xref: /openbmc/linux/include/linux/netdevice.h (revision 6aeadf78)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 #include <net/dropreason-core.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_md;
80 
81 void synchronize_net(void);
82 void netdev_set_default_ethtool_ops(struct net_device *dev,
83 				    const struct ethtool_ops *ops);
84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
85 
86 /* Backlog congestion levels */
87 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
88 #define NET_RX_DROP		1	/* packet dropped */
89 
90 #define MAX_NEST_DEV 8
91 
92 /*
93  * Transmit return codes: transmit return codes originate from three different
94  * namespaces:
95  *
96  * - qdisc return codes
97  * - driver transmit return codes
98  * - errno values
99  *
100  * Drivers are allowed to return any one of those in their hard_start_xmit()
101  * function. Real network devices commonly used with qdiscs should only return
102  * the driver transmit return codes though - when qdiscs are used, the actual
103  * transmission happens asynchronously, so the value is not propagated to
104  * higher layers. Virtual network devices transmit synchronously; in this case
105  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
106  * others are propagated to higher layers.
107  */
108 
109 /* qdisc ->enqueue() return codes. */
110 #define NET_XMIT_SUCCESS	0x00
111 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
112 #define NET_XMIT_CN		0x02	/* congestion notification	*/
113 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
114 
115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
116  * indicates that the device will soon be dropping packets, or already drops
117  * some packets of the same priority; prompting us to send less aggressively. */
118 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
119 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
120 
121 /* Driver transmit return codes */
122 #define NETDEV_TX_MASK		0xf0
123 
124 enum netdev_tx {
125 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
126 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
127 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
128 };
129 typedef enum netdev_tx netdev_tx_t;
130 
131 /*
132  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
133  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
134  */
135 static inline bool dev_xmit_complete(int rc)
136 {
137 	/*
138 	 * Positive cases with an skb consumed by a driver:
139 	 * - successful transmission (rc == NETDEV_TX_OK)
140 	 * - error while transmitting (rc < 0)
141 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
142 	 */
143 	if (likely(rc < NET_XMIT_MASK))
144 		return true;
145 
146 	return false;
147 }
148 
149 /*
150  *	Compute the worst-case header length according to the protocols
151  *	used.
152  */
153 
154 #if defined(CONFIG_HYPERV_NET)
155 # define LL_MAX_HEADER 128
156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
157 # if defined(CONFIG_MAC80211_MESH)
158 #  define LL_MAX_HEADER 128
159 # else
160 #  define LL_MAX_HEADER 96
161 # endif
162 #else
163 # define LL_MAX_HEADER 32
164 #endif
165 
166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
167     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
168 #define MAX_HEADER LL_MAX_HEADER
169 #else
170 #define MAX_HEADER (LL_MAX_HEADER + 48)
171 #endif
172 
173 /*
174  *	Old network device statistics. Fields are native words
175  *	(unsigned long) so they can be read and written atomically.
176  */
177 
178 #define NET_DEV_STAT(FIELD)			\
179 	union {					\
180 		unsigned long FIELD;		\
181 		atomic_long_t __##FIELD;	\
182 	}
183 
184 struct net_device_stats {
185 	NET_DEV_STAT(rx_packets);
186 	NET_DEV_STAT(tx_packets);
187 	NET_DEV_STAT(rx_bytes);
188 	NET_DEV_STAT(tx_bytes);
189 	NET_DEV_STAT(rx_errors);
190 	NET_DEV_STAT(tx_errors);
191 	NET_DEV_STAT(rx_dropped);
192 	NET_DEV_STAT(tx_dropped);
193 	NET_DEV_STAT(multicast);
194 	NET_DEV_STAT(collisions);
195 	NET_DEV_STAT(rx_length_errors);
196 	NET_DEV_STAT(rx_over_errors);
197 	NET_DEV_STAT(rx_crc_errors);
198 	NET_DEV_STAT(rx_frame_errors);
199 	NET_DEV_STAT(rx_fifo_errors);
200 	NET_DEV_STAT(rx_missed_errors);
201 	NET_DEV_STAT(tx_aborted_errors);
202 	NET_DEV_STAT(tx_carrier_errors);
203 	NET_DEV_STAT(tx_fifo_errors);
204 	NET_DEV_STAT(tx_heartbeat_errors);
205 	NET_DEV_STAT(tx_window_errors);
206 	NET_DEV_STAT(rx_compressed);
207 	NET_DEV_STAT(tx_compressed);
208 };
209 #undef NET_DEV_STAT
210 
211 /* per-cpu stats, allocated on demand.
212  * Try to fit them in a single cache line, for dev_get_stats() sake.
213  */
214 struct net_device_core_stats {
215 	unsigned long	rx_dropped;
216 	unsigned long	tx_dropped;
217 	unsigned long	rx_nohandler;
218 	unsigned long	rx_otherhost_dropped;
219 } __aligned(4 * sizeof(unsigned long));
220 
221 #include <linux/cache.h>
222 #include <linux/skbuff.h>
223 
224 #ifdef CONFIG_RPS
225 #include <linux/static_key.h>
226 extern struct static_key_false rps_needed;
227 extern struct static_key_false rfs_needed;
228 #endif
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	int			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	/* CPU actively polling if netpoll is configured */
364 	int			poll_owner;
365 #endif
366 	/* CPU on which NAPI has been scheduled for processing */
367 	int			list_owner;
368 	struct net_device	*dev;
369 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
370 	struct sk_buff		*skb;
371 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
372 	int			rx_count; /* length of rx_list */
373 	unsigned int		napi_id;
374 	struct hrtimer		timer;
375 	struct task_struct	*thread;
376 	/* control-path-only fields follow */
377 	struct list_head	dev_list;
378 	struct hlist_node	napi_hash_node;
379 };
380 
381 enum {
382 	NAPI_STATE_SCHED,		/* Poll is scheduled */
383 	NAPI_STATE_MISSED,		/* reschedule a napi */
384 	NAPI_STATE_DISABLE,		/* Disable pending */
385 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
386 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
387 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
388 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
389 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
390 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
391 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
392 };
393 
394 enum {
395 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
396 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
397 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
398 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
399 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
400 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
401 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
402 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
403 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
404 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
405 };
406 
407 enum gro_result {
408 	GRO_MERGED,
409 	GRO_MERGED_FREE,
410 	GRO_HELD,
411 	GRO_NORMAL,
412 	GRO_CONSUMED,
413 };
414 typedef enum gro_result gro_result_t;
415 
416 /*
417  * enum rx_handler_result - Possible return values for rx_handlers.
418  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
419  * further.
420  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
421  * case skb->dev was changed by rx_handler.
422  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
423  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
424  *
425  * rx_handlers are functions called from inside __netif_receive_skb(), to do
426  * special processing of the skb, prior to delivery to protocol handlers.
427  *
428  * Currently, a net_device can only have a single rx_handler registered. Trying
429  * to register a second rx_handler will return -EBUSY.
430  *
431  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
432  * To unregister a rx_handler on a net_device, use
433  * netdev_rx_handler_unregister().
434  *
435  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
436  * do with the skb.
437  *
438  * If the rx_handler consumed the skb in some way, it should return
439  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
440  * the skb to be delivered in some other way.
441  *
442  * If the rx_handler changed skb->dev, to divert the skb to another
443  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
444  * new device will be called if it exists.
445  *
446  * If the rx_handler decides the skb should be ignored, it should return
447  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
448  * are registered on exact device (ptype->dev == skb->dev).
449  *
450  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
451  * delivered, it should return RX_HANDLER_PASS.
452  *
453  * A device without a registered rx_handler will behave as if rx_handler
454  * returned RX_HANDLER_PASS.
455  */
456 
457 enum rx_handler_result {
458 	RX_HANDLER_CONSUMED,
459 	RX_HANDLER_ANOTHER,
460 	RX_HANDLER_EXACT,
461 	RX_HANDLER_PASS,
462 };
463 typedef enum rx_handler_result rx_handler_result_t;
464 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
465 
466 void __napi_schedule(struct napi_struct *n);
467 void __napi_schedule_irqoff(struct napi_struct *n);
468 
469 static inline bool napi_disable_pending(struct napi_struct *n)
470 {
471 	return test_bit(NAPI_STATE_DISABLE, &n->state);
472 }
473 
474 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
475 {
476 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
477 }
478 
479 bool napi_schedule_prep(struct napi_struct *n);
480 
481 /**
482  *	napi_schedule - schedule NAPI poll
483  *	@n: NAPI context
484  *
485  * Schedule NAPI poll routine to be called if it is not already
486  * running.
487  */
488 static inline void napi_schedule(struct napi_struct *n)
489 {
490 	if (napi_schedule_prep(n))
491 		__napi_schedule(n);
492 }
493 
494 /**
495  *	napi_schedule_irqoff - schedule NAPI poll
496  *	@n: NAPI context
497  *
498  * Variant of napi_schedule(), assuming hard irqs are masked.
499  */
500 static inline void napi_schedule_irqoff(struct napi_struct *n)
501 {
502 	if (napi_schedule_prep(n))
503 		__napi_schedule_irqoff(n);
504 }
505 
506 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
507 static inline bool napi_reschedule(struct napi_struct *napi)
508 {
509 	if (napi_schedule_prep(napi)) {
510 		__napi_schedule(napi);
511 		return true;
512 	}
513 	return false;
514 }
515 
516 /**
517  * napi_complete_done - NAPI processing complete
518  * @n: NAPI context
519  * @work_done: number of packets processed
520  *
521  * Mark NAPI processing as complete. Should only be called if poll budget
522  * has not been completely consumed.
523  * Prefer over napi_complete().
524  * Return false if device should avoid rearming interrupts.
525  */
526 bool napi_complete_done(struct napi_struct *n, int work_done);
527 
528 static inline bool napi_complete(struct napi_struct *n)
529 {
530 	return napi_complete_done(n, 0);
531 }
532 
533 int dev_set_threaded(struct net_device *dev, bool threaded);
534 
535 /**
536  *	napi_disable - prevent NAPI from scheduling
537  *	@n: NAPI context
538  *
539  * Stop NAPI from being scheduled on this context.
540  * Waits till any outstanding processing completes.
541  */
542 void napi_disable(struct napi_struct *n);
543 
544 void napi_enable(struct napi_struct *n);
545 
546 /**
547  *	napi_synchronize - wait until NAPI is not running
548  *	@n: NAPI context
549  *
550  * Wait until NAPI is done being scheduled on this context.
551  * Waits till any outstanding processing completes but
552  * does not disable future activations.
553  */
554 static inline void napi_synchronize(const struct napi_struct *n)
555 {
556 	if (IS_ENABLED(CONFIG_SMP))
557 		while (test_bit(NAPI_STATE_SCHED, &n->state))
558 			msleep(1);
559 	else
560 		barrier();
561 }
562 
563 /**
564  *	napi_if_scheduled_mark_missed - if napi is running, set the
565  *	NAPIF_STATE_MISSED
566  *	@n: NAPI context
567  *
568  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
569  * NAPI is scheduled.
570  **/
571 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
572 {
573 	unsigned long val, new;
574 
575 	val = READ_ONCE(n->state);
576 	do {
577 		if (val & NAPIF_STATE_DISABLE)
578 			return true;
579 
580 		if (!(val & NAPIF_STATE_SCHED))
581 			return false;
582 
583 		new = val | NAPIF_STATE_MISSED;
584 	} while (!try_cmpxchg(&n->state, &val, new));
585 
586 	return true;
587 }
588 
589 enum netdev_queue_state_t {
590 	__QUEUE_STATE_DRV_XOFF,
591 	__QUEUE_STATE_STACK_XOFF,
592 	__QUEUE_STATE_FROZEN,
593 };
594 
595 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
596 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
597 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
598 
599 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
600 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
601 					QUEUE_STATE_FROZEN)
602 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
603 					QUEUE_STATE_FROZEN)
604 
605 /*
606  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
607  * netif_tx_* functions below are used to manipulate this flag.  The
608  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
609  * queue independently.  The netif_xmit_*stopped functions below are called
610  * to check if the queue has been stopped by the driver or stack (either
611  * of the XOFF bits are set in the state).  Drivers should not need to call
612  * netif_xmit*stopped functions, they should only be using netif_tx_*.
613  */
614 
615 struct netdev_queue {
616 /*
617  * read-mostly part
618  */
619 	struct net_device	*dev;
620 	netdevice_tracker	dev_tracker;
621 
622 	struct Qdisc __rcu	*qdisc;
623 	struct Qdisc __rcu	*qdisc_sleeping;
624 #ifdef CONFIG_SYSFS
625 	struct kobject		kobj;
626 #endif
627 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
628 	int			numa_node;
629 #endif
630 	unsigned long		tx_maxrate;
631 	/*
632 	 * Number of TX timeouts for this queue
633 	 * (/sys/class/net/DEV/Q/trans_timeout)
634 	 */
635 	atomic_long_t		trans_timeout;
636 
637 	/* Subordinate device that the queue has been assigned to */
638 	struct net_device	*sb_dev;
639 #ifdef CONFIG_XDP_SOCKETS
640 	struct xsk_buff_pool    *pool;
641 #endif
642 /*
643  * write-mostly part
644  */
645 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
646 	int			xmit_lock_owner;
647 	/*
648 	 * Time (in jiffies) of last Tx
649 	 */
650 	unsigned long		trans_start;
651 
652 	unsigned long		state;
653 
654 #ifdef CONFIG_BQL
655 	struct dql		dql;
656 #endif
657 } ____cacheline_aligned_in_smp;
658 
659 extern int sysctl_fb_tunnels_only_for_init_net;
660 extern int sysctl_devconf_inherit_init_net;
661 
662 /*
663  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
664  *                                     == 1 : For initns only
665  *                                     == 2 : For none.
666  */
667 static inline bool net_has_fallback_tunnels(const struct net *net)
668 {
669 #if IS_ENABLED(CONFIG_SYSCTL)
670 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
671 
672 	return !fb_tunnels_only_for_init_net ||
673 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
674 #else
675 	return true;
676 #endif
677 }
678 
679 static inline int net_inherit_devconf(void)
680 {
681 #if IS_ENABLED(CONFIG_SYSCTL)
682 	return READ_ONCE(sysctl_devconf_inherit_init_net);
683 #else
684 	return 0;
685 #endif
686 }
687 
688 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
689 {
690 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
691 	return q->numa_node;
692 #else
693 	return NUMA_NO_NODE;
694 #endif
695 }
696 
697 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
698 {
699 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
700 	q->numa_node = node;
701 #endif
702 }
703 
704 #ifdef CONFIG_RPS
705 /*
706  * This structure holds an RPS map which can be of variable length.  The
707  * map is an array of CPUs.
708  */
709 struct rps_map {
710 	unsigned int len;
711 	struct rcu_head rcu;
712 	u16 cpus[];
713 };
714 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
715 
716 /*
717  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
718  * tail pointer for that CPU's input queue at the time of last enqueue, and
719  * a hardware filter index.
720  */
721 struct rps_dev_flow {
722 	u16 cpu;
723 	u16 filter;
724 	unsigned int last_qtail;
725 };
726 #define RPS_NO_FILTER 0xffff
727 
728 /*
729  * The rps_dev_flow_table structure contains a table of flow mappings.
730  */
731 struct rps_dev_flow_table {
732 	unsigned int mask;
733 	struct rcu_head rcu;
734 	struct rps_dev_flow flows[];
735 };
736 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
737     ((_num) * sizeof(struct rps_dev_flow)))
738 
739 /*
740  * The rps_sock_flow_table contains mappings of flows to the last CPU
741  * on which they were processed by the application (set in recvmsg).
742  * Each entry is a 32bit value. Upper part is the high-order bits
743  * of flow hash, lower part is CPU number.
744  * rps_cpu_mask is used to partition the space, depending on number of
745  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
746  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
747  * meaning we use 32-6=26 bits for the hash.
748  */
749 struct rps_sock_flow_table {
750 	u32	mask;
751 
752 	u32	ents[] ____cacheline_aligned_in_smp;
753 };
754 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
755 
756 #define RPS_NO_CPU 0xffff
757 
758 extern u32 rps_cpu_mask;
759 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
760 
761 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
762 					u32 hash)
763 {
764 	if (table && hash) {
765 		unsigned int index = hash & table->mask;
766 		u32 val = hash & ~rps_cpu_mask;
767 
768 		/* We only give a hint, preemption can change CPU under us */
769 		val |= raw_smp_processor_id();
770 
771 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
772 		 * here, and another one in get_rps_cpu().
773 		 */
774 		if (READ_ONCE(table->ents[index]) != val)
775 			WRITE_ONCE(table->ents[index], val);
776 	}
777 }
778 
779 #ifdef CONFIG_RFS_ACCEL
780 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
781 			 u16 filter_id);
782 #endif
783 #endif /* CONFIG_RPS */
784 
785 /* This structure contains an instance of an RX queue. */
786 struct netdev_rx_queue {
787 	struct xdp_rxq_info		xdp_rxq;
788 #ifdef CONFIG_RPS
789 	struct rps_map __rcu		*rps_map;
790 	struct rps_dev_flow_table __rcu	*rps_flow_table;
791 #endif
792 	struct kobject			kobj;
793 	struct net_device		*dev;
794 	netdevice_tracker		dev_tracker;
795 
796 #ifdef CONFIG_XDP_SOCKETS
797 	struct xsk_buff_pool            *pool;
798 #endif
799 } ____cacheline_aligned_in_smp;
800 
801 /*
802  * RX queue sysfs structures and functions.
803  */
804 struct rx_queue_attribute {
805 	struct attribute attr;
806 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
807 	ssize_t (*store)(struct netdev_rx_queue *queue,
808 			 const char *buf, size_t len);
809 };
810 
811 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
812 enum xps_map_type {
813 	XPS_CPUS = 0,
814 	XPS_RXQS,
815 	XPS_MAPS_MAX,
816 };
817 
818 #ifdef CONFIG_XPS
819 /*
820  * This structure holds an XPS map which can be of variable length.  The
821  * map is an array of queues.
822  */
823 struct xps_map {
824 	unsigned int len;
825 	unsigned int alloc_len;
826 	struct rcu_head rcu;
827 	u16 queues[];
828 };
829 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
830 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
831        - sizeof(struct xps_map)) / sizeof(u16))
832 
833 /*
834  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
835  *
836  * We keep track of the number of cpus/rxqs used when the struct is allocated,
837  * in nr_ids. This will help not accessing out-of-bound memory.
838  *
839  * We keep track of the number of traffic classes used when the struct is
840  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
841  * not crossing its upper bound, as the original dev->num_tc can be updated in
842  * the meantime.
843  */
844 struct xps_dev_maps {
845 	struct rcu_head rcu;
846 	unsigned int nr_ids;
847 	s16 num_tc;
848 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
849 };
850 
851 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
852 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
853 
854 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
855 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
856 
857 #endif /* CONFIG_XPS */
858 
859 #define TC_MAX_QUEUE	16
860 #define TC_BITMASK	15
861 /* HW offloaded queuing disciplines txq count and offset maps */
862 struct netdev_tc_txq {
863 	u16 count;
864 	u16 offset;
865 };
866 
867 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
868 /*
869  * This structure is to hold information about the device
870  * configured to run FCoE protocol stack.
871  */
872 struct netdev_fcoe_hbainfo {
873 	char	manufacturer[64];
874 	char	serial_number[64];
875 	char	hardware_version[64];
876 	char	driver_version[64];
877 	char	optionrom_version[64];
878 	char	firmware_version[64];
879 	char	model[256];
880 	char	model_description[256];
881 };
882 #endif
883 
884 #define MAX_PHYS_ITEM_ID_LEN 32
885 
886 /* This structure holds a unique identifier to identify some
887  * physical item (port for example) used by a netdevice.
888  */
889 struct netdev_phys_item_id {
890 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
891 	unsigned char id_len;
892 };
893 
894 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
895 					    struct netdev_phys_item_id *b)
896 {
897 	return a->id_len == b->id_len &&
898 	       memcmp(a->id, b->id, a->id_len) == 0;
899 }
900 
901 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
902 				       struct sk_buff *skb,
903 				       struct net_device *sb_dev);
904 
905 enum net_device_path_type {
906 	DEV_PATH_ETHERNET = 0,
907 	DEV_PATH_VLAN,
908 	DEV_PATH_BRIDGE,
909 	DEV_PATH_PPPOE,
910 	DEV_PATH_DSA,
911 	DEV_PATH_MTK_WDMA,
912 };
913 
914 struct net_device_path {
915 	enum net_device_path_type	type;
916 	const struct net_device		*dev;
917 	union {
918 		struct {
919 			u16		id;
920 			__be16		proto;
921 			u8		h_dest[ETH_ALEN];
922 		} encap;
923 		struct {
924 			enum {
925 				DEV_PATH_BR_VLAN_KEEP,
926 				DEV_PATH_BR_VLAN_TAG,
927 				DEV_PATH_BR_VLAN_UNTAG,
928 				DEV_PATH_BR_VLAN_UNTAG_HW,
929 			}		vlan_mode;
930 			u16		vlan_id;
931 			__be16		vlan_proto;
932 		} bridge;
933 		struct {
934 			int port;
935 			u16 proto;
936 		} dsa;
937 		struct {
938 			u8 wdma_idx;
939 			u8 queue;
940 			u16 wcid;
941 			u8 bss;
942 		} mtk_wdma;
943 	};
944 };
945 
946 #define NET_DEVICE_PATH_STACK_MAX	5
947 #define NET_DEVICE_PATH_VLAN_MAX	2
948 
949 struct net_device_path_stack {
950 	int			num_paths;
951 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
952 };
953 
954 struct net_device_path_ctx {
955 	const struct net_device *dev;
956 	u8			daddr[ETH_ALEN];
957 
958 	int			num_vlans;
959 	struct {
960 		u16		id;
961 		__be16		proto;
962 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
963 };
964 
965 enum tc_setup_type {
966 	TC_QUERY_CAPS,
967 	TC_SETUP_QDISC_MQPRIO,
968 	TC_SETUP_CLSU32,
969 	TC_SETUP_CLSFLOWER,
970 	TC_SETUP_CLSMATCHALL,
971 	TC_SETUP_CLSBPF,
972 	TC_SETUP_BLOCK,
973 	TC_SETUP_QDISC_CBS,
974 	TC_SETUP_QDISC_RED,
975 	TC_SETUP_QDISC_PRIO,
976 	TC_SETUP_QDISC_MQ,
977 	TC_SETUP_QDISC_ETF,
978 	TC_SETUP_ROOT_QDISC,
979 	TC_SETUP_QDISC_GRED,
980 	TC_SETUP_QDISC_TAPRIO,
981 	TC_SETUP_FT,
982 	TC_SETUP_QDISC_ETS,
983 	TC_SETUP_QDISC_TBF,
984 	TC_SETUP_QDISC_FIFO,
985 	TC_SETUP_QDISC_HTB,
986 	TC_SETUP_ACT,
987 };
988 
989 /* These structures hold the attributes of bpf state that are being passed
990  * to the netdevice through the bpf op.
991  */
992 enum bpf_netdev_command {
993 	/* Set or clear a bpf program used in the earliest stages of packet
994 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
995 	 * is responsible for calling bpf_prog_put on any old progs that are
996 	 * stored. In case of error, the callee need not release the new prog
997 	 * reference, but on success it takes ownership and must bpf_prog_put
998 	 * when it is no longer used.
999 	 */
1000 	XDP_SETUP_PROG,
1001 	XDP_SETUP_PROG_HW,
1002 	/* BPF program for offload callbacks, invoked at program load time. */
1003 	BPF_OFFLOAD_MAP_ALLOC,
1004 	BPF_OFFLOAD_MAP_FREE,
1005 	XDP_SETUP_XSK_POOL,
1006 };
1007 
1008 struct bpf_prog_offload_ops;
1009 struct netlink_ext_ack;
1010 struct xdp_umem;
1011 struct xdp_dev_bulk_queue;
1012 struct bpf_xdp_link;
1013 
1014 enum bpf_xdp_mode {
1015 	XDP_MODE_SKB = 0,
1016 	XDP_MODE_DRV = 1,
1017 	XDP_MODE_HW = 2,
1018 	__MAX_XDP_MODE
1019 };
1020 
1021 struct bpf_xdp_entity {
1022 	struct bpf_prog *prog;
1023 	struct bpf_xdp_link *link;
1024 };
1025 
1026 struct netdev_bpf {
1027 	enum bpf_netdev_command command;
1028 	union {
1029 		/* XDP_SETUP_PROG */
1030 		struct {
1031 			u32 flags;
1032 			struct bpf_prog *prog;
1033 			struct netlink_ext_ack *extack;
1034 		};
1035 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1036 		struct {
1037 			struct bpf_offloaded_map *offmap;
1038 		};
1039 		/* XDP_SETUP_XSK_POOL */
1040 		struct {
1041 			struct xsk_buff_pool *pool;
1042 			u16 queue_id;
1043 		} xsk;
1044 	};
1045 };
1046 
1047 /* Flags for ndo_xsk_wakeup. */
1048 #define XDP_WAKEUP_RX (1 << 0)
1049 #define XDP_WAKEUP_TX (1 << 1)
1050 
1051 #ifdef CONFIG_XFRM_OFFLOAD
1052 struct xfrmdev_ops {
1053 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1054 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1055 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1056 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1057 				       struct xfrm_state *x);
1058 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1059 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1060 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1061 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1062 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1063 };
1064 #endif
1065 
1066 struct dev_ifalias {
1067 	struct rcu_head rcuhead;
1068 	char ifalias[];
1069 };
1070 
1071 struct devlink;
1072 struct tlsdev_ops;
1073 
1074 struct netdev_net_notifier {
1075 	struct list_head list;
1076 	struct notifier_block *nb;
1077 };
1078 
1079 /*
1080  * This structure defines the management hooks for network devices.
1081  * The following hooks can be defined; unless noted otherwise, they are
1082  * optional and can be filled with a null pointer.
1083  *
1084  * int (*ndo_init)(struct net_device *dev);
1085  *     This function is called once when a network device is registered.
1086  *     The network device can use this for any late stage initialization
1087  *     or semantic validation. It can fail with an error code which will
1088  *     be propagated back to register_netdev.
1089  *
1090  * void (*ndo_uninit)(struct net_device *dev);
1091  *     This function is called when device is unregistered or when registration
1092  *     fails. It is not called if init fails.
1093  *
1094  * int (*ndo_open)(struct net_device *dev);
1095  *     This function is called when a network device transitions to the up
1096  *     state.
1097  *
1098  * int (*ndo_stop)(struct net_device *dev);
1099  *     This function is called when a network device transitions to the down
1100  *     state.
1101  *
1102  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1103  *                               struct net_device *dev);
1104  *	Called when a packet needs to be transmitted.
1105  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1106  *	the queue before that can happen; it's for obsolete devices and weird
1107  *	corner cases, but the stack really does a non-trivial amount
1108  *	of useless work if you return NETDEV_TX_BUSY.
1109  *	Required; cannot be NULL.
1110  *
1111  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1112  *					   struct net_device *dev
1113  *					   netdev_features_t features);
1114  *	Called by core transmit path to determine if device is capable of
1115  *	performing offload operations on a given packet. This is to give
1116  *	the device an opportunity to implement any restrictions that cannot
1117  *	be otherwise expressed by feature flags. The check is called with
1118  *	the set of features that the stack has calculated and it returns
1119  *	those the driver believes to be appropriate.
1120  *
1121  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1122  *                         struct net_device *sb_dev);
1123  *	Called to decide which queue to use when device supports multiple
1124  *	transmit queues.
1125  *
1126  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1127  *	This function is called to allow device receiver to make
1128  *	changes to configuration when multicast or promiscuous is enabled.
1129  *
1130  * void (*ndo_set_rx_mode)(struct net_device *dev);
1131  *	This function is called device changes address list filtering.
1132  *	If driver handles unicast address filtering, it should set
1133  *	IFF_UNICAST_FLT in its priv_flags.
1134  *
1135  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1136  *	This function  is called when the Media Access Control address
1137  *	needs to be changed. If this interface is not defined, the
1138  *	MAC address can not be changed.
1139  *
1140  * int (*ndo_validate_addr)(struct net_device *dev);
1141  *	Test if Media Access Control address is valid for the device.
1142  *
1143  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1144  *	Old-style ioctl entry point. This is used internally by the
1145  *	appletalk and ieee802154 subsystems but is no longer called by
1146  *	the device ioctl handler.
1147  *
1148  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1149  *	Used by the bonding driver for its device specific ioctls:
1150  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1151  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1152  *
1153  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1154  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1155  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1156  *
1157  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1158  *	Used to set network devices bus interface parameters. This interface
1159  *	is retained for legacy reasons; new devices should use the bus
1160  *	interface (PCI) for low level management.
1161  *
1162  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1163  *	Called when a user wants to change the Maximum Transfer Unit
1164  *	of a device.
1165  *
1166  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1167  *	Callback used when the transmitter has not made any progress
1168  *	for dev->watchdog ticks.
1169  *
1170  * void (*ndo_get_stats64)(struct net_device *dev,
1171  *                         struct rtnl_link_stats64 *storage);
1172  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1173  *	Called when a user wants to get the network device usage
1174  *	statistics. Drivers must do one of the following:
1175  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1176  *	   rtnl_link_stats64 structure passed by the caller.
1177  *	2. Define @ndo_get_stats to update a net_device_stats structure
1178  *	   (which should normally be dev->stats) and return a pointer to
1179  *	   it. The structure may be changed asynchronously only if each
1180  *	   field is written atomically.
1181  *	3. Update dev->stats asynchronously and atomically, and define
1182  *	   neither operation.
1183  *
1184  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1185  *	Return true if this device supports offload stats of this attr_id.
1186  *
1187  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1188  *	void *attr_data)
1189  *	Get statistics for offload operations by attr_id. Write it into the
1190  *	attr_data pointer.
1191  *
1192  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1193  *	If device supports VLAN filtering this function is called when a
1194  *	VLAN id is registered.
1195  *
1196  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1197  *	If device supports VLAN filtering this function is called when a
1198  *	VLAN id is unregistered.
1199  *
1200  * void (*ndo_poll_controller)(struct net_device *dev);
1201  *
1202  *	SR-IOV management functions.
1203  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1204  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1205  *			  u8 qos, __be16 proto);
1206  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1207  *			  int max_tx_rate);
1208  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1209  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1210  * int (*ndo_get_vf_config)(struct net_device *dev,
1211  *			    int vf, struct ifla_vf_info *ivf);
1212  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1213  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1214  *			  struct nlattr *port[]);
1215  *
1216  *      Enable or disable the VF ability to query its RSS Redirection Table and
1217  *      Hash Key. This is needed since on some devices VF share this information
1218  *      with PF and querying it may introduce a theoretical security risk.
1219  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1220  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1221  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1222  *		       void *type_data);
1223  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1224  *	This is always called from the stack with the rtnl lock held and netif
1225  *	tx queues stopped. This allows the netdevice to perform queue
1226  *	management safely.
1227  *
1228  *	Fiber Channel over Ethernet (FCoE) offload functions.
1229  * int (*ndo_fcoe_enable)(struct net_device *dev);
1230  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1231  *	so the underlying device can perform whatever needed configuration or
1232  *	initialization to support acceleration of FCoE traffic.
1233  *
1234  * int (*ndo_fcoe_disable)(struct net_device *dev);
1235  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1236  *	so the underlying device can perform whatever needed clean-ups to
1237  *	stop supporting acceleration of FCoE traffic.
1238  *
1239  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1240  *			     struct scatterlist *sgl, unsigned int sgc);
1241  *	Called when the FCoE Initiator wants to initialize an I/O that
1242  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1243  *	perform necessary setup and returns 1 to indicate the device is set up
1244  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1245  *
1246  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1247  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1248  *	indicated by the FC exchange id 'xid', so the underlying device can
1249  *	clean up and reuse resources for later DDP requests.
1250  *
1251  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1252  *			      struct scatterlist *sgl, unsigned int sgc);
1253  *	Called when the FCoE Target wants to initialize an I/O that
1254  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1255  *	perform necessary setup and returns 1 to indicate the device is set up
1256  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1257  *
1258  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1259  *			       struct netdev_fcoe_hbainfo *hbainfo);
1260  *	Called when the FCoE Protocol stack wants information on the underlying
1261  *	device. This information is utilized by the FCoE protocol stack to
1262  *	register attributes with Fiber Channel management service as per the
1263  *	FC-GS Fabric Device Management Information(FDMI) specification.
1264  *
1265  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1266  *	Called when the underlying device wants to override default World Wide
1267  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1268  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1269  *	protocol stack to use.
1270  *
1271  *	RFS acceleration.
1272  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1273  *			    u16 rxq_index, u32 flow_id);
1274  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1275  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1276  *	Return the filter ID on success, or a negative error code.
1277  *
1278  *	Slave management functions (for bridge, bonding, etc).
1279  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1280  *	Called to make another netdev an underling.
1281  *
1282  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1283  *	Called to release previously enslaved netdev.
1284  *
1285  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1286  *					    struct sk_buff *skb,
1287  *					    bool all_slaves);
1288  *	Get the xmit slave of master device. If all_slaves is true, function
1289  *	assume all the slaves can transmit.
1290  *
1291  *      Feature/offload setting functions.
1292  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1293  *		netdev_features_t features);
1294  *	Adjusts the requested feature flags according to device-specific
1295  *	constraints, and returns the resulting flags. Must not modify
1296  *	the device state.
1297  *
1298  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1299  *	Called to update device configuration to new features. Passed
1300  *	feature set might be less than what was returned by ndo_fix_features()).
1301  *	Must return >0 or -errno if it changed dev->features itself.
1302  *
1303  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1304  *		      struct net_device *dev,
1305  *		      const unsigned char *addr, u16 vid, u16 flags,
1306  *		      struct netlink_ext_ack *extack);
1307  *	Adds an FDB entry to dev for addr.
1308  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1309  *		      struct net_device *dev,
1310  *		      const unsigned char *addr, u16 vid)
1311  *	Deletes the FDB entry from dev coresponding to addr.
1312  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1313  *			   struct net_device *dev,
1314  *			   u16 vid,
1315  *			   struct netlink_ext_ack *extack);
1316  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1317  *		       struct net_device *dev, struct net_device *filter_dev,
1318  *		       int *idx)
1319  *	Used to add FDB entries to dump requests. Implementers should add
1320  *	entries to skb and update idx with the number of entries.
1321  *
1322  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1323  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1324  *	Adds an MDB entry to dev.
1325  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1326  *		      struct netlink_ext_ack *extack);
1327  *	Deletes the MDB entry from dev.
1328  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1329  *		       struct netlink_callback *cb);
1330  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1331  *	callback is used by core rtnetlink code.
1332  *
1333  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1334  *			     u16 flags, struct netlink_ext_ack *extack)
1335  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1336  *			     struct net_device *dev, u32 filter_mask,
1337  *			     int nlflags)
1338  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1339  *			     u16 flags);
1340  *
1341  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1342  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1343  *	which do not represent real hardware may define this to allow their
1344  *	userspace components to manage their virtual carrier state. Devices
1345  *	that determine carrier state from physical hardware properties (eg
1346  *	network cables) or protocol-dependent mechanisms (eg
1347  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1348  *
1349  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1350  *			       struct netdev_phys_item_id *ppid);
1351  *	Called to get ID of physical port of this device. If driver does
1352  *	not implement this, it is assumed that the hw is not able to have
1353  *	multiple net devices on single physical port.
1354  *
1355  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1356  *				 struct netdev_phys_item_id *ppid)
1357  *	Called to get the parent ID of the physical port of this device.
1358  *
1359  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1360  *				 struct net_device *dev)
1361  *	Called by upper layer devices to accelerate switching or other
1362  *	station functionality into hardware. 'pdev is the lowerdev
1363  *	to use for the offload and 'dev' is the net device that will
1364  *	back the offload. Returns a pointer to the private structure
1365  *	the upper layer will maintain.
1366  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1367  *	Called by upper layer device to delete the station created
1368  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1369  *	the station and priv is the structure returned by the add
1370  *	operation.
1371  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1372  *			     int queue_index, u32 maxrate);
1373  *	Called when a user wants to set a max-rate limitation of specific
1374  *	TX queue.
1375  * int (*ndo_get_iflink)(const struct net_device *dev);
1376  *	Called to get the iflink value of this device.
1377  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1378  *	This function is used to get egress tunnel information for given skb.
1379  *	This is useful for retrieving outer tunnel header parameters while
1380  *	sampling packet.
1381  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1382  *	This function is used to specify the headroom that the skb must
1383  *	consider when allocation skb during packet reception. Setting
1384  *	appropriate rx headroom value allows avoiding skb head copy on
1385  *	forward. Setting a negative value resets the rx headroom to the
1386  *	default value.
1387  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1388  *	This function is used to set or query state related to XDP on the
1389  *	netdevice and manage BPF offload. See definition of
1390  *	enum bpf_netdev_command for details.
1391  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1392  *			u32 flags);
1393  *	This function is used to submit @n XDP packets for transmit on a
1394  *	netdevice. Returns number of frames successfully transmitted, frames
1395  *	that got dropped are freed/returned via xdp_return_frame().
1396  *	Returns negative number, means general error invoking ndo, meaning
1397  *	no frames were xmit'ed and core-caller will free all frames.
1398  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1399  *					        struct xdp_buff *xdp);
1400  *      Get the xmit slave of master device based on the xdp_buff.
1401  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1402  *      This function is used to wake up the softirq, ksoftirqd or kthread
1403  *	responsible for sending and/or receiving packets on a specific
1404  *	queue id bound to an AF_XDP socket. The flags field specifies if
1405  *	only RX, only Tx, or both should be woken up using the flags
1406  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1407  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1408  *			 int cmd);
1409  *	Add, change, delete or get information on an IPv4 tunnel.
1410  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1411  *	If a device is paired with a peer device, return the peer instance.
1412  *	The caller must be under RCU read context.
1413  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1414  *     Get the forwarding path to reach the real device from the HW destination address
1415  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1416  *			     const struct skb_shared_hwtstamps *hwtstamps,
1417  *			     bool cycles);
1418  *	Get hardware timestamp based on normal/adjustable time or free running
1419  *	cycle counter. This function is required if physical clock supports a
1420  *	free running cycle counter.
1421  */
1422 struct net_device_ops {
1423 	int			(*ndo_init)(struct net_device *dev);
1424 	void			(*ndo_uninit)(struct net_device *dev);
1425 	int			(*ndo_open)(struct net_device *dev);
1426 	int			(*ndo_stop)(struct net_device *dev);
1427 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1428 						  struct net_device *dev);
1429 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1430 						      struct net_device *dev,
1431 						      netdev_features_t features);
1432 	u16			(*ndo_select_queue)(struct net_device *dev,
1433 						    struct sk_buff *skb,
1434 						    struct net_device *sb_dev);
1435 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1436 						       int flags);
1437 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1438 	int			(*ndo_set_mac_address)(struct net_device *dev,
1439 						       void *addr);
1440 	int			(*ndo_validate_addr)(struct net_device *dev);
1441 	int			(*ndo_do_ioctl)(struct net_device *dev,
1442 					        struct ifreq *ifr, int cmd);
1443 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1444 						 struct ifreq *ifr, int cmd);
1445 	int			(*ndo_siocbond)(struct net_device *dev,
1446 						struct ifreq *ifr, int cmd);
1447 	int			(*ndo_siocwandev)(struct net_device *dev,
1448 						  struct if_settings *ifs);
1449 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1450 						      struct ifreq *ifr,
1451 						      void __user *data, int cmd);
1452 	int			(*ndo_set_config)(struct net_device *dev,
1453 					          struct ifmap *map);
1454 	int			(*ndo_change_mtu)(struct net_device *dev,
1455 						  int new_mtu);
1456 	int			(*ndo_neigh_setup)(struct net_device *dev,
1457 						   struct neigh_parms *);
1458 	void			(*ndo_tx_timeout) (struct net_device *dev,
1459 						   unsigned int txqueue);
1460 
1461 	void			(*ndo_get_stats64)(struct net_device *dev,
1462 						   struct rtnl_link_stats64 *storage);
1463 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1464 	int			(*ndo_get_offload_stats)(int attr_id,
1465 							 const struct net_device *dev,
1466 							 void *attr_data);
1467 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1468 
1469 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1470 						       __be16 proto, u16 vid);
1471 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1472 						        __be16 proto, u16 vid);
1473 #ifdef CONFIG_NET_POLL_CONTROLLER
1474 	void                    (*ndo_poll_controller)(struct net_device *dev);
1475 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1476 						     struct netpoll_info *info);
1477 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1478 #endif
1479 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1480 						  int queue, u8 *mac);
1481 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1482 						   int queue, u16 vlan,
1483 						   u8 qos, __be16 proto);
1484 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1485 						   int vf, int min_tx_rate,
1486 						   int max_tx_rate);
1487 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1488 						       int vf, bool setting);
1489 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1490 						    int vf, bool setting);
1491 	int			(*ndo_get_vf_config)(struct net_device *dev,
1492 						     int vf,
1493 						     struct ifla_vf_info *ivf);
1494 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1495 							 int vf, int link_state);
1496 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1497 						    int vf,
1498 						    struct ifla_vf_stats
1499 						    *vf_stats);
1500 	int			(*ndo_set_vf_port)(struct net_device *dev,
1501 						   int vf,
1502 						   struct nlattr *port[]);
1503 	int			(*ndo_get_vf_port)(struct net_device *dev,
1504 						   int vf, struct sk_buff *skb);
1505 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1506 						   int vf,
1507 						   struct ifla_vf_guid *node_guid,
1508 						   struct ifla_vf_guid *port_guid);
1509 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1510 						   int vf, u64 guid,
1511 						   int guid_type);
1512 	int			(*ndo_set_vf_rss_query_en)(
1513 						   struct net_device *dev,
1514 						   int vf, bool setting);
1515 	int			(*ndo_setup_tc)(struct net_device *dev,
1516 						enum tc_setup_type type,
1517 						void *type_data);
1518 #if IS_ENABLED(CONFIG_FCOE)
1519 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1520 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1521 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1522 						      u16 xid,
1523 						      struct scatterlist *sgl,
1524 						      unsigned int sgc);
1525 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1526 						     u16 xid);
1527 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1528 						       u16 xid,
1529 						       struct scatterlist *sgl,
1530 						       unsigned int sgc);
1531 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1532 							struct netdev_fcoe_hbainfo *hbainfo);
1533 #endif
1534 
1535 #if IS_ENABLED(CONFIG_LIBFCOE)
1536 #define NETDEV_FCOE_WWNN 0
1537 #define NETDEV_FCOE_WWPN 1
1538 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1539 						    u64 *wwn, int type);
1540 #endif
1541 
1542 #ifdef CONFIG_RFS_ACCEL
1543 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1544 						     const struct sk_buff *skb,
1545 						     u16 rxq_index,
1546 						     u32 flow_id);
1547 #endif
1548 	int			(*ndo_add_slave)(struct net_device *dev,
1549 						 struct net_device *slave_dev,
1550 						 struct netlink_ext_ack *extack);
1551 	int			(*ndo_del_slave)(struct net_device *dev,
1552 						 struct net_device *slave_dev);
1553 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1554 						      struct sk_buff *skb,
1555 						      bool all_slaves);
1556 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1557 							struct sock *sk);
1558 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1559 						    netdev_features_t features);
1560 	int			(*ndo_set_features)(struct net_device *dev,
1561 						    netdev_features_t features);
1562 	int			(*ndo_neigh_construct)(struct net_device *dev,
1563 						       struct neighbour *n);
1564 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1565 						     struct neighbour *n);
1566 
1567 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1568 					       struct nlattr *tb[],
1569 					       struct net_device *dev,
1570 					       const unsigned char *addr,
1571 					       u16 vid,
1572 					       u16 flags,
1573 					       struct netlink_ext_ack *extack);
1574 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1575 					       struct nlattr *tb[],
1576 					       struct net_device *dev,
1577 					       const unsigned char *addr,
1578 					       u16 vid, struct netlink_ext_ack *extack);
1579 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1580 						    struct nlattr *tb[],
1581 						    struct net_device *dev,
1582 						    u16 vid,
1583 						    struct netlink_ext_ack *extack);
1584 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1585 						struct netlink_callback *cb,
1586 						struct net_device *dev,
1587 						struct net_device *filter_dev,
1588 						int *idx);
1589 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1590 					       struct nlattr *tb[],
1591 					       struct net_device *dev,
1592 					       const unsigned char *addr,
1593 					       u16 vid, u32 portid, u32 seq,
1594 					       struct netlink_ext_ack *extack);
1595 	int			(*ndo_mdb_add)(struct net_device *dev,
1596 					       struct nlattr *tb[],
1597 					       u16 nlmsg_flags,
1598 					       struct netlink_ext_ack *extack);
1599 	int			(*ndo_mdb_del)(struct net_device *dev,
1600 					       struct nlattr *tb[],
1601 					       struct netlink_ext_ack *extack);
1602 	int			(*ndo_mdb_dump)(struct net_device *dev,
1603 						struct sk_buff *skb,
1604 						struct netlink_callback *cb);
1605 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1606 						      struct nlmsghdr *nlh,
1607 						      u16 flags,
1608 						      struct netlink_ext_ack *extack);
1609 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1610 						      u32 pid, u32 seq,
1611 						      struct net_device *dev,
1612 						      u32 filter_mask,
1613 						      int nlflags);
1614 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1615 						      struct nlmsghdr *nlh,
1616 						      u16 flags);
1617 	int			(*ndo_change_carrier)(struct net_device *dev,
1618 						      bool new_carrier);
1619 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1620 							struct netdev_phys_item_id *ppid);
1621 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1622 							  struct netdev_phys_item_id *ppid);
1623 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1624 							  char *name, size_t len);
1625 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1626 							struct net_device *dev);
1627 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1628 							void *priv);
1629 
1630 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1631 						      int queue_index,
1632 						      u32 maxrate);
1633 	int			(*ndo_get_iflink)(const struct net_device *dev);
1634 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1635 						       struct sk_buff *skb);
1636 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1637 						       int needed_headroom);
1638 	int			(*ndo_bpf)(struct net_device *dev,
1639 					   struct netdev_bpf *bpf);
1640 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1641 						struct xdp_frame **xdp,
1642 						u32 flags);
1643 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1644 							  struct xdp_buff *xdp);
1645 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1646 						  u32 queue_id, u32 flags);
1647 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1648 						  struct ip_tunnel_parm *p, int cmd);
1649 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1650 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1651                                                          struct net_device_path *path);
1652 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1653 						  const struct skb_shared_hwtstamps *hwtstamps,
1654 						  bool cycles);
1655 };
1656 
1657 struct xdp_metadata_ops {
1658 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1659 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash,
1660 			       enum xdp_rss_hash_type *rss_type);
1661 };
1662 
1663 /**
1664  * enum netdev_priv_flags - &struct net_device priv_flags
1665  *
1666  * These are the &struct net_device, they are only set internally
1667  * by drivers and used in the kernel. These flags are invisible to
1668  * userspace; this means that the order of these flags can change
1669  * during any kernel release.
1670  *
1671  * You should have a pretty good reason to be extending these flags.
1672  *
1673  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1674  * @IFF_EBRIDGE: Ethernet bridging device
1675  * @IFF_BONDING: bonding master or slave
1676  * @IFF_ISATAP: ISATAP interface (RFC4214)
1677  * @IFF_WAN_HDLC: WAN HDLC device
1678  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1679  *	release skb->dst
1680  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1681  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1682  * @IFF_MACVLAN_PORT: device used as macvlan port
1683  * @IFF_BRIDGE_PORT: device used as bridge port
1684  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1685  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1686  * @IFF_UNICAST_FLT: Supports unicast filtering
1687  * @IFF_TEAM_PORT: device used as team port
1688  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1689  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1690  *	change when it's running
1691  * @IFF_MACVLAN: Macvlan device
1692  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1693  *	underlying stacked devices
1694  * @IFF_L3MDEV_MASTER: device is an L3 master device
1695  * @IFF_NO_QUEUE: device can run without qdisc attached
1696  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1697  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1698  * @IFF_TEAM: device is a team device
1699  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1700  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1701  *	entity (i.e. the master device for bridged veth)
1702  * @IFF_MACSEC: device is a MACsec device
1703  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1704  * @IFF_FAILOVER: device is a failover master device
1705  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1706  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1707  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1708  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1709  *	skb_headlen(skb) == 0 (data starts from frag0)
1710  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1711  */
1712 enum netdev_priv_flags {
1713 	IFF_802_1Q_VLAN			= 1<<0,
1714 	IFF_EBRIDGE			= 1<<1,
1715 	IFF_BONDING			= 1<<2,
1716 	IFF_ISATAP			= 1<<3,
1717 	IFF_WAN_HDLC			= 1<<4,
1718 	IFF_XMIT_DST_RELEASE		= 1<<5,
1719 	IFF_DONT_BRIDGE			= 1<<6,
1720 	IFF_DISABLE_NETPOLL		= 1<<7,
1721 	IFF_MACVLAN_PORT		= 1<<8,
1722 	IFF_BRIDGE_PORT			= 1<<9,
1723 	IFF_OVS_DATAPATH		= 1<<10,
1724 	IFF_TX_SKB_SHARING		= 1<<11,
1725 	IFF_UNICAST_FLT			= 1<<12,
1726 	IFF_TEAM_PORT			= 1<<13,
1727 	IFF_SUPP_NOFCS			= 1<<14,
1728 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1729 	IFF_MACVLAN			= 1<<16,
1730 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1731 	IFF_L3MDEV_MASTER		= 1<<18,
1732 	IFF_NO_QUEUE			= 1<<19,
1733 	IFF_OPENVSWITCH			= 1<<20,
1734 	IFF_L3MDEV_SLAVE		= 1<<21,
1735 	IFF_TEAM			= 1<<22,
1736 	IFF_RXFH_CONFIGURED		= 1<<23,
1737 	IFF_PHONY_HEADROOM		= 1<<24,
1738 	IFF_MACSEC			= 1<<25,
1739 	IFF_NO_RX_HANDLER		= 1<<26,
1740 	IFF_FAILOVER			= 1<<27,
1741 	IFF_FAILOVER_SLAVE		= 1<<28,
1742 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1743 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1744 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1745 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1746 };
1747 
1748 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1749 #define IFF_EBRIDGE			IFF_EBRIDGE
1750 #define IFF_BONDING			IFF_BONDING
1751 #define IFF_ISATAP			IFF_ISATAP
1752 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1753 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1754 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1755 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1756 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1757 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1758 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1759 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1760 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1761 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1762 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1763 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1764 #define IFF_MACVLAN			IFF_MACVLAN
1765 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1766 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1767 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1768 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1769 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1770 #define IFF_TEAM			IFF_TEAM
1771 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1772 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1773 #define IFF_MACSEC			IFF_MACSEC
1774 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1775 #define IFF_FAILOVER			IFF_FAILOVER
1776 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1777 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1778 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1779 
1780 /* Specifies the type of the struct net_device::ml_priv pointer */
1781 enum netdev_ml_priv_type {
1782 	ML_PRIV_NONE,
1783 	ML_PRIV_CAN,
1784 };
1785 
1786 /**
1787  *	struct net_device - The DEVICE structure.
1788  *
1789  *	Actually, this whole structure is a big mistake.  It mixes I/O
1790  *	data with strictly "high-level" data, and it has to know about
1791  *	almost every data structure used in the INET module.
1792  *
1793  *	@name:	This is the first field of the "visible" part of this structure
1794  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1795  *		of the interface.
1796  *
1797  *	@name_node:	Name hashlist node
1798  *	@ifalias:	SNMP alias
1799  *	@mem_end:	Shared memory end
1800  *	@mem_start:	Shared memory start
1801  *	@base_addr:	Device I/O address
1802  *	@irq:		Device IRQ number
1803  *
1804  *	@state:		Generic network queuing layer state, see netdev_state_t
1805  *	@dev_list:	The global list of network devices
1806  *	@napi_list:	List entry used for polling NAPI devices
1807  *	@unreg_list:	List entry  when we are unregistering the
1808  *			device; see the function unregister_netdev
1809  *	@close_list:	List entry used when we are closing the device
1810  *	@ptype_all:     Device-specific packet handlers for all protocols
1811  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1812  *
1813  *	@adj_list:	Directly linked devices, like slaves for bonding
1814  *	@features:	Currently active device features
1815  *	@hw_features:	User-changeable features
1816  *
1817  *	@wanted_features:	User-requested features
1818  *	@vlan_features:		Mask of features inheritable by VLAN devices
1819  *
1820  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1821  *				This field indicates what encapsulation
1822  *				offloads the hardware is capable of doing,
1823  *				and drivers will need to set them appropriately.
1824  *
1825  *	@mpls_features:	Mask of features inheritable by MPLS
1826  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1827  *
1828  *	@ifindex:	interface index
1829  *	@group:		The group the device belongs to
1830  *
1831  *	@stats:		Statistics struct, which was left as a legacy, use
1832  *			rtnl_link_stats64 instead
1833  *
1834  *	@core_stats:	core networking counters,
1835  *			do not use this in drivers
1836  *	@carrier_up_count:	Number of times the carrier has been up
1837  *	@carrier_down_count:	Number of times the carrier has been down
1838  *
1839  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1840  *				instead of ioctl,
1841  *				see <net/iw_handler.h> for details.
1842  *	@wireless_data:	Instance data managed by the core of wireless extensions
1843  *
1844  *	@netdev_ops:	Includes several pointers to callbacks,
1845  *			if one wants to override the ndo_*() functions
1846  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1847  *	@ethtool_ops:	Management operations
1848  *	@l3mdev_ops:	Layer 3 master device operations
1849  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1850  *			discovery handling. Necessary for e.g. 6LoWPAN.
1851  *	@xfrmdev_ops:	Transformation offload operations
1852  *	@tlsdev_ops:	Transport Layer Security offload operations
1853  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1854  *			of Layer 2 headers.
1855  *
1856  *	@flags:		Interface flags (a la BSD)
1857  *	@xdp_features:	XDP capability supported by the device
1858  *	@priv_flags:	Like 'flags' but invisible to userspace,
1859  *			see if.h for the definitions
1860  *	@gflags:	Global flags ( kept as legacy )
1861  *	@padded:	How much padding added by alloc_netdev()
1862  *	@operstate:	RFC2863 operstate
1863  *	@link_mode:	Mapping policy to operstate
1864  *	@if_port:	Selectable AUI, TP, ...
1865  *	@dma:		DMA channel
1866  *	@mtu:		Interface MTU value
1867  *	@min_mtu:	Interface Minimum MTU value
1868  *	@max_mtu:	Interface Maximum MTU value
1869  *	@type:		Interface hardware type
1870  *	@hard_header_len: Maximum hardware header length.
1871  *	@min_header_len:  Minimum hardware header length
1872  *
1873  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1874  *			  cases can this be guaranteed
1875  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1876  *			  cases can this be guaranteed. Some cases also use
1877  *			  LL_MAX_HEADER instead to allocate the skb
1878  *
1879  *	interface address info:
1880  *
1881  * 	@perm_addr:		Permanent hw address
1882  * 	@addr_assign_type:	Hw address assignment type
1883  * 	@addr_len:		Hardware address length
1884  *	@upper_level:		Maximum depth level of upper devices.
1885  *	@lower_level:		Maximum depth level of lower devices.
1886  *	@neigh_priv_len:	Used in neigh_alloc()
1887  * 	@dev_id:		Used to differentiate devices that share
1888  * 				the same link layer address
1889  * 	@dev_port:		Used to differentiate devices that share
1890  * 				the same function
1891  *	@addr_list_lock:	XXX: need comments on this one
1892  *	@name_assign_type:	network interface name assignment type
1893  *	@uc_promisc:		Counter that indicates promiscuous mode
1894  *				has been enabled due to the need to listen to
1895  *				additional unicast addresses in a device that
1896  *				does not implement ndo_set_rx_mode()
1897  *	@uc:			unicast mac addresses
1898  *	@mc:			multicast mac addresses
1899  *	@dev_addrs:		list of device hw addresses
1900  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1901  *	@promiscuity:		Number of times the NIC is told to work in
1902  *				promiscuous mode; if it becomes 0 the NIC will
1903  *				exit promiscuous mode
1904  *	@allmulti:		Counter, enables or disables allmulticast mode
1905  *
1906  *	@vlan_info:	VLAN info
1907  *	@dsa_ptr:	dsa specific data
1908  *	@tipc_ptr:	TIPC specific data
1909  *	@atalk_ptr:	AppleTalk link
1910  *	@ip_ptr:	IPv4 specific data
1911  *	@ip6_ptr:	IPv6 specific data
1912  *	@ax25_ptr:	AX.25 specific data
1913  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1914  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1915  *			 device struct
1916  *	@mpls_ptr:	mpls_dev struct pointer
1917  *	@mctp_ptr:	MCTP specific data
1918  *
1919  *	@dev_addr:	Hw address (before bcast,
1920  *			because most packets are unicast)
1921  *
1922  *	@_rx:			Array of RX queues
1923  *	@num_rx_queues:		Number of RX queues
1924  *				allocated at register_netdev() time
1925  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1926  *	@xdp_prog:		XDP sockets filter program pointer
1927  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1928  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1929  *				allow to avoid NIC hard IRQ, on busy queues.
1930  *
1931  *	@rx_handler:		handler for received packets
1932  *	@rx_handler_data: 	XXX: need comments on this one
1933  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1934  *				ingress processing
1935  *	@ingress_queue:		XXX: need comments on this one
1936  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1937  *	@broadcast:		hw bcast address
1938  *
1939  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1940  *			indexed by RX queue number. Assigned by driver.
1941  *			This must only be set if the ndo_rx_flow_steer
1942  *			operation is defined
1943  *	@index_hlist:		Device index hash chain
1944  *
1945  *	@_tx:			Array of TX queues
1946  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1947  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1948  *	@qdisc:			Root qdisc from userspace point of view
1949  *	@tx_queue_len:		Max frames per queue allowed
1950  *	@tx_global_lock: 	XXX: need comments on this one
1951  *	@xdp_bulkq:		XDP device bulk queue
1952  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1953  *
1954  *	@xps_maps:	XXX: need comments on this one
1955  *	@miniq_egress:		clsact qdisc specific data for
1956  *				egress processing
1957  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1958  *	@qdisc_hash:		qdisc hash table
1959  *	@watchdog_timeo:	Represents the timeout that is used by
1960  *				the watchdog (see dev_watchdog())
1961  *	@watchdog_timer:	List of timers
1962  *
1963  *	@proto_down_reason:	reason a netdev interface is held down
1964  *	@pcpu_refcnt:		Number of references to this device
1965  *	@dev_refcnt:		Number of references to this device
1966  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1967  *	@todo_list:		Delayed register/unregister
1968  *	@link_watch_list:	XXX: need comments on this one
1969  *
1970  *	@reg_state:		Register/unregister state machine
1971  *	@dismantle:		Device is going to be freed
1972  *	@rtnl_link_state:	This enum represents the phases of creating
1973  *				a new link
1974  *
1975  *	@needs_free_netdev:	Should unregister perform free_netdev?
1976  *	@priv_destructor:	Called from unregister
1977  *	@npinfo:		XXX: need comments on this one
1978  * 	@nd_net:		Network namespace this network device is inside
1979  *
1980  * 	@ml_priv:	Mid-layer private
1981  *	@ml_priv_type:  Mid-layer private type
1982  * 	@lstats:	Loopback statistics
1983  * 	@tstats:	Tunnel statistics
1984  * 	@dstats:	Dummy statistics
1985  * 	@vstats:	Virtual ethernet statistics
1986  *
1987  *	@garp_port:	GARP
1988  *	@mrp_port:	MRP
1989  *
1990  *	@dm_private:	Drop monitor private
1991  *
1992  *	@dev:		Class/net/name entry
1993  *	@sysfs_groups:	Space for optional device, statistics and wireless
1994  *			sysfs groups
1995  *
1996  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1997  *	@rtnl_link_ops:	Rtnl_link_ops
1998  *
1999  *	@gso_max_size:	Maximum size of generic segmentation offload
2000  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2001  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2002  *			NIC for GSO
2003  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2004  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2005  * 				for IPv4.
2006  *
2007  *	@dcbnl_ops:	Data Center Bridging netlink ops
2008  *	@num_tc:	Number of traffic classes in the net device
2009  *	@tc_to_txq:	XXX: need comments on this one
2010  *	@prio_tc_map:	XXX: need comments on this one
2011  *
2012  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2013  *
2014  *	@priomap:	XXX: need comments on this one
2015  *	@phydev:	Physical device may attach itself
2016  *			for hardware timestamping
2017  *	@sfp_bus:	attached &struct sfp_bus structure.
2018  *
2019  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2020  *
2021  *	@proto_down:	protocol port state information can be sent to the
2022  *			switch driver and used to set the phys state of the
2023  *			switch port.
2024  *
2025  *	@wol_enabled:	Wake-on-LAN is enabled
2026  *
2027  *	@threaded:	napi threaded mode is enabled
2028  *
2029  *	@net_notifier_list:	List of per-net netdev notifier block
2030  *				that follow this device when it is moved
2031  *				to another network namespace.
2032  *
2033  *	@macsec_ops:    MACsec offloading ops
2034  *
2035  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2036  *				offload capabilities of the device
2037  *	@udp_tunnel_nic:	UDP tunnel offload state
2038  *	@xdp_state:		stores info on attached XDP BPF programs
2039  *
2040  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2041  *			dev->addr_list_lock.
2042  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2043  *			keep a list of interfaces to be deleted.
2044  *	@gro_max_size:	Maximum size of aggregated packet in generic
2045  *			receive offload (GRO)
2046  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2047  * 				receive offload (GRO), for IPv4.
2048  *
2049  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2050  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2051  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2052  *	@dev_registered_tracker:	tracker for reference held while
2053  *					registered
2054  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2055  *
2056  *	@devlink_port:	Pointer to related devlink port structure.
2057  *			Assigned by a driver before netdev registration using
2058  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2059  *			during the time netdevice is registered.
2060  *
2061  *	FIXME: cleanup struct net_device such that network protocol info
2062  *	moves out.
2063  */
2064 
2065 struct net_device {
2066 	char			name[IFNAMSIZ];
2067 	struct netdev_name_node	*name_node;
2068 	struct dev_ifalias	__rcu *ifalias;
2069 	/*
2070 	 *	I/O specific fields
2071 	 *	FIXME: Merge these and struct ifmap into one
2072 	 */
2073 	unsigned long		mem_end;
2074 	unsigned long		mem_start;
2075 	unsigned long		base_addr;
2076 
2077 	/*
2078 	 *	Some hardware also needs these fields (state,dev_list,
2079 	 *	napi_list,unreg_list,close_list) but they are not
2080 	 *	part of the usual set specified in Space.c.
2081 	 */
2082 
2083 	unsigned long		state;
2084 
2085 	struct list_head	dev_list;
2086 	struct list_head	napi_list;
2087 	struct list_head	unreg_list;
2088 	struct list_head	close_list;
2089 	struct list_head	ptype_all;
2090 	struct list_head	ptype_specific;
2091 
2092 	struct {
2093 		struct list_head upper;
2094 		struct list_head lower;
2095 	} adj_list;
2096 
2097 	/* Read-mostly cache-line for fast-path access */
2098 	unsigned int		flags;
2099 	xdp_features_t		xdp_features;
2100 	unsigned long long	priv_flags;
2101 	const struct net_device_ops *netdev_ops;
2102 	const struct xdp_metadata_ops *xdp_metadata_ops;
2103 	int			ifindex;
2104 	unsigned short		gflags;
2105 	unsigned short		hard_header_len;
2106 
2107 	/* Note : dev->mtu is often read without holding a lock.
2108 	 * Writers usually hold RTNL.
2109 	 * It is recommended to use READ_ONCE() to annotate the reads,
2110 	 * and to use WRITE_ONCE() to annotate the writes.
2111 	 */
2112 	unsigned int		mtu;
2113 	unsigned short		needed_headroom;
2114 	unsigned short		needed_tailroom;
2115 
2116 	netdev_features_t	features;
2117 	netdev_features_t	hw_features;
2118 	netdev_features_t	wanted_features;
2119 	netdev_features_t	vlan_features;
2120 	netdev_features_t	hw_enc_features;
2121 	netdev_features_t	mpls_features;
2122 	netdev_features_t	gso_partial_features;
2123 
2124 	unsigned int		min_mtu;
2125 	unsigned int		max_mtu;
2126 	unsigned short		type;
2127 	unsigned char		min_header_len;
2128 	unsigned char		name_assign_type;
2129 
2130 	int			group;
2131 
2132 	struct net_device_stats	stats; /* not used by modern drivers */
2133 
2134 	struct net_device_core_stats __percpu *core_stats;
2135 
2136 	/* Stats to monitor link on/off, flapping */
2137 	atomic_t		carrier_up_count;
2138 	atomic_t		carrier_down_count;
2139 
2140 #ifdef CONFIG_WIRELESS_EXT
2141 	const struct iw_handler_def *wireless_handlers;
2142 	struct iw_public_data	*wireless_data;
2143 #endif
2144 	const struct ethtool_ops *ethtool_ops;
2145 #ifdef CONFIG_NET_L3_MASTER_DEV
2146 	const struct l3mdev_ops	*l3mdev_ops;
2147 #endif
2148 #if IS_ENABLED(CONFIG_IPV6)
2149 	const struct ndisc_ops *ndisc_ops;
2150 #endif
2151 
2152 #ifdef CONFIG_XFRM_OFFLOAD
2153 	const struct xfrmdev_ops *xfrmdev_ops;
2154 #endif
2155 
2156 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2157 	const struct tlsdev_ops *tlsdev_ops;
2158 #endif
2159 
2160 	const struct header_ops *header_ops;
2161 
2162 	unsigned char		operstate;
2163 	unsigned char		link_mode;
2164 
2165 	unsigned char		if_port;
2166 	unsigned char		dma;
2167 
2168 	/* Interface address info. */
2169 	unsigned char		perm_addr[MAX_ADDR_LEN];
2170 	unsigned char		addr_assign_type;
2171 	unsigned char		addr_len;
2172 	unsigned char		upper_level;
2173 	unsigned char		lower_level;
2174 
2175 	unsigned short		neigh_priv_len;
2176 	unsigned short          dev_id;
2177 	unsigned short          dev_port;
2178 	unsigned short		padded;
2179 
2180 	spinlock_t		addr_list_lock;
2181 	int			irq;
2182 
2183 	struct netdev_hw_addr_list	uc;
2184 	struct netdev_hw_addr_list	mc;
2185 	struct netdev_hw_addr_list	dev_addrs;
2186 
2187 #ifdef CONFIG_SYSFS
2188 	struct kset		*queues_kset;
2189 #endif
2190 #ifdef CONFIG_LOCKDEP
2191 	struct list_head	unlink_list;
2192 #endif
2193 	unsigned int		promiscuity;
2194 	unsigned int		allmulti;
2195 	bool			uc_promisc;
2196 #ifdef CONFIG_LOCKDEP
2197 	unsigned char		nested_level;
2198 #endif
2199 
2200 
2201 	/* Protocol-specific pointers */
2202 
2203 	struct in_device __rcu	*ip_ptr;
2204 	struct inet6_dev __rcu	*ip6_ptr;
2205 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2206 	struct vlan_info __rcu	*vlan_info;
2207 #endif
2208 #if IS_ENABLED(CONFIG_NET_DSA)
2209 	struct dsa_port		*dsa_ptr;
2210 #endif
2211 #if IS_ENABLED(CONFIG_TIPC)
2212 	struct tipc_bearer __rcu *tipc_ptr;
2213 #endif
2214 #if IS_ENABLED(CONFIG_ATALK)
2215 	void 			*atalk_ptr;
2216 #endif
2217 #if IS_ENABLED(CONFIG_AX25)
2218 	void			*ax25_ptr;
2219 #endif
2220 #if IS_ENABLED(CONFIG_CFG80211)
2221 	struct wireless_dev	*ieee80211_ptr;
2222 #endif
2223 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2224 	struct wpan_dev		*ieee802154_ptr;
2225 #endif
2226 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2227 	struct mpls_dev __rcu	*mpls_ptr;
2228 #endif
2229 #if IS_ENABLED(CONFIG_MCTP)
2230 	struct mctp_dev __rcu	*mctp_ptr;
2231 #endif
2232 
2233 /*
2234  * Cache lines mostly used on receive path (including eth_type_trans())
2235  */
2236 	/* Interface address info used in eth_type_trans() */
2237 	const unsigned char	*dev_addr;
2238 
2239 	struct netdev_rx_queue	*_rx;
2240 	unsigned int		num_rx_queues;
2241 	unsigned int		real_num_rx_queues;
2242 
2243 	struct bpf_prog __rcu	*xdp_prog;
2244 	unsigned long		gro_flush_timeout;
2245 	int			napi_defer_hard_irqs;
2246 #define GRO_LEGACY_MAX_SIZE	65536u
2247 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2248  * and shinfo->gso_segs is a 16bit field.
2249  */
2250 #define GRO_MAX_SIZE		(8 * 65535u)
2251 	unsigned int		gro_max_size;
2252 	unsigned int		gro_ipv4_max_size;
2253 	rx_handler_func_t __rcu	*rx_handler;
2254 	void __rcu		*rx_handler_data;
2255 
2256 #ifdef CONFIG_NET_CLS_ACT
2257 	struct mini_Qdisc __rcu	*miniq_ingress;
2258 #endif
2259 	struct netdev_queue __rcu *ingress_queue;
2260 #ifdef CONFIG_NETFILTER_INGRESS
2261 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2262 #endif
2263 
2264 	unsigned char		broadcast[MAX_ADDR_LEN];
2265 #ifdef CONFIG_RFS_ACCEL
2266 	struct cpu_rmap		*rx_cpu_rmap;
2267 #endif
2268 	struct hlist_node	index_hlist;
2269 
2270 /*
2271  * Cache lines mostly used on transmit path
2272  */
2273 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2274 	unsigned int		num_tx_queues;
2275 	unsigned int		real_num_tx_queues;
2276 	struct Qdisc __rcu	*qdisc;
2277 	unsigned int		tx_queue_len;
2278 	spinlock_t		tx_global_lock;
2279 
2280 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2281 
2282 #ifdef CONFIG_XPS
2283 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2284 #endif
2285 #ifdef CONFIG_NET_CLS_ACT
2286 	struct mini_Qdisc __rcu	*miniq_egress;
2287 #endif
2288 #ifdef CONFIG_NETFILTER_EGRESS
2289 	struct nf_hook_entries __rcu *nf_hooks_egress;
2290 #endif
2291 
2292 #ifdef CONFIG_NET_SCHED
2293 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2294 #endif
2295 	/* These may be needed for future network-power-down code. */
2296 	struct timer_list	watchdog_timer;
2297 	int			watchdog_timeo;
2298 
2299 	u32                     proto_down_reason;
2300 
2301 	struct list_head	todo_list;
2302 
2303 #ifdef CONFIG_PCPU_DEV_REFCNT
2304 	int __percpu		*pcpu_refcnt;
2305 #else
2306 	refcount_t		dev_refcnt;
2307 #endif
2308 	struct ref_tracker_dir	refcnt_tracker;
2309 
2310 	struct list_head	link_watch_list;
2311 
2312 	enum { NETREG_UNINITIALIZED=0,
2313 	       NETREG_REGISTERED,	/* completed register_netdevice */
2314 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2315 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2316 	       NETREG_RELEASED,		/* called free_netdev */
2317 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2318 	} reg_state:8;
2319 
2320 	bool dismantle;
2321 
2322 	enum {
2323 		RTNL_LINK_INITIALIZED,
2324 		RTNL_LINK_INITIALIZING,
2325 	} rtnl_link_state:16;
2326 
2327 	bool needs_free_netdev;
2328 	void (*priv_destructor)(struct net_device *dev);
2329 
2330 #ifdef CONFIG_NETPOLL
2331 	struct netpoll_info __rcu	*npinfo;
2332 #endif
2333 
2334 	possible_net_t			nd_net;
2335 
2336 	/* mid-layer private */
2337 	void				*ml_priv;
2338 	enum netdev_ml_priv_type	ml_priv_type;
2339 
2340 	union {
2341 		struct pcpu_lstats __percpu		*lstats;
2342 		struct pcpu_sw_netstats __percpu	*tstats;
2343 		struct pcpu_dstats __percpu		*dstats;
2344 	};
2345 
2346 #if IS_ENABLED(CONFIG_GARP)
2347 	struct garp_port __rcu	*garp_port;
2348 #endif
2349 #if IS_ENABLED(CONFIG_MRP)
2350 	struct mrp_port __rcu	*mrp_port;
2351 #endif
2352 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2353 	struct dm_hw_stat_delta __rcu *dm_private;
2354 #endif
2355 	struct device		dev;
2356 	const struct attribute_group *sysfs_groups[4];
2357 	const struct attribute_group *sysfs_rx_queue_group;
2358 
2359 	const struct rtnl_link_ops *rtnl_link_ops;
2360 
2361 	/* for setting kernel sock attribute on TCP connection setup */
2362 #define GSO_MAX_SEGS		65535u
2363 #define GSO_LEGACY_MAX_SIZE	65536u
2364 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2365  * and shinfo->gso_segs is a 16bit field.
2366  */
2367 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2368 
2369 	unsigned int		gso_max_size;
2370 #define TSO_LEGACY_MAX_SIZE	65536
2371 #define TSO_MAX_SIZE		UINT_MAX
2372 	unsigned int		tso_max_size;
2373 	u16			gso_max_segs;
2374 #define TSO_MAX_SEGS		U16_MAX
2375 	u16			tso_max_segs;
2376 	unsigned int		gso_ipv4_max_size;
2377 
2378 #ifdef CONFIG_DCB
2379 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2380 #endif
2381 	s16			num_tc;
2382 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2383 	u8			prio_tc_map[TC_BITMASK + 1];
2384 
2385 #if IS_ENABLED(CONFIG_FCOE)
2386 	unsigned int		fcoe_ddp_xid;
2387 #endif
2388 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2389 	struct netprio_map __rcu *priomap;
2390 #endif
2391 	struct phy_device	*phydev;
2392 	struct sfp_bus		*sfp_bus;
2393 	struct lock_class_key	*qdisc_tx_busylock;
2394 	bool			proto_down;
2395 	unsigned		wol_enabled:1;
2396 	unsigned		threaded:1;
2397 
2398 	struct list_head	net_notifier_list;
2399 
2400 #if IS_ENABLED(CONFIG_MACSEC)
2401 	/* MACsec management functions */
2402 	const struct macsec_ops *macsec_ops;
2403 #endif
2404 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2405 	struct udp_tunnel_nic	*udp_tunnel_nic;
2406 
2407 	/* protected by rtnl_lock */
2408 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2409 
2410 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2411 	netdevice_tracker	linkwatch_dev_tracker;
2412 	netdevice_tracker	watchdog_dev_tracker;
2413 	netdevice_tracker	dev_registered_tracker;
2414 	struct rtnl_hw_stats64	*offload_xstats_l3;
2415 
2416 	struct devlink_port	*devlink_port;
2417 };
2418 #define to_net_dev(d) container_of(d, struct net_device, dev)
2419 
2420 /*
2421  * Driver should use this to assign devlink port instance to a netdevice
2422  * before it registers the netdevice. Therefore devlink_port is static
2423  * during the netdev lifetime after it is registered.
2424  */
2425 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2426 ({								\
2427 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2428 	((dev)->devlink_port = (port));				\
2429 })
2430 
2431 static inline bool netif_elide_gro(const struct net_device *dev)
2432 {
2433 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2434 		return true;
2435 	return false;
2436 }
2437 
2438 #define	NETDEV_ALIGN		32
2439 
2440 static inline
2441 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2442 {
2443 	return dev->prio_tc_map[prio & TC_BITMASK];
2444 }
2445 
2446 static inline
2447 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2448 {
2449 	if (tc >= dev->num_tc)
2450 		return -EINVAL;
2451 
2452 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2453 	return 0;
2454 }
2455 
2456 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2457 void netdev_reset_tc(struct net_device *dev);
2458 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2459 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2460 
2461 static inline
2462 int netdev_get_num_tc(struct net_device *dev)
2463 {
2464 	return dev->num_tc;
2465 }
2466 
2467 static inline void net_prefetch(void *p)
2468 {
2469 	prefetch(p);
2470 #if L1_CACHE_BYTES < 128
2471 	prefetch((u8 *)p + L1_CACHE_BYTES);
2472 #endif
2473 }
2474 
2475 static inline void net_prefetchw(void *p)
2476 {
2477 	prefetchw(p);
2478 #if L1_CACHE_BYTES < 128
2479 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2480 #endif
2481 }
2482 
2483 void netdev_unbind_sb_channel(struct net_device *dev,
2484 			      struct net_device *sb_dev);
2485 int netdev_bind_sb_channel_queue(struct net_device *dev,
2486 				 struct net_device *sb_dev,
2487 				 u8 tc, u16 count, u16 offset);
2488 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2489 static inline int netdev_get_sb_channel(struct net_device *dev)
2490 {
2491 	return max_t(int, -dev->num_tc, 0);
2492 }
2493 
2494 static inline
2495 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2496 					 unsigned int index)
2497 {
2498 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2499 	return &dev->_tx[index];
2500 }
2501 
2502 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2503 						    const struct sk_buff *skb)
2504 {
2505 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2506 }
2507 
2508 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2509 					    void (*f)(struct net_device *,
2510 						      struct netdev_queue *,
2511 						      void *),
2512 					    void *arg)
2513 {
2514 	unsigned int i;
2515 
2516 	for (i = 0; i < dev->num_tx_queues; i++)
2517 		f(dev, &dev->_tx[i], arg);
2518 }
2519 
2520 #define netdev_lockdep_set_classes(dev)				\
2521 {								\
2522 	static struct lock_class_key qdisc_tx_busylock_key;	\
2523 	static struct lock_class_key qdisc_xmit_lock_key;	\
2524 	static struct lock_class_key dev_addr_list_lock_key;	\
2525 	unsigned int i;						\
2526 								\
2527 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2528 	lockdep_set_class(&(dev)->addr_list_lock,		\
2529 			  &dev_addr_list_lock_key);		\
2530 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2531 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2532 				  &qdisc_xmit_lock_key);	\
2533 }
2534 
2535 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2536 		     struct net_device *sb_dev);
2537 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2538 					 struct sk_buff *skb,
2539 					 struct net_device *sb_dev);
2540 
2541 /* returns the headroom that the master device needs to take in account
2542  * when forwarding to this dev
2543  */
2544 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2545 {
2546 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2547 }
2548 
2549 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2550 {
2551 	if (dev->netdev_ops->ndo_set_rx_headroom)
2552 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2553 }
2554 
2555 /* set the device rx headroom to the dev's default */
2556 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2557 {
2558 	netdev_set_rx_headroom(dev, -1);
2559 }
2560 
2561 static inline void *netdev_get_ml_priv(struct net_device *dev,
2562 				       enum netdev_ml_priv_type type)
2563 {
2564 	if (dev->ml_priv_type != type)
2565 		return NULL;
2566 
2567 	return dev->ml_priv;
2568 }
2569 
2570 static inline void netdev_set_ml_priv(struct net_device *dev,
2571 				      void *ml_priv,
2572 				      enum netdev_ml_priv_type type)
2573 {
2574 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2575 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2576 	     dev->ml_priv_type, type);
2577 	WARN(!dev->ml_priv_type && dev->ml_priv,
2578 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2579 
2580 	dev->ml_priv = ml_priv;
2581 	dev->ml_priv_type = type;
2582 }
2583 
2584 /*
2585  * Net namespace inlines
2586  */
2587 static inline
2588 struct net *dev_net(const struct net_device *dev)
2589 {
2590 	return read_pnet(&dev->nd_net);
2591 }
2592 
2593 static inline
2594 void dev_net_set(struct net_device *dev, struct net *net)
2595 {
2596 	write_pnet(&dev->nd_net, net);
2597 }
2598 
2599 /**
2600  *	netdev_priv - access network device private data
2601  *	@dev: network device
2602  *
2603  * Get network device private data
2604  */
2605 static inline void *netdev_priv(const struct net_device *dev)
2606 {
2607 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2608 }
2609 
2610 /* Set the sysfs physical device reference for the network logical device
2611  * if set prior to registration will cause a symlink during initialization.
2612  */
2613 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2614 
2615 /* Set the sysfs device type for the network logical device to allow
2616  * fine-grained identification of different network device types. For
2617  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2618  */
2619 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2620 
2621 /* Default NAPI poll() weight
2622  * Device drivers are strongly advised to not use bigger value
2623  */
2624 #define NAPI_POLL_WEIGHT 64
2625 
2626 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2627 			   int (*poll)(struct napi_struct *, int), int weight);
2628 
2629 /**
2630  * netif_napi_add() - initialize a NAPI context
2631  * @dev:  network device
2632  * @napi: NAPI context
2633  * @poll: polling function
2634  *
2635  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2636  * *any* of the other NAPI-related functions.
2637  */
2638 static inline void
2639 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2640 	       int (*poll)(struct napi_struct *, int))
2641 {
2642 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2643 }
2644 
2645 static inline void
2646 netif_napi_add_tx_weight(struct net_device *dev,
2647 			 struct napi_struct *napi,
2648 			 int (*poll)(struct napi_struct *, int),
2649 			 int weight)
2650 {
2651 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2652 	netif_napi_add_weight(dev, napi, poll, weight);
2653 }
2654 
2655 /**
2656  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2657  * @dev:  network device
2658  * @napi: NAPI context
2659  * @poll: polling function
2660  *
2661  * This variant of netif_napi_add() should be used from drivers using NAPI
2662  * to exclusively poll a TX queue.
2663  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2664  */
2665 static inline void netif_napi_add_tx(struct net_device *dev,
2666 				     struct napi_struct *napi,
2667 				     int (*poll)(struct napi_struct *, int))
2668 {
2669 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2670 }
2671 
2672 /**
2673  *  __netif_napi_del - remove a NAPI context
2674  *  @napi: NAPI context
2675  *
2676  * Warning: caller must observe RCU grace period before freeing memory
2677  * containing @napi. Drivers might want to call this helper to combine
2678  * all the needed RCU grace periods into a single one.
2679  */
2680 void __netif_napi_del(struct napi_struct *napi);
2681 
2682 /**
2683  *  netif_napi_del - remove a NAPI context
2684  *  @napi: NAPI context
2685  *
2686  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2687  */
2688 static inline void netif_napi_del(struct napi_struct *napi)
2689 {
2690 	__netif_napi_del(napi);
2691 	synchronize_net();
2692 }
2693 
2694 struct packet_type {
2695 	__be16			type;	/* This is really htons(ether_type). */
2696 	bool			ignore_outgoing;
2697 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2698 	netdevice_tracker	dev_tracker;
2699 	int			(*func) (struct sk_buff *,
2700 					 struct net_device *,
2701 					 struct packet_type *,
2702 					 struct net_device *);
2703 	void			(*list_func) (struct list_head *,
2704 					      struct packet_type *,
2705 					      struct net_device *);
2706 	bool			(*id_match)(struct packet_type *ptype,
2707 					    struct sock *sk);
2708 	struct net		*af_packet_net;
2709 	void			*af_packet_priv;
2710 	struct list_head	list;
2711 };
2712 
2713 struct offload_callbacks {
2714 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2715 						netdev_features_t features);
2716 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2717 						struct sk_buff *skb);
2718 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2719 };
2720 
2721 struct packet_offload {
2722 	__be16			 type;	/* This is really htons(ether_type). */
2723 	u16			 priority;
2724 	struct offload_callbacks callbacks;
2725 	struct list_head	 list;
2726 };
2727 
2728 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2729 struct pcpu_sw_netstats {
2730 	u64_stats_t		rx_packets;
2731 	u64_stats_t		rx_bytes;
2732 	u64_stats_t		tx_packets;
2733 	u64_stats_t		tx_bytes;
2734 	struct u64_stats_sync   syncp;
2735 } __aligned(4 * sizeof(u64));
2736 
2737 struct pcpu_lstats {
2738 	u64_stats_t packets;
2739 	u64_stats_t bytes;
2740 	struct u64_stats_sync syncp;
2741 } __aligned(2 * sizeof(u64));
2742 
2743 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2744 
2745 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2746 {
2747 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2748 
2749 	u64_stats_update_begin(&tstats->syncp);
2750 	u64_stats_add(&tstats->rx_bytes, len);
2751 	u64_stats_inc(&tstats->rx_packets);
2752 	u64_stats_update_end(&tstats->syncp);
2753 }
2754 
2755 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2756 					  unsigned int packets,
2757 					  unsigned int len)
2758 {
2759 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2760 
2761 	u64_stats_update_begin(&tstats->syncp);
2762 	u64_stats_add(&tstats->tx_bytes, len);
2763 	u64_stats_add(&tstats->tx_packets, packets);
2764 	u64_stats_update_end(&tstats->syncp);
2765 }
2766 
2767 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2768 {
2769 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2770 
2771 	u64_stats_update_begin(&lstats->syncp);
2772 	u64_stats_add(&lstats->bytes, len);
2773 	u64_stats_inc(&lstats->packets);
2774 	u64_stats_update_end(&lstats->syncp);
2775 }
2776 
2777 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2778 ({									\
2779 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2780 	if (pcpu_stats)	{						\
2781 		int __cpu;						\
2782 		for_each_possible_cpu(__cpu) {				\
2783 			typeof(type) *stat;				\
2784 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2785 			u64_stats_init(&stat->syncp);			\
2786 		}							\
2787 	}								\
2788 	pcpu_stats;							\
2789 })
2790 
2791 #define netdev_alloc_pcpu_stats(type)					\
2792 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2793 
2794 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2795 ({									\
2796 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2797 	if (pcpu_stats) {						\
2798 		int __cpu;						\
2799 		for_each_possible_cpu(__cpu) {				\
2800 			typeof(type) *stat;				\
2801 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2802 			u64_stats_init(&stat->syncp);			\
2803 		}							\
2804 	}								\
2805 	pcpu_stats;							\
2806 })
2807 
2808 enum netdev_lag_tx_type {
2809 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2810 	NETDEV_LAG_TX_TYPE_RANDOM,
2811 	NETDEV_LAG_TX_TYPE_BROADCAST,
2812 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2813 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2814 	NETDEV_LAG_TX_TYPE_HASH,
2815 };
2816 
2817 enum netdev_lag_hash {
2818 	NETDEV_LAG_HASH_NONE,
2819 	NETDEV_LAG_HASH_L2,
2820 	NETDEV_LAG_HASH_L34,
2821 	NETDEV_LAG_HASH_L23,
2822 	NETDEV_LAG_HASH_E23,
2823 	NETDEV_LAG_HASH_E34,
2824 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2825 	NETDEV_LAG_HASH_UNKNOWN,
2826 };
2827 
2828 struct netdev_lag_upper_info {
2829 	enum netdev_lag_tx_type tx_type;
2830 	enum netdev_lag_hash hash_type;
2831 };
2832 
2833 struct netdev_lag_lower_state_info {
2834 	u8 link_up : 1,
2835 	   tx_enabled : 1;
2836 };
2837 
2838 #include <linux/notifier.h>
2839 
2840 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2841  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2842  * adding new types.
2843  */
2844 enum netdev_cmd {
2845 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2846 	NETDEV_DOWN,
2847 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2848 				   detected a hardware crash and restarted
2849 				   - we can use this eg to kick tcp sessions
2850 				   once done */
2851 	NETDEV_CHANGE,		/* Notify device state change */
2852 	NETDEV_REGISTER,
2853 	NETDEV_UNREGISTER,
2854 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2855 	NETDEV_CHANGEADDR,	/* notify after the address change */
2856 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2857 	NETDEV_GOING_DOWN,
2858 	NETDEV_CHANGENAME,
2859 	NETDEV_FEAT_CHANGE,
2860 	NETDEV_BONDING_FAILOVER,
2861 	NETDEV_PRE_UP,
2862 	NETDEV_PRE_TYPE_CHANGE,
2863 	NETDEV_POST_TYPE_CHANGE,
2864 	NETDEV_POST_INIT,
2865 	NETDEV_PRE_UNINIT,
2866 	NETDEV_RELEASE,
2867 	NETDEV_NOTIFY_PEERS,
2868 	NETDEV_JOIN,
2869 	NETDEV_CHANGEUPPER,
2870 	NETDEV_RESEND_IGMP,
2871 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2872 	NETDEV_CHANGEINFODATA,
2873 	NETDEV_BONDING_INFO,
2874 	NETDEV_PRECHANGEUPPER,
2875 	NETDEV_CHANGELOWERSTATE,
2876 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2877 	NETDEV_UDP_TUNNEL_DROP_INFO,
2878 	NETDEV_CHANGE_TX_QUEUE_LEN,
2879 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2880 	NETDEV_CVLAN_FILTER_DROP_INFO,
2881 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2882 	NETDEV_SVLAN_FILTER_DROP_INFO,
2883 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2884 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2885 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2886 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2887 	NETDEV_XDP_FEAT_CHANGE,
2888 };
2889 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2890 
2891 int register_netdevice_notifier(struct notifier_block *nb);
2892 int unregister_netdevice_notifier(struct notifier_block *nb);
2893 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2894 int unregister_netdevice_notifier_net(struct net *net,
2895 				      struct notifier_block *nb);
2896 int register_netdevice_notifier_dev_net(struct net_device *dev,
2897 					struct notifier_block *nb,
2898 					struct netdev_net_notifier *nn);
2899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2900 					  struct notifier_block *nb,
2901 					  struct netdev_net_notifier *nn);
2902 
2903 struct netdev_notifier_info {
2904 	struct net_device	*dev;
2905 	struct netlink_ext_ack	*extack;
2906 };
2907 
2908 struct netdev_notifier_info_ext {
2909 	struct netdev_notifier_info info; /* must be first */
2910 	union {
2911 		u32 mtu;
2912 	} ext;
2913 };
2914 
2915 struct netdev_notifier_change_info {
2916 	struct netdev_notifier_info info; /* must be first */
2917 	unsigned int flags_changed;
2918 };
2919 
2920 struct netdev_notifier_changeupper_info {
2921 	struct netdev_notifier_info info; /* must be first */
2922 	struct net_device *upper_dev; /* new upper dev */
2923 	bool master; /* is upper dev master */
2924 	bool linking; /* is the notification for link or unlink */
2925 	void *upper_info; /* upper dev info */
2926 };
2927 
2928 struct netdev_notifier_changelowerstate_info {
2929 	struct netdev_notifier_info info; /* must be first */
2930 	void *lower_state_info; /* is lower dev state */
2931 };
2932 
2933 struct netdev_notifier_pre_changeaddr_info {
2934 	struct netdev_notifier_info info; /* must be first */
2935 	const unsigned char *dev_addr;
2936 };
2937 
2938 enum netdev_offload_xstats_type {
2939 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2940 };
2941 
2942 struct netdev_notifier_offload_xstats_info {
2943 	struct netdev_notifier_info info; /* must be first */
2944 	enum netdev_offload_xstats_type type;
2945 
2946 	union {
2947 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2948 		struct netdev_notifier_offload_xstats_rd *report_delta;
2949 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2950 		struct netdev_notifier_offload_xstats_ru *report_used;
2951 	};
2952 };
2953 
2954 int netdev_offload_xstats_enable(struct net_device *dev,
2955 				 enum netdev_offload_xstats_type type,
2956 				 struct netlink_ext_ack *extack);
2957 int netdev_offload_xstats_disable(struct net_device *dev,
2958 				  enum netdev_offload_xstats_type type);
2959 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2960 				   enum netdev_offload_xstats_type type);
2961 int netdev_offload_xstats_get(struct net_device *dev,
2962 			      enum netdev_offload_xstats_type type,
2963 			      struct rtnl_hw_stats64 *stats, bool *used,
2964 			      struct netlink_ext_ack *extack);
2965 void
2966 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2967 				   const struct rtnl_hw_stats64 *stats);
2968 void
2969 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2970 void netdev_offload_xstats_push_delta(struct net_device *dev,
2971 				      enum netdev_offload_xstats_type type,
2972 				      const struct rtnl_hw_stats64 *stats);
2973 
2974 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2975 					     struct net_device *dev)
2976 {
2977 	info->dev = dev;
2978 	info->extack = NULL;
2979 }
2980 
2981 static inline struct net_device *
2982 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2983 {
2984 	return info->dev;
2985 }
2986 
2987 static inline struct netlink_ext_ack *
2988 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2989 {
2990 	return info->extack;
2991 }
2992 
2993 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2994 int call_netdevice_notifiers_info(unsigned long val,
2995 				  struct netdev_notifier_info *info);
2996 
2997 extern rwlock_t				dev_base_lock;		/* Device list lock */
2998 
2999 #define for_each_netdev(net, d)		\
3000 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3001 #define for_each_netdev_reverse(net, d)	\
3002 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3003 #define for_each_netdev_rcu(net, d)		\
3004 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3005 #define for_each_netdev_safe(net, d, n)	\
3006 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3007 #define for_each_netdev_continue(net, d)		\
3008 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3009 #define for_each_netdev_continue_reverse(net, d)		\
3010 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3011 						     dev_list)
3012 #define for_each_netdev_continue_rcu(net, d)		\
3013 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3014 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3015 		for_each_netdev_rcu(&init_net, slave)	\
3016 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3017 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3018 
3019 static inline struct net_device *next_net_device(struct net_device *dev)
3020 {
3021 	struct list_head *lh;
3022 	struct net *net;
3023 
3024 	net = dev_net(dev);
3025 	lh = dev->dev_list.next;
3026 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3027 }
3028 
3029 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3030 {
3031 	struct list_head *lh;
3032 	struct net *net;
3033 
3034 	net = dev_net(dev);
3035 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3036 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3037 }
3038 
3039 static inline struct net_device *first_net_device(struct net *net)
3040 {
3041 	return list_empty(&net->dev_base_head) ? NULL :
3042 		net_device_entry(net->dev_base_head.next);
3043 }
3044 
3045 static inline struct net_device *first_net_device_rcu(struct net *net)
3046 {
3047 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3048 
3049 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3050 }
3051 
3052 int netdev_boot_setup_check(struct net_device *dev);
3053 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3054 				       const char *hwaddr);
3055 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3056 void dev_add_pack(struct packet_type *pt);
3057 void dev_remove_pack(struct packet_type *pt);
3058 void __dev_remove_pack(struct packet_type *pt);
3059 void dev_add_offload(struct packet_offload *po);
3060 void dev_remove_offload(struct packet_offload *po);
3061 
3062 int dev_get_iflink(const struct net_device *dev);
3063 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3064 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3065 			  struct net_device_path_stack *stack);
3066 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3067 				      unsigned short mask);
3068 struct net_device *dev_get_by_name(struct net *net, const char *name);
3069 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3070 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3071 bool netdev_name_in_use(struct net *net, const char *name);
3072 int dev_alloc_name(struct net_device *dev, const char *name);
3073 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3074 void dev_close(struct net_device *dev);
3075 void dev_close_many(struct list_head *head, bool unlink);
3076 void dev_disable_lro(struct net_device *dev);
3077 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3078 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3079 		     struct net_device *sb_dev);
3080 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3081 		       struct net_device *sb_dev);
3082 
3083 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3084 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3085 
3086 static inline int dev_queue_xmit(struct sk_buff *skb)
3087 {
3088 	return __dev_queue_xmit(skb, NULL);
3089 }
3090 
3091 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3092 				       struct net_device *sb_dev)
3093 {
3094 	return __dev_queue_xmit(skb, sb_dev);
3095 }
3096 
3097 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3098 {
3099 	int ret;
3100 
3101 	ret = __dev_direct_xmit(skb, queue_id);
3102 	if (!dev_xmit_complete(ret))
3103 		kfree_skb(skb);
3104 	return ret;
3105 }
3106 
3107 int register_netdevice(struct net_device *dev);
3108 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3109 void unregister_netdevice_many(struct list_head *head);
3110 static inline void unregister_netdevice(struct net_device *dev)
3111 {
3112 	unregister_netdevice_queue(dev, NULL);
3113 }
3114 
3115 int netdev_refcnt_read(const struct net_device *dev);
3116 void free_netdev(struct net_device *dev);
3117 void netdev_freemem(struct net_device *dev);
3118 int init_dummy_netdev(struct net_device *dev);
3119 
3120 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3121 					 struct sk_buff *skb,
3122 					 bool all_slaves);
3123 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3124 					    struct sock *sk);
3125 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3126 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3127 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3128 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3129 int dev_restart(struct net_device *dev);
3130 
3131 
3132 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3133 				  unsigned short type,
3134 				  const void *daddr, const void *saddr,
3135 				  unsigned int len)
3136 {
3137 	if (!dev->header_ops || !dev->header_ops->create)
3138 		return 0;
3139 
3140 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3141 }
3142 
3143 static inline int dev_parse_header(const struct sk_buff *skb,
3144 				   unsigned char *haddr)
3145 {
3146 	const struct net_device *dev = skb->dev;
3147 
3148 	if (!dev->header_ops || !dev->header_ops->parse)
3149 		return 0;
3150 	return dev->header_ops->parse(skb, haddr);
3151 }
3152 
3153 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3154 {
3155 	const struct net_device *dev = skb->dev;
3156 
3157 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3158 		return 0;
3159 	return dev->header_ops->parse_protocol(skb);
3160 }
3161 
3162 /* ll_header must have at least hard_header_len allocated */
3163 static inline bool dev_validate_header(const struct net_device *dev,
3164 				       char *ll_header, int len)
3165 {
3166 	if (likely(len >= dev->hard_header_len))
3167 		return true;
3168 	if (len < dev->min_header_len)
3169 		return false;
3170 
3171 	if (capable(CAP_SYS_RAWIO)) {
3172 		memset(ll_header + len, 0, dev->hard_header_len - len);
3173 		return true;
3174 	}
3175 
3176 	if (dev->header_ops && dev->header_ops->validate)
3177 		return dev->header_ops->validate(ll_header, len);
3178 
3179 	return false;
3180 }
3181 
3182 static inline bool dev_has_header(const struct net_device *dev)
3183 {
3184 	return dev->header_ops && dev->header_ops->create;
3185 }
3186 
3187 /*
3188  * Incoming packets are placed on per-CPU queues
3189  */
3190 struct softnet_data {
3191 	struct list_head	poll_list;
3192 	struct sk_buff_head	process_queue;
3193 
3194 	/* stats */
3195 	unsigned int		processed;
3196 	unsigned int		time_squeeze;
3197 #ifdef CONFIG_RPS
3198 	struct softnet_data	*rps_ipi_list;
3199 #endif
3200 
3201 	bool			in_net_rx_action;
3202 	bool			in_napi_threaded_poll;
3203 
3204 #ifdef CONFIG_NET_FLOW_LIMIT
3205 	struct sd_flow_limit __rcu *flow_limit;
3206 #endif
3207 	struct Qdisc		*output_queue;
3208 	struct Qdisc		**output_queue_tailp;
3209 	struct sk_buff		*completion_queue;
3210 #ifdef CONFIG_XFRM_OFFLOAD
3211 	struct sk_buff_head	xfrm_backlog;
3212 #endif
3213 	/* written and read only by owning cpu: */
3214 	struct {
3215 		u16 recursion;
3216 		u8  more;
3217 #ifdef CONFIG_NET_EGRESS
3218 		u8  skip_txqueue;
3219 #endif
3220 	} xmit;
3221 #ifdef CONFIG_RPS
3222 	/* input_queue_head should be written by cpu owning this struct,
3223 	 * and only read by other cpus. Worth using a cache line.
3224 	 */
3225 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3226 
3227 	/* Elements below can be accessed between CPUs for RPS/RFS */
3228 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3229 	struct softnet_data	*rps_ipi_next;
3230 	unsigned int		cpu;
3231 	unsigned int		input_queue_tail;
3232 #endif
3233 	unsigned int		received_rps;
3234 	unsigned int		dropped;
3235 	struct sk_buff_head	input_pkt_queue;
3236 	struct napi_struct	backlog;
3237 
3238 	/* Another possibly contended cache line */
3239 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3240 	int			defer_count;
3241 	int			defer_ipi_scheduled;
3242 	struct sk_buff		*defer_list;
3243 	call_single_data_t	defer_csd;
3244 };
3245 
3246 static inline void input_queue_head_incr(struct softnet_data *sd)
3247 {
3248 #ifdef CONFIG_RPS
3249 	sd->input_queue_head++;
3250 #endif
3251 }
3252 
3253 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3254 					      unsigned int *qtail)
3255 {
3256 #ifdef CONFIG_RPS
3257 	*qtail = ++sd->input_queue_tail;
3258 #endif
3259 }
3260 
3261 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3262 
3263 static inline int dev_recursion_level(void)
3264 {
3265 	return this_cpu_read(softnet_data.xmit.recursion);
3266 }
3267 
3268 #define XMIT_RECURSION_LIMIT	8
3269 static inline bool dev_xmit_recursion(void)
3270 {
3271 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3272 			XMIT_RECURSION_LIMIT);
3273 }
3274 
3275 static inline void dev_xmit_recursion_inc(void)
3276 {
3277 	__this_cpu_inc(softnet_data.xmit.recursion);
3278 }
3279 
3280 static inline void dev_xmit_recursion_dec(void)
3281 {
3282 	__this_cpu_dec(softnet_data.xmit.recursion);
3283 }
3284 
3285 void __netif_schedule(struct Qdisc *q);
3286 void netif_schedule_queue(struct netdev_queue *txq);
3287 
3288 static inline void netif_tx_schedule_all(struct net_device *dev)
3289 {
3290 	unsigned int i;
3291 
3292 	for (i = 0; i < dev->num_tx_queues; i++)
3293 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3294 }
3295 
3296 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3297 {
3298 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3299 }
3300 
3301 /**
3302  *	netif_start_queue - allow transmit
3303  *	@dev: network device
3304  *
3305  *	Allow upper layers to call the device hard_start_xmit routine.
3306  */
3307 static inline void netif_start_queue(struct net_device *dev)
3308 {
3309 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3310 }
3311 
3312 static inline void netif_tx_start_all_queues(struct net_device *dev)
3313 {
3314 	unsigned int i;
3315 
3316 	for (i = 0; i < dev->num_tx_queues; i++) {
3317 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3318 		netif_tx_start_queue(txq);
3319 	}
3320 }
3321 
3322 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3323 
3324 /**
3325  *	netif_wake_queue - restart transmit
3326  *	@dev: network device
3327  *
3328  *	Allow upper layers to call the device hard_start_xmit routine.
3329  *	Used for flow control when transmit resources are available.
3330  */
3331 static inline void netif_wake_queue(struct net_device *dev)
3332 {
3333 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3334 }
3335 
3336 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3337 {
3338 	unsigned int i;
3339 
3340 	for (i = 0; i < dev->num_tx_queues; i++) {
3341 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3342 		netif_tx_wake_queue(txq);
3343 	}
3344 }
3345 
3346 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3347 {
3348 	/* Must be an atomic op see netif_txq_try_stop() */
3349 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3350 }
3351 
3352 /**
3353  *	netif_stop_queue - stop transmitted packets
3354  *	@dev: network device
3355  *
3356  *	Stop upper layers calling the device hard_start_xmit routine.
3357  *	Used for flow control when transmit resources are unavailable.
3358  */
3359 static inline void netif_stop_queue(struct net_device *dev)
3360 {
3361 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3362 }
3363 
3364 void netif_tx_stop_all_queues(struct net_device *dev);
3365 
3366 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3367 {
3368 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3369 }
3370 
3371 /**
3372  *	netif_queue_stopped - test if transmit queue is flowblocked
3373  *	@dev: network device
3374  *
3375  *	Test if transmit queue on device is currently unable to send.
3376  */
3377 static inline bool netif_queue_stopped(const struct net_device *dev)
3378 {
3379 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3380 }
3381 
3382 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3383 {
3384 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3385 }
3386 
3387 static inline bool
3388 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3389 {
3390 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3391 }
3392 
3393 static inline bool
3394 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3395 {
3396 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3397 }
3398 
3399 /**
3400  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3401  *	@dev_queue: pointer to transmit queue
3402  *	@min_limit: dql minimum limit
3403  *
3404  * Forces xmit_more() to return true until the minimum threshold
3405  * defined by @min_limit is reached (or until the tx queue is
3406  * empty). Warning: to be use with care, misuse will impact the
3407  * latency.
3408  */
3409 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3410 						  unsigned int min_limit)
3411 {
3412 #ifdef CONFIG_BQL
3413 	dev_queue->dql.min_limit = min_limit;
3414 #endif
3415 }
3416 
3417 /**
3418  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3419  *	@dev_queue: pointer to transmit queue
3420  *
3421  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3422  * to give appropriate hint to the CPU.
3423  */
3424 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3425 {
3426 #ifdef CONFIG_BQL
3427 	prefetchw(&dev_queue->dql.num_queued);
3428 #endif
3429 }
3430 
3431 /**
3432  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3433  *	@dev_queue: pointer to transmit queue
3434  *
3435  * BQL enabled drivers might use this helper in their TX completion path,
3436  * to give appropriate hint to the CPU.
3437  */
3438 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3439 {
3440 #ifdef CONFIG_BQL
3441 	prefetchw(&dev_queue->dql.limit);
3442 #endif
3443 }
3444 
3445 /**
3446  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3447  *	@dev_queue: network device queue
3448  *	@bytes: number of bytes queued to the device queue
3449  *
3450  *	Report the number of bytes queued for sending/completion to the network
3451  *	device hardware queue. @bytes should be a good approximation and should
3452  *	exactly match netdev_completed_queue() @bytes.
3453  *	This is typically called once per packet, from ndo_start_xmit().
3454  */
3455 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3456 					unsigned int bytes)
3457 {
3458 #ifdef CONFIG_BQL
3459 	dql_queued(&dev_queue->dql, bytes);
3460 
3461 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3462 		return;
3463 
3464 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3465 
3466 	/*
3467 	 * The XOFF flag must be set before checking the dql_avail below,
3468 	 * because in netdev_tx_completed_queue we update the dql_completed
3469 	 * before checking the XOFF flag.
3470 	 */
3471 	smp_mb();
3472 
3473 	/* check again in case another CPU has just made room avail */
3474 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3475 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3476 #endif
3477 }
3478 
3479 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3480  * that they should not test BQL status themselves.
3481  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3482  * skb of a batch.
3483  * Returns true if the doorbell must be used to kick the NIC.
3484  */
3485 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3486 					  unsigned int bytes,
3487 					  bool xmit_more)
3488 {
3489 	if (xmit_more) {
3490 #ifdef CONFIG_BQL
3491 		dql_queued(&dev_queue->dql, bytes);
3492 #endif
3493 		return netif_tx_queue_stopped(dev_queue);
3494 	}
3495 	netdev_tx_sent_queue(dev_queue, bytes);
3496 	return true;
3497 }
3498 
3499 /**
3500  *	netdev_sent_queue - report the number of bytes queued to hardware
3501  *	@dev: network device
3502  *	@bytes: number of bytes queued to the hardware device queue
3503  *
3504  *	Report the number of bytes queued for sending/completion to the network
3505  *	device hardware queue#0. @bytes should be a good approximation and should
3506  *	exactly match netdev_completed_queue() @bytes.
3507  *	This is typically called once per packet, from ndo_start_xmit().
3508  */
3509 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3510 {
3511 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3512 }
3513 
3514 static inline bool __netdev_sent_queue(struct net_device *dev,
3515 				       unsigned int bytes,
3516 				       bool xmit_more)
3517 {
3518 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3519 				      xmit_more);
3520 }
3521 
3522 /**
3523  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3524  *	@dev_queue: network device queue
3525  *	@pkts: number of packets (currently ignored)
3526  *	@bytes: number of bytes dequeued from the device queue
3527  *
3528  *	Must be called at most once per TX completion round (and not per
3529  *	individual packet), so that BQL can adjust its limits appropriately.
3530  */
3531 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3532 					     unsigned int pkts, unsigned int bytes)
3533 {
3534 #ifdef CONFIG_BQL
3535 	if (unlikely(!bytes))
3536 		return;
3537 
3538 	dql_completed(&dev_queue->dql, bytes);
3539 
3540 	/*
3541 	 * Without the memory barrier there is a small possiblity that
3542 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3543 	 * be stopped forever
3544 	 */
3545 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3546 
3547 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3548 		return;
3549 
3550 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3551 		netif_schedule_queue(dev_queue);
3552 #endif
3553 }
3554 
3555 /**
3556  * 	netdev_completed_queue - report bytes and packets completed by device
3557  * 	@dev: network device
3558  * 	@pkts: actual number of packets sent over the medium
3559  * 	@bytes: actual number of bytes sent over the medium
3560  *
3561  * 	Report the number of bytes and packets transmitted by the network device
3562  * 	hardware queue over the physical medium, @bytes must exactly match the
3563  * 	@bytes amount passed to netdev_sent_queue()
3564  */
3565 static inline void netdev_completed_queue(struct net_device *dev,
3566 					  unsigned int pkts, unsigned int bytes)
3567 {
3568 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3569 }
3570 
3571 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3572 {
3573 #ifdef CONFIG_BQL
3574 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3575 	dql_reset(&q->dql);
3576 #endif
3577 }
3578 
3579 /**
3580  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3581  * 	@dev_queue: network device
3582  *
3583  * 	Reset the bytes and packet count of a network device and clear the
3584  * 	software flow control OFF bit for this network device
3585  */
3586 static inline void netdev_reset_queue(struct net_device *dev_queue)
3587 {
3588 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3589 }
3590 
3591 /**
3592  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3593  * 	@dev: network device
3594  * 	@queue_index: given tx queue index
3595  *
3596  * 	Returns 0 if given tx queue index >= number of device tx queues,
3597  * 	otherwise returns the originally passed tx queue index.
3598  */
3599 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3600 {
3601 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3602 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3603 				     dev->name, queue_index,
3604 				     dev->real_num_tx_queues);
3605 		return 0;
3606 	}
3607 
3608 	return queue_index;
3609 }
3610 
3611 /**
3612  *	netif_running - test if up
3613  *	@dev: network device
3614  *
3615  *	Test if the device has been brought up.
3616  */
3617 static inline bool netif_running(const struct net_device *dev)
3618 {
3619 	return test_bit(__LINK_STATE_START, &dev->state);
3620 }
3621 
3622 /*
3623  * Routines to manage the subqueues on a device.  We only need start,
3624  * stop, and a check if it's stopped.  All other device management is
3625  * done at the overall netdevice level.
3626  * Also test the device if we're multiqueue.
3627  */
3628 
3629 /**
3630  *	netif_start_subqueue - allow sending packets on subqueue
3631  *	@dev: network device
3632  *	@queue_index: sub queue index
3633  *
3634  * Start individual transmit queue of a device with multiple transmit queues.
3635  */
3636 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3637 {
3638 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3639 
3640 	netif_tx_start_queue(txq);
3641 }
3642 
3643 /**
3644  *	netif_stop_subqueue - stop sending packets on subqueue
3645  *	@dev: network device
3646  *	@queue_index: sub queue index
3647  *
3648  * Stop individual transmit queue of a device with multiple transmit queues.
3649  */
3650 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3651 {
3652 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3653 	netif_tx_stop_queue(txq);
3654 }
3655 
3656 /**
3657  *	__netif_subqueue_stopped - test status of subqueue
3658  *	@dev: network device
3659  *	@queue_index: sub queue index
3660  *
3661  * Check individual transmit queue of a device with multiple transmit queues.
3662  */
3663 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3664 					    u16 queue_index)
3665 {
3666 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3667 
3668 	return netif_tx_queue_stopped(txq);
3669 }
3670 
3671 /**
3672  *	netif_subqueue_stopped - test status of subqueue
3673  *	@dev: network device
3674  *	@skb: sub queue buffer pointer
3675  *
3676  * Check individual transmit queue of a device with multiple transmit queues.
3677  */
3678 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3679 					  struct sk_buff *skb)
3680 {
3681 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3682 }
3683 
3684 /**
3685  *	netif_wake_subqueue - allow sending packets on subqueue
3686  *	@dev: network device
3687  *	@queue_index: sub queue index
3688  *
3689  * Resume individual transmit queue of a device with multiple transmit queues.
3690  */
3691 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3692 {
3693 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3694 
3695 	netif_tx_wake_queue(txq);
3696 }
3697 
3698 #ifdef CONFIG_XPS
3699 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3700 			u16 index);
3701 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3702 			  u16 index, enum xps_map_type type);
3703 
3704 /**
3705  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3706  *	@j: CPU/Rx queue index
3707  *	@mask: bitmask of all cpus/rx queues
3708  *	@nr_bits: number of bits in the bitmask
3709  *
3710  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3711  */
3712 static inline bool netif_attr_test_mask(unsigned long j,
3713 					const unsigned long *mask,
3714 					unsigned int nr_bits)
3715 {
3716 	cpu_max_bits_warn(j, nr_bits);
3717 	return test_bit(j, mask);
3718 }
3719 
3720 /**
3721  *	netif_attr_test_online - Test for online CPU/Rx queue
3722  *	@j: CPU/Rx queue index
3723  *	@online_mask: bitmask for CPUs/Rx queues that are online
3724  *	@nr_bits: number of bits in the bitmask
3725  *
3726  * Returns true if a CPU/Rx queue is online.
3727  */
3728 static inline bool netif_attr_test_online(unsigned long j,
3729 					  const unsigned long *online_mask,
3730 					  unsigned int nr_bits)
3731 {
3732 	cpu_max_bits_warn(j, nr_bits);
3733 
3734 	if (online_mask)
3735 		return test_bit(j, online_mask);
3736 
3737 	return (j < nr_bits);
3738 }
3739 
3740 /**
3741  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3742  *	@n: CPU/Rx queue index
3743  *	@srcp: the cpumask/Rx queue mask pointer
3744  *	@nr_bits: number of bits in the bitmask
3745  *
3746  * Returns >= nr_bits if no further CPUs/Rx queues set.
3747  */
3748 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3749 					       unsigned int nr_bits)
3750 {
3751 	/* -1 is a legal arg here. */
3752 	if (n != -1)
3753 		cpu_max_bits_warn(n, nr_bits);
3754 
3755 	if (srcp)
3756 		return find_next_bit(srcp, nr_bits, n + 1);
3757 
3758 	return n + 1;
3759 }
3760 
3761 /**
3762  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3763  *	@n: CPU/Rx queue index
3764  *	@src1p: the first CPUs/Rx queues mask pointer
3765  *	@src2p: the second CPUs/Rx queues mask pointer
3766  *	@nr_bits: number of bits in the bitmask
3767  *
3768  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3769  */
3770 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3771 					  const unsigned long *src2p,
3772 					  unsigned int nr_bits)
3773 {
3774 	/* -1 is a legal arg here. */
3775 	if (n != -1)
3776 		cpu_max_bits_warn(n, nr_bits);
3777 
3778 	if (src1p && src2p)
3779 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3780 	else if (src1p)
3781 		return find_next_bit(src1p, nr_bits, n + 1);
3782 	else if (src2p)
3783 		return find_next_bit(src2p, nr_bits, n + 1);
3784 
3785 	return n + 1;
3786 }
3787 #else
3788 static inline int netif_set_xps_queue(struct net_device *dev,
3789 				      const struct cpumask *mask,
3790 				      u16 index)
3791 {
3792 	return 0;
3793 }
3794 
3795 static inline int __netif_set_xps_queue(struct net_device *dev,
3796 					const unsigned long *mask,
3797 					u16 index, enum xps_map_type type)
3798 {
3799 	return 0;
3800 }
3801 #endif
3802 
3803 /**
3804  *	netif_is_multiqueue - test if device has multiple transmit queues
3805  *	@dev: network device
3806  *
3807  * Check if device has multiple transmit queues
3808  */
3809 static inline bool netif_is_multiqueue(const struct net_device *dev)
3810 {
3811 	return dev->num_tx_queues > 1;
3812 }
3813 
3814 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3815 
3816 #ifdef CONFIG_SYSFS
3817 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3818 #else
3819 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3820 						unsigned int rxqs)
3821 {
3822 	dev->real_num_rx_queues = rxqs;
3823 	return 0;
3824 }
3825 #endif
3826 int netif_set_real_num_queues(struct net_device *dev,
3827 			      unsigned int txq, unsigned int rxq);
3828 
3829 static inline struct netdev_rx_queue *
3830 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3831 {
3832 	return dev->_rx + rxq;
3833 }
3834 
3835 #ifdef CONFIG_SYSFS
3836 static inline unsigned int get_netdev_rx_queue_index(
3837 		struct netdev_rx_queue *queue)
3838 {
3839 	struct net_device *dev = queue->dev;
3840 	int index = queue - dev->_rx;
3841 
3842 	BUG_ON(index >= dev->num_rx_queues);
3843 	return index;
3844 }
3845 #endif
3846 
3847 int netif_get_num_default_rss_queues(void);
3848 
3849 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3850 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3851 
3852 /*
3853  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3854  * interrupt context or with hardware interrupts being disabled.
3855  * (in_hardirq() || irqs_disabled())
3856  *
3857  * We provide four helpers that can be used in following contexts :
3858  *
3859  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3860  *  replacing kfree_skb(skb)
3861  *
3862  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3863  *  Typically used in place of consume_skb(skb) in TX completion path
3864  *
3865  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3866  *  replacing kfree_skb(skb)
3867  *
3868  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3869  *  and consumed a packet. Used in place of consume_skb(skb)
3870  */
3871 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3872 {
3873 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3874 }
3875 
3876 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3877 {
3878 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3879 }
3880 
3881 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3882 {
3883 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3884 }
3885 
3886 static inline void dev_consume_skb_any(struct sk_buff *skb)
3887 {
3888 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3889 }
3890 
3891 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3892 			     struct bpf_prog *xdp_prog);
3893 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3894 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3895 int netif_rx(struct sk_buff *skb);
3896 int __netif_rx(struct sk_buff *skb);
3897 
3898 int netif_receive_skb(struct sk_buff *skb);
3899 int netif_receive_skb_core(struct sk_buff *skb);
3900 void netif_receive_skb_list_internal(struct list_head *head);
3901 void netif_receive_skb_list(struct list_head *head);
3902 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3903 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3904 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3905 void napi_get_frags_check(struct napi_struct *napi);
3906 gro_result_t napi_gro_frags(struct napi_struct *napi);
3907 struct packet_offload *gro_find_receive_by_type(__be16 type);
3908 struct packet_offload *gro_find_complete_by_type(__be16 type);
3909 
3910 static inline void napi_free_frags(struct napi_struct *napi)
3911 {
3912 	kfree_skb(napi->skb);
3913 	napi->skb = NULL;
3914 }
3915 
3916 bool netdev_is_rx_handler_busy(struct net_device *dev);
3917 int netdev_rx_handler_register(struct net_device *dev,
3918 			       rx_handler_func_t *rx_handler,
3919 			       void *rx_handler_data);
3920 void netdev_rx_handler_unregister(struct net_device *dev);
3921 
3922 bool dev_valid_name(const char *name);
3923 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3924 {
3925 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3926 }
3927 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3928 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3929 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3930 		void __user *data, bool *need_copyout);
3931 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3932 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3933 unsigned int dev_get_flags(const struct net_device *);
3934 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3935 		       struct netlink_ext_ack *extack);
3936 int dev_change_flags(struct net_device *dev, unsigned int flags,
3937 		     struct netlink_ext_ack *extack);
3938 int dev_set_alias(struct net_device *, const char *, size_t);
3939 int dev_get_alias(const struct net_device *, char *, size_t);
3940 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3941 			       const char *pat, int new_ifindex);
3942 static inline
3943 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3944 			     const char *pat)
3945 {
3946 	return __dev_change_net_namespace(dev, net, pat, 0);
3947 }
3948 int __dev_set_mtu(struct net_device *, int);
3949 int dev_set_mtu(struct net_device *, int);
3950 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3951 			      struct netlink_ext_ack *extack);
3952 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3953 			struct netlink_ext_ack *extack);
3954 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3955 			     struct netlink_ext_ack *extack);
3956 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3957 int dev_get_port_parent_id(struct net_device *dev,
3958 			   struct netdev_phys_item_id *ppid, bool recurse);
3959 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3960 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3961 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3962 				    struct netdev_queue *txq, int *ret);
3963 
3964 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3965 u8 dev_xdp_prog_count(struct net_device *dev);
3966 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3967 
3968 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3969 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3970 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3971 bool is_skb_forwardable(const struct net_device *dev,
3972 			const struct sk_buff *skb);
3973 
3974 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3975 						 const struct sk_buff *skb,
3976 						 const bool check_mtu)
3977 {
3978 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3979 	unsigned int len;
3980 
3981 	if (!(dev->flags & IFF_UP))
3982 		return false;
3983 
3984 	if (!check_mtu)
3985 		return true;
3986 
3987 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3988 	if (skb->len <= len)
3989 		return true;
3990 
3991 	/* if TSO is enabled, we don't care about the length as the packet
3992 	 * could be forwarded without being segmented before
3993 	 */
3994 	if (skb_is_gso(skb))
3995 		return true;
3996 
3997 	return false;
3998 }
3999 
4000 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
4001 
4002 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
4003 {
4004 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
4005 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
4006 
4007 	if (likely(p))
4008 		return p;
4009 
4010 	return netdev_core_stats_alloc(dev);
4011 }
4012 
4013 #define DEV_CORE_STATS_INC(FIELD)						\
4014 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4015 {										\
4016 	struct net_device_core_stats __percpu *p;				\
4017 										\
4018 	p = dev_core_stats(dev);						\
4019 	if (p)									\
4020 		this_cpu_inc(p->FIELD);						\
4021 }
4022 DEV_CORE_STATS_INC(rx_dropped)
4023 DEV_CORE_STATS_INC(tx_dropped)
4024 DEV_CORE_STATS_INC(rx_nohandler)
4025 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4026 
4027 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4028 					       struct sk_buff *skb,
4029 					       const bool check_mtu)
4030 {
4031 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4032 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4033 		dev_core_stats_rx_dropped_inc(dev);
4034 		kfree_skb(skb);
4035 		return NET_RX_DROP;
4036 	}
4037 
4038 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4039 	skb->priority = 0;
4040 	return 0;
4041 }
4042 
4043 bool dev_nit_active(struct net_device *dev);
4044 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4045 
4046 static inline void __dev_put(struct net_device *dev)
4047 {
4048 	if (dev) {
4049 #ifdef CONFIG_PCPU_DEV_REFCNT
4050 		this_cpu_dec(*dev->pcpu_refcnt);
4051 #else
4052 		refcount_dec(&dev->dev_refcnt);
4053 #endif
4054 	}
4055 }
4056 
4057 static inline void __dev_hold(struct net_device *dev)
4058 {
4059 	if (dev) {
4060 #ifdef CONFIG_PCPU_DEV_REFCNT
4061 		this_cpu_inc(*dev->pcpu_refcnt);
4062 #else
4063 		refcount_inc(&dev->dev_refcnt);
4064 #endif
4065 	}
4066 }
4067 
4068 static inline void __netdev_tracker_alloc(struct net_device *dev,
4069 					  netdevice_tracker *tracker,
4070 					  gfp_t gfp)
4071 {
4072 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4073 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4074 #endif
4075 }
4076 
4077 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4078  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4079  */
4080 static inline void netdev_tracker_alloc(struct net_device *dev,
4081 					netdevice_tracker *tracker, gfp_t gfp)
4082 {
4083 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4084 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4085 	__netdev_tracker_alloc(dev, tracker, gfp);
4086 #endif
4087 }
4088 
4089 static inline void netdev_tracker_free(struct net_device *dev,
4090 				       netdevice_tracker *tracker)
4091 {
4092 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4093 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4094 #endif
4095 }
4096 
4097 static inline void netdev_hold(struct net_device *dev,
4098 			       netdevice_tracker *tracker, gfp_t gfp)
4099 {
4100 	if (dev) {
4101 		__dev_hold(dev);
4102 		__netdev_tracker_alloc(dev, tracker, gfp);
4103 	}
4104 }
4105 
4106 static inline void netdev_put(struct net_device *dev,
4107 			      netdevice_tracker *tracker)
4108 {
4109 	if (dev) {
4110 		netdev_tracker_free(dev, tracker);
4111 		__dev_put(dev);
4112 	}
4113 }
4114 
4115 /**
4116  *	dev_hold - get reference to device
4117  *	@dev: network device
4118  *
4119  * Hold reference to device to keep it from being freed.
4120  * Try using netdev_hold() instead.
4121  */
4122 static inline void dev_hold(struct net_device *dev)
4123 {
4124 	netdev_hold(dev, NULL, GFP_ATOMIC);
4125 }
4126 
4127 /**
4128  *	dev_put - release reference to device
4129  *	@dev: network device
4130  *
4131  * Release reference to device to allow it to be freed.
4132  * Try using netdev_put() instead.
4133  */
4134 static inline void dev_put(struct net_device *dev)
4135 {
4136 	netdev_put(dev, NULL);
4137 }
4138 
4139 static inline void netdev_ref_replace(struct net_device *odev,
4140 				      struct net_device *ndev,
4141 				      netdevice_tracker *tracker,
4142 				      gfp_t gfp)
4143 {
4144 	if (odev)
4145 		netdev_tracker_free(odev, tracker);
4146 
4147 	__dev_hold(ndev);
4148 	__dev_put(odev);
4149 
4150 	if (ndev)
4151 		__netdev_tracker_alloc(ndev, tracker, gfp);
4152 }
4153 
4154 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4155  * and _off may be called from IRQ context, but it is caller
4156  * who is responsible for serialization of these calls.
4157  *
4158  * The name carrier is inappropriate, these functions should really be
4159  * called netif_lowerlayer_*() because they represent the state of any
4160  * kind of lower layer not just hardware media.
4161  */
4162 void linkwatch_fire_event(struct net_device *dev);
4163 
4164 /**
4165  *	netif_carrier_ok - test if carrier present
4166  *	@dev: network device
4167  *
4168  * Check if carrier is present on device
4169  */
4170 static inline bool netif_carrier_ok(const struct net_device *dev)
4171 {
4172 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4173 }
4174 
4175 unsigned long dev_trans_start(struct net_device *dev);
4176 
4177 void __netdev_watchdog_up(struct net_device *dev);
4178 
4179 void netif_carrier_on(struct net_device *dev);
4180 void netif_carrier_off(struct net_device *dev);
4181 void netif_carrier_event(struct net_device *dev);
4182 
4183 /**
4184  *	netif_dormant_on - mark device as dormant.
4185  *	@dev: network device
4186  *
4187  * Mark device as dormant (as per RFC2863).
4188  *
4189  * The dormant state indicates that the relevant interface is not
4190  * actually in a condition to pass packets (i.e., it is not 'up') but is
4191  * in a "pending" state, waiting for some external event.  For "on-
4192  * demand" interfaces, this new state identifies the situation where the
4193  * interface is waiting for events to place it in the up state.
4194  */
4195 static inline void netif_dormant_on(struct net_device *dev)
4196 {
4197 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4198 		linkwatch_fire_event(dev);
4199 }
4200 
4201 /**
4202  *	netif_dormant_off - set device as not dormant.
4203  *	@dev: network device
4204  *
4205  * Device is not in dormant state.
4206  */
4207 static inline void netif_dormant_off(struct net_device *dev)
4208 {
4209 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4210 		linkwatch_fire_event(dev);
4211 }
4212 
4213 /**
4214  *	netif_dormant - test if device is dormant
4215  *	@dev: network device
4216  *
4217  * Check if device is dormant.
4218  */
4219 static inline bool netif_dormant(const struct net_device *dev)
4220 {
4221 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4222 }
4223 
4224 
4225 /**
4226  *	netif_testing_on - mark device as under test.
4227  *	@dev: network device
4228  *
4229  * Mark device as under test (as per RFC2863).
4230  *
4231  * The testing state indicates that some test(s) must be performed on
4232  * the interface. After completion, of the test, the interface state
4233  * will change to up, dormant, or down, as appropriate.
4234  */
4235 static inline void netif_testing_on(struct net_device *dev)
4236 {
4237 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4238 		linkwatch_fire_event(dev);
4239 }
4240 
4241 /**
4242  *	netif_testing_off - set device as not under test.
4243  *	@dev: network device
4244  *
4245  * Device is not in testing state.
4246  */
4247 static inline void netif_testing_off(struct net_device *dev)
4248 {
4249 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4250 		linkwatch_fire_event(dev);
4251 }
4252 
4253 /**
4254  *	netif_testing - test if device is under test
4255  *	@dev: network device
4256  *
4257  * Check if device is under test
4258  */
4259 static inline bool netif_testing(const struct net_device *dev)
4260 {
4261 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4262 }
4263 
4264 
4265 /**
4266  *	netif_oper_up - test if device is operational
4267  *	@dev: network device
4268  *
4269  * Check if carrier is operational
4270  */
4271 static inline bool netif_oper_up(const struct net_device *dev)
4272 {
4273 	return (dev->operstate == IF_OPER_UP ||
4274 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4275 }
4276 
4277 /**
4278  *	netif_device_present - is device available or removed
4279  *	@dev: network device
4280  *
4281  * Check if device has not been removed from system.
4282  */
4283 static inline bool netif_device_present(const struct net_device *dev)
4284 {
4285 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4286 }
4287 
4288 void netif_device_detach(struct net_device *dev);
4289 
4290 void netif_device_attach(struct net_device *dev);
4291 
4292 /*
4293  * Network interface message level settings
4294  */
4295 
4296 enum {
4297 	NETIF_MSG_DRV_BIT,
4298 	NETIF_MSG_PROBE_BIT,
4299 	NETIF_MSG_LINK_BIT,
4300 	NETIF_MSG_TIMER_BIT,
4301 	NETIF_MSG_IFDOWN_BIT,
4302 	NETIF_MSG_IFUP_BIT,
4303 	NETIF_MSG_RX_ERR_BIT,
4304 	NETIF_MSG_TX_ERR_BIT,
4305 	NETIF_MSG_TX_QUEUED_BIT,
4306 	NETIF_MSG_INTR_BIT,
4307 	NETIF_MSG_TX_DONE_BIT,
4308 	NETIF_MSG_RX_STATUS_BIT,
4309 	NETIF_MSG_PKTDATA_BIT,
4310 	NETIF_MSG_HW_BIT,
4311 	NETIF_MSG_WOL_BIT,
4312 
4313 	/* When you add a new bit above, update netif_msg_class_names array
4314 	 * in net/ethtool/common.c
4315 	 */
4316 	NETIF_MSG_CLASS_COUNT,
4317 };
4318 /* Both ethtool_ops interface and internal driver implementation use u32 */
4319 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4320 
4321 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4322 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4323 
4324 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4325 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4326 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4327 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4328 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4329 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4330 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4331 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4332 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4333 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4334 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4335 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4336 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4337 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4338 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4339 
4340 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4341 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4342 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4343 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4344 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4345 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4346 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4347 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4348 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4349 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4350 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4351 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4352 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4353 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4354 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4355 
4356 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4357 {
4358 	/* use default */
4359 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4360 		return default_msg_enable_bits;
4361 	if (debug_value == 0)	/* no output */
4362 		return 0;
4363 	/* set low N bits */
4364 	return (1U << debug_value) - 1;
4365 }
4366 
4367 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4368 {
4369 	spin_lock(&txq->_xmit_lock);
4370 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4371 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4372 }
4373 
4374 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4375 {
4376 	__acquire(&txq->_xmit_lock);
4377 	return true;
4378 }
4379 
4380 static inline void __netif_tx_release(struct netdev_queue *txq)
4381 {
4382 	__release(&txq->_xmit_lock);
4383 }
4384 
4385 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4386 {
4387 	spin_lock_bh(&txq->_xmit_lock);
4388 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4389 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4390 }
4391 
4392 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4393 {
4394 	bool ok = spin_trylock(&txq->_xmit_lock);
4395 
4396 	if (likely(ok)) {
4397 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4398 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4399 	}
4400 	return ok;
4401 }
4402 
4403 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4404 {
4405 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4406 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4407 	spin_unlock(&txq->_xmit_lock);
4408 }
4409 
4410 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4411 {
4412 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4413 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4414 	spin_unlock_bh(&txq->_xmit_lock);
4415 }
4416 
4417 /*
4418  * txq->trans_start can be read locklessly from dev_watchdog()
4419  */
4420 static inline void txq_trans_update(struct netdev_queue *txq)
4421 {
4422 	if (txq->xmit_lock_owner != -1)
4423 		WRITE_ONCE(txq->trans_start, jiffies);
4424 }
4425 
4426 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4427 {
4428 	unsigned long now = jiffies;
4429 
4430 	if (READ_ONCE(txq->trans_start) != now)
4431 		WRITE_ONCE(txq->trans_start, now);
4432 }
4433 
4434 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4435 static inline void netif_trans_update(struct net_device *dev)
4436 {
4437 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4438 
4439 	txq_trans_cond_update(txq);
4440 }
4441 
4442 /**
4443  *	netif_tx_lock - grab network device transmit lock
4444  *	@dev: network device
4445  *
4446  * Get network device transmit lock
4447  */
4448 void netif_tx_lock(struct net_device *dev);
4449 
4450 static inline void netif_tx_lock_bh(struct net_device *dev)
4451 {
4452 	local_bh_disable();
4453 	netif_tx_lock(dev);
4454 }
4455 
4456 void netif_tx_unlock(struct net_device *dev);
4457 
4458 static inline void netif_tx_unlock_bh(struct net_device *dev)
4459 {
4460 	netif_tx_unlock(dev);
4461 	local_bh_enable();
4462 }
4463 
4464 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4465 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4466 		__netif_tx_lock(txq, cpu);		\
4467 	} else {					\
4468 		__netif_tx_acquire(txq);		\
4469 	}						\
4470 }
4471 
4472 #define HARD_TX_TRYLOCK(dev, txq)			\
4473 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4474 		__netif_tx_trylock(txq) :		\
4475 		__netif_tx_acquire(txq))
4476 
4477 #define HARD_TX_UNLOCK(dev, txq) {			\
4478 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4479 		__netif_tx_unlock(txq);			\
4480 	} else {					\
4481 		__netif_tx_release(txq);		\
4482 	}						\
4483 }
4484 
4485 static inline void netif_tx_disable(struct net_device *dev)
4486 {
4487 	unsigned int i;
4488 	int cpu;
4489 
4490 	local_bh_disable();
4491 	cpu = smp_processor_id();
4492 	spin_lock(&dev->tx_global_lock);
4493 	for (i = 0; i < dev->num_tx_queues; i++) {
4494 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4495 
4496 		__netif_tx_lock(txq, cpu);
4497 		netif_tx_stop_queue(txq);
4498 		__netif_tx_unlock(txq);
4499 	}
4500 	spin_unlock(&dev->tx_global_lock);
4501 	local_bh_enable();
4502 }
4503 
4504 static inline void netif_addr_lock(struct net_device *dev)
4505 {
4506 	unsigned char nest_level = 0;
4507 
4508 #ifdef CONFIG_LOCKDEP
4509 	nest_level = dev->nested_level;
4510 #endif
4511 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4512 }
4513 
4514 static inline void netif_addr_lock_bh(struct net_device *dev)
4515 {
4516 	unsigned char nest_level = 0;
4517 
4518 #ifdef CONFIG_LOCKDEP
4519 	nest_level = dev->nested_level;
4520 #endif
4521 	local_bh_disable();
4522 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4523 }
4524 
4525 static inline void netif_addr_unlock(struct net_device *dev)
4526 {
4527 	spin_unlock(&dev->addr_list_lock);
4528 }
4529 
4530 static inline void netif_addr_unlock_bh(struct net_device *dev)
4531 {
4532 	spin_unlock_bh(&dev->addr_list_lock);
4533 }
4534 
4535 /*
4536  * dev_addrs walker. Should be used only for read access. Call with
4537  * rcu_read_lock held.
4538  */
4539 #define for_each_dev_addr(dev, ha) \
4540 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4541 
4542 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4543 
4544 void ether_setup(struct net_device *dev);
4545 
4546 /* Support for loadable net-drivers */
4547 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4548 				    unsigned char name_assign_type,
4549 				    void (*setup)(struct net_device *),
4550 				    unsigned int txqs, unsigned int rxqs);
4551 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4552 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4553 
4554 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4555 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4556 			 count)
4557 
4558 int register_netdev(struct net_device *dev);
4559 void unregister_netdev(struct net_device *dev);
4560 
4561 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4562 
4563 /* General hardware address lists handling functions */
4564 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4565 		   struct netdev_hw_addr_list *from_list, int addr_len);
4566 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4567 		      struct netdev_hw_addr_list *from_list, int addr_len);
4568 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4569 		       struct net_device *dev,
4570 		       int (*sync)(struct net_device *, const unsigned char *),
4571 		       int (*unsync)(struct net_device *,
4572 				     const unsigned char *));
4573 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4574 			   struct net_device *dev,
4575 			   int (*sync)(struct net_device *,
4576 				       const unsigned char *, int),
4577 			   int (*unsync)(struct net_device *,
4578 					 const unsigned char *, int));
4579 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4580 			      struct net_device *dev,
4581 			      int (*unsync)(struct net_device *,
4582 					    const unsigned char *, int));
4583 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4584 			  struct net_device *dev,
4585 			  int (*unsync)(struct net_device *,
4586 					const unsigned char *));
4587 void __hw_addr_init(struct netdev_hw_addr_list *list);
4588 
4589 /* Functions used for device addresses handling */
4590 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4591 		  const void *addr, size_t len);
4592 
4593 static inline void
4594 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4595 {
4596 	dev_addr_mod(dev, 0, addr, len);
4597 }
4598 
4599 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4600 {
4601 	__dev_addr_set(dev, addr, dev->addr_len);
4602 }
4603 
4604 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4605 		 unsigned char addr_type);
4606 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4607 		 unsigned char addr_type);
4608 
4609 /* Functions used for unicast addresses handling */
4610 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4611 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4612 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4613 int dev_uc_sync(struct net_device *to, struct net_device *from);
4614 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4615 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4616 void dev_uc_flush(struct net_device *dev);
4617 void dev_uc_init(struct net_device *dev);
4618 
4619 /**
4620  *  __dev_uc_sync - Synchonize device's unicast list
4621  *  @dev:  device to sync
4622  *  @sync: function to call if address should be added
4623  *  @unsync: function to call if address should be removed
4624  *
4625  *  Add newly added addresses to the interface, and release
4626  *  addresses that have been deleted.
4627  */
4628 static inline int __dev_uc_sync(struct net_device *dev,
4629 				int (*sync)(struct net_device *,
4630 					    const unsigned char *),
4631 				int (*unsync)(struct net_device *,
4632 					      const unsigned char *))
4633 {
4634 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4635 }
4636 
4637 /**
4638  *  __dev_uc_unsync - Remove synchronized addresses from device
4639  *  @dev:  device to sync
4640  *  @unsync: function to call if address should be removed
4641  *
4642  *  Remove all addresses that were added to the device by dev_uc_sync().
4643  */
4644 static inline void __dev_uc_unsync(struct net_device *dev,
4645 				   int (*unsync)(struct net_device *,
4646 						 const unsigned char *))
4647 {
4648 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4649 }
4650 
4651 /* Functions used for multicast addresses handling */
4652 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4653 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4654 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4655 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4656 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4657 int dev_mc_sync(struct net_device *to, struct net_device *from);
4658 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4659 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4660 void dev_mc_flush(struct net_device *dev);
4661 void dev_mc_init(struct net_device *dev);
4662 
4663 /**
4664  *  __dev_mc_sync - Synchonize device's multicast list
4665  *  @dev:  device to sync
4666  *  @sync: function to call if address should be added
4667  *  @unsync: function to call if address should be removed
4668  *
4669  *  Add newly added addresses to the interface, and release
4670  *  addresses that have been deleted.
4671  */
4672 static inline int __dev_mc_sync(struct net_device *dev,
4673 				int (*sync)(struct net_device *,
4674 					    const unsigned char *),
4675 				int (*unsync)(struct net_device *,
4676 					      const unsigned char *))
4677 {
4678 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4679 }
4680 
4681 /**
4682  *  __dev_mc_unsync - Remove synchronized addresses from device
4683  *  @dev:  device to sync
4684  *  @unsync: function to call if address should be removed
4685  *
4686  *  Remove all addresses that were added to the device by dev_mc_sync().
4687  */
4688 static inline void __dev_mc_unsync(struct net_device *dev,
4689 				   int (*unsync)(struct net_device *,
4690 						 const unsigned char *))
4691 {
4692 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4693 }
4694 
4695 /* Functions used for secondary unicast and multicast support */
4696 void dev_set_rx_mode(struct net_device *dev);
4697 int dev_set_promiscuity(struct net_device *dev, int inc);
4698 int dev_set_allmulti(struct net_device *dev, int inc);
4699 void netdev_state_change(struct net_device *dev);
4700 void __netdev_notify_peers(struct net_device *dev);
4701 void netdev_notify_peers(struct net_device *dev);
4702 void netdev_features_change(struct net_device *dev);
4703 /* Load a device via the kmod */
4704 void dev_load(struct net *net, const char *name);
4705 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4706 					struct rtnl_link_stats64 *storage);
4707 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4708 			     const struct net_device_stats *netdev_stats);
4709 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4710 			   const struct pcpu_sw_netstats __percpu *netstats);
4711 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4712 
4713 extern int		netdev_max_backlog;
4714 extern int		dev_rx_weight;
4715 extern int		dev_tx_weight;
4716 extern int		gro_normal_batch;
4717 
4718 enum {
4719 	NESTED_SYNC_IMM_BIT,
4720 	NESTED_SYNC_TODO_BIT,
4721 };
4722 
4723 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4724 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4725 
4726 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4727 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4728 
4729 struct netdev_nested_priv {
4730 	unsigned char flags;
4731 	void *data;
4732 };
4733 
4734 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4735 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4736 						     struct list_head **iter);
4737 
4738 /* iterate through upper list, must be called under RCU read lock */
4739 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4740 	for (iter = &(dev)->adj_list.upper, \
4741 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4742 	     updev; \
4743 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4744 
4745 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4746 				  int (*fn)(struct net_device *upper_dev,
4747 					    struct netdev_nested_priv *priv),
4748 				  struct netdev_nested_priv *priv);
4749 
4750 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4751 				  struct net_device *upper_dev);
4752 
4753 bool netdev_has_any_upper_dev(struct net_device *dev);
4754 
4755 void *netdev_lower_get_next_private(struct net_device *dev,
4756 				    struct list_head **iter);
4757 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4758 					struct list_head **iter);
4759 
4760 #define netdev_for_each_lower_private(dev, priv, iter) \
4761 	for (iter = (dev)->adj_list.lower.next, \
4762 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4763 	     priv; \
4764 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4765 
4766 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4767 	for (iter = &(dev)->adj_list.lower, \
4768 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4769 	     priv; \
4770 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4771 
4772 void *netdev_lower_get_next(struct net_device *dev,
4773 				struct list_head **iter);
4774 
4775 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4776 	for (iter = (dev)->adj_list.lower.next, \
4777 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4778 	     ldev; \
4779 	     ldev = netdev_lower_get_next(dev, &(iter)))
4780 
4781 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4782 					     struct list_head **iter);
4783 int netdev_walk_all_lower_dev(struct net_device *dev,
4784 			      int (*fn)(struct net_device *lower_dev,
4785 					struct netdev_nested_priv *priv),
4786 			      struct netdev_nested_priv *priv);
4787 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4788 				  int (*fn)(struct net_device *lower_dev,
4789 					    struct netdev_nested_priv *priv),
4790 				  struct netdev_nested_priv *priv);
4791 
4792 void *netdev_adjacent_get_private(struct list_head *adj_list);
4793 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4794 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4795 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4796 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4797 			  struct netlink_ext_ack *extack);
4798 int netdev_master_upper_dev_link(struct net_device *dev,
4799 				 struct net_device *upper_dev,
4800 				 void *upper_priv, void *upper_info,
4801 				 struct netlink_ext_ack *extack);
4802 void netdev_upper_dev_unlink(struct net_device *dev,
4803 			     struct net_device *upper_dev);
4804 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4805 				   struct net_device *new_dev,
4806 				   struct net_device *dev,
4807 				   struct netlink_ext_ack *extack);
4808 void netdev_adjacent_change_commit(struct net_device *old_dev,
4809 				   struct net_device *new_dev,
4810 				   struct net_device *dev);
4811 void netdev_adjacent_change_abort(struct net_device *old_dev,
4812 				  struct net_device *new_dev,
4813 				  struct net_device *dev);
4814 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4815 void *netdev_lower_dev_get_private(struct net_device *dev,
4816 				   struct net_device *lower_dev);
4817 void netdev_lower_state_changed(struct net_device *lower_dev,
4818 				void *lower_state_info);
4819 
4820 /* RSS keys are 40 or 52 bytes long */
4821 #define NETDEV_RSS_KEY_LEN 52
4822 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4823 void netdev_rss_key_fill(void *buffer, size_t len);
4824 
4825 int skb_checksum_help(struct sk_buff *skb);
4826 int skb_crc32c_csum_help(struct sk_buff *skb);
4827 int skb_csum_hwoffload_help(struct sk_buff *skb,
4828 			    const netdev_features_t features);
4829 
4830 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4831 				  netdev_features_t features, bool tx_path);
4832 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4833 				    netdev_features_t features, __be16 type);
4834 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4835 				    netdev_features_t features);
4836 
4837 struct netdev_bonding_info {
4838 	ifslave	slave;
4839 	ifbond	master;
4840 };
4841 
4842 struct netdev_notifier_bonding_info {
4843 	struct netdev_notifier_info info; /* must be first */
4844 	struct netdev_bonding_info  bonding_info;
4845 };
4846 
4847 void netdev_bonding_info_change(struct net_device *dev,
4848 				struct netdev_bonding_info *bonding_info);
4849 
4850 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4851 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4852 #else
4853 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4854 				  const void *data)
4855 {
4856 }
4857 #endif
4858 
4859 static inline
4860 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4861 {
4862 	return __skb_gso_segment(skb, features, true);
4863 }
4864 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4865 
4866 static inline bool can_checksum_protocol(netdev_features_t features,
4867 					 __be16 protocol)
4868 {
4869 	if (protocol == htons(ETH_P_FCOE))
4870 		return !!(features & NETIF_F_FCOE_CRC);
4871 
4872 	/* Assume this is an IP checksum (not SCTP CRC) */
4873 
4874 	if (features & NETIF_F_HW_CSUM) {
4875 		/* Can checksum everything */
4876 		return true;
4877 	}
4878 
4879 	switch (protocol) {
4880 	case htons(ETH_P_IP):
4881 		return !!(features & NETIF_F_IP_CSUM);
4882 	case htons(ETH_P_IPV6):
4883 		return !!(features & NETIF_F_IPV6_CSUM);
4884 	default:
4885 		return false;
4886 	}
4887 }
4888 
4889 #ifdef CONFIG_BUG
4890 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4891 #else
4892 static inline void netdev_rx_csum_fault(struct net_device *dev,
4893 					struct sk_buff *skb)
4894 {
4895 }
4896 #endif
4897 /* rx skb timestamps */
4898 void net_enable_timestamp(void);
4899 void net_disable_timestamp(void);
4900 
4901 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4902 					const struct skb_shared_hwtstamps *hwtstamps,
4903 					bool cycles)
4904 {
4905 	const struct net_device_ops *ops = dev->netdev_ops;
4906 
4907 	if (ops->ndo_get_tstamp)
4908 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4909 
4910 	return hwtstamps->hwtstamp;
4911 }
4912 
4913 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4914 					      struct sk_buff *skb, struct net_device *dev,
4915 					      bool more)
4916 {
4917 	__this_cpu_write(softnet_data.xmit.more, more);
4918 	return ops->ndo_start_xmit(skb, dev);
4919 }
4920 
4921 static inline bool netdev_xmit_more(void)
4922 {
4923 	return __this_cpu_read(softnet_data.xmit.more);
4924 }
4925 
4926 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4927 					    struct netdev_queue *txq, bool more)
4928 {
4929 	const struct net_device_ops *ops = dev->netdev_ops;
4930 	netdev_tx_t rc;
4931 
4932 	rc = __netdev_start_xmit(ops, skb, dev, more);
4933 	if (rc == NETDEV_TX_OK)
4934 		txq_trans_update(txq);
4935 
4936 	return rc;
4937 }
4938 
4939 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4940 				const void *ns);
4941 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4942 				 const void *ns);
4943 
4944 extern const struct kobj_ns_type_operations net_ns_type_operations;
4945 
4946 const char *netdev_drivername(const struct net_device *dev);
4947 
4948 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4949 							  netdev_features_t f2)
4950 {
4951 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4952 		if (f1 & NETIF_F_HW_CSUM)
4953 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4954 		else
4955 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4956 	}
4957 
4958 	return f1 & f2;
4959 }
4960 
4961 static inline netdev_features_t netdev_get_wanted_features(
4962 	struct net_device *dev)
4963 {
4964 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4965 }
4966 netdev_features_t netdev_increment_features(netdev_features_t all,
4967 	netdev_features_t one, netdev_features_t mask);
4968 
4969 /* Allow TSO being used on stacked device :
4970  * Performing the GSO segmentation before last device
4971  * is a performance improvement.
4972  */
4973 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4974 							netdev_features_t mask)
4975 {
4976 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4977 }
4978 
4979 int __netdev_update_features(struct net_device *dev);
4980 void netdev_update_features(struct net_device *dev);
4981 void netdev_change_features(struct net_device *dev);
4982 
4983 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4984 					struct net_device *dev);
4985 
4986 netdev_features_t passthru_features_check(struct sk_buff *skb,
4987 					  struct net_device *dev,
4988 					  netdev_features_t features);
4989 netdev_features_t netif_skb_features(struct sk_buff *skb);
4990 
4991 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4992 {
4993 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4994 
4995 	/* check flags correspondence */
4996 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5005 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5006 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5007 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5008 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5009 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5010 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5011 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5012 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5013 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5014 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5015 
5016 	return (features & feature) == feature;
5017 }
5018 
5019 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5020 {
5021 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5022 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5023 }
5024 
5025 static inline bool netif_needs_gso(struct sk_buff *skb,
5026 				   netdev_features_t features)
5027 {
5028 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5029 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5030 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5031 }
5032 
5033 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5034 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5035 void netif_inherit_tso_max(struct net_device *to,
5036 			   const struct net_device *from);
5037 
5038 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5039 					int pulled_hlen, u16 mac_offset,
5040 					int mac_len)
5041 {
5042 	skb->protocol = protocol;
5043 	skb->encapsulation = 1;
5044 	skb_push(skb, pulled_hlen);
5045 	skb_reset_transport_header(skb);
5046 	skb->mac_header = mac_offset;
5047 	skb->network_header = skb->mac_header + mac_len;
5048 	skb->mac_len = mac_len;
5049 }
5050 
5051 static inline bool netif_is_macsec(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_MACSEC;
5054 }
5055 
5056 static inline bool netif_is_macvlan(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_MACVLAN;
5059 }
5060 
5061 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5062 {
5063 	return dev->priv_flags & IFF_MACVLAN_PORT;
5064 }
5065 
5066 static inline bool netif_is_bond_master(const struct net_device *dev)
5067 {
5068 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5069 }
5070 
5071 static inline bool netif_is_bond_slave(const struct net_device *dev)
5072 {
5073 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5074 }
5075 
5076 static inline bool netif_supports_nofcs(struct net_device *dev)
5077 {
5078 	return dev->priv_flags & IFF_SUPP_NOFCS;
5079 }
5080 
5081 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5082 {
5083 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5084 }
5085 
5086 static inline bool netif_is_l3_master(const struct net_device *dev)
5087 {
5088 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5089 }
5090 
5091 static inline bool netif_is_l3_slave(const struct net_device *dev)
5092 {
5093 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5094 }
5095 
5096 static inline bool netif_is_bridge_master(const struct net_device *dev)
5097 {
5098 	return dev->priv_flags & IFF_EBRIDGE;
5099 }
5100 
5101 static inline bool netif_is_bridge_port(const struct net_device *dev)
5102 {
5103 	return dev->priv_flags & IFF_BRIDGE_PORT;
5104 }
5105 
5106 static inline bool netif_is_ovs_master(const struct net_device *dev)
5107 {
5108 	return dev->priv_flags & IFF_OPENVSWITCH;
5109 }
5110 
5111 static inline bool netif_is_ovs_port(const struct net_device *dev)
5112 {
5113 	return dev->priv_flags & IFF_OVS_DATAPATH;
5114 }
5115 
5116 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5117 {
5118 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5119 }
5120 
5121 static inline bool netif_is_team_master(const struct net_device *dev)
5122 {
5123 	return dev->priv_flags & IFF_TEAM;
5124 }
5125 
5126 static inline bool netif_is_team_port(const struct net_device *dev)
5127 {
5128 	return dev->priv_flags & IFF_TEAM_PORT;
5129 }
5130 
5131 static inline bool netif_is_lag_master(const struct net_device *dev)
5132 {
5133 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5134 }
5135 
5136 static inline bool netif_is_lag_port(const struct net_device *dev)
5137 {
5138 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5139 }
5140 
5141 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5142 {
5143 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5144 }
5145 
5146 static inline bool netif_is_failover(const struct net_device *dev)
5147 {
5148 	return dev->priv_flags & IFF_FAILOVER;
5149 }
5150 
5151 static inline bool netif_is_failover_slave(const struct net_device *dev)
5152 {
5153 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5154 }
5155 
5156 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5157 static inline void netif_keep_dst(struct net_device *dev)
5158 {
5159 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5160 }
5161 
5162 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5163 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5164 {
5165 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5166 	return netif_is_macsec(dev);
5167 }
5168 
5169 extern struct pernet_operations __net_initdata loopback_net_ops;
5170 
5171 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5172 
5173 /* netdev_printk helpers, similar to dev_printk */
5174 
5175 static inline const char *netdev_name(const struct net_device *dev)
5176 {
5177 	if (!dev->name[0] || strchr(dev->name, '%'))
5178 		return "(unnamed net_device)";
5179 	return dev->name;
5180 }
5181 
5182 static inline const char *netdev_reg_state(const struct net_device *dev)
5183 {
5184 	switch (dev->reg_state) {
5185 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5186 	case NETREG_REGISTERED: return "";
5187 	case NETREG_UNREGISTERING: return " (unregistering)";
5188 	case NETREG_UNREGISTERED: return " (unregistered)";
5189 	case NETREG_RELEASED: return " (released)";
5190 	case NETREG_DUMMY: return " (dummy)";
5191 	}
5192 
5193 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5194 	return " (unknown)";
5195 }
5196 
5197 #define MODULE_ALIAS_NETDEV(device) \
5198 	MODULE_ALIAS("netdev-" device)
5199 
5200 /*
5201  * netdev_WARN() acts like dev_printk(), but with the key difference
5202  * of using a WARN/WARN_ON to get the message out, including the
5203  * file/line information and a backtrace.
5204  */
5205 #define netdev_WARN(dev, format, args...)			\
5206 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5207 	     netdev_reg_state(dev), ##args)
5208 
5209 #define netdev_WARN_ONCE(dev, format, args...)				\
5210 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5211 		  netdev_reg_state(dev), ##args)
5212 
5213 /*
5214  *	The list of packet types we will receive (as opposed to discard)
5215  *	and the routines to invoke.
5216  *
5217  *	Why 16. Because with 16 the only overlap we get on a hash of the
5218  *	low nibble of the protocol value is RARP/SNAP/X.25.
5219  *
5220  *		0800	IP
5221  *		0001	802.3
5222  *		0002	AX.25
5223  *		0004	802.2
5224  *		8035	RARP
5225  *		0005	SNAP
5226  *		0805	X.25
5227  *		0806	ARP
5228  *		8137	IPX
5229  *		0009	Localtalk
5230  *		86DD	IPv6
5231  */
5232 #define PTYPE_HASH_SIZE	(16)
5233 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5234 
5235 extern struct list_head ptype_all __read_mostly;
5236 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5237 
5238 extern struct net_device *blackhole_netdev;
5239 
5240 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5241 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5242 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5243 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5244 
5245 #endif	/* _LINUX_NETDEVICE_H */
5246