1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/pm_qos.h> 29 #include <linux/timer.h> 30 #include <linux/bug.h> 31 #include <linux/delay.h> 32 #include <linux/atomic.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 54 struct netpoll_info; 55 struct device; 56 struct phy_device; 57 /* 802.11 specific */ 58 struct wireless_dev; 59 /* source back-compat hooks */ 60 #define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63 extern void netdev_set_default_ethtool_ops(struct net_device *dev, 64 const struct ethtool_ops *ops); 65 66 /* hardware address assignment types */ 67 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously, in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105 /* Driver transmit return codes */ 106 #define NETDEV_TX_MASK 0xf0 107 108 enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 /* 135 * Compute the worst case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140 # if defined(CONFIG_MAC80211_MESH) 141 # define LL_MAX_HEADER 128 142 # else 143 # define LL_MAX_HEADER 96 144 # endif 145 #elif IS_ENABLED(CONFIG_TR) 146 # define LL_MAX_HEADER 48 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 #endif 197 198 struct neighbour; 199 struct neigh_parms; 200 struct sk_buff; 201 202 struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206 #define NETDEV_HW_ADDR_T_LAN 1 207 #define NETDEV_HW_ADDR_T_SAN 2 208 #define NETDEV_HW_ADDR_T_SLAVE 3 209 #define NETDEV_HW_ADDR_T_UNICAST 4 210 #define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool synced; 212 bool global_use; 213 int refcount; 214 struct rcu_head rcu_head; 215 }; 216 217 struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220 }; 221 222 #define netdev_hw_addr_list_count(l) ((l)->count) 223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224 #define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229 #define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234 #define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237 struct hh_cache { 238 u16 hh_len; 239 u16 __pad; 240 seqlock_t hh_lock; 241 242 /* cached hardware header; allow for machine alignment needs. */ 243 #define HH_DATA_MOD 16 244 #define HH_DATA_OFF(__len) \ 245 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 246 #define HH_DATA_ALIGN(__len) \ 247 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 248 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 249 }; 250 251 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 252 * Alternative is: 253 * dev->hard_header_len ? (dev->hard_header_len + 254 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 255 * 256 * We could use other alignment values, but we must maintain the 257 * relationship HH alignment <= LL alignment. 258 */ 259 #define LL_RESERVED_SPACE(dev) \ 260 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263 264 struct header_ops { 265 int (*create) (struct sk_buff *skb, struct net_device *dev, 266 unsigned short type, const void *daddr, 267 const void *saddr, unsigned int len); 268 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 269 int (*rebuild)(struct sk_buff *skb); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 }; 275 276 /* These flag bits are private to the generic network queueing 277 * layer, they may not be explicitly referenced by any other 278 * code. 279 */ 280 281 enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287 }; 288 289 290 /* 291 * This structure holds at boot time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294 struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297 }; 298 #define NETDEV_BOOT_SETUP_MAX 8 299 300 extern int __init netdev_boot_setup(char *str); 301 302 /* 303 * Structure for NAPI scheduling similar to tasklet but with weighting 304 */ 305 struct napi_struct { 306 /* The poll_list must only be managed by the entity which 307 * changes the state of the NAPI_STATE_SCHED bit. This means 308 * whoever atomically sets that bit can add this napi_struct 309 * to the per-cpu poll_list, and whoever clears that bit 310 * can remove from the list right before clearing the bit. 311 */ 312 struct list_head poll_list; 313 314 unsigned long state; 315 int weight; 316 unsigned int gro_count; 317 int (*poll)(struct napi_struct *, int); 318 #ifdef CONFIG_NETPOLL 319 spinlock_t poll_lock; 320 int poll_owner; 321 #endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct list_head dev_list; 326 }; 327 328 enum { 329 NAPI_STATE_SCHED, /* Poll is scheduled */ 330 NAPI_STATE_DISABLE, /* Disable pending */ 331 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 332 }; 333 334 enum gro_result { 335 GRO_MERGED, 336 GRO_MERGED_FREE, 337 GRO_HELD, 338 GRO_NORMAL, 339 GRO_DROP, 340 }; 341 typedef enum gro_result gro_result_t; 342 343 /* 344 * enum rx_handler_result - Possible return values for rx_handlers. 345 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 346 * further. 347 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 348 * case skb->dev was changed by rx_handler. 349 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 350 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 351 * 352 * rx_handlers are functions called from inside __netif_receive_skb(), to do 353 * special processing of the skb, prior to delivery to protocol handlers. 354 * 355 * Currently, a net_device can only have a single rx_handler registered. Trying 356 * to register a second rx_handler will return -EBUSY. 357 * 358 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 359 * To unregister a rx_handler on a net_device, use 360 * netdev_rx_handler_unregister(). 361 * 362 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 363 * do with the skb. 364 * 365 * If the rx_handler consumed to skb in some way, it should return 366 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 367 * the skb to be delivered in some other ways. 368 * 369 * If the rx_handler changed skb->dev, to divert the skb to another 370 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 371 * new device will be called if it exists. 372 * 373 * If the rx_handler consider the skb should be ignored, it should return 374 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 375 * are registered on exact device (ptype->dev == skb->dev). 376 * 377 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 378 * delivered, it should return RX_HANDLER_PASS. 379 * 380 * A device without a registered rx_handler will behave as if rx_handler 381 * returned RX_HANDLER_PASS. 382 */ 383 384 enum rx_handler_result { 385 RX_HANDLER_CONSUMED, 386 RX_HANDLER_ANOTHER, 387 RX_HANDLER_EXACT, 388 RX_HANDLER_PASS, 389 }; 390 typedef enum rx_handler_result rx_handler_result_t; 391 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 392 393 extern void __napi_schedule(struct napi_struct *n); 394 395 static inline bool napi_disable_pending(struct napi_struct *n) 396 { 397 return test_bit(NAPI_STATE_DISABLE, &n->state); 398 } 399 400 /** 401 * napi_schedule_prep - check if napi can be scheduled 402 * @n: napi context 403 * 404 * Test if NAPI routine is already running, and if not mark 405 * it as running. This is used as a condition variable 406 * insure only one NAPI poll instance runs. We also make 407 * sure there is no pending NAPI disable. 408 */ 409 static inline bool napi_schedule_prep(struct napi_struct *n) 410 { 411 return !napi_disable_pending(n) && 412 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 413 } 414 415 /** 416 * napi_schedule - schedule NAPI poll 417 * @n: napi context 418 * 419 * Schedule NAPI poll routine to be called if it is not already 420 * running. 421 */ 422 static inline void napi_schedule(struct napi_struct *n) 423 { 424 if (napi_schedule_prep(n)) 425 __napi_schedule(n); 426 } 427 428 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 429 static inline bool napi_reschedule(struct napi_struct *napi) 430 { 431 if (napi_schedule_prep(napi)) { 432 __napi_schedule(napi); 433 return true; 434 } 435 return false; 436 } 437 438 /** 439 * napi_complete - NAPI processing complete 440 * @n: napi context 441 * 442 * Mark NAPI processing as complete. 443 */ 444 extern void __napi_complete(struct napi_struct *n); 445 extern void napi_complete(struct napi_struct *n); 446 447 /** 448 * napi_disable - prevent NAPI from scheduling 449 * @n: napi context 450 * 451 * Stop NAPI from being scheduled on this context. 452 * Waits till any outstanding processing completes. 453 */ 454 static inline void napi_disable(struct napi_struct *n) 455 { 456 set_bit(NAPI_STATE_DISABLE, &n->state); 457 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 458 msleep(1); 459 clear_bit(NAPI_STATE_DISABLE, &n->state); 460 } 461 462 /** 463 * napi_enable - enable NAPI scheduling 464 * @n: napi context 465 * 466 * Resume NAPI from being scheduled on this context. 467 * Must be paired with napi_disable. 468 */ 469 static inline void napi_enable(struct napi_struct *n) 470 { 471 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 472 smp_mb__before_clear_bit(); 473 clear_bit(NAPI_STATE_SCHED, &n->state); 474 } 475 476 #ifdef CONFIG_SMP 477 /** 478 * napi_synchronize - wait until NAPI is not running 479 * @n: napi context 480 * 481 * Wait until NAPI is done being scheduled on this context. 482 * Waits till any outstanding processing completes but 483 * does not disable future activations. 484 */ 485 static inline void napi_synchronize(const struct napi_struct *n) 486 { 487 while (test_bit(NAPI_STATE_SCHED, &n->state)) 488 msleep(1); 489 } 490 #else 491 # define napi_synchronize(n) barrier() 492 #endif 493 494 enum netdev_queue_state_t { 495 __QUEUE_STATE_DRV_XOFF, 496 __QUEUE_STATE_STACK_XOFF, 497 __QUEUE_STATE_FROZEN, 498 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 499 (1 << __QUEUE_STATE_STACK_XOFF)) 500 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 501 (1 << __QUEUE_STATE_FROZEN)) 502 }; 503 /* 504 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 505 * netif_tx_* functions below are used to manipulate this flag. The 506 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 507 * queue independently. The netif_xmit_*stopped functions below are called 508 * to check if the queue has been stopped by the driver or stack (either 509 * of the XOFF bits are set in the state). Drivers should not need to call 510 * netif_xmit*stopped functions, they should only be using netif_tx_*. 511 */ 512 513 struct netdev_queue { 514 /* 515 * read mostly part 516 */ 517 struct net_device *dev; 518 struct Qdisc *qdisc; 519 struct Qdisc *qdisc_sleeping; 520 #ifdef CONFIG_SYSFS 521 struct kobject kobj; 522 #endif 523 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 524 int numa_node; 525 #endif 526 /* 527 * write mostly part 528 */ 529 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 530 int xmit_lock_owner; 531 /* 532 * please use this field instead of dev->trans_start 533 */ 534 unsigned long trans_start; 535 536 /* 537 * Number of TX timeouts for this queue 538 * (/sys/class/net/DEV/Q/trans_timeout) 539 */ 540 unsigned long trans_timeout; 541 542 unsigned long state; 543 544 #ifdef CONFIG_BQL 545 struct dql dql; 546 #endif 547 } ____cacheline_aligned_in_smp; 548 549 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 550 { 551 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 552 return q->numa_node; 553 #else 554 return NUMA_NO_NODE; 555 #endif 556 } 557 558 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 559 { 560 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 561 q->numa_node = node; 562 #endif 563 } 564 565 #ifdef CONFIG_RPS 566 /* 567 * This structure holds an RPS map which can be of variable length. The 568 * map is an array of CPUs. 569 */ 570 struct rps_map { 571 unsigned int len; 572 struct rcu_head rcu; 573 u16 cpus[0]; 574 }; 575 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 576 577 /* 578 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 579 * tail pointer for that CPU's input queue at the time of last enqueue, and 580 * a hardware filter index. 581 */ 582 struct rps_dev_flow { 583 u16 cpu; 584 u16 filter; 585 unsigned int last_qtail; 586 }; 587 #define RPS_NO_FILTER 0xffff 588 589 /* 590 * The rps_dev_flow_table structure contains a table of flow mappings. 591 */ 592 struct rps_dev_flow_table { 593 unsigned int mask; 594 struct rcu_head rcu; 595 struct work_struct free_work; 596 struct rps_dev_flow flows[0]; 597 }; 598 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 599 ((_num) * sizeof(struct rps_dev_flow))) 600 601 /* 602 * The rps_sock_flow_table contains mappings of flows to the last CPU 603 * on which they were processed by the application (set in recvmsg). 604 */ 605 struct rps_sock_flow_table { 606 unsigned int mask; 607 u16 ents[0]; 608 }; 609 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 610 ((_num) * sizeof(u16))) 611 612 #define RPS_NO_CPU 0xffff 613 614 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 615 u32 hash) 616 { 617 if (table && hash) { 618 unsigned int cpu, index = hash & table->mask; 619 620 /* We only give a hint, preemption can change cpu under us */ 621 cpu = raw_smp_processor_id(); 622 623 if (table->ents[index] != cpu) 624 table->ents[index] = cpu; 625 } 626 } 627 628 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 629 u32 hash) 630 { 631 if (table && hash) 632 table->ents[hash & table->mask] = RPS_NO_CPU; 633 } 634 635 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 636 637 #ifdef CONFIG_RFS_ACCEL 638 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 639 u32 flow_id, u16 filter_id); 640 #endif 641 642 /* This structure contains an instance of an RX queue. */ 643 struct netdev_rx_queue { 644 struct rps_map __rcu *rps_map; 645 struct rps_dev_flow_table __rcu *rps_flow_table; 646 struct kobject kobj; 647 struct net_device *dev; 648 } ____cacheline_aligned_in_smp; 649 #endif /* CONFIG_RPS */ 650 651 #ifdef CONFIG_XPS 652 /* 653 * This structure holds an XPS map which can be of variable length. The 654 * map is an array of queues. 655 */ 656 struct xps_map { 657 unsigned int len; 658 unsigned int alloc_len; 659 struct rcu_head rcu; 660 u16 queues[0]; 661 }; 662 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 663 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 664 / sizeof(u16)) 665 666 /* 667 * This structure holds all XPS maps for device. Maps are indexed by CPU. 668 */ 669 struct xps_dev_maps { 670 struct rcu_head rcu; 671 struct xps_map __rcu *cpu_map[0]; 672 }; 673 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 674 (nr_cpu_ids * sizeof(struct xps_map *))) 675 #endif /* CONFIG_XPS */ 676 677 #define TC_MAX_QUEUE 16 678 #define TC_BITMASK 15 679 /* HW offloaded queuing disciplines txq count and offset maps */ 680 struct netdev_tc_txq { 681 u16 count; 682 u16 offset; 683 }; 684 685 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 686 /* 687 * This structure is to hold information about the device 688 * configured to run FCoE protocol stack. 689 */ 690 struct netdev_fcoe_hbainfo { 691 char manufacturer[64]; 692 char serial_number[64]; 693 char hardware_version[64]; 694 char driver_version[64]; 695 char optionrom_version[64]; 696 char firmware_version[64]; 697 char model[256]; 698 char model_description[256]; 699 }; 700 #endif 701 702 /* 703 * This structure defines the management hooks for network devices. 704 * The following hooks can be defined; unless noted otherwise, they are 705 * optional and can be filled with a null pointer. 706 * 707 * int (*ndo_init)(struct net_device *dev); 708 * This function is called once when network device is registered. 709 * The network device can use this to any late stage initializaton 710 * or semantic validattion. It can fail with an error code which will 711 * be propogated back to register_netdev 712 * 713 * void (*ndo_uninit)(struct net_device *dev); 714 * This function is called when device is unregistered or when registration 715 * fails. It is not called if init fails. 716 * 717 * int (*ndo_open)(struct net_device *dev); 718 * This function is called when network device transistions to the up 719 * state. 720 * 721 * int (*ndo_stop)(struct net_device *dev); 722 * This function is called when network device transistions to the down 723 * state. 724 * 725 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 726 * struct net_device *dev); 727 * Called when a packet needs to be transmitted. 728 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 729 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 730 * Required can not be NULL. 731 * 732 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 733 * Called to decide which queue to when device supports multiple 734 * transmit queues. 735 * 736 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 737 * This function is called to allow device receiver to make 738 * changes to configuration when multicast or promiscious is enabled. 739 * 740 * void (*ndo_set_rx_mode)(struct net_device *dev); 741 * This function is called device changes address list filtering. 742 * If driver handles unicast address filtering, it should set 743 * IFF_UNICAST_FLT to its priv_flags. 744 * 745 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 746 * This function is called when the Media Access Control address 747 * needs to be changed. If this interface is not defined, the 748 * mac address can not be changed. 749 * 750 * int (*ndo_validate_addr)(struct net_device *dev); 751 * Test if Media Access Control address is valid for the device. 752 * 753 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 754 * Called when a user request an ioctl which can't be handled by 755 * the generic interface code. If not defined ioctl's return 756 * not supported error code. 757 * 758 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 759 * Used to set network devices bus interface parameters. This interface 760 * is retained for legacy reason, new devices should use the bus 761 * interface (PCI) for low level management. 762 * 763 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 764 * Called when a user wants to change the Maximum Transfer Unit 765 * of a device. If not defined, any request to change MTU will 766 * will return an error. 767 * 768 * void (*ndo_tx_timeout)(struct net_device *dev); 769 * Callback uses when the transmitter has not made any progress 770 * for dev->watchdog ticks. 771 * 772 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 773 * struct rtnl_link_stats64 *storage); 774 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 775 * Called when a user wants to get the network device usage 776 * statistics. Drivers must do one of the following: 777 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 778 * rtnl_link_stats64 structure passed by the caller. 779 * 2. Define @ndo_get_stats to update a net_device_stats structure 780 * (which should normally be dev->stats) and return a pointer to 781 * it. The structure may be changed asynchronously only if each 782 * field is written atomically. 783 * 3. Update dev->stats asynchronously and atomically, and define 784 * neither operation. 785 * 786 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 787 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 788 * this function is called when a VLAN id is registered. 789 * 790 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 791 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 792 * this function is called when a VLAN id is unregistered. 793 * 794 * void (*ndo_poll_controller)(struct net_device *dev); 795 * 796 * SR-IOV management functions. 797 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 798 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 799 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 800 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 801 * int (*ndo_get_vf_config)(struct net_device *dev, 802 * int vf, struct ifla_vf_info *ivf); 803 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 804 * struct nlattr *port[]); 805 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 806 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 807 * Called to setup 'tc' number of traffic classes in the net device. This 808 * is always called from the stack with the rtnl lock held and netif tx 809 * queues stopped. This allows the netdevice to perform queue management 810 * safely. 811 * 812 * Fiber Channel over Ethernet (FCoE) offload functions. 813 * int (*ndo_fcoe_enable)(struct net_device *dev); 814 * Called when the FCoE protocol stack wants to start using LLD for FCoE 815 * so the underlying device can perform whatever needed configuration or 816 * initialization to support acceleration of FCoE traffic. 817 * 818 * int (*ndo_fcoe_disable)(struct net_device *dev); 819 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 820 * so the underlying device can perform whatever needed clean-ups to 821 * stop supporting acceleration of FCoE traffic. 822 * 823 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 824 * struct scatterlist *sgl, unsigned int sgc); 825 * Called when the FCoE Initiator wants to initialize an I/O that 826 * is a possible candidate for Direct Data Placement (DDP). The LLD can 827 * perform necessary setup and returns 1 to indicate the device is set up 828 * successfully to perform DDP on this I/O, otherwise this returns 0. 829 * 830 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 831 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 832 * indicated by the FC exchange id 'xid', so the underlying device can 833 * clean up and reuse resources for later DDP requests. 834 * 835 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 836 * struct scatterlist *sgl, unsigned int sgc); 837 * Called when the FCoE Target wants to initialize an I/O that 838 * is a possible candidate for Direct Data Placement (DDP). The LLD can 839 * perform necessary setup and returns 1 to indicate the device is set up 840 * successfully to perform DDP on this I/O, otherwise this returns 0. 841 * 842 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 843 * struct netdev_fcoe_hbainfo *hbainfo); 844 * Called when the FCoE Protocol stack wants information on the underlying 845 * device. This information is utilized by the FCoE protocol stack to 846 * register attributes with Fiber Channel management service as per the 847 * FC-GS Fabric Device Management Information(FDMI) specification. 848 * 849 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 850 * Called when the underlying device wants to override default World Wide 851 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 852 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 853 * protocol stack to use. 854 * 855 * RFS acceleration. 856 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 857 * u16 rxq_index, u32 flow_id); 858 * Set hardware filter for RFS. rxq_index is the target queue index; 859 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 860 * Return the filter ID on success, or a negative error code. 861 * 862 * Slave management functions (for bridge, bonding, etc). User should 863 * call netdev_set_master() to set dev->master properly. 864 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 865 * Called to make another netdev an underling. 866 * 867 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 868 * Called to release previously enslaved netdev. 869 * 870 * Feature/offload setting functions. 871 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 872 * netdev_features_t features); 873 * Adjusts the requested feature flags according to device-specific 874 * constraints, and returns the resulting flags. Must not modify 875 * the device state. 876 * 877 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 878 * Called to update device configuration to new features. Passed 879 * feature set might be less than what was returned by ndo_fix_features()). 880 * Must return >0 or -errno if it changed dev->features itself. 881 * 882 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 883 * struct net_device *dev, 884 * const unsigned char *addr, u16 flags) 885 * Adds an FDB entry to dev for addr. 886 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev, 887 * const unsigned char *addr) 888 * Deletes the FDB entry from dev coresponding to addr. 889 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 890 * struct net_device *dev, int idx) 891 * Used to add FDB entries to dump requests. Implementers should add 892 * entries to skb and update idx with the number of entries. 893 * 894 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 895 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 896 * struct net_device *dev) 897 */ 898 struct net_device_ops { 899 int (*ndo_init)(struct net_device *dev); 900 void (*ndo_uninit)(struct net_device *dev); 901 int (*ndo_open)(struct net_device *dev); 902 int (*ndo_stop)(struct net_device *dev); 903 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 904 struct net_device *dev); 905 u16 (*ndo_select_queue)(struct net_device *dev, 906 struct sk_buff *skb); 907 void (*ndo_change_rx_flags)(struct net_device *dev, 908 int flags); 909 void (*ndo_set_rx_mode)(struct net_device *dev); 910 int (*ndo_set_mac_address)(struct net_device *dev, 911 void *addr); 912 int (*ndo_validate_addr)(struct net_device *dev); 913 int (*ndo_do_ioctl)(struct net_device *dev, 914 struct ifreq *ifr, int cmd); 915 int (*ndo_set_config)(struct net_device *dev, 916 struct ifmap *map); 917 int (*ndo_change_mtu)(struct net_device *dev, 918 int new_mtu); 919 int (*ndo_neigh_setup)(struct net_device *dev, 920 struct neigh_parms *); 921 void (*ndo_tx_timeout) (struct net_device *dev); 922 923 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 924 struct rtnl_link_stats64 *storage); 925 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 926 927 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 928 unsigned short vid); 929 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 930 unsigned short vid); 931 #ifdef CONFIG_NET_POLL_CONTROLLER 932 void (*ndo_poll_controller)(struct net_device *dev); 933 int (*ndo_netpoll_setup)(struct net_device *dev, 934 struct netpoll_info *info, 935 gfp_t gfp); 936 void (*ndo_netpoll_cleanup)(struct net_device *dev); 937 #endif 938 int (*ndo_set_vf_mac)(struct net_device *dev, 939 int queue, u8 *mac); 940 int (*ndo_set_vf_vlan)(struct net_device *dev, 941 int queue, u16 vlan, u8 qos); 942 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 943 int vf, int rate); 944 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 945 int vf, bool setting); 946 int (*ndo_get_vf_config)(struct net_device *dev, 947 int vf, 948 struct ifla_vf_info *ivf); 949 int (*ndo_set_vf_port)(struct net_device *dev, 950 int vf, 951 struct nlattr *port[]); 952 int (*ndo_get_vf_port)(struct net_device *dev, 953 int vf, struct sk_buff *skb); 954 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 955 #if IS_ENABLED(CONFIG_FCOE) 956 int (*ndo_fcoe_enable)(struct net_device *dev); 957 int (*ndo_fcoe_disable)(struct net_device *dev); 958 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 959 u16 xid, 960 struct scatterlist *sgl, 961 unsigned int sgc); 962 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 963 u16 xid); 964 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 965 u16 xid, 966 struct scatterlist *sgl, 967 unsigned int sgc); 968 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 969 struct netdev_fcoe_hbainfo *hbainfo); 970 #endif 971 972 #if IS_ENABLED(CONFIG_LIBFCOE) 973 #define NETDEV_FCOE_WWNN 0 974 #define NETDEV_FCOE_WWPN 1 975 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 976 u64 *wwn, int type); 977 #endif 978 979 #ifdef CONFIG_RFS_ACCEL 980 int (*ndo_rx_flow_steer)(struct net_device *dev, 981 const struct sk_buff *skb, 982 u16 rxq_index, 983 u32 flow_id); 984 #endif 985 int (*ndo_add_slave)(struct net_device *dev, 986 struct net_device *slave_dev); 987 int (*ndo_del_slave)(struct net_device *dev, 988 struct net_device *slave_dev); 989 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 990 netdev_features_t features); 991 int (*ndo_set_features)(struct net_device *dev, 992 netdev_features_t features); 993 int (*ndo_neigh_construct)(struct neighbour *n); 994 void (*ndo_neigh_destroy)(struct neighbour *n); 995 996 int (*ndo_fdb_add)(struct ndmsg *ndm, 997 struct nlattr *tb[], 998 struct net_device *dev, 999 const unsigned char *addr, 1000 u16 flags); 1001 int (*ndo_fdb_del)(struct ndmsg *ndm, 1002 struct net_device *dev, 1003 const unsigned char *addr); 1004 int (*ndo_fdb_dump)(struct sk_buff *skb, 1005 struct netlink_callback *cb, 1006 struct net_device *dev, 1007 int idx); 1008 1009 int (*ndo_bridge_setlink)(struct net_device *dev, 1010 struct nlmsghdr *nlh); 1011 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1012 u32 pid, u32 seq, 1013 struct net_device *dev); 1014 }; 1015 1016 /* 1017 * The DEVICE structure. 1018 * Actually, this whole structure is a big mistake. It mixes I/O 1019 * data with strictly "high-level" data, and it has to know about 1020 * almost every data structure used in the INET module. 1021 * 1022 * FIXME: cleanup struct net_device such that network protocol info 1023 * moves out. 1024 */ 1025 1026 struct net_device { 1027 1028 /* 1029 * This is the first field of the "visible" part of this structure 1030 * (i.e. as seen by users in the "Space.c" file). It is the name 1031 * of the interface. 1032 */ 1033 char name[IFNAMSIZ]; 1034 1035 /* device name hash chain, please keep it close to name[] */ 1036 struct hlist_node name_hlist; 1037 1038 /* snmp alias */ 1039 char *ifalias; 1040 1041 /* 1042 * I/O specific fields 1043 * FIXME: Merge these and struct ifmap into one 1044 */ 1045 unsigned long mem_end; /* shared mem end */ 1046 unsigned long mem_start; /* shared mem start */ 1047 unsigned long base_addr; /* device I/O address */ 1048 unsigned int irq; /* device IRQ number */ 1049 1050 /* 1051 * Some hardware also needs these fields, but they are not 1052 * part of the usual set specified in Space.c. 1053 */ 1054 1055 unsigned long state; 1056 1057 struct list_head dev_list; 1058 struct list_head napi_list; 1059 struct list_head unreg_list; 1060 1061 /* currently active device features */ 1062 netdev_features_t features; 1063 /* user-changeable features */ 1064 netdev_features_t hw_features; 1065 /* user-requested features */ 1066 netdev_features_t wanted_features; 1067 /* mask of features inheritable by VLAN devices */ 1068 netdev_features_t vlan_features; 1069 /* mask of features inherited by encapsulating devices 1070 * This field indicates what encapsulation offloads 1071 * the hardware is capable of doing, and drivers will 1072 * need to set them appropriately. 1073 */ 1074 netdev_features_t hw_enc_features; 1075 1076 /* Interface index. Unique device identifier */ 1077 int ifindex; 1078 int iflink; 1079 1080 struct net_device_stats stats; 1081 atomic_long_t rx_dropped; /* dropped packets by core network 1082 * Do not use this in drivers. 1083 */ 1084 1085 #ifdef CONFIG_WIRELESS_EXT 1086 /* List of functions to handle Wireless Extensions (instead of ioctl). 1087 * See <net/iw_handler.h> for details. Jean II */ 1088 const struct iw_handler_def * wireless_handlers; 1089 /* Instance data managed by the core of Wireless Extensions. */ 1090 struct iw_public_data * wireless_data; 1091 #endif 1092 /* Management operations */ 1093 const struct net_device_ops *netdev_ops; 1094 const struct ethtool_ops *ethtool_ops; 1095 1096 /* Hardware header description */ 1097 const struct header_ops *header_ops; 1098 1099 unsigned int flags; /* interface flags (a la BSD) */ 1100 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1101 * See if.h for definitions. */ 1102 unsigned short gflags; 1103 unsigned short padded; /* How much padding added by alloc_netdev() */ 1104 1105 unsigned char operstate; /* RFC2863 operstate */ 1106 unsigned char link_mode; /* mapping policy to operstate */ 1107 1108 unsigned char if_port; /* Selectable AUI, TP,..*/ 1109 unsigned char dma; /* DMA channel */ 1110 1111 unsigned int mtu; /* interface MTU value */ 1112 unsigned short type; /* interface hardware type */ 1113 unsigned short hard_header_len; /* hardware hdr length */ 1114 1115 /* extra head- and tailroom the hardware may need, but not in all cases 1116 * can this be guaranteed, especially tailroom. Some cases also use 1117 * LL_MAX_HEADER instead to allocate the skb. 1118 */ 1119 unsigned short needed_headroom; 1120 unsigned short needed_tailroom; 1121 1122 /* Interface address info. */ 1123 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1124 unsigned char addr_assign_type; /* hw address assignment type */ 1125 unsigned char addr_len; /* hardware address length */ 1126 unsigned char neigh_priv_len; 1127 unsigned short dev_id; /* for shared network cards */ 1128 1129 spinlock_t addr_list_lock; 1130 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1131 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1132 bool uc_promisc; 1133 unsigned int promiscuity; 1134 unsigned int allmulti; 1135 1136 1137 /* Protocol specific pointers */ 1138 1139 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1140 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1141 #endif 1142 #if IS_ENABLED(CONFIG_NET_DSA) 1143 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1144 #endif 1145 void *atalk_ptr; /* AppleTalk link */ 1146 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1147 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1148 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1149 void *ax25_ptr; /* AX.25 specific data */ 1150 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1151 assign before registering */ 1152 1153 /* 1154 * Cache lines mostly used on receive path (including eth_type_trans()) 1155 */ 1156 unsigned long last_rx; /* Time of last Rx 1157 * This should not be set in 1158 * drivers, unless really needed, 1159 * because network stack (bonding) 1160 * use it if/when necessary, to 1161 * avoid dirtying this cache line. 1162 */ 1163 1164 struct net_device *master; /* Pointer to master device of a group, 1165 * which this device is member of. 1166 */ 1167 1168 /* Interface address info used in eth_type_trans() */ 1169 unsigned char *dev_addr; /* hw address, (before bcast 1170 because most packets are 1171 unicast) */ 1172 1173 struct netdev_hw_addr_list dev_addrs; /* list of device 1174 hw addresses */ 1175 1176 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1177 1178 #ifdef CONFIG_SYSFS 1179 struct kset *queues_kset; 1180 #endif 1181 1182 #ifdef CONFIG_RPS 1183 struct netdev_rx_queue *_rx; 1184 1185 /* Number of RX queues allocated at register_netdev() time */ 1186 unsigned int num_rx_queues; 1187 1188 /* Number of RX queues currently active in device */ 1189 unsigned int real_num_rx_queues; 1190 1191 #ifdef CONFIG_RFS_ACCEL 1192 /* CPU reverse-mapping for RX completion interrupts, indexed 1193 * by RX queue number. Assigned by driver. This must only be 1194 * set if the ndo_rx_flow_steer operation is defined. */ 1195 struct cpu_rmap *rx_cpu_rmap; 1196 #endif 1197 #endif 1198 1199 rx_handler_func_t __rcu *rx_handler; 1200 void __rcu *rx_handler_data; 1201 1202 struct netdev_queue __rcu *ingress_queue; 1203 1204 /* 1205 * Cache lines mostly used on transmit path 1206 */ 1207 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1208 1209 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1210 unsigned int num_tx_queues; 1211 1212 /* Number of TX queues currently active in device */ 1213 unsigned int real_num_tx_queues; 1214 1215 /* root qdisc from userspace point of view */ 1216 struct Qdisc *qdisc; 1217 1218 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1219 spinlock_t tx_global_lock; 1220 1221 #ifdef CONFIG_XPS 1222 struct xps_dev_maps __rcu *xps_maps; 1223 #endif 1224 1225 /* These may be needed for future network-power-down code. */ 1226 1227 /* 1228 * trans_start here is expensive for high speed devices on SMP, 1229 * please use netdev_queue->trans_start instead. 1230 */ 1231 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1232 1233 int watchdog_timeo; /* used by dev_watchdog() */ 1234 struct timer_list watchdog_timer; 1235 1236 /* Number of references to this device */ 1237 int __percpu *pcpu_refcnt; 1238 1239 /* delayed register/unregister */ 1240 struct list_head todo_list; 1241 /* device index hash chain */ 1242 struct hlist_node index_hlist; 1243 1244 struct list_head link_watch_list; 1245 1246 /* register/unregister state machine */ 1247 enum { NETREG_UNINITIALIZED=0, 1248 NETREG_REGISTERED, /* completed register_netdevice */ 1249 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1250 NETREG_UNREGISTERED, /* completed unregister todo */ 1251 NETREG_RELEASED, /* called free_netdev */ 1252 NETREG_DUMMY, /* dummy device for NAPI poll */ 1253 } reg_state:8; 1254 1255 bool dismantle; /* device is going do be freed */ 1256 1257 enum { 1258 RTNL_LINK_INITIALIZED, 1259 RTNL_LINK_INITIALIZING, 1260 } rtnl_link_state:16; 1261 1262 /* Called from unregister, can be used to call free_netdev */ 1263 void (*destructor)(struct net_device *dev); 1264 1265 #ifdef CONFIG_NETPOLL 1266 struct netpoll_info *npinfo; 1267 #endif 1268 1269 #ifdef CONFIG_NET_NS 1270 /* Network namespace this network device is inside */ 1271 struct net *nd_net; 1272 #endif 1273 1274 /* mid-layer private */ 1275 union { 1276 void *ml_priv; 1277 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1278 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1279 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1280 }; 1281 /* GARP */ 1282 struct garp_port __rcu *garp_port; 1283 1284 /* class/net/name entry */ 1285 struct device dev; 1286 /* space for optional device, statistics, and wireless sysfs groups */ 1287 const struct attribute_group *sysfs_groups[4]; 1288 1289 /* rtnetlink link ops */ 1290 const struct rtnl_link_ops *rtnl_link_ops; 1291 1292 /* for setting kernel sock attribute on TCP connection setup */ 1293 #define GSO_MAX_SIZE 65536 1294 unsigned int gso_max_size; 1295 #define GSO_MAX_SEGS 65535 1296 u16 gso_max_segs; 1297 1298 #ifdef CONFIG_DCB 1299 /* Data Center Bridging netlink ops */ 1300 const struct dcbnl_rtnl_ops *dcbnl_ops; 1301 #endif 1302 u8 num_tc; 1303 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1304 u8 prio_tc_map[TC_BITMASK + 1]; 1305 1306 #if IS_ENABLED(CONFIG_FCOE) 1307 /* max exchange id for FCoE LRO by ddp */ 1308 unsigned int fcoe_ddp_xid; 1309 #endif 1310 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1311 struct netprio_map __rcu *priomap; 1312 #endif 1313 /* phy device may attach itself for hardware timestamping */ 1314 struct phy_device *phydev; 1315 1316 struct lock_class_key *qdisc_tx_busylock; 1317 1318 /* group the device belongs to */ 1319 int group; 1320 1321 struct pm_qos_request pm_qos_req; 1322 }; 1323 #define to_net_dev(d) container_of(d, struct net_device, dev) 1324 1325 #define NETDEV_ALIGN 32 1326 1327 static inline 1328 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1329 { 1330 return dev->prio_tc_map[prio & TC_BITMASK]; 1331 } 1332 1333 static inline 1334 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1335 { 1336 if (tc >= dev->num_tc) 1337 return -EINVAL; 1338 1339 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1340 return 0; 1341 } 1342 1343 static inline 1344 void netdev_reset_tc(struct net_device *dev) 1345 { 1346 dev->num_tc = 0; 1347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1349 } 1350 1351 static inline 1352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1353 { 1354 if (tc >= dev->num_tc) 1355 return -EINVAL; 1356 1357 dev->tc_to_txq[tc].count = count; 1358 dev->tc_to_txq[tc].offset = offset; 1359 return 0; 1360 } 1361 1362 static inline 1363 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1364 { 1365 if (num_tc > TC_MAX_QUEUE) 1366 return -EINVAL; 1367 1368 dev->num_tc = num_tc; 1369 return 0; 1370 } 1371 1372 static inline 1373 int netdev_get_num_tc(struct net_device *dev) 1374 { 1375 return dev->num_tc; 1376 } 1377 1378 static inline 1379 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1380 unsigned int index) 1381 { 1382 return &dev->_tx[index]; 1383 } 1384 1385 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1386 void (*f)(struct net_device *, 1387 struct netdev_queue *, 1388 void *), 1389 void *arg) 1390 { 1391 unsigned int i; 1392 1393 for (i = 0; i < dev->num_tx_queues; i++) 1394 f(dev, &dev->_tx[i], arg); 1395 } 1396 1397 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1398 struct sk_buff *skb); 1399 1400 /* 1401 * Net namespace inlines 1402 */ 1403 static inline 1404 struct net *dev_net(const struct net_device *dev) 1405 { 1406 return read_pnet(&dev->nd_net); 1407 } 1408 1409 static inline 1410 void dev_net_set(struct net_device *dev, struct net *net) 1411 { 1412 #ifdef CONFIG_NET_NS 1413 release_net(dev->nd_net); 1414 dev->nd_net = hold_net(net); 1415 #endif 1416 } 1417 1418 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1419 { 1420 #ifdef CONFIG_NET_DSA_TAG_DSA 1421 if (dev->dsa_ptr != NULL) 1422 return dsa_uses_dsa_tags(dev->dsa_ptr); 1423 #endif 1424 1425 return 0; 1426 } 1427 1428 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1429 { 1430 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1431 if (dev->dsa_ptr != NULL) 1432 return dsa_uses_trailer_tags(dev->dsa_ptr); 1433 #endif 1434 1435 return 0; 1436 } 1437 1438 /** 1439 * netdev_priv - access network device private data 1440 * @dev: network device 1441 * 1442 * Get network device private data 1443 */ 1444 static inline void *netdev_priv(const struct net_device *dev) 1445 { 1446 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1447 } 1448 1449 /* Set the sysfs physical device reference for the network logical device 1450 * if set prior to registration will cause a symlink during initialization. 1451 */ 1452 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1453 1454 /* Set the sysfs device type for the network logical device to allow 1455 * fin grained indentification of different network device types. For 1456 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1457 */ 1458 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1459 1460 /** 1461 * netif_napi_add - initialize a napi context 1462 * @dev: network device 1463 * @napi: napi context 1464 * @poll: polling function 1465 * @weight: default weight 1466 * 1467 * netif_napi_add() must be used to initialize a napi context prior to calling 1468 * *any* of the other napi related functions. 1469 */ 1470 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1471 int (*poll)(struct napi_struct *, int), int weight); 1472 1473 /** 1474 * netif_napi_del - remove a napi context 1475 * @napi: napi context 1476 * 1477 * netif_napi_del() removes a napi context from the network device napi list 1478 */ 1479 void netif_napi_del(struct napi_struct *napi); 1480 1481 struct napi_gro_cb { 1482 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1483 void *frag0; 1484 1485 /* Length of frag0. */ 1486 unsigned int frag0_len; 1487 1488 /* This indicates where we are processing relative to skb->data. */ 1489 int data_offset; 1490 1491 /* This is non-zero if the packet cannot be merged with the new skb. */ 1492 int flush; 1493 1494 /* Number of segments aggregated. */ 1495 u16 count; 1496 1497 /* This is non-zero if the packet may be of the same flow. */ 1498 u8 same_flow; 1499 1500 /* Free the skb? */ 1501 u8 free; 1502 #define NAPI_GRO_FREE 1 1503 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1504 1505 /* jiffies when first packet was created/queued */ 1506 unsigned long age; 1507 1508 /* Used in ipv6_gro_receive() */ 1509 int proto; 1510 1511 /* used in skb_gro_receive() slow path */ 1512 struct sk_buff *last; 1513 }; 1514 1515 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1516 1517 struct packet_type { 1518 __be16 type; /* This is really htons(ether_type). */ 1519 struct net_device *dev; /* NULL is wildcarded here */ 1520 int (*func) (struct sk_buff *, 1521 struct net_device *, 1522 struct packet_type *, 1523 struct net_device *); 1524 bool (*id_match)(struct packet_type *ptype, 1525 struct sock *sk); 1526 void *af_packet_priv; 1527 struct list_head list; 1528 }; 1529 1530 struct offload_callbacks { 1531 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1532 netdev_features_t features); 1533 int (*gso_send_check)(struct sk_buff *skb); 1534 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1535 struct sk_buff *skb); 1536 int (*gro_complete)(struct sk_buff *skb); 1537 }; 1538 1539 struct packet_offload { 1540 __be16 type; /* This is really htons(ether_type). */ 1541 struct offload_callbacks callbacks; 1542 struct list_head list; 1543 }; 1544 1545 #include <linux/notifier.h> 1546 1547 /* netdevice notifier chain. Please remember to update the rtnetlink 1548 * notification exclusion list in rtnetlink_event() when adding new 1549 * types. 1550 */ 1551 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1552 #define NETDEV_DOWN 0x0002 1553 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1554 detected a hardware crash and restarted 1555 - we can use this eg to kick tcp sessions 1556 once done */ 1557 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1558 #define NETDEV_REGISTER 0x0005 1559 #define NETDEV_UNREGISTER 0x0006 1560 #define NETDEV_CHANGEMTU 0x0007 1561 #define NETDEV_CHANGEADDR 0x0008 1562 #define NETDEV_GOING_DOWN 0x0009 1563 #define NETDEV_CHANGENAME 0x000A 1564 #define NETDEV_FEAT_CHANGE 0x000B 1565 #define NETDEV_BONDING_FAILOVER 0x000C 1566 #define NETDEV_PRE_UP 0x000D 1567 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1568 #define NETDEV_POST_TYPE_CHANGE 0x000F 1569 #define NETDEV_POST_INIT 0x0010 1570 #define NETDEV_UNREGISTER_FINAL 0x0011 1571 #define NETDEV_RELEASE 0x0012 1572 #define NETDEV_NOTIFY_PEERS 0x0013 1573 #define NETDEV_JOIN 0x0014 1574 1575 extern int register_netdevice_notifier(struct notifier_block *nb); 1576 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1577 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1578 1579 1580 extern rwlock_t dev_base_lock; /* Device list lock */ 1581 1582 extern seqcount_t devnet_rename_seq; /* Device rename seq */ 1583 1584 1585 #define for_each_netdev(net, d) \ 1586 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1587 #define for_each_netdev_reverse(net, d) \ 1588 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1589 #define for_each_netdev_rcu(net, d) \ 1590 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1591 #define for_each_netdev_safe(net, d, n) \ 1592 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1593 #define for_each_netdev_continue(net, d) \ 1594 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1595 #define for_each_netdev_continue_rcu(net, d) \ 1596 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1597 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1598 1599 static inline struct net_device *next_net_device(struct net_device *dev) 1600 { 1601 struct list_head *lh; 1602 struct net *net; 1603 1604 net = dev_net(dev); 1605 lh = dev->dev_list.next; 1606 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1607 } 1608 1609 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1610 { 1611 struct list_head *lh; 1612 struct net *net; 1613 1614 net = dev_net(dev); 1615 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1616 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1617 } 1618 1619 static inline struct net_device *first_net_device(struct net *net) 1620 { 1621 return list_empty(&net->dev_base_head) ? NULL : 1622 net_device_entry(net->dev_base_head.next); 1623 } 1624 1625 static inline struct net_device *first_net_device_rcu(struct net *net) 1626 { 1627 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1628 1629 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1630 } 1631 1632 extern int netdev_boot_setup_check(struct net_device *dev); 1633 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1634 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1635 const char *hwaddr); 1636 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1637 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1638 extern void dev_add_pack(struct packet_type *pt); 1639 extern void dev_remove_pack(struct packet_type *pt); 1640 extern void __dev_remove_pack(struct packet_type *pt); 1641 extern void dev_add_offload(struct packet_offload *po); 1642 extern void dev_remove_offload(struct packet_offload *po); 1643 extern void __dev_remove_offload(struct packet_offload *po); 1644 1645 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1646 unsigned short mask); 1647 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1648 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1649 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1650 extern int dev_alloc_name(struct net_device *dev, const char *name); 1651 extern int dev_open(struct net_device *dev); 1652 extern int dev_close(struct net_device *dev); 1653 extern void dev_disable_lro(struct net_device *dev); 1654 extern int dev_loopback_xmit(struct sk_buff *newskb); 1655 extern int dev_queue_xmit(struct sk_buff *skb); 1656 extern int register_netdevice(struct net_device *dev); 1657 extern void unregister_netdevice_queue(struct net_device *dev, 1658 struct list_head *head); 1659 extern void unregister_netdevice_many(struct list_head *head); 1660 static inline void unregister_netdevice(struct net_device *dev) 1661 { 1662 unregister_netdevice_queue(dev, NULL); 1663 } 1664 1665 extern int netdev_refcnt_read(const struct net_device *dev); 1666 extern void free_netdev(struct net_device *dev); 1667 extern void synchronize_net(void); 1668 extern int init_dummy_netdev(struct net_device *dev); 1669 extern void netdev_resync_ops(struct net_device *dev); 1670 1671 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1672 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1673 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1674 extern int dev_restart(struct net_device *dev); 1675 #ifdef CONFIG_NETPOLL_TRAP 1676 extern int netpoll_trap(void); 1677 #endif 1678 extern int skb_gro_receive(struct sk_buff **head, 1679 struct sk_buff *skb); 1680 1681 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1682 { 1683 return NAPI_GRO_CB(skb)->data_offset; 1684 } 1685 1686 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1687 { 1688 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1689 } 1690 1691 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1692 { 1693 NAPI_GRO_CB(skb)->data_offset += len; 1694 } 1695 1696 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1697 unsigned int offset) 1698 { 1699 return NAPI_GRO_CB(skb)->frag0 + offset; 1700 } 1701 1702 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1703 { 1704 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1705 } 1706 1707 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1708 unsigned int offset) 1709 { 1710 if (!pskb_may_pull(skb, hlen)) 1711 return NULL; 1712 1713 NAPI_GRO_CB(skb)->frag0 = NULL; 1714 NAPI_GRO_CB(skb)->frag0_len = 0; 1715 return skb->data + offset; 1716 } 1717 1718 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1719 { 1720 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1721 } 1722 1723 static inline void *skb_gro_network_header(struct sk_buff *skb) 1724 { 1725 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1726 skb_network_offset(skb); 1727 } 1728 1729 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1730 unsigned short type, 1731 const void *daddr, const void *saddr, 1732 unsigned int len) 1733 { 1734 if (!dev->header_ops || !dev->header_ops->create) 1735 return 0; 1736 1737 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1738 } 1739 1740 static inline int dev_parse_header(const struct sk_buff *skb, 1741 unsigned char *haddr) 1742 { 1743 const struct net_device *dev = skb->dev; 1744 1745 if (!dev->header_ops || !dev->header_ops->parse) 1746 return 0; 1747 return dev->header_ops->parse(skb, haddr); 1748 } 1749 1750 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1751 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1752 static inline int unregister_gifconf(unsigned int family) 1753 { 1754 return register_gifconf(family, NULL); 1755 } 1756 1757 /* 1758 * Incoming packets are placed on per-cpu queues 1759 */ 1760 struct softnet_data { 1761 struct Qdisc *output_queue; 1762 struct Qdisc **output_queue_tailp; 1763 struct list_head poll_list; 1764 struct sk_buff *completion_queue; 1765 struct sk_buff_head process_queue; 1766 1767 /* stats */ 1768 unsigned int processed; 1769 unsigned int time_squeeze; 1770 unsigned int cpu_collision; 1771 unsigned int received_rps; 1772 1773 #ifdef CONFIG_RPS 1774 struct softnet_data *rps_ipi_list; 1775 1776 /* Elements below can be accessed between CPUs for RPS */ 1777 struct call_single_data csd ____cacheline_aligned_in_smp; 1778 struct softnet_data *rps_ipi_next; 1779 unsigned int cpu; 1780 unsigned int input_queue_head; 1781 unsigned int input_queue_tail; 1782 #endif 1783 unsigned int dropped; 1784 struct sk_buff_head input_pkt_queue; 1785 struct napi_struct backlog; 1786 }; 1787 1788 static inline void input_queue_head_incr(struct softnet_data *sd) 1789 { 1790 #ifdef CONFIG_RPS 1791 sd->input_queue_head++; 1792 #endif 1793 } 1794 1795 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1796 unsigned int *qtail) 1797 { 1798 #ifdef CONFIG_RPS 1799 *qtail = ++sd->input_queue_tail; 1800 #endif 1801 } 1802 1803 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1804 1805 extern void __netif_schedule(struct Qdisc *q); 1806 1807 static inline void netif_schedule_queue(struct netdev_queue *txq) 1808 { 1809 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1810 __netif_schedule(txq->qdisc); 1811 } 1812 1813 static inline void netif_tx_schedule_all(struct net_device *dev) 1814 { 1815 unsigned int i; 1816 1817 for (i = 0; i < dev->num_tx_queues; i++) 1818 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1819 } 1820 1821 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1822 { 1823 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1824 } 1825 1826 /** 1827 * netif_start_queue - allow transmit 1828 * @dev: network device 1829 * 1830 * Allow upper layers to call the device hard_start_xmit routine. 1831 */ 1832 static inline void netif_start_queue(struct net_device *dev) 1833 { 1834 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1835 } 1836 1837 static inline void netif_tx_start_all_queues(struct net_device *dev) 1838 { 1839 unsigned int i; 1840 1841 for (i = 0; i < dev->num_tx_queues; i++) { 1842 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1843 netif_tx_start_queue(txq); 1844 } 1845 } 1846 1847 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1848 { 1849 #ifdef CONFIG_NETPOLL_TRAP 1850 if (netpoll_trap()) { 1851 netif_tx_start_queue(dev_queue); 1852 return; 1853 } 1854 #endif 1855 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1856 __netif_schedule(dev_queue->qdisc); 1857 } 1858 1859 /** 1860 * netif_wake_queue - restart transmit 1861 * @dev: network device 1862 * 1863 * Allow upper layers to call the device hard_start_xmit routine. 1864 * Used for flow control when transmit resources are available. 1865 */ 1866 static inline void netif_wake_queue(struct net_device *dev) 1867 { 1868 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1869 } 1870 1871 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1872 { 1873 unsigned int i; 1874 1875 for (i = 0; i < dev->num_tx_queues; i++) { 1876 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1877 netif_tx_wake_queue(txq); 1878 } 1879 } 1880 1881 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1882 { 1883 if (WARN_ON(!dev_queue)) { 1884 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1885 return; 1886 } 1887 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1888 } 1889 1890 /** 1891 * netif_stop_queue - stop transmitted packets 1892 * @dev: network device 1893 * 1894 * Stop upper layers calling the device hard_start_xmit routine. 1895 * Used for flow control when transmit resources are unavailable. 1896 */ 1897 static inline void netif_stop_queue(struct net_device *dev) 1898 { 1899 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1900 } 1901 1902 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1903 { 1904 unsigned int i; 1905 1906 for (i = 0; i < dev->num_tx_queues; i++) { 1907 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1908 netif_tx_stop_queue(txq); 1909 } 1910 } 1911 1912 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1913 { 1914 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1915 } 1916 1917 /** 1918 * netif_queue_stopped - test if transmit queue is flowblocked 1919 * @dev: network device 1920 * 1921 * Test if transmit queue on device is currently unable to send. 1922 */ 1923 static inline bool netif_queue_stopped(const struct net_device *dev) 1924 { 1925 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1926 } 1927 1928 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1929 { 1930 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1931 } 1932 1933 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1934 { 1935 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1936 } 1937 1938 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1939 unsigned int bytes) 1940 { 1941 #ifdef CONFIG_BQL 1942 dql_queued(&dev_queue->dql, bytes); 1943 1944 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1945 return; 1946 1947 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1948 1949 /* 1950 * The XOFF flag must be set before checking the dql_avail below, 1951 * because in netdev_tx_completed_queue we update the dql_completed 1952 * before checking the XOFF flag. 1953 */ 1954 smp_mb(); 1955 1956 /* check again in case another CPU has just made room avail */ 1957 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1958 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1959 #endif 1960 } 1961 1962 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1963 { 1964 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1965 } 1966 1967 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1968 unsigned int pkts, unsigned int bytes) 1969 { 1970 #ifdef CONFIG_BQL 1971 if (unlikely(!bytes)) 1972 return; 1973 1974 dql_completed(&dev_queue->dql, bytes); 1975 1976 /* 1977 * Without the memory barrier there is a small possiblity that 1978 * netdev_tx_sent_queue will miss the update and cause the queue to 1979 * be stopped forever 1980 */ 1981 smp_mb(); 1982 1983 if (dql_avail(&dev_queue->dql) < 0) 1984 return; 1985 1986 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1987 netif_schedule_queue(dev_queue); 1988 #endif 1989 } 1990 1991 static inline void netdev_completed_queue(struct net_device *dev, 1992 unsigned int pkts, unsigned int bytes) 1993 { 1994 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1995 } 1996 1997 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1998 { 1999 #ifdef CONFIG_BQL 2000 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2001 dql_reset(&q->dql); 2002 #endif 2003 } 2004 2005 static inline void netdev_reset_queue(struct net_device *dev_queue) 2006 { 2007 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2008 } 2009 2010 /** 2011 * netif_running - test if up 2012 * @dev: network device 2013 * 2014 * Test if the device has been brought up. 2015 */ 2016 static inline bool netif_running(const struct net_device *dev) 2017 { 2018 return test_bit(__LINK_STATE_START, &dev->state); 2019 } 2020 2021 /* 2022 * Routines to manage the subqueues on a device. We only need start 2023 * stop, and a check if it's stopped. All other device management is 2024 * done at the overall netdevice level. 2025 * Also test the device if we're multiqueue. 2026 */ 2027 2028 /** 2029 * netif_start_subqueue - allow sending packets on subqueue 2030 * @dev: network device 2031 * @queue_index: sub queue index 2032 * 2033 * Start individual transmit queue of a device with multiple transmit queues. 2034 */ 2035 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2036 { 2037 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2038 2039 netif_tx_start_queue(txq); 2040 } 2041 2042 /** 2043 * netif_stop_subqueue - stop sending packets on subqueue 2044 * @dev: network device 2045 * @queue_index: sub queue index 2046 * 2047 * Stop individual transmit queue of a device with multiple transmit queues. 2048 */ 2049 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2050 { 2051 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2052 #ifdef CONFIG_NETPOLL_TRAP 2053 if (netpoll_trap()) 2054 return; 2055 #endif 2056 netif_tx_stop_queue(txq); 2057 } 2058 2059 /** 2060 * netif_subqueue_stopped - test status of subqueue 2061 * @dev: network device 2062 * @queue_index: sub queue index 2063 * 2064 * Check individual transmit queue of a device with multiple transmit queues. 2065 */ 2066 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2067 u16 queue_index) 2068 { 2069 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2070 2071 return netif_tx_queue_stopped(txq); 2072 } 2073 2074 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2075 struct sk_buff *skb) 2076 { 2077 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2078 } 2079 2080 /** 2081 * netif_wake_subqueue - allow sending packets on subqueue 2082 * @dev: network device 2083 * @queue_index: sub queue index 2084 * 2085 * Resume individual transmit queue of a device with multiple transmit queues. 2086 */ 2087 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2088 { 2089 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2090 #ifdef CONFIG_NETPOLL_TRAP 2091 if (netpoll_trap()) 2092 return; 2093 #endif 2094 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2095 __netif_schedule(txq->qdisc); 2096 } 2097 2098 /* 2099 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2100 * as a distribution range limit for the returned value. 2101 */ 2102 static inline u16 skb_tx_hash(const struct net_device *dev, 2103 const struct sk_buff *skb) 2104 { 2105 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2106 } 2107 2108 /** 2109 * netif_is_multiqueue - test if device has multiple transmit queues 2110 * @dev: network device 2111 * 2112 * Check if device has multiple transmit queues 2113 */ 2114 static inline bool netif_is_multiqueue(const struct net_device *dev) 2115 { 2116 return dev->num_tx_queues > 1; 2117 } 2118 2119 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2120 unsigned int txq); 2121 2122 #ifdef CONFIG_RPS 2123 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2124 unsigned int rxq); 2125 #else 2126 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2127 unsigned int rxq) 2128 { 2129 return 0; 2130 } 2131 #endif 2132 2133 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2134 const struct net_device *from_dev) 2135 { 2136 int err; 2137 2138 err = netif_set_real_num_tx_queues(to_dev, 2139 from_dev->real_num_tx_queues); 2140 if (err) 2141 return err; 2142 #ifdef CONFIG_RPS 2143 return netif_set_real_num_rx_queues(to_dev, 2144 from_dev->real_num_rx_queues); 2145 #else 2146 return 0; 2147 #endif 2148 } 2149 2150 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2151 extern int netif_get_num_default_rss_queues(void); 2152 2153 /* Use this variant when it is known for sure that it 2154 * is executing from hardware interrupt context or with hardware interrupts 2155 * disabled. 2156 */ 2157 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2158 2159 /* Use this variant in places where it could be invoked 2160 * from either hardware interrupt or other context, with hardware interrupts 2161 * either disabled or enabled. 2162 */ 2163 extern void dev_kfree_skb_any(struct sk_buff *skb); 2164 2165 extern int netif_rx(struct sk_buff *skb); 2166 extern int netif_rx_ni(struct sk_buff *skb); 2167 extern int netif_receive_skb(struct sk_buff *skb); 2168 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2169 struct sk_buff *skb); 2170 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2171 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2172 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2173 2174 static inline void napi_free_frags(struct napi_struct *napi) 2175 { 2176 kfree_skb(napi->skb); 2177 napi->skb = NULL; 2178 } 2179 2180 extern int netdev_rx_handler_register(struct net_device *dev, 2181 rx_handler_func_t *rx_handler, 2182 void *rx_handler_data); 2183 extern void netdev_rx_handler_unregister(struct net_device *dev); 2184 2185 extern bool dev_valid_name(const char *name); 2186 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2187 extern int dev_ethtool(struct net *net, struct ifreq *); 2188 extern unsigned int dev_get_flags(const struct net_device *); 2189 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2190 extern int dev_change_flags(struct net_device *, unsigned int); 2191 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2192 extern int dev_change_name(struct net_device *, const char *); 2193 extern int dev_set_alias(struct net_device *, const char *, size_t); 2194 extern int dev_change_net_namespace(struct net_device *, 2195 struct net *, const char *); 2196 extern int dev_set_mtu(struct net_device *, int); 2197 extern void dev_set_group(struct net_device *, int); 2198 extern int dev_set_mac_address(struct net_device *, 2199 struct sockaddr *); 2200 extern int dev_hard_start_xmit(struct sk_buff *skb, 2201 struct net_device *dev, 2202 struct netdev_queue *txq); 2203 extern int dev_forward_skb(struct net_device *dev, 2204 struct sk_buff *skb); 2205 2206 extern int netdev_budget; 2207 2208 /* Called by rtnetlink.c:rtnl_unlock() */ 2209 extern void netdev_run_todo(void); 2210 2211 /** 2212 * dev_put - release reference to device 2213 * @dev: network device 2214 * 2215 * Release reference to device to allow it to be freed. 2216 */ 2217 static inline void dev_put(struct net_device *dev) 2218 { 2219 this_cpu_dec(*dev->pcpu_refcnt); 2220 } 2221 2222 /** 2223 * dev_hold - get reference to device 2224 * @dev: network device 2225 * 2226 * Hold reference to device to keep it from being freed. 2227 */ 2228 static inline void dev_hold(struct net_device *dev) 2229 { 2230 this_cpu_inc(*dev->pcpu_refcnt); 2231 } 2232 2233 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2234 * and _off may be called from IRQ context, but it is caller 2235 * who is responsible for serialization of these calls. 2236 * 2237 * The name carrier is inappropriate, these functions should really be 2238 * called netif_lowerlayer_*() because they represent the state of any 2239 * kind of lower layer not just hardware media. 2240 */ 2241 2242 extern void linkwatch_init_dev(struct net_device *dev); 2243 extern void linkwatch_fire_event(struct net_device *dev); 2244 extern void linkwatch_forget_dev(struct net_device *dev); 2245 2246 /** 2247 * netif_carrier_ok - test if carrier present 2248 * @dev: network device 2249 * 2250 * Check if carrier is present on device 2251 */ 2252 static inline bool netif_carrier_ok(const struct net_device *dev) 2253 { 2254 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2255 } 2256 2257 extern unsigned long dev_trans_start(struct net_device *dev); 2258 2259 extern void __netdev_watchdog_up(struct net_device *dev); 2260 2261 extern void netif_carrier_on(struct net_device *dev); 2262 2263 extern void netif_carrier_off(struct net_device *dev); 2264 2265 /** 2266 * netif_dormant_on - mark device as dormant. 2267 * @dev: network device 2268 * 2269 * Mark device as dormant (as per RFC2863). 2270 * 2271 * The dormant state indicates that the relevant interface is not 2272 * actually in a condition to pass packets (i.e., it is not 'up') but is 2273 * in a "pending" state, waiting for some external event. For "on- 2274 * demand" interfaces, this new state identifies the situation where the 2275 * interface is waiting for events to place it in the up state. 2276 * 2277 */ 2278 static inline void netif_dormant_on(struct net_device *dev) 2279 { 2280 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2281 linkwatch_fire_event(dev); 2282 } 2283 2284 /** 2285 * netif_dormant_off - set device as not dormant. 2286 * @dev: network device 2287 * 2288 * Device is not in dormant state. 2289 */ 2290 static inline void netif_dormant_off(struct net_device *dev) 2291 { 2292 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2293 linkwatch_fire_event(dev); 2294 } 2295 2296 /** 2297 * netif_dormant - test if carrier present 2298 * @dev: network device 2299 * 2300 * Check if carrier is present on device 2301 */ 2302 static inline bool netif_dormant(const struct net_device *dev) 2303 { 2304 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2305 } 2306 2307 2308 /** 2309 * netif_oper_up - test if device is operational 2310 * @dev: network device 2311 * 2312 * Check if carrier is operational 2313 */ 2314 static inline bool netif_oper_up(const struct net_device *dev) 2315 { 2316 return (dev->operstate == IF_OPER_UP || 2317 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2318 } 2319 2320 /** 2321 * netif_device_present - is device available or removed 2322 * @dev: network device 2323 * 2324 * Check if device has not been removed from system. 2325 */ 2326 static inline bool netif_device_present(struct net_device *dev) 2327 { 2328 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2329 } 2330 2331 extern void netif_device_detach(struct net_device *dev); 2332 2333 extern void netif_device_attach(struct net_device *dev); 2334 2335 /* 2336 * Network interface message level settings 2337 */ 2338 2339 enum { 2340 NETIF_MSG_DRV = 0x0001, 2341 NETIF_MSG_PROBE = 0x0002, 2342 NETIF_MSG_LINK = 0x0004, 2343 NETIF_MSG_TIMER = 0x0008, 2344 NETIF_MSG_IFDOWN = 0x0010, 2345 NETIF_MSG_IFUP = 0x0020, 2346 NETIF_MSG_RX_ERR = 0x0040, 2347 NETIF_MSG_TX_ERR = 0x0080, 2348 NETIF_MSG_TX_QUEUED = 0x0100, 2349 NETIF_MSG_INTR = 0x0200, 2350 NETIF_MSG_TX_DONE = 0x0400, 2351 NETIF_MSG_RX_STATUS = 0x0800, 2352 NETIF_MSG_PKTDATA = 0x1000, 2353 NETIF_MSG_HW = 0x2000, 2354 NETIF_MSG_WOL = 0x4000, 2355 }; 2356 2357 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2358 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2359 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2360 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2361 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2362 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2363 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2364 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2365 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2366 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2367 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2368 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2369 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2370 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2371 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2372 2373 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2374 { 2375 /* use default */ 2376 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2377 return default_msg_enable_bits; 2378 if (debug_value == 0) /* no output */ 2379 return 0; 2380 /* set low N bits */ 2381 return (1 << debug_value) - 1; 2382 } 2383 2384 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2385 { 2386 spin_lock(&txq->_xmit_lock); 2387 txq->xmit_lock_owner = cpu; 2388 } 2389 2390 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2391 { 2392 spin_lock_bh(&txq->_xmit_lock); 2393 txq->xmit_lock_owner = smp_processor_id(); 2394 } 2395 2396 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2397 { 2398 bool ok = spin_trylock(&txq->_xmit_lock); 2399 if (likely(ok)) 2400 txq->xmit_lock_owner = smp_processor_id(); 2401 return ok; 2402 } 2403 2404 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2405 { 2406 txq->xmit_lock_owner = -1; 2407 spin_unlock(&txq->_xmit_lock); 2408 } 2409 2410 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2411 { 2412 txq->xmit_lock_owner = -1; 2413 spin_unlock_bh(&txq->_xmit_lock); 2414 } 2415 2416 static inline void txq_trans_update(struct netdev_queue *txq) 2417 { 2418 if (txq->xmit_lock_owner != -1) 2419 txq->trans_start = jiffies; 2420 } 2421 2422 /** 2423 * netif_tx_lock - grab network device transmit lock 2424 * @dev: network device 2425 * 2426 * Get network device transmit lock 2427 */ 2428 static inline void netif_tx_lock(struct net_device *dev) 2429 { 2430 unsigned int i; 2431 int cpu; 2432 2433 spin_lock(&dev->tx_global_lock); 2434 cpu = smp_processor_id(); 2435 for (i = 0; i < dev->num_tx_queues; i++) { 2436 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2437 2438 /* We are the only thread of execution doing a 2439 * freeze, but we have to grab the _xmit_lock in 2440 * order to synchronize with threads which are in 2441 * the ->hard_start_xmit() handler and already 2442 * checked the frozen bit. 2443 */ 2444 __netif_tx_lock(txq, cpu); 2445 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2446 __netif_tx_unlock(txq); 2447 } 2448 } 2449 2450 static inline void netif_tx_lock_bh(struct net_device *dev) 2451 { 2452 local_bh_disable(); 2453 netif_tx_lock(dev); 2454 } 2455 2456 static inline void netif_tx_unlock(struct net_device *dev) 2457 { 2458 unsigned int i; 2459 2460 for (i = 0; i < dev->num_tx_queues; i++) { 2461 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2462 2463 /* No need to grab the _xmit_lock here. If the 2464 * queue is not stopped for another reason, we 2465 * force a schedule. 2466 */ 2467 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2468 netif_schedule_queue(txq); 2469 } 2470 spin_unlock(&dev->tx_global_lock); 2471 } 2472 2473 static inline void netif_tx_unlock_bh(struct net_device *dev) 2474 { 2475 netif_tx_unlock(dev); 2476 local_bh_enable(); 2477 } 2478 2479 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2480 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2481 __netif_tx_lock(txq, cpu); \ 2482 } \ 2483 } 2484 2485 #define HARD_TX_UNLOCK(dev, txq) { \ 2486 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2487 __netif_tx_unlock(txq); \ 2488 } \ 2489 } 2490 2491 static inline void netif_tx_disable(struct net_device *dev) 2492 { 2493 unsigned int i; 2494 int cpu; 2495 2496 local_bh_disable(); 2497 cpu = smp_processor_id(); 2498 for (i = 0; i < dev->num_tx_queues; i++) { 2499 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2500 2501 __netif_tx_lock(txq, cpu); 2502 netif_tx_stop_queue(txq); 2503 __netif_tx_unlock(txq); 2504 } 2505 local_bh_enable(); 2506 } 2507 2508 static inline void netif_addr_lock(struct net_device *dev) 2509 { 2510 spin_lock(&dev->addr_list_lock); 2511 } 2512 2513 static inline void netif_addr_lock_nested(struct net_device *dev) 2514 { 2515 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2516 } 2517 2518 static inline void netif_addr_lock_bh(struct net_device *dev) 2519 { 2520 spin_lock_bh(&dev->addr_list_lock); 2521 } 2522 2523 static inline void netif_addr_unlock(struct net_device *dev) 2524 { 2525 spin_unlock(&dev->addr_list_lock); 2526 } 2527 2528 static inline void netif_addr_unlock_bh(struct net_device *dev) 2529 { 2530 spin_unlock_bh(&dev->addr_list_lock); 2531 } 2532 2533 /* 2534 * dev_addrs walker. Should be used only for read access. Call with 2535 * rcu_read_lock held. 2536 */ 2537 #define for_each_dev_addr(dev, ha) \ 2538 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2539 2540 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2541 2542 extern void ether_setup(struct net_device *dev); 2543 2544 /* Support for loadable net-drivers */ 2545 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2546 void (*setup)(struct net_device *), 2547 unsigned int txqs, unsigned int rxqs); 2548 #define alloc_netdev(sizeof_priv, name, setup) \ 2549 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2550 2551 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2552 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2553 2554 extern int register_netdev(struct net_device *dev); 2555 extern void unregister_netdev(struct net_device *dev); 2556 2557 /* General hardware address lists handling functions */ 2558 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2559 struct netdev_hw_addr_list *from_list, 2560 int addr_len, unsigned char addr_type); 2561 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2562 struct netdev_hw_addr_list *from_list, 2563 int addr_len, unsigned char addr_type); 2564 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2565 struct netdev_hw_addr_list *from_list, 2566 int addr_len); 2567 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2568 struct netdev_hw_addr_list *from_list, 2569 int addr_len); 2570 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2571 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2572 2573 /* Functions used for device addresses handling */ 2574 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2575 unsigned char addr_type); 2576 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2577 unsigned char addr_type); 2578 extern int dev_addr_add_multiple(struct net_device *to_dev, 2579 struct net_device *from_dev, 2580 unsigned char addr_type); 2581 extern int dev_addr_del_multiple(struct net_device *to_dev, 2582 struct net_device *from_dev, 2583 unsigned char addr_type); 2584 extern void dev_addr_flush(struct net_device *dev); 2585 extern int dev_addr_init(struct net_device *dev); 2586 2587 /* Functions used for unicast addresses handling */ 2588 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2589 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2590 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr); 2591 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2592 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2593 extern void dev_uc_flush(struct net_device *dev); 2594 extern void dev_uc_init(struct net_device *dev); 2595 2596 /* Functions used for multicast addresses handling */ 2597 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr); 2598 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 2599 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 2600 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr); 2601 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 2602 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2603 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2604 extern void dev_mc_flush(struct net_device *dev); 2605 extern void dev_mc_init(struct net_device *dev); 2606 2607 /* Functions used for secondary unicast and multicast support */ 2608 extern void dev_set_rx_mode(struct net_device *dev); 2609 extern void __dev_set_rx_mode(struct net_device *dev); 2610 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2611 extern int dev_set_allmulti(struct net_device *dev, int inc); 2612 extern void netdev_state_change(struct net_device *dev); 2613 extern void netdev_notify_peers(struct net_device *dev); 2614 extern void netdev_features_change(struct net_device *dev); 2615 /* Load a device via the kmod */ 2616 extern void dev_load(struct net *net, const char *name); 2617 extern void dev_mcast_init(void); 2618 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2619 struct rtnl_link_stats64 *storage); 2620 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2621 const struct net_device_stats *netdev_stats); 2622 2623 extern int netdev_max_backlog; 2624 extern int netdev_tstamp_prequeue; 2625 extern int weight_p; 2626 extern int bpf_jit_enable; 2627 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2628 extern int netdev_set_bond_master(struct net_device *dev, 2629 struct net_device *master); 2630 extern int skb_checksum_help(struct sk_buff *skb); 2631 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2632 netdev_features_t features); 2633 #ifdef CONFIG_BUG 2634 extern void netdev_rx_csum_fault(struct net_device *dev); 2635 #else 2636 static inline void netdev_rx_csum_fault(struct net_device *dev) 2637 { 2638 } 2639 #endif 2640 /* rx skb timestamps */ 2641 extern void net_enable_timestamp(void); 2642 extern void net_disable_timestamp(void); 2643 2644 #ifdef CONFIG_PROC_FS 2645 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2646 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2647 extern void dev_seq_stop(struct seq_file *seq, void *v); 2648 #endif 2649 2650 extern int netdev_class_create_file(struct class_attribute *class_attr); 2651 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2652 2653 extern struct kobj_ns_type_operations net_ns_type_operations; 2654 2655 extern const char *netdev_drivername(const struct net_device *dev); 2656 2657 extern void linkwatch_run_queue(void); 2658 2659 static inline netdev_features_t netdev_get_wanted_features( 2660 struct net_device *dev) 2661 { 2662 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2663 } 2664 netdev_features_t netdev_increment_features(netdev_features_t all, 2665 netdev_features_t one, netdev_features_t mask); 2666 int __netdev_update_features(struct net_device *dev); 2667 void netdev_update_features(struct net_device *dev); 2668 void netdev_change_features(struct net_device *dev); 2669 2670 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2671 struct net_device *dev); 2672 2673 netdev_features_t netif_skb_features(struct sk_buff *skb); 2674 2675 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2676 { 2677 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2678 2679 /* check flags correspondence */ 2680 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2681 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2682 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2683 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2684 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2685 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2686 2687 return (features & feature) == feature; 2688 } 2689 2690 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2691 { 2692 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2693 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2694 } 2695 2696 static inline bool netif_needs_gso(struct sk_buff *skb, 2697 netdev_features_t features) 2698 { 2699 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2700 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2701 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2702 } 2703 2704 static inline void netif_set_gso_max_size(struct net_device *dev, 2705 unsigned int size) 2706 { 2707 dev->gso_max_size = size; 2708 } 2709 2710 static inline bool netif_is_bond_slave(struct net_device *dev) 2711 { 2712 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2713 } 2714 2715 static inline bool netif_supports_nofcs(struct net_device *dev) 2716 { 2717 return dev->priv_flags & IFF_SUPP_NOFCS; 2718 } 2719 2720 extern struct pernet_operations __net_initdata loopback_net_ops; 2721 2722 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2723 2724 /* netdev_printk helpers, similar to dev_printk */ 2725 2726 static inline const char *netdev_name(const struct net_device *dev) 2727 { 2728 if (dev->reg_state != NETREG_REGISTERED) 2729 return "(unregistered net_device)"; 2730 return dev->name; 2731 } 2732 2733 extern __printf(3, 4) 2734 int netdev_printk(const char *level, const struct net_device *dev, 2735 const char *format, ...); 2736 extern __printf(2, 3) 2737 int netdev_emerg(const struct net_device *dev, const char *format, ...); 2738 extern __printf(2, 3) 2739 int netdev_alert(const struct net_device *dev, const char *format, ...); 2740 extern __printf(2, 3) 2741 int netdev_crit(const struct net_device *dev, const char *format, ...); 2742 extern __printf(2, 3) 2743 int netdev_err(const struct net_device *dev, const char *format, ...); 2744 extern __printf(2, 3) 2745 int netdev_warn(const struct net_device *dev, const char *format, ...); 2746 extern __printf(2, 3) 2747 int netdev_notice(const struct net_device *dev, const char *format, ...); 2748 extern __printf(2, 3) 2749 int netdev_info(const struct net_device *dev, const char *format, ...); 2750 2751 #define MODULE_ALIAS_NETDEV(device) \ 2752 MODULE_ALIAS("netdev-" device) 2753 2754 #if defined(CONFIG_DYNAMIC_DEBUG) 2755 #define netdev_dbg(__dev, format, args...) \ 2756 do { \ 2757 dynamic_netdev_dbg(__dev, format, ##args); \ 2758 } while (0) 2759 #elif defined(DEBUG) 2760 #define netdev_dbg(__dev, format, args...) \ 2761 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2762 #else 2763 #define netdev_dbg(__dev, format, args...) \ 2764 ({ \ 2765 if (0) \ 2766 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2767 0; \ 2768 }) 2769 #endif 2770 2771 #if defined(VERBOSE_DEBUG) 2772 #define netdev_vdbg netdev_dbg 2773 #else 2774 2775 #define netdev_vdbg(dev, format, args...) \ 2776 ({ \ 2777 if (0) \ 2778 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2779 0; \ 2780 }) 2781 #endif 2782 2783 /* 2784 * netdev_WARN() acts like dev_printk(), but with the key difference 2785 * of using a WARN/WARN_ON to get the message out, including the 2786 * file/line information and a backtrace. 2787 */ 2788 #define netdev_WARN(dev, format, args...) \ 2789 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2790 2791 /* netif printk helpers, similar to netdev_printk */ 2792 2793 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2794 do { \ 2795 if (netif_msg_##type(priv)) \ 2796 netdev_printk(level, (dev), fmt, ##args); \ 2797 } while (0) 2798 2799 #define netif_level(level, priv, type, dev, fmt, args...) \ 2800 do { \ 2801 if (netif_msg_##type(priv)) \ 2802 netdev_##level(dev, fmt, ##args); \ 2803 } while (0) 2804 2805 #define netif_emerg(priv, type, dev, fmt, args...) \ 2806 netif_level(emerg, priv, type, dev, fmt, ##args) 2807 #define netif_alert(priv, type, dev, fmt, args...) \ 2808 netif_level(alert, priv, type, dev, fmt, ##args) 2809 #define netif_crit(priv, type, dev, fmt, args...) \ 2810 netif_level(crit, priv, type, dev, fmt, ##args) 2811 #define netif_err(priv, type, dev, fmt, args...) \ 2812 netif_level(err, priv, type, dev, fmt, ##args) 2813 #define netif_warn(priv, type, dev, fmt, args...) \ 2814 netif_level(warn, priv, type, dev, fmt, ##args) 2815 #define netif_notice(priv, type, dev, fmt, args...) \ 2816 netif_level(notice, priv, type, dev, fmt, ##args) 2817 #define netif_info(priv, type, dev, fmt, args...) \ 2818 netif_level(info, priv, type, dev, fmt, ##args) 2819 2820 #if defined(CONFIG_DYNAMIC_DEBUG) 2821 #define netif_dbg(priv, type, netdev, format, args...) \ 2822 do { \ 2823 if (netif_msg_##type(priv)) \ 2824 dynamic_netdev_dbg(netdev, format, ##args); \ 2825 } while (0) 2826 #elif defined(DEBUG) 2827 #define netif_dbg(priv, type, dev, format, args...) \ 2828 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2829 #else 2830 #define netif_dbg(priv, type, dev, format, args...) \ 2831 ({ \ 2832 if (0) \ 2833 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2834 0; \ 2835 }) 2836 #endif 2837 2838 #if defined(VERBOSE_DEBUG) 2839 #define netif_vdbg netif_dbg 2840 #else 2841 #define netif_vdbg(priv, type, dev, format, args...) \ 2842 ({ \ 2843 if (0) \ 2844 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2845 0; \ 2846 }) 2847 #endif 2848 2849 #endif /* _LINUX_NETDEVICE_H */ 2850