1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 #include <uapi/linux/if_bonding.h> 54 #include <uapi/linux/pkt_cls.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 /* 802.11 specific */ 60 struct wireless_dev; 61 /* 802.15.4 specific */ 62 struct wpan_dev; 63 struct mpls_dev; 64 65 void netdev_set_default_ethtool_ops(struct net_device *dev, 66 const struct ethtool_ops *ops); 67 68 /* Backlog congestion levels */ 69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 70 #define NET_RX_DROP 1 /* packet dropped */ 71 72 /* 73 * Transmit return codes: transmit return codes originate from three different 74 * namespaces: 75 * 76 * - qdisc return codes 77 * - driver transmit return codes 78 * - errno values 79 * 80 * Drivers are allowed to return any one of those in their hard_start_xmit() 81 * function. Real network devices commonly used with qdiscs should only return 82 * the driver transmit return codes though - when qdiscs are used, the actual 83 * transmission happens asynchronously, so the value is not propagated to 84 * higher layers. Virtual network devices transmit synchronously; in this case 85 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 86 * others are propagated to higher layers. 87 */ 88 89 /* qdisc ->enqueue() return codes. */ 90 #define NET_XMIT_SUCCESS 0x00 91 #define NET_XMIT_DROP 0x01 /* skb dropped */ 92 #define NET_XMIT_CN 0x02 /* congestion notification */ 93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 95 96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 97 * indicates that the device will soon be dropping packets, or already drops 98 * some packets of the same priority; prompting us to send less aggressively. */ 99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 101 102 /* Driver transmit return codes */ 103 #define NETDEV_TX_MASK 0xf0 104 105 enum netdev_tx { 106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 107 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 109 }; 110 typedef enum netdev_tx netdev_tx_t; 111 112 /* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116 static inline bool dev_xmit_complete(int rc) 117 { 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128 } 129 130 /* 131 * Compute the worst-case header length according to the protocols 132 * used. 133 */ 134 135 #if defined(CONFIG_HYPERV_NET) 136 # define LL_MAX_HEADER 128 137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 138 # if defined(CONFIG_MAC80211_MESH) 139 # define LL_MAX_HEADER 128 140 # else 141 # define LL_MAX_HEADER 96 142 # endif 143 #else 144 # define LL_MAX_HEADER 32 145 #endif 146 147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 148 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 149 #define MAX_HEADER LL_MAX_HEADER 150 #else 151 #define MAX_HEADER (LL_MAX_HEADER + 48) 152 #endif 153 154 /* 155 * Old network device statistics. Fields are native words 156 * (unsigned long) so they can be read and written atomically. 157 */ 158 159 struct net_device_stats { 160 unsigned long rx_packets; 161 unsigned long tx_packets; 162 unsigned long rx_bytes; 163 unsigned long tx_bytes; 164 unsigned long rx_errors; 165 unsigned long tx_errors; 166 unsigned long rx_dropped; 167 unsigned long tx_dropped; 168 unsigned long multicast; 169 unsigned long collisions; 170 unsigned long rx_length_errors; 171 unsigned long rx_over_errors; 172 unsigned long rx_crc_errors; 173 unsigned long rx_frame_errors; 174 unsigned long rx_fifo_errors; 175 unsigned long rx_missed_errors; 176 unsigned long tx_aborted_errors; 177 unsigned long tx_carrier_errors; 178 unsigned long tx_fifo_errors; 179 unsigned long tx_heartbeat_errors; 180 unsigned long tx_window_errors; 181 unsigned long rx_compressed; 182 unsigned long tx_compressed; 183 }; 184 185 186 #include <linux/cache.h> 187 #include <linux/skbuff.h> 188 189 #ifdef CONFIG_RPS 190 #include <linux/static_key.h> 191 extern struct static_key rps_needed; 192 #endif 193 194 struct neighbour; 195 struct neigh_parms; 196 struct sk_buff; 197 198 struct netdev_hw_addr { 199 struct list_head list; 200 unsigned char addr[MAX_ADDR_LEN]; 201 unsigned char type; 202 #define NETDEV_HW_ADDR_T_LAN 1 203 #define NETDEV_HW_ADDR_T_SAN 2 204 #define NETDEV_HW_ADDR_T_SLAVE 3 205 #define NETDEV_HW_ADDR_T_UNICAST 4 206 #define NETDEV_HW_ADDR_T_MULTICAST 5 207 bool global_use; 208 int sync_cnt; 209 int refcount; 210 int synced; 211 struct rcu_head rcu_head; 212 }; 213 214 struct netdev_hw_addr_list { 215 struct list_head list; 216 int count; 217 }; 218 219 #define netdev_hw_addr_list_count(l) ((l)->count) 220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 221 #define netdev_hw_addr_list_for_each(ha, l) \ 222 list_for_each_entry(ha, &(l)->list, list) 223 224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 226 #define netdev_for_each_uc_addr(ha, dev) \ 227 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 228 229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 231 #define netdev_for_each_mc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 233 234 struct hh_cache { 235 u16 hh_len; 236 u16 __pad; 237 seqlock_t hh_lock; 238 239 /* cached hardware header; allow for machine alignment needs. */ 240 #define HH_DATA_MOD 16 241 #define HH_DATA_OFF(__len) \ 242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 243 #define HH_DATA_ALIGN(__len) \ 244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 246 }; 247 248 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 249 * Alternative is: 250 * dev->hard_header_len ? (dev->hard_header_len + 251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 252 * 253 * We could use other alignment values, but we must maintain the 254 * relationship HH alignment <= LL alignment. 255 */ 256 #define LL_RESERVED_SPACE(dev) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 261 struct header_ops { 262 int (*create) (struct sk_buff *skb, struct net_device *dev, 263 unsigned short type, const void *daddr, 264 const void *saddr, unsigned int len); 265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 266 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 267 void (*cache_update)(struct hh_cache *hh, 268 const struct net_device *dev, 269 const unsigned char *haddr); 270 bool (*validate)(const char *ll_header, unsigned int len); 271 }; 272 273 /* These flag bits are private to the generic network queueing 274 * layer; they may not be explicitly referenced by any other 275 * code. 276 */ 277 278 enum netdev_state_t { 279 __LINK_STATE_START, 280 __LINK_STATE_PRESENT, 281 __LINK_STATE_NOCARRIER, 282 __LINK_STATE_LINKWATCH_PENDING, 283 __LINK_STATE_DORMANT, 284 }; 285 286 287 /* 288 * This structure holds boot-time configured netdevice settings. They 289 * are then used in the device probing. 290 */ 291 struct netdev_boot_setup { 292 char name[IFNAMSIZ]; 293 struct ifmap map; 294 }; 295 #define NETDEV_BOOT_SETUP_MAX 8 296 297 int __init netdev_boot_setup(char *str); 298 299 /* 300 * Structure for NAPI scheduling similar to tasklet but with weighting 301 */ 302 struct napi_struct { 303 /* The poll_list must only be managed by the entity which 304 * changes the state of the NAPI_STATE_SCHED bit. This means 305 * whoever atomically sets that bit can add this napi_struct 306 * to the per-CPU poll_list, and whoever clears that bit 307 * can remove from the list right before clearing the bit. 308 */ 309 struct list_head poll_list; 310 311 unsigned long state; 312 int weight; 313 unsigned int gro_count; 314 int (*poll)(struct napi_struct *, int); 315 #ifdef CONFIG_NETPOLL 316 spinlock_t poll_lock; 317 int poll_owner; 318 #endif 319 struct net_device *dev; 320 struct sk_buff *gro_list; 321 struct sk_buff *skb; 322 struct hrtimer timer; 323 struct list_head dev_list; 324 struct hlist_node napi_hash_node; 325 unsigned int napi_id; 326 }; 327 328 enum { 329 NAPI_STATE_SCHED, /* Poll is scheduled */ 330 NAPI_STATE_DISABLE, /* Disable pending */ 331 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 332 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 333 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 334 }; 335 336 enum gro_result { 337 GRO_MERGED, 338 GRO_MERGED_FREE, 339 GRO_HELD, 340 GRO_NORMAL, 341 GRO_DROP, 342 }; 343 typedef enum gro_result gro_result_t; 344 345 /* 346 * enum rx_handler_result - Possible return values for rx_handlers. 347 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 348 * further. 349 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 350 * case skb->dev was changed by rx_handler. 351 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 352 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 353 * 354 * rx_handlers are functions called from inside __netif_receive_skb(), to do 355 * special processing of the skb, prior to delivery to protocol handlers. 356 * 357 * Currently, a net_device can only have a single rx_handler registered. Trying 358 * to register a second rx_handler will return -EBUSY. 359 * 360 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 361 * To unregister a rx_handler on a net_device, use 362 * netdev_rx_handler_unregister(). 363 * 364 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 365 * do with the skb. 366 * 367 * If the rx_handler consumed the skb in some way, it should return 368 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 369 * the skb to be delivered in some other way. 370 * 371 * If the rx_handler changed skb->dev, to divert the skb to another 372 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 373 * new device will be called if it exists. 374 * 375 * If the rx_handler decides the skb should be ignored, it should return 376 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 377 * are registered on exact device (ptype->dev == skb->dev). 378 * 379 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 380 * delivered, it should return RX_HANDLER_PASS. 381 * 382 * A device without a registered rx_handler will behave as if rx_handler 383 * returned RX_HANDLER_PASS. 384 */ 385 386 enum rx_handler_result { 387 RX_HANDLER_CONSUMED, 388 RX_HANDLER_ANOTHER, 389 RX_HANDLER_EXACT, 390 RX_HANDLER_PASS, 391 }; 392 typedef enum rx_handler_result rx_handler_result_t; 393 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 394 395 void __napi_schedule(struct napi_struct *n); 396 void __napi_schedule_irqoff(struct napi_struct *n); 397 398 static inline bool napi_disable_pending(struct napi_struct *n) 399 { 400 return test_bit(NAPI_STATE_DISABLE, &n->state); 401 } 402 403 /** 404 * napi_schedule_prep - check if NAPI can be scheduled 405 * @n: NAPI context 406 * 407 * Test if NAPI routine is already running, and if not mark 408 * it as running. This is used as a condition variable to 409 * insure only one NAPI poll instance runs. We also make 410 * sure there is no pending NAPI disable. 411 */ 412 static inline bool napi_schedule_prep(struct napi_struct *n) 413 { 414 return !napi_disable_pending(n) && 415 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 416 } 417 418 /** 419 * napi_schedule - schedule NAPI poll 420 * @n: NAPI context 421 * 422 * Schedule NAPI poll routine to be called if it is not already 423 * running. 424 */ 425 static inline void napi_schedule(struct napi_struct *n) 426 { 427 if (napi_schedule_prep(n)) 428 __napi_schedule(n); 429 } 430 431 /** 432 * napi_schedule_irqoff - schedule NAPI poll 433 * @n: NAPI context 434 * 435 * Variant of napi_schedule(), assuming hard irqs are masked. 436 */ 437 static inline void napi_schedule_irqoff(struct napi_struct *n) 438 { 439 if (napi_schedule_prep(n)) 440 __napi_schedule_irqoff(n); 441 } 442 443 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 444 static inline bool napi_reschedule(struct napi_struct *napi) 445 { 446 if (napi_schedule_prep(napi)) { 447 __napi_schedule(napi); 448 return true; 449 } 450 return false; 451 } 452 453 void __napi_complete(struct napi_struct *n); 454 void napi_complete_done(struct napi_struct *n, int work_done); 455 /** 456 * napi_complete - NAPI processing complete 457 * @n: NAPI context 458 * 459 * Mark NAPI processing as complete. 460 * Consider using napi_complete_done() instead. 461 */ 462 static inline void napi_complete(struct napi_struct *n) 463 { 464 return napi_complete_done(n, 0); 465 } 466 467 /** 468 * napi_hash_add - add a NAPI to global hashtable 469 * @napi: NAPI context 470 * 471 * Generate a new napi_id and store a @napi under it in napi_hash. 472 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL). 473 * Note: This is normally automatically done from netif_napi_add(), 474 * so might disappear in a future Linux version. 475 */ 476 void napi_hash_add(struct napi_struct *napi); 477 478 /** 479 * napi_hash_del - remove a NAPI from global table 480 * @napi: NAPI context 481 * 482 * Warning: caller must observe RCU grace period 483 * before freeing memory containing @napi, if 484 * this function returns true. 485 * Note: core networking stack automatically calls it 486 * from netif_napi_del(). 487 * Drivers might want to call this helper to combine all 488 * the needed RCU grace periods into a single one. 489 */ 490 bool napi_hash_del(struct napi_struct *napi); 491 492 /** 493 * napi_disable - prevent NAPI from scheduling 494 * @n: NAPI context 495 * 496 * Stop NAPI from being scheduled on this context. 497 * Waits till any outstanding processing completes. 498 */ 499 void napi_disable(struct napi_struct *n); 500 501 /** 502 * napi_enable - enable NAPI scheduling 503 * @n: NAPI context 504 * 505 * Resume NAPI from being scheduled on this context. 506 * Must be paired with napi_disable. 507 */ 508 static inline void napi_enable(struct napi_struct *n) 509 { 510 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 511 smp_mb__before_atomic(); 512 clear_bit(NAPI_STATE_SCHED, &n->state); 513 clear_bit(NAPI_STATE_NPSVC, &n->state); 514 } 515 516 /** 517 * napi_synchronize - wait until NAPI is not running 518 * @n: NAPI context 519 * 520 * Wait until NAPI is done being scheduled on this context. 521 * Waits till any outstanding processing completes but 522 * does not disable future activations. 523 */ 524 static inline void napi_synchronize(const struct napi_struct *n) 525 { 526 if (IS_ENABLED(CONFIG_SMP)) 527 while (test_bit(NAPI_STATE_SCHED, &n->state)) 528 msleep(1); 529 else 530 barrier(); 531 } 532 533 enum netdev_queue_state_t { 534 __QUEUE_STATE_DRV_XOFF, 535 __QUEUE_STATE_STACK_XOFF, 536 __QUEUE_STATE_FROZEN, 537 }; 538 539 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 540 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 541 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 542 543 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 545 QUEUE_STATE_FROZEN) 546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 547 QUEUE_STATE_FROZEN) 548 549 /* 550 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 551 * netif_tx_* functions below are used to manipulate this flag. The 552 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 553 * queue independently. The netif_xmit_*stopped functions below are called 554 * to check if the queue has been stopped by the driver or stack (either 555 * of the XOFF bits are set in the state). Drivers should not need to call 556 * netif_xmit*stopped functions, they should only be using netif_tx_*. 557 */ 558 559 struct netdev_queue { 560 /* 561 * read-mostly part 562 */ 563 struct net_device *dev; 564 struct Qdisc __rcu *qdisc; 565 struct Qdisc *qdisc_sleeping; 566 #ifdef CONFIG_SYSFS 567 struct kobject kobj; 568 #endif 569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 570 int numa_node; 571 #endif 572 unsigned long tx_maxrate; 573 /* 574 * Number of TX timeouts for this queue 575 * (/sys/class/net/DEV/Q/trans_timeout) 576 */ 577 unsigned long trans_timeout; 578 /* 579 * write-mostly part 580 */ 581 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 582 int xmit_lock_owner; 583 /* 584 * Time (in jiffies) of last Tx 585 */ 586 unsigned long trans_start; 587 588 unsigned long state; 589 590 #ifdef CONFIG_BQL 591 struct dql dql; 592 #endif 593 } ____cacheline_aligned_in_smp; 594 595 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 596 { 597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 598 return q->numa_node; 599 #else 600 return NUMA_NO_NODE; 601 #endif 602 } 603 604 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 605 { 606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 607 q->numa_node = node; 608 #endif 609 } 610 611 #ifdef CONFIG_RPS 612 /* 613 * This structure holds an RPS map which can be of variable length. The 614 * map is an array of CPUs. 615 */ 616 struct rps_map { 617 unsigned int len; 618 struct rcu_head rcu; 619 u16 cpus[0]; 620 }; 621 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 622 623 /* 624 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 625 * tail pointer for that CPU's input queue at the time of last enqueue, and 626 * a hardware filter index. 627 */ 628 struct rps_dev_flow { 629 u16 cpu; 630 u16 filter; 631 unsigned int last_qtail; 632 }; 633 #define RPS_NO_FILTER 0xffff 634 635 /* 636 * The rps_dev_flow_table structure contains a table of flow mappings. 637 */ 638 struct rps_dev_flow_table { 639 unsigned int mask; 640 struct rcu_head rcu; 641 struct rps_dev_flow flows[0]; 642 }; 643 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 644 ((_num) * sizeof(struct rps_dev_flow))) 645 646 /* 647 * The rps_sock_flow_table contains mappings of flows to the last CPU 648 * on which they were processed by the application (set in recvmsg). 649 * Each entry is a 32bit value. Upper part is the high-order bits 650 * of flow hash, lower part is CPU number. 651 * rps_cpu_mask is used to partition the space, depending on number of 652 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 653 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 654 * meaning we use 32-6=26 bits for the hash. 655 */ 656 struct rps_sock_flow_table { 657 u32 mask; 658 659 u32 ents[0] ____cacheline_aligned_in_smp; 660 }; 661 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 662 663 #define RPS_NO_CPU 0xffff 664 665 extern u32 rps_cpu_mask; 666 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 667 668 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 669 u32 hash) 670 { 671 if (table && hash) { 672 unsigned int index = hash & table->mask; 673 u32 val = hash & ~rps_cpu_mask; 674 675 /* We only give a hint, preemption can change CPU under us */ 676 val |= raw_smp_processor_id(); 677 678 if (table->ents[index] != val) 679 table->ents[index] = val; 680 } 681 } 682 683 #ifdef CONFIG_RFS_ACCEL 684 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 685 u16 filter_id); 686 #endif 687 #endif /* CONFIG_RPS */ 688 689 /* This structure contains an instance of an RX queue. */ 690 struct netdev_rx_queue { 691 #ifdef CONFIG_RPS 692 struct rps_map __rcu *rps_map; 693 struct rps_dev_flow_table __rcu *rps_flow_table; 694 #endif 695 struct kobject kobj; 696 struct net_device *dev; 697 } ____cacheline_aligned_in_smp; 698 699 /* 700 * RX queue sysfs structures and functions. 701 */ 702 struct rx_queue_attribute { 703 struct attribute attr; 704 ssize_t (*show)(struct netdev_rx_queue *queue, 705 struct rx_queue_attribute *attr, char *buf); 706 ssize_t (*store)(struct netdev_rx_queue *queue, 707 struct rx_queue_attribute *attr, const char *buf, size_t len); 708 }; 709 710 #ifdef CONFIG_XPS 711 /* 712 * This structure holds an XPS map which can be of variable length. The 713 * map is an array of queues. 714 */ 715 struct xps_map { 716 unsigned int len; 717 unsigned int alloc_len; 718 struct rcu_head rcu; 719 u16 queues[0]; 720 }; 721 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 722 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 723 - sizeof(struct xps_map)) / sizeof(u16)) 724 725 /* 726 * This structure holds all XPS maps for device. Maps are indexed by CPU. 727 */ 728 struct xps_dev_maps { 729 struct rcu_head rcu; 730 struct xps_map __rcu *cpu_map[0]; 731 }; 732 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 733 (nr_cpu_ids * sizeof(struct xps_map *))) 734 #endif /* CONFIG_XPS */ 735 736 #define TC_MAX_QUEUE 16 737 #define TC_BITMASK 15 738 /* HW offloaded queuing disciplines txq count and offset maps */ 739 struct netdev_tc_txq { 740 u16 count; 741 u16 offset; 742 }; 743 744 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 745 /* 746 * This structure is to hold information about the device 747 * configured to run FCoE protocol stack. 748 */ 749 struct netdev_fcoe_hbainfo { 750 char manufacturer[64]; 751 char serial_number[64]; 752 char hardware_version[64]; 753 char driver_version[64]; 754 char optionrom_version[64]; 755 char firmware_version[64]; 756 char model[256]; 757 char model_description[256]; 758 }; 759 #endif 760 761 #define MAX_PHYS_ITEM_ID_LEN 32 762 763 /* This structure holds a unique identifier to identify some 764 * physical item (port for example) used by a netdevice. 765 */ 766 struct netdev_phys_item_id { 767 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 768 unsigned char id_len; 769 }; 770 771 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 772 struct netdev_phys_item_id *b) 773 { 774 return a->id_len == b->id_len && 775 memcmp(a->id, b->id, a->id_len) == 0; 776 } 777 778 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 779 struct sk_buff *skb); 780 781 /* These structures hold the attributes of qdisc and classifiers 782 * that are being passed to the netdevice through the setup_tc op. 783 */ 784 enum { 785 TC_SETUP_MQPRIO, 786 TC_SETUP_CLSU32, 787 TC_SETUP_CLSFLOWER, 788 }; 789 790 struct tc_cls_u32_offload; 791 792 struct tc_to_netdev { 793 unsigned int type; 794 union { 795 u8 tc; 796 struct tc_cls_u32_offload *cls_u32; 797 struct tc_cls_flower_offload *cls_flower; 798 }; 799 }; 800 801 802 /* 803 * This structure defines the management hooks for network devices. 804 * The following hooks can be defined; unless noted otherwise, they are 805 * optional and can be filled with a null pointer. 806 * 807 * int (*ndo_init)(struct net_device *dev); 808 * This function is called once when a network device is registered. 809 * The network device can use this for any late stage initialization 810 * or semantic validation. It can fail with an error code which will 811 * be propagated back to register_netdev. 812 * 813 * void (*ndo_uninit)(struct net_device *dev); 814 * This function is called when device is unregistered or when registration 815 * fails. It is not called if init fails. 816 * 817 * int (*ndo_open)(struct net_device *dev); 818 * This function is called when a network device transitions to the up 819 * state. 820 * 821 * int (*ndo_stop)(struct net_device *dev); 822 * This function is called when a network device transitions to the down 823 * state. 824 * 825 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 826 * struct net_device *dev); 827 * Called when a packet needs to be transmitted. 828 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 829 * the queue before that can happen; it's for obsolete devices and weird 830 * corner cases, but the stack really does a non-trivial amount 831 * of useless work if you return NETDEV_TX_BUSY. 832 * Required; cannot be NULL. 833 * 834 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 835 * netdev_features_t features); 836 * Adjusts the requested feature flags according to device-specific 837 * constraints, and returns the resulting flags. Must not modify 838 * the device state. 839 * 840 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 841 * void *accel_priv, select_queue_fallback_t fallback); 842 * Called to decide which queue to use when device supports multiple 843 * transmit queues. 844 * 845 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 846 * This function is called to allow device receiver to make 847 * changes to configuration when multicast or promiscuous is enabled. 848 * 849 * void (*ndo_set_rx_mode)(struct net_device *dev); 850 * This function is called device changes address list filtering. 851 * If driver handles unicast address filtering, it should set 852 * IFF_UNICAST_FLT in its priv_flags. 853 * 854 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 855 * This function is called when the Media Access Control address 856 * needs to be changed. If this interface is not defined, the 857 * MAC address can not be changed. 858 * 859 * int (*ndo_validate_addr)(struct net_device *dev); 860 * Test if Media Access Control address is valid for the device. 861 * 862 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 863 * Called when a user requests an ioctl which can't be handled by 864 * the generic interface code. If not defined ioctls return 865 * not supported error code. 866 * 867 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 868 * Used to set network devices bus interface parameters. This interface 869 * is retained for legacy reasons; new devices should use the bus 870 * interface (PCI) for low level management. 871 * 872 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 873 * Called when a user wants to change the Maximum Transfer Unit 874 * of a device. If not defined, any request to change MTU will 875 * will return an error. 876 * 877 * void (*ndo_tx_timeout)(struct net_device *dev); 878 * Callback used when the transmitter has not made any progress 879 * for dev->watchdog ticks. 880 * 881 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 882 * struct rtnl_link_stats64 *storage); 883 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 884 * Called when a user wants to get the network device usage 885 * statistics. Drivers must do one of the following: 886 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 887 * rtnl_link_stats64 structure passed by the caller. 888 * 2. Define @ndo_get_stats to update a net_device_stats structure 889 * (which should normally be dev->stats) and return a pointer to 890 * it. The structure may be changed asynchronously only if each 891 * field is written atomically. 892 * 3. Update dev->stats asynchronously and atomically, and define 893 * neither operation. 894 * 895 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 896 * If device supports VLAN filtering this function is called when a 897 * VLAN id is registered. 898 * 899 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 900 * If device supports VLAN filtering this function is called when a 901 * VLAN id is unregistered. 902 * 903 * void (*ndo_poll_controller)(struct net_device *dev); 904 * 905 * SR-IOV management functions. 906 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 907 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 908 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 909 * int max_tx_rate); 910 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 911 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 912 * int (*ndo_get_vf_config)(struct net_device *dev, 913 * int vf, struct ifla_vf_info *ivf); 914 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 915 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 916 * struct nlattr *port[]); 917 * 918 * Enable or disable the VF ability to query its RSS Redirection Table and 919 * Hash Key. This is needed since on some devices VF share this information 920 * with PF and querying it may introduce a theoretical security risk. 921 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 922 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 923 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 924 * Called to setup 'tc' number of traffic classes in the net device. This 925 * is always called from the stack with the rtnl lock held and netif tx 926 * queues stopped. This allows the netdevice to perform queue management 927 * safely. 928 * 929 * Fiber Channel over Ethernet (FCoE) offload functions. 930 * int (*ndo_fcoe_enable)(struct net_device *dev); 931 * Called when the FCoE protocol stack wants to start using LLD for FCoE 932 * so the underlying device can perform whatever needed configuration or 933 * initialization to support acceleration of FCoE traffic. 934 * 935 * int (*ndo_fcoe_disable)(struct net_device *dev); 936 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 937 * so the underlying device can perform whatever needed clean-ups to 938 * stop supporting acceleration of FCoE traffic. 939 * 940 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 941 * struct scatterlist *sgl, unsigned int sgc); 942 * Called when the FCoE Initiator wants to initialize an I/O that 943 * is a possible candidate for Direct Data Placement (DDP). The LLD can 944 * perform necessary setup and returns 1 to indicate the device is set up 945 * successfully to perform DDP on this I/O, otherwise this returns 0. 946 * 947 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 948 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 949 * indicated by the FC exchange id 'xid', so the underlying device can 950 * clean up and reuse resources for later DDP requests. 951 * 952 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 953 * struct scatterlist *sgl, unsigned int sgc); 954 * Called when the FCoE Target wants to initialize an I/O that 955 * is a possible candidate for Direct Data Placement (DDP). The LLD can 956 * perform necessary setup and returns 1 to indicate the device is set up 957 * successfully to perform DDP on this I/O, otherwise this returns 0. 958 * 959 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 960 * struct netdev_fcoe_hbainfo *hbainfo); 961 * Called when the FCoE Protocol stack wants information on the underlying 962 * device. This information is utilized by the FCoE protocol stack to 963 * register attributes with Fiber Channel management service as per the 964 * FC-GS Fabric Device Management Information(FDMI) specification. 965 * 966 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 967 * Called when the underlying device wants to override default World Wide 968 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 969 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 970 * protocol stack to use. 971 * 972 * RFS acceleration. 973 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 974 * u16 rxq_index, u32 flow_id); 975 * Set hardware filter for RFS. rxq_index is the target queue index; 976 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 977 * Return the filter ID on success, or a negative error code. 978 * 979 * Slave management functions (for bridge, bonding, etc). 980 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 981 * Called to make another netdev an underling. 982 * 983 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 984 * Called to release previously enslaved netdev. 985 * 986 * Feature/offload setting functions. 987 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 988 * Called to update device configuration to new features. Passed 989 * feature set might be less than what was returned by ndo_fix_features()). 990 * Must return >0 or -errno if it changed dev->features itself. 991 * 992 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 993 * struct net_device *dev, 994 * const unsigned char *addr, u16 vid, u16 flags) 995 * Adds an FDB entry to dev for addr. 996 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 997 * struct net_device *dev, 998 * const unsigned char *addr, u16 vid) 999 * Deletes the FDB entry from dev coresponding to addr. 1000 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1001 * struct net_device *dev, struct net_device *filter_dev, 1002 * int idx) 1003 * Used to add FDB entries to dump requests. Implementers should add 1004 * entries to skb and update idx with the number of entries. 1005 * 1006 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1007 * u16 flags) 1008 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1009 * struct net_device *dev, u32 filter_mask, 1010 * int nlflags) 1011 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1012 * u16 flags); 1013 * 1014 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1015 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1016 * which do not represent real hardware may define this to allow their 1017 * userspace components to manage their virtual carrier state. Devices 1018 * that determine carrier state from physical hardware properties (eg 1019 * network cables) or protocol-dependent mechanisms (eg 1020 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1021 * 1022 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1023 * struct netdev_phys_item_id *ppid); 1024 * Called to get ID of physical port of this device. If driver does 1025 * not implement this, it is assumed that the hw is not able to have 1026 * multiple net devices on single physical port. 1027 * 1028 * void (*ndo_add_vxlan_port)(struct net_device *dev, 1029 * sa_family_t sa_family, __be16 port); 1030 * Called by vxlan to notify a driver about the UDP port and socket 1031 * address family that vxlan is listening to. It is called only when 1032 * a new port starts listening. The operation is protected by the 1033 * vxlan_net->sock_lock. 1034 * 1035 * void (*ndo_add_geneve_port)(struct net_device *dev, 1036 * sa_family_t sa_family, __be16 port); 1037 * Called by geneve to notify a driver about the UDP port and socket 1038 * address family that geneve is listnening to. It is called only when 1039 * a new port starts listening. The operation is protected by the 1040 * geneve_net->sock_lock. 1041 * 1042 * void (*ndo_del_geneve_port)(struct net_device *dev, 1043 * sa_family_t sa_family, __be16 port); 1044 * Called by geneve to notify the driver about a UDP port and socket 1045 * address family that geneve is not listening to anymore. The operation 1046 * is protected by the geneve_net->sock_lock. 1047 * 1048 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1049 * sa_family_t sa_family, __be16 port); 1050 * Called by vxlan to notify the driver about a UDP port and socket 1051 * address family that vxlan is not listening to anymore. The operation 1052 * is protected by the vxlan_net->sock_lock. 1053 * 1054 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1055 * struct net_device *dev) 1056 * Called by upper layer devices to accelerate switching or other 1057 * station functionality into hardware. 'pdev is the lowerdev 1058 * to use for the offload and 'dev' is the net device that will 1059 * back the offload. Returns a pointer to the private structure 1060 * the upper layer will maintain. 1061 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1062 * Called by upper layer device to delete the station created 1063 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1064 * the station and priv is the structure returned by the add 1065 * operation. 1066 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1067 * struct net_device *dev, 1068 * void *priv); 1069 * Callback to use for xmit over the accelerated station. This 1070 * is used in place of ndo_start_xmit on accelerated net 1071 * devices. 1072 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1073 * struct net_device *dev 1074 * netdev_features_t features); 1075 * Called by core transmit path to determine if device is capable of 1076 * performing offload operations on a given packet. This is to give 1077 * the device an opportunity to implement any restrictions that cannot 1078 * be otherwise expressed by feature flags. The check is called with 1079 * the set of features that the stack has calculated and it returns 1080 * those the driver believes to be appropriate. 1081 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1082 * int queue_index, u32 maxrate); 1083 * Called when a user wants to set a max-rate limitation of specific 1084 * TX queue. 1085 * int (*ndo_get_iflink)(const struct net_device *dev); 1086 * Called to get the iflink value of this device. 1087 * void (*ndo_change_proto_down)(struct net_device *dev, 1088 * bool proto_down); 1089 * This function is used to pass protocol port error state information 1090 * to the switch driver. The switch driver can react to the proto_down 1091 * by doing a phys down on the associated switch port. 1092 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1093 * This function is used to get egress tunnel information for given skb. 1094 * This is useful for retrieving outer tunnel header parameters while 1095 * sampling packet. 1096 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1097 * This function is used to specify the headroom that the skb must 1098 * consider when allocation skb during packet reception. Setting 1099 * appropriate rx headroom value allows avoiding skb head copy on 1100 * forward. Setting a negative value resets the rx headroom to the 1101 * default value. 1102 * 1103 */ 1104 struct net_device_ops { 1105 int (*ndo_init)(struct net_device *dev); 1106 void (*ndo_uninit)(struct net_device *dev); 1107 int (*ndo_open)(struct net_device *dev); 1108 int (*ndo_stop)(struct net_device *dev); 1109 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1110 struct net_device *dev); 1111 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1112 struct net_device *dev, 1113 netdev_features_t features); 1114 u16 (*ndo_select_queue)(struct net_device *dev, 1115 struct sk_buff *skb, 1116 void *accel_priv, 1117 select_queue_fallback_t fallback); 1118 void (*ndo_change_rx_flags)(struct net_device *dev, 1119 int flags); 1120 void (*ndo_set_rx_mode)(struct net_device *dev); 1121 int (*ndo_set_mac_address)(struct net_device *dev, 1122 void *addr); 1123 int (*ndo_validate_addr)(struct net_device *dev); 1124 int (*ndo_do_ioctl)(struct net_device *dev, 1125 struct ifreq *ifr, int cmd); 1126 int (*ndo_set_config)(struct net_device *dev, 1127 struct ifmap *map); 1128 int (*ndo_change_mtu)(struct net_device *dev, 1129 int new_mtu); 1130 int (*ndo_neigh_setup)(struct net_device *dev, 1131 struct neigh_parms *); 1132 void (*ndo_tx_timeout) (struct net_device *dev); 1133 1134 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1135 struct rtnl_link_stats64 *storage); 1136 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1137 1138 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1139 __be16 proto, u16 vid); 1140 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1141 __be16 proto, u16 vid); 1142 #ifdef CONFIG_NET_POLL_CONTROLLER 1143 void (*ndo_poll_controller)(struct net_device *dev); 1144 int (*ndo_netpoll_setup)(struct net_device *dev, 1145 struct netpoll_info *info); 1146 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1147 #endif 1148 #ifdef CONFIG_NET_RX_BUSY_POLL 1149 int (*ndo_busy_poll)(struct napi_struct *dev); 1150 #endif 1151 int (*ndo_set_vf_mac)(struct net_device *dev, 1152 int queue, u8 *mac); 1153 int (*ndo_set_vf_vlan)(struct net_device *dev, 1154 int queue, u16 vlan, u8 qos); 1155 int (*ndo_set_vf_rate)(struct net_device *dev, 1156 int vf, int min_tx_rate, 1157 int max_tx_rate); 1158 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1159 int vf, bool setting); 1160 int (*ndo_set_vf_trust)(struct net_device *dev, 1161 int vf, bool setting); 1162 int (*ndo_get_vf_config)(struct net_device *dev, 1163 int vf, 1164 struct ifla_vf_info *ivf); 1165 int (*ndo_set_vf_link_state)(struct net_device *dev, 1166 int vf, int link_state); 1167 int (*ndo_get_vf_stats)(struct net_device *dev, 1168 int vf, 1169 struct ifla_vf_stats 1170 *vf_stats); 1171 int (*ndo_set_vf_port)(struct net_device *dev, 1172 int vf, 1173 struct nlattr *port[]); 1174 int (*ndo_get_vf_port)(struct net_device *dev, 1175 int vf, struct sk_buff *skb); 1176 int (*ndo_set_vf_guid)(struct net_device *dev, 1177 int vf, u64 guid, 1178 int guid_type); 1179 int (*ndo_set_vf_rss_query_en)( 1180 struct net_device *dev, 1181 int vf, bool setting); 1182 int (*ndo_setup_tc)(struct net_device *dev, 1183 u32 handle, 1184 __be16 protocol, 1185 struct tc_to_netdev *tc); 1186 #if IS_ENABLED(CONFIG_FCOE) 1187 int (*ndo_fcoe_enable)(struct net_device *dev); 1188 int (*ndo_fcoe_disable)(struct net_device *dev); 1189 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1190 u16 xid, 1191 struct scatterlist *sgl, 1192 unsigned int sgc); 1193 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1194 u16 xid); 1195 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1196 u16 xid, 1197 struct scatterlist *sgl, 1198 unsigned int sgc); 1199 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1200 struct netdev_fcoe_hbainfo *hbainfo); 1201 #endif 1202 1203 #if IS_ENABLED(CONFIG_LIBFCOE) 1204 #define NETDEV_FCOE_WWNN 0 1205 #define NETDEV_FCOE_WWPN 1 1206 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1207 u64 *wwn, int type); 1208 #endif 1209 1210 #ifdef CONFIG_RFS_ACCEL 1211 int (*ndo_rx_flow_steer)(struct net_device *dev, 1212 const struct sk_buff *skb, 1213 u16 rxq_index, 1214 u32 flow_id); 1215 #endif 1216 int (*ndo_add_slave)(struct net_device *dev, 1217 struct net_device *slave_dev); 1218 int (*ndo_del_slave)(struct net_device *dev, 1219 struct net_device *slave_dev); 1220 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1221 netdev_features_t features); 1222 int (*ndo_set_features)(struct net_device *dev, 1223 netdev_features_t features); 1224 int (*ndo_neigh_construct)(struct neighbour *n); 1225 void (*ndo_neigh_destroy)(struct neighbour *n); 1226 1227 int (*ndo_fdb_add)(struct ndmsg *ndm, 1228 struct nlattr *tb[], 1229 struct net_device *dev, 1230 const unsigned char *addr, 1231 u16 vid, 1232 u16 flags); 1233 int (*ndo_fdb_del)(struct ndmsg *ndm, 1234 struct nlattr *tb[], 1235 struct net_device *dev, 1236 const unsigned char *addr, 1237 u16 vid); 1238 int (*ndo_fdb_dump)(struct sk_buff *skb, 1239 struct netlink_callback *cb, 1240 struct net_device *dev, 1241 struct net_device *filter_dev, 1242 int idx); 1243 1244 int (*ndo_bridge_setlink)(struct net_device *dev, 1245 struct nlmsghdr *nlh, 1246 u16 flags); 1247 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1248 u32 pid, u32 seq, 1249 struct net_device *dev, 1250 u32 filter_mask, 1251 int nlflags); 1252 int (*ndo_bridge_dellink)(struct net_device *dev, 1253 struct nlmsghdr *nlh, 1254 u16 flags); 1255 int (*ndo_change_carrier)(struct net_device *dev, 1256 bool new_carrier); 1257 int (*ndo_get_phys_port_id)(struct net_device *dev, 1258 struct netdev_phys_item_id *ppid); 1259 int (*ndo_get_phys_port_name)(struct net_device *dev, 1260 char *name, size_t len); 1261 void (*ndo_add_vxlan_port)(struct net_device *dev, 1262 sa_family_t sa_family, 1263 __be16 port); 1264 void (*ndo_del_vxlan_port)(struct net_device *dev, 1265 sa_family_t sa_family, 1266 __be16 port); 1267 void (*ndo_add_geneve_port)(struct net_device *dev, 1268 sa_family_t sa_family, 1269 __be16 port); 1270 void (*ndo_del_geneve_port)(struct net_device *dev, 1271 sa_family_t sa_family, 1272 __be16 port); 1273 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1274 struct net_device *dev); 1275 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1276 void *priv); 1277 1278 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1279 struct net_device *dev, 1280 void *priv); 1281 int (*ndo_get_lock_subclass)(struct net_device *dev); 1282 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1283 int queue_index, 1284 u32 maxrate); 1285 int (*ndo_get_iflink)(const struct net_device *dev); 1286 int (*ndo_change_proto_down)(struct net_device *dev, 1287 bool proto_down); 1288 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1289 struct sk_buff *skb); 1290 void (*ndo_set_rx_headroom)(struct net_device *dev, 1291 int needed_headroom); 1292 }; 1293 1294 /** 1295 * enum net_device_priv_flags - &struct net_device priv_flags 1296 * 1297 * These are the &struct net_device, they are only set internally 1298 * by drivers and used in the kernel. These flags are invisible to 1299 * userspace; this means that the order of these flags can change 1300 * during any kernel release. 1301 * 1302 * You should have a pretty good reason to be extending these flags. 1303 * 1304 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1305 * @IFF_EBRIDGE: Ethernet bridging device 1306 * @IFF_BONDING: bonding master or slave 1307 * @IFF_ISATAP: ISATAP interface (RFC4214) 1308 * @IFF_WAN_HDLC: WAN HDLC device 1309 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1310 * release skb->dst 1311 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1312 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1313 * @IFF_MACVLAN_PORT: device used as macvlan port 1314 * @IFF_BRIDGE_PORT: device used as bridge port 1315 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1316 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1317 * @IFF_UNICAST_FLT: Supports unicast filtering 1318 * @IFF_TEAM_PORT: device used as team port 1319 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1320 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1321 * change when it's running 1322 * @IFF_MACVLAN: Macvlan device 1323 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1324 * underlying stacked devices 1325 * @IFF_IPVLAN_MASTER: IPvlan master device 1326 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1327 * @IFF_L3MDEV_MASTER: device is an L3 master device 1328 * @IFF_NO_QUEUE: device can run without qdisc attached 1329 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1330 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1331 * @IFF_TEAM: device is a team device 1332 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1333 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1334 * entity (i.e. the master device for bridged veth) 1335 * @IFF_MACSEC: device is a MACsec device 1336 */ 1337 enum netdev_priv_flags { 1338 IFF_802_1Q_VLAN = 1<<0, 1339 IFF_EBRIDGE = 1<<1, 1340 IFF_BONDING = 1<<2, 1341 IFF_ISATAP = 1<<3, 1342 IFF_WAN_HDLC = 1<<4, 1343 IFF_XMIT_DST_RELEASE = 1<<5, 1344 IFF_DONT_BRIDGE = 1<<6, 1345 IFF_DISABLE_NETPOLL = 1<<7, 1346 IFF_MACVLAN_PORT = 1<<8, 1347 IFF_BRIDGE_PORT = 1<<9, 1348 IFF_OVS_DATAPATH = 1<<10, 1349 IFF_TX_SKB_SHARING = 1<<11, 1350 IFF_UNICAST_FLT = 1<<12, 1351 IFF_TEAM_PORT = 1<<13, 1352 IFF_SUPP_NOFCS = 1<<14, 1353 IFF_LIVE_ADDR_CHANGE = 1<<15, 1354 IFF_MACVLAN = 1<<16, 1355 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1356 IFF_IPVLAN_MASTER = 1<<18, 1357 IFF_IPVLAN_SLAVE = 1<<19, 1358 IFF_L3MDEV_MASTER = 1<<20, 1359 IFF_NO_QUEUE = 1<<21, 1360 IFF_OPENVSWITCH = 1<<22, 1361 IFF_L3MDEV_SLAVE = 1<<23, 1362 IFF_TEAM = 1<<24, 1363 IFF_RXFH_CONFIGURED = 1<<25, 1364 IFF_PHONY_HEADROOM = 1<<26, 1365 IFF_MACSEC = 1<<27, 1366 }; 1367 1368 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1369 #define IFF_EBRIDGE IFF_EBRIDGE 1370 #define IFF_BONDING IFF_BONDING 1371 #define IFF_ISATAP IFF_ISATAP 1372 #define IFF_WAN_HDLC IFF_WAN_HDLC 1373 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1374 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1375 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1376 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1377 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1378 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1379 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1380 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1381 #define IFF_TEAM_PORT IFF_TEAM_PORT 1382 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1383 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1384 #define IFF_MACVLAN IFF_MACVLAN 1385 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1386 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1387 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1388 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1389 #define IFF_NO_QUEUE IFF_NO_QUEUE 1390 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1391 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1392 #define IFF_TEAM IFF_TEAM 1393 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1394 #define IFF_MACSEC IFF_MACSEC 1395 1396 /** 1397 * struct net_device - The DEVICE structure. 1398 * Actually, this whole structure is a big mistake. It mixes I/O 1399 * data with strictly "high-level" data, and it has to know about 1400 * almost every data structure used in the INET module. 1401 * 1402 * @name: This is the first field of the "visible" part of this structure 1403 * (i.e. as seen by users in the "Space.c" file). It is the name 1404 * of the interface. 1405 * 1406 * @name_hlist: Device name hash chain, please keep it close to name[] 1407 * @ifalias: SNMP alias 1408 * @mem_end: Shared memory end 1409 * @mem_start: Shared memory start 1410 * @base_addr: Device I/O address 1411 * @irq: Device IRQ number 1412 * 1413 * @carrier_changes: Stats to monitor carrier on<->off transitions 1414 * 1415 * @state: Generic network queuing layer state, see netdev_state_t 1416 * @dev_list: The global list of network devices 1417 * @napi_list: List entry used for polling NAPI devices 1418 * @unreg_list: List entry when we are unregistering the 1419 * device; see the function unregister_netdev 1420 * @close_list: List entry used when we are closing the device 1421 * @ptype_all: Device-specific packet handlers for all protocols 1422 * @ptype_specific: Device-specific, protocol-specific packet handlers 1423 * 1424 * @adj_list: Directly linked devices, like slaves for bonding 1425 * @all_adj_list: All linked devices, *including* neighbours 1426 * @features: Currently active device features 1427 * @hw_features: User-changeable features 1428 * 1429 * @wanted_features: User-requested features 1430 * @vlan_features: Mask of features inheritable by VLAN devices 1431 * 1432 * @hw_enc_features: Mask of features inherited by encapsulating devices 1433 * This field indicates what encapsulation 1434 * offloads the hardware is capable of doing, 1435 * and drivers will need to set them appropriately. 1436 * 1437 * @mpls_features: Mask of features inheritable by MPLS 1438 * 1439 * @ifindex: interface index 1440 * @group: The group the device belongs to 1441 * 1442 * @stats: Statistics struct, which was left as a legacy, use 1443 * rtnl_link_stats64 instead 1444 * 1445 * @rx_dropped: Dropped packets by core network, 1446 * do not use this in drivers 1447 * @tx_dropped: Dropped packets by core network, 1448 * do not use this in drivers 1449 * @rx_nohandler: nohandler dropped packets by core network on 1450 * inactive devices, do not use this in drivers 1451 * 1452 * @wireless_handlers: List of functions to handle Wireless Extensions, 1453 * instead of ioctl, 1454 * see <net/iw_handler.h> for details. 1455 * @wireless_data: Instance data managed by the core of wireless extensions 1456 * 1457 * @netdev_ops: Includes several pointers to callbacks, 1458 * if one wants to override the ndo_*() functions 1459 * @ethtool_ops: Management operations 1460 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1461 * of Layer 2 headers. 1462 * 1463 * @flags: Interface flags (a la BSD) 1464 * @priv_flags: Like 'flags' but invisible to userspace, 1465 * see if.h for the definitions 1466 * @gflags: Global flags ( kept as legacy ) 1467 * @padded: How much padding added by alloc_netdev() 1468 * @operstate: RFC2863 operstate 1469 * @link_mode: Mapping policy to operstate 1470 * @if_port: Selectable AUI, TP, ... 1471 * @dma: DMA channel 1472 * @mtu: Interface MTU value 1473 * @type: Interface hardware type 1474 * @hard_header_len: Maximum hardware header length. 1475 * 1476 * @needed_headroom: Extra headroom the hardware may need, but not in all 1477 * cases can this be guaranteed 1478 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1479 * cases can this be guaranteed. Some cases also use 1480 * LL_MAX_HEADER instead to allocate the skb 1481 * 1482 * interface address info: 1483 * 1484 * @perm_addr: Permanent hw address 1485 * @addr_assign_type: Hw address assignment type 1486 * @addr_len: Hardware address length 1487 * @neigh_priv_len; Used in neigh_alloc(), 1488 * initialized only in atm/clip.c 1489 * @dev_id: Used to differentiate devices that share 1490 * the same link layer address 1491 * @dev_port: Used to differentiate devices that share 1492 * the same function 1493 * @addr_list_lock: XXX: need comments on this one 1494 * @uc_promisc: Counter that indicates promiscuous mode 1495 * has been enabled due to the need to listen to 1496 * additional unicast addresses in a device that 1497 * does not implement ndo_set_rx_mode() 1498 * @uc: unicast mac addresses 1499 * @mc: multicast mac addresses 1500 * @dev_addrs: list of device hw addresses 1501 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1502 * @promiscuity: Number of times the NIC is told to work in 1503 * promiscuous mode; if it becomes 0 the NIC will 1504 * exit promiscuous mode 1505 * @allmulti: Counter, enables or disables allmulticast mode 1506 * 1507 * @vlan_info: VLAN info 1508 * @dsa_ptr: dsa specific data 1509 * @tipc_ptr: TIPC specific data 1510 * @atalk_ptr: AppleTalk link 1511 * @ip_ptr: IPv4 specific data 1512 * @dn_ptr: DECnet specific data 1513 * @ip6_ptr: IPv6 specific data 1514 * @ax25_ptr: AX.25 specific data 1515 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1516 * 1517 * @last_rx: Time of last Rx 1518 * @dev_addr: Hw address (before bcast, 1519 * because most packets are unicast) 1520 * 1521 * @_rx: Array of RX queues 1522 * @num_rx_queues: Number of RX queues 1523 * allocated at register_netdev() time 1524 * @real_num_rx_queues: Number of RX queues currently active in device 1525 * 1526 * @rx_handler: handler for received packets 1527 * @rx_handler_data: XXX: need comments on this one 1528 * @ingress_queue: XXX: need comments on this one 1529 * @broadcast: hw bcast address 1530 * 1531 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1532 * indexed by RX queue number. Assigned by driver. 1533 * This must only be set if the ndo_rx_flow_steer 1534 * operation is defined 1535 * @index_hlist: Device index hash chain 1536 * 1537 * @_tx: Array of TX queues 1538 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1539 * @real_num_tx_queues: Number of TX queues currently active in device 1540 * @qdisc: Root qdisc from userspace point of view 1541 * @tx_queue_len: Max frames per queue allowed 1542 * @tx_global_lock: XXX: need comments on this one 1543 * 1544 * @xps_maps: XXX: need comments on this one 1545 * 1546 * @offload_fwd_mark: Offload device fwding mark 1547 * 1548 * @watchdog_timeo: Represents the timeout that is used by 1549 * the watchdog (see dev_watchdog()) 1550 * @watchdog_timer: List of timers 1551 * 1552 * @pcpu_refcnt: Number of references to this device 1553 * @todo_list: Delayed register/unregister 1554 * @link_watch_list: XXX: need comments on this one 1555 * 1556 * @reg_state: Register/unregister state machine 1557 * @dismantle: Device is going to be freed 1558 * @rtnl_link_state: This enum represents the phases of creating 1559 * a new link 1560 * 1561 * @destructor: Called from unregister, 1562 * can be used to call free_netdev 1563 * @npinfo: XXX: need comments on this one 1564 * @nd_net: Network namespace this network device is inside 1565 * 1566 * @ml_priv: Mid-layer private 1567 * @lstats: Loopback statistics 1568 * @tstats: Tunnel statistics 1569 * @dstats: Dummy statistics 1570 * @vstats: Virtual ethernet statistics 1571 * 1572 * @garp_port: GARP 1573 * @mrp_port: MRP 1574 * 1575 * @dev: Class/net/name entry 1576 * @sysfs_groups: Space for optional device, statistics and wireless 1577 * sysfs groups 1578 * 1579 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1580 * @rtnl_link_ops: Rtnl_link_ops 1581 * 1582 * @gso_max_size: Maximum size of generic segmentation offload 1583 * @gso_max_segs: Maximum number of segments that can be passed to the 1584 * NIC for GSO 1585 * 1586 * @dcbnl_ops: Data Center Bridging netlink ops 1587 * @num_tc: Number of traffic classes in the net device 1588 * @tc_to_txq: XXX: need comments on this one 1589 * @prio_tc_map XXX: need comments on this one 1590 * 1591 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1592 * 1593 * @priomap: XXX: need comments on this one 1594 * @phydev: Physical device may attach itself 1595 * for hardware timestamping 1596 * 1597 * @qdisc_tx_busylock: XXX: need comments on this one 1598 * 1599 * @proto_down: protocol port state information can be sent to the 1600 * switch driver and used to set the phys state of the 1601 * switch port. 1602 * 1603 * FIXME: cleanup struct net_device such that network protocol info 1604 * moves out. 1605 */ 1606 1607 struct net_device { 1608 char name[IFNAMSIZ]; 1609 struct hlist_node name_hlist; 1610 char *ifalias; 1611 /* 1612 * I/O specific fields 1613 * FIXME: Merge these and struct ifmap into one 1614 */ 1615 unsigned long mem_end; 1616 unsigned long mem_start; 1617 unsigned long base_addr; 1618 int irq; 1619 1620 atomic_t carrier_changes; 1621 1622 /* 1623 * Some hardware also needs these fields (state,dev_list, 1624 * napi_list,unreg_list,close_list) but they are not 1625 * part of the usual set specified in Space.c. 1626 */ 1627 1628 unsigned long state; 1629 1630 struct list_head dev_list; 1631 struct list_head napi_list; 1632 struct list_head unreg_list; 1633 struct list_head close_list; 1634 struct list_head ptype_all; 1635 struct list_head ptype_specific; 1636 1637 struct { 1638 struct list_head upper; 1639 struct list_head lower; 1640 } adj_list; 1641 1642 struct { 1643 struct list_head upper; 1644 struct list_head lower; 1645 } all_adj_list; 1646 1647 netdev_features_t features; 1648 netdev_features_t hw_features; 1649 netdev_features_t wanted_features; 1650 netdev_features_t vlan_features; 1651 netdev_features_t hw_enc_features; 1652 netdev_features_t mpls_features; 1653 netdev_features_t gso_partial_features; 1654 1655 int ifindex; 1656 int group; 1657 1658 struct net_device_stats stats; 1659 1660 atomic_long_t rx_dropped; 1661 atomic_long_t tx_dropped; 1662 atomic_long_t rx_nohandler; 1663 1664 #ifdef CONFIG_WIRELESS_EXT 1665 const struct iw_handler_def *wireless_handlers; 1666 struct iw_public_data *wireless_data; 1667 #endif 1668 const struct net_device_ops *netdev_ops; 1669 const struct ethtool_ops *ethtool_ops; 1670 #ifdef CONFIG_NET_SWITCHDEV 1671 const struct switchdev_ops *switchdev_ops; 1672 #endif 1673 #ifdef CONFIG_NET_L3_MASTER_DEV 1674 const struct l3mdev_ops *l3mdev_ops; 1675 #endif 1676 1677 const struct header_ops *header_ops; 1678 1679 unsigned int flags; 1680 unsigned int priv_flags; 1681 1682 unsigned short gflags; 1683 unsigned short padded; 1684 1685 unsigned char operstate; 1686 unsigned char link_mode; 1687 1688 unsigned char if_port; 1689 unsigned char dma; 1690 1691 unsigned int mtu; 1692 unsigned short type; 1693 unsigned short hard_header_len; 1694 1695 unsigned short needed_headroom; 1696 unsigned short needed_tailroom; 1697 1698 /* Interface address info. */ 1699 unsigned char perm_addr[MAX_ADDR_LEN]; 1700 unsigned char addr_assign_type; 1701 unsigned char addr_len; 1702 unsigned short neigh_priv_len; 1703 unsigned short dev_id; 1704 unsigned short dev_port; 1705 spinlock_t addr_list_lock; 1706 unsigned char name_assign_type; 1707 bool uc_promisc; 1708 struct netdev_hw_addr_list uc; 1709 struct netdev_hw_addr_list mc; 1710 struct netdev_hw_addr_list dev_addrs; 1711 1712 #ifdef CONFIG_SYSFS 1713 struct kset *queues_kset; 1714 #endif 1715 unsigned int promiscuity; 1716 unsigned int allmulti; 1717 1718 1719 /* Protocol-specific pointers */ 1720 1721 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1722 struct vlan_info __rcu *vlan_info; 1723 #endif 1724 #if IS_ENABLED(CONFIG_NET_DSA) 1725 struct dsa_switch_tree *dsa_ptr; 1726 #endif 1727 #if IS_ENABLED(CONFIG_TIPC) 1728 struct tipc_bearer __rcu *tipc_ptr; 1729 #endif 1730 void *atalk_ptr; 1731 struct in_device __rcu *ip_ptr; 1732 struct dn_dev __rcu *dn_ptr; 1733 struct inet6_dev __rcu *ip6_ptr; 1734 void *ax25_ptr; 1735 struct wireless_dev *ieee80211_ptr; 1736 struct wpan_dev *ieee802154_ptr; 1737 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1738 struct mpls_dev __rcu *mpls_ptr; 1739 #endif 1740 1741 /* 1742 * Cache lines mostly used on receive path (including eth_type_trans()) 1743 */ 1744 unsigned long last_rx; 1745 1746 /* Interface address info used in eth_type_trans() */ 1747 unsigned char *dev_addr; 1748 1749 #ifdef CONFIG_SYSFS 1750 struct netdev_rx_queue *_rx; 1751 1752 unsigned int num_rx_queues; 1753 unsigned int real_num_rx_queues; 1754 #endif 1755 1756 unsigned long gro_flush_timeout; 1757 rx_handler_func_t __rcu *rx_handler; 1758 void __rcu *rx_handler_data; 1759 1760 #ifdef CONFIG_NET_CLS_ACT 1761 struct tcf_proto __rcu *ingress_cl_list; 1762 #endif 1763 struct netdev_queue __rcu *ingress_queue; 1764 #ifdef CONFIG_NETFILTER_INGRESS 1765 struct list_head nf_hooks_ingress; 1766 #endif 1767 1768 unsigned char broadcast[MAX_ADDR_LEN]; 1769 #ifdef CONFIG_RFS_ACCEL 1770 struct cpu_rmap *rx_cpu_rmap; 1771 #endif 1772 struct hlist_node index_hlist; 1773 1774 /* 1775 * Cache lines mostly used on transmit path 1776 */ 1777 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1778 unsigned int num_tx_queues; 1779 unsigned int real_num_tx_queues; 1780 struct Qdisc *qdisc; 1781 unsigned long tx_queue_len; 1782 spinlock_t tx_global_lock; 1783 int watchdog_timeo; 1784 1785 #ifdef CONFIG_XPS 1786 struct xps_dev_maps __rcu *xps_maps; 1787 #endif 1788 #ifdef CONFIG_NET_CLS_ACT 1789 struct tcf_proto __rcu *egress_cl_list; 1790 #endif 1791 #ifdef CONFIG_NET_SWITCHDEV 1792 u32 offload_fwd_mark; 1793 #endif 1794 1795 /* These may be needed for future network-power-down code. */ 1796 struct timer_list watchdog_timer; 1797 1798 int __percpu *pcpu_refcnt; 1799 struct list_head todo_list; 1800 1801 struct list_head link_watch_list; 1802 1803 enum { NETREG_UNINITIALIZED=0, 1804 NETREG_REGISTERED, /* completed register_netdevice */ 1805 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1806 NETREG_UNREGISTERED, /* completed unregister todo */ 1807 NETREG_RELEASED, /* called free_netdev */ 1808 NETREG_DUMMY, /* dummy device for NAPI poll */ 1809 } reg_state:8; 1810 1811 bool dismantle; 1812 1813 enum { 1814 RTNL_LINK_INITIALIZED, 1815 RTNL_LINK_INITIALIZING, 1816 } rtnl_link_state:16; 1817 1818 void (*destructor)(struct net_device *dev); 1819 1820 #ifdef CONFIG_NETPOLL 1821 struct netpoll_info __rcu *npinfo; 1822 #endif 1823 1824 possible_net_t nd_net; 1825 1826 /* mid-layer private */ 1827 union { 1828 void *ml_priv; 1829 struct pcpu_lstats __percpu *lstats; 1830 struct pcpu_sw_netstats __percpu *tstats; 1831 struct pcpu_dstats __percpu *dstats; 1832 struct pcpu_vstats __percpu *vstats; 1833 }; 1834 1835 struct garp_port __rcu *garp_port; 1836 struct mrp_port __rcu *mrp_port; 1837 1838 struct device dev; 1839 const struct attribute_group *sysfs_groups[4]; 1840 const struct attribute_group *sysfs_rx_queue_group; 1841 1842 const struct rtnl_link_ops *rtnl_link_ops; 1843 1844 /* for setting kernel sock attribute on TCP connection setup */ 1845 #define GSO_MAX_SIZE 65536 1846 unsigned int gso_max_size; 1847 #define GSO_MAX_SEGS 65535 1848 u16 gso_max_segs; 1849 1850 #ifdef CONFIG_DCB 1851 const struct dcbnl_rtnl_ops *dcbnl_ops; 1852 #endif 1853 u8 num_tc; 1854 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1855 u8 prio_tc_map[TC_BITMASK + 1]; 1856 1857 #if IS_ENABLED(CONFIG_FCOE) 1858 unsigned int fcoe_ddp_xid; 1859 #endif 1860 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1861 struct netprio_map __rcu *priomap; 1862 #endif 1863 struct phy_device *phydev; 1864 struct lock_class_key *qdisc_tx_busylock; 1865 bool proto_down; 1866 }; 1867 #define to_net_dev(d) container_of(d, struct net_device, dev) 1868 1869 #define NETDEV_ALIGN 32 1870 1871 static inline 1872 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1873 { 1874 return dev->prio_tc_map[prio & TC_BITMASK]; 1875 } 1876 1877 static inline 1878 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1879 { 1880 if (tc >= dev->num_tc) 1881 return -EINVAL; 1882 1883 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1884 return 0; 1885 } 1886 1887 static inline 1888 void netdev_reset_tc(struct net_device *dev) 1889 { 1890 dev->num_tc = 0; 1891 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1892 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1893 } 1894 1895 static inline 1896 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1897 { 1898 if (tc >= dev->num_tc) 1899 return -EINVAL; 1900 1901 dev->tc_to_txq[tc].count = count; 1902 dev->tc_to_txq[tc].offset = offset; 1903 return 0; 1904 } 1905 1906 static inline 1907 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1908 { 1909 if (num_tc > TC_MAX_QUEUE) 1910 return -EINVAL; 1911 1912 dev->num_tc = num_tc; 1913 return 0; 1914 } 1915 1916 static inline 1917 int netdev_get_num_tc(struct net_device *dev) 1918 { 1919 return dev->num_tc; 1920 } 1921 1922 static inline 1923 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1924 unsigned int index) 1925 { 1926 return &dev->_tx[index]; 1927 } 1928 1929 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1930 const struct sk_buff *skb) 1931 { 1932 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1933 } 1934 1935 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1936 void (*f)(struct net_device *, 1937 struct netdev_queue *, 1938 void *), 1939 void *arg) 1940 { 1941 unsigned int i; 1942 1943 for (i = 0; i < dev->num_tx_queues; i++) 1944 f(dev, &dev->_tx[i], arg); 1945 } 1946 1947 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1948 struct sk_buff *skb, 1949 void *accel_priv); 1950 1951 /* returns the headroom that the master device needs to take in account 1952 * when forwarding to this dev 1953 */ 1954 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1955 { 1956 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1957 } 1958 1959 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1960 { 1961 if (dev->netdev_ops->ndo_set_rx_headroom) 1962 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1963 } 1964 1965 /* set the device rx headroom to the dev's default */ 1966 static inline void netdev_reset_rx_headroom(struct net_device *dev) 1967 { 1968 netdev_set_rx_headroom(dev, -1); 1969 } 1970 1971 /* 1972 * Net namespace inlines 1973 */ 1974 static inline 1975 struct net *dev_net(const struct net_device *dev) 1976 { 1977 return read_pnet(&dev->nd_net); 1978 } 1979 1980 static inline 1981 void dev_net_set(struct net_device *dev, struct net *net) 1982 { 1983 write_pnet(&dev->nd_net, net); 1984 } 1985 1986 static inline bool netdev_uses_dsa(struct net_device *dev) 1987 { 1988 #if IS_ENABLED(CONFIG_NET_DSA) 1989 if (dev->dsa_ptr != NULL) 1990 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1991 #endif 1992 return false; 1993 } 1994 1995 /** 1996 * netdev_priv - access network device private data 1997 * @dev: network device 1998 * 1999 * Get network device private data 2000 */ 2001 static inline void *netdev_priv(const struct net_device *dev) 2002 { 2003 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2004 } 2005 2006 /* Set the sysfs physical device reference for the network logical device 2007 * if set prior to registration will cause a symlink during initialization. 2008 */ 2009 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2010 2011 /* Set the sysfs device type for the network logical device to allow 2012 * fine-grained identification of different network device types. For 2013 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2014 */ 2015 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2016 2017 /* Default NAPI poll() weight 2018 * Device drivers are strongly advised to not use bigger value 2019 */ 2020 #define NAPI_POLL_WEIGHT 64 2021 2022 /** 2023 * netif_napi_add - initialize a NAPI context 2024 * @dev: network device 2025 * @napi: NAPI context 2026 * @poll: polling function 2027 * @weight: default weight 2028 * 2029 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2030 * *any* of the other NAPI-related functions. 2031 */ 2032 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2033 int (*poll)(struct napi_struct *, int), int weight); 2034 2035 /** 2036 * netif_tx_napi_add - initialize a NAPI context 2037 * @dev: network device 2038 * @napi: NAPI context 2039 * @poll: polling function 2040 * @weight: default weight 2041 * 2042 * This variant of netif_napi_add() should be used from drivers using NAPI 2043 * to exclusively poll a TX queue. 2044 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2045 */ 2046 static inline void netif_tx_napi_add(struct net_device *dev, 2047 struct napi_struct *napi, 2048 int (*poll)(struct napi_struct *, int), 2049 int weight) 2050 { 2051 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2052 netif_napi_add(dev, napi, poll, weight); 2053 } 2054 2055 /** 2056 * netif_napi_del - remove a NAPI context 2057 * @napi: NAPI context 2058 * 2059 * netif_napi_del() removes a NAPI context from the network device NAPI list 2060 */ 2061 void netif_napi_del(struct napi_struct *napi); 2062 2063 struct napi_gro_cb { 2064 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2065 void *frag0; 2066 2067 /* Length of frag0. */ 2068 unsigned int frag0_len; 2069 2070 /* This indicates where we are processing relative to skb->data. */ 2071 int data_offset; 2072 2073 /* This is non-zero if the packet cannot be merged with the new skb. */ 2074 u16 flush; 2075 2076 /* Save the IP ID here and check when we get to the transport layer */ 2077 u16 flush_id; 2078 2079 /* Number of segments aggregated. */ 2080 u16 count; 2081 2082 /* Start offset for remote checksum offload */ 2083 u16 gro_remcsum_start; 2084 2085 /* jiffies when first packet was created/queued */ 2086 unsigned long age; 2087 2088 /* Used in ipv6_gro_receive() and foo-over-udp */ 2089 u16 proto; 2090 2091 /* This is non-zero if the packet may be of the same flow. */ 2092 u8 same_flow:1; 2093 2094 /* Used in tunnel GRO receive */ 2095 u8 encap_mark:1; 2096 2097 /* GRO checksum is valid */ 2098 u8 csum_valid:1; 2099 2100 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2101 u8 csum_cnt:3; 2102 2103 /* Free the skb? */ 2104 u8 free:2; 2105 #define NAPI_GRO_FREE 1 2106 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2107 2108 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2109 u8 is_ipv6:1; 2110 2111 /* Used in GRE, set in fou/gue_gro_receive */ 2112 u8 is_fou:1; 2113 2114 /* Used to determine if flush_id can be ignored */ 2115 u8 is_atomic:1; 2116 2117 /* 5 bit hole */ 2118 2119 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2120 __wsum csum; 2121 2122 /* used in skb_gro_receive() slow path */ 2123 struct sk_buff *last; 2124 }; 2125 2126 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2127 2128 struct packet_type { 2129 __be16 type; /* This is really htons(ether_type). */ 2130 struct net_device *dev; /* NULL is wildcarded here */ 2131 int (*func) (struct sk_buff *, 2132 struct net_device *, 2133 struct packet_type *, 2134 struct net_device *); 2135 bool (*id_match)(struct packet_type *ptype, 2136 struct sock *sk); 2137 void *af_packet_priv; 2138 struct list_head list; 2139 }; 2140 2141 struct offload_callbacks { 2142 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2143 netdev_features_t features); 2144 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2145 struct sk_buff *skb); 2146 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2147 }; 2148 2149 struct packet_offload { 2150 __be16 type; /* This is really htons(ether_type). */ 2151 u16 priority; 2152 struct offload_callbacks callbacks; 2153 struct list_head list; 2154 }; 2155 2156 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2157 struct pcpu_sw_netstats { 2158 u64 rx_packets; 2159 u64 rx_bytes; 2160 u64 tx_packets; 2161 u64 tx_bytes; 2162 struct u64_stats_sync syncp; 2163 }; 2164 2165 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2166 ({ \ 2167 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2168 if (pcpu_stats) { \ 2169 int __cpu; \ 2170 for_each_possible_cpu(__cpu) { \ 2171 typeof(type) *stat; \ 2172 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2173 u64_stats_init(&stat->syncp); \ 2174 } \ 2175 } \ 2176 pcpu_stats; \ 2177 }) 2178 2179 #define netdev_alloc_pcpu_stats(type) \ 2180 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2181 2182 enum netdev_lag_tx_type { 2183 NETDEV_LAG_TX_TYPE_UNKNOWN, 2184 NETDEV_LAG_TX_TYPE_RANDOM, 2185 NETDEV_LAG_TX_TYPE_BROADCAST, 2186 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2187 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2188 NETDEV_LAG_TX_TYPE_HASH, 2189 }; 2190 2191 struct netdev_lag_upper_info { 2192 enum netdev_lag_tx_type tx_type; 2193 }; 2194 2195 struct netdev_lag_lower_state_info { 2196 u8 link_up : 1, 2197 tx_enabled : 1; 2198 }; 2199 2200 #include <linux/notifier.h> 2201 2202 /* netdevice notifier chain. Please remember to update the rtnetlink 2203 * notification exclusion list in rtnetlink_event() when adding new 2204 * types. 2205 */ 2206 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2207 #define NETDEV_DOWN 0x0002 2208 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2209 detected a hardware crash and restarted 2210 - we can use this eg to kick tcp sessions 2211 once done */ 2212 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2213 #define NETDEV_REGISTER 0x0005 2214 #define NETDEV_UNREGISTER 0x0006 2215 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2216 #define NETDEV_CHANGEADDR 0x0008 2217 #define NETDEV_GOING_DOWN 0x0009 2218 #define NETDEV_CHANGENAME 0x000A 2219 #define NETDEV_FEAT_CHANGE 0x000B 2220 #define NETDEV_BONDING_FAILOVER 0x000C 2221 #define NETDEV_PRE_UP 0x000D 2222 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2223 #define NETDEV_POST_TYPE_CHANGE 0x000F 2224 #define NETDEV_POST_INIT 0x0010 2225 #define NETDEV_UNREGISTER_FINAL 0x0011 2226 #define NETDEV_RELEASE 0x0012 2227 #define NETDEV_NOTIFY_PEERS 0x0013 2228 #define NETDEV_JOIN 0x0014 2229 #define NETDEV_CHANGEUPPER 0x0015 2230 #define NETDEV_RESEND_IGMP 0x0016 2231 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2232 #define NETDEV_CHANGEINFODATA 0x0018 2233 #define NETDEV_BONDING_INFO 0x0019 2234 #define NETDEV_PRECHANGEUPPER 0x001A 2235 #define NETDEV_CHANGELOWERSTATE 0x001B 2236 #define NETDEV_OFFLOAD_PUSH_VXLAN 0x001C 2237 #define NETDEV_OFFLOAD_PUSH_GENEVE 0x001D 2238 2239 int register_netdevice_notifier(struct notifier_block *nb); 2240 int unregister_netdevice_notifier(struct notifier_block *nb); 2241 2242 struct netdev_notifier_info { 2243 struct net_device *dev; 2244 }; 2245 2246 struct netdev_notifier_change_info { 2247 struct netdev_notifier_info info; /* must be first */ 2248 unsigned int flags_changed; 2249 }; 2250 2251 struct netdev_notifier_changeupper_info { 2252 struct netdev_notifier_info info; /* must be first */ 2253 struct net_device *upper_dev; /* new upper dev */ 2254 bool master; /* is upper dev master */ 2255 bool linking; /* is the notification for link or unlink */ 2256 void *upper_info; /* upper dev info */ 2257 }; 2258 2259 struct netdev_notifier_changelowerstate_info { 2260 struct netdev_notifier_info info; /* must be first */ 2261 void *lower_state_info; /* is lower dev state */ 2262 }; 2263 2264 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2265 struct net_device *dev) 2266 { 2267 info->dev = dev; 2268 } 2269 2270 static inline struct net_device * 2271 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2272 { 2273 return info->dev; 2274 } 2275 2276 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2277 2278 2279 extern rwlock_t dev_base_lock; /* Device list lock */ 2280 2281 #define for_each_netdev(net, d) \ 2282 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2283 #define for_each_netdev_reverse(net, d) \ 2284 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2285 #define for_each_netdev_rcu(net, d) \ 2286 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2287 #define for_each_netdev_safe(net, d, n) \ 2288 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2289 #define for_each_netdev_continue(net, d) \ 2290 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2291 #define for_each_netdev_continue_rcu(net, d) \ 2292 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2293 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2294 for_each_netdev_rcu(&init_net, slave) \ 2295 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2296 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2297 2298 static inline struct net_device *next_net_device(struct net_device *dev) 2299 { 2300 struct list_head *lh; 2301 struct net *net; 2302 2303 net = dev_net(dev); 2304 lh = dev->dev_list.next; 2305 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2306 } 2307 2308 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2309 { 2310 struct list_head *lh; 2311 struct net *net; 2312 2313 net = dev_net(dev); 2314 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2315 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2316 } 2317 2318 static inline struct net_device *first_net_device(struct net *net) 2319 { 2320 return list_empty(&net->dev_base_head) ? NULL : 2321 net_device_entry(net->dev_base_head.next); 2322 } 2323 2324 static inline struct net_device *first_net_device_rcu(struct net *net) 2325 { 2326 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2327 2328 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2329 } 2330 2331 int netdev_boot_setup_check(struct net_device *dev); 2332 unsigned long netdev_boot_base(const char *prefix, int unit); 2333 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2334 const char *hwaddr); 2335 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2336 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2337 void dev_add_pack(struct packet_type *pt); 2338 void dev_remove_pack(struct packet_type *pt); 2339 void __dev_remove_pack(struct packet_type *pt); 2340 void dev_add_offload(struct packet_offload *po); 2341 void dev_remove_offload(struct packet_offload *po); 2342 2343 int dev_get_iflink(const struct net_device *dev); 2344 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2345 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2346 unsigned short mask); 2347 struct net_device *dev_get_by_name(struct net *net, const char *name); 2348 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2349 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2350 int dev_alloc_name(struct net_device *dev, const char *name); 2351 int dev_open(struct net_device *dev); 2352 int dev_close(struct net_device *dev); 2353 int dev_close_many(struct list_head *head, bool unlink); 2354 void dev_disable_lro(struct net_device *dev); 2355 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2356 int dev_queue_xmit(struct sk_buff *skb); 2357 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2358 int register_netdevice(struct net_device *dev); 2359 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2360 void unregister_netdevice_many(struct list_head *head); 2361 static inline void unregister_netdevice(struct net_device *dev) 2362 { 2363 unregister_netdevice_queue(dev, NULL); 2364 } 2365 2366 int netdev_refcnt_read(const struct net_device *dev); 2367 void free_netdev(struct net_device *dev); 2368 void netdev_freemem(struct net_device *dev); 2369 void synchronize_net(void); 2370 int init_dummy_netdev(struct net_device *dev); 2371 2372 DECLARE_PER_CPU(int, xmit_recursion); 2373 static inline int dev_recursion_level(void) 2374 { 2375 return this_cpu_read(xmit_recursion); 2376 } 2377 2378 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2379 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2380 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2381 int netdev_get_name(struct net *net, char *name, int ifindex); 2382 int dev_restart(struct net_device *dev); 2383 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2384 2385 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2386 { 2387 return NAPI_GRO_CB(skb)->data_offset; 2388 } 2389 2390 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2391 { 2392 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2393 } 2394 2395 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2396 { 2397 NAPI_GRO_CB(skb)->data_offset += len; 2398 } 2399 2400 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2401 unsigned int offset) 2402 { 2403 return NAPI_GRO_CB(skb)->frag0 + offset; 2404 } 2405 2406 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2407 { 2408 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2409 } 2410 2411 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2412 unsigned int offset) 2413 { 2414 if (!pskb_may_pull(skb, hlen)) 2415 return NULL; 2416 2417 NAPI_GRO_CB(skb)->frag0 = NULL; 2418 NAPI_GRO_CB(skb)->frag0_len = 0; 2419 return skb->data + offset; 2420 } 2421 2422 static inline void *skb_gro_network_header(struct sk_buff *skb) 2423 { 2424 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2425 skb_network_offset(skb); 2426 } 2427 2428 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2429 const void *start, unsigned int len) 2430 { 2431 if (NAPI_GRO_CB(skb)->csum_valid) 2432 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2433 csum_partial(start, len, 0)); 2434 } 2435 2436 /* GRO checksum functions. These are logical equivalents of the normal 2437 * checksum functions (in skbuff.h) except that they operate on the GRO 2438 * offsets and fields in sk_buff. 2439 */ 2440 2441 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2442 2443 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2444 { 2445 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2446 } 2447 2448 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2449 bool zero_okay, 2450 __sum16 check) 2451 { 2452 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2453 skb_checksum_start_offset(skb) < 2454 skb_gro_offset(skb)) && 2455 !skb_at_gro_remcsum_start(skb) && 2456 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2457 (!zero_okay || check)); 2458 } 2459 2460 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2461 __wsum psum) 2462 { 2463 if (NAPI_GRO_CB(skb)->csum_valid && 2464 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2465 return 0; 2466 2467 NAPI_GRO_CB(skb)->csum = psum; 2468 2469 return __skb_gro_checksum_complete(skb); 2470 } 2471 2472 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2473 { 2474 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2475 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2476 NAPI_GRO_CB(skb)->csum_cnt--; 2477 } else { 2478 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2479 * verified a new top level checksum or an encapsulated one 2480 * during GRO. This saves work if we fallback to normal path. 2481 */ 2482 __skb_incr_checksum_unnecessary(skb); 2483 } 2484 } 2485 2486 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2487 compute_pseudo) \ 2488 ({ \ 2489 __sum16 __ret = 0; \ 2490 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2491 __ret = __skb_gro_checksum_validate_complete(skb, \ 2492 compute_pseudo(skb, proto)); \ 2493 if (__ret) \ 2494 __skb_mark_checksum_bad(skb); \ 2495 else \ 2496 skb_gro_incr_csum_unnecessary(skb); \ 2497 __ret; \ 2498 }) 2499 2500 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2501 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2502 2503 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2504 compute_pseudo) \ 2505 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2506 2507 #define skb_gro_checksum_simple_validate(skb) \ 2508 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2509 2510 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2511 { 2512 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2513 !NAPI_GRO_CB(skb)->csum_valid); 2514 } 2515 2516 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2517 __sum16 check, __wsum pseudo) 2518 { 2519 NAPI_GRO_CB(skb)->csum = ~pseudo; 2520 NAPI_GRO_CB(skb)->csum_valid = 1; 2521 } 2522 2523 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2524 do { \ 2525 if (__skb_gro_checksum_convert_check(skb)) \ 2526 __skb_gro_checksum_convert(skb, check, \ 2527 compute_pseudo(skb, proto)); \ 2528 } while (0) 2529 2530 struct gro_remcsum { 2531 int offset; 2532 __wsum delta; 2533 }; 2534 2535 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2536 { 2537 grc->offset = 0; 2538 grc->delta = 0; 2539 } 2540 2541 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2542 unsigned int off, size_t hdrlen, 2543 int start, int offset, 2544 struct gro_remcsum *grc, 2545 bool nopartial) 2546 { 2547 __wsum delta; 2548 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2549 2550 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2551 2552 if (!nopartial) { 2553 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2554 return ptr; 2555 } 2556 2557 ptr = skb_gro_header_fast(skb, off); 2558 if (skb_gro_header_hard(skb, off + plen)) { 2559 ptr = skb_gro_header_slow(skb, off + plen, off); 2560 if (!ptr) 2561 return NULL; 2562 } 2563 2564 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2565 start, offset); 2566 2567 /* Adjust skb->csum since we changed the packet */ 2568 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2569 2570 grc->offset = off + hdrlen + offset; 2571 grc->delta = delta; 2572 2573 return ptr; 2574 } 2575 2576 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2577 struct gro_remcsum *grc) 2578 { 2579 void *ptr; 2580 size_t plen = grc->offset + sizeof(u16); 2581 2582 if (!grc->delta) 2583 return; 2584 2585 ptr = skb_gro_header_fast(skb, grc->offset); 2586 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2587 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2588 if (!ptr) 2589 return; 2590 } 2591 2592 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2593 } 2594 2595 struct skb_csum_offl_spec { 2596 __u16 ipv4_okay:1, 2597 ipv6_okay:1, 2598 encap_okay:1, 2599 ip_options_okay:1, 2600 ext_hdrs_okay:1, 2601 tcp_okay:1, 2602 udp_okay:1, 2603 sctp_okay:1, 2604 vlan_okay:1, 2605 no_encapped_ipv6:1, 2606 no_not_encapped:1; 2607 }; 2608 2609 bool __skb_csum_offload_chk(struct sk_buff *skb, 2610 const struct skb_csum_offl_spec *spec, 2611 bool *csum_encapped, 2612 bool csum_help); 2613 2614 static inline bool skb_csum_offload_chk(struct sk_buff *skb, 2615 const struct skb_csum_offl_spec *spec, 2616 bool *csum_encapped, 2617 bool csum_help) 2618 { 2619 if (skb->ip_summed != CHECKSUM_PARTIAL) 2620 return false; 2621 2622 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help); 2623 } 2624 2625 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb, 2626 const struct skb_csum_offl_spec *spec) 2627 { 2628 bool csum_encapped; 2629 2630 return skb_csum_offload_chk(skb, spec, &csum_encapped, true); 2631 } 2632 2633 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb) 2634 { 2635 static const struct skb_csum_offl_spec csum_offl_spec = { 2636 .ipv4_okay = 1, 2637 .ip_options_okay = 1, 2638 .ipv6_okay = 1, 2639 .vlan_okay = 1, 2640 .tcp_okay = 1, 2641 .udp_okay = 1, 2642 }; 2643 2644 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2645 } 2646 2647 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb) 2648 { 2649 static const struct skb_csum_offl_spec csum_offl_spec = { 2650 .ipv4_okay = 1, 2651 .ip_options_okay = 1, 2652 .tcp_okay = 1, 2653 .udp_okay = 1, 2654 .vlan_okay = 1, 2655 }; 2656 2657 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2658 } 2659 2660 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2661 unsigned short type, 2662 const void *daddr, const void *saddr, 2663 unsigned int len) 2664 { 2665 if (!dev->header_ops || !dev->header_ops->create) 2666 return 0; 2667 2668 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2669 } 2670 2671 static inline int dev_parse_header(const struct sk_buff *skb, 2672 unsigned char *haddr) 2673 { 2674 const struct net_device *dev = skb->dev; 2675 2676 if (!dev->header_ops || !dev->header_ops->parse) 2677 return 0; 2678 return dev->header_ops->parse(skb, haddr); 2679 } 2680 2681 /* ll_header must have at least hard_header_len allocated */ 2682 static inline bool dev_validate_header(const struct net_device *dev, 2683 char *ll_header, int len) 2684 { 2685 if (likely(len >= dev->hard_header_len)) 2686 return true; 2687 2688 if (capable(CAP_SYS_RAWIO)) { 2689 memset(ll_header + len, 0, dev->hard_header_len - len); 2690 return true; 2691 } 2692 2693 if (dev->header_ops && dev->header_ops->validate) 2694 return dev->header_ops->validate(ll_header, len); 2695 2696 return false; 2697 } 2698 2699 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2700 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2701 static inline int unregister_gifconf(unsigned int family) 2702 { 2703 return register_gifconf(family, NULL); 2704 } 2705 2706 #ifdef CONFIG_NET_FLOW_LIMIT 2707 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2708 struct sd_flow_limit { 2709 u64 count; 2710 unsigned int num_buckets; 2711 unsigned int history_head; 2712 u16 history[FLOW_LIMIT_HISTORY]; 2713 u8 buckets[]; 2714 }; 2715 2716 extern int netdev_flow_limit_table_len; 2717 #endif /* CONFIG_NET_FLOW_LIMIT */ 2718 2719 /* 2720 * Incoming packets are placed on per-CPU queues 2721 */ 2722 struct softnet_data { 2723 struct list_head poll_list; 2724 struct sk_buff_head process_queue; 2725 2726 /* stats */ 2727 unsigned int processed; 2728 unsigned int time_squeeze; 2729 unsigned int received_rps; 2730 #ifdef CONFIG_RPS 2731 struct softnet_data *rps_ipi_list; 2732 #endif 2733 #ifdef CONFIG_NET_FLOW_LIMIT 2734 struct sd_flow_limit __rcu *flow_limit; 2735 #endif 2736 struct Qdisc *output_queue; 2737 struct Qdisc **output_queue_tailp; 2738 struct sk_buff *completion_queue; 2739 2740 #ifdef CONFIG_RPS 2741 /* input_queue_head should be written by cpu owning this struct, 2742 * and only read by other cpus. Worth using a cache line. 2743 */ 2744 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2745 2746 /* Elements below can be accessed between CPUs for RPS/RFS */ 2747 struct call_single_data csd ____cacheline_aligned_in_smp; 2748 struct softnet_data *rps_ipi_next; 2749 unsigned int cpu; 2750 unsigned int input_queue_tail; 2751 #endif 2752 unsigned int dropped; 2753 struct sk_buff_head input_pkt_queue; 2754 struct napi_struct backlog; 2755 2756 }; 2757 2758 static inline void input_queue_head_incr(struct softnet_data *sd) 2759 { 2760 #ifdef CONFIG_RPS 2761 sd->input_queue_head++; 2762 #endif 2763 } 2764 2765 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2766 unsigned int *qtail) 2767 { 2768 #ifdef CONFIG_RPS 2769 *qtail = ++sd->input_queue_tail; 2770 #endif 2771 } 2772 2773 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2774 2775 void __netif_schedule(struct Qdisc *q); 2776 void netif_schedule_queue(struct netdev_queue *txq); 2777 2778 static inline void netif_tx_schedule_all(struct net_device *dev) 2779 { 2780 unsigned int i; 2781 2782 for (i = 0; i < dev->num_tx_queues; i++) 2783 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2784 } 2785 2786 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2787 { 2788 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2789 } 2790 2791 /** 2792 * netif_start_queue - allow transmit 2793 * @dev: network device 2794 * 2795 * Allow upper layers to call the device hard_start_xmit routine. 2796 */ 2797 static inline void netif_start_queue(struct net_device *dev) 2798 { 2799 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2800 } 2801 2802 static inline void netif_tx_start_all_queues(struct net_device *dev) 2803 { 2804 unsigned int i; 2805 2806 for (i = 0; i < dev->num_tx_queues; i++) { 2807 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2808 netif_tx_start_queue(txq); 2809 } 2810 } 2811 2812 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2813 2814 /** 2815 * netif_wake_queue - restart transmit 2816 * @dev: network device 2817 * 2818 * Allow upper layers to call the device hard_start_xmit routine. 2819 * Used for flow control when transmit resources are available. 2820 */ 2821 static inline void netif_wake_queue(struct net_device *dev) 2822 { 2823 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2824 } 2825 2826 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2827 { 2828 unsigned int i; 2829 2830 for (i = 0; i < dev->num_tx_queues; i++) { 2831 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2832 netif_tx_wake_queue(txq); 2833 } 2834 } 2835 2836 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2837 { 2838 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2839 } 2840 2841 /** 2842 * netif_stop_queue - stop transmitted packets 2843 * @dev: network device 2844 * 2845 * Stop upper layers calling the device hard_start_xmit routine. 2846 * Used for flow control when transmit resources are unavailable. 2847 */ 2848 static inline void netif_stop_queue(struct net_device *dev) 2849 { 2850 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2851 } 2852 2853 void netif_tx_stop_all_queues(struct net_device *dev); 2854 2855 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2856 { 2857 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2858 } 2859 2860 /** 2861 * netif_queue_stopped - test if transmit queue is flowblocked 2862 * @dev: network device 2863 * 2864 * Test if transmit queue on device is currently unable to send. 2865 */ 2866 static inline bool netif_queue_stopped(const struct net_device *dev) 2867 { 2868 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2869 } 2870 2871 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2872 { 2873 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2874 } 2875 2876 static inline bool 2877 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2878 { 2879 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2880 } 2881 2882 static inline bool 2883 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2884 { 2885 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2886 } 2887 2888 /** 2889 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2890 * @dev_queue: pointer to transmit queue 2891 * 2892 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2893 * to give appropriate hint to the CPU. 2894 */ 2895 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2896 { 2897 #ifdef CONFIG_BQL 2898 prefetchw(&dev_queue->dql.num_queued); 2899 #endif 2900 } 2901 2902 /** 2903 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2904 * @dev_queue: pointer to transmit queue 2905 * 2906 * BQL enabled drivers might use this helper in their TX completion path, 2907 * to give appropriate hint to the CPU. 2908 */ 2909 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2910 { 2911 #ifdef CONFIG_BQL 2912 prefetchw(&dev_queue->dql.limit); 2913 #endif 2914 } 2915 2916 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2917 unsigned int bytes) 2918 { 2919 #ifdef CONFIG_BQL 2920 dql_queued(&dev_queue->dql, bytes); 2921 2922 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2923 return; 2924 2925 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2926 2927 /* 2928 * The XOFF flag must be set before checking the dql_avail below, 2929 * because in netdev_tx_completed_queue we update the dql_completed 2930 * before checking the XOFF flag. 2931 */ 2932 smp_mb(); 2933 2934 /* check again in case another CPU has just made room avail */ 2935 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2936 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2937 #endif 2938 } 2939 2940 /** 2941 * netdev_sent_queue - report the number of bytes queued to hardware 2942 * @dev: network device 2943 * @bytes: number of bytes queued to the hardware device queue 2944 * 2945 * Report the number of bytes queued for sending/completion to the network 2946 * device hardware queue. @bytes should be a good approximation and should 2947 * exactly match netdev_completed_queue() @bytes 2948 */ 2949 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2950 { 2951 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2952 } 2953 2954 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2955 unsigned int pkts, unsigned int bytes) 2956 { 2957 #ifdef CONFIG_BQL 2958 if (unlikely(!bytes)) 2959 return; 2960 2961 dql_completed(&dev_queue->dql, bytes); 2962 2963 /* 2964 * Without the memory barrier there is a small possiblity that 2965 * netdev_tx_sent_queue will miss the update and cause the queue to 2966 * be stopped forever 2967 */ 2968 smp_mb(); 2969 2970 if (dql_avail(&dev_queue->dql) < 0) 2971 return; 2972 2973 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2974 netif_schedule_queue(dev_queue); 2975 #endif 2976 } 2977 2978 /** 2979 * netdev_completed_queue - report bytes and packets completed by device 2980 * @dev: network device 2981 * @pkts: actual number of packets sent over the medium 2982 * @bytes: actual number of bytes sent over the medium 2983 * 2984 * Report the number of bytes and packets transmitted by the network device 2985 * hardware queue over the physical medium, @bytes must exactly match the 2986 * @bytes amount passed to netdev_sent_queue() 2987 */ 2988 static inline void netdev_completed_queue(struct net_device *dev, 2989 unsigned int pkts, unsigned int bytes) 2990 { 2991 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2992 } 2993 2994 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2995 { 2996 #ifdef CONFIG_BQL 2997 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2998 dql_reset(&q->dql); 2999 #endif 3000 } 3001 3002 /** 3003 * netdev_reset_queue - reset the packets and bytes count of a network device 3004 * @dev_queue: network device 3005 * 3006 * Reset the bytes and packet count of a network device and clear the 3007 * software flow control OFF bit for this network device 3008 */ 3009 static inline void netdev_reset_queue(struct net_device *dev_queue) 3010 { 3011 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3012 } 3013 3014 /** 3015 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3016 * @dev: network device 3017 * @queue_index: given tx queue index 3018 * 3019 * Returns 0 if given tx queue index >= number of device tx queues, 3020 * otherwise returns the originally passed tx queue index. 3021 */ 3022 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3023 { 3024 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3025 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3026 dev->name, queue_index, 3027 dev->real_num_tx_queues); 3028 return 0; 3029 } 3030 3031 return queue_index; 3032 } 3033 3034 /** 3035 * netif_running - test if up 3036 * @dev: network device 3037 * 3038 * Test if the device has been brought up. 3039 */ 3040 static inline bool netif_running(const struct net_device *dev) 3041 { 3042 return test_bit(__LINK_STATE_START, &dev->state); 3043 } 3044 3045 /* 3046 * Routines to manage the subqueues on a device. We only need start, 3047 * stop, and a check if it's stopped. All other device management is 3048 * done at the overall netdevice level. 3049 * Also test the device if we're multiqueue. 3050 */ 3051 3052 /** 3053 * netif_start_subqueue - allow sending packets on subqueue 3054 * @dev: network device 3055 * @queue_index: sub queue index 3056 * 3057 * Start individual transmit queue of a device with multiple transmit queues. 3058 */ 3059 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3060 { 3061 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3062 3063 netif_tx_start_queue(txq); 3064 } 3065 3066 /** 3067 * netif_stop_subqueue - stop sending packets on subqueue 3068 * @dev: network device 3069 * @queue_index: sub queue index 3070 * 3071 * Stop individual transmit queue of a device with multiple transmit queues. 3072 */ 3073 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3074 { 3075 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3076 netif_tx_stop_queue(txq); 3077 } 3078 3079 /** 3080 * netif_subqueue_stopped - test status of subqueue 3081 * @dev: network device 3082 * @queue_index: sub queue index 3083 * 3084 * Check individual transmit queue of a device with multiple transmit queues. 3085 */ 3086 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3087 u16 queue_index) 3088 { 3089 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3090 3091 return netif_tx_queue_stopped(txq); 3092 } 3093 3094 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3095 struct sk_buff *skb) 3096 { 3097 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3098 } 3099 3100 void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3101 3102 #ifdef CONFIG_XPS 3103 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3104 u16 index); 3105 #else 3106 static inline int netif_set_xps_queue(struct net_device *dev, 3107 const struct cpumask *mask, 3108 u16 index) 3109 { 3110 return 0; 3111 } 3112 #endif 3113 3114 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3115 unsigned int num_tx_queues); 3116 3117 /* 3118 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3119 * as a distribution range limit for the returned value. 3120 */ 3121 static inline u16 skb_tx_hash(const struct net_device *dev, 3122 struct sk_buff *skb) 3123 { 3124 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3125 } 3126 3127 /** 3128 * netif_is_multiqueue - test if device has multiple transmit queues 3129 * @dev: network device 3130 * 3131 * Check if device has multiple transmit queues 3132 */ 3133 static inline bool netif_is_multiqueue(const struct net_device *dev) 3134 { 3135 return dev->num_tx_queues > 1; 3136 } 3137 3138 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3139 3140 #ifdef CONFIG_SYSFS 3141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3142 #else 3143 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3144 unsigned int rxq) 3145 { 3146 return 0; 3147 } 3148 #endif 3149 3150 #ifdef CONFIG_SYSFS 3151 static inline unsigned int get_netdev_rx_queue_index( 3152 struct netdev_rx_queue *queue) 3153 { 3154 struct net_device *dev = queue->dev; 3155 int index = queue - dev->_rx; 3156 3157 BUG_ON(index >= dev->num_rx_queues); 3158 return index; 3159 } 3160 #endif 3161 3162 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3163 int netif_get_num_default_rss_queues(void); 3164 3165 enum skb_free_reason { 3166 SKB_REASON_CONSUMED, 3167 SKB_REASON_DROPPED, 3168 }; 3169 3170 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3171 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3172 3173 /* 3174 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3175 * interrupt context or with hardware interrupts being disabled. 3176 * (in_irq() || irqs_disabled()) 3177 * 3178 * We provide four helpers that can be used in following contexts : 3179 * 3180 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3181 * replacing kfree_skb(skb) 3182 * 3183 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3184 * Typically used in place of consume_skb(skb) in TX completion path 3185 * 3186 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3187 * replacing kfree_skb(skb) 3188 * 3189 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3190 * and consumed a packet. Used in place of consume_skb(skb) 3191 */ 3192 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3193 { 3194 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3195 } 3196 3197 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3198 { 3199 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3200 } 3201 3202 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3203 { 3204 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3205 } 3206 3207 static inline void dev_consume_skb_any(struct sk_buff *skb) 3208 { 3209 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3210 } 3211 3212 int netif_rx(struct sk_buff *skb); 3213 int netif_rx_ni(struct sk_buff *skb); 3214 int netif_receive_skb(struct sk_buff *skb); 3215 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3216 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3217 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3218 gro_result_t napi_gro_frags(struct napi_struct *napi); 3219 struct packet_offload *gro_find_receive_by_type(__be16 type); 3220 struct packet_offload *gro_find_complete_by_type(__be16 type); 3221 3222 static inline void napi_free_frags(struct napi_struct *napi) 3223 { 3224 kfree_skb(napi->skb); 3225 napi->skb = NULL; 3226 } 3227 3228 int netdev_rx_handler_register(struct net_device *dev, 3229 rx_handler_func_t *rx_handler, 3230 void *rx_handler_data); 3231 void netdev_rx_handler_unregister(struct net_device *dev); 3232 3233 bool dev_valid_name(const char *name); 3234 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3235 int dev_ethtool(struct net *net, struct ifreq *); 3236 unsigned int dev_get_flags(const struct net_device *); 3237 int __dev_change_flags(struct net_device *, unsigned int flags); 3238 int dev_change_flags(struct net_device *, unsigned int); 3239 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3240 unsigned int gchanges); 3241 int dev_change_name(struct net_device *, const char *); 3242 int dev_set_alias(struct net_device *, const char *, size_t); 3243 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3244 int dev_set_mtu(struct net_device *, int); 3245 void dev_set_group(struct net_device *, int); 3246 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3247 int dev_change_carrier(struct net_device *, bool new_carrier); 3248 int dev_get_phys_port_id(struct net_device *dev, 3249 struct netdev_phys_item_id *ppid); 3250 int dev_get_phys_port_name(struct net_device *dev, 3251 char *name, size_t len); 3252 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3253 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3254 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3255 struct netdev_queue *txq, int *ret); 3256 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3257 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3258 bool is_skb_forwardable(const struct net_device *dev, 3259 const struct sk_buff *skb); 3260 3261 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3262 3263 extern int netdev_budget; 3264 3265 /* Called by rtnetlink.c:rtnl_unlock() */ 3266 void netdev_run_todo(void); 3267 3268 /** 3269 * dev_put - release reference to device 3270 * @dev: network device 3271 * 3272 * Release reference to device to allow it to be freed. 3273 */ 3274 static inline void dev_put(struct net_device *dev) 3275 { 3276 this_cpu_dec(*dev->pcpu_refcnt); 3277 } 3278 3279 /** 3280 * dev_hold - get reference to device 3281 * @dev: network device 3282 * 3283 * Hold reference to device to keep it from being freed. 3284 */ 3285 static inline void dev_hold(struct net_device *dev) 3286 { 3287 this_cpu_inc(*dev->pcpu_refcnt); 3288 } 3289 3290 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3291 * and _off may be called from IRQ context, but it is caller 3292 * who is responsible for serialization of these calls. 3293 * 3294 * The name carrier is inappropriate, these functions should really be 3295 * called netif_lowerlayer_*() because they represent the state of any 3296 * kind of lower layer not just hardware media. 3297 */ 3298 3299 void linkwatch_init_dev(struct net_device *dev); 3300 void linkwatch_fire_event(struct net_device *dev); 3301 void linkwatch_forget_dev(struct net_device *dev); 3302 3303 /** 3304 * netif_carrier_ok - test if carrier present 3305 * @dev: network device 3306 * 3307 * Check if carrier is present on device 3308 */ 3309 static inline bool netif_carrier_ok(const struct net_device *dev) 3310 { 3311 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3312 } 3313 3314 unsigned long dev_trans_start(struct net_device *dev); 3315 3316 void __netdev_watchdog_up(struct net_device *dev); 3317 3318 void netif_carrier_on(struct net_device *dev); 3319 3320 void netif_carrier_off(struct net_device *dev); 3321 3322 /** 3323 * netif_dormant_on - mark device as dormant. 3324 * @dev: network device 3325 * 3326 * Mark device as dormant (as per RFC2863). 3327 * 3328 * The dormant state indicates that the relevant interface is not 3329 * actually in a condition to pass packets (i.e., it is not 'up') but is 3330 * in a "pending" state, waiting for some external event. For "on- 3331 * demand" interfaces, this new state identifies the situation where the 3332 * interface is waiting for events to place it in the up state. 3333 */ 3334 static inline void netif_dormant_on(struct net_device *dev) 3335 { 3336 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3337 linkwatch_fire_event(dev); 3338 } 3339 3340 /** 3341 * netif_dormant_off - set device as not dormant. 3342 * @dev: network device 3343 * 3344 * Device is not in dormant state. 3345 */ 3346 static inline void netif_dormant_off(struct net_device *dev) 3347 { 3348 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3349 linkwatch_fire_event(dev); 3350 } 3351 3352 /** 3353 * netif_dormant - test if carrier present 3354 * @dev: network device 3355 * 3356 * Check if carrier is present on device 3357 */ 3358 static inline bool netif_dormant(const struct net_device *dev) 3359 { 3360 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3361 } 3362 3363 3364 /** 3365 * netif_oper_up - test if device is operational 3366 * @dev: network device 3367 * 3368 * Check if carrier is operational 3369 */ 3370 static inline bool netif_oper_up(const struct net_device *dev) 3371 { 3372 return (dev->operstate == IF_OPER_UP || 3373 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3374 } 3375 3376 /** 3377 * netif_device_present - is device available or removed 3378 * @dev: network device 3379 * 3380 * Check if device has not been removed from system. 3381 */ 3382 static inline bool netif_device_present(struct net_device *dev) 3383 { 3384 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3385 } 3386 3387 void netif_device_detach(struct net_device *dev); 3388 3389 void netif_device_attach(struct net_device *dev); 3390 3391 /* 3392 * Network interface message level settings 3393 */ 3394 3395 enum { 3396 NETIF_MSG_DRV = 0x0001, 3397 NETIF_MSG_PROBE = 0x0002, 3398 NETIF_MSG_LINK = 0x0004, 3399 NETIF_MSG_TIMER = 0x0008, 3400 NETIF_MSG_IFDOWN = 0x0010, 3401 NETIF_MSG_IFUP = 0x0020, 3402 NETIF_MSG_RX_ERR = 0x0040, 3403 NETIF_MSG_TX_ERR = 0x0080, 3404 NETIF_MSG_TX_QUEUED = 0x0100, 3405 NETIF_MSG_INTR = 0x0200, 3406 NETIF_MSG_TX_DONE = 0x0400, 3407 NETIF_MSG_RX_STATUS = 0x0800, 3408 NETIF_MSG_PKTDATA = 0x1000, 3409 NETIF_MSG_HW = 0x2000, 3410 NETIF_MSG_WOL = 0x4000, 3411 }; 3412 3413 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3414 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3415 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3416 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3417 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3418 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3419 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3420 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3421 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3422 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3423 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3424 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3425 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3426 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3427 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3428 3429 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3430 { 3431 /* use default */ 3432 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3433 return default_msg_enable_bits; 3434 if (debug_value == 0) /* no output */ 3435 return 0; 3436 /* set low N bits */ 3437 return (1 << debug_value) - 1; 3438 } 3439 3440 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3441 { 3442 spin_lock(&txq->_xmit_lock); 3443 txq->xmit_lock_owner = cpu; 3444 } 3445 3446 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3447 { 3448 spin_lock_bh(&txq->_xmit_lock); 3449 txq->xmit_lock_owner = smp_processor_id(); 3450 } 3451 3452 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3453 { 3454 bool ok = spin_trylock(&txq->_xmit_lock); 3455 if (likely(ok)) 3456 txq->xmit_lock_owner = smp_processor_id(); 3457 return ok; 3458 } 3459 3460 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3461 { 3462 txq->xmit_lock_owner = -1; 3463 spin_unlock(&txq->_xmit_lock); 3464 } 3465 3466 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3467 { 3468 txq->xmit_lock_owner = -1; 3469 spin_unlock_bh(&txq->_xmit_lock); 3470 } 3471 3472 static inline void txq_trans_update(struct netdev_queue *txq) 3473 { 3474 if (txq->xmit_lock_owner != -1) 3475 txq->trans_start = jiffies; 3476 } 3477 3478 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3479 static inline void netif_trans_update(struct net_device *dev) 3480 { 3481 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3482 3483 if (txq->trans_start != jiffies) 3484 txq->trans_start = jiffies; 3485 } 3486 3487 /** 3488 * netif_tx_lock - grab network device transmit lock 3489 * @dev: network device 3490 * 3491 * Get network device transmit lock 3492 */ 3493 static inline void netif_tx_lock(struct net_device *dev) 3494 { 3495 unsigned int i; 3496 int cpu; 3497 3498 spin_lock(&dev->tx_global_lock); 3499 cpu = smp_processor_id(); 3500 for (i = 0; i < dev->num_tx_queues; i++) { 3501 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3502 3503 /* We are the only thread of execution doing a 3504 * freeze, but we have to grab the _xmit_lock in 3505 * order to synchronize with threads which are in 3506 * the ->hard_start_xmit() handler and already 3507 * checked the frozen bit. 3508 */ 3509 __netif_tx_lock(txq, cpu); 3510 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3511 __netif_tx_unlock(txq); 3512 } 3513 } 3514 3515 static inline void netif_tx_lock_bh(struct net_device *dev) 3516 { 3517 local_bh_disable(); 3518 netif_tx_lock(dev); 3519 } 3520 3521 static inline void netif_tx_unlock(struct net_device *dev) 3522 { 3523 unsigned int i; 3524 3525 for (i = 0; i < dev->num_tx_queues; i++) { 3526 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3527 3528 /* No need to grab the _xmit_lock here. If the 3529 * queue is not stopped for another reason, we 3530 * force a schedule. 3531 */ 3532 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3533 netif_schedule_queue(txq); 3534 } 3535 spin_unlock(&dev->tx_global_lock); 3536 } 3537 3538 static inline void netif_tx_unlock_bh(struct net_device *dev) 3539 { 3540 netif_tx_unlock(dev); 3541 local_bh_enable(); 3542 } 3543 3544 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3545 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3546 __netif_tx_lock(txq, cpu); \ 3547 } \ 3548 } 3549 3550 #define HARD_TX_TRYLOCK(dev, txq) \ 3551 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3552 __netif_tx_trylock(txq) : \ 3553 true ) 3554 3555 #define HARD_TX_UNLOCK(dev, txq) { \ 3556 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3557 __netif_tx_unlock(txq); \ 3558 } \ 3559 } 3560 3561 static inline void netif_tx_disable(struct net_device *dev) 3562 { 3563 unsigned int i; 3564 int cpu; 3565 3566 local_bh_disable(); 3567 cpu = smp_processor_id(); 3568 for (i = 0; i < dev->num_tx_queues; i++) { 3569 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3570 3571 __netif_tx_lock(txq, cpu); 3572 netif_tx_stop_queue(txq); 3573 __netif_tx_unlock(txq); 3574 } 3575 local_bh_enable(); 3576 } 3577 3578 static inline void netif_addr_lock(struct net_device *dev) 3579 { 3580 spin_lock(&dev->addr_list_lock); 3581 } 3582 3583 static inline void netif_addr_lock_nested(struct net_device *dev) 3584 { 3585 int subclass = SINGLE_DEPTH_NESTING; 3586 3587 if (dev->netdev_ops->ndo_get_lock_subclass) 3588 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3589 3590 spin_lock_nested(&dev->addr_list_lock, subclass); 3591 } 3592 3593 static inline void netif_addr_lock_bh(struct net_device *dev) 3594 { 3595 spin_lock_bh(&dev->addr_list_lock); 3596 } 3597 3598 static inline void netif_addr_unlock(struct net_device *dev) 3599 { 3600 spin_unlock(&dev->addr_list_lock); 3601 } 3602 3603 static inline void netif_addr_unlock_bh(struct net_device *dev) 3604 { 3605 spin_unlock_bh(&dev->addr_list_lock); 3606 } 3607 3608 /* 3609 * dev_addrs walker. Should be used only for read access. Call with 3610 * rcu_read_lock held. 3611 */ 3612 #define for_each_dev_addr(dev, ha) \ 3613 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3614 3615 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3616 3617 void ether_setup(struct net_device *dev); 3618 3619 /* Support for loadable net-drivers */ 3620 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3621 unsigned char name_assign_type, 3622 void (*setup)(struct net_device *), 3623 unsigned int txqs, unsigned int rxqs); 3624 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3625 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3626 3627 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3628 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3629 count) 3630 3631 int register_netdev(struct net_device *dev); 3632 void unregister_netdev(struct net_device *dev); 3633 3634 /* General hardware address lists handling functions */ 3635 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3636 struct netdev_hw_addr_list *from_list, int addr_len); 3637 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3638 struct netdev_hw_addr_list *from_list, int addr_len); 3639 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3640 struct net_device *dev, 3641 int (*sync)(struct net_device *, const unsigned char *), 3642 int (*unsync)(struct net_device *, 3643 const unsigned char *)); 3644 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3645 struct net_device *dev, 3646 int (*unsync)(struct net_device *, 3647 const unsigned char *)); 3648 void __hw_addr_init(struct netdev_hw_addr_list *list); 3649 3650 /* Functions used for device addresses handling */ 3651 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3652 unsigned char addr_type); 3653 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3654 unsigned char addr_type); 3655 void dev_addr_flush(struct net_device *dev); 3656 int dev_addr_init(struct net_device *dev); 3657 3658 /* Functions used for unicast addresses handling */ 3659 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3660 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3661 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3662 int dev_uc_sync(struct net_device *to, struct net_device *from); 3663 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3664 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3665 void dev_uc_flush(struct net_device *dev); 3666 void dev_uc_init(struct net_device *dev); 3667 3668 /** 3669 * __dev_uc_sync - Synchonize device's unicast list 3670 * @dev: device to sync 3671 * @sync: function to call if address should be added 3672 * @unsync: function to call if address should be removed 3673 * 3674 * Add newly added addresses to the interface, and release 3675 * addresses that have been deleted. 3676 */ 3677 static inline int __dev_uc_sync(struct net_device *dev, 3678 int (*sync)(struct net_device *, 3679 const unsigned char *), 3680 int (*unsync)(struct net_device *, 3681 const unsigned char *)) 3682 { 3683 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3684 } 3685 3686 /** 3687 * __dev_uc_unsync - Remove synchronized addresses from device 3688 * @dev: device to sync 3689 * @unsync: function to call if address should be removed 3690 * 3691 * Remove all addresses that were added to the device by dev_uc_sync(). 3692 */ 3693 static inline void __dev_uc_unsync(struct net_device *dev, 3694 int (*unsync)(struct net_device *, 3695 const unsigned char *)) 3696 { 3697 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3698 } 3699 3700 /* Functions used for multicast addresses handling */ 3701 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3702 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3703 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3704 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3705 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3706 int dev_mc_sync(struct net_device *to, struct net_device *from); 3707 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3708 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3709 void dev_mc_flush(struct net_device *dev); 3710 void dev_mc_init(struct net_device *dev); 3711 3712 /** 3713 * __dev_mc_sync - Synchonize device's multicast list 3714 * @dev: device to sync 3715 * @sync: function to call if address should be added 3716 * @unsync: function to call if address should be removed 3717 * 3718 * Add newly added addresses to the interface, and release 3719 * addresses that have been deleted. 3720 */ 3721 static inline int __dev_mc_sync(struct net_device *dev, 3722 int (*sync)(struct net_device *, 3723 const unsigned char *), 3724 int (*unsync)(struct net_device *, 3725 const unsigned char *)) 3726 { 3727 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3728 } 3729 3730 /** 3731 * __dev_mc_unsync - Remove synchronized addresses from device 3732 * @dev: device to sync 3733 * @unsync: function to call if address should be removed 3734 * 3735 * Remove all addresses that were added to the device by dev_mc_sync(). 3736 */ 3737 static inline void __dev_mc_unsync(struct net_device *dev, 3738 int (*unsync)(struct net_device *, 3739 const unsigned char *)) 3740 { 3741 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3742 } 3743 3744 /* Functions used for secondary unicast and multicast support */ 3745 void dev_set_rx_mode(struct net_device *dev); 3746 void __dev_set_rx_mode(struct net_device *dev); 3747 int dev_set_promiscuity(struct net_device *dev, int inc); 3748 int dev_set_allmulti(struct net_device *dev, int inc); 3749 void netdev_state_change(struct net_device *dev); 3750 void netdev_notify_peers(struct net_device *dev); 3751 void netdev_features_change(struct net_device *dev); 3752 /* Load a device via the kmod */ 3753 void dev_load(struct net *net, const char *name); 3754 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3755 struct rtnl_link_stats64 *storage); 3756 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3757 const struct net_device_stats *netdev_stats); 3758 3759 extern int netdev_max_backlog; 3760 extern int netdev_tstamp_prequeue; 3761 extern int weight_p; 3762 3763 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3764 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3765 struct list_head **iter); 3766 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3767 struct list_head **iter); 3768 3769 /* iterate through upper list, must be called under RCU read lock */ 3770 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3771 for (iter = &(dev)->adj_list.upper, \ 3772 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3773 updev; \ 3774 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3775 3776 /* iterate through upper list, must be called under RCU read lock */ 3777 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3778 for (iter = &(dev)->all_adj_list.upper, \ 3779 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3780 updev; \ 3781 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3782 3783 void *netdev_lower_get_next_private(struct net_device *dev, 3784 struct list_head **iter); 3785 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3786 struct list_head **iter); 3787 3788 #define netdev_for_each_lower_private(dev, priv, iter) \ 3789 for (iter = (dev)->adj_list.lower.next, \ 3790 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3791 priv; \ 3792 priv = netdev_lower_get_next_private(dev, &(iter))) 3793 3794 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3795 for (iter = &(dev)->adj_list.lower, \ 3796 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3797 priv; \ 3798 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3799 3800 void *netdev_lower_get_next(struct net_device *dev, 3801 struct list_head **iter); 3802 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3803 for (iter = (dev)->adj_list.lower.next, \ 3804 ldev = netdev_lower_get_next(dev, &(iter)); \ 3805 ldev; \ 3806 ldev = netdev_lower_get_next(dev, &(iter))) 3807 3808 void *netdev_adjacent_get_private(struct list_head *adj_list); 3809 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3810 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3811 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3812 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3813 int netdev_master_upper_dev_link(struct net_device *dev, 3814 struct net_device *upper_dev, 3815 void *upper_priv, void *upper_info); 3816 void netdev_upper_dev_unlink(struct net_device *dev, 3817 struct net_device *upper_dev); 3818 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3819 void *netdev_lower_dev_get_private(struct net_device *dev, 3820 struct net_device *lower_dev); 3821 void netdev_lower_state_changed(struct net_device *lower_dev, 3822 void *lower_state_info); 3823 3824 /* RSS keys are 40 or 52 bytes long */ 3825 #define NETDEV_RSS_KEY_LEN 52 3826 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3827 void netdev_rss_key_fill(void *buffer, size_t len); 3828 3829 int dev_get_nest_level(struct net_device *dev, 3830 bool (*type_check)(const struct net_device *dev)); 3831 int skb_checksum_help(struct sk_buff *skb); 3832 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3833 netdev_features_t features, bool tx_path); 3834 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3835 netdev_features_t features); 3836 3837 struct netdev_bonding_info { 3838 ifslave slave; 3839 ifbond master; 3840 }; 3841 3842 struct netdev_notifier_bonding_info { 3843 struct netdev_notifier_info info; /* must be first */ 3844 struct netdev_bonding_info bonding_info; 3845 }; 3846 3847 void netdev_bonding_info_change(struct net_device *dev, 3848 struct netdev_bonding_info *bonding_info); 3849 3850 static inline 3851 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3852 { 3853 return __skb_gso_segment(skb, features, true); 3854 } 3855 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3856 3857 static inline bool can_checksum_protocol(netdev_features_t features, 3858 __be16 protocol) 3859 { 3860 if (protocol == htons(ETH_P_FCOE)) 3861 return !!(features & NETIF_F_FCOE_CRC); 3862 3863 /* Assume this is an IP checksum (not SCTP CRC) */ 3864 3865 if (features & NETIF_F_HW_CSUM) { 3866 /* Can checksum everything */ 3867 return true; 3868 } 3869 3870 switch (protocol) { 3871 case htons(ETH_P_IP): 3872 return !!(features & NETIF_F_IP_CSUM); 3873 case htons(ETH_P_IPV6): 3874 return !!(features & NETIF_F_IPV6_CSUM); 3875 default: 3876 return false; 3877 } 3878 } 3879 3880 /* Map an ethertype into IP protocol if possible */ 3881 static inline int eproto_to_ipproto(int eproto) 3882 { 3883 switch (eproto) { 3884 case htons(ETH_P_IP): 3885 return IPPROTO_IP; 3886 case htons(ETH_P_IPV6): 3887 return IPPROTO_IPV6; 3888 default: 3889 return -1; 3890 } 3891 } 3892 3893 #ifdef CONFIG_BUG 3894 void netdev_rx_csum_fault(struct net_device *dev); 3895 #else 3896 static inline void netdev_rx_csum_fault(struct net_device *dev) 3897 { 3898 } 3899 #endif 3900 /* rx skb timestamps */ 3901 void net_enable_timestamp(void); 3902 void net_disable_timestamp(void); 3903 3904 #ifdef CONFIG_PROC_FS 3905 int __init dev_proc_init(void); 3906 #else 3907 #define dev_proc_init() 0 3908 #endif 3909 3910 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3911 struct sk_buff *skb, struct net_device *dev, 3912 bool more) 3913 { 3914 skb->xmit_more = more ? 1 : 0; 3915 return ops->ndo_start_xmit(skb, dev); 3916 } 3917 3918 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3919 struct netdev_queue *txq, bool more) 3920 { 3921 const struct net_device_ops *ops = dev->netdev_ops; 3922 int rc; 3923 3924 rc = __netdev_start_xmit(ops, skb, dev, more); 3925 if (rc == NETDEV_TX_OK) 3926 txq_trans_update(txq); 3927 3928 return rc; 3929 } 3930 3931 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3932 const void *ns); 3933 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3934 const void *ns); 3935 3936 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3937 { 3938 return netdev_class_create_file_ns(class_attr, NULL); 3939 } 3940 3941 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3942 { 3943 netdev_class_remove_file_ns(class_attr, NULL); 3944 } 3945 3946 extern struct kobj_ns_type_operations net_ns_type_operations; 3947 3948 const char *netdev_drivername(const struct net_device *dev); 3949 3950 void linkwatch_run_queue(void); 3951 3952 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3953 netdev_features_t f2) 3954 { 3955 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 3956 if (f1 & NETIF_F_HW_CSUM) 3957 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3958 else 3959 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3960 } 3961 3962 return f1 & f2; 3963 } 3964 3965 static inline netdev_features_t netdev_get_wanted_features( 3966 struct net_device *dev) 3967 { 3968 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3969 } 3970 netdev_features_t netdev_increment_features(netdev_features_t all, 3971 netdev_features_t one, netdev_features_t mask); 3972 3973 /* Allow TSO being used on stacked device : 3974 * Performing the GSO segmentation before last device 3975 * is a performance improvement. 3976 */ 3977 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3978 netdev_features_t mask) 3979 { 3980 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3981 } 3982 3983 int __netdev_update_features(struct net_device *dev); 3984 void netdev_update_features(struct net_device *dev); 3985 void netdev_change_features(struct net_device *dev); 3986 3987 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3988 struct net_device *dev); 3989 3990 netdev_features_t passthru_features_check(struct sk_buff *skb, 3991 struct net_device *dev, 3992 netdev_features_t features); 3993 netdev_features_t netif_skb_features(struct sk_buff *skb); 3994 3995 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3996 { 3997 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 3998 3999 /* check flags correspondence */ 4000 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4001 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4002 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4003 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4004 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4005 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4006 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4007 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4008 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4009 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4010 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4011 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4012 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4013 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4014 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4015 4016 return (features & feature) == feature; 4017 } 4018 4019 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4020 { 4021 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4022 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4023 } 4024 4025 static inline bool netif_needs_gso(struct sk_buff *skb, 4026 netdev_features_t features) 4027 { 4028 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4029 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4030 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4031 } 4032 4033 static inline void netif_set_gso_max_size(struct net_device *dev, 4034 unsigned int size) 4035 { 4036 dev->gso_max_size = size; 4037 } 4038 4039 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4040 int pulled_hlen, u16 mac_offset, 4041 int mac_len) 4042 { 4043 skb->protocol = protocol; 4044 skb->encapsulation = 1; 4045 skb_push(skb, pulled_hlen); 4046 skb_reset_transport_header(skb); 4047 skb->mac_header = mac_offset; 4048 skb->network_header = skb->mac_header + mac_len; 4049 skb->mac_len = mac_len; 4050 } 4051 4052 static inline bool netif_is_macsec(const struct net_device *dev) 4053 { 4054 return dev->priv_flags & IFF_MACSEC; 4055 } 4056 4057 static inline bool netif_is_macvlan(const struct net_device *dev) 4058 { 4059 return dev->priv_flags & IFF_MACVLAN; 4060 } 4061 4062 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4063 { 4064 return dev->priv_flags & IFF_MACVLAN_PORT; 4065 } 4066 4067 static inline bool netif_is_ipvlan(const struct net_device *dev) 4068 { 4069 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4070 } 4071 4072 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4073 { 4074 return dev->priv_flags & IFF_IPVLAN_MASTER; 4075 } 4076 4077 static inline bool netif_is_bond_master(const struct net_device *dev) 4078 { 4079 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4080 } 4081 4082 static inline bool netif_is_bond_slave(const struct net_device *dev) 4083 { 4084 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4085 } 4086 4087 static inline bool netif_supports_nofcs(struct net_device *dev) 4088 { 4089 return dev->priv_flags & IFF_SUPP_NOFCS; 4090 } 4091 4092 static inline bool netif_is_l3_master(const struct net_device *dev) 4093 { 4094 return dev->priv_flags & IFF_L3MDEV_MASTER; 4095 } 4096 4097 static inline bool netif_is_l3_slave(const struct net_device *dev) 4098 { 4099 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4100 } 4101 4102 static inline bool netif_is_bridge_master(const struct net_device *dev) 4103 { 4104 return dev->priv_flags & IFF_EBRIDGE; 4105 } 4106 4107 static inline bool netif_is_bridge_port(const struct net_device *dev) 4108 { 4109 return dev->priv_flags & IFF_BRIDGE_PORT; 4110 } 4111 4112 static inline bool netif_is_ovs_master(const struct net_device *dev) 4113 { 4114 return dev->priv_flags & IFF_OPENVSWITCH; 4115 } 4116 4117 static inline bool netif_is_team_master(const struct net_device *dev) 4118 { 4119 return dev->priv_flags & IFF_TEAM; 4120 } 4121 4122 static inline bool netif_is_team_port(const struct net_device *dev) 4123 { 4124 return dev->priv_flags & IFF_TEAM_PORT; 4125 } 4126 4127 static inline bool netif_is_lag_master(const struct net_device *dev) 4128 { 4129 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4130 } 4131 4132 static inline bool netif_is_lag_port(const struct net_device *dev) 4133 { 4134 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4135 } 4136 4137 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4138 { 4139 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4140 } 4141 4142 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4143 static inline void netif_keep_dst(struct net_device *dev) 4144 { 4145 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4146 } 4147 4148 extern struct pernet_operations __net_initdata loopback_net_ops; 4149 4150 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4151 4152 /* netdev_printk helpers, similar to dev_printk */ 4153 4154 static inline const char *netdev_name(const struct net_device *dev) 4155 { 4156 if (!dev->name[0] || strchr(dev->name, '%')) 4157 return "(unnamed net_device)"; 4158 return dev->name; 4159 } 4160 4161 static inline const char *netdev_reg_state(const struct net_device *dev) 4162 { 4163 switch (dev->reg_state) { 4164 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4165 case NETREG_REGISTERED: return ""; 4166 case NETREG_UNREGISTERING: return " (unregistering)"; 4167 case NETREG_UNREGISTERED: return " (unregistered)"; 4168 case NETREG_RELEASED: return " (released)"; 4169 case NETREG_DUMMY: return " (dummy)"; 4170 } 4171 4172 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4173 return " (unknown)"; 4174 } 4175 4176 __printf(3, 4) 4177 void netdev_printk(const char *level, const struct net_device *dev, 4178 const char *format, ...); 4179 __printf(2, 3) 4180 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4181 __printf(2, 3) 4182 void netdev_alert(const struct net_device *dev, const char *format, ...); 4183 __printf(2, 3) 4184 void netdev_crit(const struct net_device *dev, const char *format, ...); 4185 __printf(2, 3) 4186 void netdev_err(const struct net_device *dev, const char *format, ...); 4187 __printf(2, 3) 4188 void netdev_warn(const struct net_device *dev, const char *format, ...); 4189 __printf(2, 3) 4190 void netdev_notice(const struct net_device *dev, const char *format, ...); 4191 __printf(2, 3) 4192 void netdev_info(const struct net_device *dev, const char *format, ...); 4193 4194 #define MODULE_ALIAS_NETDEV(device) \ 4195 MODULE_ALIAS("netdev-" device) 4196 4197 #if defined(CONFIG_DYNAMIC_DEBUG) 4198 #define netdev_dbg(__dev, format, args...) \ 4199 do { \ 4200 dynamic_netdev_dbg(__dev, format, ##args); \ 4201 } while (0) 4202 #elif defined(DEBUG) 4203 #define netdev_dbg(__dev, format, args...) \ 4204 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4205 #else 4206 #define netdev_dbg(__dev, format, args...) \ 4207 ({ \ 4208 if (0) \ 4209 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4210 }) 4211 #endif 4212 4213 #if defined(VERBOSE_DEBUG) 4214 #define netdev_vdbg netdev_dbg 4215 #else 4216 4217 #define netdev_vdbg(dev, format, args...) \ 4218 ({ \ 4219 if (0) \ 4220 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4221 0; \ 4222 }) 4223 #endif 4224 4225 /* 4226 * netdev_WARN() acts like dev_printk(), but with the key difference 4227 * of using a WARN/WARN_ON to get the message out, including the 4228 * file/line information and a backtrace. 4229 */ 4230 #define netdev_WARN(dev, format, args...) \ 4231 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4232 netdev_reg_state(dev), ##args) 4233 4234 /* netif printk helpers, similar to netdev_printk */ 4235 4236 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4237 do { \ 4238 if (netif_msg_##type(priv)) \ 4239 netdev_printk(level, (dev), fmt, ##args); \ 4240 } while (0) 4241 4242 #define netif_level(level, priv, type, dev, fmt, args...) \ 4243 do { \ 4244 if (netif_msg_##type(priv)) \ 4245 netdev_##level(dev, fmt, ##args); \ 4246 } while (0) 4247 4248 #define netif_emerg(priv, type, dev, fmt, args...) \ 4249 netif_level(emerg, priv, type, dev, fmt, ##args) 4250 #define netif_alert(priv, type, dev, fmt, args...) \ 4251 netif_level(alert, priv, type, dev, fmt, ##args) 4252 #define netif_crit(priv, type, dev, fmt, args...) \ 4253 netif_level(crit, priv, type, dev, fmt, ##args) 4254 #define netif_err(priv, type, dev, fmt, args...) \ 4255 netif_level(err, priv, type, dev, fmt, ##args) 4256 #define netif_warn(priv, type, dev, fmt, args...) \ 4257 netif_level(warn, priv, type, dev, fmt, ##args) 4258 #define netif_notice(priv, type, dev, fmt, args...) \ 4259 netif_level(notice, priv, type, dev, fmt, ##args) 4260 #define netif_info(priv, type, dev, fmt, args...) \ 4261 netif_level(info, priv, type, dev, fmt, ##args) 4262 4263 #if defined(CONFIG_DYNAMIC_DEBUG) 4264 #define netif_dbg(priv, type, netdev, format, args...) \ 4265 do { \ 4266 if (netif_msg_##type(priv)) \ 4267 dynamic_netdev_dbg(netdev, format, ##args); \ 4268 } while (0) 4269 #elif defined(DEBUG) 4270 #define netif_dbg(priv, type, dev, format, args...) \ 4271 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4272 #else 4273 #define netif_dbg(priv, type, dev, format, args...) \ 4274 ({ \ 4275 if (0) \ 4276 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4277 0; \ 4278 }) 4279 #endif 4280 4281 #if defined(VERBOSE_DEBUG) 4282 #define netif_vdbg netif_dbg 4283 #else 4284 #define netif_vdbg(priv, type, dev, format, args...) \ 4285 ({ \ 4286 if (0) \ 4287 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4288 0; \ 4289 }) 4290 #endif 4291 4292 /* 4293 * The list of packet types we will receive (as opposed to discard) 4294 * and the routines to invoke. 4295 * 4296 * Why 16. Because with 16 the only overlap we get on a hash of the 4297 * low nibble of the protocol value is RARP/SNAP/X.25. 4298 * 4299 * NOTE: That is no longer true with the addition of VLAN tags. Not 4300 * sure which should go first, but I bet it won't make much 4301 * difference if we are running VLANs. The good news is that 4302 * this protocol won't be in the list unless compiled in, so 4303 * the average user (w/out VLANs) will not be adversely affected. 4304 * --BLG 4305 * 4306 * 0800 IP 4307 * 8100 802.1Q VLAN 4308 * 0001 802.3 4309 * 0002 AX.25 4310 * 0004 802.2 4311 * 8035 RARP 4312 * 0005 SNAP 4313 * 0805 X.25 4314 * 0806 ARP 4315 * 8137 IPX 4316 * 0009 Localtalk 4317 * 86DD IPv6 4318 */ 4319 #define PTYPE_HASH_SIZE (16) 4320 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4321 4322 #endif /* _LINUX_NETDEVICE_H */ 4323