xref: /openbmc/linux/include/linux/netdevice.h (revision 726bd223)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 				    const struct ethtool_ops *ops);
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously; in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90  * others are propagated to higher layers.
91  */
92 
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS	0x00
95 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
96 #define NET_XMIT_CN		0x02	/* congestion notification	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 	/*
122 	 * Positive cases with an skb consumed by a driver:
123 	 * - successful transmission (rc == NETDEV_TX_OK)
124 	 * - error while transmitting (rc < 0)
125 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 	 */
127 	if (likely(rc < NET_XMIT_MASK))
128 		return true;
129 
130 	return false;
131 }
132 
133 /*
134  *	Compute the worst-case header length according to the protocols
135  *	used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *	Old network device statistics. Fields are native words
159  *	(unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163 	unsigned long	rx_packets;
164 	unsigned long	tx_packets;
165 	unsigned long	rx_bytes;
166 	unsigned long	tx_bytes;
167 	unsigned long	rx_errors;
168 	unsigned long	tx_errors;
169 	unsigned long	rx_dropped;
170 	unsigned long	tx_dropped;
171 	unsigned long	multicast;
172 	unsigned long	collisions;
173 	unsigned long	rx_length_errors;
174 	unsigned long	rx_over_errors;
175 	unsigned long	rx_crc_errors;
176 	unsigned long	rx_frame_errors;
177 	unsigned long	rx_fifo_errors;
178 	unsigned long	rx_missed_errors;
179 	unsigned long	tx_aborted_errors;
180 	unsigned long	tx_carrier_errors;
181 	unsigned long	tx_fifo_errors;
182 	unsigned long	tx_heartbeat_errors;
183 	unsigned long	tx_window_errors;
184 	unsigned long	rx_compressed;
185 	unsigned long	tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 extern struct static_key rfs_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			global_use;
212 	int			sync_cnt;
213 	int			refcount;
214 	int			synced;
215 	struct rcu_head		rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219 	struct list_head	list;
220 	int			count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 	list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239 	u16		hh_len;
240 	u16		__pad;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-CPU poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_MISSED,	/* reschedule a napi */
334 	NAPI_STATE_DISABLE,	/* Disable pending */
335 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
336 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
337 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340 
341 enum {
342 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
343 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
344 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
345 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
346 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
347 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350 
351 enum gro_result {
352 	GRO_MERGED,
353 	GRO_MERGED_FREE,
354 	GRO_HELD,
355 	GRO_NORMAL,
356 	GRO_DROP,
357 	GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360 
361 /*
362  * enum rx_handler_result - Possible return values for rx_handlers.
363  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364  * further.
365  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366  * case skb->dev was changed by rx_handler.
367  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369  *
370  * rx_handlers are functions called from inside __netif_receive_skb(), to do
371  * special processing of the skb, prior to delivery to protocol handlers.
372  *
373  * Currently, a net_device can only have a single rx_handler registered. Trying
374  * to register a second rx_handler will return -EBUSY.
375  *
376  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377  * To unregister a rx_handler on a net_device, use
378  * netdev_rx_handler_unregister().
379  *
380  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381  * do with the skb.
382  *
383  * If the rx_handler consumed the skb in some way, it should return
384  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385  * the skb to be delivered in some other way.
386  *
387  * If the rx_handler changed skb->dev, to divert the skb to another
388  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389  * new device will be called if it exists.
390  *
391  * If the rx_handler decides the skb should be ignored, it should return
392  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393  * are registered on exact device (ptype->dev == skb->dev).
394  *
395  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396  * delivered, it should return RX_HANDLER_PASS.
397  *
398  * A device without a registered rx_handler will behave as if rx_handler
399  * returned RX_HANDLER_PASS.
400  */
401 
402 enum rx_handler_result {
403 	RX_HANDLER_CONSUMED,
404 	RX_HANDLER_ANOTHER,
405 	RX_HANDLER_EXACT,
406 	RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410 
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413 
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 	return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418 
419 bool napi_schedule_prep(struct napi_struct *n);
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *	napi_complete - NAPI processing complete
459  *	@n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  * Return false if device should avoid rearming interrupts.
464  */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_del - remove a NAPI from global table
472  *	@napi: NAPI context
473  *
474  * Warning: caller must observe RCU grace period
475  * before freeing memory containing @napi, if
476  * this function returns true.
477  * Note: core networking stack automatically calls it
478  * from netif_napi_del().
479  * Drivers might want to call this helper to combine all
480  * the needed RCU grace periods into a single one.
481  */
482 bool napi_hash_del(struct napi_struct *napi);
483 
484 /**
485  *	napi_disable - prevent NAPI from scheduling
486  *	@n: NAPI context
487  *
488  * Stop NAPI from being scheduled on this context.
489  * Waits till any outstanding processing completes.
490  */
491 void napi_disable(struct napi_struct *n);
492 
493 /**
494  *	napi_enable - enable NAPI scheduling
495  *	@n: NAPI context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 	smp_mb__before_atomic();
504 	clear_bit(NAPI_STATE_SCHED, &n->state);
505 	clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 enum netdev_queue_state_t {
526 	__QUEUE_STATE_DRV_XOFF,
527 	__QUEUE_STATE_STACK_XOFF,
528 	__QUEUE_STATE_FROZEN,
529 };
530 
531 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
534 
535 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 					QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 
541 /*
542  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
543  * netif_tx_* functions below are used to manipulate this flag.  The
544  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545  * queue independently.  The netif_xmit_*stopped functions below are called
546  * to check if the queue has been stopped by the driver or stack (either
547  * of the XOFF bits are set in the state).  Drivers should not need to call
548  * netif_xmit*stopped functions, they should only be using netif_tx_*.
549  */
550 
551 struct netdev_queue {
552 /*
553  * read-mostly part
554  */
555 	struct net_device	*dev;
556 	struct Qdisc __rcu	*qdisc;
557 	struct Qdisc		*qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 	struct kobject		kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 	int			numa_node;
563 #endif
564 	unsigned long		tx_maxrate;
565 	/*
566 	 * Number of TX timeouts for this queue
567 	 * (/sys/class/net/DEV/Q/trans_timeout)
568 	 */
569 	unsigned long		trans_timeout;
570 /*
571  * write-mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * Time (in jiffies) of last Tx
577 	 */
578 	unsigned long		trans_start;
579 
580 	unsigned long		state;
581 
582 #ifdef CONFIG_BQL
583 	struct dql		dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586 
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	return q->numa_node;
591 #else
592 	return NUMA_NO_NODE;
593 #endif
594 }
595 
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	q->numa_node = node;
600 #endif
601 }
602 
603 #ifdef CONFIG_RPS
604 /*
605  * This structure holds an RPS map which can be of variable length.  The
606  * map is an array of CPUs.
607  */
608 struct rps_map {
609 	unsigned int len;
610 	struct rcu_head rcu;
611 	u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614 
615 /*
616  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617  * tail pointer for that CPU's input queue at the time of last enqueue, and
618  * a hardware filter index.
619  */
620 struct rps_dev_flow {
621 	u16 cpu;
622 	u16 filter;
623 	unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626 
627 /*
628  * The rps_dev_flow_table structure contains a table of flow mappings.
629  */
630 struct rps_dev_flow_table {
631 	unsigned int mask;
632 	struct rcu_head rcu;
633 	struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636     ((_num) * sizeof(struct rps_dev_flow)))
637 
638 /*
639  * The rps_sock_flow_table contains mappings of flows to the last CPU
640  * on which they were processed by the application (set in recvmsg).
641  * Each entry is a 32bit value. Upper part is the high-order bits
642  * of flow hash, lower part is CPU number.
643  * rps_cpu_mask is used to partition the space, depending on number of
644  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646  * meaning we use 32-6=26 bits for the hash.
647  */
648 struct rps_sock_flow_table {
649 	u32	mask;
650 
651 	u32	ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654 
655 #define RPS_NO_CPU 0xffff
656 
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659 
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 					u32 hash)
662 {
663 	if (table && hash) {
664 		unsigned int index = hash & table->mask;
665 		u32 val = hash & ~rps_cpu_mask;
666 
667 		/* We only give a hint, preemption can change CPU under us */
668 		val |= raw_smp_processor_id();
669 
670 		if (table->ents[index] != val)
671 			table->ents[index] = val;
672 	}
673 }
674 
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 			 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680 
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 	struct rps_map __rcu		*rps_map;
685 	struct rps_dev_flow_table __rcu	*rps_flow_table;
686 #endif
687 	struct kobject			kobj;
688 	struct net_device		*dev;
689 } ____cacheline_aligned_in_smp;
690 
691 /*
692  * RX queue sysfs structures and functions.
693  */
694 struct rx_queue_attribute {
695 	struct attribute attr;
696 	ssize_t (*show)(struct netdev_rx_queue *queue,
697 	    struct rx_queue_attribute *attr, char *buf);
698 	ssize_t (*store)(struct netdev_rx_queue *queue,
699 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
700 };
701 
702 #ifdef CONFIG_XPS
703 /*
704  * This structure holds an XPS map which can be of variable length.  The
705  * map is an array of queues.
706  */
707 struct xps_map {
708 	unsigned int len;
709 	unsigned int alloc_len;
710 	struct rcu_head rcu;
711 	u16 queues[0];
712 };
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715        - sizeof(struct xps_map)) / sizeof(u16))
716 
717 /*
718  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
719  */
720 struct xps_dev_maps {
721 	struct rcu_head rcu;
722 	struct xps_map __rcu *cpu_map[0];
723 };
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
725 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
727 
728 #define TC_MAX_QUEUE	16
729 #define TC_BITMASK	15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732 	u16 count;
733 	u16 offset;
734 };
735 
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
737 /*
738  * This structure is to hold information about the device
739  * configured to run FCoE protocol stack.
740  */
741 struct netdev_fcoe_hbainfo {
742 	char	manufacturer[64];
743 	char	serial_number[64];
744 	char	hardware_version[64];
745 	char	driver_version[64];
746 	char	optionrom_version[64];
747 	char	firmware_version[64];
748 	char	model[256];
749 	char	model_description[256];
750 };
751 #endif
752 
753 #define MAX_PHYS_ITEM_ID_LEN 32
754 
755 /* This structure holds a unique identifier to identify some
756  * physical item (port for example) used by a netdevice.
757  */
758 struct netdev_phys_item_id {
759 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760 	unsigned char id_len;
761 };
762 
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764 					    struct netdev_phys_item_id *b)
765 {
766 	return a->id_len == b->id_len &&
767 	       memcmp(a->id, b->id, a->id_len) == 0;
768 }
769 
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771 				       struct sk_buff *skb);
772 
773 /* These structures hold the attributes of qdisc and classifiers
774  * that are being passed to the netdevice through the setup_tc op.
775  */
776 enum {
777 	TC_SETUP_MQPRIO,
778 	TC_SETUP_CLSU32,
779 	TC_SETUP_CLSFLOWER,
780 	TC_SETUP_MATCHALL,
781 	TC_SETUP_CLSBPF,
782 };
783 
784 struct tc_cls_u32_offload;
785 
786 struct tc_to_netdev {
787 	unsigned int type;
788 	union {
789 		u8 tc;
790 		struct tc_cls_u32_offload *cls_u32;
791 		struct tc_cls_flower_offload *cls_flower;
792 		struct tc_cls_matchall_offload *cls_mall;
793 		struct tc_cls_bpf_offload *cls_bpf;
794 	};
795 	bool egress_dev;
796 };
797 
798 /* These structures hold the attributes of xdp state that are being passed
799  * to the netdevice through the xdp op.
800  */
801 enum xdp_netdev_command {
802 	/* Set or clear a bpf program used in the earliest stages of packet
803 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
804 	 * is responsible for calling bpf_prog_put on any old progs that are
805 	 * stored. In case of error, the callee need not release the new prog
806 	 * reference, but on success it takes ownership and must bpf_prog_put
807 	 * when it is no longer used.
808 	 */
809 	XDP_SETUP_PROG,
810 	/* Check if a bpf program is set on the device.  The callee should
811 	 * return true if a program is currently attached and running.
812 	 */
813 	XDP_QUERY_PROG,
814 };
815 
816 struct netdev_xdp {
817 	enum xdp_netdev_command command;
818 	union {
819 		/* XDP_SETUP_PROG */
820 		struct bpf_prog *prog;
821 		/* XDP_QUERY_PROG */
822 		bool prog_attached;
823 	};
824 };
825 
826 /*
827  * This structure defines the management hooks for network devices.
828  * The following hooks can be defined; unless noted otherwise, they are
829  * optional and can be filled with a null pointer.
830  *
831  * int (*ndo_init)(struct net_device *dev);
832  *     This function is called once when a network device is registered.
833  *     The network device can use this for any late stage initialization
834  *     or semantic validation. It can fail with an error code which will
835  *     be propagated back to register_netdev.
836  *
837  * void (*ndo_uninit)(struct net_device *dev);
838  *     This function is called when device is unregistered or when registration
839  *     fails. It is not called if init fails.
840  *
841  * int (*ndo_open)(struct net_device *dev);
842  *     This function is called when a network device transitions to the up
843  *     state.
844  *
845  * int (*ndo_stop)(struct net_device *dev);
846  *     This function is called when a network device transitions to the down
847  *     state.
848  *
849  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
850  *                               struct net_device *dev);
851  *	Called when a packet needs to be transmitted.
852  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
853  *	the queue before that can happen; it's for obsolete devices and weird
854  *	corner cases, but the stack really does a non-trivial amount
855  *	of useless work if you return NETDEV_TX_BUSY.
856  *	Required; cannot be NULL.
857  *
858  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
859  *					   struct net_device *dev
860  *					   netdev_features_t features);
861  *	Called by core transmit path to determine if device is capable of
862  *	performing offload operations on a given packet. This is to give
863  *	the device an opportunity to implement any restrictions that cannot
864  *	be otherwise expressed by feature flags. The check is called with
865  *	the set of features that the stack has calculated and it returns
866  *	those the driver believes to be appropriate.
867  *
868  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
869  *                         void *accel_priv, select_queue_fallback_t fallback);
870  *	Called to decide which queue to use when device supports multiple
871  *	transmit queues.
872  *
873  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
874  *	This function is called to allow device receiver to make
875  *	changes to configuration when multicast or promiscuous is enabled.
876  *
877  * void (*ndo_set_rx_mode)(struct net_device *dev);
878  *	This function is called device changes address list filtering.
879  *	If driver handles unicast address filtering, it should set
880  *	IFF_UNICAST_FLT in its priv_flags.
881  *
882  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
883  *	This function  is called when the Media Access Control address
884  *	needs to be changed. If this interface is not defined, the
885  *	MAC address can not be changed.
886  *
887  * int (*ndo_validate_addr)(struct net_device *dev);
888  *	Test if Media Access Control address is valid for the device.
889  *
890  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
891  *	Called when a user requests an ioctl which can't be handled by
892  *	the generic interface code. If not defined ioctls return
893  *	not supported error code.
894  *
895  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
896  *	Used to set network devices bus interface parameters. This interface
897  *	is retained for legacy reasons; new devices should use the bus
898  *	interface (PCI) for low level management.
899  *
900  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
901  *	Called when a user wants to change the Maximum Transfer Unit
902  *	of a device. If not defined, any request to change MTU will
903  *	will return an error.
904  *
905  * void (*ndo_tx_timeout)(struct net_device *dev);
906  *	Callback used when the transmitter has not made any progress
907  *	for dev->watchdog ticks.
908  *
909  * void (*ndo_get_stats64)(struct net_device *dev,
910  *                         struct rtnl_link_stats64 *storage);
911  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
912  *	Called when a user wants to get the network device usage
913  *	statistics. Drivers must do one of the following:
914  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
915  *	   rtnl_link_stats64 structure passed by the caller.
916  *	2. Define @ndo_get_stats to update a net_device_stats structure
917  *	   (which should normally be dev->stats) and return a pointer to
918  *	   it. The structure may be changed asynchronously only if each
919  *	   field is written atomically.
920  *	3. Update dev->stats asynchronously and atomically, and define
921  *	   neither operation.
922  *
923  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
924  *	Return true if this device supports offload stats of this attr_id.
925  *
926  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
927  *	void *attr_data)
928  *	Get statistics for offload operations by attr_id. Write it into the
929  *	attr_data pointer.
930  *
931  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
932  *	If device supports VLAN filtering this function is called when a
933  *	VLAN id is registered.
934  *
935  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
936  *	If device supports VLAN filtering this function is called when a
937  *	VLAN id is unregistered.
938  *
939  * void (*ndo_poll_controller)(struct net_device *dev);
940  *
941  *	SR-IOV management functions.
942  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
943  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
944  *			  u8 qos, __be16 proto);
945  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
946  *			  int max_tx_rate);
947  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
948  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
949  * int (*ndo_get_vf_config)(struct net_device *dev,
950  *			    int vf, struct ifla_vf_info *ivf);
951  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
952  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
953  *			  struct nlattr *port[]);
954  *
955  *      Enable or disable the VF ability to query its RSS Redirection Table and
956  *      Hash Key. This is needed since on some devices VF share this information
957  *      with PF and querying it may introduce a theoretical security risk.
958  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
959  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
960  * int (*ndo_setup_tc)(struct net_device *dev, u32 handle,
961  *		       __be16 protocol, struct tc_to_netdev *tc);
962  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
963  *	This is always called from the stack with the rtnl lock held and netif
964  *	tx queues stopped. This allows the netdevice to perform queue
965  *	management safely.
966  *
967  *	Fiber Channel over Ethernet (FCoE) offload functions.
968  * int (*ndo_fcoe_enable)(struct net_device *dev);
969  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
970  *	so the underlying device can perform whatever needed configuration or
971  *	initialization to support acceleration of FCoE traffic.
972  *
973  * int (*ndo_fcoe_disable)(struct net_device *dev);
974  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
975  *	so the underlying device can perform whatever needed clean-ups to
976  *	stop supporting acceleration of FCoE traffic.
977  *
978  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
979  *			     struct scatterlist *sgl, unsigned int sgc);
980  *	Called when the FCoE Initiator wants to initialize an I/O that
981  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
982  *	perform necessary setup and returns 1 to indicate the device is set up
983  *	successfully to perform DDP on this I/O, otherwise this returns 0.
984  *
985  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
986  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
987  *	indicated by the FC exchange id 'xid', so the underlying device can
988  *	clean up and reuse resources for later DDP requests.
989  *
990  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
991  *			      struct scatterlist *sgl, unsigned int sgc);
992  *	Called when the FCoE Target wants to initialize an I/O that
993  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
994  *	perform necessary setup and returns 1 to indicate the device is set up
995  *	successfully to perform DDP on this I/O, otherwise this returns 0.
996  *
997  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
998  *			       struct netdev_fcoe_hbainfo *hbainfo);
999  *	Called when the FCoE Protocol stack wants information on the underlying
1000  *	device. This information is utilized by the FCoE protocol stack to
1001  *	register attributes with Fiber Channel management service as per the
1002  *	FC-GS Fabric Device Management Information(FDMI) specification.
1003  *
1004  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1005  *	Called when the underlying device wants to override default World Wide
1006  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1007  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1008  *	protocol stack to use.
1009  *
1010  *	RFS acceleration.
1011  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1012  *			    u16 rxq_index, u32 flow_id);
1013  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1014  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1015  *	Return the filter ID on success, or a negative error code.
1016  *
1017  *	Slave management functions (for bridge, bonding, etc).
1018  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1019  *	Called to make another netdev an underling.
1020  *
1021  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1022  *	Called to release previously enslaved netdev.
1023  *
1024  *      Feature/offload setting functions.
1025  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1026  *		netdev_features_t features);
1027  *	Adjusts the requested feature flags according to device-specific
1028  *	constraints, and returns the resulting flags. Must not modify
1029  *	the device state.
1030  *
1031  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1032  *	Called to update device configuration to new features. Passed
1033  *	feature set might be less than what was returned by ndo_fix_features()).
1034  *	Must return >0 or -errno if it changed dev->features itself.
1035  *
1036  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1037  *		      struct net_device *dev,
1038  *		      const unsigned char *addr, u16 vid, u16 flags)
1039  *	Adds an FDB entry to dev for addr.
1040  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1041  *		      struct net_device *dev,
1042  *		      const unsigned char *addr, u16 vid)
1043  *	Deletes the FDB entry from dev coresponding to addr.
1044  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1045  *		       struct net_device *dev, struct net_device *filter_dev,
1046  *		       int *idx)
1047  *	Used to add FDB entries to dump requests. Implementers should add
1048  *	entries to skb and update idx with the number of entries.
1049  *
1050  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1051  *			     u16 flags)
1052  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1053  *			     struct net_device *dev, u32 filter_mask,
1054  *			     int nlflags)
1055  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1056  *			     u16 flags);
1057  *
1058  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1059  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1060  *	which do not represent real hardware may define this to allow their
1061  *	userspace components to manage their virtual carrier state. Devices
1062  *	that determine carrier state from physical hardware properties (eg
1063  *	network cables) or protocol-dependent mechanisms (eg
1064  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1065  *
1066  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1067  *			       struct netdev_phys_item_id *ppid);
1068  *	Called to get ID of physical port of this device. If driver does
1069  *	not implement this, it is assumed that the hw is not able to have
1070  *	multiple net devices on single physical port.
1071  *
1072  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1073  *			      struct udp_tunnel_info *ti);
1074  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1075  *	address family that a UDP tunnel is listnening to. It is called only
1076  *	when a new port starts listening. The operation is protected by the
1077  *	RTNL.
1078  *
1079  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1080  *			      struct udp_tunnel_info *ti);
1081  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1082  *	address family that the UDP tunnel is not listening to anymore. The
1083  *	operation is protected by the RTNL.
1084  *
1085  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1086  *				 struct net_device *dev)
1087  *	Called by upper layer devices to accelerate switching or other
1088  *	station functionality into hardware. 'pdev is the lowerdev
1089  *	to use for the offload and 'dev' is the net device that will
1090  *	back the offload. Returns a pointer to the private structure
1091  *	the upper layer will maintain.
1092  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1093  *	Called by upper layer device to delete the station created
1094  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1095  *	the station and priv is the structure returned by the add
1096  *	operation.
1097  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1098  *				      struct net_device *dev,
1099  *				      void *priv);
1100  *	Callback to use for xmit over the accelerated station. This
1101  *	is used in place of ndo_start_xmit on accelerated net
1102  *	devices.
1103  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1104  *			     int queue_index, u32 maxrate);
1105  *	Called when a user wants to set a max-rate limitation of specific
1106  *	TX queue.
1107  * int (*ndo_get_iflink)(const struct net_device *dev);
1108  *	Called to get the iflink value of this device.
1109  * void (*ndo_change_proto_down)(struct net_device *dev,
1110  *				 bool proto_down);
1111  *	This function is used to pass protocol port error state information
1112  *	to the switch driver. The switch driver can react to the proto_down
1113  *      by doing a phys down on the associated switch port.
1114  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1115  *	This function is used to get egress tunnel information for given skb.
1116  *	This is useful for retrieving outer tunnel header parameters while
1117  *	sampling packet.
1118  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1119  *	This function is used to specify the headroom that the skb must
1120  *	consider when allocation skb during packet reception. Setting
1121  *	appropriate rx headroom value allows avoiding skb head copy on
1122  *	forward. Setting a negative value resets the rx headroom to the
1123  *	default value.
1124  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1125  *	This function is used to set or query state related to XDP on the
1126  *	netdevice. See definition of enum xdp_netdev_command for details.
1127  *
1128  */
1129 struct net_device_ops {
1130 	int			(*ndo_init)(struct net_device *dev);
1131 	void			(*ndo_uninit)(struct net_device *dev);
1132 	int			(*ndo_open)(struct net_device *dev);
1133 	int			(*ndo_stop)(struct net_device *dev);
1134 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1135 						  struct net_device *dev);
1136 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1137 						      struct net_device *dev,
1138 						      netdev_features_t features);
1139 	u16			(*ndo_select_queue)(struct net_device *dev,
1140 						    struct sk_buff *skb,
1141 						    void *accel_priv,
1142 						    select_queue_fallback_t fallback);
1143 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1144 						       int flags);
1145 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1146 	int			(*ndo_set_mac_address)(struct net_device *dev,
1147 						       void *addr);
1148 	int			(*ndo_validate_addr)(struct net_device *dev);
1149 	int			(*ndo_do_ioctl)(struct net_device *dev,
1150 					        struct ifreq *ifr, int cmd);
1151 	int			(*ndo_set_config)(struct net_device *dev,
1152 					          struct ifmap *map);
1153 	int			(*ndo_change_mtu)(struct net_device *dev,
1154 						  int new_mtu);
1155 	int			(*ndo_neigh_setup)(struct net_device *dev,
1156 						   struct neigh_parms *);
1157 	void			(*ndo_tx_timeout) (struct net_device *dev);
1158 
1159 	void			(*ndo_get_stats64)(struct net_device *dev,
1160 						   struct rtnl_link_stats64 *storage);
1161 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1162 	int			(*ndo_get_offload_stats)(int attr_id,
1163 							 const struct net_device *dev,
1164 							 void *attr_data);
1165 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1166 
1167 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1168 						       __be16 proto, u16 vid);
1169 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1170 						        __be16 proto, u16 vid);
1171 #ifdef CONFIG_NET_POLL_CONTROLLER
1172 	void                    (*ndo_poll_controller)(struct net_device *dev);
1173 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1174 						     struct netpoll_info *info);
1175 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1176 #endif
1177 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1178 						  int queue, u8 *mac);
1179 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1180 						   int queue, u16 vlan,
1181 						   u8 qos, __be16 proto);
1182 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1183 						   int vf, int min_tx_rate,
1184 						   int max_tx_rate);
1185 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1186 						       int vf, bool setting);
1187 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1188 						    int vf, bool setting);
1189 	int			(*ndo_get_vf_config)(struct net_device *dev,
1190 						     int vf,
1191 						     struct ifla_vf_info *ivf);
1192 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1193 							 int vf, int link_state);
1194 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1195 						    int vf,
1196 						    struct ifla_vf_stats
1197 						    *vf_stats);
1198 	int			(*ndo_set_vf_port)(struct net_device *dev,
1199 						   int vf,
1200 						   struct nlattr *port[]);
1201 	int			(*ndo_get_vf_port)(struct net_device *dev,
1202 						   int vf, struct sk_buff *skb);
1203 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1204 						   int vf, u64 guid,
1205 						   int guid_type);
1206 	int			(*ndo_set_vf_rss_query_en)(
1207 						   struct net_device *dev,
1208 						   int vf, bool setting);
1209 	int			(*ndo_setup_tc)(struct net_device *dev,
1210 						u32 handle,
1211 						__be16 protocol,
1212 						struct tc_to_netdev *tc);
1213 #if IS_ENABLED(CONFIG_FCOE)
1214 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1215 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1216 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1217 						      u16 xid,
1218 						      struct scatterlist *sgl,
1219 						      unsigned int sgc);
1220 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1221 						     u16 xid);
1222 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1223 						       u16 xid,
1224 						       struct scatterlist *sgl,
1225 						       unsigned int sgc);
1226 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1227 							struct netdev_fcoe_hbainfo *hbainfo);
1228 #endif
1229 
1230 #if IS_ENABLED(CONFIG_LIBFCOE)
1231 #define NETDEV_FCOE_WWNN 0
1232 #define NETDEV_FCOE_WWPN 1
1233 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1234 						    u64 *wwn, int type);
1235 #endif
1236 
1237 #ifdef CONFIG_RFS_ACCEL
1238 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1239 						     const struct sk_buff *skb,
1240 						     u16 rxq_index,
1241 						     u32 flow_id);
1242 #endif
1243 	int			(*ndo_add_slave)(struct net_device *dev,
1244 						 struct net_device *slave_dev);
1245 	int			(*ndo_del_slave)(struct net_device *dev,
1246 						 struct net_device *slave_dev);
1247 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1248 						    netdev_features_t features);
1249 	int			(*ndo_set_features)(struct net_device *dev,
1250 						    netdev_features_t features);
1251 	int			(*ndo_neigh_construct)(struct net_device *dev,
1252 						       struct neighbour *n);
1253 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1254 						     struct neighbour *n);
1255 
1256 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1257 					       struct nlattr *tb[],
1258 					       struct net_device *dev,
1259 					       const unsigned char *addr,
1260 					       u16 vid,
1261 					       u16 flags);
1262 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1263 					       struct nlattr *tb[],
1264 					       struct net_device *dev,
1265 					       const unsigned char *addr,
1266 					       u16 vid);
1267 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1268 						struct netlink_callback *cb,
1269 						struct net_device *dev,
1270 						struct net_device *filter_dev,
1271 						int *idx);
1272 
1273 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1274 						      struct nlmsghdr *nlh,
1275 						      u16 flags);
1276 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1277 						      u32 pid, u32 seq,
1278 						      struct net_device *dev,
1279 						      u32 filter_mask,
1280 						      int nlflags);
1281 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1282 						      struct nlmsghdr *nlh,
1283 						      u16 flags);
1284 	int			(*ndo_change_carrier)(struct net_device *dev,
1285 						      bool new_carrier);
1286 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1287 							struct netdev_phys_item_id *ppid);
1288 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1289 							  char *name, size_t len);
1290 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1291 						      struct udp_tunnel_info *ti);
1292 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1293 						      struct udp_tunnel_info *ti);
1294 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1295 							struct net_device *dev);
1296 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1297 							void *priv);
1298 
1299 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1300 							struct net_device *dev,
1301 							void *priv);
1302 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1303 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1304 						      int queue_index,
1305 						      u32 maxrate);
1306 	int			(*ndo_get_iflink)(const struct net_device *dev);
1307 	int			(*ndo_change_proto_down)(struct net_device *dev,
1308 							 bool proto_down);
1309 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1310 						       struct sk_buff *skb);
1311 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1312 						       int needed_headroom);
1313 	int			(*ndo_xdp)(struct net_device *dev,
1314 					   struct netdev_xdp *xdp);
1315 };
1316 
1317 /**
1318  * enum net_device_priv_flags - &struct net_device priv_flags
1319  *
1320  * These are the &struct net_device, they are only set internally
1321  * by drivers and used in the kernel. These flags are invisible to
1322  * userspace; this means that the order of these flags can change
1323  * during any kernel release.
1324  *
1325  * You should have a pretty good reason to be extending these flags.
1326  *
1327  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1328  * @IFF_EBRIDGE: Ethernet bridging device
1329  * @IFF_BONDING: bonding master or slave
1330  * @IFF_ISATAP: ISATAP interface (RFC4214)
1331  * @IFF_WAN_HDLC: WAN HDLC device
1332  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1333  *	release skb->dst
1334  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1335  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1336  * @IFF_MACVLAN_PORT: device used as macvlan port
1337  * @IFF_BRIDGE_PORT: device used as bridge port
1338  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1339  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1340  * @IFF_UNICAST_FLT: Supports unicast filtering
1341  * @IFF_TEAM_PORT: device used as team port
1342  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1343  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1344  *	change when it's running
1345  * @IFF_MACVLAN: Macvlan device
1346  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1347  *	underlying stacked devices
1348  * @IFF_IPVLAN_MASTER: IPvlan master device
1349  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1350  * @IFF_L3MDEV_MASTER: device is an L3 master device
1351  * @IFF_NO_QUEUE: device can run without qdisc attached
1352  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1353  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1354  * @IFF_TEAM: device is a team device
1355  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1356  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1357  *	entity (i.e. the master device for bridged veth)
1358  * @IFF_MACSEC: device is a MACsec device
1359  */
1360 enum netdev_priv_flags {
1361 	IFF_802_1Q_VLAN			= 1<<0,
1362 	IFF_EBRIDGE			= 1<<1,
1363 	IFF_BONDING			= 1<<2,
1364 	IFF_ISATAP			= 1<<3,
1365 	IFF_WAN_HDLC			= 1<<4,
1366 	IFF_XMIT_DST_RELEASE		= 1<<5,
1367 	IFF_DONT_BRIDGE			= 1<<6,
1368 	IFF_DISABLE_NETPOLL		= 1<<7,
1369 	IFF_MACVLAN_PORT		= 1<<8,
1370 	IFF_BRIDGE_PORT			= 1<<9,
1371 	IFF_OVS_DATAPATH		= 1<<10,
1372 	IFF_TX_SKB_SHARING		= 1<<11,
1373 	IFF_UNICAST_FLT			= 1<<12,
1374 	IFF_TEAM_PORT			= 1<<13,
1375 	IFF_SUPP_NOFCS			= 1<<14,
1376 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1377 	IFF_MACVLAN			= 1<<16,
1378 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1379 	IFF_IPVLAN_MASTER		= 1<<18,
1380 	IFF_IPVLAN_SLAVE		= 1<<19,
1381 	IFF_L3MDEV_MASTER		= 1<<20,
1382 	IFF_NO_QUEUE			= 1<<21,
1383 	IFF_OPENVSWITCH			= 1<<22,
1384 	IFF_L3MDEV_SLAVE		= 1<<23,
1385 	IFF_TEAM			= 1<<24,
1386 	IFF_RXFH_CONFIGURED		= 1<<25,
1387 	IFF_PHONY_HEADROOM		= 1<<26,
1388 	IFF_MACSEC			= 1<<27,
1389 };
1390 
1391 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1392 #define IFF_EBRIDGE			IFF_EBRIDGE
1393 #define IFF_BONDING			IFF_BONDING
1394 #define IFF_ISATAP			IFF_ISATAP
1395 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1396 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1397 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1398 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1399 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1400 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1401 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1402 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1403 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1404 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1405 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1406 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1407 #define IFF_MACVLAN			IFF_MACVLAN
1408 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1409 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1410 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1411 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1412 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1413 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1414 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1415 #define IFF_TEAM			IFF_TEAM
1416 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1417 #define IFF_MACSEC			IFF_MACSEC
1418 
1419 /**
1420  *	struct net_device - The DEVICE structure.
1421  *		Actually, this whole structure is a big mistake.  It mixes I/O
1422  *		data with strictly "high-level" data, and it has to know about
1423  *		almost every data structure used in the INET module.
1424  *
1425  *	@name:	This is the first field of the "visible" part of this structure
1426  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1427  *	 	of the interface.
1428  *
1429  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1430  *	@ifalias:	SNMP alias
1431  *	@mem_end:	Shared memory end
1432  *	@mem_start:	Shared memory start
1433  *	@base_addr:	Device I/O address
1434  *	@irq:		Device IRQ number
1435  *
1436  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1437  *
1438  *	@state:		Generic network queuing layer state, see netdev_state_t
1439  *	@dev_list:	The global list of network devices
1440  *	@napi_list:	List entry used for polling NAPI devices
1441  *	@unreg_list:	List entry  when we are unregistering the
1442  *			device; see the function unregister_netdev
1443  *	@close_list:	List entry used when we are closing the device
1444  *	@ptype_all:     Device-specific packet handlers for all protocols
1445  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1446  *
1447  *	@adj_list:	Directly linked devices, like slaves for bonding
1448  *	@features:	Currently active device features
1449  *	@hw_features:	User-changeable features
1450  *
1451  *	@wanted_features:	User-requested features
1452  *	@vlan_features:		Mask of features inheritable by VLAN devices
1453  *
1454  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1455  *				This field indicates what encapsulation
1456  *				offloads the hardware is capable of doing,
1457  *				and drivers will need to set them appropriately.
1458  *
1459  *	@mpls_features:	Mask of features inheritable by MPLS
1460  *
1461  *	@ifindex:	interface index
1462  *	@group:		The group the device belongs to
1463  *
1464  *	@stats:		Statistics struct, which was left as a legacy, use
1465  *			rtnl_link_stats64 instead
1466  *
1467  *	@rx_dropped:	Dropped packets by core network,
1468  *			do not use this in drivers
1469  *	@tx_dropped:	Dropped packets by core network,
1470  *			do not use this in drivers
1471  *	@rx_nohandler:	nohandler dropped packets by core network on
1472  *			inactive devices, do not use this in drivers
1473  *
1474  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1475  *				instead of ioctl,
1476  *				see <net/iw_handler.h> for details.
1477  *	@wireless_data:	Instance data managed by the core of wireless extensions
1478  *
1479  *	@netdev_ops:	Includes several pointers to callbacks,
1480  *			if one wants to override the ndo_*() functions
1481  *	@ethtool_ops:	Management operations
1482  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1483  *			discovery handling. Necessary for e.g. 6LoWPAN.
1484  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1485  *			of Layer 2 headers.
1486  *
1487  *	@flags:		Interface flags (a la BSD)
1488  *	@priv_flags:	Like 'flags' but invisible to userspace,
1489  *			see if.h for the definitions
1490  *	@gflags:	Global flags ( kept as legacy )
1491  *	@padded:	How much padding added by alloc_netdev()
1492  *	@operstate:	RFC2863 operstate
1493  *	@link_mode:	Mapping policy to operstate
1494  *	@if_port:	Selectable AUI, TP, ...
1495  *	@dma:		DMA channel
1496  *	@mtu:		Interface MTU value
1497  *	@min_mtu:	Interface Minimum MTU value
1498  *	@max_mtu:	Interface Maximum MTU value
1499  *	@type:		Interface hardware type
1500  *	@hard_header_len: Maximum hardware header length.
1501  *	@min_header_len:  Minimum hardware header length
1502  *
1503  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1504  *			  cases can this be guaranteed
1505  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1506  *			  cases can this be guaranteed. Some cases also use
1507  *			  LL_MAX_HEADER instead to allocate the skb
1508  *
1509  *	interface address info:
1510  *
1511  * 	@perm_addr:		Permanent hw address
1512  * 	@addr_assign_type:	Hw address assignment type
1513  * 	@addr_len:		Hardware address length
1514  *	@neigh_priv_len:	Used in neigh_alloc()
1515  * 	@dev_id:		Used to differentiate devices that share
1516  * 				the same link layer address
1517  * 	@dev_port:		Used to differentiate devices that share
1518  * 				the same function
1519  *	@addr_list_lock:	XXX: need comments on this one
1520  *	@uc_promisc:		Counter that indicates promiscuous mode
1521  *				has been enabled due to the need to listen to
1522  *				additional unicast addresses in a device that
1523  *				does not implement ndo_set_rx_mode()
1524  *	@uc:			unicast mac addresses
1525  *	@mc:			multicast mac addresses
1526  *	@dev_addrs:		list of device hw addresses
1527  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1528  *	@promiscuity:		Number of times the NIC is told to work in
1529  *				promiscuous mode; if it becomes 0 the NIC will
1530  *				exit promiscuous mode
1531  *	@allmulti:		Counter, enables or disables allmulticast mode
1532  *
1533  *	@vlan_info:	VLAN info
1534  *	@dsa_ptr:	dsa specific data
1535  *	@tipc_ptr:	TIPC specific data
1536  *	@atalk_ptr:	AppleTalk link
1537  *	@ip_ptr:	IPv4 specific data
1538  *	@dn_ptr:	DECnet specific data
1539  *	@ip6_ptr:	IPv6 specific data
1540  *	@ax25_ptr:	AX.25 specific data
1541  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1542  *
1543  *	@dev_addr:	Hw address (before bcast,
1544  *			because most packets are unicast)
1545  *
1546  *	@_rx:			Array of RX queues
1547  *	@num_rx_queues:		Number of RX queues
1548  *				allocated at register_netdev() time
1549  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1550  *
1551  *	@rx_handler:		handler for received packets
1552  *	@rx_handler_data: 	XXX: need comments on this one
1553  *	@ingress_queue:		XXX: need comments on this one
1554  *	@broadcast:		hw bcast address
1555  *
1556  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1557  *			indexed by RX queue number. Assigned by driver.
1558  *			This must only be set if the ndo_rx_flow_steer
1559  *			operation is defined
1560  *	@index_hlist:		Device index hash chain
1561  *
1562  *	@_tx:			Array of TX queues
1563  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1564  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1565  *	@qdisc:			Root qdisc from userspace point of view
1566  *	@tx_queue_len:		Max frames per queue allowed
1567  *	@tx_global_lock: 	XXX: need comments on this one
1568  *
1569  *	@xps_maps:	XXX: need comments on this one
1570  *
1571  *	@watchdog_timeo:	Represents the timeout that is used by
1572  *				the watchdog (see dev_watchdog())
1573  *	@watchdog_timer:	List of timers
1574  *
1575  *	@pcpu_refcnt:		Number of references to this device
1576  *	@todo_list:		Delayed register/unregister
1577  *	@link_watch_list:	XXX: need comments on this one
1578  *
1579  *	@reg_state:		Register/unregister state machine
1580  *	@dismantle:		Device is going to be freed
1581  *	@rtnl_link_state:	This enum represents the phases of creating
1582  *				a new link
1583  *
1584  *	@destructor:		Called from unregister,
1585  *				can be used to call free_netdev
1586  *	@npinfo:		XXX: need comments on this one
1587  * 	@nd_net:		Network namespace this network device is inside
1588  *
1589  * 	@ml_priv:	Mid-layer private
1590  * 	@lstats:	Loopback statistics
1591  * 	@tstats:	Tunnel statistics
1592  * 	@dstats:	Dummy statistics
1593  * 	@vstats:	Virtual ethernet statistics
1594  *
1595  *	@garp_port:	GARP
1596  *	@mrp_port:	MRP
1597  *
1598  *	@dev:		Class/net/name entry
1599  *	@sysfs_groups:	Space for optional device, statistics and wireless
1600  *			sysfs groups
1601  *
1602  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1603  *	@rtnl_link_ops:	Rtnl_link_ops
1604  *
1605  *	@gso_max_size:	Maximum size of generic segmentation offload
1606  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1607  *			NIC for GSO
1608  *
1609  *	@dcbnl_ops:	Data Center Bridging netlink ops
1610  *	@num_tc:	Number of traffic classes in the net device
1611  *	@tc_to_txq:	XXX: need comments on this one
1612  *	@prio_tc_map:	XXX: need comments on this one
1613  *
1614  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1615  *
1616  *	@priomap:	XXX: need comments on this one
1617  *	@phydev:	Physical device may attach itself
1618  *			for hardware timestamping
1619  *
1620  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1621  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1622  *
1623  *	@proto_down:	protocol port state information can be sent to the
1624  *			switch driver and used to set the phys state of the
1625  *			switch port.
1626  *
1627  *	FIXME: cleanup struct net_device such that network protocol info
1628  *	moves out.
1629  */
1630 
1631 struct net_device {
1632 	char			name[IFNAMSIZ];
1633 	struct hlist_node	name_hlist;
1634 	char 			*ifalias;
1635 	/*
1636 	 *	I/O specific fields
1637 	 *	FIXME: Merge these and struct ifmap into one
1638 	 */
1639 	unsigned long		mem_end;
1640 	unsigned long		mem_start;
1641 	unsigned long		base_addr;
1642 	int			irq;
1643 
1644 	atomic_t		carrier_changes;
1645 
1646 	/*
1647 	 *	Some hardware also needs these fields (state,dev_list,
1648 	 *	napi_list,unreg_list,close_list) but they are not
1649 	 *	part of the usual set specified in Space.c.
1650 	 */
1651 
1652 	unsigned long		state;
1653 
1654 	struct list_head	dev_list;
1655 	struct list_head	napi_list;
1656 	struct list_head	unreg_list;
1657 	struct list_head	close_list;
1658 	struct list_head	ptype_all;
1659 	struct list_head	ptype_specific;
1660 
1661 	struct {
1662 		struct list_head upper;
1663 		struct list_head lower;
1664 	} adj_list;
1665 
1666 	netdev_features_t	features;
1667 	netdev_features_t	hw_features;
1668 	netdev_features_t	wanted_features;
1669 	netdev_features_t	vlan_features;
1670 	netdev_features_t	hw_enc_features;
1671 	netdev_features_t	mpls_features;
1672 	netdev_features_t	gso_partial_features;
1673 
1674 	int			ifindex;
1675 	int			group;
1676 
1677 	struct net_device_stats	stats;
1678 
1679 	atomic_long_t		rx_dropped;
1680 	atomic_long_t		tx_dropped;
1681 	atomic_long_t		rx_nohandler;
1682 
1683 #ifdef CONFIG_WIRELESS_EXT
1684 	const struct iw_handler_def *wireless_handlers;
1685 	struct iw_public_data	*wireless_data;
1686 #endif
1687 	const struct net_device_ops *netdev_ops;
1688 	const struct ethtool_ops *ethtool_ops;
1689 #ifdef CONFIG_NET_SWITCHDEV
1690 	const struct switchdev_ops *switchdev_ops;
1691 #endif
1692 #ifdef CONFIG_NET_L3_MASTER_DEV
1693 	const struct l3mdev_ops	*l3mdev_ops;
1694 #endif
1695 #if IS_ENABLED(CONFIG_IPV6)
1696 	const struct ndisc_ops *ndisc_ops;
1697 #endif
1698 
1699 	const struct header_ops *header_ops;
1700 
1701 	unsigned int		flags;
1702 	unsigned int		priv_flags;
1703 
1704 	unsigned short		gflags;
1705 	unsigned short		padded;
1706 
1707 	unsigned char		operstate;
1708 	unsigned char		link_mode;
1709 
1710 	unsigned char		if_port;
1711 	unsigned char		dma;
1712 
1713 	unsigned int		mtu;
1714 	unsigned int		min_mtu;
1715 	unsigned int		max_mtu;
1716 	unsigned short		type;
1717 	unsigned short		hard_header_len;
1718 	unsigned short		min_header_len;
1719 
1720 	unsigned short		needed_headroom;
1721 	unsigned short		needed_tailroom;
1722 
1723 	/* Interface address info. */
1724 	unsigned char		perm_addr[MAX_ADDR_LEN];
1725 	unsigned char		addr_assign_type;
1726 	unsigned char		addr_len;
1727 	unsigned short		neigh_priv_len;
1728 	unsigned short          dev_id;
1729 	unsigned short          dev_port;
1730 	spinlock_t		addr_list_lock;
1731 	unsigned char		name_assign_type;
1732 	bool			uc_promisc;
1733 	struct netdev_hw_addr_list	uc;
1734 	struct netdev_hw_addr_list	mc;
1735 	struct netdev_hw_addr_list	dev_addrs;
1736 
1737 #ifdef CONFIG_SYSFS
1738 	struct kset		*queues_kset;
1739 #endif
1740 	unsigned int		promiscuity;
1741 	unsigned int		allmulti;
1742 
1743 
1744 	/* Protocol-specific pointers */
1745 
1746 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1747 	struct vlan_info __rcu	*vlan_info;
1748 #endif
1749 #if IS_ENABLED(CONFIG_NET_DSA)
1750 	struct dsa_switch_tree	*dsa_ptr;
1751 #endif
1752 #if IS_ENABLED(CONFIG_TIPC)
1753 	struct tipc_bearer __rcu *tipc_ptr;
1754 #endif
1755 	void 			*atalk_ptr;
1756 	struct in_device __rcu	*ip_ptr;
1757 	struct dn_dev __rcu     *dn_ptr;
1758 	struct inet6_dev __rcu	*ip6_ptr;
1759 	void			*ax25_ptr;
1760 	struct wireless_dev	*ieee80211_ptr;
1761 	struct wpan_dev		*ieee802154_ptr;
1762 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1763 	struct mpls_dev __rcu	*mpls_ptr;
1764 #endif
1765 
1766 /*
1767  * Cache lines mostly used on receive path (including eth_type_trans())
1768  */
1769 	/* Interface address info used in eth_type_trans() */
1770 	unsigned char		*dev_addr;
1771 
1772 #ifdef CONFIG_SYSFS
1773 	struct netdev_rx_queue	*_rx;
1774 
1775 	unsigned int		num_rx_queues;
1776 	unsigned int		real_num_rx_queues;
1777 #endif
1778 
1779 	unsigned long		gro_flush_timeout;
1780 	rx_handler_func_t __rcu	*rx_handler;
1781 	void __rcu		*rx_handler_data;
1782 
1783 #ifdef CONFIG_NET_CLS_ACT
1784 	struct tcf_proto __rcu  *ingress_cl_list;
1785 #endif
1786 	struct netdev_queue __rcu *ingress_queue;
1787 #ifdef CONFIG_NETFILTER_INGRESS
1788 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1789 #endif
1790 
1791 	unsigned char		broadcast[MAX_ADDR_LEN];
1792 #ifdef CONFIG_RFS_ACCEL
1793 	struct cpu_rmap		*rx_cpu_rmap;
1794 #endif
1795 	struct hlist_node	index_hlist;
1796 
1797 /*
1798  * Cache lines mostly used on transmit path
1799  */
1800 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1801 	unsigned int		num_tx_queues;
1802 	unsigned int		real_num_tx_queues;
1803 	struct Qdisc		*qdisc;
1804 #ifdef CONFIG_NET_SCHED
1805 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1806 #endif
1807 	unsigned long		tx_queue_len;
1808 	spinlock_t		tx_global_lock;
1809 	int			watchdog_timeo;
1810 
1811 #ifdef CONFIG_XPS
1812 	struct xps_dev_maps __rcu *xps_maps;
1813 #endif
1814 #ifdef CONFIG_NET_CLS_ACT
1815 	struct tcf_proto __rcu  *egress_cl_list;
1816 #endif
1817 
1818 	/* These may be needed for future network-power-down code. */
1819 	struct timer_list	watchdog_timer;
1820 
1821 	int __percpu		*pcpu_refcnt;
1822 	struct list_head	todo_list;
1823 
1824 	struct list_head	link_watch_list;
1825 
1826 	enum { NETREG_UNINITIALIZED=0,
1827 	       NETREG_REGISTERED,	/* completed register_netdevice */
1828 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1829 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1830 	       NETREG_RELEASED,		/* called free_netdev */
1831 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1832 	} reg_state:8;
1833 
1834 	bool dismantle;
1835 
1836 	enum {
1837 		RTNL_LINK_INITIALIZED,
1838 		RTNL_LINK_INITIALIZING,
1839 	} rtnl_link_state:16;
1840 
1841 	void (*destructor)(struct net_device *dev);
1842 
1843 #ifdef CONFIG_NETPOLL
1844 	struct netpoll_info __rcu	*npinfo;
1845 #endif
1846 
1847 	possible_net_t			nd_net;
1848 
1849 	/* mid-layer private */
1850 	union {
1851 		void					*ml_priv;
1852 		struct pcpu_lstats __percpu		*lstats;
1853 		struct pcpu_sw_netstats __percpu	*tstats;
1854 		struct pcpu_dstats __percpu		*dstats;
1855 		struct pcpu_vstats __percpu		*vstats;
1856 	};
1857 
1858 #if IS_ENABLED(CONFIG_GARP)
1859 	struct garp_port __rcu	*garp_port;
1860 #endif
1861 #if IS_ENABLED(CONFIG_MRP)
1862 	struct mrp_port __rcu	*mrp_port;
1863 #endif
1864 
1865 	struct device		dev;
1866 	const struct attribute_group *sysfs_groups[4];
1867 	const struct attribute_group *sysfs_rx_queue_group;
1868 
1869 	const struct rtnl_link_ops *rtnl_link_ops;
1870 
1871 	/* for setting kernel sock attribute on TCP connection setup */
1872 #define GSO_MAX_SIZE		65536
1873 	unsigned int		gso_max_size;
1874 #define GSO_MAX_SEGS		65535
1875 	u16			gso_max_segs;
1876 
1877 #ifdef CONFIG_DCB
1878 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1879 #endif
1880 	u8			num_tc;
1881 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1882 	u8			prio_tc_map[TC_BITMASK + 1];
1883 
1884 #if IS_ENABLED(CONFIG_FCOE)
1885 	unsigned int		fcoe_ddp_xid;
1886 #endif
1887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1888 	struct netprio_map __rcu *priomap;
1889 #endif
1890 	struct phy_device	*phydev;
1891 	struct lock_class_key	*qdisc_tx_busylock;
1892 	struct lock_class_key	*qdisc_running_key;
1893 	bool			proto_down;
1894 };
1895 #define to_net_dev(d) container_of(d, struct net_device, dev)
1896 
1897 #define	NETDEV_ALIGN		32
1898 
1899 static inline
1900 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1901 {
1902 	return dev->prio_tc_map[prio & TC_BITMASK];
1903 }
1904 
1905 static inline
1906 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1907 {
1908 	if (tc >= dev->num_tc)
1909 		return -EINVAL;
1910 
1911 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1912 	return 0;
1913 }
1914 
1915 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1916 void netdev_reset_tc(struct net_device *dev);
1917 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1918 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1919 
1920 static inline
1921 int netdev_get_num_tc(struct net_device *dev)
1922 {
1923 	return dev->num_tc;
1924 }
1925 
1926 static inline
1927 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1928 					 unsigned int index)
1929 {
1930 	return &dev->_tx[index];
1931 }
1932 
1933 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1934 						    const struct sk_buff *skb)
1935 {
1936 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1937 }
1938 
1939 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1940 					    void (*f)(struct net_device *,
1941 						      struct netdev_queue *,
1942 						      void *),
1943 					    void *arg)
1944 {
1945 	unsigned int i;
1946 
1947 	for (i = 0; i < dev->num_tx_queues; i++)
1948 		f(dev, &dev->_tx[i], arg);
1949 }
1950 
1951 #define netdev_lockdep_set_classes(dev)				\
1952 {								\
1953 	static struct lock_class_key qdisc_tx_busylock_key;	\
1954 	static struct lock_class_key qdisc_running_key;		\
1955 	static struct lock_class_key qdisc_xmit_lock_key;	\
1956 	static struct lock_class_key dev_addr_list_lock_key;	\
1957 	unsigned int i;						\
1958 								\
1959 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1960 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1961 	lockdep_set_class(&(dev)->addr_list_lock,		\
1962 			  &dev_addr_list_lock_key); 		\
1963 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1964 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1965 				  &qdisc_xmit_lock_key);	\
1966 }
1967 
1968 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1969 				    struct sk_buff *skb,
1970 				    void *accel_priv);
1971 
1972 /* returns the headroom that the master device needs to take in account
1973  * when forwarding to this dev
1974  */
1975 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1976 {
1977 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1978 }
1979 
1980 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1981 {
1982 	if (dev->netdev_ops->ndo_set_rx_headroom)
1983 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1984 }
1985 
1986 /* set the device rx headroom to the dev's default */
1987 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1988 {
1989 	netdev_set_rx_headroom(dev, -1);
1990 }
1991 
1992 /*
1993  * Net namespace inlines
1994  */
1995 static inline
1996 struct net *dev_net(const struct net_device *dev)
1997 {
1998 	return read_pnet(&dev->nd_net);
1999 }
2000 
2001 static inline
2002 void dev_net_set(struct net_device *dev, struct net *net)
2003 {
2004 	write_pnet(&dev->nd_net, net);
2005 }
2006 
2007 static inline bool netdev_uses_dsa(struct net_device *dev)
2008 {
2009 #if IS_ENABLED(CONFIG_NET_DSA)
2010 	if (dev->dsa_ptr != NULL)
2011 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2012 #endif
2013 	return false;
2014 }
2015 
2016 /**
2017  *	netdev_priv - access network device private data
2018  *	@dev: network device
2019  *
2020  * Get network device private data
2021  */
2022 static inline void *netdev_priv(const struct net_device *dev)
2023 {
2024 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2025 }
2026 
2027 /* Set the sysfs physical device reference for the network logical device
2028  * if set prior to registration will cause a symlink during initialization.
2029  */
2030 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2031 
2032 /* Set the sysfs device type for the network logical device to allow
2033  * fine-grained identification of different network device types. For
2034  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2035  */
2036 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2037 
2038 /* Default NAPI poll() weight
2039  * Device drivers are strongly advised to not use bigger value
2040  */
2041 #define NAPI_POLL_WEIGHT 64
2042 
2043 /**
2044  *	netif_napi_add - initialize a NAPI context
2045  *	@dev:  network device
2046  *	@napi: NAPI context
2047  *	@poll: polling function
2048  *	@weight: default weight
2049  *
2050  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2051  * *any* of the other NAPI-related functions.
2052  */
2053 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2054 		    int (*poll)(struct napi_struct *, int), int weight);
2055 
2056 /**
2057  *	netif_tx_napi_add - initialize a NAPI context
2058  *	@dev:  network device
2059  *	@napi: NAPI context
2060  *	@poll: polling function
2061  *	@weight: default weight
2062  *
2063  * This variant of netif_napi_add() should be used from drivers using NAPI
2064  * to exclusively poll a TX queue.
2065  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2066  */
2067 static inline void netif_tx_napi_add(struct net_device *dev,
2068 				     struct napi_struct *napi,
2069 				     int (*poll)(struct napi_struct *, int),
2070 				     int weight)
2071 {
2072 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2073 	netif_napi_add(dev, napi, poll, weight);
2074 }
2075 
2076 /**
2077  *  netif_napi_del - remove a NAPI context
2078  *  @napi: NAPI context
2079  *
2080  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2081  */
2082 void netif_napi_del(struct napi_struct *napi);
2083 
2084 struct napi_gro_cb {
2085 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2086 	void	*frag0;
2087 
2088 	/* Length of frag0. */
2089 	unsigned int frag0_len;
2090 
2091 	/* This indicates where we are processing relative to skb->data. */
2092 	int	data_offset;
2093 
2094 	/* This is non-zero if the packet cannot be merged with the new skb. */
2095 	u16	flush;
2096 
2097 	/* Save the IP ID here and check when we get to the transport layer */
2098 	u16	flush_id;
2099 
2100 	/* Number of segments aggregated. */
2101 	u16	count;
2102 
2103 	/* Start offset for remote checksum offload */
2104 	u16	gro_remcsum_start;
2105 
2106 	/* jiffies when first packet was created/queued */
2107 	unsigned long age;
2108 
2109 	/* Used in ipv6_gro_receive() and foo-over-udp */
2110 	u16	proto;
2111 
2112 	/* This is non-zero if the packet may be of the same flow. */
2113 	u8	same_flow:1;
2114 
2115 	/* Used in tunnel GRO receive */
2116 	u8	encap_mark:1;
2117 
2118 	/* GRO checksum is valid */
2119 	u8	csum_valid:1;
2120 
2121 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2122 	u8	csum_cnt:3;
2123 
2124 	/* Free the skb? */
2125 	u8	free:2;
2126 #define NAPI_GRO_FREE		  1
2127 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2128 
2129 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2130 	u8	is_ipv6:1;
2131 
2132 	/* Used in GRE, set in fou/gue_gro_receive */
2133 	u8	is_fou:1;
2134 
2135 	/* Used to determine if flush_id can be ignored */
2136 	u8	is_atomic:1;
2137 
2138 	/* Number of gro_receive callbacks this packet already went through */
2139 	u8 recursion_counter:4;
2140 
2141 	/* 1 bit hole */
2142 
2143 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2144 	__wsum	csum;
2145 
2146 	/* used in skb_gro_receive() slow path */
2147 	struct sk_buff *last;
2148 };
2149 
2150 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2151 
2152 #define GRO_RECURSION_LIMIT 15
2153 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2154 {
2155 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2156 }
2157 
2158 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2159 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2160 						struct sk_buff **head,
2161 						struct sk_buff *skb)
2162 {
2163 	if (unlikely(gro_recursion_inc_test(skb))) {
2164 		NAPI_GRO_CB(skb)->flush |= 1;
2165 		return NULL;
2166 	}
2167 
2168 	return cb(head, skb);
2169 }
2170 
2171 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2172 					     struct sk_buff *);
2173 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2174 						   struct sock *sk,
2175 						   struct sk_buff **head,
2176 						   struct sk_buff *skb)
2177 {
2178 	if (unlikely(gro_recursion_inc_test(skb))) {
2179 		NAPI_GRO_CB(skb)->flush |= 1;
2180 		return NULL;
2181 	}
2182 
2183 	return cb(sk, head, skb);
2184 }
2185 
2186 struct packet_type {
2187 	__be16			type;	/* This is really htons(ether_type). */
2188 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2189 	int			(*func) (struct sk_buff *,
2190 					 struct net_device *,
2191 					 struct packet_type *,
2192 					 struct net_device *);
2193 	bool			(*id_match)(struct packet_type *ptype,
2194 					    struct sock *sk);
2195 	void			*af_packet_priv;
2196 	struct list_head	list;
2197 };
2198 
2199 struct offload_callbacks {
2200 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2201 						netdev_features_t features);
2202 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2203 						 struct sk_buff *skb);
2204 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2205 };
2206 
2207 struct packet_offload {
2208 	__be16			 type;	/* This is really htons(ether_type). */
2209 	u16			 priority;
2210 	struct offload_callbacks callbacks;
2211 	struct list_head	 list;
2212 };
2213 
2214 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2215 struct pcpu_sw_netstats {
2216 	u64     rx_packets;
2217 	u64     rx_bytes;
2218 	u64     tx_packets;
2219 	u64     tx_bytes;
2220 	struct u64_stats_sync   syncp;
2221 };
2222 
2223 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2224 ({									\
2225 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2226 	if (pcpu_stats)	{						\
2227 		int __cpu;						\
2228 		for_each_possible_cpu(__cpu) {				\
2229 			typeof(type) *stat;				\
2230 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2231 			u64_stats_init(&stat->syncp);			\
2232 		}							\
2233 	}								\
2234 	pcpu_stats;							\
2235 })
2236 
2237 #define netdev_alloc_pcpu_stats(type)					\
2238 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2239 
2240 enum netdev_lag_tx_type {
2241 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2242 	NETDEV_LAG_TX_TYPE_RANDOM,
2243 	NETDEV_LAG_TX_TYPE_BROADCAST,
2244 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2245 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2246 	NETDEV_LAG_TX_TYPE_HASH,
2247 };
2248 
2249 struct netdev_lag_upper_info {
2250 	enum netdev_lag_tx_type tx_type;
2251 };
2252 
2253 struct netdev_lag_lower_state_info {
2254 	u8 link_up : 1,
2255 	   tx_enabled : 1;
2256 };
2257 
2258 #include <linux/notifier.h>
2259 
2260 /* netdevice notifier chain. Please remember to update the rtnetlink
2261  * notification exclusion list in rtnetlink_event() when adding new
2262  * types.
2263  */
2264 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2265 #define NETDEV_DOWN	0x0002
2266 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2267 				   detected a hardware crash and restarted
2268 				   - we can use this eg to kick tcp sessions
2269 				   once done */
2270 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2271 #define NETDEV_REGISTER 0x0005
2272 #define NETDEV_UNREGISTER	0x0006
2273 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2274 #define NETDEV_CHANGEADDR	0x0008
2275 #define NETDEV_GOING_DOWN	0x0009
2276 #define NETDEV_CHANGENAME	0x000A
2277 #define NETDEV_FEAT_CHANGE	0x000B
2278 #define NETDEV_BONDING_FAILOVER 0x000C
2279 #define NETDEV_PRE_UP		0x000D
2280 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2281 #define NETDEV_POST_TYPE_CHANGE	0x000F
2282 #define NETDEV_POST_INIT	0x0010
2283 #define NETDEV_UNREGISTER_FINAL 0x0011
2284 #define NETDEV_RELEASE		0x0012
2285 #define NETDEV_NOTIFY_PEERS	0x0013
2286 #define NETDEV_JOIN		0x0014
2287 #define NETDEV_CHANGEUPPER	0x0015
2288 #define NETDEV_RESEND_IGMP	0x0016
2289 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2290 #define NETDEV_CHANGEINFODATA	0x0018
2291 #define NETDEV_BONDING_INFO	0x0019
2292 #define NETDEV_PRECHANGEUPPER	0x001A
2293 #define NETDEV_CHANGELOWERSTATE	0x001B
2294 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2295 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2296 
2297 int register_netdevice_notifier(struct notifier_block *nb);
2298 int unregister_netdevice_notifier(struct notifier_block *nb);
2299 
2300 struct netdev_notifier_info {
2301 	struct net_device *dev;
2302 };
2303 
2304 struct netdev_notifier_change_info {
2305 	struct netdev_notifier_info info; /* must be first */
2306 	unsigned int flags_changed;
2307 };
2308 
2309 struct netdev_notifier_changeupper_info {
2310 	struct netdev_notifier_info info; /* must be first */
2311 	struct net_device *upper_dev; /* new upper dev */
2312 	bool master; /* is upper dev master */
2313 	bool linking; /* is the notification for link or unlink */
2314 	void *upper_info; /* upper dev info */
2315 };
2316 
2317 struct netdev_notifier_changelowerstate_info {
2318 	struct netdev_notifier_info info; /* must be first */
2319 	void *lower_state_info; /* is lower dev state */
2320 };
2321 
2322 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2323 					     struct net_device *dev)
2324 {
2325 	info->dev = dev;
2326 }
2327 
2328 static inline struct net_device *
2329 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2330 {
2331 	return info->dev;
2332 }
2333 
2334 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2335 
2336 
2337 extern rwlock_t				dev_base_lock;		/* Device list lock */
2338 
2339 #define for_each_netdev(net, d)		\
2340 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2341 #define for_each_netdev_reverse(net, d)	\
2342 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2343 #define for_each_netdev_rcu(net, d)		\
2344 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2345 #define for_each_netdev_safe(net, d, n)	\
2346 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2347 #define for_each_netdev_continue(net, d)		\
2348 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2349 #define for_each_netdev_continue_rcu(net, d)		\
2350 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2351 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2352 		for_each_netdev_rcu(&init_net, slave)	\
2353 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2354 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2355 
2356 static inline struct net_device *next_net_device(struct net_device *dev)
2357 {
2358 	struct list_head *lh;
2359 	struct net *net;
2360 
2361 	net = dev_net(dev);
2362 	lh = dev->dev_list.next;
2363 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2364 }
2365 
2366 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2367 {
2368 	struct list_head *lh;
2369 	struct net *net;
2370 
2371 	net = dev_net(dev);
2372 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2373 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2374 }
2375 
2376 static inline struct net_device *first_net_device(struct net *net)
2377 {
2378 	return list_empty(&net->dev_base_head) ? NULL :
2379 		net_device_entry(net->dev_base_head.next);
2380 }
2381 
2382 static inline struct net_device *first_net_device_rcu(struct net *net)
2383 {
2384 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2385 
2386 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2387 }
2388 
2389 int netdev_boot_setup_check(struct net_device *dev);
2390 unsigned long netdev_boot_base(const char *prefix, int unit);
2391 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2392 				       const char *hwaddr);
2393 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2394 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2395 void dev_add_pack(struct packet_type *pt);
2396 void dev_remove_pack(struct packet_type *pt);
2397 void __dev_remove_pack(struct packet_type *pt);
2398 void dev_add_offload(struct packet_offload *po);
2399 void dev_remove_offload(struct packet_offload *po);
2400 
2401 int dev_get_iflink(const struct net_device *dev);
2402 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2403 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2404 				      unsigned short mask);
2405 struct net_device *dev_get_by_name(struct net *net, const char *name);
2406 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2407 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2408 int dev_alloc_name(struct net_device *dev, const char *name);
2409 int dev_open(struct net_device *dev);
2410 int dev_close(struct net_device *dev);
2411 int dev_close_many(struct list_head *head, bool unlink);
2412 void dev_disable_lro(struct net_device *dev);
2413 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2414 int dev_queue_xmit(struct sk_buff *skb);
2415 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2416 int register_netdevice(struct net_device *dev);
2417 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2418 void unregister_netdevice_many(struct list_head *head);
2419 static inline void unregister_netdevice(struct net_device *dev)
2420 {
2421 	unregister_netdevice_queue(dev, NULL);
2422 }
2423 
2424 int netdev_refcnt_read(const struct net_device *dev);
2425 void free_netdev(struct net_device *dev);
2426 void netdev_freemem(struct net_device *dev);
2427 void synchronize_net(void);
2428 int init_dummy_netdev(struct net_device *dev);
2429 
2430 DECLARE_PER_CPU(int, xmit_recursion);
2431 #define XMIT_RECURSION_LIMIT	10
2432 
2433 static inline int dev_recursion_level(void)
2434 {
2435 	return this_cpu_read(xmit_recursion);
2436 }
2437 
2438 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2439 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2440 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2441 int netdev_get_name(struct net *net, char *name, int ifindex);
2442 int dev_restart(struct net_device *dev);
2443 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2444 
2445 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2446 {
2447 	return NAPI_GRO_CB(skb)->data_offset;
2448 }
2449 
2450 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2451 {
2452 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2453 }
2454 
2455 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2456 {
2457 	NAPI_GRO_CB(skb)->data_offset += len;
2458 }
2459 
2460 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2461 					unsigned int offset)
2462 {
2463 	return NAPI_GRO_CB(skb)->frag0 + offset;
2464 }
2465 
2466 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2467 {
2468 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2469 }
2470 
2471 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2472 {
2473 	NAPI_GRO_CB(skb)->frag0 = NULL;
2474 	NAPI_GRO_CB(skb)->frag0_len = 0;
2475 }
2476 
2477 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2478 					unsigned int offset)
2479 {
2480 	if (!pskb_may_pull(skb, hlen))
2481 		return NULL;
2482 
2483 	skb_gro_frag0_invalidate(skb);
2484 	return skb->data + offset;
2485 }
2486 
2487 static inline void *skb_gro_network_header(struct sk_buff *skb)
2488 {
2489 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2490 	       skb_network_offset(skb);
2491 }
2492 
2493 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2494 					const void *start, unsigned int len)
2495 {
2496 	if (NAPI_GRO_CB(skb)->csum_valid)
2497 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2498 						  csum_partial(start, len, 0));
2499 }
2500 
2501 /* GRO checksum functions. These are logical equivalents of the normal
2502  * checksum functions (in skbuff.h) except that they operate on the GRO
2503  * offsets and fields in sk_buff.
2504  */
2505 
2506 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2507 
2508 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2509 {
2510 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2511 }
2512 
2513 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2514 						      bool zero_okay,
2515 						      __sum16 check)
2516 {
2517 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2518 		skb_checksum_start_offset(skb) <
2519 		 skb_gro_offset(skb)) &&
2520 		!skb_at_gro_remcsum_start(skb) &&
2521 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2522 		(!zero_okay || check));
2523 }
2524 
2525 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2526 							   __wsum psum)
2527 {
2528 	if (NAPI_GRO_CB(skb)->csum_valid &&
2529 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2530 		return 0;
2531 
2532 	NAPI_GRO_CB(skb)->csum = psum;
2533 
2534 	return __skb_gro_checksum_complete(skb);
2535 }
2536 
2537 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2538 {
2539 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2540 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2541 		NAPI_GRO_CB(skb)->csum_cnt--;
2542 	} else {
2543 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2544 		 * verified a new top level checksum or an encapsulated one
2545 		 * during GRO. This saves work if we fallback to normal path.
2546 		 */
2547 		__skb_incr_checksum_unnecessary(skb);
2548 	}
2549 }
2550 
2551 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2552 				    compute_pseudo)			\
2553 ({									\
2554 	__sum16 __ret = 0;						\
2555 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2556 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2557 				compute_pseudo(skb, proto));		\
2558 	if (__ret)							\
2559 		__skb_mark_checksum_bad(skb);				\
2560 	else								\
2561 		skb_gro_incr_csum_unnecessary(skb);			\
2562 	__ret;								\
2563 })
2564 
2565 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2566 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2567 
2568 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2569 					     compute_pseudo)		\
2570 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2571 
2572 #define skb_gro_checksum_simple_validate(skb)				\
2573 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2574 
2575 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2576 {
2577 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2578 		!NAPI_GRO_CB(skb)->csum_valid);
2579 }
2580 
2581 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2582 					      __sum16 check, __wsum pseudo)
2583 {
2584 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2585 	NAPI_GRO_CB(skb)->csum_valid = 1;
2586 }
2587 
2588 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2589 do {									\
2590 	if (__skb_gro_checksum_convert_check(skb))			\
2591 		__skb_gro_checksum_convert(skb, check,			\
2592 					   compute_pseudo(skb, proto));	\
2593 } while (0)
2594 
2595 struct gro_remcsum {
2596 	int offset;
2597 	__wsum delta;
2598 };
2599 
2600 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2601 {
2602 	grc->offset = 0;
2603 	grc->delta = 0;
2604 }
2605 
2606 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2607 					    unsigned int off, size_t hdrlen,
2608 					    int start, int offset,
2609 					    struct gro_remcsum *grc,
2610 					    bool nopartial)
2611 {
2612 	__wsum delta;
2613 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2614 
2615 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2616 
2617 	if (!nopartial) {
2618 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2619 		return ptr;
2620 	}
2621 
2622 	ptr = skb_gro_header_fast(skb, off);
2623 	if (skb_gro_header_hard(skb, off + plen)) {
2624 		ptr = skb_gro_header_slow(skb, off + plen, off);
2625 		if (!ptr)
2626 			return NULL;
2627 	}
2628 
2629 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2630 			       start, offset);
2631 
2632 	/* Adjust skb->csum since we changed the packet */
2633 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2634 
2635 	grc->offset = off + hdrlen + offset;
2636 	grc->delta = delta;
2637 
2638 	return ptr;
2639 }
2640 
2641 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2642 					   struct gro_remcsum *grc)
2643 {
2644 	void *ptr;
2645 	size_t plen = grc->offset + sizeof(u16);
2646 
2647 	if (!grc->delta)
2648 		return;
2649 
2650 	ptr = skb_gro_header_fast(skb, grc->offset);
2651 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2652 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2653 		if (!ptr)
2654 			return;
2655 	}
2656 
2657 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2658 }
2659 
2660 #ifdef CONFIG_XFRM_OFFLOAD
2661 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2662 {
2663 	if (PTR_ERR(pp) != -EINPROGRESS)
2664 		NAPI_GRO_CB(skb)->flush |= flush;
2665 }
2666 #else
2667 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2668 {
2669 	NAPI_GRO_CB(skb)->flush |= flush;
2670 }
2671 #endif
2672 
2673 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2674 				  unsigned short type,
2675 				  const void *daddr, const void *saddr,
2676 				  unsigned int len)
2677 {
2678 	if (!dev->header_ops || !dev->header_ops->create)
2679 		return 0;
2680 
2681 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2682 }
2683 
2684 static inline int dev_parse_header(const struct sk_buff *skb,
2685 				   unsigned char *haddr)
2686 {
2687 	const struct net_device *dev = skb->dev;
2688 
2689 	if (!dev->header_ops || !dev->header_ops->parse)
2690 		return 0;
2691 	return dev->header_ops->parse(skb, haddr);
2692 }
2693 
2694 /* ll_header must have at least hard_header_len allocated */
2695 static inline bool dev_validate_header(const struct net_device *dev,
2696 				       char *ll_header, int len)
2697 {
2698 	if (likely(len >= dev->hard_header_len))
2699 		return true;
2700 	if (len < dev->min_header_len)
2701 		return false;
2702 
2703 	if (capable(CAP_SYS_RAWIO)) {
2704 		memset(ll_header + len, 0, dev->hard_header_len - len);
2705 		return true;
2706 	}
2707 
2708 	if (dev->header_ops && dev->header_ops->validate)
2709 		return dev->header_ops->validate(ll_header, len);
2710 
2711 	return false;
2712 }
2713 
2714 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2715 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2716 static inline int unregister_gifconf(unsigned int family)
2717 {
2718 	return register_gifconf(family, NULL);
2719 }
2720 
2721 #ifdef CONFIG_NET_FLOW_LIMIT
2722 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2723 struct sd_flow_limit {
2724 	u64			count;
2725 	unsigned int		num_buckets;
2726 	unsigned int		history_head;
2727 	u16			history[FLOW_LIMIT_HISTORY];
2728 	u8			buckets[];
2729 };
2730 
2731 extern int netdev_flow_limit_table_len;
2732 #endif /* CONFIG_NET_FLOW_LIMIT */
2733 
2734 /*
2735  * Incoming packets are placed on per-CPU queues
2736  */
2737 struct softnet_data {
2738 	struct list_head	poll_list;
2739 	struct sk_buff_head	process_queue;
2740 
2741 	/* stats */
2742 	unsigned int		processed;
2743 	unsigned int		time_squeeze;
2744 	unsigned int		received_rps;
2745 #ifdef CONFIG_RPS
2746 	struct softnet_data	*rps_ipi_list;
2747 #endif
2748 #ifdef CONFIG_NET_FLOW_LIMIT
2749 	struct sd_flow_limit __rcu *flow_limit;
2750 #endif
2751 	struct Qdisc		*output_queue;
2752 	struct Qdisc		**output_queue_tailp;
2753 	struct sk_buff		*completion_queue;
2754 
2755 #ifdef CONFIG_RPS
2756 	/* input_queue_head should be written by cpu owning this struct,
2757 	 * and only read by other cpus. Worth using a cache line.
2758 	 */
2759 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2760 
2761 	/* Elements below can be accessed between CPUs for RPS/RFS */
2762 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2763 	struct softnet_data	*rps_ipi_next;
2764 	unsigned int		cpu;
2765 	unsigned int		input_queue_tail;
2766 #endif
2767 	unsigned int		dropped;
2768 	struct sk_buff_head	input_pkt_queue;
2769 	struct napi_struct	backlog;
2770 
2771 };
2772 
2773 static inline void input_queue_head_incr(struct softnet_data *sd)
2774 {
2775 #ifdef CONFIG_RPS
2776 	sd->input_queue_head++;
2777 #endif
2778 }
2779 
2780 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2781 					      unsigned int *qtail)
2782 {
2783 #ifdef CONFIG_RPS
2784 	*qtail = ++sd->input_queue_tail;
2785 #endif
2786 }
2787 
2788 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2789 
2790 void __netif_schedule(struct Qdisc *q);
2791 void netif_schedule_queue(struct netdev_queue *txq);
2792 
2793 static inline void netif_tx_schedule_all(struct net_device *dev)
2794 {
2795 	unsigned int i;
2796 
2797 	for (i = 0; i < dev->num_tx_queues; i++)
2798 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2799 }
2800 
2801 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2802 {
2803 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2804 }
2805 
2806 /**
2807  *	netif_start_queue - allow transmit
2808  *	@dev: network device
2809  *
2810  *	Allow upper layers to call the device hard_start_xmit routine.
2811  */
2812 static inline void netif_start_queue(struct net_device *dev)
2813 {
2814 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2815 }
2816 
2817 static inline void netif_tx_start_all_queues(struct net_device *dev)
2818 {
2819 	unsigned int i;
2820 
2821 	for (i = 0; i < dev->num_tx_queues; i++) {
2822 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2823 		netif_tx_start_queue(txq);
2824 	}
2825 }
2826 
2827 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2828 
2829 /**
2830  *	netif_wake_queue - restart transmit
2831  *	@dev: network device
2832  *
2833  *	Allow upper layers to call the device hard_start_xmit routine.
2834  *	Used for flow control when transmit resources are available.
2835  */
2836 static inline void netif_wake_queue(struct net_device *dev)
2837 {
2838 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2839 }
2840 
2841 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2842 {
2843 	unsigned int i;
2844 
2845 	for (i = 0; i < dev->num_tx_queues; i++) {
2846 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2847 		netif_tx_wake_queue(txq);
2848 	}
2849 }
2850 
2851 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2852 {
2853 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2854 }
2855 
2856 /**
2857  *	netif_stop_queue - stop transmitted packets
2858  *	@dev: network device
2859  *
2860  *	Stop upper layers calling the device hard_start_xmit routine.
2861  *	Used for flow control when transmit resources are unavailable.
2862  */
2863 static inline void netif_stop_queue(struct net_device *dev)
2864 {
2865 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2866 }
2867 
2868 void netif_tx_stop_all_queues(struct net_device *dev);
2869 
2870 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2871 {
2872 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2873 }
2874 
2875 /**
2876  *	netif_queue_stopped - test if transmit queue is flowblocked
2877  *	@dev: network device
2878  *
2879  *	Test if transmit queue on device is currently unable to send.
2880  */
2881 static inline bool netif_queue_stopped(const struct net_device *dev)
2882 {
2883 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2884 }
2885 
2886 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2887 {
2888 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2889 }
2890 
2891 static inline bool
2892 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2893 {
2894 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2895 }
2896 
2897 static inline bool
2898 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2899 {
2900 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2901 }
2902 
2903 /**
2904  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2905  *	@dev_queue: pointer to transmit queue
2906  *
2907  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2908  * to give appropriate hint to the CPU.
2909  */
2910 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2911 {
2912 #ifdef CONFIG_BQL
2913 	prefetchw(&dev_queue->dql.num_queued);
2914 #endif
2915 }
2916 
2917 /**
2918  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2919  *	@dev_queue: pointer to transmit queue
2920  *
2921  * BQL enabled drivers might use this helper in their TX completion path,
2922  * to give appropriate hint to the CPU.
2923  */
2924 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2925 {
2926 #ifdef CONFIG_BQL
2927 	prefetchw(&dev_queue->dql.limit);
2928 #endif
2929 }
2930 
2931 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2932 					unsigned int bytes)
2933 {
2934 #ifdef CONFIG_BQL
2935 	dql_queued(&dev_queue->dql, bytes);
2936 
2937 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2938 		return;
2939 
2940 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2941 
2942 	/*
2943 	 * The XOFF flag must be set before checking the dql_avail below,
2944 	 * because in netdev_tx_completed_queue we update the dql_completed
2945 	 * before checking the XOFF flag.
2946 	 */
2947 	smp_mb();
2948 
2949 	/* check again in case another CPU has just made room avail */
2950 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2951 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2952 #endif
2953 }
2954 
2955 /**
2956  * 	netdev_sent_queue - report the number of bytes queued to hardware
2957  * 	@dev: network device
2958  * 	@bytes: number of bytes queued to the hardware device queue
2959  *
2960  * 	Report the number of bytes queued for sending/completion to the network
2961  * 	device hardware queue. @bytes should be a good approximation and should
2962  * 	exactly match netdev_completed_queue() @bytes
2963  */
2964 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2965 {
2966 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2967 }
2968 
2969 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2970 					     unsigned int pkts, unsigned int bytes)
2971 {
2972 #ifdef CONFIG_BQL
2973 	if (unlikely(!bytes))
2974 		return;
2975 
2976 	dql_completed(&dev_queue->dql, bytes);
2977 
2978 	/*
2979 	 * Without the memory barrier there is a small possiblity that
2980 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2981 	 * be stopped forever
2982 	 */
2983 	smp_mb();
2984 
2985 	if (dql_avail(&dev_queue->dql) < 0)
2986 		return;
2987 
2988 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2989 		netif_schedule_queue(dev_queue);
2990 #endif
2991 }
2992 
2993 /**
2994  * 	netdev_completed_queue - report bytes and packets completed by device
2995  * 	@dev: network device
2996  * 	@pkts: actual number of packets sent over the medium
2997  * 	@bytes: actual number of bytes sent over the medium
2998  *
2999  * 	Report the number of bytes and packets transmitted by the network device
3000  * 	hardware queue over the physical medium, @bytes must exactly match the
3001  * 	@bytes amount passed to netdev_sent_queue()
3002  */
3003 static inline void netdev_completed_queue(struct net_device *dev,
3004 					  unsigned int pkts, unsigned int bytes)
3005 {
3006 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3007 }
3008 
3009 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3010 {
3011 #ifdef CONFIG_BQL
3012 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3013 	dql_reset(&q->dql);
3014 #endif
3015 }
3016 
3017 /**
3018  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3019  * 	@dev_queue: network device
3020  *
3021  * 	Reset the bytes and packet count of a network device and clear the
3022  * 	software flow control OFF bit for this network device
3023  */
3024 static inline void netdev_reset_queue(struct net_device *dev_queue)
3025 {
3026 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3027 }
3028 
3029 /**
3030  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3031  * 	@dev: network device
3032  * 	@queue_index: given tx queue index
3033  *
3034  * 	Returns 0 if given tx queue index >= number of device tx queues,
3035  * 	otherwise returns the originally passed tx queue index.
3036  */
3037 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3038 {
3039 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3040 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3041 				     dev->name, queue_index,
3042 				     dev->real_num_tx_queues);
3043 		return 0;
3044 	}
3045 
3046 	return queue_index;
3047 }
3048 
3049 /**
3050  *	netif_running - test if up
3051  *	@dev: network device
3052  *
3053  *	Test if the device has been brought up.
3054  */
3055 static inline bool netif_running(const struct net_device *dev)
3056 {
3057 	return test_bit(__LINK_STATE_START, &dev->state);
3058 }
3059 
3060 /*
3061  * Routines to manage the subqueues on a device.  We only need start,
3062  * stop, and a check if it's stopped.  All other device management is
3063  * done at the overall netdevice level.
3064  * Also test the device if we're multiqueue.
3065  */
3066 
3067 /**
3068  *	netif_start_subqueue - allow sending packets on subqueue
3069  *	@dev: network device
3070  *	@queue_index: sub queue index
3071  *
3072  * Start individual transmit queue of a device with multiple transmit queues.
3073  */
3074 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3075 {
3076 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3077 
3078 	netif_tx_start_queue(txq);
3079 }
3080 
3081 /**
3082  *	netif_stop_subqueue - stop sending packets on subqueue
3083  *	@dev: network device
3084  *	@queue_index: sub queue index
3085  *
3086  * Stop individual transmit queue of a device with multiple transmit queues.
3087  */
3088 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3089 {
3090 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3091 	netif_tx_stop_queue(txq);
3092 }
3093 
3094 /**
3095  *	netif_subqueue_stopped - test status of subqueue
3096  *	@dev: network device
3097  *	@queue_index: sub queue index
3098  *
3099  * Check individual transmit queue of a device with multiple transmit queues.
3100  */
3101 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3102 					    u16 queue_index)
3103 {
3104 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3105 
3106 	return netif_tx_queue_stopped(txq);
3107 }
3108 
3109 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3110 					  struct sk_buff *skb)
3111 {
3112 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3113 }
3114 
3115 /**
3116  *	netif_wake_subqueue - allow sending packets on subqueue
3117  *	@dev: network device
3118  *	@queue_index: sub queue index
3119  *
3120  * Resume individual transmit queue of a device with multiple transmit queues.
3121  */
3122 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3123 {
3124 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3125 
3126 	netif_tx_wake_queue(txq);
3127 }
3128 
3129 #ifdef CONFIG_XPS
3130 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3131 			u16 index);
3132 #else
3133 static inline int netif_set_xps_queue(struct net_device *dev,
3134 				      const struct cpumask *mask,
3135 				      u16 index)
3136 {
3137 	return 0;
3138 }
3139 #endif
3140 
3141 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3142 		  unsigned int num_tx_queues);
3143 
3144 /*
3145  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3146  * as a distribution range limit for the returned value.
3147  */
3148 static inline u16 skb_tx_hash(const struct net_device *dev,
3149 			      struct sk_buff *skb)
3150 {
3151 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3152 }
3153 
3154 /**
3155  *	netif_is_multiqueue - test if device has multiple transmit queues
3156  *	@dev: network device
3157  *
3158  * Check if device has multiple transmit queues
3159  */
3160 static inline bool netif_is_multiqueue(const struct net_device *dev)
3161 {
3162 	return dev->num_tx_queues > 1;
3163 }
3164 
3165 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3166 
3167 #ifdef CONFIG_SYSFS
3168 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3169 #else
3170 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3171 						unsigned int rxq)
3172 {
3173 	return 0;
3174 }
3175 #endif
3176 
3177 #ifdef CONFIG_SYSFS
3178 static inline unsigned int get_netdev_rx_queue_index(
3179 		struct netdev_rx_queue *queue)
3180 {
3181 	struct net_device *dev = queue->dev;
3182 	int index = queue - dev->_rx;
3183 
3184 	BUG_ON(index >= dev->num_rx_queues);
3185 	return index;
3186 }
3187 #endif
3188 
3189 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3190 int netif_get_num_default_rss_queues(void);
3191 
3192 enum skb_free_reason {
3193 	SKB_REASON_CONSUMED,
3194 	SKB_REASON_DROPPED,
3195 };
3196 
3197 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3198 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3199 
3200 /*
3201  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3202  * interrupt context or with hardware interrupts being disabled.
3203  * (in_irq() || irqs_disabled())
3204  *
3205  * We provide four helpers that can be used in following contexts :
3206  *
3207  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3208  *  replacing kfree_skb(skb)
3209  *
3210  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3211  *  Typically used in place of consume_skb(skb) in TX completion path
3212  *
3213  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3214  *  replacing kfree_skb(skb)
3215  *
3216  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3217  *  and consumed a packet. Used in place of consume_skb(skb)
3218  */
3219 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3220 {
3221 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3222 }
3223 
3224 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3225 {
3226 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3227 }
3228 
3229 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3230 {
3231 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3232 }
3233 
3234 static inline void dev_consume_skb_any(struct sk_buff *skb)
3235 {
3236 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3237 }
3238 
3239 int netif_rx(struct sk_buff *skb);
3240 int netif_rx_ni(struct sk_buff *skb);
3241 int netif_receive_skb(struct sk_buff *skb);
3242 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3243 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3244 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3245 gro_result_t napi_gro_frags(struct napi_struct *napi);
3246 struct packet_offload *gro_find_receive_by_type(__be16 type);
3247 struct packet_offload *gro_find_complete_by_type(__be16 type);
3248 
3249 static inline void napi_free_frags(struct napi_struct *napi)
3250 {
3251 	kfree_skb(napi->skb);
3252 	napi->skb = NULL;
3253 }
3254 
3255 bool netdev_is_rx_handler_busy(struct net_device *dev);
3256 int netdev_rx_handler_register(struct net_device *dev,
3257 			       rx_handler_func_t *rx_handler,
3258 			       void *rx_handler_data);
3259 void netdev_rx_handler_unregister(struct net_device *dev);
3260 
3261 bool dev_valid_name(const char *name);
3262 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3263 int dev_ethtool(struct net *net, struct ifreq *);
3264 unsigned int dev_get_flags(const struct net_device *);
3265 int __dev_change_flags(struct net_device *, unsigned int flags);
3266 int dev_change_flags(struct net_device *, unsigned int);
3267 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3268 			unsigned int gchanges);
3269 int dev_change_name(struct net_device *, const char *);
3270 int dev_set_alias(struct net_device *, const char *, size_t);
3271 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3272 int dev_set_mtu(struct net_device *, int);
3273 void dev_set_group(struct net_device *, int);
3274 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3275 int dev_change_carrier(struct net_device *, bool new_carrier);
3276 int dev_get_phys_port_id(struct net_device *dev,
3277 			 struct netdev_phys_item_id *ppid);
3278 int dev_get_phys_port_name(struct net_device *dev,
3279 			   char *name, size_t len);
3280 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3281 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3282 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3283 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3284 				    struct netdev_queue *txq, int *ret);
3285 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3286 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3287 bool is_skb_forwardable(const struct net_device *dev,
3288 			const struct sk_buff *skb);
3289 
3290 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3291 					       struct sk_buff *skb)
3292 {
3293 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3294 	    unlikely(!is_skb_forwardable(dev, skb))) {
3295 		atomic_long_inc(&dev->rx_dropped);
3296 		kfree_skb(skb);
3297 		return NET_RX_DROP;
3298 	}
3299 
3300 	skb_scrub_packet(skb, true);
3301 	skb->priority = 0;
3302 	return 0;
3303 }
3304 
3305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3306 
3307 extern int		netdev_budget;
3308 
3309 /* Called by rtnetlink.c:rtnl_unlock() */
3310 void netdev_run_todo(void);
3311 
3312 /**
3313  *	dev_put - release reference to device
3314  *	@dev: network device
3315  *
3316  * Release reference to device to allow it to be freed.
3317  */
3318 static inline void dev_put(struct net_device *dev)
3319 {
3320 	this_cpu_dec(*dev->pcpu_refcnt);
3321 }
3322 
3323 /**
3324  *	dev_hold - get reference to device
3325  *	@dev: network device
3326  *
3327  * Hold reference to device to keep it from being freed.
3328  */
3329 static inline void dev_hold(struct net_device *dev)
3330 {
3331 	this_cpu_inc(*dev->pcpu_refcnt);
3332 }
3333 
3334 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3335  * and _off may be called from IRQ context, but it is caller
3336  * who is responsible for serialization of these calls.
3337  *
3338  * The name carrier is inappropriate, these functions should really be
3339  * called netif_lowerlayer_*() because they represent the state of any
3340  * kind of lower layer not just hardware media.
3341  */
3342 
3343 void linkwatch_init_dev(struct net_device *dev);
3344 void linkwatch_fire_event(struct net_device *dev);
3345 void linkwatch_forget_dev(struct net_device *dev);
3346 
3347 /**
3348  *	netif_carrier_ok - test if carrier present
3349  *	@dev: network device
3350  *
3351  * Check if carrier is present on device
3352  */
3353 static inline bool netif_carrier_ok(const struct net_device *dev)
3354 {
3355 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3356 }
3357 
3358 unsigned long dev_trans_start(struct net_device *dev);
3359 
3360 void __netdev_watchdog_up(struct net_device *dev);
3361 
3362 void netif_carrier_on(struct net_device *dev);
3363 
3364 void netif_carrier_off(struct net_device *dev);
3365 
3366 /**
3367  *	netif_dormant_on - mark device as dormant.
3368  *	@dev: network device
3369  *
3370  * Mark device as dormant (as per RFC2863).
3371  *
3372  * The dormant state indicates that the relevant interface is not
3373  * actually in a condition to pass packets (i.e., it is not 'up') but is
3374  * in a "pending" state, waiting for some external event.  For "on-
3375  * demand" interfaces, this new state identifies the situation where the
3376  * interface is waiting for events to place it in the up state.
3377  */
3378 static inline void netif_dormant_on(struct net_device *dev)
3379 {
3380 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3381 		linkwatch_fire_event(dev);
3382 }
3383 
3384 /**
3385  *	netif_dormant_off - set device as not dormant.
3386  *	@dev: network device
3387  *
3388  * Device is not in dormant state.
3389  */
3390 static inline void netif_dormant_off(struct net_device *dev)
3391 {
3392 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3393 		linkwatch_fire_event(dev);
3394 }
3395 
3396 /**
3397  *	netif_dormant - test if carrier present
3398  *	@dev: network device
3399  *
3400  * Check if carrier is present on device
3401  */
3402 static inline bool netif_dormant(const struct net_device *dev)
3403 {
3404 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3405 }
3406 
3407 
3408 /**
3409  *	netif_oper_up - test if device is operational
3410  *	@dev: network device
3411  *
3412  * Check if carrier is operational
3413  */
3414 static inline bool netif_oper_up(const struct net_device *dev)
3415 {
3416 	return (dev->operstate == IF_OPER_UP ||
3417 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3418 }
3419 
3420 /**
3421  *	netif_device_present - is device available or removed
3422  *	@dev: network device
3423  *
3424  * Check if device has not been removed from system.
3425  */
3426 static inline bool netif_device_present(struct net_device *dev)
3427 {
3428 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3429 }
3430 
3431 void netif_device_detach(struct net_device *dev);
3432 
3433 void netif_device_attach(struct net_device *dev);
3434 
3435 /*
3436  * Network interface message level settings
3437  */
3438 
3439 enum {
3440 	NETIF_MSG_DRV		= 0x0001,
3441 	NETIF_MSG_PROBE		= 0x0002,
3442 	NETIF_MSG_LINK		= 0x0004,
3443 	NETIF_MSG_TIMER		= 0x0008,
3444 	NETIF_MSG_IFDOWN	= 0x0010,
3445 	NETIF_MSG_IFUP		= 0x0020,
3446 	NETIF_MSG_RX_ERR	= 0x0040,
3447 	NETIF_MSG_TX_ERR	= 0x0080,
3448 	NETIF_MSG_TX_QUEUED	= 0x0100,
3449 	NETIF_MSG_INTR		= 0x0200,
3450 	NETIF_MSG_TX_DONE	= 0x0400,
3451 	NETIF_MSG_RX_STATUS	= 0x0800,
3452 	NETIF_MSG_PKTDATA	= 0x1000,
3453 	NETIF_MSG_HW		= 0x2000,
3454 	NETIF_MSG_WOL		= 0x4000,
3455 };
3456 
3457 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3458 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3459 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3460 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3461 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3462 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3463 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3464 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3465 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3466 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3467 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3468 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3469 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3470 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3471 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3472 
3473 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3474 {
3475 	/* use default */
3476 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3477 		return default_msg_enable_bits;
3478 	if (debug_value == 0)	/* no output */
3479 		return 0;
3480 	/* set low N bits */
3481 	return (1 << debug_value) - 1;
3482 }
3483 
3484 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3485 {
3486 	spin_lock(&txq->_xmit_lock);
3487 	txq->xmit_lock_owner = cpu;
3488 }
3489 
3490 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3491 {
3492 	__acquire(&txq->_xmit_lock);
3493 	return true;
3494 }
3495 
3496 static inline void __netif_tx_release(struct netdev_queue *txq)
3497 {
3498 	__release(&txq->_xmit_lock);
3499 }
3500 
3501 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3502 {
3503 	spin_lock_bh(&txq->_xmit_lock);
3504 	txq->xmit_lock_owner = smp_processor_id();
3505 }
3506 
3507 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3508 {
3509 	bool ok = spin_trylock(&txq->_xmit_lock);
3510 	if (likely(ok))
3511 		txq->xmit_lock_owner = smp_processor_id();
3512 	return ok;
3513 }
3514 
3515 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3516 {
3517 	txq->xmit_lock_owner = -1;
3518 	spin_unlock(&txq->_xmit_lock);
3519 }
3520 
3521 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3522 {
3523 	txq->xmit_lock_owner = -1;
3524 	spin_unlock_bh(&txq->_xmit_lock);
3525 }
3526 
3527 static inline void txq_trans_update(struct netdev_queue *txq)
3528 {
3529 	if (txq->xmit_lock_owner != -1)
3530 		txq->trans_start = jiffies;
3531 }
3532 
3533 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3534 static inline void netif_trans_update(struct net_device *dev)
3535 {
3536 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3537 
3538 	if (txq->trans_start != jiffies)
3539 		txq->trans_start = jiffies;
3540 }
3541 
3542 /**
3543  *	netif_tx_lock - grab network device transmit lock
3544  *	@dev: network device
3545  *
3546  * Get network device transmit lock
3547  */
3548 static inline void netif_tx_lock(struct net_device *dev)
3549 {
3550 	unsigned int i;
3551 	int cpu;
3552 
3553 	spin_lock(&dev->tx_global_lock);
3554 	cpu = smp_processor_id();
3555 	for (i = 0; i < dev->num_tx_queues; i++) {
3556 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3557 
3558 		/* We are the only thread of execution doing a
3559 		 * freeze, but we have to grab the _xmit_lock in
3560 		 * order to synchronize with threads which are in
3561 		 * the ->hard_start_xmit() handler and already
3562 		 * checked the frozen bit.
3563 		 */
3564 		__netif_tx_lock(txq, cpu);
3565 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3566 		__netif_tx_unlock(txq);
3567 	}
3568 }
3569 
3570 static inline void netif_tx_lock_bh(struct net_device *dev)
3571 {
3572 	local_bh_disable();
3573 	netif_tx_lock(dev);
3574 }
3575 
3576 static inline void netif_tx_unlock(struct net_device *dev)
3577 {
3578 	unsigned int i;
3579 
3580 	for (i = 0; i < dev->num_tx_queues; i++) {
3581 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3582 
3583 		/* No need to grab the _xmit_lock here.  If the
3584 		 * queue is not stopped for another reason, we
3585 		 * force a schedule.
3586 		 */
3587 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3588 		netif_schedule_queue(txq);
3589 	}
3590 	spin_unlock(&dev->tx_global_lock);
3591 }
3592 
3593 static inline void netif_tx_unlock_bh(struct net_device *dev)
3594 {
3595 	netif_tx_unlock(dev);
3596 	local_bh_enable();
3597 }
3598 
3599 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3600 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3601 		__netif_tx_lock(txq, cpu);		\
3602 	} else {					\
3603 		__netif_tx_acquire(txq);		\
3604 	}						\
3605 }
3606 
3607 #define HARD_TX_TRYLOCK(dev, txq)			\
3608 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3609 		__netif_tx_trylock(txq) :		\
3610 		__netif_tx_acquire(txq))
3611 
3612 #define HARD_TX_UNLOCK(dev, txq) {			\
3613 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3614 		__netif_tx_unlock(txq);			\
3615 	} else {					\
3616 		__netif_tx_release(txq);		\
3617 	}						\
3618 }
3619 
3620 static inline void netif_tx_disable(struct net_device *dev)
3621 {
3622 	unsigned int i;
3623 	int cpu;
3624 
3625 	local_bh_disable();
3626 	cpu = smp_processor_id();
3627 	for (i = 0; i < dev->num_tx_queues; i++) {
3628 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3629 
3630 		__netif_tx_lock(txq, cpu);
3631 		netif_tx_stop_queue(txq);
3632 		__netif_tx_unlock(txq);
3633 	}
3634 	local_bh_enable();
3635 }
3636 
3637 static inline void netif_addr_lock(struct net_device *dev)
3638 {
3639 	spin_lock(&dev->addr_list_lock);
3640 }
3641 
3642 static inline void netif_addr_lock_nested(struct net_device *dev)
3643 {
3644 	int subclass = SINGLE_DEPTH_NESTING;
3645 
3646 	if (dev->netdev_ops->ndo_get_lock_subclass)
3647 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3648 
3649 	spin_lock_nested(&dev->addr_list_lock, subclass);
3650 }
3651 
3652 static inline void netif_addr_lock_bh(struct net_device *dev)
3653 {
3654 	spin_lock_bh(&dev->addr_list_lock);
3655 }
3656 
3657 static inline void netif_addr_unlock(struct net_device *dev)
3658 {
3659 	spin_unlock(&dev->addr_list_lock);
3660 }
3661 
3662 static inline void netif_addr_unlock_bh(struct net_device *dev)
3663 {
3664 	spin_unlock_bh(&dev->addr_list_lock);
3665 }
3666 
3667 /*
3668  * dev_addrs walker. Should be used only for read access. Call with
3669  * rcu_read_lock held.
3670  */
3671 #define for_each_dev_addr(dev, ha) \
3672 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3673 
3674 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3675 
3676 void ether_setup(struct net_device *dev);
3677 
3678 /* Support for loadable net-drivers */
3679 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3680 				    unsigned char name_assign_type,
3681 				    void (*setup)(struct net_device *),
3682 				    unsigned int txqs, unsigned int rxqs);
3683 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3684 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3685 
3686 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3687 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3688 			 count)
3689 
3690 int register_netdev(struct net_device *dev);
3691 void unregister_netdev(struct net_device *dev);
3692 
3693 /* General hardware address lists handling functions */
3694 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3695 		   struct netdev_hw_addr_list *from_list, int addr_len);
3696 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3697 		      struct netdev_hw_addr_list *from_list, int addr_len);
3698 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3699 		       struct net_device *dev,
3700 		       int (*sync)(struct net_device *, const unsigned char *),
3701 		       int (*unsync)(struct net_device *,
3702 				     const unsigned char *));
3703 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3704 			  struct net_device *dev,
3705 			  int (*unsync)(struct net_device *,
3706 					const unsigned char *));
3707 void __hw_addr_init(struct netdev_hw_addr_list *list);
3708 
3709 /* Functions used for device addresses handling */
3710 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3711 		 unsigned char addr_type);
3712 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3713 		 unsigned char addr_type);
3714 void dev_addr_flush(struct net_device *dev);
3715 int dev_addr_init(struct net_device *dev);
3716 
3717 /* Functions used for unicast addresses handling */
3718 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3719 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3720 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3721 int dev_uc_sync(struct net_device *to, struct net_device *from);
3722 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3723 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3724 void dev_uc_flush(struct net_device *dev);
3725 void dev_uc_init(struct net_device *dev);
3726 
3727 /**
3728  *  __dev_uc_sync - Synchonize device's unicast list
3729  *  @dev:  device to sync
3730  *  @sync: function to call if address should be added
3731  *  @unsync: function to call if address should be removed
3732  *
3733  *  Add newly added addresses to the interface, and release
3734  *  addresses that have been deleted.
3735  */
3736 static inline int __dev_uc_sync(struct net_device *dev,
3737 				int (*sync)(struct net_device *,
3738 					    const unsigned char *),
3739 				int (*unsync)(struct net_device *,
3740 					      const unsigned char *))
3741 {
3742 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3743 }
3744 
3745 /**
3746  *  __dev_uc_unsync - Remove synchronized addresses from device
3747  *  @dev:  device to sync
3748  *  @unsync: function to call if address should be removed
3749  *
3750  *  Remove all addresses that were added to the device by dev_uc_sync().
3751  */
3752 static inline void __dev_uc_unsync(struct net_device *dev,
3753 				   int (*unsync)(struct net_device *,
3754 						 const unsigned char *))
3755 {
3756 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3757 }
3758 
3759 /* Functions used for multicast addresses handling */
3760 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3761 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3762 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3763 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3764 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3765 int dev_mc_sync(struct net_device *to, struct net_device *from);
3766 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3767 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3768 void dev_mc_flush(struct net_device *dev);
3769 void dev_mc_init(struct net_device *dev);
3770 
3771 /**
3772  *  __dev_mc_sync - Synchonize device's multicast list
3773  *  @dev:  device to sync
3774  *  @sync: function to call if address should be added
3775  *  @unsync: function to call if address should be removed
3776  *
3777  *  Add newly added addresses to the interface, and release
3778  *  addresses that have been deleted.
3779  */
3780 static inline int __dev_mc_sync(struct net_device *dev,
3781 				int (*sync)(struct net_device *,
3782 					    const unsigned char *),
3783 				int (*unsync)(struct net_device *,
3784 					      const unsigned char *))
3785 {
3786 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3787 }
3788 
3789 /**
3790  *  __dev_mc_unsync - Remove synchronized addresses from device
3791  *  @dev:  device to sync
3792  *  @unsync: function to call if address should be removed
3793  *
3794  *  Remove all addresses that were added to the device by dev_mc_sync().
3795  */
3796 static inline void __dev_mc_unsync(struct net_device *dev,
3797 				   int (*unsync)(struct net_device *,
3798 						 const unsigned char *))
3799 {
3800 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3801 }
3802 
3803 /* Functions used for secondary unicast and multicast support */
3804 void dev_set_rx_mode(struct net_device *dev);
3805 void __dev_set_rx_mode(struct net_device *dev);
3806 int dev_set_promiscuity(struct net_device *dev, int inc);
3807 int dev_set_allmulti(struct net_device *dev, int inc);
3808 void netdev_state_change(struct net_device *dev);
3809 void netdev_notify_peers(struct net_device *dev);
3810 void netdev_features_change(struct net_device *dev);
3811 /* Load a device via the kmod */
3812 void dev_load(struct net *net, const char *name);
3813 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3814 					struct rtnl_link_stats64 *storage);
3815 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3816 			     const struct net_device_stats *netdev_stats);
3817 
3818 extern int		netdev_max_backlog;
3819 extern int		netdev_tstamp_prequeue;
3820 extern int		weight_p;
3821 extern int		dev_weight_rx_bias;
3822 extern int		dev_weight_tx_bias;
3823 extern int		dev_rx_weight;
3824 extern int		dev_tx_weight;
3825 
3826 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3827 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3828 						     struct list_head **iter);
3829 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3830 						     struct list_head **iter);
3831 
3832 /* iterate through upper list, must be called under RCU read lock */
3833 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3834 	for (iter = &(dev)->adj_list.upper, \
3835 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3836 	     updev; \
3837 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3838 
3839 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3840 				  int (*fn)(struct net_device *upper_dev,
3841 					    void *data),
3842 				  void *data);
3843 
3844 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3845 				  struct net_device *upper_dev);
3846 
3847 void *netdev_lower_get_next_private(struct net_device *dev,
3848 				    struct list_head **iter);
3849 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3850 					struct list_head **iter);
3851 
3852 #define netdev_for_each_lower_private(dev, priv, iter) \
3853 	for (iter = (dev)->adj_list.lower.next, \
3854 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3855 	     priv; \
3856 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3857 
3858 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3859 	for (iter = &(dev)->adj_list.lower, \
3860 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3861 	     priv; \
3862 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3863 
3864 void *netdev_lower_get_next(struct net_device *dev,
3865 				struct list_head **iter);
3866 
3867 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3868 	for (iter = (dev)->adj_list.lower.next, \
3869 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3870 	     ldev; \
3871 	     ldev = netdev_lower_get_next(dev, &(iter)))
3872 
3873 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3874 					     struct list_head **iter);
3875 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3876 						 struct list_head **iter);
3877 
3878 int netdev_walk_all_lower_dev(struct net_device *dev,
3879 			      int (*fn)(struct net_device *lower_dev,
3880 					void *data),
3881 			      void *data);
3882 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3883 				  int (*fn)(struct net_device *lower_dev,
3884 					    void *data),
3885 				  void *data);
3886 
3887 void *netdev_adjacent_get_private(struct list_head *adj_list);
3888 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3889 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3890 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3891 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3892 int netdev_master_upper_dev_link(struct net_device *dev,
3893 				 struct net_device *upper_dev,
3894 				 void *upper_priv, void *upper_info);
3895 void netdev_upper_dev_unlink(struct net_device *dev,
3896 			     struct net_device *upper_dev);
3897 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3898 void *netdev_lower_dev_get_private(struct net_device *dev,
3899 				   struct net_device *lower_dev);
3900 void netdev_lower_state_changed(struct net_device *lower_dev,
3901 				void *lower_state_info);
3902 
3903 /* RSS keys are 40 or 52 bytes long */
3904 #define NETDEV_RSS_KEY_LEN 52
3905 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3906 void netdev_rss_key_fill(void *buffer, size_t len);
3907 
3908 int dev_get_nest_level(struct net_device *dev);
3909 int skb_checksum_help(struct sk_buff *skb);
3910 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3911 				  netdev_features_t features, bool tx_path);
3912 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3913 				    netdev_features_t features);
3914 
3915 struct netdev_bonding_info {
3916 	ifslave	slave;
3917 	ifbond	master;
3918 };
3919 
3920 struct netdev_notifier_bonding_info {
3921 	struct netdev_notifier_info info; /* must be first */
3922 	struct netdev_bonding_info  bonding_info;
3923 };
3924 
3925 void netdev_bonding_info_change(struct net_device *dev,
3926 				struct netdev_bonding_info *bonding_info);
3927 
3928 static inline
3929 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3930 {
3931 	return __skb_gso_segment(skb, features, true);
3932 }
3933 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3934 
3935 static inline bool can_checksum_protocol(netdev_features_t features,
3936 					 __be16 protocol)
3937 {
3938 	if (protocol == htons(ETH_P_FCOE))
3939 		return !!(features & NETIF_F_FCOE_CRC);
3940 
3941 	/* Assume this is an IP checksum (not SCTP CRC) */
3942 
3943 	if (features & NETIF_F_HW_CSUM) {
3944 		/* Can checksum everything */
3945 		return true;
3946 	}
3947 
3948 	switch (protocol) {
3949 	case htons(ETH_P_IP):
3950 		return !!(features & NETIF_F_IP_CSUM);
3951 	case htons(ETH_P_IPV6):
3952 		return !!(features & NETIF_F_IPV6_CSUM);
3953 	default:
3954 		return false;
3955 	}
3956 }
3957 
3958 #ifdef CONFIG_BUG
3959 void netdev_rx_csum_fault(struct net_device *dev);
3960 #else
3961 static inline void netdev_rx_csum_fault(struct net_device *dev)
3962 {
3963 }
3964 #endif
3965 /* rx skb timestamps */
3966 void net_enable_timestamp(void);
3967 void net_disable_timestamp(void);
3968 
3969 #ifdef CONFIG_PROC_FS
3970 int __init dev_proc_init(void);
3971 #else
3972 #define dev_proc_init() 0
3973 #endif
3974 
3975 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3976 					      struct sk_buff *skb, struct net_device *dev,
3977 					      bool more)
3978 {
3979 	skb->xmit_more = more ? 1 : 0;
3980 	return ops->ndo_start_xmit(skb, dev);
3981 }
3982 
3983 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3984 					    struct netdev_queue *txq, bool more)
3985 {
3986 	const struct net_device_ops *ops = dev->netdev_ops;
3987 	int rc;
3988 
3989 	rc = __netdev_start_xmit(ops, skb, dev, more);
3990 	if (rc == NETDEV_TX_OK)
3991 		txq_trans_update(txq);
3992 
3993 	return rc;
3994 }
3995 
3996 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3997 				const void *ns);
3998 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3999 				 const void *ns);
4000 
4001 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4002 {
4003 	return netdev_class_create_file_ns(class_attr, NULL);
4004 }
4005 
4006 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4007 {
4008 	netdev_class_remove_file_ns(class_attr, NULL);
4009 }
4010 
4011 extern struct kobj_ns_type_operations net_ns_type_operations;
4012 
4013 const char *netdev_drivername(const struct net_device *dev);
4014 
4015 void linkwatch_run_queue(void);
4016 
4017 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4018 							  netdev_features_t f2)
4019 {
4020 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4021 		if (f1 & NETIF_F_HW_CSUM)
4022 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4023 		else
4024 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4025 	}
4026 
4027 	return f1 & f2;
4028 }
4029 
4030 static inline netdev_features_t netdev_get_wanted_features(
4031 	struct net_device *dev)
4032 {
4033 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4034 }
4035 netdev_features_t netdev_increment_features(netdev_features_t all,
4036 	netdev_features_t one, netdev_features_t mask);
4037 
4038 /* Allow TSO being used on stacked device :
4039  * Performing the GSO segmentation before last device
4040  * is a performance improvement.
4041  */
4042 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4043 							netdev_features_t mask)
4044 {
4045 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4046 }
4047 
4048 int __netdev_update_features(struct net_device *dev);
4049 void netdev_update_features(struct net_device *dev);
4050 void netdev_change_features(struct net_device *dev);
4051 
4052 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4053 					struct net_device *dev);
4054 
4055 netdev_features_t passthru_features_check(struct sk_buff *skb,
4056 					  struct net_device *dev,
4057 					  netdev_features_t features);
4058 netdev_features_t netif_skb_features(struct sk_buff *skb);
4059 
4060 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4061 {
4062 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4063 
4064 	/* check flags correspondence */
4065 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4066 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4067 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4068 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4069 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4070 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4071 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4072 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4073 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4074 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4075 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4076 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4077 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4078 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4079 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4080 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4081 
4082 	return (features & feature) == feature;
4083 }
4084 
4085 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4086 {
4087 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4088 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4089 }
4090 
4091 static inline bool netif_needs_gso(struct sk_buff *skb,
4092 				   netdev_features_t features)
4093 {
4094 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4095 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4096 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4097 }
4098 
4099 static inline void netif_set_gso_max_size(struct net_device *dev,
4100 					  unsigned int size)
4101 {
4102 	dev->gso_max_size = size;
4103 }
4104 
4105 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4106 					int pulled_hlen, u16 mac_offset,
4107 					int mac_len)
4108 {
4109 	skb->protocol = protocol;
4110 	skb->encapsulation = 1;
4111 	skb_push(skb, pulled_hlen);
4112 	skb_reset_transport_header(skb);
4113 	skb->mac_header = mac_offset;
4114 	skb->network_header = skb->mac_header + mac_len;
4115 	skb->mac_len = mac_len;
4116 }
4117 
4118 static inline bool netif_is_macsec(const struct net_device *dev)
4119 {
4120 	return dev->priv_flags & IFF_MACSEC;
4121 }
4122 
4123 static inline bool netif_is_macvlan(const struct net_device *dev)
4124 {
4125 	return dev->priv_flags & IFF_MACVLAN;
4126 }
4127 
4128 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4129 {
4130 	return dev->priv_flags & IFF_MACVLAN_PORT;
4131 }
4132 
4133 static inline bool netif_is_ipvlan(const struct net_device *dev)
4134 {
4135 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4136 }
4137 
4138 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4139 {
4140 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4141 }
4142 
4143 static inline bool netif_is_bond_master(const struct net_device *dev)
4144 {
4145 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4146 }
4147 
4148 static inline bool netif_is_bond_slave(const struct net_device *dev)
4149 {
4150 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4151 }
4152 
4153 static inline bool netif_supports_nofcs(struct net_device *dev)
4154 {
4155 	return dev->priv_flags & IFF_SUPP_NOFCS;
4156 }
4157 
4158 static inline bool netif_is_l3_master(const struct net_device *dev)
4159 {
4160 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4161 }
4162 
4163 static inline bool netif_is_l3_slave(const struct net_device *dev)
4164 {
4165 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4166 }
4167 
4168 static inline bool netif_is_bridge_master(const struct net_device *dev)
4169 {
4170 	return dev->priv_flags & IFF_EBRIDGE;
4171 }
4172 
4173 static inline bool netif_is_bridge_port(const struct net_device *dev)
4174 {
4175 	return dev->priv_flags & IFF_BRIDGE_PORT;
4176 }
4177 
4178 static inline bool netif_is_ovs_master(const struct net_device *dev)
4179 {
4180 	return dev->priv_flags & IFF_OPENVSWITCH;
4181 }
4182 
4183 static inline bool netif_is_team_master(const struct net_device *dev)
4184 {
4185 	return dev->priv_flags & IFF_TEAM;
4186 }
4187 
4188 static inline bool netif_is_team_port(const struct net_device *dev)
4189 {
4190 	return dev->priv_flags & IFF_TEAM_PORT;
4191 }
4192 
4193 static inline bool netif_is_lag_master(const struct net_device *dev)
4194 {
4195 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4196 }
4197 
4198 static inline bool netif_is_lag_port(const struct net_device *dev)
4199 {
4200 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4201 }
4202 
4203 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4204 {
4205 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4206 }
4207 
4208 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4209 static inline void netif_keep_dst(struct net_device *dev)
4210 {
4211 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4212 }
4213 
4214 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4215 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4216 {
4217 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4218 	return dev->priv_flags & IFF_MACSEC;
4219 }
4220 
4221 extern struct pernet_operations __net_initdata loopback_net_ops;
4222 
4223 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4224 
4225 /* netdev_printk helpers, similar to dev_printk */
4226 
4227 static inline const char *netdev_name(const struct net_device *dev)
4228 {
4229 	if (!dev->name[0] || strchr(dev->name, '%'))
4230 		return "(unnamed net_device)";
4231 	return dev->name;
4232 }
4233 
4234 static inline const char *netdev_reg_state(const struct net_device *dev)
4235 {
4236 	switch (dev->reg_state) {
4237 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4238 	case NETREG_REGISTERED: return "";
4239 	case NETREG_UNREGISTERING: return " (unregistering)";
4240 	case NETREG_UNREGISTERED: return " (unregistered)";
4241 	case NETREG_RELEASED: return " (released)";
4242 	case NETREG_DUMMY: return " (dummy)";
4243 	}
4244 
4245 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4246 	return " (unknown)";
4247 }
4248 
4249 __printf(3, 4)
4250 void netdev_printk(const char *level, const struct net_device *dev,
4251 		   const char *format, ...);
4252 __printf(2, 3)
4253 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4254 __printf(2, 3)
4255 void netdev_alert(const struct net_device *dev, const char *format, ...);
4256 __printf(2, 3)
4257 void netdev_crit(const struct net_device *dev, const char *format, ...);
4258 __printf(2, 3)
4259 void netdev_err(const struct net_device *dev, const char *format, ...);
4260 __printf(2, 3)
4261 void netdev_warn(const struct net_device *dev, const char *format, ...);
4262 __printf(2, 3)
4263 void netdev_notice(const struct net_device *dev, const char *format, ...);
4264 __printf(2, 3)
4265 void netdev_info(const struct net_device *dev, const char *format, ...);
4266 
4267 #define MODULE_ALIAS_NETDEV(device) \
4268 	MODULE_ALIAS("netdev-" device)
4269 
4270 #if defined(CONFIG_DYNAMIC_DEBUG)
4271 #define netdev_dbg(__dev, format, args...)			\
4272 do {								\
4273 	dynamic_netdev_dbg(__dev, format, ##args);		\
4274 } while (0)
4275 #elif defined(DEBUG)
4276 #define netdev_dbg(__dev, format, args...)			\
4277 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4278 #else
4279 #define netdev_dbg(__dev, format, args...)			\
4280 ({								\
4281 	if (0)							\
4282 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4283 })
4284 #endif
4285 
4286 #if defined(VERBOSE_DEBUG)
4287 #define netdev_vdbg	netdev_dbg
4288 #else
4289 
4290 #define netdev_vdbg(dev, format, args...)			\
4291 ({								\
4292 	if (0)							\
4293 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4294 	0;							\
4295 })
4296 #endif
4297 
4298 /*
4299  * netdev_WARN() acts like dev_printk(), but with the key difference
4300  * of using a WARN/WARN_ON to get the message out, including the
4301  * file/line information and a backtrace.
4302  */
4303 #define netdev_WARN(dev, format, args...)			\
4304 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4305 	     netdev_reg_state(dev), ##args)
4306 
4307 /* netif printk helpers, similar to netdev_printk */
4308 
4309 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4310 do {					  			\
4311 	if (netif_msg_##type(priv))				\
4312 		netdev_printk(level, (dev), fmt, ##args);	\
4313 } while (0)
4314 
4315 #define netif_level(level, priv, type, dev, fmt, args...)	\
4316 do {								\
4317 	if (netif_msg_##type(priv))				\
4318 		netdev_##level(dev, fmt, ##args);		\
4319 } while (0)
4320 
4321 #define netif_emerg(priv, type, dev, fmt, args...)		\
4322 	netif_level(emerg, priv, type, dev, fmt, ##args)
4323 #define netif_alert(priv, type, dev, fmt, args...)		\
4324 	netif_level(alert, priv, type, dev, fmt, ##args)
4325 #define netif_crit(priv, type, dev, fmt, args...)		\
4326 	netif_level(crit, priv, type, dev, fmt, ##args)
4327 #define netif_err(priv, type, dev, fmt, args...)		\
4328 	netif_level(err, priv, type, dev, fmt, ##args)
4329 #define netif_warn(priv, type, dev, fmt, args...)		\
4330 	netif_level(warn, priv, type, dev, fmt, ##args)
4331 #define netif_notice(priv, type, dev, fmt, args...)		\
4332 	netif_level(notice, priv, type, dev, fmt, ##args)
4333 #define netif_info(priv, type, dev, fmt, args...)		\
4334 	netif_level(info, priv, type, dev, fmt, ##args)
4335 
4336 #if defined(CONFIG_DYNAMIC_DEBUG)
4337 #define netif_dbg(priv, type, netdev, format, args...)		\
4338 do {								\
4339 	if (netif_msg_##type(priv))				\
4340 		dynamic_netdev_dbg(netdev, format, ##args);	\
4341 } while (0)
4342 #elif defined(DEBUG)
4343 #define netif_dbg(priv, type, dev, format, args...)		\
4344 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4345 #else
4346 #define netif_dbg(priv, type, dev, format, args...)			\
4347 ({									\
4348 	if (0)								\
4349 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4350 	0;								\
4351 })
4352 #endif
4353 
4354 /* if @cond then downgrade to debug, else print at @level */
4355 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4356 	do {                                                              \
4357 		if (cond)                                                 \
4358 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4359 		else                                                      \
4360 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4361 	} while (0)
4362 
4363 #if defined(VERBOSE_DEBUG)
4364 #define netif_vdbg	netif_dbg
4365 #else
4366 #define netif_vdbg(priv, type, dev, format, args...)		\
4367 ({								\
4368 	if (0)							\
4369 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4370 	0;							\
4371 })
4372 #endif
4373 
4374 /*
4375  *	The list of packet types we will receive (as opposed to discard)
4376  *	and the routines to invoke.
4377  *
4378  *	Why 16. Because with 16 the only overlap we get on a hash of the
4379  *	low nibble of the protocol value is RARP/SNAP/X.25.
4380  *
4381  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4382  *             sure which should go first, but I bet it won't make much
4383  *             difference if we are running VLANs.  The good news is that
4384  *             this protocol won't be in the list unless compiled in, so
4385  *             the average user (w/out VLANs) will not be adversely affected.
4386  *             --BLG
4387  *
4388  *		0800	IP
4389  *		8100    802.1Q VLAN
4390  *		0001	802.3
4391  *		0002	AX.25
4392  *		0004	802.2
4393  *		8035	RARP
4394  *		0005	SNAP
4395  *		0805	X.25
4396  *		0806	ARP
4397  *		8137	IPX
4398  *		0009	Localtalk
4399  *		86DD	IPv6
4400  */
4401 #define PTYPE_HASH_SIZE	(16)
4402 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4403 
4404 #endif	/* _LINUX_NETDEVICE_H */
4405