1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 }; 278 279 /* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284 enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290 }; 291 292 293 /* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297 struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300 }; 301 #define NETDEV_BOOT_SETUP_MAX 8 302 303 int __init netdev_boot_setup(char *str); 304 305 struct gro_list { 306 struct list_head list; 307 int count; 308 }; 309 310 /* 311 * size of gro hash buckets, must less than bit number of 312 * napi_struct::gro_bitmask 313 */ 314 #define GRO_HASH_BUCKETS 8 315 316 /* 317 * Structure for NAPI scheduling similar to tasklet but with weighting 318 */ 319 struct napi_struct { 320 /* The poll_list must only be managed by the entity which 321 * changes the state of the NAPI_STATE_SCHED bit. This means 322 * whoever atomically sets that bit can add this napi_struct 323 * to the per-CPU poll_list, and whoever clears that bit 324 * can remove from the list right before clearing the bit. 325 */ 326 struct list_head poll_list; 327 328 unsigned long state; 329 int weight; 330 unsigned long gro_bitmask; 331 int (*poll)(struct napi_struct *, int); 332 #ifdef CONFIG_NETPOLL 333 int poll_owner; 334 #endif 335 struct net_device *dev; 336 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 337 struct sk_buff *skb; 338 struct hrtimer timer; 339 struct list_head dev_list; 340 struct hlist_node napi_hash_node; 341 unsigned int napi_id; 342 }; 343 344 enum { 345 NAPI_STATE_SCHED, /* Poll is scheduled */ 346 NAPI_STATE_MISSED, /* reschedule a napi */ 347 NAPI_STATE_DISABLE, /* Disable pending */ 348 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 349 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 350 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 351 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 352 }; 353 354 enum { 355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 359 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 362 }; 363 364 enum gro_result { 365 GRO_MERGED, 366 GRO_MERGED_FREE, 367 GRO_HELD, 368 GRO_NORMAL, 369 GRO_DROP, 370 GRO_CONSUMED, 371 }; 372 typedef enum gro_result gro_result_t; 373 374 /* 375 * enum rx_handler_result - Possible return values for rx_handlers. 376 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 377 * further. 378 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 379 * case skb->dev was changed by rx_handler. 380 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 381 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 382 * 383 * rx_handlers are functions called from inside __netif_receive_skb(), to do 384 * special processing of the skb, prior to delivery to protocol handlers. 385 * 386 * Currently, a net_device can only have a single rx_handler registered. Trying 387 * to register a second rx_handler will return -EBUSY. 388 * 389 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 390 * To unregister a rx_handler on a net_device, use 391 * netdev_rx_handler_unregister(). 392 * 393 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 394 * do with the skb. 395 * 396 * If the rx_handler consumed the skb in some way, it should return 397 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 398 * the skb to be delivered in some other way. 399 * 400 * If the rx_handler changed skb->dev, to divert the skb to another 401 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 402 * new device will be called if it exists. 403 * 404 * If the rx_handler decides the skb should be ignored, it should return 405 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 406 * are registered on exact device (ptype->dev == skb->dev). 407 * 408 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 409 * delivered, it should return RX_HANDLER_PASS. 410 * 411 * A device without a registered rx_handler will behave as if rx_handler 412 * returned RX_HANDLER_PASS. 413 */ 414 415 enum rx_handler_result { 416 RX_HANDLER_CONSUMED, 417 RX_HANDLER_ANOTHER, 418 RX_HANDLER_EXACT, 419 RX_HANDLER_PASS, 420 }; 421 typedef enum rx_handler_result rx_handler_result_t; 422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 423 424 void __napi_schedule(struct napi_struct *n); 425 void __napi_schedule_irqoff(struct napi_struct *n); 426 427 static inline bool napi_disable_pending(struct napi_struct *n) 428 { 429 return test_bit(NAPI_STATE_DISABLE, &n->state); 430 } 431 432 bool napi_schedule_prep(struct napi_struct *n); 433 434 /** 435 * napi_schedule - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Schedule NAPI poll routine to be called if it is not already 439 * running. 440 */ 441 static inline void napi_schedule(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule(n); 445 } 446 447 /** 448 * napi_schedule_irqoff - schedule NAPI poll 449 * @n: NAPI context 450 * 451 * Variant of napi_schedule(), assuming hard irqs are masked. 452 */ 453 static inline void napi_schedule_irqoff(struct napi_struct *n) 454 { 455 if (napi_schedule_prep(n)) 456 __napi_schedule_irqoff(n); 457 } 458 459 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 460 static inline bool napi_reschedule(struct napi_struct *napi) 461 { 462 if (napi_schedule_prep(napi)) { 463 __napi_schedule(napi); 464 return true; 465 } 466 return false; 467 } 468 469 bool napi_complete_done(struct napi_struct *n, int work_done); 470 /** 471 * napi_complete - NAPI processing complete 472 * @n: NAPI context 473 * 474 * Mark NAPI processing as complete. 475 * Consider using napi_complete_done() instead. 476 * Return false if device should avoid rearming interrupts. 477 */ 478 static inline bool napi_complete(struct napi_struct *n) 479 { 480 return napi_complete_done(n, 0); 481 } 482 483 /** 484 * napi_hash_del - remove a NAPI from global table 485 * @napi: NAPI context 486 * 487 * Warning: caller must observe RCU grace period 488 * before freeing memory containing @napi, if 489 * this function returns true. 490 * Note: core networking stack automatically calls it 491 * from netif_napi_del(). 492 * Drivers might want to call this helper to combine all 493 * the needed RCU grace periods into a single one. 494 */ 495 bool napi_hash_del(struct napi_struct *napi); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: NAPI context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 void napi_disable(struct napi_struct *n); 505 506 /** 507 * napi_enable - enable NAPI scheduling 508 * @n: NAPI context 509 * 510 * Resume NAPI from being scheduled on this context. 511 * Must be paired with napi_disable. 512 */ 513 static inline void napi_enable(struct napi_struct *n) 514 { 515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 516 smp_mb__before_atomic(); 517 clear_bit(NAPI_STATE_SCHED, &n->state); 518 clear_bit(NAPI_STATE_NPSVC, &n->state); 519 } 520 521 /** 522 * napi_synchronize - wait until NAPI is not running 523 * @n: NAPI context 524 * 525 * Wait until NAPI is done being scheduled on this context. 526 * Waits till any outstanding processing completes but 527 * does not disable future activations. 528 */ 529 static inline void napi_synchronize(const struct napi_struct *n) 530 { 531 if (IS_ENABLED(CONFIG_SMP)) 532 while (test_bit(NAPI_STATE_SCHED, &n->state)) 533 msleep(1); 534 else 535 barrier(); 536 } 537 538 /** 539 * napi_if_scheduled_mark_missed - if napi is running, set the 540 * NAPIF_STATE_MISSED 541 * @n: NAPI context 542 * 543 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 544 * NAPI is scheduled. 545 **/ 546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 547 { 548 unsigned long val, new; 549 550 do { 551 val = READ_ONCE(n->state); 552 if (val & NAPIF_STATE_DISABLE) 553 return true; 554 555 if (!(val & NAPIF_STATE_SCHED)) 556 return false; 557 558 new = val | NAPIF_STATE_MISSED; 559 } while (cmpxchg(&n->state, val, new) != val); 560 561 return true; 562 } 563 564 enum netdev_queue_state_t { 565 __QUEUE_STATE_DRV_XOFF, 566 __QUEUE_STATE_STACK_XOFF, 567 __QUEUE_STATE_FROZEN, 568 }; 569 570 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 571 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 572 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 573 574 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 576 QUEUE_STATE_FROZEN) 577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 578 QUEUE_STATE_FROZEN) 579 580 /* 581 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 582 * netif_tx_* functions below are used to manipulate this flag. The 583 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 584 * queue independently. The netif_xmit_*stopped functions below are called 585 * to check if the queue has been stopped by the driver or stack (either 586 * of the XOFF bits are set in the state). Drivers should not need to call 587 * netif_xmit*stopped functions, they should only be using netif_tx_*. 588 */ 589 590 struct netdev_queue { 591 /* 592 * read-mostly part 593 */ 594 struct net_device *dev; 595 struct Qdisc __rcu *qdisc; 596 struct Qdisc *qdisc_sleeping; 597 #ifdef CONFIG_SYSFS 598 struct kobject kobj; 599 #endif 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 int numa_node; 602 #endif 603 unsigned long tx_maxrate; 604 /* 605 * Number of TX timeouts for this queue 606 * (/sys/class/net/DEV/Q/trans_timeout) 607 */ 608 unsigned long trans_timeout; 609 610 /* Subordinate device that the queue has been assigned to */ 611 struct net_device *sb_dev; 612 #ifdef CONFIG_XDP_SOCKETS 613 struct xdp_umem *umem; 614 #endif 615 /* 616 * write-mostly part 617 */ 618 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 619 int xmit_lock_owner; 620 /* 621 * Time (in jiffies) of last Tx 622 */ 623 unsigned long trans_start; 624 625 unsigned long state; 626 627 #ifdef CONFIG_BQL 628 struct dql dql; 629 #endif 630 } ____cacheline_aligned_in_smp; 631 632 extern int sysctl_fb_tunnels_only_for_init_net; 633 634 static inline bool net_has_fallback_tunnels(const struct net *net) 635 { 636 return net == &init_net || 637 !IS_ENABLED(CONFIG_SYSCTL) || 638 !sysctl_fb_tunnels_only_for_init_net; 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[0]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[0]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[0] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xdp_umem *umem; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[0]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 }; 851 852 /* These structures hold the attributes of bpf state that are being passed 853 * to the netdevice through the bpf op. 854 */ 855 enum bpf_netdev_command { 856 /* Set or clear a bpf program used in the earliest stages of packet 857 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 858 * is responsible for calling bpf_prog_put on any old progs that are 859 * stored. In case of error, the callee need not release the new prog 860 * reference, but on success it takes ownership and must bpf_prog_put 861 * when it is no longer used. 862 */ 863 XDP_SETUP_PROG, 864 XDP_SETUP_PROG_HW, 865 XDP_QUERY_PROG, 866 XDP_QUERY_PROG_HW, 867 /* BPF program for offload callbacks, invoked at program load time. */ 868 BPF_OFFLOAD_MAP_ALLOC, 869 BPF_OFFLOAD_MAP_FREE, 870 XDP_QUERY_XSK_UMEM, 871 XDP_SETUP_XSK_UMEM, 872 }; 873 874 struct bpf_prog_offload_ops; 875 struct netlink_ext_ack; 876 struct xdp_umem; 877 878 struct netdev_bpf { 879 enum bpf_netdev_command command; 880 union { 881 /* XDP_SETUP_PROG */ 882 struct { 883 u32 flags; 884 struct bpf_prog *prog; 885 struct netlink_ext_ack *extack; 886 }; 887 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 888 struct { 889 u32 prog_id; 890 /* flags with which program was installed */ 891 u32 prog_flags; 892 }; 893 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 894 struct { 895 struct bpf_offloaded_map *offmap; 896 }; 897 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */ 898 struct { 899 struct xdp_umem *umem; /* out for query*/ 900 u16 queue_id; /* in for query */ 901 } xsk; 902 }; 903 }; 904 905 #ifdef CONFIG_XFRM_OFFLOAD 906 struct xfrmdev_ops { 907 int (*xdo_dev_state_add) (struct xfrm_state *x); 908 void (*xdo_dev_state_delete) (struct xfrm_state *x); 909 void (*xdo_dev_state_free) (struct xfrm_state *x); 910 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 911 struct xfrm_state *x); 912 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 913 }; 914 #endif 915 916 #if IS_ENABLED(CONFIG_TLS_DEVICE) 917 enum tls_offload_ctx_dir { 918 TLS_OFFLOAD_CTX_DIR_RX, 919 TLS_OFFLOAD_CTX_DIR_TX, 920 }; 921 922 struct tls_crypto_info; 923 struct tls_context; 924 925 struct tlsdev_ops { 926 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 927 enum tls_offload_ctx_dir direction, 928 struct tls_crypto_info *crypto_info, 929 u32 start_offload_tcp_sn); 930 void (*tls_dev_del)(struct net_device *netdev, 931 struct tls_context *ctx, 932 enum tls_offload_ctx_dir direction); 933 void (*tls_dev_resync_rx)(struct net_device *netdev, 934 struct sock *sk, u32 seq, u64 rcd_sn); 935 }; 936 #endif 937 938 struct dev_ifalias { 939 struct rcu_head rcuhead; 940 char ifalias[]; 941 }; 942 943 /* 944 * This structure defines the management hooks for network devices. 945 * The following hooks can be defined; unless noted otherwise, they are 946 * optional and can be filled with a null pointer. 947 * 948 * int (*ndo_init)(struct net_device *dev); 949 * This function is called once when a network device is registered. 950 * The network device can use this for any late stage initialization 951 * or semantic validation. It can fail with an error code which will 952 * be propagated back to register_netdev. 953 * 954 * void (*ndo_uninit)(struct net_device *dev); 955 * This function is called when device is unregistered or when registration 956 * fails. It is not called if init fails. 957 * 958 * int (*ndo_open)(struct net_device *dev); 959 * This function is called when a network device transitions to the up 960 * state. 961 * 962 * int (*ndo_stop)(struct net_device *dev); 963 * This function is called when a network device transitions to the down 964 * state. 965 * 966 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 967 * struct net_device *dev); 968 * Called when a packet needs to be transmitted. 969 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 970 * the queue before that can happen; it's for obsolete devices and weird 971 * corner cases, but the stack really does a non-trivial amount 972 * of useless work if you return NETDEV_TX_BUSY. 973 * Required; cannot be NULL. 974 * 975 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 976 * struct net_device *dev 977 * netdev_features_t features); 978 * Called by core transmit path to determine if device is capable of 979 * performing offload operations on a given packet. This is to give 980 * the device an opportunity to implement any restrictions that cannot 981 * be otherwise expressed by feature flags. The check is called with 982 * the set of features that the stack has calculated and it returns 983 * those the driver believes to be appropriate. 984 * 985 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 986 * struct net_device *sb_dev, 987 * select_queue_fallback_t fallback); 988 * Called to decide which queue to use when device supports multiple 989 * transmit queues. 990 * 991 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 992 * This function is called to allow device receiver to make 993 * changes to configuration when multicast or promiscuous is enabled. 994 * 995 * void (*ndo_set_rx_mode)(struct net_device *dev); 996 * This function is called device changes address list filtering. 997 * If driver handles unicast address filtering, it should set 998 * IFF_UNICAST_FLT in its priv_flags. 999 * 1000 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1001 * This function is called when the Media Access Control address 1002 * needs to be changed. If this interface is not defined, the 1003 * MAC address can not be changed. 1004 * 1005 * int (*ndo_validate_addr)(struct net_device *dev); 1006 * Test if Media Access Control address is valid for the device. 1007 * 1008 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1009 * Called when a user requests an ioctl which can't be handled by 1010 * the generic interface code. If not defined ioctls return 1011 * not supported error code. 1012 * 1013 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1014 * Used to set network devices bus interface parameters. This interface 1015 * is retained for legacy reasons; new devices should use the bus 1016 * interface (PCI) for low level management. 1017 * 1018 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1019 * Called when a user wants to change the Maximum Transfer Unit 1020 * of a device. 1021 * 1022 * void (*ndo_tx_timeout)(struct net_device *dev); 1023 * Callback used when the transmitter has not made any progress 1024 * for dev->watchdog ticks. 1025 * 1026 * void (*ndo_get_stats64)(struct net_device *dev, 1027 * struct rtnl_link_stats64 *storage); 1028 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1029 * Called when a user wants to get the network device usage 1030 * statistics. Drivers must do one of the following: 1031 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1032 * rtnl_link_stats64 structure passed by the caller. 1033 * 2. Define @ndo_get_stats to update a net_device_stats structure 1034 * (which should normally be dev->stats) and return a pointer to 1035 * it. The structure may be changed asynchronously only if each 1036 * field is written atomically. 1037 * 3. Update dev->stats asynchronously and atomically, and define 1038 * neither operation. 1039 * 1040 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1041 * Return true if this device supports offload stats of this attr_id. 1042 * 1043 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1044 * void *attr_data) 1045 * Get statistics for offload operations by attr_id. Write it into the 1046 * attr_data pointer. 1047 * 1048 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1049 * If device supports VLAN filtering this function is called when a 1050 * VLAN id is registered. 1051 * 1052 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1053 * If device supports VLAN filtering this function is called when a 1054 * VLAN id is unregistered. 1055 * 1056 * void (*ndo_poll_controller)(struct net_device *dev); 1057 * 1058 * SR-IOV management functions. 1059 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1060 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1061 * u8 qos, __be16 proto); 1062 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1063 * int max_tx_rate); 1064 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1065 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1066 * int (*ndo_get_vf_config)(struct net_device *dev, 1067 * int vf, struct ifla_vf_info *ivf); 1068 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1069 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1070 * struct nlattr *port[]); 1071 * 1072 * Enable or disable the VF ability to query its RSS Redirection Table and 1073 * Hash Key. This is needed since on some devices VF share this information 1074 * with PF and querying it may introduce a theoretical security risk. 1075 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1076 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1077 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1078 * void *type_data); 1079 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1080 * This is always called from the stack with the rtnl lock held and netif 1081 * tx queues stopped. This allows the netdevice to perform queue 1082 * management safely. 1083 * 1084 * Fiber Channel over Ethernet (FCoE) offload functions. 1085 * int (*ndo_fcoe_enable)(struct net_device *dev); 1086 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1087 * so the underlying device can perform whatever needed configuration or 1088 * initialization to support acceleration of FCoE traffic. 1089 * 1090 * int (*ndo_fcoe_disable)(struct net_device *dev); 1091 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1092 * so the underlying device can perform whatever needed clean-ups to 1093 * stop supporting acceleration of FCoE traffic. 1094 * 1095 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1096 * struct scatterlist *sgl, unsigned int sgc); 1097 * Called when the FCoE Initiator wants to initialize an I/O that 1098 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1099 * perform necessary setup and returns 1 to indicate the device is set up 1100 * successfully to perform DDP on this I/O, otherwise this returns 0. 1101 * 1102 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1103 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1104 * indicated by the FC exchange id 'xid', so the underlying device can 1105 * clean up and reuse resources for later DDP requests. 1106 * 1107 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1108 * struct scatterlist *sgl, unsigned int sgc); 1109 * Called when the FCoE Target wants to initialize an I/O that 1110 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1111 * perform necessary setup and returns 1 to indicate the device is set up 1112 * successfully to perform DDP on this I/O, otherwise this returns 0. 1113 * 1114 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1115 * struct netdev_fcoe_hbainfo *hbainfo); 1116 * Called when the FCoE Protocol stack wants information on the underlying 1117 * device. This information is utilized by the FCoE protocol stack to 1118 * register attributes with Fiber Channel management service as per the 1119 * FC-GS Fabric Device Management Information(FDMI) specification. 1120 * 1121 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1122 * Called when the underlying device wants to override default World Wide 1123 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1124 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1125 * protocol stack to use. 1126 * 1127 * RFS acceleration. 1128 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1129 * u16 rxq_index, u32 flow_id); 1130 * Set hardware filter for RFS. rxq_index is the target queue index; 1131 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1132 * Return the filter ID on success, or a negative error code. 1133 * 1134 * Slave management functions (for bridge, bonding, etc). 1135 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1136 * Called to make another netdev an underling. 1137 * 1138 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1139 * Called to release previously enslaved netdev. 1140 * 1141 * Feature/offload setting functions. 1142 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1143 * netdev_features_t features); 1144 * Adjusts the requested feature flags according to device-specific 1145 * constraints, and returns the resulting flags. Must not modify 1146 * the device state. 1147 * 1148 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1149 * Called to update device configuration to new features. Passed 1150 * feature set might be less than what was returned by ndo_fix_features()). 1151 * Must return >0 or -errno if it changed dev->features itself. 1152 * 1153 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1154 * struct net_device *dev, 1155 * const unsigned char *addr, u16 vid, u16 flags) 1156 * Adds an FDB entry to dev for addr. 1157 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1158 * struct net_device *dev, 1159 * const unsigned char *addr, u16 vid) 1160 * Deletes the FDB entry from dev coresponding to addr. 1161 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1162 * struct net_device *dev, struct net_device *filter_dev, 1163 * int *idx) 1164 * Used to add FDB entries to dump requests. Implementers should add 1165 * entries to skb and update idx with the number of entries. 1166 * 1167 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1168 * u16 flags) 1169 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1170 * struct net_device *dev, u32 filter_mask, 1171 * int nlflags) 1172 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1173 * u16 flags); 1174 * 1175 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1176 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1177 * which do not represent real hardware may define this to allow their 1178 * userspace components to manage their virtual carrier state. Devices 1179 * that determine carrier state from physical hardware properties (eg 1180 * network cables) or protocol-dependent mechanisms (eg 1181 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1182 * 1183 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1184 * struct netdev_phys_item_id *ppid); 1185 * Called to get ID of physical port of this device. If driver does 1186 * not implement this, it is assumed that the hw is not able to have 1187 * multiple net devices on single physical port. 1188 * 1189 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1190 * struct udp_tunnel_info *ti); 1191 * Called by UDP tunnel to notify a driver about the UDP port and socket 1192 * address family that a UDP tunnel is listnening to. It is called only 1193 * when a new port starts listening. The operation is protected by the 1194 * RTNL. 1195 * 1196 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1197 * struct udp_tunnel_info *ti); 1198 * Called by UDP tunnel to notify the driver about a UDP port and socket 1199 * address family that the UDP tunnel is not listening to anymore. The 1200 * operation is protected by the RTNL. 1201 * 1202 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1203 * struct net_device *dev) 1204 * Called by upper layer devices to accelerate switching or other 1205 * station functionality into hardware. 'pdev is the lowerdev 1206 * to use for the offload and 'dev' is the net device that will 1207 * back the offload. Returns a pointer to the private structure 1208 * the upper layer will maintain. 1209 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1210 * Called by upper layer device to delete the station created 1211 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1212 * the station and priv is the structure returned by the add 1213 * operation. 1214 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1215 * int queue_index, u32 maxrate); 1216 * Called when a user wants to set a max-rate limitation of specific 1217 * TX queue. 1218 * int (*ndo_get_iflink)(const struct net_device *dev); 1219 * Called to get the iflink value of this device. 1220 * void (*ndo_change_proto_down)(struct net_device *dev, 1221 * bool proto_down); 1222 * This function is used to pass protocol port error state information 1223 * to the switch driver. The switch driver can react to the proto_down 1224 * by doing a phys down on the associated switch port. 1225 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1226 * This function is used to get egress tunnel information for given skb. 1227 * This is useful for retrieving outer tunnel header parameters while 1228 * sampling packet. 1229 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1230 * This function is used to specify the headroom that the skb must 1231 * consider when allocation skb during packet reception. Setting 1232 * appropriate rx headroom value allows avoiding skb head copy on 1233 * forward. Setting a negative value resets the rx headroom to the 1234 * default value. 1235 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1236 * This function is used to set or query state related to XDP on the 1237 * netdevice and manage BPF offload. See definition of 1238 * enum bpf_netdev_command for details. 1239 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1240 * u32 flags); 1241 * This function is used to submit @n XDP packets for transmit on a 1242 * netdevice. Returns number of frames successfully transmitted, frames 1243 * that got dropped are freed/returned via xdp_return_frame(). 1244 * Returns negative number, means general error invoking ndo, meaning 1245 * no frames were xmit'ed and core-caller will free all frames. 1246 */ 1247 struct net_device_ops { 1248 int (*ndo_init)(struct net_device *dev); 1249 void (*ndo_uninit)(struct net_device *dev); 1250 int (*ndo_open)(struct net_device *dev); 1251 int (*ndo_stop)(struct net_device *dev); 1252 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1253 struct net_device *dev); 1254 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1255 struct net_device *dev, 1256 netdev_features_t features); 1257 u16 (*ndo_select_queue)(struct net_device *dev, 1258 struct sk_buff *skb, 1259 struct net_device *sb_dev, 1260 select_queue_fallback_t fallback); 1261 void (*ndo_change_rx_flags)(struct net_device *dev, 1262 int flags); 1263 void (*ndo_set_rx_mode)(struct net_device *dev); 1264 int (*ndo_set_mac_address)(struct net_device *dev, 1265 void *addr); 1266 int (*ndo_validate_addr)(struct net_device *dev); 1267 int (*ndo_do_ioctl)(struct net_device *dev, 1268 struct ifreq *ifr, int cmd); 1269 int (*ndo_set_config)(struct net_device *dev, 1270 struct ifmap *map); 1271 int (*ndo_change_mtu)(struct net_device *dev, 1272 int new_mtu); 1273 int (*ndo_neigh_setup)(struct net_device *dev, 1274 struct neigh_parms *); 1275 void (*ndo_tx_timeout) (struct net_device *dev); 1276 1277 void (*ndo_get_stats64)(struct net_device *dev, 1278 struct rtnl_link_stats64 *storage); 1279 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1280 int (*ndo_get_offload_stats)(int attr_id, 1281 const struct net_device *dev, 1282 void *attr_data); 1283 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1284 1285 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1286 __be16 proto, u16 vid); 1287 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1288 __be16 proto, u16 vid); 1289 #ifdef CONFIG_NET_POLL_CONTROLLER 1290 void (*ndo_poll_controller)(struct net_device *dev); 1291 int (*ndo_netpoll_setup)(struct net_device *dev, 1292 struct netpoll_info *info); 1293 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1294 #endif 1295 int (*ndo_set_vf_mac)(struct net_device *dev, 1296 int queue, u8 *mac); 1297 int (*ndo_set_vf_vlan)(struct net_device *dev, 1298 int queue, u16 vlan, 1299 u8 qos, __be16 proto); 1300 int (*ndo_set_vf_rate)(struct net_device *dev, 1301 int vf, int min_tx_rate, 1302 int max_tx_rate); 1303 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1304 int vf, bool setting); 1305 int (*ndo_set_vf_trust)(struct net_device *dev, 1306 int vf, bool setting); 1307 int (*ndo_get_vf_config)(struct net_device *dev, 1308 int vf, 1309 struct ifla_vf_info *ivf); 1310 int (*ndo_set_vf_link_state)(struct net_device *dev, 1311 int vf, int link_state); 1312 int (*ndo_get_vf_stats)(struct net_device *dev, 1313 int vf, 1314 struct ifla_vf_stats 1315 *vf_stats); 1316 int (*ndo_set_vf_port)(struct net_device *dev, 1317 int vf, 1318 struct nlattr *port[]); 1319 int (*ndo_get_vf_port)(struct net_device *dev, 1320 int vf, struct sk_buff *skb); 1321 int (*ndo_set_vf_guid)(struct net_device *dev, 1322 int vf, u64 guid, 1323 int guid_type); 1324 int (*ndo_set_vf_rss_query_en)( 1325 struct net_device *dev, 1326 int vf, bool setting); 1327 int (*ndo_setup_tc)(struct net_device *dev, 1328 enum tc_setup_type type, 1329 void *type_data); 1330 #if IS_ENABLED(CONFIG_FCOE) 1331 int (*ndo_fcoe_enable)(struct net_device *dev); 1332 int (*ndo_fcoe_disable)(struct net_device *dev); 1333 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1334 u16 xid, 1335 struct scatterlist *sgl, 1336 unsigned int sgc); 1337 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1338 u16 xid); 1339 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1340 u16 xid, 1341 struct scatterlist *sgl, 1342 unsigned int sgc); 1343 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1344 struct netdev_fcoe_hbainfo *hbainfo); 1345 #endif 1346 1347 #if IS_ENABLED(CONFIG_LIBFCOE) 1348 #define NETDEV_FCOE_WWNN 0 1349 #define NETDEV_FCOE_WWPN 1 1350 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1351 u64 *wwn, int type); 1352 #endif 1353 1354 #ifdef CONFIG_RFS_ACCEL 1355 int (*ndo_rx_flow_steer)(struct net_device *dev, 1356 const struct sk_buff *skb, 1357 u16 rxq_index, 1358 u32 flow_id); 1359 #endif 1360 int (*ndo_add_slave)(struct net_device *dev, 1361 struct net_device *slave_dev, 1362 struct netlink_ext_ack *extack); 1363 int (*ndo_del_slave)(struct net_device *dev, 1364 struct net_device *slave_dev); 1365 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1366 netdev_features_t features); 1367 int (*ndo_set_features)(struct net_device *dev, 1368 netdev_features_t features); 1369 int (*ndo_neigh_construct)(struct net_device *dev, 1370 struct neighbour *n); 1371 void (*ndo_neigh_destroy)(struct net_device *dev, 1372 struct neighbour *n); 1373 1374 int (*ndo_fdb_add)(struct ndmsg *ndm, 1375 struct nlattr *tb[], 1376 struct net_device *dev, 1377 const unsigned char *addr, 1378 u16 vid, 1379 u16 flags); 1380 int (*ndo_fdb_del)(struct ndmsg *ndm, 1381 struct nlattr *tb[], 1382 struct net_device *dev, 1383 const unsigned char *addr, 1384 u16 vid); 1385 int (*ndo_fdb_dump)(struct sk_buff *skb, 1386 struct netlink_callback *cb, 1387 struct net_device *dev, 1388 struct net_device *filter_dev, 1389 int *idx); 1390 1391 int (*ndo_bridge_setlink)(struct net_device *dev, 1392 struct nlmsghdr *nlh, 1393 u16 flags); 1394 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1395 u32 pid, u32 seq, 1396 struct net_device *dev, 1397 u32 filter_mask, 1398 int nlflags); 1399 int (*ndo_bridge_dellink)(struct net_device *dev, 1400 struct nlmsghdr *nlh, 1401 u16 flags); 1402 int (*ndo_change_carrier)(struct net_device *dev, 1403 bool new_carrier); 1404 int (*ndo_get_phys_port_id)(struct net_device *dev, 1405 struct netdev_phys_item_id *ppid); 1406 int (*ndo_get_phys_port_name)(struct net_device *dev, 1407 char *name, size_t len); 1408 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1409 struct udp_tunnel_info *ti); 1410 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1411 struct udp_tunnel_info *ti); 1412 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1413 struct net_device *dev); 1414 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1415 void *priv); 1416 1417 int (*ndo_get_lock_subclass)(struct net_device *dev); 1418 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1419 int queue_index, 1420 u32 maxrate); 1421 int (*ndo_get_iflink)(const struct net_device *dev); 1422 int (*ndo_change_proto_down)(struct net_device *dev, 1423 bool proto_down); 1424 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1425 struct sk_buff *skb); 1426 void (*ndo_set_rx_headroom)(struct net_device *dev, 1427 int needed_headroom); 1428 int (*ndo_bpf)(struct net_device *dev, 1429 struct netdev_bpf *bpf); 1430 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1431 struct xdp_frame **xdp, 1432 u32 flags); 1433 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1434 u32 queue_id); 1435 }; 1436 1437 /** 1438 * enum net_device_priv_flags - &struct net_device priv_flags 1439 * 1440 * These are the &struct net_device, they are only set internally 1441 * by drivers and used in the kernel. These flags are invisible to 1442 * userspace; this means that the order of these flags can change 1443 * during any kernel release. 1444 * 1445 * You should have a pretty good reason to be extending these flags. 1446 * 1447 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1448 * @IFF_EBRIDGE: Ethernet bridging device 1449 * @IFF_BONDING: bonding master or slave 1450 * @IFF_ISATAP: ISATAP interface (RFC4214) 1451 * @IFF_WAN_HDLC: WAN HDLC device 1452 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1453 * release skb->dst 1454 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1455 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1456 * @IFF_MACVLAN_PORT: device used as macvlan port 1457 * @IFF_BRIDGE_PORT: device used as bridge port 1458 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1459 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1460 * @IFF_UNICAST_FLT: Supports unicast filtering 1461 * @IFF_TEAM_PORT: device used as team port 1462 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1463 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1464 * change when it's running 1465 * @IFF_MACVLAN: Macvlan device 1466 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1467 * underlying stacked devices 1468 * @IFF_L3MDEV_MASTER: device is an L3 master device 1469 * @IFF_NO_QUEUE: device can run without qdisc attached 1470 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1471 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1472 * @IFF_TEAM: device is a team device 1473 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1474 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1475 * entity (i.e. the master device for bridged veth) 1476 * @IFF_MACSEC: device is a MACsec device 1477 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1478 * @IFF_FAILOVER: device is a failover master device 1479 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1480 */ 1481 enum netdev_priv_flags { 1482 IFF_802_1Q_VLAN = 1<<0, 1483 IFF_EBRIDGE = 1<<1, 1484 IFF_BONDING = 1<<2, 1485 IFF_ISATAP = 1<<3, 1486 IFF_WAN_HDLC = 1<<4, 1487 IFF_XMIT_DST_RELEASE = 1<<5, 1488 IFF_DONT_BRIDGE = 1<<6, 1489 IFF_DISABLE_NETPOLL = 1<<7, 1490 IFF_MACVLAN_PORT = 1<<8, 1491 IFF_BRIDGE_PORT = 1<<9, 1492 IFF_OVS_DATAPATH = 1<<10, 1493 IFF_TX_SKB_SHARING = 1<<11, 1494 IFF_UNICAST_FLT = 1<<12, 1495 IFF_TEAM_PORT = 1<<13, 1496 IFF_SUPP_NOFCS = 1<<14, 1497 IFF_LIVE_ADDR_CHANGE = 1<<15, 1498 IFF_MACVLAN = 1<<16, 1499 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1500 IFF_L3MDEV_MASTER = 1<<18, 1501 IFF_NO_QUEUE = 1<<19, 1502 IFF_OPENVSWITCH = 1<<20, 1503 IFF_L3MDEV_SLAVE = 1<<21, 1504 IFF_TEAM = 1<<22, 1505 IFF_RXFH_CONFIGURED = 1<<23, 1506 IFF_PHONY_HEADROOM = 1<<24, 1507 IFF_MACSEC = 1<<25, 1508 IFF_NO_RX_HANDLER = 1<<26, 1509 IFF_FAILOVER = 1<<27, 1510 IFF_FAILOVER_SLAVE = 1<<28, 1511 }; 1512 1513 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1514 #define IFF_EBRIDGE IFF_EBRIDGE 1515 #define IFF_BONDING IFF_BONDING 1516 #define IFF_ISATAP IFF_ISATAP 1517 #define IFF_WAN_HDLC IFF_WAN_HDLC 1518 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1519 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1520 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1521 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1522 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1523 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1524 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1525 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1526 #define IFF_TEAM_PORT IFF_TEAM_PORT 1527 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1528 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1529 #define IFF_MACVLAN IFF_MACVLAN 1530 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1531 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1532 #define IFF_NO_QUEUE IFF_NO_QUEUE 1533 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1534 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1535 #define IFF_TEAM IFF_TEAM 1536 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1537 #define IFF_MACSEC IFF_MACSEC 1538 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1539 #define IFF_FAILOVER IFF_FAILOVER 1540 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1541 1542 /** 1543 * struct net_device - The DEVICE structure. 1544 * 1545 * Actually, this whole structure is a big mistake. It mixes I/O 1546 * data with strictly "high-level" data, and it has to know about 1547 * almost every data structure used in the INET module. 1548 * 1549 * @name: This is the first field of the "visible" part of this structure 1550 * (i.e. as seen by users in the "Space.c" file). It is the name 1551 * of the interface. 1552 * 1553 * @name_hlist: Device name hash chain, please keep it close to name[] 1554 * @ifalias: SNMP alias 1555 * @mem_end: Shared memory end 1556 * @mem_start: Shared memory start 1557 * @base_addr: Device I/O address 1558 * @irq: Device IRQ number 1559 * 1560 * @state: Generic network queuing layer state, see netdev_state_t 1561 * @dev_list: The global list of network devices 1562 * @napi_list: List entry used for polling NAPI devices 1563 * @unreg_list: List entry when we are unregistering the 1564 * device; see the function unregister_netdev 1565 * @close_list: List entry used when we are closing the device 1566 * @ptype_all: Device-specific packet handlers for all protocols 1567 * @ptype_specific: Device-specific, protocol-specific packet handlers 1568 * 1569 * @adj_list: Directly linked devices, like slaves for bonding 1570 * @features: Currently active device features 1571 * @hw_features: User-changeable features 1572 * 1573 * @wanted_features: User-requested features 1574 * @vlan_features: Mask of features inheritable by VLAN devices 1575 * 1576 * @hw_enc_features: Mask of features inherited by encapsulating devices 1577 * This field indicates what encapsulation 1578 * offloads the hardware is capable of doing, 1579 * and drivers will need to set them appropriately. 1580 * 1581 * @mpls_features: Mask of features inheritable by MPLS 1582 * 1583 * @ifindex: interface index 1584 * @group: The group the device belongs to 1585 * 1586 * @stats: Statistics struct, which was left as a legacy, use 1587 * rtnl_link_stats64 instead 1588 * 1589 * @rx_dropped: Dropped packets by core network, 1590 * do not use this in drivers 1591 * @tx_dropped: Dropped packets by core network, 1592 * do not use this in drivers 1593 * @rx_nohandler: nohandler dropped packets by core network on 1594 * inactive devices, do not use this in drivers 1595 * @carrier_up_count: Number of times the carrier has been up 1596 * @carrier_down_count: Number of times the carrier has been down 1597 * 1598 * @wireless_handlers: List of functions to handle Wireless Extensions, 1599 * instead of ioctl, 1600 * see <net/iw_handler.h> for details. 1601 * @wireless_data: Instance data managed by the core of wireless extensions 1602 * 1603 * @netdev_ops: Includes several pointers to callbacks, 1604 * if one wants to override the ndo_*() functions 1605 * @ethtool_ops: Management operations 1606 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1607 * discovery handling. Necessary for e.g. 6LoWPAN. 1608 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1609 * of Layer 2 headers. 1610 * 1611 * @flags: Interface flags (a la BSD) 1612 * @priv_flags: Like 'flags' but invisible to userspace, 1613 * see if.h for the definitions 1614 * @gflags: Global flags ( kept as legacy ) 1615 * @padded: How much padding added by alloc_netdev() 1616 * @operstate: RFC2863 operstate 1617 * @link_mode: Mapping policy to operstate 1618 * @if_port: Selectable AUI, TP, ... 1619 * @dma: DMA channel 1620 * @mtu: Interface MTU value 1621 * @min_mtu: Interface Minimum MTU value 1622 * @max_mtu: Interface Maximum MTU value 1623 * @type: Interface hardware type 1624 * @hard_header_len: Maximum hardware header length. 1625 * @min_header_len: Minimum hardware header length 1626 * 1627 * @needed_headroom: Extra headroom the hardware may need, but not in all 1628 * cases can this be guaranteed 1629 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1630 * cases can this be guaranteed. Some cases also use 1631 * LL_MAX_HEADER instead to allocate the skb 1632 * 1633 * interface address info: 1634 * 1635 * @perm_addr: Permanent hw address 1636 * @addr_assign_type: Hw address assignment type 1637 * @addr_len: Hardware address length 1638 * @neigh_priv_len: Used in neigh_alloc() 1639 * @dev_id: Used to differentiate devices that share 1640 * the same link layer address 1641 * @dev_port: Used to differentiate devices that share 1642 * the same function 1643 * @addr_list_lock: XXX: need comments on this one 1644 * @uc_promisc: Counter that indicates promiscuous mode 1645 * has been enabled due to the need to listen to 1646 * additional unicast addresses in a device that 1647 * does not implement ndo_set_rx_mode() 1648 * @uc: unicast mac addresses 1649 * @mc: multicast mac addresses 1650 * @dev_addrs: list of device hw addresses 1651 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1652 * @promiscuity: Number of times the NIC is told to work in 1653 * promiscuous mode; if it becomes 0 the NIC will 1654 * exit promiscuous mode 1655 * @allmulti: Counter, enables or disables allmulticast mode 1656 * 1657 * @vlan_info: VLAN info 1658 * @dsa_ptr: dsa specific data 1659 * @tipc_ptr: TIPC specific data 1660 * @atalk_ptr: AppleTalk link 1661 * @ip_ptr: IPv4 specific data 1662 * @dn_ptr: DECnet specific data 1663 * @ip6_ptr: IPv6 specific data 1664 * @ax25_ptr: AX.25 specific data 1665 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1666 * 1667 * @dev_addr: Hw address (before bcast, 1668 * because most packets are unicast) 1669 * 1670 * @_rx: Array of RX queues 1671 * @num_rx_queues: Number of RX queues 1672 * allocated at register_netdev() time 1673 * @real_num_rx_queues: Number of RX queues currently active in device 1674 * 1675 * @rx_handler: handler for received packets 1676 * @rx_handler_data: XXX: need comments on this one 1677 * @miniq_ingress: ingress/clsact qdisc specific data for 1678 * ingress processing 1679 * @ingress_queue: XXX: need comments on this one 1680 * @broadcast: hw bcast address 1681 * 1682 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1683 * indexed by RX queue number. Assigned by driver. 1684 * This must only be set if the ndo_rx_flow_steer 1685 * operation is defined 1686 * @index_hlist: Device index hash chain 1687 * 1688 * @_tx: Array of TX queues 1689 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1690 * @real_num_tx_queues: Number of TX queues currently active in device 1691 * @qdisc: Root qdisc from userspace point of view 1692 * @tx_queue_len: Max frames per queue allowed 1693 * @tx_global_lock: XXX: need comments on this one 1694 * 1695 * @xps_maps: XXX: need comments on this one 1696 * @miniq_egress: clsact qdisc specific data for 1697 * egress processing 1698 * @watchdog_timeo: Represents the timeout that is used by 1699 * the watchdog (see dev_watchdog()) 1700 * @watchdog_timer: List of timers 1701 * 1702 * @pcpu_refcnt: Number of references to this device 1703 * @todo_list: Delayed register/unregister 1704 * @link_watch_list: XXX: need comments on this one 1705 * 1706 * @reg_state: Register/unregister state machine 1707 * @dismantle: Device is going to be freed 1708 * @rtnl_link_state: This enum represents the phases of creating 1709 * a new link 1710 * 1711 * @needs_free_netdev: Should unregister perform free_netdev? 1712 * @priv_destructor: Called from unregister 1713 * @npinfo: XXX: need comments on this one 1714 * @nd_net: Network namespace this network device is inside 1715 * 1716 * @ml_priv: Mid-layer private 1717 * @lstats: Loopback statistics 1718 * @tstats: Tunnel statistics 1719 * @dstats: Dummy statistics 1720 * @vstats: Virtual ethernet statistics 1721 * 1722 * @garp_port: GARP 1723 * @mrp_port: MRP 1724 * 1725 * @dev: Class/net/name entry 1726 * @sysfs_groups: Space for optional device, statistics and wireless 1727 * sysfs groups 1728 * 1729 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1730 * @rtnl_link_ops: Rtnl_link_ops 1731 * 1732 * @gso_max_size: Maximum size of generic segmentation offload 1733 * @gso_max_segs: Maximum number of segments that can be passed to the 1734 * NIC for GSO 1735 * 1736 * @dcbnl_ops: Data Center Bridging netlink ops 1737 * @num_tc: Number of traffic classes in the net device 1738 * @tc_to_txq: XXX: need comments on this one 1739 * @prio_tc_map: XXX: need comments on this one 1740 * 1741 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1742 * 1743 * @priomap: XXX: need comments on this one 1744 * @phydev: Physical device may attach itself 1745 * for hardware timestamping 1746 * @sfp_bus: attached &struct sfp_bus structure. 1747 * 1748 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1749 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1750 * 1751 * @proto_down: protocol port state information can be sent to the 1752 * switch driver and used to set the phys state of the 1753 * switch port. 1754 * 1755 * @wol_enabled: Wake-on-LAN is enabled 1756 * 1757 * FIXME: cleanup struct net_device such that network protocol info 1758 * moves out. 1759 */ 1760 1761 struct net_device { 1762 char name[IFNAMSIZ]; 1763 struct hlist_node name_hlist; 1764 struct dev_ifalias __rcu *ifalias; 1765 /* 1766 * I/O specific fields 1767 * FIXME: Merge these and struct ifmap into one 1768 */ 1769 unsigned long mem_end; 1770 unsigned long mem_start; 1771 unsigned long base_addr; 1772 int irq; 1773 1774 /* 1775 * Some hardware also needs these fields (state,dev_list, 1776 * napi_list,unreg_list,close_list) but they are not 1777 * part of the usual set specified in Space.c. 1778 */ 1779 1780 unsigned long state; 1781 1782 struct list_head dev_list; 1783 struct list_head napi_list; 1784 struct list_head unreg_list; 1785 struct list_head close_list; 1786 struct list_head ptype_all; 1787 struct list_head ptype_specific; 1788 1789 struct { 1790 struct list_head upper; 1791 struct list_head lower; 1792 } adj_list; 1793 1794 netdev_features_t features; 1795 netdev_features_t hw_features; 1796 netdev_features_t wanted_features; 1797 netdev_features_t vlan_features; 1798 netdev_features_t hw_enc_features; 1799 netdev_features_t mpls_features; 1800 netdev_features_t gso_partial_features; 1801 1802 int ifindex; 1803 int group; 1804 1805 struct net_device_stats stats; 1806 1807 atomic_long_t rx_dropped; 1808 atomic_long_t tx_dropped; 1809 atomic_long_t rx_nohandler; 1810 1811 /* Stats to monitor link on/off, flapping */ 1812 atomic_t carrier_up_count; 1813 atomic_t carrier_down_count; 1814 1815 #ifdef CONFIG_WIRELESS_EXT 1816 const struct iw_handler_def *wireless_handlers; 1817 struct iw_public_data *wireless_data; 1818 #endif 1819 const struct net_device_ops *netdev_ops; 1820 const struct ethtool_ops *ethtool_ops; 1821 #ifdef CONFIG_NET_SWITCHDEV 1822 const struct switchdev_ops *switchdev_ops; 1823 #endif 1824 #ifdef CONFIG_NET_L3_MASTER_DEV 1825 const struct l3mdev_ops *l3mdev_ops; 1826 #endif 1827 #if IS_ENABLED(CONFIG_IPV6) 1828 const struct ndisc_ops *ndisc_ops; 1829 #endif 1830 1831 #ifdef CONFIG_XFRM_OFFLOAD 1832 const struct xfrmdev_ops *xfrmdev_ops; 1833 #endif 1834 1835 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1836 const struct tlsdev_ops *tlsdev_ops; 1837 #endif 1838 1839 const struct header_ops *header_ops; 1840 1841 unsigned int flags; 1842 unsigned int priv_flags; 1843 1844 unsigned short gflags; 1845 unsigned short padded; 1846 1847 unsigned char operstate; 1848 unsigned char link_mode; 1849 1850 unsigned char if_port; 1851 unsigned char dma; 1852 1853 unsigned int mtu; 1854 unsigned int min_mtu; 1855 unsigned int max_mtu; 1856 unsigned short type; 1857 unsigned short hard_header_len; 1858 unsigned char min_header_len; 1859 1860 unsigned short needed_headroom; 1861 unsigned short needed_tailroom; 1862 1863 /* Interface address info. */ 1864 unsigned char perm_addr[MAX_ADDR_LEN]; 1865 unsigned char addr_assign_type; 1866 unsigned char addr_len; 1867 unsigned short neigh_priv_len; 1868 unsigned short dev_id; 1869 unsigned short dev_port; 1870 spinlock_t addr_list_lock; 1871 unsigned char name_assign_type; 1872 bool uc_promisc; 1873 struct netdev_hw_addr_list uc; 1874 struct netdev_hw_addr_list mc; 1875 struct netdev_hw_addr_list dev_addrs; 1876 1877 #ifdef CONFIG_SYSFS 1878 struct kset *queues_kset; 1879 #endif 1880 unsigned int promiscuity; 1881 unsigned int allmulti; 1882 1883 1884 /* Protocol-specific pointers */ 1885 1886 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1887 struct vlan_info __rcu *vlan_info; 1888 #endif 1889 #if IS_ENABLED(CONFIG_NET_DSA) 1890 struct dsa_port *dsa_ptr; 1891 #endif 1892 #if IS_ENABLED(CONFIG_TIPC) 1893 struct tipc_bearer __rcu *tipc_ptr; 1894 #endif 1895 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1896 void *atalk_ptr; 1897 #endif 1898 struct in_device __rcu *ip_ptr; 1899 #if IS_ENABLED(CONFIG_DECNET) 1900 struct dn_dev __rcu *dn_ptr; 1901 #endif 1902 struct inet6_dev __rcu *ip6_ptr; 1903 #if IS_ENABLED(CONFIG_AX25) 1904 void *ax25_ptr; 1905 #endif 1906 struct wireless_dev *ieee80211_ptr; 1907 struct wpan_dev *ieee802154_ptr; 1908 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1909 struct mpls_dev __rcu *mpls_ptr; 1910 #endif 1911 1912 /* 1913 * Cache lines mostly used on receive path (including eth_type_trans()) 1914 */ 1915 /* Interface address info used in eth_type_trans() */ 1916 unsigned char *dev_addr; 1917 1918 struct netdev_rx_queue *_rx; 1919 unsigned int num_rx_queues; 1920 unsigned int real_num_rx_queues; 1921 1922 struct bpf_prog __rcu *xdp_prog; 1923 unsigned long gro_flush_timeout; 1924 rx_handler_func_t __rcu *rx_handler; 1925 void __rcu *rx_handler_data; 1926 1927 #ifdef CONFIG_NET_CLS_ACT 1928 struct mini_Qdisc __rcu *miniq_ingress; 1929 #endif 1930 struct netdev_queue __rcu *ingress_queue; 1931 #ifdef CONFIG_NETFILTER_INGRESS 1932 struct nf_hook_entries __rcu *nf_hooks_ingress; 1933 #endif 1934 1935 unsigned char broadcast[MAX_ADDR_LEN]; 1936 #ifdef CONFIG_RFS_ACCEL 1937 struct cpu_rmap *rx_cpu_rmap; 1938 #endif 1939 struct hlist_node index_hlist; 1940 1941 /* 1942 * Cache lines mostly used on transmit path 1943 */ 1944 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1945 unsigned int num_tx_queues; 1946 unsigned int real_num_tx_queues; 1947 struct Qdisc *qdisc; 1948 #ifdef CONFIG_NET_SCHED 1949 DECLARE_HASHTABLE (qdisc_hash, 4); 1950 #endif 1951 unsigned int tx_queue_len; 1952 spinlock_t tx_global_lock; 1953 int watchdog_timeo; 1954 1955 #ifdef CONFIG_XPS 1956 struct xps_dev_maps __rcu *xps_cpus_map; 1957 struct xps_dev_maps __rcu *xps_rxqs_map; 1958 #endif 1959 #ifdef CONFIG_NET_CLS_ACT 1960 struct mini_Qdisc __rcu *miniq_egress; 1961 #endif 1962 1963 /* These may be needed for future network-power-down code. */ 1964 struct timer_list watchdog_timer; 1965 1966 int __percpu *pcpu_refcnt; 1967 struct list_head todo_list; 1968 1969 struct list_head link_watch_list; 1970 1971 enum { NETREG_UNINITIALIZED=0, 1972 NETREG_REGISTERED, /* completed register_netdevice */ 1973 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1974 NETREG_UNREGISTERED, /* completed unregister todo */ 1975 NETREG_RELEASED, /* called free_netdev */ 1976 NETREG_DUMMY, /* dummy device for NAPI poll */ 1977 } reg_state:8; 1978 1979 bool dismantle; 1980 1981 enum { 1982 RTNL_LINK_INITIALIZED, 1983 RTNL_LINK_INITIALIZING, 1984 } rtnl_link_state:16; 1985 1986 bool needs_free_netdev; 1987 void (*priv_destructor)(struct net_device *dev); 1988 1989 #ifdef CONFIG_NETPOLL 1990 struct netpoll_info __rcu *npinfo; 1991 #endif 1992 1993 possible_net_t nd_net; 1994 1995 /* mid-layer private */ 1996 union { 1997 void *ml_priv; 1998 struct pcpu_lstats __percpu *lstats; 1999 struct pcpu_sw_netstats __percpu *tstats; 2000 struct pcpu_dstats __percpu *dstats; 2001 }; 2002 2003 #if IS_ENABLED(CONFIG_GARP) 2004 struct garp_port __rcu *garp_port; 2005 #endif 2006 #if IS_ENABLED(CONFIG_MRP) 2007 struct mrp_port __rcu *mrp_port; 2008 #endif 2009 2010 struct device dev; 2011 const struct attribute_group *sysfs_groups[4]; 2012 const struct attribute_group *sysfs_rx_queue_group; 2013 2014 const struct rtnl_link_ops *rtnl_link_ops; 2015 2016 /* for setting kernel sock attribute on TCP connection setup */ 2017 #define GSO_MAX_SIZE 65536 2018 unsigned int gso_max_size; 2019 #define GSO_MAX_SEGS 65535 2020 u16 gso_max_segs; 2021 2022 #ifdef CONFIG_DCB 2023 const struct dcbnl_rtnl_ops *dcbnl_ops; 2024 #endif 2025 s16 num_tc; 2026 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2027 u8 prio_tc_map[TC_BITMASK + 1]; 2028 2029 #if IS_ENABLED(CONFIG_FCOE) 2030 unsigned int fcoe_ddp_xid; 2031 #endif 2032 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2033 struct netprio_map __rcu *priomap; 2034 #endif 2035 struct phy_device *phydev; 2036 struct sfp_bus *sfp_bus; 2037 struct lock_class_key *qdisc_tx_busylock; 2038 struct lock_class_key *qdisc_running_key; 2039 bool proto_down; 2040 unsigned wol_enabled:1; 2041 }; 2042 #define to_net_dev(d) container_of(d, struct net_device, dev) 2043 2044 static inline bool netif_elide_gro(const struct net_device *dev) 2045 { 2046 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2047 return true; 2048 return false; 2049 } 2050 2051 #define NETDEV_ALIGN 32 2052 2053 static inline 2054 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2055 { 2056 return dev->prio_tc_map[prio & TC_BITMASK]; 2057 } 2058 2059 static inline 2060 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2061 { 2062 if (tc >= dev->num_tc) 2063 return -EINVAL; 2064 2065 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2066 return 0; 2067 } 2068 2069 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2070 void netdev_reset_tc(struct net_device *dev); 2071 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2072 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2073 2074 static inline 2075 int netdev_get_num_tc(struct net_device *dev) 2076 { 2077 return dev->num_tc; 2078 } 2079 2080 void netdev_unbind_sb_channel(struct net_device *dev, 2081 struct net_device *sb_dev); 2082 int netdev_bind_sb_channel_queue(struct net_device *dev, 2083 struct net_device *sb_dev, 2084 u8 tc, u16 count, u16 offset); 2085 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2086 static inline int netdev_get_sb_channel(struct net_device *dev) 2087 { 2088 return max_t(int, -dev->num_tc, 0); 2089 } 2090 2091 static inline 2092 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2093 unsigned int index) 2094 { 2095 return &dev->_tx[index]; 2096 } 2097 2098 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2099 const struct sk_buff *skb) 2100 { 2101 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2102 } 2103 2104 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2105 void (*f)(struct net_device *, 2106 struct netdev_queue *, 2107 void *), 2108 void *arg) 2109 { 2110 unsigned int i; 2111 2112 for (i = 0; i < dev->num_tx_queues; i++) 2113 f(dev, &dev->_tx[i], arg); 2114 } 2115 2116 #define netdev_lockdep_set_classes(dev) \ 2117 { \ 2118 static struct lock_class_key qdisc_tx_busylock_key; \ 2119 static struct lock_class_key qdisc_running_key; \ 2120 static struct lock_class_key qdisc_xmit_lock_key; \ 2121 static struct lock_class_key dev_addr_list_lock_key; \ 2122 unsigned int i; \ 2123 \ 2124 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2125 (dev)->qdisc_running_key = &qdisc_running_key; \ 2126 lockdep_set_class(&(dev)->addr_list_lock, \ 2127 &dev_addr_list_lock_key); \ 2128 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2129 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2130 &qdisc_xmit_lock_key); \ 2131 } 2132 2133 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2134 struct sk_buff *skb, 2135 struct net_device *sb_dev); 2136 2137 /* returns the headroom that the master device needs to take in account 2138 * when forwarding to this dev 2139 */ 2140 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2141 { 2142 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2143 } 2144 2145 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2146 { 2147 if (dev->netdev_ops->ndo_set_rx_headroom) 2148 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2149 } 2150 2151 /* set the device rx headroom to the dev's default */ 2152 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2153 { 2154 netdev_set_rx_headroom(dev, -1); 2155 } 2156 2157 /* 2158 * Net namespace inlines 2159 */ 2160 static inline 2161 struct net *dev_net(const struct net_device *dev) 2162 { 2163 return read_pnet(&dev->nd_net); 2164 } 2165 2166 static inline 2167 void dev_net_set(struct net_device *dev, struct net *net) 2168 { 2169 write_pnet(&dev->nd_net, net); 2170 } 2171 2172 /** 2173 * netdev_priv - access network device private data 2174 * @dev: network device 2175 * 2176 * Get network device private data 2177 */ 2178 static inline void *netdev_priv(const struct net_device *dev) 2179 { 2180 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2181 } 2182 2183 /* Set the sysfs physical device reference for the network logical device 2184 * if set prior to registration will cause a symlink during initialization. 2185 */ 2186 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2187 2188 /* Set the sysfs device type for the network logical device to allow 2189 * fine-grained identification of different network device types. For 2190 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2191 */ 2192 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2193 2194 /* Default NAPI poll() weight 2195 * Device drivers are strongly advised to not use bigger value 2196 */ 2197 #define NAPI_POLL_WEIGHT 64 2198 2199 /** 2200 * netif_napi_add - initialize a NAPI context 2201 * @dev: network device 2202 * @napi: NAPI context 2203 * @poll: polling function 2204 * @weight: default weight 2205 * 2206 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2207 * *any* of the other NAPI-related functions. 2208 */ 2209 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2210 int (*poll)(struct napi_struct *, int), int weight); 2211 2212 /** 2213 * netif_tx_napi_add - initialize a NAPI context 2214 * @dev: network device 2215 * @napi: NAPI context 2216 * @poll: polling function 2217 * @weight: default weight 2218 * 2219 * This variant of netif_napi_add() should be used from drivers using NAPI 2220 * to exclusively poll a TX queue. 2221 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2222 */ 2223 static inline void netif_tx_napi_add(struct net_device *dev, 2224 struct napi_struct *napi, 2225 int (*poll)(struct napi_struct *, int), 2226 int weight) 2227 { 2228 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2229 netif_napi_add(dev, napi, poll, weight); 2230 } 2231 2232 /** 2233 * netif_napi_del - remove a NAPI context 2234 * @napi: NAPI context 2235 * 2236 * netif_napi_del() removes a NAPI context from the network device NAPI list 2237 */ 2238 void netif_napi_del(struct napi_struct *napi); 2239 2240 struct napi_gro_cb { 2241 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2242 void *frag0; 2243 2244 /* Length of frag0. */ 2245 unsigned int frag0_len; 2246 2247 /* This indicates where we are processing relative to skb->data. */ 2248 int data_offset; 2249 2250 /* This is non-zero if the packet cannot be merged with the new skb. */ 2251 u16 flush; 2252 2253 /* Save the IP ID here and check when we get to the transport layer */ 2254 u16 flush_id; 2255 2256 /* Number of segments aggregated. */ 2257 u16 count; 2258 2259 /* Start offset for remote checksum offload */ 2260 u16 gro_remcsum_start; 2261 2262 /* jiffies when first packet was created/queued */ 2263 unsigned long age; 2264 2265 /* Used in ipv6_gro_receive() and foo-over-udp */ 2266 u16 proto; 2267 2268 /* This is non-zero if the packet may be of the same flow. */ 2269 u8 same_flow:1; 2270 2271 /* Used in tunnel GRO receive */ 2272 u8 encap_mark:1; 2273 2274 /* GRO checksum is valid */ 2275 u8 csum_valid:1; 2276 2277 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2278 u8 csum_cnt:3; 2279 2280 /* Free the skb? */ 2281 u8 free:2; 2282 #define NAPI_GRO_FREE 1 2283 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2284 2285 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2286 u8 is_ipv6:1; 2287 2288 /* Used in GRE, set in fou/gue_gro_receive */ 2289 u8 is_fou:1; 2290 2291 /* Used to determine if flush_id can be ignored */ 2292 u8 is_atomic:1; 2293 2294 /* Number of gro_receive callbacks this packet already went through */ 2295 u8 recursion_counter:4; 2296 2297 /* 1 bit hole */ 2298 2299 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2300 __wsum csum; 2301 2302 /* used in skb_gro_receive() slow path */ 2303 struct sk_buff *last; 2304 }; 2305 2306 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2307 2308 #define GRO_RECURSION_LIMIT 15 2309 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2310 { 2311 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2312 } 2313 2314 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2315 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2316 struct list_head *head, 2317 struct sk_buff *skb) 2318 { 2319 if (unlikely(gro_recursion_inc_test(skb))) { 2320 NAPI_GRO_CB(skb)->flush |= 1; 2321 return NULL; 2322 } 2323 2324 return cb(head, skb); 2325 } 2326 2327 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2328 struct sk_buff *); 2329 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2330 struct sock *sk, 2331 struct list_head *head, 2332 struct sk_buff *skb) 2333 { 2334 if (unlikely(gro_recursion_inc_test(skb))) { 2335 NAPI_GRO_CB(skb)->flush |= 1; 2336 return NULL; 2337 } 2338 2339 return cb(sk, head, skb); 2340 } 2341 2342 struct packet_type { 2343 __be16 type; /* This is really htons(ether_type). */ 2344 bool ignore_outgoing; 2345 struct net_device *dev; /* NULL is wildcarded here */ 2346 int (*func) (struct sk_buff *, 2347 struct net_device *, 2348 struct packet_type *, 2349 struct net_device *); 2350 void (*list_func) (struct list_head *, 2351 struct packet_type *, 2352 struct net_device *); 2353 bool (*id_match)(struct packet_type *ptype, 2354 struct sock *sk); 2355 void *af_packet_priv; 2356 struct list_head list; 2357 }; 2358 2359 struct offload_callbacks { 2360 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2361 netdev_features_t features); 2362 struct sk_buff *(*gro_receive)(struct list_head *head, 2363 struct sk_buff *skb); 2364 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2365 }; 2366 2367 struct packet_offload { 2368 __be16 type; /* This is really htons(ether_type). */ 2369 u16 priority; 2370 struct offload_callbacks callbacks; 2371 struct list_head list; 2372 }; 2373 2374 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2375 struct pcpu_sw_netstats { 2376 u64 rx_packets; 2377 u64 rx_bytes; 2378 u64 tx_packets; 2379 u64 tx_bytes; 2380 struct u64_stats_sync syncp; 2381 } __aligned(4 * sizeof(u64)); 2382 2383 struct pcpu_lstats { 2384 u64 packets; 2385 u64 bytes; 2386 struct u64_stats_sync syncp; 2387 } __aligned(2 * sizeof(u64)); 2388 2389 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2390 ({ \ 2391 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2392 if (pcpu_stats) { \ 2393 int __cpu; \ 2394 for_each_possible_cpu(__cpu) { \ 2395 typeof(type) *stat; \ 2396 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2397 u64_stats_init(&stat->syncp); \ 2398 } \ 2399 } \ 2400 pcpu_stats; \ 2401 }) 2402 2403 #define netdev_alloc_pcpu_stats(type) \ 2404 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2405 2406 enum netdev_lag_tx_type { 2407 NETDEV_LAG_TX_TYPE_UNKNOWN, 2408 NETDEV_LAG_TX_TYPE_RANDOM, 2409 NETDEV_LAG_TX_TYPE_BROADCAST, 2410 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2411 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2412 NETDEV_LAG_TX_TYPE_HASH, 2413 }; 2414 2415 enum netdev_lag_hash { 2416 NETDEV_LAG_HASH_NONE, 2417 NETDEV_LAG_HASH_L2, 2418 NETDEV_LAG_HASH_L34, 2419 NETDEV_LAG_HASH_L23, 2420 NETDEV_LAG_HASH_E23, 2421 NETDEV_LAG_HASH_E34, 2422 NETDEV_LAG_HASH_UNKNOWN, 2423 }; 2424 2425 struct netdev_lag_upper_info { 2426 enum netdev_lag_tx_type tx_type; 2427 enum netdev_lag_hash hash_type; 2428 }; 2429 2430 struct netdev_lag_lower_state_info { 2431 u8 link_up : 1, 2432 tx_enabled : 1; 2433 }; 2434 2435 #include <linux/notifier.h> 2436 2437 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2438 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2439 * adding new types. 2440 */ 2441 enum netdev_cmd { 2442 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2443 NETDEV_DOWN, 2444 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2445 detected a hardware crash and restarted 2446 - we can use this eg to kick tcp sessions 2447 once done */ 2448 NETDEV_CHANGE, /* Notify device state change */ 2449 NETDEV_REGISTER, 2450 NETDEV_UNREGISTER, 2451 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2452 NETDEV_CHANGEADDR, 2453 NETDEV_GOING_DOWN, 2454 NETDEV_CHANGENAME, 2455 NETDEV_FEAT_CHANGE, 2456 NETDEV_BONDING_FAILOVER, 2457 NETDEV_PRE_UP, 2458 NETDEV_PRE_TYPE_CHANGE, 2459 NETDEV_POST_TYPE_CHANGE, 2460 NETDEV_POST_INIT, 2461 NETDEV_RELEASE, 2462 NETDEV_NOTIFY_PEERS, 2463 NETDEV_JOIN, 2464 NETDEV_CHANGEUPPER, 2465 NETDEV_RESEND_IGMP, 2466 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2467 NETDEV_CHANGEINFODATA, 2468 NETDEV_BONDING_INFO, 2469 NETDEV_PRECHANGEUPPER, 2470 NETDEV_CHANGELOWERSTATE, 2471 NETDEV_UDP_TUNNEL_PUSH_INFO, 2472 NETDEV_UDP_TUNNEL_DROP_INFO, 2473 NETDEV_CHANGE_TX_QUEUE_LEN, 2474 NETDEV_CVLAN_FILTER_PUSH_INFO, 2475 NETDEV_CVLAN_FILTER_DROP_INFO, 2476 NETDEV_SVLAN_FILTER_PUSH_INFO, 2477 NETDEV_SVLAN_FILTER_DROP_INFO, 2478 }; 2479 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2480 2481 int register_netdevice_notifier(struct notifier_block *nb); 2482 int unregister_netdevice_notifier(struct notifier_block *nb); 2483 2484 struct netdev_notifier_info { 2485 struct net_device *dev; 2486 struct netlink_ext_ack *extack; 2487 }; 2488 2489 struct netdev_notifier_info_ext { 2490 struct netdev_notifier_info info; /* must be first */ 2491 union { 2492 u32 mtu; 2493 } ext; 2494 }; 2495 2496 struct netdev_notifier_change_info { 2497 struct netdev_notifier_info info; /* must be first */ 2498 unsigned int flags_changed; 2499 }; 2500 2501 struct netdev_notifier_changeupper_info { 2502 struct netdev_notifier_info info; /* must be first */ 2503 struct net_device *upper_dev; /* new upper dev */ 2504 bool master; /* is upper dev master */ 2505 bool linking; /* is the notification for link or unlink */ 2506 void *upper_info; /* upper dev info */ 2507 }; 2508 2509 struct netdev_notifier_changelowerstate_info { 2510 struct netdev_notifier_info info; /* must be first */ 2511 void *lower_state_info; /* is lower dev state */ 2512 }; 2513 2514 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2515 struct net_device *dev) 2516 { 2517 info->dev = dev; 2518 info->extack = NULL; 2519 } 2520 2521 static inline struct net_device * 2522 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2523 { 2524 return info->dev; 2525 } 2526 2527 static inline struct netlink_ext_ack * 2528 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2529 { 2530 return info->extack; 2531 } 2532 2533 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2534 2535 2536 extern rwlock_t dev_base_lock; /* Device list lock */ 2537 2538 #define for_each_netdev(net, d) \ 2539 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2540 #define for_each_netdev_reverse(net, d) \ 2541 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2542 #define for_each_netdev_rcu(net, d) \ 2543 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2544 #define for_each_netdev_safe(net, d, n) \ 2545 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2546 #define for_each_netdev_continue(net, d) \ 2547 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2548 #define for_each_netdev_continue_rcu(net, d) \ 2549 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2550 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2551 for_each_netdev_rcu(&init_net, slave) \ 2552 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2553 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2554 2555 static inline struct net_device *next_net_device(struct net_device *dev) 2556 { 2557 struct list_head *lh; 2558 struct net *net; 2559 2560 net = dev_net(dev); 2561 lh = dev->dev_list.next; 2562 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2563 } 2564 2565 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2566 { 2567 struct list_head *lh; 2568 struct net *net; 2569 2570 net = dev_net(dev); 2571 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2572 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2573 } 2574 2575 static inline struct net_device *first_net_device(struct net *net) 2576 { 2577 return list_empty(&net->dev_base_head) ? NULL : 2578 net_device_entry(net->dev_base_head.next); 2579 } 2580 2581 static inline struct net_device *first_net_device_rcu(struct net *net) 2582 { 2583 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2584 2585 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2586 } 2587 2588 int netdev_boot_setup_check(struct net_device *dev); 2589 unsigned long netdev_boot_base(const char *prefix, int unit); 2590 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2591 const char *hwaddr); 2592 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2593 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2594 void dev_add_pack(struct packet_type *pt); 2595 void dev_remove_pack(struct packet_type *pt); 2596 void __dev_remove_pack(struct packet_type *pt); 2597 void dev_add_offload(struct packet_offload *po); 2598 void dev_remove_offload(struct packet_offload *po); 2599 2600 int dev_get_iflink(const struct net_device *dev); 2601 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2602 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2603 unsigned short mask); 2604 struct net_device *dev_get_by_name(struct net *net, const char *name); 2605 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2606 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2607 int dev_alloc_name(struct net_device *dev, const char *name); 2608 int dev_open(struct net_device *dev); 2609 void dev_close(struct net_device *dev); 2610 void dev_close_many(struct list_head *head, bool unlink); 2611 void dev_disable_lro(struct net_device *dev); 2612 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2613 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2614 struct net_device *sb_dev, 2615 select_queue_fallback_t fallback); 2616 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2617 struct net_device *sb_dev, 2618 select_queue_fallback_t fallback); 2619 int dev_queue_xmit(struct sk_buff *skb); 2620 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2621 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2622 int register_netdevice(struct net_device *dev); 2623 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2624 void unregister_netdevice_many(struct list_head *head); 2625 static inline void unregister_netdevice(struct net_device *dev) 2626 { 2627 unregister_netdevice_queue(dev, NULL); 2628 } 2629 2630 int netdev_refcnt_read(const struct net_device *dev); 2631 void free_netdev(struct net_device *dev); 2632 void netdev_freemem(struct net_device *dev); 2633 void synchronize_net(void); 2634 int init_dummy_netdev(struct net_device *dev); 2635 2636 DECLARE_PER_CPU(int, xmit_recursion); 2637 #define XMIT_RECURSION_LIMIT 10 2638 2639 static inline int dev_recursion_level(void) 2640 { 2641 return this_cpu_read(xmit_recursion); 2642 } 2643 2644 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2645 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2646 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2647 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2648 int netdev_get_name(struct net *net, char *name, int ifindex); 2649 int dev_restart(struct net_device *dev); 2650 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2651 2652 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2653 { 2654 return NAPI_GRO_CB(skb)->data_offset; 2655 } 2656 2657 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2658 { 2659 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2660 } 2661 2662 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2663 { 2664 NAPI_GRO_CB(skb)->data_offset += len; 2665 } 2666 2667 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2668 unsigned int offset) 2669 { 2670 return NAPI_GRO_CB(skb)->frag0 + offset; 2671 } 2672 2673 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2674 { 2675 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2676 } 2677 2678 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2679 { 2680 NAPI_GRO_CB(skb)->frag0 = NULL; 2681 NAPI_GRO_CB(skb)->frag0_len = 0; 2682 } 2683 2684 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2685 unsigned int offset) 2686 { 2687 if (!pskb_may_pull(skb, hlen)) 2688 return NULL; 2689 2690 skb_gro_frag0_invalidate(skb); 2691 return skb->data + offset; 2692 } 2693 2694 static inline void *skb_gro_network_header(struct sk_buff *skb) 2695 { 2696 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2697 skb_network_offset(skb); 2698 } 2699 2700 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2701 const void *start, unsigned int len) 2702 { 2703 if (NAPI_GRO_CB(skb)->csum_valid) 2704 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2705 csum_partial(start, len, 0)); 2706 } 2707 2708 /* GRO checksum functions. These are logical equivalents of the normal 2709 * checksum functions (in skbuff.h) except that they operate on the GRO 2710 * offsets and fields in sk_buff. 2711 */ 2712 2713 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2714 2715 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2716 { 2717 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2718 } 2719 2720 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2721 bool zero_okay, 2722 __sum16 check) 2723 { 2724 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2725 skb_checksum_start_offset(skb) < 2726 skb_gro_offset(skb)) && 2727 !skb_at_gro_remcsum_start(skb) && 2728 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2729 (!zero_okay || check)); 2730 } 2731 2732 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2733 __wsum psum) 2734 { 2735 if (NAPI_GRO_CB(skb)->csum_valid && 2736 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2737 return 0; 2738 2739 NAPI_GRO_CB(skb)->csum = psum; 2740 2741 return __skb_gro_checksum_complete(skb); 2742 } 2743 2744 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2745 { 2746 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2747 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2748 NAPI_GRO_CB(skb)->csum_cnt--; 2749 } else { 2750 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2751 * verified a new top level checksum or an encapsulated one 2752 * during GRO. This saves work if we fallback to normal path. 2753 */ 2754 __skb_incr_checksum_unnecessary(skb); 2755 } 2756 } 2757 2758 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2759 compute_pseudo) \ 2760 ({ \ 2761 __sum16 __ret = 0; \ 2762 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2763 __ret = __skb_gro_checksum_validate_complete(skb, \ 2764 compute_pseudo(skb, proto)); \ 2765 if (!__ret) \ 2766 skb_gro_incr_csum_unnecessary(skb); \ 2767 __ret; \ 2768 }) 2769 2770 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2771 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2772 2773 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2774 compute_pseudo) \ 2775 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2776 2777 #define skb_gro_checksum_simple_validate(skb) \ 2778 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2779 2780 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2781 { 2782 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2783 !NAPI_GRO_CB(skb)->csum_valid); 2784 } 2785 2786 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2787 __sum16 check, __wsum pseudo) 2788 { 2789 NAPI_GRO_CB(skb)->csum = ~pseudo; 2790 NAPI_GRO_CB(skb)->csum_valid = 1; 2791 } 2792 2793 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2794 do { \ 2795 if (__skb_gro_checksum_convert_check(skb)) \ 2796 __skb_gro_checksum_convert(skb, check, \ 2797 compute_pseudo(skb, proto)); \ 2798 } while (0) 2799 2800 struct gro_remcsum { 2801 int offset; 2802 __wsum delta; 2803 }; 2804 2805 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2806 { 2807 grc->offset = 0; 2808 grc->delta = 0; 2809 } 2810 2811 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2812 unsigned int off, size_t hdrlen, 2813 int start, int offset, 2814 struct gro_remcsum *grc, 2815 bool nopartial) 2816 { 2817 __wsum delta; 2818 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2819 2820 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2821 2822 if (!nopartial) { 2823 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2824 return ptr; 2825 } 2826 2827 ptr = skb_gro_header_fast(skb, off); 2828 if (skb_gro_header_hard(skb, off + plen)) { 2829 ptr = skb_gro_header_slow(skb, off + plen, off); 2830 if (!ptr) 2831 return NULL; 2832 } 2833 2834 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2835 start, offset); 2836 2837 /* Adjust skb->csum since we changed the packet */ 2838 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2839 2840 grc->offset = off + hdrlen + offset; 2841 grc->delta = delta; 2842 2843 return ptr; 2844 } 2845 2846 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2847 struct gro_remcsum *grc) 2848 { 2849 void *ptr; 2850 size_t plen = grc->offset + sizeof(u16); 2851 2852 if (!grc->delta) 2853 return; 2854 2855 ptr = skb_gro_header_fast(skb, grc->offset); 2856 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2857 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2858 if (!ptr) 2859 return; 2860 } 2861 2862 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2863 } 2864 2865 #ifdef CONFIG_XFRM_OFFLOAD 2866 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2867 { 2868 if (PTR_ERR(pp) != -EINPROGRESS) 2869 NAPI_GRO_CB(skb)->flush |= flush; 2870 } 2871 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2872 struct sk_buff *pp, 2873 int flush, 2874 struct gro_remcsum *grc) 2875 { 2876 if (PTR_ERR(pp) != -EINPROGRESS) { 2877 NAPI_GRO_CB(skb)->flush |= flush; 2878 skb_gro_remcsum_cleanup(skb, grc); 2879 skb->remcsum_offload = 0; 2880 } 2881 } 2882 #else 2883 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2884 { 2885 NAPI_GRO_CB(skb)->flush |= flush; 2886 } 2887 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2888 struct sk_buff *pp, 2889 int flush, 2890 struct gro_remcsum *grc) 2891 { 2892 NAPI_GRO_CB(skb)->flush |= flush; 2893 skb_gro_remcsum_cleanup(skb, grc); 2894 skb->remcsum_offload = 0; 2895 } 2896 #endif 2897 2898 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2899 unsigned short type, 2900 const void *daddr, const void *saddr, 2901 unsigned int len) 2902 { 2903 if (!dev->header_ops || !dev->header_ops->create) 2904 return 0; 2905 2906 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2907 } 2908 2909 static inline int dev_parse_header(const struct sk_buff *skb, 2910 unsigned char *haddr) 2911 { 2912 const struct net_device *dev = skb->dev; 2913 2914 if (!dev->header_ops || !dev->header_ops->parse) 2915 return 0; 2916 return dev->header_ops->parse(skb, haddr); 2917 } 2918 2919 /* ll_header must have at least hard_header_len allocated */ 2920 static inline bool dev_validate_header(const struct net_device *dev, 2921 char *ll_header, int len) 2922 { 2923 if (likely(len >= dev->hard_header_len)) 2924 return true; 2925 if (len < dev->min_header_len) 2926 return false; 2927 2928 if (capable(CAP_SYS_RAWIO)) { 2929 memset(ll_header + len, 0, dev->hard_header_len - len); 2930 return true; 2931 } 2932 2933 if (dev->header_ops && dev->header_ops->validate) 2934 return dev->header_ops->validate(ll_header, len); 2935 2936 return false; 2937 } 2938 2939 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2940 int len, int size); 2941 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2942 static inline int unregister_gifconf(unsigned int family) 2943 { 2944 return register_gifconf(family, NULL); 2945 } 2946 2947 #ifdef CONFIG_NET_FLOW_LIMIT 2948 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2949 struct sd_flow_limit { 2950 u64 count; 2951 unsigned int num_buckets; 2952 unsigned int history_head; 2953 u16 history[FLOW_LIMIT_HISTORY]; 2954 u8 buckets[]; 2955 }; 2956 2957 extern int netdev_flow_limit_table_len; 2958 #endif /* CONFIG_NET_FLOW_LIMIT */ 2959 2960 /* 2961 * Incoming packets are placed on per-CPU queues 2962 */ 2963 struct softnet_data { 2964 struct list_head poll_list; 2965 struct sk_buff_head process_queue; 2966 2967 /* stats */ 2968 unsigned int processed; 2969 unsigned int time_squeeze; 2970 unsigned int received_rps; 2971 #ifdef CONFIG_RPS 2972 struct softnet_data *rps_ipi_list; 2973 #endif 2974 #ifdef CONFIG_NET_FLOW_LIMIT 2975 struct sd_flow_limit __rcu *flow_limit; 2976 #endif 2977 struct Qdisc *output_queue; 2978 struct Qdisc **output_queue_tailp; 2979 struct sk_buff *completion_queue; 2980 #ifdef CONFIG_XFRM_OFFLOAD 2981 struct sk_buff_head xfrm_backlog; 2982 #endif 2983 #ifdef CONFIG_RPS 2984 /* input_queue_head should be written by cpu owning this struct, 2985 * and only read by other cpus. Worth using a cache line. 2986 */ 2987 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2988 2989 /* Elements below can be accessed between CPUs for RPS/RFS */ 2990 call_single_data_t csd ____cacheline_aligned_in_smp; 2991 struct softnet_data *rps_ipi_next; 2992 unsigned int cpu; 2993 unsigned int input_queue_tail; 2994 #endif 2995 unsigned int dropped; 2996 struct sk_buff_head input_pkt_queue; 2997 struct napi_struct backlog; 2998 2999 }; 3000 3001 static inline void input_queue_head_incr(struct softnet_data *sd) 3002 { 3003 #ifdef CONFIG_RPS 3004 sd->input_queue_head++; 3005 #endif 3006 } 3007 3008 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3009 unsigned int *qtail) 3010 { 3011 #ifdef CONFIG_RPS 3012 *qtail = ++sd->input_queue_tail; 3013 #endif 3014 } 3015 3016 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3017 3018 void __netif_schedule(struct Qdisc *q); 3019 void netif_schedule_queue(struct netdev_queue *txq); 3020 3021 static inline void netif_tx_schedule_all(struct net_device *dev) 3022 { 3023 unsigned int i; 3024 3025 for (i = 0; i < dev->num_tx_queues; i++) 3026 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3027 } 3028 3029 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3030 { 3031 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3032 } 3033 3034 /** 3035 * netif_start_queue - allow transmit 3036 * @dev: network device 3037 * 3038 * Allow upper layers to call the device hard_start_xmit routine. 3039 */ 3040 static inline void netif_start_queue(struct net_device *dev) 3041 { 3042 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3043 } 3044 3045 static inline void netif_tx_start_all_queues(struct net_device *dev) 3046 { 3047 unsigned int i; 3048 3049 for (i = 0; i < dev->num_tx_queues; i++) { 3050 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3051 netif_tx_start_queue(txq); 3052 } 3053 } 3054 3055 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3056 3057 /** 3058 * netif_wake_queue - restart transmit 3059 * @dev: network device 3060 * 3061 * Allow upper layers to call the device hard_start_xmit routine. 3062 * Used for flow control when transmit resources are available. 3063 */ 3064 static inline void netif_wake_queue(struct net_device *dev) 3065 { 3066 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3067 } 3068 3069 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3070 { 3071 unsigned int i; 3072 3073 for (i = 0; i < dev->num_tx_queues; i++) { 3074 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3075 netif_tx_wake_queue(txq); 3076 } 3077 } 3078 3079 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3080 { 3081 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3082 } 3083 3084 /** 3085 * netif_stop_queue - stop transmitted packets 3086 * @dev: network device 3087 * 3088 * Stop upper layers calling the device hard_start_xmit routine. 3089 * Used for flow control when transmit resources are unavailable. 3090 */ 3091 static inline void netif_stop_queue(struct net_device *dev) 3092 { 3093 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3094 } 3095 3096 void netif_tx_stop_all_queues(struct net_device *dev); 3097 3098 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3099 { 3100 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3101 } 3102 3103 /** 3104 * netif_queue_stopped - test if transmit queue is flowblocked 3105 * @dev: network device 3106 * 3107 * Test if transmit queue on device is currently unable to send. 3108 */ 3109 static inline bool netif_queue_stopped(const struct net_device *dev) 3110 { 3111 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3112 } 3113 3114 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3115 { 3116 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3117 } 3118 3119 static inline bool 3120 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3121 { 3122 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3123 } 3124 3125 static inline bool 3126 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3127 { 3128 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3129 } 3130 3131 /** 3132 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3133 * @dev_queue: pointer to transmit queue 3134 * 3135 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3136 * to give appropriate hint to the CPU. 3137 */ 3138 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3139 { 3140 #ifdef CONFIG_BQL 3141 prefetchw(&dev_queue->dql.num_queued); 3142 #endif 3143 } 3144 3145 /** 3146 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3147 * @dev_queue: pointer to transmit queue 3148 * 3149 * BQL enabled drivers might use this helper in their TX completion path, 3150 * to give appropriate hint to the CPU. 3151 */ 3152 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3153 { 3154 #ifdef CONFIG_BQL 3155 prefetchw(&dev_queue->dql.limit); 3156 #endif 3157 } 3158 3159 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3160 unsigned int bytes) 3161 { 3162 #ifdef CONFIG_BQL 3163 dql_queued(&dev_queue->dql, bytes); 3164 3165 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3166 return; 3167 3168 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3169 3170 /* 3171 * The XOFF flag must be set before checking the dql_avail below, 3172 * because in netdev_tx_completed_queue we update the dql_completed 3173 * before checking the XOFF flag. 3174 */ 3175 smp_mb(); 3176 3177 /* check again in case another CPU has just made room avail */ 3178 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3179 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3180 #endif 3181 } 3182 3183 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3184 * that they should not test BQL status themselves. 3185 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3186 * skb of a batch. 3187 * Returns true if the doorbell must be used to kick the NIC. 3188 */ 3189 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3190 unsigned int bytes, 3191 bool xmit_more) 3192 { 3193 if (xmit_more) { 3194 #ifdef CONFIG_BQL 3195 dql_queued(&dev_queue->dql, bytes); 3196 #endif 3197 return netif_tx_queue_stopped(dev_queue); 3198 } 3199 netdev_tx_sent_queue(dev_queue, bytes); 3200 return true; 3201 } 3202 3203 /** 3204 * netdev_sent_queue - report the number of bytes queued to hardware 3205 * @dev: network device 3206 * @bytes: number of bytes queued to the hardware device queue 3207 * 3208 * Report the number of bytes queued for sending/completion to the network 3209 * device hardware queue. @bytes should be a good approximation and should 3210 * exactly match netdev_completed_queue() @bytes 3211 */ 3212 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3213 { 3214 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3215 } 3216 3217 static inline bool __netdev_sent_queue(struct net_device *dev, 3218 unsigned int bytes, 3219 bool xmit_more) 3220 { 3221 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3222 xmit_more); 3223 } 3224 3225 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3226 unsigned int pkts, unsigned int bytes) 3227 { 3228 #ifdef CONFIG_BQL 3229 if (unlikely(!bytes)) 3230 return; 3231 3232 dql_completed(&dev_queue->dql, bytes); 3233 3234 /* 3235 * Without the memory barrier there is a small possiblity that 3236 * netdev_tx_sent_queue will miss the update and cause the queue to 3237 * be stopped forever 3238 */ 3239 smp_mb(); 3240 3241 if (dql_avail(&dev_queue->dql) < 0) 3242 return; 3243 3244 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3245 netif_schedule_queue(dev_queue); 3246 #endif 3247 } 3248 3249 /** 3250 * netdev_completed_queue - report bytes and packets completed by device 3251 * @dev: network device 3252 * @pkts: actual number of packets sent over the medium 3253 * @bytes: actual number of bytes sent over the medium 3254 * 3255 * Report the number of bytes and packets transmitted by the network device 3256 * hardware queue over the physical medium, @bytes must exactly match the 3257 * @bytes amount passed to netdev_sent_queue() 3258 */ 3259 static inline void netdev_completed_queue(struct net_device *dev, 3260 unsigned int pkts, unsigned int bytes) 3261 { 3262 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3263 } 3264 3265 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3266 { 3267 #ifdef CONFIG_BQL 3268 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3269 dql_reset(&q->dql); 3270 #endif 3271 } 3272 3273 /** 3274 * netdev_reset_queue - reset the packets and bytes count of a network device 3275 * @dev_queue: network device 3276 * 3277 * Reset the bytes and packet count of a network device and clear the 3278 * software flow control OFF bit for this network device 3279 */ 3280 static inline void netdev_reset_queue(struct net_device *dev_queue) 3281 { 3282 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3283 } 3284 3285 /** 3286 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3287 * @dev: network device 3288 * @queue_index: given tx queue index 3289 * 3290 * Returns 0 if given tx queue index >= number of device tx queues, 3291 * otherwise returns the originally passed tx queue index. 3292 */ 3293 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3294 { 3295 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3296 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3297 dev->name, queue_index, 3298 dev->real_num_tx_queues); 3299 return 0; 3300 } 3301 3302 return queue_index; 3303 } 3304 3305 /** 3306 * netif_running - test if up 3307 * @dev: network device 3308 * 3309 * Test if the device has been brought up. 3310 */ 3311 static inline bool netif_running(const struct net_device *dev) 3312 { 3313 return test_bit(__LINK_STATE_START, &dev->state); 3314 } 3315 3316 /* 3317 * Routines to manage the subqueues on a device. We only need start, 3318 * stop, and a check if it's stopped. All other device management is 3319 * done at the overall netdevice level. 3320 * Also test the device if we're multiqueue. 3321 */ 3322 3323 /** 3324 * netif_start_subqueue - allow sending packets on subqueue 3325 * @dev: network device 3326 * @queue_index: sub queue index 3327 * 3328 * Start individual transmit queue of a device with multiple transmit queues. 3329 */ 3330 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3331 { 3332 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3333 3334 netif_tx_start_queue(txq); 3335 } 3336 3337 /** 3338 * netif_stop_subqueue - stop sending packets on subqueue 3339 * @dev: network device 3340 * @queue_index: sub queue index 3341 * 3342 * Stop individual transmit queue of a device with multiple transmit queues. 3343 */ 3344 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3345 { 3346 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3347 netif_tx_stop_queue(txq); 3348 } 3349 3350 /** 3351 * netif_subqueue_stopped - test status of subqueue 3352 * @dev: network device 3353 * @queue_index: sub queue index 3354 * 3355 * Check individual transmit queue of a device with multiple transmit queues. 3356 */ 3357 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3358 u16 queue_index) 3359 { 3360 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3361 3362 return netif_tx_queue_stopped(txq); 3363 } 3364 3365 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3366 struct sk_buff *skb) 3367 { 3368 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3369 } 3370 3371 /** 3372 * netif_wake_subqueue - allow sending packets on subqueue 3373 * @dev: network device 3374 * @queue_index: sub queue index 3375 * 3376 * Resume individual transmit queue of a device with multiple transmit queues. 3377 */ 3378 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3379 { 3380 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3381 3382 netif_tx_wake_queue(txq); 3383 } 3384 3385 #ifdef CONFIG_XPS 3386 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3387 u16 index); 3388 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3389 u16 index, bool is_rxqs_map); 3390 3391 /** 3392 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3393 * @j: CPU/Rx queue index 3394 * @mask: bitmask of all cpus/rx queues 3395 * @nr_bits: number of bits in the bitmask 3396 * 3397 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3398 */ 3399 static inline bool netif_attr_test_mask(unsigned long j, 3400 const unsigned long *mask, 3401 unsigned int nr_bits) 3402 { 3403 cpu_max_bits_warn(j, nr_bits); 3404 return test_bit(j, mask); 3405 } 3406 3407 /** 3408 * netif_attr_test_online - Test for online CPU/Rx queue 3409 * @j: CPU/Rx queue index 3410 * @online_mask: bitmask for CPUs/Rx queues that are online 3411 * @nr_bits: number of bits in the bitmask 3412 * 3413 * Returns true if a CPU/Rx queue is online. 3414 */ 3415 static inline bool netif_attr_test_online(unsigned long j, 3416 const unsigned long *online_mask, 3417 unsigned int nr_bits) 3418 { 3419 cpu_max_bits_warn(j, nr_bits); 3420 3421 if (online_mask) 3422 return test_bit(j, online_mask); 3423 3424 return (j < nr_bits); 3425 } 3426 3427 /** 3428 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3429 * @n: CPU/Rx queue index 3430 * @srcp: the cpumask/Rx queue mask pointer 3431 * @nr_bits: number of bits in the bitmask 3432 * 3433 * Returns >= nr_bits if no further CPUs/Rx queues set. 3434 */ 3435 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3436 unsigned int nr_bits) 3437 { 3438 /* -1 is a legal arg here. */ 3439 if (n != -1) 3440 cpu_max_bits_warn(n, nr_bits); 3441 3442 if (srcp) 3443 return find_next_bit(srcp, nr_bits, n + 1); 3444 3445 return n + 1; 3446 } 3447 3448 /** 3449 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3450 * @n: CPU/Rx queue index 3451 * @src1p: the first CPUs/Rx queues mask pointer 3452 * @src2p: the second CPUs/Rx queues mask pointer 3453 * @nr_bits: number of bits in the bitmask 3454 * 3455 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3456 */ 3457 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3458 const unsigned long *src2p, 3459 unsigned int nr_bits) 3460 { 3461 /* -1 is a legal arg here. */ 3462 if (n != -1) 3463 cpu_max_bits_warn(n, nr_bits); 3464 3465 if (src1p && src2p) 3466 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3467 else if (src1p) 3468 return find_next_bit(src1p, nr_bits, n + 1); 3469 else if (src2p) 3470 return find_next_bit(src2p, nr_bits, n + 1); 3471 3472 return n + 1; 3473 } 3474 #else 3475 static inline int netif_set_xps_queue(struct net_device *dev, 3476 const struct cpumask *mask, 3477 u16 index) 3478 { 3479 return 0; 3480 } 3481 3482 static inline int __netif_set_xps_queue(struct net_device *dev, 3483 const unsigned long *mask, 3484 u16 index, bool is_rxqs_map) 3485 { 3486 return 0; 3487 } 3488 #endif 3489 3490 /** 3491 * netif_is_multiqueue - test if device has multiple transmit queues 3492 * @dev: network device 3493 * 3494 * Check if device has multiple transmit queues 3495 */ 3496 static inline bool netif_is_multiqueue(const struct net_device *dev) 3497 { 3498 return dev->num_tx_queues > 1; 3499 } 3500 3501 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3502 3503 #ifdef CONFIG_SYSFS 3504 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3505 #else 3506 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3507 unsigned int rxqs) 3508 { 3509 dev->real_num_rx_queues = rxqs; 3510 return 0; 3511 } 3512 #endif 3513 3514 static inline struct netdev_rx_queue * 3515 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3516 { 3517 return dev->_rx + rxq; 3518 } 3519 3520 #ifdef CONFIG_SYSFS 3521 static inline unsigned int get_netdev_rx_queue_index( 3522 struct netdev_rx_queue *queue) 3523 { 3524 struct net_device *dev = queue->dev; 3525 int index = queue - dev->_rx; 3526 3527 BUG_ON(index >= dev->num_rx_queues); 3528 return index; 3529 } 3530 #endif 3531 3532 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3533 int netif_get_num_default_rss_queues(void); 3534 3535 enum skb_free_reason { 3536 SKB_REASON_CONSUMED, 3537 SKB_REASON_DROPPED, 3538 }; 3539 3540 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3541 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3542 3543 /* 3544 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3545 * interrupt context or with hardware interrupts being disabled. 3546 * (in_irq() || irqs_disabled()) 3547 * 3548 * We provide four helpers that can be used in following contexts : 3549 * 3550 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3551 * replacing kfree_skb(skb) 3552 * 3553 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3554 * Typically used in place of consume_skb(skb) in TX completion path 3555 * 3556 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3557 * replacing kfree_skb(skb) 3558 * 3559 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3560 * and consumed a packet. Used in place of consume_skb(skb) 3561 */ 3562 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3563 { 3564 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3565 } 3566 3567 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3568 { 3569 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3570 } 3571 3572 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3573 { 3574 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3575 } 3576 3577 static inline void dev_consume_skb_any(struct sk_buff *skb) 3578 { 3579 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3580 } 3581 3582 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3583 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3584 int netif_rx(struct sk_buff *skb); 3585 int netif_rx_ni(struct sk_buff *skb); 3586 int netif_receive_skb(struct sk_buff *skb); 3587 int netif_receive_skb_core(struct sk_buff *skb); 3588 void netif_receive_skb_list(struct list_head *head); 3589 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3590 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3591 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3592 gro_result_t napi_gro_frags(struct napi_struct *napi); 3593 struct packet_offload *gro_find_receive_by_type(__be16 type); 3594 struct packet_offload *gro_find_complete_by_type(__be16 type); 3595 3596 static inline void napi_free_frags(struct napi_struct *napi) 3597 { 3598 kfree_skb(napi->skb); 3599 napi->skb = NULL; 3600 } 3601 3602 bool netdev_is_rx_handler_busy(struct net_device *dev); 3603 int netdev_rx_handler_register(struct net_device *dev, 3604 rx_handler_func_t *rx_handler, 3605 void *rx_handler_data); 3606 void netdev_rx_handler_unregister(struct net_device *dev); 3607 3608 bool dev_valid_name(const char *name); 3609 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3610 bool *need_copyout); 3611 int dev_ifconf(struct net *net, struct ifconf *, int); 3612 int dev_ethtool(struct net *net, struct ifreq *); 3613 unsigned int dev_get_flags(const struct net_device *); 3614 int __dev_change_flags(struct net_device *, unsigned int flags); 3615 int dev_change_flags(struct net_device *, unsigned int); 3616 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3617 unsigned int gchanges); 3618 int dev_change_name(struct net_device *, const char *); 3619 int dev_set_alias(struct net_device *, const char *, size_t); 3620 int dev_get_alias(const struct net_device *, char *, size_t); 3621 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3622 int __dev_set_mtu(struct net_device *, int); 3623 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3624 struct netlink_ext_ack *extack); 3625 int dev_set_mtu(struct net_device *, int); 3626 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3627 void dev_set_group(struct net_device *, int); 3628 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3629 int dev_change_carrier(struct net_device *, bool new_carrier); 3630 int dev_get_phys_port_id(struct net_device *dev, 3631 struct netdev_phys_item_id *ppid); 3632 int dev_get_phys_port_name(struct net_device *dev, 3633 char *name, size_t len); 3634 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3635 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3636 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3637 struct netdev_queue *txq, int *ret); 3638 3639 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3640 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3641 int fd, u32 flags); 3642 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3643 enum bpf_netdev_command cmd); 3644 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3645 3646 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3647 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3648 bool is_skb_forwardable(const struct net_device *dev, 3649 const struct sk_buff *skb); 3650 3651 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3652 struct sk_buff *skb) 3653 { 3654 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3655 unlikely(!is_skb_forwardable(dev, skb))) { 3656 atomic_long_inc(&dev->rx_dropped); 3657 kfree_skb(skb); 3658 return NET_RX_DROP; 3659 } 3660 3661 skb_scrub_packet(skb, true); 3662 skb->priority = 0; 3663 return 0; 3664 } 3665 3666 bool dev_nit_active(struct net_device *dev); 3667 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3668 3669 extern int netdev_budget; 3670 extern unsigned int netdev_budget_usecs; 3671 3672 /* Called by rtnetlink.c:rtnl_unlock() */ 3673 void netdev_run_todo(void); 3674 3675 /** 3676 * dev_put - release reference to device 3677 * @dev: network device 3678 * 3679 * Release reference to device to allow it to be freed. 3680 */ 3681 static inline void dev_put(struct net_device *dev) 3682 { 3683 this_cpu_dec(*dev->pcpu_refcnt); 3684 } 3685 3686 /** 3687 * dev_hold - get reference to device 3688 * @dev: network device 3689 * 3690 * Hold reference to device to keep it from being freed. 3691 */ 3692 static inline void dev_hold(struct net_device *dev) 3693 { 3694 this_cpu_inc(*dev->pcpu_refcnt); 3695 } 3696 3697 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3698 * and _off may be called from IRQ context, but it is caller 3699 * who is responsible for serialization of these calls. 3700 * 3701 * The name carrier is inappropriate, these functions should really be 3702 * called netif_lowerlayer_*() because they represent the state of any 3703 * kind of lower layer not just hardware media. 3704 */ 3705 3706 void linkwatch_init_dev(struct net_device *dev); 3707 void linkwatch_fire_event(struct net_device *dev); 3708 void linkwatch_forget_dev(struct net_device *dev); 3709 3710 /** 3711 * netif_carrier_ok - test if carrier present 3712 * @dev: network device 3713 * 3714 * Check if carrier is present on device 3715 */ 3716 static inline bool netif_carrier_ok(const struct net_device *dev) 3717 { 3718 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3719 } 3720 3721 unsigned long dev_trans_start(struct net_device *dev); 3722 3723 void __netdev_watchdog_up(struct net_device *dev); 3724 3725 void netif_carrier_on(struct net_device *dev); 3726 3727 void netif_carrier_off(struct net_device *dev); 3728 3729 /** 3730 * netif_dormant_on - mark device as dormant. 3731 * @dev: network device 3732 * 3733 * Mark device as dormant (as per RFC2863). 3734 * 3735 * The dormant state indicates that the relevant interface is not 3736 * actually in a condition to pass packets (i.e., it is not 'up') but is 3737 * in a "pending" state, waiting for some external event. For "on- 3738 * demand" interfaces, this new state identifies the situation where the 3739 * interface is waiting for events to place it in the up state. 3740 */ 3741 static inline void netif_dormant_on(struct net_device *dev) 3742 { 3743 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3744 linkwatch_fire_event(dev); 3745 } 3746 3747 /** 3748 * netif_dormant_off - set device as not dormant. 3749 * @dev: network device 3750 * 3751 * Device is not in dormant state. 3752 */ 3753 static inline void netif_dormant_off(struct net_device *dev) 3754 { 3755 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3756 linkwatch_fire_event(dev); 3757 } 3758 3759 /** 3760 * netif_dormant - test if device is dormant 3761 * @dev: network device 3762 * 3763 * Check if device is dormant. 3764 */ 3765 static inline bool netif_dormant(const struct net_device *dev) 3766 { 3767 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3768 } 3769 3770 3771 /** 3772 * netif_oper_up - test if device is operational 3773 * @dev: network device 3774 * 3775 * Check if carrier is operational 3776 */ 3777 static inline bool netif_oper_up(const struct net_device *dev) 3778 { 3779 return (dev->operstate == IF_OPER_UP || 3780 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3781 } 3782 3783 /** 3784 * netif_device_present - is device available or removed 3785 * @dev: network device 3786 * 3787 * Check if device has not been removed from system. 3788 */ 3789 static inline bool netif_device_present(struct net_device *dev) 3790 { 3791 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3792 } 3793 3794 void netif_device_detach(struct net_device *dev); 3795 3796 void netif_device_attach(struct net_device *dev); 3797 3798 /* 3799 * Network interface message level settings 3800 */ 3801 3802 enum { 3803 NETIF_MSG_DRV = 0x0001, 3804 NETIF_MSG_PROBE = 0x0002, 3805 NETIF_MSG_LINK = 0x0004, 3806 NETIF_MSG_TIMER = 0x0008, 3807 NETIF_MSG_IFDOWN = 0x0010, 3808 NETIF_MSG_IFUP = 0x0020, 3809 NETIF_MSG_RX_ERR = 0x0040, 3810 NETIF_MSG_TX_ERR = 0x0080, 3811 NETIF_MSG_TX_QUEUED = 0x0100, 3812 NETIF_MSG_INTR = 0x0200, 3813 NETIF_MSG_TX_DONE = 0x0400, 3814 NETIF_MSG_RX_STATUS = 0x0800, 3815 NETIF_MSG_PKTDATA = 0x1000, 3816 NETIF_MSG_HW = 0x2000, 3817 NETIF_MSG_WOL = 0x4000, 3818 }; 3819 3820 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3821 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3822 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3823 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3824 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3825 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3826 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3827 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3828 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3829 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3830 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3831 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3832 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3833 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3834 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3835 3836 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3837 { 3838 /* use default */ 3839 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3840 return default_msg_enable_bits; 3841 if (debug_value == 0) /* no output */ 3842 return 0; 3843 /* set low N bits */ 3844 return (1 << debug_value) - 1; 3845 } 3846 3847 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3848 { 3849 spin_lock(&txq->_xmit_lock); 3850 txq->xmit_lock_owner = cpu; 3851 } 3852 3853 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3854 { 3855 __acquire(&txq->_xmit_lock); 3856 return true; 3857 } 3858 3859 static inline void __netif_tx_release(struct netdev_queue *txq) 3860 { 3861 __release(&txq->_xmit_lock); 3862 } 3863 3864 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3865 { 3866 spin_lock_bh(&txq->_xmit_lock); 3867 txq->xmit_lock_owner = smp_processor_id(); 3868 } 3869 3870 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3871 { 3872 bool ok = spin_trylock(&txq->_xmit_lock); 3873 if (likely(ok)) 3874 txq->xmit_lock_owner = smp_processor_id(); 3875 return ok; 3876 } 3877 3878 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3879 { 3880 txq->xmit_lock_owner = -1; 3881 spin_unlock(&txq->_xmit_lock); 3882 } 3883 3884 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3885 { 3886 txq->xmit_lock_owner = -1; 3887 spin_unlock_bh(&txq->_xmit_lock); 3888 } 3889 3890 static inline void txq_trans_update(struct netdev_queue *txq) 3891 { 3892 if (txq->xmit_lock_owner != -1) 3893 txq->trans_start = jiffies; 3894 } 3895 3896 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3897 static inline void netif_trans_update(struct net_device *dev) 3898 { 3899 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3900 3901 if (txq->trans_start != jiffies) 3902 txq->trans_start = jiffies; 3903 } 3904 3905 /** 3906 * netif_tx_lock - grab network device transmit lock 3907 * @dev: network device 3908 * 3909 * Get network device transmit lock 3910 */ 3911 static inline void netif_tx_lock(struct net_device *dev) 3912 { 3913 unsigned int i; 3914 int cpu; 3915 3916 spin_lock(&dev->tx_global_lock); 3917 cpu = smp_processor_id(); 3918 for (i = 0; i < dev->num_tx_queues; i++) { 3919 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3920 3921 /* We are the only thread of execution doing a 3922 * freeze, but we have to grab the _xmit_lock in 3923 * order to synchronize with threads which are in 3924 * the ->hard_start_xmit() handler and already 3925 * checked the frozen bit. 3926 */ 3927 __netif_tx_lock(txq, cpu); 3928 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3929 __netif_tx_unlock(txq); 3930 } 3931 } 3932 3933 static inline void netif_tx_lock_bh(struct net_device *dev) 3934 { 3935 local_bh_disable(); 3936 netif_tx_lock(dev); 3937 } 3938 3939 static inline void netif_tx_unlock(struct net_device *dev) 3940 { 3941 unsigned int i; 3942 3943 for (i = 0; i < dev->num_tx_queues; i++) { 3944 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3945 3946 /* No need to grab the _xmit_lock here. If the 3947 * queue is not stopped for another reason, we 3948 * force a schedule. 3949 */ 3950 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3951 netif_schedule_queue(txq); 3952 } 3953 spin_unlock(&dev->tx_global_lock); 3954 } 3955 3956 static inline void netif_tx_unlock_bh(struct net_device *dev) 3957 { 3958 netif_tx_unlock(dev); 3959 local_bh_enable(); 3960 } 3961 3962 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3963 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3964 __netif_tx_lock(txq, cpu); \ 3965 } else { \ 3966 __netif_tx_acquire(txq); \ 3967 } \ 3968 } 3969 3970 #define HARD_TX_TRYLOCK(dev, txq) \ 3971 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3972 __netif_tx_trylock(txq) : \ 3973 __netif_tx_acquire(txq)) 3974 3975 #define HARD_TX_UNLOCK(dev, txq) { \ 3976 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3977 __netif_tx_unlock(txq); \ 3978 } else { \ 3979 __netif_tx_release(txq); \ 3980 } \ 3981 } 3982 3983 static inline void netif_tx_disable(struct net_device *dev) 3984 { 3985 unsigned int i; 3986 int cpu; 3987 3988 local_bh_disable(); 3989 cpu = smp_processor_id(); 3990 for (i = 0; i < dev->num_tx_queues; i++) { 3991 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3992 3993 __netif_tx_lock(txq, cpu); 3994 netif_tx_stop_queue(txq); 3995 __netif_tx_unlock(txq); 3996 } 3997 local_bh_enable(); 3998 } 3999 4000 static inline void netif_addr_lock(struct net_device *dev) 4001 { 4002 spin_lock(&dev->addr_list_lock); 4003 } 4004 4005 static inline void netif_addr_lock_nested(struct net_device *dev) 4006 { 4007 int subclass = SINGLE_DEPTH_NESTING; 4008 4009 if (dev->netdev_ops->ndo_get_lock_subclass) 4010 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4011 4012 spin_lock_nested(&dev->addr_list_lock, subclass); 4013 } 4014 4015 static inline void netif_addr_lock_bh(struct net_device *dev) 4016 { 4017 spin_lock_bh(&dev->addr_list_lock); 4018 } 4019 4020 static inline void netif_addr_unlock(struct net_device *dev) 4021 { 4022 spin_unlock(&dev->addr_list_lock); 4023 } 4024 4025 static inline void netif_addr_unlock_bh(struct net_device *dev) 4026 { 4027 spin_unlock_bh(&dev->addr_list_lock); 4028 } 4029 4030 /* 4031 * dev_addrs walker. Should be used only for read access. Call with 4032 * rcu_read_lock held. 4033 */ 4034 #define for_each_dev_addr(dev, ha) \ 4035 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4036 4037 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4038 4039 void ether_setup(struct net_device *dev); 4040 4041 /* Support for loadable net-drivers */ 4042 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4043 unsigned char name_assign_type, 4044 void (*setup)(struct net_device *), 4045 unsigned int txqs, unsigned int rxqs); 4046 int dev_get_valid_name(struct net *net, struct net_device *dev, 4047 const char *name); 4048 4049 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4050 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4051 4052 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4053 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4054 count) 4055 4056 int register_netdev(struct net_device *dev); 4057 void unregister_netdev(struct net_device *dev); 4058 4059 /* General hardware address lists handling functions */ 4060 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4061 struct netdev_hw_addr_list *from_list, int addr_len); 4062 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4063 struct netdev_hw_addr_list *from_list, int addr_len); 4064 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4065 struct net_device *dev, 4066 int (*sync)(struct net_device *, const unsigned char *), 4067 int (*unsync)(struct net_device *, 4068 const unsigned char *)); 4069 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4070 struct net_device *dev, 4071 int (*sync)(struct net_device *, 4072 const unsigned char *, int), 4073 int (*unsync)(struct net_device *, 4074 const unsigned char *, int)); 4075 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4076 struct net_device *dev, 4077 int (*unsync)(struct net_device *, 4078 const unsigned char *, int)); 4079 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4080 struct net_device *dev, 4081 int (*unsync)(struct net_device *, 4082 const unsigned char *)); 4083 void __hw_addr_init(struct netdev_hw_addr_list *list); 4084 4085 /* Functions used for device addresses handling */ 4086 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4087 unsigned char addr_type); 4088 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4089 unsigned char addr_type); 4090 void dev_addr_flush(struct net_device *dev); 4091 int dev_addr_init(struct net_device *dev); 4092 4093 /* Functions used for unicast addresses handling */ 4094 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4095 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4096 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4097 int dev_uc_sync(struct net_device *to, struct net_device *from); 4098 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4099 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4100 void dev_uc_flush(struct net_device *dev); 4101 void dev_uc_init(struct net_device *dev); 4102 4103 /** 4104 * __dev_uc_sync - Synchonize device's unicast list 4105 * @dev: device to sync 4106 * @sync: function to call if address should be added 4107 * @unsync: function to call if address should be removed 4108 * 4109 * Add newly added addresses to the interface, and release 4110 * addresses that have been deleted. 4111 */ 4112 static inline int __dev_uc_sync(struct net_device *dev, 4113 int (*sync)(struct net_device *, 4114 const unsigned char *), 4115 int (*unsync)(struct net_device *, 4116 const unsigned char *)) 4117 { 4118 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4119 } 4120 4121 /** 4122 * __dev_uc_unsync - Remove synchronized addresses from device 4123 * @dev: device to sync 4124 * @unsync: function to call if address should be removed 4125 * 4126 * Remove all addresses that were added to the device by dev_uc_sync(). 4127 */ 4128 static inline void __dev_uc_unsync(struct net_device *dev, 4129 int (*unsync)(struct net_device *, 4130 const unsigned char *)) 4131 { 4132 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4133 } 4134 4135 /* Functions used for multicast addresses handling */ 4136 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4137 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4138 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4139 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4140 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4141 int dev_mc_sync(struct net_device *to, struct net_device *from); 4142 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4143 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4144 void dev_mc_flush(struct net_device *dev); 4145 void dev_mc_init(struct net_device *dev); 4146 4147 /** 4148 * __dev_mc_sync - Synchonize device's multicast list 4149 * @dev: device to sync 4150 * @sync: function to call if address should be added 4151 * @unsync: function to call if address should be removed 4152 * 4153 * Add newly added addresses to the interface, and release 4154 * addresses that have been deleted. 4155 */ 4156 static inline int __dev_mc_sync(struct net_device *dev, 4157 int (*sync)(struct net_device *, 4158 const unsigned char *), 4159 int (*unsync)(struct net_device *, 4160 const unsigned char *)) 4161 { 4162 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4163 } 4164 4165 /** 4166 * __dev_mc_unsync - Remove synchronized addresses from device 4167 * @dev: device to sync 4168 * @unsync: function to call if address should be removed 4169 * 4170 * Remove all addresses that were added to the device by dev_mc_sync(). 4171 */ 4172 static inline void __dev_mc_unsync(struct net_device *dev, 4173 int (*unsync)(struct net_device *, 4174 const unsigned char *)) 4175 { 4176 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4177 } 4178 4179 /* Functions used for secondary unicast and multicast support */ 4180 void dev_set_rx_mode(struct net_device *dev); 4181 void __dev_set_rx_mode(struct net_device *dev); 4182 int dev_set_promiscuity(struct net_device *dev, int inc); 4183 int dev_set_allmulti(struct net_device *dev, int inc); 4184 void netdev_state_change(struct net_device *dev); 4185 void netdev_notify_peers(struct net_device *dev); 4186 void netdev_features_change(struct net_device *dev); 4187 /* Load a device via the kmod */ 4188 void dev_load(struct net *net, const char *name); 4189 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4190 struct rtnl_link_stats64 *storage); 4191 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4192 const struct net_device_stats *netdev_stats); 4193 4194 extern int netdev_max_backlog; 4195 extern int netdev_tstamp_prequeue; 4196 extern int weight_p; 4197 extern int dev_weight_rx_bias; 4198 extern int dev_weight_tx_bias; 4199 extern int dev_rx_weight; 4200 extern int dev_tx_weight; 4201 4202 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4203 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4204 struct list_head **iter); 4205 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4206 struct list_head **iter); 4207 4208 /* iterate through upper list, must be called under RCU read lock */ 4209 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4210 for (iter = &(dev)->adj_list.upper, \ 4211 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4212 updev; \ 4213 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4214 4215 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4216 int (*fn)(struct net_device *upper_dev, 4217 void *data), 4218 void *data); 4219 4220 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4221 struct net_device *upper_dev); 4222 4223 bool netdev_has_any_upper_dev(struct net_device *dev); 4224 4225 void *netdev_lower_get_next_private(struct net_device *dev, 4226 struct list_head **iter); 4227 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4228 struct list_head **iter); 4229 4230 #define netdev_for_each_lower_private(dev, priv, iter) \ 4231 for (iter = (dev)->adj_list.lower.next, \ 4232 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4233 priv; \ 4234 priv = netdev_lower_get_next_private(dev, &(iter))) 4235 4236 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4237 for (iter = &(dev)->adj_list.lower, \ 4238 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4239 priv; \ 4240 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4241 4242 void *netdev_lower_get_next(struct net_device *dev, 4243 struct list_head **iter); 4244 4245 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4246 for (iter = (dev)->adj_list.lower.next, \ 4247 ldev = netdev_lower_get_next(dev, &(iter)); \ 4248 ldev; \ 4249 ldev = netdev_lower_get_next(dev, &(iter))) 4250 4251 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4252 struct list_head **iter); 4253 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4254 struct list_head **iter); 4255 4256 int netdev_walk_all_lower_dev(struct net_device *dev, 4257 int (*fn)(struct net_device *lower_dev, 4258 void *data), 4259 void *data); 4260 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4261 int (*fn)(struct net_device *lower_dev, 4262 void *data), 4263 void *data); 4264 4265 void *netdev_adjacent_get_private(struct list_head *adj_list); 4266 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4267 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4268 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4269 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4270 struct netlink_ext_ack *extack); 4271 int netdev_master_upper_dev_link(struct net_device *dev, 4272 struct net_device *upper_dev, 4273 void *upper_priv, void *upper_info, 4274 struct netlink_ext_ack *extack); 4275 void netdev_upper_dev_unlink(struct net_device *dev, 4276 struct net_device *upper_dev); 4277 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4278 void *netdev_lower_dev_get_private(struct net_device *dev, 4279 struct net_device *lower_dev); 4280 void netdev_lower_state_changed(struct net_device *lower_dev, 4281 void *lower_state_info); 4282 4283 /* RSS keys are 40 or 52 bytes long */ 4284 #define NETDEV_RSS_KEY_LEN 52 4285 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4286 void netdev_rss_key_fill(void *buffer, size_t len); 4287 4288 int dev_get_nest_level(struct net_device *dev); 4289 int skb_checksum_help(struct sk_buff *skb); 4290 int skb_crc32c_csum_help(struct sk_buff *skb); 4291 int skb_csum_hwoffload_help(struct sk_buff *skb, 4292 const netdev_features_t features); 4293 4294 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4295 netdev_features_t features, bool tx_path); 4296 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4297 netdev_features_t features); 4298 4299 struct netdev_bonding_info { 4300 ifslave slave; 4301 ifbond master; 4302 }; 4303 4304 struct netdev_notifier_bonding_info { 4305 struct netdev_notifier_info info; /* must be first */ 4306 struct netdev_bonding_info bonding_info; 4307 }; 4308 4309 void netdev_bonding_info_change(struct net_device *dev, 4310 struct netdev_bonding_info *bonding_info); 4311 4312 static inline 4313 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4314 { 4315 return __skb_gso_segment(skb, features, true); 4316 } 4317 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4318 4319 static inline bool can_checksum_protocol(netdev_features_t features, 4320 __be16 protocol) 4321 { 4322 if (protocol == htons(ETH_P_FCOE)) 4323 return !!(features & NETIF_F_FCOE_CRC); 4324 4325 /* Assume this is an IP checksum (not SCTP CRC) */ 4326 4327 if (features & NETIF_F_HW_CSUM) { 4328 /* Can checksum everything */ 4329 return true; 4330 } 4331 4332 switch (protocol) { 4333 case htons(ETH_P_IP): 4334 return !!(features & NETIF_F_IP_CSUM); 4335 case htons(ETH_P_IPV6): 4336 return !!(features & NETIF_F_IPV6_CSUM); 4337 default: 4338 return false; 4339 } 4340 } 4341 4342 #ifdef CONFIG_BUG 4343 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4344 #else 4345 static inline void netdev_rx_csum_fault(struct net_device *dev, 4346 struct sk_buff *skb) 4347 { 4348 } 4349 #endif 4350 /* rx skb timestamps */ 4351 void net_enable_timestamp(void); 4352 void net_disable_timestamp(void); 4353 4354 #ifdef CONFIG_PROC_FS 4355 int __init dev_proc_init(void); 4356 #else 4357 #define dev_proc_init() 0 4358 #endif 4359 4360 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4361 struct sk_buff *skb, struct net_device *dev, 4362 bool more) 4363 { 4364 skb->xmit_more = more ? 1 : 0; 4365 return ops->ndo_start_xmit(skb, dev); 4366 } 4367 4368 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4369 struct netdev_queue *txq, bool more) 4370 { 4371 const struct net_device_ops *ops = dev->netdev_ops; 4372 netdev_tx_t rc; 4373 4374 rc = __netdev_start_xmit(ops, skb, dev, more); 4375 if (rc == NETDEV_TX_OK) 4376 txq_trans_update(txq); 4377 4378 return rc; 4379 } 4380 4381 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4382 const void *ns); 4383 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4384 const void *ns); 4385 4386 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4387 { 4388 return netdev_class_create_file_ns(class_attr, NULL); 4389 } 4390 4391 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4392 { 4393 netdev_class_remove_file_ns(class_attr, NULL); 4394 } 4395 4396 extern const struct kobj_ns_type_operations net_ns_type_operations; 4397 4398 const char *netdev_drivername(const struct net_device *dev); 4399 4400 void linkwatch_run_queue(void); 4401 4402 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4403 netdev_features_t f2) 4404 { 4405 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4406 if (f1 & NETIF_F_HW_CSUM) 4407 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4408 else 4409 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4410 } 4411 4412 return f1 & f2; 4413 } 4414 4415 static inline netdev_features_t netdev_get_wanted_features( 4416 struct net_device *dev) 4417 { 4418 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4419 } 4420 netdev_features_t netdev_increment_features(netdev_features_t all, 4421 netdev_features_t one, netdev_features_t mask); 4422 4423 /* Allow TSO being used on stacked device : 4424 * Performing the GSO segmentation before last device 4425 * is a performance improvement. 4426 */ 4427 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4428 netdev_features_t mask) 4429 { 4430 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4431 } 4432 4433 int __netdev_update_features(struct net_device *dev); 4434 void netdev_update_features(struct net_device *dev); 4435 void netdev_change_features(struct net_device *dev); 4436 4437 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4438 struct net_device *dev); 4439 4440 netdev_features_t passthru_features_check(struct sk_buff *skb, 4441 struct net_device *dev, 4442 netdev_features_t features); 4443 netdev_features_t netif_skb_features(struct sk_buff *skb); 4444 4445 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4446 { 4447 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4448 4449 /* check flags correspondence */ 4450 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4451 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4452 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4453 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4454 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4455 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4456 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4457 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4458 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4459 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4460 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4461 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4462 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4463 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4464 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4465 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4466 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4467 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4468 4469 return (features & feature) == feature; 4470 } 4471 4472 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4473 { 4474 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4475 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4476 } 4477 4478 static inline bool netif_needs_gso(struct sk_buff *skb, 4479 netdev_features_t features) 4480 { 4481 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4482 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4483 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4484 } 4485 4486 static inline void netif_set_gso_max_size(struct net_device *dev, 4487 unsigned int size) 4488 { 4489 dev->gso_max_size = size; 4490 } 4491 4492 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4493 int pulled_hlen, u16 mac_offset, 4494 int mac_len) 4495 { 4496 skb->protocol = protocol; 4497 skb->encapsulation = 1; 4498 skb_push(skb, pulled_hlen); 4499 skb_reset_transport_header(skb); 4500 skb->mac_header = mac_offset; 4501 skb->network_header = skb->mac_header + mac_len; 4502 skb->mac_len = mac_len; 4503 } 4504 4505 static inline bool netif_is_macsec(const struct net_device *dev) 4506 { 4507 return dev->priv_flags & IFF_MACSEC; 4508 } 4509 4510 static inline bool netif_is_macvlan(const struct net_device *dev) 4511 { 4512 return dev->priv_flags & IFF_MACVLAN; 4513 } 4514 4515 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4516 { 4517 return dev->priv_flags & IFF_MACVLAN_PORT; 4518 } 4519 4520 static inline bool netif_is_bond_master(const struct net_device *dev) 4521 { 4522 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4523 } 4524 4525 static inline bool netif_is_bond_slave(const struct net_device *dev) 4526 { 4527 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4528 } 4529 4530 static inline bool netif_supports_nofcs(struct net_device *dev) 4531 { 4532 return dev->priv_flags & IFF_SUPP_NOFCS; 4533 } 4534 4535 static inline bool netif_is_l3_master(const struct net_device *dev) 4536 { 4537 return dev->priv_flags & IFF_L3MDEV_MASTER; 4538 } 4539 4540 static inline bool netif_is_l3_slave(const struct net_device *dev) 4541 { 4542 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4543 } 4544 4545 static inline bool netif_is_bridge_master(const struct net_device *dev) 4546 { 4547 return dev->priv_flags & IFF_EBRIDGE; 4548 } 4549 4550 static inline bool netif_is_bridge_port(const struct net_device *dev) 4551 { 4552 return dev->priv_flags & IFF_BRIDGE_PORT; 4553 } 4554 4555 static inline bool netif_is_ovs_master(const struct net_device *dev) 4556 { 4557 return dev->priv_flags & IFF_OPENVSWITCH; 4558 } 4559 4560 static inline bool netif_is_ovs_port(const struct net_device *dev) 4561 { 4562 return dev->priv_flags & IFF_OVS_DATAPATH; 4563 } 4564 4565 static inline bool netif_is_team_master(const struct net_device *dev) 4566 { 4567 return dev->priv_flags & IFF_TEAM; 4568 } 4569 4570 static inline bool netif_is_team_port(const struct net_device *dev) 4571 { 4572 return dev->priv_flags & IFF_TEAM_PORT; 4573 } 4574 4575 static inline bool netif_is_lag_master(const struct net_device *dev) 4576 { 4577 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4578 } 4579 4580 static inline bool netif_is_lag_port(const struct net_device *dev) 4581 { 4582 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4583 } 4584 4585 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4586 { 4587 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4588 } 4589 4590 static inline bool netif_is_failover(const struct net_device *dev) 4591 { 4592 return dev->priv_flags & IFF_FAILOVER; 4593 } 4594 4595 static inline bool netif_is_failover_slave(const struct net_device *dev) 4596 { 4597 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4598 } 4599 4600 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4601 static inline void netif_keep_dst(struct net_device *dev) 4602 { 4603 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4604 } 4605 4606 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4607 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4608 { 4609 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4610 return dev->priv_flags & IFF_MACSEC; 4611 } 4612 4613 extern struct pernet_operations __net_initdata loopback_net_ops; 4614 4615 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4616 4617 /* netdev_printk helpers, similar to dev_printk */ 4618 4619 static inline const char *netdev_name(const struct net_device *dev) 4620 { 4621 if (!dev->name[0] || strchr(dev->name, '%')) 4622 return "(unnamed net_device)"; 4623 return dev->name; 4624 } 4625 4626 static inline bool netdev_unregistering(const struct net_device *dev) 4627 { 4628 return dev->reg_state == NETREG_UNREGISTERING; 4629 } 4630 4631 static inline const char *netdev_reg_state(const struct net_device *dev) 4632 { 4633 switch (dev->reg_state) { 4634 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4635 case NETREG_REGISTERED: return ""; 4636 case NETREG_UNREGISTERING: return " (unregistering)"; 4637 case NETREG_UNREGISTERED: return " (unregistered)"; 4638 case NETREG_RELEASED: return " (released)"; 4639 case NETREG_DUMMY: return " (dummy)"; 4640 } 4641 4642 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4643 return " (unknown)"; 4644 } 4645 4646 __printf(3, 4) 4647 void netdev_printk(const char *level, const struct net_device *dev, 4648 const char *format, ...); 4649 __printf(2, 3) 4650 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4651 __printf(2, 3) 4652 void netdev_alert(const struct net_device *dev, const char *format, ...); 4653 __printf(2, 3) 4654 void netdev_crit(const struct net_device *dev, const char *format, ...); 4655 __printf(2, 3) 4656 void netdev_err(const struct net_device *dev, const char *format, ...); 4657 __printf(2, 3) 4658 void netdev_warn(const struct net_device *dev, const char *format, ...); 4659 __printf(2, 3) 4660 void netdev_notice(const struct net_device *dev, const char *format, ...); 4661 __printf(2, 3) 4662 void netdev_info(const struct net_device *dev, const char *format, ...); 4663 4664 #define netdev_level_once(level, dev, fmt, ...) \ 4665 do { \ 4666 static bool __print_once __read_mostly; \ 4667 \ 4668 if (!__print_once) { \ 4669 __print_once = true; \ 4670 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4671 } \ 4672 } while (0) 4673 4674 #define netdev_emerg_once(dev, fmt, ...) \ 4675 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4676 #define netdev_alert_once(dev, fmt, ...) \ 4677 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4678 #define netdev_crit_once(dev, fmt, ...) \ 4679 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4680 #define netdev_err_once(dev, fmt, ...) \ 4681 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4682 #define netdev_warn_once(dev, fmt, ...) \ 4683 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4684 #define netdev_notice_once(dev, fmt, ...) \ 4685 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4686 #define netdev_info_once(dev, fmt, ...) \ 4687 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4688 4689 #define MODULE_ALIAS_NETDEV(device) \ 4690 MODULE_ALIAS("netdev-" device) 4691 4692 #if defined(CONFIG_DYNAMIC_DEBUG) 4693 #define netdev_dbg(__dev, format, args...) \ 4694 do { \ 4695 dynamic_netdev_dbg(__dev, format, ##args); \ 4696 } while (0) 4697 #elif defined(DEBUG) 4698 #define netdev_dbg(__dev, format, args...) \ 4699 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4700 #else 4701 #define netdev_dbg(__dev, format, args...) \ 4702 ({ \ 4703 if (0) \ 4704 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4705 }) 4706 #endif 4707 4708 #if defined(VERBOSE_DEBUG) 4709 #define netdev_vdbg netdev_dbg 4710 #else 4711 4712 #define netdev_vdbg(dev, format, args...) \ 4713 ({ \ 4714 if (0) \ 4715 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4716 0; \ 4717 }) 4718 #endif 4719 4720 /* 4721 * netdev_WARN() acts like dev_printk(), but with the key difference 4722 * of using a WARN/WARN_ON to get the message out, including the 4723 * file/line information and a backtrace. 4724 */ 4725 #define netdev_WARN(dev, format, args...) \ 4726 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4727 netdev_reg_state(dev), ##args) 4728 4729 #define netdev_WARN_ONCE(dev, format, args...) \ 4730 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4731 netdev_reg_state(dev), ##args) 4732 4733 /* netif printk helpers, similar to netdev_printk */ 4734 4735 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4736 do { \ 4737 if (netif_msg_##type(priv)) \ 4738 netdev_printk(level, (dev), fmt, ##args); \ 4739 } while (0) 4740 4741 #define netif_level(level, priv, type, dev, fmt, args...) \ 4742 do { \ 4743 if (netif_msg_##type(priv)) \ 4744 netdev_##level(dev, fmt, ##args); \ 4745 } while (0) 4746 4747 #define netif_emerg(priv, type, dev, fmt, args...) \ 4748 netif_level(emerg, priv, type, dev, fmt, ##args) 4749 #define netif_alert(priv, type, dev, fmt, args...) \ 4750 netif_level(alert, priv, type, dev, fmt, ##args) 4751 #define netif_crit(priv, type, dev, fmt, args...) \ 4752 netif_level(crit, priv, type, dev, fmt, ##args) 4753 #define netif_err(priv, type, dev, fmt, args...) \ 4754 netif_level(err, priv, type, dev, fmt, ##args) 4755 #define netif_warn(priv, type, dev, fmt, args...) \ 4756 netif_level(warn, priv, type, dev, fmt, ##args) 4757 #define netif_notice(priv, type, dev, fmt, args...) \ 4758 netif_level(notice, priv, type, dev, fmt, ##args) 4759 #define netif_info(priv, type, dev, fmt, args...) \ 4760 netif_level(info, priv, type, dev, fmt, ##args) 4761 4762 #if defined(CONFIG_DYNAMIC_DEBUG) 4763 #define netif_dbg(priv, type, netdev, format, args...) \ 4764 do { \ 4765 if (netif_msg_##type(priv)) \ 4766 dynamic_netdev_dbg(netdev, format, ##args); \ 4767 } while (0) 4768 #elif defined(DEBUG) 4769 #define netif_dbg(priv, type, dev, format, args...) \ 4770 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4771 #else 4772 #define netif_dbg(priv, type, dev, format, args...) \ 4773 ({ \ 4774 if (0) \ 4775 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4776 0; \ 4777 }) 4778 #endif 4779 4780 /* if @cond then downgrade to debug, else print at @level */ 4781 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4782 do { \ 4783 if (cond) \ 4784 netif_dbg(priv, type, netdev, fmt, ##args); \ 4785 else \ 4786 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4787 } while (0) 4788 4789 #if defined(VERBOSE_DEBUG) 4790 #define netif_vdbg netif_dbg 4791 #else 4792 #define netif_vdbg(priv, type, dev, format, args...) \ 4793 ({ \ 4794 if (0) \ 4795 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4796 0; \ 4797 }) 4798 #endif 4799 4800 /* 4801 * The list of packet types we will receive (as opposed to discard) 4802 * and the routines to invoke. 4803 * 4804 * Why 16. Because with 16 the only overlap we get on a hash of the 4805 * low nibble of the protocol value is RARP/SNAP/X.25. 4806 * 4807 * 0800 IP 4808 * 0001 802.3 4809 * 0002 AX.25 4810 * 0004 802.2 4811 * 8035 RARP 4812 * 0005 SNAP 4813 * 0805 X.25 4814 * 0806 ARP 4815 * 8137 IPX 4816 * 0009 Localtalk 4817 * 86DD IPv6 4818 */ 4819 #define PTYPE_HASH_SIZE (16) 4820 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4821 4822 #endif /* _LINUX_NETDEVICE_H */ 4823