1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 #include <uapi/linux/if_bonding.h> 54 #include <uapi/linux/pkt_cls.h> 55 #include <linux/hashtable.h> 56 57 struct netpoll_info; 58 struct device; 59 struct phy_device; 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* 802.15.4 specific */ 63 struct wpan_dev; 64 struct mpls_dev; 65 /* UDP Tunnel offloads */ 66 struct udp_tunnel_info; 67 struct bpf_prog; 68 69 void netdev_set_default_ethtool_ops(struct net_device *dev, 70 const struct ethtool_ops *ops); 71 72 /* Backlog congestion levels */ 73 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 74 #define NET_RX_DROP 1 /* packet dropped */ 75 76 /* 77 * Transmit return codes: transmit return codes originate from three different 78 * namespaces: 79 * 80 * - qdisc return codes 81 * - driver transmit return codes 82 * - errno values 83 * 84 * Drivers are allowed to return any one of those in their hard_start_xmit() 85 * function. Real network devices commonly used with qdiscs should only return 86 * the driver transmit return codes though - when qdiscs are used, the actual 87 * transmission happens asynchronously, so the value is not propagated to 88 * higher layers. Virtual network devices transmit synchronously; in this case 89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 90 * others are propagated to higher layers. 91 */ 92 93 /* qdisc ->enqueue() return codes. */ 94 #define NET_XMIT_SUCCESS 0x00 95 #define NET_XMIT_DROP 0x01 /* skb dropped */ 96 #define NET_XMIT_CN 0x02 /* congestion notification */ 97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105 /* Driver transmit return codes */ 106 #define NETDEV_TX_MASK 0xf0 107 108 enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112 }; 113 typedef enum netdev_tx netdev_tx_t; 114 115 /* 116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 118 */ 119 static inline bool dev_xmit_complete(int rc) 120 { 121 /* 122 * Positive cases with an skb consumed by a driver: 123 * - successful transmission (rc == NETDEV_TX_OK) 124 * - error while transmitting (rc < 0) 125 * - error while queueing to a different device (rc & NET_XMIT_MASK) 126 */ 127 if (likely(rc < NET_XMIT_MASK)) 128 return true; 129 130 return false; 131 } 132 133 /* 134 * Compute the worst-case header length according to the protocols 135 * used. 136 */ 137 138 #if defined(CONFIG_HYPERV_NET) 139 # define LL_MAX_HEADER 128 140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 141 # if defined(CONFIG_MAC80211_MESH) 142 # define LL_MAX_HEADER 128 143 # else 144 # define LL_MAX_HEADER 96 145 # endif 146 #else 147 # define LL_MAX_HEADER 32 148 #endif 149 150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 152 #define MAX_HEADER LL_MAX_HEADER 153 #else 154 #define MAX_HEADER (LL_MAX_HEADER + 48) 155 #endif 156 157 /* 158 * Old network device statistics. Fields are native words 159 * (unsigned long) so they can be read and written atomically. 160 */ 161 162 struct net_device_stats { 163 unsigned long rx_packets; 164 unsigned long tx_packets; 165 unsigned long rx_bytes; 166 unsigned long tx_bytes; 167 unsigned long rx_errors; 168 unsigned long tx_errors; 169 unsigned long rx_dropped; 170 unsigned long tx_dropped; 171 unsigned long multicast; 172 unsigned long collisions; 173 unsigned long rx_length_errors; 174 unsigned long rx_over_errors; 175 unsigned long rx_crc_errors; 176 unsigned long rx_frame_errors; 177 unsigned long rx_fifo_errors; 178 unsigned long rx_missed_errors; 179 unsigned long tx_aborted_errors; 180 unsigned long tx_carrier_errors; 181 unsigned long tx_fifo_errors; 182 unsigned long tx_heartbeat_errors; 183 unsigned long tx_window_errors; 184 unsigned long rx_compressed; 185 unsigned long tx_compressed; 186 }; 187 188 189 #include <linux/cache.h> 190 #include <linux/skbuff.h> 191 192 #ifdef CONFIG_RPS 193 #include <linux/static_key.h> 194 extern struct static_key rps_needed; 195 extern struct static_key rfs_needed; 196 #endif 197 198 struct neighbour; 199 struct neigh_parms; 200 struct sk_buff; 201 202 struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206 #define NETDEV_HW_ADDR_T_LAN 1 207 #define NETDEV_HW_ADDR_T_SAN 2 208 #define NETDEV_HW_ADDR_T_SLAVE 3 209 #define NETDEV_HW_ADDR_T_UNICAST 4 210 #define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool global_use; 212 int sync_cnt; 213 int refcount; 214 int synced; 215 struct rcu_head rcu_head; 216 }; 217 218 struct netdev_hw_addr_list { 219 struct list_head list; 220 int count; 221 }; 222 223 #define netdev_hw_addr_list_count(l) ((l)->count) 224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 225 #define netdev_hw_addr_list_for_each(ha, l) \ 226 list_for_each_entry(ha, &(l)->list, list) 227 228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 230 #define netdev_for_each_uc_addr(ha, dev) \ 231 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 232 233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 235 #define netdev_for_each_mc_addr(ha, dev) \ 236 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 237 238 struct hh_cache { 239 u16 hh_len; 240 u16 __pad; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 int poll_owner; 321 #endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329 }; 330 331 enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_MISSED, /* reschedule a napi */ 334 NAPI_STATE_DISABLE, /* Disable pending */ 335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 339 }; 340 341 enum { 342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 349 }; 350 351 enum gro_result { 352 GRO_MERGED, 353 GRO_MERGED_FREE, 354 GRO_HELD, 355 GRO_NORMAL, 356 GRO_DROP, 357 GRO_CONSUMED, 358 }; 359 typedef enum gro_result gro_result_t; 360 361 /* 362 * enum rx_handler_result - Possible return values for rx_handlers. 363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 364 * further. 365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 366 * case skb->dev was changed by rx_handler. 367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 369 * 370 * rx_handlers are functions called from inside __netif_receive_skb(), to do 371 * special processing of the skb, prior to delivery to protocol handlers. 372 * 373 * Currently, a net_device can only have a single rx_handler registered. Trying 374 * to register a second rx_handler will return -EBUSY. 375 * 376 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 377 * To unregister a rx_handler on a net_device, use 378 * netdev_rx_handler_unregister(). 379 * 380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 381 * do with the skb. 382 * 383 * If the rx_handler consumed the skb in some way, it should return 384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 385 * the skb to be delivered in some other way. 386 * 387 * If the rx_handler changed skb->dev, to divert the skb to another 388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 389 * new device will be called if it exists. 390 * 391 * If the rx_handler decides the skb should be ignored, it should return 392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 393 * are registered on exact device (ptype->dev == skb->dev). 394 * 395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 396 * delivered, it should return RX_HANDLER_PASS. 397 * 398 * A device without a registered rx_handler will behave as if rx_handler 399 * returned RX_HANDLER_PASS. 400 */ 401 402 enum rx_handler_result { 403 RX_HANDLER_CONSUMED, 404 RX_HANDLER_ANOTHER, 405 RX_HANDLER_EXACT, 406 RX_HANDLER_PASS, 407 }; 408 typedef enum rx_handler_result rx_handler_result_t; 409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 410 411 void __napi_schedule(struct napi_struct *n); 412 void __napi_schedule_irqoff(struct napi_struct *n); 413 414 static inline bool napi_disable_pending(struct napi_struct *n) 415 { 416 return test_bit(NAPI_STATE_DISABLE, &n->state); 417 } 418 419 bool napi_schedule_prep(struct napi_struct *n); 420 421 /** 422 * napi_schedule - schedule NAPI poll 423 * @n: NAPI context 424 * 425 * Schedule NAPI poll routine to be called if it is not already 426 * running. 427 */ 428 static inline void napi_schedule(struct napi_struct *n) 429 { 430 if (napi_schedule_prep(n)) 431 __napi_schedule(n); 432 } 433 434 /** 435 * napi_schedule_irqoff - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Variant of napi_schedule(), assuming hard irqs are masked. 439 */ 440 static inline void napi_schedule_irqoff(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule_irqoff(n); 444 } 445 446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 447 static inline bool napi_reschedule(struct napi_struct *napi) 448 { 449 if (napi_schedule_prep(napi)) { 450 __napi_schedule(napi); 451 return true; 452 } 453 return false; 454 } 455 456 bool napi_complete_done(struct napi_struct *n, int work_done); 457 /** 458 * napi_complete - NAPI processing complete 459 * @n: NAPI context 460 * 461 * Mark NAPI processing as complete. 462 * Consider using napi_complete_done() instead. 463 * Return false if device should avoid rearming interrupts. 464 */ 465 static inline bool napi_complete(struct napi_struct *n) 466 { 467 return napi_complete_done(n, 0); 468 } 469 470 /** 471 * napi_hash_del - remove a NAPI from global table 472 * @napi: NAPI context 473 * 474 * Warning: caller must observe RCU grace period 475 * before freeing memory containing @napi, if 476 * this function returns true. 477 * Note: core networking stack automatically calls it 478 * from netif_napi_del(). 479 * Drivers might want to call this helper to combine all 480 * the needed RCU grace periods into a single one. 481 */ 482 bool napi_hash_del(struct napi_struct *napi); 483 484 /** 485 * napi_disable - prevent NAPI from scheduling 486 * @n: NAPI context 487 * 488 * Stop NAPI from being scheduled on this context. 489 * Waits till any outstanding processing completes. 490 */ 491 void napi_disable(struct napi_struct *n); 492 493 /** 494 * napi_enable - enable NAPI scheduling 495 * @n: NAPI context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500 static inline void napi_enable(struct napi_struct *n) 501 { 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_atomic(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505 clear_bit(NAPI_STATE_NPSVC, &n->state); 506 } 507 508 /** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: NAPI context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516 static inline void napi_synchronize(const struct napi_struct *n) 517 { 518 if (IS_ENABLED(CONFIG_SMP)) 519 while (test_bit(NAPI_STATE_SCHED, &n->state)) 520 msleep(1); 521 else 522 barrier(); 523 } 524 525 enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529 }; 530 531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 534 535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 537 QUEUE_STATE_FROZEN) 538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 541 /* 542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 543 * netif_tx_* functions below are used to manipulate this flag. The 544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 545 * queue independently. The netif_xmit_*stopped functions below are called 546 * to check if the queue has been stopped by the driver or stack (either 547 * of the XOFF bits are set in the state). Drivers should not need to call 548 * netif_xmit*stopped functions, they should only be using netif_tx_*. 549 */ 550 551 struct netdev_queue { 552 /* 553 * read-mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc __rcu *qdisc; 557 struct Qdisc *qdisc_sleeping; 558 #ifdef CONFIG_SYSFS 559 struct kobject kobj; 560 #endif 561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 int numa_node; 563 #endif 564 unsigned long tx_maxrate; 565 /* 566 * Number of TX timeouts for this queue 567 * (/sys/class/net/DEV/Q/trans_timeout) 568 */ 569 unsigned long trans_timeout; 570 /* 571 * write-mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * Time (in jiffies) of last Tx 577 */ 578 unsigned long trans_start; 579 580 unsigned long state; 581 582 #ifdef CONFIG_BQL 583 struct dql dql; 584 #endif 585 } ____cacheline_aligned_in_smp; 586 587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 588 { 589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 590 return q->numa_node; 591 #else 592 return NUMA_NO_NODE; 593 #endif 594 } 595 596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 q->numa_node = node; 600 #endif 601 } 602 603 #ifdef CONFIG_RPS 604 /* 605 * This structure holds an RPS map which can be of variable length. The 606 * map is an array of CPUs. 607 */ 608 struct rps_map { 609 unsigned int len; 610 struct rcu_head rcu; 611 u16 cpus[0]; 612 }; 613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 614 615 /* 616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 617 * tail pointer for that CPU's input queue at the time of last enqueue, and 618 * a hardware filter index. 619 */ 620 struct rps_dev_flow { 621 u16 cpu; 622 u16 filter; 623 unsigned int last_qtail; 624 }; 625 #define RPS_NO_FILTER 0xffff 626 627 /* 628 * The rps_dev_flow_table structure contains a table of flow mappings. 629 */ 630 struct rps_dev_flow_table { 631 unsigned int mask; 632 struct rcu_head rcu; 633 struct rps_dev_flow flows[0]; 634 }; 635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 636 ((_num) * sizeof(struct rps_dev_flow))) 637 638 /* 639 * The rps_sock_flow_table contains mappings of flows to the last CPU 640 * on which they were processed by the application (set in recvmsg). 641 * Each entry is a 32bit value. Upper part is the high-order bits 642 * of flow hash, lower part is CPU number. 643 * rps_cpu_mask is used to partition the space, depending on number of 644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 646 * meaning we use 32-6=26 bits for the hash. 647 */ 648 struct rps_sock_flow_table { 649 u32 mask; 650 651 u32 ents[0] ____cacheline_aligned_in_smp; 652 }; 653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 654 655 #define RPS_NO_CPU 0xffff 656 657 extern u32 rps_cpu_mask; 658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 659 660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 661 u32 hash) 662 { 663 if (table && hash) { 664 unsigned int index = hash & table->mask; 665 u32 val = hash & ~rps_cpu_mask; 666 667 /* We only give a hint, preemption can change CPU under us */ 668 val |= raw_smp_processor_id(); 669 670 if (table->ents[index] != val) 671 table->ents[index] = val; 672 } 673 } 674 675 #ifdef CONFIG_RFS_ACCEL 676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 677 u16 filter_id); 678 #endif 679 #endif /* CONFIG_RPS */ 680 681 /* This structure contains an instance of an RX queue. */ 682 struct netdev_rx_queue { 683 #ifdef CONFIG_RPS 684 struct rps_map __rcu *rps_map; 685 struct rps_dev_flow_table __rcu *rps_flow_table; 686 #endif 687 struct kobject kobj; 688 struct net_device *dev; 689 } ____cacheline_aligned_in_smp; 690 691 /* 692 * RX queue sysfs structures and functions. 693 */ 694 struct rx_queue_attribute { 695 struct attribute attr; 696 ssize_t (*show)(struct netdev_rx_queue *queue, 697 struct rx_queue_attribute *attr, char *buf); 698 ssize_t (*store)(struct netdev_rx_queue *queue, 699 struct rx_queue_attribute *attr, const char *buf, size_t len); 700 }; 701 702 #ifdef CONFIG_XPS 703 /* 704 * This structure holds an XPS map which can be of variable length. The 705 * map is an array of queues. 706 */ 707 struct xps_map { 708 unsigned int len; 709 unsigned int alloc_len; 710 struct rcu_head rcu; 711 u16 queues[0]; 712 }; 713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 715 - sizeof(struct xps_map)) / sizeof(u16)) 716 717 /* 718 * This structure holds all XPS maps for device. Maps are indexed by CPU. 719 */ 720 struct xps_dev_maps { 721 struct rcu_head rcu; 722 struct xps_map __rcu *cpu_map[0]; 723 }; 724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 725 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 726 #endif /* CONFIG_XPS */ 727 728 #define TC_MAX_QUEUE 16 729 #define TC_BITMASK 15 730 /* HW offloaded queuing disciplines txq count and offset maps */ 731 struct netdev_tc_txq { 732 u16 count; 733 u16 offset; 734 }; 735 736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 737 /* 738 * This structure is to hold information about the device 739 * configured to run FCoE protocol stack. 740 */ 741 struct netdev_fcoe_hbainfo { 742 char manufacturer[64]; 743 char serial_number[64]; 744 char hardware_version[64]; 745 char driver_version[64]; 746 char optionrom_version[64]; 747 char firmware_version[64]; 748 char model[256]; 749 char model_description[256]; 750 }; 751 #endif 752 753 #define MAX_PHYS_ITEM_ID_LEN 32 754 755 /* This structure holds a unique identifier to identify some 756 * physical item (port for example) used by a netdevice. 757 */ 758 struct netdev_phys_item_id { 759 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 760 unsigned char id_len; 761 }; 762 763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 764 struct netdev_phys_item_id *b) 765 { 766 return a->id_len == b->id_len && 767 memcmp(a->id, b->id, a->id_len) == 0; 768 } 769 770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 771 struct sk_buff *skb); 772 773 /* These structures hold the attributes of qdisc and classifiers 774 * that are being passed to the netdevice through the setup_tc op. 775 */ 776 enum { 777 TC_SETUP_MQPRIO, 778 TC_SETUP_CLSU32, 779 TC_SETUP_CLSFLOWER, 780 TC_SETUP_MATCHALL, 781 TC_SETUP_CLSBPF, 782 }; 783 784 struct tc_cls_u32_offload; 785 786 struct tc_to_netdev { 787 unsigned int type; 788 union { 789 u8 tc; 790 struct tc_cls_u32_offload *cls_u32; 791 struct tc_cls_flower_offload *cls_flower; 792 struct tc_cls_matchall_offload *cls_mall; 793 struct tc_cls_bpf_offload *cls_bpf; 794 }; 795 bool egress_dev; 796 }; 797 798 /* These structures hold the attributes of xdp state that are being passed 799 * to the netdevice through the xdp op. 800 */ 801 enum xdp_netdev_command { 802 /* Set or clear a bpf program used in the earliest stages of packet 803 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 804 * is responsible for calling bpf_prog_put on any old progs that are 805 * stored. In case of error, the callee need not release the new prog 806 * reference, but on success it takes ownership and must bpf_prog_put 807 * when it is no longer used. 808 */ 809 XDP_SETUP_PROG, 810 /* Check if a bpf program is set on the device. The callee should 811 * return true if a program is currently attached and running. 812 */ 813 XDP_QUERY_PROG, 814 }; 815 816 struct netdev_xdp { 817 enum xdp_netdev_command command; 818 union { 819 /* XDP_SETUP_PROG */ 820 struct bpf_prog *prog; 821 /* XDP_QUERY_PROG */ 822 bool prog_attached; 823 }; 824 }; 825 826 /* 827 * This structure defines the management hooks for network devices. 828 * The following hooks can be defined; unless noted otherwise, they are 829 * optional and can be filled with a null pointer. 830 * 831 * int (*ndo_init)(struct net_device *dev); 832 * This function is called once when a network device is registered. 833 * The network device can use this for any late stage initialization 834 * or semantic validation. It can fail with an error code which will 835 * be propagated back to register_netdev. 836 * 837 * void (*ndo_uninit)(struct net_device *dev); 838 * This function is called when device is unregistered or when registration 839 * fails. It is not called if init fails. 840 * 841 * int (*ndo_open)(struct net_device *dev); 842 * This function is called when a network device transitions to the up 843 * state. 844 * 845 * int (*ndo_stop)(struct net_device *dev); 846 * This function is called when a network device transitions to the down 847 * state. 848 * 849 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 850 * struct net_device *dev); 851 * Called when a packet needs to be transmitted. 852 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 853 * the queue before that can happen; it's for obsolete devices and weird 854 * corner cases, but the stack really does a non-trivial amount 855 * of useless work if you return NETDEV_TX_BUSY. 856 * Required; cannot be NULL. 857 * 858 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 859 * struct net_device *dev 860 * netdev_features_t features); 861 * Called by core transmit path to determine if device is capable of 862 * performing offload operations on a given packet. This is to give 863 * the device an opportunity to implement any restrictions that cannot 864 * be otherwise expressed by feature flags. The check is called with 865 * the set of features that the stack has calculated and it returns 866 * those the driver believes to be appropriate. 867 * 868 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 869 * void *accel_priv, select_queue_fallback_t fallback); 870 * Called to decide which queue to use when device supports multiple 871 * transmit queues. 872 * 873 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 874 * This function is called to allow device receiver to make 875 * changes to configuration when multicast or promiscuous is enabled. 876 * 877 * void (*ndo_set_rx_mode)(struct net_device *dev); 878 * This function is called device changes address list filtering. 879 * If driver handles unicast address filtering, it should set 880 * IFF_UNICAST_FLT in its priv_flags. 881 * 882 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 883 * This function is called when the Media Access Control address 884 * needs to be changed. If this interface is not defined, the 885 * MAC address can not be changed. 886 * 887 * int (*ndo_validate_addr)(struct net_device *dev); 888 * Test if Media Access Control address is valid for the device. 889 * 890 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 891 * Called when a user requests an ioctl which can't be handled by 892 * the generic interface code. If not defined ioctls return 893 * not supported error code. 894 * 895 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 896 * Used to set network devices bus interface parameters. This interface 897 * is retained for legacy reasons; new devices should use the bus 898 * interface (PCI) for low level management. 899 * 900 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 901 * Called when a user wants to change the Maximum Transfer Unit 902 * of a device. If not defined, any request to change MTU will 903 * will return an error. 904 * 905 * void (*ndo_tx_timeout)(struct net_device *dev); 906 * Callback used when the transmitter has not made any progress 907 * for dev->watchdog ticks. 908 * 909 * void (*ndo_get_stats64)(struct net_device *dev, 910 * struct rtnl_link_stats64 *storage); 911 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 912 * Called when a user wants to get the network device usage 913 * statistics. Drivers must do one of the following: 914 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 915 * rtnl_link_stats64 structure passed by the caller. 916 * 2. Define @ndo_get_stats to update a net_device_stats structure 917 * (which should normally be dev->stats) and return a pointer to 918 * it. The structure may be changed asynchronously only if each 919 * field is written atomically. 920 * 3. Update dev->stats asynchronously and atomically, and define 921 * neither operation. 922 * 923 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 924 * Return true if this device supports offload stats of this attr_id. 925 * 926 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 927 * void *attr_data) 928 * Get statistics for offload operations by attr_id. Write it into the 929 * attr_data pointer. 930 * 931 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 932 * If device supports VLAN filtering this function is called when a 933 * VLAN id is registered. 934 * 935 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 936 * If device supports VLAN filtering this function is called when a 937 * VLAN id is unregistered. 938 * 939 * void (*ndo_poll_controller)(struct net_device *dev); 940 * 941 * SR-IOV management functions. 942 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 943 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 944 * u8 qos, __be16 proto); 945 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 946 * int max_tx_rate); 947 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 948 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 949 * int (*ndo_get_vf_config)(struct net_device *dev, 950 * int vf, struct ifla_vf_info *ivf); 951 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 952 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 953 * struct nlattr *port[]); 954 * 955 * Enable or disable the VF ability to query its RSS Redirection Table and 956 * Hash Key. This is needed since on some devices VF share this information 957 * with PF and querying it may introduce a theoretical security risk. 958 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 959 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 960 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, 961 * __be16 protocol, struct tc_to_netdev *tc); 962 * Called to setup any 'tc' scheduler, classifier or action on @dev. 963 * This is always called from the stack with the rtnl lock held and netif 964 * tx queues stopped. This allows the netdevice to perform queue 965 * management safely. 966 * 967 * Fiber Channel over Ethernet (FCoE) offload functions. 968 * int (*ndo_fcoe_enable)(struct net_device *dev); 969 * Called when the FCoE protocol stack wants to start using LLD for FCoE 970 * so the underlying device can perform whatever needed configuration or 971 * initialization to support acceleration of FCoE traffic. 972 * 973 * int (*ndo_fcoe_disable)(struct net_device *dev); 974 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 975 * so the underlying device can perform whatever needed clean-ups to 976 * stop supporting acceleration of FCoE traffic. 977 * 978 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 979 * struct scatterlist *sgl, unsigned int sgc); 980 * Called when the FCoE Initiator wants to initialize an I/O that 981 * is a possible candidate for Direct Data Placement (DDP). The LLD can 982 * perform necessary setup and returns 1 to indicate the device is set up 983 * successfully to perform DDP on this I/O, otherwise this returns 0. 984 * 985 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 986 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 987 * indicated by the FC exchange id 'xid', so the underlying device can 988 * clean up and reuse resources for later DDP requests. 989 * 990 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 991 * struct scatterlist *sgl, unsigned int sgc); 992 * Called when the FCoE Target wants to initialize an I/O that 993 * is a possible candidate for Direct Data Placement (DDP). The LLD can 994 * perform necessary setup and returns 1 to indicate the device is set up 995 * successfully to perform DDP on this I/O, otherwise this returns 0. 996 * 997 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 998 * struct netdev_fcoe_hbainfo *hbainfo); 999 * Called when the FCoE Protocol stack wants information on the underlying 1000 * device. This information is utilized by the FCoE protocol stack to 1001 * register attributes with Fiber Channel management service as per the 1002 * FC-GS Fabric Device Management Information(FDMI) specification. 1003 * 1004 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1005 * Called when the underlying device wants to override default World Wide 1006 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1007 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1008 * protocol stack to use. 1009 * 1010 * RFS acceleration. 1011 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1012 * u16 rxq_index, u32 flow_id); 1013 * Set hardware filter for RFS. rxq_index is the target queue index; 1014 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1015 * Return the filter ID on success, or a negative error code. 1016 * 1017 * Slave management functions (for bridge, bonding, etc). 1018 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1019 * Called to make another netdev an underling. 1020 * 1021 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1022 * Called to release previously enslaved netdev. 1023 * 1024 * Feature/offload setting functions. 1025 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1026 * netdev_features_t features); 1027 * Adjusts the requested feature flags according to device-specific 1028 * constraints, and returns the resulting flags. Must not modify 1029 * the device state. 1030 * 1031 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1032 * Called to update device configuration to new features. Passed 1033 * feature set might be less than what was returned by ndo_fix_features()). 1034 * Must return >0 or -errno if it changed dev->features itself. 1035 * 1036 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1037 * struct net_device *dev, 1038 * const unsigned char *addr, u16 vid, u16 flags) 1039 * Adds an FDB entry to dev for addr. 1040 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1041 * struct net_device *dev, 1042 * const unsigned char *addr, u16 vid) 1043 * Deletes the FDB entry from dev coresponding to addr. 1044 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1045 * struct net_device *dev, struct net_device *filter_dev, 1046 * int *idx) 1047 * Used to add FDB entries to dump requests. Implementers should add 1048 * entries to skb and update idx with the number of entries. 1049 * 1050 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1051 * u16 flags) 1052 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1053 * struct net_device *dev, u32 filter_mask, 1054 * int nlflags) 1055 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1056 * u16 flags); 1057 * 1058 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1059 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1060 * which do not represent real hardware may define this to allow their 1061 * userspace components to manage their virtual carrier state. Devices 1062 * that determine carrier state from physical hardware properties (eg 1063 * network cables) or protocol-dependent mechanisms (eg 1064 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1065 * 1066 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1067 * struct netdev_phys_item_id *ppid); 1068 * Called to get ID of physical port of this device. If driver does 1069 * not implement this, it is assumed that the hw is not able to have 1070 * multiple net devices on single physical port. 1071 * 1072 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1073 * struct udp_tunnel_info *ti); 1074 * Called by UDP tunnel to notify a driver about the UDP port and socket 1075 * address family that a UDP tunnel is listnening to. It is called only 1076 * when a new port starts listening. The operation is protected by the 1077 * RTNL. 1078 * 1079 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1080 * struct udp_tunnel_info *ti); 1081 * Called by UDP tunnel to notify the driver about a UDP port and socket 1082 * address family that the UDP tunnel is not listening to anymore. The 1083 * operation is protected by the RTNL. 1084 * 1085 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1086 * struct net_device *dev) 1087 * Called by upper layer devices to accelerate switching or other 1088 * station functionality into hardware. 'pdev is the lowerdev 1089 * to use for the offload and 'dev' is the net device that will 1090 * back the offload. Returns a pointer to the private structure 1091 * the upper layer will maintain. 1092 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1093 * Called by upper layer device to delete the station created 1094 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1095 * the station and priv is the structure returned by the add 1096 * operation. 1097 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1098 * struct net_device *dev, 1099 * void *priv); 1100 * Callback to use for xmit over the accelerated station. This 1101 * is used in place of ndo_start_xmit on accelerated net 1102 * devices. 1103 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1104 * int queue_index, u32 maxrate); 1105 * Called when a user wants to set a max-rate limitation of specific 1106 * TX queue. 1107 * int (*ndo_get_iflink)(const struct net_device *dev); 1108 * Called to get the iflink value of this device. 1109 * void (*ndo_change_proto_down)(struct net_device *dev, 1110 * bool proto_down); 1111 * This function is used to pass protocol port error state information 1112 * to the switch driver. The switch driver can react to the proto_down 1113 * by doing a phys down on the associated switch port. 1114 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1115 * This function is used to get egress tunnel information for given skb. 1116 * This is useful for retrieving outer tunnel header parameters while 1117 * sampling packet. 1118 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1119 * This function is used to specify the headroom that the skb must 1120 * consider when allocation skb during packet reception. Setting 1121 * appropriate rx headroom value allows avoiding skb head copy on 1122 * forward. Setting a negative value resets the rx headroom to the 1123 * default value. 1124 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1125 * This function is used to set or query state related to XDP on the 1126 * netdevice. See definition of enum xdp_netdev_command for details. 1127 * 1128 */ 1129 struct net_device_ops { 1130 int (*ndo_init)(struct net_device *dev); 1131 void (*ndo_uninit)(struct net_device *dev); 1132 int (*ndo_open)(struct net_device *dev); 1133 int (*ndo_stop)(struct net_device *dev); 1134 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1135 struct net_device *dev); 1136 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1137 struct net_device *dev, 1138 netdev_features_t features); 1139 u16 (*ndo_select_queue)(struct net_device *dev, 1140 struct sk_buff *skb, 1141 void *accel_priv, 1142 select_queue_fallback_t fallback); 1143 void (*ndo_change_rx_flags)(struct net_device *dev, 1144 int flags); 1145 void (*ndo_set_rx_mode)(struct net_device *dev); 1146 int (*ndo_set_mac_address)(struct net_device *dev, 1147 void *addr); 1148 int (*ndo_validate_addr)(struct net_device *dev); 1149 int (*ndo_do_ioctl)(struct net_device *dev, 1150 struct ifreq *ifr, int cmd); 1151 int (*ndo_set_config)(struct net_device *dev, 1152 struct ifmap *map); 1153 int (*ndo_change_mtu)(struct net_device *dev, 1154 int new_mtu); 1155 int (*ndo_neigh_setup)(struct net_device *dev, 1156 struct neigh_parms *); 1157 void (*ndo_tx_timeout) (struct net_device *dev); 1158 1159 void (*ndo_get_stats64)(struct net_device *dev, 1160 struct rtnl_link_stats64 *storage); 1161 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1162 int (*ndo_get_offload_stats)(int attr_id, 1163 const struct net_device *dev, 1164 void *attr_data); 1165 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1166 1167 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1168 __be16 proto, u16 vid); 1169 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1170 __be16 proto, u16 vid); 1171 #ifdef CONFIG_NET_POLL_CONTROLLER 1172 void (*ndo_poll_controller)(struct net_device *dev); 1173 int (*ndo_netpoll_setup)(struct net_device *dev, 1174 struct netpoll_info *info); 1175 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1176 #endif 1177 int (*ndo_set_vf_mac)(struct net_device *dev, 1178 int queue, u8 *mac); 1179 int (*ndo_set_vf_vlan)(struct net_device *dev, 1180 int queue, u16 vlan, 1181 u8 qos, __be16 proto); 1182 int (*ndo_set_vf_rate)(struct net_device *dev, 1183 int vf, int min_tx_rate, 1184 int max_tx_rate); 1185 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1186 int vf, bool setting); 1187 int (*ndo_set_vf_trust)(struct net_device *dev, 1188 int vf, bool setting); 1189 int (*ndo_get_vf_config)(struct net_device *dev, 1190 int vf, 1191 struct ifla_vf_info *ivf); 1192 int (*ndo_set_vf_link_state)(struct net_device *dev, 1193 int vf, int link_state); 1194 int (*ndo_get_vf_stats)(struct net_device *dev, 1195 int vf, 1196 struct ifla_vf_stats 1197 *vf_stats); 1198 int (*ndo_set_vf_port)(struct net_device *dev, 1199 int vf, 1200 struct nlattr *port[]); 1201 int (*ndo_get_vf_port)(struct net_device *dev, 1202 int vf, struct sk_buff *skb); 1203 int (*ndo_set_vf_guid)(struct net_device *dev, 1204 int vf, u64 guid, 1205 int guid_type); 1206 int (*ndo_set_vf_rss_query_en)( 1207 struct net_device *dev, 1208 int vf, bool setting); 1209 int (*ndo_setup_tc)(struct net_device *dev, 1210 u32 handle, 1211 __be16 protocol, 1212 struct tc_to_netdev *tc); 1213 #if IS_ENABLED(CONFIG_FCOE) 1214 int (*ndo_fcoe_enable)(struct net_device *dev); 1215 int (*ndo_fcoe_disable)(struct net_device *dev); 1216 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1217 u16 xid, 1218 struct scatterlist *sgl, 1219 unsigned int sgc); 1220 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1221 u16 xid); 1222 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1223 u16 xid, 1224 struct scatterlist *sgl, 1225 unsigned int sgc); 1226 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1227 struct netdev_fcoe_hbainfo *hbainfo); 1228 #endif 1229 1230 #if IS_ENABLED(CONFIG_LIBFCOE) 1231 #define NETDEV_FCOE_WWNN 0 1232 #define NETDEV_FCOE_WWPN 1 1233 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1234 u64 *wwn, int type); 1235 #endif 1236 1237 #ifdef CONFIG_RFS_ACCEL 1238 int (*ndo_rx_flow_steer)(struct net_device *dev, 1239 const struct sk_buff *skb, 1240 u16 rxq_index, 1241 u32 flow_id); 1242 #endif 1243 int (*ndo_add_slave)(struct net_device *dev, 1244 struct net_device *slave_dev); 1245 int (*ndo_del_slave)(struct net_device *dev, 1246 struct net_device *slave_dev); 1247 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1248 netdev_features_t features); 1249 int (*ndo_set_features)(struct net_device *dev, 1250 netdev_features_t features); 1251 int (*ndo_neigh_construct)(struct net_device *dev, 1252 struct neighbour *n); 1253 void (*ndo_neigh_destroy)(struct net_device *dev, 1254 struct neighbour *n); 1255 1256 int (*ndo_fdb_add)(struct ndmsg *ndm, 1257 struct nlattr *tb[], 1258 struct net_device *dev, 1259 const unsigned char *addr, 1260 u16 vid, 1261 u16 flags); 1262 int (*ndo_fdb_del)(struct ndmsg *ndm, 1263 struct nlattr *tb[], 1264 struct net_device *dev, 1265 const unsigned char *addr, 1266 u16 vid); 1267 int (*ndo_fdb_dump)(struct sk_buff *skb, 1268 struct netlink_callback *cb, 1269 struct net_device *dev, 1270 struct net_device *filter_dev, 1271 int *idx); 1272 1273 int (*ndo_bridge_setlink)(struct net_device *dev, 1274 struct nlmsghdr *nlh, 1275 u16 flags); 1276 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1277 u32 pid, u32 seq, 1278 struct net_device *dev, 1279 u32 filter_mask, 1280 int nlflags); 1281 int (*ndo_bridge_dellink)(struct net_device *dev, 1282 struct nlmsghdr *nlh, 1283 u16 flags); 1284 int (*ndo_change_carrier)(struct net_device *dev, 1285 bool new_carrier); 1286 int (*ndo_get_phys_port_id)(struct net_device *dev, 1287 struct netdev_phys_item_id *ppid); 1288 int (*ndo_get_phys_port_name)(struct net_device *dev, 1289 char *name, size_t len); 1290 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1291 struct udp_tunnel_info *ti); 1292 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1293 struct udp_tunnel_info *ti); 1294 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1295 struct net_device *dev); 1296 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1297 void *priv); 1298 1299 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1300 struct net_device *dev, 1301 void *priv); 1302 int (*ndo_get_lock_subclass)(struct net_device *dev); 1303 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1304 int queue_index, 1305 u32 maxrate); 1306 int (*ndo_get_iflink)(const struct net_device *dev); 1307 int (*ndo_change_proto_down)(struct net_device *dev, 1308 bool proto_down); 1309 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1310 struct sk_buff *skb); 1311 void (*ndo_set_rx_headroom)(struct net_device *dev, 1312 int needed_headroom); 1313 int (*ndo_xdp)(struct net_device *dev, 1314 struct netdev_xdp *xdp); 1315 }; 1316 1317 /** 1318 * enum net_device_priv_flags - &struct net_device priv_flags 1319 * 1320 * These are the &struct net_device, they are only set internally 1321 * by drivers and used in the kernel. These flags are invisible to 1322 * userspace; this means that the order of these flags can change 1323 * during any kernel release. 1324 * 1325 * You should have a pretty good reason to be extending these flags. 1326 * 1327 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1328 * @IFF_EBRIDGE: Ethernet bridging device 1329 * @IFF_BONDING: bonding master or slave 1330 * @IFF_ISATAP: ISATAP interface (RFC4214) 1331 * @IFF_WAN_HDLC: WAN HDLC device 1332 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1333 * release skb->dst 1334 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1335 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1336 * @IFF_MACVLAN_PORT: device used as macvlan port 1337 * @IFF_BRIDGE_PORT: device used as bridge port 1338 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1339 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1340 * @IFF_UNICAST_FLT: Supports unicast filtering 1341 * @IFF_TEAM_PORT: device used as team port 1342 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1343 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1344 * change when it's running 1345 * @IFF_MACVLAN: Macvlan device 1346 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1347 * underlying stacked devices 1348 * @IFF_IPVLAN_MASTER: IPvlan master device 1349 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1350 * @IFF_L3MDEV_MASTER: device is an L3 master device 1351 * @IFF_NO_QUEUE: device can run without qdisc attached 1352 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1353 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1354 * @IFF_TEAM: device is a team device 1355 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1356 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1357 * entity (i.e. the master device for bridged veth) 1358 * @IFF_MACSEC: device is a MACsec device 1359 */ 1360 enum netdev_priv_flags { 1361 IFF_802_1Q_VLAN = 1<<0, 1362 IFF_EBRIDGE = 1<<1, 1363 IFF_BONDING = 1<<2, 1364 IFF_ISATAP = 1<<3, 1365 IFF_WAN_HDLC = 1<<4, 1366 IFF_XMIT_DST_RELEASE = 1<<5, 1367 IFF_DONT_BRIDGE = 1<<6, 1368 IFF_DISABLE_NETPOLL = 1<<7, 1369 IFF_MACVLAN_PORT = 1<<8, 1370 IFF_BRIDGE_PORT = 1<<9, 1371 IFF_OVS_DATAPATH = 1<<10, 1372 IFF_TX_SKB_SHARING = 1<<11, 1373 IFF_UNICAST_FLT = 1<<12, 1374 IFF_TEAM_PORT = 1<<13, 1375 IFF_SUPP_NOFCS = 1<<14, 1376 IFF_LIVE_ADDR_CHANGE = 1<<15, 1377 IFF_MACVLAN = 1<<16, 1378 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1379 IFF_IPVLAN_MASTER = 1<<18, 1380 IFF_IPVLAN_SLAVE = 1<<19, 1381 IFF_L3MDEV_MASTER = 1<<20, 1382 IFF_NO_QUEUE = 1<<21, 1383 IFF_OPENVSWITCH = 1<<22, 1384 IFF_L3MDEV_SLAVE = 1<<23, 1385 IFF_TEAM = 1<<24, 1386 IFF_RXFH_CONFIGURED = 1<<25, 1387 IFF_PHONY_HEADROOM = 1<<26, 1388 IFF_MACSEC = 1<<27, 1389 }; 1390 1391 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1392 #define IFF_EBRIDGE IFF_EBRIDGE 1393 #define IFF_BONDING IFF_BONDING 1394 #define IFF_ISATAP IFF_ISATAP 1395 #define IFF_WAN_HDLC IFF_WAN_HDLC 1396 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1397 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1398 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1399 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1400 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1401 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1402 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1403 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1404 #define IFF_TEAM_PORT IFF_TEAM_PORT 1405 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1406 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1407 #define IFF_MACVLAN IFF_MACVLAN 1408 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1409 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1410 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1411 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1412 #define IFF_NO_QUEUE IFF_NO_QUEUE 1413 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1414 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1415 #define IFF_TEAM IFF_TEAM 1416 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1417 #define IFF_MACSEC IFF_MACSEC 1418 1419 /** 1420 * struct net_device - The DEVICE structure. 1421 * Actually, this whole structure is a big mistake. It mixes I/O 1422 * data with strictly "high-level" data, and it has to know about 1423 * almost every data structure used in the INET module. 1424 * 1425 * @name: This is the first field of the "visible" part of this structure 1426 * (i.e. as seen by users in the "Space.c" file). It is the name 1427 * of the interface. 1428 * 1429 * @name_hlist: Device name hash chain, please keep it close to name[] 1430 * @ifalias: SNMP alias 1431 * @mem_end: Shared memory end 1432 * @mem_start: Shared memory start 1433 * @base_addr: Device I/O address 1434 * @irq: Device IRQ number 1435 * 1436 * @carrier_changes: Stats to monitor carrier on<->off transitions 1437 * 1438 * @state: Generic network queuing layer state, see netdev_state_t 1439 * @dev_list: The global list of network devices 1440 * @napi_list: List entry used for polling NAPI devices 1441 * @unreg_list: List entry when we are unregistering the 1442 * device; see the function unregister_netdev 1443 * @close_list: List entry used when we are closing the device 1444 * @ptype_all: Device-specific packet handlers for all protocols 1445 * @ptype_specific: Device-specific, protocol-specific packet handlers 1446 * 1447 * @adj_list: Directly linked devices, like slaves for bonding 1448 * @features: Currently active device features 1449 * @hw_features: User-changeable features 1450 * 1451 * @wanted_features: User-requested features 1452 * @vlan_features: Mask of features inheritable by VLAN devices 1453 * 1454 * @hw_enc_features: Mask of features inherited by encapsulating devices 1455 * This field indicates what encapsulation 1456 * offloads the hardware is capable of doing, 1457 * and drivers will need to set them appropriately. 1458 * 1459 * @mpls_features: Mask of features inheritable by MPLS 1460 * 1461 * @ifindex: interface index 1462 * @group: The group the device belongs to 1463 * 1464 * @stats: Statistics struct, which was left as a legacy, use 1465 * rtnl_link_stats64 instead 1466 * 1467 * @rx_dropped: Dropped packets by core network, 1468 * do not use this in drivers 1469 * @tx_dropped: Dropped packets by core network, 1470 * do not use this in drivers 1471 * @rx_nohandler: nohandler dropped packets by core network on 1472 * inactive devices, do not use this in drivers 1473 * 1474 * @wireless_handlers: List of functions to handle Wireless Extensions, 1475 * instead of ioctl, 1476 * see <net/iw_handler.h> for details. 1477 * @wireless_data: Instance data managed by the core of wireless extensions 1478 * 1479 * @netdev_ops: Includes several pointers to callbacks, 1480 * if one wants to override the ndo_*() functions 1481 * @ethtool_ops: Management operations 1482 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1483 * discovery handling. Necessary for e.g. 6LoWPAN. 1484 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1485 * of Layer 2 headers. 1486 * 1487 * @flags: Interface flags (a la BSD) 1488 * @priv_flags: Like 'flags' but invisible to userspace, 1489 * see if.h for the definitions 1490 * @gflags: Global flags ( kept as legacy ) 1491 * @padded: How much padding added by alloc_netdev() 1492 * @operstate: RFC2863 operstate 1493 * @link_mode: Mapping policy to operstate 1494 * @if_port: Selectable AUI, TP, ... 1495 * @dma: DMA channel 1496 * @mtu: Interface MTU value 1497 * @min_mtu: Interface Minimum MTU value 1498 * @max_mtu: Interface Maximum MTU value 1499 * @type: Interface hardware type 1500 * @hard_header_len: Maximum hardware header length. 1501 * @min_header_len: Minimum hardware header length 1502 * 1503 * @needed_headroom: Extra headroom the hardware may need, but not in all 1504 * cases can this be guaranteed 1505 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1506 * cases can this be guaranteed. Some cases also use 1507 * LL_MAX_HEADER instead to allocate the skb 1508 * 1509 * interface address info: 1510 * 1511 * @perm_addr: Permanent hw address 1512 * @addr_assign_type: Hw address assignment type 1513 * @addr_len: Hardware address length 1514 * @neigh_priv_len: Used in neigh_alloc() 1515 * @dev_id: Used to differentiate devices that share 1516 * the same link layer address 1517 * @dev_port: Used to differentiate devices that share 1518 * the same function 1519 * @addr_list_lock: XXX: need comments on this one 1520 * @uc_promisc: Counter that indicates promiscuous mode 1521 * has been enabled due to the need to listen to 1522 * additional unicast addresses in a device that 1523 * does not implement ndo_set_rx_mode() 1524 * @uc: unicast mac addresses 1525 * @mc: multicast mac addresses 1526 * @dev_addrs: list of device hw addresses 1527 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1528 * @promiscuity: Number of times the NIC is told to work in 1529 * promiscuous mode; if it becomes 0 the NIC will 1530 * exit promiscuous mode 1531 * @allmulti: Counter, enables or disables allmulticast mode 1532 * 1533 * @vlan_info: VLAN info 1534 * @dsa_ptr: dsa specific data 1535 * @tipc_ptr: TIPC specific data 1536 * @atalk_ptr: AppleTalk link 1537 * @ip_ptr: IPv4 specific data 1538 * @dn_ptr: DECnet specific data 1539 * @ip6_ptr: IPv6 specific data 1540 * @ax25_ptr: AX.25 specific data 1541 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1542 * 1543 * @dev_addr: Hw address (before bcast, 1544 * because most packets are unicast) 1545 * 1546 * @_rx: Array of RX queues 1547 * @num_rx_queues: Number of RX queues 1548 * allocated at register_netdev() time 1549 * @real_num_rx_queues: Number of RX queues currently active in device 1550 * 1551 * @rx_handler: handler for received packets 1552 * @rx_handler_data: XXX: need comments on this one 1553 * @ingress_queue: XXX: need comments on this one 1554 * @broadcast: hw bcast address 1555 * 1556 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1557 * indexed by RX queue number. Assigned by driver. 1558 * This must only be set if the ndo_rx_flow_steer 1559 * operation is defined 1560 * @index_hlist: Device index hash chain 1561 * 1562 * @_tx: Array of TX queues 1563 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1564 * @real_num_tx_queues: Number of TX queues currently active in device 1565 * @qdisc: Root qdisc from userspace point of view 1566 * @tx_queue_len: Max frames per queue allowed 1567 * @tx_global_lock: XXX: need comments on this one 1568 * 1569 * @xps_maps: XXX: need comments on this one 1570 * 1571 * @watchdog_timeo: Represents the timeout that is used by 1572 * the watchdog (see dev_watchdog()) 1573 * @watchdog_timer: List of timers 1574 * 1575 * @pcpu_refcnt: Number of references to this device 1576 * @todo_list: Delayed register/unregister 1577 * @link_watch_list: XXX: need comments on this one 1578 * 1579 * @reg_state: Register/unregister state machine 1580 * @dismantle: Device is going to be freed 1581 * @rtnl_link_state: This enum represents the phases of creating 1582 * a new link 1583 * 1584 * @destructor: Called from unregister, 1585 * can be used to call free_netdev 1586 * @npinfo: XXX: need comments on this one 1587 * @nd_net: Network namespace this network device is inside 1588 * 1589 * @ml_priv: Mid-layer private 1590 * @lstats: Loopback statistics 1591 * @tstats: Tunnel statistics 1592 * @dstats: Dummy statistics 1593 * @vstats: Virtual ethernet statistics 1594 * 1595 * @garp_port: GARP 1596 * @mrp_port: MRP 1597 * 1598 * @dev: Class/net/name entry 1599 * @sysfs_groups: Space for optional device, statistics and wireless 1600 * sysfs groups 1601 * 1602 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1603 * @rtnl_link_ops: Rtnl_link_ops 1604 * 1605 * @gso_max_size: Maximum size of generic segmentation offload 1606 * @gso_max_segs: Maximum number of segments that can be passed to the 1607 * NIC for GSO 1608 * 1609 * @dcbnl_ops: Data Center Bridging netlink ops 1610 * @num_tc: Number of traffic classes in the net device 1611 * @tc_to_txq: XXX: need comments on this one 1612 * @prio_tc_map: XXX: need comments on this one 1613 * 1614 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1615 * 1616 * @priomap: XXX: need comments on this one 1617 * @phydev: Physical device may attach itself 1618 * for hardware timestamping 1619 * 1620 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1621 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1622 * 1623 * @proto_down: protocol port state information can be sent to the 1624 * switch driver and used to set the phys state of the 1625 * switch port. 1626 * 1627 * FIXME: cleanup struct net_device such that network protocol info 1628 * moves out. 1629 */ 1630 1631 struct net_device { 1632 char name[IFNAMSIZ]; 1633 struct hlist_node name_hlist; 1634 char *ifalias; 1635 /* 1636 * I/O specific fields 1637 * FIXME: Merge these and struct ifmap into one 1638 */ 1639 unsigned long mem_end; 1640 unsigned long mem_start; 1641 unsigned long base_addr; 1642 int irq; 1643 1644 atomic_t carrier_changes; 1645 1646 /* 1647 * Some hardware also needs these fields (state,dev_list, 1648 * napi_list,unreg_list,close_list) but they are not 1649 * part of the usual set specified in Space.c. 1650 */ 1651 1652 unsigned long state; 1653 1654 struct list_head dev_list; 1655 struct list_head napi_list; 1656 struct list_head unreg_list; 1657 struct list_head close_list; 1658 struct list_head ptype_all; 1659 struct list_head ptype_specific; 1660 1661 struct { 1662 struct list_head upper; 1663 struct list_head lower; 1664 } adj_list; 1665 1666 netdev_features_t features; 1667 netdev_features_t hw_features; 1668 netdev_features_t wanted_features; 1669 netdev_features_t vlan_features; 1670 netdev_features_t hw_enc_features; 1671 netdev_features_t mpls_features; 1672 netdev_features_t gso_partial_features; 1673 1674 int ifindex; 1675 int group; 1676 1677 struct net_device_stats stats; 1678 1679 atomic_long_t rx_dropped; 1680 atomic_long_t tx_dropped; 1681 atomic_long_t rx_nohandler; 1682 1683 #ifdef CONFIG_WIRELESS_EXT 1684 const struct iw_handler_def *wireless_handlers; 1685 struct iw_public_data *wireless_data; 1686 #endif 1687 const struct net_device_ops *netdev_ops; 1688 const struct ethtool_ops *ethtool_ops; 1689 #ifdef CONFIG_NET_SWITCHDEV 1690 const struct switchdev_ops *switchdev_ops; 1691 #endif 1692 #ifdef CONFIG_NET_L3_MASTER_DEV 1693 const struct l3mdev_ops *l3mdev_ops; 1694 #endif 1695 #if IS_ENABLED(CONFIG_IPV6) 1696 const struct ndisc_ops *ndisc_ops; 1697 #endif 1698 1699 const struct header_ops *header_ops; 1700 1701 unsigned int flags; 1702 unsigned int priv_flags; 1703 1704 unsigned short gflags; 1705 unsigned short padded; 1706 1707 unsigned char operstate; 1708 unsigned char link_mode; 1709 1710 unsigned char if_port; 1711 unsigned char dma; 1712 1713 unsigned int mtu; 1714 unsigned int min_mtu; 1715 unsigned int max_mtu; 1716 unsigned short type; 1717 unsigned short hard_header_len; 1718 unsigned short min_header_len; 1719 1720 unsigned short needed_headroom; 1721 unsigned short needed_tailroom; 1722 1723 /* Interface address info. */ 1724 unsigned char perm_addr[MAX_ADDR_LEN]; 1725 unsigned char addr_assign_type; 1726 unsigned char addr_len; 1727 unsigned short neigh_priv_len; 1728 unsigned short dev_id; 1729 unsigned short dev_port; 1730 spinlock_t addr_list_lock; 1731 unsigned char name_assign_type; 1732 bool uc_promisc; 1733 struct netdev_hw_addr_list uc; 1734 struct netdev_hw_addr_list mc; 1735 struct netdev_hw_addr_list dev_addrs; 1736 1737 #ifdef CONFIG_SYSFS 1738 struct kset *queues_kset; 1739 #endif 1740 unsigned int promiscuity; 1741 unsigned int allmulti; 1742 1743 1744 /* Protocol-specific pointers */ 1745 1746 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1747 struct vlan_info __rcu *vlan_info; 1748 #endif 1749 #if IS_ENABLED(CONFIG_NET_DSA) 1750 struct dsa_switch_tree *dsa_ptr; 1751 #endif 1752 #if IS_ENABLED(CONFIG_TIPC) 1753 struct tipc_bearer __rcu *tipc_ptr; 1754 #endif 1755 void *atalk_ptr; 1756 struct in_device __rcu *ip_ptr; 1757 struct dn_dev __rcu *dn_ptr; 1758 struct inet6_dev __rcu *ip6_ptr; 1759 void *ax25_ptr; 1760 struct wireless_dev *ieee80211_ptr; 1761 struct wpan_dev *ieee802154_ptr; 1762 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1763 struct mpls_dev __rcu *mpls_ptr; 1764 #endif 1765 1766 /* 1767 * Cache lines mostly used on receive path (including eth_type_trans()) 1768 */ 1769 /* Interface address info used in eth_type_trans() */ 1770 unsigned char *dev_addr; 1771 1772 #ifdef CONFIG_SYSFS 1773 struct netdev_rx_queue *_rx; 1774 1775 unsigned int num_rx_queues; 1776 unsigned int real_num_rx_queues; 1777 #endif 1778 1779 unsigned long gro_flush_timeout; 1780 rx_handler_func_t __rcu *rx_handler; 1781 void __rcu *rx_handler_data; 1782 1783 #ifdef CONFIG_NET_CLS_ACT 1784 struct tcf_proto __rcu *ingress_cl_list; 1785 #endif 1786 struct netdev_queue __rcu *ingress_queue; 1787 #ifdef CONFIG_NETFILTER_INGRESS 1788 struct nf_hook_entry __rcu *nf_hooks_ingress; 1789 #endif 1790 1791 unsigned char broadcast[MAX_ADDR_LEN]; 1792 #ifdef CONFIG_RFS_ACCEL 1793 struct cpu_rmap *rx_cpu_rmap; 1794 #endif 1795 struct hlist_node index_hlist; 1796 1797 /* 1798 * Cache lines mostly used on transmit path 1799 */ 1800 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1801 unsigned int num_tx_queues; 1802 unsigned int real_num_tx_queues; 1803 struct Qdisc *qdisc; 1804 #ifdef CONFIG_NET_SCHED 1805 DECLARE_HASHTABLE (qdisc_hash, 4); 1806 #endif 1807 unsigned long tx_queue_len; 1808 spinlock_t tx_global_lock; 1809 int watchdog_timeo; 1810 1811 #ifdef CONFIG_XPS 1812 struct xps_dev_maps __rcu *xps_maps; 1813 #endif 1814 #ifdef CONFIG_NET_CLS_ACT 1815 struct tcf_proto __rcu *egress_cl_list; 1816 #endif 1817 1818 /* These may be needed for future network-power-down code. */ 1819 struct timer_list watchdog_timer; 1820 1821 int __percpu *pcpu_refcnt; 1822 struct list_head todo_list; 1823 1824 struct list_head link_watch_list; 1825 1826 enum { NETREG_UNINITIALIZED=0, 1827 NETREG_REGISTERED, /* completed register_netdevice */ 1828 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1829 NETREG_UNREGISTERED, /* completed unregister todo */ 1830 NETREG_RELEASED, /* called free_netdev */ 1831 NETREG_DUMMY, /* dummy device for NAPI poll */ 1832 } reg_state:8; 1833 1834 bool dismantle; 1835 1836 enum { 1837 RTNL_LINK_INITIALIZED, 1838 RTNL_LINK_INITIALIZING, 1839 } rtnl_link_state:16; 1840 1841 void (*destructor)(struct net_device *dev); 1842 1843 #ifdef CONFIG_NETPOLL 1844 struct netpoll_info __rcu *npinfo; 1845 #endif 1846 1847 possible_net_t nd_net; 1848 1849 /* mid-layer private */ 1850 union { 1851 void *ml_priv; 1852 struct pcpu_lstats __percpu *lstats; 1853 struct pcpu_sw_netstats __percpu *tstats; 1854 struct pcpu_dstats __percpu *dstats; 1855 struct pcpu_vstats __percpu *vstats; 1856 }; 1857 1858 #if IS_ENABLED(CONFIG_GARP) 1859 struct garp_port __rcu *garp_port; 1860 #endif 1861 #if IS_ENABLED(CONFIG_MRP) 1862 struct mrp_port __rcu *mrp_port; 1863 #endif 1864 1865 struct device dev; 1866 const struct attribute_group *sysfs_groups[4]; 1867 const struct attribute_group *sysfs_rx_queue_group; 1868 1869 const struct rtnl_link_ops *rtnl_link_ops; 1870 1871 /* for setting kernel sock attribute on TCP connection setup */ 1872 #define GSO_MAX_SIZE 65536 1873 unsigned int gso_max_size; 1874 #define GSO_MAX_SEGS 65535 1875 u16 gso_max_segs; 1876 1877 #ifdef CONFIG_DCB 1878 const struct dcbnl_rtnl_ops *dcbnl_ops; 1879 #endif 1880 u8 num_tc; 1881 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1882 u8 prio_tc_map[TC_BITMASK + 1]; 1883 1884 #if IS_ENABLED(CONFIG_FCOE) 1885 unsigned int fcoe_ddp_xid; 1886 #endif 1887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1888 struct netprio_map __rcu *priomap; 1889 #endif 1890 struct phy_device *phydev; 1891 struct lock_class_key *qdisc_tx_busylock; 1892 struct lock_class_key *qdisc_running_key; 1893 bool proto_down; 1894 }; 1895 #define to_net_dev(d) container_of(d, struct net_device, dev) 1896 1897 #define NETDEV_ALIGN 32 1898 1899 static inline 1900 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1901 { 1902 return dev->prio_tc_map[prio & TC_BITMASK]; 1903 } 1904 1905 static inline 1906 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1907 { 1908 if (tc >= dev->num_tc) 1909 return -EINVAL; 1910 1911 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1912 return 0; 1913 } 1914 1915 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1916 void netdev_reset_tc(struct net_device *dev); 1917 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1918 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1919 1920 static inline 1921 int netdev_get_num_tc(struct net_device *dev) 1922 { 1923 return dev->num_tc; 1924 } 1925 1926 static inline 1927 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1928 unsigned int index) 1929 { 1930 return &dev->_tx[index]; 1931 } 1932 1933 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1934 const struct sk_buff *skb) 1935 { 1936 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1937 } 1938 1939 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1940 void (*f)(struct net_device *, 1941 struct netdev_queue *, 1942 void *), 1943 void *arg) 1944 { 1945 unsigned int i; 1946 1947 for (i = 0; i < dev->num_tx_queues; i++) 1948 f(dev, &dev->_tx[i], arg); 1949 } 1950 1951 #define netdev_lockdep_set_classes(dev) \ 1952 { \ 1953 static struct lock_class_key qdisc_tx_busylock_key; \ 1954 static struct lock_class_key qdisc_running_key; \ 1955 static struct lock_class_key qdisc_xmit_lock_key; \ 1956 static struct lock_class_key dev_addr_list_lock_key; \ 1957 unsigned int i; \ 1958 \ 1959 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1960 (dev)->qdisc_running_key = &qdisc_running_key; \ 1961 lockdep_set_class(&(dev)->addr_list_lock, \ 1962 &dev_addr_list_lock_key); \ 1963 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1964 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1965 &qdisc_xmit_lock_key); \ 1966 } 1967 1968 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1969 struct sk_buff *skb, 1970 void *accel_priv); 1971 1972 /* returns the headroom that the master device needs to take in account 1973 * when forwarding to this dev 1974 */ 1975 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1976 { 1977 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1978 } 1979 1980 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1981 { 1982 if (dev->netdev_ops->ndo_set_rx_headroom) 1983 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1984 } 1985 1986 /* set the device rx headroom to the dev's default */ 1987 static inline void netdev_reset_rx_headroom(struct net_device *dev) 1988 { 1989 netdev_set_rx_headroom(dev, -1); 1990 } 1991 1992 /* 1993 * Net namespace inlines 1994 */ 1995 static inline 1996 struct net *dev_net(const struct net_device *dev) 1997 { 1998 return read_pnet(&dev->nd_net); 1999 } 2000 2001 static inline 2002 void dev_net_set(struct net_device *dev, struct net *net) 2003 { 2004 write_pnet(&dev->nd_net, net); 2005 } 2006 2007 static inline bool netdev_uses_dsa(struct net_device *dev) 2008 { 2009 #if IS_ENABLED(CONFIG_NET_DSA) 2010 if (dev->dsa_ptr != NULL) 2011 return dsa_uses_tagged_protocol(dev->dsa_ptr); 2012 #endif 2013 return false; 2014 } 2015 2016 /** 2017 * netdev_priv - access network device private data 2018 * @dev: network device 2019 * 2020 * Get network device private data 2021 */ 2022 static inline void *netdev_priv(const struct net_device *dev) 2023 { 2024 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2025 } 2026 2027 /* Set the sysfs physical device reference for the network logical device 2028 * if set prior to registration will cause a symlink during initialization. 2029 */ 2030 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2031 2032 /* Set the sysfs device type for the network logical device to allow 2033 * fine-grained identification of different network device types. For 2034 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2035 */ 2036 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2037 2038 /* Default NAPI poll() weight 2039 * Device drivers are strongly advised to not use bigger value 2040 */ 2041 #define NAPI_POLL_WEIGHT 64 2042 2043 /** 2044 * netif_napi_add - initialize a NAPI context 2045 * @dev: network device 2046 * @napi: NAPI context 2047 * @poll: polling function 2048 * @weight: default weight 2049 * 2050 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2051 * *any* of the other NAPI-related functions. 2052 */ 2053 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2054 int (*poll)(struct napi_struct *, int), int weight); 2055 2056 /** 2057 * netif_tx_napi_add - initialize a NAPI context 2058 * @dev: network device 2059 * @napi: NAPI context 2060 * @poll: polling function 2061 * @weight: default weight 2062 * 2063 * This variant of netif_napi_add() should be used from drivers using NAPI 2064 * to exclusively poll a TX queue. 2065 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2066 */ 2067 static inline void netif_tx_napi_add(struct net_device *dev, 2068 struct napi_struct *napi, 2069 int (*poll)(struct napi_struct *, int), 2070 int weight) 2071 { 2072 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2073 netif_napi_add(dev, napi, poll, weight); 2074 } 2075 2076 /** 2077 * netif_napi_del - remove a NAPI context 2078 * @napi: NAPI context 2079 * 2080 * netif_napi_del() removes a NAPI context from the network device NAPI list 2081 */ 2082 void netif_napi_del(struct napi_struct *napi); 2083 2084 struct napi_gro_cb { 2085 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2086 void *frag0; 2087 2088 /* Length of frag0. */ 2089 unsigned int frag0_len; 2090 2091 /* This indicates where we are processing relative to skb->data. */ 2092 int data_offset; 2093 2094 /* This is non-zero if the packet cannot be merged with the new skb. */ 2095 u16 flush; 2096 2097 /* Save the IP ID here and check when we get to the transport layer */ 2098 u16 flush_id; 2099 2100 /* Number of segments aggregated. */ 2101 u16 count; 2102 2103 /* Start offset for remote checksum offload */ 2104 u16 gro_remcsum_start; 2105 2106 /* jiffies when first packet was created/queued */ 2107 unsigned long age; 2108 2109 /* Used in ipv6_gro_receive() and foo-over-udp */ 2110 u16 proto; 2111 2112 /* This is non-zero if the packet may be of the same flow. */ 2113 u8 same_flow:1; 2114 2115 /* Used in tunnel GRO receive */ 2116 u8 encap_mark:1; 2117 2118 /* GRO checksum is valid */ 2119 u8 csum_valid:1; 2120 2121 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2122 u8 csum_cnt:3; 2123 2124 /* Free the skb? */ 2125 u8 free:2; 2126 #define NAPI_GRO_FREE 1 2127 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2128 2129 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2130 u8 is_ipv6:1; 2131 2132 /* Used in GRE, set in fou/gue_gro_receive */ 2133 u8 is_fou:1; 2134 2135 /* Used to determine if flush_id can be ignored */ 2136 u8 is_atomic:1; 2137 2138 /* Number of gro_receive callbacks this packet already went through */ 2139 u8 recursion_counter:4; 2140 2141 /* 1 bit hole */ 2142 2143 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2144 __wsum csum; 2145 2146 /* used in skb_gro_receive() slow path */ 2147 struct sk_buff *last; 2148 }; 2149 2150 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2151 2152 #define GRO_RECURSION_LIMIT 15 2153 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2154 { 2155 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2156 } 2157 2158 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2159 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2160 struct sk_buff **head, 2161 struct sk_buff *skb) 2162 { 2163 if (unlikely(gro_recursion_inc_test(skb))) { 2164 NAPI_GRO_CB(skb)->flush |= 1; 2165 return NULL; 2166 } 2167 2168 return cb(head, skb); 2169 } 2170 2171 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2172 struct sk_buff *); 2173 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2174 struct sock *sk, 2175 struct sk_buff **head, 2176 struct sk_buff *skb) 2177 { 2178 if (unlikely(gro_recursion_inc_test(skb))) { 2179 NAPI_GRO_CB(skb)->flush |= 1; 2180 return NULL; 2181 } 2182 2183 return cb(sk, head, skb); 2184 } 2185 2186 struct packet_type { 2187 __be16 type; /* This is really htons(ether_type). */ 2188 struct net_device *dev; /* NULL is wildcarded here */ 2189 int (*func) (struct sk_buff *, 2190 struct net_device *, 2191 struct packet_type *, 2192 struct net_device *); 2193 bool (*id_match)(struct packet_type *ptype, 2194 struct sock *sk); 2195 void *af_packet_priv; 2196 struct list_head list; 2197 }; 2198 2199 struct offload_callbacks { 2200 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2201 netdev_features_t features); 2202 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2203 struct sk_buff *skb); 2204 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2205 }; 2206 2207 struct packet_offload { 2208 __be16 type; /* This is really htons(ether_type). */ 2209 u16 priority; 2210 struct offload_callbacks callbacks; 2211 struct list_head list; 2212 }; 2213 2214 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2215 struct pcpu_sw_netstats { 2216 u64 rx_packets; 2217 u64 rx_bytes; 2218 u64 tx_packets; 2219 u64 tx_bytes; 2220 struct u64_stats_sync syncp; 2221 }; 2222 2223 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2224 ({ \ 2225 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2226 if (pcpu_stats) { \ 2227 int __cpu; \ 2228 for_each_possible_cpu(__cpu) { \ 2229 typeof(type) *stat; \ 2230 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2231 u64_stats_init(&stat->syncp); \ 2232 } \ 2233 } \ 2234 pcpu_stats; \ 2235 }) 2236 2237 #define netdev_alloc_pcpu_stats(type) \ 2238 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2239 2240 enum netdev_lag_tx_type { 2241 NETDEV_LAG_TX_TYPE_UNKNOWN, 2242 NETDEV_LAG_TX_TYPE_RANDOM, 2243 NETDEV_LAG_TX_TYPE_BROADCAST, 2244 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2245 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2246 NETDEV_LAG_TX_TYPE_HASH, 2247 }; 2248 2249 struct netdev_lag_upper_info { 2250 enum netdev_lag_tx_type tx_type; 2251 }; 2252 2253 struct netdev_lag_lower_state_info { 2254 u8 link_up : 1, 2255 tx_enabled : 1; 2256 }; 2257 2258 #include <linux/notifier.h> 2259 2260 /* netdevice notifier chain. Please remember to update the rtnetlink 2261 * notification exclusion list in rtnetlink_event() when adding new 2262 * types. 2263 */ 2264 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2265 #define NETDEV_DOWN 0x0002 2266 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2267 detected a hardware crash and restarted 2268 - we can use this eg to kick tcp sessions 2269 once done */ 2270 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2271 #define NETDEV_REGISTER 0x0005 2272 #define NETDEV_UNREGISTER 0x0006 2273 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2274 #define NETDEV_CHANGEADDR 0x0008 2275 #define NETDEV_GOING_DOWN 0x0009 2276 #define NETDEV_CHANGENAME 0x000A 2277 #define NETDEV_FEAT_CHANGE 0x000B 2278 #define NETDEV_BONDING_FAILOVER 0x000C 2279 #define NETDEV_PRE_UP 0x000D 2280 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2281 #define NETDEV_POST_TYPE_CHANGE 0x000F 2282 #define NETDEV_POST_INIT 0x0010 2283 #define NETDEV_UNREGISTER_FINAL 0x0011 2284 #define NETDEV_RELEASE 0x0012 2285 #define NETDEV_NOTIFY_PEERS 0x0013 2286 #define NETDEV_JOIN 0x0014 2287 #define NETDEV_CHANGEUPPER 0x0015 2288 #define NETDEV_RESEND_IGMP 0x0016 2289 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2290 #define NETDEV_CHANGEINFODATA 0x0018 2291 #define NETDEV_BONDING_INFO 0x0019 2292 #define NETDEV_PRECHANGEUPPER 0x001A 2293 #define NETDEV_CHANGELOWERSTATE 0x001B 2294 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2295 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2296 2297 int register_netdevice_notifier(struct notifier_block *nb); 2298 int unregister_netdevice_notifier(struct notifier_block *nb); 2299 2300 struct netdev_notifier_info { 2301 struct net_device *dev; 2302 }; 2303 2304 struct netdev_notifier_change_info { 2305 struct netdev_notifier_info info; /* must be first */ 2306 unsigned int flags_changed; 2307 }; 2308 2309 struct netdev_notifier_changeupper_info { 2310 struct netdev_notifier_info info; /* must be first */ 2311 struct net_device *upper_dev; /* new upper dev */ 2312 bool master; /* is upper dev master */ 2313 bool linking; /* is the notification for link or unlink */ 2314 void *upper_info; /* upper dev info */ 2315 }; 2316 2317 struct netdev_notifier_changelowerstate_info { 2318 struct netdev_notifier_info info; /* must be first */ 2319 void *lower_state_info; /* is lower dev state */ 2320 }; 2321 2322 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2323 struct net_device *dev) 2324 { 2325 info->dev = dev; 2326 } 2327 2328 static inline struct net_device * 2329 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2330 { 2331 return info->dev; 2332 } 2333 2334 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2335 2336 2337 extern rwlock_t dev_base_lock; /* Device list lock */ 2338 2339 #define for_each_netdev(net, d) \ 2340 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2341 #define for_each_netdev_reverse(net, d) \ 2342 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2343 #define for_each_netdev_rcu(net, d) \ 2344 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2345 #define for_each_netdev_safe(net, d, n) \ 2346 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2347 #define for_each_netdev_continue(net, d) \ 2348 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2349 #define for_each_netdev_continue_rcu(net, d) \ 2350 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2351 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2352 for_each_netdev_rcu(&init_net, slave) \ 2353 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2354 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2355 2356 static inline struct net_device *next_net_device(struct net_device *dev) 2357 { 2358 struct list_head *lh; 2359 struct net *net; 2360 2361 net = dev_net(dev); 2362 lh = dev->dev_list.next; 2363 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2364 } 2365 2366 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2367 { 2368 struct list_head *lh; 2369 struct net *net; 2370 2371 net = dev_net(dev); 2372 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2373 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2374 } 2375 2376 static inline struct net_device *first_net_device(struct net *net) 2377 { 2378 return list_empty(&net->dev_base_head) ? NULL : 2379 net_device_entry(net->dev_base_head.next); 2380 } 2381 2382 static inline struct net_device *first_net_device_rcu(struct net *net) 2383 { 2384 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2385 2386 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2387 } 2388 2389 int netdev_boot_setup_check(struct net_device *dev); 2390 unsigned long netdev_boot_base(const char *prefix, int unit); 2391 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2392 const char *hwaddr); 2393 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2394 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2395 void dev_add_pack(struct packet_type *pt); 2396 void dev_remove_pack(struct packet_type *pt); 2397 void __dev_remove_pack(struct packet_type *pt); 2398 void dev_add_offload(struct packet_offload *po); 2399 void dev_remove_offload(struct packet_offload *po); 2400 2401 int dev_get_iflink(const struct net_device *dev); 2402 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2403 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2404 unsigned short mask); 2405 struct net_device *dev_get_by_name(struct net *net, const char *name); 2406 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2407 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2408 int dev_alloc_name(struct net_device *dev, const char *name); 2409 int dev_open(struct net_device *dev); 2410 int dev_close(struct net_device *dev); 2411 int dev_close_many(struct list_head *head, bool unlink); 2412 void dev_disable_lro(struct net_device *dev); 2413 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2414 int dev_queue_xmit(struct sk_buff *skb); 2415 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2416 int register_netdevice(struct net_device *dev); 2417 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2418 void unregister_netdevice_many(struct list_head *head); 2419 static inline void unregister_netdevice(struct net_device *dev) 2420 { 2421 unregister_netdevice_queue(dev, NULL); 2422 } 2423 2424 int netdev_refcnt_read(const struct net_device *dev); 2425 void free_netdev(struct net_device *dev); 2426 void netdev_freemem(struct net_device *dev); 2427 void synchronize_net(void); 2428 int init_dummy_netdev(struct net_device *dev); 2429 2430 DECLARE_PER_CPU(int, xmit_recursion); 2431 #define XMIT_RECURSION_LIMIT 10 2432 2433 static inline int dev_recursion_level(void) 2434 { 2435 return this_cpu_read(xmit_recursion); 2436 } 2437 2438 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2439 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2440 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2441 int netdev_get_name(struct net *net, char *name, int ifindex); 2442 int dev_restart(struct net_device *dev); 2443 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2444 2445 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2446 { 2447 return NAPI_GRO_CB(skb)->data_offset; 2448 } 2449 2450 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2451 { 2452 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2453 } 2454 2455 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2456 { 2457 NAPI_GRO_CB(skb)->data_offset += len; 2458 } 2459 2460 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2461 unsigned int offset) 2462 { 2463 return NAPI_GRO_CB(skb)->frag0 + offset; 2464 } 2465 2466 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2467 { 2468 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2469 } 2470 2471 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2472 { 2473 NAPI_GRO_CB(skb)->frag0 = NULL; 2474 NAPI_GRO_CB(skb)->frag0_len = 0; 2475 } 2476 2477 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2478 unsigned int offset) 2479 { 2480 if (!pskb_may_pull(skb, hlen)) 2481 return NULL; 2482 2483 skb_gro_frag0_invalidate(skb); 2484 return skb->data + offset; 2485 } 2486 2487 static inline void *skb_gro_network_header(struct sk_buff *skb) 2488 { 2489 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2490 skb_network_offset(skb); 2491 } 2492 2493 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2494 const void *start, unsigned int len) 2495 { 2496 if (NAPI_GRO_CB(skb)->csum_valid) 2497 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2498 csum_partial(start, len, 0)); 2499 } 2500 2501 /* GRO checksum functions. These are logical equivalents of the normal 2502 * checksum functions (in skbuff.h) except that they operate on the GRO 2503 * offsets and fields in sk_buff. 2504 */ 2505 2506 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2507 2508 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2509 { 2510 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2511 } 2512 2513 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2514 bool zero_okay, 2515 __sum16 check) 2516 { 2517 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2518 skb_checksum_start_offset(skb) < 2519 skb_gro_offset(skb)) && 2520 !skb_at_gro_remcsum_start(skb) && 2521 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2522 (!zero_okay || check)); 2523 } 2524 2525 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2526 __wsum psum) 2527 { 2528 if (NAPI_GRO_CB(skb)->csum_valid && 2529 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2530 return 0; 2531 2532 NAPI_GRO_CB(skb)->csum = psum; 2533 2534 return __skb_gro_checksum_complete(skb); 2535 } 2536 2537 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2538 { 2539 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2540 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2541 NAPI_GRO_CB(skb)->csum_cnt--; 2542 } else { 2543 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2544 * verified a new top level checksum or an encapsulated one 2545 * during GRO. This saves work if we fallback to normal path. 2546 */ 2547 __skb_incr_checksum_unnecessary(skb); 2548 } 2549 } 2550 2551 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2552 compute_pseudo) \ 2553 ({ \ 2554 __sum16 __ret = 0; \ 2555 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2556 __ret = __skb_gro_checksum_validate_complete(skb, \ 2557 compute_pseudo(skb, proto)); \ 2558 if (__ret) \ 2559 __skb_mark_checksum_bad(skb); \ 2560 else \ 2561 skb_gro_incr_csum_unnecessary(skb); \ 2562 __ret; \ 2563 }) 2564 2565 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2566 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2567 2568 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2569 compute_pseudo) \ 2570 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2571 2572 #define skb_gro_checksum_simple_validate(skb) \ 2573 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2574 2575 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2576 { 2577 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2578 !NAPI_GRO_CB(skb)->csum_valid); 2579 } 2580 2581 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2582 __sum16 check, __wsum pseudo) 2583 { 2584 NAPI_GRO_CB(skb)->csum = ~pseudo; 2585 NAPI_GRO_CB(skb)->csum_valid = 1; 2586 } 2587 2588 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2589 do { \ 2590 if (__skb_gro_checksum_convert_check(skb)) \ 2591 __skb_gro_checksum_convert(skb, check, \ 2592 compute_pseudo(skb, proto)); \ 2593 } while (0) 2594 2595 struct gro_remcsum { 2596 int offset; 2597 __wsum delta; 2598 }; 2599 2600 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2601 { 2602 grc->offset = 0; 2603 grc->delta = 0; 2604 } 2605 2606 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2607 unsigned int off, size_t hdrlen, 2608 int start, int offset, 2609 struct gro_remcsum *grc, 2610 bool nopartial) 2611 { 2612 __wsum delta; 2613 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2614 2615 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2616 2617 if (!nopartial) { 2618 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2619 return ptr; 2620 } 2621 2622 ptr = skb_gro_header_fast(skb, off); 2623 if (skb_gro_header_hard(skb, off + plen)) { 2624 ptr = skb_gro_header_slow(skb, off + plen, off); 2625 if (!ptr) 2626 return NULL; 2627 } 2628 2629 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2630 start, offset); 2631 2632 /* Adjust skb->csum since we changed the packet */ 2633 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2634 2635 grc->offset = off + hdrlen + offset; 2636 grc->delta = delta; 2637 2638 return ptr; 2639 } 2640 2641 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2642 struct gro_remcsum *grc) 2643 { 2644 void *ptr; 2645 size_t plen = grc->offset + sizeof(u16); 2646 2647 if (!grc->delta) 2648 return; 2649 2650 ptr = skb_gro_header_fast(skb, grc->offset); 2651 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2652 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2653 if (!ptr) 2654 return; 2655 } 2656 2657 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2658 } 2659 2660 #ifdef CONFIG_XFRM_OFFLOAD 2661 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2662 { 2663 if (PTR_ERR(pp) != -EINPROGRESS) 2664 NAPI_GRO_CB(skb)->flush |= flush; 2665 } 2666 #else 2667 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2668 { 2669 NAPI_GRO_CB(skb)->flush |= flush; 2670 } 2671 #endif 2672 2673 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2674 unsigned short type, 2675 const void *daddr, const void *saddr, 2676 unsigned int len) 2677 { 2678 if (!dev->header_ops || !dev->header_ops->create) 2679 return 0; 2680 2681 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2682 } 2683 2684 static inline int dev_parse_header(const struct sk_buff *skb, 2685 unsigned char *haddr) 2686 { 2687 const struct net_device *dev = skb->dev; 2688 2689 if (!dev->header_ops || !dev->header_ops->parse) 2690 return 0; 2691 return dev->header_ops->parse(skb, haddr); 2692 } 2693 2694 /* ll_header must have at least hard_header_len allocated */ 2695 static inline bool dev_validate_header(const struct net_device *dev, 2696 char *ll_header, int len) 2697 { 2698 if (likely(len >= dev->hard_header_len)) 2699 return true; 2700 if (len < dev->min_header_len) 2701 return false; 2702 2703 if (capable(CAP_SYS_RAWIO)) { 2704 memset(ll_header + len, 0, dev->hard_header_len - len); 2705 return true; 2706 } 2707 2708 if (dev->header_ops && dev->header_ops->validate) 2709 return dev->header_ops->validate(ll_header, len); 2710 2711 return false; 2712 } 2713 2714 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2715 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2716 static inline int unregister_gifconf(unsigned int family) 2717 { 2718 return register_gifconf(family, NULL); 2719 } 2720 2721 #ifdef CONFIG_NET_FLOW_LIMIT 2722 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2723 struct sd_flow_limit { 2724 u64 count; 2725 unsigned int num_buckets; 2726 unsigned int history_head; 2727 u16 history[FLOW_LIMIT_HISTORY]; 2728 u8 buckets[]; 2729 }; 2730 2731 extern int netdev_flow_limit_table_len; 2732 #endif /* CONFIG_NET_FLOW_LIMIT */ 2733 2734 /* 2735 * Incoming packets are placed on per-CPU queues 2736 */ 2737 struct softnet_data { 2738 struct list_head poll_list; 2739 struct sk_buff_head process_queue; 2740 2741 /* stats */ 2742 unsigned int processed; 2743 unsigned int time_squeeze; 2744 unsigned int received_rps; 2745 #ifdef CONFIG_RPS 2746 struct softnet_data *rps_ipi_list; 2747 #endif 2748 #ifdef CONFIG_NET_FLOW_LIMIT 2749 struct sd_flow_limit __rcu *flow_limit; 2750 #endif 2751 struct Qdisc *output_queue; 2752 struct Qdisc **output_queue_tailp; 2753 struct sk_buff *completion_queue; 2754 2755 #ifdef CONFIG_RPS 2756 /* input_queue_head should be written by cpu owning this struct, 2757 * and only read by other cpus. Worth using a cache line. 2758 */ 2759 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2760 2761 /* Elements below can be accessed between CPUs for RPS/RFS */ 2762 struct call_single_data csd ____cacheline_aligned_in_smp; 2763 struct softnet_data *rps_ipi_next; 2764 unsigned int cpu; 2765 unsigned int input_queue_tail; 2766 #endif 2767 unsigned int dropped; 2768 struct sk_buff_head input_pkt_queue; 2769 struct napi_struct backlog; 2770 2771 }; 2772 2773 static inline void input_queue_head_incr(struct softnet_data *sd) 2774 { 2775 #ifdef CONFIG_RPS 2776 sd->input_queue_head++; 2777 #endif 2778 } 2779 2780 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2781 unsigned int *qtail) 2782 { 2783 #ifdef CONFIG_RPS 2784 *qtail = ++sd->input_queue_tail; 2785 #endif 2786 } 2787 2788 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2789 2790 void __netif_schedule(struct Qdisc *q); 2791 void netif_schedule_queue(struct netdev_queue *txq); 2792 2793 static inline void netif_tx_schedule_all(struct net_device *dev) 2794 { 2795 unsigned int i; 2796 2797 for (i = 0; i < dev->num_tx_queues; i++) 2798 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2799 } 2800 2801 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2802 { 2803 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2804 } 2805 2806 /** 2807 * netif_start_queue - allow transmit 2808 * @dev: network device 2809 * 2810 * Allow upper layers to call the device hard_start_xmit routine. 2811 */ 2812 static inline void netif_start_queue(struct net_device *dev) 2813 { 2814 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2815 } 2816 2817 static inline void netif_tx_start_all_queues(struct net_device *dev) 2818 { 2819 unsigned int i; 2820 2821 for (i = 0; i < dev->num_tx_queues; i++) { 2822 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2823 netif_tx_start_queue(txq); 2824 } 2825 } 2826 2827 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2828 2829 /** 2830 * netif_wake_queue - restart transmit 2831 * @dev: network device 2832 * 2833 * Allow upper layers to call the device hard_start_xmit routine. 2834 * Used for flow control when transmit resources are available. 2835 */ 2836 static inline void netif_wake_queue(struct net_device *dev) 2837 { 2838 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2839 } 2840 2841 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2842 { 2843 unsigned int i; 2844 2845 for (i = 0; i < dev->num_tx_queues; i++) { 2846 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2847 netif_tx_wake_queue(txq); 2848 } 2849 } 2850 2851 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2852 { 2853 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2854 } 2855 2856 /** 2857 * netif_stop_queue - stop transmitted packets 2858 * @dev: network device 2859 * 2860 * Stop upper layers calling the device hard_start_xmit routine. 2861 * Used for flow control when transmit resources are unavailable. 2862 */ 2863 static inline void netif_stop_queue(struct net_device *dev) 2864 { 2865 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2866 } 2867 2868 void netif_tx_stop_all_queues(struct net_device *dev); 2869 2870 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2871 { 2872 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2873 } 2874 2875 /** 2876 * netif_queue_stopped - test if transmit queue is flowblocked 2877 * @dev: network device 2878 * 2879 * Test if transmit queue on device is currently unable to send. 2880 */ 2881 static inline bool netif_queue_stopped(const struct net_device *dev) 2882 { 2883 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2884 } 2885 2886 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2887 { 2888 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2889 } 2890 2891 static inline bool 2892 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2893 { 2894 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2895 } 2896 2897 static inline bool 2898 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2899 { 2900 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2901 } 2902 2903 /** 2904 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2905 * @dev_queue: pointer to transmit queue 2906 * 2907 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2908 * to give appropriate hint to the CPU. 2909 */ 2910 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2911 { 2912 #ifdef CONFIG_BQL 2913 prefetchw(&dev_queue->dql.num_queued); 2914 #endif 2915 } 2916 2917 /** 2918 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2919 * @dev_queue: pointer to transmit queue 2920 * 2921 * BQL enabled drivers might use this helper in their TX completion path, 2922 * to give appropriate hint to the CPU. 2923 */ 2924 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2925 { 2926 #ifdef CONFIG_BQL 2927 prefetchw(&dev_queue->dql.limit); 2928 #endif 2929 } 2930 2931 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2932 unsigned int bytes) 2933 { 2934 #ifdef CONFIG_BQL 2935 dql_queued(&dev_queue->dql, bytes); 2936 2937 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2938 return; 2939 2940 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2941 2942 /* 2943 * The XOFF flag must be set before checking the dql_avail below, 2944 * because in netdev_tx_completed_queue we update the dql_completed 2945 * before checking the XOFF flag. 2946 */ 2947 smp_mb(); 2948 2949 /* check again in case another CPU has just made room avail */ 2950 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2951 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2952 #endif 2953 } 2954 2955 /** 2956 * netdev_sent_queue - report the number of bytes queued to hardware 2957 * @dev: network device 2958 * @bytes: number of bytes queued to the hardware device queue 2959 * 2960 * Report the number of bytes queued for sending/completion to the network 2961 * device hardware queue. @bytes should be a good approximation and should 2962 * exactly match netdev_completed_queue() @bytes 2963 */ 2964 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2965 { 2966 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2967 } 2968 2969 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2970 unsigned int pkts, unsigned int bytes) 2971 { 2972 #ifdef CONFIG_BQL 2973 if (unlikely(!bytes)) 2974 return; 2975 2976 dql_completed(&dev_queue->dql, bytes); 2977 2978 /* 2979 * Without the memory barrier there is a small possiblity that 2980 * netdev_tx_sent_queue will miss the update and cause the queue to 2981 * be stopped forever 2982 */ 2983 smp_mb(); 2984 2985 if (dql_avail(&dev_queue->dql) < 0) 2986 return; 2987 2988 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2989 netif_schedule_queue(dev_queue); 2990 #endif 2991 } 2992 2993 /** 2994 * netdev_completed_queue - report bytes and packets completed by device 2995 * @dev: network device 2996 * @pkts: actual number of packets sent over the medium 2997 * @bytes: actual number of bytes sent over the medium 2998 * 2999 * Report the number of bytes and packets transmitted by the network device 3000 * hardware queue over the physical medium, @bytes must exactly match the 3001 * @bytes amount passed to netdev_sent_queue() 3002 */ 3003 static inline void netdev_completed_queue(struct net_device *dev, 3004 unsigned int pkts, unsigned int bytes) 3005 { 3006 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3007 } 3008 3009 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3010 { 3011 #ifdef CONFIG_BQL 3012 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3013 dql_reset(&q->dql); 3014 #endif 3015 } 3016 3017 /** 3018 * netdev_reset_queue - reset the packets and bytes count of a network device 3019 * @dev_queue: network device 3020 * 3021 * Reset the bytes and packet count of a network device and clear the 3022 * software flow control OFF bit for this network device 3023 */ 3024 static inline void netdev_reset_queue(struct net_device *dev_queue) 3025 { 3026 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3027 } 3028 3029 /** 3030 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3031 * @dev: network device 3032 * @queue_index: given tx queue index 3033 * 3034 * Returns 0 if given tx queue index >= number of device tx queues, 3035 * otherwise returns the originally passed tx queue index. 3036 */ 3037 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3038 { 3039 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3040 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3041 dev->name, queue_index, 3042 dev->real_num_tx_queues); 3043 return 0; 3044 } 3045 3046 return queue_index; 3047 } 3048 3049 /** 3050 * netif_running - test if up 3051 * @dev: network device 3052 * 3053 * Test if the device has been brought up. 3054 */ 3055 static inline bool netif_running(const struct net_device *dev) 3056 { 3057 return test_bit(__LINK_STATE_START, &dev->state); 3058 } 3059 3060 /* 3061 * Routines to manage the subqueues on a device. We only need start, 3062 * stop, and a check if it's stopped. All other device management is 3063 * done at the overall netdevice level. 3064 * Also test the device if we're multiqueue. 3065 */ 3066 3067 /** 3068 * netif_start_subqueue - allow sending packets on subqueue 3069 * @dev: network device 3070 * @queue_index: sub queue index 3071 * 3072 * Start individual transmit queue of a device with multiple transmit queues. 3073 */ 3074 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3075 { 3076 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3077 3078 netif_tx_start_queue(txq); 3079 } 3080 3081 /** 3082 * netif_stop_subqueue - stop sending packets on subqueue 3083 * @dev: network device 3084 * @queue_index: sub queue index 3085 * 3086 * Stop individual transmit queue of a device with multiple transmit queues. 3087 */ 3088 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3089 { 3090 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3091 netif_tx_stop_queue(txq); 3092 } 3093 3094 /** 3095 * netif_subqueue_stopped - test status of subqueue 3096 * @dev: network device 3097 * @queue_index: sub queue index 3098 * 3099 * Check individual transmit queue of a device with multiple transmit queues. 3100 */ 3101 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3102 u16 queue_index) 3103 { 3104 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3105 3106 return netif_tx_queue_stopped(txq); 3107 } 3108 3109 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3110 struct sk_buff *skb) 3111 { 3112 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3113 } 3114 3115 /** 3116 * netif_wake_subqueue - allow sending packets on subqueue 3117 * @dev: network device 3118 * @queue_index: sub queue index 3119 * 3120 * Resume individual transmit queue of a device with multiple transmit queues. 3121 */ 3122 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3123 { 3124 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3125 3126 netif_tx_wake_queue(txq); 3127 } 3128 3129 #ifdef CONFIG_XPS 3130 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3131 u16 index); 3132 #else 3133 static inline int netif_set_xps_queue(struct net_device *dev, 3134 const struct cpumask *mask, 3135 u16 index) 3136 { 3137 return 0; 3138 } 3139 #endif 3140 3141 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3142 unsigned int num_tx_queues); 3143 3144 /* 3145 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3146 * as a distribution range limit for the returned value. 3147 */ 3148 static inline u16 skb_tx_hash(const struct net_device *dev, 3149 struct sk_buff *skb) 3150 { 3151 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3152 } 3153 3154 /** 3155 * netif_is_multiqueue - test if device has multiple transmit queues 3156 * @dev: network device 3157 * 3158 * Check if device has multiple transmit queues 3159 */ 3160 static inline bool netif_is_multiqueue(const struct net_device *dev) 3161 { 3162 return dev->num_tx_queues > 1; 3163 } 3164 3165 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3166 3167 #ifdef CONFIG_SYSFS 3168 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3169 #else 3170 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3171 unsigned int rxq) 3172 { 3173 return 0; 3174 } 3175 #endif 3176 3177 #ifdef CONFIG_SYSFS 3178 static inline unsigned int get_netdev_rx_queue_index( 3179 struct netdev_rx_queue *queue) 3180 { 3181 struct net_device *dev = queue->dev; 3182 int index = queue - dev->_rx; 3183 3184 BUG_ON(index >= dev->num_rx_queues); 3185 return index; 3186 } 3187 #endif 3188 3189 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3190 int netif_get_num_default_rss_queues(void); 3191 3192 enum skb_free_reason { 3193 SKB_REASON_CONSUMED, 3194 SKB_REASON_DROPPED, 3195 }; 3196 3197 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3198 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3199 3200 /* 3201 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3202 * interrupt context or with hardware interrupts being disabled. 3203 * (in_irq() || irqs_disabled()) 3204 * 3205 * We provide four helpers that can be used in following contexts : 3206 * 3207 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3208 * replacing kfree_skb(skb) 3209 * 3210 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3211 * Typically used in place of consume_skb(skb) in TX completion path 3212 * 3213 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3214 * replacing kfree_skb(skb) 3215 * 3216 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3217 * and consumed a packet. Used in place of consume_skb(skb) 3218 */ 3219 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3220 { 3221 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3222 } 3223 3224 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3225 { 3226 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3227 } 3228 3229 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3230 { 3231 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3232 } 3233 3234 static inline void dev_consume_skb_any(struct sk_buff *skb) 3235 { 3236 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3237 } 3238 3239 int netif_rx(struct sk_buff *skb); 3240 int netif_rx_ni(struct sk_buff *skb); 3241 int netif_receive_skb(struct sk_buff *skb); 3242 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3243 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3244 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3245 gro_result_t napi_gro_frags(struct napi_struct *napi); 3246 struct packet_offload *gro_find_receive_by_type(__be16 type); 3247 struct packet_offload *gro_find_complete_by_type(__be16 type); 3248 3249 static inline void napi_free_frags(struct napi_struct *napi) 3250 { 3251 kfree_skb(napi->skb); 3252 napi->skb = NULL; 3253 } 3254 3255 bool netdev_is_rx_handler_busy(struct net_device *dev); 3256 int netdev_rx_handler_register(struct net_device *dev, 3257 rx_handler_func_t *rx_handler, 3258 void *rx_handler_data); 3259 void netdev_rx_handler_unregister(struct net_device *dev); 3260 3261 bool dev_valid_name(const char *name); 3262 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3263 int dev_ethtool(struct net *net, struct ifreq *); 3264 unsigned int dev_get_flags(const struct net_device *); 3265 int __dev_change_flags(struct net_device *, unsigned int flags); 3266 int dev_change_flags(struct net_device *, unsigned int); 3267 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3268 unsigned int gchanges); 3269 int dev_change_name(struct net_device *, const char *); 3270 int dev_set_alias(struct net_device *, const char *, size_t); 3271 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3272 int dev_set_mtu(struct net_device *, int); 3273 void dev_set_group(struct net_device *, int); 3274 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3275 int dev_change_carrier(struct net_device *, bool new_carrier); 3276 int dev_get_phys_port_id(struct net_device *dev, 3277 struct netdev_phys_item_id *ppid); 3278 int dev_get_phys_port_name(struct net_device *dev, 3279 char *name, size_t len); 3280 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3281 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags); 3282 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3283 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3284 struct netdev_queue *txq, int *ret); 3285 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3286 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3287 bool is_skb_forwardable(const struct net_device *dev, 3288 const struct sk_buff *skb); 3289 3290 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3291 struct sk_buff *skb) 3292 { 3293 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3294 unlikely(!is_skb_forwardable(dev, skb))) { 3295 atomic_long_inc(&dev->rx_dropped); 3296 kfree_skb(skb); 3297 return NET_RX_DROP; 3298 } 3299 3300 skb_scrub_packet(skb, true); 3301 skb->priority = 0; 3302 return 0; 3303 } 3304 3305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3306 3307 extern int netdev_budget; 3308 3309 /* Called by rtnetlink.c:rtnl_unlock() */ 3310 void netdev_run_todo(void); 3311 3312 /** 3313 * dev_put - release reference to device 3314 * @dev: network device 3315 * 3316 * Release reference to device to allow it to be freed. 3317 */ 3318 static inline void dev_put(struct net_device *dev) 3319 { 3320 this_cpu_dec(*dev->pcpu_refcnt); 3321 } 3322 3323 /** 3324 * dev_hold - get reference to device 3325 * @dev: network device 3326 * 3327 * Hold reference to device to keep it from being freed. 3328 */ 3329 static inline void dev_hold(struct net_device *dev) 3330 { 3331 this_cpu_inc(*dev->pcpu_refcnt); 3332 } 3333 3334 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3335 * and _off may be called from IRQ context, but it is caller 3336 * who is responsible for serialization of these calls. 3337 * 3338 * The name carrier is inappropriate, these functions should really be 3339 * called netif_lowerlayer_*() because they represent the state of any 3340 * kind of lower layer not just hardware media. 3341 */ 3342 3343 void linkwatch_init_dev(struct net_device *dev); 3344 void linkwatch_fire_event(struct net_device *dev); 3345 void linkwatch_forget_dev(struct net_device *dev); 3346 3347 /** 3348 * netif_carrier_ok - test if carrier present 3349 * @dev: network device 3350 * 3351 * Check if carrier is present on device 3352 */ 3353 static inline bool netif_carrier_ok(const struct net_device *dev) 3354 { 3355 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3356 } 3357 3358 unsigned long dev_trans_start(struct net_device *dev); 3359 3360 void __netdev_watchdog_up(struct net_device *dev); 3361 3362 void netif_carrier_on(struct net_device *dev); 3363 3364 void netif_carrier_off(struct net_device *dev); 3365 3366 /** 3367 * netif_dormant_on - mark device as dormant. 3368 * @dev: network device 3369 * 3370 * Mark device as dormant (as per RFC2863). 3371 * 3372 * The dormant state indicates that the relevant interface is not 3373 * actually in a condition to pass packets (i.e., it is not 'up') but is 3374 * in a "pending" state, waiting for some external event. For "on- 3375 * demand" interfaces, this new state identifies the situation where the 3376 * interface is waiting for events to place it in the up state. 3377 */ 3378 static inline void netif_dormant_on(struct net_device *dev) 3379 { 3380 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3381 linkwatch_fire_event(dev); 3382 } 3383 3384 /** 3385 * netif_dormant_off - set device as not dormant. 3386 * @dev: network device 3387 * 3388 * Device is not in dormant state. 3389 */ 3390 static inline void netif_dormant_off(struct net_device *dev) 3391 { 3392 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3393 linkwatch_fire_event(dev); 3394 } 3395 3396 /** 3397 * netif_dormant - test if carrier present 3398 * @dev: network device 3399 * 3400 * Check if carrier is present on device 3401 */ 3402 static inline bool netif_dormant(const struct net_device *dev) 3403 { 3404 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3405 } 3406 3407 3408 /** 3409 * netif_oper_up - test if device is operational 3410 * @dev: network device 3411 * 3412 * Check if carrier is operational 3413 */ 3414 static inline bool netif_oper_up(const struct net_device *dev) 3415 { 3416 return (dev->operstate == IF_OPER_UP || 3417 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3418 } 3419 3420 /** 3421 * netif_device_present - is device available or removed 3422 * @dev: network device 3423 * 3424 * Check if device has not been removed from system. 3425 */ 3426 static inline bool netif_device_present(struct net_device *dev) 3427 { 3428 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3429 } 3430 3431 void netif_device_detach(struct net_device *dev); 3432 3433 void netif_device_attach(struct net_device *dev); 3434 3435 /* 3436 * Network interface message level settings 3437 */ 3438 3439 enum { 3440 NETIF_MSG_DRV = 0x0001, 3441 NETIF_MSG_PROBE = 0x0002, 3442 NETIF_MSG_LINK = 0x0004, 3443 NETIF_MSG_TIMER = 0x0008, 3444 NETIF_MSG_IFDOWN = 0x0010, 3445 NETIF_MSG_IFUP = 0x0020, 3446 NETIF_MSG_RX_ERR = 0x0040, 3447 NETIF_MSG_TX_ERR = 0x0080, 3448 NETIF_MSG_TX_QUEUED = 0x0100, 3449 NETIF_MSG_INTR = 0x0200, 3450 NETIF_MSG_TX_DONE = 0x0400, 3451 NETIF_MSG_RX_STATUS = 0x0800, 3452 NETIF_MSG_PKTDATA = 0x1000, 3453 NETIF_MSG_HW = 0x2000, 3454 NETIF_MSG_WOL = 0x4000, 3455 }; 3456 3457 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3458 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3459 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3460 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3461 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3462 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3463 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3464 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3465 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3466 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3467 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3468 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3469 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3470 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3471 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3472 3473 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3474 { 3475 /* use default */ 3476 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3477 return default_msg_enable_bits; 3478 if (debug_value == 0) /* no output */ 3479 return 0; 3480 /* set low N bits */ 3481 return (1 << debug_value) - 1; 3482 } 3483 3484 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3485 { 3486 spin_lock(&txq->_xmit_lock); 3487 txq->xmit_lock_owner = cpu; 3488 } 3489 3490 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3491 { 3492 __acquire(&txq->_xmit_lock); 3493 return true; 3494 } 3495 3496 static inline void __netif_tx_release(struct netdev_queue *txq) 3497 { 3498 __release(&txq->_xmit_lock); 3499 } 3500 3501 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3502 { 3503 spin_lock_bh(&txq->_xmit_lock); 3504 txq->xmit_lock_owner = smp_processor_id(); 3505 } 3506 3507 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3508 { 3509 bool ok = spin_trylock(&txq->_xmit_lock); 3510 if (likely(ok)) 3511 txq->xmit_lock_owner = smp_processor_id(); 3512 return ok; 3513 } 3514 3515 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3516 { 3517 txq->xmit_lock_owner = -1; 3518 spin_unlock(&txq->_xmit_lock); 3519 } 3520 3521 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3522 { 3523 txq->xmit_lock_owner = -1; 3524 spin_unlock_bh(&txq->_xmit_lock); 3525 } 3526 3527 static inline void txq_trans_update(struct netdev_queue *txq) 3528 { 3529 if (txq->xmit_lock_owner != -1) 3530 txq->trans_start = jiffies; 3531 } 3532 3533 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3534 static inline void netif_trans_update(struct net_device *dev) 3535 { 3536 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3537 3538 if (txq->trans_start != jiffies) 3539 txq->trans_start = jiffies; 3540 } 3541 3542 /** 3543 * netif_tx_lock - grab network device transmit lock 3544 * @dev: network device 3545 * 3546 * Get network device transmit lock 3547 */ 3548 static inline void netif_tx_lock(struct net_device *dev) 3549 { 3550 unsigned int i; 3551 int cpu; 3552 3553 spin_lock(&dev->tx_global_lock); 3554 cpu = smp_processor_id(); 3555 for (i = 0; i < dev->num_tx_queues; i++) { 3556 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3557 3558 /* We are the only thread of execution doing a 3559 * freeze, but we have to grab the _xmit_lock in 3560 * order to synchronize with threads which are in 3561 * the ->hard_start_xmit() handler and already 3562 * checked the frozen bit. 3563 */ 3564 __netif_tx_lock(txq, cpu); 3565 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3566 __netif_tx_unlock(txq); 3567 } 3568 } 3569 3570 static inline void netif_tx_lock_bh(struct net_device *dev) 3571 { 3572 local_bh_disable(); 3573 netif_tx_lock(dev); 3574 } 3575 3576 static inline void netif_tx_unlock(struct net_device *dev) 3577 { 3578 unsigned int i; 3579 3580 for (i = 0; i < dev->num_tx_queues; i++) { 3581 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3582 3583 /* No need to grab the _xmit_lock here. If the 3584 * queue is not stopped for another reason, we 3585 * force a schedule. 3586 */ 3587 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3588 netif_schedule_queue(txq); 3589 } 3590 spin_unlock(&dev->tx_global_lock); 3591 } 3592 3593 static inline void netif_tx_unlock_bh(struct net_device *dev) 3594 { 3595 netif_tx_unlock(dev); 3596 local_bh_enable(); 3597 } 3598 3599 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3600 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3601 __netif_tx_lock(txq, cpu); \ 3602 } else { \ 3603 __netif_tx_acquire(txq); \ 3604 } \ 3605 } 3606 3607 #define HARD_TX_TRYLOCK(dev, txq) \ 3608 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3609 __netif_tx_trylock(txq) : \ 3610 __netif_tx_acquire(txq)) 3611 3612 #define HARD_TX_UNLOCK(dev, txq) { \ 3613 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3614 __netif_tx_unlock(txq); \ 3615 } else { \ 3616 __netif_tx_release(txq); \ 3617 } \ 3618 } 3619 3620 static inline void netif_tx_disable(struct net_device *dev) 3621 { 3622 unsigned int i; 3623 int cpu; 3624 3625 local_bh_disable(); 3626 cpu = smp_processor_id(); 3627 for (i = 0; i < dev->num_tx_queues; i++) { 3628 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3629 3630 __netif_tx_lock(txq, cpu); 3631 netif_tx_stop_queue(txq); 3632 __netif_tx_unlock(txq); 3633 } 3634 local_bh_enable(); 3635 } 3636 3637 static inline void netif_addr_lock(struct net_device *dev) 3638 { 3639 spin_lock(&dev->addr_list_lock); 3640 } 3641 3642 static inline void netif_addr_lock_nested(struct net_device *dev) 3643 { 3644 int subclass = SINGLE_DEPTH_NESTING; 3645 3646 if (dev->netdev_ops->ndo_get_lock_subclass) 3647 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3648 3649 spin_lock_nested(&dev->addr_list_lock, subclass); 3650 } 3651 3652 static inline void netif_addr_lock_bh(struct net_device *dev) 3653 { 3654 spin_lock_bh(&dev->addr_list_lock); 3655 } 3656 3657 static inline void netif_addr_unlock(struct net_device *dev) 3658 { 3659 spin_unlock(&dev->addr_list_lock); 3660 } 3661 3662 static inline void netif_addr_unlock_bh(struct net_device *dev) 3663 { 3664 spin_unlock_bh(&dev->addr_list_lock); 3665 } 3666 3667 /* 3668 * dev_addrs walker. Should be used only for read access. Call with 3669 * rcu_read_lock held. 3670 */ 3671 #define for_each_dev_addr(dev, ha) \ 3672 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3673 3674 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3675 3676 void ether_setup(struct net_device *dev); 3677 3678 /* Support for loadable net-drivers */ 3679 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3680 unsigned char name_assign_type, 3681 void (*setup)(struct net_device *), 3682 unsigned int txqs, unsigned int rxqs); 3683 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3684 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3685 3686 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3687 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3688 count) 3689 3690 int register_netdev(struct net_device *dev); 3691 void unregister_netdev(struct net_device *dev); 3692 3693 /* General hardware address lists handling functions */ 3694 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3695 struct netdev_hw_addr_list *from_list, int addr_len); 3696 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3697 struct netdev_hw_addr_list *from_list, int addr_len); 3698 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3699 struct net_device *dev, 3700 int (*sync)(struct net_device *, const unsigned char *), 3701 int (*unsync)(struct net_device *, 3702 const unsigned char *)); 3703 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3704 struct net_device *dev, 3705 int (*unsync)(struct net_device *, 3706 const unsigned char *)); 3707 void __hw_addr_init(struct netdev_hw_addr_list *list); 3708 3709 /* Functions used for device addresses handling */ 3710 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3711 unsigned char addr_type); 3712 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3713 unsigned char addr_type); 3714 void dev_addr_flush(struct net_device *dev); 3715 int dev_addr_init(struct net_device *dev); 3716 3717 /* Functions used for unicast addresses handling */ 3718 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3719 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3720 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3721 int dev_uc_sync(struct net_device *to, struct net_device *from); 3722 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3723 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3724 void dev_uc_flush(struct net_device *dev); 3725 void dev_uc_init(struct net_device *dev); 3726 3727 /** 3728 * __dev_uc_sync - Synchonize device's unicast list 3729 * @dev: device to sync 3730 * @sync: function to call if address should be added 3731 * @unsync: function to call if address should be removed 3732 * 3733 * Add newly added addresses to the interface, and release 3734 * addresses that have been deleted. 3735 */ 3736 static inline int __dev_uc_sync(struct net_device *dev, 3737 int (*sync)(struct net_device *, 3738 const unsigned char *), 3739 int (*unsync)(struct net_device *, 3740 const unsigned char *)) 3741 { 3742 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3743 } 3744 3745 /** 3746 * __dev_uc_unsync - Remove synchronized addresses from device 3747 * @dev: device to sync 3748 * @unsync: function to call if address should be removed 3749 * 3750 * Remove all addresses that were added to the device by dev_uc_sync(). 3751 */ 3752 static inline void __dev_uc_unsync(struct net_device *dev, 3753 int (*unsync)(struct net_device *, 3754 const unsigned char *)) 3755 { 3756 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3757 } 3758 3759 /* Functions used for multicast addresses handling */ 3760 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3761 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3762 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3763 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3764 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3765 int dev_mc_sync(struct net_device *to, struct net_device *from); 3766 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3767 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3768 void dev_mc_flush(struct net_device *dev); 3769 void dev_mc_init(struct net_device *dev); 3770 3771 /** 3772 * __dev_mc_sync - Synchonize device's multicast list 3773 * @dev: device to sync 3774 * @sync: function to call if address should be added 3775 * @unsync: function to call if address should be removed 3776 * 3777 * Add newly added addresses to the interface, and release 3778 * addresses that have been deleted. 3779 */ 3780 static inline int __dev_mc_sync(struct net_device *dev, 3781 int (*sync)(struct net_device *, 3782 const unsigned char *), 3783 int (*unsync)(struct net_device *, 3784 const unsigned char *)) 3785 { 3786 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3787 } 3788 3789 /** 3790 * __dev_mc_unsync - Remove synchronized addresses from device 3791 * @dev: device to sync 3792 * @unsync: function to call if address should be removed 3793 * 3794 * Remove all addresses that were added to the device by dev_mc_sync(). 3795 */ 3796 static inline void __dev_mc_unsync(struct net_device *dev, 3797 int (*unsync)(struct net_device *, 3798 const unsigned char *)) 3799 { 3800 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3801 } 3802 3803 /* Functions used for secondary unicast and multicast support */ 3804 void dev_set_rx_mode(struct net_device *dev); 3805 void __dev_set_rx_mode(struct net_device *dev); 3806 int dev_set_promiscuity(struct net_device *dev, int inc); 3807 int dev_set_allmulti(struct net_device *dev, int inc); 3808 void netdev_state_change(struct net_device *dev); 3809 void netdev_notify_peers(struct net_device *dev); 3810 void netdev_features_change(struct net_device *dev); 3811 /* Load a device via the kmod */ 3812 void dev_load(struct net *net, const char *name); 3813 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3814 struct rtnl_link_stats64 *storage); 3815 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3816 const struct net_device_stats *netdev_stats); 3817 3818 extern int netdev_max_backlog; 3819 extern int netdev_tstamp_prequeue; 3820 extern int weight_p; 3821 extern int dev_weight_rx_bias; 3822 extern int dev_weight_tx_bias; 3823 extern int dev_rx_weight; 3824 extern int dev_tx_weight; 3825 3826 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3827 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3828 struct list_head **iter); 3829 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3830 struct list_head **iter); 3831 3832 /* iterate through upper list, must be called under RCU read lock */ 3833 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3834 for (iter = &(dev)->adj_list.upper, \ 3835 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3836 updev; \ 3837 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3838 3839 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3840 int (*fn)(struct net_device *upper_dev, 3841 void *data), 3842 void *data); 3843 3844 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3845 struct net_device *upper_dev); 3846 3847 void *netdev_lower_get_next_private(struct net_device *dev, 3848 struct list_head **iter); 3849 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3850 struct list_head **iter); 3851 3852 #define netdev_for_each_lower_private(dev, priv, iter) \ 3853 for (iter = (dev)->adj_list.lower.next, \ 3854 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3855 priv; \ 3856 priv = netdev_lower_get_next_private(dev, &(iter))) 3857 3858 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3859 for (iter = &(dev)->adj_list.lower, \ 3860 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3861 priv; \ 3862 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3863 3864 void *netdev_lower_get_next(struct net_device *dev, 3865 struct list_head **iter); 3866 3867 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3868 for (iter = (dev)->adj_list.lower.next, \ 3869 ldev = netdev_lower_get_next(dev, &(iter)); \ 3870 ldev; \ 3871 ldev = netdev_lower_get_next(dev, &(iter))) 3872 3873 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3874 struct list_head **iter); 3875 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3876 struct list_head **iter); 3877 3878 int netdev_walk_all_lower_dev(struct net_device *dev, 3879 int (*fn)(struct net_device *lower_dev, 3880 void *data), 3881 void *data); 3882 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3883 int (*fn)(struct net_device *lower_dev, 3884 void *data), 3885 void *data); 3886 3887 void *netdev_adjacent_get_private(struct list_head *adj_list); 3888 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3889 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3890 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3891 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3892 int netdev_master_upper_dev_link(struct net_device *dev, 3893 struct net_device *upper_dev, 3894 void *upper_priv, void *upper_info); 3895 void netdev_upper_dev_unlink(struct net_device *dev, 3896 struct net_device *upper_dev); 3897 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3898 void *netdev_lower_dev_get_private(struct net_device *dev, 3899 struct net_device *lower_dev); 3900 void netdev_lower_state_changed(struct net_device *lower_dev, 3901 void *lower_state_info); 3902 3903 /* RSS keys are 40 or 52 bytes long */ 3904 #define NETDEV_RSS_KEY_LEN 52 3905 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3906 void netdev_rss_key_fill(void *buffer, size_t len); 3907 3908 int dev_get_nest_level(struct net_device *dev); 3909 int skb_checksum_help(struct sk_buff *skb); 3910 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3911 netdev_features_t features, bool tx_path); 3912 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3913 netdev_features_t features); 3914 3915 struct netdev_bonding_info { 3916 ifslave slave; 3917 ifbond master; 3918 }; 3919 3920 struct netdev_notifier_bonding_info { 3921 struct netdev_notifier_info info; /* must be first */ 3922 struct netdev_bonding_info bonding_info; 3923 }; 3924 3925 void netdev_bonding_info_change(struct net_device *dev, 3926 struct netdev_bonding_info *bonding_info); 3927 3928 static inline 3929 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3930 { 3931 return __skb_gso_segment(skb, features, true); 3932 } 3933 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3934 3935 static inline bool can_checksum_protocol(netdev_features_t features, 3936 __be16 protocol) 3937 { 3938 if (protocol == htons(ETH_P_FCOE)) 3939 return !!(features & NETIF_F_FCOE_CRC); 3940 3941 /* Assume this is an IP checksum (not SCTP CRC) */ 3942 3943 if (features & NETIF_F_HW_CSUM) { 3944 /* Can checksum everything */ 3945 return true; 3946 } 3947 3948 switch (protocol) { 3949 case htons(ETH_P_IP): 3950 return !!(features & NETIF_F_IP_CSUM); 3951 case htons(ETH_P_IPV6): 3952 return !!(features & NETIF_F_IPV6_CSUM); 3953 default: 3954 return false; 3955 } 3956 } 3957 3958 #ifdef CONFIG_BUG 3959 void netdev_rx_csum_fault(struct net_device *dev); 3960 #else 3961 static inline void netdev_rx_csum_fault(struct net_device *dev) 3962 { 3963 } 3964 #endif 3965 /* rx skb timestamps */ 3966 void net_enable_timestamp(void); 3967 void net_disable_timestamp(void); 3968 3969 #ifdef CONFIG_PROC_FS 3970 int __init dev_proc_init(void); 3971 #else 3972 #define dev_proc_init() 0 3973 #endif 3974 3975 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3976 struct sk_buff *skb, struct net_device *dev, 3977 bool more) 3978 { 3979 skb->xmit_more = more ? 1 : 0; 3980 return ops->ndo_start_xmit(skb, dev); 3981 } 3982 3983 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3984 struct netdev_queue *txq, bool more) 3985 { 3986 const struct net_device_ops *ops = dev->netdev_ops; 3987 int rc; 3988 3989 rc = __netdev_start_xmit(ops, skb, dev, more); 3990 if (rc == NETDEV_TX_OK) 3991 txq_trans_update(txq); 3992 3993 return rc; 3994 } 3995 3996 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3997 const void *ns); 3998 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3999 const void *ns); 4000 4001 static inline int netdev_class_create_file(struct class_attribute *class_attr) 4002 { 4003 return netdev_class_create_file_ns(class_attr, NULL); 4004 } 4005 4006 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4007 { 4008 netdev_class_remove_file_ns(class_attr, NULL); 4009 } 4010 4011 extern struct kobj_ns_type_operations net_ns_type_operations; 4012 4013 const char *netdev_drivername(const struct net_device *dev); 4014 4015 void linkwatch_run_queue(void); 4016 4017 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4018 netdev_features_t f2) 4019 { 4020 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4021 if (f1 & NETIF_F_HW_CSUM) 4022 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4023 else 4024 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4025 } 4026 4027 return f1 & f2; 4028 } 4029 4030 static inline netdev_features_t netdev_get_wanted_features( 4031 struct net_device *dev) 4032 { 4033 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4034 } 4035 netdev_features_t netdev_increment_features(netdev_features_t all, 4036 netdev_features_t one, netdev_features_t mask); 4037 4038 /* Allow TSO being used on stacked device : 4039 * Performing the GSO segmentation before last device 4040 * is a performance improvement. 4041 */ 4042 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4043 netdev_features_t mask) 4044 { 4045 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4046 } 4047 4048 int __netdev_update_features(struct net_device *dev); 4049 void netdev_update_features(struct net_device *dev); 4050 void netdev_change_features(struct net_device *dev); 4051 4052 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4053 struct net_device *dev); 4054 4055 netdev_features_t passthru_features_check(struct sk_buff *skb, 4056 struct net_device *dev, 4057 netdev_features_t features); 4058 netdev_features_t netif_skb_features(struct sk_buff *skb); 4059 4060 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4061 { 4062 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4063 4064 /* check flags correspondence */ 4065 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4066 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4067 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4068 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4069 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4070 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4071 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4072 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4073 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4074 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4075 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4076 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4077 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4078 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4079 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4080 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4081 4082 return (features & feature) == feature; 4083 } 4084 4085 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4086 { 4087 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4088 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4089 } 4090 4091 static inline bool netif_needs_gso(struct sk_buff *skb, 4092 netdev_features_t features) 4093 { 4094 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4095 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4096 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4097 } 4098 4099 static inline void netif_set_gso_max_size(struct net_device *dev, 4100 unsigned int size) 4101 { 4102 dev->gso_max_size = size; 4103 } 4104 4105 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4106 int pulled_hlen, u16 mac_offset, 4107 int mac_len) 4108 { 4109 skb->protocol = protocol; 4110 skb->encapsulation = 1; 4111 skb_push(skb, pulled_hlen); 4112 skb_reset_transport_header(skb); 4113 skb->mac_header = mac_offset; 4114 skb->network_header = skb->mac_header + mac_len; 4115 skb->mac_len = mac_len; 4116 } 4117 4118 static inline bool netif_is_macsec(const struct net_device *dev) 4119 { 4120 return dev->priv_flags & IFF_MACSEC; 4121 } 4122 4123 static inline bool netif_is_macvlan(const struct net_device *dev) 4124 { 4125 return dev->priv_flags & IFF_MACVLAN; 4126 } 4127 4128 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4129 { 4130 return dev->priv_flags & IFF_MACVLAN_PORT; 4131 } 4132 4133 static inline bool netif_is_ipvlan(const struct net_device *dev) 4134 { 4135 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4136 } 4137 4138 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4139 { 4140 return dev->priv_flags & IFF_IPVLAN_MASTER; 4141 } 4142 4143 static inline bool netif_is_bond_master(const struct net_device *dev) 4144 { 4145 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4146 } 4147 4148 static inline bool netif_is_bond_slave(const struct net_device *dev) 4149 { 4150 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4151 } 4152 4153 static inline bool netif_supports_nofcs(struct net_device *dev) 4154 { 4155 return dev->priv_flags & IFF_SUPP_NOFCS; 4156 } 4157 4158 static inline bool netif_is_l3_master(const struct net_device *dev) 4159 { 4160 return dev->priv_flags & IFF_L3MDEV_MASTER; 4161 } 4162 4163 static inline bool netif_is_l3_slave(const struct net_device *dev) 4164 { 4165 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4166 } 4167 4168 static inline bool netif_is_bridge_master(const struct net_device *dev) 4169 { 4170 return dev->priv_flags & IFF_EBRIDGE; 4171 } 4172 4173 static inline bool netif_is_bridge_port(const struct net_device *dev) 4174 { 4175 return dev->priv_flags & IFF_BRIDGE_PORT; 4176 } 4177 4178 static inline bool netif_is_ovs_master(const struct net_device *dev) 4179 { 4180 return dev->priv_flags & IFF_OPENVSWITCH; 4181 } 4182 4183 static inline bool netif_is_team_master(const struct net_device *dev) 4184 { 4185 return dev->priv_flags & IFF_TEAM; 4186 } 4187 4188 static inline bool netif_is_team_port(const struct net_device *dev) 4189 { 4190 return dev->priv_flags & IFF_TEAM_PORT; 4191 } 4192 4193 static inline bool netif_is_lag_master(const struct net_device *dev) 4194 { 4195 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4196 } 4197 4198 static inline bool netif_is_lag_port(const struct net_device *dev) 4199 { 4200 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4201 } 4202 4203 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4204 { 4205 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4206 } 4207 4208 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4209 static inline void netif_keep_dst(struct net_device *dev) 4210 { 4211 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4212 } 4213 4214 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4215 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4216 { 4217 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4218 return dev->priv_flags & IFF_MACSEC; 4219 } 4220 4221 extern struct pernet_operations __net_initdata loopback_net_ops; 4222 4223 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4224 4225 /* netdev_printk helpers, similar to dev_printk */ 4226 4227 static inline const char *netdev_name(const struct net_device *dev) 4228 { 4229 if (!dev->name[0] || strchr(dev->name, '%')) 4230 return "(unnamed net_device)"; 4231 return dev->name; 4232 } 4233 4234 static inline const char *netdev_reg_state(const struct net_device *dev) 4235 { 4236 switch (dev->reg_state) { 4237 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4238 case NETREG_REGISTERED: return ""; 4239 case NETREG_UNREGISTERING: return " (unregistering)"; 4240 case NETREG_UNREGISTERED: return " (unregistered)"; 4241 case NETREG_RELEASED: return " (released)"; 4242 case NETREG_DUMMY: return " (dummy)"; 4243 } 4244 4245 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4246 return " (unknown)"; 4247 } 4248 4249 __printf(3, 4) 4250 void netdev_printk(const char *level, const struct net_device *dev, 4251 const char *format, ...); 4252 __printf(2, 3) 4253 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4254 __printf(2, 3) 4255 void netdev_alert(const struct net_device *dev, const char *format, ...); 4256 __printf(2, 3) 4257 void netdev_crit(const struct net_device *dev, const char *format, ...); 4258 __printf(2, 3) 4259 void netdev_err(const struct net_device *dev, const char *format, ...); 4260 __printf(2, 3) 4261 void netdev_warn(const struct net_device *dev, const char *format, ...); 4262 __printf(2, 3) 4263 void netdev_notice(const struct net_device *dev, const char *format, ...); 4264 __printf(2, 3) 4265 void netdev_info(const struct net_device *dev, const char *format, ...); 4266 4267 #define MODULE_ALIAS_NETDEV(device) \ 4268 MODULE_ALIAS("netdev-" device) 4269 4270 #if defined(CONFIG_DYNAMIC_DEBUG) 4271 #define netdev_dbg(__dev, format, args...) \ 4272 do { \ 4273 dynamic_netdev_dbg(__dev, format, ##args); \ 4274 } while (0) 4275 #elif defined(DEBUG) 4276 #define netdev_dbg(__dev, format, args...) \ 4277 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4278 #else 4279 #define netdev_dbg(__dev, format, args...) \ 4280 ({ \ 4281 if (0) \ 4282 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4283 }) 4284 #endif 4285 4286 #if defined(VERBOSE_DEBUG) 4287 #define netdev_vdbg netdev_dbg 4288 #else 4289 4290 #define netdev_vdbg(dev, format, args...) \ 4291 ({ \ 4292 if (0) \ 4293 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4294 0; \ 4295 }) 4296 #endif 4297 4298 /* 4299 * netdev_WARN() acts like dev_printk(), but with the key difference 4300 * of using a WARN/WARN_ON to get the message out, including the 4301 * file/line information and a backtrace. 4302 */ 4303 #define netdev_WARN(dev, format, args...) \ 4304 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4305 netdev_reg_state(dev), ##args) 4306 4307 /* netif printk helpers, similar to netdev_printk */ 4308 4309 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4310 do { \ 4311 if (netif_msg_##type(priv)) \ 4312 netdev_printk(level, (dev), fmt, ##args); \ 4313 } while (0) 4314 4315 #define netif_level(level, priv, type, dev, fmt, args...) \ 4316 do { \ 4317 if (netif_msg_##type(priv)) \ 4318 netdev_##level(dev, fmt, ##args); \ 4319 } while (0) 4320 4321 #define netif_emerg(priv, type, dev, fmt, args...) \ 4322 netif_level(emerg, priv, type, dev, fmt, ##args) 4323 #define netif_alert(priv, type, dev, fmt, args...) \ 4324 netif_level(alert, priv, type, dev, fmt, ##args) 4325 #define netif_crit(priv, type, dev, fmt, args...) \ 4326 netif_level(crit, priv, type, dev, fmt, ##args) 4327 #define netif_err(priv, type, dev, fmt, args...) \ 4328 netif_level(err, priv, type, dev, fmt, ##args) 4329 #define netif_warn(priv, type, dev, fmt, args...) \ 4330 netif_level(warn, priv, type, dev, fmt, ##args) 4331 #define netif_notice(priv, type, dev, fmt, args...) \ 4332 netif_level(notice, priv, type, dev, fmt, ##args) 4333 #define netif_info(priv, type, dev, fmt, args...) \ 4334 netif_level(info, priv, type, dev, fmt, ##args) 4335 4336 #if defined(CONFIG_DYNAMIC_DEBUG) 4337 #define netif_dbg(priv, type, netdev, format, args...) \ 4338 do { \ 4339 if (netif_msg_##type(priv)) \ 4340 dynamic_netdev_dbg(netdev, format, ##args); \ 4341 } while (0) 4342 #elif defined(DEBUG) 4343 #define netif_dbg(priv, type, dev, format, args...) \ 4344 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4345 #else 4346 #define netif_dbg(priv, type, dev, format, args...) \ 4347 ({ \ 4348 if (0) \ 4349 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4350 0; \ 4351 }) 4352 #endif 4353 4354 /* if @cond then downgrade to debug, else print at @level */ 4355 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4356 do { \ 4357 if (cond) \ 4358 netif_dbg(priv, type, netdev, fmt, ##args); \ 4359 else \ 4360 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4361 } while (0) 4362 4363 #if defined(VERBOSE_DEBUG) 4364 #define netif_vdbg netif_dbg 4365 #else 4366 #define netif_vdbg(priv, type, dev, format, args...) \ 4367 ({ \ 4368 if (0) \ 4369 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4370 0; \ 4371 }) 4372 #endif 4373 4374 /* 4375 * The list of packet types we will receive (as opposed to discard) 4376 * and the routines to invoke. 4377 * 4378 * Why 16. Because with 16 the only overlap we get on a hash of the 4379 * low nibble of the protocol value is RARP/SNAP/X.25. 4380 * 4381 * NOTE: That is no longer true with the addition of VLAN tags. Not 4382 * sure which should go first, but I bet it won't make much 4383 * difference if we are running VLANs. The good news is that 4384 * this protocol won't be in the list unless compiled in, so 4385 * the average user (w/out VLANs) will not be adversely affected. 4386 * --BLG 4387 * 4388 * 0800 IP 4389 * 8100 802.1Q VLAN 4390 * 0001 802.3 4391 * 0002 AX.25 4392 * 0004 802.2 4393 * 8035 RARP 4394 * 0005 SNAP 4395 * 0805 X.25 4396 * 0806 ARP 4397 * 8137 IPX 4398 * 0009 Localtalk 4399 * 86DD IPv6 4400 */ 4401 #define PTYPE_HASH_SIZE (16) 4402 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4403 4404 #endif /* _LINUX_NETDEVICE_H */ 4405