xref: /openbmc/linux/include/linux/netdevice.h (revision 70342287)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 					   const struct ethtool_ops *ops);
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously, in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 /*
135  *	Compute the worst case header length according to the protocols
136  *	used.
137  */
138 
139 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #elif IS_ENABLED(CONFIG_TR)
146 # define LL_MAX_HEADER 48
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			synced;
212 	bool			global_use;
213 	int			refcount;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	u16		hh_len;
239 	u16		__pad;
240 	seqlock_t	hh_lock;
241 
242 	/* cached hardware header; allow for machine alignment needs.        */
243 #define HH_DATA_MOD	16
244 #define HH_DATA_OFF(__len) \
245 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
246 #define HH_DATA_ALIGN(__len) \
247 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
248 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
249 };
250 
251 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
252  * Alternative is:
253  *   dev->hard_header_len ? (dev->hard_header_len +
254  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
255  *
256  * We could use other alignment values, but we must maintain the
257  * relationship HH alignment <= LL alignment.
258  */
259 #define LL_RESERVED_SPACE(dev) \
260 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 
264 struct header_ops {
265 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
266 			   unsigned short type, const void *daddr,
267 			   const void *saddr, unsigned int len);
268 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
269 	int	(*rebuild)(struct sk_buff *skb);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer, they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds at boot time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 extern int __init netdev_boot_setup(char *str);
301 
302 /*
303  * Structure for NAPI scheduling similar to tasklet but with weighting
304  */
305 struct napi_struct {
306 	/* The poll_list must only be managed by the entity which
307 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
308 	 * whoever atomically sets that bit can add this napi_struct
309 	 * to the per-cpu poll_list, and whoever clears that bit
310 	 * can remove from the list right before clearing the bit.
311 	 */
312 	struct list_head	poll_list;
313 
314 	unsigned long		state;
315 	int			weight;
316 	unsigned int		gro_count;
317 	int			(*poll)(struct napi_struct *, int);
318 #ifdef CONFIG_NETPOLL
319 	spinlock_t		poll_lock;
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct list_head	dev_list;
326 };
327 
328 enum {
329 	NAPI_STATE_SCHED,	/* Poll is scheduled */
330 	NAPI_STATE_DISABLE,	/* Disable pending */
331 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
332 };
333 
334 enum gro_result {
335 	GRO_MERGED,
336 	GRO_MERGED_FREE,
337 	GRO_HELD,
338 	GRO_NORMAL,
339 	GRO_DROP,
340 };
341 typedef enum gro_result gro_result_t;
342 
343 /*
344  * enum rx_handler_result - Possible return values for rx_handlers.
345  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
346  * further.
347  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
348  * case skb->dev was changed by rx_handler.
349  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
350  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
351  *
352  * rx_handlers are functions called from inside __netif_receive_skb(), to do
353  * special processing of the skb, prior to delivery to protocol handlers.
354  *
355  * Currently, a net_device can only have a single rx_handler registered. Trying
356  * to register a second rx_handler will return -EBUSY.
357  *
358  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
359  * To unregister a rx_handler on a net_device, use
360  * netdev_rx_handler_unregister().
361  *
362  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
363  * do with the skb.
364  *
365  * If the rx_handler consumed to skb in some way, it should return
366  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
367  * the skb to be delivered in some other ways.
368  *
369  * If the rx_handler changed skb->dev, to divert the skb to another
370  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
371  * new device will be called if it exists.
372  *
373  * If the rx_handler consider the skb should be ignored, it should return
374  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
375  * are registered on exact device (ptype->dev == skb->dev).
376  *
377  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
378  * delivered, it should return RX_HANDLER_PASS.
379  *
380  * A device without a registered rx_handler will behave as if rx_handler
381  * returned RX_HANDLER_PASS.
382  */
383 
384 enum rx_handler_result {
385 	RX_HANDLER_CONSUMED,
386 	RX_HANDLER_ANOTHER,
387 	RX_HANDLER_EXACT,
388 	RX_HANDLER_PASS,
389 };
390 typedef enum rx_handler_result rx_handler_result_t;
391 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
392 
393 extern void __napi_schedule(struct napi_struct *n);
394 
395 static inline bool napi_disable_pending(struct napi_struct *n)
396 {
397 	return test_bit(NAPI_STATE_DISABLE, &n->state);
398 }
399 
400 /**
401  *	napi_schedule_prep - check if napi can be scheduled
402  *	@n: napi context
403  *
404  * Test if NAPI routine is already running, and if not mark
405  * it as running.  This is used as a condition variable
406  * insure only one NAPI poll instance runs.  We also make
407  * sure there is no pending NAPI disable.
408  */
409 static inline bool napi_schedule_prep(struct napi_struct *n)
410 {
411 	return !napi_disable_pending(n) &&
412 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413 }
414 
415 /**
416  *	napi_schedule - schedule NAPI poll
417  *	@n: napi context
418  *
419  * Schedule NAPI poll routine to be called if it is not already
420  * running.
421  */
422 static inline void napi_schedule(struct napi_struct *n)
423 {
424 	if (napi_schedule_prep(n))
425 		__napi_schedule(n);
426 }
427 
428 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
429 static inline bool napi_reschedule(struct napi_struct *napi)
430 {
431 	if (napi_schedule_prep(napi)) {
432 		__napi_schedule(napi);
433 		return true;
434 	}
435 	return false;
436 }
437 
438 /**
439  *	napi_complete - NAPI processing complete
440  *	@n: napi context
441  *
442  * Mark NAPI processing as complete.
443  */
444 extern void __napi_complete(struct napi_struct *n);
445 extern void napi_complete(struct napi_struct *n);
446 
447 /**
448  *	napi_disable - prevent NAPI from scheduling
449  *	@n: napi context
450  *
451  * Stop NAPI from being scheduled on this context.
452  * Waits till any outstanding processing completes.
453  */
454 static inline void napi_disable(struct napi_struct *n)
455 {
456 	set_bit(NAPI_STATE_DISABLE, &n->state);
457 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
458 		msleep(1);
459 	clear_bit(NAPI_STATE_DISABLE, &n->state);
460 }
461 
462 /**
463  *	napi_enable - enable NAPI scheduling
464  *	@n: napi context
465  *
466  * Resume NAPI from being scheduled on this context.
467  * Must be paired with napi_disable.
468  */
469 static inline void napi_enable(struct napi_struct *n)
470 {
471 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
472 	smp_mb__before_clear_bit();
473 	clear_bit(NAPI_STATE_SCHED, &n->state);
474 }
475 
476 #ifdef CONFIG_SMP
477 /**
478  *	napi_synchronize - wait until NAPI is not running
479  *	@n: napi context
480  *
481  * Wait until NAPI is done being scheduled on this context.
482  * Waits till any outstanding processing completes but
483  * does not disable future activations.
484  */
485 static inline void napi_synchronize(const struct napi_struct *n)
486 {
487 	while (test_bit(NAPI_STATE_SCHED, &n->state))
488 		msleep(1);
489 }
490 #else
491 # define napi_synchronize(n)	barrier()
492 #endif
493 
494 enum netdev_queue_state_t {
495 	__QUEUE_STATE_DRV_XOFF,
496 	__QUEUE_STATE_STACK_XOFF,
497 	__QUEUE_STATE_FROZEN,
498 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
499 			      (1 << __QUEUE_STATE_STACK_XOFF))
500 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
501 					(1 << __QUEUE_STATE_FROZEN))
502 };
503 /*
504  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
505  * netif_tx_* functions below are used to manipulate this flag.  The
506  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
507  * queue independently.  The netif_xmit_*stopped functions below are called
508  * to check if the queue has been stopped by the driver or stack (either
509  * of the XOFF bits are set in the state).  Drivers should not need to call
510  * netif_xmit*stopped functions, they should only be using netif_tx_*.
511  */
512 
513 struct netdev_queue {
514 /*
515  * read mostly part
516  */
517 	struct net_device	*dev;
518 	struct Qdisc		*qdisc;
519 	struct Qdisc		*qdisc_sleeping;
520 #ifdef CONFIG_SYSFS
521 	struct kobject		kobj;
522 #endif
523 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
524 	int			numa_node;
525 #endif
526 /*
527  * write mostly part
528  */
529 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
530 	int			xmit_lock_owner;
531 	/*
532 	 * please use this field instead of dev->trans_start
533 	 */
534 	unsigned long		trans_start;
535 
536 	/*
537 	 * Number of TX timeouts for this queue
538 	 * (/sys/class/net/DEV/Q/trans_timeout)
539 	 */
540 	unsigned long		trans_timeout;
541 
542 	unsigned long		state;
543 
544 #ifdef CONFIG_BQL
545 	struct dql		dql;
546 #endif
547 } ____cacheline_aligned_in_smp;
548 
549 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
550 {
551 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
552 	return q->numa_node;
553 #else
554 	return NUMA_NO_NODE;
555 #endif
556 }
557 
558 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
559 {
560 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
561 	q->numa_node = node;
562 #endif
563 }
564 
565 #ifdef CONFIG_RPS
566 /*
567  * This structure holds an RPS map which can be of variable length.  The
568  * map is an array of CPUs.
569  */
570 struct rps_map {
571 	unsigned int len;
572 	struct rcu_head rcu;
573 	u16 cpus[0];
574 };
575 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
576 
577 /*
578  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
579  * tail pointer for that CPU's input queue at the time of last enqueue, and
580  * a hardware filter index.
581  */
582 struct rps_dev_flow {
583 	u16 cpu;
584 	u16 filter;
585 	unsigned int last_qtail;
586 };
587 #define RPS_NO_FILTER 0xffff
588 
589 /*
590  * The rps_dev_flow_table structure contains a table of flow mappings.
591  */
592 struct rps_dev_flow_table {
593 	unsigned int mask;
594 	struct rcu_head rcu;
595 	struct work_struct free_work;
596 	struct rps_dev_flow flows[0];
597 };
598 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
599     ((_num) * sizeof(struct rps_dev_flow)))
600 
601 /*
602  * The rps_sock_flow_table contains mappings of flows to the last CPU
603  * on which they were processed by the application (set in recvmsg).
604  */
605 struct rps_sock_flow_table {
606 	unsigned int mask;
607 	u16 ents[0];
608 };
609 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
610     ((_num) * sizeof(u16)))
611 
612 #define RPS_NO_CPU 0xffff
613 
614 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
615 					u32 hash)
616 {
617 	if (table && hash) {
618 		unsigned int cpu, index = hash & table->mask;
619 
620 		/* We only give a hint, preemption can change cpu under us */
621 		cpu = raw_smp_processor_id();
622 
623 		if (table->ents[index] != cpu)
624 			table->ents[index] = cpu;
625 	}
626 }
627 
628 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
629 				       u32 hash)
630 {
631 	if (table && hash)
632 		table->ents[hash & table->mask] = RPS_NO_CPU;
633 }
634 
635 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
636 
637 #ifdef CONFIG_RFS_ACCEL
638 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
639 				u32 flow_id, u16 filter_id);
640 #endif
641 
642 /* This structure contains an instance of an RX queue. */
643 struct netdev_rx_queue {
644 	struct rps_map __rcu		*rps_map;
645 	struct rps_dev_flow_table __rcu	*rps_flow_table;
646 	struct kobject			kobj;
647 	struct net_device		*dev;
648 } ____cacheline_aligned_in_smp;
649 #endif /* CONFIG_RPS */
650 
651 #ifdef CONFIG_XPS
652 /*
653  * This structure holds an XPS map which can be of variable length.  The
654  * map is an array of queues.
655  */
656 struct xps_map {
657 	unsigned int len;
658 	unsigned int alloc_len;
659 	struct rcu_head rcu;
660 	u16 queues[0];
661 };
662 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
663 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
664     / sizeof(u16))
665 
666 /*
667  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
668  */
669 struct xps_dev_maps {
670 	struct rcu_head rcu;
671 	struct xps_map __rcu *cpu_map[0];
672 };
673 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
674     (nr_cpu_ids * sizeof(struct xps_map *)))
675 #endif /* CONFIG_XPS */
676 
677 #define TC_MAX_QUEUE	16
678 #define TC_BITMASK	15
679 /* HW offloaded queuing disciplines txq count and offset maps */
680 struct netdev_tc_txq {
681 	u16 count;
682 	u16 offset;
683 };
684 
685 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
686 /*
687  * This structure is to hold information about the device
688  * configured to run FCoE protocol stack.
689  */
690 struct netdev_fcoe_hbainfo {
691 	char	manufacturer[64];
692 	char	serial_number[64];
693 	char	hardware_version[64];
694 	char	driver_version[64];
695 	char	optionrom_version[64];
696 	char	firmware_version[64];
697 	char	model[256];
698 	char	model_description[256];
699 };
700 #endif
701 
702 /*
703  * This structure defines the management hooks for network devices.
704  * The following hooks can be defined; unless noted otherwise, they are
705  * optional and can be filled with a null pointer.
706  *
707  * int (*ndo_init)(struct net_device *dev);
708  *     This function is called once when network device is registered.
709  *     The network device can use this to any late stage initializaton
710  *     or semantic validattion. It can fail with an error code which will
711  *     be propogated back to register_netdev
712  *
713  * void (*ndo_uninit)(struct net_device *dev);
714  *     This function is called when device is unregistered or when registration
715  *     fails. It is not called if init fails.
716  *
717  * int (*ndo_open)(struct net_device *dev);
718  *     This function is called when network device transistions to the up
719  *     state.
720  *
721  * int (*ndo_stop)(struct net_device *dev);
722  *     This function is called when network device transistions to the down
723  *     state.
724  *
725  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
726  *                               struct net_device *dev);
727  *	Called when a packet needs to be transmitted.
728  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
729  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
730  *	Required can not be NULL.
731  *
732  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
733  *	Called to decide which queue to when device supports multiple
734  *	transmit queues.
735  *
736  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
737  *	This function is called to allow device receiver to make
738  *	changes to configuration when multicast or promiscious is enabled.
739  *
740  * void (*ndo_set_rx_mode)(struct net_device *dev);
741  *	This function is called device changes address list filtering.
742  *	If driver handles unicast address filtering, it should set
743  *	IFF_UNICAST_FLT to its priv_flags.
744  *
745  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
746  *	This function  is called when the Media Access Control address
747  *	needs to be changed. If this interface is not defined, the
748  *	mac address can not be changed.
749  *
750  * int (*ndo_validate_addr)(struct net_device *dev);
751  *	Test if Media Access Control address is valid for the device.
752  *
753  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
754  *	Called when a user request an ioctl which can't be handled by
755  *	the generic interface code. If not defined ioctl's return
756  *	not supported error code.
757  *
758  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
759  *	Used to set network devices bus interface parameters. This interface
760  *	is retained for legacy reason, new devices should use the bus
761  *	interface (PCI) for low level management.
762  *
763  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
764  *	Called when a user wants to change the Maximum Transfer Unit
765  *	of a device. If not defined, any request to change MTU will
766  *	will return an error.
767  *
768  * void (*ndo_tx_timeout)(struct net_device *dev);
769  *	Callback uses when the transmitter has not made any progress
770  *	for dev->watchdog ticks.
771  *
772  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
773  *                      struct rtnl_link_stats64 *storage);
774  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
775  *	Called when a user wants to get the network device usage
776  *	statistics. Drivers must do one of the following:
777  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
778  *	   rtnl_link_stats64 structure passed by the caller.
779  *	2. Define @ndo_get_stats to update a net_device_stats structure
780  *	   (which should normally be dev->stats) and return a pointer to
781  *	   it. The structure may be changed asynchronously only if each
782  *	   field is written atomically.
783  *	3. Update dev->stats asynchronously and atomically, and define
784  *	   neither operation.
785  *
786  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
787  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
788  *	this function is called when a VLAN id is registered.
789  *
790  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
791  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
792  *	this function is called when a VLAN id is unregistered.
793  *
794  * void (*ndo_poll_controller)(struct net_device *dev);
795  *
796  *	SR-IOV management functions.
797  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
798  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
799  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
800  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
801  * int (*ndo_get_vf_config)(struct net_device *dev,
802  *			    int vf, struct ifla_vf_info *ivf);
803  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
804  *			  struct nlattr *port[]);
805  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
806  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
807  * 	Called to setup 'tc' number of traffic classes in the net device. This
808  * 	is always called from the stack with the rtnl lock held and netif tx
809  * 	queues stopped. This allows the netdevice to perform queue management
810  * 	safely.
811  *
812  *	Fiber Channel over Ethernet (FCoE) offload functions.
813  * int (*ndo_fcoe_enable)(struct net_device *dev);
814  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
815  *	so the underlying device can perform whatever needed configuration or
816  *	initialization to support acceleration of FCoE traffic.
817  *
818  * int (*ndo_fcoe_disable)(struct net_device *dev);
819  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
820  *	so the underlying device can perform whatever needed clean-ups to
821  *	stop supporting acceleration of FCoE traffic.
822  *
823  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
824  *			     struct scatterlist *sgl, unsigned int sgc);
825  *	Called when the FCoE Initiator wants to initialize an I/O that
826  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
827  *	perform necessary setup and returns 1 to indicate the device is set up
828  *	successfully to perform DDP on this I/O, otherwise this returns 0.
829  *
830  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
831  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
832  *	indicated by the FC exchange id 'xid', so the underlying device can
833  *	clean up and reuse resources for later DDP requests.
834  *
835  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
836  *			      struct scatterlist *sgl, unsigned int sgc);
837  *	Called when the FCoE Target wants to initialize an I/O that
838  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
839  *	perform necessary setup and returns 1 to indicate the device is set up
840  *	successfully to perform DDP on this I/O, otherwise this returns 0.
841  *
842  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
843  *			       struct netdev_fcoe_hbainfo *hbainfo);
844  *	Called when the FCoE Protocol stack wants information on the underlying
845  *	device. This information is utilized by the FCoE protocol stack to
846  *	register attributes with Fiber Channel management service as per the
847  *	FC-GS Fabric Device Management Information(FDMI) specification.
848  *
849  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
850  *	Called when the underlying device wants to override default World Wide
851  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
852  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
853  *	protocol stack to use.
854  *
855  *	RFS acceleration.
856  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
857  *			    u16 rxq_index, u32 flow_id);
858  *	Set hardware filter for RFS.  rxq_index is the target queue index;
859  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
860  *	Return the filter ID on success, or a negative error code.
861  *
862  *	Slave management functions (for bridge, bonding, etc). User should
863  *	call netdev_set_master() to set dev->master properly.
864  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
865  *	Called to make another netdev an underling.
866  *
867  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
868  *	Called to release previously enslaved netdev.
869  *
870  *      Feature/offload setting functions.
871  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
872  *		netdev_features_t features);
873  *	Adjusts the requested feature flags according to device-specific
874  *	constraints, and returns the resulting flags. Must not modify
875  *	the device state.
876  *
877  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
878  *	Called to update device configuration to new features. Passed
879  *	feature set might be less than what was returned by ndo_fix_features()).
880  *	Must return >0 or -errno if it changed dev->features itself.
881  *
882  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
883  *		      struct net_device *dev,
884  *		      const unsigned char *addr, u16 flags)
885  *	Adds an FDB entry to dev for addr.
886  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
887  *		      const unsigned char *addr)
888  *	Deletes the FDB entry from dev coresponding to addr.
889  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
890  *		       struct net_device *dev, int idx)
891  *	Used to add FDB entries to dump requests. Implementers should add
892  *	entries to skb and update idx with the number of entries.
893  *
894  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
895  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
896  *			     struct net_device *dev)
897  */
898 struct net_device_ops {
899 	int			(*ndo_init)(struct net_device *dev);
900 	void			(*ndo_uninit)(struct net_device *dev);
901 	int			(*ndo_open)(struct net_device *dev);
902 	int			(*ndo_stop)(struct net_device *dev);
903 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
904 						   struct net_device *dev);
905 	u16			(*ndo_select_queue)(struct net_device *dev,
906 						    struct sk_buff *skb);
907 	void			(*ndo_change_rx_flags)(struct net_device *dev,
908 						       int flags);
909 	void			(*ndo_set_rx_mode)(struct net_device *dev);
910 	int			(*ndo_set_mac_address)(struct net_device *dev,
911 						       void *addr);
912 	int			(*ndo_validate_addr)(struct net_device *dev);
913 	int			(*ndo_do_ioctl)(struct net_device *dev,
914 					        struct ifreq *ifr, int cmd);
915 	int			(*ndo_set_config)(struct net_device *dev,
916 					          struct ifmap *map);
917 	int			(*ndo_change_mtu)(struct net_device *dev,
918 						  int new_mtu);
919 	int			(*ndo_neigh_setup)(struct net_device *dev,
920 						   struct neigh_parms *);
921 	void			(*ndo_tx_timeout) (struct net_device *dev);
922 
923 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
924 						     struct rtnl_link_stats64 *storage);
925 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
926 
927 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
928 						       unsigned short vid);
929 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
930 						        unsigned short vid);
931 #ifdef CONFIG_NET_POLL_CONTROLLER
932 	void                    (*ndo_poll_controller)(struct net_device *dev);
933 	int			(*ndo_netpoll_setup)(struct net_device *dev,
934 						     struct netpoll_info *info,
935 						     gfp_t gfp);
936 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
937 #endif
938 	int			(*ndo_set_vf_mac)(struct net_device *dev,
939 						  int queue, u8 *mac);
940 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
941 						   int queue, u16 vlan, u8 qos);
942 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
943 						      int vf, int rate);
944 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
945 						       int vf, bool setting);
946 	int			(*ndo_get_vf_config)(struct net_device *dev,
947 						     int vf,
948 						     struct ifla_vf_info *ivf);
949 	int			(*ndo_set_vf_port)(struct net_device *dev,
950 						   int vf,
951 						   struct nlattr *port[]);
952 	int			(*ndo_get_vf_port)(struct net_device *dev,
953 						   int vf, struct sk_buff *skb);
954 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
955 #if IS_ENABLED(CONFIG_FCOE)
956 	int			(*ndo_fcoe_enable)(struct net_device *dev);
957 	int			(*ndo_fcoe_disable)(struct net_device *dev);
958 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
959 						      u16 xid,
960 						      struct scatterlist *sgl,
961 						      unsigned int sgc);
962 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
963 						     u16 xid);
964 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
965 						       u16 xid,
966 						       struct scatterlist *sgl,
967 						       unsigned int sgc);
968 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
969 							struct netdev_fcoe_hbainfo *hbainfo);
970 #endif
971 
972 #if IS_ENABLED(CONFIG_LIBFCOE)
973 #define NETDEV_FCOE_WWNN 0
974 #define NETDEV_FCOE_WWPN 1
975 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
976 						    u64 *wwn, int type);
977 #endif
978 
979 #ifdef CONFIG_RFS_ACCEL
980 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
981 						     const struct sk_buff *skb,
982 						     u16 rxq_index,
983 						     u32 flow_id);
984 #endif
985 	int			(*ndo_add_slave)(struct net_device *dev,
986 						 struct net_device *slave_dev);
987 	int			(*ndo_del_slave)(struct net_device *dev,
988 						 struct net_device *slave_dev);
989 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
990 						    netdev_features_t features);
991 	int			(*ndo_set_features)(struct net_device *dev,
992 						    netdev_features_t features);
993 	int			(*ndo_neigh_construct)(struct neighbour *n);
994 	void			(*ndo_neigh_destroy)(struct neighbour *n);
995 
996 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
997 					       struct nlattr *tb[],
998 					       struct net_device *dev,
999 					       const unsigned char *addr,
1000 					       u16 flags);
1001 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1002 					       struct net_device *dev,
1003 					       const unsigned char *addr);
1004 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1005 						struct netlink_callback *cb,
1006 						struct net_device *dev,
1007 						int idx);
1008 
1009 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1010 						      struct nlmsghdr *nlh);
1011 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1012 						      u32 pid, u32 seq,
1013 						      struct net_device *dev);
1014 };
1015 
1016 /*
1017  *	The DEVICE structure.
1018  *	Actually, this whole structure is a big mistake.  It mixes I/O
1019  *	data with strictly "high-level" data, and it has to know about
1020  *	almost every data structure used in the INET module.
1021  *
1022  *	FIXME: cleanup struct net_device such that network protocol info
1023  *	moves out.
1024  */
1025 
1026 struct net_device {
1027 
1028 	/*
1029 	 * This is the first field of the "visible" part of this structure
1030 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1031 	 * of the interface.
1032 	 */
1033 	char			name[IFNAMSIZ];
1034 
1035 	/* device name hash chain, please keep it close to name[] */
1036 	struct hlist_node	name_hlist;
1037 
1038 	/* snmp alias */
1039 	char 			*ifalias;
1040 
1041 	/*
1042 	 *	I/O specific fields
1043 	 *	FIXME: Merge these and struct ifmap into one
1044 	 */
1045 	unsigned long		mem_end;	/* shared mem end	*/
1046 	unsigned long		mem_start;	/* shared mem start	*/
1047 	unsigned long		base_addr;	/* device I/O address	*/
1048 	unsigned int		irq;		/* device IRQ number	*/
1049 
1050 	/*
1051 	 *	Some hardware also needs these fields, but they are not
1052 	 *	part of the usual set specified in Space.c.
1053 	 */
1054 
1055 	unsigned long		state;
1056 
1057 	struct list_head	dev_list;
1058 	struct list_head	napi_list;
1059 	struct list_head	unreg_list;
1060 
1061 	/* currently active device features */
1062 	netdev_features_t	features;
1063 	/* user-changeable features */
1064 	netdev_features_t	hw_features;
1065 	/* user-requested features */
1066 	netdev_features_t	wanted_features;
1067 	/* mask of features inheritable by VLAN devices */
1068 	netdev_features_t	vlan_features;
1069 	/* mask of features inherited by encapsulating devices
1070 	 * This field indicates what encapsulation offloads
1071 	 * the hardware is capable of doing, and drivers will
1072 	 * need to set them appropriately.
1073 	 */
1074 	netdev_features_t	hw_enc_features;
1075 
1076 	/* Interface index. Unique device identifier	*/
1077 	int			ifindex;
1078 	int			iflink;
1079 
1080 	struct net_device_stats	stats;
1081 	atomic_long_t		rx_dropped; /* dropped packets by core network
1082 					     * Do not use this in drivers.
1083 					     */
1084 
1085 #ifdef CONFIG_WIRELESS_EXT
1086 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1087 	 * See <net/iw_handler.h> for details. Jean II */
1088 	const struct iw_handler_def *	wireless_handlers;
1089 	/* Instance data managed by the core of Wireless Extensions. */
1090 	struct iw_public_data *	wireless_data;
1091 #endif
1092 	/* Management operations */
1093 	const struct net_device_ops *netdev_ops;
1094 	const struct ethtool_ops *ethtool_ops;
1095 
1096 	/* Hardware header description */
1097 	const struct header_ops *header_ops;
1098 
1099 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1100 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1101 					     * See if.h for definitions. */
1102 	unsigned short		gflags;
1103 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1104 
1105 	unsigned char		operstate; /* RFC2863 operstate */
1106 	unsigned char		link_mode; /* mapping policy to operstate */
1107 
1108 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1109 	unsigned char		dma;		/* DMA channel		*/
1110 
1111 	unsigned int		mtu;	/* interface MTU value		*/
1112 	unsigned short		type;	/* interface hardware type	*/
1113 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1114 
1115 	/* extra head- and tailroom the hardware may need, but not in all cases
1116 	 * can this be guaranteed, especially tailroom. Some cases also use
1117 	 * LL_MAX_HEADER instead to allocate the skb.
1118 	 */
1119 	unsigned short		needed_headroom;
1120 	unsigned short		needed_tailroom;
1121 
1122 	/* Interface address info. */
1123 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1124 	unsigned char		addr_assign_type; /* hw address assignment type */
1125 	unsigned char		addr_len;	/* hardware address length	*/
1126 	unsigned char		neigh_priv_len;
1127 	unsigned short          dev_id;		/* for shared network cards */
1128 
1129 	spinlock_t		addr_list_lock;
1130 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1131 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1132 	bool			uc_promisc;
1133 	unsigned int		promiscuity;
1134 	unsigned int		allmulti;
1135 
1136 
1137 	/* Protocol specific pointers */
1138 
1139 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1140 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1141 #endif
1142 #if IS_ENABLED(CONFIG_NET_DSA)
1143 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1144 #endif
1145 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1146 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1147 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1148 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1149 	void			*ax25_ptr;	/* AX.25 specific data */
1150 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1151 						   assign before registering */
1152 
1153 /*
1154  * Cache lines mostly used on receive path (including eth_type_trans())
1155  */
1156 	unsigned long		last_rx;	/* Time of last Rx
1157 						 * This should not be set in
1158 						 * drivers, unless really needed,
1159 						 * because network stack (bonding)
1160 						 * use it if/when necessary, to
1161 						 * avoid dirtying this cache line.
1162 						 */
1163 
1164 	struct net_device	*master; /* Pointer to master device of a group,
1165 					  * which this device is member of.
1166 					  */
1167 
1168 	/* Interface address info used in eth_type_trans() */
1169 	unsigned char		*dev_addr;	/* hw address, (before bcast
1170 						   because most packets are
1171 						   unicast) */
1172 
1173 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1174 						      hw addresses */
1175 
1176 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1177 
1178 #ifdef CONFIG_SYSFS
1179 	struct kset		*queues_kset;
1180 #endif
1181 
1182 #ifdef CONFIG_RPS
1183 	struct netdev_rx_queue	*_rx;
1184 
1185 	/* Number of RX queues allocated at register_netdev() time */
1186 	unsigned int		num_rx_queues;
1187 
1188 	/* Number of RX queues currently active in device */
1189 	unsigned int		real_num_rx_queues;
1190 
1191 #ifdef CONFIG_RFS_ACCEL
1192 	/* CPU reverse-mapping for RX completion interrupts, indexed
1193 	 * by RX queue number.  Assigned by driver.  This must only be
1194 	 * set if the ndo_rx_flow_steer operation is defined. */
1195 	struct cpu_rmap		*rx_cpu_rmap;
1196 #endif
1197 #endif
1198 
1199 	rx_handler_func_t __rcu	*rx_handler;
1200 	void __rcu		*rx_handler_data;
1201 
1202 	struct netdev_queue __rcu *ingress_queue;
1203 
1204 /*
1205  * Cache lines mostly used on transmit path
1206  */
1207 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1208 
1209 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1210 	unsigned int		num_tx_queues;
1211 
1212 	/* Number of TX queues currently active in device  */
1213 	unsigned int		real_num_tx_queues;
1214 
1215 	/* root qdisc from userspace point of view */
1216 	struct Qdisc		*qdisc;
1217 
1218 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1219 	spinlock_t		tx_global_lock;
1220 
1221 #ifdef CONFIG_XPS
1222 	struct xps_dev_maps __rcu *xps_maps;
1223 #endif
1224 
1225 	/* These may be needed for future network-power-down code. */
1226 
1227 	/*
1228 	 * trans_start here is expensive for high speed devices on SMP,
1229 	 * please use netdev_queue->trans_start instead.
1230 	 */
1231 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1232 
1233 	int			watchdog_timeo; /* used by dev_watchdog() */
1234 	struct timer_list	watchdog_timer;
1235 
1236 	/* Number of references to this device */
1237 	int __percpu		*pcpu_refcnt;
1238 
1239 	/* delayed register/unregister */
1240 	struct list_head	todo_list;
1241 	/* device index hash chain */
1242 	struct hlist_node	index_hlist;
1243 
1244 	struct list_head	link_watch_list;
1245 
1246 	/* register/unregister state machine */
1247 	enum { NETREG_UNINITIALIZED=0,
1248 	       NETREG_REGISTERED,	/* completed register_netdevice */
1249 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1250 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1251 	       NETREG_RELEASED,		/* called free_netdev */
1252 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1253 	} reg_state:8;
1254 
1255 	bool dismantle; /* device is going do be freed */
1256 
1257 	enum {
1258 		RTNL_LINK_INITIALIZED,
1259 		RTNL_LINK_INITIALIZING,
1260 	} rtnl_link_state:16;
1261 
1262 	/* Called from unregister, can be used to call free_netdev */
1263 	void (*destructor)(struct net_device *dev);
1264 
1265 #ifdef CONFIG_NETPOLL
1266 	struct netpoll_info	*npinfo;
1267 #endif
1268 
1269 #ifdef CONFIG_NET_NS
1270 	/* Network namespace this network device is inside */
1271 	struct net		*nd_net;
1272 #endif
1273 
1274 	/* mid-layer private */
1275 	union {
1276 		void				*ml_priv;
1277 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1278 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1279 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1280 	};
1281 	/* GARP */
1282 	struct garp_port __rcu	*garp_port;
1283 
1284 	/* class/net/name entry */
1285 	struct device		dev;
1286 	/* space for optional device, statistics, and wireless sysfs groups */
1287 	const struct attribute_group *sysfs_groups[4];
1288 
1289 	/* rtnetlink link ops */
1290 	const struct rtnl_link_ops *rtnl_link_ops;
1291 
1292 	/* for setting kernel sock attribute on TCP connection setup */
1293 #define GSO_MAX_SIZE		65536
1294 	unsigned int		gso_max_size;
1295 #define GSO_MAX_SEGS		65535
1296 	u16			gso_max_segs;
1297 
1298 #ifdef CONFIG_DCB
1299 	/* Data Center Bridging netlink ops */
1300 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1301 #endif
1302 	u8 num_tc;
1303 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1304 	u8 prio_tc_map[TC_BITMASK + 1];
1305 
1306 #if IS_ENABLED(CONFIG_FCOE)
1307 	/* max exchange id for FCoE LRO by ddp */
1308 	unsigned int		fcoe_ddp_xid;
1309 #endif
1310 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1311 	struct netprio_map __rcu *priomap;
1312 #endif
1313 	/* phy device may attach itself for hardware timestamping */
1314 	struct phy_device *phydev;
1315 
1316 	struct lock_class_key *qdisc_tx_busylock;
1317 
1318 	/* group the device belongs to */
1319 	int group;
1320 
1321 	struct pm_qos_request	pm_qos_req;
1322 };
1323 #define to_net_dev(d) container_of(d, struct net_device, dev)
1324 
1325 #define	NETDEV_ALIGN		32
1326 
1327 static inline
1328 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1329 {
1330 	return dev->prio_tc_map[prio & TC_BITMASK];
1331 }
1332 
1333 static inline
1334 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1335 {
1336 	if (tc >= dev->num_tc)
1337 		return -EINVAL;
1338 
1339 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1340 	return 0;
1341 }
1342 
1343 static inline
1344 void netdev_reset_tc(struct net_device *dev)
1345 {
1346 	dev->num_tc = 0;
1347 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1348 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1349 }
1350 
1351 static inline
1352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1353 {
1354 	if (tc >= dev->num_tc)
1355 		return -EINVAL;
1356 
1357 	dev->tc_to_txq[tc].count = count;
1358 	dev->tc_to_txq[tc].offset = offset;
1359 	return 0;
1360 }
1361 
1362 static inline
1363 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1364 {
1365 	if (num_tc > TC_MAX_QUEUE)
1366 		return -EINVAL;
1367 
1368 	dev->num_tc = num_tc;
1369 	return 0;
1370 }
1371 
1372 static inline
1373 int netdev_get_num_tc(struct net_device *dev)
1374 {
1375 	return dev->num_tc;
1376 }
1377 
1378 static inline
1379 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1380 					 unsigned int index)
1381 {
1382 	return &dev->_tx[index];
1383 }
1384 
1385 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1386 					    void (*f)(struct net_device *,
1387 						      struct netdev_queue *,
1388 						      void *),
1389 					    void *arg)
1390 {
1391 	unsigned int i;
1392 
1393 	for (i = 0; i < dev->num_tx_queues; i++)
1394 		f(dev, &dev->_tx[i], arg);
1395 }
1396 
1397 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1398 					   struct sk_buff *skb);
1399 
1400 /*
1401  * Net namespace inlines
1402  */
1403 static inline
1404 struct net *dev_net(const struct net_device *dev)
1405 {
1406 	return read_pnet(&dev->nd_net);
1407 }
1408 
1409 static inline
1410 void dev_net_set(struct net_device *dev, struct net *net)
1411 {
1412 #ifdef CONFIG_NET_NS
1413 	release_net(dev->nd_net);
1414 	dev->nd_net = hold_net(net);
1415 #endif
1416 }
1417 
1418 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1419 {
1420 #ifdef CONFIG_NET_DSA_TAG_DSA
1421 	if (dev->dsa_ptr != NULL)
1422 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1423 #endif
1424 
1425 	return 0;
1426 }
1427 
1428 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1429 {
1430 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1431 	if (dev->dsa_ptr != NULL)
1432 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1433 #endif
1434 
1435 	return 0;
1436 }
1437 
1438 /**
1439  *	netdev_priv - access network device private data
1440  *	@dev: network device
1441  *
1442  * Get network device private data
1443  */
1444 static inline void *netdev_priv(const struct net_device *dev)
1445 {
1446 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1447 }
1448 
1449 /* Set the sysfs physical device reference for the network logical device
1450  * if set prior to registration will cause a symlink during initialization.
1451  */
1452 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1453 
1454 /* Set the sysfs device type for the network logical device to allow
1455  * fin grained indentification of different network device types. For
1456  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1457  */
1458 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1459 
1460 /**
1461  *	netif_napi_add - initialize a napi context
1462  *	@dev:  network device
1463  *	@napi: napi context
1464  *	@poll: polling function
1465  *	@weight: default weight
1466  *
1467  * netif_napi_add() must be used to initialize a napi context prior to calling
1468  * *any* of the other napi related functions.
1469  */
1470 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1471 		    int (*poll)(struct napi_struct *, int), int weight);
1472 
1473 /**
1474  *  netif_napi_del - remove a napi context
1475  *  @napi: napi context
1476  *
1477  *  netif_napi_del() removes a napi context from the network device napi list
1478  */
1479 void netif_napi_del(struct napi_struct *napi);
1480 
1481 struct napi_gro_cb {
1482 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1483 	void *frag0;
1484 
1485 	/* Length of frag0. */
1486 	unsigned int frag0_len;
1487 
1488 	/* This indicates where we are processing relative to skb->data. */
1489 	int data_offset;
1490 
1491 	/* This is non-zero if the packet cannot be merged with the new skb. */
1492 	int flush;
1493 
1494 	/* Number of segments aggregated. */
1495 	u16	count;
1496 
1497 	/* This is non-zero if the packet may be of the same flow. */
1498 	u8	same_flow;
1499 
1500 	/* Free the skb? */
1501 	u8	free;
1502 #define NAPI_GRO_FREE		  1
1503 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1504 
1505 	/* jiffies when first packet was created/queued */
1506 	unsigned long age;
1507 
1508 	/* Used in ipv6_gro_receive() */
1509 	int	proto;
1510 
1511 	/* used in skb_gro_receive() slow path */
1512 	struct sk_buff *last;
1513 };
1514 
1515 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1516 
1517 struct packet_type {
1518 	__be16			type;	/* This is really htons(ether_type). */
1519 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1520 	int			(*func) (struct sk_buff *,
1521 					 struct net_device *,
1522 					 struct packet_type *,
1523 					 struct net_device *);
1524 	bool			(*id_match)(struct packet_type *ptype,
1525 					    struct sock *sk);
1526 	void			*af_packet_priv;
1527 	struct list_head	list;
1528 };
1529 
1530 struct offload_callbacks {
1531 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1532 						netdev_features_t features);
1533 	int			(*gso_send_check)(struct sk_buff *skb);
1534 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1535 					       struct sk_buff *skb);
1536 	int			(*gro_complete)(struct sk_buff *skb);
1537 };
1538 
1539 struct packet_offload {
1540 	__be16			 type;	/* This is really htons(ether_type). */
1541 	struct offload_callbacks callbacks;
1542 	struct list_head	 list;
1543 };
1544 
1545 #include <linux/notifier.h>
1546 
1547 /* netdevice notifier chain. Please remember to update the rtnetlink
1548  * notification exclusion list in rtnetlink_event() when adding new
1549  * types.
1550  */
1551 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1552 #define NETDEV_DOWN	0x0002
1553 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1554 				   detected a hardware crash and restarted
1555 				   - we can use this eg to kick tcp sessions
1556 				   once done */
1557 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1558 #define NETDEV_REGISTER 0x0005
1559 #define NETDEV_UNREGISTER	0x0006
1560 #define NETDEV_CHANGEMTU	0x0007
1561 #define NETDEV_CHANGEADDR	0x0008
1562 #define NETDEV_GOING_DOWN	0x0009
1563 #define NETDEV_CHANGENAME	0x000A
1564 #define NETDEV_FEAT_CHANGE	0x000B
1565 #define NETDEV_BONDING_FAILOVER 0x000C
1566 #define NETDEV_PRE_UP		0x000D
1567 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1568 #define NETDEV_POST_TYPE_CHANGE	0x000F
1569 #define NETDEV_POST_INIT	0x0010
1570 #define NETDEV_UNREGISTER_FINAL 0x0011
1571 #define NETDEV_RELEASE		0x0012
1572 #define NETDEV_NOTIFY_PEERS	0x0013
1573 #define NETDEV_JOIN		0x0014
1574 
1575 extern int register_netdevice_notifier(struct notifier_block *nb);
1576 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1577 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1578 
1579 
1580 extern rwlock_t				dev_base_lock;		/* Device list lock */
1581 
1582 extern seqcount_t	devnet_rename_seq;	/* Device rename seq */
1583 
1584 
1585 #define for_each_netdev(net, d)		\
1586 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1587 #define for_each_netdev_reverse(net, d)	\
1588 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1589 #define for_each_netdev_rcu(net, d)		\
1590 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1591 #define for_each_netdev_safe(net, d, n)	\
1592 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1593 #define for_each_netdev_continue(net, d)		\
1594 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1595 #define for_each_netdev_continue_rcu(net, d)		\
1596 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1597 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1598 
1599 static inline struct net_device *next_net_device(struct net_device *dev)
1600 {
1601 	struct list_head *lh;
1602 	struct net *net;
1603 
1604 	net = dev_net(dev);
1605 	lh = dev->dev_list.next;
1606 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1607 }
1608 
1609 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1610 {
1611 	struct list_head *lh;
1612 	struct net *net;
1613 
1614 	net = dev_net(dev);
1615 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1616 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1617 }
1618 
1619 static inline struct net_device *first_net_device(struct net *net)
1620 {
1621 	return list_empty(&net->dev_base_head) ? NULL :
1622 		net_device_entry(net->dev_base_head.next);
1623 }
1624 
1625 static inline struct net_device *first_net_device_rcu(struct net *net)
1626 {
1627 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1628 
1629 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1630 }
1631 
1632 extern int 			netdev_boot_setup_check(struct net_device *dev);
1633 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1634 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1635 					      const char *hwaddr);
1636 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1637 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1638 extern void		dev_add_pack(struct packet_type *pt);
1639 extern void		dev_remove_pack(struct packet_type *pt);
1640 extern void		__dev_remove_pack(struct packet_type *pt);
1641 extern void		dev_add_offload(struct packet_offload *po);
1642 extern void		dev_remove_offload(struct packet_offload *po);
1643 extern void		__dev_remove_offload(struct packet_offload *po);
1644 
1645 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1646 						      unsigned short mask);
1647 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1648 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1649 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1650 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1651 extern int		dev_open(struct net_device *dev);
1652 extern int		dev_close(struct net_device *dev);
1653 extern void		dev_disable_lro(struct net_device *dev);
1654 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1655 extern int		dev_queue_xmit(struct sk_buff *skb);
1656 extern int		register_netdevice(struct net_device *dev);
1657 extern void		unregister_netdevice_queue(struct net_device *dev,
1658 						   struct list_head *head);
1659 extern void		unregister_netdevice_many(struct list_head *head);
1660 static inline void unregister_netdevice(struct net_device *dev)
1661 {
1662 	unregister_netdevice_queue(dev, NULL);
1663 }
1664 
1665 extern int 		netdev_refcnt_read(const struct net_device *dev);
1666 extern void		free_netdev(struct net_device *dev);
1667 extern void		synchronize_net(void);
1668 extern int		init_dummy_netdev(struct net_device *dev);
1669 extern void		netdev_resync_ops(struct net_device *dev);
1670 
1671 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1672 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1673 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1674 extern int		dev_restart(struct net_device *dev);
1675 #ifdef CONFIG_NETPOLL_TRAP
1676 extern int		netpoll_trap(void);
1677 #endif
1678 extern int	       skb_gro_receive(struct sk_buff **head,
1679 				       struct sk_buff *skb);
1680 
1681 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1682 {
1683 	return NAPI_GRO_CB(skb)->data_offset;
1684 }
1685 
1686 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1687 {
1688 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1689 }
1690 
1691 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1692 {
1693 	NAPI_GRO_CB(skb)->data_offset += len;
1694 }
1695 
1696 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1697 					unsigned int offset)
1698 {
1699 	return NAPI_GRO_CB(skb)->frag0 + offset;
1700 }
1701 
1702 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1703 {
1704 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1705 }
1706 
1707 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1708 					unsigned int offset)
1709 {
1710 	if (!pskb_may_pull(skb, hlen))
1711 		return NULL;
1712 
1713 	NAPI_GRO_CB(skb)->frag0 = NULL;
1714 	NAPI_GRO_CB(skb)->frag0_len = 0;
1715 	return skb->data + offset;
1716 }
1717 
1718 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1719 {
1720 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1721 }
1722 
1723 static inline void *skb_gro_network_header(struct sk_buff *skb)
1724 {
1725 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1726 	       skb_network_offset(skb);
1727 }
1728 
1729 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1730 				  unsigned short type,
1731 				  const void *daddr, const void *saddr,
1732 				  unsigned int len)
1733 {
1734 	if (!dev->header_ops || !dev->header_ops->create)
1735 		return 0;
1736 
1737 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1738 }
1739 
1740 static inline int dev_parse_header(const struct sk_buff *skb,
1741 				   unsigned char *haddr)
1742 {
1743 	const struct net_device *dev = skb->dev;
1744 
1745 	if (!dev->header_ops || !dev->header_ops->parse)
1746 		return 0;
1747 	return dev->header_ops->parse(skb, haddr);
1748 }
1749 
1750 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1751 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1752 static inline int unregister_gifconf(unsigned int family)
1753 {
1754 	return register_gifconf(family, NULL);
1755 }
1756 
1757 /*
1758  * Incoming packets are placed on per-cpu queues
1759  */
1760 struct softnet_data {
1761 	struct Qdisc		*output_queue;
1762 	struct Qdisc		**output_queue_tailp;
1763 	struct list_head	poll_list;
1764 	struct sk_buff		*completion_queue;
1765 	struct sk_buff_head	process_queue;
1766 
1767 	/* stats */
1768 	unsigned int		processed;
1769 	unsigned int		time_squeeze;
1770 	unsigned int		cpu_collision;
1771 	unsigned int		received_rps;
1772 
1773 #ifdef CONFIG_RPS
1774 	struct softnet_data	*rps_ipi_list;
1775 
1776 	/* Elements below can be accessed between CPUs for RPS */
1777 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1778 	struct softnet_data	*rps_ipi_next;
1779 	unsigned int		cpu;
1780 	unsigned int		input_queue_head;
1781 	unsigned int		input_queue_tail;
1782 #endif
1783 	unsigned int		dropped;
1784 	struct sk_buff_head	input_pkt_queue;
1785 	struct napi_struct	backlog;
1786 };
1787 
1788 static inline void input_queue_head_incr(struct softnet_data *sd)
1789 {
1790 #ifdef CONFIG_RPS
1791 	sd->input_queue_head++;
1792 #endif
1793 }
1794 
1795 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1796 					      unsigned int *qtail)
1797 {
1798 #ifdef CONFIG_RPS
1799 	*qtail = ++sd->input_queue_tail;
1800 #endif
1801 }
1802 
1803 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1804 
1805 extern void __netif_schedule(struct Qdisc *q);
1806 
1807 static inline void netif_schedule_queue(struct netdev_queue *txq)
1808 {
1809 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1810 		__netif_schedule(txq->qdisc);
1811 }
1812 
1813 static inline void netif_tx_schedule_all(struct net_device *dev)
1814 {
1815 	unsigned int i;
1816 
1817 	for (i = 0; i < dev->num_tx_queues; i++)
1818 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1819 }
1820 
1821 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1822 {
1823 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1824 }
1825 
1826 /**
1827  *	netif_start_queue - allow transmit
1828  *	@dev: network device
1829  *
1830  *	Allow upper layers to call the device hard_start_xmit routine.
1831  */
1832 static inline void netif_start_queue(struct net_device *dev)
1833 {
1834 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1835 }
1836 
1837 static inline void netif_tx_start_all_queues(struct net_device *dev)
1838 {
1839 	unsigned int i;
1840 
1841 	for (i = 0; i < dev->num_tx_queues; i++) {
1842 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1843 		netif_tx_start_queue(txq);
1844 	}
1845 }
1846 
1847 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1848 {
1849 #ifdef CONFIG_NETPOLL_TRAP
1850 	if (netpoll_trap()) {
1851 		netif_tx_start_queue(dev_queue);
1852 		return;
1853 	}
1854 #endif
1855 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1856 		__netif_schedule(dev_queue->qdisc);
1857 }
1858 
1859 /**
1860  *	netif_wake_queue - restart transmit
1861  *	@dev: network device
1862  *
1863  *	Allow upper layers to call the device hard_start_xmit routine.
1864  *	Used for flow control when transmit resources are available.
1865  */
1866 static inline void netif_wake_queue(struct net_device *dev)
1867 {
1868 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1869 }
1870 
1871 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1872 {
1873 	unsigned int i;
1874 
1875 	for (i = 0; i < dev->num_tx_queues; i++) {
1876 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1877 		netif_tx_wake_queue(txq);
1878 	}
1879 }
1880 
1881 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1882 {
1883 	if (WARN_ON(!dev_queue)) {
1884 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1885 		return;
1886 	}
1887 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1888 }
1889 
1890 /**
1891  *	netif_stop_queue - stop transmitted packets
1892  *	@dev: network device
1893  *
1894  *	Stop upper layers calling the device hard_start_xmit routine.
1895  *	Used for flow control when transmit resources are unavailable.
1896  */
1897 static inline void netif_stop_queue(struct net_device *dev)
1898 {
1899 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1900 }
1901 
1902 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1903 {
1904 	unsigned int i;
1905 
1906 	for (i = 0; i < dev->num_tx_queues; i++) {
1907 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1908 		netif_tx_stop_queue(txq);
1909 	}
1910 }
1911 
1912 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1913 {
1914 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1915 }
1916 
1917 /**
1918  *	netif_queue_stopped - test if transmit queue is flowblocked
1919  *	@dev: network device
1920  *
1921  *	Test if transmit queue on device is currently unable to send.
1922  */
1923 static inline bool netif_queue_stopped(const struct net_device *dev)
1924 {
1925 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1926 }
1927 
1928 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1929 {
1930 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1931 }
1932 
1933 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1934 {
1935 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1936 }
1937 
1938 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1939 					unsigned int bytes)
1940 {
1941 #ifdef CONFIG_BQL
1942 	dql_queued(&dev_queue->dql, bytes);
1943 
1944 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1945 		return;
1946 
1947 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1948 
1949 	/*
1950 	 * The XOFF flag must be set before checking the dql_avail below,
1951 	 * because in netdev_tx_completed_queue we update the dql_completed
1952 	 * before checking the XOFF flag.
1953 	 */
1954 	smp_mb();
1955 
1956 	/* check again in case another CPU has just made room avail */
1957 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1958 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1959 #endif
1960 }
1961 
1962 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1963 {
1964 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1965 }
1966 
1967 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1968 					     unsigned int pkts, unsigned int bytes)
1969 {
1970 #ifdef CONFIG_BQL
1971 	if (unlikely(!bytes))
1972 		return;
1973 
1974 	dql_completed(&dev_queue->dql, bytes);
1975 
1976 	/*
1977 	 * Without the memory barrier there is a small possiblity that
1978 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1979 	 * be stopped forever
1980 	 */
1981 	smp_mb();
1982 
1983 	if (dql_avail(&dev_queue->dql) < 0)
1984 		return;
1985 
1986 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1987 		netif_schedule_queue(dev_queue);
1988 #endif
1989 }
1990 
1991 static inline void netdev_completed_queue(struct net_device *dev,
1992 					  unsigned int pkts, unsigned int bytes)
1993 {
1994 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1995 }
1996 
1997 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1998 {
1999 #ifdef CONFIG_BQL
2000 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2001 	dql_reset(&q->dql);
2002 #endif
2003 }
2004 
2005 static inline void netdev_reset_queue(struct net_device *dev_queue)
2006 {
2007 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2008 }
2009 
2010 /**
2011  *	netif_running - test if up
2012  *	@dev: network device
2013  *
2014  *	Test if the device has been brought up.
2015  */
2016 static inline bool netif_running(const struct net_device *dev)
2017 {
2018 	return test_bit(__LINK_STATE_START, &dev->state);
2019 }
2020 
2021 /*
2022  * Routines to manage the subqueues on a device.  We only need start
2023  * stop, and a check if it's stopped.  All other device management is
2024  * done at the overall netdevice level.
2025  * Also test the device if we're multiqueue.
2026  */
2027 
2028 /**
2029  *	netif_start_subqueue - allow sending packets on subqueue
2030  *	@dev: network device
2031  *	@queue_index: sub queue index
2032  *
2033  * Start individual transmit queue of a device with multiple transmit queues.
2034  */
2035 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2036 {
2037 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2038 
2039 	netif_tx_start_queue(txq);
2040 }
2041 
2042 /**
2043  *	netif_stop_subqueue - stop sending packets on subqueue
2044  *	@dev: network device
2045  *	@queue_index: sub queue index
2046  *
2047  * Stop individual transmit queue of a device with multiple transmit queues.
2048  */
2049 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2050 {
2051 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2052 #ifdef CONFIG_NETPOLL_TRAP
2053 	if (netpoll_trap())
2054 		return;
2055 #endif
2056 	netif_tx_stop_queue(txq);
2057 }
2058 
2059 /**
2060  *	netif_subqueue_stopped - test status of subqueue
2061  *	@dev: network device
2062  *	@queue_index: sub queue index
2063  *
2064  * Check individual transmit queue of a device with multiple transmit queues.
2065  */
2066 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2067 					    u16 queue_index)
2068 {
2069 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2070 
2071 	return netif_tx_queue_stopped(txq);
2072 }
2073 
2074 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2075 					  struct sk_buff *skb)
2076 {
2077 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2078 }
2079 
2080 /**
2081  *	netif_wake_subqueue - allow sending packets on subqueue
2082  *	@dev: network device
2083  *	@queue_index: sub queue index
2084  *
2085  * Resume individual transmit queue of a device with multiple transmit queues.
2086  */
2087 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2088 {
2089 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2090 #ifdef CONFIG_NETPOLL_TRAP
2091 	if (netpoll_trap())
2092 		return;
2093 #endif
2094 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2095 		__netif_schedule(txq->qdisc);
2096 }
2097 
2098 /*
2099  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2100  * as a distribution range limit for the returned value.
2101  */
2102 static inline u16 skb_tx_hash(const struct net_device *dev,
2103 			      const struct sk_buff *skb)
2104 {
2105 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2106 }
2107 
2108 /**
2109  *	netif_is_multiqueue - test if device has multiple transmit queues
2110  *	@dev: network device
2111  *
2112  * Check if device has multiple transmit queues
2113  */
2114 static inline bool netif_is_multiqueue(const struct net_device *dev)
2115 {
2116 	return dev->num_tx_queues > 1;
2117 }
2118 
2119 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2120 					unsigned int txq);
2121 
2122 #ifdef CONFIG_RPS
2123 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2124 					unsigned int rxq);
2125 #else
2126 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2127 						unsigned int rxq)
2128 {
2129 	return 0;
2130 }
2131 #endif
2132 
2133 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2134 					     const struct net_device *from_dev)
2135 {
2136 	int err;
2137 
2138 	err = netif_set_real_num_tx_queues(to_dev,
2139 					   from_dev->real_num_tx_queues);
2140 	if (err)
2141 		return err;
2142 #ifdef CONFIG_RPS
2143 	return netif_set_real_num_rx_queues(to_dev,
2144 					    from_dev->real_num_rx_queues);
2145 #else
2146 	return 0;
2147 #endif
2148 }
2149 
2150 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2151 extern int netif_get_num_default_rss_queues(void);
2152 
2153 /* Use this variant when it is known for sure that it
2154  * is executing from hardware interrupt context or with hardware interrupts
2155  * disabled.
2156  */
2157 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2158 
2159 /* Use this variant in places where it could be invoked
2160  * from either hardware interrupt or other context, with hardware interrupts
2161  * either disabled or enabled.
2162  */
2163 extern void dev_kfree_skb_any(struct sk_buff *skb);
2164 
2165 extern int		netif_rx(struct sk_buff *skb);
2166 extern int		netif_rx_ni(struct sk_buff *skb);
2167 extern int		netif_receive_skb(struct sk_buff *skb);
2168 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2169 					 struct sk_buff *skb);
2170 extern void		napi_gro_flush(struct napi_struct *napi, bool flush_old);
2171 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2172 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2173 
2174 static inline void napi_free_frags(struct napi_struct *napi)
2175 {
2176 	kfree_skb(napi->skb);
2177 	napi->skb = NULL;
2178 }
2179 
2180 extern int netdev_rx_handler_register(struct net_device *dev,
2181 				      rx_handler_func_t *rx_handler,
2182 				      void *rx_handler_data);
2183 extern void netdev_rx_handler_unregister(struct net_device *dev);
2184 
2185 extern bool		dev_valid_name(const char *name);
2186 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2187 extern int		dev_ethtool(struct net *net, struct ifreq *);
2188 extern unsigned int	dev_get_flags(const struct net_device *);
2189 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2190 extern int		dev_change_flags(struct net_device *, unsigned int);
2191 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2192 extern int		dev_change_name(struct net_device *, const char *);
2193 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2194 extern int		dev_change_net_namespace(struct net_device *,
2195 						 struct net *, const char *);
2196 extern int		dev_set_mtu(struct net_device *, int);
2197 extern void		dev_set_group(struct net_device *, int);
2198 extern int		dev_set_mac_address(struct net_device *,
2199 					    struct sockaddr *);
2200 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2201 					    struct net_device *dev,
2202 					    struct netdev_queue *txq);
2203 extern int		dev_forward_skb(struct net_device *dev,
2204 					struct sk_buff *skb);
2205 
2206 extern int		netdev_budget;
2207 
2208 /* Called by rtnetlink.c:rtnl_unlock() */
2209 extern void netdev_run_todo(void);
2210 
2211 /**
2212  *	dev_put - release reference to device
2213  *	@dev: network device
2214  *
2215  * Release reference to device to allow it to be freed.
2216  */
2217 static inline void dev_put(struct net_device *dev)
2218 {
2219 	this_cpu_dec(*dev->pcpu_refcnt);
2220 }
2221 
2222 /**
2223  *	dev_hold - get reference to device
2224  *	@dev: network device
2225  *
2226  * Hold reference to device to keep it from being freed.
2227  */
2228 static inline void dev_hold(struct net_device *dev)
2229 {
2230 	this_cpu_inc(*dev->pcpu_refcnt);
2231 }
2232 
2233 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2234  * and _off may be called from IRQ context, but it is caller
2235  * who is responsible for serialization of these calls.
2236  *
2237  * The name carrier is inappropriate, these functions should really be
2238  * called netif_lowerlayer_*() because they represent the state of any
2239  * kind of lower layer not just hardware media.
2240  */
2241 
2242 extern void linkwatch_init_dev(struct net_device *dev);
2243 extern void linkwatch_fire_event(struct net_device *dev);
2244 extern void linkwatch_forget_dev(struct net_device *dev);
2245 
2246 /**
2247  *	netif_carrier_ok - test if carrier present
2248  *	@dev: network device
2249  *
2250  * Check if carrier is present on device
2251  */
2252 static inline bool netif_carrier_ok(const struct net_device *dev)
2253 {
2254 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2255 }
2256 
2257 extern unsigned long dev_trans_start(struct net_device *dev);
2258 
2259 extern void __netdev_watchdog_up(struct net_device *dev);
2260 
2261 extern void netif_carrier_on(struct net_device *dev);
2262 
2263 extern void netif_carrier_off(struct net_device *dev);
2264 
2265 /**
2266  *	netif_dormant_on - mark device as dormant.
2267  *	@dev: network device
2268  *
2269  * Mark device as dormant (as per RFC2863).
2270  *
2271  * The dormant state indicates that the relevant interface is not
2272  * actually in a condition to pass packets (i.e., it is not 'up') but is
2273  * in a "pending" state, waiting for some external event.  For "on-
2274  * demand" interfaces, this new state identifies the situation where the
2275  * interface is waiting for events to place it in the up state.
2276  *
2277  */
2278 static inline void netif_dormant_on(struct net_device *dev)
2279 {
2280 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2281 		linkwatch_fire_event(dev);
2282 }
2283 
2284 /**
2285  *	netif_dormant_off - set device as not dormant.
2286  *	@dev: network device
2287  *
2288  * Device is not in dormant state.
2289  */
2290 static inline void netif_dormant_off(struct net_device *dev)
2291 {
2292 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2293 		linkwatch_fire_event(dev);
2294 }
2295 
2296 /**
2297  *	netif_dormant - test if carrier present
2298  *	@dev: network device
2299  *
2300  * Check if carrier is present on device
2301  */
2302 static inline bool netif_dormant(const struct net_device *dev)
2303 {
2304 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2305 }
2306 
2307 
2308 /**
2309  *	netif_oper_up - test if device is operational
2310  *	@dev: network device
2311  *
2312  * Check if carrier is operational
2313  */
2314 static inline bool netif_oper_up(const struct net_device *dev)
2315 {
2316 	return (dev->operstate == IF_OPER_UP ||
2317 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2318 }
2319 
2320 /**
2321  *	netif_device_present - is device available or removed
2322  *	@dev: network device
2323  *
2324  * Check if device has not been removed from system.
2325  */
2326 static inline bool netif_device_present(struct net_device *dev)
2327 {
2328 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2329 }
2330 
2331 extern void netif_device_detach(struct net_device *dev);
2332 
2333 extern void netif_device_attach(struct net_device *dev);
2334 
2335 /*
2336  * Network interface message level settings
2337  */
2338 
2339 enum {
2340 	NETIF_MSG_DRV		= 0x0001,
2341 	NETIF_MSG_PROBE		= 0x0002,
2342 	NETIF_MSG_LINK		= 0x0004,
2343 	NETIF_MSG_TIMER		= 0x0008,
2344 	NETIF_MSG_IFDOWN	= 0x0010,
2345 	NETIF_MSG_IFUP		= 0x0020,
2346 	NETIF_MSG_RX_ERR	= 0x0040,
2347 	NETIF_MSG_TX_ERR	= 0x0080,
2348 	NETIF_MSG_TX_QUEUED	= 0x0100,
2349 	NETIF_MSG_INTR		= 0x0200,
2350 	NETIF_MSG_TX_DONE	= 0x0400,
2351 	NETIF_MSG_RX_STATUS	= 0x0800,
2352 	NETIF_MSG_PKTDATA	= 0x1000,
2353 	NETIF_MSG_HW		= 0x2000,
2354 	NETIF_MSG_WOL		= 0x4000,
2355 };
2356 
2357 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2358 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2359 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2360 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2361 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2362 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2363 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2364 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2365 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2366 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2367 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2368 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2369 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2370 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2371 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2372 
2373 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2374 {
2375 	/* use default */
2376 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2377 		return default_msg_enable_bits;
2378 	if (debug_value == 0)	/* no output */
2379 		return 0;
2380 	/* set low N bits */
2381 	return (1 << debug_value) - 1;
2382 }
2383 
2384 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2385 {
2386 	spin_lock(&txq->_xmit_lock);
2387 	txq->xmit_lock_owner = cpu;
2388 }
2389 
2390 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2391 {
2392 	spin_lock_bh(&txq->_xmit_lock);
2393 	txq->xmit_lock_owner = smp_processor_id();
2394 }
2395 
2396 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2397 {
2398 	bool ok = spin_trylock(&txq->_xmit_lock);
2399 	if (likely(ok))
2400 		txq->xmit_lock_owner = smp_processor_id();
2401 	return ok;
2402 }
2403 
2404 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2405 {
2406 	txq->xmit_lock_owner = -1;
2407 	spin_unlock(&txq->_xmit_lock);
2408 }
2409 
2410 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2411 {
2412 	txq->xmit_lock_owner = -1;
2413 	spin_unlock_bh(&txq->_xmit_lock);
2414 }
2415 
2416 static inline void txq_trans_update(struct netdev_queue *txq)
2417 {
2418 	if (txq->xmit_lock_owner != -1)
2419 		txq->trans_start = jiffies;
2420 }
2421 
2422 /**
2423  *	netif_tx_lock - grab network device transmit lock
2424  *	@dev: network device
2425  *
2426  * Get network device transmit lock
2427  */
2428 static inline void netif_tx_lock(struct net_device *dev)
2429 {
2430 	unsigned int i;
2431 	int cpu;
2432 
2433 	spin_lock(&dev->tx_global_lock);
2434 	cpu = smp_processor_id();
2435 	for (i = 0; i < dev->num_tx_queues; i++) {
2436 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2437 
2438 		/* We are the only thread of execution doing a
2439 		 * freeze, but we have to grab the _xmit_lock in
2440 		 * order to synchronize with threads which are in
2441 		 * the ->hard_start_xmit() handler and already
2442 		 * checked the frozen bit.
2443 		 */
2444 		__netif_tx_lock(txq, cpu);
2445 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2446 		__netif_tx_unlock(txq);
2447 	}
2448 }
2449 
2450 static inline void netif_tx_lock_bh(struct net_device *dev)
2451 {
2452 	local_bh_disable();
2453 	netif_tx_lock(dev);
2454 }
2455 
2456 static inline void netif_tx_unlock(struct net_device *dev)
2457 {
2458 	unsigned int i;
2459 
2460 	for (i = 0; i < dev->num_tx_queues; i++) {
2461 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2462 
2463 		/* No need to grab the _xmit_lock here.  If the
2464 		 * queue is not stopped for another reason, we
2465 		 * force a schedule.
2466 		 */
2467 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2468 		netif_schedule_queue(txq);
2469 	}
2470 	spin_unlock(&dev->tx_global_lock);
2471 }
2472 
2473 static inline void netif_tx_unlock_bh(struct net_device *dev)
2474 {
2475 	netif_tx_unlock(dev);
2476 	local_bh_enable();
2477 }
2478 
2479 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2480 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2481 		__netif_tx_lock(txq, cpu);		\
2482 	}						\
2483 }
2484 
2485 #define HARD_TX_UNLOCK(dev, txq) {			\
2486 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2487 		__netif_tx_unlock(txq);			\
2488 	}						\
2489 }
2490 
2491 static inline void netif_tx_disable(struct net_device *dev)
2492 {
2493 	unsigned int i;
2494 	int cpu;
2495 
2496 	local_bh_disable();
2497 	cpu = smp_processor_id();
2498 	for (i = 0; i < dev->num_tx_queues; i++) {
2499 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2500 
2501 		__netif_tx_lock(txq, cpu);
2502 		netif_tx_stop_queue(txq);
2503 		__netif_tx_unlock(txq);
2504 	}
2505 	local_bh_enable();
2506 }
2507 
2508 static inline void netif_addr_lock(struct net_device *dev)
2509 {
2510 	spin_lock(&dev->addr_list_lock);
2511 }
2512 
2513 static inline void netif_addr_lock_nested(struct net_device *dev)
2514 {
2515 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2516 }
2517 
2518 static inline void netif_addr_lock_bh(struct net_device *dev)
2519 {
2520 	spin_lock_bh(&dev->addr_list_lock);
2521 }
2522 
2523 static inline void netif_addr_unlock(struct net_device *dev)
2524 {
2525 	spin_unlock(&dev->addr_list_lock);
2526 }
2527 
2528 static inline void netif_addr_unlock_bh(struct net_device *dev)
2529 {
2530 	spin_unlock_bh(&dev->addr_list_lock);
2531 }
2532 
2533 /*
2534  * dev_addrs walker. Should be used only for read access. Call with
2535  * rcu_read_lock held.
2536  */
2537 #define for_each_dev_addr(dev, ha) \
2538 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2539 
2540 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2541 
2542 extern void		ether_setup(struct net_device *dev);
2543 
2544 /* Support for loadable net-drivers */
2545 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2546 				       void (*setup)(struct net_device *),
2547 				       unsigned int txqs, unsigned int rxqs);
2548 #define alloc_netdev(sizeof_priv, name, setup) \
2549 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2550 
2551 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2552 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2553 
2554 extern int		register_netdev(struct net_device *dev);
2555 extern void		unregister_netdev(struct net_device *dev);
2556 
2557 /* General hardware address lists handling functions */
2558 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2559 				  struct netdev_hw_addr_list *from_list,
2560 				  int addr_len, unsigned char addr_type);
2561 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2562 				   struct netdev_hw_addr_list *from_list,
2563 				   int addr_len, unsigned char addr_type);
2564 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2565 			  struct netdev_hw_addr_list *from_list,
2566 			  int addr_len);
2567 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2568 			     struct netdev_hw_addr_list *from_list,
2569 			     int addr_len);
2570 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2571 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2572 
2573 /* Functions used for device addresses handling */
2574 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2575 			unsigned char addr_type);
2576 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2577 			unsigned char addr_type);
2578 extern int dev_addr_add_multiple(struct net_device *to_dev,
2579 				 struct net_device *from_dev,
2580 				 unsigned char addr_type);
2581 extern int dev_addr_del_multiple(struct net_device *to_dev,
2582 				 struct net_device *from_dev,
2583 				 unsigned char addr_type);
2584 extern void dev_addr_flush(struct net_device *dev);
2585 extern int dev_addr_init(struct net_device *dev);
2586 
2587 /* Functions used for unicast addresses handling */
2588 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2589 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2590 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2591 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2592 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2593 extern void dev_uc_flush(struct net_device *dev);
2594 extern void dev_uc_init(struct net_device *dev);
2595 
2596 /* Functions used for multicast addresses handling */
2597 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2598 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2599 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2600 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2601 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2602 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2603 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2604 extern void dev_mc_flush(struct net_device *dev);
2605 extern void dev_mc_init(struct net_device *dev);
2606 
2607 /* Functions used for secondary unicast and multicast support */
2608 extern void		dev_set_rx_mode(struct net_device *dev);
2609 extern void		__dev_set_rx_mode(struct net_device *dev);
2610 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2611 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2612 extern void		netdev_state_change(struct net_device *dev);
2613 extern void		netdev_notify_peers(struct net_device *dev);
2614 extern void		netdev_features_change(struct net_device *dev);
2615 /* Load a device via the kmod */
2616 extern void		dev_load(struct net *net, const char *name);
2617 extern void		dev_mcast_init(void);
2618 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2619 					       struct rtnl_link_stats64 *storage);
2620 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2621 				    const struct net_device_stats *netdev_stats);
2622 
2623 extern int		netdev_max_backlog;
2624 extern int		netdev_tstamp_prequeue;
2625 extern int		weight_p;
2626 extern int		bpf_jit_enable;
2627 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2628 extern int netdev_set_bond_master(struct net_device *dev,
2629 				  struct net_device *master);
2630 extern int skb_checksum_help(struct sk_buff *skb);
2631 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2632 	netdev_features_t features);
2633 #ifdef CONFIG_BUG
2634 extern void netdev_rx_csum_fault(struct net_device *dev);
2635 #else
2636 static inline void netdev_rx_csum_fault(struct net_device *dev)
2637 {
2638 }
2639 #endif
2640 /* rx skb timestamps */
2641 extern void		net_enable_timestamp(void);
2642 extern void		net_disable_timestamp(void);
2643 
2644 #ifdef CONFIG_PROC_FS
2645 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2646 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2647 extern void dev_seq_stop(struct seq_file *seq, void *v);
2648 #endif
2649 
2650 extern int netdev_class_create_file(struct class_attribute *class_attr);
2651 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2652 
2653 extern struct kobj_ns_type_operations net_ns_type_operations;
2654 
2655 extern const char *netdev_drivername(const struct net_device *dev);
2656 
2657 extern void linkwatch_run_queue(void);
2658 
2659 static inline netdev_features_t netdev_get_wanted_features(
2660 	struct net_device *dev)
2661 {
2662 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2663 }
2664 netdev_features_t netdev_increment_features(netdev_features_t all,
2665 	netdev_features_t one, netdev_features_t mask);
2666 int __netdev_update_features(struct net_device *dev);
2667 void netdev_update_features(struct net_device *dev);
2668 void netdev_change_features(struct net_device *dev);
2669 
2670 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2671 					struct net_device *dev);
2672 
2673 netdev_features_t netif_skb_features(struct sk_buff *skb);
2674 
2675 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2676 {
2677 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2678 
2679 	/* check flags correspondence */
2680 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2681 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2682 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2683 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2684 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2685 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2686 
2687 	return (features & feature) == feature;
2688 }
2689 
2690 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2691 {
2692 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2693 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2694 }
2695 
2696 static inline bool netif_needs_gso(struct sk_buff *skb,
2697 				   netdev_features_t features)
2698 {
2699 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2700 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2701 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2702 }
2703 
2704 static inline void netif_set_gso_max_size(struct net_device *dev,
2705 					  unsigned int size)
2706 {
2707 	dev->gso_max_size = size;
2708 }
2709 
2710 static inline bool netif_is_bond_slave(struct net_device *dev)
2711 {
2712 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2713 }
2714 
2715 static inline bool netif_supports_nofcs(struct net_device *dev)
2716 {
2717 	return dev->priv_flags & IFF_SUPP_NOFCS;
2718 }
2719 
2720 extern struct pernet_operations __net_initdata loopback_net_ops;
2721 
2722 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2723 
2724 /* netdev_printk helpers, similar to dev_printk */
2725 
2726 static inline const char *netdev_name(const struct net_device *dev)
2727 {
2728 	if (dev->reg_state != NETREG_REGISTERED)
2729 		return "(unregistered net_device)";
2730 	return dev->name;
2731 }
2732 
2733 extern __printf(3, 4)
2734 int netdev_printk(const char *level, const struct net_device *dev,
2735 		  const char *format, ...);
2736 extern __printf(2, 3)
2737 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2738 extern __printf(2, 3)
2739 int netdev_alert(const struct net_device *dev, const char *format, ...);
2740 extern __printf(2, 3)
2741 int netdev_crit(const struct net_device *dev, const char *format, ...);
2742 extern __printf(2, 3)
2743 int netdev_err(const struct net_device *dev, const char *format, ...);
2744 extern __printf(2, 3)
2745 int netdev_warn(const struct net_device *dev, const char *format, ...);
2746 extern __printf(2, 3)
2747 int netdev_notice(const struct net_device *dev, const char *format, ...);
2748 extern __printf(2, 3)
2749 int netdev_info(const struct net_device *dev, const char *format, ...);
2750 
2751 #define MODULE_ALIAS_NETDEV(device) \
2752 	MODULE_ALIAS("netdev-" device)
2753 
2754 #if defined(CONFIG_DYNAMIC_DEBUG)
2755 #define netdev_dbg(__dev, format, args...)			\
2756 do {								\
2757 	dynamic_netdev_dbg(__dev, format, ##args);		\
2758 } while (0)
2759 #elif defined(DEBUG)
2760 #define netdev_dbg(__dev, format, args...)			\
2761 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2762 #else
2763 #define netdev_dbg(__dev, format, args...)			\
2764 ({								\
2765 	if (0)							\
2766 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2767 	0;							\
2768 })
2769 #endif
2770 
2771 #if defined(VERBOSE_DEBUG)
2772 #define netdev_vdbg	netdev_dbg
2773 #else
2774 
2775 #define netdev_vdbg(dev, format, args...)			\
2776 ({								\
2777 	if (0)							\
2778 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2779 	0;							\
2780 })
2781 #endif
2782 
2783 /*
2784  * netdev_WARN() acts like dev_printk(), but with the key difference
2785  * of using a WARN/WARN_ON to get the message out, including the
2786  * file/line information and a backtrace.
2787  */
2788 #define netdev_WARN(dev, format, args...)			\
2789 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2790 
2791 /* netif printk helpers, similar to netdev_printk */
2792 
2793 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2794 do {					  			\
2795 	if (netif_msg_##type(priv))				\
2796 		netdev_printk(level, (dev), fmt, ##args);	\
2797 } while (0)
2798 
2799 #define netif_level(level, priv, type, dev, fmt, args...)	\
2800 do {								\
2801 	if (netif_msg_##type(priv))				\
2802 		netdev_##level(dev, fmt, ##args);		\
2803 } while (0)
2804 
2805 #define netif_emerg(priv, type, dev, fmt, args...)		\
2806 	netif_level(emerg, priv, type, dev, fmt, ##args)
2807 #define netif_alert(priv, type, dev, fmt, args...)		\
2808 	netif_level(alert, priv, type, dev, fmt, ##args)
2809 #define netif_crit(priv, type, dev, fmt, args...)		\
2810 	netif_level(crit, priv, type, dev, fmt, ##args)
2811 #define netif_err(priv, type, dev, fmt, args...)		\
2812 	netif_level(err, priv, type, dev, fmt, ##args)
2813 #define netif_warn(priv, type, dev, fmt, args...)		\
2814 	netif_level(warn, priv, type, dev, fmt, ##args)
2815 #define netif_notice(priv, type, dev, fmt, args...)		\
2816 	netif_level(notice, priv, type, dev, fmt, ##args)
2817 #define netif_info(priv, type, dev, fmt, args...)		\
2818 	netif_level(info, priv, type, dev, fmt, ##args)
2819 
2820 #if defined(CONFIG_DYNAMIC_DEBUG)
2821 #define netif_dbg(priv, type, netdev, format, args...)		\
2822 do {								\
2823 	if (netif_msg_##type(priv))				\
2824 		dynamic_netdev_dbg(netdev, format, ##args);	\
2825 } while (0)
2826 #elif defined(DEBUG)
2827 #define netif_dbg(priv, type, dev, format, args...)		\
2828 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2829 #else
2830 #define netif_dbg(priv, type, dev, format, args...)			\
2831 ({									\
2832 	if (0)								\
2833 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2834 	0;								\
2835 })
2836 #endif
2837 
2838 #if defined(VERBOSE_DEBUG)
2839 #define netif_vdbg	netif_dbg
2840 #else
2841 #define netif_vdbg(priv, type, dev, format, args...)		\
2842 ({								\
2843 	if (0)							\
2844 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2845 	0;							\
2846 })
2847 #endif
2848 
2849 #endif	/* _LINUX_NETDEVICE_H */
2850