to allocate the skb 1610 * 1611 * interface address info: 1612 * 1613 * @perm_addr: Permanent hw address 1614 * @addr_assign_type: Hw address assignment type 1615 * @addr_len: Hardware address length 1616 * @neigh_priv_len: Used in neigh_alloc() 1617 * @dev_id: Used to differentiate devices that share 1618 * the same link layer address 1619 * @dev_port: Used to differentiate devices that share 1620 * the same function 1621 * @addr_list_lock: XXX: need comments on this one 1622 * @uc_promisc: Counter that indicates promiscuous mode 1623 * has been enabled due to the need to listen to 1624 * additional unicast addresses in a device that 1625 * does not implement ndo_set_rx_mode() 1626 * @uc: unicast mac addresses 1627 * @mc: multicast mac addresses 1628 * @dev_addrs: list of device hw addresses 1629 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1630 * @promiscuity: Number of times the NIC is told to work in 1631 * promiscuous mode; if it becomes 0 the NIC will 1632 * exit promiscuous mode 1633 * @allmulti: Counter, enables or disables allmulticast mode 1634 * 1635 * @vlan_info: VLAN info 1636 * @dsa_ptr: dsa specific data 1637 * @tipc_ptr: TIPC specific data 1638 * @atalk_ptr: AppleTalk link 1639 * @ip_ptr: IPv4 specific data 1640 * @dn_ptr: DECnet specific data 1641 * @ip6_ptr: IPv6 specific data 1642 * @ax25_ptr: AX.25 specific data 1643 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1644 * 1645 * @dev_addr: Hw address (before bcast, 1646 * because most packets are unicast) 1647 * 1648 * @_rx: Array of RX queues 1649 * @num_rx_queues: Number of RX queues 1650 * allocated at register_netdev() time 1651 * @real_num_rx_queues: Number of RX queues currently active in device 1652 * 1653 * @rx_handler: handler for received packets 1654 * @rx_handler_data: XXX: need comments on this one 1655 * @miniq_ingress: ingress/clsact qdisc specific data for 1656 * ingress processing 1657 * @ingress_queue: XXX: need comments on this one 1658 * @broadcast: hw bcast address 1659 * 1660 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1661 * indexed by RX queue number. Assigned by driver. 1662 * This must only be set if the ndo_rx_flow_steer 1663 * operation is defined 1664 * @index_hlist: Device index hash chain 1665 * 1666 * @_tx: Array of TX queues 1667 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1668 * @real_num_tx_queues: Number of TX queues currently active in device 1669 * @qdisc: Root qdisc from userspace point of view 1670 * @tx_queue_len: Max frames per queue allowed 1671 * @tx_global_lock: XXX: need comments on this one 1672 * 1673 * @xps_maps: XXX: need comments on this one 1674 * @miniq_egress: clsact qdisc specific data for 1675 * egress processing 1676 * @watchdog_timeo: Represents the timeout that is used by 1677 * the watchdog (see dev_watchdog()) 1678 * @watchdog_timer: List of timers 1679 * 1680 * @pcpu_refcnt: Number of references to this device 1681 * @todo_list: Delayed register/unregister 1682 * @link_watch_list: XXX: need comments on this one 1683 * 1684 * @reg_state: Register/unregister state machine 1685 * @dismantle: Device is going to be freed 1686 * @rtnl_link_state: This enum represents the phases of creating 1687 * a new link 1688 * 1689 * @needs_free_netdev: Should unregister perform free_netdev? 1690 * @priv_destructor: Called from unregister 1691 * @npinfo: XXX: need comments on this one 1692 * @nd_net: Network namespace this network device is inside 1693 * 1694 * @ml_priv: Mid-layer private 1695 * @lstats: Loopback statistics 1696 * @tstats: Tunnel statistics 1697 * @dstats: Dummy statistics 1698 * @vstats: Virtual ethernet statistics 1699 * 1700 * @garp_port: GARP 1701 * @mrp_port: MRP 1702 * 1703 * @dev: Class/net/name entry 1704 * @sysfs_groups: Space for optional device, statistics and wireless 1705 * sysfs groups 1706 * 1707 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1708 * @rtnl_link_ops: Rtnl_link_ops 1709 * 1710 * @gso_max_size: Maximum size of generic segmentation offload 1711 * @gso_max_segs: Maximum number of segments that can be passed to the 1712 * NIC for GSO 1713 * 1714 * @dcbnl_ops: Data Center Bridging netlink ops 1715 * @num_tc: Number of traffic classes in the net device 1716 * @tc_to_txq: XXX: need comments on this one 1717 * @prio_tc_map: XXX: need comments on this one 1718 * 1719 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1720 * 1721 * @priomap: XXX: need comments on this one 1722 * @phydev: Physical device may attach itself 1723 * for hardware timestamping 1724 * @sfp_bus: attached &struct sfp_bus structure. 1725 * 1726 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1727 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1728 * 1729 * @proto_down: protocol port state information can be sent to the 1730 * switch driver and used to set the phys state of the 1731 * switch port. 1732 * 1733 * @wol_enabled: Wake-on-LAN is enabled 1734 * 1735 * FIXME: cleanup struct net_device such that network protocol info 1736 * moves out. 1737 */ 1738 1739 struct net_device { 1740 char name[IFNAMSIZ]; 1741 struct hlist_node name_hlist; 1742 struct dev_ifalias __rcu *ifalias; 1743 /* 1744 * I/O specific fields 1745 * FIXME: Merge these and struct ifmap into one 1746 */ 1747 unsigned long mem_end; 1748 unsigned long mem_start; 1749 unsigned long base_addr; 1750 int irq; 1751 1752 /* 1753 * Some hardware also needs these fields (state,dev_list, 1754 * napi_list,unreg_list,close_list) but they are not 1755 * part of the usual set specified in Space.c. 1756 */ 1757 1758 unsigned long state; 1759 1760 struct list_head dev_list; 1761 struct list_head napi_list; 1762 struct list_head unreg_list; 1763 struct list_head close_list; 1764 struct list_head ptype_all; 1765 struct list_head ptype_specific; 1766 1767 struct { 1768 struct list_head upper; 1769 struct list_head lower; 1770 } adj_list; 1771 1772 netdev_features_t features; 1773 netdev_features_t hw_features; 1774 netdev_features_t wanted_features; 1775 netdev_features_t vlan_features; 1776 netdev_features_t hw_enc_features; 1777 netdev_features_t mpls_features; 1778 netdev_features_t gso_partial_features; 1779 1780 int ifindex; 1781 int group; 1782 1783 struct net_device_stats stats; 1784 1785 atomic_long_t rx_dropped; 1786 atomic_long_t tx_dropped; 1787 atomic_long_t rx_nohandler; 1788 1789 /* Stats to monitor link on/off, flapping */ 1790 atomic_t carrier_up_count; 1791 atomic_t carrier_down_count; 1792 1793 #ifdef CONFIG_WIRELESS_EXT 1794 const struct iw_handler_def *wireless_handlers; 1795 struct iw_public_data *wireless_data; 1796 #endif 1797 const struct net_device_ops *netdev_ops; 1798 const struct ethtool_ops *ethtool_ops; 1799 #ifdef CONFIG_NET_SWITCHDEV 1800 const struct switchdev_ops *switchdev_ops; 1801 #endif 1802 #ifdef CONFIG_NET_L3_MASTER_DEV 1803 const struct l3mdev_ops *l3mdev_ops; 1804 #endif 1805 #if IS_ENABLED(CONFIG_IPV6) 1806 const struct ndisc_ops *ndisc_ops; 1807 #endif 1808 1809 #ifdef CONFIG_XFRM_OFFLOAD 1810 const struct xfrmdev_ops *xfrmdev_ops; 1811 #endif 1812 1813 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1814 const struct tlsdev_ops *tlsdev_ops; 1815 #endif 1816 1817 const struct header_ops *header_ops; 1818 1819 unsigned int flags; 1820 unsigned int priv_flags; 1821 1822 unsigned short gflags; 1823 unsigned short padded; 1824 1825 unsigned char operstate; 1826 unsigned char link_mode; 1827 1828 unsigned char if_port; 1829 unsigned char dma; 1830 1831 unsigned int mtu; 1832 unsigned int min_mtu; 1833 unsigned int max_mtu; 1834 unsigned short type; 1835 unsigned short hard_header_len; 1836 unsigned char min_header_len; 1837 1838 unsigned short needed_headroom; 1839 unsigned short needed_tailroom; 1840 1841 /* Interface address info. */ 1842 unsigned char perm_addr[MAX_ADDR_LEN]; 1843 unsigned char addr_assign_type; 1844 unsigned char addr_len; 1845 unsigned short neigh_priv_len; 1846 unsigned short dev_id; 1847 unsigned short dev_port; 1848 spinlock_t addr_list_lock; 1849 unsigned char name_assign_type; 1850 bool uc_promisc; 1851 struct netdev_hw_addr_list uc; 1852 struct netdev_hw_addr_list mc; 1853 struct netdev_hw_addr_list dev_addrs; 1854 1855 #ifdef CONFIG_SYSFS 1856 struct kset *queues_kset; 1857 #endif 1858 unsigned int promiscuity; 1859 unsigned int allmulti; 1860 1861 1862 /* Protocol-specific pointers */ 1863 1864 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1865 struct vlan_info __rcu *vlan_info; 1866 #endif 1867 #if IS_ENABLED(CONFIG_NET_DSA) 1868 struct dsa_port *dsa_ptr; 1869 #endif 1870 #if IS_ENABLED(CONFIG_TIPC) 1871 struct tipc_bearer __rcu *tipc_ptr; 1872 #endif 1873 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1874 void *atalk_ptr; 1875 #endif 1876 struct in_device __rcu *ip_ptr; 1877 #if IS_ENABLED(CONFIG_DECNET) 1878 struct dn_dev __rcu *dn_ptr; 1879 #endif 1880 struct inet6_dev __rcu *ip6_ptr; 1881 #if IS_ENABLED(CONFIG_AX25) 1882 void *ax25_ptr; 1883 #endif 1884 struct wireless_dev *ieee80211_ptr; 1885 struct wpan_dev *ieee802154_ptr; 1886 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1887 struct mpls_dev __rcu *mpls_ptr; 1888 #endif 1889 1890 /* 1891 * Cache lines mostly used on receive path (including eth_type_trans()) 1892 */ 1893 /* Interface address info used in eth_type_trans() */ 1894 unsigned char *dev_addr; 1895 1896 struct netdev_rx_queue *_rx; 1897 unsigned int num_rx_queues; 1898 unsigned int real_num_rx_queues; 1899 1900 struct bpf_prog __rcu *xdp_prog; 1901 unsigned long gro_flush_timeout; 1902 rx_handler_func_t __rcu *rx_handler; 1903 void __rcu *rx_handler_data; 1904 1905 #ifdef CONFIG_NET_CLS_ACT 1906 struct mini_Qdisc __rcu *miniq_ingress; 1907 #endif 1908 struct netdev_queue __rcu *ingress_queue; 1909 #ifdef CONFIG_NETFILTER_INGRESS 1910 struct nf_hook_entries __rcu *nf_hooks_ingress; 1911 #endif 1912 1913 unsigned char broadcast[MAX_ADDR_LEN]; 1914 #ifdef CONFIG_RFS_ACCEL 1915 struct cpu_rmap *rx_cpu_rmap; 1916 #endif 1917 struct hlist_node index_hlist; 1918 1919 /* 1920 * Cache lines mostly used on transmit path 1921 */ 1922 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1923 unsigned int num_tx_queues; 1924 unsigned int real_num_tx_queues; 1925 struct Qdisc *qdisc; 1926 #ifdef CONFIG_NET_SCHED 1927 DECLARE_HASHTABLE (qdisc_hash, 4); 1928 #endif 1929 unsigned int tx_queue_len; 1930 spinlock_t tx_global_lock; 1931 int watchdog_timeo; 1932 1933 #ifdef CONFIG_XPS 1934 struct xps_dev_maps __rcu *xps_cpus_map; 1935 struct xps_dev_maps __rcu *xps_rxqs_map; 1936 #endif 1937 #ifdef CONFIG_NET_CLS_ACT 1938 struct mini_Qdisc __rcu *miniq_egress; 1939 #endif 1940 1941 /* These may be needed for future network-power-down code. */ 1942 struct timer_list watchdog_timer; 1943 1944 int __percpu *pcpu_refcnt; 1945 struct list_head todo_list; 1946 1947 struct list_head link_watch_list; 1948 1949 enum { NETREG_UNINITIALIZED=0, 1950 NETREG_REGISTERED, /* completed register_netdevice */ 1951 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1952 NETREG_UNREGISTERED, /* completed unregister todo */ 1953 NETREG_RELEASED, /* called free_netdev */ 1954 NETREG_DUMMY, /* dummy device for NAPI poll */ 1955 } reg_state:8; 1956 1957 bool dismantle; 1958 1959 enum { 1960 RTNL_LINK_INITIALIZED, 1961 RTNL_LINK_INITIALIZING, 1962 } rtnl_link_state:16; 1963 1964 bool needs_free_netdev; 1965 void (*priv_destructor)(struct net_device *dev); 1966 1967 #ifdef CONFIG_NETPOLL 1968 struct netpoll_info __rcu *npinfo; 1969 #endif 1970 1971 possible_net_t nd_net; 1972 1973 /* mid-layer private */ 1974 union { 1975 void *ml_priv; 1976 struct pcpu_lstats __percpu *lstats; 1977 struct pcpu_sw_netstats __percpu *tstats; 1978 struct pcpu_dstats __percpu *dstats; 1979 struct pcpu_vstats __percpu *vstats; 1980 }; 1981 1982 #if IS_ENABLED(CONFIG_GARP) 1983 struct garp_port __rcu *garp_port; 1984 #endif 1985 #if IS_ENABLED(CONFIG_MRP) 1986 struct mrp_port __rcu *mrp_port; 1987 #endif 1988 1989 struct device dev; 1990 const struct attribute_group *sysfs_groups[4]; 1991 const struct attribute_group *sysfs_rx_queue_group; 1992 1993 const struct rtnl_link_ops *rtnl_link_ops; 1994 1995 /* for setting kernel sock attribute on TCP connection setup */ 1996 #define GSO_MAX_SIZE 65536 1997 unsigned int gso_max_size; 1998 #define GSO_MAX_SEGS 65535 1999 u16 gso_max_segs; 2000 2001 #ifdef CONFIG_DCB 2002 const struct dcbnl_rtnl_ops *dcbnl_ops; 2003 #endif 2004 s16 num_tc; 2005 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2006 u8 prio_tc_map[TC_BITMASK + 1]; 2007 2008 #if IS_ENABLED(CONFIG_FCOE) 2009 unsigned int fcoe_ddp_xid; 2010 #endif 2011 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2012 struct netprio_map __rcu *priomap; 2013 #endif 2014 struct phy_device *phydev; 2015 struct sfp_bus *sfp_bus; 2016 struct lock_class_key *qdisc_tx_busylock; 2017 struct lock_class_key *qdisc_running_key; 2018 bool proto_down; 2019 unsigned wol_enabled:1; 2020 }; 2021 #define to_net_dev(d) container_of(d, struct net_device, dev) 2022 2023 static inline bool netif_elide_gro(const struct net_device *dev) 2024 { 2025 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2026 return true; 2027 return false; 2028 } 2029 2030 #define NETDEV_ALIGN 32 2031 2032 static inline 2033 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2034 { 2035 return dev->prio_tc_map[prio & TC_BITMASK]; 2036 } 2037 2038 static inline 2039 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2040 { 2041 if (tc >= dev->num_tc) 2042 return -EINVAL; 2043 2044 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2045 return 0; 2046 } 2047 2048 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2049 void netdev_reset_tc(struct net_device *dev); 2050 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2051 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2052 2053 static inline 2054 int netdev_get_num_tc(struct net_device *dev) 2055 { 2056 return dev->num_tc; 2057 } 2058 2059 void netdev_unbind_sb_channel(struct net_device *dev, 2060 struct net_device *sb_dev); 2061 int netdev_bind_sb_channel_queue(struct net_device *dev, 2062 struct net_device *sb_dev, 2063 u8 tc, u16 count, u16 offset); 2064 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2065 static inline int netdev_get_sb_channel(struct net_device *dev) 2066 { 2067 return max_t(int, -dev->num_tc, 0); 2068 } 2069 2070 static inline 2071 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2072 unsigned int index) 2073 { 2074 return &dev->_tx[index]; 2075 } 2076 2077 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2078 const struct sk_buff *skb) 2079 { 2080 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2081 } 2082 2083 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2084 void (*f)(struct net_device *, 2085 struct netdev_queue *, 2086 void *), 2087 void *arg) 2088 { 2089 unsigned int i; 2090 2091 for (i = 0; i < dev->num_tx_queues; i++) 2092 f(dev, &dev->_tx[i], arg); 2093 } 2094 2095 #define netdev_lockdep_set_classes(dev) \ 2096 { \ 2097 static struct lock_class_key qdisc_tx_busylock_key; \ 2098 static struct lock_class_key qdisc_running_key; \ 2099 static struct lock_class_key qdisc_xmit_lock_key; \ 2100 static struct lock_class_key dev_addr_list_lock_key; \ 2101 unsigned int i; \ 2102 \ 2103 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2104 (dev)->qdisc_running_key = &qdisc_running_key; \ 2105 lockdep_set_class(&(dev)->addr_list_lock, \ 2106 &dev_addr_list_lock_key); \ 2107 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2108 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2109 &qdisc_xmit_lock_key); \ 2110 } 2111 2112 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2113 struct sk_buff *skb, 2114 struct net_device *sb_dev); 2115 2116 /* returns the headroom that the master device needs to take in account 2117 * when forwarding to this dev 2118 */ 2119 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2120 { 2121 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2122 } 2123 2124 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2125 { 2126 if (dev->netdev_ops->ndo_set_rx_headroom) 2127 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2128 } 2129 2130 /* set the device rx headroom to the dev's default */ 2131 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2132 { 2133 netdev_set_rx_headroom(dev, -1); 2134 } 2135 2136 /* 2137 * Net namespace inlines 2138 */ 2139 static inline 2140 struct net *dev_net(const struct net_device *dev) 2141 { 2142 return read_pnet(&dev->nd_net); 2143 } 2144 2145 static inline 2146 void dev_net_set(struct net_device *dev, struct net *net) 2147 { 2148 write_pnet(&dev->nd_net, net); 2149 } 2150 2151 /** 2152 * netdev_priv - access network device private data 2153 * @dev: network device 2154 * 2155 * Get network device private data 2156 */ 2157 static inline void *netdev_priv(const struct net_device *dev) 2158 { 2159 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2160 } 2161 2162 /* Set the sysfs physical device reference for the network logical device 2163 * if set prior to registration will cause a symlink during initialization. 2164 */ 2165 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2166 2167 /* Set the sysfs device type for the network logical device to allow 2168 * fine-grained identification of different network device types. For 2169 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2170 */ 2171 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2172 2173 /* Default NAPI poll() weight 2174 * Device drivers are strongly advised to not use bigger value 2175 */ 2176 #define NAPI_POLL_WEIGHT 64 2177 2178 /** 2179 * netif_napi_add - initialize a NAPI context 2180 * @dev: network device 2181 * @napi: NAPI context 2182 * @poll: polling function 2183 * @weight: default weight 2184 * 2185 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2186 * *any* of the other NAPI-related functions. 2187 */ 2188 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2189 int (*poll)(struct napi_struct *, int), int weight); 2190 2191 /** 2192 * netif_tx_napi_add - initialize a NAPI context 2193 * @dev: network device 2194 * @napi: NAPI context 2195 * @poll: polling function 2196 * @weight: default weight 2197 * 2198 * This variant of netif_napi_add() should be used from drivers using NAPI 2199 * to exclusively poll a TX queue. 2200 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2201 */ 2202 static inline void netif_tx_napi_add(struct net_device *dev, 2203 struct napi_struct *napi, 2204 int (*poll)(struct napi_struct *, int), 2205 int weight) 2206 { 2207 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2208 netif_napi_add(dev, napi, poll, weight); 2209 } 2210 2211 /** 2212 * netif_napi_del - remove a NAPI context 2213 * @napi: NAPI context 2214 * 2215 * netif_napi_del() removes a NAPI context from the network device NAPI list 2216 */ 2217 void netif_napi_del(struct napi_struct *napi); 2218 2219 struct napi_gro_cb { 2220 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2221 void *frag0; 2222 2223 /* Length of frag0. */ 2224 unsigned int frag0_len; 2225 2226 /* This indicates where we are processing relative to skb->data. */ 2227 int data_offset; 2228 2229 /* This is non-zero if the packet cannot be merged with the new skb. */ 2230 u16 flush; 2231 2232 /* Save the IP ID here and check when we get to the transport layer */ 2233 u16 flush_id; 2234 2235 /* Number of segments aggregated. */ 2236 u16 count; 2237 2238 /* Start offset for remote checksum offload */ 2239 u16 gro_remcsum_start; 2240 2241 /* jiffies when first packet was created/queued */ 2242 unsigned long age; 2243 2244 /* Used in ipv6_gro_receive() and foo-over-udp */ 2245 u16 proto; 2246 2247 /* This is non-zero if the packet may be of the same flow. */ 2248 u8 same_flow:1; 2249 2250 /* Used in tunnel GRO receive */ 2251 u8 encap_mark:1; 2252 2253 /* GRO checksum is valid */ 2254 u8 csum_valid:1; 2255 2256 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2257 u8 csum_cnt:3; 2258 2259 /* Free the skb? */ 2260 u8 free:2; 2261 #define NAPI_GRO_FREE 1 2262 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2263 2264 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2265 u8 is_ipv6:1; 2266 2267 /* Used in GRE, set in fou/gue_gro_receive */ 2268 u8 is_fou:1; 2269 2270 /* Used to determine if flush_id can be ignored */ 2271 u8 is_atomic:1; 2272 2273 /* Number of gro_receive callbacks this packet already went through */ 2274 u8 recursion_counter:4; 2275 2276 /* 1 bit hole */ 2277 2278 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2279 __wsum csum; 2280 2281 /* used in skb_gro_receive() slow path */ 2282 struct sk_buff *last; 2283 }; 2284 2285 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2286 2287 #define GRO_RECURSION_LIMIT 15 2288 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2289 { 2290 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2291 } 2292 2293 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2294 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2295 struct list_head *head, 2296 struct sk_buff *skb) 2297 { 2298 if (unlikely(gro_recursion_inc_test(skb))) { 2299 NAPI_GRO_CB(skb)->flush |= 1; 2300 return NULL; 2301 } 2302 2303 return cb(head, skb); 2304 } 2305 2306 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2307 struct sk_buff *); 2308 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2309 struct sock *sk, 2310 struct list_head *head, 2311 struct sk_buff *skb) 2312 { 2313 if (unlikely(gro_recursion_inc_test(skb))) { 2314 NAPI_GRO_CB(skb)->flush |= 1; 2315 return NULL; 2316 } 2317 2318 return cb(sk, head, skb); 2319 } 2320 2321 struct packet_type { 2322 __be16 type; /* This is really htons(ether_type). */ 2323 struct net_device *dev; /* NULL is wildcarded here */ 2324 int (*func) (struct sk_buff *, 2325 struct net_device *, 2326 struct packet_type *, 2327 struct net_device *); 2328 void (*list_func) (struct list_head *, 2329 struct packet_type *, 2330 struct net_device *); 2331 bool (*id_match)(struct packet_type *ptype, 2332 struct sock *sk); 2333 void *af_packet_priv; 2334 struct list_head list; 2335 }; 2336 2337 struct offload_callbacks { 2338 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2339 netdev_features_t features); 2340 struct sk_buff *(*gro_receive)(struct list_head *head, 2341 struct sk_buff *skb); 2342 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2343 }; 2344 2345 struct packet_offload { 2346 __be16 type; /* This is really htons(ether_type). */ 2347 u16 priority; 2348 struct offload_callbacks callbacks; 2349 struct list_head list; 2350 }; 2351 2352 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2353 struct pcpu_sw_netstats { 2354 u64 rx_packets; 2355 u64 rx_bytes; 2356 u64 tx_packets; 2357 u64 tx_bytes; 2358 struct u64_stats_sync syncp; 2359 }; 2360 2361 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2362 ({ \ 2363 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2364 if (pcpu_stats) { \ 2365 int __cpu; \ 2366 for_each_possible_cpu(__cpu) { \ 2367 typeof(type) *stat; \ 2368 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2369 u64_stats_init(&stat->syncp); \ 2370 } \ 2371 } \ 2372 pcpu_stats; \ 2373 }) 2374 2375 #define netdev_alloc_pcpu_stats(type) \ 2376 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2377 2378 enum netdev_lag_tx_type { 2379 NETDEV_LAG_TX_TYPE_UNKNOWN, 2380 NETDEV_LAG_TX_TYPE_RANDOM, 2381 NETDEV_LAG_TX_TYPE_BROADCAST, 2382 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2383 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2384 NETDEV_LAG_TX_TYPE_HASH, 2385 }; 2386 2387 enum netdev_lag_hash { 2388 NETDEV_LAG_HASH_NONE, 2389 NETDEV_LAG_HASH_L2, 2390 NETDEV_LAG_HASH_L34, 2391 NETDEV_LAG_HASH_L23, 2392 NETDEV_LAG_HASH_E23, 2393 NETDEV_LAG_HASH_E34, 2394 NETDEV_LAG_HASH_UNKNOWN, 2395 }; 2396 2397 struct netdev_lag_upper_info { 2398 enum netdev_lag_tx_type tx_type; 2399 enum netdev_lag_hash hash_type; 2400 }; 2401 2402 struct netdev_lag_lower_state_info { 2403 u8 link_up : 1, 2404 tx_enabled : 1; 2405 }; 2406 2407 #include <linux/notifier.h> 2408 2409 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2410 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2411 * adding new types. 2412 */ 2413 enum netdev_cmd { 2414 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2415 NETDEV_DOWN, 2416 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2417 detected a hardware crash and restarted 2418 - we can use this eg to kick tcp sessions 2419 once done */ 2420 NETDEV_CHANGE, /* Notify device state change */ 2421 NETDEV_REGISTER, 2422 NETDEV_UNREGISTER, 2423 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2424 NETDEV_CHANGEADDR, 2425 NETDEV_GOING_DOWN, 2426 NETDEV_CHANGENAME, 2427 NETDEV_FEAT_CHANGE, 2428 NETDEV_BONDING_FAILOVER, 2429 NETDEV_PRE_UP, 2430 NETDEV_PRE_TYPE_CHANGE, 2431 NETDEV_POST_TYPE_CHANGE, 2432 NETDEV_POST_INIT, 2433 NETDEV_RELEASE, 2434 NETDEV_NOTIFY_PEERS, 2435 NETDEV_JOIN, 2436 NETDEV_CHANGEUPPER, 2437 NETDEV_RESEND_IGMP, 2438 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2439 NETDEV_CHANGEINFODATA, 2440 NETDEV_BONDING_INFO, 2441 NETDEV_PRECHANGEUPPER, 2442 NETDEV_CHANGELOWERSTATE, 2443 NETDEV_UDP_TUNNEL_PUSH_INFO, 2444 NETDEV_UDP_TUNNEL_DROP_INFO, 2445 NETDEV_CHANGE_TX_QUEUE_LEN, 2446 NETDEV_CVLAN_FILTER_PUSH_INFO, 2447 NETDEV_CVLAN_FILTER_DROP_INFO, 2448 NETDEV_SVLAN_FILTER_PUSH_INFO, 2449 NETDEV_SVLAN_FILTER_DROP_INFO, 2450 }; 2451 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2452 2453 int register_netdevice_notifier(struct notifier_block *nb); 2454 int unregister_netdevice_notifier(struct notifier_block *nb); 2455 2456 struct netdev_notifier_info { 2457 struct net_device *dev; 2458 struct netlink_ext_ack *extack; 2459 }; 2460 2461 struct netdev_notifier_info_ext { 2462 struct netdev_notifier_info info; /* must be first */ 2463 union { 2464 u32 mtu; 2465 } ext; 2466 }; 2467 2468 struct netdev_notifier_change_info { 2469 struct netdev_notifier_info info; /* must be first */ 2470 unsigned int flags_changed; 2471 }; 2472 2473 struct netdev_notifier_changeupper_info { 2474 struct netdev_notifier_info info; /* must be first */ 2475 struct net_device *upper_dev; /* new upper dev */ 2476 bool master; /* is upper dev master */ 2477 bool linking; /* is the notification for link or unlink */ 2478 void *upper_info; /* upper dev info */ 2479 }; 2480 2481 struct netdev_notifier_changelowerstate_info { 2482 struct netdev_notifier_info info; /* must be first */ 2483 void *lower_state_info; /* is lower dev state */ 2484 }; 2485 2486 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2487 struct net_device *dev) 2488 { 2489 info->dev = dev; 2490 info->extack = NULL; 2491 } 2492 2493 static inline struct net_device * 2494 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2495 { 2496 return info->dev; 2497 } 2498 2499 static inline struct netlink_ext_ack * 2500 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2501 { 2502 return info->extack; 2503 } 2504 2505 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2506 2507 2508 extern rwlock_t dev_base_lock; /* Device list lock */ 2509 2510 #define for_each_netdev(net, d) \ 2511 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2512 #define for_each_netdev_reverse(net, d) \ 2513 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2514 #define for_each_netdev_rcu(net, d) \ 2515 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2516 #define for_each_netdev_safe(net, d, n) \ 2517 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2518 #define for_each_netdev_continue(net, d) \ 2519 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2520 #define for_each_netdev_continue_rcu(net, d) \ 2521 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2522 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2523 for_each_netdev_rcu(&init_net, slave) \ 2524 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2525 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2526 2527 static inline struct net_device *next_net_device(struct net_device *dev) 2528 { 2529 struct list_head *lh; 2530 struct net *net; 2531 2532 net = dev_net(dev); 2533 lh = dev->dev_list.next; 2534 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2535 } 2536 2537 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2538 { 2539 struct list_head *lh; 2540 struct net *net; 2541 2542 net = dev_net(dev); 2543 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2544 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2545 } 2546 2547 static inline struct net_device *first_net_device(struct net *net) 2548 { 2549 return list_empty(&net->dev_base_head) ? NULL : 2550 net_device_entry(net->dev_base_head.next); 2551 } 2552 2553 static inline struct net_device *first_net_device_rcu(struct net *net) 2554 { 2555 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2556 2557 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2558 } 2559 2560 int netdev_boot_setup_check(struct net_device *dev); 2561 unsigned long netdev_boot_base(const char *prefix, int unit); 2562 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2563 const char *hwaddr); 2564 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2565 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2566 void dev_add_pack(struct packet_type *pt); 2567 void dev_remove_pack(struct packet_type *pt); 2568 void __dev_remove_pack(struct packet_type *pt); 2569 void dev_add_offload(struct packet_offload *po); 2570 void dev_remove_offload(struct packet_offload *po); 2571 2572 int dev_get_iflink(const struct net_device *dev); 2573 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2574 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2575 unsigned short mask); 2576 struct net_device *dev_get_by_name(struct net *net, const char *name); 2577 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2578 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2579 int dev_alloc_name(struct net_device *dev, const char *name); 2580 int dev_open(struct net_device *dev); 2581 void dev_close(struct net_device *dev); 2582 void dev_close_many(struct list_head *head, bool unlink); 2583 void dev_disable_lro(struct net_device *dev); 2584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2585 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2586 struct net_device *sb_dev, 2587 select_queue_fallback_t fallback); 2588 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2589 struct net_device *sb_dev, 2590 select_queue_fallback_t fallback); 2591 int dev_queue_xmit(struct sk_buff *skb); 2592 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2593 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2594 int register_netdevice(struct net_device *dev); 2595 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2596 void unregister_netdevice_many(struct list_head *head); 2597 static inline void unregister_netdevice(struct net_device *dev) 2598 { 2599 unregister_netdevice_queue(dev, NULL); 2600 } 2601 2602 int netdev_refcnt_read(const struct net_device *dev); 2603 void free_netdev(struct net_device *dev); 2604 void netdev_freemem(struct net_device *dev); 2605 void synchronize_net(void); 2606 int init_dummy_netdev(struct net_device *dev); 2607 2608 DECLARE_PER_CPU(int, xmit_recursion); 2609 #define XMIT_RECURSION_LIMIT 10 2610 2611 static inline int dev_recursion_level(void) 2612 { 2613 return this_cpu_read(xmit_recursion); 2614 } 2615 2616 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2617 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2618 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2619 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2620 int netdev_get_name(struct net *net, char *name, int ifindex); 2621 int dev_restart(struct net_device *dev); 2622 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2623 2624 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2625 { 2626 return NAPI_GRO_CB(skb)->data_offset; 2627 } 2628 2629 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2630 { 2631 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2632 } 2633 2634 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2635 { 2636 NAPI_GRO_CB(skb)->data_offset += len; 2637 } 2638 2639 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2640 unsigned int offset) 2641 { 2642 return NAPI_GRO_CB(skb)->frag0 + offset; 2643 } 2644 2645 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2646 { 2647 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2648 } 2649 2650 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2651 { 2652 NAPI_GRO_CB(skb)->frag0 = NULL; 2653 NAPI_GRO_CB(skb)->frag0_len = 0; 2654 } 2655 2656 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2657 unsigned int offset) 2658 { 2659 if (!pskb_may_pull(skb, hlen)) 2660 return NULL; 2661 2662 skb_gro_frag0_invalidate(skb); 2663 return skb->data + offset; 2664 } 2665 2666 static inline void *skb_gro_network_header(struct sk_buff *skb) 2667 { 2668 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2669 skb_network_offset(skb); 2670 } 2671 2672 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2673 const void *start, unsigned int len) 2674 { 2675 if (NAPI_GRO_CB(skb)->csum_valid) 2676 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2677 csum_partial(start, len, 0)); 2678 } 2679 2680 /* GRO checksum functions. These are logical equivalents of the normal 2681 * checksum functions (in skbuff.h) except that they operate on the GRO 2682 * offsets and fields in sk_buff. 2683 */ 2684 2685 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2686 2687 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2688 { 2689 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2690 } 2691 2692 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2693 bool zero_okay, 2694 __sum16 check) 2695 { 2696 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2697 skb_checksum_start_offset(skb) < 2698 skb_gro_offset(skb)) && 2699 !skb_at_gro_remcsum_start(skb) && 2700 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2701 (!zero_okay || check)); 2702 } 2703 2704 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2705 __wsum psum) 2706 { 2707 if (NAPI_GRO_CB(skb)->csum_valid && 2708 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2709 return 0; 2710 2711 NAPI_GRO_CB(skb)->csum = psum; 2712 2713 return __skb_gro_checksum_complete(skb); 2714 } 2715 2716 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2717 { 2718 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2719 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2720 NAPI_GRO_CB(skb)->csum_cnt--; 2721 } else { 2722 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2723 * verified a new top level checksum or an encapsulated one 2724 * during GRO. This saves work if we fallback to normal path. 2725 */ 2726 __skb_incr_checksum_unnecessary(skb); 2727 } 2728 } 2729 2730 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2731 compute_pseudo) \ 2732 ({ \ 2733 __sum16 __ret = 0; \ 2734 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2735 __ret = __skb_gro_checksum_validate_complete(skb, \ 2736 compute_pseudo(skb, proto)); \ 2737 if (!__ret) \ 2738 skb_gro_incr_csum_unnecessary(skb); \ 2739 __ret; \ 2740 }) 2741 2742 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2743 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2744 2745 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2746 compute_pseudo) \ 2747 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2748 2749 #define skb_gro_checksum_simple_validate(skb) \ 2750 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2751 2752 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2753 { 2754 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2755 !NAPI_GRO_CB(skb)->csum_valid); 2756 } 2757 2758 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2759 __sum16 check, __wsum pseudo) 2760 { 2761 NAPI_GRO_CB(skb)->csum = ~pseudo; 2762 NAPI_GRO_CB(skb)->csum_valid = 1; 2763 } 2764 2765 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2766 do { \ 2767 if (__skb_gro_checksum_convert_check(skb)) \ 2768 __skb_gro_checksum_convert(skb, check, \ 2769 compute_pseudo(skb, proto)); \ 2770 } while (0) 2771 2772 struct gro_remcsum { 2773 int offset; 2774 __wsum delta; 2775 }; 2776 2777 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2778 { 2779 grc->offset = 0; 2780 grc->delta = 0; 2781 } 2782 2783 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2784 unsigned int off, size_t hdrlen, 2785 int start, int offset, 2786 struct gro_remcsum *grc, 2787 bool nopartial) 2788 { 2789 __wsum delta; 2790 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2791 2792 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2793 2794 if (!nopartial) { 2795 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2796 return ptr; 2797 } 2798 2799 ptr = skb_gro_header_fast(skb, off); 2800 if (skb_gro_header_hard(skb, off + plen)) { 2801 ptr = skb_gro_header_slow(skb, off + plen, off); 2802 if (!ptr) 2803 return NULL; 2804 } 2805 2806 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2807 start, offset); 2808 2809 /* Adjust skb->csum since we changed the packet */ 2810 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2811 2812 grc->offset = off + hdrlen + offset; 2813 grc->delta = delta; 2814 2815 return ptr; 2816 } 2817 2818 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2819 struct gro_remcsum *grc) 2820 { 2821 void *ptr; 2822 size_t plen = grc->offset + sizeof(u16); 2823 2824 if (!grc->delta) 2825 return; 2826 2827 ptr = skb_gro_header_fast(skb, grc->offset); 2828 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2829 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2830 if (!ptr) 2831 return; 2832 } 2833 2834 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2835 } 2836 2837 #ifdef CONFIG_XFRM_OFFLOAD 2838 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2839 { 2840 if (PTR_ERR(pp) != -EINPROGRESS) 2841 NAPI_GRO_CB(skb)->flush |= flush; 2842 } 2843 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2844 struct sk_buff *pp, 2845 int flush, 2846 struct gro_remcsum *grc) 2847 { 2848 if (PTR_ERR(pp) != -EINPROGRESS) { 2849 NAPI_GRO_CB(skb)->flush |= flush; 2850 skb_gro_remcsum_cleanup(skb, grc); 2851 skb->remcsum_offload = 0; 2852 } 2853 } 2854 #else 2855 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2856 { 2857 NAPI_GRO_CB(skb)->flush |= flush; 2858 } 2859 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2860 struct sk_buff *pp, 2861 int flush, 2862 struct gro_remcsum *grc) 2863 { 2864 NAPI_GRO_CB(skb)->flush |= flush; 2865 skb_gro_remcsum_cleanup(skb, grc); 2866 skb->remcsum_offload = 0; 2867 } 2868 #endif 2869 2870 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2871 unsigned short type, 2872 const void *daddr, const void *saddr, 2873 unsigned int len) 2874 { 2875 if (!dev->header_ops || !dev->header_ops->create) 2876 return 0; 2877 2878 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2879 } 2880 2881 static inline int dev_parse_header(const struct sk_buff *skb, 2882 unsigned char *haddr) 2883 { 2884 const struct net_device *dev = skb->dev; 2885 2886 if (!dev->header_ops || !dev->header_ops->parse) 2887 return 0; 2888 return dev->header_ops->parse(skb, haddr); 2889 } 2890 2891 /* ll_header must have at least hard_header_len allocated */ 2892 static inline bool dev_validate_header(const struct net_device *dev, 2893 char *ll_header, int len) 2894 { 2895 if (likely(len >= dev->hard_header_len)) 2896 return true; 2897 if (len < dev->min_header_len) 2898 return false; 2899 2900 if (capable(CAP_SYS_RAWIO)) { 2901 memset(ll_header + len, 0, dev->hard_header_len - len); 2902 return true; 2903 } 2904 2905 if (dev->header_ops && dev->header_ops->validate) 2906 return dev->header_ops->validate(ll_header, len); 2907 2908 return false; 2909 } 2910 2911 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2912 int len, int size); 2913 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2914 static inline int unregister_gifconf(unsigned int family) 2915 { 2916 return register_gifconf(family, NULL); 2917 } 2918 2919 #ifdef CONFIG_NET_FLOW_LIMIT 2920 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2921 struct sd_flow_limit { 2922 u64 count; 2923 unsigned int num_buckets; 2924 unsigned int history_head; 2925 u16 history[FLOW_LIMIT_HISTORY]; 2926 u8 buckets[]; 2927 }; 2928 2929 extern int netdev_flow_limit_table_len; 2930 #endif /* CONFIG_NET_FLOW_LIMIT */ 2931 2932 /* 2933 * Incoming packets are placed on per-CPU queues 2934 */ 2935 struct softnet_data { 2936 struct list_head poll_list; 2937 struct sk_buff_head process_queue; 2938 2939 /* stats */ 2940 unsigned int processed; 2941 unsigned int time_squeeze; 2942 unsigned int received_rps; 2943 #ifdef CONFIG_RPS 2944 struct softnet_data *rps_ipi_list; 2945 #endif 2946 #ifdef CONFIG_NET_FLOW_LIMIT 2947 struct sd_flow_limit __rcu *flow_limit; 2948 #endif 2949 struct Qdisc *output_queue; 2950 struct Qdisc **output_queue_tailp; 2951 struct sk_buff *completion_queue; 2952 #ifdef CONFIG_XFRM_OFFLOAD 2953 struct sk_buff_head xfrm_backlog; 2954 #endif 2955 #ifdef CONFIG_RPS 2956 /* input_queue_head should be written by cpu owning this struct, 2957 * and only read by other cpus. Worth using a cache line. 2958 */ 2959 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2960 2961 /* Elements below can be accessed between CPUs for RPS/RFS */ 2962 call_single_data_t csd ____cacheline_aligned_in_smp; 2963 struct softnet_data *rps_ipi_next; 2964 unsigned int cpu; 2965 unsigned int input_queue_tail; 2966 #endif 2967 unsigned int dropped; 2968 struct sk_buff_head input_pkt_queue; 2969 struct napi_struct backlog; 2970 2971 }; 2972 2973 static inline void input_queue_head_incr(struct softnet_data *sd) 2974 { 2975 #ifdef CONFIG_RPS 2976 sd->input_queue_head++; 2977 #endif 2978 } 2979 2980 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2981 unsigned int *qtail) 2982 { 2983 #ifdef CONFIG_RPS 2984 *qtail = ++sd->input_queue_tail; 2985 #endif 2986 } 2987 2988 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2989 2990 void __netif_schedule(struct Qdisc *q); 2991 void netif_schedule_queue(struct netdev_queue *txq); 2992 2993 static inline void netif_tx_schedule_all(struct net_device *dev) 2994 { 2995 unsigned int i; 2996 2997 for (i = 0; i < dev->num_tx_queues; i++) 2998 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2999 } 3000 3001 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3002 { 3003 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3004 } 3005 3006 /** 3007 * netif_start_queue - allow transmit 3008 * @dev: network device 3009 * 3010 * Allow upper layers to call the device hard_start_xmit routine. 3011 */ 3012 static inline void netif_start_queue(struct net_device *dev) 3013 { 3014 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3015 } 3016 3017 static inline void netif_tx_start_all_queues(struct net_device *dev) 3018 { 3019 unsigned int i; 3020 3021 for (i = 0; i < dev->num_tx_queues; i++) { 3022 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3023 netif_tx_start_queue(txq); 3024 } 3025 } 3026 3027 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3028 3029 /** 3030 * netif_wake_queue - restart transmit 3031 * @dev: network device 3032 * 3033 * Allow upper layers to call the device hard_start_xmit routine. 3034 * Used for flow control when transmit resources are available. 3035 */ 3036 static inline void netif_wake_queue(struct net_device *dev) 3037 { 3038 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3039 } 3040 3041 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3042 { 3043 unsigned int i; 3044 3045 for (i = 0; i < dev->num_tx_queues; i++) { 3046 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3047 netif_tx_wake_queue(txq); 3048 } 3049 } 3050 3051 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3052 { 3053 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3054 } 3055 3056 /** 3057 * netif_stop_queue - stop transmitted packets 3058 * @dev: network device 3059 * 3060 * Stop upper layers calling the device hard_start_xmit routine. 3061 * Used for flow control when transmit resources are unavailable. 3062 */ 3063 static inline void netif_stop_queue(struct net_device *dev) 3064 { 3065 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3066 } 3067 3068 void netif_tx_stop_all_queues(struct net_device *dev); 3069 3070 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3071 { 3072 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3073 } 3074 3075 /** 3076 * netif_queue_stopped - test if transmit queue is flowblocked 3077 * @dev: network device 3078 * 3079 * Test if transmit queue on device is currently unable to send. 3080 */ 3081 static inline bool netif_queue_stopped(const struct net_device *dev) 3082 { 3083 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3084 } 3085 3086 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3087 { 3088 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3089 } 3090 3091 static inline bool 3092 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3093 { 3094 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3095 } 3096 3097 static inline bool 3098 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3099 { 3100 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3101 } 3102 3103 /** 3104 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3105 * @dev_queue: pointer to transmit queue 3106 * 3107 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3108 * to give appropriate hint to the CPU. 3109 */ 3110 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3111 { 3112 #ifdef CONFIG_BQL 3113 prefetchw(&dev_queue->dql.num_queued); 3114 #endif 3115 } 3116 3117 /** 3118 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3119 * @dev_queue: pointer to transmit queue 3120 * 3121 * BQL enabled drivers might use this helper in their TX completion path, 3122 * to give appropriate hint to the CPU. 3123 */ 3124 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3125 { 3126 #ifdef CONFIG_BQL 3127 prefetchw(&dev_queue->dql.limit); 3128 #endif 3129 } 3130 3131 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3132 unsigned int bytes) 3133 { 3134 #ifdef CONFIG_BQL 3135 dql_queued(&dev_queue->dql, bytes); 3136 3137 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3138 return; 3139 3140 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3141 3142 /* 3143 * The XOFF flag must be set before checking the dql_avail below, 3144 * because in netdev_tx_completed_queue we update the dql_completed 3145 * before checking the XOFF flag. 3146 */ 3147 smp_mb(); 3148 3149 /* check again in case another CPU has just made room avail */ 3150 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3151 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3152 #endif 3153 } 3154 3155 /** 3156 * netdev_sent_queue - report the number of bytes queued to hardware 3157 * @dev: network device 3158 * @bytes: number of bytes queued to the hardware device queue 3159 * 3160 * Report the number of bytes queued for sending/completion to the network 3161 * device hardware queue. @bytes should be a good approximation and should 3162 * exactly match netdev_completed_queue() @bytes 3163 */ 3164 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3165 { 3166 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3167 } 3168 3169 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3170 unsigned int pkts, unsigned int bytes) 3171 { 3172 #ifdef CONFIG_BQL 3173 if (unlikely(!bytes)) 3174 return; 3175 3176 dql_completed(&dev_queue->dql, bytes); 3177 3178 /* 3179 * Without the memory barrier there is a small possiblity that 3180 * netdev_tx_sent_queue will miss the update and cause the queue to 3181 * be stopped forever 3182 */ 3183 smp_mb(); 3184 3185 if (dql_avail(&dev_queue->dql) < 0) 3186 return; 3187 3188 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3189 netif_schedule_queue(dev_queue); 3190 #endif 3191 } 3192 3193 /** 3194 * netdev_completed_queue - report bytes and packets completed by device 3195 * @dev: network device 3196 * @pkts: actual number of packets sent over the medium 3197 * @bytes: actual number of bytes sent over the medium 3198 * 3199 * Report the number of bytes and packets transmitted by the network device 3200 * hardware queue over the physical medium, @bytes must exactly match the 3201 * @bytes amount passed to netdev_sent_queue() 3202 */ 3203 static inline void netdev_completed_queue(struct net_device *dev, 3204 unsigned int pkts, unsigned int bytes) 3205 { 3206 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3207 } 3208 3209 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3210 { 3211 #ifdef CONFIG_BQL 3212 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3213 dql_reset(&q->dql); 3214 #endif 3215 } 3216 3217 /** 3218 * netdev_reset_queue - reset the packets and bytes count of a network device 3219 * @dev_queue: network device 3220 * 3221 * Reset the bytes and packet count of a network device and clear the 3222 * software flow control OFF bit for this network device 3223 */ 3224 static inline void netdev_reset_queue(struct net_device *dev_queue) 3225 { 3226 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3227 } 3228 3229 /** 3230 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3231 * @dev: network device 3232 * @queue_index: given tx queue index 3233 * 3234 * Returns 0 if given tx queue index >= number of device tx queues, 3235 * otherwise returns the originally passed tx queue index. 3236 */ 3237 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3238 { 3239 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3240 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3241 dev->name, queue_index, 3242 dev->real_num_tx_queues); 3243 return 0; 3244 } 3245 3246 return queue_index; 3247 } 3248 3249 /** 3250 * netif_running - test if up 3251 * @dev: network device 3252 * 3253 * Test if the device has been brought up. 3254 */ 3255 static inline bool netif_running(const struct net_device *dev) 3256 { 3257 return test_bit(__LINK_STATE_START, &dev->state); 3258 } 3259 3260 /* 3261 * Routines to manage the subqueues on a device. We only need start, 3262 * stop, and a check if it's stopped. All other device management is 3263 * done at the overall netdevice level. 3264 * Also test the device if we're multiqueue. 3265 */ 3266 3267 /** 3268 * netif_start_subqueue - allow sending packets on subqueue 3269 * @dev: network device 3270 * @queue_index: sub queue index 3271 * 3272 * Start individual transmit queue of a device with multiple transmit queues. 3273 */ 3274 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3275 { 3276 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3277 3278 netif_tx_start_queue(txq); 3279 } 3280 3281 /** 3282 * netif_stop_subqueue - stop sending packets on subqueue 3283 * @dev: network device 3284 * @queue_index: sub queue index 3285 * 3286 * Stop individual transmit queue of a device with multiple transmit queues. 3287 */ 3288 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3289 { 3290 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3291 netif_tx_stop_queue(txq); 3292 } 3293 3294 /** 3295 * netif_subqueue_stopped - test status of subqueue 3296 * @dev: network device 3297 * @queue_index: sub queue index 3298 * 3299 * Check individual transmit queue of a device with multiple transmit queues. 3300 */ 3301 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3302 u16 queue_index) 3303 { 3304 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3305 3306 return netif_tx_queue_stopped(txq); 3307 } 3308 3309 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3310 struct sk_buff *skb) 3311 { 3312 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3313 } 3314 3315 /** 3316 * netif_wake_subqueue - allow sending packets on subqueue 3317 * @dev: network device 3318 * @queue_index: sub queue index 3319 * 3320 * Resume individual transmit queue of a device with multiple transmit queues. 3321 */ 3322 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3323 { 3324 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3325 3326 netif_tx_wake_queue(txq); 3327 } 3328 3329 #ifdef CONFIG_XPS 3330 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3331 u16 index); 3332 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3333 u16 index, bool is_rxqs_map); 3334 3335 /** 3336 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3337 * @j: CPU/Rx queue index 3338 * @mask: bitmask of all cpus/rx queues 3339 * @nr_bits: number of bits in the bitmask 3340 * 3341 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3342 */ 3343 static inline bool netif_attr_test_mask(unsigned long j, 3344 const unsigned long *mask, 3345 unsigned int nr_bits) 3346 { 3347 cpu_max_bits_warn(j, nr_bits); 3348 return test_bit(j, mask); 3349 } 3350 3351 /** 3352 * netif_attr_test_online - Test for online CPU/Rx queue 3353 * @j: CPU/Rx queue index 3354 * @online_mask: bitmask for CPUs/Rx queues that are online 3355 * @nr_bits: number of bits in the bitmask 3356 * 3357 * Returns true if a CPU/Rx queue is online. 3358 */ 3359 static inline bool netif_attr_test_online(unsigned long j, 3360 const unsigned long *online_mask, 3361 unsigned int nr_bits) 3362 { 3363 cpu_max_bits_warn(j, nr_bits); 3364 3365 if (online_mask) 3366 return test_bit(j, online_mask); 3367 3368 return (j < nr_bits); 3369 } 3370 3371 /** 3372 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3373 * @n: CPU/Rx queue index 3374 * @srcp: the cpumask/Rx queue mask pointer 3375 * @nr_bits: number of bits in the bitmask 3376 * 3377 * Returns >= nr_bits if no further CPUs/Rx queues set. 3378 */ 3379 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3380 unsigned int nr_bits) 3381 { 3382 /* -1 is a legal arg here. */ 3383 if (n != -1) 3384 cpu_max_bits_warn(n, nr_bits); 3385 3386 if (srcp) 3387 return find_next_bit(srcp, nr_bits, n + 1); 3388 3389 return n + 1; 3390 } 3391 3392 /** 3393 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3394 * @n: CPU/Rx queue index 3395 * @src1p: the first CPUs/Rx queues mask pointer 3396 * @src2p: the second CPUs/Rx queues mask pointer 3397 * @nr_bits: number of bits in the bitmask 3398 * 3399 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3400 */ 3401 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3402 const unsigned long *src2p, 3403 unsigned int nr_bits) 3404 { 3405 /* -1 is a legal arg here. */ 3406 if (n != -1) 3407 cpu_max_bits_warn(n, nr_bits); 3408 3409 if (src1p && src2p) 3410 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3411 else if (src1p) 3412 return find_next_bit(src1p, nr_bits, n + 1); 3413 else if (src2p) 3414 return find_next_bit(src2p, nr_bits, n + 1); 3415 3416 return n + 1; 3417 } 3418 #else 3419 static inline int netif_set_xps_queue(struct net_device *dev, 3420 const struct cpumask *mask, 3421 u16 index) 3422 { 3423 return 0; 3424 } 3425 3426 static inline int __netif_set_xps_queue(struct net_device *dev, 3427 const unsigned long *mask, 3428 u16 index, bool is_rxqs_map) 3429 { 3430 return 0; 3431 } 3432 #endif 3433 3434 /** 3435 * netif_is_multiqueue - test if device has multiple transmit queues 3436 * @dev: network device 3437 * 3438 * Check if device has multiple transmit queues 3439 */ 3440 static inline bool netif_is_multiqueue(const struct net_device *dev) 3441 { 3442 return dev->num_tx_queues > 1; 3443 } 3444 3445 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3446 3447 #ifdef CONFIG_SYSFS 3448 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3449 #else 3450 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3451 unsigned int rxqs) 3452 { 3453 dev->real_num_rx_queues = rxqs; 3454 return 0; 3455 } 3456 #endif 3457 3458 static inline struct netdev_rx_queue * 3459 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3460 { 3461 return dev->_rx + rxq; 3462 } 3463 3464 #ifdef CONFIG_SYSFS 3465 static inline unsigned int get_netdev_rx_queue_index( 3466 struct netdev_rx_queue *queue) 3467 { 3468 struct net_device *dev = queue->dev; 3469 int index = queue - dev->_rx; 3470 3471 BUG_ON(index >= dev->num_rx_queues); 3472 return index; 3473 } 3474 #endif 3475 3476 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3477 int netif_get_num_default_rss_queues(void); 3478 3479 enum skb_free_reason { 3480 SKB_REASON_CONSUMED, 3481 SKB_REASON_DROPPED, 3482 }; 3483 3484 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3485 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3486 3487 /* 3488 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3489 * interrupt context or with hardware interrupts being disabled. 3490 * (in_irq() || irqs_disabled()) 3491 * 3492 * We provide four helpers that can be used in following contexts : 3493 * 3494 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3495 * replacing kfree_skb(skb) 3496 * 3497 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3498 * Typically used in place of consume_skb(skb) in TX completion path 3499 * 3500 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3501 * replacing kfree_skb(skb) 3502 * 3503 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3504 * and consumed a packet. Used in place of consume_skb(skb) 3505 */ 3506 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3507 { 3508 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3509 } 3510 3511 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3512 { 3513 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3514 } 3515 3516 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3517 { 3518 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3519 } 3520 3521 static inline void dev_consume_skb_any(struct sk_buff *skb) 3522 { 3523 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3524 } 3525 3526 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3527 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3528 int netif_rx(struct sk_buff *skb); 3529 int netif_rx_ni(struct sk_buff *skb); 3530 int netif_receive_skb(struct sk_buff *skb); 3531 int netif_receive_skb_core(struct sk_buff *skb); 3532 void netif_receive_skb_list(struct list_head *head); 3533 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3534 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3535 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3536 gro_result_t napi_gro_frags(struct napi_struct *napi); 3537 struct packet_offload *gro_find_receive_by_type(__be16 type); 3538 struct packet_offload *gro_find_complete_by_type(__be16 type); 3539 3540 static inline void napi_free_frags(struct napi_struct *napi) 3541 { 3542 kfree_skb(napi->skb); 3543 napi->skb = NULL; 3544 } 3545 3546 bool netdev_is_rx_handler_busy(struct net_device *dev); 3547 int netdev_rx_handler_register(struct net_device *dev, 3548 rx_handler_func_t *rx_handler, 3549 void *rx_handler_data); 3550 void netdev_rx_handler_unregister(struct net_device *dev); 3551 3552 bool dev_valid_name(const char *name); 3553 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3554 bool *need_copyout); 3555 int dev_ifconf(struct net *net, struct ifconf *, int); 3556 int dev_ethtool(struct net *net, struct ifreq *); 3557 unsigned int dev_get_flags(const struct net_device *); 3558 int __dev_change_flags(struct net_device *, unsigned int flags); 3559 int dev_change_flags(struct net_device *, unsigned int); 3560 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3561 unsigned int gchanges); 3562 int dev_change_name(struct net_device *, const char *); 3563 int dev_set_alias(struct net_device *, const char *, size_t); 3564 int dev_get_alias(const struct net_device *, char *, size_t); 3565 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3566 int __dev_set_mtu(struct net_device *, int); 3567 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3568 struct netlink_ext_ack *extack); 3569 int dev_set_mtu(struct net_device *, int); 3570 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3571 void dev_set_group(struct net_device *, int); 3572 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3573 int dev_change_carrier(struct net_device *, bool new_carrier); 3574 int dev_get_phys_port_id(struct net_device *dev, 3575 struct netdev_phys_item_id *ppid); 3576 int dev_get_phys_port_name(struct net_device *dev, 3577 char *name, size_t len); 3578 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3579 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3580 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3581 struct netdev_queue *txq, int *ret); 3582 3583 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3584 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3585 int fd, u32 flags); 3586 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3587 enum bpf_netdev_command cmd); 3588 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3589 3590 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3591 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3592 bool is_skb_forwardable(const struct net_device *dev, 3593 const struct sk_buff *skb); 3594 3595 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3596 struct sk_buff *skb) 3597 { 3598 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3599 unlikely(!is_skb_forwardable(dev, skb))) { 3600 atomic_long_inc(&dev->rx_dropped); 3601 kfree_skb(skb); 3602 return NET_RX_DROP; 3603 } 3604 3605 skb_scrub_packet(skb, true); 3606 skb->priority = 0; 3607 return 0; 3608 } 3609 3610 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3611 3612 extern int netdev_budget; 3613 extern unsigned int netdev_budget_usecs; 3614 3615 /* Called by rtnetlink.c:rtnl_unlock() */ 3616 void netdev_run_todo(void); 3617 3618 /** 3619 * dev_put - release reference to device 3620 * @dev: network device 3621 * 3622 * Release reference to device to allow it to be freed. 3623 */ 3624 static inline void dev_put(struct net_device *dev) 3625 { 3626 this_cpu_dec(*dev->pcpu_refcnt); 3627 } 3628 3629 /** 3630 * dev_hold - get reference to device 3631 * @dev: network device 3632 * 3633 * Hold reference to device to keep it from being freed. 3634 */ 3635 static inline void dev_hold(struct net_device *dev) 3636 { 3637 this_cpu_inc(*dev->pcpu_refcnt); 3638 } 3639 3640 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3641 * and _off may be called from IRQ context, but it is caller 3642 * who is responsible for serialization of these calls. 3643 * 3644 * The name carrier is inappropriate, these functions should really be 3645 * called netif_lowerlayer_*() because they represent the state of any 3646 * kind of lower layer not just hardware media. 3647 */ 3648 3649 void linkwatch_init_dev(struct net_device *dev); 3650 void linkwatch_fire_event(struct net_device *dev); 3651 void linkwatch_forget_dev(struct net_device *dev); 3652 3653 /** 3654 * netif_carrier_ok - test if carrier present 3655 * @dev: network device 3656 * 3657 * Check if carrier is present on device 3658 */ 3659 static inline bool netif_carrier_ok(const struct net_device *dev) 3660 { 3661 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3662 } 3663 3664 unsigned long dev_trans_start(struct net_device *dev); 3665 3666 void __netdev_watchdog_up(struct net_device *dev); 3667 3668 void netif_carrier_on(struct net_device *dev); 3669 3670 void netif_carrier_off(struct net_device *dev); 3671 3672 /** 3673 * netif_dormant_on - mark device as dormant. 3674 * @dev: network device 3675 * 3676 * Mark device as dormant (as per RFC2863). 3677 * 3678 * The dormant state indicates that the relevant interface is not 3679 * actually in a condition to pass packets (i.e., it is not 'up') but is 3680 * in a "pending" state, waiting for some external event. For "on- 3681 * demand" interfaces, this new state identifies the situation where the 3682 * interface is waiting for events to place it in the up state. 3683 */ 3684 static inline void netif_dormant_on(struct net_device *dev) 3685 { 3686 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3687 linkwatch_fire_event(dev); 3688 } 3689 3690 /** 3691 * netif_dormant_off - set device as not dormant. 3692 * @dev: network device 3693 * 3694 * Device is not in dormant state. 3695 */ 3696 static inline void netif_dormant_off(struct net_device *dev) 3697 { 3698 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3699 linkwatch_fire_event(dev); 3700 } 3701 3702 /** 3703 * netif_dormant - test if device is dormant 3704 * @dev: network device 3705 * 3706 * Check if device is dormant. 3707 */ 3708 static inline bool netif_dormant(const struct net_device *dev) 3709 { 3710 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3711 } 3712 3713 3714 /** 3715 * netif_oper_up - test if device is operational 3716 * @dev: network device 3717 * 3718 * Check if carrier is operational 3719 */ 3720 static inline bool netif_oper_up(const struct net_device *dev) 3721 { 3722 return (dev->operstate == IF_OPER_UP || 3723 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3724 } 3725 3726 /** 3727 * netif_device_present - is device available or removed 3728 * @dev: network device 3729 * 3730 * Check if device has not been removed from system. 3731 */ 3732 static inline bool netif_device_present(struct net_device *dev) 3733 { 3734 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3735 } 3736 3737 void netif_device_detach(struct net_device *dev); 3738 3739 void netif_device_attach(struct net_device *dev); 3740 3741 /* 3742 * Network interface message level settings 3743 */ 3744 3745 enum { 3746 NETIF_MSG_DRV = 0x0001, 3747 NETIF_MSG_PROBE = 0x0002, 3748 NETIF_MSG_LINK = 0x0004, 3749 NETIF_MSG_TIMER = 0x0008, 3750 NETIF_MSG_IFDOWN = 0x0010, 3751 NETIF_MSG_IFUP = 0x0020, 3752 NETIF_MSG_RX_ERR = 0x0040, 3753 NETIF_MSG_TX_ERR = 0x0080, 3754 NETIF_MSG_TX_QUEUED = 0x0100, 3755 NETIF_MSG_INTR = 0x0200, 3756 NETIF_MSG_TX_DONE = 0x0400, 3757 NETIF_MSG_RX_STATUS = 0x0800, 3758 NETIF_MSG_PKTDATA = 0x1000, 3759 NETIF_MSG_HW = 0x2000, 3760 NETIF_MSG_WOL = 0x4000, 3761 }; 3762 3763 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3764 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3765 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3766 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3767 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3768 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3769 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3770 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3771 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3772 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3773 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3774 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3775 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3776 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3777 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3778 3779 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3780 { 3781 /* use default */ 3782 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3783 return default_msg_enable_bits; 3784 if (debug_value == 0) /* no output */ 3785 return 0; 3786 /* set low N bits */ 3787 return (1 << debug_value) - 1; 3788 } 3789 3790 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3791 { 3792 spin_lock(&txq->_xmit_lock); 3793 txq->xmit_lock_owner = cpu; 3794 } 3795 3796 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3797 { 3798 __acquire(&txq->_xmit_lock); 3799 return true; 3800 } 3801 3802 static inline void __netif_tx_release(struct netdev_queue *txq) 3803 { 3804 __release(&txq->_xmit_lock); 3805 } 3806 3807 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3808 { 3809 spin_lock_bh(&txq->_xmit_lock); 3810 txq->xmit_lock_owner = smp_processor_id(); 3811 } 3812 3813 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3814 { 3815 bool ok = spin_trylock(&txq->_xmit_lock); 3816 if (likely(ok)) 3817 txq->xmit_lock_owner = smp_processor_id(); 3818 return ok; 3819 } 3820 3821 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3822 { 3823 txq->xmit_lock_owner = -1; 3824 spin_unlock(&txq->_xmit_lock); 3825 } 3826 3827 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3828 { 3829 txq->xmit_lock_owner = -1; 3830 spin_unlock_bh(&txq->_xmit_lock); 3831 } 3832 3833 static inline void txq_trans_update(struct netdev_queue *txq) 3834 { 3835 if (txq->xmit_lock_owner != -1) 3836 txq->trans_start = jiffies; 3837 } 3838 3839 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3840 static inline void netif_trans_update(struct net_device *dev) 3841 { 3842 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3843 3844 if (txq->trans_start != jiffies) 3845 txq->trans_start = jiffies; 3846 } 3847 3848 /** 3849 * netif_tx_lock - grab network device transmit lock 3850 * @dev: network device 3851 * 3852 * Get network device transmit lock 3853 */ 3854 static inline void netif_tx_lock(struct net_device *dev) 3855 { 3856 unsigned int i; 3857 int cpu; 3858 3859 spin_lock(&dev->tx_global_lock); 3860 cpu = smp_processor_id(); 3861 for (i = 0; i < dev->num_tx_queues; i++) { 3862 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3863 3864 /* We are the only thread of execution doing a 3865 * freeze, but we have to grab the _xmit_lock in 3866 * order to synchronize with threads which are in 3867 * the ->hard_start_xmit() handler and already 3868 * checked the frozen bit. 3869 */ 3870 __netif_tx_lock(txq, cpu); 3871 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3872 __netif_tx_unlock(txq); 3873 } 3874 } 3875 3876 static inline void netif_tx_lock_bh(struct net_device *dev) 3877 { 3878 local_bh_disable(); 3879 netif_tx_lock(dev); 3880 } 3881 3882 static inline void netif_tx_unlock(struct net_device *dev) 3883 { 3884 unsigned int i; 3885 3886 for (i = 0; i < dev->num_tx_queues; i++) { 3887 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3888 3889 /* No need to grab the _xmit_lock here. If the 3890 * queue is not stopped for another reason, we 3891 * force a schedule. 3892 */ 3893 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3894 netif_schedule_queue(txq); 3895 } 3896 spin_unlock(&dev->tx_global_lock); 3897 } 3898 3899 static inline void netif_tx_unlock_bh(struct net_device *dev) 3900 { 3901 netif_tx_unlock(dev); 3902 local_bh_enable(); 3903 } 3904 3905 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3906 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3907 __netif_tx_lock(txq, cpu); \ 3908 } else { \ 3909 __netif_tx_acquire(txq); \ 3910 } \ 3911 } 3912 3913 #define HARD_TX_TRYLOCK(dev, txq) \ 3914 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3915 __netif_tx_trylock(txq) : \ 3916 __netif_tx_acquire(txq)) 3917 3918 #define HARD_TX_UNLOCK(dev, txq) { \ 3919 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3920 __netif_tx_unlock(txq); \ 3921 } else { \ 3922 __netif_tx_release(txq); \ 3923 } \ 3924 } 3925 3926 static inline void netif_tx_disable(struct net_device *dev) 3927 { 3928 unsigned int i; 3929 int cpu; 3930 3931 local_bh_disable(); 3932 cpu = smp_processor_id(); 3933 for (i = 0; i < dev->num_tx_queues; i++) { 3934 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3935 3936 __netif_tx_lock(txq, cpu); 3937 netif_tx_stop_queue(txq); 3938 __netif_tx_unlock(txq); 3939 } 3940 local_bh_enable(); 3941 } 3942 3943 static inline void netif_addr_lock(struct net_device *dev) 3944 { 3945 spin_lock(&dev->addr_list_lock); 3946 } 3947 3948 static inline void netif_addr_lock_nested(struct net_device *dev) 3949 { 3950 int subclass = SINGLE_DEPTH_NESTING; 3951 3952 if (dev->netdev_ops->ndo_get_lock_subclass) 3953 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3954 3955 spin_lock_nested(&dev->addr_list_lock, subclass); 3956 } 3957 3958 static inline void netif_addr_lock_bh(struct net_device *dev) 3959 { 3960 spin_lock_bh(&dev->addr_list_lock); 3961 } 3962 3963 static inline void netif_addr_unlock(struct net_device *dev) 3964 { 3965 spin_unlock(&dev->addr_list_lock); 3966 } 3967 3968 static inline void netif_addr_unlock_bh(struct net_device *dev) 3969 { 3970 spin_unlock_bh(&dev->addr_list_lock); 3971 } 3972 3973 /* 3974 * dev_addrs walker. Should be used only for read access. Call with 3975 * rcu_read_lock held. 3976 */ 3977 #define for_each_dev_addr(dev, ha) \ 3978 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3979 3980 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3981 3982 void ether_setup(struct net_device *dev); 3983 3984 /* Support for loadable net-drivers */ 3985 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3986 unsigned char name_assign_type, 3987 void (*setup)(struct net_device *), 3988 unsigned int txqs, unsigned int rxqs); 3989 int dev_get_valid_name(struct net *net, struct net_device *dev, 3990 const char *name); 3991 3992 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3993 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3994 3995 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3996 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3997 count) 3998 3999 int register_netdev(struct net_device *dev); 4000 void unregister_netdev(struct net_device *dev); 4001 4002 /* General hardware address lists handling functions */ 4003 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4004 struct netdev_hw_addr_list *from_list, int addr_len); 4005 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4006 struct netdev_hw_addr_list *from_list, int addr_len); 4007 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4008 struct net_device *dev, 4009 int (*sync)(struct net_device *, const unsigned char *), 4010 int (*unsync)(struct net_device *, 4011 const unsigned char *)); 4012 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4013 struct net_device *dev, 4014 int (*unsync)(struct net_device *, 4015 const unsigned char *)); 4016 void __hw_addr_init(struct netdev_hw_addr_list *list); 4017 4018 /* Functions used for device addresses handling */ 4019 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4020 unsigned char addr_type); 4021 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4022 unsigned char addr_type); 4023 void dev_addr_flush(struct net_device *dev); 4024 int dev_addr_init(struct net_device *dev); 4025 4026 /* Functions used for unicast addresses handling */ 4027 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4028 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4029 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4030 int dev_uc_sync(struct net_device *to, struct net_device *from); 4031 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4032 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4033 void dev_uc_flush(struct net_device *dev); 4034 void dev_uc_init(struct net_device *dev); 4035 4036 /** 4037 * __dev_uc_sync - Synchonize device's unicast list 4038 * @dev: device to sync 4039 * @sync: function to call if address should be added 4040 * @unsync: function to call if address should be removed 4041 * 4042 * Add newly added addresses to the interface, and release 4043 * addresses that have been deleted. 4044 */ 4045 static inline int __dev_uc_sync(struct net_device *dev, 4046 int (*sync)(struct net_device *, 4047 const unsigned char *), 4048 int (*unsync)(struct net_device *, 4049 const unsigned char *)) 4050 { 4051 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4052 } 4053 4054 /** 4055 * __dev_uc_unsync - Remove synchronized addresses from device 4056 * @dev: device to sync 4057 * @unsync: function to call if address should be removed 4058 * 4059 * Remove all addresses that were added to the device by dev_uc_sync(). 4060 */ 4061 static inline void __dev_uc_unsync(struct net_device *dev, 4062 int (*unsync)(struct net_device *, 4063 const unsigned char *)) 4064 { 4065 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4066 } 4067 4068 /* Functions used for multicast addresses handling */ 4069 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4070 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4071 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4072 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4073 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4074 int dev_mc_sync(struct net_device *to, struct net_device *from); 4075 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4076 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4077 void dev_mc_flush(struct net_device *dev); 4078 void dev_mc_init(struct net_device *dev); 4079 4080 /** 4081 * __dev_mc_sync - Synchonize device's multicast list 4082 * @dev: device to sync 4083 * @sync: function to call if address should be added 4084 * @unsync: function to call if address should be removed 4085 * 4086 * Add newly added addresses to the interface, and release 4087 * addresses that have been deleted. 4088 */ 4089 static inline int __dev_mc_sync(struct net_device *dev, 4090 int (*sync)(struct net_device *, 4091 const unsigned char *), 4092 int (*unsync)(struct net_device *, 4093 const unsigned char *)) 4094 { 4095 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4096 } 4097 4098 /** 4099 * __dev_mc_unsync - Remove synchronized addresses from device 4100 * @dev: device to sync 4101 * @unsync: function to call if address should be removed 4102 * 4103 * Remove all addresses that were added to the device by dev_mc_sync(). 4104 */ 4105 static inline void __dev_mc_unsync(struct net_device *dev, 4106 int (*unsync)(struct net_device *, 4107 const unsigned char *)) 4108 { 4109 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4110 } 4111 4112 /* Functions used for secondary unicast and multicast support */ 4113 void dev_set_rx_mode(struct net_device *dev); 4114 void __dev_set_rx_mode(struct net_device *dev); 4115 int dev_set_promiscuity(struct net_device *dev, int inc); 4116 int dev_set_allmulti(struct net_device *dev, int inc); 4117 void netdev_state_change(struct net_device *dev); 4118 void netdev_notify_peers(struct net_device *dev); 4119 void netdev_features_change(struct net_device *dev); 4120 /* Load a device via the kmod */ 4121 void dev_load(struct net *net, const char *name); 4122 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4123 struct rtnl_link_stats64 *storage); 4124 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4125 const struct net_device_stats *netdev_stats); 4126 4127 extern int netdev_max_backlog; 4128 extern int netdev_tstamp_prequeue; 4129 extern int weight_p; 4130 extern int dev_weight_rx_bias; 4131 extern int dev_weight_tx_bias; 4132 extern int dev_rx_weight; 4133 extern int dev_tx_weight; 4134 4135 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4136 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4137 struct list_head **iter); 4138 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4139 struct list_head **iter); 4140 4141 /* iterate through upper list, must be called under RCU read lock */ 4142 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4143 for (iter = &(dev)->adj_list.upper, \ 4144 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4145 updev; \ 4146 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4147 4148 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4149 int (*fn)(struct net_device *upper_dev, 4150 void *data), 4151 void *data); 4152 4153 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4154 struct net_device *upper_dev); 4155 4156 bool netdev_has_any_upper_dev(struct net_device *dev); 4157 4158 void *netdev_lower_get_next_private(struct net_device *dev, 4159 struct list_head **iter); 4160 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4161 struct list_head **iter); 4162 4163 #define netdev_for_each_lower_private(dev, priv, iter) \ 4164 for (iter = (dev)->adj_list.lower.next, \ 4165 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4166 priv; \ 4167 priv = netdev_lower_get_next_private(dev, &(iter))) 4168 4169 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4170 for (iter = &(dev)->adj_list.lower, \ 4171 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4172 priv; \ 4173 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4174 4175 void *netdev_lower_get_next(struct net_device *dev, 4176 struct list_head **iter); 4177 4178 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4179 for (iter = (dev)->adj_list.lower.next, \ 4180 ldev = netdev_lower_get_next(dev, &(iter)); \ 4181 ldev; \ 4182 ldev = netdev_lower_get_next(dev, &(iter))) 4183 4184 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4185 struct list_head **iter); 4186 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4187 struct list_head **iter); 4188 4189 int netdev_walk_all_lower_dev(struct net_device *dev, 4190 int (*fn)(struct net_device *lower_dev, 4191 void *data), 4192 void *data); 4193 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4194 int (*fn)(struct net_device *lower_dev, 4195 void *data), 4196 void *data); 4197 4198 void *netdev_adjacent_get_private(struct list_head *adj_list); 4199 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4200 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4201 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4202 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4203 struct netlink_ext_ack *extack); 4204 int netdev_master_upper_dev_link(struct net_device *dev, 4205 struct net_device *upper_dev, 4206 void *upper_priv, void *upper_info, 4207 struct netlink_ext_ack *extack); 4208 void netdev_upper_dev_unlink(struct net_device *dev, 4209 struct net_device *upper_dev); 4210 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4211 void *netdev_lower_dev_get_private(struct net_device *dev, 4212 struct net_device *lower_dev); 4213 void netdev_lower_state_changed(struct net_device *lower_dev, 4214 void *lower_state_info); 4215 4216 /* RSS keys are 40 or 52 bytes long */ 4217 #define NETDEV_RSS_KEY_LEN 52 4218 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4219 void netdev_rss_key_fill(void *buffer, size_t len); 4220 4221 int dev_get_nest_level(struct net_device *dev); 4222 int skb_checksum_help(struct sk_buff *skb); 4223 int skb_crc32c_csum_help(struct sk_buff *skb); 4224 int skb_csum_hwoffload_help(struct sk_buff *skb, 4225 const netdev_features_t features); 4226 4227 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4228 netdev_features_t features, bool tx_path); 4229 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4230 netdev_features_t features); 4231 4232 struct netdev_bonding_info { 4233 ifslave slave; 4234 ifbond master; 4235 }; 4236 4237 struct netdev_notifier_bonding_info { 4238 struct netdev_notifier_info info; /* must be first */ 4239 struct netdev_bonding_info bonding_info; 4240 }; 4241 4242 void netdev_bonding_info_change(struct net_device *dev, 4243 struct netdev_bonding_info *bonding_info); 4244 4245 static inline 4246 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4247 { 4248 return __skb_gso_segment(skb, features, true); 4249 } 4250 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4251 4252 static inline bool can_checksum_protocol(netdev_features_t features, 4253 __be16 protocol) 4254 { 4255 if (protocol == htons(ETH_P_FCOE)) 4256 return !!(features & NETIF_F_FCOE_CRC); 4257 4258 /* Assume this is an IP checksum (not SCTP CRC) */ 4259 4260 if (features & NETIF_F_HW_CSUM) { 4261 /* Can checksum everything */ 4262 return true; 4263 } 4264 4265 switch (protocol) { 4266 case htons(ETH_P_IP): 4267 return !!(features & NETIF_F_IP_CSUM); 4268 case htons(ETH_P_IPV6): 4269 return !!(features & NETIF_F_IPV6_CSUM); 4270 default: 4271 return false; 4272 } 4273 } 4274 4275 #ifdef CONFIG_BUG 4276 void netdev_rx_csum_fault(struct net_device *dev); 4277 #else 4278 static inline void netdev_rx_csum_fault(struct net_device *dev) 4279 { 4280 } 4281 #endif 4282 /* rx skb timestamps */ 4283 void net_enable_timestamp(void); 4284 void net_disable_timestamp(void); 4285 4286 #ifdef CONFIG_PROC_FS 4287 int __init dev_proc_init(void); 4288 #else 4289 #define dev_proc_init() 0 4290 #endif 4291 4292 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4293 struct sk_buff *skb, struct net_device *dev, 4294 bool more) 4295 { 4296 skb->xmit_more = more ? 1 : 0; 4297 return ops->ndo_start_xmit(skb, dev); 4298 } 4299 4300 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4301 struct netdev_queue *txq, bool more) 4302 { 4303 const struct net_device_ops *ops = dev->netdev_ops; 4304 int rc; 4305 4306 rc = __netdev_start_xmit(ops, skb, dev, more); 4307 if (rc == NETDEV_TX_OK) 4308 txq_trans_update(txq); 4309 4310 return rc; 4311 } 4312 4313 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4314 const void *ns); 4315 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4316 const void *ns); 4317 4318 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4319 { 4320 return netdev_class_create_file_ns(class_attr, NULL); 4321 } 4322 4323 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4324 { 4325 netdev_class_remove_file_ns(class_attr, NULL); 4326 } 4327 4328 extern const struct kobj_ns_type_operations net_ns_type_operations; 4329 4330 const char *netdev_drivername(const struct net_device *dev); 4331 4332 void linkwatch_run_queue(void); 4333 4334 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4335 netdev_features_t f2) 4336 { 4337 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4338 if (f1 & NETIF_F_HW_CSUM) 4339 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4340 else 4341 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4342 } 4343 4344 return f1 & f2; 4345 } 4346 4347 static inline netdev_features_t netdev_get_wanted_features( 4348 struct net_device *dev) 4349 { 4350 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4351 } 4352 netdev_features_t netdev_increment_features(netdev_features_t all, 4353 netdev_features_t one, netdev_features_t mask); 4354 4355 /* Allow TSO being used on stacked device : 4356 * Performing the GSO segmentation before last device 4357 * is a performance improvement. 4358 */ 4359 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4360 netdev_features_t mask) 4361 { 4362 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4363 } 4364 4365 int __netdev_update_features(struct net_device *dev); 4366 void netdev_update_features(struct net_device *dev); 4367 void netdev_change_features(struct net_device *dev); 4368 4369 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4370 struct net_device *dev); 4371 4372 netdev_features_t passthru_features_check(struct sk_buff *skb, 4373 struct net_device *dev, 4374 netdev_features_t features); 4375 netdev_features_t netif_skb_features(struct sk_buff *skb); 4376 4377 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4378 { 4379 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4380 4381 /* check flags correspondence */ 4382 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4383 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4384 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4385 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4386 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4387 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4388 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4389 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4390 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4391 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4392 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4393 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4394 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4395 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4396 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4397 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4398 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4399 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4400 4401 return (features & feature) == feature; 4402 } 4403 4404 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4405 { 4406 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4407 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4408 } 4409 4410 static inline bool netif_needs_gso(struct sk_buff *skb, 4411 netdev_features_t features) 4412 { 4413 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4414 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4415 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4416 } 4417 4418 static inline void netif_set_gso_max_size(struct net_device *dev, 4419 unsigned int size) 4420 { 4421 dev->gso_max_size = size; 4422 } 4423 4424 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4425 int pulled_hlen, u16 mac_offset, 4426 int mac_len) 4427 { 4428 skb->protocol = protocol; 4429 skb->encapsulation = 1; 4430 skb_push(skb, pulled_hlen); 4431 skb_reset_transport_header(skb); 4432 skb->mac_header = mac_offset; 4433 skb->network_header = skb->mac_header + mac_len; 4434 skb->mac_len = mac_len; 4435 } 4436 4437 static inline bool netif_is_macsec(const struct net_device *dev) 4438 { 4439 return dev->priv_flags & IFF_MACSEC; 4440 } 4441 4442 static inline bool netif_is_macvlan(const struct net_device *dev) 4443 { 4444 return dev->priv_flags & IFF_MACVLAN; 4445 } 4446 4447 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4448 { 4449 return dev->priv_flags & IFF_MACVLAN_PORT; 4450 } 4451 4452 static inline bool netif_is_bond_master(const struct net_device *dev) 4453 { 4454 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4455 } 4456 4457 static inline bool netif_is_bond_slave(const struct net_device *dev) 4458 { 4459 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4460 } 4461 4462 static inline bool netif_supports_nofcs(struct net_device *dev) 4463 { 4464 return dev->priv_flags & IFF_SUPP_NOFCS; 4465 } 4466 4467 static inline bool netif_is_l3_master(const struct net_device *dev) 4468 { 4469 return dev->priv_flags & IFF_L3MDEV_MASTER; 4470 } 4471 4472 static inline bool netif_is_l3_slave(const struct net_device *dev) 4473 { 4474 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4475 } 4476 4477 static inline bool netif_is_bridge_master(const struct net_device *dev) 4478 { 4479 return dev->priv_flags & IFF_EBRIDGE; 4480 } 4481 4482 static inline bool netif_is_bridge_port(const struct net_device *dev) 4483 { 4484 return dev->priv_flags & IFF_BRIDGE_PORT; 4485 } 4486 4487 static inline bool netif_is_ovs_master(const struct net_device *dev) 4488 { 4489 return dev->priv_flags & IFF_OPENVSWITCH; 4490 } 4491 4492 static inline bool netif_is_ovs_port(const struct net_device *dev) 4493 { 4494 return dev->priv_flags & IFF_OVS_DATAPATH; 4495 } 4496 4497 static inline bool netif_is_team_master(const struct net_device *dev) 4498 { 4499 return dev->priv_flags & IFF_TEAM; 4500 } 4501 4502 static inline bool netif_is_team_port(const struct net_device *dev) 4503 { 4504 return dev->priv_flags & IFF_TEAM_PORT; 4505 } 4506 4507 static inline bool netif_is_lag_master(const struct net_device *dev) 4508 { 4509 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4510 } 4511 4512 static inline bool netif_is_lag_port(const struct net_device *dev) 4513 { 4514 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4515 } 4516 4517 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4518 { 4519 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4520 } 4521 4522 static inline bool netif_is_failover(const struct net_device *dev) 4523 { 4524 return dev->priv_flags & IFF_FAILOVER; 4525 } 4526 4527 static inline bool netif_is_failover_slave(const struct net_device *dev) 4528 { 4529 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4530 } 4531 4532 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4533 static inline void netif_keep_dst(struct net_device *dev) 4534 { 4535 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4536 } 4537 4538 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4539 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4540 { 4541 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4542 return dev->priv_flags & IFF_MACSEC; 4543 } 4544 4545 extern struct pernet_operations __net_initdata loopback_net_ops; 4546 4547 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4548 4549 /* netdev_printk helpers, similar to dev_printk */ 4550 4551 static inline const char *netdev_name(const struct net_device *dev) 4552 { 4553 if (!dev->name[0] || strchr(dev->name, '%')) 4554 return "(unnamed net_device)"; 4555 return dev->name; 4556 } 4557 4558 static inline bool netdev_unregistering(const struct net_device *dev) 4559 { 4560 return dev->reg_state == NETREG_UNREGISTERING; 4561 } 4562 4563 static inline const char *netdev_reg_state(const struct net_device *dev) 4564 { 4565 switch (dev->reg_state) { 4566 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4567 case NETREG_REGISTERED: return ""; 4568 case NETREG_UNREGISTERING: return " (unregistering)"; 4569 case NETREG_UNREGISTERED: return " (unregistered)"; 4570 case NETREG_RELEASED: return " (released)"; 4571 case NETREG_DUMMY: return " (dummy)"; 4572 } 4573 4574 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4575 return " (unknown)"; 4576 } 4577 4578 __printf(3, 4) 4579 void netdev_printk(const char *level, const struct net_device *dev, 4580 const char *format, ...); 4581 __printf(2, 3) 4582 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4583 __printf(2, 3) 4584 void netdev_alert(const struct net_device *dev, const char *format, ...); 4585 __printf(2, 3) 4586 void netdev_crit(const struct net_device *dev, const char *format, ...); 4587 __printf(2, 3) 4588 void netdev_err(const struct net_device *dev, const char *format, ...); 4589 __printf(2, 3) 4590 void netdev_warn(const struct net_device *dev, const char *format, ...); 4591 __printf(2, 3) 4592 void netdev_notice(const struct net_device *dev, const char *format, ...); 4593 __printf(2, 3) 4594 void netdev_info(const struct net_device *dev, const char *format, ...); 4595 4596 #define netdev_level_once(level, dev, fmt, ...) \ 4597 do { \ 4598 static bool __print_once __read_mostly; \ 4599 \ 4600 if (!__print_once) { \ 4601 __print_once = true; \ 4602 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4603 } \ 4604 } while (0) 4605 4606 #define netdev_emerg_once(dev, fmt, ...) \ 4607 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4608 #define netdev_alert_once(dev, fmt, ...) \ 4609 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4610 #define netdev_crit_once(dev, fmt, ...) \ 4611 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4612 #define netdev_err_once(dev, fmt, ...) \ 4613 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4614 #define netdev_warn_once(dev, fmt, ...) \ 4615 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4616 #define netdev_notice_once(dev, fmt, ...) \ 4617 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4618 #define netdev_info_once(dev, fmt, ...) \ 4619 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4620 4621 #define MODULE_ALIAS_NETDEV(device) \ 4622 MODULE_ALIAS("netdev-" device) 4623 4624 #if defined(CONFIG_DYNAMIC_DEBUG) 4625 #define netdev_dbg(__dev, format, args...) \ 4626 do { \ 4627 dynamic_netdev_dbg(__dev, format, ##args); \ 4628 } while (0) 4629 #elif defined(DEBUG) 4630 #define netdev_dbg(__dev, format, args...) \ 4631 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4632 #else 4633 #define netdev_dbg(__dev, format, args...) \ 4634 ({ \ 4635 if (0) \ 4636 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4637 }) 4638 #endif 4639 4640 #if defined(VERBOSE_DEBUG) 4641 #define netdev_vdbg netdev_dbg 4642 #else 4643 4644 #define netdev_vdbg(dev, format, args...) \ 4645 ({ \ 4646 if (0) \ 4647 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4648 0; \ 4649 }) 4650 #endif 4651 4652 /* 4653 * netdev_WARN() acts like dev_printk(), but with the key difference 4654 * of using a WARN/WARN_ON to get the message out, including the 4655 * file/line information and a backtrace. 4656 */ 4657 #define netdev_WARN(dev, format, args...) \ 4658 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4659 netdev_reg_state(dev), ##args) 4660 4661 #define netdev_WARN_ONCE(dev, format, args...) \ 4662 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4663 netdev_reg_state(dev), ##args) 4664 4665 /* netif printk helpers, similar to netdev_printk */ 4666 4667 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4668 do { \ 4669 if (netif_msg_##type(priv)) \ 4670 netdev_printk(level, (dev), fmt, ##args); \ 4671 } while (0) 4672 4673 #define netif_level(level, priv, type, dev, fmt, args...) \ 4674 do { \ 4675 if (netif_msg_##type(priv)) \ 4676 netdev_##level(dev, fmt, ##args); \ 4677 } while (0) 4678 4679 #define netif_emerg(priv, type, dev, fmt, args...) \ 4680 netif_level(emerg, priv, type, dev, fmt, ##args) 4681 #define netif_alert(priv, type, dev, fmt, args...) \ 4682 netif_level(alert, priv, type, dev, fmt, ##args) 4683 #define netif_crit(priv, type, dev, fmt, args...) \ 4684 netif_level(crit, priv, type, dev, fmt, ##args) 4685 #define netif_err(priv, type, dev, fmt, args...) \ 4686 netif_level(err, priv, type, dev, fmt, ##args) 4687 #define netif_warn(priv, type, dev, fmt, args...) \ 4688 netif_level(warn, priv, type, dev, fmt, ##args) 4689 #define netif_notice(priv, type, dev, fmt, args...) \ 4690 netif_level(notice, priv, type, dev, fmt, ##args) 4691 #define netif_info(priv, type, dev, fmt, args...) \ 4692 netif_level(info, priv, type, dev, fmt, ##args) 4693 4694 #if defined(CONFIG_DYNAMIC_DEBUG) 4695 #define netif_dbg(priv, type, netdev, format, args...) \ 4696 do { \ 4697 if (netif_msg_##type(priv)) \ 4698 dynamic_netdev_dbg(netdev, format, ##args); \ 4699 } while (0) 4700 #elif defined(DEBUG) 4701 #define netif_dbg(priv, type, dev, format, args...) \ 4702 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4703 #else 4704 #define netif_dbg(priv, type, dev, format, args...) \ 4705 ({ \ 4706 if (0) \ 4707 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4708 0; \ 4709 }) 4710 #endif 4711 4712 /* if @cond then downgrade to debug, else print at @level */ 4713 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4714 do { \ 4715 if (cond) \ 4716 netif_dbg(priv, type, netdev, fmt, ##args); \ 4717 else \ 4718 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4719 } while (0) 4720 4721 #if defined(VERBOSE_DEBUG) 4722 #define netif_vdbg netif_dbg 4723 #else 4724 #define netif_vdbg(priv, type, dev, format, args...) \ 4725 ({ \ 4726 if (0) \ 4727 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4728 0; \ 4729 }) 4730 #endif 4731 4732 /* 4733 * The list of packet types we will receive (as opposed to discard) 4734 * and the routines to invoke. 4735 * 4736 * Why 16. Because with 16 the only overlap we get on a hash of the 4737 * low nibble of the protocol value is RARP/SNAP/X.25. 4738 * 4739 * 0800 IP 4740 * 0001 802.3 4741 * 0002 AX.25 4742 * 0004 802.2 4743 * 8035 RARP 4744 * 0005 SNAP 4745 * 0805 X.25 4746 * 0806 ARP 4747 * 8137 IPX 4748 * 0009 Localtalk 4749 * 86DD IPv6 4750 */ 4751 #define PTYPE_HASH_SIZE (16) 4752 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4753 4754 #endif /* _LINUX_NETDEVICE_H */ 4755