xref: /openbmc/linux/include/linux/netdevice.h (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_HYPERV_NET)
136 # define LL_MAX_HEADER 128
137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
138 # if defined(CONFIG_MAC80211_MESH)
139 #  define LL_MAX_HEADER 128
140 # else
141 #  define LL_MAX_HEADER 96
142 # endif
143 #else
144 # define LL_MAX_HEADER 32
145 #endif
146 
147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
149 #define MAX_HEADER LL_MAX_HEADER
150 #else
151 #define MAX_HEADER (LL_MAX_HEADER + 48)
152 #endif
153 
154 /*
155  *	Old network device statistics. Fields are native words
156  *	(unsigned long) so they can be read and written atomically.
157  */
158 
159 struct net_device_stats {
160 	unsigned long	rx_packets;
161 	unsigned long	tx_packets;
162 	unsigned long	rx_bytes;
163 	unsigned long	tx_bytes;
164 	unsigned long	rx_errors;
165 	unsigned long	tx_errors;
166 	unsigned long	rx_dropped;
167 	unsigned long	tx_dropped;
168 	unsigned long	multicast;
169 	unsigned long	collisions;
170 	unsigned long	rx_length_errors;
171 	unsigned long	rx_over_errors;
172 	unsigned long	rx_crc_errors;
173 	unsigned long	rx_frame_errors;
174 	unsigned long	rx_fifo_errors;
175 	unsigned long	rx_missed_errors;
176 	unsigned long	tx_aborted_errors;
177 	unsigned long	tx_carrier_errors;
178 	unsigned long	tx_fifo_errors;
179 	unsigned long	tx_heartbeat_errors;
180 	unsigned long	tx_window_errors;
181 	unsigned long	rx_compressed;
182 	unsigned long	tx_compressed;
183 };
184 
185 
186 #include <linux/cache.h>
187 #include <linux/skbuff.h>
188 
189 #ifdef CONFIG_RPS
190 #include <linux/static_key.h>
191 extern struct static_key rps_needed;
192 #endif
193 
194 struct neighbour;
195 struct neigh_parms;
196 struct sk_buff;
197 
198 struct netdev_hw_addr {
199 	struct list_head	list;
200 	unsigned char		addr[MAX_ADDR_LEN];
201 	unsigned char		type;
202 #define NETDEV_HW_ADDR_T_LAN		1
203 #define NETDEV_HW_ADDR_T_SAN		2
204 #define NETDEV_HW_ADDR_T_SLAVE		3
205 #define NETDEV_HW_ADDR_T_UNICAST	4
206 #define NETDEV_HW_ADDR_T_MULTICAST	5
207 	bool			global_use;
208 	int			sync_cnt;
209 	int			refcount;
210 	int			synced;
211 	struct rcu_head		rcu_head;
212 };
213 
214 struct netdev_hw_addr_list {
215 	struct list_head	list;
216 	int			count;
217 };
218 
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 	list_for_each_entry(ha, &(l)->list, list)
223 
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228 
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233 
234 struct hh_cache {
235 	u16		hh_len;
236 	u16		__pad;
237 	seqlock_t	hh_lock;
238 
239 	/* cached hardware header; allow for machine alignment needs.        */
240 #define HH_DATA_MOD	16
241 #define HH_DATA_OFF(__len) \
242 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247 
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249  * Alternative is:
250  *   dev->hard_header_len ? (dev->hard_header_len +
251  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252  *
253  * We could use other alignment values, but we must maintain the
254  * relationship HH alignment <= LL alignment.
255  */
256 #define LL_RESERVED_SPACE(dev) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 
261 struct header_ops {
262 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
263 			   unsigned short type, const void *daddr,
264 			   const void *saddr, unsigned int len);
265 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
267 	void	(*cache_update)(struct hh_cache *hh,
268 				const struct net_device *dev,
269 				const unsigned char *haddr);
270 };
271 
272 /* These flag bits are private to the generic network queueing
273  * layer, they may not be explicitly referenced by any other
274  * code.
275  */
276 
277 enum netdev_state_t {
278 	__LINK_STATE_START,
279 	__LINK_STATE_PRESENT,
280 	__LINK_STATE_NOCARRIER,
281 	__LINK_STATE_LINKWATCH_PENDING,
282 	__LINK_STATE_DORMANT,
283 };
284 
285 
286 /*
287  * This structure holds at boot time configured netdevice settings. They
288  * are then used in the device probing.
289  */
290 struct netdev_boot_setup {
291 	char name[IFNAMSIZ];
292 	struct ifmap map;
293 };
294 #define NETDEV_BOOT_SETUP_MAX 8
295 
296 int __init netdev_boot_setup(char *str);
297 
298 /*
299  * Structure for NAPI scheduling similar to tasklet but with weighting
300  */
301 struct napi_struct {
302 	/* The poll_list must only be managed by the entity which
303 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
304 	 * whoever atomically sets that bit can add this napi_struct
305 	 * to the per-cpu poll_list, and whoever clears that bit
306 	 * can remove from the list right before clearing the bit.
307 	 */
308 	struct list_head	poll_list;
309 
310 	unsigned long		state;
311 	int			weight;
312 	unsigned int		gro_count;
313 	int			(*poll)(struct napi_struct *, int);
314 #ifdef CONFIG_NETPOLL
315 	spinlock_t		poll_lock;
316 	int			poll_owner;
317 #endif
318 	struct net_device	*dev;
319 	struct sk_buff		*gro_list;
320 	struct sk_buff		*skb;
321 	struct hrtimer		timer;
322 	struct list_head	dev_list;
323 	struct hlist_node	napi_hash_node;
324 	unsigned int		napi_id;
325 };
326 
327 enum {
328 	NAPI_STATE_SCHED,	/* Poll is scheduled */
329 	NAPI_STATE_DISABLE,	/* Disable pending */
330 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
331 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
332 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
333 };
334 
335 enum gro_result {
336 	GRO_MERGED,
337 	GRO_MERGED_FREE,
338 	GRO_HELD,
339 	GRO_NORMAL,
340 	GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343 
344 /*
345  * enum rx_handler_result - Possible return values for rx_handlers.
346  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347  * further.
348  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349  * case skb->dev was changed by rx_handler.
350  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352  *
353  * rx_handlers are functions called from inside __netif_receive_skb(), to do
354  * special processing of the skb, prior to delivery to protocol handlers.
355  *
356  * Currently, a net_device can only have a single rx_handler registered. Trying
357  * to register a second rx_handler will return -EBUSY.
358  *
359  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360  * To unregister a rx_handler on a net_device, use
361  * netdev_rx_handler_unregister().
362  *
363  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364  * do with the skb.
365  *
366  * If the rx_handler consumed to skb in some way, it should return
367  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368  * the skb to be delivered in some other ways.
369  *
370  * If the rx_handler changed skb->dev, to divert the skb to another
371  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372  * new device will be called if it exists.
373  *
374  * If the rx_handler consider the skb should be ignored, it should return
375  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376  * are registered on exact device (ptype->dev == skb->dev).
377  *
378  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379  * delivered, it should return RX_HANDLER_PASS.
380  *
381  * A device without a registered rx_handler will behave as if rx_handler
382  * returned RX_HANDLER_PASS.
383  */
384 
385 enum rx_handler_result {
386 	RX_HANDLER_CONSUMED,
387 	RX_HANDLER_ANOTHER,
388 	RX_HANDLER_EXACT,
389 	RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393 
394 void __napi_schedule(struct napi_struct *n);
395 void __napi_schedule_irqoff(struct napi_struct *n);
396 
397 static inline bool napi_disable_pending(struct napi_struct *n)
398 {
399 	return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401 
402 /**
403  *	napi_schedule_prep - check if napi can be scheduled
404  *	@n: napi context
405  *
406  * Test if NAPI routine is already running, and if not mark
407  * it as running.  This is used as a condition variable
408  * insure only one NAPI poll instance runs.  We also make
409  * sure there is no pending NAPI disable.
410  */
411 static inline bool napi_schedule_prep(struct napi_struct *n)
412 {
413 	return !napi_disable_pending(n) &&
414 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416 
417 /**
418  *	napi_schedule - schedule NAPI poll
419  *	@n: napi context
420  *
421  * Schedule NAPI poll routine to be called if it is not already
422  * running.
423  */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 	if (napi_schedule_prep(n))
427 		__napi_schedule(n);
428 }
429 
430 /**
431  *	napi_schedule_irqoff - schedule NAPI poll
432  *	@n: napi context
433  *
434  * Variant of napi_schedule(), assuming hard irqs are masked.
435  */
436 static inline void napi_schedule_irqoff(struct napi_struct *n)
437 {
438 	if (napi_schedule_prep(n))
439 		__napi_schedule_irqoff(n);
440 }
441 
442 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
443 static inline bool napi_reschedule(struct napi_struct *napi)
444 {
445 	if (napi_schedule_prep(napi)) {
446 		__napi_schedule(napi);
447 		return true;
448 	}
449 	return false;
450 }
451 
452 void __napi_complete(struct napi_struct *n);
453 void napi_complete_done(struct napi_struct *n, int work_done);
454 /**
455  *	napi_complete - NAPI processing complete
456  *	@n: napi context
457  *
458  * Mark NAPI processing as complete.
459  * Consider using napi_complete_done() instead.
460  */
461 static inline void napi_complete(struct napi_struct *n)
462 {
463 	return napi_complete_done(n, 0);
464 }
465 
466 /**
467  *	napi_hash_add - add a NAPI to global hashtable
468  *	@napi: napi context
469  *
470  * generate a new napi_id and store a @napi under it in napi_hash
471  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
472  * Note: This is normally automatically done from netif_napi_add(),
473  * so might disappear in a future linux version.
474  */
475 void napi_hash_add(struct napi_struct *napi);
476 
477 /**
478  *	napi_hash_del - remove a NAPI from global table
479  *	@napi: napi context
480  *
481  * Warning: caller must observe rcu grace period
482  * before freeing memory containing @napi, if
483  * this function returns true.
484  * Note: core networking stack automatically calls it
485  * from netif_napi_del()
486  * Drivers might want to call this helper to combine all
487  * the needed rcu grace periods into a single one.
488  */
489 bool napi_hash_del(struct napi_struct *napi);
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: napi context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: napi context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: napi context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 enum netdev_queue_state_t {
533 	__QUEUE_STATE_DRV_XOFF,
534 	__QUEUE_STATE_STACK_XOFF,
535 	__QUEUE_STATE_FROZEN,
536 };
537 
538 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
539 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
540 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
541 
542 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
546 					QUEUE_STATE_FROZEN)
547 
548 /*
549  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
550  * netif_tx_* functions below are used to manipulate this flag.  The
551  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
552  * queue independently.  The netif_xmit_*stopped functions below are called
553  * to check if the queue has been stopped by the driver or stack (either
554  * of the XOFF bits are set in the state).  Drivers should not need to call
555  * netif_xmit*stopped functions, they should only be using netif_tx_*.
556  */
557 
558 struct netdev_queue {
559 /*
560  * read mostly part
561  */
562 	struct net_device	*dev;
563 	struct Qdisc __rcu	*qdisc;
564 	struct Qdisc		*qdisc_sleeping;
565 #ifdef CONFIG_SYSFS
566 	struct kobject		kobj;
567 #endif
568 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
569 	int			numa_node;
570 #endif
571 /*
572  * write mostly part
573  */
574 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
575 	int			xmit_lock_owner;
576 	/*
577 	 * please use this field instead of dev->trans_start
578 	 */
579 	unsigned long		trans_start;
580 
581 	/*
582 	 * Number of TX timeouts for this queue
583 	 * (/sys/class/net/DEV/Q/trans_timeout)
584 	 */
585 	unsigned long		trans_timeout;
586 
587 	unsigned long		state;
588 
589 #ifdef CONFIG_BQL
590 	struct dql		dql;
591 #endif
592 	unsigned long		tx_maxrate;
593 } ____cacheline_aligned_in_smp;
594 
595 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
596 {
597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
598 	return q->numa_node;
599 #else
600 	return NUMA_NO_NODE;
601 #endif
602 }
603 
604 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
605 {
606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607 	q->numa_node = node;
608 #endif
609 }
610 
611 #ifdef CONFIG_RPS
612 /*
613  * This structure holds an RPS map which can be of variable length.  The
614  * map is an array of CPUs.
615  */
616 struct rps_map {
617 	unsigned int len;
618 	struct rcu_head rcu;
619 	u16 cpus[0];
620 };
621 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
622 
623 /*
624  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
625  * tail pointer for that CPU's input queue at the time of last enqueue, and
626  * a hardware filter index.
627  */
628 struct rps_dev_flow {
629 	u16 cpu;
630 	u16 filter;
631 	unsigned int last_qtail;
632 };
633 #define RPS_NO_FILTER 0xffff
634 
635 /*
636  * The rps_dev_flow_table structure contains a table of flow mappings.
637  */
638 struct rps_dev_flow_table {
639 	unsigned int mask;
640 	struct rcu_head rcu;
641 	struct rps_dev_flow flows[0];
642 };
643 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
644     ((_num) * sizeof(struct rps_dev_flow)))
645 
646 /*
647  * The rps_sock_flow_table contains mappings of flows to the last CPU
648  * on which they were processed by the application (set in recvmsg).
649  * Each entry is a 32bit value. Upper part is the high order bits
650  * of flow hash, lower part is cpu number.
651  * rps_cpu_mask is used to partition the space, depending on number of
652  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
653  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
654  * meaning we use 32-6=26 bits for the hash.
655  */
656 struct rps_sock_flow_table {
657 	u32	mask;
658 
659 	u32	ents[0] ____cacheline_aligned_in_smp;
660 };
661 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
662 
663 #define RPS_NO_CPU 0xffff
664 
665 extern u32 rps_cpu_mask;
666 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
667 
668 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
669 					u32 hash)
670 {
671 	if (table && hash) {
672 		unsigned int index = hash & table->mask;
673 		u32 val = hash & ~rps_cpu_mask;
674 
675 		/* We only give a hint, preemption can change cpu under us */
676 		val |= raw_smp_processor_id();
677 
678 		if (table->ents[index] != val)
679 			table->ents[index] = val;
680 	}
681 }
682 
683 #ifdef CONFIG_RFS_ACCEL
684 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
685 			 u16 filter_id);
686 #endif
687 #endif /* CONFIG_RPS */
688 
689 /* This structure contains an instance of an RX queue. */
690 struct netdev_rx_queue {
691 #ifdef CONFIG_RPS
692 	struct rps_map __rcu		*rps_map;
693 	struct rps_dev_flow_table __rcu	*rps_flow_table;
694 #endif
695 	struct kobject			kobj;
696 	struct net_device		*dev;
697 } ____cacheline_aligned_in_smp;
698 
699 /*
700  * RX queue sysfs structures and functions.
701  */
702 struct rx_queue_attribute {
703 	struct attribute attr;
704 	ssize_t (*show)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, char *buf);
706 	ssize_t (*store)(struct netdev_rx_queue *queue,
707 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
708 };
709 
710 #ifdef CONFIG_XPS
711 /*
712  * This structure holds an XPS map which can be of variable length.  The
713  * map is an array of queues.
714  */
715 struct xps_map {
716 	unsigned int len;
717 	unsigned int alloc_len;
718 	struct rcu_head rcu;
719 	u16 queues[0];
720 };
721 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
722 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
723        - sizeof(struct xps_map)) / sizeof(u16))
724 
725 /*
726  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
727  */
728 struct xps_dev_maps {
729 	struct rcu_head rcu;
730 	struct xps_map __rcu *cpu_map[0];
731 };
732 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
733     (nr_cpu_ids * sizeof(struct xps_map *)))
734 #endif /* CONFIG_XPS */
735 
736 #define TC_MAX_QUEUE	16
737 #define TC_BITMASK	15
738 /* HW offloaded queuing disciplines txq count and offset maps */
739 struct netdev_tc_txq {
740 	u16 count;
741 	u16 offset;
742 };
743 
744 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
745 /*
746  * This structure is to hold information about the device
747  * configured to run FCoE protocol stack.
748  */
749 struct netdev_fcoe_hbainfo {
750 	char	manufacturer[64];
751 	char	serial_number[64];
752 	char	hardware_version[64];
753 	char	driver_version[64];
754 	char	optionrom_version[64];
755 	char	firmware_version[64];
756 	char	model[256];
757 	char	model_description[256];
758 };
759 #endif
760 
761 #define MAX_PHYS_ITEM_ID_LEN 32
762 
763 /* This structure holds a unique identifier to identify some
764  * physical item (port for example) used by a netdevice.
765  */
766 struct netdev_phys_item_id {
767 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
768 	unsigned char id_len;
769 };
770 
771 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
772 					    struct netdev_phys_item_id *b)
773 {
774 	return a->id_len == b->id_len &&
775 	       memcmp(a->id, b->id, a->id_len) == 0;
776 }
777 
778 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
779 				       struct sk_buff *skb);
780 
781 /*
782  * This structure defines the management hooks for network devices.
783  * The following hooks can be defined; unless noted otherwise, they are
784  * optional and can be filled with a null pointer.
785  *
786  * int (*ndo_init)(struct net_device *dev);
787  *     This function is called once when network device is registered.
788  *     The network device can use this to any late stage initializaton
789  *     or semantic validattion. It can fail with an error code which will
790  *     be propogated back to register_netdev
791  *
792  * void (*ndo_uninit)(struct net_device *dev);
793  *     This function is called when device is unregistered or when registration
794  *     fails. It is not called if init fails.
795  *
796  * int (*ndo_open)(struct net_device *dev);
797  *     This function is called when network device transistions to the up
798  *     state.
799  *
800  * int (*ndo_stop)(struct net_device *dev);
801  *     This function is called when network device transistions to the down
802  *     state.
803  *
804  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
805  *                               struct net_device *dev);
806  *	Called when a packet needs to be transmitted.
807  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
808  *	the queue before that can happen; it's for obsolete devices and weird
809  *	corner cases, but the stack really does a non-trivial amount
810  *	of useless work if you return NETDEV_TX_BUSY.
811  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
812  *	Required can not be NULL.
813  *
814  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
815  *		netdev_features_t features);
816  *	Adjusts the requested feature flags according to device-specific
817  *	constraints, and returns the resulting flags. Must not modify
818  *	the device state.
819  *
820  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
821  *                         void *accel_priv, select_queue_fallback_t fallback);
822  *	Called to decide which queue to when device supports multiple
823  *	transmit queues.
824  *
825  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
826  *	This function is called to allow device receiver to make
827  *	changes to configuration when multicast or promiscious is enabled.
828  *
829  * void (*ndo_set_rx_mode)(struct net_device *dev);
830  *	This function is called device changes address list filtering.
831  *	If driver handles unicast address filtering, it should set
832  *	IFF_UNICAST_FLT to its priv_flags.
833  *
834  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
835  *	This function  is called when the Media Access Control address
836  *	needs to be changed. If this interface is not defined, the
837  *	mac address can not be changed.
838  *
839  * int (*ndo_validate_addr)(struct net_device *dev);
840  *	Test if Media Access Control address is valid for the device.
841  *
842  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
843  *	Called when a user request an ioctl which can't be handled by
844  *	the generic interface code. If not defined ioctl's return
845  *	not supported error code.
846  *
847  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
848  *	Used to set network devices bus interface parameters. This interface
849  *	is retained for legacy reason, new devices should use the bus
850  *	interface (PCI) for low level management.
851  *
852  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
853  *	Called when a user wants to change the Maximum Transfer Unit
854  *	of a device. If not defined, any request to change MTU will
855  *	will return an error.
856  *
857  * void (*ndo_tx_timeout)(struct net_device *dev);
858  *	Callback uses when the transmitter has not made any progress
859  *	for dev->watchdog ticks.
860  *
861  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
862  *                      struct rtnl_link_stats64 *storage);
863  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
864  *	Called when a user wants to get the network device usage
865  *	statistics. Drivers must do one of the following:
866  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
867  *	   rtnl_link_stats64 structure passed by the caller.
868  *	2. Define @ndo_get_stats to update a net_device_stats structure
869  *	   (which should normally be dev->stats) and return a pointer to
870  *	   it. The structure may be changed asynchronously only if each
871  *	   field is written atomically.
872  *	3. Update dev->stats asynchronously and atomically, and define
873  *	   neither operation.
874  *
875  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
876  *	If device support VLAN filtering this function is called when a
877  *	VLAN id is registered.
878  *
879  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
880  *	If device support VLAN filtering this function is called when a
881  *	VLAN id is unregistered.
882  *
883  * void (*ndo_poll_controller)(struct net_device *dev);
884  *
885  *	SR-IOV management functions.
886  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
887  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
888  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
889  *			  int max_tx_rate);
890  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
891  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
892  * int (*ndo_get_vf_config)(struct net_device *dev,
893  *			    int vf, struct ifla_vf_info *ivf);
894  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
895  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
896  *			  struct nlattr *port[]);
897  *
898  *      Enable or disable the VF ability to query its RSS Redirection Table and
899  *      Hash Key. This is needed since on some devices VF share this information
900  *      with PF and querying it may adduce a theoretical security risk.
901  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
902  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
903  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
904  * 	Called to setup 'tc' number of traffic classes in the net device. This
905  * 	is always called from the stack with the rtnl lock held and netif tx
906  * 	queues stopped. This allows the netdevice to perform queue management
907  * 	safely.
908  *
909  *	Fiber Channel over Ethernet (FCoE) offload functions.
910  * int (*ndo_fcoe_enable)(struct net_device *dev);
911  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
912  *	so the underlying device can perform whatever needed configuration or
913  *	initialization to support acceleration of FCoE traffic.
914  *
915  * int (*ndo_fcoe_disable)(struct net_device *dev);
916  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
917  *	so the underlying device can perform whatever needed clean-ups to
918  *	stop supporting acceleration of FCoE traffic.
919  *
920  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
921  *			     struct scatterlist *sgl, unsigned int sgc);
922  *	Called when the FCoE Initiator wants to initialize an I/O that
923  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
924  *	perform necessary setup and returns 1 to indicate the device is set up
925  *	successfully to perform DDP on this I/O, otherwise this returns 0.
926  *
927  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
928  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
929  *	indicated by the FC exchange id 'xid', so the underlying device can
930  *	clean up and reuse resources for later DDP requests.
931  *
932  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
933  *			      struct scatterlist *sgl, unsigned int sgc);
934  *	Called when the FCoE Target wants to initialize an I/O that
935  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
936  *	perform necessary setup and returns 1 to indicate the device is set up
937  *	successfully to perform DDP on this I/O, otherwise this returns 0.
938  *
939  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
940  *			       struct netdev_fcoe_hbainfo *hbainfo);
941  *	Called when the FCoE Protocol stack wants information on the underlying
942  *	device. This information is utilized by the FCoE protocol stack to
943  *	register attributes with Fiber Channel management service as per the
944  *	FC-GS Fabric Device Management Information(FDMI) specification.
945  *
946  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
947  *	Called when the underlying device wants to override default World Wide
948  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
949  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
950  *	protocol stack to use.
951  *
952  *	RFS acceleration.
953  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
954  *			    u16 rxq_index, u32 flow_id);
955  *	Set hardware filter for RFS.  rxq_index is the target queue index;
956  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
957  *	Return the filter ID on success, or a negative error code.
958  *
959  *	Slave management functions (for bridge, bonding, etc).
960  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
961  *	Called to make another netdev an underling.
962  *
963  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
964  *	Called to release previously enslaved netdev.
965  *
966  *      Feature/offload setting functions.
967  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
968  *	Called to update device configuration to new features. Passed
969  *	feature set might be less than what was returned by ndo_fix_features()).
970  *	Must return >0 or -errno if it changed dev->features itself.
971  *
972  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
973  *		      struct net_device *dev,
974  *		      const unsigned char *addr, u16 vid, u16 flags)
975  *	Adds an FDB entry to dev for addr.
976  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
977  *		      struct net_device *dev,
978  *		      const unsigned char *addr, u16 vid)
979  *	Deletes the FDB entry from dev coresponding to addr.
980  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
981  *		       struct net_device *dev, struct net_device *filter_dev,
982  *		       int idx)
983  *	Used to add FDB entries to dump requests. Implementers should add
984  *	entries to skb and update idx with the number of entries.
985  *
986  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
987  *			     u16 flags)
988  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
989  *			     struct net_device *dev, u32 filter_mask,
990  *			     int nlflags)
991  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
992  *			     u16 flags);
993  *
994  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
995  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
996  *	which do not represent real hardware may define this to allow their
997  *	userspace components to manage their virtual carrier state. Devices
998  *	that determine carrier state from physical hardware properties (eg
999  *	network cables) or protocol-dependent mechanisms (eg
1000  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1001  *
1002  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1003  *			       struct netdev_phys_item_id *ppid);
1004  *	Called to get ID of physical port of this device. If driver does
1005  *	not implement this, it is assumed that the hw is not able to have
1006  *	multiple net devices on single physical port.
1007  *
1008  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1009  *			      sa_family_t sa_family, __be16 port);
1010  *	Called by vxlan to notiy a driver about the UDP port and socket
1011  *	address family that vxlan is listnening to. It is called only when
1012  *	a new port starts listening. The operation is protected by the
1013  *	vxlan_net->sock_lock.
1014  *
1015  * void (*ndo_add_geneve_port)(struct net_device *dev,
1016  *			      sa_family_t sa_family, __be16 port);
1017  *	Called by geneve to notify a driver about the UDP port and socket
1018  *	address family that geneve is listnening to. It is called only when
1019  *	a new port starts listening. The operation is protected by the
1020  *	geneve_net->sock_lock.
1021  *
1022  * void (*ndo_del_geneve_port)(struct net_device *dev,
1023  *			      sa_family_t sa_family, __be16 port);
1024  *	Called by geneve to notify the driver about a UDP port and socket
1025  *	address family that geneve is not listening to anymore. The operation
1026  *	is protected by the geneve_net->sock_lock.
1027  *
1028  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1029  *			      sa_family_t sa_family, __be16 port);
1030  *	Called by vxlan to notify the driver about a UDP port and socket
1031  *	address family that vxlan is not listening to anymore. The operation
1032  *	is protected by the vxlan_net->sock_lock.
1033  *
1034  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1035  *				 struct net_device *dev)
1036  *	Called by upper layer devices to accelerate switching or other
1037  *	station functionality into hardware. 'pdev is the lowerdev
1038  *	to use for the offload and 'dev' is the net device that will
1039  *	back the offload. Returns a pointer to the private structure
1040  *	the upper layer will maintain.
1041  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1042  *	Called by upper layer device to delete the station created
1043  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1044  *	the station and priv is the structure returned by the add
1045  *	operation.
1046  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1047  *				      struct net_device *dev,
1048  *				      void *priv);
1049  *	Callback to use for xmit over the accelerated station. This
1050  *	is used in place of ndo_start_xmit on accelerated net
1051  *	devices.
1052  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1053  *					    struct net_device *dev
1054  *					    netdev_features_t features);
1055  *	Called by core transmit path to determine if device is capable of
1056  *	performing offload operations on a given packet. This is to give
1057  *	the device an opportunity to implement any restrictions that cannot
1058  *	be otherwise expressed by feature flags. The check is called with
1059  *	the set of features that the stack has calculated and it returns
1060  *	those the driver believes to be appropriate.
1061  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1062  *			     int queue_index, u32 maxrate);
1063  *	Called when a user wants to set a max-rate limitation of specific
1064  *	TX queue.
1065  * int (*ndo_get_iflink)(const struct net_device *dev);
1066  *	Called to get the iflink value of this device.
1067  * void (*ndo_change_proto_down)(struct net_device *dev,
1068  *				  bool proto_down);
1069  *	This function is used to pass protocol port error state information
1070  *	to the switch driver. The switch driver can react to the proto_down
1071  *      by doing a phys down on the associated switch port.
1072  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1073  *	This function is used to get egress tunnel information for given skb.
1074  *	This is useful for retrieving outer tunnel header parameters while
1075  *	sampling packet.
1076  *
1077  */
1078 struct net_device_ops {
1079 	int			(*ndo_init)(struct net_device *dev);
1080 	void			(*ndo_uninit)(struct net_device *dev);
1081 	int			(*ndo_open)(struct net_device *dev);
1082 	int			(*ndo_stop)(struct net_device *dev);
1083 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1084 						  struct net_device *dev);
1085 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1086 						      struct net_device *dev,
1087 						      netdev_features_t features);
1088 	u16			(*ndo_select_queue)(struct net_device *dev,
1089 						    struct sk_buff *skb,
1090 						    void *accel_priv,
1091 						    select_queue_fallback_t fallback);
1092 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1093 						       int flags);
1094 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1095 	int			(*ndo_set_mac_address)(struct net_device *dev,
1096 						       void *addr);
1097 	int			(*ndo_validate_addr)(struct net_device *dev);
1098 	int			(*ndo_do_ioctl)(struct net_device *dev,
1099 					        struct ifreq *ifr, int cmd);
1100 	int			(*ndo_set_config)(struct net_device *dev,
1101 					          struct ifmap *map);
1102 	int			(*ndo_change_mtu)(struct net_device *dev,
1103 						  int new_mtu);
1104 	int			(*ndo_neigh_setup)(struct net_device *dev,
1105 						   struct neigh_parms *);
1106 	void			(*ndo_tx_timeout) (struct net_device *dev);
1107 
1108 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1109 						     struct rtnl_link_stats64 *storage);
1110 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1111 
1112 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1113 						       __be16 proto, u16 vid);
1114 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1115 						        __be16 proto, u16 vid);
1116 #ifdef CONFIG_NET_POLL_CONTROLLER
1117 	void                    (*ndo_poll_controller)(struct net_device *dev);
1118 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1119 						     struct netpoll_info *info);
1120 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1121 #endif
1122 #ifdef CONFIG_NET_RX_BUSY_POLL
1123 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1124 #endif
1125 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1126 						  int queue, u8 *mac);
1127 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1128 						   int queue, u16 vlan, u8 qos);
1129 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1130 						   int vf, int min_tx_rate,
1131 						   int max_tx_rate);
1132 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1133 						       int vf, bool setting);
1134 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1135 						    int vf, bool setting);
1136 	int			(*ndo_get_vf_config)(struct net_device *dev,
1137 						     int vf,
1138 						     struct ifla_vf_info *ivf);
1139 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1140 							 int vf, int link_state);
1141 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1142 						    int vf,
1143 						    struct ifla_vf_stats
1144 						    *vf_stats);
1145 	int			(*ndo_set_vf_port)(struct net_device *dev,
1146 						   int vf,
1147 						   struct nlattr *port[]);
1148 	int			(*ndo_get_vf_port)(struct net_device *dev,
1149 						   int vf, struct sk_buff *skb);
1150 	int			(*ndo_set_vf_rss_query_en)(
1151 						   struct net_device *dev,
1152 						   int vf, bool setting);
1153 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1154 #if IS_ENABLED(CONFIG_FCOE)
1155 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1156 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1157 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1158 						      u16 xid,
1159 						      struct scatterlist *sgl,
1160 						      unsigned int sgc);
1161 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1162 						     u16 xid);
1163 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1164 						       u16 xid,
1165 						       struct scatterlist *sgl,
1166 						       unsigned int sgc);
1167 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1168 							struct netdev_fcoe_hbainfo *hbainfo);
1169 #endif
1170 
1171 #if IS_ENABLED(CONFIG_LIBFCOE)
1172 #define NETDEV_FCOE_WWNN 0
1173 #define NETDEV_FCOE_WWPN 1
1174 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1175 						    u64 *wwn, int type);
1176 #endif
1177 
1178 #ifdef CONFIG_RFS_ACCEL
1179 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1180 						     const struct sk_buff *skb,
1181 						     u16 rxq_index,
1182 						     u32 flow_id);
1183 #endif
1184 	int			(*ndo_add_slave)(struct net_device *dev,
1185 						 struct net_device *slave_dev);
1186 	int			(*ndo_del_slave)(struct net_device *dev,
1187 						 struct net_device *slave_dev);
1188 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1189 						    netdev_features_t features);
1190 	int			(*ndo_set_features)(struct net_device *dev,
1191 						    netdev_features_t features);
1192 	int			(*ndo_neigh_construct)(struct neighbour *n);
1193 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1194 
1195 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1196 					       struct nlattr *tb[],
1197 					       struct net_device *dev,
1198 					       const unsigned char *addr,
1199 					       u16 vid,
1200 					       u16 flags);
1201 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1202 					       struct nlattr *tb[],
1203 					       struct net_device *dev,
1204 					       const unsigned char *addr,
1205 					       u16 vid);
1206 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1207 						struct netlink_callback *cb,
1208 						struct net_device *dev,
1209 						struct net_device *filter_dev,
1210 						int idx);
1211 
1212 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1213 						      struct nlmsghdr *nlh,
1214 						      u16 flags);
1215 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1216 						      u32 pid, u32 seq,
1217 						      struct net_device *dev,
1218 						      u32 filter_mask,
1219 						      int nlflags);
1220 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1221 						      struct nlmsghdr *nlh,
1222 						      u16 flags);
1223 	int			(*ndo_change_carrier)(struct net_device *dev,
1224 						      bool new_carrier);
1225 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1226 							struct netdev_phys_item_id *ppid);
1227 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1228 							  char *name, size_t len);
1229 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1230 						      sa_family_t sa_family,
1231 						      __be16 port);
1232 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1233 						      sa_family_t sa_family,
1234 						      __be16 port);
1235 	void			(*ndo_add_geneve_port)(struct  net_device *dev,
1236 						       sa_family_t sa_family,
1237 						       __be16 port);
1238 	void			(*ndo_del_geneve_port)(struct  net_device *dev,
1239 						       sa_family_t sa_family,
1240 						       __be16 port);
1241 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1242 							struct net_device *dev);
1243 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1244 							void *priv);
1245 
1246 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1247 							struct net_device *dev,
1248 							void *priv);
1249 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1250 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1251 						      int queue_index,
1252 						      u32 maxrate);
1253 	int			(*ndo_get_iflink)(const struct net_device *dev);
1254 	int			(*ndo_change_proto_down)(struct net_device *dev,
1255 							 bool proto_down);
1256 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1257 						       struct sk_buff *skb);
1258 };
1259 
1260 /**
1261  * enum net_device_priv_flags - &struct net_device priv_flags
1262  *
1263  * These are the &struct net_device, they are only set internally
1264  * by drivers and used in the kernel. These flags are invisible to
1265  * userspace, this means that the order of these flags can change
1266  * during any kernel release.
1267  *
1268  * You should have a pretty good reason to be extending these flags.
1269  *
1270  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1271  * @IFF_EBRIDGE: Ethernet bridging device
1272  * @IFF_BONDING: bonding master or slave
1273  * @IFF_ISATAP: ISATAP interface (RFC4214)
1274  * @IFF_WAN_HDLC: WAN HDLC device
1275  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1276  *	release skb->dst
1277  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1278  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1279  * @IFF_MACVLAN_PORT: device used as macvlan port
1280  * @IFF_BRIDGE_PORT: device used as bridge port
1281  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1282  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1283  * @IFF_UNICAST_FLT: Supports unicast filtering
1284  * @IFF_TEAM_PORT: device used as team port
1285  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1286  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1287  *	change when it's running
1288  * @IFF_MACVLAN: Macvlan device
1289  * @IFF_L3MDEV_MASTER: device is an L3 master device
1290  * @IFF_NO_QUEUE: device can run without qdisc attached
1291  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1292  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1293  * @IFF_TEAM: device is a team device
1294  */
1295 enum netdev_priv_flags {
1296 	IFF_802_1Q_VLAN			= 1<<0,
1297 	IFF_EBRIDGE			= 1<<1,
1298 	IFF_BONDING			= 1<<2,
1299 	IFF_ISATAP			= 1<<3,
1300 	IFF_WAN_HDLC			= 1<<4,
1301 	IFF_XMIT_DST_RELEASE		= 1<<5,
1302 	IFF_DONT_BRIDGE			= 1<<6,
1303 	IFF_DISABLE_NETPOLL		= 1<<7,
1304 	IFF_MACVLAN_PORT		= 1<<8,
1305 	IFF_BRIDGE_PORT			= 1<<9,
1306 	IFF_OVS_DATAPATH		= 1<<10,
1307 	IFF_TX_SKB_SHARING		= 1<<11,
1308 	IFF_UNICAST_FLT			= 1<<12,
1309 	IFF_TEAM_PORT			= 1<<13,
1310 	IFF_SUPP_NOFCS			= 1<<14,
1311 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1312 	IFF_MACVLAN			= 1<<16,
1313 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1314 	IFF_IPVLAN_MASTER		= 1<<18,
1315 	IFF_IPVLAN_SLAVE		= 1<<19,
1316 	IFF_L3MDEV_MASTER		= 1<<20,
1317 	IFF_NO_QUEUE			= 1<<21,
1318 	IFF_OPENVSWITCH			= 1<<22,
1319 	IFF_L3MDEV_SLAVE		= 1<<23,
1320 	IFF_TEAM			= 1<<24,
1321 };
1322 
1323 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1324 #define IFF_EBRIDGE			IFF_EBRIDGE
1325 #define IFF_BONDING			IFF_BONDING
1326 #define IFF_ISATAP			IFF_ISATAP
1327 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1328 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1329 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1330 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1331 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1332 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1333 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1334 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1335 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1336 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1337 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1338 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1339 #define IFF_MACVLAN			IFF_MACVLAN
1340 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1341 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1342 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1343 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1344 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1345 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1346 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1347 #define IFF_TEAM			IFF_TEAM
1348 
1349 /**
1350  *	struct net_device - The DEVICE structure.
1351  *		Actually, this whole structure is a big mistake.  It mixes I/O
1352  *		data with strictly "high-level" data, and it has to know about
1353  *		almost every data structure used in the INET module.
1354  *
1355  *	@name:	This is the first field of the "visible" part of this structure
1356  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1357  *	 	of the interface.
1358  *
1359  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1360  *	@ifalias:	SNMP alias
1361  *	@mem_end:	Shared memory end
1362  *	@mem_start:	Shared memory start
1363  *	@base_addr:	Device I/O address
1364  *	@irq:		Device IRQ number
1365  *
1366  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1367  *
1368  *	@state:		Generic network queuing layer state, see netdev_state_t
1369  *	@dev_list:	The global list of network devices
1370  *	@napi_list:	List entry, that is used for polling napi devices
1371  *	@unreg_list:	List entry, that is used, when we are unregistering the
1372  *			device, see the function unregister_netdev
1373  *	@close_list:	List entry, that is used, when we are closing the device
1374  *
1375  *	@adj_list:	Directly linked devices, like slaves for bonding
1376  *	@all_adj_list:	All linked devices, *including* neighbours
1377  *	@features:	Currently active device features
1378  *	@hw_features:	User-changeable features
1379  *
1380  *	@wanted_features:	User-requested features
1381  *	@vlan_features:		Mask of features inheritable by VLAN devices
1382  *
1383  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1384  *				This field indicates what encapsulation
1385  *				offloads the hardware is capable of doing,
1386  *				and drivers will need to set them appropriately.
1387  *
1388  *	@mpls_features:	Mask of features inheritable by MPLS
1389  *
1390  *	@ifindex:	interface index
1391  *	@group:		The group, that the device belongs to
1392  *
1393  *	@stats:		Statistics struct, which was left as a legacy, use
1394  *			rtnl_link_stats64 instead
1395  *
1396  *	@rx_dropped:	Dropped packets by core network,
1397  *			do not use this in drivers
1398  *	@tx_dropped:	Dropped packets by core network,
1399  *			do not use this in drivers
1400  *
1401  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1402  *				instead of ioctl,
1403  *				see <net/iw_handler.h> for details.
1404  *	@wireless_data:	Instance data managed by the core of wireless extensions
1405  *
1406  *	@netdev_ops:	Includes several pointers to callbacks,
1407  *			if one wants to override the ndo_*() functions
1408  *	@ethtool_ops:	Management operations
1409  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1410  *			of Layer 2 headers.
1411  *
1412  *	@flags:		Interface flags (a la BSD)
1413  *	@priv_flags:	Like 'flags' but invisible to userspace,
1414  *			see if.h for the definitions
1415  *	@gflags:	Global flags ( kept as legacy )
1416  *	@padded:	How much padding added by alloc_netdev()
1417  *	@operstate:	RFC2863 operstate
1418  *	@link_mode:	Mapping policy to operstate
1419  *	@if_port:	Selectable AUI, TP, ...
1420  *	@dma:		DMA channel
1421  *	@mtu:		Interface MTU value
1422  *	@type:		Interface hardware type
1423  *	@hard_header_len: Hardware header length, which means that this is the
1424  *			  minimum size of a packet.
1425  *
1426  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1427  *			  cases can this be guaranteed
1428  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1429  *			  cases can this be guaranteed. Some cases also use
1430  *			  LL_MAX_HEADER instead to allocate the skb
1431  *
1432  *	interface address info:
1433  *
1434  * 	@perm_addr:		Permanent hw address
1435  * 	@addr_assign_type:	Hw address assignment type
1436  * 	@addr_len:		Hardware address length
1437  * 	@neigh_priv_len;	Used in neigh_alloc(),
1438  * 				initialized only in atm/clip.c
1439  * 	@dev_id:		Used to differentiate devices that share
1440  * 				the same link layer address
1441  * 	@dev_port:		Used to differentiate devices that share
1442  * 				the same function
1443  *	@addr_list_lock:	XXX: need comments on this one
1444  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1445  *				has been enabled due to the need to listen to
1446  *				additional unicast addresses in a device that
1447  *				does not implement ndo_set_rx_mode()
1448  *	@uc:			unicast mac addresses
1449  *	@mc:			multicast mac addresses
1450  *	@dev_addrs:		list of device hw addresses
1451  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1452  *	@promiscuity:		Number of times, the NIC is told to work in
1453  *				Promiscuous mode, if it becomes 0 the NIC will
1454  *				exit from working in Promiscuous mode
1455  *	@allmulti:		Counter, enables or disables allmulticast mode
1456  *
1457  *	@vlan_info:	VLAN info
1458  *	@dsa_ptr:	dsa specific data
1459  *	@tipc_ptr:	TIPC specific data
1460  *	@atalk_ptr:	AppleTalk link
1461  *	@ip_ptr:	IPv4 specific data
1462  *	@dn_ptr:	DECnet specific data
1463  *	@ip6_ptr:	IPv6 specific data
1464  *	@ax25_ptr:	AX.25 specific data
1465  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1466  *
1467  *	@last_rx:	Time of last Rx
1468  *	@dev_addr:	Hw address (before bcast,
1469  *			because most packets are unicast)
1470  *
1471  *	@_rx:			Array of RX queues
1472  *	@num_rx_queues:		Number of RX queues
1473  *				allocated at register_netdev() time
1474  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1475  *
1476  *	@rx_handler:		handler for received packets
1477  *	@rx_handler_data: 	XXX: need comments on this one
1478  *	@ingress_queue:		XXX: need comments on this one
1479  *	@broadcast:		hw bcast address
1480  *
1481  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1482  *			indexed by RX queue number. Assigned by driver.
1483  *			This must only be set if the ndo_rx_flow_steer
1484  *			operation is defined
1485  *	@index_hlist:		Device index hash chain
1486  *
1487  *	@_tx:			Array of TX queues
1488  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1489  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1490  *	@qdisc:			Root qdisc from userspace point of view
1491  *	@tx_queue_len:		Max frames per queue allowed
1492  *	@tx_global_lock: 	XXX: need comments on this one
1493  *
1494  *	@xps_maps:	XXX: need comments on this one
1495  *
1496  *	@offload_fwd_mark:	Offload device fwding mark
1497  *
1498  *	@trans_start:		Time (in jiffies) of last Tx
1499  *	@watchdog_timeo:	Represents the timeout that is used by
1500  *				the watchdog ( see dev_watchdog() )
1501  *	@watchdog_timer:	List of timers
1502  *
1503  *	@pcpu_refcnt:		Number of references to this device
1504  *	@todo_list:		Delayed register/unregister
1505  *	@link_watch_list:	XXX: need comments on this one
1506  *
1507  *	@reg_state:		Register/unregister state machine
1508  *	@dismantle:		Device is going to be freed
1509  *	@rtnl_link_state:	This enum represents the phases of creating
1510  *				a new link
1511  *
1512  *	@destructor:		Called from unregister,
1513  *				can be used to call free_netdev
1514  *	@npinfo:		XXX: need comments on this one
1515  * 	@nd_net:		Network namespace this network device is inside
1516  *
1517  * 	@ml_priv:	Mid-layer private
1518  * 	@lstats:	Loopback statistics
1519  * 	@tstats:	Tunnel statistics
1520  * 	@dstats:	Dummy statistics
1521  * 	@vstats:	Virtual ethernet statistics
1522  *
1523  *	@garp_port:	GARP
1524  *	@mrp_port:	MRP
1525  *
1526  *	@dev:		Class/net/name entry
1527  *	@sysfs_groups:	Space for optional device, statistics and wireless
1528  *			sysfs groups
1529  *
1530  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1531  *	@rtnl_link_ops:	Rtnl_link_ops
1532  *
1533  *	@gso_max_size:	Maximum size of generic segmentation offload
1534  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1535  *			NIC for GSO
1536  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1537  *			NIC for GSO
1538  *
1539  *	@dcbnl_ops:	Data Center Bridging netlink ops
1540  *	@num_tc:	Number of traffic classes in the net device
1541  *	@tc_to_txq:	XXX: need comments on this one
1542  *	@prio_tc_map	XXX: need comments on this one
1543  *
1544  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1545  *
1546  *	@priomap:	XXX: need comments on this one
1547  *	@phydev:	Physical device may attach itself
1548  *			for hardware timestamping
1549  *
1550  *	@qdisc_tx_busylock:	XXX: need comments on this one
1551  *
1552  *	@proto_down:	protocol port state information can be sent to the
1553  *			switch driver and used to set the phys state of the
1554  *			switch port.
1555  *
1556  *	FIXME: cleanup struct net_device such that network protocol info
1557  *	moves out.
1558  */
1559 
1560 struct net_device {
1561 	char			name[IFNAMSIZ];
1562 	struct hlist_node	name_hlist;
1563 	char 			*ifalias;
1564 	/*
1565 	 *	I/O specific fields
1566 	 *	FIXME: Merge these and struct ifmap into one
1567 	 */
1568 	unsigned long		mem_end;
1569 	unsigned long		mem_start;
1570 	unsigned long		base_addr;
1571 	int			irq;
1572 
1573 	atomic_t		carrier_changes;
1574 
1575 	/*
1576 	 *	Some hardware also needs these fields (state,dev_list,
1577 	 *	napi_list,unreg_list,close_list) but they are not
1578 	 *	part of the usual set specified in Space.c.
1579 	 */
1580 
1581 	unsigned long		state;
1582 
1583 	struct list_head	dev_list;
1584 	struct list_head	napi_list;
1585 	struct list_head	unreg_list;
1586 	struct list_head	close_list;
1587 	struct list_head	ptype_all;
1588 	struct list_head	ptype_specific;
1589 
1590 	struct {
1591 		struct list_head upper;
1592 		struct list_head lower;
1593 	} adj_list;
1594 
1595 	struct {
1596 		struct list_head upper;
1597 		struct list_head lower;
1598 	} all_adj_list;
1599 
1600 	netdev_features_t	features;
1601 	netdev_features_t	hw_features;
1602 	netdev_features_t	wanted_features;
1603 	netdev_features_t	vlan_features;
1604 	netdev_features_t	hw_enc_features;
1605 	netdev_features_t	mpls_features;
1606 
1607 	int			ifindex;
1608 	int			group;
1609 
1610 	struct net_device_stats	stats;
1611 
1612 	atomic_long_t		rx_dropped;
1613 	atomic_long_t		tx_dropped;
1614 
1615 #ifdef CONFIG_WIRELESS_EXT
1616 	const struct iw_handler_def *	wireless_handlers;
1617 	struct iw_public_data *	wireless_data;
1618 #endif
1619 	const struct net_device_ops *netdev_ops;
1620 	const struct ethtool_ops *ethtool_ops;
1621 #ifdef CONFIG_NET_SWITCHDEV
1622 	const struct switchdev_ops *switchdev_ops;
1623 #endif
1624 #ifdef CONFIG_NET_L3_MASTER_DEV
1625 	const struct l3mdev_ops	*l3mdev_ops;
1626 #endif
1627 
1628 	const struct header_ops *header_ops;
1629 
1630 	unsigned int		flags;
1631 	unsigned int		priv_flags;
1632 
1633 	unsigned short		gflags;
1634 	unsigned short		padded;
1635 
1636 	unsigned char		operstate;
1637 	unsigned char		link_mode;
1638 
1639 	unsigned char		if_port;
1640 	unsigned char		dma;
1641 
1642 	unsigned int		mtu;
1643 	unsigned short		type;
1644 	unsigned short		hard_header_len;
1645 
1646 	unsigned short		needed_headroom;
1647 	unsigned short		needed_tailroom;
1648 
1649 	/* Interface address info. */
1650 	unsigned char		perm_addr[MAX_ADDR_LEN];
1651 	unsigned char		addr_assign_type;
1652 	unsigned char		addr_len;
1653 	unsigned short		neigh_priv_len;
1654 	unsigned short          dev_id;
1655 	unsigned short          dev_port;
1656 	spinlock_t		addr_list_lock;
1657 	unsigned char		name_assign_type;
1658 	bool			uc_promisc;
1659 	struct netdev_hw_addr_list	uc;
1660 	struct netdev_hw_addr_list	mc;
1661 	struct netdev_hw_addr_list	dev_addrs;
1662 
1663 #ifdef CONFIG_SYSFS
1664 	struct kset		*queues_kset;
1665 #endif
1666 	unsigned int		promiscuity;
1667 	unsigned int		allmulti;
1668 
1669 
1670 	/* Protocol specific pointers */
1671 
1672 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1673 	struct vlan_info __rcu	*vlan_info;
1674 #endif
1675 #if IS_ENABLED(CONFIG_NET_DSA)
1676 	struct dsa_switch_tree	*dsa_ptr;
1677 #endif
1678 #if IS_ENABLED(CONFIG_TIPC)
1679 	struct tipc_bearer __rcu *tipc_ptr;
1680 #endif
1681 	void 			*atalk_ptr;
1682 	struct in_device __rcu	*ip_ptr;
1683 	struct dn_dev __rcu     *dn_ptr;
1684 	struct inet6_dev __rcu	*ip6_ptr;
1685 	void			*ax25_ptr;
1686 	struct wireless_dev	*ieee80211_ptr;
1687 	struct wpan_dev		*ieee802154_ptr;
1688 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1689 	struct mpls_dev __rcu	*mpls_ptr;
1690 #endif
1691 
1692 /*
1693  * Cache lines mostly used on receive path (including eth_type_trans())
1694  */
1695 	unsigned long		last_rx;
1696 
1697 	/* Interface address info used in eth_type_trans() */
1698 	unsigned char		*dev_addr;
1699 
1700 
1701 #ifdef CONFIG_SYSFS
1702 	struct netdev_rx_queue	*_rx;
1703 
1704 	unsigned int		num_rx_queues;
1705 	unsigned int		real_num_rx_queues;
1706 
1707 #endif
1708 
1709 	unsigned long		gro_flush_timeout;
1710 	rx_handler_func_t __rcu	*rx_handler;
1711 	void __rcu		*rx_handler_data;
1712 
1713 #ifdef CONFIG_NET_CLS_ACT
1714 	struct tcf_proto __rcu  *ingress_cl_list;
1715 #endif
1716 	struct netdev_queue __rcu *ingress_queue;
1717 #ifdef CONFIG_NETFILTER_INGRESS
1718 	struct list_head	nf_hooks_ingress;
1719 #endif
1720 
1721 	unsigned char		broadcast[MAX_ADDR_LEN];
1722 #ifdef CONFIG_RFS_ACCEL
1723 	struct cpu_rmap		*rx_cpu_rmap;
1724 #endif
1725 	struct hlist_node	index_hlist;
1726 
1727 /*
1728  * Cache lines mostly used on transmit path
1729  */
1730 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1731 	unsigned int		num_tx_queues;
1732 	unsigned int		real_num_tx_queues;
1733 	struct Qdisc		*qdisc;
1734 	unsigned long		tx_queue_len;
1735 	spinlock_t		tx_global_lock;
1736 	int			watchdog_timeo;
1737 
1738 #ifdef CONFIG_XPS
1739 	struct xps_dev_maps __rcu *xps_maps;
1740 #endif
1741 #ifdef CONFIG_NET_CLS_ACT
1742 	struct tcf_proto __rcu  *egress_cl_list;
1743 #endif
1744 #ifdef CONFIG_NET_SWITCHDEV
1745 	u32			offload_fwd_mark;
1746 #endif
1747 
1748 	/* These may be needed for future network-power-down code. */
1749 
1750 	/*
1751 	 * trans_start here is expensive for high speed devices on SMP,
1752 	 * please use netdev_queue->trans_start instead.
1753 	 */
1754 	unsigned long		trans_start;
1755 
1756 	struct timer_list	watchdog_timer;
1757 
1758 	int __percpu		*pcpu_refcnt;
1759 	struct list_head	todo_list;
1760 
1761 	struct list_head	link_watch_list;
1762 
1763 	enum { NETREG_UNINITIALIZED=0,
1764 	       NETREG_REGISTERED,	/* completed register_netdevice */
1765 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1766 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1767 	       NETREG_RELEASED,		/* called free_netdev */
1768 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1769 	} reg_state:8;
1770 
1771 	bool dismantle;
1772 
1773 	enum {
1774 		RTNL_LINK_INITIALIZED,
1775 		RTNL_LINK_INITIALIZING,
1776 	} rtnl_link_state:16;
1777 
1778 	void (*destructor)(struct net_device *dev);
1779 
1780 #ifdef CONFIG_NETPOLL
1781 	struct netpoll_info __rcu	*npinfo;
1782 #endif
1783 
1784 	possible_net_t			nd_net;
1785 
1786 	/* mid-layer private */
1787 	union {
1788 		void					*ml_priv;
1789 		struct pcpu_lstats __percpu		*lstats;
1790 		struct pcpu_sw_netstats __percpu	*tstats;
1791 		struct pcpu_dstats __percpu		*dstats;
1792 		struct pcpu_vstats __percpu		*vstats;
1793 	};
1794 
1795 	struct garp_port __rcu	*garp_port;
1796 	struct mrp_port __rcu	*mrp_port;
1797 
1798 	struct device	dev;
1799 	const struct attribute_group *sysfs_groups[4];
1800 	const struct attribute_group *sysfs_rx_queue_group;
1801 
1802 	const struct rtnl_link_ops *rtnl_link_ops;
1803 
1804 	/* for setting kernel sock attribute on TCP connection setup */
1805 #define GSO_MAX_SIZE		65536
1806 	unsigned int		gso_max_size;
1807 #define GSO_MAX_SEGS		65535
1808 	u16			gso_max_segs;
1809 	u16			gso_min_segs;
1810 #ifdef CONFIG_DCB
1811 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1812 #endif
1813 	u8 num_tc;
1814 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1815 	u8 prio_tc_map[TC_BITMASK + 1];
1816 
1817 #if IS_ENABLED(CONFIG_FCOE)
1818 	unsigned int		fcoe_ddp_xid;
1819 #endif
1820 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1821 	struct netprio_map __rcu *priomap;
1822 #endif
1823 	struct phy_device *phydev;
1824 	struct lock_class_key *qdisc_tx_busylock;
1825 	bool proto_down;
1826 };
1827 #define to_net_dev(d) container_of(d, struct net_device, dev)
1828 
1829 #define	NETDEV_ALIGN		32
1830 
1831 static inline
1832 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1833 {
1834 	return dev->prio_tc_map[prio & TC_BITMASK];
1835 }
1836 
1837 static inline
1838 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1839 {
1840 	if (tc >= dev->num_tc)
1841 		return -EINVAL;
1842 
1843 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1844 	return 0;
1845 }
1846 
1847 static inline
1848 void netdev_reset_tc(struct net_device *dev)
1849 {
1850 	dev->num_tc = 0;
1851 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1852 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1853 }
1854 
1855 static inline
1856 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1857 {
1858 	if (tc >= dev->num_tc)
1859 		return -EINVAL;
1860 
1861 	dev->tc_to_txq[tc].count = count;
1862 	dev->tc_to_txq[tc].offset = offset;
1863 	return 0;
1864 }
1865 
1866 static inline
1867 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1868 {
1869 	if (num_tc > TC_MAX_QUEUE)
1870 		return -EINVAL;
1871 
1872 	dev->num_tc = num_tc;
1873 	return 0;
1874 }
1875 
1876 static inline
1877 int netdev_get_num_tc(struct net_device *dev)
1878 {
1879 	return dev->num_tc;
1880 }
1881 
1882 static inline
1883 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1884 					 unsigned int index)
1885 {
1886 	return &dev->_tx[index];
1887 }
1888 
1889 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1890 						    const struct sk_buff *skb)
1891 {
1892 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1893 }
1894 
1895 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1896 					    void (*f)(struct net_device *,
1897 						      struct netdev_queue *,
1898 						      void *),
1899 					    void *arg)
1900 {
1901 	unsigned int i;
1902 
1903 	for (i = 0; i < dev->num_tx_queues; i++)
1904 		f(dev, &dev->_tx[i], arg);
1905 }
1906 
1907 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1908 				    struct sk_buff *skb,
1909 				    void *accel_priv);
1910 
1911 /*
1912  * Net namespace inlines
1913  */
1914 static inline
1915 struct net *dev_net(const struct net_device *dev)
1916 {
1917 	return read_pnet(&dev->nd_net);
1918 }
1919 
1920 static inline
1921 void dev_net_set(struct net_device *dev, struct net *net)
1922 {
1923 	write_pnet(&dev->nd_net, net);
1924 }
1925 
1926 static inline bool netdev_uses_dsa(struct net_device *dev)
1927 {
1928 #if IS_ENABLED(CONFIG_NET_DSA)
1929 	if (dev->dsa_ptr != NULL)
1930 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1931 #endif
1932 	return false;
1933 }
1934 
1935 /**
1936  *	netdev_priv - access network device private data
1937  *	@dev: network device
1938  *
1939  * Get network device private data
1940  */
1941 static inline void *netdev_priv(const struct net_device *dev)
1942 {
1943 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1944 }
1945 
1946 /* Set the sysfs physical device reference for the network logical device
1947  * if set prior to registration will cause a symlink during initialization.
1948  */
1949 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1950 
1951 /* Set the sysfs device type for the network logical device to allow
1952  * fine-grained identification of different network device types. For
1953  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1954  */
1955 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1956 
1957 /* Default NAPI poll() weight
1958  * Device drivers are strongly advised to not use bigger value
1959  */
1960 #define NAPI_POLL_WEIGHT 64
1961 
1962 /**
1963  *	netif_napi_add - initialize a napi context
1964  *	@dev:  network device
1965  *	@napi: napi context
1966  *	@poll: polling function
1967  *	@weight: default weight
1968  *
1969  * netif_napi_add() must be used to initialize a napi context prior to calling
1970  * *any* of the other napi related functions.
1971  */
1972 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1973 		    int (*poll)(struct napi_struct *, int), int weight);
1974 
1975 /**
1976  *	netif_tx_napi_add - initialize a napi context
1977  *	@dev:  network device
1978  *	@napi: napi context
1979  *	@poll: polling function
1980  *	@weight: default weight
1981  *
1982  * This variant of netif_napi_add() should be used from drivers using NAPI
1983  * to exclusively poll a TX queue.
1984  * This will avoid we add it into napi_hash[], thus polluting this hash table.
1985  */
1986 static inline void netif_tx_napi_add(struct net_device *dev,
1987 				     struct napi_struct *napi,
1988 				     int (*poll)(struct napi_struct *, int),
1989 				     int weight)
1990 {
1991 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
1992 	netif_napi_add(dev, napi, poll, weight);
1993 }
1994 
1995 /**
1996  *  netif_napi_del - remove a napi context
1997  *  @napi: napi context
1998  *
1999  *  netif_napi_del() removes a napi context from the network device napi list
2000  */
2001 void netif_napi_del(struct napi_struct *napi);
2002 
2003 struct napi_gro_cb {
2004 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2005 	void *frag0;
2006 
2007 	/* Length of frag0. */
2008 	unsigned int frag0_len;
2009 
2010 	/* This indicates where we are processing relative to skb->data. */
2011 	int data_offset;
2012 
2013 	/* This is non-zero if the packet cannot be merged with the new skb. */
2014 	u16	flush;
2015 
2016 	/* Save the IP ID here and check when we get to the transport layer */
2017 	u16	flush_id;
2018 
2019 	/* Number of segments aggregated. */
2020 	u16	count;
2021 
2022 	/* Start offset for remote checksum offload */
2023 	u16	gro_remcsum_start;
2024 
2025 	/* jiffies when first packet was created/queued */
2026 	unsigned long age;
2027 
2028 	/* Used in ipv6_gro_receive() and foo-over-udp */
2029 	u16	proto;
2030 
2031 	/* This is non-zero if the packet may be of the same flow. */
2032 	u8	same_flow:1;
2033 
2034 	/* Used in udp_gro_receive */
2035 	u8	udp_mark:1;
2036 
2037 	/* GRO checksum is valid */
2038 	u8	csum_valid:1;
2039 
2040 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2041 	u8	csum_cnt:3;
2042 
2043 	/* Free the skb? */
2044 	u8	free:2;
2045 #define NAPI_GRO_FREE		  1
2046 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2047 
2048 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2049 	u8	is_ipv6:1;
2050 
2051 	/* 7 bit hole */
2052 
2053 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2054 	__wsum	csum;
2055 
2056 	/* used in skb_gro_receive() slow path */
2057 	struct sk_buff *last;
2058 };
2059 
2060 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2061 
2062 struct packet_type {
2063 	__be16			type;	/* This is really htons(ether_type). */
2064 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2065 	int			(*func) (struct sk_buff *,
2066 					 struct net_device *,
2067 					 struct packet_type *,
2068 					 struct net_device *);
2069 	bool			(*id_match)(struct packet_type *ptype,
2070 					    struct sock *sk);
2071 	void			*af_packet_priv;
2072 	struct list_head	list;
2073 };
2074 
2075 struct offload_callbacks {
2076 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2077 						netdev_features_t features);
2078 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2079 						 struct sk_buff *skb);
2080 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2081 };
2082 
2083 struct packet_offload {
2084 	__be16			 type;	/* This is really htons(ether_type). */
2085 	u16			 priority;
2086 	struct offload_callbacks callbacks;
2087 	struct list_head	 list;
2088 };
2089 
2090 struct udp_offload;
2091 
2092 struct udp_offload_callbacks {
2093 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2094 						 struct sk_buff *skb,
2095 						 struct udp_offload *uoff);
2096 	int			(*gro_complete)(struct sk_buff *skb,
2097 						int nhoff,
2098 						struct udp_offload *uoff);
2099 };
2100 
2101 struct udp_offload {
2102 	__be16			 port;
2103 	u8			 ipproto;
2104 	struct udp_offload_callbacks callbacks;
2105 };
2106 
2107 /* often modified stats are per cpu, other are shared (netdev->stats) */
2108 struct pcpu_sw_netstats {
2109 	u64     rx_packets;
2110 	u64     rx_bytes;
2111 	u64     tx_packets;
2112 	u64     tx_bytes;
2113 	struct u64_stats_sync   syncp;
2114 };
2115 
2116 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2117 ({									\
2118 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2119 	if (pcpu_stats)	{						\
2120 		int __cpu;						\
2121 		for_each_possible_cpu(__cpu) {				\
2122 			typeof(type) *stat;				\
2123 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2124 			u64_stats_init(&stat->syncp);			\
2125 		}							\
2126 	}								\
2127 	pcpu_stats;							\
2128 })
2129 
2130 #define netdev_alloc_pcpu_stats(type)					\
2131 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2132 
2133 enum netdev_lag_tx_type {
2134 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2135 	NETDEV_LAG_TX_TYPE_RANDOM,
2136 	NETDEV_LAG_TX_TYPE_BROADCAST,
2137 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2138 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2139 	NETDEV_LAG_TX_TYPE_HASH,
2140 };
2141 
2142 struct netdev_lag_upper_info {
2143 	enum netdev_lag_tx_type tx_type;
2144 };
2145 
2146 struct netdev_lag_lower_state_info {
2147 	u8 link_up : 1,
2148 	   tx_enabled : 1;
2149 };
2150 
2151 #include <linux/notifier.h>
2152 
2153 /* netdevice notifier chain. Please remember to update the rtnetlink
2154  * notification exclusion list in rtnetlink_event() when adding new
2155  * types.
2156  */
2157 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2158 #define NETDEV_DOWN	0x0002
2159 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2160 				   detected a hardware crash and restarted
2161 				   - we can use this eg to kick tcp sessions
2162 				   once done */
2163 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2164 #define NETDEV_REGISTER 0x0005
2165 #define NETDEV_UNREGISTER	0x0006
2166 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2167 #define NETDEV_CHANGEADDR	0x0008
2168 #define NETDEV_GOING_DOWN	0x0009
2169 #define NETDEV_CHANGENAME	0x000A
2170 #define NETDEV_FEAT_CHANGE	0x000B
2171 #define NETDEV_BONDING_FAILOVER 0x000C
2172 #define NETDEV_PRE_UP		0x000D
2173 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2174 #define NETDEV_POST_TYPE_CHANGE	0x000F
2175 #define NETDEV_POST_INIT	0x0010
2176 #define NETDEV_UNREGISTER_FINAL 0x0011
2177 #define NETDEV_RELEASE		0x0012
2178 #define NETDEV_NOTIFY_PEERS	0x0013
2179 #define NETDEV_JOIN		0x0014
2180 #define NETDEV_CHANGEUPPER	0x0015
2181 #define NETDEV_RESEND_IGMP	0x0016
2182 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2183 #define NETDEV_CHANGEINFODATA	0x0018
2184 #define NETDEV_BONDING_INFO	0x0019
2185 #define NETDEV_PRECHANGEUPPER	0x001A
2186 #define NETDEV_CHANGELOWERSTATE	0x001B
2187 
2188 int register_netdevice_notifier(struct notifier_block *nb);
2189 int unregister_netdevice_notifier(struct notifier_block *nb);
2190 
2191 struct netdev_notifier_info {
2192 	struct net_device *dev;
2193 };
2194 
2195 struct netdev_notifier_change_info {
2196 	struct netdev_notifier_info info; /* must be first */
2197 	unsigned int flags_changed;
2198 };
2199 
2200 struct netdev_notifier_changeupper_info {
2201 	struct netdev_notifier_info info; /* must be first */
2202 	struct net_device *upper_dev; /* new upper dev */
2203 	bool master; /* is upper dev master */
2204 	bool linking; /* is the nofication for link or unlink */
2205 	void *upper_info; /* upper dev info */
2206 };
2207 
2208 struct netdev_notifier_changelowerstate_info {
2209 	struct netdev_notifier_info info; /* must be first */
2210 	void *lower_state_info; /* is lower dev state */
2211 };
2212 
2213 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2214 					     struct net_device *dev)
2215 {
2216 	info->dev = dev;
2217 }
2218 
2219 static inline struct net_device *
2220 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2221 {
2222 	return info->dev;
2223 }
2224 
2225 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2226 
2227 
2228 extern rwlock_t				dev_base_lock;		/* Device list lock */
2229 
2230 #define for_each_netdev(net, d)		\
2231 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2232 #define for_each_netdev_reverse(net, d)	\
2233 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2234 #define for_each_netdev_rcu(net, d)		\
2235 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2236 #define for_each_netdev_safe(net, d, n)	\
2237 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2238 #define for_each_netdev_continue(net, d)		\
2239 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2240 #define for_each_netdev_continue_rcu(net, d)		\
2241 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2242 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2243 		for_each_netdev_rcu(&init_net, slave)	\
2244 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2245 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2246 
2247 static inline struct net_device *next_net_device(struct net_device *dev)
2248 {
2249 	struct list_head *lh;
2250 	struct net *net;
2251 
2252 	net = dev_net(dev);
2253 	lh = dev->dev_list.next;
2254 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2255 }
2256 
2257 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2258 {
2259 	struct list_head *lh;
2260 	struct net *net;
2261 
2262 	net = dev_net(dev);
2263 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2264 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2265 }
2266 
2267 static inline struct net_device *first_net_device(struct net *net)
2268 {
2269 	return list_empty(&net->dev_base_head) ? NULL :
2270 		net_device_entry(net->dev_base_head.next);
2271 }
2272 
2273 static inline struct net_device *first_net_device_rcu(struct net *net)
2274 {
2275 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2276 
2277 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2278 }
2279 
2280 int netdev_boot_setup_check(struct net_device *dev);
2281 unsigned long netdev_boot_base(const char *prefix, int unit);
2282 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2283 				       const char *hwaddr);
2284 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2285 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2286 void dev_add_pack(struct packet_type *pt);
2287 void dev_remove_pack(struct packet_type *pt);
2288 void __dev_remove_pack(struct packet_type *pt);
2289 void dev_add_offload(struct packet_offload *po);
2290 void dev_remove_offload(struct packet_offload *po);
2291 
2292 int dev_get_iflink(const struct net_device *dev);
2293 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2294 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2295 				      unsigned short mask);
2296 struct net_device *dev_get_by_name(struct net *net, const char *name);
2297 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2298 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2299 int dev_alloc_name(struct net_device *dev, const char *name);
2300 int dev_open(struct net_device *dev);
2301 int dev_close(struct net_device *dev);
2302 int dev_close_many(struct list_head *head, bool unlink);
2303 void dev_disable_lro(struct net_device *dev);
2304 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2305 int dev_queue_xmit(struct sk_buff *skb);
2306 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2307 int register_netdevice(struct net_device *dev);
2308 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2309 void unregister_netdevice_many(struct list_head *head);
2310 static inline void unregister_netdevice(struct net_device *dev)
2311 {
2312 	unregister_netdevice_queue(dev, NULL);
2313 }
2314 
2315 int netdev_refcnt_read(const struct net_device *dev);
2316 void free_netdev(struct net_device *dev);
2317 void netdev_freemem(struct net_device *dev);
2318 void synchronize_net(void);
2319 int init_dummy_netdev(struct net_device *dev);
2320 
2321 DECLARE_PER_CPU(int, xmit_recursion);
2322 static inline int dev_recursion_level(void)
2323 {
2324 	return this_cpu_read(xmit_recursion);
2325 }
2326 
2327 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2328 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2329 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2330 int netdev_get_name(struct net *net, char *name, int ifindex);
2331 int dev_restart(struct net_device *dev);
2332 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2333 
2334 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2335 {
2336 	return NAPI_GRO_CB(skb)->data_offset;
2337 }
2338 
2339 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2340 {
2341 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2342 }
2343 
2344 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2345 {
2346 	NAPI_GRO_CB(skb)->data_offset += len;
2347 }
2348 
2349 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2350 					unsigned int offset)
2351 {
2352 	return NAPI_GRO_CB(skb)->frag0 + offset;
2353 }
2354 
2355 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2356 {
2357 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2358 }
2359 
2360 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2361 					unsigned int offset)
2362 {
2363 	if (!pskb_may_pull(skb, hlen))
2364 		return NULL;
2365 
2366 	NAPI_GRO_CB(skb)->frag0 = NULL;
2367 	NAPI_GRO_CB(skb)->frag0_len = 0;
2368 	return skb->data + offset;
2369 }
2370 
2371 static inline void *skb_gro_network_header(struct sk_buff *skb)
2372 {
2373 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2374 	       skb_network_offset(skb);
2375 }
2376 
2377 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2378 					const void *start, unsigned int len)
2379 {
2380 	if (NAPI_GRO_CB(skb)->csum_valid)
2381 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2382 						  csum_partial(start, len, 0));
2383 }
2384 
2385 /* GRO checksum functions. These are logical equivalents of the normal
2386  * checksum functions (in skbuff.h) except that they operate on the GRO
2387  * offsets and fields in sk_buff.
2388  */
2389 
2390 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2391 
2392 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2393 {
2394 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2395 }
2396 
2397 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2398 						      bool zero_okay,
2399 						      __sum16 check)
2400 {
2401 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2402 		skb_checksum_start_offset(skb) <
2403 		 skb_gro_offset(skb)) &&
2404 		!skb_at_gro_remcsum_start(skb) &&
2405 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2406 		(!zero_okay || check));
2407 }
2408 
2409 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2410 							   __wsum psum)
2411 {
2412 	if (NAPI_GRO_CB(skb)->csum_valid &&
2413 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2414 		return 0;
2415 
2416 	NAPI_GRO_CB(skb)->csum = psum;
2417 
2418 	return __skb_gro_checksum_complete(skb);
2419 }
2420 
2421 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2422 {
2423 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2424 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2425 		NAPI_GRO_CB(skb)->csum_cnt--;
2426 	} else {
2427 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2428 		 * verified a new top level checksum or an encapsulated one
2429 		 * during GRO. This saves work if we fallback to normal path.
2430 		 */
2431 		__skb_incr_checksum_unnecessary(skb);
2432 	}
2433 }
2434 
2435 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2436 				    compute_pseudo)			\
2437 ({									\
2438 	__sum16 __ret = 0;						\
2439 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2440 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2441 				compute_pseudo(skb, proto));		\
2442 	if (__ret)							\
2443 		__skb_mark_checksum_bad(skb);				\
2444 	else								\
2445 		skb_gro_incr_csum_unnecessary(skb);			\
2446 	__ret;								\
2447 })
2448 
2449 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2450 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2451 
2452 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2453 					     compute_pseudo)		\
2454 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2455 
2456 #define skb_gro_checksum_simple_validate(skb)				\
2457 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2458 
2459 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2460 {
2461 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2462 		!NAPI_GRO_CB(skb)->csum_valid);
2463 }
2464 
2465 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2466 					      __sum16 check, __wsum pseudo)
2467 {
2468 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2469 	NAPI_GRO_CB(skb)->csum_valid = 1;
2470 }
2471 
2472 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2473 do {									\
2474 	if (__skb_gro_checksum_convert_check(skb))			\
2475 		__skb_gro_checksum_convert(skb, check,			\
2476 					   compute_pseudo(skb, proto));	\
2477 } while (0)
2478 
2479 struct gro_remcsum {
2480 	int offset;
2481 	__wsum delta;
2482 };
2483 
2484 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2485 {
2486 	grc->offset = 0;
2487 	grc->delta = 0;
2488 }
2489 
2490 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2491 					    unsigned int off, size_t hdrlen,
2492 					    int start, int offset,
2493 					    struct gro_remcsum *grc,
2494 					    bool nopartial)
2495 {
2496 	__wsum delta;
2497 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2498 
2499 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2500 
2501 	if (!nopartial) {
2502 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2503 		return ptr;
2504 	}
2505 
2506 	ptr = skb_gro_header_fast(skb, off);
2507 	if (skb_gro_header_hard(skb, off + plen)) {
2508 		ptr = skb_gro_header_slow(skb, off + plen, off);
2509 		if (!ptr)
2510 			return NULL;
2511 	}
2512 
2513 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2514 			       start, offset);
2515 
2516 	/* Adjust skb->csum since we changed the packet */
2517 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2518 
2519 	grc->offset = off + hdrlen + offset;
2520 	grc->delta = delta;
2521 
2522 	return ptr;
2523 }
2524 
2525 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2526 					   struct gro_remcsum *grc)
2527 {
2528 	void *ptr;
2529 	size_t plen = grc->offset + sizeof(u16);
2530 
2531 	if (!grc->delta)
2532 		return;
2533 
2534 	ptr = skb_gro_header_fast(skb, grc->offset);
2535 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2536 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2537 		if (!ptr)
2538 			return;
2539 	}
2540 
2541 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2542 }
2543 
2544 struct skb_csum_offl_spec {
2545 	__u16		ipv4_okay:1,
2546 			ipv6_okay:1,
2547 			encap_okay:1,
2548 			ip_options_okay:1,
2549 			ext_hdrs_okay:1,
2550 			tcp_okay:1,
2551 			udp_okay:1,
2552 			sctp_okay:1,
2553 			vlan_okay:1,
2554 			no_encapped_ipv6:1,
2555 			no_not_encapped:1;
2556 };
2557 
2558 bool __skb_csum_offload_chk(struct sk_buff *skb,
2559 			    const struct skb_csum_offl_spec *spec,
2560 			    bool *csum_encapped,
2561 			    bool csum_help);
2562 
2563 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2564 					const struct skb_csum_offl_spec *spec,
2565 					bool *csum_encapped,
2566 					bool csum_help)
2567 {
2568 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2569 		return false;
2570 
2571 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2572 }
2573 
2574 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2575 					     const struct skb_csum_offl_spec *spec)
2576 {
2577 	bool csum_encapped;
2578 
2579 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2580 }
2581 
2582 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2583 {
2584 	static const struct skb_csum_offl_spec csum_offl_spec = {
2585 		.ipv4_okay = 1,
2586 		.ip_options_okay = 1,
2587 		.ipv6_okay = 1,
2588 		.vlan_okay = 1,
2589 		.tcp_okay = 1,
2590 		.udp_okay = 1,
2591 	};
2592 
2593 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2594 }
2595 
2596 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2597 {
2598 	static const struct skb_csum_offl_spec csum_offl_spec = {
2599 		.ipv4_okay = 1,
2600 		.ip_options_okay = 1,
2601 		.tcp_okay = 1,
2602 		.udp_okay = 1,
2603 		.vlan_okay = 1,
2604 	};
2605 
2606 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2607 }
2608 
2609 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2610 				  unsigned short type,
2611 				  const void *daddr, const void *saddr,
2612 				  unsigned int len)
2613 {
2614 	if (!dev->header_ops || !dev->header_ops->create)
2615 		return 0;
2616 
2617 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2618 }
2619 
2620 static inline int dev_parse_header(const struct sk_buff *skb,
2621 				   unsigned char *haddr)
2622 {
2623 	const struct net_device *dev = skb->dev;
2624 
2625 	if (!dev->header_ops || !dev->header_ops->parse)
2626 		return 0;
2627 	return dev->header_ops->parse(skb, haddr);
2628 }
2629 
2630 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2631 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2632 static inline int unregister_gifconf(unsigned int family)
2633 {
2634 	return register_gifconf(family, NULL);
2635 }
2636 
2637 #ifdef CONFIG_NET_FLOW_LIMIT
2638 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2639 struct sd_flow_limit {
2640 	u64			count;
2641 	unsigned int		num_buckets;
2642 	unsigned int		history_head;
2643 	u16			history[FLOW_LIMIT_HISTORY];
2644 	u8			buckets[];
2645 };
2646 
2647 extern int netdev_flow_limit_table_len;
2648 #endif /* CONFIG_NET_FLOW_LIMIT */
2649 
2650 /*
2651  * Incoming packets are placed on per-cpu queues
2652  */
2653 struct softnet_data {
2654 	struct list_head	poll_list;
2655 	struct sk_buff_head	process_queue;
2656 
2657 	/* stats */
2658 	unsigned int		processed;
2659 	unsigned int		time_squeeze;
2660 	unsigned int		cpu_collision;
2661 	unsigned int		received_rps;
2662 #ifdef CONFIG_RPS
2663 	struct softnet_data	*rps_ipi_list;
2664 #endif
2665 #ifdef CONFIG_NET_FLOW_LIMIT
2666 	struct sd_flow_limit __rcu *flow_limit;
2667 #endif
2668 	struct Qdisc		*output_queue;
2669 	struct Qdisc		**output_queue_tailp;
2670 	struct sk_buff		*completion_queue;
2671 
2672 #ifdef CONFIG_RPS
2673 	/* Elements below can be accessed between CPUs for RPS */
2674 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2675 	struct softnet_data	*rps_ipi_next;
2676 	unsigned int		cpu;
2677 	unsigned int		input_queue_head;
2678 	unsigned int		input_queue_tail;
2679 #endif
2680 	unsigned int		dropped;
2681 	struct sk_buff_head	input_pkt_queue;
2682 	struct napi_struct	backlog;
2683 
2684 };
2685 
2686 static inline void input_queue_head_incr(struct softnet_data *sd)
2687 {
2688 #ifdef CONFIG_RPS
2689 	sd->input_queue_head++;
2690 #endif
2691 }
2692 
2693 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2694 					      unsigned int *qtail)
2695 {
2696 #ifdef CONFIG_RPS
2697 	*qtail = ++sd->input_queue_tail;
2698 #endif
2699 }
2700 
2701 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2702 
2703 void __netif_schedule(struct Qdisc *q);
2704 void netif_schedule_queue(struct netdev_queue *txq);
2705 
2706 static inline void netif_tx_schedule_all(struct net_device *dev)
2707 {
2708 	unsigned int i;
2709 
2710 	for (i = 0; i < dev->num_tx_queues; i++)
2711 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2712 }
2713 
2714 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2715 {
2716 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2717 }
2718 
2719 /**
2720  *	netif_start_queue - allow transmit
2721  *	@dev: network device
2722  *
2723  *	Allow upper layers to call the device hard_start_xmit routine.
2724  */
2725 static inline void netif_start_queue(struct net_device *dev)
2726 {
2727 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2728 }
2729 
2730 static inline void netif_tx_start_all_queues(struct net_device *dev)
2731 {
2732 	unsigned int i;
2733 
2734 	for (i = 0; i < dev->num_tx_queues; i++) {
2735 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2736 		netif_tx_start_queue(txq);
2737 	}
2738 }
2739 
2740 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2741 
2742 /**
2743  *	netif_wake_queue - restart transmit
2744  *	@dev: network device
2745  *
2746  *	Allow upper layers to call the device hard_start_xmit routine.
2747  *	Used for flow control when transmit resources are available.
2748  */
2749 static inline void netif_wake_queue(struct net_device *dev)
2750 {
2751 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2752 }
2753 
2754 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2755 {
2756 	unsigned int i;
2757 
2758 	for (i = 0; i < dev->num_tx_queues; i++) {
2759 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2760 		netif_tx_wake_queue(txq);
2761 	}
2762 }
2763 
2764 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2765 {
2766 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2767 }
2768 
2769 /**
2770  *	netif_stop_queue - stop transmitted packets
2771  *	@dev: network device
2772  *
2773  *	Stop upper layers calling the device hard_start_xmit routine.
2774  *	Used for flow control when transmit resources are unavailable.
2775  */
2776 static inline void netif_stop_queue(struct net_device *dev)
2777 {
2778 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2779 }
2780 
2781 void netif_tx_stop_all_queues(struct net_device *dev);
2782 
2783 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2784 {
2785 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2786 }
2787 
2788 /**
2789  *	netif_queue_stopped - test if transmit queue is flowblocked
2790  *	@dev: network device
2791  *
2792  *	Test if transmit queue on device is currently unable to send.
2793  */
2794 static inline bool netif_queue_stopped(const struct net_device *dev)
2795 {
2796 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2797 }
2798 
2799 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2800 {
2801 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2802 }
2803 
2804 static inline bool
2805 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2806 {
2807 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2808 }
2809 
2810 static inline bool
2811 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2812 {
2813 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2814 }
2815 
2816 /**
2817  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2818  *	@dev_queue: pointer to transmit queue
2819  *
2820  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2821  * to give appropriate hint to the cpu.
2822  */
2823 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2824 {
2825 #ifdef CONFIG_BQL
2826 	prefetchw(&dev_queue->dql.num_queued);
2827 #endif
2828 }
2829 
2830 /**
2831  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2832  *	@dev_queue: pointer to transmit queue
2833  *
2834  * BQL enabled drivers might use this helper in their TX completion path,
2835  * to give appropriate hint to the cpu.
2836  */
2837 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2838 {
2839 #ifdef CONFIG_BQL
2840 	prefetchw(&dev_queue->dql.limit);
2841 #endif
2842 }
2843 
2844 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2845 					unsigned int bytes)
2846 {
2847 #ifdef CONFIG_BQL
2848 	dql_queued(&dev_queue->dql, bytes);
2849 
2850 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2851 		return;
2852 
2853 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2854 
2855 	/*
2856 	 * The XOFF flag must be set before checking the dql_avail below,
2857 	 * because in netdev_tx_completed_queue we update the dql_completed
2858 	 * before checking the XOFF flag.
2859 	 */
2860 	smp_mb();
2861 
2862 	/* check again in case another CPU has just made room avail */
2863 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2864 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2865 #endif
2866 }
2867 
2868 /**
2869  * 	netdev_sent_queue - report the number of bytes queued to hardware
2870  * 	@dev: network device
2871  * 	@bytes: number of bytes queued to the hardware device queue
2872  *
2873  * 	Report the number of bytes queued for sending/completion to the network
2874  * 	device hardware queue. @bytes should be a good approximation and should
2875  * 	exactly match netdev_completed_queue() @bytes
2876  */
2877 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2878 {
2879 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2880 }
2881 
2882 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2883 					     unsigned int pkts, unsigned int bytes)
2884 {
2885 #ifdef CONFIG_BQL
2886 	if (unlikely(!bytes))
2887 		return;
2888 
2889 	dql_completed(&dev_queue->dql, bytes);
2890 
2891 	/*
2892 	 * Without the memory barrier there is a small possiblity that
2893 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2894 	 * be stopped forever
2895 	 */
2896 	smp_mb();
2897 
2898 	if (dql_avail(&dev_queue->dql) < 0)
2899 		return;
2900 
2901 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2902 		netif_schedule_queue(dev_queue);
2903 #endif
2904 }
2905 
2906 /**
2907  * 	netdev_completed_queue - report bytes and packets completed by device
2908  * 	@dev: network device
2909  * 	@pkts: actual number of packets sent over the medium
2910  * 	@bytes: actual number of bytes sent over the medium
2911  *
2912  * 	Report the number of bytes and packets transmitted by the network device
2913  * 	hardware queue over the physical medium, @bytes must exactly match the
2914  * 	@bytes amount passed to netdev_sent_queue()
2915  */
2916 static inline void netdev_completed_queue(struct net_device *dev,
2917 					  unsigned int pkts, unsigned int bytes)
2918 {
2919 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2920 }
2921 
2922 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2923 {
2924 #ifdef CONFIG_BQL
2925 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2926 	dql_reset(&q->dql);
2927 #endif
2928 }
2929 
2930 /**
2931  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2932  * 	@dev_queue: network device
2933  *
2934  * 	Reset the bytes and packet count of a network device and clear the
2935  * 	software flow control OFF bit for this network device
2936  */
2937 static inline void netdev_reset_queue(struct net_device *dev_queue)
2938 {
2939 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2940 }
2941 
2942 /**
2943  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2944  * 	@dev: network device
2945  * 	@queue_index: given tx queue index
2946  *
2947  * 	Returns 0 if given tx queue index >= number of device tx queues,
2948  * 	otherwise returns the originally passed tx queue index.
2949  */
2950 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2951 {
2952 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2953 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2954 				     dev->name, queue_index,
2955 				     dev->real_num_tx_queues);
2956 		return 0;
2957 	}
2958 
2959 	return queue_index;
2960 }
2961 
2962 /**
2963  *	netif_running - test if up
2964  *	@dev: network device
2965  *
2966  *	Test if the device has been brought up.
2967  */
2968 static inline bool netif_running(const struct net_device *dev)
2969 {
2970 	return test_bit(__LINK_STATE_START, &dev->state);
2971 }
2972 
2973 /*
2974  * Routines to manage the subqueues on a device.  We only need start
2975  * stop, and a check if it's stopped.  All other device management is
2976  * done at the overall netdevice level.
2977  * Also test the device if we're multiqueue.
2978  */
2979 
2980 /**
2981  *	netif_start_subqueue - allow sending packets on subqueue
2982  *	@dev: network device
2983  *	@queue_index: sub queue index
2984  *
2985  * Start individual transmit queue of a device with multiple transmit queues.
2986  */
2987 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2988 {
2989 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2990 
2991 	netif_tx_start_queue(txq);
2992 }
2993 
2994 /**
2995  *	netif_stop_subqueue - stop sending packets on subqueue
2996  *	@dev: network device
2997  *	@queue_index: sub queue index
2998  *
2999  * Stop individual transmit queue of a device with multiple transmit queues.
3000  */
3001 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3002 {
3003 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3004 	netif_tx_stop_queue(txq);
3005 }
3006 
3007 /**
3008  *	netif_subqueue_stopped - test status of subqueue
3009  *	@dev: network device
3010  *	@queue_index: sub queue index
3011  *
3012  * Check individual transmit queue of a device with multiple transmit queues.
3013  */
3014 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3015 					    u16 queue_index)
3016 {
3017 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3018 
3019 	return netif_tx_queue_stopped(txq);
3020 }
3021 
3022 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3023 					  struct sk_buff *skb)
3024 {
3025 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3026 }
3027 
3028 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3029 
3030 #ifdef CONFIG_XPS
3031 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3032 			u16 index);
3033 #else
3034 static inline int netif_set_xps_queue(struct net_device *dev,
3035 				      const struct cpumask *mask,
3036 				      u16 index)
3037 {
3038 	return 0;
3039 }
3040 #endif
3041 
3042 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3043 		  unsigned int num_tx_queues);
3044 
3045 /*
3046  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3047  * as a distribution range limit for the returned value.
3048  */
3049 static inline u16 skb_tx_hash(const struct net_device *dev,
3050 			      struct sk_buff *skb)
3051 {
3052 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3053 }
3054 
3055 /**
3056  *	netif_is_multiqueue - test if device has multiple transmit queues
3057  *	@dev: network device
3058  *
3059  * Check if device has multiple transmit queues
3060  */
3061 static inline bool netif_is_multiqueue(const struct net_device *dev)
3062 {
3063 	return dev->num_tx_queues > 1;
3064 }
3065 
3066 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3067 
3068 #ifdef CONFIG_SYSFS
3069 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3070 #else
3071 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3072 						unsigned int rxq)
3073 {
3074 	return 0;
3075 }
3076 #endif
3077 
3078 #ifdef CONFIG_SYSFS
3079 static inline unsigned int get_netdev_rx_queue_index(
3080 		struct netdev_rx_queue *queue)
3081 {
3082 	struct net_device *dev = queue->dev;
3083 	int index = queue - dev->_rx;
3084 
3085 	BUG_ON(index >= dev->num_rx_queues);
3086 	return index;
3087 }
3088 #endif
3089 
3090 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3091 int netif_get_num_default_rss_queues(void);
3092 
3093 enum skb_free_reason {
3094 	SKB_REASON_CONSUMED,
3095 	SKB_REASON_DROPPED,
3096 };
3097 
3098 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3099 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3100 
3101 /*
3102  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3103  * interrupt context or with hardware interrupts being disabled.
3104  * (in_irq() || irqs_disabled())
3105  *
3106  * We provide four helpers that can be used in following contexts :
3107  *
3108  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3109  *  replacing kfree_skb(skb)
3110  *
3111  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3112  *  Typically used in place of consume_skb(skb) in TX completion path
3113  *
3114  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3115  *  replacing kfree_skb(skb)
3116  *
3117  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3118  *  and consumed a packet. Used in place of consume_skb(skb)
3119  */
3120 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3121 {
3122 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3123 }
3124 
3125 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3126 {
3127 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3128 }
3129 
3130 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3131 {
3132 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3133 }
3134 
3135 static inline void dev_consume_skb_any(struct sk_buff *skb)
3136 {
3137 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3138 }
3139 
3140 int netif_rx(struct sk_buff *skb);
3141 int netif_rx_ni(struct sk_buff *skb);
3142 int netif_receive_skb(struct sk_buff *skb);
3143 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3144 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3145 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3146 gro_result_t napi_gro_frags(struct napi_struct *napi);
3147 struct packet_offload *gro_find_receive_by_type(__be16 type);
3148 struct packet_offload *gro_find_complete_by_type(__be16 type);
3149 
3150 static inline void napi_free_frags(struct napi_struct *napi)
3151 {
3152 	kfree_skb(napi->skb);
3153 	napi->skb = NULL;
3154 }
3155 
3156 int netdev_rx_handler_register(struct net_device *dev,
3157 			       rx_handler_func_t *rx_handler,
3158 			       void *rx_handler_data);
3159 void netdev_rx_handler_unregister(struct net_device *dev);
3160 
3161 bool dev_valid_name(const char *name);
3162 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3163 int dev_ethtool(struct net *net, struct ifreq *);
3164 unsigned int dev_get_flags(const struct net_device *);
3165 int __dev_change_flags(struct net_device *, unsigned int flags);
3166 int dev_change_flags(struct net_device *, unsigned int);
3167 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3168 			unsigned int gchanges);
3169 int dev_change_name(struct net_device *, const char *);
3170 int dev_set_alias(struct net_device *, const char *, size_t);
3171 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3172 int dev_set_mtu(struct net_device *, int);
3173 void dev_set_group(struct net_device *, int);
3174 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3175 int dev_change_carrier(struct net_device *, bool new_carrier);
3176 int dev_get_phys_port_id(struct net_device *dev,
3177 			 struct netdev_phys_item_id *ppid);
3178 int dev_get_phys_port_name(struct net_device *dev,
3179 			   char *name, size_t len);
3180 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3181 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3182 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3183 				    struct netdev_queue *txq, int *ret);
3184 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3185 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3186 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3187 
3188 extern int		netdev_budget;
3189 
3190 /* Called by rtnetlink.c:rtnl_unlock() */
3191 void netdev_run_todo(void);
3192 
3193 /**
3194  *	dev_put - release reference to device
3195  *	@dev: network device
3196  *
3197  * Release reference to device to allow it to be freed.
3198  */
3199 static inline void dev_put(struct net_device *dev)
3200 {
3201 	this_cpu_dec(*dev->pcpu_refcnt);
3202 }
3203 
3204 /**
3205  *	dev_hold - get reference to device
3206  *	@dev: network device
3207  *
3208  * Hold reference to device to keep it from being freed.
3209  */
3210 static inline void dev_hold(struct net_device *dev)
3211 {
3212 	this_cpu_inc(*dev->pcpu_refcnt);
3213 }
3214 
3215 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3216  * and _off may be called from IRQ context, but it is caller
3217  * who is responsible for serialization of these calls.
3218  *
3219  * The name carrier is inappropriate, these functions should really be
3220  * called netif_lowerlayer_*() because they represent the state of any
3221  * kind of lower layer not just hardware media.
3222  */
3223 
3224 void linkwatch_init_dev(struct net_device *dev);
3225 void linkwatch_fire_event(struct net_device *dev);
3226 void linkwatch_forget_dev(struct net_device *dev);
3227 
3228 /**
3229  *	netif_carrier_ok - test if carrier present
3230  *	@dev: network device
3231  *
3232  * Check if carrier is present on device
3233  */
3234 static inline bool netif_carrier_ok(const struct net_device *dev)
3235 {
3236 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3237 }
3238 
3239 unsigned long dev_trans_start(struct net_device *dev);
3240 
3241 void __netdev_watchdog_up(struct net_device *dev);
3242 
3243 void netif_carrier_on(struct net_device *dev);
3244 
3245 void netif_carrier_off(struct net_device *dev);
3246 
3247 /**
3248  *	netif_dormant_on - mark device as dormant.
3249  *	@dev: network device
3250  *
3251  * Mark device as dormant (as per RFC2863).
3252  *
3253  * The dormant state indicates that the relevant interface is not
3254  * actually in a condition to pass packets (i.e., it is not 'up') but is
3255  * in a "pending" state, waiting for some external event.  For "on-
3256  * demand" interfaces, this new state identifies the situation where the
3257  * interface is waiting for events to place it in the up state.
3258  *
3259  */
3260 static inline void netif_dormant_on(struct net_device *dev)
3261 {
3262 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3263 		linkwatch_fire_event(dev);
3264 }
3265 
3266 /**
3267  *	netif_dormant_off - set device as not dormant.
3268  *	@dev: network device
3269  *
3270  * Device is not in dormant state.
3271  */
3272 static inline void netif_dormant_off(struct net_device *dev)
3273 {
3274 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3275 		linkwatch_fire_event(dev);
3276 }
3277 
3278 /**
3279  *	netif_dormant - test if carrier present
3280  *	@dev: network device
3281  *
3282  * Check if carrier is present on device
3283  */
3284 static inline bool netif_dormant(const struct net_device *dev)
3285 {
3286 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3287 }
3288 
3289 
3290 /**
3291  *	netif_oper_up - test if device is operational
3292  *	@dev: network device
3293  *
3294  * Check if carrier is operational
3295  */
3296 static inline bool netif_oper_up(const struct net_device *dev)
3297 {
3298 	return (dev->operstate == IF_OPER_UP ||
3299 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3300 }
3301 
3302 /**
3303  *	netif_device_present - is device available or removed
3304  *	@dev: network device
3305  *
3306  * Check if device has not been removed from system.
3307  */
3308 static inline bool netif_device_present(struct net_device *dev)
3309 {
3310 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3311 }
3312 
3313 void netif_device_detach(struct net_device *dev);
3314 
3315 void netif_device_attach(struct net_device *dev);
3316 
3317 /*
3318  * Network interface message level settings
3319  */
3320 
3321 enum {
3322 	NETIF_MSG_DRV		= 0x0001,
3323 	NETIF_MSG_PROBE		= 0x0002,
3324 	NETIF_MSG_LINK		= 0x0004,
3325 	NETIF_MSG_TIMER		= 0x0008,
3326 	NETIF_MSG_IFDOWN	= 0x0010,
3327 	NETIF_MSG_IFUP		= 0x0020,
3328 	NETIF_MSG_RX_ERR	= 0x0040,
3329 	NETIF_MSG_TX_ERR	= 0x0080,
3330 	NETIF_MSG_TX_QUEUED	= 0x0100,
3331 	NETIF_MSG_INTR		= 0x0200,
3332 	NETIF_MSG_TX_DONE	= 0x0400,
3333 	NETIF_MSG_RX_STATUS	= 0x0800,
3334 	NETIF_MSG_PKTDATA	= 0x1000,
3335 	NETIF_MSG_HW		= 0x2000,
3336 	NETIF_MSG_WOL		= 0x4000,
3337 };
3338 
3339 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3340 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3341 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3342 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3343 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3344 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3345 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3346 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3347 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3348 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3349 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3350 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3351 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3352 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3353 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3354 
3355 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3356 {
3357 	/* use default */
3358 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3359 		return default_msg_enable_bits;
3360 	if (debug_value == 0)	/* no output */
3361 		return 0;
3362 	/* set low N bits */
3363 	return (1 << debug_value) - 1;
3364 }
3365 
3366 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3367 {
3368 	spin_lock(&txq->_xmit_lock);
3369 	txq->xmit_lock_owner = cpu;
3370 }
3371 
3372 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3373 {
3374 	spin_lock_bh(&txq->_xmit_lock);
3375 	txq->xmit_lock_owner = smp_processor_id();
3376 }
3377 
3378 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3379 {
3380 	bool ok = spin_trylock(&txq->_xmit_lock);
3381 	if (likely(ok))
3382 		txq->xmit_lock_owner = smp_processor_id();
3383 	return ok;
3384 }
3385 
3386 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3387 {
3388 	txq->xmit_lock_owner = -1;
3389 	spin_unlock(&txq->_xmit_lock);
3390 }
3391 
3392 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3393 {
3394 	txq->xmit_lock_owner = -1;
3395 	spin_unlock_bh(&txq->_xmit_lock);
3396 }
3397 
3398 static inline void txq_trans_update(struct netdev_queue *txq)
3399 {
3400 	if (txq->xmit_lock_owner != -1)
3401 		txq->trans_start = jiffies;
3402 }
3403 
3404 /**
3405  *	netif_tx_lock - grab network device transmit lock
3406  *	@dev: network device
3407  *
3408  * Get network device transmit lock
3409  */
3410 static inline void netif_tx_lock(struct net_device *dev)
3411 {
3412 	unsigned int i;
3413 	int cpu;
3414 
3415 	spin_lock(&dev->tx_global_lock);
3416 	cpu = smp_processor_id();
3417 	for (i = 0; i < dev->num_tx_queues; i++) {
3418 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3419 
3420 		/* We are the only thread of execution doing a
3421 		 * freeze, but we have to grab the _xmit_lock in
3422 		 * order to synchronize with threads which are in
3423 		 * the ->hard_start_xmit() handler and already
3424 		 * checked the frozen bit.
3425 		 */
3426 		__netif_tx_lock(txq, cpu);
3427 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3428 		__netif_tx_unlock(txq);
3429 	}
3430 }
3431 
3432 static inline void netif_tx_lock_bh(struct net_device *dev)
3433 {
3434 	local_bh_disable();
3435 	netif_tx_lock(dev);
3436 }
3437 
3438 static inline void netif_tx_unlock(struct net_device *dev)
3439 {
3440 	unsigned int i;
3441 
3442 	for (i = 0; i < dev->num_tx_queues; i++) {
3443 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3444 
3445 		/* No need to grab the _xmit_lock here.  If the
3446 		 * queue is not stopped for another reason, we
3447 		 * force a schedule.
3448 		 */
3449 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3450 		netif_schedule_queue(txq);
3451 	}
3452 	spin_unlock(&dev->tx_global_lock);
3453 }
3454 
3455 static inline void netif_tx_unlock_bh(struct net_device *dev)
3456 {
3457 	netif_tx_unlock(dev);
3458 	local_bh_enable();
3459 }
3460 
3461 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3462 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3463 		__netif_tx_lock(txq, cpu);		\
3464 	}						\
3465 }
3466 
3467 #define HARD_TX_TRYLOCK(dev, txq)			\
3468 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3469 		__netif_tx_trylock(txq) :		\
3470 		true )
3471 
3472 #define HARD_TX_UNLOCK(dev, txq) {			\
3473 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3474 		__netif_tx_unlock(txq);			\
3475 	}						\
3476 }
3477 
3478 static inline void netif_tx_disable(struct net_device *dev)
3479 {
3480 	unsigned int i;
3481 	int cpu;
3482 
3483 	local_bh_disable();
3484 	cpu = smp_processor_id();
3485 	for (i = 0; i < dev->num_tx_queues; i++) {
3486 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3487 
3488 		__netif_tx_lock(txq, cpu);
3489 		netif_tx_stop_queue(txq);
3490 		__netif_tx_unlock(txq);
3491 	}
3492 	local_bh_enable();
3493 }
3494 
3495 static inline void netif_addr_lock(struct net_device *dev)
3496 {
3497 	spin_lock(&dev->addr_list_lock);
3498 }
3499 
3500 static inline void netif_addr_lock_nested(struct net_device *dev)
3501 {
3502 	int subclass = SINGLE_DEPTH_NESTING;
3503 
3504 	if (dev->netdev_ops->ndo_get_lock_subclass)
3505 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3506 
3507 	spin_lock_nested(&dev->addr_list_lock, subclass);
3508 }
3509 
3510 static inline void netif_addr_lock_bh(struct net_device *dev)
3511 {
3512 	spin_lock_bh(&dev->addr_list_lock);
3513 }
3514 
3515 static inline void netif_addr_unlock(struct net_device *dev)
3516 {
3517 	spin_unlock(&dev->addr_list_lock);
3518 }
3519 
3520 static inline void netif_addr_unlock_bh(struct net_device *dev)
3521 {
3522 	spin_unlock_bh(&dev->addr_list_lock);
3523 }
3524 
3525 /*
3526  * dev_addrs walker. Should be used only for read access. Call with
3527  * rcu_read_lock held.
3528  */
3529 #define for_each_dev_addr(dev, ha) \
3530 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3531 
3532 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3533 
3534 void ether_setup(struct net_device *dev);
3535 
3536 /* Support for loadable net-drivers */
3537 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3538 				    unsigned char name_assign_type,
3539 				    void (*setup)(struct net_device *),
3540 				    unsigned int txqs, unsigned int rxqs);
3541 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3542 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3543 
3544 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3545 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3546 			 count)
3547 
3548 int register_netdev(struct net_device *dev);
3549 void unregister_netdev(struct net_device *dev);
3550 
3551 /* General hardware address lists handling functions */
3552 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3553 		   struct netdev_hw_addr_list *from_list, int addr_len);
3554 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3555 		      struct netdev_hw_addr_list *from_list, int addr_len);
3556 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3557 		       struct net_device *dev,
3558 		       int (*sync)(struct net_device *, const unsigned char *),
3559 		       int (*unsync)(struct net_device *,
3560 				     const unsigned char *));
3561 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3562 			  struct net_device *dev,
3563 			  int (*unsync)(struct net_device *,
3564 					const unsigned char *));
3565 void __hw_addr_init(struct netdev_hw_addr_list *list);
3566 
3567 /* Functions used for device addresses handling */
3568 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3569 		 unsigned char addr_type);
3570 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3571 		 unsigned char addr_type);
3572 void dev_addr_flush(struct net_device *dev);
3573 int dev_addr_init(struct net_device *dev);
3574 
3575 /* Functions used for unicast addresses handling */
3576 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3577 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3578 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3579 int dev_uc_sync(struct net_device *to, struct net_device *from);
3580 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3581 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3582 void dev_uc_flush(struct net_device *dev);
3583 void dev_uc_init(struct net_device *dev);
3584 
3585 /**
3586  *  __dev_uc_sync - Synchonize device's unicast list
3587  *  @dev:  device to sync
3588  *  @sync: function to call if address should be added
3589  *  @unsync: function to call if address should be removed
3590  *
3591  *  Add newly added addresses to the interface, and release
3592  *  addresses that have been deleted.
3593  **/
3594 static inline int __dev_uc_sync(struct net_device *dev,
3595 				int (*sync)(struct net_device *,
3596 					    const unsigned char *),
3597 				int (*unsync)(struct net_device *,
3598 					      const unsigned char *))
3599 {
3600 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3601 }
3602 
3603 /**
3604  *  __dev_uc_unsync - Remove synchronized addresses from device
3605  *  @dev:  device to sync
3606  *  @unsync: function to call if address should be removed
3607  *
3608  *  Remove all addresses that were added to the device by dev_uc_sync().
3609  **/
3610 static inline void __dev_uc_unsync(struct net_device *dev,
3611 				   int (*unsync)(struct net_device *,
3612 						 const unsigned char *))
3613 {
3614 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3615 }
3616 
3617 /* Functions used for multicast addresses handling */
3618 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3619 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3620 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3621 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3622 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3623 int dev_mc_sync(struct net_device *to, struct net_device *from);
3624 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3625 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3626 void dev_mc_flush(struct net_device *dev);
3627 void dev_mc_init(struct net_device *dev);
3628 
3629 /**
3630  *  __dev_mc_sync - Synchonize device's multicast list
3631  *  @dev:  device to sync
3632  *  @sync: function to call if address should be added
3633  *  @unsync: function to call if address should be removed
3634  *
3635  *  Add newly added addresses to the interface, and release
3636  *  addresses that have been deleted.
3637  **/
3638 static inline int __dev_mc_sync(struct net_device *dev,
3639 				int (*sync)(struct net_device *,
3640 					    const unsigned char *),
3641 				int (*unsync)(struct net_device *,
3642 					      const unsigned char *))
3643 {
3644 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3645 }
3646 
3647 /**
3648  *  __dev_mc_unsync - Remove synchronized addresses from device
3649  *  @dev:  device to sync
3650  *  @unsync: function to call if address should be removed
3651  *
3652  *  Remove all addresses that were added to the device by dev_mc_sync().
3653  **/
3654 static inline void __dev_mc_unsync(struct net_device *dev,
3655 				   int (*unsync)(struct net_device *,
3656 						 const unsigned char *))
3657 {
3658 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3659 }
3660 
3661 /* Functions used for secondary unicast and multicast support */
3662 void dev_set_rx_mode(struct net_device *dev);
3663 void __dev_set_rx_mode(struct net_device *dev);
3664 int dev_set_promiscuity(struct net_device *dev, int inc);
3665 int dev_set_allmulti(struct net_device *dev, int inc);
3666 void netdev_state_change(struct net_device *dev);
3667 void netdev_notify_peers(struct net_device *dev);
3668 void netdev_features_change(struct net_device *dev);
3669 /* Load a device via the kmod */
3670 void dev_load(struct net *net, const char *name);
3671 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3672 					struct rtnl_link_stats64 *storage);
3673 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3674 			     const struct net_device_stats *netdev_stats);
3675 
3676 extern int		netdev_max_backlog;
3677 extern int		netdev_tstamp_prequeue;
3678 extern int		weight_p;
3679 extern int		bpf_jit_enable;
3680 
3681 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3682 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3683 						     struct list_head **iter);
3684 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3685 						     struct list_head **iter);
3686 
3687 /* iterate through upper list, must be called under RCU read lock */
3688 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3689 	for (iter = &(dev)->adj_list.upper, \
3690 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3691 	     updev; \
3692 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3693 
3694 /* iterate through upper list, must be called under RCU read lock */
3695 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3696 	for (iter = &(dev)->all_adj_list.upper, \
3697 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3698 	     updev; \
3699 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3700 
3701 void *netdev_lower_get_next_private(struct net_device *dev,
3702 				    struct list_head **iter);
3703 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3704 					struct list_head **iter);
3705 
3706 #define netdev_for_each_lower_private(dev, priv, iter) \
3707 	for (iter = (dev)->adj_list.lower.next, \
3708 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3709 	     priv; \
3710 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3711 
3712 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3713 	for (iter = &(dev)->adj_list.lower, \
3714 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3715 	     priv; \
3716 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3717 
3718 void *netdev_lower_get_next(struct net_device *dev,
3719 				struct list_head **iter);
3720 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3721 	for (iter = &(dev)->adj_list.lower, \
3722 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3723 	     ldev; \
3724 	     ldev = netdev_lower_get_next(dev, &(iter)))
3725 
3726 void *netdev_adjacent_get_private(struct list_head *adj_list);
3727 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3728 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3729 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3730 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3731 int netdev_master_upper_dev_link(struct net_device *dev,
3732 				 struct net_device *upper_dev,
3733 				 void *upper_priv, void *upper_info);
3734 void netdev_upper_dev_unlink(struct net_device *dev,
3735 			     struct net_device *upper_dev);
3736 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3737 void *netdev_lower_dev_get_private(struct net_device *dev,
3738 				   struct net_device *lower_dev);
3739 void netdev_lower_state_changed(struct net_device *lower_dev,
3740 				void *lower_state_info);
3741 
3742 /* RSS keys are 40 or 52 bytes long */
3743 #define NETDEV_RSS_KEY_LEN 52
3744 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3745 void netdev_rss_key_fill(void *buffer, size_t len);
3746 
3747 int dev_get_nest_level(struct net_device *dev,
3748 		       bool (*type_check)(const struct net_device *dev));
3749 int skb_checksum_help(struct sk_buff *skb);
3750 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3751 				  netdev_features_t features, bool tx_path);
3752 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3753 				    netdev_features_t features);
3754 
3755 struct netdev_bonding_info {
3756 	ifslave	slave;
3757 	ifbond	master;
3758 };
3759 
3760 struct netdev_notifier_bonding_info {
3761 	struct netdev_notifier_info info; /* must be first */
3762 	struct netdev_bonding_info  bonding_info;
3763 };
3764 
3765 void netdev_bonding_info_change(struct net_device *dev,
3766 				struct netdev_bonding_info *bonding_info);
3767 
3768 static inline
3769 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3770 {
3771 	return __skb_gso_segment(skb, features, true);
3772 }
3773 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3774 
3775 static inline bool can_checksum_protocol(netdev_features_t features,
3776 					 __be16 protocol)
3777 {
3778 	if (protocol == htons(ETH_P_FCOE))
3779 		return !!(features & NETIF_F_FCOE_CRC);
3780 
3781 	/* Assume this is an IP checksum (not SCTP CRC) */
3782 
3783 	if (features & NETIF_F_HW_CSUM) {
3784 		/* Can checksum everything */
3785 		return true;
3786 	}
3787 
3788 	switch (protocol) {
3789 	case htons(ETH_P_IP):
3790 		return !!(features & NETIF_F_IP_CSUM);
3791 	case htons(ETH_P_IPV6):
3792 		return !!(features & NETIF_F_IPV6_CSUM);
3793 	default:
3794 		return false;
3795 	}
3796 }
3797 
3798 /* Map an ethertype into IP protocol if possible */
3799 static inline int eproto_to_ipproto(int eproto)
3800 {
3801 	switch (eproto) {
3802 	case htons(ETH_P_IP):
3803 		return IPPROTO_IP;
3804 	case htons(ETH_P_IPV6):
3805 		return IPPROTO_IPV6;
3806 	default:
3807 		return -1;
3808 	}
3809 }
3810 
3811 #ifdef CONFIG_BUG
3812 void netdev_rx_csum_fault(struct net_device *dev);
3813 #else
3814 static inline void netdev_rx_csum_fault(struct net_device *dev)
3815 {
3816 }
3817 #endif
3818 /* rx skb timestamps */
3819 void net_enable_timestamp(void);
3820 void net_disable_timestamp(void);
3821 
3822 #ifdef CONFIG_PROC_FS
3823 int __init dev_proc_init(void);
3824 #else
3825 #define dev_proc_init() 0
3826 #endif
3827 
3828 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3829 					      struct sk_buff *skb, struct net_device *dev,
3830 					      bool more)
3831 {
3832 	skb->xmit_more = more ? 1 : 0;
3833 	return ops->ndo_start_xmit(skb, dev);
3834 }
3835 
3836 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3837 					    struct netdev_queue *txq, bool more)
3838 {
3839 	const struct net_device_ops *ops = dev->netdev_ops;
3840 	int rc;
3841 
3842 	rc = __netdev_start_xmit(ops, skb, dev, more);
3843 	if (rc == NETDEV_TX_OK)
3844 		txq_trans_update(txq);
3845 
3846 	return rc;
3847 }
3848 
3849 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3850 				const void *ns);
3851 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3852 				 const void *ns);
3853 
3854 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3855 {
3856 	return netdev_class_create_file_ns(class_attr, NULL);
3857 }
3858 
3859 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3860 {
3861 	netdev_class_remove_file_ns(class_attr, NULL);
3862 }
3863 
3864 extern struct kobj_ns_type_operations net_ns_type_operations;
3865 
3866 const char *netdev_drivername(const struct net_device *dev);
3867 
3868 void linkwatch_run_queue(void);
3869 
3870 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3871 							  netdev_features_t f2)
3872 {
3873 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3874 		if (f1 & NETIF_F_HW_CSUM)
3875 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3876 		else
3877 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3878 	}
3879 
3880 	return f1 & f2;
3881 }
3882 
3883 static inline netdev_features_t netdev_get_wanted_features(
3884 	struct net_device *dev)
3885 {
3886 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3887 }
3888 netdev_features_t netdev_increment_features(netdev_features_t all,
3889 	netdev_features_t one, netdev_features_t mask);
3890 
3891 /* Allow TSO being used on stacked device :
3892  * Performing the GSO segmentation before last device
3893  * is a performance improvement.
3894  */
3895 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3896 							netdev_features_t mask)
3897 {
3898 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3899 }
3900 
3901 int __netdev_update_features(struct net_device *dev);
3902 void netdev_update_features(struct net_device *dev);
3903 void netdev_change_features(struct net_device *dev);
3904 
3905 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3906 					struct net_device *dev);
3907 
3908 netdev_features_t passthru_features_check(struct sk_buff *skb,
3909 					  struct net_device *dev,
3910 					  netdev_features_t features);
3911 netdev_features_t netif_skb_features(struct sk_buff *skb);
3912 
3913 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3914 {
3915 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3916 
3917 	/* check flags correspondence */
3918 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3919 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3920 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3921 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3922 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3923 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3924 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3925 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3926 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3927 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3928 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3929 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3930 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3931 
3932 	return (features & feature) == feature;
3933 }
3934 
3935 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3936 {
3937 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3938 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3939 }
3940 
3941 static inline bool netif_needs_gso(struct sk_buff *skb,
3942 				   netdev_features_t features)
3943 {
3944 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3945 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3946 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3947 }
3948 
3949 static inline void netif_set_gso_max_size(struct net_device *dev,
3950 					  unsigned int size)
3951 {
3952 	dev->gso_max_size = size;
3953 }
3954 
3955 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3956 					int pulled_hlen, u16 mac_offset,
3957 					int mac_len)
3958 {
3959 	skb->protocol = protocol;
3960 	skb->encapsulation = 1;
3961 	skb_push(skb, pulled_hlen);
3962 	skb_reset_transport_header(skb);
3963 	skb->mac_header = mac_offset;
3964 	skb->network_header = skb->mac_header + mac_len;
3965 	skb->mac_len = mac_len;
3966 }
3967 
3968 static inline bool netif_is_macvlan(const struct net_device *dev)
3969 {
3970 	return dev->priv_flags & IFF_MACVLAN;
3971 }
3972 
3973 static inline bool netif_is_macvlan_port(const struct net_device *dev)
3974 {
3975 	return dev->priv_flags & IFF_MACVLAN_PORT;
3976 }
3977 
3978 static inline bool netif_is_ipvlan(const struct net_device *dev)
3979 {
3980 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3981 }
3982 
3983 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
3984 {
3985 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3986 }
3987 
3988 static inline bool netif_is_bond_master(const struct net_device *dev)
3989 {
3990 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3991 }
3992 
3993 static inline bool netif_is_bond_slave(const struct net_device *dev)
3994 {
3995 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3996 }
3997 
3998 static inline bool netif_supports_nofcs(struct net_device *dev)
3999 {
4000 	return dev->priv_flags & IFF_SUPP_NOFCS;
4001 }
4002 
4003 static inline bool netif_is_l3_master(const struct net_device *dev)
4004 {
4005 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4006 }
4007 
4008 static inline bool netif_is_l3_slave(const struct net_device *dev)
4009 {
4010 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4011 }
4012 
4013 static inline bool netif_is_bridge_master(const struct net_device *dev)
4014 {
4015 	return dev->priv_flags & IFF_EBRIDGE;
4016 }
4017 
4018 static inline bool netif_is_bridge_port(const struct net_device *dev)
4019 {
4020 	return dev->priv_flags & IFF_BRIDGE_PORT;
4021 }
4022 
4023 static inline bool netif_is_ovs_master(const struct net_device *dev)
4024 {
4025 	return dev->priv_flags & IFF_OPENVSWITCH;
4026 }
4027 
4028 static inline bool netif_is_team_master(const struct net_device *dev)
4029 {
4030 	return dev->priv_flags & IFF_TEAM;
4031 }
4032 
4033 static inline bool netif_is_team_port(const struct net_device *dev)
4034 {
4035 	return dev->priv_flags & IFF_TEAM_PORT;
4036 }
4037 
4038 static inline bool netif_is_lag_master(const struct net_device *dev)
4039 {
4040 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4041 }
4042 
4043 static inline bool netif_is_lag_port(const struct net_device *dev)
4044 {
4045 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4046 }
4047 
4048 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4049 static inline void netif_keep_dst(struct net_device *dev)
4050 {
4051 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4052 }
4053 
4054 extern struct pernet_operations __net_initdata loopback_net_ops;
4055 
4056 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4057 
4058 /* netdev_printk helpers, similar to dev_printk */
4059 
4060 static inline const char *netdev_name(const struct net_device *dev)
4061 {
4062 	if (!dev->name[0] || strchr(dev->name, '%'))
4063 		return "(unnamed net_device)";
4064 	return dev->name;
4065 }
4066 
4067 static inline const char *netdev_reg_state(const struct net_device *dev)
4068 {
4069 	switch (dev->reg_state) {
4070 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4071 	case NETREG_REGISTERED: return "";
4072 	case NETREG_UNREGISTERING: return " (unregistering)";
4073 	case NETREG_UNREGISTERED: return " (unregistered)";
4074 	case NETREG_RELEASED: return " (released)";
4075 	case NETREG_DUMMY: return " (dummy)";
4076 	}
4077 
4078 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4079 	return " (unknown)";
4080 }
4081 
4082 __printf(3, 4)
4083 void netdev_printk(const char *level, const struct net_device *dev,
4084 		   const char *format, ...);
4085 __printf(2, 3)
4086 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4087 __printf(2, 3)
4088 void netdev_alert(const struct net_device *dev, const char *format, ...);
4089 __printf(2, 3)
4090 void netdev_crit(const struct net_device *dev, const char *format, ...);
4091 __printf(2, 3)
4092 void netdev_err(const struct net_device *dev, const char *format, ...);
4093 __printf(2, 3)
4094 void netdev_warn(const struct net_device *dev, const char *format, ...);
4095 __printf(2, 3)
4096 void netdev_notice(const struct net_device *dev, const char *format, ...);
4097 __printf(2, 3)
4098 void netdev_info(const struct net_device *dev, const char *format, ...);
4099 
4100 #define MODULE_ALIAS_NETDEV(device) \
4101 	MODULE_ALIAS("netdev-" device)
4102 
4103 #if defined(CONFIG_DYNAMIC_DEBUG)
4104 #define netdev_dbg(__dev, format, args...)			\
4105 do {								\
4106 	dynamic_netdev_dbg(__dev, format, ##args);		\
4107 } while (0)
4108 #elif defined(DEBUG)
4109 #define netdev_dbg(__dev, format, args...)			\
4110 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4111 #else
4112 #define netdev_dbg(__dev, format, args...)			\
4113 ({								\
4114 	if (0)							\
4115 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4116 })
4117 #endif
4118 
4119 #if defined(VERBOSE_DEBUG)
4120 #define netdev_vdbg	netdev_dbg
4121 #else
4122 
4123 #define netdev_vdbg(dev, format, args...)			\
4124 ({								\
4125 	if (0)							\
4126 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4127 	0;							\
4128 })
4129 #endif
4130 
4131 /*
4132  * netdev_WARN() acts like dev_printk(), but with the key difference
4133  * of using a WARN/WARN_ON to get the message out, including the
4134  * file/line information and a backtrace.
4135  */
4136 #define netdev_WARN(dev, format, args...)			\
4137 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4138 	     netdev_reg_state(dev), ##args)
4139 
4140 /* netif printk helpers, similar to netdev_printk */
4141 
4142 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4143 do {					  			\
4144 	if (netif_msg_##type(priv))				\
4145 		netdev_printk(level, (dev), fmt, ##args);	\
4146 } while (0)
4147 
4148 #define netif_level(level, priv, type, dev, fmt, args...)	\
4149 do {								\
4150 	if (netif_msg_##type(priv))				\
4151 		netdev_##level(dev, fmt, ##args);		\
4152 } while (0)
4153 
4154 #define netif_emerg(priv, type, dev, fmt, args...)		\
4155 	netif_level(emerg, priv, type, dev, fmt, ##args)
4156 #define netif_alert(priv, type, dev, fmt, args...)		\
4157 	netif_level(alert, priv, type, dev, fmt, ##args)
4158 #define netif_crit(priv, type, dev, fmt, args...)		\
4159 	netif_level(crit, priv, type, dev, fmt, ##args)
4160 #define netif_err(priv, type, dev, fmt, args...)		\
4161 	netif_level(err, priv, type, dev, fmt, ##args)
4162 #define netif_warn(priv, type, dev, fmt, args...)		\
4163 	netif_level(warn, priv, type, dev, fmt, ##args)
4164 #define netif_notice(priv, type, dev, fmt, args...)		\
4165 	netif_level(notice, priv, type, dev, fmt, ##args)
4166 #define netif_info(priv, type, dev, fmt, args...)		\
4167 	netif_level(info, priv, type, dev, fmt, ##args)
4168 
4169 #if defined(CONFIG_DYNAMIC_DEBUG)
4170 #define netif_dbg(priv, type, netdev, format, args...)		\
4171 do {								\
4172 	if (netif_msg_##type(priv))				\
4173 		dynamic_netdev_dbg(netdev, format, ##args);	\
4174 } while (0)
4175 #elif defined(DEBUG)
4176 #define netif_dbg(priv, type, dev, format, args...)		\
4177 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4178 #else
4179 #define netif_dbg(priv, type, dev, format, args...)			\
4180 ({									\
4181 	if (0)								\
4182 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4183 	0;								\
4184 })
4185 #endif
4186 
4187 #if defined(VERBOSE_DEBUG)
4188 #define netif_vdbg	netif_dbg
4189 #else
4190 #define netif_vdbg(priv, type, dev, format, args...)		\
4191 ({								\
4192 	if (0)							\
4193 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4194 	0;							\
4195 })
4196 #endif
4197 
4198 /*
4199  *	The list of packet types we will receive (as opposed to discard)
4200  *	and the routines to invoke.
4201  *
4202  *	Why 16. Because with 16 the only overlap we get on a hash of the
4203  *	low nibble of the protocol value is RARP/SNAP/X.25.
4204  *
4205  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4206  *             sure which should go first, but I bet it won't make much
4207  *             difference if we are running VLANs.  The good news is that
4208  *             this protocol won't be in the list unless compiled in, so
4209  *             the average user (w/out VLANs) will not be adversely affected.
4210  *             --BLG
4211  *
4212  *		0800	IP
4213  *		8100    802.1Q VLAN
4214  *		0001	802.3
4215  *		0002	AX.25
4216  *		0004	802.2
4217  *		8035	RARP
4218  *		0005	SNAP
4219  *		0805	X.25
4220  *		0806	ARP
4221  *		8137	IPX
4222  *		0009	Localtalk
4223  *		86DD	IPv6
4224  */
4225 #define PTYPE_HASH_SIZE	(16)
4226 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4227 
4228 #endif	/* _LINUX_NETDEVICE_H */
4229