xref: /openbmc/linux/include/linux/netdevice.h (revision 71844fac)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xdp_umem         *umem;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 };
851 
852 /* These structures hold the attributes of bpf state that are being passed
853  * to the netdevice through the bpf op.
854  */
855 enum bpf_netdev_command {
856 	/* Set or clear a bpf program used in the earliest stages of packet
857 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
858 	 * is responsible for calling bpf_prog_put on any old progs that are
859 	 * stored. In case of error, the callee need not release the new prog
860 	 * reference, but on success it takes ownership and must bpf_prog_put
861 	 * when it is no longer used.
862 	 */
863 	XDP_SETUP_PROG,
864 	XDP_SETUP_PROG_HW,
865 	XDP_QUERY_PROG,
866 	XDP_QUERY_PROG_HW,
867 	/* BPF program for offload callbacks, invoked at program load time. */
868 	BPF_OFFLOAD_MAP_ALLOC,
869 	BPF_OFFLOAD_MAP_FREE,
870 	XDP_QUERY_XSK_UMEM,
871 	XDP_SETUP_XSK_UMEM,
872 };
873 
874 struct bpf_prog_offload_ops;
875 struct netlink_ext_ack;
876 struct xdp_umem;
877 
878 struct netdev_bpf {
879 	enum bpf_netdev_command command;
880 	union {
881 		/* XDP_SETUP_PROG */
882 		struct {
883 			u32 flags;
884 			struct bpf_prog *prog;
885 			struct netlink_ext_ack *extack;
886 		};
887 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
888 		struct {
889 			u32 prog_id;
890 			/* flags with which program was installed */
891 			u32 prog_flags;
892 		};
893 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
894 		struct {
895 			struct bpf_offloaded_map *offmap;
896 		};
897 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
898 		struct {
899 			struct xdp_umem *umem; /* out for query*/
900 			u16 queue_id; /* in for query */
901 		} xsk;
902 	};
903 };
904 
905 #ifdef CONFIG_XFRM_OFFLOAD
906 struct xfrmdev_ops {
907 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
908 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
909 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
910 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
911 				       struct xfrm_state *x);
912 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
913 };
914 #endif
915 
916 #if IS_ENABLED(CONFIG_TLS_DEVICE)
917 enum tls_offload_ctx_dir {
918 	TLS_OFFLOAD_CTX_DIR_RX,
919 	TLS_OFFLOAD_CTX_DIR_TX,
920 };
921 
922 struct tls_crypto_info;
923 struct tls_context;
924 
925 struct tlsdev_ops {
926 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
927 			   enum tls_offload_ctx_dir direction,
928 			   struct tls_crypto_info *crypto_info,
929 			   u32 start_offload_tcp_sn);
930 	void (*tls_dev_del)(struct net_device *netdev,
931 			    struct tls_context *ctx,
932 			    enum tls_offload_ctx_dir direction);
933 	void (*tls_dev_resync_rx)(struct net_device *netdev,
934 				  struct sock *sk, u32 seq, u64 rcd_sn);
935 };
936 #endif
937 
938 struct dev_ifalias {
939 	struct rcu_head rcuhead;
940 	char ifalias[];
941 };
942 
943 /*
944  * This structure defines the management hooks for network devices.
945  * The following hooks can be defined; unless noted otherwise, they are
946  * optional and can be filled with a null pointer.
947  *
948  * int (*ndo_init)(struct net_device *dev);
949  *     This function is called once when a network device is registered.
950  *     The network device can use this for any late stage initialization
951  *     or semantic validation. It can fail with an error code which will
952  *     be propagated back to register_netdev.
953  *
954  * void (*ndo_uninit)(struct net_device *dev);
955  *     This function is called when device is unregistered or when registration
956  *     fails. It is not called if init fails.
957  *
958  * int (*ndo_open)(struct net_device *dev);
959  *     This function is called when a network device transitions to the up
960  *     state.
961  *
962  * int (*ndo_stop)(struct net_device *dev);
963  *     This function is called when a network device transitions to the down
964  *     state.
965  *
966  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
967  *                               struct net_device *dev);
968  *	Called when a packet needs to be transmitted.
969  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
970  *	the queue before that can happen; it's for obsolete devices and weird
971  *	corner cases, but the stack really does a non-trivial amount
972  *	of useless work if you return NETDEV_TX_BUSY.
973  *	Required; cannot be NULL.
974  *
975  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
976  *					   struct net_device *dev
977  *					   netdev_features_t features);
978  *	Called by core transmit path to determine if device is capable of
979  *	performing offload operations on a given packet. This is to give
980  *	the device an opportunity to implement any restrictions that cannot
981  *	be otherwise expressed by feature flags. The check is called with
982  *	the set of features that the stack has calculated and it returns
983  *	those the driver believes to be appropriate.
984  *
985  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
986  *                         struct net_device *sb_dev,
987  *                         select_queue_fallback_t fallback);
988  *	Called to decide which queue to use when device supports multiple
989  *	transmit queues.
990  *
991  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
992  *	This function is called to allow device receiver to make
993  *	changes to configuration when multicast or promiscuous is enabled.
994  *
995  * void (*ndo_set_rx_mode)(struct net_device *dev);
996  *	This function is called device changes address list filtering.
997  *	If driver handles unicast address filtering, it should set
998  *	IFF_UNICAST_FLT in its priv_flags.
999  *
1000  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1001  *	This function  is called when the Media Access Control address
1002  *	needs to be changed. If this interface is not defined, the
1003  *	MAC address can not be changed.
1004  *
1005  * int (*ndo_validate_addr)(struct net_device *dev);
1006  *	Test if Media Access Control address is valid for the device.
1007  *
1008  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1009  *	Called when a user requests an ioctl which can't be handled by
1010  *	the generic interface code. If not defined ioctls return
1011  *	not supported error code.
1012  *
1013  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1014  *	Used to set network devices bus interface parameters. This interface
1015  *	is retained for legacy reasons; new devices should use the bus
1016  *	interface (PCI) for low level management.
1017  *
1018  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1019  *	Called when a user wants to change the Maximum Transfer Unit
1020  *	of a device.
1021  *
1022  * void (*ndo_tx_timeout)(struct net_device *dev);
1023  *	Callback used when the transmitter has not made any progress
1024  *	for dev->watchdog ticks.
1025  *
1026  * void (*ndo_get_stats64)(struct net_device *dev,
1027  *                         struct rtnl_link_stats64 *storage);
1028  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1029  *	Called when a user wants to get the network device usage
1030  *	statistics. Drivers must do one of the following:
1031  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1032  *	   rtnl_link_stats64 structure passed by the caller.
1033  *	2. Define @ndo_get_stats to update a net_device_stats structure
1034  *	   (which should normally be dev->stats) and return a pointer to
1035  *	   it. The structure may be changed asynchronously only if each
1036  *	   field is written atomically.
1037  *	3. Update dev->stats asynchronously and atomically, and define
1038  *	   neither operation.
1039  *
1040  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1041  *	Return true if this device supports offload stats of this attr_id.
1042  *
1043  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1044  *	void *attr_data)
1045  *	Get statistics for offload operations by attr_id. Write it into the
1046  *	attr_data pointer.
1047  *
1048  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1049  *	If device supports VLAN filtering this function is called when a
1050  *	VLAN id is registered.
1051  *
1052  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1053  *	If device supports VLAN filtering this function is called when a
1054  *	VLAN id is unregistered.
1055  *
1056  * void (*ndo_poll_controller)(struct net_device *dev);
1057  *
1058  *	SR-IOV management functions.
1059  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1060  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1061  *			  u8 qos, __be16 proto);
1062  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1063  *			  int max_tx_rate);
1064  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1065  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1066  * int (*ndo_get_vf_config)(struct net_device *dev,
1067  *			    int vf, struct ifla_vf_info *ivf);
1068  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1069  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1070  *			  struct nlattr *port[]);
1071  *
1072  *      Enable or disable the VF ability to query its RSS Redirection Table and
1073  *      Hash Key. This is needed since on some devices VF share this information
1074  *      with PF and querying it may introduce a theoretical security risk.
1075  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1077  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1078  *		       void *type_data);
1079  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1080  *	This is always called from the stack with the rtnl lock held and netif
1081  *	tx queues stopped. This allows the netdevice to perform queue
1082  *	management safely.
1083  *
1084  *	Fiber Channel over Ethernet (FCoE) offload functions.
1085  * int (*ndo_fcoe_enable)(struct net_device *dev);
1086  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1087  *	so the underlying device can perform whatever needed configuration or
1088  *	initialization to support acceleration of FCoE traffic.
1089  *
1090  * int (*ndo_fcoe_disable)(struct net_device *dev);
1091  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1092  *	so the underlying device can perform whatever needed clean-ups to
1093  *	stop supporting acceleration of FCoE traffic.
1094  *
1095  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1096  *			     struct scatterlist *sgl, unsigned int sgc);
1097  *	Called when the FCoE Initiator wants to initialize an I/O that
1098  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1099  *	perform necessary setup and returns 1 to indicate the device is set up
1100  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1101  *
1102  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1103  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1104  *	indicated by the FC exchange id 'xid', so the underlying device can
1105  *	clean up and reuse resources for later DDP requests.
1106  *
1107  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1108  *			      struct scatterlist *sgl, unsigned int sgc);
1109  *	Called when the FCoE Target wants to initialize an I/O that
1110  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1111  *	perform necessary setup and returns 1 to indicate the device is set up
1112  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1113  *
1114  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1115  *			       struct netdev_fcoe_hbainfo *hbainfo);
1116  *	Called when the FCoE Protocol stack wants information on the underlying
1117  *	device. This information is utilized by the FCoE protocol stack to
1118  *	register attributes with Fiber Channel management service as per the
1119  *	FC-GS Fabric Device Management Information(FDMI) specification.
1120  *
1121  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1122  *	Called when the underlying device wants to override default World Wide
1123  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1124  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1125  *	protocol stack to use.
1126  *
1127  *	RFS acceleration.
1128  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1129  *			    u16 rxq_index, u32 flow_id);
1130  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1131  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1132  *	Return the filter ID on success, or a negative error code.
1133  *
1134  *	Slave management functions (for bridge, bonding, etc).
1135  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1136  *	Called to make another netdev an underling.
1137  *
1138  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1139  *	Called to release previously enslaved netdev.
1140  *
1141  *      Feature/offload setting functions.
1142  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1143  *		netdev_features_t features);
1144  *	Adjusts the requested feature flags according to device-specific
1145  *	constraints, and returns the resulting flags. Must not modify
1146  *	the device state.
1147  *
1148  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1149  *	Called to update device configuration to new features. Passed
1150  *	feature set might be less than what was returned by ndo_fix_features()).
1151  *	Must return >0 or -errno if it changed dev->features itself.
1152  *
1153  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1154  *		      struct net_device *dev,
1155  *		      const unsigned char *addr, u16 vid, u16 flags)
1156  *	Adds an FDB entry to dev for addr.
1157  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1158  *		      struct net_device *dev,
1159  *		      const unsigned char *addr, u16 vid)
1160  *	Deletes the FDB entry from dev coresponding to addr.
1161  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1162  *		       struct net_device *dev, struct net_device *filter_dev,
1163  *		       int *idx)
1164  *	Used to add FDB entries to dump requests. Implementers should add
1165  *	entries to skb and update idx with the number of entries.
1166  *
1167  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1168  *			     u16 flags)
1169  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1170  *			     struct net_device *dev, u32 filter_mask,
1171  *			     int nlflags)
1172  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1173  *			     u16 flags);
1174  *
1175  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1176  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1177  *	which do not represent real hardware may define this to allow their
1178  *	userspace components to manage their virtual carrier state. Devices
1179  *	that determine carrier state from physical hardware properties (eg
1180  *	network cables) or protocol-dependent mechanisms (eg
1181  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1182  *
1183  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1184  *			       struct netdev_phys_item_id *ppid);
1185  *	Called to get ID of physical port of this device. If driver does
1186  *	not implement this, it is assumed that the hw is not able to have
1187  *	multiple net devices on single physical port.
1188  *
1189  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1190  *			      struct udp_tunnel_info *ti);
1191  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1192  *	address family that a UDP tunnel is listnening to. It is called only
1193  *	when a new port starts listening. The operation is protected by the
1194  *	RTNL.
1195  *
1196  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1197  *			      struct udp_tunnel_info *ti);
1198  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1199  *	address family that the UDP tunnel is not listening to anymore. The
1200  *	operation is protected by the RTNL.
1201  *
1202  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1203  *				 struct net_device *dev)
1204  *	Called by upper layer devices to accelerate switching or other
1205  *	station functionality into hardware. 'pdev is the lowerdev
1206  *	to use for the offload and 'dev' is the net device that will
1207  *	back the offload. Returns a pointer to the private structure
1208  *	the upper layer will maintain.
1209  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1210  *	Called by upper layer device to delete the station created
1211  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1212  *	the station and priv is the structure returned by the add
1213  *	operation.
1214  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1215  *			     int queue_index, u32 maxrate);
1216  *	Called when a user wants to set a max-rate limitation of specific
1217  *	TX queue.
1218  * int (*ndo_get_iflink)(const struct net_device *dev);
1219  *	Called to get the iflink value of this device.
1220  * void (*ndo_change_proto_down)(struct net_device *dev,
1221  *				 bool proto_down);
1222  *	This function is used to pass protocol port error state information
1223  *	to the switch driver. The switch driver can react to the proto_down
1224  *      by doing a phys down on the associated switch port.
1225  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1226  *	This function is used to get egress tunnel information for given skb.
1227  *	This is useful for retrieving outer tunnel header parameters while
1228  *	sampling packet.
1229  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1230  *	This function is used to specify the headroom that the skb must
1231  *	consider when allocation skb during packet reception. Setting
1232  *	appropriate rx headroom value allows avoiding skb head copy on
1233  *	forward. Setting a negative value resets the rx headroom to the
1234  *	default value.
1235  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1236  *	This function is used to set or query state related to XDP on the
1237  *	netdevice and manage BPF offload. See definition of
1238  *	enum bpf_netdev_command for details.
1239  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1240  *			u32 flags);
1241  *	This function is used to submit @n XDP packets for transmit on a
1242  *	netdevice. Returns number of frames successfully transmitted, frames
1243  *	that got dropped are freed/returned via xdp_return_frame().
1244  *	Returns negative number, means general error invoking ndo, meaning
1245  *	no frames were xmit'ed and core-caller will free all frames.
1246  */
1247 struct net_device_ops {
1248 	int			(*ndo_init)(struct net_device *dev);
1249 	void			(*ndo_uninit)(struct net_device *dev);
1250 	int			(*ndo_open)(struct net_device *dev);
1251 	int			(*ndo_stop)(struct net_device *dev);
1252 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1253 						  struct net_device *dev);
1254 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1255 						      struct net_device *dev,
1256 						      netdev_features_t features);
1257 	u16			(*ndo_select_queue)(struct net_device *dev,
1258 						    struct sk_buff *skb,
1259 						    struct net_device *sb_dev,
1260 						    select_queue_fallback_t fallback);
1261 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1262 						       int flags);
1263 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1264 	int			(*ndo_set_mac_address)(struct net_device *dev,
1265 						       void *addr);
1266 	int			(*ndo_validate_addr)(struct net_device *dev);
1267 	int			(*ndo_do_ioctl)(struct net_device *dev,
1268 					        struct ifreq *ifr, int cmd);
1269 	int			(*ndo_set_config)(struct net_device *dev,
1270 					          struct ifmap *map);
1271 	int			(*ndo_change_mtu)(struct net_device *dev,
1272 						  int new_mtu);
1273 	int			(*ndo_neigh_setup)(struct net_device *dev,
1274 						   struct neigh_parms *);
1275 	void			(*ndo_tx_timeout) (struct net_device *dev);
1276 
1277 	void			(*ndo_get_stats64)(struct net_device *dev,
1278 						   struct rtnl_link_stats64 *storage);
1279 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1280 	int			(*ndo_get_offload_stats)(int attr_id,
1281 							 const struct net_device *dev,
1282 							 void *attr_data);
1283 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1284 
1285 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1286 						       __be16 proto, u16 vid);
1287 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1288 						        __be16 proto, u16 vid);
1289 #ifdef CONFIG_NET_POLL_CONTROLLER
1290 	void                    (*ndo_poll_controller)(struct net_device *dev);
1291 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1292 						     struct netpoll_info *info);
1293 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1294 #endif
1295 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1296 						  int queue, u8 *mac);
1297 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1298 						   int queue, u16 vlan,
1299 						   u8 qos, __be16 proto);
1300 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1301 						   int vf, int min_tx_rate,
1302 						   int max_tx_rate);
1303 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1304 						       int vf, bool setting);
1305 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1306 						    int vf, bool setting);
1307 	int			(*ndo_get_vf_config)(struct net_device *dev,
1308 						     int vf,
1309 						     struct ifla_vf_info *ivf);
1310 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1311 							 int vf, int link_state);
1312 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1313 						    int vf,
1314 						    struct ifla_vf_stats
1315 						    *vf_stats);
1316 	int			(*ndo_set_vf_port)(struct net_device *dev,
1317 						   int vf,
1318 						   struct nlattr *port[]);
1319 	int			(*ndo_get_vf_port)(struct net_device *dev,
1320 						   int vf, struct sk_buff *skb);
1321 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1322 						   int vf, u64 guid,
1323 						   int guid_type);
1324 	int			(*ndo_set_vf_rss_query_en)(
1325 						   struct net_device *dev,
1326 						   int vf, bool setting);
1327 	int			(*ndo_setup_tc)(struct net_device *dev,
1328 						enum tc_setup_type type,
1329 						void *type_data);
1330 #if IS_ENABLED(CONFIG_FCOE)
1331 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1332 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1333 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1334 						      u16 xid,
1335 						      struct scatterlist *sgl,
1336 						      unsigned int sgc);
1337 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1338 						     u16 xid);
1339 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1340 						       u16 xid,
1341 						       struct scatterlist *sgl,
1342 						       unsigned int sgc);
1343 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1344 							struct netdev_fcoe_hbainfo *hbainfo);
1345 #endif
1346 
1347 #if IS_ENABLED(CONFIG_LIBFCOE)
1348 #define NETDEV_FCOE_WWNN 0
1349 #define NETDEV_FCOE_WWPN 1
1350 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1351 						    u64 *wwn, int type);
1352 #endif
1353 
1354 #ifdef CONFIG_RFS_ACCEL
1355 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1356 						     const struct sk_buff *skb,
1357 						     u16 rxq_index,
1358 						     u32 flow_id);
1359 #endif
1360 	int			(*ndo_add_slave)(struct net_device *dev,
1361 						 struct net_device *slave_dev,
1362 						 struct netlink_ext_ack *extack);
1363 	int			(*ndo_del_slave)(struct net_device *dev,
1364 						 struct net_device *slave_dev);
1365 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1366 						    netdev_features_t features);
1367 	int			(*ndo_set_features)(struct net_device *dev,
1368 						    netdev_features_t features);
1369 	int			(*ndo_neigh_construct)(struct net_device *dev,
1370 						       struct neighbour *n);
1371 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1372 						     struct neighbour *n);
1373 
1374 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1375 					       struct nlattr *tb[],
1376 					       struct net_device *dev,
1377 					       const unsigned char *addr,
1378 					       u16 vid,
1379 					       u16 flags);
1380 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1381 					       struct nlattr *tb[],
1382 					       struct net_device *dev,
1383 					       const unsigned char *addr,
1384 					       u16 vid);
1385 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1386 						struct netlink_callback *cb,
1387 						struct net_device *dev,
1388 						struct net_device *filter_dev,
1389 						int *idx);
1390 
1391 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1392 						      struct nlmsghdr *nlh,
1393 						      u16 flags);
1394 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1395 						      u32 pid, u32 seq,
1396 						      struct net_device *dev,
1397 						      u32 filter_mask,
1398 						      int nlflags);
1399 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1400 						      struct nlmsghdr *nlh,
1401 						      u16 flags);
1402 	int			(*ndo_change_carrier)(struct net_device *dev,
1403 						      bool new_carrier);
1404 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1405 							struct netdev_phys_item_id *ppid);
1406 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1407 							  char *name, size_t len);
1408 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1409 						      struct udp_tunnel_info *ti);
1410 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1411 						      struct udp_tunnel_info *ti);
1412 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1413 							struct net_device *dev);
1414 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1415 							void *priv);
1416 
1417 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1418 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1419 						      int queue_index,
1420 						      u32 maxrate);
1421 	int			(*ndo_get_iflink)(const struct net_device *dev);
1422 	int			(*ndo_change_proto_down)(struct net_device *dev,
1423 							 bool proto_down);
1424 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1425 						       struct sk_buff *skb);
1426 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1427 						       int needed_headroom);
1428 	int			(*ndo_bpf)(struct net_device *dev,
1429 					   struct netdev_bpf *bpf);
1430 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1431 						struct xdp_frame **xdp,
1432 						u32 flags);
1433 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1434 						      u32 queue_id);
1435 };
1436 
1437 /**
1438  * enum net_device_priv_flags - &struct net_device priv_flags
1439  *
1440  * These are the &struct net_device, they are only set internally
1441  * by drivers and used in the kernel. These flags are invisible to
1442  * userspace; this means that the order of these flags can change
1443  * during any kernel release.
1444  *
1445  * You should have a pretty good reason to be extending these flags.
1446  *
1447  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1448  * @IFF_EBRIDGE: Ethernet bridging device
1449  * @IFF_BONDING: bonding master or slave
1450  * @IFF_ISATAP: ISATAP interface (RFC4214)
1451  * @IFF_WAN_HDLC: WAN HDLC device
1452  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1453  *	release skb->dst
1454  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1455  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1456  * @IFF_MACVLAN_PORT: device used as macvlan port
1457  * @IFF_BRIDGE_PORT: device used as bridge port
1458  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1459  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1460  * @IFF_UNICAST_FLT: Supports unicast filtering
1461  * @IFF_TEAM_PORT: device used as team port
1462  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1463  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1464  *	change when it's running
1465  * @IFF_MACVLAN: Macvlan device
1466  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1467  *	underlying stacked devices
1468  * @IFF_L3MDEV_MASTER: device is an L3 master device
1469  * @IFF_NO_QUEUE: device can run without qdisc attached
1470  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1471  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1472  * @IFF_TEAM: device is a team device
1473  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1474  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1475  *	entity (i.e. the master device for bridged veth)
1476  * @IFF_MACSEC: device is a MACsec device
1477  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1478  * @IFF_FAILOVER: device is a failover master device
1479  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1480  */
1481 enum netdev_priv_flags {
1482 	IFF_802_1Q_VLAN			= 1<<0,
1483 	IFF_EBRIDGE			= 1<<1,
1484 	IFF_BONDING			= 1<<2,
1485 	IFF_ISATAP			= 1<<3,
1486 	IFF_WAN_HDLC			= 1<<4,
1487 	IFF_XMIT_DST_RELEASE		= 1<<5,
1488 	IFF_DONT_BRIDGE			= 1<<6,
1489 	IFF_DISABLE_NETPOLL		= 1<<7,
1490 	IFF_MACVLAN_PORT		= 1<<8,
1491 	IFF_BRIDGE_PORT			= 1<<9,
1492 	IFF_OVS_DATAPATH		= 1<<10,
1493 	IFF_TX_SKB_SHARING		= 1<<11,
1494 	IFF_UNICAST_FLT			= 1<<12,
1495 	IFF_TEAM_PORT			= 1<<13,
1496 	IFF_SUPP_NOFCS			= 1<<14,
1497 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1498 	IFF_MACVLAN			= 1<<16,
1499 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1500 	IFF_L3MDEV_MASTER		= 1<<18,
1501 	IFF_NO_QUEUE			= 1<<19,
1502 	IFF_OPENVSWITCH			= 1<<20,
1503 	IFF_L3MDEV_SLAVE		= 1<<21,
1504 	IFF_TEAM			= 1<<22,
1505 	IFF_RXFH_CONFIGURED		= 1<<23,
1506 	IFF_PHONY_HEADROOM		= 1<<24,
1507 	IFF_MACSEC			= 1<<25,
1508 	IFF_NO_RX_HANDLER		= 1<<26,
1509 	IFF_FAILOVER			= 1<<27,
1510 	IFF_FAILOVER_SLAVE		= 1<<28,
1511 };
1512 
1513 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1514 #define IFF_EBRIDGE			IFF_EBRIDGE
1515 #define IFF_BONDING			IFF_BONDING
1516 #define IFF_ISATAP			IFF_ISATAP
1517 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1518 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1519 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1520 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1521 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1522 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1523 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1524 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1525 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1526 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1527 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1528 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1529 #define IFF_MACVLAN			IFF_MACVLAN
1530 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1531 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1532 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1533 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1534 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1535 #define IFF_TEAM			IFF_TEAM
1536 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1537 #define IFF_MACSEC			IFF_MACSEC
1538 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1539 #define IFF_FAILOVER			IFF_FAILOVER
1540 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1541 
1542 /**
1543  *	struct net_device - The DEVICE structure.
1544  *
1545  *	Actually, this whole structure is a big mistake.  It mixes I/O
1546  *	data with strictly "high-level" data, and it has to know about
1547  *	almost every data structure used in the INET module.
1548  *
1549  *	@name:	This is the first field of the "visible" part of this structure
1550  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1551  *		of the interface.
1552  *
1553  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1554  *	@ifalias:	SNMP alias
1555  *	@mem_end:	Shared memory end
1556  *	@mem_start:	Shared memory start
1557  *	@base_addr:	Device I/O address
1558  *	@irq:		Device IRQ number
1559  *
1560  *	@state:		Generic network queuing layer state, see netdev_state_t
1561  *	@dev_list:	The global list of network devices
1562  *	@napi_list:	List entry used for polling NAPI devices
1563  *	@unreg_list:	List entry  when we are unregistering the
1564  *			device; see the function unregister_netdev
1565  *	@close_list:	List entry used when we are closing the device
1566  *	@ptype_all:     Device-specific packet handlers for all protocols
1567  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1568  *
1569  *	@adj_list:	Directly linked devices, like slaves for bonding
1570  *	@features:	Currently active device features
1571  *	@hw_features:	User-changeable features
1572  *
1573  *	@wanted_features:	User-requested features
1574  *	@vlan_features:		Mask of features inheritable by VLAN devices
1575  *
1576  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1577  *				This field indicates what encapsulation
1578  *				offloads the hardware is capable of doing,
1579  *				and drivers will need to set them appropriately.
1580  *
1581  *	@mpls_features:	Mask of features inheritable by MPLS
1582  *
1583  *	@ifindex:	interface index
1584  *	@group:		The group the device belongs to
1585  *
1586  *	@stats:		Statistics struct, which was left as a legacy, use
1587  *			rtnl_link_stats64 instead
1588  *
1589  *	@rx_dropped:	Dropped packets by core network,
1590  *			do not use this in drivers
1591  *	@tx_dropped:	Dropped packets by core network,
1592  *			do not use this in drivers
1593  *	@rx_nohandler:	nohandler dropped packets by core network on
1594  *			inactive devices, do not use this in drivers
1595  *	@carrier_up_count:	Number of times the carrier has been up
1596  *	@carrier_down_count:	Number of times the carrier has been down
1597  *
1598  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1599  *				instead of ioctl,
1600  *				see <net/iw_handler.h> for details.
1601  *	@wireless_data:	Instance data managed by the core of wireless extensions
1602  *
1603  *	@netdev_ops:	Includes several pointers to callbacks,
1604  *			if one wants to override the ndo_*() functions
1605  *	@ethtool_ops:	Management operations
1606  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1607  *			discovery handling. Necessary for e.g. 6LoWPAN.
1608  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1609  *			of Layer 2 headers.
1610  *
1611  *	@flags:		Interface flags (a la BSD)
1612  *	@priv_flags:	Like 'flags' but invisible to userspace,
1613  *			see if.h for the definitions
1614  *	@gflags:	Global flags ( kept as legacy )
1615  *	@padded:	How much padding added by alloc_netdev()
1616  *	@operstate:	RFC2863 operstate
1617  *	@link_mode:	Mapping policy to operstate
1618  *	@if_port:	Selectable AUI, TP, ...
1619  *	@dma:		DMA channel
1620  *	@mtu:		Interface MTU value
1621  *	@min_mtu:	Interface Minimum MTU value
1622  *	@max_mtu:	Interface Maximum MTU value
1623  *	@type:		Interface hardware type
1624  *	@hard_header_len: Maximum hardware header length.
1625  *	@min_header_len:  Minimum hardware header length
1626  *
1627  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1628  *			  cases can this be guaranteed
1629  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1630  *			  cases can this be guaranteed. Some cases also use
1631  *			  LL_MAX_HEADER instead to allocate the skb
1632  *
1633  *	interface address info:
1634  *
1635  * 	@perm_addr:		Permanent hw address
1636  * 	@addr_assign_type:	Hw address assignment type
1637  * 	@addr_len:		Hardware address length
1638  *	@neigh_priv_len:	Used in neigh_alloc()
1639  * 	@dev_id:		Used to differentiate devices that share
1640  * 				the same link layer address
1641  * 	@dev_port:		Used to differentiate devices that share
1642  * 				the same function
1643  *	@addr_list_lock:	XXX: need comments on this one
1644  *	@uc_promisc:		Counter that indicates promiscuous mode
1645  *				has been enabled due to the need to listen to
1646  *				additional unicast addresses in a device that
1647  *				does not implement ndo_set_rx_mode()
1648  *	@uc:			unicast mac addresses
1649  *	@mc:			multicast mac addresses
1650  *	@dev_addrs:		list of device hw addresses
1651  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1652  *	@promiscuity:		Number of times the NIC is told to work in
1653  *				promiscuous mode; if it becomes 0 the NIC will
1654  *				exit promiscuous mode
1655  *	@allmulti:		Counter, enables or disables allmulticast mode
1656  *
1657  *	@vlan_info:	VLAN info
1658  *	@dsa_ptr:	dsa specific data
1659  *	@tipc_ptr:	TIPC specific data
1660  *	@atalk_ptr:	AppleTalk link
1661  *	@ip_ptr:	IPv4 specific data
1662  *	@dn_ptr:	DECnet specific data
1663  *	@ip6_ptr:	IPv6 specific data
1664  *	@ax25_ptr:	AX.25 specific data
1665  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1666  *
1667  *	@dev_addr:	Hw address (before bcast,
1668  *			because most packets are unicast)
1669  *
1670  *	@_rx:			Array of RX queues
1671  *	@num_rx_queues:		Number of RX queues
1672  *				allocated at register_netdev() time
1673  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1674  *
1675  *	@rx_handler:		handler for received packets
1676  *	@rx_handler_data: 	XXX: need comments on this one
1677  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1678  *				ingress processing
1679  *	@ingress_queue:		XXX: need comments on this one
1680  *	@broadcast:		hw bcast address
1681  *
1682  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1683  *			indexed by RX queue number. Assigned by driver.
1684  *			This must only be set if the ndo_rx_flow_steer
1685  *			operation is defined
1686  *	@index_hlist:		Device index hash chain
1687  *
1688  *	@_tx:			Array of TX queues
1689  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1690  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1691  *	@qdisc:			Root qdisc from userspace point of view
1692  *	@tx_queue_len:		Max frames per queue allowed
1693  *	@tx_global_lock: 	XXX: need comments on this one
1694  *
1695  *	@xps_maps:	XXX: need comments on this one
1696  *	@miniq_egress:		clsact qdisc specific data for
1697  *				egress processing
1698  *	@watchdog_timeo:	Represents the timeout that is used by
1699  *				the watchdog (see dev_watchdog())
1700  *	@watchdog_timer:	List of timers
1701  *
1702  *	@pcpu_refcnt:		Number of references to this device
1703  *	@todo_list:		Delayed register/unregister
1704  *	@link_watch_list:	XXX: need comments on this one
1705  *
1706  *	@reg_state:		Register/unregister state machine
1707  *	@dismantle:		Device is going to be freed
1708  *	@rtnl_link_state:	This enum represents the phases of creating
1709  *				a new link
1710  *
1711  *	@needs_free_netdev:	Should unregister perform free_netdev?
1712  *	@priv_destructor:	Called from unregister
1713  *	@npinfo:		XXX: need comments on this one
1714  * 	@nd_net:		Network namespace this network device is inside
1715  *
1716  * 	@ml_priv:	Mid-layer private
1717  * 	@lstats:	Loopback statistics
1718  * 	@tstats:	Tunnel statistics
1719  * 	@dstats:	Dummy statistics
1720  * 	@vstats:	Virtual ethernet statistics
1721  *
1722  *	@garp_port:	GARP
1723  *	@mrp_port:	MRP
1724  *
1725  *	@dev:		Class/net/name entry
1726  *	@sysfs_groups:	Space for optional device, statistics and wireless
1727  *			sysfs groups
1728  *
1729  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1730  *	@rtnl_link_ops:	Rtnl_link_ops
1731  *
1732  *	@gso_max_size:	Maximum size of generic segmentation offload
1733  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1734  *			NIC for GSO
1735  *
1736  *	@dcbnl_ops:	Data Center Bridging netlink ops
1737  *	@num_tc:	Number of traffic classes in the net device
1738  *	@tc_to_txq:	XXX: need comments on this one
1739  *	@prio_tc_map:	XXX: need comments on this one
1740  *
1741  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1742  *
1743  *	@priomap:	XXX: need comments on this one
1744  *	@phydev:	Physical device may attach itself
1745  *			for hardware timestamping
1746  *	@sfp_bus:	attached &struct sfp_bus structure.
1747  *
1748  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1749  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1750  *
1751  *	@proto_down:	protocol port state information can be sent to the
1752  *			switch driver and used to set the phys state of the
1753  *			switch port.
1754  *
1755  *	@wol_enabled:	Wake-on-LAN is enabled
1756  *
1757  *	FIXME: cleanup struct net_device such that network protocol info
1758  *	moves out.
1759  */
1760 
1761 struct net_device {
1762 	char			name[IFNAMSIZ];
1763 	struct hlist_node	name_hlist;
1764 	struct dev_ifalias	__rcu *ifalias;
1765 	/*
1766 	 *	I/O specific fields
1767 	 *	FIXME: Merge these and struct ifmap into one
1768 	 */
1769 	unsigned long		mem_end;
1770 	unsigned long		mem_start;
1771 	unsigned long		base_addr;
1772 	int			irq;
1773 
1774 	/*
1775 	 *	Some hardware also needs these fields (state,dev_list,
1776 	 *	napi_list,unreg_list,close_list) but they are not
1777 	 *	part of the usual set specified in Space.c.
1778 	 */
1779 
1780 	unsigned long		state;
1781 
1782 	struct list_head	dev_list;
1783 	struct list_head	napi_list;
1784 	struct list_head	unreg_list;
1785 	struct list_head	close_list;
1786 	struct list_head	ptype_all;
1787 	struct list_head	ptype_specific;
1788 
1789 	struct {
1790 		struct list_head upper;
1791 		struct list_head lower;
1792 	} adj_list;
1793 
1794 	netdev_features_t	features;
1795 	netdev_features_t	hw_features;
1796 	netdev_features_t	wanted_features;
1797 	netdev_features_t	vlan_features;
1798 	netdev_features_t	hw_enc_features;
1799 	netdev_features_t	mpls_features;
1800 	netdev_features_t	gso_partial_features;
1801 
1802 	int			ifindex;
1803 	int			group;
1804 
1805 	struct net_device_stats	stats;
1806 
1807 	atomic_long_t		rx_dropped;
1808 	atomic_long_t		tx_dropped;
1809 	atomic_long_t		rx_nohandler;
1810 
1811 	/* Stats to monitor link on/off, flapping */
1812 	atomic_t		carrier_up_count;
1813 	atomic_t		carrier_down_count;
1814 
1815 #ifdef CONFIG_WIRELESS_EXT
1816 	const struct iw_handler_def *wireless_handlers;
1817 	struct iw_public_data	*wireless_data;
1818 #endif
1819 	const struct net_device_ops *netdev_ops;
1820 	const struct ethtool_ops *ethtool_ops;
1821 #ifdef CONFIG_NET_SWITCHDEV
1822 	const struct switchdev_ops *switchdev_ops;
1823 #endif
1824 #ifdef CONFIG_NET_L3_MASTER_DEV
1825 	const struct l3mdev_ops	*l3mdev_ops;
1826 #endif
1827 #if IS_ENABLED(CONFIG_IPV6)
1828 	const struct ndisc_ops *ndisc_ops;
1829 #endif
1830 
1831 #ifdef CONFIG_XFRM_OFFLOAD
1832 	const struct xfrmdev_ops *xfrmdev_ops;
1833 #endif
1834 
1835 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1836 	const struct tlsdev_ops *tlsdev_ops;
1837 #endif
1838 
1839 	const struct header_ops *header_ops;
1840 
1841 	unsigned int		flags;
1842 	unsigned int		priv_flags;
1843 
1844 	unsigned short		gflags;
1845 	unsigned short		padded;
1846 
1847 	unsigned char		operstate;
1848 	unsigned char		link_mode;
1849 
1850 	unsigned char		if_port;
1851 	unsigned char		dma;
1852 
1853 	unsigned int		mtu;
1854 	unsigned int		min_mtu;
1855 	unsigned int		max_mtu;
1856 	unsigned short		type;
1857 	unsigned short		hard_header_len;
1858 	unsigned char		min_header_len;
1859 
1860 	unsigned short		needed_headroom;
1861 	unsigned short		needed_tailroom;
1862 
1863 	/* Interface address info. */
1864 	unsigned char		perm_addr[MAX_ADDR_LEN];
1865 	unsigned char		addr_assign_type;
1866 	unsigned char		addr_len;
1867 	unsigned short		neigh_priv_len;
1868 	unsigned short          dev_id;
1869 	unsigned short          dev_port;
1870 	spinlock_t		addr_list_lock;
1871 	unsigned char		name_assign_type;
1872 	bool			uc_promisc;
1873 	struct netdev_hw_addr_list	uc;
1874 	struct netdev_hw_addr_list	mc;
1875 	struct netdev_hw_addr_list	dev_addrs;
1876 
1877 #ifdef CONFIG_SYSFS
1878 	struct kset		*queues_kset;
1879 #endif
1880 	unsigned int		promiscuity;
1881 	unsigned int		allmulti;
1882 
1883 
1884 	/* Protocol-specific pointers */
1885 
1886 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1887 	struct vlan_info __rcu	*vlan_info;
1888 #endif
1889 #if IS_ENABLED(CONFIG_NET_DSA)
1890 	struct dsa_port		*dsa_ptr;
1891 #endif
1892 #if IS_ENABLED(CONFIG_TIPC)
1893 	struct tipc_bearer __rcu *tipc_ptr;
1894 #endif
1895 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1896 	void 			*atalk_ptr;
1897 #endif
1898 	struct in_device __rcu	*ip_ptr;
1899 #if IS_ENABLED(CONFIG_DECNET)
1900 	struct dn_dev __rcu     *dn_ptr;
1901 #endif
1902 	struct inet6_dev __rcu	*ip6_ptr;
1903 #if IS_ENABLED(CONFIG_AX25)
1904 	void			*ax25_ptr;
1905 #endif
1906 	struct wireless_dev	*ieee80211_ptr;
1907 	struct wpan_dev		*ieee802154_ptr;
1908 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1909 	struct mpls_dev __rcu	*mpls_ptr;
1910 #endif
1911 
1912 /*
1913  * Cache lines mostly used on receive path (including eth_type_trans())
1914  */
1915 	/* Interface address info used in eth_type_trans() */
1916 	unsigned char		*dev_addr;
1917 
1918 	struct netdev_rx_queue	*_rx;
1919 	unsigned int		num_rx_queues;
1920 	unsigned int		real_num_rx_queues;
1921 
1922 	struct bpf_prog __rcu	*xdp_prog;
1923 	unsigned long		gro_flush_timeout;
1924 	rx_handler_func_t __rcu	*rx_handler;
1925 	void __rcu		*rx_handler_data;
1926 
1927 #ifdef CONFIG_NET_CLS_ACT
1928 	struct mini_Qdisc __rcu	*miniq_ingress;
1929 #endif
1930 	struct netdev_queue __rcu *ingress_queue;
1931 #ifdef CONFIG_NETFILTER_INGRESS
1932 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1933 #endif
1934 
1935 	unsigned char		broadcast[MAX_ADDR_LEN];
1936 #ifdef CONFIG_RFS_ACCEL
1937 	struct cpu_rmap		*rx_cpu_rmap;
1938 #endif
1939 	struct hlist_node	index_hlist;
1940 
1941 /*
1942  * Cache lines mostly used on transmit path
1943  */
1944 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1945 	unsigned int		num_tx_queues;
1946 	unsigned int		real_num_tx_queues;
1947 	struct Qdisc		*qdisc;
1948 #ifdef CONFIG_NET_SCHED
1949 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1950 #endif
1951 	unsigned int		tx_queue_len;
1952 	spinlock_t		tx_global_lock;
1953 	int			watchdog_timeo;
1954 
1955 #ifdef CONFIG_XPS
1956 	struct xps_dev_maps __rcu *xps_cpus_map;
1957 	struct xps_dev_maps __rcu *xps_rxqs_map;
1958 #endif
1959 #ifdef CONFIG_NET_CLS_ACT
1960 	struct mini_Qdisc __rcu	*miniq_egress;
1961 #endif
1962 
1963 	/* These may be needed for future network-power-down code. */
1964 	struct timer_list	watchdog_timer;
1965 
1966 	int __percpu		*pcpu_refcnt;
1967 	struct list_head	todo_list;
1968 
1969 	struct list_head	link_watch_list;
1970 
1971 	enum { NETREG_UNINITIALIZED=0,
1972 	       NETREG_REGISTERED,	/* completed register_netdevice */
1973 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1974 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1975 	       NETREG_RELEASED,		/* called free_netdev */
1976 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1977 	} reg_state:8;
1978 
1979 	bool dismantle;
1980 
1981 	enum {
1982 		RTNL_LINK_INITIALIZED,
1983 		RTNL_LINK_INITIALIZING,
1984 	} rtnl_link_state:16;
1985 
1986 	bool needs_free_netdev;
1987 	void (*priv_destructor)(struct net_device *dev);
1988 
1989 #ifdef CONFIG_NETPOLL
1990 	struct netpoll_info __rcu	*npinfo;
1991 #endif
1992 
1993 	possible_net_t			nd_net;
1994 
1995 	/* mid-layer private */
1996 	union {
1997 		void					*ml_priv;
1998 		struct pcpu_lstats __percpu		*lstats;
1999 		struct pcpu_sw_netstats __percpu	*tstats;
2000 		struct pcpu_dstats __percpu		*dstats;
2001 	};
2002 
2003 #if IS_ENABLED(CONFIG_GARP)
2004 	struct garp_port __rcu	*garp_port;
2005 #endif
2006 #if IS_ENABLED(CONFIG_MRP)
2007 	struct mrp_port __rcu	*mrp_port;
2008 #endif
2009 
2010 	struct device		dev;
2011 	const struct attribute_group *sysfs_groups[4];
2012 	const struct attribute_group *sysfs_rx_queue_group;
2013 
2014 	const struct rtnl_link_ops *rtnl_link_ops;
2015 
2016 	/* for setting kernel sock attribute on TCP connection setup */
2017 #define GSO_MAX_SIZE		65536
2018 	unsigned int		gso_max_size;
2019 #define GSO_MAX_SEGS		65535
2020 	u16			gso_max_segs;
2021 
2022 #ifdef CONFIG_DCB
2023 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2024 #endif
2025 	s16			num_tc;
2026 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2027 	u8			prio_tc_map[TC_BITMASK + 1];
2028 
2029 #if IS_ENABLED(CONFIG_FCOE)
2030 	unsigned int		fcoe_ddp_xid;
2031 #endif
2032 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2033 	struct netprio_map __rcu *priomap;
2034 #endif
2035 	struct phy_device	*phydev;
2036 	struct sfp_bus		*sfp_bus;
2037 	struct lock_class_key	*qdisc_tx_busylock;
2038 	struct lock_class_key	*qdisc_running_key;
2039 	bool			proto_down;
2040 	unsigned		wol_enabled:1;
2041 };
2042 #define to_net_dev(d) container_of(d, struct net_device, dev)
2043 
2044 static inline bool netif_elide_gro(const struct net_device *dev)
2045 {
2046 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2047 		return true;
2048 	return false;
2049 }
2050 
2051 #define	NETDEV_ALIGN		32
2052 
2053 static inline
2054 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2055 {
2056 	return dev->prio_tc_map[prio & TC_BITMASK];
2057 }
2058 
2059 static inline
2060 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2061 {
2062 	if (tc >= dev->num_tc)
2063 		return -EINVAL;
2064 
2065 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2066 	return 0;
2067 }
2068 
2069 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2070 void netdev_reset_tc(struct net_device *dev);
2071 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2072 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2073 
2074 static inline
2075 int netdev_get_num_tc(struct net_device *dev)
2076 {
2077 	return dev->num_tc;
2078 }
2079 
2080 void netdev_unbind_sb_channel(struct net_device *dev,
2081 			      struct net_device *sb_dev);
2082 int netdev_bind_sb_channel_queue(struct net_device *dev,
2083 				 struct net_device *sb_dev,
2084 				 u8 tc, u16 count, u16 offset);
2085 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2086 static inline int netdev_get_sb_channel(struct net_device *dev)
2087 {
2088 	return max_t(int, -dev->num_tc, 0);
2089 }
2090 
2091 static inline
2092 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2093 					 unsigned int index)
2094 {
2095 	return &dev->_tx[index];
2096 }
2097 
2098 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2099 						    const struct sk_buff *skb)
2100 {
2101 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2102 }
2103 
2104 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2105 					    void (*f)(struct net_device *,
2106 						      struct netdev_queue *,
2107 						      void *),
2108 					    void *arg)
2109 {
2110 	unsigned int i;
2111 
2112 	for (i = 0; i < dev->num_tx_queues; i++)
2113 		f(dev, &dev->_tx[i], arg);
2114 }
2115 
2116 #define netdev_lockdep_set_classes(dev)				\
2117 {								\
2118 	static struct lock_class_key qdisc_tx_busylock_key;	\
2119 	static struct lock_class_key qdisc_running_key;		\
2120 	static struct lock_class_key qdisc_xmit_lock_key;	\
2121 	static struct lock_class_key dev_addr_list_lock_key;	\
2122 	unsigned int i;						\
2123 								\
2124 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2125 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2126 	lockdep_set_class(&(dev)->addr_list_lock,		\
2127 			  &dev_addr_list_lock_key); 		\
2128 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2129 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2130 				  &qdisc_xmit_lock_key);	\
2131 }
2132 
2133 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2134 				    struct sk_buff *skb,
2135 				    struct net_device *sb_dev);
2136 
2137 /* returns the headroom that the master device needs to take in account
2138  * when forwarding to this dev
2139  */
2140 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2141 {
2142 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2143 }
2144 
2145 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2146 {
2147 	if (dev->netdev_ops->ndo_set_rx_headroom)
2148 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2149 }
2150 
2151 /* set the device rx headroom to the dev's default */
2152 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2153 {
2154 	netdev_set_rx_headroom(dev, -1);
2155 }
2156 
2157 /*
2158  * Net namespace inlines
2159  */
2160 static inline
2161 struct net *dev_net(const struct net_device *dev)
2162 {
2163 	return read_pnet(&dev->nd_net);
2164 }
2165 
2166 static inline
2167 void dev_net_set(struct net_device *dev, struct net *net)
2168 {
2169 	write_pnet(&dev->nd_net, net);
2170 }
2171 
2172 /**
2173  *	netdev_priv - access network device private data
2174  *	@dev: network device
2175  *
2176  * Get network device private data
2177  */
2178 static inline void *netdev_priv(const struct net_device *dev)
2179 {
2180 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2181 }
2182 
2183 /* Set the sysfs physical device reference for the network logical device
2184  * if set prior to registration will cause a symlink during initialization.
2185  */
2186 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2187 
2188 /* Set the sysfs device type for the network logical device to allow
2189  * fine-grained identification of different network device types. For
2190  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2191  */
2192 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2193 
2194 /* Default NAPI poll() weight
2195  * Device drivers are strongly advised to not use bigger value
2196  */
2197 #define NAPI_POLL_WEIGHT 64
2198 
2199 /**
2200  *	netif_napi_add - initialize a NAPI context
2201  *	@dev:  network device
2202  *	@napi: NAPI context
2203  *	@poll: polling function
2204  *	@weight: default weight
2205  *
2206  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2207  * *any* of the other NAPI-related functions.
2208  */
2209 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2210 		    int (*poll)(struct napi_struct *, int), int weight);
2211 
2212 /**
2213  *	netif_tx_napi_add - initialize a NAPI context
2214  *	@dev:  network device
2215  *	@napi: NAPI context
2216  *	@poll: polling function
2217  *	@weight: default weight
2218  *
2219  * This variant of netif_napi_add() should be used from drivers using NAPI
2220  * to exclusively poll a TX queue.
2221  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2222  */
2223 static inline void netif_tx_napi_add(struct net_device *dev,
2224 				     struct napi_struct *napi,
2225 				     int (*poll)(struct napi_struct *, int),
2226 				     int weight)
2227 {
2228 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2229 	netif_napi_add(dev, napi, poll, weight);
2230 }
2231 
2232 /**
2233  *  netif_napi_del - remove a NAPI context
2234  *  @napi: NAPI context
2235  *
2236  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2237  */
2238 void netif_napi_del(struct napi_struct *napi);
2239 
2240 struct napi_gro_cb {
2241 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2242 	void	*frag0;
2243 
2244 	/* Length of frag0. */
2245 	unsigned int frag0_len;
2246 
2247 	/* This indicates where we are processing relative to skb->data. */
2248 	int	data_offset;
2249 
2250 	/* This is non-zero if the packet cannot be merged with the new skb. */
2251 	u16	flush;
2252 
2253 	/* Save the IP ID here and check when we get to the transport layer */
2254 	u16	flush_id;
2255 
2256 	/* Number of segments aggregated. */
2257 	u16	count;
2258 
2259 	/* Start offset for remote checksum offload */
2260 	u16	gro_remcsum_start;
2261 
2262 	/* jiffies when first packet was created/queued */
2263 	unsigned long age;
2264 
2265 	/* Used in ipv6_gro_receive() and foo-over-udp */
2266 	u16	proto;
2267 
2268 	/* This is non-zero if the packet may be of the same flow. */
2269 	u8	same_flow:1;
2270 
2271 	/* Used in tunnel GRO receive */
2272 	u8	encap_mark:1;
2273 
2274 	/* GRO checksum is valid */
2275 	u8	csum_valid:1;
2276 
2277 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2278 	u8	csum_cnt:3;
2279 
2280 	/* Free the skb? */
2281 	u8	free:2;
2282 #define NAPI_GRO_FREE		  1
2283 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2284 
2285 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2286 	u8	is_ipv6:1;
2287 
2288 	/* Used in GRE, set in fou/gue_gro_receive */
2289 	u8	is_fou:1;
2290 
2291 	/* Used to determine if flush_id can be ignored */
2292 	u8	is_atomic:1;
2293 
2294 	/* Number of gro_receive callbacks this packet already went through */
2295 	u8 recursion_counter:4;
2296 
2297 	/* 1 bit hole */
2298 
2299 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2300 	__wsum	csum;
2301 
2302 	/* used in skb_gro_receive() slow path */
2303 	struct sk_buff *last;
2304 };
2305 
2306 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2307 
2308 #define GRO_RECURSION_LIMIT 15
2309 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2310 {
2311 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2312 }
2313 
2314 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2315 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2316 					       struct list_head *head,
2317 					       struct sk_buff *skb)
2318 {
2319 	if (unlikely(gro_recursion_inc_test(skb))) {
2320 		NAPI_GRO_CB(skb)->flush |= 1;
2321 		return NULL;
2322 	}
2323 
2324 	return cb(head, skb);
2325 }
2326 
2327 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2328 					    struct sk_buff *);
2329 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2330 						  struct sock *sk,
2331 						  struct list_head *head,
2332 						  struct sk_buff *skb)
2333 {
2334 	if (unlikely(gro_recursion_inc_test(skb))) {
2335 		NAPI_GRO_CB(skb)->flush |= 1;
2336 		return NULL;
2337 	}
2338 
2339 	return cb(sk, head, skb);
2340 }
2341 
2342 struct packet_type {
2343 	__be16			type;	/* This is really htons(ether_type). */
2344 	bool			ignore_outgoing;
2345 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2346 	int			(*func) (struct sk_buff *,
2347 					 struct net_device *,
2348 					 struct packet_type *,
2349 					 struct net_device *);
2350 	void			(*list_func) (struct list_head *,
2351 					      struct packet_type *,
2352 					      struct net_device *);
2353 	bool			(*id_match)(struct packet_type *ptype,
2354 					    struct sock *sk);
2355 	void			*af_packet_priv;
2356 	struct list_head	list;
2357 };
2358 
2359 struct offload_callbacks {
2360 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2361 						netdev_features_t features);
2362 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2363 						struct sk_buff *skb);
2364 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2365 };
2366 
2367 struct packet_offload {
2368 	__be16			 type;	/* This is really htons(ether_type). */
2369 	u16			 priority;
2370 	struct offload_callbacks callbacks;
2371 	struct list_head	 list;
2372 };
2373 
2374 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2375 struct pcpu_sw_netstats {
2376 	u64     rx_packets;
2377 	u64     rx_bytes;
2378 	u64     tx_packets;
2379 	u64     tx_bytes;
2380 	struct u64_stats_sync   syncp;
2381 } __aligned(4 * sizeof(u64));
2382 
2383 struct pcpu_lstats {
2384 	u64 packets;
2385 	u64 bytes;
2386 	struct u64_stats_sync syncp;
2387 } __aligned(2 * sizeof(u64));
2388 
2389 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2390 ({									\
2391 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2392 	if (pcpu_stats)	{						\
2393 		int __cpu;						\
2394 		for_each_possible_cpu(__cpu) {				\
2395 			typeof(type) *stat;				\
2396 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2397 			u64_stats_init(&stat->syncp);			\
2398 		}							\
2399 	}								\
2400 	pcpu_stats;							\
2401 })
2402 
2403 #define netdev_alloc_pcpu_stats(type)					\
2404 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2405 
2406 enum netdev_lag_tx_type {
2407 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2408 	NETDEV_LAG_TX_TYPE_RANDOM,
2409 	NETDEV_LAG_TX_TYPE_BROADCAST,
2410 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2411 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2412 	NETDEV_LAG_TX_TYPE_HASH,
2413 };
2414 
2415 enum netdev_lag_hash {
2416 	NETDEV_LAG_HASH_NONE,
2417 	NETDEV_LAG_HASH_L2,
2418 	NETDEV_LAG_HASH_L34,
2419 	NETDEV_LAG_HASH_L23,
2420 	NETDEV_LAG_HASH_E23,
2421 	NETDEV_LAG_HASH_E34,
2422 	NETDEV_LAG_HASH_UNKNOWN,
2423 };
2424 
2425 struct netdev_lag_upper_info {
2426 	enum netdev_lag_tx_type tx_type;
2427 	enum netdev_lag_hash hash_type;
2428 };
2429 
2430 struct netdev_lag_lower_state_info {
2431 	u8 link_up : 1,
2432 	   tx_enabled : 1;
2433 };
2434 
2435 #include <linux/notifier.h>
2436 
2437 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2438  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2439  * adding new types.
2440  */
2441 enum netdev_cmd {
2442 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2443 	NETDEV_DOWN,
2444 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2445 				   detected a hardware crash and restarted
2446 				   - we can use this eg to kick tcp sessions
2447 				   once done */
2448 	NETDEV_CHANGE,		/* Notify device state change */
2449 	NETDEV_REGISTER,
2450 	NETDEV_UNREGISTER,
2451 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2452 	NETDEV_CHANGEADDR,
2453 	NETDEV_GOING_DOWN,
2454 	NETDEV_CHANGENAME,
2455 	NETDEV_FEAT_CHANGE,
2456 	NETDEV_BONDING_FAILOVER,
2457 	NETDEV_PRE_UP,
2458 	NETDEV_PRE_TYPE_CHANGE,
2459 	NETDEV_POST_TYPE_CHANGE,
2460 	NETDEV_POST_INIT,
2461 	NETDEV_RELEASE,
2462 	NETDEV_NOTIFY_PEERS,
2463 	NETDEV_JOIN,
2464 	NETDEV_CHANGEUPPER,
2465 	NETDEV_RESEND_IGMP,
2466 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2467 	NETDEV_CHANGEINFODATA,
2468 	NETDEV_BONDING_INFO,
2469 	NETDEV_PRECHANGEUPPER,
2470 	NETDEV_CHANGELOWERSTATE,
2471 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2472 	NETDEV_UDP_TUNNEL_DROP_INFO,
2473 	NETDEV_CHANGE_TX_QUEUE_LEN,
2474 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2475 	NETDEV_CVLAN_FILTER_DROP_INFO,
2476 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2477 	NETDEV_SVLAN_FILTER_DROP_INFO,
2478 };
2479 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2480 
2481 int register_netdevice_notifier(struct notifier_block *nb);
2482 int unregister_netdevice_notifier(struct notifier_block *nb);
2483 
2484 struct netdev_notifier_info {
2485 	struct net_device	*dev;
2486 	struct netlink_ext_ack	*extack;
2487 };
2488 
2489 struct netdev_notifier_info_ext {
2490 	struct netdev_notifier_info info; /* must be first */
2491 	union {
2492 		u32 mtu;
2493 	} ext;
2494 };
2495 
2496 struct netdev_notifier_change_info {
2497 	struct netdev_notifier_info info; /* must be first */
2498 	unsigned int flags_changed;
2499 };
2500 
2501 struct netdev_notifier_changeupper_info {
2502 	struct netdev_notifier_info info; /* must be first */
2503 	struct net_device *upper_dev; /* new upper dev */
2504 	bool master; /* is upper dev master */
2505 	bool linking; /* is the notification for link or unlink */
2506 	void *upper_info; /* upper dev info */
2507 };
2508 
2509 struct netdev_notifier_changelowerstate_info {
2510 	struct netdev_notifier_info info; /* must be first */
2511 	void *lower_state_info; /* is lower dev state */
2512 };
2513 
2514 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2515 					     struct net_device *dev)
2516 {
2517 	info->dev = dev;
2518 	info->extack = NULL;
2519 }
2520 
2521 static inline struct net_device *
2522 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2523 {
2524 	return info->dev;
2525 }
2526 
2527 static inline struct netlink_ext_ack *
2528 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2529 {
2530 	return info->extack;
2531 }
2532 
2533 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2534 
2535 
2536 extern rwlock_t				dev_base_lock;		/* Device list lock */
2537 
2538 #define for_each_netdev(net, d)		\
2539 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2540 #define for_each_netdev_reverse(net, d)	\
2541 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2542 #define for_each_netdev_rcu(net, d)		\
2543 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2544 #define for_each_netdev_safe(net, d, n)	\
2545 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2546 #define for_each_netdev_continue(net, d)		\
2547 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2548 #define for_each_netdev_continue_rcu(net, d)		\
2549 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2550 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2551 		for_each_netdev_rcu(&init_net, slave)	\
2552 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2553 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2554 
2555 static inline struct net_device *next_net_device(struct net_device *dev)
2556 {
2557 	struct list_head *lh;
2558 	struct net *net;
2559 
2560 	net = dev_net(dev);
2561 	lh = dev->dev_list.next;
2562 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2563 }
2564 
2565 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2566 {
2567 	struct list_head *lh;
2568 	struct net *net;
2569 
2570 	net = dev_net(dev);
2571 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2572 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2573 }
2574 
2575 static inline struct net_device *first_net_device(struct net *net)
2576 {
2577 	return list_empty(&net->dev_base_head) ? NULL :
2578 		net_device_entry(net->dev_base_head.next);
2579 }
2580 
2581 static inline struct net_device *first_net_device_rcu(struct net *net)
2582 {
2583 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2584 
2585 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2586 }
2587 
2588 int netdev_boot_setup_check(struct net_device *dev);
2589 unsigned long netdev_boot_base(const char *prefix, int unit);
2590 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2591 				       const char *hwaddr);
2592 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2593 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2594 void dev_add_pack(struct packet_type *pt);
2595 void dev_remove_pack(struct packet_type *pt);
2596 void __dev_remove_pack(struct packet_type *pt);
2597 void dev_add_offload(struct packet_offload *po);
2598 void dev_remove_offload(struct packet_offload *po);
2599 
2600 int dev_get_iflink(const struct net_device *dev);
2601 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2602 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2603 				      unsigned short mask);
2604 struct net_device *dev_get_by_name(struct net *net, const char *name);
2605 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2606 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2607 int dev_alloc_name(struct net_device *dev, const char *name);
2608 int dev_open(struct net_device *dev);
2609 void dev_close(struct net_device *dev);
2610 void dev_close_many(struct list_head *head, bool unlink);
2611 void dev_disable_lro(struct net_device *dev);
2612 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2613 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2614 		     struct net_device *sb_dev,
2615 		     select_queue_fallback_t fallback);
2616 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2617 		       struct net_device *sb_dev,
2618 		       select_queue_fallback_t fallback);
2619 int dev_queue_xmit(struct sk_buff *skb);
2620 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2621 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2622 int register_netdevice(struct net_device *dev);
2623 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2624 void unregister_netdevice_many(struct list_head *head);
2625 static inline void unregister_netdevice(struct net_device *dev)
2626 {
2627 	unregister_netdevice_queue(dev, NULL);
2628 }
2629 
2630 int netdev_refcnt_read(const struct net_device *dev);
2631 void free_netdev(struct net_device *dev);
2632 void netdev_freemem(struct net_device *dev);
2633 void synchronize_net(void);
2634 int init_dummy_netdev(struct net_device *dev);
2635 
2636 DECLARE_PER_CPU(int, xmit_recursion);
2637 #define XMIT_RECURSION_LIMIT	10
2638 
2639 static inline int dev_recursion_level(void)
2640 {
2641 	return this_cpu_read(xmit_recursion);
2642 }
2643 
2644 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2645 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2646 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2647 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2648 int netdev_get_name(struct net *net, char *name, int ifindex);
2649 int dev_restart(struct net_device *dev);
2650 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2651 
2652 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2653 {
2654 	return NAPI_GRO_CB(skb)->data_offset;
2655 }
2656 
2657 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2658 {
2659 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2660 }
2661 
2662 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2663 {
2664 	NAPI_GRO_CB(skb)->data_offset += len;
2665 }
2666 
2667 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2668 					unsigned int offset)
2669 {
2670 	return NAPI_GRO_CB(skb)->frag0 + offset;
2671 }
2672 
2673 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2674 {
2675 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2676 }
2677 
2678 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2679 {
2680 	NAPI_GRO_CB(skb)->frag0 = NULL;
2681 	NAPI_GRO_CB(skb)->frag0_len = 0;
2682 }
2683 
2684 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2685 					unsigned int offset)
2686 {
2687 	if (!pskb_may_pull(skb, hlen))
2688 		return NULL;
2689 
2690 	skb_gro_frag0_invalidate(skb);
2691 	return skb->data + offset;
2692 }
2693 
2694 static inline void *skb_gro_network_header(struct sk_buff *skb)
2695 {
2696 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2697 	       skb_network_offset(skb);
2698 }
2699 
2700 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2701 					const void *start, unsigned int len)
2702 {
2703 	if (NAPI_GRO_CB(skb)->csum_valid)
2704 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2705 						  csum_partial(start, len, 0));
2706 }
2707 
2708 /* GRO checksum functions. These are logical equivalents of the normal
2709  * checksum functions (in skbuff.h) except that they operate on the GRO
2710  * offsets and fields in sk_buff.
2711  */
2712 
2713 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2714 
2715 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2716 {
2717 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2718 }
2719 
2720 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2721 						      bool zero_okay,
2722 						      __sum16 check)
2723 {
2724 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2725 		skb_checksum_start_offset(skb) <
2726 		 skb_gro_offset(skb)) &&
2727 		!skb_at_gro_remcsum_start(skb) &&
2728 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2729 		(!zero_okay || check));
2730 }
2731 
2732 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2733 							   __wsum psum)
2734 {
2735 	if (NAPI_GRO_CB(skb)->csum_valid &&
2736 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2737 		return 0;
2738 
2739 	NAPI_GRO_CB(skb)->csum = psum;
2740 
2741 	return __skb_gro_checksum_complete(skb);
2742 }
2743 
2744 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2745 {
2746 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2747 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2748 		NAPI_GRO_CB(skb)->csum_cnt--;
2749 	} else {
2750 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2751 		 * verified a new top level checksum or an encapsulated one
2752 		 * during GRO. This saves work if we fallback to normal path.
2753 		 */
2754 		__skb_incr_checksum_unnecessary(skb);
2755 	}
2756 }
2757 
2758 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2759 				    compute_pseudo)			\
2760 ({									\
2761 	__sum16 __ret = 0;						\
2762 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2763 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2764 				compute_pseudo(skb, proto));		\
2765 	if (!__ret)							\
2766 		skb_gro_incr_csum_unnecessary(skb);			\
2767 	__ret;								\
2768 })
2769 
2770 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2771 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2772 
2773 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2774 					     compute_pseudo)		\
2775 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2776 
2777 #define skb_gro_checksum_simple_validate(skb)				\
2778 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2779 
2780 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2781 {
2782 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2783 		!NAPI_GRO_CB(skb)->csum_valid);
2784 }
2785 
2786 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2787 					      __sum16 check, __wsum pseudo)
2788 {
2789 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2790 	NAPI_GRO_CB(skb)->csum_valid = 1;
2791 }
2792 
2793 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2794 do {									\
2795 	if (__skb_gro_checksum_convert_check(skb))			\
2796 		__skb_gro_checksum_convert(skb, check,			\
2797 					   compute_pseudo(skb, proto));	\
2798 } while (0)
2799 
2800 struct gro_remcsum {
2801 	int offset;
2802 	__wsum delta;
2803 };
2804 
2805 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2806 {
2807 	grc->offset = 0;
2808 	grc->delta = 0;
2809 }
2810 
2811 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2812 					    unsigned int off, size_t hdrlen,
2813 					    int start, int offset,
2814 					    struct gro_remcsum *grc,
2815 					    bool nopartial)
2816 {
2817 	__wsum delta;
2818 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2819 
2820 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2821 
2822 	if (!nopartial) {
2823 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2824 		return ptr;
2825 	}
2826 
2827 	ptr = skb_gro_header_fast(skb, off);
2828 	if (skb_gro_header_hard(skb, off + plen)) {
2829 		ptr = skb_gro_header_slow(skb, off + plen, off);
2830 		if (!ptr)
2831 			return NULL;
2832 	}
2833 
2834 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2835 			       start, offset);
2836 
2837 	/* Adjust skb->csum since we changed the packet */
2838 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2839 
2840 	grc->offset = off + hdrlen + offset;
2841 	grc->delta = delta;
2842 
2843 	return ptr;
2844 }
2845 
2846 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2847 					   struct gro_remcsum *grc)
2848 {
2849 	void *ptr;
2850 	size_t plen = grc->offset + sizeof(u16);
2851 
2852 	if (!grc->delta)
2853 		return;
2854 
2855 	ptr = skb_gro_header_fast(skb, grc->offset);
2856 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2857 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2858 		if (!ptr)
2859 			return;
2860 	}
2861 
2862 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2863 }
2864 
2865 #ifdef CONFIG_XFRM_OFFLOAD
2866 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2867 {
2868 	if (PTR_ERR(pp) != -EINPROGRESS)
2869 		NAPI_GRO_CB(skb)->flush |= flush;
2870 }
2871 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2872 					       struct sk_buff *pp,
2873 					       int flush,
2874 					       struct gro_remcsum *grc)
2875 {
2876 	if (PTR_ERR(pp) != -EINPROGRESS) {
2877 		NAPI_GRO_CB(skb)->flush |= flush;
2878 		skb_gro_remcsum_cleanup(skb, grc);
2879 		skb->remcsum_offload = 0;
2880 	}
2881 }
2882 #else
2883 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2884 {
2885 	NAPI_GRO_CB(skb)->flush |= flush;
2886 }
2887 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2888 					       struct sk_buff *pp,
2889 					       int flush,
2890 					       struct gro_remcsum *grc)
2891 {
2892 	NAPI_GRO_CB(skb)->flush |= flush;
2893 	skb_gro_remcsum_cleanup(skb, grc);
2894 	skb->remcsum_offload = 0;
2895 }
2896 #endif
2897 
2898 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2899 				  unsigned short type,
2900 				  const void *daddr, const void *saddr,
2901 				  unsigned int len)
2902 {
2903 	if (!dev->header_ops || !dev->header_ops->create)
2904 		return 0;
2905 
2906 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2907 }
2908 
2909 static inline int dev_parse_header(const struct sk_buff *skb,
2910 				   unsigned char *haddr)
2911 {
2912 	const struct net_device *dev = skb->dev;
2913 
2914 	if (!dev->header_ops || !dev->header_ops->parse)
2915 		return 0;
2916 	return dev->header_ops->parse(skb, haddr);
2917 }
2918 
2919 /* ll_header must have at least hard_header_len allocated */
2920 static inline bool dev_validate_header(const struct net_device *dev,
2921 				       char *ll_header, int len)
2922 {
2923 	if (likely(len >= dev->hard_header_len))
2924 		return true;
2925 	if (len < dev->min_header_len)
2926 		return false;
2927 
2928 	if (capable(CAP_SYS_RAWIO)) {
2929 		memset(ll_header + len, 0, dev->hard_header_len - len);
2930 		return true;
2931 	}
2932 
2933 	if (dev->header_ops && dev->header_ops->validate)
2934 		return dev->header_ops->validate(ll_header, len);
2935 
2936 	return false;
2937 }
2938 
2939 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2940 			   int len, int size);
2941 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2942 static inline int unregister_gifconf(unsigned int family)
2943 {
2944 	return register_gifconf(family, NULL);
2945 }
2946 
2947 #ifdef CONFIG_NET_FLOW_LIMIT
2948 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2949 struct sd_flow_limit {
2950 	u64			count;
2951 	unsigned int		num_buckets;
2952 	unsigned int		history_head;
2953 	u16			history[FLOW_LIMIT_HISTORY];
2954 	u8			buckets[];
2955 };
2956 
2957 extern int netdev_flow_limit_table_len;
2958 #endif /* CONFIG_NET_FLOW_LIMIT */
2959 
2960 /*
2961  * Incoming packets are placed on per-CPU queues
2962  */
2963 struct softnet_data {
2964 	struct list_head	poll_list;
2965 	struct sk_buff_head	process_queue;
2966 
2967 	/* stats */
2968 	unsigned int		processed;
2969 	unsigned int		time_squeeze;
2970 	unsigned int		received_rps;
2971 #ifdef CONFIG_RPS
2972 	struct softnet_data	*rps_ipi_list;
2973 #endif
2974 #ifdef CONFIG_NET_FLOW_LIMIT
2975 	struct sd_flow_limit __rcu *flow_limit;
2976 #endif
2977 	struct Qdisc		*output_queue;
2978 	struct Qdisc		**output_queue_tailp;
2979 	struct sk_buff		*completion_queue;
2980 #ifdef CONFIG_XFRM_OFFLOAD
2981 	struct sk_buff_head	xfrm_backlog;
2982 #endif
2983 #ifdef CONFIG_RPS
2984 	/* input_queue_head should be written by cpu owning this struct,
2985 	 * and only read by other cpus. Worth using a cache line.
2986 	 */
2987 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2988 
2989 	/* Elements below can be accessed between CPUs for RPS/RFS */
2990 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2991 	struct softnet_data	*rps_ipi_next;
2992 	unsigned int		cpu;
2993 	unsigned int		input_queue_tail;
2994 #endif
2995 	unsigned int		dropped;
2996 	struct sk_buff_head	input_pkt_queue;
2997 	struct napi_struct	backlog;
2998 
2999 };
3000 
3001 static inline void input_queue_head_incr(struct softnet_data *sd)
3002 {
3003 #ifdef CONFIG_RPS
3004 	sd->input_queue_head++;
3005 #endif
3006 }
3007 
3008 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3009 					      unsigned int *qtail)
3010 {
3011 #ifdef CONFIG_RPS
3012 	*qtail = ++sd->input_queue_tail;
3013 #endif
3014 }
3015 
3016 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3017 
3018 void __netif_schedule(struct Qdisc *q);
3019 void netif_schedule_queue(struct netdev_queue *txq);
3020 
3021 static inline void netif_tx_schedule_all(struct net_device *dev)
3022 {
3023 	unsigned int i;
3024 
3025 	for (i = 0; i < dev->num_tx_queues; i++)
3026 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3027 }
3028 
3029 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3030 {
3031 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3032 }
3033 
3034 /**
3035  *	netif_start_queue - allow transmit
3036  *	@dev: network device
3037  *
3038  *	Allow upper layers to call the device hard_start_xmit routine.
3039  */
3040 static inline void netif_start_queue(struct net_device *dev)
3041 {
3042 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3043 }
3044 
3045 static inline void netif_tx_start_all_queues(struct net_device *dev)
3046 {
3047 	unsigned int i;
3048 
3049 	for (i = 0; i < dev->num_tx_queues; i++) {
3050 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3051 		netif_tx_start_queue(txq);
3052 	}
3053 }
3054 
3055 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3056 
3057 /**
3058  *	netif_wake_queue - restart transmit
3059  *	@dev: network device
3060  *
3061  *	Allow upper layers to call the device hard_start_xmit routine.
3062  *	Used for flow control when transmit resources are available.
3063  */
3064 static inline void netif_wake_queue(struct net_device *dev)
3065 {
3066 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3067 }
3068 
3069 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3070 {
3071 	unsigned int i;
3072 
3073 	for (i = 0; i < dev->num_tx_queues; i++) {
3074 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3075 		netif_tx_wake_queue(txq);
3076 	}
3077 }
3078 
3079 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3080 {
3081 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3082 }
3083 
3084 /**
3085  *	netif_stop_queue - stop transmitted packets
3086  *	@dev: network device
3087  *
3088  *	Stop upper layers calling the device hard_start_xmit routine.
3089  *	Used for flow control when transmit resources are unavailable.
3090  */
3091 static inline void netif_stop_queue(struct net_device *dev)
3092 {
3093 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3094 }
3095 
3096 void netif_tx_stop_all_queues(struct net_device *dev);
3097 
3098 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3099 {
3100 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3101 }
3102 
3103 /**
3104  *	netif_queue_stopped - test if transmit queue is flowblocked
3105  *	@dev: network device
3106  *
3107  *	Test if transmit queue on device is currently unable to send.
3108  */
3109 static inline bool netif_queue_stopped(const struct net_device *dev)
3110 {
3111 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3112 }
3113 
3114 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3115 {
3116 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3117 }
3118 
3119 static inline bool
3120 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3121 {
3122 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3123 }
3124 
3125 static inline bool
3126 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3127 {
3128 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3129 }
3130 
3131 /**
3132  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3133  *	@dev_queue: pointer to transmit queue
3134  *
3135  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3136  * to give appropriate hint to the CPU.
3137  */
3138 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3139 {
3140 #ifdef CONFIG_BQL
3141 	prefetchw(&dev_queue->dql.num_queued);
3142 #endif
3143 }
3144 
3145 /**
3146  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3147  *	@dev_queue: pointer to transmit queue
3148  *
3149  * BQL enabled drivers might use this helper in their TX completion path,
3150  * to give appropriate hint to the CPU.
3151  */
3152 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3153 {
3154 #ifdef CONFIG_BQL
3155 	prefetchw(&dev_queue->dql.limit);
3156 #endif
3157 }
3158 
3159 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3160 					unsigned int bytes)
3161 {
3162 #ifdef CONFIG_BQL
3163 	dql_queued(&dev_queue->dql, bytes);
3164 
3165 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3166 		return;
3167 
3168 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3169 
3170 	/*
3171 	 * The XOFF flag must be set before checking the dql_avail below,
3172 	 * because in netdev_tx_completed_queue we update the dql_completed
3173 	 * before checking the XOFF flag.
3174 	 */
3175 	smp_mb();
3176 
3177 	/* check again in case another CPU has just made room avail */
3178 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3179 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3180 #endif
3181 }
3182 
3183 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3184  * that they should not test BQL status themselves.
3185  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3186  * skb of a batch.
3187  * Returns true if the doorbell must be used to kick the NIC.
3188  */
3189 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3190 					  unsigned int bytes,
3191 					  bool xmit_more)
3192 {
3193 	if (xmit_more) {
3194 #ifdef CONFIG_BQL
3195 		dql_queued(&dev_queue->dql, bytes);
3196 #endif
3197 		return netif_tx_queue_stopped(dev_queue);
3198 	}
3199 	netdev_tx_sent_queue(dev_queue, bytes);
3200 	return true;
3201 }
3202 
3203 /**
3204  * 	netdev_sent_queue - report the number of bytes queued to hardware
3205  * 	@dev: network device
3206  * 	@bytes: number of bytes queued to the hardware device queue
3207  *
3208  * 	Report the number of bytes queued for sending/completion to the network
3209  * 	device hardware queue. @bytes should be a good approximation and should
3210  * 	exactly match netdev_completed_queue() @bytes
3211  */
3212 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3213 {
3214 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3215 }
3216 
3217 static inline bool __netdev_sent_queue(struct net_device *dev,
3218 				       unsigned int bytes,
3219 				       bool xmit_more)
3220 {
3221 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3222 				      xmit_more);
3223 }
3224 
3225 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3226 					     unsigned int pkts, unsigned int bytes)
3227 {
3228 #ifdef CONFIG_BQL
3229 	if (unlikely(!bytes))
3230 		return;
3231 
3232 	dql_completed(&dev_queue->dql, bytes);
3233 
3234 	/*
3235 	 * Without the memory barrier there is a small possiblity that
3236 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3237 	 * be stopped forever
3238 	 */
3239 	smp_mb();
3240 
3241 	if (dql_avail(&dev_queue->dql) < 0)
3242 		return;
3243 
3244 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3245 		netif_schedule_queue(dev_queue);
3246 #endif
3247 }
3248 
3249 /**
3250  * 	netdev_completed_queue - report bytes and packets completed by device
3251  * 	@dev: network device
3252  * 	@pkts: actual number of packets sent over the medium
3253  * 	@bytes: actual number of bytes sent over the medium
3254  *
3255  * 	Report the number of bytes and packets transmitted by the network device
3256  * 	hardware queue over the physical medium, @bytes must exactly match the
3257  * 	@bytes amount passed to netdev_sent_queue()
3258  */
3259 static inline void netdev_completed_queue(struct net_device *dev,
3260 					  unsigned int pkts, unsigned int bytes)
3261 {
3262 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3263 }
3264 
3265 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3266 {
3267 #ifdef CONFIG_BQL
3268 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3269 	dql_reset(&q->dql);
3270 #endif
3271 }
3272 
3273 /**
3274  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3275  * 	@dev_queue: network device
3276  *
3277  * 	Reset the bytes and packet count of a network device and clear the
3278  * 	software flow control OFF bit for this network device
3279  */
3280 static inline void netdev_reset_queue(struct net_device *dev_queue)
3281 {
3282 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3283 }
3284 
3285 /**
3286  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3287  * 	@dev: network device
3288  * 	@queue_index: given tx queue index
3289  *
3290  * 	Returns 0 if given tx queue index >= number of device tx queues,
3291  * 	otherwise returns the originally passed tx queue index.
3292  */
3293 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3294 {
3295 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3296 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3297 				     dev->name, queue_index,
3298 				     dev->real_num_tx_queues);
3299 		return 0;
3300 	}
3301 
3302 	return queue_index;
3303 }
3304 
3305 /**
3306  *	netif_running - test if up
3307  *	@dev: network device
3308  *
3309  *	Test if the device has been brought up.
3310  */
3311 static inline bool netif_running(const struct net_device *dev)
3312 {
3313 	return test_bit(__LINK_STATE_START, &dev->state);
3314 }
3315 
3316 /*
3317  * Routines to manage the subqueues on a device.  We only need start,
3318  * stop, and a check if it's stopped.  All other device management is
3319  * done at the overall netdevice level.
3320  * Also test the device if we're multiqueue.
3321  */
3322 
3323 /**
3324  *	netif_start_subqueue - allow sending packets on subqueue
3325  *	@dev: network device
3326  *	@queue_index: sub queue index
3327  *
3328  * Start individual transmit queue of a device with multiple transmit queues.
3329  */
3330 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3331 {
3332 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3333 
3334 	netif_tx_start_queue(txq);
3335 }
3336 
3337 /**
3338  *	netif_stop_subqueue - stop sending packets on subqueue
3339  *	@dev: network device
3340  *	@queue_index: sub queue index
3341  *
3342  * Stop individual transmit queue of a device with multiple transmit queues.
3343  */
3344 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3345 {
3346 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3347 	netif_tx_stop_queue(txq);
3348 }
3349 
3350 /**
3351  *	netif_subqueue_stopped - test status of subqueue
3352  *	@dev: network device
3353  *	@queue_index: sub queue index
3354  *
3355  * Check individual transmit queue of a device with multiple transmit queues.
3356  */
3357 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3358 					    u16 queue_index)
3359 {
3360 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3361 
3362 	return netif_tx_queue_stopped(txq);
3363 }
3364 
3365 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3366 					  struct sk_buff *skb)
3367 {
3368 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3369 }
3370 
3371 /**
3372  *	netif_wake_subqueue - allow sending packets on subqueue
3373  *	@dev: network device
3374  *	@queue_index: sub queue index
3375  *
3376  * Resume individual transmit queue of a device with multiple transmit queues.
3377  */
3378 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3379 {
3380 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3381 
3382 	netif_tx_wake_queue(txq);
3383 }
3384 
3385 #ifdef CONFIG_XPS
3386 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3387 			u16 index);
3388 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3389 			  u16 index, bool is_rxqs_map);
3390 
3391 /**
3392  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3393  *	@j: CPU/Rx queue index
3394  *	@mask: bitmask of all cpus/rx queues
3395  *	@nr_bits: number of bits in the bitmask
3396  *
3397  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3398  */
3399 static inline bool netif_attr_test_mask(unsigned long j,
3400 					const unsigned long *mask,
3401 					unsigned int nr_bits)
3402 {
3403 	cpu_max_bits_warn(j, nr_bits);
3404 	return test_bit(j, mask);
3405 }
3406 
3407 /**
3408  *	netif_attr_test_online - Test for online CPU/Rx queue
3409  *	@j: CPU/Rx queue index
3410  *	@online_mask: bitmask for CPUs/Rx queues that are online
3411  *	@nr_bits: number of bits in the bitmask
3412  *
3413  * Returns true if a CPU/Rx queue is online.
3414  */
3415 static inline bool netif_attr_test_online(unsigned long j,
3416 					  const unsigned long *online_mask,
3417 					  unsigned int nr_bits)
3418 {
3419 	cpu_max_bits_warn(j, nr_bits);
3420 
3421 	if (online_mask)
3422 		return test_bit(j, online_mask);
3423 
3424 	return (j < nr_bits);
3425 }
3426 
3427 /**
3428  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3429  *	@n: CPU/Rx queue index
3430  *	@srcp: the cpumask/Rx queue mask pointer
3431  *	@nr_bits: number of bits in the bitmask
3432  *
3433  * Returns >= nr_bits if no further CPUs/Rx queues set.
3434  */
3435 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3436 					       unsigned int nr_bits)
3437 {
3438 	/* -1 is a legal arg here. */
3439 	if (n != -1)
3440 		cpu_max_bits_warn(n, nr_bits);
3441 
3442 	if (srcp)
3443 		return find_next_bit(srcp, nr_bits, n + 1);
3444 
3445 	return n + 1;
3446 }
3447 
3448 /**
3449  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3450  *	@n: CPU/Rx queue index
3451  *	@src1p: the first CPUs/Rx queues mask pointer
3452  *	@src2p: the second CPUs/Rx queues mask pointer
3453  *	@nr_bits: number of bits in the bitmask
3454  *
3455  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3456  */
3457 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3458 					  const unsigned long *src2p,
3459 					  unsigned int nr_bits)
3460 {
3461 	/* -1 is a legal arg here. */
3462 	if (n != -1)
3463 		cpu_max_bits_warn(n, nr_bits);
3464 
3465 	if (src1p && src2p)
3466 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3467 	else if (src1p)
3468 		return find_next_bit(src1p, nr_bits, n + 1);
3469 	else if (src2p)
3470 		return find_next_bit(src2p, nr_bits, n + 1);
3471 
3472 	return n + 1;
3473 }
3474 #else
3475 static inline int netif_set_xps_queue(struct net_device *dev,
3476 				      const struct cpumask *mask,
3477 				      u16 index)
3478 {
3479 	return 0;
3480 }
3481 
3482 static inline int __netif_set_xps_queue(struct net_device *dev,
3483 					const unsigned long *mask,
3484 					u16 index, bool is_rxqs_map)
3485 {
3486 	return 0;
3487 }
3488 #endif
3489 
3490 /**
3491  *	netif_is_multiqueue - test if device has multiple transmit queues
3492  *	@dev: network device
3493  *
3494  * Check if device has multiple transmit queues
3495  */
3496 static inline bool netif_is_multiqueue(const struct net_device *dev)
3497 {
3498 	return dev->num_tx_queues > 1;
3499 }
3500 
3501 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3502 
3503 #ifdef CONFIG_SYSFS
3504 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3505 #else
3506 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3507 						unsigned int rxqs)
3508 {
3509 	dev->real_num_rx_queues = rxqs;
3510 	return 0;
3511 }
3512 #endif
3513 
3514 static inline struct netdev_rx_queue *
3515 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3516 {
3517 	return dev->_rx + rxq;
3518 }
3519 
3520 #ifdef CONFIG_SYSFS
3521 static inline unsigned int get_netdev_rx_queue_index(
3522 		struct netdev_rx_queue *queue)
3523 {
3524 	struct net_device *dev = queue->dev;
3525 	int index = queue - dev->_rx;
3526 
3527 	BUG_ON(index >= dev->num_rx_queues);
3528 	return index;
3529 }
3530 #endif
3531 
3532 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3533 int netif_get_num_default_rss_queues(void);
3534 
3535 enum skb_free_reason {
3536 	SKB_REASON_CONSUMED,
3537 	SKB_REASON_DROPPED,
3538 };
3539 
3540 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3541 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3542 
3543 /*
3544  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3545  * interrupt context or with hardware interrupts being disabled.
3546  * (in_irq() || irqs_disabled())
3547  *
3548  * We provide four helpers that can be used in following contexts :
3549  *
3550  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3551  *  replacing kfree_skb(skb)
3552  *
3553  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3554  *  Typically used in place of consume_skb(skb) in TX completion path
3555  *
3556  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3557  *  replacing kfree_skb(skb)
3558  *
3559  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3560  *  and consumed a packet. Used in place of consume_skb(skb)
3561  */
3562 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3563 {
3564 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3565 }
3566 
3567 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3568 {
3569 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3570 }
3571 
3572 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3573 {
3574 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3575 }
3576 
3577 static inline void dev_consume_skb_any(struct sk_buff *skb)
3578 {
3579 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3580 }
3581 
3582 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3583 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3584 int netif_rx(struct sk_buff *skb);
3585 int netif_rx_ni(struct sk_buff *skb);
3586 int netif_receive_skb(struct sk_buff *skb);
3587 int netif_receive_skb_core(struct sk_buff *skb);
3588 void netif_receive_skb_list(struct list_head *head);
3589 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3590 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3591 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3592 gro_result_t napi_gro_frags(struct napi_struct *napi);
3593 struct packet_offload *gro_find_receive_by_type(__be16 type);
3594 struct packet_offload *gro_find_complete_by_type(__be16 type);
3595 
3596 static inline void napi_free_frags(struct napi_struct *napi)
3597 {
3598 	kfree_skb(napi->skb);
3599 	napi->skb = NULL;
3600 }
3601 
3602 bool netdev_is_rx_handler_busy(struct net_device *dev);
3603 int netdev_rx_handler_register(struct net_device *dev,
3604 			       rx_handler_func_t *rx_handler,
3605 			       void *rx_handler_data);
3606 void netdev_rx_handler_unregister(struct net_device *dev);
3607 
3608 bool dev_valid_name(const char *name);
3609 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3610 		bool *need_copyout);
3611 int dev_ifconf(struct net *net, struct ifconf *, int);
3612 int dev_ethtool(struct net *net, struct ifreq *);
3613 unsigned int dev_get_flags(const struct net_device *);
3614 int __dev_change_flags(struct net_device *, unsigned int flags);
3615 int dev_change_flags(struct net_device *, unsigned int);
3616 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3617 			unsigned int gchanges);
3618 int dev_change_name(struct net_device *, const char *);
3619 int dev_set_alias(struct net_device *, const char *, size_t);
3620 int dev_get_alias(const struct net_device *, char *, size_t);
3621 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3622 int __dev_set_mtu(struct net_device *, int);
3623 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3624 		    struct netlink_ext_ack *extack);
3625 int dev_set_mtu(struct net_device *, int);
3626 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3627 void dev_set_group(struct net_device *, int);
3628 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3629 int dev_change_carrier(struct net_device *, bool new_carrier);
3630 int dev_get_phys_port_id(struct net_device *dev,
3631 			 struct netdev_phys_item_id *ppid);
3632 int dev_get_phys_port_name(struct net_device *dev,
3633 			   char *name, size_t len);
3634 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3635 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3636 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3637 				    struct netdev_queue *txq, int *ret);
3638 
3639 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3640 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3641 		      int fd, u32 flags);
3642 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3643 		    enum bpf_netdev_command cmd);
3644 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3645 
3646 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3647 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3648 bool is_skb_forwardable(const struct net_device *dev,
3649 			const struct sk_buff *skb);
3650 
3651 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3652 					       struct sk_buff *skb)
3653 {
3654 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3655 	    unlikely(!is_skb_forwardable(dev, skb))) {
3656 		atomic_long_inc(&dev->rx_dropped);
3657 		kfree_skb(skb);
3658 		return NET_RX_DROP;
3659 	}
3660 
3661 	skb_scrub_packet(skb, true);
3662 	skb->priority = 0;
3663 	return 0;
3664 }
3665 
3666 bool dev_nit_active(struct net_device *dev);
3667 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3668 
3669 extern int		netdev_budget;
3670 extern unsigned int	netdev_budget_usecs;
3671 
3672 /* Called by rtnetlink.c:rtnl_unlock() */
3673 void netdev_run_todo(void);
3674 
3675 /**
3676  *	dev_put - release reference to device
3677  *	@dev: network device
3678  *
3679  * Release reference to device to allow it to be freed.
3680  */
3681 static inline void dev_put(struct net_device *dev)
3682 {
3683 	this_cpu_dec(*dev->pcpu_refcnt);
3684 }
3685 
3686 /**
3687  *	dev_hold - get reference to device
3688  *	@dev: network device
3689  *
3690  * Hold reference to device to keep it from being freed.
3691  */
3692 static inline void dev_hold(struct net_device *dev)
3693 {
3694 	this_cpu_inc(*dev->pcpu_refcnt);
3695 }
3696 
3697 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3698  * and _off may be called from IRQ context, but it is caller
3699  * who is responsible for serialization of these calls.
3700  *
3701  * The name carrier is inappropriate, these functions should really be
3702  * called netif_lowerlayer_*() because they represent the state of any
3703  * kind of lower layer not just hardware media.
3704  */
3705 
3706 void linkwatch_init_dev(struct net_device *dev);
3707 void linkwatch_fire_event(struct net_device *dev);
3708 void linkwatch_forget_dev(struct net_device *dev);
3709 
3710 /**
3711  *	netif_carrier_ok - test if carrier present
3712  *	@dev: network device
3713  *
3714  * Check if carrier is present on device
3715  */
3716 static inline bool netif_carrier_ok(const struct net_device *dev)
3717 {
3718 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3719 }
3720 
3721 unsigned long dev_trans_start(struct net_device *dev);
3722 
3723 void __netdev_watchdog_up(struct net_device *dev);
3724 
3725 void netif_carrier_on(struct net_device *dev);
3726 
3727 void netif_carrier_off(struct net_device *dev);
3728 
3729 /**
3730  *	netif_dormant_on - mark device as dormant.
3731  *	@dev: network device
3732  *
3733  * Mark device as dormant (as per RFC2863).
3734  *
3735  * The dormant state indicates that the relevant interface is not
3736  * actually in a condition to pass packets (i.e., it is not 'up') but is
3737  * in a "pending" state, waiting for some external event.  For "on-
3738  * demand" interfaces, this new state identifies the situation where the
3739  * interface is waiting for events to place it in the up state.
3740  */
3741 static inline void netif_dormant_on(struct net_device *dev)
3742 {
3743 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3744 		linkwatch_fire_event(dev);
3745 }
3746 
3747 /**
3748  *	netif_dormant_off - set device as not dormant.
3749  *	@dev: network device
3750  *
3751  * Device is not in dormant state.
3752  */
3753 static inline void netif_dormant_off(struct net_device *dev)
3754 {
3755 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3756 		linkwatch_fire_event(dev);
3757 }
3758 
3759 /**
3760  *	netif_dormant - test if device is dormant
3761  *	@dev: network device
3762  *
3763  * Check if device is dormant.
3764  */
3765 static inline bool netif_dormant(const struct net_device *dev)
3766 {
3767 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3768 }
3769 
3770 
3771 /**
3772  *	netif_oper_up - test if device is operational
3773  *	@dev: network device
3774  *
3775  * Check if carrier is operational
3776  */
3777 static inline bool netif_oper_up(const struct net_device *dev)
3778 {
3779 	return (dev->operstate == IF_OPER_UP ||
3780 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3781 }
3782 
3783 /**
3784  *	netif_device_present - is device available or removed
3785  *	@dev: network device
3786  *
3787  * Check if device has not been removed from system.
3788  */
3789 static inline bool netif_device_present(struct net_device *dev)
3790 {
3791 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3792 }
3793 
3794 void netif_device_detach(struct net_device *dev);
3795 
3796 void netif_device_attach(struct net_device *dev);
3797 
3798 /*
3799  * Network interface message level settings
3800  */
3801 
3802 enum {
3803 	NETIF_MSG_DRV		= 0x0001,
3804 	NETIF_MSG_PROBE		= 0x0002,
3805 	NETIF_MSG_LINK		= 0x0004,
3806 	NETIF_MSG_TIMER		= 0x0008,
3807 	NETIF_MSG_IFDOWN	= 0x0010,
3808 	NETIF_MSG_IFUP		= 0x0020,
3809 	NETIF_MSG_RX_ERR	= 0x0040,
3810 	NETIF_MSG_TX_ERR	= 0x0080,
3811 	NETIF_MSG_TX_QUEUED	= 0x0100,
3812 	NETIF_MSG_INTR		= 0x0200,
3813 	NETIF_MSG_TX_DONE	= 0x0400,
3814 	NETIF_MSG_RX_STATUS	= 0x0800,
3815 	NETIF_MSG_PKTDATA	= 0x1000,
3816 	NETIF_MSG_HW		= 0x2000,
3817 	NETIF_MSG_WOL		= 0x4000,
3818 };
3819 
3820 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3821 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3822 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3823 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3824 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3825 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3826 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3827 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3828 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3829 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3830 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3831 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3832 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3833 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3834 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3835 
3836 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3837 {
3838 	/* use default */
3839 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3840 		return default_msg_enable_bits;
3841 	if (debug_value == 0)	/* no output */
3842 		return 0;
3843 	/* set low N bits */
3844 	return (1 << debug_value) - 1;
3845 }
3846 
3847 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3848 {
3849 	spin_lock(&txq->_xmit_lock);
3850 	txq->xmit_lock_owner = cpu;
3851 }
3852 
3853 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3854 {
3855 	__acquire(&txq->_xmit_lock);
3856 	return true;
3857 }
3858 
3859 static inline void __netif_tx_release(struct netdev_queue *txq)
3860 {
3861 	__release(&txq->_xmit_lock);
3862 }
3863 
3864 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3865 {
3866 	spin_lock_bh(&txq->_xmit_lock);
3867 	txq->xmit_lock_owner = smp_processor_id();
3868 }
3869 
3870 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3871 {
3872 	bool ok = spin_trylock(&txq->_xmit_lock);
3873 	if (likely(ok))
3874 		txq->xmit_lock_owner = smp_processor_id();
3875 	return ok;
3876 }
3877 
3878 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3879 {
3880 	txq->xmit_lock_owner = -1;
3881 	spin_unlock(&txq->_xmit_lock);
3882 }
3883 
3884 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3885 {
3886 	txq->xmit_lock_owner = -1;
3887 	spin_unlock_bh(&txq->_xmit_lock);
3888 }
3889 
3890 static inline void txq_trans_update(struct netdev_queue *txq)
3891 {
3892 	if (txq->xmit_lock_owner != -1)
3893 		txq->trans_start = jiffies;
3894 }
3895 
3896 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3897 static inline void netif_trans_update(struct net_device *dev)
3898 {
3899 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3900 
3901 	if (txq->trans_start != jiffies)
3902 		txq->trans_start = jiffies;
3903 }
3904 
3905 /**
3906  *	netif_tx_lock - grab network device transmit lock
3907  *	@dev: network device
3908  *
3909  * Get network device transmit lock
3910  */
3911 static inline void netif_tx_lock(struct net_device *dev)
3912 {
3913 	unsigned int i;
3914 	int cpu;
3915 
3916 	spin_lock(&dev->tx_global_lock);
3917 	cpu = smp_processor_id();
3918 	for (i = 0; i < dev->num_tx_queues; i++) {
3919 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3920 
3921 		/* We are the only thread of execution doing a
3922 		 * freeze, but we have to grab the _xmit_lock in
3923 		 * order to synchronize with threads which are in
3924 		 * the ->hard_start_xmit() handler and already
3925 		 * checked the frozen bit.
3926 		 */
3927 		__netif_tx_lock(txq, cpu);
3928 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3929 		__netif_tx_unlock(txq);
3930 	}
3931 }
3932 
3933 static inline void netif_tx_lock_bh(struct net_device *dev)
3934 {
3935 	local_bh_disable();
3936 	netif_tx_lock(dev);
3937 }
3938 
3939 static inline void netif_tx_unlock(struct net_device *dev)
3940 {
3941 	unsigned int i;
3942 
3943 	for (i = 0; i < dev->num_tx_queues; i++) {
3944 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3945 
3946 		/* No need to grab the _xmit_lock here.  If the
3947 		 * queue is not stopped for another reason, we
3948 		 * force a schedule.
3949 		 */
3950 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3951 		netif_schedule_queue(txq);
3952 	}
3953 	spin_unlock(&dev->tx_global_lock);
3954 }
3955 
3956 static inline void netif_tx_unlock_bh(struct net_device *dev)
3957 {
3958 	netif_tx_unlock(dev);
3959 	local_bh_enable();
3960 }
3961 
3962 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3963 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3964 		__netif_tx_lock(txq, cpu);		\
3965 	} else {					\
3966 		__netif_tx_acquire(txq);		\
3967 	}						\
3968 }
3969 
3970 #define HARD_TX_TRYLOCK(dev, txq)			\
3971 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3972 		__netif_tx_trylock(txq) :		\
3973 		__netif_tx_acquire(txq))
3974 
3975 #define HARD_TX_UNLOCK(dev, txq) {			\
3976 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3977 		__netif_tx_unlock(txq);			\
3978 	} else {					\
3979 		__netif_tx_release(txq);		\
3980 	}						\
3981 }
3982 
3983 static inline void netif_tx_disable(struct net_device *dev)
3984 {
3985 	unsigned int i;
3986 	int cpu;
3987 
3988 	local_bh_disable();
3989 	cpu = smp_processor_id();
3990 	for (i = 0; i < dev->num_tx_queues; i++) {
3991 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3992 
3993 		__netif_tx_lock(txq, cpu);
3994 		netif_tx_stop_queue(txq);
3995 		__netif_tx_unlock(txq);
3996 	}
3997 	local_bh_enable();
3998 }
3999 
4000 static inline void netif_addr_lock(struct net_device *dev)
4001 {
4002 	spin_lock(&dev->addr_list_lock);
4003 }
4004 
4005 static inline void netif_addr_lock_nested(struct net_device *dev)
4006 {
4007 	int subclass = SINGLE_DEPTH_NESTING;
4008 
4009 	if (dev->netdev_ops->ndo_get_lock_subclass)
4010 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4011 
4012 	spin_lock_nested(&dev->addr_list_lock, subclass);
4013 }
4014 
4015 static inline void netif_addr_lock_bh(struct net_device *dev)
4016 {
4017 	spin_lock_bh(&dev->addr_list_lock);
4018 }
4019 
4020 static inline void netif_addr_unlock(struct net_device *dev)
4021 {
4022 	spin_unlock(&dev->addr_list_lock);
4023 }
4024 
4025 static inline void netif_addr_unlock_bh(struct net_device *dev)
4026 {
4027 	spin_unlock_bh(&dev->addr_list_lock);
4028 }
4029 
4030 /*
4031  * dev_addrs walker. Should be used only for read access. Call with
4032  * rcu_read_lock held.
4033  */
4034 #define for_each_dev_addr(dev, ha) \
4035 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4036 
4037 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4038 
4039 void ether_setup(struct net_device *dev);
4040 
4041 /* Support for loadable net-drivers */
4042 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4043 				    unsigned char name_assign_type,
4044 				    void (*setup)(struct net_device *),
4045 				    unsigned int txqs, unsigned int rxqs);
4046 int dev_get_valid_name(struct net *net, struct net_device *dev,
4047 		       const char *name);
4048 
4049 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4050 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4051 
4052 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4053 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4054 			 count)
4055 
4056 int register_netdev(struct net_device *dev);
4057 void unregister_netdev(struct net_device *dev);
4058 
4059 /* General hardware address lists handling functions */
4060 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4061 		   struct netdev_hw_addr_list *from_list, int addr_len);
4062 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4063 		      struct netdev_hw_addr_list *from_list, int addr_len);
4064 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4065 		       struct net_device *dev,
4066 		       int (*sync)(struct net_device *, const unsigned char *),
4067 		       int (*unsync)(struct net_device *,
4068 				     const unsigned char *));
4069 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4070 			   struct net_device *dev,
4071 			   int (*sync)(struct net_device *,
4072 				       const unsigned char *, int),
4073 			   int (*unsync)(struct net_device *,
4074 					 const unsigned char *, int));
4075 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4076 			      struct net_device *dev,
4077 			      int (*unsync)(struct net_device *,
4078 					    const unsigned char *, int));
4079 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4080 			  struct net_device *dev,
4081 			  int (*unsync)(struct net_device *,
4082 					const unsigned char *));
4083 void __hw_addr_init(struct netdev_hw_addr_list *list);
4084 
4085 /* Functions used for device addresses handling */
4086 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4087 		 unsigned char addr_type);
4088 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4089 		 unsigned char addr_type);
4090 void dev_addr_flush(struct net_device *dev);
4091 int dev_addr_init(struct net_device *dev);
4092 
4093 /* Functions used for unicast addresses handling */
4094 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4095 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4096 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4097 int dev_uc_sync(struct net_device *to, struct net_device *from);
4098 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4099 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4100 void dev_uc_flush(struct net_device *dev);
4101 void dev_uc_init(struct net_device *dev);
4102 
4103 /**
4104  *  __dev_uc_sync - Synchonize device's unicast list
4105  *  @dev:  device to sync
4106  *  @sync: function to call if address should be added
4107  *  @unsync: function to call if address should be removed
4108  *
4109  *  Add newly added addresses to the interface, and release
4110  *  addresses that have been deleted.
4111  */
4112 static inline int __dev_uc_sync(struct net_device *dev,
4113 				int (*sync)(struct net_device *,
4114 					    const unsigned char *),
4115 				int (*unsync)(struct net_device *,
4116 					      const unsigned char *))
4117 {
4118 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4119 }
4120 
4121 /**
4122  *  __dev_uc_unsync - Remove synchronized addresses from device
4123  *  @dev:  device to sync
4124  *  @unsync: function to call if address should be removed
4125  *
4126  *  Remove all addresses that were added to the device by dev_uc_sync().
4127  */
4128 static inline void __dev_uc_unsync(struct net_device *dev,
4129 				   int (*unsync)(struct net_device *,
4130 						 const unsigned char *))
4131 {
4132 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4133 }
4134 
4135 /* Functions used for multicast addresses handling */
4136 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4137 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4138 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4139 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4140 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4141 int dev_mc_sync(struct net_device *to, struct net_device *from);
4142 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4143 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4144 void dev_mc_flush(struct net_device *dev);
4145 void dev_mc_init(struct net_device *dev);
4146 
4147 /**
4148  *  __dev_mc_sync - Synchonize device's multicast list
4149  *  @dev:  device to sync
4150  *  @sync: function to call if address should be added
4151  *  @unsync: function to call if address should be removed
4152  *
4153  *  Add newly added addresses to the interface, and release
4154  *  addresses that have been deleted.
4155  */
4156 static inline int __dev_mc_sync(struct net_device *dev,
4157 				int (*sync)(struct net_device *,
4158 					    const unsigned char *),
4159 				int (*unsync)(struct net_device *,
4160 					      const unsigned char *))
4161 {
4162 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4163 }
4164 
4165 /**
4166  *  __dev_mc_unsync - Remove synchronized addresses from device
4167  *  @dev:  device to sync
4168  *  @unsync: function to call if address should be removed
4169  *
4170  *  Remove all addresses that were added to the device by dev_mc_sync().
4171  */
4172 static inline void __dev_mc_unsync(struct net_device *dev,
4173 				   int (*unsync)(struct net_device *,
4174 						 const unsigned char *))
4175 {
4176 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4177 }
4178 
4179 /* Functions used for secondary unicast and multicast support */
4180 void dev_set_rx_mode(struct net_device *dev);
4181 void __dev_set_rx_mode(struct net_device *dev);
4182 int dev_set_promiscuity(struct net_device *dev, int inc);
4183 int dev_set_allmulti(struct net_device *dev, int inc);
4184 void netdev_state_change(struct net_device *dev);
4185 void netdev_notify_peers(struct net_device *dev);
4186 void netdev_features_change(struct net_device *dev);
4187 /* Load a device via the kmod */
4188 void dev_load(struct net *net, const char *name);
4189 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4190 					struct rtnl_link_stats64 *storage);
4191 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4192 			     const struct net_device_stats *netdev_stats);
4193 
4194 extern int		netdev_max_backlog;
4195 extern int		netdev_tstamp_prequeue;
4196 extern int		weight_p;
4197 extern int		dev_weight_rx_bias;
4198 extern int		dev_weight_tx_bias;
4199 extern int		dev_rx_weight;
4200 extern int		dev_tx_weight;
4201 
4202 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4203 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4204 						     struct list_head **iter);
4205 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4206 						     struct list_head **iter);
4207 
4208 /* iterate through upper list, must be called under RCU read lock */
4209 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4210 	for (iter = &(dev)->adj_list.upper, \
4211 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4212 	     updev; \
4213 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4214 
4215 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4216 				  int (*fn)(struct net_device *upper_dev,
4217 					    void *data),
4218 				  void *data);
4219 
4220 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4221 				  struct net_device *upper_dev);
4222 
4223 bool netdev_has_any_upper_dev(struct net_device *dev);
4224 
4225 void *netdev_lower_get_next_private(struct net_device *dev,
4226 				    struct list_head **iter);
4227 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4228 					struct list_head **iter);
4229 
4230 #define netdev_for_each_lower_private(dev, priv, iter) \
4231 	for (iter = (dev)->adj_list.lower.next, \
4232 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4233 	     priv; \
4234 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4235 
4236 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4237 	for (iter = &(dev)->adj_list.lower, \
4238 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4239 	     priv; \
4240 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4241 
4242 void *netdev_lower_get_next(struct net_device *dev,
4243 				struct list_head **iter);
4244 
4245 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4246 	for (iter = (dev)->adj_list.lower.next, \
4247 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4248 	     ldev; \
4249 	     ldev = netdev_lower_get_next(dev, &(iter)))
4250 
4251 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4252 					     struct list_head **iter);
4253 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4254 						 struct list_head **iter);
4255 
4256 int netdev_walk_all_lower_dev(struct net_device *dev,
4257 			      int (*fn)(struct net_device *lower_dev,
4258 					void *data),
4259 			      void *data);
4260 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4261 				  int (*fn)(struct net_device *lower_dev,
4262 					    void *data),
4263 				  void *data);
4264 
4265 void *netdev_adjacent_get_private(struct list_head *adj_list);
4266 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4267 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4268 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4269 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4270 			  struct netlink_ext_ack *extack);
4271 int netdev_master_upper_dev_link(struct net_device *dev,
4272 				 struct net_device *upper_dev,
4273 				 void *upper_priv, void *upper_info,
4274 				 struct netlink_ext_ack *extack);
4275 void netdev_upper_dev_unlink(struct net_device *dev,
4276 			     struct net_device *upper_dev);
4277 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4278 void *netdev_lower_dev_get_private(struct net_device *dev,
4279 				   struct net_device *lower_dev);
4280 void netdev_lower_state_changed(struct net_device *lower_dev,
4281 				void *lower_state_info);
4282 
4283 /* RSS keys are 40 or 52 bytes long */
4284 #define NETDEV_RSS_KEY_LEN 52
4285 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4286 void netdev_rss_key_fill(void *buffer, size_t len);
4287 
4288 int dev_get_nest_level(struct net_device *dev);
4289 int skb_checksum_help(struct sk_buff *skb);
4290 int skb_crc32c_csum_help(struct sk_buff *skb);
4291 int skb_csum_hwoffload_help(struct sk_buff *skb,
4292 			    const netdev_features_t features);
4293 
4294 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4295 				  netdev_features_t features, bool tx_path);
4296 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4297 				    netdev_features_t features);
4298 
4299 struct netdev_bonding_info {
4300 	ifslave	slave;
4301 	ifbond	master;
4302 };
4303 
4304 struct netdev_notifier_bonding_info {
4305 	struct netdev_notifier_info info; /* must be first */
4306 	struct netdev_bonding_info  bonding_info;
4307 };
4308 
4309 void netdev_bonding_info_change(struct net_device *dev,
4310 				struct netdev_bonding_info *bonding_info);
4311 
4312 static inline
4313 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4314 {
4315 	return __skb_gso_segment(skb, features, true);
4316 }
4317 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4318 
4319 static inline bool can_checksum_protocol(netdev_features_t features,
4320 					 __be16 protocol)
4321 {
4322 	if (protocol == htons(ETH_P_FCOE))
4323 		return !!(features & NETIF_F_FCOE_CRC);
4324 
4325 	/* Assume this is an IP checksum (not SCTP CRC) */
4326 
4327 	if (features & NETIF_F_HW_CSUM) {
4328 		/* Can checksum everything */
4329 		return true;
4330 	}
4331 
4332 	switch (protocol) {
4333 	case htons(ETH_P_IP):
4334 		return !!(features & NETIF_F_IP_CSUM);
4335 	case htons(ETH_P_IPV6):
4336 		return !!(features & NETIF_F_IPV6_CSUM);
4337 	default:
4338 		return false;
4339 	}
4340 }
4341 
4342 #ifdef CONFIG_BUG
4343 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4344 #else
4345 static inline void netdev_rx_csum_fault(struct net_device *dev,
4346 					struct sk_buff *skb)
4347 {
4348 }
4349 #endif
4350 /* rx skb timestamps */
4351 void net_enable_timestamp(void);
4352 void net_disable_timestamp(void);
4353 
4354 #ifdef CONFIG_PROC_FS
4355 int __init dev_proc_init(void);
4356 #else
4357 #define dev_proc_init() 0
4358 #endif
4359 
4360 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4361 					      struct sk_buff *skb, struct net_device *dev,
4362 					      bool more)
4363 {
4364 	skb->xmit_more = more ? 1 : 0;
4365 	return ops->ndo_start_xmit(skb, dev);
4366 }
4367 
4368 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4369 					    struct netdev_queue *txq, bool more)
4370 {
4371 	const struct net_device_ops *ops = dev->netdev_ops;
4372 	netdev_tx_t rc;
4373 
4374 	rc = __netdev_start_xmit(ops, skb, dev, more);
4375 	if (rc == NETDEV_TX_OK)
4376 		txq_trans_update(txq);
4377 
4378 	return rc;
4379 }
4380 
4381 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4382 				const void *ns);
4383 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4384 				 const void *ns);
4385 
4386 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4387 {
4388 	return netdev_class_create_file_ns(class_attr, NULL);
4389 }
4390 
4391 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4392 {
4393 	netdev_class_remove_file_ns(class_attr, NULL);
4394 }
4395 
4396 extern const struct kobj_ns_type_operations net_ns_type_operations;
4397 
4398 const char *netdev_drivername(const struct net_device *dev);
4399 
4400 void linkwatch_run_queue(void);
4401 
4402 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4403 							  netdev_features_t f2)
4404 {
4405 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4406 		if (f1 & NETIF_F_HW_CSUM)
4407 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4408 		else
4409 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4410 	}
4411 
4412 	return f1 & f2;
4413 }
4414 
4415 static inline netdev_features_t netdev_get_wanted_features(
4416 	struct net_device *dev)
4417 {
4418 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4419 }
4420 netdev_features_t netdev_increment_features(netdev_features_t all,
4421 	netdev_features_t one, netdev_features_t mask);
4422 
4423 /* Allow TSO being used on stacked device :
4424  * Performing the GSO segmentation before last device
4425  * is a performance improvement.
4426  */
4427 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4428 							netdev_features_t mask)
4429 {
4430 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4431 }
4432 
4433 int __netdev_update_features(struct net_device *dev);
4434 void netdev_update_features(struct net_device *dev);
4435 void netdev_change_features(struct net_device *dev);
4436 
4437 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4438 					struct net_device *dev);
4439 
4440 netdev_features_t passthru_features_check(struct sk_buff *skb,
4441 					  struct net_device *dev,
4442 					  netdev_features_t features);
4443 netdev_features_t netif_skb_features(struct sk_buff *skb);
4444 
4445 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4446 {
4447 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4448 
4449 	/* check flags correspondence */
4450 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4451 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4452 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4453 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4454 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4455 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4456 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4457 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4458 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4459 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4460 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4461 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4462 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4463 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4464 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4465 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4466 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4467 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4468 
4469 	return (features & feature) == feature;
4470 }
4471 
4472 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4473 {
4474 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4475 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4476 }
4477 
4478 static inline bool netif_needs_gso(struct sk_buff *skb,
4479 				   netdev_features_t features)
4480 {
4481 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4482 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4483 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4484 }
4485 
4486 static inline void netif_set_gso_max_size(struct net_device *dev,
4487 					  unsigned int size)
4488 {
4489 	dev->gso_max_size = size;
4490 }
4491 
4492 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4493 					int pulled_hlen, u16 mac_offset,
4494 					int mac_len)
4495 {
4496 	skb->protocol = protocol;
4497 	skb->encapsulation = 1;
4498 	skb_push(skb, pulled_hlen);
4499 	skb_reset_transport_header(skb);
4500 	skb->mac_header = mac_offset;
4501 	skb->network_header = skb->mac_header + mac_len;
4502 	skb->mac_len = mac_len;
4503 }
4504 
4505 static inline bool netif_is_macsec(const struct net_device *dev)
4506 {
4507 	return dev->priv_flags & IFF_MACSEC;
4508 }
4509 
4510 static inline bool netif_is_macvlan(const struct net_device *dev)
4511 {
4512 	return dev->priv_flags & IFF_MACVLAN;
4513 }
4514 
4515 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4516 {
4517 	return dev->priv_flags & IFF_MACVLAN_PORT;
4518 }
4519 
4520 static inline bool netif_is_bond_master(const struct net_device *dev)
4521 {
4522 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4523 }
4524 
4525 static inline bool netif_is_bond_slave(const struct net_device *dev)
4526 {
4527 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4528 }
4529 
4530 static inline bool netif_supports_nofcs(struct net_device *dev)
4531 {
4532 	return dev->priv_flags & IFF_SUPP_NOFCS;
4533 }
4534 
4535 static inline bool netif_is_l3_master(const struct net_device *dev)
4536 {
4537 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4538 }
4539 
4540 static inline bool netif_is_l3_slave(const struct net_device *dev)
4541 {
4542 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4543 }
4544 
4545 static inline bool netif_is_bridge_master(const struct net_device *dev)
4546 {
4547 	return dev->priv_flags & IFF_EBRIDGE;
4548 }
4549 
4550 static inline bool netif_is_bridge_port(const struct net_device *dev)
4551 {
4552 	return dev->priv_flags & IFF_BRIDGE_PORT;
4553 }
4554 
4555 static inline bool netif_is_ovs_master(const struct net_device *dev)
4556 {
4557 	return dev->priv_flags & IFF_OPENVSWITCH;
4558 }
4559 
4560 static inline bool netif_is_ovs_port(const struct net_device *dev)
4561 {
4562 	return dev->priv_flags & IFF_OVS_DATAPATH;
4563 }
4564 
4565 static inline bool netif_is_team_master(const struct net_device *dev)
4566 {
4567 	return dev->priv_flags & IFF_TEAM;
4568 }
4569 
4570 static inline bool netif_is_team_port(const struct net_device *dev)
4571 {
4572 	return dev->priv_flags & IFF_TEAM_PORT;
4573 }
4574 
4575 static inline bool netif_is_lag_master(const struct net_device *dev)
4576 {
4577 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4578 }
4579 
4580 static inline bool netif_is_lag_port(const struct net_device *dev)
4581 {
4582 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4583 }
4584 
4585 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4586 {
4587 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4588 }
4589 
4590 static inline bool netif_is_failover(const struct net_device *dev)
4591 {
4592 	return dev->priv_flags & IFF_FAILOVER;
4593 }
4594 
4595 static inline bool netif_is_failover_slave(const struct net_device *dev)
4596 {
4597 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4598 }
4599 
4600 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4601 static inline void netif_keep_dst(struct net_device *dev)
4602 {
4603 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4604 }
4605 
4606 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4607 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4608 {
4609 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4610 	return dev->priv_flags & IFF_MACSEC;
4611 }
4612 
4613 extern struct pernet_operations __net_initdata loopback_net_ops;
4614 
4615 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4616 
4617 /* netdev_printk helpers, similar to dev_printk */
4618 
4619 static inline const char *netdev_name(const struct net_device *dev)
4620 {
4621 	if (!dev->name[0] || strchr(dev->name, '%'))
4622 		return "(unnamed net_device)";
4623 	return dev->name;
4624 }
4625 
4626 static inline bool netdev_unregistering(const struct net_device *dev)
4627 {
4628 	return dev->reg_state == NETREG_UNREGISTERING;
4629 }
4630 
4631 static inline const char *netdev_reg_state(const struct net_device *dev)
4632 {
4633 	switch (dev->reg_state) {
4634 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4635 	case NETREG_REGISTERED: return "";
4636 	case NETREG_UNREGISTERING: return " (unregistering)";
4637 	case NETREG_UNREGISTERED: return " (unregistered)";
4638 	case NETREG_RELEASED: return " (released)";
4639 	case NETREG_DUMMY: return " (dummy)";
4640 	}
4641 
4642 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4643 	return " (unknown)";
4644 }
4645 
4646 __printf(3, 4)
4647 void netdev_printk(const char *level, const struct net_device *dev,
4648 		   const char *format, ...);
4649 __printf(2, 3)
4650 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4651 __printf(2, 3)
4652 void netdev_alert(const struct net_device *dev, const char *format, ...);
4653 __printf(2, 3)
4654 void netdev_crit(const struct net_device *dev, const char *format, ...);
4655 __printf(2, 3)
4656 void netdev_err(const struct net_device *dev, const char *format, ...);
4657 __printf(2, 3)
4658 void netdev_warn(const struct net_device *dev, const char *format, ...);
4659 __printf(2, 3)
4660 void netdev_notice(const struct net_device *dev, const char *format, ...);
4661 __printf(2, 3)
4662 void netdev_info(const struct net_device *dev, const char *format, ...);
4663 
4664 #define netdev_level_once(level, dev, fmt, ...)			\
4665 do {								\
4666 	static bool __print_once __read_mostly;			\
4667 								\
4668 	if (!__print_once) {					\
4669 		__print_once = true;				\
4670 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4671 	}							\
4672 } while (0)
4673 
4674 #define netdev_emerg_once(dev, fmt, ...) \
4675 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4676 #define netdev_alert_once(dev, fmt, ...) \
4677 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4678 #define netdev_crit_once(dev, fmt, ...) \
4679 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4680 #define netdev_err_once(dev, fmt, ...) \
4681 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4682 #define netdev_warn_once(dev, fmt, ...) \
4683 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4684 #define netdev_notice_once(dev, fmt, ...) \
4685 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4686 #define netdev_info_once(dev, fmt, ...) \
4687 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4688 
4689 #define MODULE_ALIAS_NETDEV(device) \
4690 	MODULE_ALIAS("netdev-" device)
4691 
4692 #if defined(CONFIG_DYNAMIC_DEBUG)
4693 #define netdev_dbg(__dev, format, args...)			\
4694 do {								\
4695 	dynamic_netdev_dbg(__dev, format, ##args);		\
4696 } while (0)
4697 #elif defined(DEBUG)
4698 #define netdev_dbg(__dev, format, args...)			\
4699 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4700 #else
4701 #define netdev_dbg(__dev, format, args...)			\
4702 ({								\
4703 	if (0)							\
4704 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4705 })
4706 #endif
4707 
4708 #if defined(VERBOSE_DEBUG)
4709 #define netdev_vdbg	netdev_dbg
4710 #else
4711 
4712 #define netdev_vdbg(dev, format, args...)			\
4713 ({								\
4714 	if (0)							\
4715 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4716 	0;							\
4717 })
4718 #endif
4719 
4720 /*
4721  * netdev_WARN() acts like dev_printk(), but with the key difference
4722  * of using a WARN/WARN_ON to get the message out, including the
4723  * file/line information and a backtrace.
4724  */
4725 #define netdev_WARN(dev, format, args...)			\
4726 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4727 	     netdev_reg_state(dev), ##args)
4728 
4729 #define netdev_WARN_ONCE(dev, format, args...)				\
4730 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4731 		  netdev_reg_state(dev), ##args)
4732 
4733 /* netif printk helpers, similar to netdev_printk */
4734 
4735 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4736 do {					  			\
4737 	if (netif_msg_##type(priv))				\
4738 		netdev_printk(level, (dev), fmt, ##args);	\
4739 } while (0)
4740 
4741 #define netif_level(level, priv, type, dev, fmt, args...)	\
4742 do {								\
4743 	if (netif_msg_##type(priv))				\
4744 		netdev_##level(dev, fmt, ##args);		\
4745 } while (0)
4746 
4747 #define netif_emerg(priv, type, dev, fmt, args...)		\
4748 	netif_level(emerg, priv, type, dev, fmt, ##args)
4749 #define netif_alert(priv, type, dev, fmt, args...)		\
4750 	netif_level(alert, priv, type, dev, fmt, ##args)
4751 #define netif_crit(priv, type, dev, fmt, args...)		\
4752 	netif_level(crit, priv, type, dev, fmt, ##args)
4753 #define netif_err(priv, type, dev, fmt, args...)		\
4754 	netif_level(err, priv, type, dev, fmt, ##args)
4755 #define netif_warn(priv, type, dev, fmt, args...)		\
4756 	netif_level(warn, priv, type, dev, fmt, ##args)
4757 #define netif_notice(priv, type, dev, fmt, args...)		\
4758 	netif_level(notice, priv, type, dev, fmt, ##args)
4759 #define netif_info(priv, type, dev, fmt, args...)		\
4760 	netif_level(info, priv, type, dev, fmt, ##args)
4761 
4762 #if defined(CONFIG_DYNAMIC_DEBUG)
4763 #define netif_dbg(priv, type, netdev, format, args...)		\
4764 do {								\
4765 	if (netif_msg_##type(priv))				\
4766 		dynamic_netdev_dbg(netdev, format, ##args);	\
4767 } while (0)
4768 #elif defined(DEBUG)
4769 #define netif_dbg(priv, type, dev, format, args...)		\
4770 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4771 #else
4772 #define netif_dbg(priv, type, dev, format, args...)			\
4773 ({									\
4774 	if (0)								\
4775 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4776 	0;								\
4777 })
4778 #endif
4779 
4780 /* if @cond then downgrade to debug, else print at @level */
4781 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4782 	do {                                                              \
4783 		if (cond)                                                 \
4784 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4785 		else                                                      \
4786 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4787 	} while (0)
4788 
4789 #if defined(VERBOSE_DEBUG)
4790 #define netif_vdbg	netif_dbg
4791 #else
4792 #define netif_vdbg(priv, type, dev, format, args...)		\
4793 ({								\
4794 	if (0)							\
4795 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4796 	0;							\
4797 })
4798 #endif
4799 
4800 /*
4801  *	The list of packet types we will receive (as opposed to discard)
4802  *	and the routines to invoke.
4803  *
4804  *	Why 16. Because with 16 the only overlap we get on a hash of the
4805  *	low nibble of the protocol value is RARP/SNAP/X.25.
4806  *
4807  *		0800	IP
4808  *		0001	802.3
4809  *		0002	AX.25
4810  *		0004	802.2
4811  *		8035	RARP
4812  *		0005	SNAP
4813  *		0805	X.25
4814  *		0806	ARP
4815  *		8137	IPX
4816  *		0009	Localtalk
4817  *		86DD	IPv6
4818  */
4819 #define PTYPE_HASH_SIZE	(16)
4820 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4821 
4822 #endif	/* _LINUX_NETDEVICE_H */
4823