xref: /openbmc/linux/include/linux/netdevice.h (revision 704438dd4f030c1b3d28a2a9c8f182c32d9b6bc4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	unsigned int	hh_len;
264 	seqlock_t	hh_lock;
265 
266 	/* cached hardware header; allow for machine alignment needs.        */
267 #define HH_DATA_MOD	16
268 #define HH_DATA_OFF(__len) \
269 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274 
275 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
276  * Alternative is:
277  *   dev->hard_header_len ? (dev->hard_header_len +
278  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279  *
280  * We could use other alignment values, but we must maintain the
281  * relationship HH alignment <= LL alignment.
282  */
283 #define LL_RESERVED_SPACE(dev) \
284 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287 
288 struct header_ops {
289 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
290 			   unsigned short type, const void *daddr,
291 			   const void *saddr, unsigned int len);
292 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 	bool	(*validate)(const char *ll_header, unsigned int len);
298 	__be16	(*parse_protocol)(const struct sk_buff *skb);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer; they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 	__LINK_STATE_TESTING,
313 };
314 
315 struct gro_list {
316 	struct list_head	list;
317 	int			count;
318 };
319 
320 /*
321  * size of gro hash buckets, must less than bit number of
322  * napi_struct::gro_bitmask
323  */
324 #define GRO_HASH_BUCKETS	8
325 
326 /*
327  * Structure for NAPI scheduling similar to tasklet but with weighting
328  */
329 struct napi_struct {
330 	/* The poll_list must only be managed by the entity which
331 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
332 	 * whoever atomically sets that bit can add this napi_struct
333 	 * to the per-CPU poll_list, and whoever clears that bit
334 	 * can remove from the list right before clearing the bit.
335 	 */
336 	struct list_head	poll_list;
337 
338 	unsigned long		state;
339 	int			weight;
340 	int			defer_hard_irqs_count;
341 	unsigned long		gro_bitmask;
342 	int			(*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 	int			poll_owner;
345 #endif
346 	struct net_device	*dev;
347 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
348 	struct sk_buff		*skb;
349 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
350 	int			rx_count; /* length of rx_list */
351 	struct hrtimer		timer;
352 	struct list_head	dev_list;
353 	struct hlist_node	napi_hash_node;
354 	unsigned int		napi_id;
355 	struct task_struct	*thread;
356 };
357 
358 enum {
359 	NAPI_STATE_SCHED,		/* Poll is scheduled */
360 	NAPI_STATE_MISSED,		/* reschedule a napi */
361 	NAPI_STATE_DISABLE,		/* Disable pending */
362 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
363 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
364 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
365 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
366 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
367 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
368 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
379 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
380 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
381 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
382 };
383 
384 enum gro_result {
385 	GRO_MERGED,
386 	GRO_MERGED_FREE,
387 	GRO_HELD,
388 	GRO_NORMAL,
389 	GRO_CONSUMED,
390 };
391 typedef enum gro_result gro_result_t;
392 
393 /*
394  * enum rx_handler_result - Possible return values for rx_handlers.
395  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396  * further.
397  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398  * case skb->dev was changed by rx_handler.
399  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
401  *
402  * rx_handlers are functions called from inside __netif_receive_skb(), to do
403  * special processing of the skb, prior to delivery to protocol handlers.
404  *
405  * Currently, a net_device can only have a single rx_handler registered. Trying
406  * to register a second rx_handler will return -EBUSY.
407  *
408  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409  * To unregister a rx_handler on a net_device, use
410  * netdev_rx_handler_unregister().
411  *
412  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413  * do with the skb.
414  *
415  * If the rx_handler consumed the skb in some way, it should return
416  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417  * the skb to be delivered in some other way.
418  *
419  * If the rx_handler changed skb->dev, to divert the skb to another
420  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421  * new device will be called if it exists.
422  *
423  * If the rx_handler decides the skb should be ignored, it should return
424  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425  * are registered on exact device (ptype->dev == skb->dev).
426  *
427  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
428  * delivered, it should return RX_HANDLER_PASS.
429  *
430  * A device without a registered rx_handler will behave as if rx_handler
431  * returned RX_HANDLER_PASS.
432  */
433 
434 enum rx_handler_result {
435 	RX_HANDLER_CONSUMED,
436 	RX_HANDLER_ANOTHER,
437 	RX_HANDLER_EXACT,
438 	RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442 
443 void __napi_schedule(struct napi_struct *n);
444 void __napi_schedule_irqoff(struct napi_struct *n);
445 
446 static inline bool napi_disable_pending(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_DISABLE, &n->state);
449 }
450 
451 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
452 {
453 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
454 }
455 
456 bool napi_schedule_prep(struct napi_struct *n);
457 
458 /**
459  *	napi_schedule - schedule NAPI poll
460  *	@n: NAPI context
461  *
462  * Schedule NAPI poll routine to be called if it is not already
463  * running.
464  */
465 static inline void napi_schedule(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule(n);
469 }
470 
471 /**
472  *	napi_schedule_irqoff - schedule NAPI poll
473  *	@n: NAPI context
474  *
475  * Variant of napi_schedule(), assuming hard irqs are masked.
476  */
477 static inline void napi_schedule_irqoff(struct napi_struct *n)
478 {
479 	if (napi_schedule_prep(n))
480 		__napi_schedule_irqoff(n);
481 }
482 
483 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
484 static inline bool napi_reschedule(struct napi_struct *napi)
485 {
486 	if (napi_schedule_prep(napi)) {
487 		__napi_schedule(napi);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 bool napi_complete_done(struct napi_struct *n, int work_done);
494 /**
495  *	napi_complete - NAPI processing complete
496  *	@n: NAPI context
497  *
498  * Mark NAPI processing as complete.
499  * Consider using napi_complete_done() instead.
500  * Return false if device should avoid rearming interrupts.
501  */
502 static inline bool napi_complete(struct napi_struct *n)
503 {
504 	return napi_complete_done(n, 0);
505 }
506 
507 int dev_set_threaded(struct net_device *dev, bool threaded);
508 
509 /**
510  *	napi_disable - prevent NAPI from scheduling
511  *	@n: NAPI context
512  *
513  * Stop NAPI from being scheduled on this context.
514  * Waits till any outstanding processing completes.
515  */
516 void napi_disable(struct napi_struct *n);
517 
518 void napi_enable(struct napi_struct *n);
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	netdevice_tracker	dev_tracker;
595 
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	atomic_long_t		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 	return !IS_ENABLED(CONFIG_SYSCTL) ||
644 	       !sysctl_fb_tunnels_only_for_init_net ||
645 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
646 }
647 
648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	return q->numa_node;
652 #else
653 	return NUMA_NO_NODE;
654 #endif
655 }
656 
657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658 {
659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 	q->numa_node = node;
661 #endif
662 }
663 
664 #ifdef CONFIG_RPS
665 /*
666  * This structure holds an RPS map which can be of variable length.  The
667  * map is an array of CPUs.
668  */
669 struct rps_map {
670 	unsigned int len;
671 	struct rcu_head rcu;
672 	u16 cpus[];
673 };
674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675 
676 /*
677  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678  * tail pointer for that CPU's input queue at the time of last enqueue, and
679  * a hardware filter index.
680  */
681 struct rps_dev_flow {
682 	u16 cpu;
683 	u16 filter;
684 	unsigned int last_qtail;
685 };
686 #define RPS_NO_FILTER 0xffff
687 
688 /*
689  * The rps_dev_flow_table structure contains a table of flow mappings.
690  */
691 struct rps_dev_flow_table {
692 	unsigned int mask;
693 	struct rcu_head rcu;
694 	struct rps_dev_flow flows[];
695 };
696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697     ((_num) * sizeof(struct rps_dev_flow)))
698 
699 /*
700  * The rps_sock_flow_table contains mappings of flows to the last CPU
701  * on which they were processed by the application (set in recvmsg).
702  * Each entry is a 32bit value. Upper part is the high-order bits
703  * of flow hash, lower part is CPU number.
704  * rps_cpu_mask is used to partition the space, depending on number of
705  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707  * meaning we use 32-6=26 bits for the hash.
708  */
709 struct rps_sock_flow_table {
710 	u32	mask;
711 
712 	u32	ents[] ____cacheline_aligned_in_smp;
713 };
714 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715 
716 #define RPS_NO_CPU 0xffff
717 
718 extern u32 rps_cpu_mask;
719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720 
721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 					u32 hash)
723 {
724 	if (table && hash) {
725 		unsigned int index = hash & table->mask;
726 		u32 val = hash & ~rps_cpu_mask;
727 
728 		/* We only give a hint, preemption can change CPU under us */
729 		val |= raw_smp_processor_id();
730 
731 		if (table->ents[index] != val)
732 			table->ents[index] = val;
733 	}
734 }
735 
736 #ifdef CONFIG_RFS_ACCEL
737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 			 u16 filter_id);
739 #endif
740 #endif /* CONFIG_RPS */
741 
742 /* This structure contains an instance of an RX queue. */
743 struct netdev_rx_queue {
744 	struct xdp_rxq_info		xdp_rxq;
745 #ifdef CONFIG_RPS
746 	struct rps_map __rcu		*rps_map;
747 	struct rps_dev_flow_table __rcu	*rps_flow_table;
748 #endif
749 	struct kobject			kobj;
750 	struct net_device		*dev;
751 	netdevice_tracker		dev_tracker;
752 
753 #ifdef CONFIG_XDP_SOCKETS
754 	struct xsk_buff_pool            *pool;
755 #endif
756 } ____cacheline_aligned_in_smp;
757 
758 /*
759  * RX queue sysfs structures and functions.
760  */
761 struct rx_queue_attribute {
762 	struct attribute attr;
763 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 	ssize_t (*store)(struct netdev_rx_queue *queue,
765 			 const char *buf, size_t len);
766 };
767 
768 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
769 enum xps_map_type {
770 	XPS_CPUS = 0,
771 	XPS_RXQS,
772 	XPS_MAPS_MAX,
773 };
774 
775 #ifdef CONFIG_XPS
776 /*
777  * This structure holds an XPS map which can be of variable length.  The
778  * map is an array of queues.
779  */
780 struct xps_map {
781 	unsigned int len;
782 	unsigned int alloc_len;
783 	struct rcu_head rcu;
784 	u16 queues[];
785 };
786 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
787 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
788        - sizeof(struct xps_map)) / sizeof(u16))
789 
790 /*
791  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
792  *
793  * We keep track of the number of cpus/rxqs used when the struct is allocated,
794  * in nr_ids. This will help not accessing out-of-bound memory.
795  *
796  * We keep track of the number of traffic classes used when the struct is
797  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
798  * not crossing its upper bound, as the original dev->num_tc can be updated in
799  * the meantime.
800  */
801 struct xps_dev_maps {
802 	struct rcu_head rcu;
803 	unsigned int nr_ids;
804 	s16 num_tc;
805 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
806 };
807 
808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
809 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
810 
811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
812 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
813 
814 #endif /* CONFIG_XPS */
815 
816 #define TC_MAX_QUEUE	16
817 #define TC_BITMASK	15
818 /* HW offloaded queuing disciplines txq count and offset maps */
819 struct netdev_tc_txq {
820 	u16 count;
821 	u16 offset;
822 };
823 
824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
825 /*
826  * This structure is to hold information about the device
827  * configured to run FCoE protocol stack.
828  */
829 struct netdev_fcoe_hbainfo {
830 	char	manufacturer[64];
831 	char	serial_number[64];
832 	char	hardware_version[64];
833 	char	driver_version[64];
834 	char	optionrom_version[64];
835 	char	firmware_version[64];
836 	char	model[256];
837 	char	model_description[256];
838 };
839 #endif
840 
841 #define MAX_PHYS_ITEM_ID_LEN 32
842 
843 /* This structure holds a unique identifier to identify some
844  * physical item (port for example) used by a netdevice.
845  */
846 struct netdev_phys_item_id {
847 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
848 	unsigned char id_len;
849 };
850 
851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
852 					    struct netdev_phys_item_id *b)
853 {
854 	return a->id_len == b->id_len &&
855 	       memcmp(a->id, b->id, a->id_len) == 0;
856 }
857 
858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
859 				       struct sk_buff *skb,
860 				       struct net_device *sb_dev);
861 
862 enum net_device_path_type {
863 	DEV_PATH_ETHERNET = 0,
864 	DEV_PATH_VLAN,
865 	DEV_PATH_BRIDGE,
866 	DEV_PATH_PPPOE,
867 	DEV_PATH_DSA,
868 	DEV_PATH_MTK_WDMA,
869 };
870 
871 struct net_device_path {
872 	enum net_device_path_type	type;
873 	const struct net_device		*dev;
874 	union {
875 		struct {
876 			u16		id;
877 			__be16		proto;
878 			u8		h_dest[ETH_ALEN];
879 		} encap;
880 		struct {
881 			enum {
882 				DEV_PATH_BR_VLAN_KEEP,
883 				DEV_PATH_BR_VLAN_TAG,
884 				DEV_PATH_BR_VLAN_UNTAG,
885 				DEV_PATH_BR_VLAN_UNTAG_HW,
886 			}		vlan_mode;
887 			u16		vlan_id;
888 			__be16		vlan_proto;
889 		} bridge;
890 		struct {
891 			int port;
892 			u16 proto;
893 		} dsa;
894 		struct {
895 			u8 wdma_idx;
896 			u8 queue;
897 			u16 wcid;
898 			u8 bss;
899 		} mtk_wdma;
900 	};
901 };
902 
903 #define NET_DEVICE_PATH_STACK_MAX	5
904 #define NET_DEVICE_PATH_VLAN_MAX	2
905 
906 struct net_device_path_stack {
907 	int			num_paths;
908 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
909 };
910 
911 struct net_device_path_ctx {
912 	const struct net_device *dev;
913 	u8			daddr[ETH_ALEN];
914 
915 	int			num_vlans;
916 	struct {
917 		u16		id;
918 		__be16		proto;
919 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
920 };
921 
922 enum tc_setup_type {
923 	TC_SETUP_QDISC_MQPRIO,
924 	TC_SETUP_CLSU32,
925 	TC_SETUP_CLSFLOWER,
926 	TC_SETUP_CLSMATCHALL,
927 	TC_SETUP_CLSBPF,
928 	TC_SETUP_BLOCK,
929 	TC_SETUP_QDISC_CBS,
930 	TC_SETUP_QDISC_RED,
931 	TC_SETUP_QDISC_PRIO,
932 	TC_SETUP_QDISC_MQ,
933 	TC_SETUP_QDISC_ETF,
934 	TC_SETUP_ROOT_QDISC,
935 	TC_SETUP_QDISC_GRED,
936 	TC_SETUP_QDISC_TAPRIO,
937 	TC_SETUP_FT,
938 	TC_SETUP_QDISC_ETS,
939 	TC_SETUP_QDISC_TBF,
940 	TC_SETUP_QDISC_FIFO,
941 	TC_SETUP_QDISC_HTB,
942 	TC_SETUP_ACT,
943 };
944 
945 /* These structures hold the attributes of bpf state that are being passed
946  * to the netdevice through the bpf op.
947  */
948 enum bpf_netdev_command {
949 	/* Set or clear a bpf program used in the earliest stages of packet
950 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
951 	 * is responsible for calling bpf_prog_put on any old progs that are
952 	 * stored. In case of error, the callee need not release the new prog
953 	 * reference, but on success it takes ownership and must bpf_prog_put
954 	 * when it is no longer used.
955 	 */
956 	XDP_SETUP_PROG,
957 	XDP_SETUP_PROG_HW,
958 	/* BPF program for offload callbacks, invoked at program load time. */
959 	BPF_OFFLOAD_MAP_ALLOC,
960 	BPF_OFFLOAD_MAP_FREE,
961 	XDP_SETUP_XSK_POOL,
962 };
963 
964 struct bpf_prog_offload_ops;
965 struct netlink_ext_ack;
966 struct xdp_umem;
967 struct xdp_dev_bulk_queue;
968 struct bpf_xdp_link;
969 
970 enum bpf_xdp_mode {
971 	XDP_MODE_SKB = 0,
972 	XDP_MODE_DRV = 1,
973 	XDP_MODE_HW = 2,
974 	__MAX_XDP_MODE
975 };
976 
977 struct bpf_xdp_entity {
978 	struct bpf_prog *prog;
979 	struct bpf_xdp_link *link;
980 };
981 
982 struct netdev_bpf {
983 	enum bpf_netdev_command command;
984 	union {
985 		/* XDP_SETUP_PROG */
986 		struct {
987 			u32 flags;
988 			struct bpf_prog *prog;
989 			struct netlink_ext_ack *extack;
990 		};
991 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
992 		struct {
993 			struct bpf_offloaded_map *offmap;
994 		};
995 		/* XDP_SETUP_XSK_POOL */
996 		struct {
997 			struct xsk_buff_pool *pool;
998 			u16 queue_id;
999 		} xsk;
1000 	};
1001 };
1002 
1003 /* Flags for ndo_xsk_wakeup. */
1004 #define XDP_WAKEUP_RX (1 << 0)
1005 #define XDP_WAKEUP_TX (1 << 1)
1006 
1007 #ifdef CONFIG_XFRM_OFFLOAD
1008 struct xfrmdev_ops {
1009 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1010 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1011 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1012 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1013 				       struct xfrm_state *x);
1014 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1015 };
1016 #endif
1017 
1018 struct dev_ifalias {
1019 	struct rcu_head rcuhead;
1020 	char ifalias[];
1021 };
1022 
1023 struct devlink;
1024 struct tlsdev_ops;
1025 
1026 struct netdev_net_notifier {
1027 	struct list_head list;
1028 	struct notifier_block *nb;
1029 };
1030 
1031 /*
1032  * This structure defines the management hooks for network devices.
1033  * The following hooks can be defined; unless noted otherwise, they are
1034  * optional and can be filled with a null pointer.
1035  *
1036  * int (*ndo_init)(struct net_device *dev);
1037  *     This function is called once when a network device is registered.
1038  *     The network device can use this for any late stage initialization
1039  *     or semantic validation. It can fail with an error code which will
1040  *     be propagated back to register_netdev.
1041  *
1042  * void (*ndo_uninit)(struct net_device *dev);
1043  *     This function is called when device is unregistered or when registration
1044  *     fails. It is not called if init fails.
1045  *
1046  * int (*ndo_open)(struct net_device *dev);
1047  *     This function is called when a network device transitions to the up
1048  *     state.
1049  *
1050  * int (*ndo_stop)(struct net_device *dev);
1051  *     This function is called when a network device transitions to the down
1052  *     state.
1053  *
1054  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1055  *                               struct net_device *dev);
1056  *	Called when a packet needs to be transmitted.
1057  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1058  *	the queue before that can happen; it's for obsolete devices and weird
1059  *	corner cases, but the stack really does a non-trivial amount
1060  *	of useless work if you return NETDEV_TX_BUSY.
1061  *	Required; cannot be NULL.
1062  *
1063  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1064  *					   struct net_device *dev
1065  *					   netdev_features_t features);
1066  *	Called by core transmit path to determine if device is capable of
1067  *	performing offload operations on a given packet. This is to give
1068  *	the device an opportunity to implement any restrictions that cannot
1069  *	be otherwise expressed by feature flags. The check is called with
1070  *	the set of features that the stack has calculated and it returns
1071  *	those the driver believes to be appropriate.
1072  *
1073  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1074  *                         struct net_device *sb_dev);
1075  *	Called to decide which queue to use when device supports multiple
1076  *	transmit queues.
1077  *
1078  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1079  *	This function is called to allow device receiver to make
1080  *	changes to configuration when multicast or promiscuous is enabled.
1081  *
1082  * void (*ndo_set_rx_mode)(struct net_device *dev);
1083  *	This function is called device changes address list filtering.
1084  *	If driver handles unicast address filtering, it should set
1085  *	IFF_UNICAST_FLT in its priv_flags.
1086  *
1087  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1088  *	This function  is called when the Media Access Control address
1089  *	needs to be changed. If this interface is not defined, the
1090  *	MAC address can not be changed.
1091  *
1092  * int (*ndo_validate_addr)(struct net_device *dev);
1093  *	Test if Media Access Control address is valid for the device.
1094  *
1095  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1096  *	Old-style ioctl entry point. This is used internally by the
1097  *	appletalk and ieee802154 subsystems but is no longer called by
1098  *	the device ioctl handler.
1099  *
1100  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1101  *	Used by the bonding driver for its device specific ioctls:
1102  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1103  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1104  *
1105  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1106  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1107  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1108  *
1109  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1110  *	Used to set network devices bus interface parameters. This interface
1111  *	is retained for legacy reasons; new devices should use the bus
1112  *	interface (PCI) for low level management.
1113  *
1114  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1115  *	Called when a user wants to change the Maximum Transfer Unit
1116  *	of a device.
1117  *
1118  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1119  *	Callback used when the transmitter has not made any progress
1120  *	for dev->watchdog ticks.
1121  *
1122  * void (*ndo_get_stats64)(struct net_device *dev,
1123  *                         struct rtnl_link_stats64 *storage);
1124  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1125  *	Called when a user wants to get the network device usage
1126  *	statistics. Drivers must do one of the following:
1127  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1128  *	   rtnl_link_stats64 structure passed by the caller.
1129  *	2. Define @ndo_get_stats to update a net_device_stats structure
1130  *	   (which should normally be dev->stats) and return a pointer to
1131  *	   it. The structure may be changed asynchronously only if each
1132  *	   field is written atomically.
1133  *	3. Update dev->stats asynchronously and atomically, and define
1134  *	   neither operation.
1135  *
1136  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1137  *	Return true if this device supports offload stats of this attr_id.
1138  *
1139  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1140  *	void *attr_data)
1141  *	Get statistics for offload operations by attr_id. Write it into the
1142  *	attr_data pointer.
1143  *
1144  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1145  *	If device supports VLAN filtering this function is called when a
1146  *	VLAN id is registered.
1147  *
1148  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1149  *	If device supports VLAN filtering this function is called when a
1150  *	VLAN id is unregistered.
1151  *
1152  * void (*ndo_poll_controller)(struct net_device *dev);
1153  *
1154  *	SR-IOV management functions.
1155  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1156  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1157  *			  u8 qos, __be16 proto);
1158  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1159  *			  int max_tx_rate);
1160  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1161  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1162  * int (*ndo_get_vf_config)(struct net_device *dev,
1163  *			    int vf, struct ifla_vf_info *ivf);
1164  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1165  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1166  *			  struct nlattr *port[]);
1167  *
1168  *      Enable or disable the VF ability to query its RSS Redirection Table and
1169  *      Hash Key. This is needed since on some devices VF share this information
1170  *      with PF and querying it may introduce a theoretical security risk.
1171  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1172  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1173  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1174  *		       void *type_data);
1175  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1176  *	This is always called from the stack with the rtnl lock held and netif
1177  *	tx queues stopped. This allows the netdevice to perform queue
1178  *	management safely.
1179  *
1180  *	Fiber Channel over Ethernet (FCoE) offload functions.
1181  * int (*ndo_fcoe_enable)(struct net_device *dev);
1182  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1183  *	so the underlying device can perform whatever needed configuration or
1184  *	initialization to support acceleration of FCoE traffic.
1185  *
1186  * int (*ndo_fcoe_disable)(struct net_device *dev);
1187  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1188  *	so the underlying device can perform whatever needed clean-ups to
1189  *	stop supporting acceleration of FCoE traffic.
1190  *
1191  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1192  *			     struct scatterlist *sgl, unsigned int sgc);
1193  *	Called when the FCoE Initiator wants to initialize an I/O that
1194  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1195  *	perform necessary setup and returns 1 to indicate the device is set up
1196  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1197  *
1198  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1199  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1200  *	indicated by the FC exchange id 'xid', so the underlying device can
1201  *	clean up and reuse resources for later DDP requests.
1202  *
1203  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1204  *			      struct scatterlist *sgl, unsigned int sgc);
1205  *	Called when the FCoE Target wants to initialize an I/O that
1206  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1207  *	perform necessary setup and returns 1 to indicate the device is set up
1208  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1209  *
1210  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1211  *			       struct netdev_fcoe_hbainfo *hbainfo);
1212  *	Called when the FCoE Protocol stack wants information on the underlying
1213  *	device. This information is utilized by the FCoE protocol stack to
1214  *	register attributes with Fiber Channel management service as per the
1215  *	FC-GS Fabric Device Management Information(FDMI) specification.
1216  *
1217  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1218  *	Called when the underlying device wants to override default World Wide
1219  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1220  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1221  *	protocol stack to use.
1222  *
1223  *	RFS acceleration.
1224  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1225  *			    u16 rxq_index, u32 flow_id);
1226  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1227  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1228  *	Return the filter ID on success, or a negative error code.
1229  *
1230  *	Slave management functions (for bridge, bonding, etc).
1231  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1232  *	Called to make another netdev an underling.
1233  *
1234  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1235  *	Called to release previously enslaved netdev.
1236  *
1237  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1238  *					    struct sk_buff *skb,
1239  *					    bool all_slaves);
1240  *	Get the xmit slave of master device. If all_slaves is true, function
1241  *	assume all the slaves can transmit.
1242  *
1243  *      Feature/offload setting functions.
1244  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1245  *		netdev_features_t features);
1246  *	Adjusts the requested feature flags according to device-specific
1247  *	constraints, and returns the resulting flags. Must not modify
1248  *	the device state.
1249  *
1250  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1251  *	Called to update device configuration to new features. Passed
1252  *	feature set might be less than what was returned by ndo_fix_features()).
1253  *	Must return >0 or -errno if it changed dev->features itself.
1254  *
1255  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1256  *		      struct net_device *dev,
1257  *		      const unsigned char *addr, u16 vid, u16 flags,
1258  *		      struct netlink_ext_ack *extack);
1259  *	Adds an FDB entry to dev for addr.
1260  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1261  *		      struct net_device *dev,
1262  *		      const unsigned char *addr, u16 vid)
1263  *	Deletes the FDB entry from dev coresponding to addr.
1264  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1265  *			   struct net_device *dev,
1266  *			   u16 vid,
1267  *			   struct netlink_ext_ack *extack);
1268  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1269  *		       struct net_device *dev, struct net_device *filter_dev,
1270  *		       int *idx)
1271  *	Used to add FDB entries to dump requests. Implementers should add
1272  *	entries to skb and update idx with the number of entries.
1273  *
1274  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1275  *			     u16 flags, struct netlink_ext_ack *extack)
1276  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1277  *			     struct net_device *dev, u32 filter_mask,
1278  *			     int nlflags)
1279  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1280  *			     u16 flags);
1281  *
1282  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1283  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1284  *	which do not represent real hardware may define this to allow their
1285  *	userspace components to manage their virtual carrier state. Devices
1286  *	that determine carrier state from physical hardware properties (eg
1287  *	network cables) or protocol-dependent mechanisms (eg
1288  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1289  *
1290  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1291  *			       struct netdev_phys_item_id *ppid);
1292  *	Called to get ID of physical port of this device. If driver does
1293  *	not implement this, it is assumed that the hw is not able to have
1294  *	multiple net devices on single physical port.
1295  *
1296  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1297  *				 struct netdev_phys_item_id *ppid)
1298  *	Called to get the parent ID of the physical port of this device.
1299  *
1300  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1301  *				 struct net_device *dev)
1302  *	Called by upper layer devices to accelerate switching or other
1303  *	station functionality into hardware. 'pdev is the lowerdev
1304  *	to use for the offload and 'dev' is the net device that will
1305  *	back the offload. Returns a pointer to the private structure
1306  *	the upper layer will maintain.
1307  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1308  *	Called by upper layer device to delete the station created
1309  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1310  *	the station and priv is the structure returned by the add
1311  *	operation.
1312  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1313  *			     int queue_index, u32 maxrate);
1314  *	Called when a user wants to set a max-rate limitation of specific
1315  *	TX queue.
1316  * int (*ndo_get_iflink)(const struct net_device *dev);
1317  *	Called to get the iflink value of this device.
1318  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1319  *	This function is used to get egress tunnel information for given skb.
1320  *	This is useful for retrieving outer tunnel header parameters while
1321  *	sampling packet.
1322  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1323  *	This function is used to specify the headroom that the skb must
1324  *	consider when allocation skb during packet reception. Setting
1325  *	appropriate rx headroom value allows avoiding skb head copy on
1326  *	forward. Setting a negative value resets the rx headroom to the
1327  *	default value.
1328  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1329  *	This function is used to set or query state related to XDP on the
1330  *	netdevice and manage BPF offload. See definition of
1331  *	enum bpf_netdev_command for details.
1332  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1333  *			u32 flags);
1334  *	This function is used to submit @n XDP packets for transmit on a
1335  *	netdevice. Returns number of frames successfully transmitted, frames
1336  *	that got dropped are freed/returned via xdp_return_frame().
1337  *	Returns negative number, means general error invoking ndo, meaning
1338  *	no frames were xmit'ed and core-caller will free all frames.
1339  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1340  *					        struct xdp_buff *xdp);
1341  *      Get the xmit slave of master device based on the xdp_buff.
1342  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1343  *      This function is used to wake up the softirq, ksoftirqd or kthread
1344  *	responsible for sending and/or receiving packets on a specific
1345  *	queue id bound to an AF_XDP socket. The flags field specifies if
1346  *	only RX, only Tx, or both should be woken up using the flags
1347  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1348  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1349  *	Get devlink port instance associated with a given netdev.
1350  *	Called with a reference on the netdevice and devlink locks only,
1351  *	rtnl_lock is not held.
1352  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1353  *			 int cmd);
1354  *	Add, change, delete or get information on an IPv4 tunnel.
1355  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1356  *	If a device is paired with a peer device, return the peer instance.
1357  *	The caller must be under RCU read context.
1358  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1359  *     Get the forwarding path to reach the real device from the HW destination address
1360  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1361  *			     const struct skb_shared_hwtstamps *hwtstamps,
1362  *			     bool cycles);
1363  *	Get hardware timestamp based on normal/adjustable time or free running
1364  *	cycle counter. This function is required if physical clock supports a
1365  *	free running cycle counter.
1366  */
1367 struct net_device_ops {
1368 	int			(*ndo_init)(struct net_device *dev);
1369 	void			(*ndo_uninit)(struct net_device *dev);
1370 	int			(*ndo_open)(struct net_device *dev);
1371 	int			(*ndo_stop)(struct net_device *dev);
1372 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1373 						  struct net_device *dev);
1374 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1375 						      struct net_device *dev,
1376 						      netdev_features_t features);
1377 	u16			(*ndo_select_queue)(struct net_device *dev,
1378 						    struct sk_buff *skb,
1379 						    struct net_device *sb_dev);
1380 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1381 						       int flags);
1382 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1383 	int			(*ndo_set_mac_address)(struct net_device *dev,
1384 						       void *addr);
1385 	int			(*ndo_validate_addr)(struct net_device *dev);
1386 	int			(*ndo_do_ioctl)(struct net_device *dev,
1387 					        struct ifreq *ifr, int cmd);
1388 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1389 						 struct ifreq *ifr, int cmd);
1390 	int			(*ndo_siocbond)(struct net_device *dev,
1391 						struct ifreq *ifr, int cmd);
1392 	int			(*ndo_siocwandev)(struct net_device *dev,
1393 						  struct if_settings *ifs);
1394 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1395 						      struct ifreq *ifr,
1396 						      void __user *data, int cmd);
1397 	int			(*ndo_set_config)(struct net_device *dev,
1398 					          struct ifmap *map);
1399 	int			(*ndo_change_mtu)(struct net_device *dev,
1400 						  int new_mtu);
1401 	int			(*ndo_neigh_setup)(struct net_device *dev,
1402 						   struct neigh_parms *);
1403 	void			(*ndo_tx_timeout) (struct net_device *dev,
1404 						   unsigned int txqueue);
1405 
1406 	void			(*ndo_get_stats64)(struct net_device *dev,
1407 						   struct rtnl_link_stats64 *storage);
1408 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1409 	int			(*ndo_get_offload_stats)(int attr_id,
1410 							 const struct net_device *dev,
1411 							 void *attr_data);
1412 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1413 
1414 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1415 						       __be16 proto, u16 vid);
1416 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1417 						        __be16 proto, u16 vid);
1418 #ifdef CONFIG_NET_POLL_CONTROLLER
1419 	void                    (*ndo_poll_controller)(struct net_device *dev);
1420 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1421 						     struct netpoll_info *info);
1422 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1423 #endif
1424 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1425 						  int queue, u8 *mac);
1426 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1427 						   int queue, u16 vlan,
1428 						   u8 qos, __be16 proto);
1429 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1430 						   int vf, int min_tx_rate,
1431 						   int max_tx_rate);
1432 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1433 						       int vf, bool setting);
1434 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1435 						    int vf, bool setting);
1436 	int			(*ndo_get_vf_config)(struct net_device *dev,
1437 						     int vf,
1438 						     struct ifla_vf_info *ivf);
1439 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1440 							 int vf, int link_state);
1441 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1442 						    int vf,
1443 						    struct ifla_vf_stats
1444 						    *vf_stats);
1445 	int			(*ndo_set_vf_port)(struct net_device *dev,
1446 						   int vf,
1447 						   struct nlattr *port[]);
1448 	int			(*ndo_get_vf_port)(struct net_device *dev,
1449 						   int vf, struct sk_buff *skb);
1450 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1451 						   int vf,
1452 						   struct ifla_vf_guid *node_guid,
1453 						   struct ifla_vf_guid *port_guid);
1454 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1455 						   int vf, u64 guid,
1456 						   int guid_type);
1457 	int			(*ndo_set_vf_rss_query_en)(
1458 						   struct net_device *dev,
1459 						   int vf, bool setting);
1460 	int			(*ndo_setup_tc)(struct net_device *dev,
1461 						enum tc_setup_type type,
1462 						void *type_data);
1463 #if IS_ENABLED(CONFIG_FCOE)
1464 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1465 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1466 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1467 						      u16 xid,
1468 						      struct scatterlist *sgl,
1469 						      unsigned int sgc);
1470 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1471 						     u16 xid);
1472 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1473 						       u16 xid,
1474 						       struct scatterlist *sgl,
1475 						       unsigned int sgc);
1476 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1477 							struct netdev_fcoe_hbainfo *hbainfo);
1478 #endif
1479 
1480 #if IS_ENABLED(CONFIG_LIBFCOE)
1481 #define NETDEV_FCOE_WWNN 0
1482 #define NETDEV_FCOE_WWPN 1
1483 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1484 						    u64 *wwn, int type);
1485 #endif
1486 
1487 #ifdef CONFIG_RFS_ACCEL
1488 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1489 						     const struct sk_buff *skb,
1490 						     u16 rxq_index,
1491 						     u32 flow_id);
1492 #endif
1493 	int			(*ndo_add_slave)(struct net_device *dev,
1494 						 struct net_device *slave_dev,
1495 						 struct netlink_ext_ack *extack);
1496 	int			(*ndo_del_slave)(struct net_device *dev,
1497 						 struct net_device *slave_dev);
1498 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1499 						      struct sk_buff *skb,
1500 						      bool all_slaves);
1501 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1502 							struct sock *sk);
1503 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1504 						    netdev_features_t features);
1505 	int			(*ndo_set_features)(struct net_device *dev,
1506 						    netdev_features_t features);
1507 	int			(*ndo_neigh_construct)(struct net_device *dev,
1508 						       struct neighbour *n);
1509 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1510 						     struct neighbour *n);
1511 
1512 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1513 					       struct nlattr *tb[],
1514 					       struct net_device *dev,
1515 					       const unsigned char *addr,
1516 					       u16 vid,
1517 					       u16 flags,
1518 					       struct netlink_ext_ack *extack);
1519 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1520 					       struct nlattr *tb[],
1521 					       struct net_device *dev,
1522 					       const unsigned char *addr,
1523 					       u16 vid, struct netlink_ext_ack *extack);
1524 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1525 						    struct nlattr *tb[],
1526 						    struct net_device *dev,
1527 						    u16 vid,
1528 						    struct netlink_ext_ack *extack);
1529 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1530 						struct netlink_callback *cb,
1531 						struct net_device *dev,
1532 						struct net_device *filter_dev,
1533 						int *idx);
1534 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1535 					       struct nlattr *tb[],
1536 					       struct net_device *dev,
1537 					       const unsigned char *addr,
1538 					       u16 vid, u32 portid, u32 seq,
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1541 						      struct nlmsghdr *nlh,
1542 						      u16 flags,
1543 						      struct netlink_ext_ack *extack);
1544 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1545 						      u32 pid, u32 seq,
1546 						      struct net_device *dev,
1547 						      u32 filter_mask,
1548 						      int nlflags);
1549 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1550 						      struct nlmsghdr *nlh,
1551 						      u16 flags);
1552 	int			(*ndo_change_carrier)(struct net_device *dev,
1553 						      bool new_carrier);
1554 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1555 							struct netdev_phys_item_id *ppid);
1556 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1557 							  struct netdev_phys_item_id *ppid);
1558 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1559 							  char *name, size_t len);
1560 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1561 							struct net_device *dev);
1562 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1563 							void *priv);
1564 
1565 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1566 						      int queue_index,
1567 						      u32 maxrate);
1568 	int			(*ndo_get_iflink)(const struct net_device *dev);
1569 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1570 						       struct sk_buff *skb);
1571 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1572 						       int needed_headroom);
1573 	int			(*ndo_bpf)(struct net_device *dev,
1574 					   struct netdev_bpf *bpf);
1575 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1576 						struct xdp_frame **xdp,
1577 						u32 flags);
1578 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1579 							  struct xdp_buff *xdp);
1580 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1581 						  u32 queue_id, u32 flags);
1582 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1583 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1584 						  struct ip_tunnel_parm *p, int cmd);
1585 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1586 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1587                                                          struct net_device_path *path);
1588 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1589 						  const struct skb_shared_hwtstamps *hwtstamps,
1590 						  bool cycles);
1591 };
1592 
1593 /**
1594  * enum netdev_priv_flags - &struct net_device priv_flags
1595  *
1596  * These are the &struct net_device, they are only set internally
1597  * by drivers and used in the kernel. These flags are invisible to
1598  * userspace; this means that the order of these flags can change
1599  * during any kernel release.
1600  *
1601  * You should have a pretty good reason to be extending these flags.
1602  *
1603  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1604  * @IFF_EBRIDGE: Ethernet bridging device
1605  * @IFF_BONDING: bonding master or slave
1606  * @IFF_ISATAP: ISATAP interface (RFC4214)
1607  * @IFF_WAN_HDLC: WAN HDLC device
1608  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1609  *	release skb->dst
1610  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1611  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1612  * @IFF_MACVLAN_PORT: device used as macvlan port
1613  * @IFF_BRIDGE_PORT: device used as bridge port
1614  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1615  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1616  * @IFF_UNICAST_FLT: Supports unicast filtering
1617  * @IFF_TEAM_PORT: device used as team port
1618  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1619  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1620  *	change when it's running
1621  * @IFF_MACVLAN: Macvlan device
1622  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1623  *	underlying stacked devices
1624  * @IFF_L3MDEV_MASTER: device is an L3 master device
1625  * @IFF_NO_QUEUE: device can run without qdisc attached
1626  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1627  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1628  * @IFF_TEAM: device is a team device
1629  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1630  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1631  *	entity (i.e. the master device for bridged veth)
1632  * @IFF_MACSEC: device is a MACsec device
1633  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1634  * @IFF_FAILOVER: device is a failover master device
1635  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1636  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1637  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1638  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1639  *	skb_headlen(skb) == 0 (data starts from frag0)
1640  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1641  */
1642 enum netdev_priv_flags {
1643 	IFF_802_1Q_VLAN			= 1<<0,
1644 	IFF_EBRIDGE			= 1<<1,
1645 	IFF_BONDING			= 1<<2,
1646 	IFF_ISATAP			= 1<<3,
1647 	IFF_WAN_HDLC			= 1<<4,
1648 	IFF_XMIT_DST_RELEASE		= 1<<5,
1649 	IFF_DONT_BRIDGE			= 1<<6,
1650 	IFF_DISABLE_NETPOLL		= 1<<7,
1651 	IFF_MACVLAN_PORT		= 1<<8,
1652 	IFF_BRIDGE_PORT			= 1<<9,
1653 	IFF_OVS_DATAPATH		= 1<<10,
1654 	IFF_TX_SKB_SHARING		= 1<<11,
1655 	IFF_UNICAST_FLT			= 1<<12,
1656 	IFF_TEAM_PORT			= 1<<13,
1657 	IFF_SUPP_NOFCS			= 1<<14,
1658 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1659 	IFF_MACVLAN			= 1<<16,
1660 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1661 	IFF_L3MDEV_MASTER		= 1<<18,
1662 	IFF_NO_QUEUE			= 1<<19,
1663 	IFF_OPENVSWITCH			= 1<<20,
1664 	IFF_L3MDEV_SLAVE		= 1<<21,
1665 	IFF_TEAM			= 1<<22,
1666 	IFF_RXFH_CONFIGURED		= 1<<23,
1667 	IFF_PHONY_HEADROOM		= 1<<24,
1668 	IFF_MACSEC			= 1<<25,
1669 	IFF_NO_RX_HANDLER		= 1<<26,
1670 	IFF_FAILOVER			= 1<<27,
1671 	IFF_FAILOVER_SLAVE		= 1<<28,
1672 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1673 	IFF_LIVE_RENAME_OK		= 1<<30,
1674 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1675 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1676 };
1677 
1678 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1679 #define IFF_EBRIDGE			IFF_EBRIDGE
1680 #define IFF_BONDING			IFF_BONDING
1681 #define IFF_ISATAP			IFF_ISATAP
1682 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1683 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1684 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1685 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1686 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1687 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1688 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1689 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1690 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1691 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1692 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1693 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1694 #define IFF_MACVLAN			IFF_MACVLAN
1695 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1696 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1697 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1698 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1699 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1700 #define IFF_TEAM			IFF_TEAM
1701 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1702 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1703 #define IFF_MACSEC			IFF_MACSEC
1704 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1705 #define IFF_FAILOVER			IFF_FAILOVER
1706 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1707 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1708 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1709 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1710 
1711 /* Specifies the type of the struct net_device::ml_priv pointer */
1712 enum netdev_ml_priv_type {
1713 	ML_PRIV_NONE,
1714 	ML_PRIV_CAN,
1715 };
1716 
1717 /**
1718  *	struct net_device - The DEVICE structure.
1719  *
1720  *	Actually, this whole structure is a big mistake.  It mixes I/O
1721  *	data with strictly "high-level" data, and it has to know about
1722  *	almost every data structure used in the INET module.
1723  *
1724  *	@name:	This is the first field of the "visible" part of this structure
1725  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1726  *		of the interface.
1727  *
1728  *	@name_node:	Name hashlist node
1729  *	@ifalias:	SNMP alias
1730  *	@mem_end:	Shared memory end
1731  *	@mem_start:	Shared memory start
1732  *	@base_addr:	Device I/O address
1733  *	@irq:		Device IRQ number
1734  *
1735  *	@state:		Generic network queuing layer state, see netdev_state_t
1736  *	@dev_list:	The global list of network devices
1737  *	@napi_list:	List entry used for polling NAPI devices
1738  *	@unreg_list:	List entry  when we are unregistering the
1739  *			device; see the function unregister_netdev
1740  *	@close_list:	List entry used when we are closing the device
1741  *	@ptype_all:     Device-specific packet handlers for all protocols
1742  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1743  *
1744  *	@adj_list:	Directly linked devices, like slaves for bonding
1745  *	@features:	Currently active device features
1746  *	@hw_features:	User-changeable features
1747  *
1748  *	@wanted_features:	User-requested features
1749  *	@vlan_features:		Mask of features inheritable by VLAN devices
1750  *
1751  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1752  *				This field indicates what encapsulation
1753  *				offloads the hardware is capable of doing,
1754  *				and drivers will need to set them appropriately.
1755  *
1756  *	@mpls_features:	Mask of features inheritable by MPLS
1757  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1758  *
1759  *	@ifindex:	interface index
1760  *	@group:		The group the device belongs to
1761  *
1762  *	@stats:		Statistics struct, which was left as a legacy, use
1763  *			rtnl_link_stats64 instead
1764  *
1765  *	@core_stats:	core networking counters,
1766  *			do not use this in drivers
1767  *	@carrier_up_count:	Number of times the carrier has been up
1768  *	@carrier_down_count:	Number of times the carrier has been down
1769  *
1770  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1771  *				instead of ioctl,
1772  *				see <net/iw_handler.h> for details.
1773  *	@wireless_data:	Instance data managed by the core of wireless extensions
1774  *
1775  *	@netdev_ops:	Includes several pointers to callbacks,
1776  *			if one wants to override the ndo_*() functions
1777  *	@ethtool_ops:	Management operations
1778  *	@l3mdev_ops:	Layer 3 master device operations
1779  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1780  *			discovery handling. Necessary for e.g. 6LoWPAN.
1781  *	@xfrmdev_ops:	Transformation offload operations
1782  *	@tlsdev_ops:	Transport Layer Security offload operations
1783  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1784  *			of Layer 2 headers.
1785  *
1786  *	@flags:		Interface flags (a la BSD)
1787  *	@priv_flags:	Like 'flags' but invisible to userspace,
1788  *			see if.h for the definitions
1789  *	@gflags:	Global flags ( kept as legacy )
1790  *	@padded:	How much padding added by alloc_netdev()
1791  *	@operstate:	RFC2863 operstate
1792  *	@link_mode:	Mapping policy to operstate
1793  *	@if_port:	Selectable AUI, TP, ...
1794  *	@dma:		DMA channel
1795  *	@mtu:		Interface MTU value
1796  *	@min_mtu:	Interface Minimum MTU value
1797  *	@max_mtu:	Interface Maximum MTU value
1798  *	@type:		Interface hardware type
1799  *	@hard_header_len: Maximum hardware header length.
1800  *	@min_header_len:  Minimum hardware header length
1801  *
1802  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1803  *			  cases can this be guaranteed
1804  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1805  *			  cases can this be guaranteed. Some cases also use
1806  *			  LL_MAX_HEADER instead to allocate the skb
1807  *
1808  *	interface address info:
1809  *
1810  * 	@perm_addr:		Permanent hw address
1811  * 	@addr_assign_type:	Hw address assignment type
1812  * 	@addr_len:		Hardware address length
1813  *	@upper_level:		Maximum depth level of upper devices.
1814  *	@lower_level:		Maximum depth level of lower devices.
1815  *	@neigh_priv_len:	Used in neigh_alloc()
1816  * 	@dev_id:		Used to differentiate devices that share
1817  * 				the same link layer address
1818  * 	@dev_port:		Used to differentiate devices that share
1819  * 				the same function
1820  *	@addr_list_lock:	XXX: need comments on this one
1821  *	@name_assign_type:	network interface name assignment type
1822  *	@uc_promisc:		Counter that indicates promiscuous mode
1823  *				has been enabled due to the need to listen to
1824  *				additional unicast addresses in a device that
1825  *				does not implement ndo_set_rx_mode()
1826  *	@uc:			unicast mac addresses
1827  *	@mc:			multicast mac addresses
1828  *	@dev_addrs:		list of device hw addresses
1829  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1830  *	@promiscuity:		Number of times the NIC is told to work in
1831  *				promiscuous mode; if it becomes 0 the NIC will
1832  *				exit promiscuous mode
1833  *	@allmulti:		Counter, enables or disables allmulticast mode
1834  *
1835  *	@vlan_info:	VLAN info
1836  *	@dsa_ptr:	dsa specific data
1837  *	@tipc_ptr:	TIPC specific data
1838  *	@atalk_ptr:	AppleTalk link
1839  *	@ip_ptr:	IPv4 specific data
1840  *	@ip6_ptr:	IPv6 specific data
1841  *	@ax25_ptr:	AX.25 specific data
1842  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1843  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1844  *			 device struct
1845  *	@mpls_ptr:	mpls_dev struct pointer
1846  *	@mctp_ptr:	MCTP specific data
1847  *
1848  *	@dev_addr:	Hw address (before bcast,
1849  *			because most packets are unicast)
1850  *
1851  *	@_rx:			Array of RX queues
1852  *	@num_rx_queues:		Number of RX queues
1853  *				allocated at register_netdev() time
1854  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1855  *	@xdp_prog:		XDP sockets filter program pointer
1856  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1857  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1858  *				allow to avoid NIC hard IRQ, on busy queues.
1859  *
1860  *	@rx_handler:		handler for received packets
1861  *	@rx_handler_data: 	XXX: need comments on this one
1862  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1863  *				ingress processing
1864  *	@ingress_queue:		XXX: need comments on this one
1865  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1866  *	@broadcast:		hw bcast address
1867  *
1868  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1869  *			indexed by RX queue number. Assigned by driver.
1870  *			This must only be set if the ndo_rx_flow_steer
1871  *			operation is defined
1872  *	@index_hlist:		Device index hash chain
1873  *
1874  *	@_tx:			Array of TX queues
1875  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1876  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1877  *	@qdisc:			Root qdisc from userspace point of view
1878  *	@tx_queue_len:		Max frames per queue allowed
1879  *	@tx_global_lock: 	XXX: need comments on this one
1880  *	@xdp_bulkq:		XDP device bulk queue
1881  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1882  *
1883  *	@xps_maps:	XXX: need comments on this one
1884  *	@miniq_egress:		clsact qdisc specific data for
1885  *				egress processing
1886  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1887  *	@qdisc_hash:		qdisc hash table
1888  *	@watchdog_timeo:	Represents the timeout that is used by
1889  *				the watchdog (see dev_watchdog())
1890  *	@watchdog_timer:	List of timers
1891  *
1892  *	@proto_down_reason:	reason a netdev interface is held down
1893  *	@pcpu_refcnt:		Number of references to this device
1894  *	@dev_refcnt:		Number of references to this device
1895  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1896  *	@todo_list:		Delayed register/unregister
1897  *	@link_watch_list:	XXX: need comments on this one
1898  *
1899  *	@reg_state:		Register/unregister state machine
1900  *	@dismantle:		Device is going to be freed
1901  *	@rtnl_link_state:	This enum represents the phases of creating
1902  *				a new link
1903  *
1904  *	@needs_free_netdev:	Should unregister perform free_netdev?
1905  *	@priv_destructor:	Called from unregister
1906  *	@npinfo:		XXX: need comments on this one
1907  * 	@nd_net:		Network namespace this network device is inside
1908  *
1909  * 	@ml_priv:	Mid-layer private
1910  *	@ml_priv_type:  Mid-layer private type
1911  * 	@lstats:	Loopback statistics
1912  * 	@tstats:	Tunnel statistics
1913  * 	@dstats:	Dummy statistics
1914  * 	@vstats:	Virtual ethernet statistics
1915  *
1916  *	@garp_port:	GARP
1917  *	@mrp_port:	MRP
1918  *
1919  *	@dm_private:	Drop monitor private
1920  *
1921  *	@dev:		Class/net/name entry
1922  *	@sysfs_groups:	Space for optional device, statistics and wireless
1923  *			sysfs groups
1924  *
1925  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1926  *	@rtnl_link_ops:	Rtnl_link_ops
1927  *
1928  *	@gso_max_size:	Maximum size of generic segmentation offload
1929  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1930  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1931  *			NIC for GSO
1932  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1933  *
1934  *	@dcbnl_ops:	Data Center Bridging netlink ops
1935  *	@num_tc:	Number of traffic classes in the net device
1936  *	@tc_to_txq:	XXX: need comments on this one
1937  *	@prio_tc_map:	XXX: need comments on this one
1938  *
1939  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1940  *
1941  *	@priomap:	XXX: need comments on this one
1942  *	@phydev:	Physical device may attach itself
1943  *			for hardware timestamping
1944  *	@sfp_bus:	attached &struct sfp_bus structure.
1945  *
1946  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1947  *
1948  *	@proto_down:	protocol port state information can be sent to the
1949  *			switch driver and used to set the phys state of the
1950  *			switch port.
1951  *
1952  *	@wol_enabled:	Wake-on-LAN is enabled
1953  *
1954  *	@threaded:	napi threaded mode is enabled
1955  *
1956  *	@net_notifier_list:	List of per-net netdev notifier block
1957  *				that follow this device when it is moved
1958  *				to another network namespace.
1959  *
1960  *	@macsec_ops:    MACsec offloading ops
1961  *
1962  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1963  *				offload capabilities of the device
1964  *	@udp_tunnel_nic:	UDP tunnel offload state
1965  *	@xdp_state:		stores info on attached XDP BPF programs
1966  *
1967  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1968  *			dev->addr_list_lock.
1969  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1970  *			keep a list of interfaces to be deleted.
1971  *	@gro_max_size:	Maximum size of aggregated packet in generic
1972  *			receive offload (GRO)
1973  *
1974  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1975  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1976  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1977  *	@dev_registered_tracker:	tracker for reference held while
1978  *					registered
1979  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1980  *
1981  *	FIXME: cleanup struct net_device such that network protocol info
1982  *	moves out.
1983  */
1984 
1985 struct net_device {
1986 	char			name[IFNAMSIZ];
1987 	struct netdev_name_node	*name_node;
1988 	struct dev_ifalias	__rcu *ifalias;
1989 	/*
1990 	 *	I/O specific fields
1991 	 *	FIXME: Merge these and struct ifmap into one
1992 	 */
1993 	unsigned long		mem_end;
1994 	unsigned long		mem_start;
1995 	unsigned long		base_addr;
1996 
1997 	/*
1998 	 *	Some hardware also needs these fields (state,dev_list,
1999 	 *	napi_list,unreg_list,close_list) but they are not
2000 	 *	part of the usual set specified in Space.c.
2001 	 */
2002 
2003 	unsigned long		state;
2004 
2005 	struct list_head	dev_list;
2006 	struct list_head	napi_list;
2007 	struct list_head	unreg_list;
2008 	struct list_head	close_list;
2009 	struct list_head	ptype_all;
2010 	struct list_head	ptype_specific;
2011 
2012 	struct {
2013 		struct list_head upper;
2014 		struct list_head lower;
2015 	} adj_list;
2016 
2017 	/* Read-mostly cache-line for fast-path access */
2018 	unsigned int		flags;
2019 	unsigned long long	priv_flags;
2020 	const struct net_device_ops *netdev_ops;
2021 	int			ifindex;
2022 	unsigned short		gflags;
2023 	unsigned short		hard_header_len;
2024 
2025 	/* Note : dev->mtu is often read without holding a lock.
2026 	 * Writers usually hold RTNL.
2027 	 * It is recommended to use READ_ONCE() to annotate the reads,
2028 	 * and to use WRITE_ONCE() to annotate the writes.
2029 	 */
2030 	unsigned int		mtu;
2031 	unsigned short		needed_headroom;
2032 	unsigned short		needed_tailroom;
2033 
2034 	netdev_features_t	features;
2035 	netdev_features_t	hw_features;
2036 	netdev_features_t	wanted_features;
2037 	netdev_features_t	vlan_features;
2038 	netdev_features_t	hw_enc_features;
2039 	netdev_features_t	mpls_features;
2040 	netdev_features_t	gso_partial_features;
2041 
2042 	unsigned int		min_mtu;
2043 	unsigned int		max_mtu;
2044 	unsigned short		type;
2045 	unsigned char		min_header_len;
2046 	unsigned char		name_assign_type;
2047 
2048 	int			group;
2049 
2050 	struct net_device_stats	stats; /* not used by modern drivers */
2051 
2052 	struct net_device_core_stats __percpu *core_stats;
2053 
2054 	/* Stats to monitor link on/off, flapping */
2055 	atomic_t		carrier_up_count;
2056 	atomic_t		carrier_down_count;
2057 
2058 #ifdef CONFIG_WIRELESS_EXT
2059 	const struct iw_handler_def *wireless_handlers;
2060 	struct iw_public_data	*wireless_data;
2061 #endif
2062 	const struct ethtool_ops *ethtool_ops;
2063 #ifdef CONFIG_NET_L3_MASTER_DEV
2064 	const struct l3mdev_ops	*l3mdev_ops;
2065 #endif
2066 #if IS_ENABLED(CONFIG_IPV6)
2067 	const struct ndisc_ops *ndisc_ops;
2068 #endif
2069 
2070 #ifdef CONFIG_XFRM_OFFLOAD
2071 	const struct xfrmdev_ops *xfrmdev_ops;
2072 #endif
2073 
2074 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2075 	const struct tlsdev_ops *tlsdev_ops;
2076 #endif
2077 
2078 	const struct header_ops *header_ops;
2079 
2080 	unsigned char		operstate;
2081 	unsigned char		link_mode;
2082 
2083 	unsigned char		if_port;
2084 	unsigned char		dma;
2085 
2086 	/* Interface address info. */
2087 	unsigned char		perm_addr[MAX_ADDR_LEN];
2088 	unsigned char		addr_assign_type;
2089 	unsigned char		addr_len;
2090 	unsigned char		upper_level;
2091 	unsigned char		lower_level;
2092 
2093 	unsigned short		neigh_priv_len;
2094 	unsigned short          dev_id;
2095 	unsigned short          dev_port;
2096 	unsigned short		padded;
2097 
2098 	spinlock_t		addr_list_lock;
2099 	int			irq;
2100 
2101 	struct netdev_hw_addr_list	uc;
2102 	struct netdev_hw_addr_list	mc;
2103 	struct netdev_hw_addr_list	dev_addrs;
2104 
2105 #ifdef CONFIG_SYSFS
2106 	struct kset		*queues_kset;
2107 #endif
2108 #ifdef CONFIG_LOCKDEP
2109 	struct list_head	unlink_list;
2110 #endif
2111 	unsigned int		promiscuity;
2112 	unsigned int		allmulti;
2113 	bool			uc_promisc;
2114 #ifdef CONFIG_LOCKDEP
2115 	unsigned char		nested_level;
2116 #endif
2117 
2118 
2119 	/* Protocol-specific pointers */
2120 
2121 	struct in_device __rcu	*ip_ptr;
2122 	struct inet6_dev __rcu	*ip6_ptr;
2123 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2124 	struct vlan_info __rcu	*vlan_info;
2125 #endif
2126 #if IS_ENABLED(CONFIG_NET_DSA)
2127 	struct dsa_port		*dsa_ptr;
2128 #endif
2129 #if IS_ENABLED(CONFIG_TIPC)
2130 	struct tipc_bearer __rcu *tipc_ptr;
2131 #endif
2132 #if IS_ENABLED(CONFIG_ATALK)
2133 	void 			*atalk_ptr;
2134 #endif
2135 #if IS_ENABLED(CONFIG_AX25)
2136 	void			*ax25_ptr;
2137 #endif
2138 #if IS_ENABLED(CONFIG_CFG80211)
2139 	struct wireless_dev	*ieee80211_ptr;
2140 #endif
2141 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2142 	struct wpan_dev		*ieee802154_ptr;
2143 #endif
2144 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2145 	struct mpls_dev __rcu	*mpls_ptr;
2146 #endif
2147 #if IS_ENABLED(CONFIG_MCTP)
2148 	struct mctp_dev __rcu	*mctp_ptr;
2149 #endif
2150 
2151 /*
2152  * Cache lines mostly used on receive path (including eth_type_trans())
2153  */
2154 	/* Interface address info used in eth_type_trans() */
2155 	const unsigned char	*dev_addr;
2156 
2157 	struct netdev_rx_queue	*_rx;
2158 	unsigned int		num_rx_queues;
2159 	unsigned int		real_num_rx_queues;
2160 
2161 	struct bpf_prog __rcu	*xdp_prog;
2162 	unsigned long		gro_flush_timeout;
2163 	int			napi_defer_hard_irqs;
2164 #define GRO_LEGACY_MAX_SIZE	65536u
2165 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2166  * and shinfo->gso_segs is a 16bit field.
2167  */
2168 #define GRO_MAX_SIZE		(8 * 65535u)
2169 	unsigned int		gro_max_size;
2170 	rx_handler_func_t __rcu	*rx_handler;
2171 	void __rcu		*rx_handler_data;
2172 
2173 #ifdef CONFIG_NET_CLS_ACT
2174 	struct mini_Qdisc __rcu	*miniq_ingress;
2175 #endif
2176 	struct netdev_queue __rcu *ingress_queue;
2177 #ifdef CONFIG_NETFILTER_INGRESS
2178 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2179 #endif
2180 
2181 	unsigned char		broadcast[MAX_ADDR_LEN];
2182 #ifdef CONFIG_RFS_ACCEL
2183 	struct cpu_rmap		*rx_cpu_rmap;
2184 #endif
2185 	struct hlist_node	index_hlist;
2186 
2187 /*
2188  * Cache lines mostly used on transmit path
2189  */
2190 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2191 	unsigned int		num_tx_queues;
2192 	unsigned int		real_num_tx_queues;
2193 	struct Qdisc __rcu	*qdisc;
2194 	unsigned int		tx_queue_len;
2195 	spinlock_t		tx_global_lock;
2196 
2197 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2198 
2199 #ifdef CONFIG_XPS
2200 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2201 #endif
2202 #ifdef CONFIG_NET_CLS_ACT
2203 	struct mini_Qdisc __rcu	*miniq_egress;
2204 #endif
2205 #ifdef CONFIG_NETFILTER_EGRESS
2206 	struct nf_hook_entries __rcu *nf_hooks_egress;
2207 #endif
2208 
2209 #ifdef CONFIG_NET_SCHED
2210 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2211 #endif
2212 	/* These may be needed for future network-power-down code. */
2213 	struct timer_list	watchdog_timer;
2214 	int			watchdog_timeo;
2215 
2216 	u32                     proto_down_reason;
2217 
2218 	struct list_head	todo_list;
2219 
2220 #ifdef CONFIG_PCPU_DEV_REFCNT
2221 	int __percpu		*pcpu_refcnt;
2222 #else
2223 	refcount_t		dev_refcnt;
2224 #endif
2225 	struct ref_tracker_dir	refcnt_tracker;
2226 
2227 	struct list_head	link_watch_list;
2228 
2229 	enum { NETREG_UNINITIALIZED=0,
2230 	       NETREG_REGISTERED,	/* completed register_netdevice */
2231 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2232 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2233 	       NETREG_RELEASED,		/* called free_netdev */
2234 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2235 	} reg_state:8;
2236 
2237 	bool dismantle;
2238 
2239 	enum {
2240 		RTNL_LINK_INITIALIZED,
2241 		RTNL_LINK_INITIALIZING,
2242 	} rtnl_link_state:16;
2243 
2244 	bool needs_free_netdev;
2245 	void (*priv_destructor)(struct net_device *dev);
2246 
2247 #ifdef CONFIG_NETPOLL
2248 	struct netpoll_info __rcu	*npinfo;
2249 #endif
2250 
2251 	possible_net_t			nd_net;
2252 
2253 	/* mid-layer private */
2254 	void				*ml_priv;
2255 	enum netdev_ml_priv_type	ml_priv_type;
2256 
2257 	union {
2258 		struct pcpu_lstats __percpu		*lstats;
2259 		struct pcpu_sw_netstats __percpu	*tstats;
2260 		struct pcpu_dstats __percpu		*dstats;
2261 	};
2262 
2263 #if IS_ENABLED(CONFIG_GARP)
2264 	struct garp_port __rcu	*garp_port;
2265 #endif
2266 #if IS_ENABLED(CONFIG_MRP)
2267 	struct mrp_port __rcu	*mrp_port;
2268 #endif
2269 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2270 	struct dm_hw_stat_delta __rcu *dm_private;
2271 #endif
2272 	struct device		dev;
2273 	const struct attribute_group *sysfs_groups[4];
2274 	const struct attribute_group *sysfs_rx_queue_group;
2275 
2276 	const struct rtnl_link_ops *rtnl_link_ops;
2277 
2278 	/* for setting kernel sock attribute on TCP connection setup */
2279 #define GSO_MAX_SEGS		65535u
2280 #define GSO_LEGACY_MAX_SIZE	65536u
2281 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2282  * and shinfo->gso_segs is a 16bit field.
2283  */
2284 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2285 
2286 	unsigned int		gso_max_size;
2287 #define TSO_LEGACY_MAX_SIZE	65536
2288 #define TSO_MAX_SIZE		UINT_MAX
2289 	unsigned int		tso_max_size;
2290 	u16			gso_max_segs;
2291 #define TSO_MAX_SEGS		U16_MAX
2292 	u16			tso_max_segs;
2293 
2294 #ifdef CONFIG_DCB
2295 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2296 #endif
2297 	s16			num_tc;
2298 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2299 	u8			prio_tc_map[TC_BITMASK + 1];
2300 
2301 #if IS_ENABLED(CONFIG_FCOE)
2302 	unsigned int		fcoe_ddp_xid;
2303 #endif
2304 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2305 	struct netprio_map __rcu *priomap;
2306 #endif
2307 	struct phy_device	*phydev;
2308 	struct sfp_bus		*sfp_bus;
2309 	struct lock_class_key	*qdisc_tx_busylock;
2310 	bool			proto_down;
2311 	unsigned		wol_enabled:1;
2312 	unsigned		threaded:1;
2313 
2314 	struct list_head	net_notifier_list;
2315 
2316 #if IS_ENABLED(CONFIG_MACSEC)
2317 	/* MACsec management functions */
2318 	const struct macsec_ops *macsec_ops;
2319 #endif
2320 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2321 	struct udp_tunnel_nic	*udp_tunnel_nic;
2322 
2323 	/* protected by rtnl_lock */
2324 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2325 
2326 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2327 	netdevice_tracker	linkwatch_dev_tracker;
2328 	netdevice_tracker	watchdog_dev_tracker;
2329 	netdevice_tracker	dev_registered_tracker;
2330 	struct rtnl_hw_stats64	*offload_xstats_l3;
2331 };
2332 #define to_net_dev(d) container_of(d, struct net_device, dev)
2333 
2334 static inline bool netif_elide_gro(const struct net_device *dev)
2335 {
2336 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2337 		return true;
2338 	return false;
2339 }
2340 
2341 #define	NETDEV_ALIGN		32
2342 
2343 static inline
2344 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2345 {
2346 	return dev->prio_tc_map[prio & TC_BITMASK];
2347 }
2348 
2349 static inline
2350 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2351 {
2352 	if (tc >= dev->num_tc)
2353 		return -EINVAL;
2354 
2355 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2356 	return 0;
2357 }
2358 
2359 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2360 void netdev_reset_tc(struct net_device *dev);
2361 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2362 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2363 
2364 static inline
2365 int netdev_get_num_tc(struct net_device *dev)
2366 {
2367 	return dev->num_tc;
2368 }
2369 
2370 static inline void net_prefetch(void *p)
2371 {
2372 	prefetch(p);
2373 #if L1_CACHE_BYTES < 128
2374 	prefetch((u8 *)p + L1_CACHE_BYTES);
2375 #endif
2376 }
2377 
2378 static inline void net_prefetchw(void *p)
2379 {
2380 	prefetchw(p);
2381 #if L1_CACHE_BYTES < 128
2382 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2383 #endif
2384 }
2385 
2386 void netdev_unbind_sb_channel(struct net_device *dev,
2387 			      struct net_device *sb_dev);
2388 int netdev_bind_sb_channel_queue(struct net_device *dev,
2389 				 struct net_device *sb_dev,
2390 				 u8 tc, u16 count, u16 offset);
2391 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2392 static inline int netdev_get_sb_channel(struct net_device *dev)
2393 {
2394 	return max_t(int, -dev->num_tc, 0);
2395 }
2396 
2397 static inline
2398 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2399 					 unsigned int index)
2400 {
2401 	return &dev->_tx[index];
2402 }
2403 
2404 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2405 						    const struct sk_buff *skb)
2406 {
2407 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2408 }
2409 
2410 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2411 					    void (*f)(struct net_device *,
2412 						      struct netdev_queue *,
2413 						      void *),
2414 					    void *arg)
2415 {
2416 	unsigned int i;
2417 
2418 	for (i = 0; i < dev->num_tx_queues; i++)
2419 		f(dev, &dev->_tx[i], arg);
2420 }
2421 
2422 #define netdev_lockdep_set_classes(dev)				\
2423 {								\
2424 	static struct lock_class_key qdisc_tx_busylock_key;	\
2425 	static struct lock_class_key qdisc_xmit_lock_key;	\
2426 	static struct lock_class_key dev_addr_list_lock_key;	\
2427 	unsigned int i;						\
2428 								\
2429 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2430 	lockdep_set_class(&(dev)->addr_list_lock,		\
2431 			  &dev_addr_list_lock_key);		\
2432 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2433 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2434 				  &qdisc_xmit_lock_key);	\
2435 }
2436 
2437 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2438 		     struct net_device *sb_dev);
2439 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2440 					 struct sk_buff *skb,
2441 					 struct net_device *sb_dev);
2442 
2443 /* returns the headroom that the master device needs to take in account
2444  * when forwarding to this dev
2445  */
2446 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2447 {
2448 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2449 }
2450 
2451 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2452 {
2453 	if (dev->netdev_ops->ndo_set_rx_headroom)
2454 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2455 }
2456 
2457 /* set the device rx headroom to the dev's default */
2458 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2459 {
2460 	netdev_set_rx_headroom(dev, -1);
2461 }
2462 
2463 static inline void *netdev_get_ml_priv(struct net_device *dev,
2464 				       enum netdev_ml_priv_type type)
2465 {
2466 	if (dev->ml_priv_type != type)
2467 		return NULL;
2468 
2469 	return dev->ml_priv;
2470 }
2471 
2472 static inline void netdev_set_ml_priv(struct net_device *dev,
2473 				      void *ml_priv,
2474 				      enum netdev_ml_priv_type type)
2475 {
2476 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2477 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2478 	     dev->ml_priv_type, type);
2479 	WARN(!dev->ml_priv_type && dev->ml_priv,
2480 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2481 
2482 	dev->ml_priv = ml_priv;
2483 	dev->ml_priv_type = type;
2484 }
2485 
2486 /*
2487  * Net namespace inlines
2488  */
2489 static inline
2490 struct net *dev_net(const struct net_device *dev)
2491 {
2492 	return read_pnet(&dev->nd_net);
2493 }
2494 
2495 static inline
2496 void dev_net_set(struct net_device *dev, struct net *net)
2497 {
2498 	write_pnet(&dev->nd_net, net);
2499 }
2500 
2501 /**
2502  *	netdev_priv - access network device private data
2503  *	@dev: network device
2504  *
2505  * Get network device private data
2506  */
2507 static inline void *netdev_priv(const struct net_device *dev)
2508 {
2509 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2510 }
2511 
2512 /* Set the sysfs physical device reference for the network logical device
2513  * if set prior to registration will cause a symlink during initialization.
2514  */
2515 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2516 
2517 /* Set the sysfs device type for the network logical device to allow
2518  * fine-grained identification of different network device types. For
2519  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2520  */
2521 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2522 
2523 /* Default NAPI poll() weight
2524  * Device drivers are strongly advised to not use bigger value
2525  */
2526 #define NAPI_POLL_WEIGHT 64
2527 
2528 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2529 			   int (*poll)(struct napi_struct *, int), int weight);
2530 
2531 /**
2532  * netif_napi_add() - initialize a NAPI context
2533  * @dev:  network device
2534  * @napi: NAPI context
2535  * @poll: polling function
2536  * @weight: default weight
2537  *
2538  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2539  * *any* of the other NAPI-related functions.
2540  */
2541 static inline void
2542 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2543 	       int (*poll)(struct napi_struct *, int), int weight)
2544 {
2545 	netif_napi_add_weight(dev, napi, poll, weight);
2546 }
2547 
2548 static inline void
2549 netif_napi_add_tx_weight(struct net_device *dev,
2550 			 struct napi_struct *napi,
2551 			 int (*poll)(struct napi_struct *, int),
2552 			 int weight)
2553 {
2554 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2555 	netif_napi_add_weight(dev, napi, poll, weight);
2556 }
2557 
2558 #define netif_tx_napi_add netif_napi_add_tx_weight
2559 
2560 /**
2561  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2562  * @dev:  network device
2563  * @napi: NAPI context
2564  * @poll: polling function
2565  *
2566  * This variant of netif_napi_add() should be used from drivers using NAPI
2567  * to exclusively poll a TX queue.
2568  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2569  */
2570 static inline void netif_napi_add_tx(struct net_device *dev,
2571 				     struct napi_struct *napi,
2572 				     int (*poll)(struct napi_struct *, int))
2573 {
2574 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2575 }
2576 
2577 /**
2578  *  __netif_napi_del - remove a NAPI context
2579  *  @napi: NAPI context
2580  *
2581  * Warning: caller must observe RCU grace period before freeing memory
2582  * containing @napi. Drivers might want to call this helper to combine
2583  * all the needed RCU grace periods into a single one.
2584  */
2585 void __netif_napi_del(struct napi_struct *napi);
2586 
2587 /**
2588  *  netif_napi_del - remove a NAPI context
2589  *  @napi: NAPI context
2590  *
2591  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2592  */
2593 static inline void netif_napi_del(struct napi_struct *napi)
2594 {
2595 	__netif_napi_del(napi);
2596 	synchronize_net();
2597 }
2598 
2599 struct packet_type {
2600 	__be16			type;	/* This is really htons(ether_type). */
2601 	bool			ignore_outgoing;
2602 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2603 	netdevice_tracker	dev_tracker;
2604 	int			(*func) (struct sk_buff *,
2605 					 struct net_device *,
2606 					 struct packet_type *,
2607 					 struct net_device *);
2608 	void			(*list_func) (struct list_head *,
2609 					      struct packet_type *,
2610 					      struct net_device *);
2611 	bool			(*id_match)(struct packet_type *ptype,
2612 					    struct sock *sk);
2613 	struct net		*af_packet_net;
2614 	void			*af_packet_priv;
2615 	struct list_head	list;
2616 };
2617 
2618 struct offload_callbacks {
2619 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2620 						netdev_features_t features);
2621 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2622 						struct sk_buff *skb);
2623 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2624 };
2625 
2626 struct packet_offload {
2627 	__be16			 type;	/* This is really htons(ether_type). */
2628 	u16			 priority;
2629 	struct offload_callbacks callbacks;
2630 	struct list_head	 list;
2631 };
2632 
2633 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2634 struct pcpu_sw_netstats {
2635 	u64_stats_t		rx_packets;
2636 	u64_stats_t		rx_bytes;
2637 	u64_stats_t		tx_packets;
2638 	u64_stats_t		tx_bytes;
2639 	struct u64_stats_sync   syncp;
2640 } __aligned(4 * sizeof(u64));
2641 
2642 struct pcpu_lstats {
2643 	u64_stats_t packets;
2644 	u64_stats_t bytes;
2645 	struct u64_stats_sync syncp;
2646 } __aligned(2 * sizeof(u64));
2647 
2648 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2649 
2650 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2651 {
2652 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2653 
2654 	u64_stats_update_begin(&tstats->syncp);
2655 	u64_stats_add(&tstats->rx_bytes, len);
2656 	u64_stats_inc(&tstats->rx_packets);
2657 	u64_stats_update_end(&tstats->syncp);
2658 }
2659 
2660 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2661 					  unsigned int packets,
2662 					  unsigned int len)
2663 {
2664 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2665 
2666 	u64_stats_update_begin(&tstats->syncp);
2667 	u64_stats_add(&tstats->tx_bytes, len);
2668 	u64_stats_add(&tstats->tx_packets, packets);
2669 	u64_stats_update_end(&tstats->syncp);
2670 }
2671 
2672 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2673 {
2674 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2675 
2676 	u64_stats_update_begin(&lstats->syncp);
2677 	u64_stats_add(&lstats->bytes, len);
2678 	u64_stats_inc(&lstats->packets);
2679 	u64_stats_update_end(&lstats->syncp);
2680 }
2681 
2682 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2683 ({									\
2684 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2685 	if (pcpu_stats)	{						\
2686 		int __cpu;						\
2687 		for_each_possible_cpu(__cpu) {				\
2688 			typeof(type) *stat;				\
2689 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2690 			u64_stats_init(&stat->syncp);			\
2691 		}							\
2692 	}								\
2693 	pcpu_stats;							\
2694 })
2695 
2696 #define netdev_alloc_pcpu_stats(type)					\
2697 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2698 
2699 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2700 ({									\
2701 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2702 	if (pcpu_stats) {						\
2703 		int __cpu;						\
2704 		for_each_possible_cpu(__cpu) {				\
2705 			typeof(type) *stat;				\
2706 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2707 			u64_stats_init(&stat->syncp);			\
2708 		}							\
2709 	}								\
2710 	pcpu_stats;							\
2711 })
2712 
2713 enum netdev_lag_tx_type {
2714 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2715 	NETDEV_LAG_TX_TYPE_RANDOM,
2716 	NETDEV_LAG_TX_TYPE_BROADCAST,
2717 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2718 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2719 	NETDEV_LAG_TX_TYPE_HASH,
2720 };
2721 
2722 enum netdev_lag_hash {
2723 	NETDEV_LAG_HASH_NONE,
2724 	NETDEV_LAG_HASH_L2,
2725 	NETDEV_LAG_HASH_L34,
2726 	NETDEV_LAG_HASH_L23,
2727 	NETDEV_LAG_HASH_E23,
2728 	NETDEV_LAG_HASH_E34,
2729 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2730 	NETDEV_LAG_HASH_UNKNOWN,
2731 };
2732 
2733 struct netdev_lag_upper_info {
2734 	enum netdev_lag_tx_type tx_type;
2735 	enum netdev_lag_hash hash_type;
2736 };
2737 
2738 struct netdev_lag_lower_state_info {
2739 	u8 link_up : 1,
2740 	   tx_enabled : 1;
2741 };
2742 
2743 #include <linux/notifier.h>
2744 
2745 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2746  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2747  * adding new types.
2748  */
2749 enum netdev_cmd {
2750 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2751 	NETDEV_DOWN,
2752 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2753 				   detected a hardware crash and restarted
2754 				   - we can use this eg to kick tcp sessions
2755 				   once done */
2756 	NETDEV_CHANGE,		/* Notify device state change */
2757 	NETDEV_REGISTER,
2758 	NETDEV_UNREGISTER,
2759 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2760 	NETDEV_CHANGEADDR,	/* notify after the address change */
2761 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2762 	NETDEV_GOING_DOWN,
2763 	NETDEV_CHANGENAME,
2764 	NETDEV_FEAT_CHANGE,
2765 	NETDEV_BONDING_FAILOVER,
2766 	NETDEV_PRE_UP,
2767 	NETDEV_PRE_TYPE_CHANGE,
2768 	NETDEV_POST_TYPE_CHANGE,
2769 	NETDEV_POST_INIT,
2770 	NETDEV_RELEASE,
2771 	NETDEV_NOTIFY_PEERS,
2772 	NETDEV_JOIN,
2773 	NETDEV_CHANGEUPPER,
2774 	NETDEV_RESEND_IGMP,
2775 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2776 	NETDEV_CHANGEINFODATA,
2777 	NETDEV_BONDING_INFO,
2778 	NETDEV_PRECHANGEUPPER,
2779 	NETDEV_CHANGELOWERSTATE,
2780 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2781 	NETDEV_UDP_TUNNEL_DROP_INFO,
2782 	NETDEV_CHANGE_TX_QUEUE_LEN,
2783 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2784 	NETDEV_CVLAN_FILTER_DROP_INFO,
2785 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2786 	NETDEV_SVLAN_FILTER_DROP_INFO,
2787 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2788 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2789 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2790 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2791 };
2792 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2793 
2794 int register_netdevice_notifier(struct notifier_block *nb);
2795 int unregister_netdevice_notifier(struct notifier_block *nb);
2796 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2797 int unregister_netdevice_notifier_net(struct net *net,
2798 				      struct notifier_block *nb);
2799 int register_netdevice_notifier_dev_net(struct net_device *dev,
2800 					struct notifier_block *nb,
2801 					struct netdev_net_notifier *nn);
2802 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2803 					  struct notifier_block *nb,
2804 					  struct netdev_net_notifier *nn);
2805 
2806 struct netdev_notifier_info {
2807 	struct net_device	*dev;
2808 	struct netlink_ext_ack	*extack;
2809 };
2810 
2811 struct netdev_notifier_info_ext {
2812 	struct netdev_notifier_info info; /* must be first */
2813 	union {
2814 		u32 mtu;
2815 	} ext;
2816 };
2817 
2818 struct netdev_notifier_change_info {
2819 	struct netdev_notifier_info info; /* must be first */
2820 	unsigned int flags_changed;
2821 };
2822 
2823 struct netdev_notifier_changeupper_info {
2824 	struct netdev_notifier_info info; /* must be first */
2825 	struct net_device *upper_dev; /* new upper dev */
2826 	bool master; /* is upper dev master */
2827 	bool linking; /* is the notification for link or unlink */
2828 	void *upper_info; /* upper dev info */
2829 };
2830 
2831 struct netdev_notifier_changelowerstate_info {
2832 	struct netdev_notifier_info info; /* must be first */
2833 	void *lower_state_info; /* is lower dev state */
2834 };
2835 
2836 struct netdev_notifier_pre_changeaddr_info {
2837 	struct netdev_notifier_info info; /* must be first */
2838 	const unsigned char *dev_addr;
2839 };
2840 
2841 enum netdev_offload_xstats_type {
2842 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2843 };
2844 
2845 struct netdev_notifier_offload_xstats_info {
2846 	struct netdev_notifier_info info; /* must be first */
2847 	enum netdev_offload_xstats_type type;
2848 
2849 	union {
2850 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2851 		struct netdev_notifier_offload_xstats_rd *report_delta;
2852 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2853 		struct netdev_notifier_offload_xstats_ru *report_used;
2854 	};
2855 };
2856 
2857 int netdev_offload_xstats_enable(struct net_device *dev,
2858 				 enum netdev_offload_xstats_type type,
2859 				 struct netlink_ext_ack *extack);
2860 int netdev_offload_xstats_disable(struct net_device *dev,
2861 				  enum netdev_offload_xstats_type type);
2862 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2863 				   enum netdev_offload_xstats_type type);
2864 int netdev_offload_xstats_get(struct net_device *dev,
2865 			      enum netdev_offload_xstats_type type,
2866 			      struct rtnl_hw_stats64 *stats, bool *used,
2867 			      struct netlink_ext_ack *extack);
2868 void
2869 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2870 				   const struct rtnl_hw_stats64 *stats);
2871 void
2872 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2873 void netdev_offload_xstats_push_delta(struct net_device *dev,
2874 				      enum netdev_offload_xstats_type type,
2875 				      const struct rtnl_hw_stats64 *stats);
2876 
2877 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2878 					     struct net_device *dev)
2879 {
2880 	info->dev = dev;
2881 	info->extack = NULL;
2882 }
2883 
2884 static inline struct net_device *
2885 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2886 {
2887 	return info->dev;
2888 }
2889 
2890 static inline struct netlink_ext_ack *
2891 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2892 {
2893 	return info->extack;
2894 }
2895 
2896 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2897 
2898 
2899 extern rwlock_t				dev_base_lock;		/* Device list lock */
2900 
2901 #define for_each_netdev(net, d)		\
2902 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2903 #define for_each_netdev_reverse(net, d)	\
2904 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2905 #define for_each_netdev_rcu(net, d)		\
2906 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2907 #define for_each_netdev_safe(net, d, n)	\
2908 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2909 #define for_each_netdev_continue(net, d)		\
2910 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2911 #define for_each_netdev_continue_reverse(net, d)		\
2912 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2913 						     dev_list)
2914 #define for_each_netdev_continue_rcu(net, d)		\
2915 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2916 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2917 		for_each_netdev_rcu(&init_net, slave)	\
2918 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2919 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2920 
2921 static inline struct net_device *next_net_device(struct net_device *dev)
2922 {
2923 	struct list_head *lh;
2924 	struct net *net;
2925 
2926 	net = dev_net(dev);
2927 	lh = dev->dev_list.next;
2928 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2929 }
2930 
2931 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2932 {
2933 	struct list_head *lh;
2934 	struct net *net;
2935 
2936 	net = dev_net(dev);
2937 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2938 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2939 }
2940 
2941 static inline struct net_device *first_net_device(struct net *net)
2942 {
2943 	return list_empty(&net->dev_base_head) ? NULL :
2944 		net_device_entry(net->dev_base_head.next);
2945 }
2946 
2947 static inline struct net_device *first_net_device_rcu(struct net *net)
2948 {
2949 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2950 
2951 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2952 }
2953 
2954 int netdev_boot_setup_check(struct net_device *dev);
2955 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2956 				       const char *hwaddr);
2957 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2958 void dev_add_pack(struct packet_type *pt);
2959 void dev_remove_pack(struct packet_type *pt);
2960 void __dev_remove_pack(struct packet_type *pt);
2961 void dev_add_offload(struct packet_offload *po);
2962 void dev_remove_offload(struct packet_offload *po);
2963 
2964 int dev_get_iflink(const struct net_device *dev);
2965 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2966 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2967 			  struct net_device_path_stack *stack);
2968 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2969 				      unsigned short mask);
2970 struct net_device *dev_get_by_name(struct net *net, const char *name);
2971 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2972 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2973 bool netdev_name_in_use(struct net *net, const char *name);
2974 int dev_alloc_name(struct net_device *dev, const char *name);
2975 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2976 void dev_close(struct net_device *dev);
2977 void dev_close_many(struct list_head *head, bool unlink);
2978 void dev_disable_lro(struct net_device *dev);
2979 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2980 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2981 		     struct net_device *sb_dev);
2982 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2983 		       struct net_device *sb_dev);
2984 
2985 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
2986 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2987 
2988 static inline int dev_queue_xmit(struct sk_buff *skb)
2989 {
2990 	return __dev_queue_xmit(skb, NULL);
2991 }
2992 
2993 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
2994 				       struct net_device *sb_dev)
2995 {
2996 	return __dev_queue_xmit(skb, sb_dev);
2997 }
2998 
2999 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3000 {
3001 	int ret;
3002 
3003 	ret = __dev_direct_xmit(skb, queue_id);
3004 	if (!dev_xmit_complete(ret))
3005 		kfree_skb(skb);
3006 	return ret;
3007 }
3008 
3009 int register_netdevice(struct net_device *dev);
3010 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3011 void unregister_netdevice_many(struct list_head *head);
3012 static inline void unregister_netdevice(struct net_device *dev)
3013 {
3014 	unregister_netdevice_queue(dev, NULL);
3015 }
3016 
3017 int netdev_refcnt_read(const struct net_device *dev);
3018 void free_netdev(struct net_device *dev);
3019 void netdev_freemem(struct net_device *dev);
3020 int init_dummy_netdev(struct net_device *dev);
3021 
3022 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3023 					 struct sk_buff *skb,
3024 					 bool all_slaves);
3025 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3026 					    struct sock *sk);
3027 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3028 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3029 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3030 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3031 int dev_restart(struct net_device *dev);
3032 
3033 
3034 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3035 				  unsigned short type,
3036 				  const void *daddr, const void *saddr,
3037 				  unsigned int len)
3038 {
3039 	if (!dev->header_ops || !dev->header_ops->create)
3040 		return 0;
3041 
3042 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3043 }
3044 
3045 static inline int dev_parse_header(const struct sk_buff *skb,
3046 				   unsigned char *haddr)
3047 {
3048 	const struct net_device *dev = skb->dev;
3049 
3050 	if (!dev->header_ops || !dev->header_ops->parse)
3051 		return 0;
3052 	return dev->header_ops->parse(skb, haddr);
3053 }
3054 
3055 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3056 {
3057 	const struct net_device *dev = skb->dev;
3058 
3059 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3060 		return 0;
3061 	return dev->header_ops->parse_protocol(skb);
3062 }
3063 
3064 /* ll_header must have at least hard_header_len allocated */
3065 static inline bool dev_validate_header(const struct net_device *dev,
3066 				       char *ll_header, int len)
3067 {
3068 	if (likely(len >= dev->hard_header_len))
3069 		return true;
3070 	if (len < dev->min_header_len)
3071 		return false;
3072 
3073 	if (capable(CAP_SYS_RAWIO)) {
3074 		memset(ll_header + len, 0, dev->hard_header_len - len);
3075 		return true;
3076 	}
3077 
3078 	if (dev->header_ops && dev->header_ops->validate)
3079 		return dev->header_ops->validate(ll_header, len);
3080 
3081 	return false;
3082 }
3083 
3084 static inline bool dev_has_header(const struct net_device *dev)
3085 {
3086 	return dev->header_ops && dev->header_ops->create;
3087 }
3088 
3089 /*
3090  * Incoming packets are placed on per-CPU queues
3091  */
3092 struct softnet_data {
3093 	struct list_head	poll_list;
3094 	struct sk_buff_head	process_queue;
3095 
3096 	/* stats */
3097 	unsigned int		processed;
3098 	unsigned int		time_squeeze;
3099 	unsigned int		received_rps;
3100 #ifdef CONFIG_RPS
3101 	struct softnet_data	*rps_ipi_list;
3102 #endif
3103 #ifdef CONFIG_NET_FLOW_LIMIT
3104 	struct sd_flow_limit __rcu *flow_limit;
3105 #endif
3106 	struct Qdisc		*output_queue;
3107 	struct Qdisc		**output_queue_tailp;
3108 	struct sk_buff		*completion_queue;
3109 #ifdef CONFIG_XFRM_OFFLOAD
3110 	struct sk_buff_head	xfrm_backlog;
3111 #endif
3112 	/* written and read only by owning cpu: */
3113 	struct {
3114 		u16 recursion;
3115 		u8  more;
3116 #ifdef CONFIG_NET_EGRESS
3117 		u8  skip_txqueue;
3118 #endif
3119 	} xmit;
3120 #ifdef CONFIG_RPS
3121 	/* input_queue_head should be written by cpu owning this struct,
3122 	 * and only read by other cpus. Worth using a cache line.
3123 	 */
3124 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3125 
3126 	/* Elements below can be accessed between CPUs for RPS/RFS */
3127 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3128 	struct softnet_data	*rps_ipi_next;
3129 	unsigned int		cpu;
3130 	unsigned int		input_queue_tail;
3131 #endif
3132 	unsigned int		dropped;
3133 	struct sk_buff_head	input_pkt_queue;
3134 	struct napi_struct	backlog;
3135 
3136 	/* Another possibly contended cache line */
3137 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3138 	int			defer_count;
3139 	int			defer_ipi_scheduled;
3140 	struct sk_buff		*defer_list;
3141 	call_single_data_t	defer_csd;
3142 };
3143 
3144 static inline void input_queue_head_incr(struct softnet_data *sd)
3145 {
3146 #ifdef CONFIG_RPS
3147 	sd->input_queue_head++;
3148 #endif
3149 }
3150 
3151 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3152 					      unsigned int *qtail)
3153 {
3154 #ifdef CONFIG_RPS
3155 	*qtail = ++sd->input_queue_tail;
3156 #endif
3157 }
3158 
3159 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3160 
3161 static inline int dev_recursion_level(void)
3162 {
3163 	return this_cpu_read(softnet_data.xmit.recursion);
3164 }
3165 
3166 #define XMIT_RECURSION_LIMIT	8
3167 static inline bool dev_xmit_recursion(void)
3168 {
3169 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3170 			XMIT_RECURSION_LIMIT);
3171 }
3172 
3173 static inline void dev_xmit_recursion_inc(void)
3174 {
3175 	__this_cpu_inc(softnet_data.xmit.recursion);
3176 }
3177 
3178 static inline void dev_xmit_recursion_dec(void)
3179 {
3180 	__this_cpu_dec(softnet_data.xmit.recursion);
3181 }
3182 
3183 void __netif_schedule(struct Qdisc *q);
3184 void netif_schedule_queue(struct netdev_queue *txq);
3185 
3186 static inline void netif_tx_schedule_all(struct net_device *dev)
3187 {
3188 	unsigned int i;
3189 
3190 	for (i = 0; i < dev->num_tx_queues; i++)
3191 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3192 }
3193 
3194 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3195 {
3196 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3197 }
3198 
3199 /**
3200  *	netif_start_queue - allow transmit
3201  *	@dev: network device
3202  *
3203  *	Allow upper layers to call the device hard_start_xmit routine.
3204  */
3205 static inline void netif_start_queue(struct net_device *dev)
3206 {
3207 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3208 }
3209 
3210 static inline void netif_tx_start_all_queues(struct net_device *dev)
3211 {
3212 	unsigned int i;
3213 
3214 	for (i = 0; i < dev->num_tx_queues; i++) {
3215 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3216 		netif_tx_start_queue(txq);
3217 	}
3218 }
3219 
3220 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3221 
3222 /**
3223  *	netif_wake_queue - restart transmit
3224  *	@dev: network device
3225  *
3226  *	Allow upper layers to call the device hard_start_xmit routine.
3227  *	Used for flow control when transmit resources are available.
3228  */
3229 static inline void netif_wake_queue(struct net_device *dev)
3230 {
3231 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3232 }
3233 
3234 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3235 {
3236 	unsigned int i;
3237 
3238 	for (i = 0; i < dev->num_tx_queues; i++) {
3239 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3240 		netif_tx_wake_queue(txq);
3241 	}
3242 }
3243 
3244 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3245 {
3246 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3247 }
3248 
3249 /**
3250  *	netif_stop_queue - stop transmitted packets
3251  *	@dev: network device
3252  *
3253  *	Stop upper layers calling the device hard_start_xmit routine.
3254  *	Used for flow control when transmit resources are unavailable.
3255  */
3256 static inline void netif_stop_queue(struct net_device *dev)
3257 {
3258 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3259 }
3260 
3261 void netif_tx_stop_all_queues(struct net_device *dev);
3262 
3263 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3264 {
3265 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3266 }
3267 
3268 /**
3269  *	netif_queue_stopped - test if transmit queue is flowblocked
3270  *	@dev: network device
3271  *
3272  *	Test if transmit queue on device is currently unable to send.
3273  */
3274 static inline bool netif_queue_stopped(const struct net_device *dev)
3275 {
3276 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3277 }
3278 
3279 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3280 {
3281 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3282 }
3283 
3284 static inline bool
3285 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3286 {
3287 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3288 }
3289 
3290 static inline bool
3291 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3292 {
3293 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3294 }
3295 
3296 /**
3297  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3298  *	@dev_queue: pointer to transmit queue
3299  *	@min_limit: dql minimum limit
3300  *
3301  * Forces xmit_more() to return true until the minimum threshold
3302  * defined by @min_limit is reached (or until the tx queue is
3303  * empty). Warning: to be use with care, misuse will impact the
3304  * latency.
3305  */
3306 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3307 						  unsigned int min_limit)
3308 {
3309 #ifdef CONFIG_BQL
3310 	dev_queue->dql.min_limit = min_limit;
3311 #endif
3312 }
3313 
3314 /**
3315  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3316  *	@dev_queue: pointer to transmit queue
3317  *
3318  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3319  * to give appropriate hint to the CPU.
3320  */
3321 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3322 {
3323 #ifdef CONFIG_BQL
3324 	prefetchw(&dev_queue->dql.num_queued);
3325 #endif
3326 }
3327 
3328 /**
3329  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3330  *	@dev_queue: pointer to transmit queue
3331  *
3332  * BQL enabled drivers might use this helper in their TX completion path,
3333  * to give appropriate hint to the CPU.
3334  */
3335 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3336 {
3337 #ifdef CONFIG_BQL
3338 	prefetchw(&dev_queue->dql.limit);
3339 #endif
3340 }
3341 
3342 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3343 					unsigned int bytes)
3344 {
3345 #ifdef CONFIG_BQL
3346 	dql_queued(&dev_queue->dql, bytes);
3347 
3348 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3349 		return;
3350 
3351 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3352 
3353 	/*
3354 	 * The XOFF flag must be set before checking the dql_avail below,
3355 	 * because in netdev_tx_completed_queue we update the dql_completed
3356 	 * before checking the XOFF flag.
3357 	 */
3358 	smp_mb();
3359 
3360 	/* check again in case another CPU has just made room avail */
3361 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3362 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3363 #endif
3364 }
3365 
3366 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3367  * that they should not test BQL status themselves.
3368  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3369  * skb of a batch.
3370  * Returns true if the doorbell must be used to kick the NIC.
3371  */
3372 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3373 					  unsigned int bytes,
3374 					  bool xmit_more)
3375 {
3376 	if (xmit_more) {
3377 #ifdef CONFIG_BQL
3378 		dql_queued(&dev_queue->dql, bytes);
3379 #endif
3380 		return netif_tx_queue_stopped(dev_queue);
3381 	}
3382 	netdev_tx_sent_queue(dev_queue, bytes);
3383 	return true;
3384 }
3385 
3386 /**
3387  * 	netdev_sent_queue - report the number of bytes queued to hardware
3388  * 	@dev: network device
3389  * 	@bytes: number of bytes queued to the hardware device queue
3390  *
3391  * 	Report the number of bytes queued for sending/completion to the network
3392  * 	device hardware queue. @bytes should be a good approximation and should
3393  * 	exactly match netdev_completed_queue() @bytes
3394  */
3395 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3396 {
3397 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3398 }
3399 
3400 static inline bool __netdev_sent_queue(struct net_device *dev,
3401 				       unsigned int bytes,
3402 				       bool xmit_more)
3403 {
3404 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3405 				      xmit_more);
3406 }
3407 
3408 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3409 					     unsigned int pkts, unsigned int bytes)
3410 {
3411 #ifdef CONFIG_BQL
3412 	if (unlikely(!bytes))
3413 		return;
3414 
3415 	dql_completed(&dev_queue->dql, bytes);
3416 
3417 	/*
3418 	 * Without the memory barrier there is a small possiblity that
3419 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3420 	 * be stopped forever
3421 	 */
3422 	smp_mb();
3423 
3424 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3425 		return;
3426 
3427 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3428 		netif_schedule_queue(dev_queue);
3429 #endif
3430 }
3431 
3432 /**
3433  * 	netdev_completed_queue - report bytes and packets completed by device
3434  * 	@dev: network device
3435  * 	@pkts: actual number of packets sent over the medium
3436  * 	@bytes: actual number of bytes sent over the medium
3437  *
3438  * 	Report the number of bytes and packets transmitted by the network device
3439  * 	hardware queue over the physical medium, @bytes must exactly match the
3440  * 	@bytes amount passed to netdev_sent_queue()
3441  */
3442 static inline void netdev_completed_queue(struct net_device *dev,
3443 					  unsigned int pkts, unsigned int bytes)
3444 {
3445 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3446 }
3447 
3448 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3449 {
3450 #ifdef CONFIG_BQL
3451 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3452 	dql_reset(&q->dql);
3453 #endif
3454 }
3455 
3456 /**
3457  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3458  * 	@dev_queue: network device
3459  *
3460  * 	Reset the bytes and packet count of a network device and clear the
3461  * 	software flow control OFF bit for this network device
3462  */
3463 static inline void netdev_reset_queue(struct net_device *dev_queue)
3464 {
3465 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3466 }
3467 
3468 /**
3469  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3470  * 	@dev: network device
3471  * 	@queue_index: given tx queue index
3472  *
3473  * 	Returns 0 if given tx queue index >= number of device tx queues,
3474  * 	otherwise returns the originally passed tx queue index.
3475  */
3476 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3477 {
3478 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3479 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3480 				     dev->name, queue_index,
3481 				     dev->real_num_tx_queues);
3482 		return 0;
3483 	}
3484 
3485 	return queue_index;
3486 }
3487 
3488 /**
3489  *	netif_running - test if up
3490  *	@dev: network device
3491  *
3492  *	Test if the device has been brought up.
3493  */
3494 static inline bool netif_running(const struct net_device *dev)
3495 {
3496 	return test_bit(__LINK_STATE_START, &dev->state);
3497 }
3498 
3499 /*
3500  * Routines to manage the subqueues on a device.  We only need start,
3501  * stop, and a check if it's stopped.  All other device management is
3502  * done at the overall netdevice level.
3503  * Also test the device if we're multiqueue.
3504  */
3505 
3506 /**
3507  *	netif_start_subqueue - allow sending packets on subqueue
3508  *	@dev: network device
3509  *	@queue_index: sub queue index
3510  *
3511  * Start individual transmit queue of a device with multiple transmit queues.
3512  */
3513 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3514 {
3515 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3516 
3517 	netif_tx_start_queue(txq);
3518 }
3519 
3520 /**
3521  *	netif_stop_subqueue - stop sending packets on subqueue
3522  *	@dev: network device
3523  *	@queue_index: sub queue index
3524  *
3525  * Stop individual transmit queue of a device with multiple transmit queues.
3526  */
3527 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3528 {
3529 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3530 	netif_tx_stop_queue(txq);
3531 }
3532 
3533 /**
3534  *	__netif_subqueue_stopped - test status of subqueue
3535  *	@dev: network device
3536  *	@queue_index: sub queue index
3537  *
3538  * Check individual transmit queue of a device with multiple transmit queues.
3539  */
3540 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3541 					    u16 queue_index)
3542 {
3543 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3544 
3545 	return netif_tx_queue_stopped(txq);
3546 }
3547 
3548 /**
3549  *	netif_subqueue_stopped - test status of subqueue
3550  *	@dev: network device
3551  *	@skb: sub queue buffer pointer
3552  *
3553  * Check individual transmit queue of a device with multiple transmit queues.
3554  */
3555 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3556 					  struct sk_buff *skb)
3557 {
3558 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3559 }
3560 
3561 /**
3562  *	netif_wake_subqueue - allow sending packets on subqueue
3563  *	@dev: network device
3564  *	@queue_index: sub queue index
3565  *
3566  * Resume individual transmit queue of a device with multiple transmit queues.
3567  */
3568 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3569 {
3570 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3571 
3572 	netif_tx_wake_queue(txq);
3573 }
3574 
3575 #ifdef CONFIG_XPS
3576 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3577 			u16 index);
3578 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3579 			  u16 index, enum xps_map_type type);
3580 
3581 /**
3582  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3583  *	@j: CPU/Rx queue index
3584  *	@mask: bitmask of all cpus/rx queues
3585  *	@nr_bits: number of bits in the bitmask
3586  *
3587  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3588  */
3589 static inline bool netif_attr_test_mask(unsigned long j,
3590 					const unsigned long *mask,
3591 					unsigned int nr_bits)
3592 {
3593 	cpu_max_bits_warn(j, nr_bits);
3594 	return test_bit(j, mask);
3595 }
3596 
3597 /**
3598  *	netif_attr_test_online - Test for online CPU/Rx queue
3599  *	@j: CPU/Rx queue index
3600  *	@online_mask: bitmask for CPUs/Rx queues that are online
3601  *	@nr_bits: number of bits in the bitmask
3602  *
3603  * Returns true if a CPU/Rx queue is online.
3604  */
3605 static inline bool netif_attr_test_online(unsigned long j,
3606 					  const unsigned long *online_mask,
3607 					  unsigned int nr_bits)
3608 {
3609 	cpu_max_bits_warn(j, nr_bits);
3610 
3611 	if (online_mask)
3612 		return test_bit(j, online_mask);
3613 
3614 	return (j < nr_bits);
3615 }
3616 
3617 /**
3618  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3619  *	@n: CPU/Rx queue index
3620  *	@srcp: the cpumask/Rx queue mask pointer
3621  *	@nr_bits: number of bits in the bitmask
3622  *
3623  * Returns >= nr_bits if no further CPUs/Rx queues set.
3624  */
3625 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3626 					       unsigned int nr_bits)
3627 {
3628 	/* -1 is a legal arg here. */
3629 	if (n != -1)
3630 		cpu_max_bits_warn(n, nr_bits);
3631 
3632 	if (srcp)
3633 		return find_next_bit(srcp, nr_bits, n + 1);
3634 
3635 	return n + 1;
3636 }
3637 
3638 /**
3639  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3640  *	@n: CPU/Rx queue index
3641  *	@src1p: the first CPUs/Rx queues mask pointer
3642  *	@src2p: the second CPUs/Rx queues mask pointer
3643  *	@nr_bits: number of bits in the bitmask
3644  *
3645  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3646  */
3647 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3648 					  const unsigned long *src2p,
3649 					  unsigned int nr_bits)
3650 {
3651 	/* -1 is a legal arg here. */
3652 	if (n != -1)
3653 		cpu_max_bits_warn(n, nr_bits);
3654 
3655 	if (src1p && src2p)
3656 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3657 	else if (src1p)
3658 		return find_next_bit(src1p, nr_bits, n + 1);
3659 	else if (src2p)
3660 		return find_next_bit(src2p, nr_bits, n + 1);
3661 
3662 	return n + 1;
3663 }
3664 #else
3665 static inline int netif_set_xps_queue(struct net_device *dev,
3666 				      const struct cpumask *mask,
3667 				      u16 index)
3668 {
3669 	return 0;
3670 }
3671 
3672 static inline int __netif_set_xps_queue(struct net_device *dev,
3673 					const unsigned long *mask,
3674 					u16 index, enum xps_map_type type)
3675 {
3676 	return 0;
3677 }
3678 #endif
3679 
3680 /**
3681  *	netif_is_multiqueue - test if device has multiple transmit queues
3682  *	@dev: network device
3683  *
3684  * Check if device has multiple transmit queues
3685  */
3686 static inline bool netif_is_multiqueue(const struct net_device *dev)
3687 {
3688 	return dev->num_tx_queues > 1;
3689 }
3690 
3691 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3692 
3693 #ifdef CONFIG_SYSFS
3694 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3695 #else
3696 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3697 						unsigned int rxqs)
3698 {
3699 	dev->real_num_rx_queues = rxqs;
3700 	return 0;
3701 }
3702 #endif
3703 int netif_set_real_num_queues(struct net_device *dev,
3704 			      unsigned int txq, unsigned int rxq);
3705 
3706 static inline struct netdev_rx_queue *
3707 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3708 {
3709 	return dev->_rx + rxq;
3710 }
3711 
3712 #ifdef CONFIG_SYSFS
3713 static inline unsigned int get_netdev_rx_queue_index(
3714 		struct netdev_rx_queue *queue)
3715 {
3716 	struct net_device *dev = queue->dev;
3717 	int index = queue - dev->_rx;
3718 
3719 	BUG_ON(index >= dev->num_rx_queues);
3720 	return index;
3721 }
3722 #endif
3723 
3724 int netif_get_num_default_rss_queues(void);
3725 
3726 enum skb_free_reason {
3727 	SKB_REASON_CONSUMED,
3728 	SKB_REASON_DROPPED,
3729 };
3730 
3731 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3732 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3733 
3734 /*
3735  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3736  * interrupt context or with hardware interrupts being disabled.
3737  * (in_hardirq() || irqs_disabled())
3738  *
3739  * We provide four helpers that can be used in following contexts :
3740  *
3741  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3742  *  replacing kfree_skb(skb)
3743  *
3744  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3745  *  Typically used in place of consume_skb(skb) in TX completion path
3746  *
3747  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3748  *  replacing kfree_skb(skb)
3749  *
3750  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3751  *  and consumed a packet. Used in place of consume_skb(skb)
3752  */
3753 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3754 {
3755 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3756 }
3757 
3758 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3759 {
3760 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3761 }
3762 
3763 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3764 {
3765 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3766 }
3767 
3768 static inline void dev_consume_skb_any(struct sk_buff *skb)
3769 {
3770 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3771 }
3772 
3773 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3774 			     struct bpf_prog *xdp_prog);
3775 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3776 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3777 int netif_rx(struct sk_buff *skb);
3778 int __netif_rx(struct sk_buff *skb);
3779 
3780 int netif_receive_skb(struct sk_buff *skb);
3781 int netif_receive_skb_core(struct sk_buff *skb);
3782 void netif_receive_skb_list_internal(struct list_head *head);
3783 void netif_receive_skb_list(struct list_head *head);
3784 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3785 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3786 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3787 gro_result_t napi_gro_frags(struct napi_struct *napi);
3788 struct packet_offload *gro_find_receive_by_type(__be16 type);
3789 struct packet_offload *gro_find_complete_by_type(__be16 type);
3790 
3791 static inline void napi_free_frags(struct napi_struct *napi)
3792 {
3793 	kfree_skb(napi->skb);
3794 	napi->skb = NULL;
3795 }
3796 
3797 bool netdev_is_rx_handler_busy(struct net_device *dev);
3798 int netdev_rx_handler_register(struct net_device *dev,
3799 			       rx_handler_func_t *rx_handler,
3800 			       void *rx_handler_data);
3801 void netdev_rx_handler_unregister(struct net_device *dev);
3802 
3803 bool dev_valid_name(const char *name);
3804 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3805 {
3806 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3807 }
3808 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3809 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3810 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3811 		void __user *data, bool *need_copyout);
3812 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3813 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3814 unsigned int dev_get_flags(const struct net_device *);
3815 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3816 		       struct netlink_ext_ack *extack);
3817 int dev_change_flags(struct net_device *dev, unsigned int flags,
3818 		     struct netlink_ext_ack *extack);
3819 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3820 			unsigned int gchanges);
3821 int dev_set_alias(struct net_device *, const char *, size_t);
3822 int dev_get_alias(const struct net_device *, char *, size_t);
3823 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3824 			       const char *pat, int new_ifindex);
3825 static inline
3826 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3827 			     const char *pat)
3828 {
3829 	return __dev_change_net_namespace(dev, net, pat, 0);
3830 }
3831 int __dev_set_mtu(struct net_device *, int);
3832 int dev_set_mtu(struct net_device *, int);
3833 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3834 			      struct netlink_ext_ack *extack);
3835 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3836 			struct netlink_ext_ack *extack);
3837 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3838 			     struct netlink_ext_ack *extack);
3839 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3840 int dev_get_port_parent_id(struct net_device *dev,
3841 			   struct netdev_phys_item_id *ppid, bool recurse);
3842 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3843 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3844 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3845 				    struct netdev_queue *txq, int *ret);
3846 
3847 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3848 u8 dev_xdp_prog_count(struct net_device *dev);
3849 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3850 
3851 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3852 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3853 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3854 bool is_skb_forwardable(const struct net_device *dev,
3855 			const struct sk_buff *skb);
3856 
3857 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3858 						 const struct sk_buff *skb,
3859 						 const bool check_mtu)
3860 {
3861 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3862 	unsigned int len;
3863 
3864 	if (!(dev->flags & IFF_UP))
3865 		return false;
3866 
3867 	if (!check_mtu)
3868 		return true;
3869 
3870 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3871 	if (skb->len <= len)
3872 		return true;
3873 
3874 	/* if TSO is enabled, we don't care about the length as the packet
3875 	 * could be forwarded without being segmented before
3876 	 */
3877 	if (skb_is_gso(skb))
3878 		return true;
3879 
3880 	return false;
3881 }
3882 
3883 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3884 
3885 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3886 {
3887 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3888 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3889 
3890 	if (likely(p))
3891 		return p;
3892 
3893 	return netdev_core_stats_alloc(dev);
3894 }
3895 
3896 #define DEV_CORE_STATS_INC(FIELD)						\
3897 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3898 {										\
3899 	struct net_device_core_stats __percpu *p;				\
3900 										\
3901 	p = dev_core_stats(dev);						\
3902 	if (p)									\
3903 		this_cpu_inc(p->FIELD);						\
3904 }
3905 DEV_CORE_STATS_INC(rx_dropped)
3906 DEV_CORE_STATS_INC(tx_dropped)
3907 DEV_CORE_STATS_INC(rx_nohandler)
3908 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3909 
3910 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3911 					       struct sk_buff *skb,
3912 					       const bool check_mtu)
3913 {
3914 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3915 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3916 		dev_core_stats_rx_dropped_inc(dev);
3917 		kfree_skb(skb);
3918 		return NET_RX_DROP;
3919 	}
3920 
3921 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3922 	skb->priority = 0;
3923 	return 0;
3924 }
3925 
3926 bool dev_nit_active(struct net_device *dev);
3927 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3928 
3929 static inline void __dev_put(struct net_device *dev)
3930 {
3931 	if (dev) {
3932 #ifdef CONFIG_PCPU_DEV_REFCNT
3933 		this_cpu_dec(*dev->pcpu_refcnt);
3934 #else
3935 		refcount_dec(&dev->dev_refcnt);
3936 #endif
3937 	}
3938 }
3939 
3940 static inline void __dev_hold(struct net_device *dev)
3941 {
3942 	if (dev) {
3943 #ifdef CONFIG_PCPU_DEV_REFCNT
3944 		this_cpu_inc(*dev->pcpu_refcnt);
3945 #else
3946 		refcount_inc(&dev->dev_refcnt);
3947 #endif
3948 	}
3949 }
3950 
3951 static inline void __netdev_tracker_alloc(struct net_device *dev,
3952 					  netdevice_tracker *tracker,
3953 					  gfp_t gfp)
3954 {
3955 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3956 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3957 #endif
3958 }
3959 
3960 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3961  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3962  */
3963 static inline void netdev_tracker_alloc(struct net_device *dev,
3964 					netdevice_tracker *tracker, gfp_t gfp)
3965 {
3966 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3967 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3968 	__netdev_tracker_alloc(dev, tracker, gfp);
3969 #endif
3970 }
3971 
3972 static inline void netdev_tracker_free(struct net_device *dev,
3973 				       netdevice_tracker *tracker)
3974 {
3975 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3976 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3977 #endif
3978 }
3979 
3980 static inline void netdev_hold(struct net_device *dev,
3981 			       netdevice_tracker *tracker, gfp_t gfp)
3982 {
3983 	if (dev) {
3984 		__dev_hold(dev);
3985 		__netdev_tracker_alloc(dev, tracker, gfp);
3986 	}
3987 }
3988 
3989 static inline void netdev_put(struct net_device *dev,
3990 			      netdevice_tracker *tracker)
3991 {
3992 	if (dev) {
3993 		netdev_tracker_free(dev, tracker);
3994 		__dev_put(dev);
3995 	}
3996 }
3997 
3998 /**
3999  *	dev_hold - get reference to device
4000  *	@dev: network device
4001  *
4002  * Hold reference to device to keep it from being freed.
4003  * Try using netdev_hold() instead.
4004  */
4005 static inline void dev_hold(struct net_device *dev)
4006 {
4007 	netdev_hold(dev, NULL, GFP_ATOMIC);
4008 }
4009 
4010 /**
4011  *	dev_put - release reference to device
4012  *	@dev: network device
4013  *
4014  * Release reference to device to allow it to be freed.
4015  * Try using netdev_put() instead.
4016  */
4017 static inline void dev_put(struct net_device *dev)
4018 {
4019 	netdev_put(dev, NULL);
4020 }
4021 
4022 static inline void netdev_ref_replace(struct net_device *odev,
4023 				      struct net_device *ndev,
4024 				      netdevice_tracker *tracker,
4025 				      gfp_t gfp)
4026 {
4027 	if (odev)
4028 		netdev_tracker_free(odev, tracker);
4029 
4030 	__dev_hold(ndev);
4031 	__dev_put(odev);
4032 
4033 	if (ndev)
4034 		__netdev_tracker_alloc(ndev, tracker, gfp);
4035 }
4036 
4037 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4038  * and _off may be called from IRQ context, but it is caller
4039  * who is responsible for serialization of these calls.
4040  *
4041  * The name carrier is inappropriate, these functions should really be
4042  * called netif_lowerlayer_*() because they represent the state of any
4043  * kind of lower layer not just hardware media.
4044  */
4045 void linkwatch_fire_event(struct net_device *dev);
4046 
4047 /**
4048  *	netif_carrier_ok - test if carrier present
4049  *	@dev: network device
4050  *
4051  * Check if carrier is present on device
4052  */
4053 static inline bool netif_carrier_ok(const struct net_device *dev)
4054 {
4055 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4056 }
4057 
4058 unsigned long dev_trans_start(struct net_device *dev);
4059 
4060 void __netdev_watchdog_up(struct net_device *dev);
4061 
4062 void netif_carrier_on(struct net_device *dev);
4063 void netif_carrier_off(struct net_device *dev);
4064 void netif_carrier_event(struct net_device *dev);
4065 
4066 /**
4067  *	netif_dormant_on - mark device as dormant.
4068  *	@dev: network device
4069  *
4070  * Mark device as dormant (as per RFC2863).
4071  *
4072  * The dormant state indicates that the relevant interface is not
4073  * actually in a condition to pass packets (i.e., it is not 'up') but is
4074  * in a "pending" state, waiting for some external event.  For "on-
4075  * demand" interfaces, this new state identifies the situation where the
4076  * interface is waiting for events to place it in the up state.
4077  */
4078 static inline void netif_dormant_on(struct net_device *dev)
4079 {
4080 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4081 		linkwatch_fire_event(dev);
4082 }
4083 
4084 /**
4085  *	netif_dormant_off - set device as not dormant.
4086  *	@dev: network device
4087  *
4088  * Device is not in dormant state.
4089  */
4090 static inline void netif_dormant_off(struct net_device *dev)
4091 {
4092 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4093 		linkwatch_fire_event(dev);
4094 }
4095 
4096 /**
4097  *	netif_dormant - test if device is dormant
4098  *	@dev: network device
4099  *
4100  * Check if device is dormant.
4101  */
4102 static inline bool netif_dormant(const struct net_device *dev)
4103 {
4104 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4105 }
4106 
4107 
4108 /**
4109  *	netif_testing_on - mark device as under test.
4110  *	@dev: network device
4111  *
4112  * Mark device as under test (as per RFC2863).
4113  *
4114  * The testing state indicates that some test(s) must be performed on
4115  * the interface. After completion, of the test, the interface state
4116  * will change to up, dormant, or down, as appropriate.
4117  */
4118 static inline void netif_testing_on(struct net_device *dev)
4119 {
4120 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4121 		linkwatch_fire_event(dev);
4122 }
4123 
4124 /**
4125  *	netif_testing_off - set device as not under test.
4126  *	@dev: network device
4127  *
4128  * Device is not in testing state.
4129  */
4130 static inline void netif_testing_off(struct net_device *dev)
4131 {
4132 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4133 		linkwatch_fire_event(dev);
4134 }
4135 
4136 /**
4137  *	netif_testing - test if device is under test
4138  *	@dev: network device
4139  *
4140  * Check if device is under test
4141  */
4142 static inline bool netif_testing(const struct net_device *dev)
4143 {
4144 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4145 }
4146 
4147 
4148 /**
4149  *	netif_oper_up - test if device is operational
4150  *	@dev: network device
4151  *
4152  * Check if carrier is operational
4153  */
4154 static inline bool netif_oper_up(const struct net_device *dev)
4155 {
4156 	return (dev->operstate == IF_OPER_UP ||
4157 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4158 }
4159 
4160 /**
4161  *	netif_device_present - is device available or removed
4162  *	@dev: network device
4163  *
4164  * Check if device has not been removed from system.
4165  */
4166 static inline bool netif_device_present(const struct net_device *dev)
4167 {
4168 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4169 }
4170 
4171 void netif_device_detach(struct net_device *dev);
4172 
4173 void netif_device_attach(struct net_device *dev);
4174 
4175 /*
4176  * Network interface message level settings
4177  */
4178 
4179 enum {
4180 	NETIF_MSG_DRV_BIT,
4181 	NETIF_MSG_PROBE_BIT,
4182 	NETIF_MSG_LINK_BIT,
4183 	NETIF_MSG_TIMER_BIT,
4184 	NETIF_MSG_IFDOWN_BIT,
4185 	NETIF_MSG_IFUP_BIT,
4186 	NETIF_MSG_RX_ERR_BIT,
4187 	NETIF_MSG_TX_ERR_BIT,
4188 	NETIF_MSG_TX_QUEUED_BIT,
4189 	NETIF_MSG_INTR_BIT,
4190 	NETIF_MSG_TX_DONE_BIT,
4191 	NETIF_MSG_RX_STATUS_BIT,
4192 	NETIF_MSG_PKTDATA_BIT,
4193 	NETIF_MSG_HW_BIT,
4194 	NETIF_MSG_WOL_BIT,
4195 
4196 	/* When you add a new bit above, update netif_msg_class_names array
4197 	 * in net/ethtool/common.c
4198 	 */
4199 	NETIF_MSG_CLASS_COUNT,
4200 };
4201 /* Both ethtool_ops interface and internal driver implementation use u32 */
4202 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4203 
4204 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4205 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4206 
4207 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4208 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4209 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4210 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4211 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4212 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4213 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4214 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4215 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4216 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4217 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4218 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4219 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4220 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4221 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4222 
4223 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4224 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4225 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4226 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4227 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4228 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4229 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4230 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4231 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4232 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4233 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4234 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4235 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4236 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4237 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4238 
4239 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4240 {
4241 	/* use default */
4242 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4243 		return default_msg_enable_bits;
4244 	if (debug_value == 0)	/* no output */
4245 		return 0;
4246 	/* set low N bits */
4247 	return (1U << debug_value) - 1;
4248 }
4249 
4250 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4251 {
4252 	spin_lock(&txq->_xmit_lock);
4253 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4254 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4255 }
4256 
4257 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4258 {
4259 	__acquire(&txq->_xmit_lock);
4260 	return true;
4261 }
4262 
4263 static inline void __netif_tx_release(struct netdev_queue *txq)
4264 {
4265 	__release(&txq->_xmit_lock);
4266 }
4267 
4268 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4269 {
4270 	spin_lock_bh(&txq->_xmit_lock);
4271 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4272 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4273 }
4274 
4275 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4276 {
4277 	bool ok = spin_trylock(&txq->_xmit_lock);
4278 
4279 	if (likely(ok)) {
4280 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4281 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4282 	}
4283 	return ok;
4284 }
4285 
4286 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4287 {
4288 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4289 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4290 	spin_unlock(&txq->_xmit_lock);
4291 }
4292 
4293 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4294 {
4295 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4296 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4297 	spin_unlock_bh(&txq->_xmit_lock);
4298 }
4299 
4300 /*
4301  * txq->trans_start can be read locklessly from dev_watchdog()
4302  */
4303 static inline void txq_trans_update(struct netdev_queue *txq)
4304 {
4305 	if (txq->xmit_lock_owner != -1)
4306 		WRITE_ONCE(txq->trans_start, jiffies);
4307 }
4308 
4309 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4310 {
4311 	unsigned long now = jiffies;
4312 
4313 	if (READ_ONCE(txq->trans_start) != now)
4314 		WRITE_ONCE(txq->trans_start, now);
4315 }
4316 
4317 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4318 static inline void netif_trans_update(struct net_device *dev)
4319 {
4320 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4321 
4322 	txq_trans_cond_update(txq);
4323 }
4324 
4325 /**
4326  *	netif_tx_lock - grab network device transmit lock
4327  *	@dev: network device
4328  *
4329  * Get network device transmit lock
4330  */
4331 void netif_tx_lock(struct net_device *dev);
4332 
4333 static inline void netif_tx_lock_bh(struct net_device *dev)
4334 {
4335 	local_bh_disable();
4336 	netif_tx_lock(dev);
4337 }
4338 
4339 void netif_tx_unlock(struct net_device *dev);
4340 
4341 static inline void netif_tx_unlock_bh(struct net_device *dev)
4342 {
4343 	netif_tx_unlock(dev);
4344 	local_bh_enable();
4345 }
4346 
4347 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4348 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4349 		__netif_tx_lock(txq, cpu);		\
4350 	} else {					\
4351 		__netif_tx_acquire(txq);		\
4352 	}						\
4353 }
4354 
4355 #define HARD_TX_TRYLOCK(dev, txq)			\
4356 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4357 		__netif_tx_trylock(txq) :		\
4358 		__netif_tx_acquire(txq))
4359 
4360 #define HARD_TX_UNLOCK(dev, txq) {			\
4361 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4362 		__netif_tx_unlock(txq);			\
4363 	} else {					\
4364 		__netif_tx_release(txq);		\
4365 	}						\
4366 }
4367 
4368 static inline void netif_tx_disable(struct net_device *dev)
4369 {
4370 	unsigned int i;
4371 	int cpu;
4372 
4373 	local_bh_disable();
4374 	cpu = smp_processor_id();
4375 	spin_lock(&dev->tx_global_lock);
4376 	for (i = 0; i < dev->num_tx_queues; i++) {
4377 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4378 
4379 		__netif_tx_lock(txq, cpu);
4380 		netif_tx_stop_queue(txq);
4381 		__netif_tx_unlock(txq);
4382 	}
4383 	spin_unlock(&dev->tx_global_lock);
4384 	local_bh_enable();
4385 }
4386 
4387 static inline void netif_addr_lock(struct net_device *dev)
4388 {
4389 	unsigned char nest_level = 0;
4390 
4391 #ifdef CONFIG_LOCKDEP
4392 	nest_level = dev->nested_level;
4393 #endif
4394 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4395 }
4396 
4397 static inline void netif_addr_lock_bh(struct net_device *dev)
4398 {
4399 	unsigned char nest_level = 0;
4400 
4401 #ifdef CONFIG_LOCKDEP
4402 	nest_level = dev->nested_level;
4403 #endif
4404 	local_bh_disable();
4405 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4406 }
4407 
4408 static inline void netif_addr_unlock(struct net_device *dev)
4409 {
4410 	spin_unlock(&dev->addr_list_lock);
4411 }
4412 
4413 static inline void netif_addr_unlock_bh(struct net_device *dev)
4414 {
4415 	spin_unlock_bh(&dev->addr_list_lock);
4416 }
4417 
4418 /*
4419  * dev_addrs walker. Should be used only for read access. Call with
4420  * rcu_read_lock held.
4421  */
4422 #define for_each_dev_addr(dev, ha) \
4423 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4424 
4425 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4426 
4427 void ether_setup(struct net_device *dev);
4428 
4429 /* Support for loadable net-drivers */
4430 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4431 				    unsigned char name_assign_type,
4432 				    void (*setup)(struct net_device *),
4433 				    unsigned int txqs, unsigned int rxqs);
4434 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4435 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4436 
4437 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4438 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4439 			 count)
4440 
4441 int register_netdev(struct net_device *dev);
4442 void unregister_netdev(struct net_device *dev);
4443 
4444 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4445 
4446 /* General hardware address lists handling functions */
4447 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4448 		   struct netdev_hw_addr_list *from_list, int addr_len);
4449 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4450 		      struct netdev_hw_addr_list *from_list, int addr_len);
4451 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4452 		       struct net_device *dev,
4453 		       int (*sync)(struct net_device *, const unsigned char *),
4454 		       int (*unsync)(struct net_device *,
4455 				     const unsigned char *));
4456 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4457 			   struct net_device *dev,
4458 			   int (*sync)(struct net_device *,
4459 				       const unsigned char *, int),
4460 			   int (*unsync)(struct net_device *,
4461 					 const unsigned char *, int));
4462 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4463 			      struct net_device *dev,
4464 			      int (*unsync)(struct net_device *,
4465 					    const unsigned char *, int));
4466 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4467 			  struct net_device *dev,
4468 			  int (*unsync)(struct net_device *,
4469 					const unsigned char *));
4470 void __hw_addr_init(struct netdev_hw_addr_list *list);
4471 
4472 /* Functions used for device addresses handling */
4473 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4474 		  const void *addr, size_t len);
4475 
4476 static inline void
4477 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4478 {
4479 	dev_addr_mod(dev, 0, addr, len);
4480 }
4481 
4482 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4483 {
4484 	__dev_addr_set(dev, addr, dev->addr_len);
4485 }
4486 
4487 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4488 		 unsigned char addr_type);
4489 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4490 		 unsigned char addr_type);
4491 
4492 /* Functions used for unicast addresses handling */
4493 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4494 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4495 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4496 int dev_uc_sync(struct net_device *to, struct net_device *from);
4497 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4498 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4499 void dev_uc_flush(struct net_device *dev);
4500 void dev_uc_init(struct net_device *dev);
4501 
4502 /**
4503  *  __dev_uc_sync - Synchonize device's unicast list
4504  *  @dev:  device to sync
4505  *  @sync: function to call if address should be added
4506  *  @unsync: function to call if address should be removed
4507  *
4508  *  Add newly added addresses to the interface, and release
4509  *  addresses that have been deleted.
4510  */
4511 static inline int __dev_uc_sync(struct net_device *dev,
4512 				int (*sync)(struct net_device *,
4513 					    const unsigned char *),
4514 				int (*unsync)(struct net_device *,
4515 					      const unsigned char *))
4516 {
4517 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4518 }
4519 
4520 /**
4521  *  __dev_uc_unsync - Remove synchronized addresses from device
4522  *  @dev:  device to sync
4523  *  @unsync: function to call if address should be removed
4524  *
4525  *  Remove all addresses that were added to the device by dev_uc_sync().
4526  */
4527 static inline void __dev_uc_unsync(struct net_device *dev,
4528 				   int (*unsync)(struct net_device *,
4529 						 const unsigned char *))
4530 {
4531 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4532 }
4533 
4534 /* Functions used for multicast addresses handling */
4535 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4536 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4537 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4538 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4539 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4540 int dev_mc_sync(struct net_device *to, struct net_device *from);
4541 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4542 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4543 void dev_mc_flush(struct net_device *dev);
4544 void dev_mc_init(struct net_device *dev);
4545 
4546 /**
4547  *  __dev_mc_sync - Synchonize device's multicast list
4548  *  @dev:  device to sync
4549  *  @sync: function to call if address should be added
4550  *  @unsync: function to call if address should be removed
4551  *
4552  *  Add newly added addresses to the interface, and release
4553  *  addresses that have been deleted.
4554  */
4555 static inline int __dev_mc_sync(struct net_device *dev,
4556 				int (*sync)(struct net_device *,
4557 					    const unsigned char *),
4558 				int (*unsync)(struct net_device *,
4559 					      const unsigned char *))
4560 {
4561 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4562 }
4563 
4564 /**
4565  *  __dev_mc_unsync - Remove synchronized addresses from device
4566  *  @dev:  device to sync
4567  *  @unsync: function to call if address should be removed
4568  *
4569  *  Remove all addresses that were added to the device by dev_mc_sync().
4570  */
4571 static inline void __dev_mc_unsync(struct net_device *dev,
4572 				   int (*unsync)(struct net_device *,
4573 						 const unsigned char *))
4574 {
4575 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4576 }
4577 
4578 /* Functions used for secondary unicast and multicast support */
4579 void dev_set_rx_mode(struct net_device *dev);
4580 int dev_set_promiscuity(struct net_device *dev, int inc);
4581 int dev_set_allmulti(struct net_device *dev, int inc);
4582 void netdev_state_change(struct net_device *dev);
4583 void __netdev_notify_peers(struct net_device *dev);
4584 void netdev_notify_peers(struct net_device *dev);
4585 void netdev_features_change(struct net_device *dev);
4586 /* Load a device via the kmod */
4587 void dev_load(struct net *net, const char *name);
4588 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4589 					struct rtnl_link_stats64 *storage);
4590 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4591 			     const struct net_device_stats *netdev_stats);
4592 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4593 			   const struct pcpu_sw_netstats __percpu *netstats);
4594 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4595 
4596 extern int		netdev_max_backlog;
4597 extern int		dev_rx_weight;
4598 extern int		dev_tx_weight;
4599 extern int		gro_normal_batch;
4600 
4601 enum {
4602 	NESTED_SYNC_IMM_BIT,
4603 	NESTED_SYNC_TODO_BIT,
4604 };
4605 
4606 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4607 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4608 
4609 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4610 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4611 
4612 struct netdev_nested_priv {
4613 	unsigned char flags;
4614 	void *data;
4615 };
4616 
4617 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4618 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4619 						     struct list_head **iter);
4620 
4621 /* iterate through upper list, must be called under RCU read lock */
4622 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4623 	for (iter = &(dev)->adj_list.upper, \
4624 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4625 	     updev; \
4626 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4627 
4628 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4629 				  int (*fn)(struct net_device *upper_dev,
4630 					    struct netdev_nested_priv *priv),
4631 				  struct netdev_nested_priv *priv);
4632 
4633 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4634 				  struct net_device *upper_dev);
4635 
4636 bool netdev_has_any_upper_dev(struct net_device *dev);
4637 
4638 void *netdev_lower_get_next_private(struct net_device *dev,
4639 				    struct list_head **iter);
4640 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4641 					struct list_head **iter);
4642 
4643 #define netdev_for_each_lower_private(dev, priv, iter) \
4644 	for (iter = (dev)->adj_list.lower.next, \
4645 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4646 	     priv; \
4647 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4648 
4649 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4650 	for (iter = &(dev)->adj_list.lower, \
4651 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4652 	     priv; \
4653 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4654 
4655 void *netdev_lower_get_next(struct net_device *dev,
4656 				struct list_head **iter);
4657 
4658 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4659 	for (iter = (dev)->adj_list.lower.next, \
4660 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4661 	     ldev; \
4662 	     ldev = netdev_lower_get_next(dev, &(iter)))
4663 
4664 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4665 					     struct list_head **iter);
4666 int netdev_walk_all_lower_dev(struct net_device *dev,
4667 			      int (*fn)(struct net_device *lower_dev,
4668 					struct netdev_nested_priv *priv),
4669 			      struct netdev_nested_priv *priv);
4670 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4671 				  int (*fn)(struct net_device *lower_dev,
4672 					    struct netdev_nested_priv *priv),
4673 				  struct netdev_nested_priv *priv);
4674 
4675 void *netdev_adjacent_get_private(struct list_head *adj_list);
4676 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4677 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4678 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4679 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4680 			  struct netlink_ext_ack *extack);
4681 int netdev_master_upper_dev_link(struct net_device *dev,
4682 				 struct net_device *upper_dev,
4683 				 void *upper_priv, void *upper_info,
4684 				 struct netlink_ext_ack *extack);
4685 void netdev_upper_dev_unlink(struct net_device *dev,
4686 			     struct net_device *upper_dev);
4687 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4688 				   struct net_device *new_dev,
4689 				   struct net_device *dev,
4690 				   struct netlink_ext_ack *extack);
4691 void netdev_adjacent_change_commit(struct net_device *old_dev,
4692 				   struct net_device *new_dev,
4693 				   struct net_device *dev);
4694 void netdev_adjacent_change_abort(struct net_device *old_dev,
4695 				  struct net_device *new_dev,
4696 				  struct net_device *dev);
4697 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4698 void *netdev_lower_dev_get_private(struct net_device *dev,
4699 				   struct net_device *lower_dev);
4700 void netdev_lower_state_changed(struct net_device *lower_dev,
4701 				void *lower_state_info);
4702 
4703 /* RSS keys are 40 or 52 bytes long */
4704 #define NETDEV_RSS_KEY_LEN 52
4705 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4706 void netdev_rss_key_fill(void *buffer, size_t len);
4707 
4708 int skb_checksum_help(struct sk_buff *skb);
4709 int skb_crc32c_csum_help(struct sk_buff *skb);
4710 int skb_csum_hwoffload_help(struct sk_buff *skb,
4711 			    const netdev_features_t features);
4712 
4713 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4714 				  netdev_features_t features, bool tx_path);
4715 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4716 				    netdev_features_t features, __be16 type);
4717 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4718 				    netdev_features_t features);
4719 
4720 struct netdev_bonding_info {
4721 	ifslave	slave;
4722 	ifbond	master;
4723 };
4724 
4725 struct netdev_notifier_bonding_info {
4726 	struct netdev_notifier_info info; /* must be first */
4727 	struct netdev_bonding_info  bonding_info;
4728 };
4729 
4730 void netdev_bonding_info_change(struct net_device *dev,
4731 				struct netdev_bonding_info *bonding_info);
4732 
4733 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4734 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4735 #else
4736 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4737 				  const void *data)
4738 {
4739 }
4740 #endif
4741 
4742 static inline
4743 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4744 {
4745 	return __skb_gso_segment(skb, features, true);
4746 }
4747 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4748 
4749 static inline bool can_checksum_protocol(netdev_features_t features,
4750 					 __be16 protocol)
4751 {
4752 	if (protocol == htons(ETH_P_FCOE))
4753 		return !!(features & NETIF_F_FCOE_CRC);
4754 
4755 	/* Assume this is an IP checksum (not SCTP CRC) */
4756 
4757 	if (features & NETIF_F_HW_CSUM) {
4758 		/* Can checksum everything */
4759 		return true;
4760 	}
4761 
4762 	switch (protocol) {
4763 	case htons(ETH_P_IP):
4764 		return !!(features & NETIF_F_IP_CSUM);
4765 	case htons(ETH_P_IPV6):
4766 		return !!(features & NETIF_F_IPV6_CSUM);
4767 	default:
4768 		return false;
4769 	}
4770 }
4771 
4772 #ifdef CONFIG_BUG
4773 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4774 #else
4775 static inline void netdev_rx_csum_fault(struct net_device *dev,
4776 					struct sk_buff *skb)
4777 {
4778 }
4779 #endif
4780 /* rx skb timestamps */
4781 void net_enable_timestamp(void);
4782 void net_disable_timestamp(void);
4783 
4784 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4785 					const struct skb_shared_hwtstamps *hwtstamps,
4786 					bool cycles)
4787 {
4788 	const struct net_device_ops *ops = dev->netdev_ops;
4789 
4790 	if (ops->ndo_get_tstamp)
4791 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4792 
4793 	return hwtstamps->hwtstamp;
4794 }
4795 
4796 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4797 					      struct sk_buff *skb, struct net_device *dev,
4798 					      bool more)
4799 {
4800 	__this_cpu_write(softnet_data.xmit.more, more);
4801 	return ops->ndo_start_xmit(skb, dev);
4802 }
4803 
4804 static inline bool netdev_xmit_more(void)
4805 {
4806 	return __this_cpu_read(softnet_data.xmit.more);
4807 }
4808 
4809 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4810 					    struct netdev_queue *txq, bool more)
4811 {
4812 	const struct net_device_ops *ops = dev->netdev_ops;
4813 	netdev_tx_t rc;
4814 
4815 	rc = __netdev_start_xmit(ops, skb, dev, more);
4816 	if (rc == NETDEV_TX_OK)
4817 		txq_trans_update(txq);
4818 
4819 	return rc;
4820 }
4821 
4822 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4823 				const void *ns);
4824 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4825 				 const void *ns);
4826 
4827 extern const struct kobj_ns_type_operations net_ns_type_operations;
4828 
4829 const char *netdev_drivername(const struct net_device *dev);
4830 
4831 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4832 							  netdev_features_t f2)
4833 {
4834 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4835 		if (f1 & NETIF_F_HW_CSUM)
4836 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4837 		else
4838 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4839 	}
4840 
4841 	return f1 & f2;
4842 }
4843 
4844 static inline netdev_features_t netdev_get_wanted_features(
4845 	struct net_device *dev)
4846 {
4847 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4848 }
4849 netdev_features_t netdev_increment_features(netdev_features_t all,
4850 	netdev_features_t one, netdev_features_t mask);
4851 
4852 /* Allow TSO being used on stacked device :
4853  * Performing the GSO segmentation before last device
4854  * is a performance improvement.
4855  */
4856 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4857 							netdev_features_t mask)
4858 {
4859 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4860 }
4861 
4862 int __netdev_update_features(struct net_device *dev);
4863 void netdev_update_features(struct net_device *dev);
4864 void netdev_change_features(struct net_device *dev);
4865 
4866 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4867 					struct net_device *dev);
4868 
4869 netdev_features_t passthru_features_check(struct sk_buff *skb,
4870 					  struct net_device *dev,
4871 					  netdev_features_t features);
4872 netdev_features_t netif_skb_features(struct sk_buff *skb);
4873 
4874 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4875 {
4876 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4877 
4878 	/* check flags correspondence */
4879 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4880 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4881 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4882 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4883 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4884 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4885 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4886 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4887 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4888 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4889 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4890 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4891 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4892 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4893 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4894 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4895 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4896 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4897 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4898 
4899 	return (features & feature) == feature;
4900 }
4901 
4902 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4903 {
4904 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4905 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4906 }
4907 
4908 static inline bool netif_needs_gso(struct sk_buff *skb,
4909 				   netdev_features_t features)
4910 {
4911 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4912 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4913 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4914 }
4915 
4916 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4917 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4918 void netif_inherit_tso_max(struct net_device *to,
4919 			   const struct net_device *from);
4920 
4921 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4922 					int pulled_hlen, u16 mac_offset,
4923 					int mac_len)
4924 {
4925 	skb->protocol = protocol;
4926 	skb->encapsulation = 1;
4927 	skb_push(skb, pulled_hlen);
4928 	skb_reset_transport_header(skb);
4929 	skb->mac_header = mac_offset;
4930 	skb->network_header = skb->mac_header + mac_len;
4931 	skb->mac_len = mac_len;
4932 }
4933 
4934 static inline bool netif_is_macsec(const struct net_device *dev)
4935 {
4936 	return dev->priv_flags & IFF_MACSEC;
4937 }
4938 
4939 static inline bool netif_is_macvlan(const struct net_device *dev)
4940 {
4941 	return dev->priv_flags & IFF_MACVLAN;
4942 }
4943 
4944 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4945 {
4946 	return dev->priv_flags & IFF_MACVLAN_PORT;
4947 }
4948 
4949 static inline bool netif_is_bond_master(const struct net_device *dev)
4950 {
4951 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4952 }
4953 
4954 static inline bool netif_is_bond_slave(const struct net_device *dev)
4955 {
4956 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4957 }
4958 
4959 static inline bool netif_supports_nofcs(struct net_device *dev)
4960 {
4961 	return dev->priv_flags & IFF_SUPP_NOFCS;
4962 }
4963 
4964 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4965 {
4966 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4967 }
4968 
4969 static inline bool netif_is_l3_master(const struct net_device *dev)
4970 {
4971 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4972 }
4973 
4974 static inline bool netif_is_l3_slave(const struct net_device *dev)
4975 {
4976 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4977 }
4978 
4979 static inline bool netif_is_bridge_master(const struct net_device *dev)
4980 {
4981 	return dev->priv_flags & IFF_EBRIDGE;
4982 }
4983 
4984 static inline bool netif_is_bridge_port(const struct net_device *dev)
4985 {
4986 	return dev->priv_flags & IFF_BRIDGE_PORT;
4987 }
4988 
4989 static inline bool netif_is_ovs_master(const struct net_device *dev)
4990 {
4991 	return dev->priv_flags & IFF_OPENVSWITCH;
4992 }
4993 
4994 static inline bool netif_is_ovs_port(const struct net_device *dev)
4995 {
4996 	return dev->priv_flags & IFF_OVS_DATAPATH;
4997 }
4998 
4999 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5000 {
5001 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5002 }
5003 
5004 static inline bool netif_is_team_master(const struct net_device *dev)
5005 {
5006 	return dev->priv_flags & IFF_TEAM;
5007 }
5008 
5009 static inline bool netif_is_team_port(const struct net_device *dev)
5010 {
5011 	return dev->priv_flags & IFF_TEAM_PORT;
5012 }
5013 
5014 static inline bool netif_is_lag_master(const struct net_device *dev)
5015 {
5016 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5017 }
5018 
5019 static inline bool netif_is_lag_port(const struct net_device *dev)
5020 {
5021 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5022 }
5023 
5024 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5025 {
5026 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5027 }
5028 
5029 static inline bool netif_is_failover(const struct net_device *dev)
5030 {
5031 	return dev->priv_flags & IFF_FAILOVER;
5032 }
5033 
5034 static inline bool netif_is_failover_slave(const struct net_device *dev)
5035 {
5036 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5037 }
5038 
5039 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5040 static inline void netif_keep_dst(struct net_device *dev)
5041 {
5042 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5043 }
5044 
5045 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5046 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5047 {
5048 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5049 	return netif_is_macsec(dev);
5050 }
5051 
5052 extern struct pernet_operations __net_initdata loopback_net_ops;
5053 
5054 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5055 
5056 /* netdev_printk helpers, similar to dev_printk */
5057 
5058 static inline const char *netdev_name(const struct net_device *dev)
5059 {
5060 	if (!dev->name[0] || strchr(dev->name, '%'))
5061 		return "(unnamed net_device)";
5062 	return dev->name;
5063 }
5064 
5065 static inline bool netdev_unregistering(const struct net_device *dev)
5066 {
5067 	return dev->reg_state == NETREG_UNREGISTERING;
5068 }
5069 
5070 static inline const char *netdev_reg_state(const struct net_device *dev)
5071 {
5072 	switch (dev->reg_state) {
5073 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5074 	case NETREG_REGISTERED: return "";
5075 	case NETREG_UNREGISTERING: return " (unregistering)";
5076 	case NETREG_UNREGISTERED: return " (unregistered)";
5077 	case NETREG_RELEASED: return " (released)";
5078 	case NETREG_DUMMY: return " (dummy)";
5079 	}
5080 
5081 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5082 	return " (unknown)";
5083 }
5084 
5085 #define MODULE_ALIAS_NETDEV(device) \
5086 	MODULE_ALIAS("netdev-" device)
5087 
5088 /*
5089  * netdev_WARN() acts like dev_printk(), but with the key difference
5090  * of using a WARN/WARN_ON to get the message out, including the
5091  * file/line information and a backtrace.
5092  */
5093 #define netdev_WARN(dev, format, args...)			\
5094 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5095 	     netdev_reg_state(dev), ##args)
5096 
5097 #define netdev_WARN_ONCE(dev, format, args...)				\
5098 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5099 		  netdev_reg_state(dev), ##args)
5100 
5101 /*
5102  *	The list of packet types we will receive (as opposed to discard)
5103  *	and the routines to invoke.
5104  *
5105  *	Why 16. Because with 16 the only overlap we get on a hash of the
5106  *	low nibble of the protocol value is RARP/SNAP/X.25.
5107  *
5108  *		0800	IP
5109  *		0001	802.3
5110  *		0002	AX.25
5111  *		0004	802.2
5112  *		8035	RARP
5113  *		0005	SNAP
5114  *		0805	X.25
5115  *		0806	ARP
5116  *		8137	IPX
5117  *		0009	Localtalk
5118  *		86DD	IPv6
5119  */
5120 #define PTYPE_HASH_SIZE	(16)
5121 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5122 
5123 extern struct list_head ptype_all __read_mostly;
5124 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5125 
5126 extern struct net_device *blackhole_netdev;
5127 
5128 #endif	/* _LINUX_NETDEVICE_H */
5129