xref: /openbmc/linux/include/linux/netdevice.h (revision 6c31c13759272818108a329f166d86846d0e3f7a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct phy_device;
60 struct dsa_port;
61 struct ip_tunnel_parm;
62 struct macsec_context;
63 struct macsec_ops;
64 struct netdev_name_node;
65 struct sd_flow_limit;
66 struct sfp_bus;
67 /* 802.11 specific */
68 struct wireless_dev;
69 /* 802.15.4 specific */
70 struct wpan_dev;
71 struct mpls_dev;
72 /* UDP Tunnel offloads */
73 struct udp_tunnel_info;
74 struct udp_tunnel_nic_info;
75 struct udp_tunnel_nic;
76 struct bpf_prog;
77 struct xdp_buff;
78 struct xdp_md;
79 
80 void synchronize_net(void);
81 void netdev_set_default_ethtool_ops(struct net_device *dev,
82 				    const struct ethtool_ops *ops);
83 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
84 
85 /* Backlog congestion levels */
86 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
87 #define NET_RX_DROP		1	/* packet dropped */
88 
89 #define MAX_NEST_DEV 8
90 
91 /*
92  * Transmit return codes: transmit return codes originate from three different
93  * namespaces:
94  *
95  * - qdisc return codes
96  * - driver transmit return codes
97  * - errno values
98  *
99  * Drivers are allowed to return any one of those in their hard_start_xmit()
100  * function. Real network devices commonly used with qdiscs should only return
101  * the driver transmit return codes though - when qdiscs are used, the actual
102  * transmission happens asynchronously, so the value is not propagated to
103  * higher layers. Virtual network devices transmit synchronously; in this case
104  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
105  * others are propagated to higher layers.
106  */
107 
108 /* qdisc ->enqueue() return codes. */
109 #define NET_XMIT_SUCCESS	0x00
110 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
111 #define NET_XMIT_CN		0x02	/* congestion notification	*/
112 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
113 
114 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
115  * indicates that the device will soon be dropping packets, or already drops
116  * some packets of the same priority; prompting us to send less aggressively. */
117 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
118 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
119 
120 /* Driver transmit return codes */
121 #define NETDEV_TX_MASK		0xf0
122 
123 enum netdev_tx {
124 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
125 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
126 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
127 };
128 typedef enum netdev_tx netdev_tx_t;
129 
130 /*
131  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
132  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
133  */
134 static inline bool dev_xmit_complete(int rc)
135 {
136 	/*
137 	 * Positive cases with an skb consumed by a driver:
138 	 * - successful transmission (rc == NETDEV_TX_OK)
139 	 * - error while transmitting (rc < 0)
140 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
141 	 */
142 	if (likely(rc < NET_XMIT_MASK))
143 		return true;
144 
145 	return false;
146 }
147 
148 /*
149  *	Compute the worst-case header length according to the protocols
150  *	used.
151  */
152 
153 #if defined(CONFIG_HYPERV_NET)
154 # define LL_MAX_HEADER 128
155 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
156 # if defined(CONFIG_MAC80211_MESH)
157 #  define LL_MAX_HEADER 128
158 # else
159 #  define LL_MAX_HEADER 96
160 # endif
161 #else
162 # define LL_MAX_HEADER 32
163 #endif
164 
165 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
166     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
167 #define MAX_HEADER LL_MAX_HEADER
168 #else
169 #define MAX_HEADER (LL_MAX_HEADER + 48)
170 #endif
171 
172 /*
173  *	Old network device statistics. Fields are native words
174  *	(unsigned long) so they can be read and written atomically.
175  */
176 
177 #define NET_DEV_STAT(FIELD)			\
178 	union {					\
179 		unsigned long FIELD;		\
180 		atomic_long_t __##FIELD;	\
181 	}
182 
183 struct net_device_stats {
184 	NET_DEV_STAT(rx_packets);
185 	NET_DEV_STAT(tx_packets);
186 	NET_DEV_STAT(rx_bytes);
187 	NET_DEV_STAT(tx_bytes);
188 	NET_DEV_STAT(rx_errors);
189 	NET_DEV_STAT(tx_errors);
190 	NET_DEV_STAT(rx_dropped);
191 	NET_DEV_STAT(tx_dropped);
192 	NET_DEV_STAT(multicast);
193 	NET_DEV_STAT(collisions);
194 	NET_DEV_STAT(rx_length_errors);
195 	NET_DEV_STAT(rx_over_errors);
196 	NET_DEV_STAT(rx_crc_errors);
197 	NET_DEV_STAT(rx_frame_errors);
198 	NET_DEV_STAT(rx_fifo_errors);
199 	NET_DEV_STAT(rx_missed_errors);
200 	NET_DEV_STAT(tx_aborted_errors);
201 	NET_DEV_STAT(tx_carrier_errors);
202 	NET_DEV_STAT(tx_fifo_errors);
203 	NET_DEV_STAT(tx_heartbeat_errors);
204 	NET_DEV_STAT(tx_window_errors);
205 	NET_DEV_STAT(rx_compressed);
206 	NET_DEV_STAT(tx_compressed);
207 };
208 #undef NET_DEV_STAT
209 
210 /* per-cpu stats, allocated on demand.
211  * Try to fit them in a single cache line, for dev_get_stats() sake.
212  */
213 struct net_device_core_stats {
214 	unsigned long	rx_dropped;
215 	unsigned long	tx_dropped;
216 	unsigned long	rx_nohandler;
217 	unsigned long	rx_otherhost_dropped;
218 } __aligned(4 * sizeof(unsigned long));
219 
220 #include <linux/cache.h>
221 #include <linux/skbuff.h>
222 
223 #ifdef CONFIG_RPS
224 #include <linux/static_key.h>
225 extern struct static_key_false rps_needed;
226 extern struct static_key_false rfs_needed;
227 #endif
228 
229 struct neighbour;
230 struct neigh_parms;
231 struct sk_buff;
232 
233 struct netdev_hw_addr {
234 	struct list_head	list;
235 	struct rb_node		node;
236 	unsigned char		addr[MAX_ADDR_LEN];
237 	unsigned char		type;
238 #define NETDEV_HW_ADDR_T_LAN		1
239 #define NETDEV_HW_ADDR_T_SAN		2
240 #define NETDEV_HW_ADDR_T_UNICAST	3
241 #define NETDEV_HW_ADDR_T_MULTICAST	4
242 	bool			global_use;
243 	int			sync_cnt;
244 	int			refcount;
245 	int			synced;
246 	struct rcu_head		rcu_head;
247 };
248 
249 struct netdev_hw_addr_list {
250 	struct list_head	list;
251 	int			count;
252 
253 	/* Auxiliary tree for faster lookup on addition and deletion */
254 	struct rb_root		tree;
255 };
256 
257 #define netdev_hw_addr_list_count(l) ((l)->count)
258 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
259 #define netdev_hw_addr_list_for_each(ha, l) \
260 	list_for_each_entry(ha, &(l)->list, list)
261 
262 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
263 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
264 #define netdev_for_each_uc_addr(ha, dev) \
265 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
266 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
267 	netdev_for_each_uc_addr((_ha), (_dev)) \
268 		if ((_ha)->sync_cnt)
269 
270 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
271 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
272 #define netdev_for_each_mc_addr(ha, dev) \
273 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
274 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
275 	netdev_for_each_mc_addr((_ha), (_dev)) \
276 		if ((_ha)->sync_cnt)
277 
278 struct hh_cache {
279 	unsigned int	hh_len;
280 	seqlock_t	hh_lock;
281 
282 	/* cached hardware header; allow for machine alignment needs.        */
283 #define HH_DATA_MOD	16
284 #define HH_DATA_OFF(__len) \
285 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
286 #define HH_DATA_ALIGN(__len) \
287 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
288 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
289 };
290 
291 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
292  * Alternative is:
293  *   dev->hard_header_len ? (dev->hard_header_len +
294  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
295  *
296  * We could use other alignment values, but we must maintain the
297  * relationship HH alignment <= LL alignment.
298  */
299 #define LL_RESERVED_SPACE(dev) \
300 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
301 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
302 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
303 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
304 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
305 
306 struct header_ops {
307 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
308 			   unsigned short type, const void *daddr,
309 			   const void *saddr, unsigned int len);
310 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
311 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
312 	void	(*cache_update)(struct hh_cache *hh,
313 				const struct net_device *dev,
314 				const unsigned char *haddr);
315 	bool	(*validate)(const char *ll_header, unsigned int len);
316 	__be16	(*parse_protocol)(const struct sk_buff *skb);
317 };
318 
319 /* These flag bits are private to the generic network queueing
320  * layer; they may not be explicitly referenced by any other
321  * code.
322  */
323 
324 enum netdev_state_t {
325 	__LINK_STATE_START,
326 	__LINK_STATE_PRESENT,
327 	__LINK_STATE_NOCARRIER,
328 	__LINK_STATE_LINKWATCH_PENDING,
329 	__LINK_STATE_DORMANT,
330 	__LINK_STATE_TESTING,
331 };
332 
333 struct gro_list {
334 	struct list_head	list;
335 	int			count;
336 };
337 
338 /*
339  * size of gro hash buckets, must less than bit number of
340  * napi_struct::gro_bitmask
341  */
342 #define GRO_HASH_BUCKETS	8
343 
344 /*
345  * Structure for NAPI scheduling similar to tasklet but with weighting
346  */
347 struct napi_struct {
348 	/* The poll_list must only be managed by the entity which
349 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
350 	 * whoever atomically sets that bit can add this napi_struct
351 	 * to the per-CPU poll_list, and whoever clears that bit
352 	 * can remove from the list right before clearing the bit.
353 	 */
354 	struct list_head	poll_list;
355 
356 	unsigned long		state;
357 	int			weight;
358 	int			defer_hard_irqs_count;
359 	unsigned long		gro_bitmask;
360 	int			(*poll)(struct napi_struct *, int);
361 #ifdef CONFIG_NETPOLL
362 	int			poll_owner;
363 #endif
364 	struct net_device	*dev;
365 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
366 	struct sk_buff		*skb;
367 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
368 	int			rx_count; /* length of rx_list */
369 	struct hrtimer		timer;
370 	struct list_head	dev_list;
371 	struct hlist_node	napi_hash_node;
372 	unsigned int		napi_id;
373 	struct task_struct	*thread;
374 };
375 
376 enum {
377 	NAPI_STATE_SCHED,		/* Poll is scheduled */
378 	NAPI_STATE_MISSED,		/* reschedule a napi */
379 	NAPI_STATE_DISABLE,		/* Disable pending */
380 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
381 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
382 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
383 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
384 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
385 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
386 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
387 };
388 
389 enum {
390 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
391 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
392 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
393 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
394 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
395 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
396 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
397 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
398 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
399 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
400 };
401 
402 enum gro_result {
403 	GRO_MERGED,
404 	GRO_MERGED_FREE,
405 	GRO_HELD,
406 	GRO_NORMAL,
407 	GRO_CONSUMED,
408 };
409 typedef enum gro_result gro_result_t;
410 
411 /*
412  * enum rx_handler_result - Possible return values for rx_handlers.
413  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
414  * further.
415  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
416  * case skb->dev was changed by rx_handler.
417  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
418  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
419  *
420  * rx_handlers are functions called from inside __netif_receive_skb(), to do
421  * special processing of the skb, prior to delivery to protocol handlers.
422  *
423  * Currently, a net_device can only have a single rx_handler registered. Trying
424  * to register a second rx_handler will return -EBUSY.
425  *
426  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
427  * To unregister a rx_handler on a net_device, use
428  * netdev_rx_handler_unregister().
429  *
430  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
431  * do with the skb.
432  *
433  * If the rx_handler consumed the skb in some way, it should return
434  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
435  * the skb to be delivered in some other way.
436  *
437  * If the rx_handler changed skb->dev, to divert the skb to another
438  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
439  * new device will be called if it exists.
440  *
441  * If the rx_handler decides the skb should be ignored, it should return
442  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
443  * are registered on exact device (ptype->dev == skb->dev).
444  *
445  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
446  * delivered, it should return RX_HANDLER_PASS.
447  *
448  * A device without a registered rx_handler will behave as if rx_handler
449  * returned RX_HANDLER_PASS.
450  */
451 
452 enum rx_handler_result {
453 	RX_HANDLER_CONSUMED,
454 	RX_HANDLER_ANOTHER,
455 	RX_HANDLER_EXACT,
456 	RX_HANDLER_PASS,
457 };
458 typedef enum rx_handler_result rx_handler_result_t;
459 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
460 
461 void __napi_schedule(struct napi_struct *n);
462 void __napi_schedule_irqoff(struct napi_struct *n);
463 
464 static inline bool napi_disable_pending(struct napi_struct *n)
465 {
466 	return test_bit(NAPI_STATE_DISABLE, &n->state);
467 }
468 
469 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
470 {
471 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
472 }
473 
474 bool napi_schedule_prep(struct napi_struct *n);
475 
476 /**
477  *	napi_schedule - schedule NAPI poll
478  *	@n: NAPI context
479  *
480  * Schedule NAPI poll routine to be called if it is not already
481  * running.
482  */
483 static inline void napi_schedule(struct napi_struct *n)
484 {
485 	if (napi_schedule_prep(n))
486 		__napi_schedule(n);
487 }
488 
489 /**
490  *	napi_schedule_irqoff - schedule NAPI poll
491  *	@n: NAPI context
492  *
493  * Variant of napi_schedule(), assuming hard irqs are masked.
494  */
495 static inline void napi_schedule_irqoff(struct napi_struct *n)
496 {
497 	if (napi_schedule_prep(n))
498 		__napi_schedule_irqoff(n);
499 }
500 
501 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
502 static inline bool napi_reschedule(struct napi_struct *napi)
503 {
504 	if (napi_schedule_prep(napi)) {
505 		__napi_schedule(napi);
506 		return true;
507 	}
508 	return false;
509 }
510 
511 bool napi_complete_done(struct napi_struct *n, int work_done);
512 /**
513  *	napi_complete - NAPI processing complete
514  *	@n: NAPI context
515  *
516  * Mark NAPI processing as complete.
517  * Consider using napi_complete_done() instead.
518  * Return false if device should avoid rearming interrupts.
519  */
520 static inline bool napi_complete(struct napi_struct *n)
521 {
522 	return napi_complete_done(n, 0);
523 }
524 
525 int dev_set_threaded(struct net_device *dev, bool threaded);
526 
527 /**
528  *	napi_disable - prevent NAPI from scheduling
529  *	@n: NAPI context
530  *
531  * Stop NAPI from being scheduled on this context.
532  * Waits till any outstanding processing completes.
533  */
534 void napi_disable(struct napi_struct *n);
535 
536 void napi_enable(struct napi_struct *n);
537 
538 /**
539  *	napi_synchronize - wait until NAPI is not running
540  *	@n: NAPI context
541  *
542  * Wait until NAPI is done being scheduled on this context.
543  * Waits till any outstanding processing completes but
544  * does not disable future activations.
545  */
546 static inline void napi_synchronize(const struct napi_struct *n)
547 {
548 	if (IS_ENABLED(CONFIG_SMP))
549 		while (test_bit(NAPI_STATE_SCHED, &n->state))
550 			msleep(1);
551 	else
552 		barrier();
553 }
554 
555 /**
556  *	napi_if_scheduled_mark_missed - if napi is running, set the
557  *	NAPIF_STATE_MISSED
558  *	@n: NAPI context
559  *
560  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
561  * NAPI is scheduled.
562  **/
563 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
564 {
565 	unsigned long val, new;
566 
567 	val = READ_ONCE(n->state);
568 	do {
569 		if (val & NAPIF_STATE_DISABLE)
570 			return true;
571 
572 		if (!(val & NAPIF_STATE_SCHED))
573 			return false;
574 
575 		new = val | NAPIF_STATE_MISSED;
576 	} while (!try_cmpxchg(&n->state, &val, new));
577 
578 	return true;
579 }
580 
581 enum netdev_queue_state_t {
582 	__QUEUE_STATE_DRV_XOFF,
583 	__QUEUE_STATE_STACK_XOFF,
584 	__QUEUE_STATE_FROZEN,
585 };
586 
587 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
588 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
589 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
590 
591 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
592 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
593 					QUEUE_STATE_FROZEN)
594 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
595 					QUEUE_STATE_FROZEN)
596 
597 /*
598  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
599  * netif_tx_* functions below are used to manipulate this flag.  The
600  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
601  * queue independently.  The netif_xmit_*stopped functions below are called
602  * to check if the queue has been stopped by the driver or stack (either
603  * of the XOFF bits are set in the state).  Drivers should not need to call
604  * netif_xmit*stopped functions, they should only be using netif_tx_*.
605  */
606 
607 struct netdev_queue {
608 /*
609  * read-mostly part
610  */
611 	struct net_device	*dev;
612 	netdevice_tracker	dev_tracker;
613 
614 	struct Qdisc __rcu	*qdisc;
615 	struct Qdisc		*qdisc_sleeping;
616 #ifdef CONFIG_SYSFS
617 	struct kobject		kobj;
618 #endif
619 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
620 	int			numa_node;
621 #endif
622 	unsigned long		tx_maxrate;
623 	/*
624 	 * Number of TX timeouts for this queue
625 	 * (/sys/class/net/DEV/Q/trans_timeout)
626 	 */
627 	atomic_long_t		trans_timeout;
628 
629 	/* Subordinate device that the queue has been assigned to */
630 	struct net_device	*sb_dev;
631 #ifdef CONFIG_XDP_SOCKETS
632 	struct xsk_buff_pool    *pool;
633 #endif
634 /*
635  * write-mostly part
636  */
637 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
638 	int			xmit_lock_owner;
639 	/*
640 	 * Time (in jiffies) of last Tx
641 	 */
642 	unsigned long		trans_start;
643 
644 	unsigned long		state;
645 
646 #ifdef CONFIG_BQL
647 	struct dql		dql;
648 #endif
649 } ____cacheline_aligned_in_smp;
650 
651 extern int sysctl_fb_tunnels_only_for_init_net;
652 extern int sysctl_devconf_inherit_init_net;
653 
654 /*
655  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
656  *                                     == 1 : For initns only
657  *                                     == 2 : For none.
658  */
659 static inline bool net_has_fallback_tunnels(const struct net *net)
660 {
661 #if IS_ENABLED(CONFIG_SYSCTL)
662 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
663 
664 	return !fb_tunnels_only_for_init_net ||
665 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
666 #else
667 	return true;
668 #endif
669 }
670 
671 static inline int net_inherit_devconf(void)
672 {
673 #if IS_ENABLED(CONFIG_SYSCTL)
674 	return READ_ONCE(sysctl_devconf_inherit_init_net);
675 #else
676 	return 0;
677 #endif
678 }
679 
680 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
681 {
682 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
683 	return q->numa_node;
684 #else
685 	return NUMA_NO_NODE;
686 #endif
687 }
688 
689 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
690 {
691 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
692 	q->numa_node = node;
693 #endif
694 }
695 
696 #ifdef CONFIG_RPS
697 /*
698  * This structure holds an RPS map which can be of variable length.  The
699  * map is an array of CPUs.
700  */
701 struct rps_map {
702 	unsigned int len;
703 	struct rcu_head rcu;
704 	u16 cpus[];
705 };
706 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
707 
708 /*
709  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
710  * tail pointer for that CPU's input queue at the time of last enqueue, and
711  * a hardware filter index.
712  */
713 struct rps_dev_flow {
714 	u16 cpu;
715 	u16 filter;
716 	unsigned int last_qtail;
717 };
718 #define RPS_NO_FILTER 0xffff
719 
720 /*
721  * The rps_dev_flow_table structure contains a table of flow mappings.
722  */
723 struct rps_dev_flow_table {
724 	unsigned int mask;
725 	struct rcu_head rcu;
726 	struct rps_dev_flow flows[];
727 };
728 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
729     ((_num) * sizeof(struct rps_dev_flow)))
730 
731 /*
732  * The rps_sock_flow_table contains mappings of flows to the last CPU
733  * on which they were processed by the application (set in recvmsg).
734  * Each entry is a 32bit value. Upper part is the high-order bits
735  * of flow hash, lower part is CPU number.
736  * rps_cpu_mask is used to partition the space, depending on number of
737  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
738  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
739  * meaning we use 32-6=26 bits for the hash.
740  */
741 struct rps_sock_flow_table {
742 	u32	mask;
743 
744 	u32	ents[] ____cacheline_aligned_in_smp;
745 };
746 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
747 
748 #define RPS_NO_CPU 0xffff
749 
750 extern u32 rps_cpu_mask;
751 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
752 
753 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
754 					u32 hash)
755 {
756 	if (table && hash) {
757 		unsigned int index = hash & table->mask;
758 		u32 val = hash & ~rps_cpu_mask;
759 
760 		/* We only give a hint, preemption can change CPU under us */
761 		val |= raw_smp_processor_id();
762 
763 		if (table->ents[index] != val)
764 			table->ents[index] = val;
765 	}
766 }
767 
768 #ifdef CONFIG_RFS_ACCEL
769 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
770 			 u16 filter_id);
771 #endif
772 #endif /* CONFIG_RPS */
773 
774 /* This structure contains an instance of an RX queue. */
775 struct netdev_rx_queue {
776 	struct xdp_rxq_info		xdp_rxq;
777 #ifdef CONFIG_RPS
778 	struct rps_map __rcu		*rps_map;
779 	struct rps_dev_flow_table __rcu	*rps_flow_table;
780 #endif
781 	struct kobject			kobj;
782 	struct net_device		*dev;
783 	netdevice_tracker		dev_tracker;
784 
785 #ifdef CONFIG_XDP_SOCKETS
786 	struct xsk_buff_pool            *pool;
787 #endif
788 } ____cacheline_aligned_in_smp;
789 
790 /*
791  * RX queue sysfs structures and functions.
792  */
793 struct rx_queue_attribute {
794 	struct attribute attr;
795 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
796 	ssize_t (*store)(struct netdev_rx_queue *queue,
797 			 const char *buf, size_t len);
798 };
799 
800 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
801 enum xps_map_type {
802 	XPS_CPUS = 0,
803 	XPS_RXQS,
804 	XPS_MAPS_MAX,
805 };
806 
807 #ifdef CONFIG_XPS
808 /*
809  * This structure holds an XPS map which can be of variable length.  The
810  * map is an array of queues.
811  */
812 struct xps_map {
813 	unsigned int len;
814 	unsigned int alloc_len;
815 	struct rcu_head rcu;
816 	u16 queues[];
817 };
818 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
819 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
820        - sizeof(struct xps_map)) / sizeof(u16))
821 
822 /*
823  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
824  *
825  * We keep track of the number of cpus/rxqs used when the struct is allocated,
826  * in nr_ids. This will help not accessing out-of-bound memory.
827  *
828  * We keep track of the number of traffic classes used when the struct is
829  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
830  * not crossing its upper bound, as the original dev->num_tc can be updated in
831  * the meantime.
832  */
833 struct xps_dev_maps {
834 	struct rcu_head rcu;
835 	unsigned int nr_ids;
836 	s16 num_tc;
837 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
838 };
839 
840 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
841 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
842 
843 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
844 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
845 
846 #endif /* CONFIG_XPS */
847 
848 #define TC_MAX_QUEUE	16
849 #define TC_BITMASK	15
850 /* HW offloaded queuing disciplines txq count and offset maps */
851 struct netdev_tc_txq {
852 	u16 count;
853 	u16 offset;
854 };
855 
856 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
857 /*
858  * This structure is to hold information about the device
859  * configured to run FCoE protocol stack.
860  */
861 struct netdev_fcoe_hbainfo {
862 	char	manufacturer[64];
863 	char	serial_number[64];
864 	char	hardware_version[64];
865 	char	driver_version[64];
866 	char	optionrom_version[64];
867 	char	firmware_version[64];
868 	char	model[256];
869 	char	model_description[256];
870 };
871 #endif
872 
873 #define MAX_PHYS_ITEM_ID_LEN 32
874 
875 /* This structure holds a unique identifier to identify some
876  * physical item (port for example) used by a netdevice.
877  */
878 struct netdev_phys_item_id {
879 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
880 	unsigned char id_len;
881 };
882 
883 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
884 					    struct netdev_phys_item_id *b)
885 {
886 	return a->id_len == b->id_len &&
887 	       memcmp(a->id, b->id, a->id_len) == 0;
888 }
889 
890 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
891 				       struct sk_buff *skb,
892 				       struct net_device *sb_dev);
893 
894 enum net_device_path_type {
895 	DEV_PATH_ETHERNET = 0,
896 	DEV_PATH_VLAN,
897 	DEV_PATH_BRIDGE,
898 	DEV_PATH_PPPOE,
899 	DEV_PATH_DSA,
900 	DEV_PATH_MTK_WDMA,
901 };
902 
903 struct net_device_path {
904 	enum net_device_path_type	type;
905 	const struct net_device		*dev;
906 	union {
907 		struct {
908 			u16		id;
909 			__be16		proto;
910 			u8		h_dest[ETH_ALEN];
911 		} encap;
912 		struct {
913 			enum {
914 				DEV_PATH_BR_VLAN_KEEP,
915 				DEV_PATH_BR_VLAN_TAG,
916 				DEV_PATH_BR_VLAN_UNTAG,
917 				DEV_PATH_BR_VLAN_UNTAG_HW,
918 			}		vlan_mode;
919 			u16		vlan_id;
920 			__be16		vlan_proto;
921 		} bridge;
922 		struct {
923 			int port;
924 			u16 proto;
925 		} dsa;
926 		struct {
927 			u8 wdma_idx;
928 			u8 queue;
929 			u16 wcid;
930 			u8 bss;
931 		} mtk_wdma;
932 	};
933 };
934 
935 #define NET_DEVICE_PATH_STACK_MAX	5
936 #define NET_DEVICE_PATH_VLAN_MAX	2
937 
938 struct net_device_path_stack {
939 	int			num_paths;
940 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
941 };
942 
943 struct net_device_path_ctx {
944 	const struct net_device *dev;
945 	u8			daddr[ETH_ALEN];
946 
947 	int			num_vlans;
948 	struct {
949 		u16		id;
950 		__be16		proto;
951 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
952 };
953 
954 enum tc_setup_type {
955 	TC_QUERY_CAPS,
956 	TC_SETUP_QDISC_MQPRIO,
957 	TC_SETUP_CLSU32,
958 	TC_SETUP_CLSFLOWER,
959 	TC_SETUP_CLSMATCHALL,
960 	TC_SETUP_CLSBPF,
961 	TC_SETUP_BLOCK,
962 	TC_SETUP_QDISC_CBS,
963 	TC_SETUP_QDISC_RED,
964 	TC_SETUP_QDISC_PRIO,
965 	TC_SETUP_QDISC_MQ,
966 	TC_SETUP_QDISC_ETF,
967 	TC_SETUP_ROOT_QDISC,
968 	TC_SETUP_QDISC_GRED,
969 	TC_SETUP_QDISC_TAPRIO,
970 	TC_SETUP_FT,
971 	TC_SETUP_QDISC_ETS,
972 	TC_SETUP_QDISC_TBF,
973 	TC_SETUP_QDISC_FIFO,
974 	TC_SETUP_QDISC_HTB,
975 	TC_SETUP_ACT,
976 };
977 
978 /* These structures hold the attributes of bpf state that are being passed
979  * to the netdevice through the bpf op.
980  */
981 enum bpf_netdev_command {
982 	/* Set or clear a bpf program used in the earliest stages of packet
983 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
984 	 * is responsible for calling bpf_prog_put on any old progs that are
985 	 * stored. In case of error, the callee need not release the new prog
986 	 * reference, but on success it takes ownership and must bpf_prog_put
987 	 * when it is no longer used.
988 	 */
989 	XDP_SETUP_PROG,
990 	XDP_SETUP_PROG_HW,
991 	/* BPF program for offload callbacks, invoked at program load time. */
992 	BPF_OFFLOAD_MAP_ALLOC,
993 	BPF_OFFLOAD_MAP_FREE,
994 	XDP_SETUP_XSK_POOL,
995 };
996 
997 struct bpf_prog_offload_ops;
998 struct netlink_ext_ack;
999 struct xdp_umem;
1000 struct xdp_dev_bulk_queue;
1001 struct bpf_xdp_link;
1002 
1003 enum bpf_xdp_mode {
1004 	XDP_MODE_SKB = 0,
1005 	XDP_MODE_DRV = 1,
1006 	XDP_MODE_HW = 2,
1007 	__MAX_XDP_MODE
1008 };
1009 
1010 struct bpf_xdp_entity {
1011 	struct bpf_prog *prog;
1012 	struct bpf_xdp_link *link;
1013 };
1014 
1015 struct netdev_bpf {
1016 	enum bpf_netdev_command command;
1017 	union {
1018 		/* XDP_SETUP_PROG */
1019 		struct {
1020 			u32 flags;
1021 			struct bpf_prog *prog;
1022 			struct netlink_ext_ack *extack;
1023 		};
1024 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1025 		struct {
1026 			struct bpf_offloaded_map *offmap;
1027 		};
1028 		/* XDP_SETUP_XSK_POOL */
1029 		struct {
1030 			struct xsk_buff_pool *pool;
1031 			u16 queue_id;
1032 		} xsk;
1033 	};
1034 };
1035 
1036 /* Flags for ndo_xsk_wakeup. */
1037 #define XDP_WAKEUP_RX (1 << 0)
1038 #define XDP_WAKEUP_TX (1 << 1)
1039 
1040 #ifdef CONFIG_XFRM_OFFLOAD
1041 struct xfrmdev_ops {
1042 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1043 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1044 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1045 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1046 				       struct xfrm_state *x);
1047 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1048 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1049 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1050 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1051 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1052 };
1053 #endif
1054 
1055 struct dev_ifalias {
1056 	struct rcu_head rcuhead;
1057 	char ifalias[];
1058 };
1059 
1060 struct devlink;
1061 struct tlsdev_ops;
1062 
1063 struct netdev_net_notifier {
1064 	struct list_head list;
1065 	struct notifier_block *nb;
1066 };
1067 
1068 /*
1069  * This structure defines the management hooks for network devices.
1070  * The following hooks can be defined; unless noted otherwise, they are
1071  * optional and can be filled with a null pointer.
1072  *
1073  * int (*ndo_init)(struct net_device *dev);
1074  *     This function is called once when a network device is registered.
1075  *     The network device can use this for any late stage initialization
1076  *     or semantic validation. It can fail with an error code which will
1077  *     be propagated back to register_netdev.
1078  *
1079  * void (*ndo_uninit)(struct net_device *dev);
1080  *     This function is called when device is unregistered or when registration
1081  *     fails. It is not called if init fails.
1082  *
1083  * int (*ndo_open)(struct net_device *dev);
1084  *     This function is called when a network device transitions to the up
1085  *     state.
1086  *
1087  * int (*ndo_stop)(struct net_device *dev);
1088  *     This function is called when a network device transitions to the down
1089  *     state.
1090  *
1091  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1092  *                               struct net_device *dev);
1093  *	Called when a packet needs to be transmitted.
1094  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1095  *	the queue before that can happen; it's for obsolete devices and weird
1096  *	corner cases, but the stack really does a non-trivial amount
1097  *	of useless work if you return NETDEV_TX_BUSY.
1098  *	Required; cannot be NULL.
1099  *
1100  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1101  *					   struct net_device *dev
1102  *					   netdev_features_t features);
1103  *	Called by core transmit path to determine if device is capable of
1104  *	performing offload operations on a given packet. This is to give
1105  *	the device an opportunity to implement any restrictions that cannot
1106  *	be otherwise expressed by feature flags. The check is called with
1107  *	the set of features that the stack has calculated and it returns
1108  *	those the driver believes to be appropriate.
1109  *
1110  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1111  *                         struct net_device *sb_dev);
1112  *	Called to decide which queue to use when device supports multiple
1113  *	transmit queues.
1114  *
1115  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1116  *	This function is called to allow device receiver to make
1117  *	changes to configuration when multicast or promiscuous is enabled.
1118  *
1119  * void (*ndo_set_rx_mode)(struct net_device *dev);
1120  *	This function is called device changes address list filtering.
1121  *	If driver handles unicast address filtering, it should set
1122  *	IFF_UNICAST_FLT in its priv_flags.
1123  *
1124  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1125  *	This function  is called when the Media Access Control address
1126  *	needs to be changed. If this interface is not defined, the
1127  *	MAC address can not be changed.
1128  *
1129  * int (*ndo_validate_addr)(struct net_device *dev);
1130  *	Test if Media Access Control address is valid for the device.
1131  *
1132  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1133  *	Old-style ioctl entry point. This is used internally by the
1134  *	appletalk and ieee802154 subsystems but is no longer called by
1135  *	the device ioctl handler.
1136  *
1137  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1138  *	Used by the bonding driver for its device specific ioctls:
1139  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1140  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1141  *
1142  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1143  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1144  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1145  *
1146  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1147  *	Used to set network devices bus interface parameters. This interface
1148  *	is retained for legacy reasons; new devices should use the bus
1149  *	interface (PCI) for low level management.
1150  *
1151  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1152  *	Called when a user wants to change the Maximum Transfer Unit
1153  *	of a device.
1154  *
1155  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1156  *	Callback used when the transmitter has not made any progress
1157  *	for dev->watchdog ticks.
1158  *
1159  * void (*ndo_get_stats64)(struct net_device *dev,
1160  *                         struct rtnl_link_stats64 *storage);
1161  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1162  *	Called when a user wants to get the network device usage
1163  *	statistics. Drivers must do one of the following:
1164  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1165  *	   rtnl_link_stats64 structure passed by the caller.
1166  *	2. Define @ndo_get_stats to update a net_device_stats structure
1167  *	   (which should normally be dev->stats) and return a pointer to
1168  *	   it. The structure may be changed asynchronously only if each
1169  *	   field is written atomically.
1170  *	3. Update dev->stats asynchronously and atomically, and define
1171  *	   neither operation.
1172  *
1173  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1174  *	Return true if this device supports offload stats of this attr_id.
1175  *
1176  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1177  *	void *attr_data)
1178  *	Get statistics for offload operations by attr_id. Write it into the
1179  *	attr_data pointer.
1180  *
1181  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1182  *	If device supports VLAN filtering this function is called when a
1183  *	VLAN id is registered.
1184  *
1185  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1186  *	If device supports VLAN filtering this function is called when a
1187  *	VLAN id is unregistered.
1188  *
1189  * void (*ndo_poll_controller)(struct net_device *dev);
1190  *
1191  *	SR-IOV management functions.
1192  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1193  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1194  *			  u8 qos, __be16 proto);
1195  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1196  *			  int max_tx_rate);
1197  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1198  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1199  * int (*ndo_get_vf_config)(struct net_device *dev,
1200  *			    int vf, struct ifla_vf_info *ivf);
1201  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1202  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1203  *			  struct nlattr *port[]);
1204  *
1205  *      Enable or disable the VF ability to query its RSS Redirection Table and
1206  *      Hash Key. This is needed since on some devices VF share this information
1207  *      with PF and querying it may introduce a theoretical security risk.
1208  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1209  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1210  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1211  *		       void *type_data);
1212  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1213  *	This is always called from the stack with the rtnl lock held and netif
1214  *	tx queues stopped. This allows the netdevice to perform queue
1215  *	management safely.
1216  *
1217  *	Fiber Channel over Ethernet (FCoE) offload functions.
1218  * int (*ndo_fcoe_enable)(struct net_device *dev);
1219  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1220  *	so the underlying device can perform whatever needed configuration or
1221  *	initialization to support acceleration of FCoE traffic.
1222  *
1223  * int (*ndo_fcoe_disable)(struct net_device *dev);
1224  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1225  *	so the underlying device can perform whatever needed clean-ups to
1226  *	stop supporting acceleration of FCoE traffic.
1227  *
1228  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1229  *			     struct scatterlist *sgl, unsigned int sgc);
1230  *	Called when the FCoE Initiator wants to initialize an I/O that
1231  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1232  *	perform necessary setup and returns 1 to indicate the device is set up
1233  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1234  *
1235  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1236  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1237  *	indicated by the FC exchange id 'xid', so the underlying device can
1238  *	clean up and reuse resources for later DDP requests.
1239  *
1240  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1241  *			      struct scatterlist *sgl, unsigned int sgc);
1242  *	Called when the FCoE Target wants to initialize an I/O that
1243  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1244  *	perform necessary setup and returns 1 to indicate the device is set up
1245  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1246  *
1247  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1248  *			       struct netdev_fcoe_hbainfo *hbainfo);
1249  *	Called when the FCoE Protocol stack wants information on the underlying
1250  *	device. This information is utilized by the FCoE protocol stack to
1251  *	register attributes with Fiber Channel management service as per the
1252  *	FC-GS Fabric Device Management Information(FDMI) specification.
1253  *
1254  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1255  *	Called when the underlying device wants to override default World Wide
1256  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1257  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1258  *	protocol stack to use.
1259  *
1260  *	RFS acceleration.
1261  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1262  *			    u16 rxq_index, u32 flow_id);
1263  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1264  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1265  *	Return the filter ID on success, or a negative error code.
1266  *
1267  *	Slave management functions (for bridge, bonding, etc).
1268  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1269  *	Called to make another netdev an underling.
1270  *
1271  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1272  *	Called to release previously enslaved netdev.
1273  *
1274  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1275  *					    struct sk_buff *skb,
1276  *					    bool all_slaves);
1277  *	Get the xmit slave of master device. If all_slaves is true, function
1278  *	assume all the slaves can transmit.
1279  *
1280  *      Feature/offload setting functions.
1281  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1282  *		netdev_features_t features);
1283  *	Adjusts the requested feature flags according to device-specific
1284  *	constraints, and returns the resulting flags. Must not modify
1285  *	the device state.
1286  *
1287  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1288  *	Called to update device configuration to new features. Passed
1289  *	feature set might be less than what was returned by ndo_fix_features()).
1290  *	Must return >0 or -errno if it changed dev->features itself.
1291  *
1292  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1293  *		      struct net_device *dev,
1294  *		      const unsigned char *addr, u16 vid, u16 flags,
1295  *		      struct netlink_ext_ack *extack);
1296  *	Adds an FDB entry to dev for addr.
1297  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1298  *		      struct net_device *dev,
1299  *		      const unsigned char *addr, u16 vid)
1300  *	Deletes the FDB entry from dev coresponding to addr.
1301  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1302  *			   struct net_device *dev,
1303  *			   u16 vid,
1304  *			   struct netlink_ext_ack *extack);
1305  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1306  *		       struct net_device *dev, struct net_device *filter_dev,
1307  *		       int *idx)
1308  *	Used to add FDB entries to dump requests. Implementers should add
1309  *	entries to skb and update idx with the number of entries.
1310  *
1311  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1312  *			     u16 flags, struct netlink_ext_ack *extack)
1313  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1314  *			     struct net_device *dev, u32 filter_mask,
1315  *			     int nlflags)
1316  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1317  *			     u16 flags);
1318  *
1319  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1320  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1321  *	which do not represent real hardware may define this to allow their
1322  *	userspace components to manage their virtual carrier state. Devices
1323  *	that determine carrier state from physical hardware properties (eg
1324  *	network cables) or protocol-dependent mechanisms (eg
1325  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1326  *
1327  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1328  *			       struct netdev_phys_item_id *ppid);
1329  *	Called to get ID of physical port of this device. If driver does
1330  *	not implement this, it is assumed that the hw is not able to have
1331  *	multiple net devices on single physical port.
1332  *
1333  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1334  *				 struct netdev_phys_item_id *ppid)
1335  *	Called to get the parent ID of the physical port of this device.
1336  *
1337  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1338  *				 struct net_device *dev)
1339  *	Called by upper layer devices to accelerate switching or other
1340  *	station functionality into hardware. 'pdev is the lowerdev
1341  *	to use for the offload and 'dev' is the net device that will
1342  *	back the offload. Returns a pointer to the private structure
1343  *	the upper layer will maintain.
1344  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1345  *	Called by upper layer device to delete the station created
1346  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1347  *	the station and priv is the structure returned by the add
1348  *	operation.
1349  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1350  *			     int queue_index, u32 maxrate);
1351  *	Called when a user wants to set a max-rate limitation of specific
1352  *	TX queue.
1353  * int (*ndo_get_iflink)(const struct net_device *dev);
1354  *	Called to get the iflink value of this device.
1355  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1356  *	This function is used to get egress tunnel information for given skb.
1357  *	This is useful for retrieving outer tunnel header parameters while
1358  *	sampling packet.
1359  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1360  *	This function is used to specify the headroom that the skb must
1361  *	consider when allocation skb during packet reception. Setting
1362  *	appropriate rx headroom value allows avoiding skb head copy on
1363  *	forward. Setting a negative value resets the rx headroom to the
1364  *	default value.
1365  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1366  *	This function is used to set or query state related to XDP on the
1367  *	netdevice and manage BPF offload. See definition of
1368  *	enum bpf_netdev_command for details.
1369  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1370  *			u32 flags);
1371  *	This function is used to submit @n XDP packets for transmit on a
1372  *	netdevice. Returns number of frames successfully transmitted, frames
1373  *	that got dropped are freed/returned via xdp_return_frame().
1374  *	Returns negative number, means general error invoking ndo, meaning
1375  *	no frames were xmit'ed and core-caller will free all frames.
1376  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1377  *					        struct xdp_buff *xdp);
1378  *      Get the xmit slave of master device based on the xdp_buff.
1379  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1380  *      This function is used to wake up the softirq, ksoftirqd or kthread
1381  *	responsible for sending and/or receiving packets on a specific
1382  *	queue id bound to an AF_XDP socket. The flags field specifies if
1383  *	only RX, only Tx, or both should be woken up using the flags
1384  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1385  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1386  *			 int cmd);
1387  *	Add, change, delete or get information on an IPv4 tunnel.
1388  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1389  *	If a device is paired with a peer device, return the peer instance.
1390  *	The caller must be under RCU read context.
1391  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1392  *     Get the forwarding path to reach the real device from the HW destination address
1393  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1394  *			     const struct skb_shared_hwtstamps *hwtstamps,
1395  *			     bool cycles);
1396  *	Get hardware timestamp based on normal/adjustable time or free running
1397  *	cycle counter. This function is required if physical clock supports a
1398  *	free running cycle counter.
1399  */
1400 struct net_device_ops {
1401 	int			(*ndo_init)(struct net_device *dev);
1402 	void			(*ndo_uninit)(struct net_device *dev);
1403 	int			(*ndo_open)(struct net_device *dev);
1404 	int			(*ndo_stop)(struct net_device *dev);
1405 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1406 						  struct net_device *dev);
1407 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1408 						      struct net_device *dev,
1409 						      netdev_features_t features);
1410 	u16			(*ndo_select_queue)(struct net_device *dev,
1411 						    struct sk_buff *skb,
1412 						    struct net_device *sb_dev);
1413 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1414 						       int flags);
1415 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1416 	int			(*ndo_set_mac_address)(struct net_device *dev,
1417 						       void *addr);
1418 	int			(*ndo_validate_addr)(struct net_device *dev);
1419 	int			(*ndo_do_ioctl)(struct net_device *dev,
1420 					        struct ifreq *ifr, int cmd);
1421 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1422 						 struct ifreq *ifr, int cmd);
1423 	int			(*ndo_siocbond)(struct net_device *dev,
1424 						struct ifreq *ifr, int cmd);
1425 	int			(*ndo_siocwandev)(struct net_device *dev,
1426 						  struct if_settings *ifs);
1427 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1428 						      struct ifreq *ifr,
1429 						      void __user *data, int cmd);
1430 	int			(*ndo_set_config)(struct net_device *dev,
1431 					          struct ifmap *map);
1432 	int			(*ndo_change_mtu)(struct net_device *dev,
1433 						  int new_mtu);
1434 	int			(*ndo_neigh_setup)(struct net_device *dev,
1435 						   struct neigh_parms *);
1436 	void			(*ndo_tx_timeout) (struct net_device *dev,
1437 						   unsigned int txqueue);
1438 
1439 	void			(*ndo_get_stats64)(struct net_device *dev,
1440 						   struct rtnl_link_stats64 *storage);
1441 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1442 	int			(*ndo_get_offload_stats)(int attr_id,
1443 							 const struct net_device *dev,
1444 							 void *attr_data);
1445 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1446 
1447 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1448 						       __be16 proto, u16 vid);
1449 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1450 						        __be16 proto, u16 vid);
1451 #ifdef CONFIG_NET_POLL_CONTROLLER
1452 	void                    (*ndo_poll_controller)(struct net_device *dev);
1453 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1454 						     struct netpoll_info *info);
1455 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1456 #endif
1457 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1458 						  int queue, u8 *mac);
1459 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1460 						   int queue, u16 vlan,
1461 						   u8 qos, __be16 proto);
1462 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1463 						   int vf, int min_tx_rate,
1464 						   int max_tx_rate);
1465 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1466 						       int vf, bool setting);
1467 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1468 						    int vf, bool setting);
1469 	int			(*ndo_get_vf_config)(struct net_device *dev,
1470 						     int vf,
1471 						     struct ifla_vf_info *ivf);
1472 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1473 							 int vf, int link_state);
1474 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1475 						    int vf,
1476 						    struct ifla_vf_stats
1477 						    *vf_stats);
1478 	int			(*ndo_set_vf_port)(struct net_device *dev,
1479 						   int vf,
1480 						   struct nlattr *port[]);
1481 	int			(*ndo_get_vf_port)(struct net_device *dev,
1482 						   int vf, struct sk_buff *skb);
1483 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1484 						   int vf,
1485 						   struct ifla_vf_guid *node_guid,
1486 						   struct ifla_vf_guid *port_guid);
1487 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1488 						   int vf, u64 guid,
1489 						   int guid_type);
1490 	int			(*ndo_set_vf_rss_query_en)(
1491 						   struct net_device *dev,
1492 						   int vf, bool setting);
1493 	int			(*ndo_setup_tc)(struct net_device *dev,
1494 						enum tc_setup_type type,
1495 						void *type_data);
1496 #if IS_ENABLED(CONFIG_FCOE)
1497 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1498 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1499 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1500 						      u16 xid,
1501 						      struct scatterlist *sgl,
1502 						      unsigned int sgc);
1503 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1504 						     u16 xid);
1505 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1506 						       u16 xid,
1507 						       struct scatterlist *sgl,
1508 						       unsigned int sgc);
1509 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1510 							struct netdev_fcoe_hbainfo *hbainfo);
1511 #endif
1512 
1513 #if IS_ENABLED(CONFIG_LIBFCOE)
1514 #define NETDEV_FCOE_WWNN 0
1515 #define NETDEV_FCOE_WWPN 1
1516 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1517 						    u64 *wwn, int type);
1518 #endif
1519 
1520 #ifdef CONFIG_RFS_ACCEL
1521 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1522 						     const struct sk_buff *skb,
1523 						     u16 rxq_index,
1524 						     u32 flow_id);
1525 #endif
1526 	int			(*ndo_add_slave)(struct net_device *dev,
1527 						 struct net_device *slave_dev,
1528 						 struct netlink_ext_ack *extack);
1529 	int			(*ndo_del_slave)(struct net_device *dev,
1530 						 struct net_device *slave_dev);
1531 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1532 						      struct sk_buff *skb,
1533 						      bool all_slaves);
1534 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1535 							struct sock *sk);
1536 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1537 						    netdev_features_t features);
1538 	int			(*ndo_set_features)(struct net_device *dev,
1539 						    netdev_features_t features);
1540 	int			(*ndo_neigh_construct)(struct net_device *dev,
1541 						       struct neighbour *n);
1542 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1543 						     struct neighbour *n);
1544 
1545 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1546 					       struct nlattr *tb[],
1547 					       struct net_device *dev,
1548 					       const unsigned char *addr,
1549 					       u16 vid,
1550 					       u16 flags,
1551 					       struct netlink_ext_ack *extack);
1552 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1553 					       struct nlattr *tb[],
1554 					       struct net_device *dev,
1555 					       const unsigned char *addr,
1556 					       u16 vid, struct netlink_ext_ack *extack);
1557 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1558 						    struct nlattr *tb[],
1559 						    struct net_device *dev,
1560 						    u16 vid,
1561 						    struct netlink_ext_ack *extack);
1562 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1563 						struct netlink_callback *cb,
1564 						struct net_device *dev,
1565 						struct net_device *filter_dev,
1566 						int *idx);
1567 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1568 					       struct nlattr *tb[],
1569 					       struct net_device *dev,
1570 					       const unsigned char *addr,
1571 					       u16 vid, u32 portid, u32 seq,
1572 					       struct netlink_ext_ack *extack);
1573 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1574 						      struct nlmsghdr *nlh,
1575 						      u16 flags,
1576 						      struct netlink_ext_ack *extack);
1577 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1578 						      u32 pid, u32 seq,
1579 						      struct net_device *dev,
1580 						      u32 filter_mask,
1581 						      int nlflags);
1582 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1583 						      struct nlmsghdr *nlh,
1584 						      u16 flags);
1585 	int			(*ndo_change_carrier)(struct net_device *dev,
1586 						      bool new_carrier);
1587 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1588 							struct netdev_phys_item_id *ppid);
1589 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1590 							  struct netdev_phys_item_id *ppid);
1591 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1592 							  char *name, size_t len);
1593 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1594 							struct net_device *dev);
1595 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1596 							void *priv);
1597 
1598 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1599 						      int queue_index,
1600 						      u32 maxrate);
1601 	int			(*ndo_get_iflink)(const struct net_device *dev);
1602 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1603 						       struct sk_buff *skb);
1604 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1605 						       int needed_headroom);
1606 	int			(*ndo_bpf)(struct net_device *dev,
1607 					   struct netdev_bpf *bpf);
1608 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1609 						struct xdp_frame **xdp,
1610 						u32 flags);
1611 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1612 							  struct xdp_buff *xdp);
1613 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1614 						  u32 queue_id, u32 flags);
1615 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1616 						  struct ip_tunnel_parm *p, int cmd);
1617 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1618 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1619                                                          struct net_device_path *path);
1620 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1621 						  const struct skb_shared_hwtstamps *hwtstamps,
1622 						  bool cycles);
1623 };
1624 
1625 struct xdp_metadata_ops {
1626 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1627 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash);
1628 };
1629 
1630 /**
1631  * enum netdev_priv_flags - &struct net_device priv_flags
1632  *
1633  * These are the &struct net_device, they are only set internally
1634  * by drivers and used in the kernel. These flags are invisible to
1635  * userspace; this means that the order of these flags can change
1636  * during any kernel release.
1637  *
1638  * You should have a pretty good reason to be extending these flags.
1639  *
1640  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1641  * @IFF_EBRIDGE: Ethernet bridging device
1642  * @IFF_BONDING: bonding master or slave
1643  * @IFF_ISATAP: ISATAP interface (RFC4214)
1644  * @IFF_WAN_HDLC: WAN HDLC device
1645  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1646  *	release skb->dst
1647  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1648  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1649  * @IFF_MACVLAN_PORT: device used as macvlan port
1650  * @IFF_BRIDGE_PORT: device used as bridge port
1651  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1652  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1653  * @IFF_UNICAST_FLT: Supports unicast filtering
1654  * @IFF_TEAM_PORT: device used as team port
1655  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1656  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1657  *	change when it's running
1658  * @IFF_MACVLAN: Macvlan device
1659  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1660  *	underlying stacked devices
1661  * @IFF_L3MDEV_MASTER: device is an L3 master device
1662  * @IFF_NO_QUEUE: device can run without qdisc attached
1663  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1664  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1665  * @IFF_TEAM: device is a team device
1666  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1667  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1668  *	entity (i.e. the master device for bridged veth)
1669  * @IFF_MACSEC: device is a MACsec device
1670  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1671  * @IFF_FAILOVER: device is a failover master device
1672  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1673  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1674  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1675  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1676  *	skb_headlen(skb) == 0 (data starts from frag0)
1677  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1678  */
1679 enum netdev_priv_flags {
1680 	IFF_802_1Q_VLAN			= 1<<0,
1681 	IFF_EBRIDGE			= 1<<1,
1682 	IFF_BONDING			= 1<<2,
1683 	IFF_ISATAP			= 1<<3,
1684 	IFF_WAN_HDLC			= 1<<4,
1685 	IFF_XMIT_DST_RELEASE		= 1<<5,
1686 	IFF_DONT_BRIDGE			= 1<<6,
1687 	IFF_DISABLE_NETPOLL		= 1<<7,
1688 	IFF_MACVLAN_PORT		= 1<<8,
1689 	IFF_BRIDGE_PORT			= 1<<9,
1690 	IFF_OVS_DATAPATH		= 1<<10,
1691 	IFF_TX_SKB_SHARING		= 1<<11,
1692 	IFF_UNICAST_FLT			= 1<<12,
1693 	IFF_TEAM_PORT			= 1<<13,
1694 	IFF_SUPP_NOFCS			= 1<<14,
1695 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1696 	IFF_MACVLAN			= 1<<16,
1697 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1698 	IFF_L3MDEV_MASTER		= 1<<18,
1699 	IFF_NO_QUEUE			= 1<<19,
1700 	IFF_OPENVSWITCH			= 1<<20,
1701 	IFF_L3MDEV_SLAVE		= 1<<21,
1702 	IFF_TEAM			= 1<<22,
1703 	IFF_RXFH_CONFIGURED		= 1<<23,
1704 	IFF_PHONY_HEADROOM		= 1<<24,
1705 	IFF_MACSEC			= 1<<25,
1706 	IFF_NO_RX_HANDLER		= 1<<26,
1707 	IFF_FAILOVER			= 1<<27,
1708 	IFF_FAILOVER_SLAVE		= 1<<28,
1709 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1710 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1711 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1712 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1713 };
1714 
1715 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1716 #define IFF_EBRIDGE			IFF_EBRIDGE
1717 #define IFF_BONDING			IFF_BONDING
1718 #define IFF_ISATAP			IFF_ISATAP
1719 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1720 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1721 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1722 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1723 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1724 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1725 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1726 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1727 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1728 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1729 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1730 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1731 #define IFF_MACVLAN			IFF_MACVLAN
1732 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1733 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1734 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1735 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1736 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1737 #define IFF_TEAM			IFF_TEAM
1738 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1739 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1740 #define IFF_MACSEC			IFF_MACSEC
1741 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1742 #define IFF_FAILOVER			IFF_FAILOVER
1743 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1744 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1745 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1746 
1747 /* Specifies the type of the struct net_device::ml_priv pointer */
1748 enum netdev_ml_priv_type {
1749 	ML_PRIV_NONE,
1750 	ML_PRIV_CAN,
1751 };
1752 
1753 /**
1754  *	struct net_device - The DEVICE structure.
1755  *
1756  *	Actually, this whole structure is a big mistake.  It mixes I/O
1757  *	data with strictly "high-level" data, and it has to know about
1758  *	almost every data structure used in the INET module.
1759  *
1760  *	@name:	This is the first field of the "visible" part of this structure
1761  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1762  *		of the interface.
1763  *
1764  *	@name_node:	Name hashlist node
1765  *	@ifalias:	SNMP alias
1766  *	@mem_end:	Shared memory end
1767  *	@mem_start:	Shared memory start
1768  *	@base_addr:	Device I/O address
1769  *	@irq:		Device IRQ number
1770  *
1771  *	@state:		Generic network queuing layer state, see netdev_state_t
1772  *	@dev_list:	The global list of network devices
1773  *	@napi_list:	List entry used for polling NAPI devices
1774  *	@unreg_list:	List entry  when we are unregistering the
1775  *			device; see the function unregister_netdev
1776  *	@close_list:	List entry used when we are closing the device
1777  *	@ptype_all:     Device-specific packet handlers for all protocols
1778  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1779  *
1780  *	@adj_list:	Directly linked devices, like slaves for bonding
1781  *	@features:	Currently active device features
1782  *	@hw_features:	User-changeable features
1783  *
1784  *	@wanted_features:	User-requested features
1785  *	@vlan_features:		Mask of features inheritable by VLAN devices
1786  *
1787  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1788  *				This field indicates what encapsulation
1789  *				offloads the hardware is capable of doing,
1790  *				and drivers will need to set them appropriately.
1791  *
1792  *	@mpls_features:	Mask of features inheritable by MPLS
1793  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1794  *
1795  *	@ifindex:	interface index
1796  *	@group:		The group the device belongs to
1797  *
1798  *	@stats:		Statistics struct, which was left as a legacy, use
1799  *			rtnl_link_stats64 instead
1800  *
1801  *	@core_stats:	core networking counters,
1802  *			do not use this in drivers
1803  *	@carrier_up_count:	Number of times the carrier has been up
1804  *	@carrier_down_count:	Number of times the carrier has been down
1805  *
1806  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1807  *				instead of ioctl,
1808  *				see <net/iw_handler.h> for details.
1809  *	@wireless_data:	Instance data managed by the core of wireless extensions
1810  *
1811  *	@netdev_ops:	Includes several pointers to callbacks,
1812  *			if one wants to override the ndo_*() functions
1813  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1814  *	@ethtool_ops:	Management operations
1815  *	@l3mdev_ops:	Layer 3 master device operations
1816  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1817  *			discovery handling. Necessary for e.g. 6LoWPAN.
1818  *	@xfrmdev_ops:	Transformation offload operations
1819  *	@tlsdev_ops:	Transport Layer Security offload operations
1820  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1821  *			of Layer 2 headers.
1822  *
1823  *	@flags:		Interface flags (a la BSD)
1824  *	@xdp_features:	XDP capability supported by the device
1825  *	@priv_flags:	Like 'flags' but invisible to userspace,
1826  *			see if.h for the definitions
1827  *	@gflags:	Global flags ( kept as legacy )
1828  *	@padded:	How much padding added by alloc_netdev()
1829  *	@operstate:	RFC2863 operstate
1830  *	@link_mode:	Mapping policy to operstate
1831  *	@if_port:	Selectable AUI, TP, ...
1832  *	@dma:		DMA channel
1833  *	@mtu:		Interface MTU value
1834  *	@min_mtu:	Interface Minimum MTU value
1835  *	@max_mtu:	Interface Maximum MTU value
1836  *	@type:		Interface hardware type
1837  *	@hard_header_len: Maximum hardware header length.
1838  *	@min_header_len:  Minimum hardware header length
1839  *
1840  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1841  *			  cases can this be guaranteed
1842  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1843  *			  cases can this be guaranteed. Some cases also use
1844  *			  LL_MAX_HEADER instead to allocate the skb
1845  *
1846  *	interface address info:
1847  *
1848  * 	@perm_addr:		Permanent hw address
1849  * 	@addr_assign_type:	Hw address assignment type
1850  * 	@addr_len:		Hardware address length
1851  *	@upper_level:		Maximum depth level of upper devices.
1852  *	@lower_level:		Maximum depth level of lower devices.
1853  *	@neigh_priv_len:	Used in neigh_alloc()
1854  * 	@dev_id:		Used to differentiate devices that share
1855  * 				the same link layer address
1856  * 	@dev_port:		Used to differentiate devices that share
1857  * 				the same function
1858  *	@addr_list_lock:	XXX: need comments on this one
1859  *	@name_assign_type:	network interface name assignment type
1860  *	@uc_promisc:		Counter that indicates promiscuous mode
1861  *				has been enabled due to the need to listen to
1862  *				additional unicast addresses in a device that
1863  *				does not implement ndo_set_rx_mode()
1864  *	@uc:			unicast mac addresses
1865  *	@mc:			multicast mac addresses
1866  *	@dev_addrs:		list of device hw addresses
1867  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1868  *	@promiscuity:		Number of times the NIC is told to work in
1869  *				promiscuous mode; if it becomes 0 the NIC will
1870  *				exit promiscuous mode
1871  *	@allmulti:		Counter, enables or disables allmulticast mode
1872  *
1873  *	@vlan_info:	VLAN info
1874  *	@dsa_ptr:	dsa specific data
1875  *	@tipc_ptr:	TIPC specific data
1876  *	@atalk_ptr:	AppleTalk link
1877  *	@ip_ptr:	IPv4 specific data
1878  *	@ip6_ptr:	IPv6 specific data
1879  *	@ax25_ptr:	AX.25 specific data
1880  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1881  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1882  *			 device struct
1883  *	@mpls_ptr:	mpls_dev struct pointer
1884  *	@mctp_ptr:	MCTP specific data
1885  *
1886  *	@dev_addr:	Hw address (before bcast,
1887  *			because most packets are unicast)
1888  *
1889  *	@_rx:			Array of RX queues
1890  *	@num_rx_queues:		Number of RX queues
1891  *				allocated at register_netdev() time
1892  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1893  *	@xdp_prog:		XDP sockets filter program pointer
1894  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1895  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1896  *				allow to avoid NIC hard IRQ, on busy queues.
1897  *
1898  *	@rx_handler:		handler for received packets
1899  *	@rx_handler_data: 	XXX: need comments on this one
1900  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1901  *				ingress processing
1902  *	@ingress_queue:		XXX: need comments on this one
1903  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1904  *	@broadcast:		hw bcast address
1905  *
1906  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1907  *			indexed by RX queue number. Assigned by driver.
1908  *			This must only be set if the ndo_rx_flow_steer
1909  *			operation is defined
1910  *	@index_hlist:		Device index hash chain
1911  *
1912  *	@_tx:			Array of TX queues
1913  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1914  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1915  *	@qdisc:			Root qdisc from userspace point of view
1916  *	@tx_queue_len:		Max frames per queue allowed
1917  *	@tx_global_lock: 	XXX: need comments on this one
1918  *	@xdp_bulkq:		XDP device bulk queue
1919  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1920  *
1921  *	@xps_maps:	XXX: need comments on this one
1922  *	@miniq_egress:		clsact qdisc specific data for
1923  *				egress processing
1924  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1925  *	@qdisc_hash:		qdisc hash table
1926  *	@watchdog_timeo:	Represents the timeout that is used by
1927  *				the watchdog (see dev_watchdog())
1928  *	@watchdog_timer:	List of timers
1929  *
1930  *	@proto_down_reason:	reason a netdev interface is held down
1931  *	@pcpu_refcnt:		Number of references to this device
1932  *	@dev_refcnt:		Number of references to this device
1933  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1934  *	@todo_list:		Delayed register/unregister
1935  *	@link_watch_list:	XXX: need comments on this one
1936  *
1937  *	@reg_state:		Register/unregister state machine
1938  *	@dismantle:		Device is going to be freed
1939  *	@rtnl_link_state:	This enum represents the phases of creating
1940  *				a new link
1941  *
1942  *	@needs_free_netdev:	Should unregister perform free_netdev?
1943  *	@priv_destructor:	Called from unregister
1944  *	@npinfo:		XXX: need comments on this one
1945  * 	@nd_net:		Network namespace this network device is inside
1946  *
1947  * 	@ml_priv:	Mid-layer private
1948  *	@ml_priv_type:  Mid-layer private type
1949  * 	@lstats:	Loopback statistics
1950  * 	@tstats:	Tunnel statistics
1951  * 	@dstats:	Dummy statistics
1952  * 	@vstats:	Virtual ethernet statistics
1953  *
1954  *	@garp_port:	GARP
1955  *	@mrp_port:	MRP
1956  *
1957  *	@dm_private:	Drop monitor private
1958  *
1959  *	@dev:		Class/net/name entry
1960  *	@sysfs_groups:	Space for optional device, statistics and wireless
1961  *			sysfs groups
1962  *
1963  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1964  *	@rtnl_link_ops:	Rtnl_link_ops
1965  *
1966  *	@gso_max_size:	Maximum size of generic segmentation offload
1967  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1968  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1969  *			NIC for GSO
1970  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1971  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1972  * 				for IPv4.
1973  *
1974  *	@dcbnl_ops:	Data Center Bridging netlink ops
1975  *	@num_tc:	Number of traffic classes in the net device
1976  *	@tc_to_txq:	XXX: need comments on this one
1977  *	@prio_tc_map:	XXX: need comments on this one
1978  *
1979  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1980  *
1981  *	@priomap:	XXX: need comments on this one
1982  *	@phydev:	Physical device may attach itself
1983  *			for hardware timestamping
1984  *	@sfp_bus:	attached &struct sfp_bus structure.
1985  *
1986  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1987  *
1988  *	@proto_down:	protocol port state information can be sent to the
1989  *			switch driver and used to set the phys state of the
1990  *			switch port.
1991  *
1992  *	@wol_enabled:	Wake-on-LAN is enabled
1993  *
1994  *	@threaded:	napi threaded mode is enabled
1995  *
1996  *	@net_notifier_list:	List of per-net netdev notifier block
1997  *				that follow this device when it is moved
1998  *				to another network namespace.
1999  *
2000  *	@macsec_ops:    MACsec offloading ops
2001  *
2002  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2003  *				offload capabilities of the device
2004  *	@udp_tunnel_nic:	UDP tunnel offload state
2005  *	@xdp_state:		stores info on attached XDP BPF programs
2006  *
2007  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2008  *			dev->addr_list_lock.
2009  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2010  *			keep a list of interfaces to be deleted.
2011  *	@gro_max_size:	Maximum size of aggregated packet in generic
2012  *			receive offload (GRO)
2013  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2014  * 				receive offload (GRO), for IPv4.
2015  *
2016  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2017  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2018  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2019  *	@dev_registered_tracker:	tracker for reference held while
2020  *					registered
2021  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2022  *
2023  *	@devlink_port:	Pointer to related devlink port structure.
2024  *			Assigned by a driver before netdev registration using
2025  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2026  *			during the time netdevice is registered.
2027  *
2028  *	FIXME: cleanup struct net_device such that network protocol info
2029  *	moves out.
2030  */
2031 
2032 struct net_device {
2033 	char			name[IFNAMSIZ];
2034 	struct netdev_name_node	*name_node;
2035 	struct dev_ifalias	__rcu *ifalias;
2036 	/*
2037 	 *	I/O specific fields
2038 	 *	FIXME: Merge these and struct ifmap into one
2039 	 */
2040 	unsigned long		mem_end;
2041 	unsigned long		mem_start;
2042 	unsigned long		base_addr;
2043 
2044 	/*
2045 	 *	Some hardware also needs these fields (state,dev_list,
2046 	 *	napi_list,unreg_list,close_list) but they are not
2047 	 *	part of the usual set specified in Space.c.
2048 	 */
2049 
2050 	unsigned long		state;
2051 
2052 	struct list_head	dev_list;
2053 	struct list_head	napi_list;
2054 	struct list_head	unreg_list;
2055 	struct list_head	close_list;
2056 	struct list_head	ptype_all;
2057 	struct list_head	ptype_specific;
2058 
2059 	struct {
2060 		struct list_head upper;
2061 		struct list_head lower;
2062 	} adj_list;
2063 
2064 	/* Read-mostly cache-line for fast-path access */
2065 	unsigned int		flags;
2066 	xdp_features_t		xdp_features;
2067 	unsigned long long	priv_flags;
2068 	const struct net_device_ops *netdev_ops;
2069 	const struct xdp_metadata_ops *xdp_metadata_ops;
2070 	int			ifindex;
2071 	unsigned short		gflags;
2072 	unsigned short		hard_header_len;
2073 
2074 	/* Note : dev->mtu is often read without holding a lock.
2075 	 * Writers usually hold RTNL.
2076 	 * It is recommended to use READ_ONCE() to annotate the reads,
2077 	 * and to use WRITE_ONCE() to annotate the writes.
2078 	 */
2079 	unsigned int		mtu;
2080 	unsigned short		needed_headroom;
2081 	unsigned short		needed_tailroom;
2082 
2083 	netdev_features_t	features;
2084 	netdev_features_t	hw_features;
2085 	netdev_features_t	wanted_features;
2086 	netdev_features_t	vlan_features;
2087 	netdev_features_t	hw_enc_features;
2088 	netdev_features_t	mpls_features;
2089 	netdev_features_t	gso_partial_features;
2090 
2091 	unsigned int		min_mtu;
2092 	unsigned int		max_mtu;
2093 	unsigned short		type;
2094 	unsigned char		min_header_len;
2095 	unsigned char		name_assign_type;
2096 
2097 	int			group;
2098 
2099 	struct net_device_stats	stats; /* not used by modern drivers */
2100 
2101 	struct net_device_core_stats __percpu *core_stats;
2102 
2103 	/* Stats to monitor link on/off, flapping */
2104 	atomic_t		carrier_up_count;
2105 	atomic_t		carrier_down_count;
2106 
2107 #ifdef CONFIG_WIRELESS_EXT
2108 	const struct iw_handler_def *wireless_handlers;
2109 	struct iw_public_data	*wireless_data;
2110 #endif
2111 	const struct ethtool_ops *ethtool_ops;
2112 #ifdef CONFIG_NET_L3_MASTER_DEV
2113 	const struct l3mdev_ops	*l3mdev_ops;
2114 #endif
2115 #if IS_ENABLED(CONFIG_IPV6)
2116 	const struct ndisc_ops *ndisc_ops;
2117 #endif
2118 
2119 #ifdef CONFIG_XFRM_OFFLOAD
2120 	const struct xfrmdev_ops *xfrmdev_ops;
2121 #endif
2122 
2123 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2124 	const struct tlsdev_ops *tlsdev_ops;
2125 #endif
2126 
2127 	const struct header_ops *header_ops;
2128 
2129 	unsigned char		operstate;
2130 	unsigned char		link_mode;
2131 
2132 	unsigned char		if_port;
2133 	unsigned char		dma;
2134 
2135 	/* Interface address info. */
2136 	unsigned char		perm_addr[MAX_ADDR_LEN];
2137 	unsigned char		addr_assign_type;
2138 	unsigned char		addr_len;
2139 	unsigned char		upper_level;
2140 	unsigned char		lower_level;
2141 
2142 	unsigned short		neigh_priv_len;
2143 	unsigned short          dev_id;
2144 	unsigned short          dev_port;
2145 	unsigned short		padded;
2146 
2147 	spinlock_t		addr_list_lock;
2148 	int			irq;
2149 
2150 	struct netdev_hw_addr_list	uc;
2151 	struct netdev_hw_addr_list	mc;
2152 	struct netdev_hw_addr_list	dev_addrs;
2153 
2154 #ifdef CONFIG_SYSFS
2155 	struct kset		*queues_kset;
2156 #endif
2157 #ifdef CONFIG_LOCKDEP
2158 	struct list_head	unlink_list;
2159 #endif
2160 	unsigned int		promiscuity;
2161 	unsigned int		allmulti;
2162 	bool			uc_promisc;
2163 #ifdef CONFIG_LOCKDEP
2164 	unsigned char		nested_level;
2165 #endif
2166 
2167 
2168 	/* Protocol-specific pointers */
2169 
2170 	struct in_device __rcu	*ip_ptr;
2171 	struct inet6_dev __rcu	*ip6_ptr;
2172 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2173 	struct vlan_info __rcu	*vlan_info;
2174 #endif
2175 #if IS_ENABLED(CONFIG_NET_DSA)
2176 	struct dsa_port		*dsa_ptr;
2177 #endif
2178 #if IS_ENABLED(CONFIG_TIPC)
2179 	struct tipc_bearer __rcu *tipc_ptr;
2180 #endif
2181 #if IS_ENABLED(CONFIG_ATALK)
2182 	void 			*atalk_ptr;
2183 #endif
2184 #if IS_ENABLED(CONFIG_AX25)
2185 	void			*ax25_ptr;
2186 #endif
2187 #if IS_ENABLED(CONFIG_CFG80211)
2188 	struct wireless_dev	*ieee80211_ptr;
2189 #endif
2190 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2191 	struct wpan_dev		*ieee802154_ptr;
2192 #endif
2193 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2194 	struct mpls_dev __rcu	*mpls_ptr;
2195 #endif
2196 #if IS_ENABLED(CONFIG_MCTP)
2197 	struct mctp_dev __rcu	*mctp_ptr;
2198 #endif
2199 
2200 /*
2201  * Cache lines mostly used on receive path (including eth_type_trans())
2202  */
2203 	/* Interface address info used in eth_type_trans() */
2204 	const unsigned char	*dev_addr;
2205 
2206 	struct netdev_rx_queue	*_rx;
2207 	unsigned int		num_rx_queues;
2208 	unsigned int		real_num_rx_queues;
2209 
2210 	struct bpf_prog __rcu	*xdp_prog;
2211 	unsigned long		gro_flush_timeout;
2212 	int			napi_defer_hard_irqs;
2213 #define GRO_LEGACY_MAX_SIZE	65536u
2214 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2215  * and shinfo->gso_segs is a 16bit field.
2216  */
2217 #define GRO_MAX_SIZE		(8 * 65535u)
2218 	unsigned int		gro_max_size;
2219 	unsigned int		gro_ipv4_max_size;
2220 	rx_handler_func_t __rcu	*rx_handler;
2221 	void __rcu		*rx_handler_data;
2222 
2223 #ifdef CONFIG_NET_CLS_ACT
2224 	struct mini_Qdisc __rcu	*miniq_ingress;
2225 #endif
2226 	struct netdev_queue __rcu *ingress_queue;
2227 #ifdef CONFIG_NETFILTER_INGRESS
2228 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2229 #endif
2230 
2231 	unsigned char		broadcast[MAX_ADDR_LEN];
2232 #ifdef CONFIG_RFS_ACCEL
2233 	struct cpu_rmap		*rx_cpu_rmap;
2234 #endif
2235 	struct hlist_node	index_hlist;
2236 
2237 /*
2238  * Cache lines mostly used on transmit path
2239  */
2240 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2241 	unsigned int		num_tx_queues;
2242 	unsigned int		real_num_tx_queues;
2243 	struct Qdisc __rcu	*qdisc;
2244 	unsigned int		tx_queue_len;
2245 	spinlock_t		tx_global_lock;
2246 
2247 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2248 
2249 #ifdef CONFIG_XPS
2250 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2251 #endif
2252 #ifdef CONFIG_NET_CLS_ACT
2253 	struct mini_Qdisc __rcu	*miniq_egress;
2254 #endif
2255 #ifdef CONFIG_NETFILTER_EGRESS
2256 	struct nf_hook_entries __rcu *nf_hooks_egress;
2257 #endif
2258 
2259 #ifdef CONFIG_NET_SCHED
2260 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2261 #endif
2262 	/* These may be needed for future network-power-down code. */
2263 	struct timer_list	watchdog_timer;
2264 	int			watchdog_timeo;
2265 
2266 	u32                     proto_down_reason;
2267 
2268 	struct list_head	todo_list;
2269 
2270 #ifdef CONFIG_PCPU_DEV_REFCNT
2271 	int __percpu		*pcpu_refcnt;
2272 #else
2273 	refcount_t		dev_refcnt;
2274 #endif
2275 	struct ref_tracker_dir	refcnt_tracker;
2276 
2277 	struct list_head	link_watch_list;
2278 
2279 	enum { NETREG_UNINITIALIZED=0,
2280 	       NETREG_REGISTERED,	/* completed register_netdevice */
2281 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2282 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2283 	       NETREG_RELEASED,		/* called free_netdev */
2284 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2285 	} reg_state:8;
2286 
2287 	bool dismantle;
2288 
2289 	enum {
2290 		RTNL_LINK_INITIALIZED,
2291 		RTNL_LINK_INITIALIZING,
2292 	} rtnl_link_state:16;
2293 
2294 	bool needs_free_netdev;
2295 	void (*priv_destructor)(struct net_device *dev);
2296 
2297 #ifdef CONFIG_NETPOLL
2298 	struct netpoll_info __rcu	*npinfo;
2299 #endif
2300 
2301 	possible_net_t			nd_net;
2302 
2303 	/* mid-layer private */
2304 	void				*ml_priv;
2305 	enum netdev_ml_priv_type	ml_priv_type;
2306 
2307 	union {
2308 		struct pcpu_lstats __percpu		*lstats;
2309 		struct pcpu_sw_netstats __percpu	*tstats;
2310 		struct pcpu_dstats __percpu		*dstats;
2311 	};
2312 
2313 #if IS_ENABLED(CONFIG_GARP)
2314 	struct garp_port __rcu	*garp_port;
2315 #endif
2316 #if IS_ENABLED(CONFIG_MRP)
2317 	struct mrp_port __rcu	*mrp_port;
2318 #endif
2319 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2320 	struct dm_hw_stat_delta __rcu *dm_private;
2321 #endif
2322 	struct device		dev;
2323 	const struct attribute_group *sysfs_groups[4];
2324 	const struct attribute_group *sysfs_rx_queue_group;
2325 
2326 	const struct rtnl_link_ops *rtnl_link_ops;
2327 
2328 	/* for setting kernel sock attribute on TCP connection setup */
2329 #define GSO_MAX_SEGS		65535u
2330 #define GSO_LEGACY_MAX_SIZE	65536u
2331 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2332  * and shinfo->gso_segs is a 16bit field.
2333  */
2334 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2335 
2336 	unsigned int		gso_max_size;
2337 #define TSO_LEGACY_MAX_SIZE	65536
2338 #define TSO_MAX_SIZE		UINT_MAX
2339 	unsigned int		tso_max_size;
2340 	u16			gso_max_segs;
2341 #define TSO_MAX_SEGS		U16_MAX
2342 	u16			tso_max_segs;
2343 	unsigned int		gso_ipv4_max_size;
2344 
2345 #ifdef CONFIG_DCB
2346 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2347 #endif
2348 	s16			num_tc;
2349 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2350 	u8			prio_tc_map[TC_BITMASK + 1];
2351 
2352 #if IS_ENABLED(CONFIG_FCOE)
2353 	unsigned int		fcoe_ddp_xid;
2354 #endif
2355 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2356 	struct netprio_map __rcu *priomap;
2357 #endif
2358 	struct phy_device	*phydev;
2359 	struct sfp_bus		*sfp_bus;
2360 	struct lock_class_key	*qdisc_tx_busylock;
2361 	bool			proto_down;
2362 	unsigned		wol_enabled:1;
2363 	unsigned		threaded:1;
2364 
2365 	struct list_head	net_notifier_list;
2366 
2367 #if IS_ENABLED(CONFIG_MACSEC)
2368 	/* MACsec management functions */
2369 	const struct macsec_ops *macsec_ops;
2370 #endif
2371 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2372 	struct udp_tunnel_nic	*udp_tunnel_nic;
2373 
2374 	/* protected by rtnl_lock */
2375 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2376 
2377 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2378 	netdevice_tracker	linkwatch_dev_tracker;
2379 	netdevice_tracker	watchdog_dev_tracker;
2380 	netdevice_tracker	dev_registered_tracker;
2381 	struct rtnl_hw_stats64	*offload_xstats_l3;
2382 
2383 	struct devlink_port	*devlink_port;
2384 };
2385 #define to_net_dev(d) container_of(d, struct net_device, dev)
2386 
2387 /*
2388  * Driver should use this to assign devlink port instance to a netdevice
2389  * before it registers the netdevice. Therefore devlink_port is static
2390  * during the netdev lifetime after it is registered.
2391  */
2392 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2393 ({								\
2394 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2395 	((dev)->devlink_port = (port));				\
2396 })
2397 
2398 static inline bool netif_elide_gro(const struct net_device *dev)
2399 {
2400 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2401 		return true;
2402 	return false;
2403 }
2404 
2405 #define	NETDEV_ALIGN		32
2406 
2407 static inline
2408 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2409 {
2410 	return dev->prio_tc_map[prio & TC_BITMASK];
2411 }
2412 
2413 static inline
2414 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2415 {
2416 	if (tc >= dev->num_tc)
2417 		return -EINVAL;
2418 
2419 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2420 	return 0;
2421 }
2422 
2423 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2424 void netdev_reset_tc(struct net_device *dev);
2425 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2426 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2427 
2428 static inline
2429 int netdev_get_num_tc(struct net_device *dev)
2430 {
2431 	return dev->num_tc;
2432 }
2433 
2434 static inline void net_prefetch(void *p)
2435 {
2436 	prefetch(p);
2437 #if L1_CACHE_BYTES < 128
2438 	prefetch((u8 *)p + L1_CACHE_BYTES);
2439 #endif
2440 }
2441 
2442 static inline void net_prefetchw(void *p)
2443 {
2444 	prefetchw(p);
2445 #if L1_CACHE_BYTES < 128
2446 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2447 #endif
2448 }
2449 
2450 void netdev_unbind_sb_channel(struct net_device *dev,
2451 			      struct net_device *sb_dev);
2452 int netdev_bind_sb_channel_queue(struct net_device *dev,
2453 				 struct net_device *sb_dev,
2454 				 u8 tc, u16 count, u16 offset);
2455 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2456 static inline int netdev_get_sb_channel(struct net_device *dev)
2457 {
2458 	return max_t(int, -dev->num_tc, 0);
2459 }
2460 
2461 static inline
2462 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2463 					 unsigned int index)
2464 {
2465 	return &dev->_tx[index];
2466 }
2467 
2468 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2469 						    const struct sk_buff *skb)
2470 {
2471 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2472 }
2473 
2474 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2475 					    void (*f)(struct net_device *,
2476 						      struct netdev_queue *,
2477 						      void *),
2478 					    void *arg)
2479 {
2480 	unsigned int i;
2481 
2482 	for (i = 0; i < dev->num_tx_queues; i++)
2483 		f(dev, &dev->_tx[i], arg);
2484 }
2485 
2486 #define netdev_lockdep_set_classes(dev)				\
2487 {								\
2488 	static struct lock_class_key qdisc_tx_busylock_key;	\
2489 	static struct lock_class_key qdisc_xmit_lock_key;	\
2490 	static struct lock_class_key dev_addr_list_lock_key;	\
2491 	unsigned int i;						\
2492 								\
2493 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2494 	lockdep_set_class(&(dev)->addr_list_lock,		\
2495 			  &dev_addr_list_lock_key);		\
2496 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2497 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2498 				  &qdisc_xmit_lock_key);	\
2499 }
2500 
2501 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2502 		     struct net_device *sb_dev);
2503 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2504 					 struct sk_buff *skb,
2505 					 struct net_device *sb_dev);
2506 
2507 /* returns the headroom that the master device needs to take in account
2508  * when forwarding to this dev
2509  */
2510 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2511 {
2512 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2513 }
2514 
2515 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2516 {
2517 	if (dev->netdev_ops->ndo_set_rx_headroom)
2518 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2519 }
2520 
2521 /* set the device rx headroom to the dev's default */
2522 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2523 {
2524 	netdev_set_rx_headroom(dev, -1);
2525 }
2526 
2527 static inline void *netdev_get_ml_priv(struct net_device *dev,
2528 				       enum netdev_ml_priv_type type)
2529 {
2530 	if (dev->ml_priv_type != type)
2531 		return NULL;
2532 
2533 	return dev->ml_priv;
2534 }
2535 
2536 static inline void netdev_set_ml_priv(struct net_device *dev,
2537 				      void *ml_priv,
2538 				      enum netdev_ml_priv_type type)
2539 {
2540 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2541 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2542 	     dev->ml_priv_type, type);
2543 	WARN(!dev->ml_priv_type && dev->ml_priv,
2544 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2545 
2546 	dev->ml_priv = ml_priv;
2547 	dev->ml_priv_type = type;
2548 }
2549 
2550 /*
2551  * Net namespace inlines
2552  */
2553 static inline
2554 struct net *dev_net(const struct net_device *dev)
2555 {
2556 	return read_pnet(&dev->nd_net);
2557 }
2558 
2559 static inline
2560 void dev_net_set(struct net_device *dev, struct net *net)
2561 {
2562 	write_pnet(&dev->nd_net, net);
2563 }
2564 
2565 /**
2566  *	netdev_priv - access network device private data
2567  *	@dev: network device
2568  *
2569  * Get network device private data
2570  */
2571 static inline void *netdev_priv(const struct net_device *dev)
2572 {
2573 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2574 }
2575 
2576 /* Set the sysfs physical device reference for the network logical device
2577  * if set prior to registration will cause a symlink during initialization.
2578  */
2579 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2580 
2581 /* Set the sysfs device type for the network logical device to allow
2582  * fine-grained identification of different network device types. For
2583  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2584  */
2585 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2586 
2587 /* Default NAPI poll() weight
2588  * Device drivers are strongly advised to not use bigger value
2589  */
2590 #define NAPI_POLL_WEIGHT 64
2591 
2592 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2593 			   int (*poll)(struct napi_struct *, int), int weight);
2594 
2595 /**
2596  * netif_napi_add() - initialize a NAPI context
2597  * @dev:  network device
2598  * @napi: NAPI context
2599  * @poll: polling function
2600  *
2601  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2602  * *any* of the other NAPI-related functions.
2603  */
2604 static inline void
2605 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2606 	       int (*poll)(struct napi_struct *, int))
2607 {
2608 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2609 }
2610 
2611 static inline void
2612 netif_napi_add_tx_weight(struct net_device *dev,
2613 			 struct napi_struct *napi,
2614 			 int (*poll)(struct napi_struct *, int),
2615 			 int weight)
2616 {
2617 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2618 	netif_napi_add_weight(dev, napi, poll, weight);
2619 }
2620 
2621 /**
2622  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2623  * @dev:  network device
2624  * @napi: NAPI context
2625  * @poll: polling function
2626  *
2627  * This variant of netif_napi_add() should be used from drivers using NAPI
2628  * to exclusively poll a TX queue.
2629  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2630  */
2631 static inline void netif_napi_add_tx(struct net_device *dev,
2632 				     struct napi_struct *napi,
2633 				     int (*poll)(struct napi_struct *, int))
2634 {
2635 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2636 }
2637 
2638 /**
2639  *  __netif_napi_del - remove a NAPI context
2640  *  @napi: NAPI context
2641  *
2642  * Warning: caller must observe RCU grace period before freeing memory
2643  * containing @napi. Drivers might want to call this helper to combine
2644  * all the needed RCU grace periods into a single one.
2645  */
2646 void __netif_napi_del(struct napi_struct *napi);
2647 
2648 /**
2649  *  netif_napi_del - remove a NAPI context
2650  *  @napi: NAPI context
2651  *
2652  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2653  */
2654 static inline void netif_napi_del(struct napi_struct *napi)
2655 {
2656 	__netif_napi_del(napi);
2657 	synchronize_net();
2658 }
2659 
2660 struct packet_type {
2661 	__be16			type;	/* This is really htons(ether_type). */
2662 	bool			ignore_outgoing;
2663 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2664 	netdevice_tracker	dev_tracker;
2665 	int			(*func) (struct sk_buff *,
2666 					 struct net_device *,
2667 					 struct packet_type *,
2668 					 struct net_device *);
2669 	void			(*list_func) (struct list_head *,
2670 					      struct packet_type *,
2671 					      struct net_device *);
2672 	bool			(*id_match)(struct packet_type *ptype,
2673 					    struct sock *sk);
2674 	struct net		*af_packet_net;
2675 	void			*af_packet_priv;
2676 	struct list_head	list;
2677 };
2678 
2679 struct offload_callbacks {
2680 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2681 						netdev_features_t features);
2682 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2683 						struct sk_buff *skb);
2684 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2685 };
2686 
2687 struct packet_offload {
2688 	__be16			 type;	/* This is really htons(ether_type). */
2689 	u16			 priority;
2690 	struct offload_callbacks callbacks;
2691 	struct list_head	 list;
2692 };
2693 
2694 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2695 struct pcpu_sw_netstats {
2696 	u64_stats_t		rx_packets;
2697 	u64_stats_t		rx_bytes;
2698 	u64_stats_t		tx_packets;
2699 	u64_stats_t		tx_bytes;
2700 	struct u64_stats_sync   syncp;
2701 } __aligned(4 * sizeof(u64));
2702 
2703 struct pcpu_lstats {
2704 	u64_stats_t packets;
2705 	u64_stats_t bytes;
2706 	struct u64_stats_sync syncp;
2707 } __aligned(2 * sizeof(u64));
2708 
2709 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2710 
2711 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2712 {
2713 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2714 
2715 	u64_stats_update_begin(&tstats->syncp);
2716 	u64_stats_add(&tstats->rx_bytes, len);
2717 	u64_stats_inc(&tstats->rx_packets);
2718 	u64_stats_update_end(&tstats->syncp);
2719 }
2720 
2721 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2722 					  unsigned int packets,
2723 					  unsigned int len)
2724 {
2725 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2726 
2727 	u64_stats_update_begin(&tstats->syncp);
2728 	u64_stats_add(&tstats->tx_bytes, len);
2729 	u64_stats_add(&tstats->tx_packets, packets);
2730 	u64_stats_update_end(&tstats->syncp);
2731 }
2732 
2733 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2734 {
2735 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2736 
2737 	u64_stats_update_begin(&lstats->syncp);
2738 	u64_stats_add(&lstats->bytes, len);
2739 	u64_stats_inc(&lstats->packets);
2740 	u64_stats_update_end(&lstats->syncp);
2741 }
2742 
2743 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2744 ({									\
2745 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2746 	if (pcpu_stats)	{						\
2747 		int __cpu;						\
2748 		for_each_possible_cpu(__cpu) {				\
2749 			typeof(type) *stat;				\
2750 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2751 			u64_stats_init(&stat->syncp);			\
2752 		}							\
2753 	}								\
2754 	pcpu_stats;							\
2755 })
2756 
2757 #define netdev_alloc_pcpu_stats(type)					\
2758 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2759 
2760 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2761 ({									\
2762 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2763 	if (pcpu_stats) {						\
2764 		int __cpu;						\
2765 		for_each_possible_cpu(__cpu) {				\
2766 			typeof(type) *stat;				\
2767 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2768 			u64_stats_init(&stat->syncp);			\
2769 		}							\
2770 	}								\
2771 	pcpu_stats;							\
2772 })
2773 
2774 enum netdev_lag_tx_type {
2775 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2776 	NETDEV_LAG_TX_TYPE_RANDOM,
2777 	NETDEV_LAG_TX_TYPE_BROADCAST,
2778 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2779 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2780 	NETDEV_LAG_TX_TYPE_HASH,
2781 };
2782 
2783 enum netdev_lag_hash {
2784 	NETDEV_LAG_HASH_NONE,
2785 	NETDEV_LAG_HASH_L2,
2786 	NETDEV_LAG_HASH_L34,
2787 	NETDEV_LAG_HASH_L23,
2788 	NETDEV_LAG_HASH_E23,
2789 	NETDEV_LAG_HASH_E34,
2790 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2791 	NETDEV_LAG_HASH_UNKNOWN,
2792 };
2793 
2794 struct netdev_lag_upper_info {
2795 	enum netdev_lag_tx_type tx_type;
2796 	enum netdev_lag_hash hash_type;
2797 };
2798 
2799 struct netdev_lag_lower_state_info {
2800 	u8 link_up : 1,
2801 	   tx_enabled : 1;
2802 };
2803 
2804 #include <linux/notifier.h>
2805 
2806 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2807  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2808  * adding new types.
2809  */
2810 enum netdev_cmd {
2811 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2812 	NETDEV_DOWN,
2813 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2814 				   detected a hardware crash and restarted
2815 				   - we can use this eg to kick tcp sessions
2816 				   once done */
2817 	NETDEV_CHANGE,		/* Notify device state change */
2818 	NETDEV_REGISTER,
2819 	NETDEV_UNREGISTER,
2820 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2821 	NETDEV_CHANGEADDR,	/* notify after the address change */
2822 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2823 	NETDEV_GOING_DOWN,
2824 	NETDEV_CHANGENAME,
2825 	NETDEV_FEAT_CHANGE,
2826 	NETDEV_BONDING_FAILOVER,
2827 	NETDEV_PRE_UP,
2828 	NETDEV_PRE_TYPE_CHANGE,
2829 	NETDEV_POST_TYPE_CHANGE,
2830 	NETDEV_POST_INIT,
2831 	NETDEV_PRE_UNINIT,
2832 	NETDEV_RELEASE,
2833 	NETDEV_NOTIFY_PEERS,
2834 	NETDEV_JOIN,
2835 	NETDEV_CHANGEUPPER,
2836 	NETDEV_RESEND_IGMP,
2837 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2838 	NETDEV_CHANGEINFODATA,
2839 	NETDEV_BONDING_INFO,
2840 	NETDEV_PRECHANGEUPPER,
2841 	NETDEV_CHANGELOWERSTATE,
2842 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2843 	NETDEV_UDP_TUNNEL_DROP_INFO,
2844 	NETDEV_CHANGE_TX_QUEUE_LEN,
2845 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2846 	NETDEV_CVLAN_FILTER_DROP_INFO,
2847 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2848 	NETDEV_SVLAN_FILTER_DROP_INFO,
2849 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2850 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2851 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2852 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2853 	NETDEV_XDP_FEAT_CHANGE,
2854 };
2855 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2856 
2857 int register_netdevice_notifier(struct notifier_block *nb);
2858 int unregister_netdevice_notifier(struct notifier_block *nb);
2859 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2860 int unregister_netdevice_notifier_net(struct net *net,
2861 				      struct notifier_block *nb);
2862 int register_netdevice_notifier_dev_net(struct net_device *dev,
2863 					struct notifier_block *nb,
2864 					struct netdev_net_notifier *nn);
2865 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2866 					  struct notifier_block *nb,
2867 					  struct netdev_net_notifier *nn);
2868 
2869 struct netdev_notifier_info {
2870 	struct net_device	*dev;
2871 	struct netlink_ext_ack	*extack;
2872 };
2873 
2874 struct netdev_notifier_info_ext {
2875 	struct netdev_notifier_info info; /* must be first */
2876 	union {
2877 		u32 mtu;
2878 	} ext;
2879 };
2880 
2881 struct netdev_notifier_change_info {
2882 	struct netdev_notifier_info info; /* must be first */
2883 	unsigned int flags_changed;
2884 };
2885 
2886 struct netdev_notifier_changeupper_info {
2887 	struct netdev_notifier_info info; /* must be first */
2888 	struct net_device *upper_dev; /* new upper dev */
2889 	bool master; /* is upper dev master */
2890 	bool linking; /* is the notification for link or unlink */
2891 	void *upper_info; /* upper dev info */
2892 };
2893 
2894 struct netdev_notifier_changelowerstate_info {
2895 	struct netdev_notifier_info info; /* must be first */
2896 	void *lower_state_info; /* is lower dev state */
2897 };
2898 
2899 struct netdev_notifier_pre_changeaddr_info {
2900 	struct netdev_notifier_info info; /* must be first */
2901 	const unsigned char *dev_addr;
2902 };
2903 
2904 enum netdev_offload_xstats_type {
2905 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2906 };
2907 
2908 struct netdev_notifier_offload_xstats_info {
2909 	struct netdev_notifier_info info; /* must be first */
2910 	enum netdev_offload_xstats_type type;
2911 
2912 	union {
2913 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2914 		struct netdev_notifier_offload_xstats_rd *report_delta;
2915 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2916 		struct netdev_notifier_offload_xstats_ru *report_used;
2917 	};
2918 };
2919 
2920 int netdev_offload_xstats_enable(struct net_device *dev,
2921 				 enum netdev_offload_xstats_type type,
2922 				 struct netlink_ext_ack *extack);
2923 int netdev_offload_xstats_disable(struct net_device *dev,
2924 				  enum netdev_offload_xstats_type type);
2925 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2926 				   enum netdev_offload_xstats_type type);
2927 int netdev_offload_xstats_get(struct net_device *dev,
2928 			      enum netdev_offload_xstats_type type,
2929 			      struct rtnl_hw_stats64 *stats, bool *used,
2930 			      struct netlink_ext_ack *extack);
2931 void
2932 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2933 				   const struct rtnl_hw_stats64 *stats);
2934 void
2935 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2936 void netdev_offload_xstats_push_delta(struct net_device *dev,
2937 				      enum netdev_offload_xstats_type type,
2938 				      const struct rtnl_hw_stats64 *stats);
2939 
2940 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2941 					     struct net_device *dev)
2942 {
2943 	info->dev = dev;
2944 	info->extack = NULL;
2945 }
2946 
2947 static inline struct net_device *
2948 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2949 {
2950 	return info->dev;
2951 }
2952 
2953 static inline struct netlink_ext_ack *
2954 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2955 {
2956 	return info->extack;
2957 }
2958 
2959 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2960 
2961 
2962 extern rwlock_t				dev_base_lock;		/* Device list lock */
2963 
2964 #define for_each_netdev(net, d)		\
2965 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2966 #define for_each_netdev_reverse(net, d)	\
2967 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2968 #define for_each_netdev_rcu(net, d)		\
2969 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2970 #define for_each_netdev_safe(net, d, n)	\
2971 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2972 #define for_each_netdev_continue(net, d)		\
2973 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2974 #define for_each_netdev_continue_reverse(net, d)		\
2975 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2976 						     dev_list)
2977 #define for_each_netdev_continue_rcu(net, d)		\
2978 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2979 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2980 		for_each_netdev_rcu(&init_net, slave)	\
2981 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2982 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2983 
2984 static inline struct net_device *next_net_device(struct net_device *dev)
2985 {
2986 	struct list_head *lh;
2987 	struct net *net;
2988 
2989 	net = dev_net(dev);
2990 	lh = dev->dev_list.next;
2991 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2992 }
2993 
2994 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2995 {
2996 	struct list_head *lh;
2997 	struct net *net;
2998 
2999 	net = dev_net(dev);
3000 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3001 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3002 }
3003 
3004 static inline struct net_device *first_net_device(struct net *net)
3005 {
3006 	return list_empty(&net->dev_base_head) ? NULL :
3007 		net_device_entry(net->dev_base_head.next);
3008 }
3009 
3010 static inline struct net_device *first_net_device_rcu(struct net *net)
3011 {
3012 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3013 
3014 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3015 }
3016 
3017 int netdev_boot_setup_check(struct net_device *dev);
3018 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3019 				       const char *hwaddr);
3020 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3021 void dev_add_pack(struct packet_type *pt);
3022 void dev_remove_pack(struct packet_type *pt);
3023 void __dev_remove_pack(struct packet_type *pt);
3024 void dev_add_offload(struct packet_offload *po);
3025 void dev_remove_offload(struct packet_offload *po);
3026 
3027 int dev_get_iflink(const struct net_device *dev);
3028 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3029 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3030 			  struct net_device_path_stack *stack);
3031 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3032 				      unsigned short mask);
3033 struct net_device *dev_get_by_name(struct net *net, const char *name);
3034 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3035 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3036 bool netdev_name_in_use(struct net *net, const char *name);
3037 int dev_alloc_name(struct net_device *dev, const char *name);
3038 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3039 void dev_close(struct net_device *dev);
3040 void dev_close_many(struct list_head *head, bool unlink);
3041 void dev_disable_lro(struct net_device *dev);
3042 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3043 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3044 		     struct net_device *sb_dev);
3045 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3046 		       struct net_device *sb_dev);
3047 
3048 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3049 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3050 
3051 static inline int dev_queue_xmit(struct sk_buff *skb)
3052 {
3053 	return __dev_queue_xmit(skb, NULL);
3054 }
3055 
3056 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3057 				       struct net_device *sb_dev)
3058 {
3059 	return __dev_queue_xmit(skb, sb_dev);
3060 }
3061 
3062 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3063 {
3064 	int ret;
3065 
3066 	ret = __dev_direct_xmit(skb, queue_id);
3067 	if (!dev_xmit_complete(ret))
3068 		kfree_skb(skb);
3069 	return ret;
3070 }
3071 
3072 int register_netdevice(struct net_device *dev);
3073 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3074 void unregister_netdevice_many(struct list_head *head);
3075 static inline void unregister_netdevice(struct net_device *dev)
3076 {
3077 	unregister_netdevice_queue(dev, NULL);
3078 }
3079 
3080 int netdev_refcnt_read(const struct net_device *dev);
3081 void free_netdev(struct net_device *dev);
3082 void netdev_freemem(struct net_device *dev);
3083 int init_dummy_netdev(struct net_device *dev);
3084 
3085 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3086 					 struct sk_buff *skb,
3087 					 bool all_slaves);
3088 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3089 					    struct sock *sk);
3090 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3091 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3092 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3093 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3094 int dev_restart(struct net_device *dev);
3095 
3096 
3097 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3098 				  unsigned short type,
3099 				  const void *daddr, const void *saddr,
3100 				  unsigned int len)
3101 {
3102 	if (!dev->header_ops || !dev->header_ops->create)
3103 		return 0;
3104 
3105 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3106 }
3107 
3108 static inline int dev_parse_header(const struct sk_buff *skb,
3109 				   unsigned char *haddr)
3110 {
3111 	const struct net_device *dev = skb->dev;
3112 
3113 	if (!dev->header_ops || !dev->header_ops->parse)
3114 		return 0;
3115 	return dev->header_ops->parse(skb, haddr);
3116 }
3117 
3118 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3119 {
3120 	const struct net_device *dev = skb->dev;
3121 
3122 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3123 		return 0;
3124 	return dev->header_ops->parse_protocol(skb);
3125 }
3126 
3127 /* ll_header must have at least hard_header_len allocated */
3128 static inline bool dev_validate_header(const struct net_device *dev,
3129 				       char *ll_header, int len)
3130 {
3131 	if (likely(len >= dev->hard_header_len))
3132 		return true;
3133 	if (len < dev->min_header_len)
3134 		return false;
3135 
3136 	if (capable(CAP_SYS_RAWIO)) {
3137 		memset(ll_header + len, 0, dev->hard_header_len - len);
3138 		return true;
3139 	}
3140 
3141 	if (dev->header_ops && dev->header_ops->validate)
3142 		return dev->header_ops->validate(ll_header, len);
3143 
3144 	return false;
3145 }
3146 
3147 static inline bool dev_has_header(const struct net_device *dev)
3148 {
3149 	return dev->header_ops && dev->header_ops->create;
3150 }
3151 
3152 /*
3153  * Incoming packets are placed on per-CPU queues
3154  */
3155 struct softnet_data {
3156 	struct list_head	poll_list;
3157 	struct sk_buff_head	process_queue;
3158 
3159 	/* stats */
3160 	unsigned int		processed;
3161 	unsigned int		time_squeeze;
3162 #ifdef CONFIG_RPS
3163 	struct softnet_data	*rps_ipi_list;
3164 #endif
3165 #ifdef CONFIG_NET_FLOW_LIMIT
3166 	struct sd_flow_limit __rcu *flow_limit;
3167 #endif
3168 	struct Qdisc		*output_queue;
3169 	struct Qdisc		**output_queue_tailp;
3170 	struct sk_buff		*completion_queue;
3171 #ifdef CONFIG_XFRM_OFFLOAD
3172 	struct sk_buff_head	xfrm_backlog;
3173 #endif
3174 	/* written and read only by owning cpu: */
3175 	struct {
3176 		u16 recursion;
3177 		u8  more;
3178 #ifdef CONFIG_NET_EGRESS
3179 		u8  skip_txqueue;
3180 #endif
3181 	} xmit;
3182 #ifdef CONFIG_RPS
3183 	/* input_queue_head should be written by cpu owning this struct,
3184 	 * and only read by other cpus. Worth using a cache line.
3185 	 */
3186 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3187 
3188 	/* Elements below can be accessed between CPUs for RPS/RFS */
3189 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3190 	struct softnet_data	*rps_ipi_next;
3191 	unsigned int		cpu;
3192 	unsigned int		input_queue_tail;
3193 #endif
3194 	unsigned int		received_rps;
3195 	unsigned int		dropped;
3196 	struct sk_buff_head	input_pkt_queue;
3197 	struct napi_struct	backlog;
3198 
3199 	/* Another possibly contended cache line */
3200 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3201 	int			defer_count;
3202 	int			defer_ipi_scheduled;
3203 	struct sk_buff		*defer_list;
3204 	call_single_data_t	defer_csd;
3205 };
3206 
3207 static inline void input_queue_head_incr(struct softnet_data *sd)
3208 {
3209 #ifdef CONFIG_RPS
3210 	sd->input_queue_head++;
3211 #endif
3212 }
3213 
3214 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3215 					      unsigned int *qtail)
3216 {
3217 #ifdef CONFIG_RPS
3218 	*qtail = ++sd->input_queue_tail;
3219 #endif
3220 }
3221 
3222 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3223 
3224 static inline int dev_recursion_level(void)
3225 {
3226 	return this_cpu_read(softnet_data.xmit.recursion);
3227 }
3228 
3229 #define XMIT_RECURSION_LIMIT	8
3230 static inline bool dev_xmit_recursion(void)
3231 {
3232 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3233 			XMIT_RECURSION_LIMIT);
3234 }
3235 
3236 static inline void dev_xmit_recursion_inc(void)
3237 {
3238 	__this_cpu_inc(softnet_data.xmit.recursion);
3239 }
3240 
3241 static inline void dev_xmit_recursion_dec(void)
3242 {
3243 	__this_cpu_dec(softnet_data.xmit.recursion);
3244 }
3245 
3246 void __netif_schedule(struct Qdisc *q);
3247 void netif_schedule_queue(struct netdev_queue *txq);
3248 
3249 static inline void netif_tx_schedule_all(struct net_device *dev)
3250 {
3251 	unsigned int i;
3252 
3253 	for (i = 0; i < dev->num_tx_queues; i++)
3254 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3255 }
3256 
3257 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3258 {
3259 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3260 }
3261 
3262 /**
3263  *	netif_start_queue - allow transmit
3264  *	@dev: network device
3265  *
3266  *	Allow upper layers to call the device hard_start_xmit routine.
3267  */
3268 static inline void netif_start_queue(struct net_device *dev)
3269 {
3270 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3271 }
3272 
3273 static inline void netif_tx_start_all_queues(struct net_device *dev)
3274 {
3275 	unsigned int i;
3276 
3277 	for (i = 0; i < dev->num_tx_queues; i++) {
3278 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3279 		netif_tx_start_queue(txq);
3280 	}
3281 }
3282 
3283 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3284 
3285 /**
3286  *	netif_wake_queue - restart transmit
3287  *	@dev: network device
3288  *
3289  *	Allow upper layers to call the device hard_start_xmit routine.
3290  *	Used for flow control when transmit resources are available.
3291  */
3292 static inline void netif_wake_queue(struct net_device *dev)
3293 {
3294 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3295 }
3296 
3297 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3298 {
3299 	unsigned int i;
3300 
3301 	for (i = 0; i < dev->num_tx_queues; i++) {
3302 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3303 		netif_tx_wake_queue(txq);
3304 	}
3305 }
3306 
3307 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3308 {
3309 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3310 }
3311 
3312 /**
3313  *	netif_stop_queue - stop transmitted packets
3314  *	@dev: network device
3315  *
3316  *	Stop upper layers calling the device hard_start_xmit routine.
3317  *	Used for flow control when transmit resources are unavailable.
3318  */
3319 static inline void netif_stop_queue(struct net_device *dev)
3320 {
3321 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3322 }
3323 
3324 void netif_tx_stop_all_queues(struct net_device *dev);
3325 
3326 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3327 {
3328 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3329 }
3330 
3331 /**
3332  *	netif_queue_stopped - test if transmit queue is flowblocked
3333  *	@dev: network device
3334  *
3335  *	Test if transmit queue on device is currently unable to send.
3336  */
3337 static inline bool netif_queue_stopped(const struct net_device *dev)
3338 {
3339 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3340 }
3341 
3342 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3343 {
3344 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3345 }
3346 
3347 static inline bool
3348 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3349 {
3350 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3351 }
3352 
3353 static inline bool
3354 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3355 {
3356 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3357 }
3358 
3359 /**
3360  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3361  *	@dev_queue: pointer to transmit queue
3362  *	@min_limit: dql minimum limit
3363  *
3364  * Forces xmit_more() to return true until the minimum threshold
3365  * defined by @min_limit is reached (or until the tx queue is
3366  * empty). Warning: to be use with care, misuse will impact the
3367  * latency.
3368  */
3369 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3370 						  unsigned int min_limit)
3371 {
3372 #ifdef CONFIG_BQL
3373 	dev_queue->dql.min_limit = min_limit;
3374 #endif
3375 }
3376 
3377 /**
3378  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3379  *	@dev_queue: pointer to transmit queue
3380  *
3381  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3382  * to give appropriate hint to the CPU.
3383  */
3384 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3385 {
3386 #ifdef CONFIG_BQL
3387 	prefetchw(&dev_queue->dql.num_queued);
3388 #endif
3389 }
3390 
3391 /**
3392  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3393  *	@dev_queue: pointer to transmit queue
3394  *
3395  * BQL enabled drivers might use this helper in their TX completion path,
3396  * to give appropriate hint to the CPU.
3397  */
3398 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3399 {
3400 #ifdef CONFIG_BQL
3401 	prefetchw(&dev_queue->dql.limit);
3402 #endif
3403 }
3404 
3405 /**
3406  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3407  *	@dev_queue: network device queue
3408  *	@bytes: number of bytes queued to the device queue
3409  *
3410  *	Report the number of bytes queued for sending/completion to the network
3411  *	device hardware queue. @bytes should be a good approximation and should
3412  *	exactly match netdev_completed_queue() @bytes.
3413  *	This is typically called once per packet, from ndo_start_xmit().
3414  */
3415 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3416 					unsigned int bytes)
3417 {
3418 #ifdef CONFIG_BQL
3419 	dql_queued(&dev_queue->dql, bytes);
3420 
3421 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3422 		return;
3423 
3424 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3425 
3426 	/*
3427 	 * The XOFF flag must be set before checking the dql_avail below,
3428 	 * because in netdev_tx_completed_queue we update the dql_completed
3429 	 * before checking the XOFF flag.
3430 	 */
3431 	smp_mb();
3432 
3433 	/* check again in case another CPU has just made room avail */
3434 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3435 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3436 #endif
3437 }
3438 
3439 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3440  * that they should not test BQL status themselves.
3441  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3442  * skb of a batch.
3443  * Returns true if the doorbell must be used to kick the NIC.
3444  */
3445 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3446 					  unsigned int bytes,
3447 					  bool xmit_more)
3448 {
3449 	if (xmit_more) {
3450 #ifdef CONFIG_BQL
3451 		dql_queued(&dev_queue->dql, bytes);
3452 #endif
3453 		return netif_tx_queue_stopped(dev_queue);
3454 	}
3455 	netdev_tx_sent_queue(dev_queue, bytes);
3456 	return true;
3457 }
3458 
3459 /**
3460  *	netdev_sent_queue - report the number of bytes queued to hardware
3461  *	@dev: network device
3462  *	@bytes: number of bytes queued to the hardware device queue
3463  *
3464  *	Report the number of bytes queued for sending/completion to the network
3465  *	device hardware queue#0. @bytes should be a good approximation and should
3466  *	exactly match netdev_completed_queue() @bytes.
3467  *	This is typically called once per packet, from ndo_start_xmit().
3468  */
3469 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3470 {
3471 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3472 }
3473 
3474 static inline bool __netdev_sent_queue(struct net_device *dev,
3475 				       unsigned int bytes,
3476 				       bool xmit_more)
3477 {
3478 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3479 				      xmit_more);
3480 }
3481 
3482 /**
3483  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3484  *	@dev_queue: network device queue
3485  *	@pkts: number of packets (currently ignored)
3486  *	@bytes: number of bytes dequeued from the device queue
3487  *
3488  *	Must be called at most once per TX completion round (and not per
3489  *	individual packet), so that BQL can adjust its limits appropriately.
3490  */
3491 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3492 					     unsigned int pkts, unsigned int bytes)
3493 {
3494 #ifdef CONFIG_BQL
3495 	if (unlikely(!bytes))
3496 		return;
3497 
3498 	dql_completed(&dev_queue->dql, bytes);
3499 
3500 	/*
3501 	 * Without the memory barrier there is a small possiblity that
3502 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3503 	 * be stopped forever
3504 	 */
3505 	smp_mb();
3506 
3507 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3508 		return;
3509 
3510 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3511 		netif_schedule_queue(dev_queue);
3512 #endif
3513 }
3514 
3515 /**
3516  * 	netdev_completed_queue - report bytes and packets completed by device
3517  * 	@dev: network device
3518  * 	@pkts: actual number of packets sent over the medium
3519  * 	@bytes: actual number of bytes sent over the medium
3520  *
3521  * 	Report the number of bytes and packets transmitted by the network device
3522  * 	hardware queue over the physical medium, @bytes must exactly match the
3523  * 	@bytes amount passed to netdev_sent_queue()
3524  */
3525 static inline void netdev_completed_queue(struct net_device *dev,
3526 					  unsigned int pkts, unsigned int bytes)
3527 {
3528 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3529 }
3530 
3531 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3532 {
3533 #ifdef CONFIG_BQL
3534 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3535 	dql_reset(&q->dql);
3536 #endif
3537 }
3538 
3539 /**
3540  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3541  * 	@dev_queue: network device
3542  *
3543  * 	Reset the bytes and packet count of a network device and clear the
3544  * 	software flow control OFF bit for this network device
3545  */
3546 static inline void netdev_reset_queue(struct net_device *dev_queue)
3547 {
3548 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3549 }
3550 
3551 /**
3552  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3553  * 	@dev: network device
3554  * 	@queue_index: given tx queue index
3555  *
3556  * 	Returns 0 if given tx queue index >= number of device tx queues,
3557  * 	otherwise returns the originally passed tx queue index.
3558  */
3559 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3560 {
3561 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3562 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3563 				     dev->name, queue_index,
3564 				     dev->real_num_tx_queues);
3565 		return 0;
3566 	}
3567 
3568 	return queue_index;
3569 }
3570 
3571 /**
3572  *	netif_running - test if up
3573  *	@dev: network device
3574  *
3575  *	Test if the device has been brought up.
3576  */
3577 static inline bool netif_running(const struct net_device *dev)
3578 {
3579 	return test_bit(__LINK_STATE_START, &dev->state);
3580 }
3581 
3582 /*
3583  * Routines to manage the subqueues on a device.  We only need start,
3584  * stop, and a check if it's stopped.  All other device management is
3585  * done at the overall netdevice level.
3586  * Also test the device if we're multiqueue.
3587  */
3588 
3589 /**
3590  *	netif_start_subqueue - allow sending packets on subqueue
3591  *	@dev: network device
3592  *	@queue_index: sub queue index
3593  *
3594  * Start individual transmit queue of a device with multiple transmit queues.
3595  */
3596 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3597 {
3598 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3599 
3600 	netif_tx_start_queue(txq);
3601 }
3602 
3603 /**
3604  *	netif_stop_subqueue - stop sending packets on subqueue
3605  *	@dev: network device
3606  *	@queue_index: sub queue index
3607  *
3608  * Stop individual transmit queue of a device with multiple transmit queues.
3609  */
3610 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3611 {
3612 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3613 	netif_tx_stop_queue(txq);
3614 }
3615 
3616 /**
3617  *	__netif_subqueue_stopped - test status of subqueue
3618  *	@dev: network device
3619  *	@queue_index: sub queue index
3620  *
3621  * Check individual transmit queue of a device with multiple transmit queues.
3622  */
3623 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3624 					    u16 queue_index)
3625 {
3626 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3627 
3628 	return netif_tx_queue_stopped(txq);
3629 }
3630 
3631 /**
3632  *	netif_subqueue_stopped - test status of subqueue
3633  *	@dev: network device
3634  *	@skb: sub queue buffer pointer
3635  *
3636  * Check individual transmit queue of a device with multiple transmit queues.
3637  */
3638 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3639 					  struct sk_buff *skb)
3640 {
3641 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3642 }
3643 
3644 /**
3645  *	netif_wake_subqueue - allow sending packets on subqueue
3646  *	@dev: network device
3647  *	@queue_index: sub queue index
3648  *
3649  * Resume individual transmit queue of a device with multiple transmit queues.
3650  */
3651 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3652 {
3653 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3654 
3655 	netif_tx_wake_queue(txq);
3656 }
3657 
3658 #ifdef CONFIG_XPS
3659 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3660 			u16 index);
3661 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3662 			  u16 index, enum xps_map_type type);
3663 
3664 /**
3665  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3666  *	@j: CPU/Rx queue index
3667  *	@mask: bitmask of all cpus/rx queues
3668  *	@nr_bits: number of bits in the bitmask
3669  *
3670  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3671  */
3672 static inline bool netif_attr_test_mask(unsigned long j,
3673 					const unsigned long *mask,
3674 					unsigned int nr_bits)
3675 {
3676 	cpu_max_bits_warn(j, nr_bits);
3677 	return test_bit(j, mask);
3678 }
3679 
3680 /**
3681  *	netif_attr_test_online - Test for online CPU/Rx queue
3682  *	@j: CPU/Rx queue index
3683  *	@online_mask: bitmask for CPUs/Rx queues that are online
3684  *	@nr_bits: number of bits in the bitmask
3685  *
3686  * Returns true if a CPU/Rx queue is online.
3687  */
3688 static inline bool netif_attr_test_online(unsigned long j,
3689 					  const unsigned long *online_mask,
3690 					  unsigned int nr_bits)
3691 {
3692 	cpu_max_bits_warn(j, nr_bits);
3693 
3694 	if (online_mask)
3695 		return test_bit(j, online_mask);
3696 
3697 	return (j < nr_bits);
3698 }
3699 
3700 /**
3701  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3702  *	@n: CPU/Rx queue index
3703  *	@srcp: the cpumask/Rx queue mask pointer
3704  *	@nr_bits: number of bits in the bitmask
3705  *
3706  * Returns >= nr_bits if no further CPUs/Rx queues set.
3707  */
3708 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3709 					       unsigned int nr_bits)
3710 {
3711 	/* -1 is a legal arg here. */
3712 	if (n != -1)
3713 		cpu_max_bits_warn(n, nr_bits);
3714 
3715 	if (srcp)
3716 		return find_next_bit(srcp, nr_bits, n + 1);
3717 
3718 	return n + 1;
3719 }
3720 
3721 /**
3722  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3723  *	@n: CPU/Rx queue index
3724  *	@src1p: the first CPUs/Rx queues mask pointer
3725  *	@src2p: the second CPUs/Rx queues mask pointer
3726  *	@nr_bits: number of bits in the bitmask
3727  *
3728  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3729  */
3730 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3731 					  const unsigned long *src2p,
3732 					  unsigned int nr_bits)
3733 {
3734 	/* -1 is a legal arg here. */
3735 	if (n != -1)
3736 		cpu_max_bits_warn(n, nr_bits);
3737 
3738 	if (src1p && src2p)
3739 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3740 	else if (src1p)
3741 		return find_next_bit(src1p, nr_bits, n + 1);
3742 	else if (src2p)
3743 		return find_next_bit(src2p, nr_bits, n + 1);
3744 
3745 	return n + 1;
3746 }
3747 #else
3748 static inline int netif_set_xps_queue(struct net_device *dev,
3749 				      const struct cpumask *mask,
3750 				      u16 index)
3751 {
3752 	return 0;
3753 }
3754 
3755 static inline int __netif_set_xps_queue(struct net_device *dev,
3756 					const unsigned long *mask,
3757 					u16 index, enum xps_map_type type)
3758 {
3759 	return 0;
3760 }
3761 #endif
3762 
3763 /**
3764  *	netif_is_multiqueue - test if device has multiple transmit queues
3765  *	@dev: network device
3766  *
3767  * Check if device has multiple transmit queues
3768  */
3769 static inline bool netif_is_multiqueue(const struct net_device *dev)
3770 {
3771 	return dev->num_tx_queues > 1;
3772 }
3773 
3774 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3775 
3776 #ifdef CONFIG_SYSFS
3777 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3778 #else
3779 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3780 						unsigned int rxqs)
3781 {
3782 	dev->real_num_rx_queues = rxqs;
3783 	return 0;
3784 }
3785 #endif
3786 int netif_set_real_num_queues(struct net_device *dev,
3787 			      unsigned int txq, unsigned int rxq);
3788 
3789 static inline struct netdev_rx_queue *
3790 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3791 {
3792 	return dev->_rx + rxq;
3793 }
3794 
3795 #ifdef CONFIG_SYSFS
3796 static inline unsigned int get_netdev_rx_queue_index(
3797 		struct netdev_rx_queue *queue)
3798 {
3799 	struct net_device *dev = queue->dev;
3800 	int index = queue - dev->_rx;
3801 
3802 	BUG_ON(index >= dev->num_rx_queues);
3803 	return index;
3804 }
3805 #endif
3806 
3807 int netif_get_num_default_rss_queues(void);
3808 
3809 enum skb_free_reason {
3810 	SKB_REASON_CONSUMED,
3811 	SKB_REASON_DROPPED,
3812 };
3813 
3814 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3815 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3816 
3817 /*
3818  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3819  * interrupt context or with hardware interrupts being disabled.
3820  * (in_hardirq() || irqs_disabled())
3821  *
3822  * We provide four helpers that can be used in following contexts :
3823  *
3824  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3825  *  replacing kfree_skb(skb)
3826  *
3827  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3828  *  Typically used in place of consume_skb(skb) in TX completion path
3829  *
3830  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3831  *  replacing kfree_skb(skb)
3832  *
3833  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3834  *  and consumed a packet. Used in place of consume_skb(skb)
3835  */
3836 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3837 {
3838 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3839 }
3840 
3841 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3842 {
3843 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3844 }
3845 
3846 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3847 {
3848 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3849 }
3850 
3851 static inline void dev_consume_skb_any(struct sk_buff *skb)
3852 {
3853 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3854 }
3855 
3856 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3857 			     struct bpf_prog *xdp_prog);
3858 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3859 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3860 int netif_rx(struct sk_buff *skb);
3861 int __netif_rx(struct sk_buff *skb);
3862 
3863 int netif_receive_skb(struct sk_buff *skb);
3864 int netif_receive_skb_core(struct sk_buff *skb);
3865 void netif_receive_skb_list_internal(struct list_head *head);
3866 void netif_receive_skb_list(struct list_head *head);
3867 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3868 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3869 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3870 void napi_get_frags_check(struct napi_struct *napi);
3871 gro_result_t napi_gro_frags(struct napi_struct *napi);
3872 struct packet_offload *gro_find_receive_by_type(__be16 type);
3873 struct packet_offload *gro_find_complete_by_type(__be16 type);
3874 
3875 static inline void napi_free_frags(struct napi_struct *napi)
3876 {
3877 	kfree_skb(napi->skb);
3878 	napi->skb = NULL;
3879 }
3880 
3881 bool netdev_is_rx_handler_busy(struct net_device *dev);
3882 int netdev_rx_handler_register(struct net_device *dev,
3883 			       rx_handler_func_t *rx_handler,
3884 			       void *rx_handler_data);
3885 void netdev_rx_handler_unregister(struct net_device *dev);
3886 
3887 bool dev_valid_name(const char *name);
3888 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3889 {
3890 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3891 }
3892 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3893 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3894 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3895 		void __user *data, bool *need_copyout);
3896 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3897 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3898 unsigned int dev_get_flags(const struct net_device *);
3899 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3900 		       struct netlink_ext_ack *extack);
3901 int dev_change_flags(struct net_device *dev, unsigned int flags,
3902 		     struct netlink_ext_ack *extack);
3903 int dev_set_alias(struct net_device *, const char *, size_t);
3904 int dev_get_alias(const struct net_device *, char *, size_t);
3905 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3906 			       const char *pat, int new_ifindex);
3907 static inline
3908 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3909 			     const char *pat)
3910 {
3911 	return __dev_change_net_namespace(dev, net, pat, 0);
3912 }
3913 int __dev_set_mtu(struct net_device *, int);
3914 int dev_set_mtu(struct net_device *, int);
3915 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3916 			      struct netlink_ext_ack *extack);
3917 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3918 			struct netlink_ext_ack *extack);
3919 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3920 			     struct netlink_ext_ack *extack);
3921 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3922 int dev_get_port_parent_id(struct net_device *dev,
3923 			   struct netdev_phys_item_id *ppid, bool recurse);
3924 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3925 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3926 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3927 				    struct netdev_queue *txq, int *ret);
3928 
3929 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3930 u8 dev_xdp_prog_count(struct net_device *dev);
3931 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3932 
3933 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3934 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3935 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3936 bool is_skb_forwardable(const struct net_device *dev,
3937 			const struct sk_buff *skb);
3938 
3939 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3940 						 const struct sk_buff *skb,
3941 						 const bool check_mtu)
3942 {
3943 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3944 	unsigned int len;
3945 
3946 	if (!(dev->flags & IFF_UP))
3947 		return false;
3948 
3949 	if (!check_mtu)
3950 		return true;
3951 
3952 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3953 	if (skb->len <= len)
3954 		return true;
3955 
3956 	/* if TSO is enabled, we don't care about the length as the packet
3957 	 * could be forwarded without being segmented before
3958 	 */
3959 	if (skb_is_gso(skb))
3960 		return true;
3961 
3962 	return false;
3963 }
3964 
3965 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3966 
3967 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3968 {
3969 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3970 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3971 
3972 	if (likely(p))
3973 		return p;
3974 
3975 	return netdev_core_stats_alloc(dev);
3976 }
3977 
3978 #define DEV_CORE_STATS_INC(FIELD)						\
3979 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3980 {										\
3981 	struct net_device_core_stats __percpu *p;				\
3982 										\
3983 	p = dev_core_stats(dev);						\
3984 	if (p)									\
3985 		this_cpu_inc(p->FIELD);						\
3986 }
3987 DEV_CORE_STATS_INC(rx_dropped)
3988 DEV_CORE_STATS_INC(tx_dropped)
3989 DEV_CORE_STATS_INC(rx_nohandler)
3990 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3991 
3992 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3993 					       struct sk_buff *skb,
3994 					       const bool check_mtu)
3995 {
3996 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3997 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3998 		dev_core_stats_rx_dropped_inc(dev);
3999 		kfree_skb(skb);
4000 		return NET_RX_DROP;
4001 	}
4002 
4003 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4004 	skb->priority = 0;
4005 	return 0;
4006 }
4007 
4008 bool dev_nit_active(struct net_device *dev);
4009 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4010 
4011 static inline void __dev_put(struct net_device *dev)
4012 {
4013 	if (dev) {
4014 #ifdef CONFIG_PCPU_DEV_REFCNT
4015 		this_cpu_dec(*dev->pcpu_refcnt);
4016 #else
4017 		refcount_dec(&dev->dev_refcnt);
4018 #endif
4019 	}
4020 }
4021 
4022 static inline void __dev_hold(struct net_device *dev)
4023 {
4024 	if (dev) {
4025 #ifdef CONFIG_PCPU_DEV_REFCNT
4026 		this_cpu_inc(*dev->pcpu_refcnt);
4027 #else
4028 		refcount_inc(&dev->dev_refcnt);
4029 #endif
4030 	}
4031 }
4032 
4033 static inline void __netdev_tracker_alloc(struct net_device *dev,
4034 					  netdevice_tracker *tracker,
4035 					  gfp_t gfp)
4036 {
4037 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4038 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4039 #endif
4040 }
4041 
4042 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4043  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4044  */
4045 static inline void netdev_tracker_alloc(struct net_device *dev,
4046 					netdevice_tracker *tracker, gfp_t gfp)
4047 {
4048 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4049 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4050 	__netdev_tracker_alloc(dev, tracker, gfp);
4051 #endif
4052 }
4053 
4054 static inline void netdev_tracker_free(struct net_device *dev,
4055 				       netdevice_tracker *tracker)
4056 {
4057 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4058 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4059 #endif
4060 }
4061 
4062 static inline void netdev_hold(struct net_device *dev,
4063 			       netdevice_tracker *tracker, gfp_t gfp)
4064 {
4065 	if (dev) {
4066 		__dev_hold(dev);
4067 		__netdev_tracker_alloc(dev, tracker, gfp);
4068 	}
4069 }
4070 
4071 static inline void netdev_put(struct net_device *dev,
4072 			      netdevice_tracker *tracker)
4073 {
4074 	if (dev) {
4075 		netdev_tracker_free(dev, tracker);
4076 		__dev_put(dev);
4077 	}
4078 }
4079 
4080 /**
4081  *	dev_hold - get reference to device
4082  *	@dev: network device
4083  *
4084  * Hold reference to device to keep it from being freed.
4085  * Try using netdev_hold() instead.
4086  */
4087 static inline void dev_hold(struct net_device *dev)
4088 {
4089 	netdev_hold(dev, NULL, GFP_ATOMIC);
4090 }
4091 
4092 /**
4093  *	dev_put - release reference to device
4094  *	@dev: network device
4095  *
4096  * Release reference to device to allow it to be freed.
4097  * Try using netdev_put() instead.
4098  */
4099 static inline void dev_put(struct net_device *dev)
4100 {
4101 	netdev_put(dev, NULL);
4102 }
4103 
4104 static inline void netdev_ref_replace(struct net_device *odev,
4105 				      struct net_device *ndev,
4106 				      netdevice_tracker *tracker,
4107 				      gfp_t gfp)
4108 {
4109 	if (odev)
4110 		netdev_tracker_free(odev, tracker);
4111 
4112 	__dev_hold(ndev);
4113 	__dev_put(odev);
4114 
4115 	if (ndev)
4116 		__netdev_tracker_alloc(ndev, tracker, gfp);
4117 }
4118 
4119 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4120  * and _off may be called from IRQ context, but it is caller
4121  * who is responsible for serialization of these calls.
4122  *
4123  * The name carrier is inappropriate, these functions should really be
4124  * called netif_lowerlayer_*() because they represent the state of any
4125  * kind of lower layer not just hardware media.
4126  */
4127 void linkwatch_fire_event(struct net_device *dev);
4128 
4129 /**
4130  *	netif_carrier_ok - test if carrier present
4131  *	@dev: network device
4132  *
4133  * Check if carrier is present on device
4134  */
4135 static inline bool netif_carrier_ok(const struct net_device *dev)
4136 {
4137 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4138 }
4139 
4140 unsigned long dev_trans_start(struct net_device *dev);
4141 
4142 void __netdev_watchdog_up(struct net_device *dev);
4143 
4144 void netif_carrier_on(struct net_device *dev);
4145 void netif_carrier_off(struct net_device *dev);
4146 void netif_carrier_event(struct net_device *dev);
4147 
4148 /**
4149  *	netif_dormant_on - mark device as dormant.
4150  *	@dev: network device
4151  *
4152  * Mark device as dormant (as per RFC2863).
4153  *
4154  * The dormant state indicates that the relevant interface is not
4155  * actually in a condition to pass packets (i.e., it is not 'up') but is
4156  * in a "pending" state, waiting for some external event.  For "on-
4157  * demand" interfaces, this new state identifies the situation where the
4158  * interface is waiting for events to place it in the up state.
4159  */
4160 static inline void netif_dormant_on(struct net_device *dev)
4161 {
4162 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4163 		linkwatch_fire_event(dev);
4164 }
4165 
4166 /**
4167  *	netif_dormant_off - set device as not dormant.
4168  *	@dev: network device
4169  *
4170  * Device is not in dormant state.
4171  */
4172 static inline void netif_dormant_off(struct net_device *dev)
4173 {
4174 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4175 		linkwatch_fire_event(dev);
4176 }
4177 
4178 /**
4179  *	netif_dormant - test if device is dormant
4180  *	@dev: network device
4181  *
4182  * Check if device is dormant.
4183  */
4184 static inline bool netif_dormant(const struct net_device *dev)
4185 {
4186 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4187 }
4188 
4189 
4190 /**
4191  *	netif_testing_on - mark device as under test.
4192  *	@dev: network device
4193  *
4194  * Mark device as under test (as per RFC2863).
4195  *
4196  * The testing state indicates that some test(s) must be performed on
4197  * the interface. After completion, of the test, the interface state
4198  * will change to up, dormant, or down, as appropriate.
4199  */
4200 static inline void netif_testing_on(struct net_device *dev)
4201 {
4202 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4203 		linkwatch_fire_event(dev);
4204 }
4205 
4206 /**
4207  *	netif_testing_off - set device as not under test.
4208  *	@dev: network device
4209  *
4210  * Device is not in testing state.
4211  */
4212 static inline void netif_testing_off(struct net_device *dev)
4213 {
4214 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4215 		linkwatch_fire_event(dev);
4216 }
4217 
4218 /**
4219  *	netif_testing - test if device is under test
4220  *	@dev: network device
4221  *
4222  * Check if device is under test
4223  */
4224 static inline bool netif_testing(const struct net_device *dev)
4225 {
4226 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4227 }
4228 
4229 
4230 /**
4231  *	netif_oper_up - test if device is operational
4232  *	@dev: network device
4233  *
4234  * Check if carrier is operational
4235  */
4236 static inline bool netif_oper_up(const struct net_device *dev)
4237 {
4238 	return (dev->operstate == IF_OPER_UP ||
4239 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4240 }
4241 
4242 /**
4243  *	netif_device_present - is device available or removed
4244  *	@dev: network device
4245  *
4246  * Check if device has not been removed from system.
4247  */
4248 static inline bool netif_device_present(const struct net_device *dev)
4249 {
4250 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4251 }
4252 
4253 void netif_device_detach(struct net_device *dev);
4254 
4255 void netif_device_attach(struct net_device *dev);
4256 
4257 /*
4258  * Network interface message level settings
4259  */
4260 
4261 enum {
4262 	NETIF_MSG_DRV_BIT,
4263 	NETIF_MSG_PROBE_BIT,
4264 	NETIF_MSG_LINK_BIT,
4265 	NETIF_MSG_TIMER_BIT,
4266 	NETIF_MSG_IFDOWN_BIT,
4267 	NETIF_MSG_IFUP_BIT,
4268 	NETIF_MSG_RX_ERR_BIT,
4269 	NETIF_MSG_TX_ERR_BIT,
4270 	NETIF_MSG_TX_QUEUED_BIT,
4271 	NETIF_MSG_INTR_BIT,
4272 	NETIF_MSG_TX_DONE_BIT,
4273 	NETIF_MSG_RX_STATUS_BIT,
4274 	NETIF_MSG_PKTDATA_BIT,
4275 	NETIF_MSG_HW_BIT,
4276 	NETIF_MSG_WOL_BIT,
4277 
4278 	/* When you add a new bit above, update netif_msg_class_names array
4279 	 * in net/ethtool/common.c
4280 	 */
4281 	NETIF_MSG_CLASS_COUNT,
4282 };
4283 /* Both ethtool_ops interface and internal driver implementation use u32 */
4284 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4285 
4286 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4287 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4288 
4289 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4290 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4291 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4292 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4293 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4294 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4295 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4296 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4297 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4298 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4299 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4300 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4301 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4302 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4303 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4304 
4305 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4306 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4307 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4308 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4309 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4310 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4311 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4312 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4313 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4314 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4315 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4316 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4317 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4318 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4319 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4320 
4321 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4322 {
4323 	/* use default */
4324 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4325 		return default_msg_enable_bits;
4326 	if (debug_value == 0)	/* no output */
4327 		return 0;
4328 	/* set low N bits */
4329 	return (1U << debug_value) - 1;
4330 }
4331 
4332 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4333 {
4334 	spin_lock(&txq->_xmit_lock);
4335 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4336 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4337 }
4338 
4339 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4340 {
4341 	__acquire(&txq->_xmit_lock);
4342 	return true;
4343 }
4344 
4345 static inline void __netif_tx_release(struct netdev_queue *txq)
4346 {
4347 	__release(&txq->_xmit_lock);
4348 }
4349 
4350 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4351 {
4352 	spin_lock_bh(&txq->_xmit_lock);
4353 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4354 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4355 }
4356 
4357 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4358 {
4359 	bool ok = spin_trylock(&txq->_xmit_lock);
4360 
4361 	if (likely(ok)) {
4362 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4363 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4364 	}
4365 	return ok;
4366 }
4367 
4368 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4369 {
4370 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4371 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4372 	spin_unlock(&txq->_xmit_lock);
4373 }
4374 
4375 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4376 {
4377 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4378 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4379 	spin_unlock_bh(&txq->_xmit_lock);
4380 }
4381 
4382 /*
4383  * txq->trans_start can be read locklessly from dev_watchdog()
4384  */
4385 static inline void txq_trans_update(struct netdev_queue *txq)
4386 {
4387 	if (txq->xmit_lock_owner != -1)
4388 		WRITE_ONCE(txq->trans_start, jiffies);
4389 }
4390 
4391 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4392 {
4393 	unsigned long now = jiffies;
4394 
4395 	if (READ_ONCE(txq->trans_start) != now)
4396 		WRITE_ONCE(txq->trans_start, now);
4397 }
4398 
4399 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4400 static inline void netif_trans_update(struct net_device *dev)
4401 {
4402 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4403 
4404 	txq_trans_cond_update(txq);
4405 }
4406 
4407 /**
4408  *	netif_tx_lock - grab network device transmit lock
4409  *	@dev: network device
4410  *
4411  * Get network device transmit lock
4412  */
4413 void netif_tx_lock(struct net_device *dev);
4414 
4415 static inline void netif_tx_lock_bh(struct net_device *dev)
4416 {
4417 	local_bh_disable();
4418 	netif_tx_lock(dev);
4419 }
4420 
4421 void netif_tx_unlock(struct net_device *dev);
4422 
4423 static inline void netif_tx_unlock_bh(struct net_device *dev)
4424 {
4425 	netif_tx_unlock(dev);
4426 	local_bh_enable();
4427 }
4428 
4429 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4430 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4431 		__netif_tx_lock(txq, cpu);		\
4432 	} else {					\
4433 		__netif_tx_acquire(txq);		\
4434 	}						\
4435 }
4436 
4437 #define HARD_TX_TRYLOCK(dev, txq)			\
4438 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4439 		__netif_tx_trylock(txq) :		\
4440 		__netif_tx_acquire(txq))
4441 
4442 #define HARD_TX_UNLOCK(dev, txq) {			\
4443 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4444 		__netif_tx_unlock(txq);			\
4445 	} else {					\
4446 		__netif_tx_release(txq);		\
4447 	}						\
4448 }
4449 
4450 static inline void netif_tx_disable(struct net_device *dev)
4451 {
4452 	unsigned int i;
4453 	int cpu;
4454 
4455 	local_bh_disable();
4456 	cpu = smp_processor_id();
4457 	spin_lock(&dev->tx_global_lock);
4458 	for (i = 0; i < dev->num_tx_queues; i++) {
4459 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4460 
4461 		__netif_tx_lock(txq, cpu);
4462 		netif_tx_stop_queue(txq);
4463 		__netif_tx_unlock(txq);
4464 	}
4465 	spin_unlock(&dev->tx_global_lock);
4466 	local_bh_enable();
4467 }
4468 
4469 static inline void netif_addr_lock(struct net_device *dev)
4470 {
4471 	unsigned char nest_level = 0;
4472 
4473 #ifdef CONFIG_LOCKDEP
4474 	nest_level = dev->nested_level;
4475 #endif
4476 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4477 }
4478 
4479 static inline void netif_addr_lock_bh(struct net_device *dev)
4480 {
4481 	unsigned char nest_level = 0;
4482 
4483 #ifdef CONFIG_LOCKDEP
4484 	nest_level = dev->nested_level;
4485 #endif
4486 	local_bh_disable();
4487 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4488 }
4489 
4490 static inline void netif_addr_unlock(struct net_device *dev)
4491 {
4492 	spin_unlock(&dev->addr_list_lock);
4493 }
4494 
4495 static inline void netif_addr_unlock_bh(struct net_device *dev)
4496 {
4497 	spin_unlock_bh(&dev->addr_list_lock);
4498 }
4499 
4500 /*
4501  * dev_addrs walker. Should be used only for read access. Call with
4502  * rcu_read_lock held.
4503  */
4504 #define for_each_dev_addr(dev, ha) \
4505 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4506 
4507 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4508 
4509 void ether_setup(struct net_device *dev);
4510 
4511 /* Support for loadable net-drivers */
4512 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4513 				    unsigned char name_assign_type,
4514 				    void (*setup)(struct net_device *),
4515 				    unsigned int txqs, unsigned int rxqs);
4516 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4517 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4518 
4519 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4520 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4521 			 count)
4522 
4523 int register_netdev(struct net_device *dev);
4524 void unregister_netdev(struct net_device *dev);
4525 
4526 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4527 
4528 /* General hardware address lists handling functions */
4529 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4530 		   struct netdev_hw_addr_list *from_list, int addr_len);
4531 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4532 		      struct netdev_hw_addr_list *from_list, int addr_len);
4533 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4534 		       struct net_device *dev,
4535 		       int (*sync)(struct net_device *, const unsigned char *),
4536 		       int (*unsync)(struct net_device *,
4537 				     const unsigned char *));
4538 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4539 			   struct net_device *dev,
4540 			   int (*sync)(struct net_device *,
4541 				       const unsigned char *, int),
4542 			   int (*unsync)(struct net_device *,
4543 					 const unsigned char *, int));
4544 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4545 			      struct net_device *dev,
4546 			      int (*unsync)(struct net_device *,
4547 					    const unsigned char *, int));
4548 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4549 			  struct net_device *dev,
4550 			  int (*unsync)(struct net_device *,
4551 					const unsigned char *));
4552 void __hw_addr_init(struct netdev_hw_addr_list *list);
4553 
4554 /* Functions used for device addresses handling */
4555 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4556 		  const void *addr, size_t len);
4557 
4558 static inline void
4559 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4560 {
4561 	dev_addr_mod(dev, 0, addr, len);
4562 }
4563 
4564 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4565 {
4566 	__dev_addr_set(dev, addr, dev->addr_len);
4567 }
4568 
4569 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4570 		 unsigned char addr_type);
4571 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4572 		 unsigned char addr_type);
4573 
4574 /* Functions used for unicast addresses handling */
4575 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4576 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4577 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4578 int dev_uc_sync(struct net_device *to, struct net_device *from);
4579 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4580 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4581 void dev_uc_flush(struct net_device *dev);
4582 void dev_uc_init(struct net_device *dev);
4583 
4584 /**
4585  *  __dev_uc_sync - Synchonize device's unicast list
4586  *  @dev:  device to sync
4587  *  @sync: function to call if address should be added
4588  *  @unsync: function to call if address should be removed
4589  *
4590  *  Add newly added addresses to the interface, and release
4591  *  addresses that have been deleted.
4592  */
4593 static inline int __dev_uc_sync(struct net_device *dev,
4594 				int (*sync)(struct net_device *,
4595 					    const unsigned char *),
4596 				int (*unsync)(struct net_device *,
4597 					      const unsigned char *))
4598 {
4599 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4600 }
4601 
4602 /**
4603  *  __dev_uc_unsync - Remove synchronized addresses from device
4604  *  @dev:  device to sync
4605  *  @unsync: function to call if address should be removed
4606  *
4607  *  Remove all addresses that were added to the device by dev_uc_sync().
4608  */
4609 static inline void __dev_uc_unsync(struct net_device *dev,
4610 				   int (*unsync)(struct net_device *,
4611 						 const unsigned char *))
4612 {
4613 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4614 }
4615 
4616 /* Functions used for multicast addresses handling */
4617 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4618 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4619 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4620 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4621 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4622 int dev_mc_sync(struct net_device *to, struct net_device *from);
4623 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4624 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4625 void dev_mc_flush(struct net_device *dev);
4626 void dev_mc_init(struct net_device *dev);
4627 
4628 /**
4629  *  __dev_mc_sync - Synchonize device's multicast list
4630  *  @dev:  device to sync
4631  *  @sync: function to call if address should be added
4632  *  @unsync: function to call if address should be removed
4633  *
4634  *  Add newly added addresses to the interface, and release
4635  *  addresses that have been deleted.
4636  */
4637 static inline int __dev_mc_sync(struct net_device *dev,
4638 				int (*sync)(struct net_device *,
4639 					    const unsigned char *),
4640 				int (*unsync)(struct net_device *,
4641 					      const unsigned char *))
4642 {
4643 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4644 }
4645 
4646 /**
4647  *  __dev_mc_unsync - Remove synchronized addresses from device
4648  *  @dev:  device to sync
4649  *  @unsync: function to call if address should be removed
4650  *
4651  *  Remove all addresses that were added to the device by dev_mc_sync().
4652  */
4653 static inline void __dev_mc_unsync(struct net_device *dev,
4654 				   int (*unsync)(struct net_device *,
4655 						 const unsigned char *))
4656 {
4657 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4658 }
4659 
4660 /* Functions used for secondary unicast and multicast support */
4661 void dev_set_rx_mode(struct net_device *dev);
4662 int dev_set_promiscuity(struct net_device *dev, int inc);
4663 int dev_set_allmulti(struct net_device *dev, int inc);
4664 void netdev_state_change(struct net_device *dev);
4665 void __netdev_notify_peers(struct net_device *dev);
4666 void netdev_notify_peers(struct net_device *dev);
4667 void netdev_features_change(struct net_device *dev);
4668 /* Load a device via the kmod */
4669 void dev_load(struct net *net, const char *name);
4670 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4671 					struct rtnl_link_stats64 *storage);
4672 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4673 			     const struct net_device_stats *netdev_stats);
4674 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4675 			   const struct pcpu_sw_netstats __percpu *netstats);
4676 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4677 
4678 extern int		netdev_max_backlog;
4679 extern int		dev_rx_weight;
4680 extern int		dev_tx_weight;
4681 extern int		gro_normal_batch;
4682 
4683 enum {
4684 	NESTED_SYNC_IMM_BIT,
4685 	NESTED_SYNC_TODO_BIT,
4686 };
4687 
4688 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4689 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4690 
4691 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4692 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4693 
4694 struct netdev_nested_priv {
4695 	unsigned char flags;
4696 	void *data;
4697 };
4698 
4699 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4700 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4701 						     struct list_head **iter);
4702 
4703 /* iterate through upper list, must be called under RCU read lock */
4704 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4705 	for (iter = &(dev)->adj_list.upper, \
4706 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4707 	     updev; \
4708 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4709 
4710 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4711 				  int (*fn)(struct net_device *upper_dev,
4712 					    struct netdev_nested_priv *priv),
4713 				  struct netdev_nested_priv *priv);
4714 
4715 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4716 				  struct net_device *upper_dev);
4717 
4718 bool netdev_has_any_upper_dev(struct net_device *dev);
4719 
4720 void *netdev_lower_get_next_private(struct net_device *dev,
4721 				    struct list_head **iter);
4722 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4723 					struct list_head **iter);
4724 
4725 #define netdev_for_each_lower_private(dev, priv, iter) \
4726 	for (iter = (dev)->adj_list.lower.next, \
4727 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4728 	     priv; \
4729 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4730 
4731 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4732 	for (iter = &(dev)->adj_list.lower, \
4733 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4734 	     priv; \
4735 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4736 
4737 void *netdev_lower_get_next(struct net_device *dev,
4738 				struct list_head **iter);
4739 
4740 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4741 	for (iter = (dev)->adj_list.lower.next, \
4742 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4743 	     ldev; \
4744 	     ldev = netdev_lower_get_next(dev, &(iter)))
4745 
4746 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4747 					     struct list_head **iter);
4748 int netdev_walk_all_lower_dev(struct net_device *dev,
4749 			      int (*fn)(struct net_device *lower_dev,
4750 					struct netdev_nested_priv *priv),
4751 			      struct netdev_nested_priv *priv);
4752 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4753 				  int (*fn)(struct net_device *lower_dev,
4754 					    struct netdev_nested_priv *priv),
4755 				  struct netdev_nested_priv *priv);
4756 
4757 void *netdev_adjacent_get_private(struct list_head *adj_list);
4758 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4759 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4760 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4761 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4762 			  struct netlink_ext_ack *extack);
4763 int netdev_master_upper_dev_link(struct net_device *dev,
4764 				 struct net_device *upper_dev,
4765 				 void *upper_priv, void *upper_info,
4766 				 struct netlink_ext_ack *extack);
4767 void netdev_upper_dev_unlink(struct net_device *dev,
4768 			     struct net_device *upper_dev);
4769 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4770 				   struct net_device *new_dev,
4771 				   struct net_device *dev,
4772 				   struct netlink_ext_ack *extack);
4773 void netdev_adjacent_change_commit(struct net_device *old_dev,
4774 				   struct net_device *new_dev,
4775 				   struct net_device *dev);
4776 void netdev_adjacent_change_abort(struct net_device *old_dev,
4777 				  struct net_device *new_dev,
4778 				  struct net_device *dev);
4779 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4780 void *netdev_lower_dev_get_private(struct net_device *dev,
4781 				   struct net_device *lower_dev);
4782 void netdev_lower_state_changed(struct net_device *lower_dev,
4783 				void *lower_state_info);
4784 
4785 /* RSS keys are 40 or 52 bytes long */
4786 #define NETDEV_RSS_KEY_LEN 52
4787 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4788 void netdev_rss_key_fill(void *buffer, size_t len);
4789 
4790 int skb_checksum_help(struct sk_buff *skb);
4791 int skb_crc32c_csum_help(struct sk_buff *skb);
4792 int skb_csum_hwoffload_help(struct sk_buff *skb,
4793 			    const netdev_features_t features);
4794 
4795 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4796 				  netdev_features_t features, bool tx_path);
4797 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4798 				    netdev_features_t features, __be16 type);
4799 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4800 				    netdev_features_t features);
4801 
4802 struct netdev_bonding_info {
4803 	ifslave	slave;
4804 	ifbond	master;
4805 };
4806 
4807 struct netdev_notifier_bonding_info {
4808 	struct netdev_notifier_info info; /* must be first */
4809 	struct netdev_bonding_info  bonding_info;
4810 };
4811 
4812 void netdev_bonding_info_change(struct net_device *dev,
4813 				struct netdev_bonding_info *bonding_info);
4814 
4815 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4816 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4817 #else
4818 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4819 				  const void *data)
4820 {
4821 }
4822 #endif
4823 
4824 static inline
4825 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4826 {
4827 	return __skb_gso_segment(skb, features, true);
4828 }
4829 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4830 
4831 static inline bool can_checksum_protocol(netdev_features_t features,
4832 					 __be16 protocol)
4833 {
4834 	if (protocol == htons(ETH_P_FCOE))
4835 		return !!(features & NETIF_F_FCOE_CRC);
4836 
4837 	/* Assume this is an IP checksum (not SCTP CRC) */
4838 
4839 	if (features & NETIF_F_HW_CSUM) {
4840 		/* Can checksum everything */
4841 		return true;
4842 	}
4843 
4844 	switch (protocol) {
4845 	case htons(ETH_P_IP):
4846 		return !!(features & NETIF_F_IP_CSUM);
4847 	case htons(ETH_P_IPV6):
4848 		return !!(features & NETIF_F_IPV6_CSUM);
4849 	default:
4850 		return false;
4851 	}
4852 }
4853 
4854 #ifdef CONFIG_BUG
4855 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4856 #else
4857 static inline void netdev_rx_csum_fault(struct net_device *dev,
4858 					struct sk_buff *skb)
4859 {
4860 }
4861 #endif
4862 /* rx skb timestamps */
4863 void net_enable_timestamp(void);
4864 void net_disable_timestamp(void);
4865 
4866 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4867 					const struct skb_shared_hwtstamps *hwtstamps,
4868 					bool cycles)
4869 {
4870 	const struct net_device_ops *ops = dev->netdev_ops;
4871 
4872 	if (ops->ndo_get_tstamp)
4873 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4874 
4875 	return hwtstamps->hwtstamp;
4876 }
4877 
4878 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4879 					      struct sk_buff *skb, struct net_device *dev,
4880 					      bool more)
4881 {
4882 	__this_cpu_write(softnet_data.xmit.more, more);
4883 	return ops->ndo_start_xmit(skb, dev);
4884 }
4885 
4886 static inline bool netdev_xmit_more(void)
4887 {
4888 	return __this_cpu_read(softnet_data.xmit.more);
4889 }
4890 
4891 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4892 					    struct netdev_queue *txq, bool more)
4893 {
4894 	const struct net_device_ops *ops = dev->netdev_ops;
4895 	netdev_tx_t rc;
4896 
4897 	rc = __netdev_start_xmit(ops, skb, dev, more);
4898 	if (rc == NETDEV_TX_OK)
4899 		txq_trans_update(txq);
4900 
4901 	return rc;
4902 }
4903 
4904 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4905 				const void *ns);
4906 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4907 				 const void *ns);
4908 
4909 extern const struct kobj_ns_type_operations net_ns_type_operations;
4910 
4911 const char *netdev_drivername(const struct net_device *dev);
4912 
4913 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4914 							  netdev_features_t f2)
4915 {
4916 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4917 		if (f1 & NETIF_F_HW_CSUM)
4918 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4919 		else
4920 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4921 	}
4922 
4923 	return f1 & f2;
4924 }
4925 
4926 static inline netdev_features_t netdev_get_wanted_features(
4927 	struct net_device *dev)
4928 {
4929 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4930 }
4931 netdev_features_t netdev_increment_features(netdev_features_t all,
4932 	netdev_features_t one, netdev_features_t mask);
4933 
4934 /* Allow TSO being used on stacked device :
4935  * Performing the GSO segmentation before last device
4936  * is a performance improvement.
4937  */
4938 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4939 							netdev_features_t mask)
4940 {
4941 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4942 }
4943 
4944 int __netdev_update_features(struct net_device *dev);
4945 void netdev_update_features(struct net_device *dev);
4946 void netdev_change_features(struct net_device *dev);
4947 
4948 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4949 					struct net_device *dev);
4950 
4951 netdev_features_t passthru_features_check(struct sk_buff *skb,
4952 					  struct net_device *dev,
4953 					  netdev_features_t features);
4954 netdev_features_t netif_skb_features(struct sk_buff *skb);
4955 
4956 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4957 {
4958 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4959 
4960 	/* check flags correspondence */
4961 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4962 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4963 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4964 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4965 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4966 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4967 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4968 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4969 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4970 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4971 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4972 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4973 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4974 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4975 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4976 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4977 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4978 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4979 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4980 
4981 	return (features & feature) == feature;
4982 }
4983 
4984 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4985 {
4986 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4987 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4988 }
4989 
4990 static inline bool netif_needs_gso(struct sk_buff *skb,
4991 				   netdev_features_t features)
4992 {
4993 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4994 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4995 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4996 }
4997 
4998 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4999 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5000 void netif_inherit_tso_max(struct net_device *to,
5001 			   const struct net_device *from);
5002 
5003 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5004 					int pulled_hlen, u16 mac_offset,
5005 					int mac_len)
5006 {
5007 	skb->protocol = protocol;
5008 	skb->encapsulation = 1;
5009 	skb_push(skb, pulled_hlen);
5010 	skb_reset_transport_header(skb);
5011 	skb->mac_header = mac_offset;
5012 	skb->network_header = skb->mac_header + mac_len;
5013 	skb->mac_len = mac_len;
5014 }
5015 
5016 static inline bool netif_is_macsec(const struct net_device *dev)
5017 {
5018 	return dev->priv_flags & IFF_MACSEC;
5019 }
5020 
5021 static inline bool netif_is_macvlan(const struct net_device *dev)
5022 {
5023 	return dev->priv_flags & IFF_MACVLAN;
5024 }
5025 
5026 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5027 {
5028 	return dev->priv_flags & IFF_MACVLAN_PORT;
5029 }
5030 
5031 static inline bool netif_is_bond_master(const struct net_device *dev)
5032 {
5033 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5034 }
5035 
5036 static inline bool netif_is_bond_slave(const struct net_device *dev)
5037 {
5038 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5039 }
5040 
5041 static inline bool netif_supports_nofcs(struct net_device *dev)
5042 {
5043 	return dev->priv_flags & IFF_SUPP_NOFCS;
5044 }
5045 
5046 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5047 {
5048 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5049 }
5050 
5051 static inline bool netif_is_l3_master(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5054 }
5055 
5056 static inline bool netif_is_l3_slave(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5059 }
5060 
5061 static inline bool netif_is_bridge_master(const struct net_device *dev)
5062 {
5063 	return dev->priv_flags & IFF_EBRIDGE;
5064 }
5065 
5066 static inline bool netif_is_bridge_port(const struct net_device *dev)
5067 {
5068 	return dev->priv_flags & IFF_BRIDGE_PORT;
5069 }
5070 
5071 static inline bool netif_is_ovs_master(const struct net_device *dev)
5072 {
5073 	return dev->priv_flags & IFF_OPENVSWITCH;
5074 }
5075 
5076 static inline bool netif_is_ovs_port(const struct net_device *dev)
5077 {
5078 	return dev->priv_flags & IFF_OVS_DATAPATH;
5079 }
5080 
5081 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5082 {
5083 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5084 }
5085 
5086 static inline bool netif_is_team_master(const struct net_device *dev)
5087 {
5088 	return dev->priv_flags & IFF_TEAM;
5089 }
5090 
5091 static inline bool netif_is_team_port(const struct net_device *dev)
5092 {
5093 	return dev->priv_flags & IFF_TEAM_PORT;
5094 }
5095 
5096 static inline bool netif_is_lag_master(const struct net_device *dev)
5097 {
5098 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5099 }
5100 
5101 static inline bool netif_is_lag_port(const struct net_device *dev)
5102 {
5103 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5104 }
5105 
5106 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5107 {
5108 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5109 }
5110 
5111 static inline bool netif_is_failover(const struct net_device *dev)
5112 {
5113 	return dev->priv_flags & IFF_FAILOVER;
5114 }
5115 
5116 static inline bool netif_is_failover_slave(const struct net_device *dev)
5117 {
5118 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5119 }
5120 
5121 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5122 static inline void netif_keep_dst(struct net_device *dev)
5123 {
5124 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5125 }
5126 
5127 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5128 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5129 {
5130 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5131 	return netif_is_macsec(dev);
5132 }
5133 
5134 extern struct pernet_operations __net_initdata loopback_net_ops;
5135 
5136 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5137 
5138 /* netdev_printk helpers, similar to dev_printk */
5139 
5140 static inline const char *netdev_name(const struct net_device *dev)
5141 {
5142 	if (!dev->name[0] || strchr(dev->name, '%'))
5143 		return "(unnamed net_device)";
5144 	return dev->name;
5145 }
5146 
5147 static inline const char *netdev_reg_state(const struct net_device *dev)
5148 {
5149 	switch (dev->reg_state) {
5150 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5151 	case NETREG_REGISTERED: return "";
5152 	case NETREG_UNREGISTERING: return " (unregistering)";
5153 	case NETREG_UNREGISTERED: return " (unregistered)";
5154 	case NETREG_RELEASED: return " (released)";
5155 	case NETREG_DUMMY: return " (dummy)";
5156 	}
5157 
5158 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5159 	return " (unknown)";
5160 }
5161 
5162 #define MODULE_ALIAS_NETDEV(device) \
5163 	MODULE_ALIAS("netdev-" device)
5164 
5165 /*
5166  * netdev_WARN() acts like dev_printk(), but with the key difference
5167  * of using a WARN/WARN_ON to get the message out, including the
5168  * file/line information and a backtrace.
5169  */
5170 #define netdev_WARN(dev, format, args...)			\
5171 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5172 	     netdev_reg_state(dev), ##args)
5173 
5174 #define netdev_WARN_ONCE(dev, format, args...)				\
5175 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5176 		  netdev_reg_state(dev), ##args)
5177 
5178 /*
5179  *	The list of packet types we will receive (as opposed to discard)
5180  *	and the routines to invoke.
5181  *
5182  *	Why 16. Because with 16 the only overlap we get on a hash of the
5183  *	low nibble of the protocol value is RARP/SNAP/X.25.
5184  *
5185  *		0800	IP
5186  *		0001	802.3
5187  *		0002	AX.25
5188  *		0004	802.2
5189  *		8035	RARP
5190  *		0005	SNAP
5191  *		0805	X.25
5192  *		0806	ARP
5193  *		8137	IPX
5194  *		0009	Localtalk
5195  *		86DD	IPv6
5196  */
5197 #define PTYPE_HASH_SIZE	(16)
5198 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5199 
5200 extern struct list_head ptype_all __read_mostly;
5201 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5202 
5203 extern struct net_device *blackhole_netdev;
5204 
5205 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5206 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5207 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5208 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5209 
5210 #endif	/* _LINUX_NETDEVICE_H */
5211