1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 }; 278 279 /* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284 enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290 }; 291 292 293 /* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297 struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300 }; 301 #define NETDEV_BOOT_SETUP_MAX 8 302 303 int __init netdev_boot_setup(char *str); 304 305 /* 306 * Structure for NAPI scheduling similar to tasklet but with weighting 307 */ 308 struct napi_struct { 309 /* The poll_list must only be managed by the entity which 310 * changes the state of the NAPI_STATE_SCHED bit. This means 311 * whoever atomically sets that bit can add this napi_struct 312 * to the per-CPU poll_list, and whoever clears that bit 313 * can remove from the list right before clearing the bit. 314 */ 315 struct list_head poll_list; 316 317 unsigned long state; 318 int weight; 319 unsigned int gro_count; 320 int (*poll)(struct napi_struct *, int); 321 #ifdef CONFIG_NETPOLL 322 int poll_owner; 323 #endif 324 struct net_device *dev; 325 struct sk_buff *gro_list; 326 struct sk_buff *skb; 327 struct hrtimer timer; 328 struct list_head dev_list; 329 struct hlist_node napi_hash_node; 330 unsigned int napi_id; 331 }; 332 333 enum { 334 NAPI_STATE_SCHED, /* Poll is scheduled */ 335 NAPI_STATE_MISSED, /* reschedule a napi */ 336 NAPI_STATE_DISABLE, /* Disable pending */ 337 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 338 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 339 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 340 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 341 }; 342 343 enum { 344 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 345 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 346 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 347 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 348 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 349 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 350 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 351 }; 352 353 enum gro_result { 354 GRO_MERGED, 355 GRO_MERGED_FREE, 356 GRO_HELD, 357 GRO_NORMAL, 358 GRO_DROP, 359 GRO_CONSUMED, 360 }; 361 typedef enum gro_result gro_result_t; 362 363 /* 364 * enum rx_handler_result - Possible return values for rx_handlers. 365 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 366 * further. 367 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 368 * case skb->dev was changed by rx_handler. 369 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 370 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 371 * 372 * rx_handlers are functions called from inside __netif_receive_skb(), to do 373 * special processing of the skb, prior to delivery to protocol handlers. 374 * 375 * Currently, a net_device can only have a single rx_handler registered. Trying 376 * to register a second rx_handler will return -EBUSY. 377 * 378 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 379 * To unregister a rx_handler on a net_device, use 380 * netdev_rx_handler_unregister(). 381 * 382 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 383 * do with the skb. 384 * 385 * If the rx_handler consumed the skb in some way, it should return 386 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 387 * the skb to be delivered in some other way. 388 * 389 * If the rx_handler changed skb->dev, to divert the skb to another 390 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 391 * new device will be called if it exists. 392 * 393 * If the rx_handler decides the skb should be ignored, it should return 394 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 395 * are registered on exact device (ptype->dev == skb->dev). 396 * 397 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 398 * delivered, it should return RX_HANDLER_PASS. 399 * 400 * A device without a registered rx_handler will behave as if rx_handler 401 * returned RX_HANDLER_PASS. 402 */ 403 404 enum rx_handler_result { 405 RX_HANDLER_CONSUMED, 406 RX_HANDLER_ANOTHER, 407 RX_HANDLER_EXACT, 408 RX_HANDLER_PASS, 409 }; 410 typedef enum rx_handler_result rx_handler_result_t; 411 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 412 413 void __napi_schedule(struct napi_struct *n); 414 void __napi_schedule_irqoff(struct napi_struct *n); 415 416 static inline bool napi_disable_pending(struct napi_struct *n) 417 { 418 return test_bit(NAPI_STATE_DISABLE, &n->state); 419 } 420 421 bool napi_schedule_prep(struct napi_struct *n); 422 423 /** 424 * napi_schedule - schedule NAPI poll 425 * @n: NAPI context 426 * 427 * Schedule NAPI poll routine to be called if it is not already 428 * running. 429 */ 430 static inline void napi_schedule(struct napi_struct *n) 431 { 432 if (napi_schedule_prep(n)) 433 __napi_schedule(n); 434 } 435 436 /** 437 * napi_schedule_irqoff - schedule NAPI poll 438 * @n: NAPI context 439 * 440 * Variant of napi_schedule(), assuming hard irqs are masked. 441 */ 442 static inline void napi_schedule_irqoff(struct napi_struct *n) 443 { 444 if (napi_schedule_prep(n)) 445 __napi_schedule_irqoff(n); 446 } 447 448 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 449 static inline bool napi_reschedule(struct napi_struct *napi) 450 { 451 if (napi_schedule_prep(napi)) { 452 __napi_schedule(napi); 453 return true; 454 } 455 return false; 456 } 457 458 bool napi_complete_done(struct napi_struct *n, int work_done); 459 /** 460 * napi_complete - NAPI processing complete 461 * @n: NAPI context 462 * 463 * Mark NAPI processing as complete. 464 * Consider using napi_complete_done() instead. 465 * Return false if device should avoid rearming interrupts. 466 */ 467 static inline bool napi_complete(struct napi_struct *n) 468 { 469 return napi_complete_done(n, 0); 470 } 471 472 /** 473 * napi_hash_del - remove a NAPI from global table 474 * @napi: NAPI context 475 * 476 * Warning: caller must observe RCU grace period 477 * before freeing memory containing @napi, if 478 * this function returns true. 479 * Note: core networking stack automatically calls it 480 * from netif_napi_del(). 481 * Drivers might want to call this helper to combine all 482 * the needed RCU grace periods into a single one. 483 */ 484 bool napi_hash_del(struct napi_struct *napi); 485 486 /** 487 * napi_disable - prevent NAPI from scheduling 488 * @n: NAPI context 489 * 490 * Stop NAPI from being scheduled on this context. 491 * Waits till any outstanding processing completes. 492 */ 493 void napi_disable(struct napi_struct *n); 494 495 /** 496 * napi_enable - enable NAPI scheduling 497 * @n: NAPI context 498 * 499 * Resume NAPI from being scheduled on this context. 500 * Must be paired with napi_disable. 501 */ 502 static inline void napi_enable(struct napi_struct *n) 503 { 504 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 505 smp_mb__before_atomic(); 506 clear_bit(NAPI_STATE_SCHED, &n->state); 507 clear_bit(NAPI_STATE_NPSVC, &n->state); 508 } 509 510 /** 511 * napi_synchronize - wait until NAPI is not running 512 * @n: NAPI context 513 * 514 * Wait until NAPI is done being scheduled on this context. 515 * Waits till any outstanding processing completes but 516 * does not disable future activations. 517 */ 518 static inline void napi_synchronize(const struct napi_struct *n) 519 { 520 if (IS_ENABLED(CONFIG_SMP)) 521 while (test_bit(NAPI_STATE_SCHED, &n->state)) 522 msleep(1); 523 else 524 barrier(); 525 } 526 527 enum netdev_queue_state_t { 528 __QUEUE_STATE_DRV_XOFF, 529 __QUEUE_STATE_STACK_XOFF, 530 __QUEUE_STATE_FROZEN, 531 }; 532 533 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 534 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 535 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 536 537 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 538 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 541 QUEUE_STATE_FROZEN) 542 543 /* 544 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 545 * netif_tx_* functions below are used to manipulate this flag. The 546 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 547 * queue independently. The netif_xmit_*stopped functions below are called 548 * to check if the queue has been stopped by the driver or stack (either 549 * of the XOFF bits are set in the state). Drivers should not need to call 550 * netif_xmit*stopped functions, they should only be using netif_tx_*. 551 */ 552 553 struct netdev_queue { 554 /* 555 * read-mostly part 556 */ 557 struct net_device *dev; 558 struct Qdisc __rcu *qdisc; 559 struct Qdisc *qdisc_sleeping; 560 #ifdef CONFIG_SYSFS 561 struct kobject kobj; 562 #endif 563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 564 int numa_node; 565 #endif 566 unsigned long tx_maxrate; 567 /* 568 * Number of TX timeouts for this queue 569 * (/sys/class/net/DEV/Q/trans_timeout) 570 */ 571 unsigned long trans_timeout; 572 /* 573 * write-mostly part 574 */ 575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 576 int xmit_lock_owner; 577 /* 578 * Time (in jiffies) of last Tx 579 */ 580 unsigned long trans_start; 581 582 unsigned long state; 583 584 #ifdef CONFIG_BQL 585 struct dql dql; 586 #endif 587 } ____cacheline_aligned_in_smp; 588 589 extern int sysctl_fb_tunnels_only_for_init_net; 590 591 static inline bool net_has_fallback_tunnels(const struct net *net) 592 { 593 return net == &init_net || 594 !IS_ENABLED(CONFIG_SYSCTL) || 595 !sysctl_fb_tunnels_only_for_init_net; 596 } 597 598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 599 { 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 return q->numa_node; 602 #else 603 return NUMA_NO_NODE; 604 #endif 605 } 606 607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 608 { 609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 610 q->numa_node = node; 611 #endif 612 } 613 614 #ifdef CONFIG_RPS 615 /* 616 * This structure holds an RPS map which can be of variable length. The 617 * map is an array of CPUs. 618 */ 619 struct rps_map { 620 unsigned int len; 621 struct rcu_head rcu; 622 u16 cpus[0]; 623 }; 624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 625 626 /* 627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 628 * tail pointer for that CPU's input queue at the time of last enqueue, and 629 * a hardware filter index. 630 */ 631 struct rps_dev_flow { 632 u16 cpu; 633 u16 filter; 634 unsigned int last_qtail; 635 }; 636 #define RPS_NO_FILTER 0xffff 637 638 /* 639 * The rps_dev_flow_table structure contains a table of flow mappings. 640 */ 641 struct rps_dev_flow_table { 642 unsigned int mask; 643 struct rcu_head rcu; 644 struct rps_dev_flow flows[0]; 645 }; 646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 647 ((_num) * sizeof(struct rps_dev_flow))) 648 649 /* 650 * The rps_sock_flow_table contains mappings of flows to the last CPU 651 * on which they were processed by the application (set in recvmsg). 652 * Each entry is a 32bit value. Upper part is the high-order bits 653 * of flow hash, lower part is CPU number. 654 * rps_cpu_mask is used to partition the space, depending on number of 655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 657 * meaning we use 32-6=26 bits for the hash. 658 */ 659 struct rps_sock_flow_table { 660 u32 mask; 661 662 u32 ents[0] ____cacheline_aligned_in_smp; 663 }; 664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 665 666 #define RPS_NO_CPU 0xffff 667 668 extern u32 rps_cpu_mask; 669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 670 671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 672 u32 hash) 673 { 674 if (table && hash) { 675 unsigned int index = hash & table->mask; 676 u32 val = hash & ~rps_cpu_mask; 677 678 /* We only give a hint, preemption can change CPU under us */ 679 val |= raw_smp_processor_id(); 680 681 if (table->ents[index] != val) 682 table->ents[index] = val; 683 } 684 } 685 686 #ifdef CONFIG_RFS_ACCEL 687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 688 u16 filter_id); 689 #endif 690 #endif /* CONFIG_RPS */ 691 692 /* This structure contains an instance of an RX queue. */ 693 struct netdev_rx_queue { 694 #ifdef CONFIG_RPS 695 struct rps_map __rcu *rps_map; 696 struct rps_dev_flow_table __rcu *rps_flow_table; 697 #endif 698 struct kobject kobj; 699 struct net_device *dev; 700 struct xdp_rxq_info xdp_rxq; 701 } ____cacheline_aligned_in_smp; 702 703 /* 704 * RX queue sysfs structures and functions. 705 */ 706 struct rx_queue_attribute { 707 struct attribute attr; 708 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 709 ssize_t (*store)(struct netdev_rx_queue *queue, 710 const char *buf, size_t len); 711 }; 712 713 #ifdef CONFIG_XPS 714 /* 715 * This structure holds an XPS map which can be of variable length. The 716 * map is an array of queues. 717 */ 718 struct xps_map { 719 unsigned int len; 720 unsigned int alloc_len; 721 struct rcu_head rcu; 722 u16 queues[0]; 723 }; 724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 726 - sizeof(struct xps_map)) / sizeof(u16)) 727 728 /* 729 * This structure holds all XPS maps for device. Maps are indexed by CPU. 730 */ 731 struct xps_dev_maps { 732 struct rcu_head rcu; 733 struct xps_map __rcu *cpu_map[0]; 734 }; 735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 737 #endif /* CONFIG_XPS */ 738 739 #define TC_MAX_QUEUE 16 740 #define TC_BITMASK 15 741 /* HW offloaded queuing disciplines txq count and offset maps */ 742 struct netdev_tc_txq { 743 u16 count; 744 u16 offset; 745 }; 746 747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 748 /* 749 * This structure is to hold information about the device 750 * configured to run FCoE protocol stack. 751 */ 752 struct netdev_fcoe_hbainfo { 753 char manufacturer[64]; 754 char serial_number[64]; 755 char hardware_version[64]; 756 char driver_version[64]; 757 char optionrom_version[64]; 758 char firmware_version[64]; 759 char model[256]; 760 char model_description[256]; 761 }; 762 #endif 763 764 #define MAX_PHYS_ITEM_ID_LEN 32 765 766 /* This structure holds a unique identifier to identify some 767 * physical item (port for example) used by a netdevice. 768 */ 769 struct netdev_phys_item_id { 770 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 771 unsigned char id_len; 772 }; 773 774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 775 struct netdev_phys_item_id *b) 776 { 777 return a->id_len == b->id_len && 778 memcmp(a->id, b->id, a->id_len) == 0; 779 } 780 781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 782 struct sk_buff *skb); 783 784 enum tc_setup_type { 785 TC_SETUP_QDISC_MQPRIO, 786 TC_SETUP_CLSU32, 787 TC_SETUP_CLSFLOWER, 788 TC_SETUP_CLSMATCHALL, 789 TC_SETUP_CLSBPF, 790 TC_SETUP_BLOCK, 791 TC_SETUP_QDISC_CBS, 792 TC_SETUP_QDISC_RED, 793 TC_SETUP_QDISC_PRIO, 794 TC_SETUP_QDISC_MQ, 795 }; 796 797 /* These structures hold the attributes of bpf state that are being passed 798 * to the netdevice through the bpf op. 799 */ 800 enum bpf_netdev_command { 801 /* Set or clear a bpf program used in the earliest stages of packet 802 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 803 * is responsible for calling bpf_prog_put on any old progs that are 804 * stored. In case of error, the callee need not release the new prog 805 * reference, but on success it takes ownership and must bpf_prog_put 806 * when it is no longer used. 807 */ 808 XDP_SETUP_PROG, 809 XDP_SETUP_PROG_HW, 810 /* Check if a bpf program is set on the device. The callee should 811 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 812 * is equivalent to XDP_ATTACHED_DRV. 813 */ 814 XDP_QUERY_PROG, 815 /* BPF program for offload callbacks, invoked at program load time. */ 816 BPF_OFFLOAD_VERIFIER_PREP, 817 BPF_OFFLOAD_TRANSLATE, 818 BPF_OFFLOAD_DESTROY, 819 BPF_OFFLOAD_MAP_ALLOC, 820 BPF_OFFLOAD_MAP_FREE, 821 XDP_QUERY_XSK_UMEM, 822 XDP_SETUP_XSK_UMEM, 823 }; 824 825 struct bpf_prog_offload_ops; 826 struct netlink_ext_ack; 827 struct xdp_umem; 828 829 struct netdev_bpf { 830 enum bpf_netdev_command command; 831 union { 832 /* XDP_SETUP_PROG */ 833 struct { 834 u32 flags; 835 struct bpf_prog *prog; 836 struct netlink_ext_ack *extack; 837 }; 838 /* XDP_QUERY_PROG */ 839 struct { 840 u8 prog_attached; 841 u32 prog_id; 842 /* flags with which program was installed */ 843 u32 prog_flags; 844 }; 845 /* BPF_OFFLOAD_VERIFIER_PREP */ 846 struct { 847 struct bpf_prog *prog; 848 const struct bpf_prog_offload_ops *ops; /* callee set */ 849 } verifier; 850 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 851 struct { 852 struct bpf_prog *prog; 853 } offload; 854 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 855 struct { 856 struct bpf_offloaded_map *offmap; 857 }; 858 /* XDP_SETUP_XSK_UMEM */ 859 struct { 860 struct xdp_umem *umem; 861 u16 queue_id; 862 } xsk; 863 }; 864 }; 865 866 #ifdef CONFIG_XFRM_OFFLOAD 867 struct xfrmdev_ops { 868 int (*xdo_dev_state_add) (struct xfrm_state *x); 869 void (*xdo_dev_state_delete) (struct xfrm_state *x); 870 void (*xdo_dev_state_free) (struct xfrm_state *x); 871 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 872 struct xfrm_state *x); 873 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 874 }; 875 #endif 876 877 #if IS_ENABLED(CONFIG_TLS_DEVICE) 878 enum tls_offload_ctx_dir { 879 TLS_OFFLOAD_CTX_DIR_RX, 880 TLS_OFFLOAD_CTX_DIR_TX, 881 }; 882 883 struct tls_crypto_info; 884 struct tls_context; 885 886 struct tlsdev_ops { 887 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 888 enum tls_offload_ctx_dir direction, 889 struct tls_crypto_info *crypto_info, 890 u32 start_offload_tcp_sn); 891 void (*tls_dev_del)(struct net_device *netdev, 892 struct tls_context *ctx, 893 enum tls_offload_ctx_dir direction); 894 }; 895 #endif 896 897 struct dev_ifalias { 898 struct rcu_head rcuhead; 899 char ifalias[]; 900 }; 901 902 /* 903 * This structure defines the management hooks for network devices. 904 * The following hooks can be defined; unless noted otherwise, they are 905 * optional and can be filled with a null pointer. 906 * 907 * int (*ndo_init)(struct net_device *dev); 908 * This function is called once when a network device is registered. 909 * The network device can use this for any late stage initialization 910 * or semantic validation. It can fail with an error code which will 911 * be propagated back to register_netdev. 912 * 913 * void (*ndo_uninit)(struct net_device *dev); 914 * This function is called when device is unregistered or when registration 915 * fails. It is not called if init fails. 916 * 917 * int (*ndo_open)(struct net_device *dev); 918 * This function is called when a network device transitions to the up 919 * state. 920 * 921 * int (*ndo_stop)(struct net_device *dev); 922 * This function is called when a network device transitions to the down 923 * state. 924 * 925 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 926 * struct net_device *dev); 927 * Called when a packet needs to be transmitted. 928 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 929 * the queue before that can happen; it's for obsolete devices and weird 930 * corner cases, but the stack really does a non-trivial amount 931 * of useless work if you return NETDEV_TX_BUSY. 932 * Required; cannot be NULL. 933 * 934 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 935 * struct net_device *dev 936 * netdev_features_t features); 937 * Called by core transmit path to determine if device is capable of 938 * performing offload operations on a given packet. This is to give 939 * the device an opportunity to implement any restrictions that cannot 940 * be otherwise expressed by feature flags. The check is called with 941 * the set of features that the stack has calculated and it returns 942 * those the driver believes to be appropriate. 943 * 944 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 945 * void *accel_priv, select_queue_fallback_t fallback); 946 * Called to decide which queue to use when device supports multiple 947 * transmit queues. 948 * 949 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 950 * This function is called to allow device receiver to make 951 * changes to configuration when multicast or promiscuous is enabled. 952 * 953 * void (*ndo_set_rx_mode)(struct net_device *dev); 954 * This function is called device changes address list filtering. 955 * If driver handles unicast address filtering, it should set 956 * IFF_UNICAST_FLT in its priv_flags. 957 * 958 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 959 * This function is called when the Media Access Control address 960 * needs to be changed. If this interface is not defined, the 961 * MAC address can not be changed. 962 * 963 * int (*ndo_validate_addr)(struct net_device *dev); 964 * Test if Media Access Control address is valid for the device. 965 * 966 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 967 * Called when a user requests an ioctl which can't be handled by 968 * the generic interface code. If not defined ioctls return 969 * not supported error code. 970 * 971 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 972 * Used to set network devices bus interface parameters. This interface 973 * is retained for legacy reasons; new devices should use the bus 974 * interface (PCI) for low level management. 975 * 976 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 977 * Called when a user wants to change the Maximum Transfer Unit 978 * of a device. 979 * 980 * void (*ndo_tx_timeout)(struct net_device *dev); 981 * Callback used when the transmitter has not made any progress 982 * for dev->watchdog ticks. 983 * 984 * void (*ndo_get_stats64)(struct net_device *dev, 985 * struct rtnl_link_stats64 *storage); 986 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 987 * Called when a user wants to get the network device usage 988 * statistics. Drivers must do one of the following: 989 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 990 * rtnl_link_stats64 structure passed by the caller. 991 * 2. Define @ndo_get_stats to update a net_device_stats structure 992 * (which should normally be dev->stats) and return a pointer to 993 * it. The structure may be changed asynchronously only if each 994 * field is written atomically. 995 * 3. Update dev->stats asynchronously and atomically, and define 996 * neither operation. 997 * 998 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 999 * Return true if this device supports offload stats of this attr_id. 1000 * 1001 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1002 * void *attr_data) 1003 * Get statistics for offload operations by attr_id. Write it into the 1004 * attr_data pointer. 1005 * 1006 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1007 * If device supports VLAN filtering this function is called when a 1008 * VLAN id is registered. 1009 * 1010 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1011 * If device supports VLAN filtering this function is called when a 1012 * VLAN id is unregistered. 1013 * 1014 * void (*ndo_poll_controller)(struct net_device *dev); 1015 * 1016 * SR-IOV management functions. 1017 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1018 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1019 * u8 qos, __be16 proto); 1020 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1021 * int max_tx_rate); 1022 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1023 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1024 * int (*ndo_get_vf_config)(struct net_device *dev, 1025 * int vf, struct ifla_vf_info *ivf); 1026 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1027 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1028 * struct nlattr *port[]); 1029 * 1030 * Enable or disable the VF ability to query its RSS Redirection Table and 1031 * Hash Key. This is needed since on some devices VF share this information 1032 * with PF and querying it may introduce a theoretical security risk. 1033 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1034 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1035 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1036 * void *type_data); 1037 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1038 * This is always called from the stack with the rtnl lock held and netif 1039 * tx queues stopped. This allows the netdevice to perform queue 1040 * management safely. 1041 * 1042 * Fiber Channel over Ethernet (FCoE) offload functions. 1043 * int (*ndo_fcoe_enable)(struct net_device *dev); 1044 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1045 * so the underlying device can perform whatever needed configuration or 1046 * initialization to support acceleration of FCoE traffic. 1047 * 1048 * int (*ndo_fcoe_disable)(struct net_device *dev); 1049 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1050 * so the underlying device can perform whatever needed clean-ups to 1051 * stop supporting acceleration of FCoE traffic. 1052 * 1053 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1054 * struct scatterlist *sgl, unsigned int sgc); 1055 * Called when the FCoE Initiator wants to initialize an I/O that 1056 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1057 * perform necessary setup and returns 1 to indicate the device is set up 1058 * successfully to perform DDP on this I/O, otherwise this returns 0. 1059 * 1060 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1061 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1062 * indicated by the FC exchange id 'xid', so the underlying device can 1063 * clean up and reuse resources for later DDP requests. 1064 * 1065 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1066 * struct scatterlist *sgl, unsigned int sgc); 1067 * Called when the FCoE Target wants to initialize an I/O that 1068 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1069 * perform necessary setup and returns 1 to indicate the device is set up 1070 * successfully to perform DDP on this I/O, otherwise this returns 0. 1071 * 1072 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1073 * struct netdev_fcoe_hbainfo *hbainfo); 1074 * Called when the FCoE Protocol stack wants information on the underlying 1075 * device. This information is utilized by the FCoE protocol stack to 1076 * register attributes with Fiber Channel management service as per the 1077 * FC-GS Fabric Device Management Information(FDMI) specification. 1078 * 1079 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1080 * Called when the underlying device wants to override default World Wide 1081 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1082 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1083 * protocol stack to use. 1084 * 1085 * RFS acceleration. 1086 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1087 * u16 rxq_index, u32 flow_id); 1088 * Set hardware filter for RFS. rxq_index is the target queue index; 1089 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1090 * Return the filter ID on success, or a negative error code. 1091 * 1092 * Slave management functions (for bridge, bonding, etc). 1093 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1094 * Called to make another netdev an underling. 1095 * 1096 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1097 * Called to release previously enslaved netdev. 1098 * 1099 * Feature/offload setting functions. 1100 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1101 * netdev_features_t features); 1102 * Adjusts the requested feature flags according to device-specific 1103 * constraints, and returns the resulting flags. Must not modify 1104 * the device state. 1105 * 1106 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1107 * Called to update device configuration to new features. Passed 1108 * feature set might be less than what was returned by ndo_fix_features()). 1109 * Must return >0 or -errno if it changed dev->features itself. 1110 * 1111 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1112 * struct net_device *dev, 1113 * const unsigned char *addr, u16 vid, u16 flags) 1114 * Adds an FDB entry to dev for addr. 1115 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1116 * struct net_device *dev, 1117 * const unsigned char *addr, u16 vid) 1118 * Deletes the FDB entry from dev coresponding to addr. 1119 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1120 * struct net_device *dev, struct net_device *filter_dev, 1121 * int *idx) 1122 * Used to add FDB entries to dump requests. Implementers should add 1123 * entries to skb and update idx with the number of entries. 1124 * 1125 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1126 * u16 flags) 1127 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1128 * struct net_device *dev, u32 filter_mask, 1129 * int nlflags) 1130 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1131 * u16 flags); 1132 * 1133 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1134 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1135 * which do not represent real hardware may define this to allow their 1136 * userspace components to manage their virtual carrier state. Devices 1137 * that determine carrier state from physical hardware properties (eg 1138 * network cables) or protocol-dependent mechanisms (eg 1139 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1140 * 1141 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1142 * struct netdev_phys_item_id *ppid); 1143 * Called to get ID of physical port of this device. If driver does 1144 * not implement this, it is assumed that the hw is not able to have 1145 * multiple net devices on single physical port. 1146 * 1147 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1148 * struct udp_tunnel_info *ti); 1149 * Called by UDP tunnel to notify a driver about the UDP port and socket 1150 * address family that a UDP tunnel is listnening to. It is called only 1151 * when a new port starts listening. The operation is protected by the 1152 * RTNL. 1153 * 1154 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1155 * struct udp_tunnel_info *ti); 1156 * Called by UDP tunnel to notify the driver about a UDP port and socket 1157 * address family that the UDP tunnel is not listening to anymore. The 1158 * operation is protected by the RTNL. 1159 * 1160 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1161 * struct net_device *dev) 1162 * Called by upper layer devices to accelerate switching or other 1163 * station functionality into hardware. 'pdev is the lowerdev 1164 * to use for the offload and 'dev' is the net device that will 1165 * back the offload. Returns a pointer to the private structure 1166 * the upper layer will maintain. 1167 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1168 * Called by upper layer device to delete the station created 1169 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1170 * the station and priv is the structure returned by the add 1171 * operation. 1172 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1173 * int queue_index, u32 maxrate); 1174 * Called when a user wants to set a max-rate limitation of specific 1175 * TX queue. 1176 * int (*ndo_get_iflink)(const struct net_device *dev); 1177 * Called to get the iflink value of this device. 1178 * void (*ndo_change_proto_down)(struct net_device *dev, 1179 * bool proto_down); 1180 * This function is used to pass protocol port error state information 1181 * to the switch driver. The switch driver can react to the proto_down 1182 * by doing a phys down on the associated switch port. 1183 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1184 * This function is used to get egress tunnel information for given skb. 1185 * This is useful for retrieving outer tunnel header parameters while 1186 * sampling packet. 1187 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1188 * This function is used to specify the headroom that the skb must 1189 * consider when allocation skb during packet reception. Setting 1190 * appropriate rx headroom value allows avoiding skb head copy on 1191 * forward. Setting a negative value resets the rx headroom to the 1192 * default value. 1193 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1194 * This function is used to set or query state related to XDP on the 1195 * netdevice and manage BPF offload. See definition of 1196 * enum bpf_netdev_command for details. 1197 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1198 * u32 flags); 1199 * This function is used to submit @n XDP packets for transmit on a 1200 * netdevice. Returns number of frames successfully transmitted, frames 1201 * that got dropped are freed/returned via xdp_return_frame(). 1202 * Returns negative number, means general error invoking ndo, meaning 1203 * no frames were xmit'ed and core-caller will free all frames. 1204 */ 1205 struct net_device_ops { 1206 int (*ndo_init)(struct net_device *dev); 1207 void (*ndo_uninit)(struct net_device *dev); 1208 int (*ndo_open)(struct net_device *dev); 1209 int (*ndo_stop)(struct net_device *dev); 1210 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1211 struct net_device *dev); 1212 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1213 struct net_device *dev, 1214 netdev_features_t features); 1215 u16 (*ndo_select_queue)(struct net_device *dev, 1216 struct sk_buff *skb, 1217 void *accel_priv, 1218 select_queue_fallback_t fallback); 1219 void (*ndo_change_rx_flags)(struct net_device *dev, 1220 int flags); 1221 void (*ndo_set_rx_mode)(struct net_device *dev); 1222 int (*ndo_set_mac_address)(struct net_device *dev, 1223 void *addr); 1224 int (*ndo_validate_addr)(struct net_device *dev); 1225 int (*ndo_do_ioctl)(struct net_device *dev, 1226 struct ifreq *ifr, int cmd); 1227 int (*ndo_set_config)(struct net_device *dev, 1228 struct ifmap *map); 1229 int (*ndo_change_mtu)(struct net_device *dev, 1230 int new_mtu); 1231 int (*ndo_neigh_setup)(struct net_device *dev, 1232 struct neigh_parms *); 1233 void (*ndo_tx_timeout) (struct net_device *dev); 1234 1235 void (*ndo_get_stats64)(struct net_device *dev, 1236 struct rtnl_link_stats64 *storage); 1237 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1238 int (*ndo_get_offload_stats)(int attr_id, 1239 const struct net_device *dev, 1240 void *attr_data); 1241 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1242 1243 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1244 __be16 proto, u16 vid); 1245 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1246 __be16 proto, u16 vid); 1247 #ifdef CONFIG_NET_POLL_CONTROLLER 1248 void (*ndo_poll_controller)(struct net_device *dev); 1249 int (*ndo_netpoll_setup)(struct net_device *dev, 1250 struct netpoll_info *info); 1251 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1252 #endif 1253 int (*ndo_set_vf_mac)(struct net_device *dev, 1254 int queue, u8 *mac); 1255 int (*ndo_set_vf_vlan)(struct net_device *dev, 1256 int queue, u16 vlan, 1257 u8 qos, __be16 proto); 1258 int (*ndo_set_vf_rate)(struct net_device *dev, 1259 int vf, int min_tx_rate, 1260 int max_tx_rate); 1261 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1262 int vf, bool setting); 1263 int (*ndo_set_vf_trust)(struct net_device *dev, 1264 int vf, bool setting); 1265 int (*ndo_get_vf_config)(struct net_device *dev, 1266 int vf, 1267 struct ifla_vf_info *ivf); 1268 int (*ndo_set_vf_link_state)(struct net_device *dev, 1269 int vf, int link_state); 1270 int (*ndo_get_vf_stats)(struct net_device *dev, 1271 int vf, 1272 struct ifla_vf_stats 1273 *vf_stats); 1274 int (*ndo_set_vf_port)(struct net_device *dev, 1275 int vf, 1276 struct nlattr *port[]); 1277 int (*ndo_get_vf_port)(struct net_device *dev, 1278 int vf, struct sk_buff *skb); 1279 int (*ndo_set_vf_guid)(struct net_device *dev, 1280 int vf, u64 guid, 1281 int guid_type); 1282 int (*ndo_set_vf_rss_query_en)( 1283 struct net_device *dev, 1284 int vf, bool setting); 1285 int (*ndo_setup_tc)(struct net_device *dev, 1286 enum tc_setup_type type, 1287 void *type_data); 1288 #if IS_ENABLED(CONFIG_FCOE) 1289 int (*ndo_fcoe_enable)(struct net_device *dev); 1290 int (*ndo_fcoe_disable)(struct net_device *dev); 1291 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1292 u16 xid, 1293 struct scatterlist *sgl, 1294 unsigned int sgc); 1295 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1296 u16 xid); 1297 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1298 u16 xid, 1299 struct scatterlist *sgl, 1300 unsigned int sgc); 1301 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1302 struct netdev_fcoe_hbainfo *hbainfo); 1303 #endif 1304 1305 #if IS_ENABLED(CONFIG_LIBFCOE) 1306 #define NETDEV_FCOE_WWNN 0 1307 #define NETDEV_FCOE_WWPN 1 1308 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1309 u64 *wwn, int type); 1310 #endif 1311 1312 #ifdef CONFIG_RFS_ACCEL 1313 int (*ndo_rx_flow_steer)(struct net_device *dev, 1314 const struct sk_buff *skb, 1315 u16 rxq_index, 1316 u32 flow_id); 1317 #endif 1318 int (*ndo_add_slave)(struct net_device *dev, 1319 struct net_device *slave_dev, 1320 struct netlink_ext_ack *extack); 1321 int (*ndo_del_slave)(struct net_device *dev, 1322 struct net_device *slave_dev); 1323 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1324 netdev_features_t features); 1325 int (*ndo_set_features)(struct net_device *dev, 1326 netdev_features_t features); 1327 int (*ndo_neigh_construct)(struct net_device *dev, 1328 struct neighbour *n); 1329 void (*ndo_neigh_destroy)(struct net_device *dev, 1330 struct neighbour *n); 1331 1332 int (*ndo_fdb_add)(struct ndmsg *ndm, 1333 struct nlattr *tb[], 1334 struct net_device *dev, 1335 const unsigned char *addr, 1336 u16 vid, 1337 u16 flags); 1338 int (*ndo_fdb_del)(struct ndmsg *ndm, 1339 struct nlattr *tb[], 1340 struct net_device *dev, 1341 const unsigned char *addr, 1342 u16 vid); 1343 int (*ndo_fdb_dump)(struct sk_buff *skb, 1344 struct netlink_callback *cb, 1345 struct net_device *dev, 1346 struct net_device *filter_dev, 1347 int *idx); 1348 1349 int (*ndo_bridge_setlink)(struct net_device *dev, 1350 struct nlmsghdr *nlh, 1351 u16 flags); 1352 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1353 u32 pid, u32 seq, 1354 struct net_device *dev, 1355 u32 filter_mask, 1356 int nlflags); 1357 int (*ndo_bridge_dellink)(struct net_device *dev, 1358 struct nlmsghdr *nlh, 1359 u16 flags); 1360 int (*ndo_change_carrier)(struct net_device *dev, 1361 bool new_carrier); 1362 int (*ndo_get_phys_port_id)(struct net_device *dev, 1363 struct netdev_phys_item_id *ppid); 1364 int (*ndo_get_phys_port_name)(struct net_device *dev, 1365 char *name, size_t len); 1366 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1367 struct udp_tunnel_info *ti); 1368 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1369 struct udp_tunnel_info *ti); 1370 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1371 struct net_device *dev); 1372 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1373 void *priv); 1374 1375 int (*ndo_get_lock_subclass)(struct net_device *dev); 1376 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1377 int queue_index, 1378 u32 maxrate); 1379 int (*ndo_get_iflink)(const struct net_device *dev); 1380 int (*ndo_change_proto_down)(struct net_device *dev, 1381 bool proto_down); 1382 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1383 struct sk_buff *skb); 1384 void (*ndo_set_rx_headroom)(struct net_device *dev, 1385 int needed_headroom); 1386 int (*ndo_bpf)(struct net_device *dev, 1387 struct netdev_bpf *bpf); 1388 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1389 struct xdp_frame **xdp, 1390 u32 flags); 1391 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1392 u32 queue_id); 1393 }; 1394 1395 /** 1396 * enum net_device_priv_flags - &struct net_device priv_flags 1397 * 1398 * These are the &struct net_device, they are only set internally 1399 * by drivers and used in the kernel. These flags are invisible to 1400 * userspace; this means that the order of these flags can change 1401 * during any kernel release. 1402 * 1403 * You should have a pretty good reason to be extending these flags. 1404 * 1405 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1406 * @IFF_EBRIDGE: Ethernet bridging device 1407 * @IFF_BONDING: bonding master or slave 1408 * @IFF_ISATAP: ISATAP interface (RFC4214) 1409 * @IFF_WAN_HDLC: WAN HDLC device 1410 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1411 * release skb->dst 1412 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1413 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1414 * @IFF_MACVLAN_PORT: device used as macvlan port 1415 * @IFF_BRIDGE_PORT: device used as bridge port 1416 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1417 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1418 * @IFF_UNICAST_FLT: Supports unicast filtering 1419 * @IFF_TEAM_PORT: device used as team port 1420 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1421 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1422 * change when it's running 1423 * @IFF_MACVLAN: Macvlan device 1424 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1425 * underlying stacked devices 1426 * @IFF_L3MDEV_MASTER: device is an L3 master device 1427 * @IFF_NO_QUEUE: device can run without qdisc attached 1428 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1429 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1430 * @IFF_TEAM: device is a team device 1431 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1432 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1433 * entity (i.e. the master device for bridged veth) 1434 * @IFF_MACSEC: device is a MACsec device 1435 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1436 * @IFF_FAILOVER: device is a failover master device 1437 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1438 */ 1439 enum netdev_priv_flags { 1440 IFF_802_1Q_VLAN = 1<<0, 1441 IFF_EBRIDGE = 1<<1, 1442 IFF_BONDING = 1<<2, 1443 IFF_ISATAP = 1<<3, 1444 IFF_WAN_HDLC = 1<<4, 1445 IFF_XMIT_DST_RELEASE = 1<<5, 1446 IFF_DONT_BRIDGE = 1<<6, 1447 IFF_DISABLE_NETPOLL = 1<<7, 1448 IFF_MACVLAN_PORT = 1<<8, 1449 IFF_BRIDGE_PORT = 1<<9, 1450 IFF_OVS_DATAPATH = 1<<10, 1451 IFF_TX_SKB_SHARING = 1<<11, 1452 IFF_UNICAST_FLT = 1<<12, 1453 IFF_TEAM_PORT = 1<<13, 1454 IFF_SUPP_NOFCS = 1<<14, 1455 IFF_LIVE_ADDR_CHANGE = 1<<15, 1456 IFF_MACVLAN = 1<<16, 1457 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1458 IFF_L3MDEV_MASTER = 1<<18, 1459 IFF_NO_QUEUE = 1<<19, 1460 IFF_OPENVSWITCH = 1<<20, 1461 IFF_L3MDEV_SLAVE = 1<<21, 1462 IFF_TEAM = 1<<22, 1463 IFF_RXFH_CONFIGURED = 1<<23, 1464 IFF_PHONY_HEADROOM = 1<<24, 1465 IFF_MACSEC = 1<<25, 1466 IFF_NO_RX_HANDLER = 1<<26, 1467 IFF_FAILOVER = 1<<27, 1468 IFF_FAILOVER_SLAVE = 1<<28, 1469 }; 1470 1471 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1472 #define IFF_EBRIDGE IFF_EBRIDGE 1473 #define IFF_BONDING IFF_BONDING 1474 #define IFF_ISATAP IFF_ISATAP 1475 #define IFF_WAN_HDLC IFF_WAN_HDLC 1476 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1477 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1478 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1479 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1480 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1481 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1482 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1483 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1484 #define IFF_TEAM_PORT IFF_TEAM_PORT 1485 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1486 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1487 #define IFF_MACVLAN IFF_MACVLAN 1488 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1489 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1490 #define IFF_NO_QUEUE IFF_NO_QUEUE 1491 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1492 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1493 #define IFF_TEAM IFF_TEAM 1494 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1495 #define IFF_MACSEC IFF_MACSEC 1496 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1497 #define IFF_FAILOVER IFF_FAILOVER 1498 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1499 1500 /** 1501 * struct net_device - The DEVICE structure. 1502 * 1503 * Actually, this whole structure is a big mistake. It mixes I/O 1504 * data with strictly "high-level" data, and it has to know about 1505 * almost every data structure used in the INET module. 1506 * 1507 * @name: This is the first field of the "visible" part of this structure 1508 * (i.e. as seen by users in the "Space.c" file). It is the name 1509 * of the interface. 1510 * 1511 * @name_hlist: Device name hash chain, please keep it close to name[] 1512 * @ifalias: SNMP alias 1513 * @mem_end: Shared memory end 1514 * @mem_start: Shared memory start 1515 * @base_addr: Device I/O address 1516 * @irq: Device IRQ number 1517 * 1518 * @state: Generic network queuing layer state, see netdev_state_t 1519 * @dev_list: The global list of network devices 1520 * @napi_list: List entry used for polling NAPI devices 1521 * @unreg_list: List entry when we are unregistering the 1522 * device; see the function unregister_netdev 1523 * @close_list: List entry used when we are closing the device 1524 * @ptype_all: Device-specific packet handlers for all protocols 1525 * @ptype_specific: Device-specific, protocol-specific packet handlers 1526 * 1527 * @adj_list: Directly linked devices, like slaves for bonding 1528 * @features: Currently active device features 1529 * @hw_features: User-changeable features 1530 * 1531 * @wanted_features: User-requested features 1532 * @vlan_features: Mask of features inheritable by VLAN devices 1533 * 1534 * @hw_enc_features: Mask of features inherited by encapsulating devices 1535 * This field indicates what encapsulation 1536 * offloads the hardware is capable of doing, 1537 * and drivers will need to set them appropriately. 1538 * 1539 * @mpls_features: Mask of features inheritable by MPLS 1540 * 1541 * @ifindex: interface index 1542 * @group: The group the device belongs to 1543 * 1544 * @stats: Statistics struct, which was left as a legacy, use 1545 * rtnl_link_stats64 instead 1546 * 1547 * @rx_dropped: Dropped packets by core network, 1548 * do not use this in drivers 1549 * @tx_dropped: Dropped packets by core network, 1550 * do not use this in drivers 1551 * @rx_nohandler: nohandler dropped packets by core network on 1552 * inactive devices, do not use this in drivers 1553 * @carrier_up_count: Number of times the carrier has been up 1554 * @carrier_down_count: Number of times the carrier has been down 1555 * 1556 * @wireless_handlers: List of functions to handle Wireless Extensions, 1557 * instead of ioctl, 1558 * see <net/iw_handler.h> for details. 1559 * @wireless_data: Instance data managed by the core of wireless extensions 1560 * 1561 * @netdev_ops: Includes several pointers to callbacks, 1562 * if one wants to override the ndo_*() functions 1563 * @ethtool_ops: Management operations 1564 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1565 * discovery handling. Necessary for e.g. 6LoWPAN. 1566 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1567 * of Layer 2 headers. 1568 * 1569 * @flags: Interface flags (a la BSD) 1570 * @priv_flags: Like 'flags' but invisible to userspace, 1571 * see if.h for the definitions 1572 * @gflags: Global flags ( kept as legacy ) 1573 * @padded: How much padding added by alloc_netdev() 1574 * @operstate: RFC2863 operstate 1575 * @link_mode: Mapping policy to operstate 1576 * @if_port: Selectable AUI, TP, ... 1577 * @dma: DMA channel 1578 * @mtu: Interface MTU value 1579 * @min_mtu: Interface Minimum MTU value 1580 * @max_mtu: Interface Maximum MTU value 1581 * @type: Interface hardware type 1582 * @hard_header_len: Maximum hardware header length. 1583 * @min_header_len: Minimum hardware header length 1584 * 1585 * @needed_headroom: Extra headroom the hardware may need, but not in all 1586 * cases can this be guaranteed 1587 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1588 * cases can this be guaranteed. Some cases also use 1589 * LL_MAX_HEADER instead to allocate the skb 1590 * 1591 * interface address info: 1592 * 1593 * @perm_addr: Permanent hw address 1594 * @addr_assign_type: Hw address assignment type 1595 * @addr_len: Hardware address length 1596 * @neigh_priv_len: Used in neigh_alloc() 1597 * @dev_id: Used to differentiate devices that share 1598 * the same link layer address 1599 * @dev_port: Used to differentiate devices that share 1600 * the same function 1601 * @addr_list_lock: XXX: need comments on this one 1602 * @uc_promisc: Counter that indicates promiscuous mode 1603 * has been enabled due to the need to listen to 1604 * additional unicast addresses in a device that 1605 * does not implement ndo_set_rx_mode() 1606 * @uc: unicast mac addresses 1607 * @mc: multicast mac addresses 1608 * @dev_addrs: list of device hw addresses 1609 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1610 * @promiscuity: Number of times the NIC is told to work in 1611 * promiscuous mode; if it becomes 0 the NIC will 1612 * exit promiscuous mode 1613 * @allmulti: Counter, enables or disables allmulticast mode 1614 * 1615 * @vlan_info: VLAN info 1616 * @dsa_ptr: dsa specific data 1617 * @tipc_ptr: TIPC specific data 1618 * @atalk_ptr: AppleTalk link 1619 * @ip_ptr: IPv4 specific data 1620 * @dn_ptr: DECnet specific data 1621 * @ip6_ptr: IPv6 specific data 1622 * @ax25_ptr: AX.25 specific data 1623 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1624 * 1625 * @dev_addr: Hw address (before bcast, 1626 * because most packets are unicast) 1627 * 1628 * @_rx: Array of RX queues 1629 * @num_rx_queues: Number of RX queues 1630 * allocated at register_netdev() time 1631 * @real_num_rx_queues: Number of RX queues currently active in device 1632 * 1633 * @rx_handler: handler for received packets 1634 * @rx_handler_data: XXX: need comments on this one 1635 * @miniq_ingress: ingress/clsact qdisc specific data for 1636 * ingress processing 1637 * @ingress_queue: XXX: need comments on this one 1638 * @broadcast: hw bcast address 1639 * 1640 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1641 * indexed by RX queue number. Assigned by driver. 1642 * This must only be set if the ndo_rx_flow_steer 1643 * operation is defined 1644 * @index_hlist: Device index hash chain 1645 * 1646 * @_tx: Array of TX queues 1647 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1648 * @real_num_tx_queues: Number of TX queues currently active in device 1649 * @qdisc: Root qdisc from userspace point of view 1650 * @tx_queue_len: Max frames per queue allowed 1651 * @tx_global_lock: XXX: need comments on this one 1652 * 1653 * @xps_maps: XXX: need comments on this one 1654 * @miniq_egress: clsact qdisc specific data for 1655 * egress processing 1656 * @watchdog_timeo: Represents the timeout that is used by 1657 * the watchdog (see dev_watchdog()) 1658 * @watchdog_timer: List of timers 1659 * 1660 * @pcpu_refcnt: Number of references to this device 1661 * @todo_list: Delayed register/unregister 1662 * @link_watch_list: XXX: need comments on this one 1663 * 1664 * @reg_state: Register/unregister state machine 1665 * @dismantle: Device is going to be freed 1666 * @rtnl_link_state: This enum represents the phases of creating 1667 * a new link 1668 * 1669 * @needs_free_netdev: Should unregister perform free_netdev? 1670 * @priv_destructor: Called from unregister 1671 * @npinfo: XXX: need comments on this one 1672 * @nd_net: Network namespace this network device is inside 1673 * 1674 * @ml_priv: Mid-layer private 1675 * @lstats: Loopback statistics 1676 * @tstats: Tunnel statistics 1677 * @dstats: Dummy statistics 1678 * @vstats: Virtual ethernet statistics 1679 * 1680 * @garp_port: GARP 1681 * @mrp_port: MRP 1682 * 1683 * @dev: Class/net/name entry 1684 * @sysfs_groups: Space for optional device, statistics and wireless 1685 * sysfs groups 1686 * 1687 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1688 * @rtnl_link_ops: Rtnl_link_ops 1689 * 1690 * @gso_max_size: Maximum size of generic segmentation offload 1691 * @gso_max_segs: Maximum number of segments that can be passed to the 1692 * NIC for GSO 1693 * 1694 * @dcbnl_ops: Data Center Bridging netlink ops 1695 * @num_tc: Number of traffic classes in the net device 1696 * @tc_to_txq: XXX: need comments on this one 1697 * @prio_tc_map: XXX: need comments on this one 1698 * 1699 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1700 * 1701 * @priomap: XXX: need comments on this one 1702 * @phydev: Physical device may attach itself 1703 * for hardware timestamping 1704 * @sfp_bus: attached &struct sfp_bus structure. 1705 * 1706 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1707 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1708 * 1709 * @proto_down: protocol port state information can be sent to the 1710 * switch driver and used to set the phys state of the 1711 * switch port. 1712 * 1713 * FIXME: cleanup struct net_device such that network protocol info 1714 * moves out. 1715 */ 1716 1717 struct net_device { 1718 char name[IFNAMSIZ]; 1719 struct hlist_node name_hlist; 1720 struct dev_ifalias __rcu *ifalias; 1721 /* 1722 * I/O specific fields 1723 * FIXME: Merge these and struct ifmap into one 1724 */ 1725 unsigned long mem_end; 1726 unsigned long mem_start; 1727 unsigned long base_addr; 1728 int irq; 1729 1730 /* 1731 * Some hardware also needs these fields (state,dev_list, 1732 * napi_list,unreg_list,close_list) but they are not 1733 * part of the usual set specified in Space.c. 1734 */ 1735 1736 unsigned long state; 1737 1738 struct list_head dev_list; 1739 struct list_head napi_list; 1740 struct list_head unreg_list; 1741 struct list_head close_list; 1742 struct list_head ptype_all; 1743 struct list_head ptype_specific; 1744 1745 struct { 1746 struct list_head upper; 1747 struct list_head lower; 1748 } adj_list; 1749 1750 netdev_features_t features; 1751 netdev_features_t hw_features; 1752 netdev_features_t wanted_features; 1753 netdev_features_t vlan_features; 1754 netdev_features_t hw_enc_features; 1755 netdev_features_t mpls_features; 1756 netdev_features_t gso_partial_features; 1757 1758 int ifindex; 1759 int group; 1760 1761 struct net_device_stats stats; 1762 1763 atomic_long_t rx_dropped; 1764 atomic_long_t tx_dropped; 1765 atomic_long_t rx_nohandler; 1766 1767 /* Stats to monitor link on/off, flapping */ 1768 atomic_t carrier_up_count; 1769 atomic_t carrier_down_count; 1770 1771 #ifdef CONFIG_WIRELESS_EXT 1772 const struct iw_handler_def *wireless_handlers; 1773 struct iw_public_data *wireless_data; 1774 #endif 1775 const struct net_device_ops *netdev_ops; 1776 const struct ethtool_ops *ethtool_ops; 1777 #ifdef CONFIG_NET_SWITCHDEV 1778 const struct switchdev_ops *switchdev_ops; 1779 #endif 1780 #ifdef CONFIG_NET_L3_MASTER_DEV 1781 const struct l3mdev_ops *l3mdev_ops; 1782 #endif 1783 #if IS_ENABLED(CONFIG_IPV6) 1784 const struct ndisc_ops *ndisc_ops; 1785 #endif 1786 1787 #ifdef CONFIG_XFRM_OFFLOAD 1788 const struct xfrmdev_ops *xfrmdev_ops; 1789 #endif 1790 1791 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1792 const struct tlsdev_ops *tlsdev_ops; 1793 #endif 1794 1795 const struct header_ops *header_ops; 1796 1797 unsigned int flags; 1798 unsigned int priv_flags; 1799 1800 unsigned short gflags; 1801 unsigned short padded; 1802 1803 unsigned char operstate; 1804 unsigned char link_mode; 1805 1806 unsigned char if_port; 1807 unsigned char dma; 1808 1809 unsigned int mtu; 1810 unsigned int min_mtu; 1811 unsigned int max_mtu; 1812 unsigned short type; 1813 unsigned short hard_header_len; 1814 unsigned char min_header_len; 1815 1816 unsigned short needed_headroom; 1817 unsigned short needed_tailroom; 1818 1819 /* Interface address info. */ 1820 unsigned char perm_addr[MAX_ADDR_LEN]; 1821 unsigned char addr_assign_type; 1822 unsigned char addr_len; 1823 unsigned short neigh_priv_len; 1824 unsigned short dev_id; 1825 unsigned short dev_port; 1826 spinlock_t addr_list_lock; 1827 unsigned char name_assign_type; 1828 bool uc_promisc; 1829 struct netdev_hw_addr_list uc; 1830 struct netdev_hw_addr_list mc; 1831 struct netdev_hw_addr_list dev_addrs; 1832 1833 #ifdef CONFIG_SYSFS 1834 struct kset *queues_kset; 1835 #endif 1836 unsigned int promiscuity; 1837 unsigned int allmulti; 1838 1839 1840 /* Protocol-specific pointers */ 1841 1842 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1843 struct vlan_info __rcu *vlan_info; 1844 #endif 1845 #if IS_ENABLED(CONFIG_NET_DSA) 1846 struct dsa_port *dsa_ptr; 1847 #endif 1848 #if IS_ENABLED(CONFIG_TIPC) 1849 struct tipc_bearer __rcu *tipc_ptr; 1850 #endif 1851 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1852 void *atalk_ptr; 1853 #endif 1854 struct in_device __rcu *ip_ptr; 1855 #if IS_ENABLED(CONFIG_DECNET) 1856 struct dn_dev __rcu *dn_ptr; 1857 #endif 1858 struct inet6_dev __rcu *ip6_ptr; 1859 #if IS_ENABLED(CONFIG_AX25) 1860 void *ax25_ptr; 1861 #endif 1862 struct wireless_dev *ieee80211_ptr; 1863 struct wpan_dev *ieee802154_ptr; 1864 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1865 struct mpls_dev __rcu *mpls_ptr; 1866 #endif 1867 1868 /* 1869 * Cache lines mostly used on receive path (including eth_type_trans()) 1870 */ 1871 /* Interface address info used in eth_type_trans() */ 1872 unsigned char *dev_addr; 1873 1874 struct netdev_rx_queue *_rx; 1875 unsigned int num_rx_queues; 1876 unsigned int real_num_rx_queues; 1877 1878 struct bpf_prog __rcu *xdp_prog; 1879 unsigned long gro_flush_timeout; 1880 rx_handler_func_t __rcu *rx_handler; 1881 void __rcu *rx_handler_data; 1882 1883 #ifdef CONFIG_NET_CLS_ACT 1884 struct mini_Qdisc __rcu *miniq_ingress; 1885 #endif 1886 struct netdev_queue __rcu *ingress_queue; 1887 #ifdef CONFIG_NETFILTER_INGRESS 1888 struct nf_hook_entries __rcu *nf_hooks_ingress; 1889 #endif 1890 1891 unsigned char broadcast[MAX_ADDR_LEN]; 1892 #ifdef CONFIG_RFS_ACCEL 1893 struct cpu_rmap *rx_cpu_rmap; 1894 #endif 1895 struct hlist_node index_hlist; 1896 1897 /* 1898 * Cache lines mostly used on transmit path 1899 */ 1900 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1901 unsigned int num_tx_queues; 1902 unsigned int real_num_tx_queues; 1903 struct Qdisc *qdisc; 1904 #ifdef CONFIG_NET_SCHED 1905 DECLARE_HASHTABLE (qdisc_hash, 4); 1906 #endif 1907 unsigned int tx_queue_len; 1908 spinlock_t tx_global_lock; 1909 int watchdog_timeo; 1910 1911 #ifdef CONFIG_XPS 1912 struct xps_dev_maps __rcu *xps_maps; 1913 #endif 1914 #ifdef CONFIG_NET_CLS_ACT 1915 struct mini_Qdisc __rcu *miniq_egress; 1916 #endif 1917 1918 /* These may be needed for future network-power-down code. */ 1919 struct timer_list watchdog_timer; 1920 1921 int __percpu *pcpu_refcnt; 1922 struct list_head todo_list; 1923 1924 struct list_head link_watch_list; 1925 1926 enum { NETREG_UNINITIALIZED=0, 1927 NETREG_REGISTERED, /* completed register_netdevice */ 1928 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1929 NETREG_UNREGISTERED, /* completed unregister todo */ 1930 NETREG_RELEASED, /* called free_netdev */ 1931 NETREG_DUMMY, /* dummy device for NAPI poll */ 1932 } reg_state:8; 1933 1934 bool dismantle; 1935 1936 enum { 1937 RTNL_LINK_INITIALIZED, 1938 RTNL_LINK_INITIALIZING, 1939 } rtnl_link_state:16; 1940 1941 bool needs_free_netdev; 1942 void (*priv_destructor)(struct net_device *dev); 1943 1944 #ifdef CONFIG_NETPOLL 1945 struct netpoll_info __rcu *npinfo; 1946 #endif 1947 1948 possible_net_t nd_net; 1949 1950 /* mid-layer private */ 1951 union { 1952 void *ml_priv; 1953 struct pcpu_lstats __percpu *lstats; 1954 struct pcpu_sw_netstats __percpu *tstats; 1955 struct pcpu_dstats __percpu *dstats; 1956 struct pcpu_vstats __percpu *vstats; 1957 }; 1958 1959 #if IS_ENABLED(CONFIG_GARP) 1960 struct garp_port __rcu *garp_port; 1961 #endif 1962 #if IS_ENABLED(CONFIG_MRP) 1963 struct mrp_port __rcu *mrp_port; 1964 #endif 1965 1966 struct device dev; 1967 const struct attribute_group *sysfs_groups[4]; 1968 const struct attribute_group *sysfs_rx_queue_group; 1969 1970 const struct rtnl_link_ops *rtnl_link_ops; 1971 1972 /* for setting kernel sock attribute on TCP connection setup */ 1973 #define GSO_MAX_SIZE 65536 1974 unsigned int gso_max_size; 1975 #define GSO_MAX_SEGS 65535 1976 u16 gso_max_segs; 1977 1978 #ifdef CONFIG_DCB 1979 const struct dcbnl_rtnl_ops *dcbnl_ops; 1980 #endif 1981 u8 num_tc; 1982 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1983 u8 prio_tc_map[TC_BITMASK + 1]; 1984 1985 #if IS_ENABLED(CONFIG_FCOE) 1986 unsigned int fcoe_ddp_xid; 1987 #endif 1988 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1989 struct netprio_map __rcu *priomap; 1990 #endif 1991 struct phy_device *phydev; 1992 struct sfp_bus *sfp_bus; 1993 struct lock_class_key *qdisc_tx_busylock; 1994 struct lock_class_key *qdisc_running_key; 1995 bool proto_down; 1996 }; 1997 #define to_net_dev(d) container_of(d, struct net_device, dev) 1998 1999 static inline bool netif_elide_gro(const struct net_device *dev) 2000 { 2001 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2002 return true; 2003 return false; 2004 } 2005 2006 #define NETDEV_ALIGN 32 2007 2008 static inline 2009 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2010 { 2011 return dev->prio_tc_map[prio & TC_BITMASK]; 2012 } 2013 2014 static inline 2015 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2016 { 2017 if (tc >= dev->num_tc) 2018 return -EINVAL; 2019 2020 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2021 return 0; 2022 } 2023 2024 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2025 void netdev_reset_tc(struct net_device *dev); 2026 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2027 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2028 2029 static inline 2030 int netdev_get_num_tc(struct net_device *dev) 2031 { 2032 return dev->num_tc; 2033 } 2034 2035 static inline 2036 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2037 unsigned int index) 2038 { 2039 return &dev->_tx[index]; 2040 } 2041 2042 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2043 const struct sk_buff *skb) 2044 { 2045 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2046 } 2047 2048 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2049 void (*f)(struct net_device *, 2050 struct netdev_queue *, 2051 void *), 2052 void *arg) 2053 { 2054 unsigned int i; 2055 2056 for (i = 0; i < dev->num_tx_queues; i++) 2057 f(dev, &dev->_tx[i], arg); 2058 } 2059 2060 #define netdev_lockdep_set_classes(dev) \ 2061 { \ 2062 static struct lock_class_key qdisc_tx_busylock_key; \ 2063 static struct lock_class_key qdisc_running_key; \ 2064 static struct lock_class_key qdisc_xmit_lock_key; \ 2065 static struct lock_class_key dev_addr_list_lock_key; \ 2066 unsigned int i; \ 2067 \ 2068 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2069 (dev)->qdisc_running_key = &qdisc_running_key; \ 2070 lockdep_set_class(&(dev)->addr_list_lock, \ 2071 &dev_addr_list_lock_key); \ 2072 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2073 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2074 &qdisc_xmit_lock_key); \ 2075 } 2076 2077 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2078 struct sk_buff *skb, 2079 void *accel_priv); 2080 2081 /* returns the headroom that the master device needs to take in account 2082 * when forwarding to this dev 2083 */ 2084 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2085 { 2086 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2087 } 2088 2089 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2090 { 2091 if (dev->netdev_ops->ndo_set_rx_headroom) 2092 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2093 } 2094 2095 /* set the device rx headroom to the dev's default */ 2096 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2097 { 2098 netdev_set_rx_headroom(dev, -1); 2099 } 2100 2101 /* 2102 * Net namespace inlines 2103 */ 2104 static inline 2105 struct net *dev_net(const struct net_device *dev) 2106 { 2107 return read_pnet(&dev->nd_net); 2108 } 2109 2110 static inline 2111 void dev_net_set(struct net_device *dev, struct net *net) 2112 { 2113 write_pnet(&dev->nd_net, net); 2114 } 2115 2116 /** 2117 * netdev_priv - access network device private data 2118 * @dev: network device 2119 * 2120 * Get network device private data 2121 */ 2122 static inline void *netdev_priv(const struct net_device *dev) 2123 { 2124 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2125 } 2126 2127 /* Set the sysfs physical device reference for the network logical device 2128 * if set prior to registration will cause a symlink during initialization. 2129 */ 2130 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2131 2132 /* Set the sysfs device type for the network logical device to allow 2133 * fine-grained identification of different network device types. For 2134 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2135 */ 2136 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2137 2138 /* Default NAPI poll() weight 2139 * Device drivers are strongly advised to not use bigger value 2140 */ 2141 #define NAPI_POLL_WEIGHT 64 2142 2143 /** 2144 * netif_napi_add - initialize a NAPI context 2145 * @dev: network device 2146 * @napi: NAPI context 2147 * @poll: polling function 2148 * @weight: default weight 2149 * 2150 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2151 * *any* of the other NAPI-related functions. 2152 */ 2153 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2154 int (*poll)(struct napi_struct *, int), int weight); 2155 2156 /** 2157 * netif_tx_napi_add - initialize a NAPI context 2158 * @dev: network device 2159 * @napi: NAPI context 2160 * @poll: polling function 2161 * @weight: default weight 2162 * 2163 * This variant of netif_napi_add() should be used from drivers using NAPI 2164 * to exclusively poll a TX queue. 2165 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2166 */ 2167 static inline void netif_tx_napi_add(struct net_device *dev, 2168 struct napi_struct *napi, 2169 int (*poll)(struct napi_struct *, int), 2170 int weight) 2171 { 2172 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2173 netif_napi_add(dev, napi, poll, weight); 2174 } 2175 2176 /** 2177 * netif_napi_del - remove a NAPI context 2178 * @napi: NAPI context 2179 * 2180 * netif_napi_del() removes a NAPI context from the network device NAPI list 2181 */ 2182 void netif_napi_del(struct napi_struct *napi); 2183 2184 struct napi_gro_cb { 2185 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2186 void *frag0; 2187 2188 /* Length of frag0. */ 2189 unsigned int frag0_len; 2190 2191 /* This indicates where we are processing relative to skb->data. */ 2192 int data_offset; 2193 2194 /* This is non-zero if the packet cannot be merged with the new skb. */ 2195 u16 flush; 2196 2197 /* Save the IP ID here and check when we get to the transport layer */ 2198 u16 flush_id; 2199 2200 /* Number of segments aggregated. */ 2201 u16 count; 2202 2203 /* Start offset for remote checksum offload */ 2204 u16 gro_remcsum_start; 2205 2206 /* jiffies when first packet was created/queued */ 2207 unsigned long age; 2208 2209 /* Used in ipv6_gro_receive() and foo-over-udp */ 2210 u16 proto; 2211 2212 /* This is non-zero if the packet may be of the same flow. */ 2213 u8 same_flow:1; 2214 2215 /* Used in tunnel GRO receive */ 2216 u8 encap_mark:1; 2217 2218 /* GRO checksum is valid */ 2219 u8 csum_valid:1; 2220 2221 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2222 u8 csum_cnt:3; 2223 2224 /* Free the skb? */ 2225 u8 free:2; 2226 #define NAPI_GRO_FREE 1 2227 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2228 2229 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2230 u8 is_ipv6:1; 2231 2232 /* Used in GRE, set in fou/gue_gro_receive */ 2233 u8 is_fou:1; 2234 2235 /* Used to determine if flush_id can be ignored */ 2236 u8 is_atomic:1; 2237 2238 /* Number of gro_receive callbacks this packet already went through */ 2239 u8 recursion_counter:4; 2240 2241 /* 1 bit hole */ 2242 2243 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2244 __wsum csum; 2245 2246 /* used in skb_gro_receive() slow path */ 2247 struct sk_buff *last; 2248 }; 2249 2250 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2251 2252 #define GRO_RECURSION_LIMIT 15 2253 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2254 { 2255 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2256 } 2257 2258 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2259 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2260 struct sk_buff **head, 2261 struct sk_buff *skb) 2262 { 2263 if (unlikely(gro_recursion_inc_test(skb))) { 2264 NAPI_GRO_CB(skb)->flush |= 1; 2265 return NULL; 2266 } 2267 2268 return cb(head, skb); 2269 } 2270 2271 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2272 struct sk_buff *); 2273 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2274 struct sock *sk, 2275 struct sk_buff **head, 2276 struct sk_buff *skb) 2277 { 2278 if (unlikely(gro_recursion_inc_test(skb))) { 2279 NAPI_GRO_CB(skb)->flush |= 1; 2280 return NULL; 2281 } 2282 2283 return cb(sk, head, skb); 2284 } 2285 2286 struct packet_type { 2287 __be16 type; /* This is really htons(ether_type). */ 2288 struct net_device *dev; /* NULL is wildcarded here */ 2289 int (*func) (struct sk_buff *, 2290 struct net_device *, 2291 struct packet_type *, 2292 struct net_device *); 2293 bool (*id_match)(struct packet_type *ptype, 2294 struct sock *sk); 2295 void *af_packet_priv; 2296 struct list_head list; 2297 }; 2298 2299 struct offload_callbacks { 2300 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2301 netdev_features_t features); 2302 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2303 struct sk_buff *skb); 2304 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2305 }; 2306 2307 struct packet_offload { 2308 __be16 type; /* This is really htons(ether_type). */ 2309 u16 priority; 2310 struct offload_callbacks callbacks; 2311 struct list_head list; 2312 }; 2313 2314 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2315 struct pcpu_sw_netstats { 2316 u64 rx_packets; 2317 u64 rx_bytes; 2318 u64 tx_packets; 2319 u64 tx_bytes; 2320 struct u64_stats_sync syncp; 2321 }; 2322 2323 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2324 ({ \ 2325 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2326 if (pcpu_stats) { \ 2327 int __cpu; \ 2328 for_each_possible_cpu(__cpu) { \ 2329 typeof(type) *stat; \ 2330 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2331 u64_stats_init(&stat->syncp); \ 2332 } \ 2333 } \ 2334 pcpu_stats; \ 2335 }) 2336 2337 #define netdev_alloc_pcpu_stats(type) \ 2338 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2339 2340 enum netdev_lag_tx_type { 2341 NETDEV_LAG_TX_TYPE_UNKNOWN, 2342 NETDEV_LAG_TX_TYPE_RANDOM, 2343 NETDEV_LAG_TX_TYPE_BROADCAST, 2344 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2345 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2346 NETDEV_LAG_TX_TYPE_HASH, 2347 }; 2348 2349 enum netdev_lag_hash { 2350 NETDEV_LAG_HASH_NONE, 2351 NETDEV_LAG_HASH_L2, 2352 NETDEV_LAG_HASH_L34, 2353 NETDEV_LAG_HASH_L23, 2354 NETDEV_LAG_HASH_E23, 2355 NETDEV_LAG_HASH_E34, 2356 NETDEV_LAG_HASH_UNKNOWN, 2357 }; 2358 2359 struct netdev_lag_upper_info { 2360 enum netdev_lag_tx_type tx_type; 2361 enum netdev_lag_hash hash_type; 2362 }; 2363 2364 struct netdev_lag_lower_state_info { 2365 u8 link_up : 1, 2366 tx_enabled : 1; 2367 }; 2368 2369 #include <linux/notifier.h> 2370 2371 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2372 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2373 * adding new types. 2374 */ 2375 enum netdev_cmd { 2376 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2377 NETDEV_DOWN, 2378 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2379 detected a hardware crash and restarted 2380 - we can use this eg to kick tcp sessions 2381 once done */ 2382 NETDEV_CHANGE, /* Notify device state change */ 2383 NETDEV_REGISTER, 2384 NETDEV_UNREGISTER, 2385 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2386 NETDEV_CHANGEADDR, 2387 NETDEV_GOING_DOWN, 2388 NETDEV_CHANGENAME, 2389 NETDEV_FEAT_CHANGE, 2390 NETDEV_BONDING_FAILOVER, 2391 NETDEV_PRE_UP, 2392 NETDEV_PRE_TYPE_CHANGE, 2393 NETDEV_POST_TYPE_CHANGE, 2394 NETDEV_POST_INIT, 2395 NETDEV_RELEASE, 2396 NETDEV_NOTIFY_PEERS, 2397 NETDEV_JOIN, 2398 NETDEV_CHANGEUPPER, 2399 NETDEV_RESEND_IGMP, 2400 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2401 NETDEV_CHANGEINFODATA, 2402 NETDEV_BONDING_INFO, 2403 NETDEV_PRECHANGEUPPER, 2404 NETDEV_CHANGELOWERSTATE, 2405 NETDEV_UDP_TUNNEL_PUSH_INFO, 2406 NETDEV_UDP_TUNNEL_DROP_INFO, 2407 NETDEV_CHANGE_TX_QUEUE_LEN, 2408 NETDEV_CVLAN_FILTER_PUSH_INFO, 2409 NETDEV_CVLAN_FILTER_DROP_INFO, 2410 NETDEV_SVLAN_FILTER_PUSH_INFO, 2411 NETDEV_SVLAN_FILTER_DROP_INFO, 2412 }; 2413 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2414 2415 int register_netdevice_notifier(struct notifier_block *nb); 2416 int unregister_netdevice_notifier(struct notifier_block *nb); 2417 2418 struct netdev_notifier_info { 2419 struct net_device *dev; 2420 struct netlink_ext_ack *extack; 2421 }; 2422 2423 struct netdev_notifier_change_info { 2424 struct netdev_notifier_info info; /* must be first */ 2425 unsigned int flags_changed; 2426 }; 2427 2428 struct netdev_notifier_changeupper_info { 2429 struct netdev_notifier_info info; /* must be first */ 2430 struct net_device *upper_dev; /* new upper dev */ 2431 bool master; /* is upper dev master */ 2432 bool linking; /* is the notification for link or unlink */ 2433 void *upper_info; /* upper dev info */ 2434 }; 2435 2436 struct netdev_notifier_changelowerstate_info { 2437 struct netdev_notifier_info info; /* must be first */ 2438 void *lower_state_info; /* is lower dev state */ 2439 }; 2440 2441 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2442 struct net_device *dev) 2443 { 2444 info->dev = dev; 2445 info->extack = NULL; 2446 } 2447 2448 static inline struct net_device * 2449 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2450 { 2451 return info->dev; 2452 } 2453 2454 static inline struct netlink_ext_ack * 2455 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2456 { 2457 return info->extack; 2458 } 2459 2460 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2461 2462 2463 extern rwlock_t dev_base_lock; /* Device list lock */ 2464 2465 #define for_each_netdev(net, d) \ 2466 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2467 #define for_each_netdev_reverse(net, d) \ 2468 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2469 #define for_each_netdev_rcu(net, d) \ 2470 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2471 #define for_each_netdev_safe(net, d, n) \ 2472 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2473 #define for_each_netdev_continue(net, d) \ 2474 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2475 #define for_each_netdev_continue_rcu(net, d) \ 2476 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2477 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2478 for_each_netdev_rcu(&init_net, slave) \ 2479 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2480 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2481 2482 static inline struct net_device *next_net_device(struct net_device *dev) 2483 { 2484 struct list_head *lh; 2485 struct net *net; 2486 2487 net = dev_net(dev); 2488 lh = dev->dev_list.next; 2489 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2490 } 2491 2492 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2493 { 2494 struct list_head *lh; 2495 struct net *net; 2496 2497 net = dev_net(dev); 2498 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2499 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2500 } 2501 2502 static inline struct net_device *first_net_device(struct net *net) 2503 { 2504 return list_empty(&net->dev_base_head) ? NULL : 2505 net_device_entry(net->dev_base_head.next); 2506 } 2507 2508 static inline struct net_device *first_net_device_rcu(struct net *net) 2509 { 2510 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2511 2512 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2513 } 2514 2515 int netdev_boot_setup_check(struct net_device *dev); 2516 unsigned long netdev_boot_base(const char *prefix, int unit); 2517 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2518 const char *hwaddr); 2519 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2520 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2521 void dev_add_pack(struct packet_type *pt); 2522 void dev_remove_pack(struct packet_type *pt); 2523 void __dev_remove_pack(struct packet_type *pt); 2524 void dev_add_offload(struct packet_offload *po); 2525 void dev_remove_offload(struct packet_offload *po); 2526 2527 int dev_get_iflink(const struct net_device *dev); 2528 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2529 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2530 unsigned short mask); 2531 struct net_device *dev_get_by_name(struct net *net, const char *name); 2532 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2533 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2534 int dev_alloc_name(struct net_device *dev, const char *name); 2535 int dev_open(struct net_device *dev); 2536 void dev_close(struct net_device *dev); 2537 void dev_close_many(struct list_head *head, bool unlink); 2538 void dev_disable_lro(struct net_device *dev); 2539 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2540 int dev_queue_xmit(struct sk_buff *skb); 2541 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2542 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2543 int register_netdevice(struct net_device *dev); 2544 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2545 void unregister_netdevice_many(struct list_head *head); 2546 static inline void unregister_netdevice(struct net_device *dev) 2547 { 2548 unregister_netdevice_queue(dev, NULL); 2549 } 2550 2551 int netdev_refcnt_read(const struct net_device *dev); 2552 void free_netdev(struct net_device *dev); 2553 void netdev_freemem(struct net_device *dev); 2554 void synchronize_net(void); 2555 int init_dummy_netdev(struct net_device *dev); 2556 2557 DECLARE_PER_CPU(int, xmit_recursion); 2558 #define XMIT_RECURSION_LIMIT 10 2559 2560 static inline int dev_recursion_level(void) 2561 { 2562 return this_cpu_read(xmit_recursion); 2563 } 2564 2565 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2566 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2567 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2568 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2569 int netdev_get_name(struct net *net, char *name, int ifindex); 2570 int dev_restart(struct net_device *dev); 2571 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2572 2573 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2574 { 2575 return NAPI_GRO_CB(skb)->data_offset; 2576 } 2577 2578 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2579 { 2580 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2581 } 2582 2583 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2584 { 2585 NAPI_GRO_CB(skb)->data_offset += len; 2586 } 2587 2588 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2589 unsigned int offset) 2590 { 2591 return NAPI_GRO_CB(skb)->frag0 + offset; 2592 } 2593 2594 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2595 { 2596 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2597 } 2598 2599 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2600 { 2601 NAPI_GRO_CB(skb)->frag0 = NULL; 2602 NAPI_GRO_CB(skb)->frag0_len = 0; 2603 } 2604 2605 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2606 unsigned int offset) 2607 { 2608 if (!pskb_may_pull(skb, hlen)) 2609 return NULL; 2610 2611 skb_gro_frag0_invalidate(skb); 2612 return skb->data + offset; 2613 } 2614 2615 static inline void *skb_gro_network_header(struct sk_buff *skb) 2616 { 2617 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2618 skb_network_offset(skb); 2619 } 2620 2621 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2622 const void *start, unsigned int len) 2623 { 2624 if (NAPI_GRO_CB(skb)->csum_valid) 2625 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2626 csum_partial(start, len, 0)); 2627 } 2628 2629 /* GRO checksum functions. These are logical equivalents of the normal 2630 * checksum functions (in skbuff.h) except that they operate on the GRO 2631 * offsets and fields in sk_buff. 2632 */ 2633 2634 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2635 2636 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2637 { 2638 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2639 } 2640 2641 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2642 bool zero_okay, 2643 __sum16 check) 2644 { 2645 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2646 skb_checksum_start_offset(skb) < 2647 skb_gro_offset(skb)) && 2648 !skb_at_gro_remcsum_start(skb) && 2649 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2650 (!zero_okay || check)); 2651 } 2652 2653 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2654 __wsum psum) 2655 { 2656 if (NAPI_GRO_CB(skb)->csum_valid && 2657 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2658 return 0; 2659 2660 NAPI_GRO_CB(skb)->csum = psum; 2661 2662 return __skb_gro_checksum_complete(skb); 2663 } 2664 2665 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2666 { 2667 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2668 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2669 NAPI_GRO_CB(skb)->csum_cnt--; 2670 } else { 2671 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2672 * verified a new top level checksum or an encapsulated one 2673 * during GRO. This saves work if we fallback to normal path. 2674 */ 2675 __skb_incr_checksum_unnecessary(skb); 2676 } 2677 } 2678 2679 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2680 compute_pseudo) \ 2681 ({ \ 2682 __sum16 __ret = 0; \ 2683 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2684 __ret = __skb_gro_checksum_validate_complete(skb, \ 2685 compute_pseudo(skb, proto)); \ 2686 if (!__ret) \ 2687 skb_gro_incr_csum_unnecessary(skb); \ 2688 __ret; \ 2689 }) 2690 2691 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2692 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2693 2694 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2695 compute_pseudo) \ 2696 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2697 2698 #define skb_gro_checksum_simple_validate(skb) \ 2699 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2700 2701 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2702 { 2703 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2704 !NAPI_GRO_CB(skb)->csum_valid); 2705 } 2706 2707 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2708 __sum16 check, __wsum pseudo) 2709 { 2710 NAPI_GRO_CB(skb)->csum = ~pseudo; 2711 NAPI_GRO_CB(skb)->csum_valid = 1; 2712 } 2713 2714 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2715 do { \ 2716 if (__skb_gro_checksum_convert_check(skb)) \ 2717 __skb_gro_checksum_convert(skb, check, \ 2718 compute_pseudo(skb, proto)); \ 2719 } while (0) 2720 2721 struct gro_remcsum { 2722 int offset; 2723 __wsum delta; 2724 }; 2725 2726 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2727 { 2728 grc->offset = 0; 2729 grc->delta = 0; 2730 } 2731 2732 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2733 unsigned int off, size_t hdrlen, 2734 int start, int offset, 2735 struct gro_remcsum *grc, 2736 bool nopartial) 2737 { 2738 __wsum delta; 2739 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2740 2741 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2742 2743 if (!nopartial) { 2744 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2745 return ptr; 2746 } 2747 2748 ptr = skb_gro_header_fast(skb, off); 2749 if (skb_gro_header_hard(skb, off + plen)) { 2750 ptr = skb_gro_header_slow(skb, off + plen, off); 2751 if (!ptr) 2752 return NULL; 2753 } 2754 2755 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2756 start, offset); 2757 2758 /* Adjust skb->csum since we changed the packet */ 2759 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2760 2761 grc->offset = off + hdrlen + offset; 2762 grc->delta = delta; 2763 2764 return ptr; 2765 } 2766 2767 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2768 struct gro_remcsum *grc) 2769 { 2770 void *ptr; 2771 size_t plen = grc->offset + sizeof(u16); 2772 2773 if (!grc->delta) 2774 return; 2775 2776 ptr = skb_gro_header_fast(skb, grc->offset); 2777 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2778 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2779 if (!ptr) 2780 return; 2781 } 2782 2783 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2784 } 2785 2786 #ifdef CONFIG_XFRM_OFFLOAD 2787 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2788 { 2789 if (PTR_ERR(pp) != -EINPROGRESS) 2790 NAPI_GRO_CB(skb)->flush |= flush; 2791 } 2792 #else 2793 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2794 { 2795 NAPI_GRO_CB(skb)->flush |= flush; 2796 } 2797 #endif 2798 2799 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2800 unsigned short type, 2801 const void *daddr, const void *saddr, 2802 unsigned int len) 2803 { 2804 if (!dev->header_ops || !dev->header_ops->create) 2805 return 0; 2806 2807 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2808 } 2809 2810 static inline int dev_parse_header(const struct sk_buff *skb, 2811 unsigned char *haddr) 2812 { 2813 const struct net_device *dev = skb->dev; 2814 2815 if (!dev->header_ops || !dev->header_ops->parse) 2816 return 0; 2817 return dev->header_ops->parse(skb, haddr); 2818 } 2819 2820 /* ll_header must have at least hard_header_len allocated */ 2821 static inline bool dev_validate_header(const struct net_device *dev, 2822 char *ll_header, int len) 2823 { 2824 if (likely(len >= dev->hard_header_len)) 2825 return true; 2826 if (len < dev->min_header_len) 2827 return false; 2828 2829 if (capable(CAP_SYS_RAWIO)) { 2830 memset(ll_header + len, 0, dev->hard_header_len - len); 2831 return true; 2832 } 2833 2834 if (dev->header_ops && dev->header_ops->validate) 2835 return dev->header_ops->validate(ll_header, len); 2836 2837 return false; 2838 } 2839 2840 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2841 int len, int size); 2842 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2843 static inline int unregister_gifconf(unsigned int family) 2844 { 2845 return register_gifconf(family, NULL); 2846 } 2847 2848 #ifdef CONFIG_NET_FLOW_LIMIT 2849 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2850 struct sd_flow_limit { 2851 u64 count; 2852 unsigned int num_buckets; 2853 unsigned int history_head; 2854 u16 history[FLOW_LIMIT_HISTORY]; 2855 u8 buckets[]; 2856 }; 2857 2858 extern int netdev_flow_limit_table_len; 2859 #endif /* CONFIG_NET_FLOW_LIMIT */ 2860 2861 /* 2862 * Incoming packets are placed on per-CPU queues 2863 */ 2864 struct softnet_data { 2865 struct list_head poll_list; 2866 struct sk_buff_head process_queue; 2867 2868 /* stats */ 2869 unsigned int processed; 2870 unsigned int time_squeeze; 2871 unsigned int received_rps; 2872 #ifdef CONFIG_RPS 2873 struct softnet_data *rps_ipi_list; 2874 #endif 2875 #ifdef CONFIG_NET_FLOW_LIMIT 2876 struct sd_flow_limit __rcu *flow_limit; 2877 #endif 2878 struct Qdisc *output_queue; 2879 struct Qdisc **output_queue_tailp; 2880 struct sk_buff *completion_queue; 2881 #ifdef CONFIG_XFRM_OFFLOAD 2882 struct sk_buff_head xfrm_backlog; 2883 #endif 2884 #ifdef CONFIG_RPS 2885 /* input_queue_head should be written by cpu owning this struct, 2886 * and only read by other cpus. Worth using a cache line. 2887 */ 2888 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2889 2890 /* Elements below can be accessed between CPUs for RPS/RFS */ 2891 call_single_data_t csd ____cacheline_aligned_in_smp; 2892 struct softnet_data *rps_ipi_next; 2893 unsigned int cpu; 2894 unsigned int input_queue_tail; 2895 #endif 2896 unsigned int dropped; 2897 struct sk_buff_head input_pkt_queue; 2898 struct napi_struct backlog; 2899 2900 }; 2901 2902 static inline void input_queue_head_incr(struct softnet_data *sd) 2903 { 2904 #ifdef CONFIG_RPS 2905 sd->input_queue_head++; 2906 #endif 2907 } 2908 2909 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2910 unsigned int *qtail) 2911 { 2912 #ifdef CONFIG_RPS 2913 *qtail = ++sd->input_queue_tail; 2914 #endif 2915 } 2916 2917 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2918 2919 void __netif_schedule(struct Qdisc *q); 2920 void netif_schedule_queue(struct netdev_queue *txq); 2921 2922 static inline void netif_tx_schedule_all(struct net_device *dev) 2923 { 2924 unsigned int i; 2925 2926 for (i = 0; i < dev->num_tx_queues; i++) 2927 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2928 } 2929 2930 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2931 { 2932 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2933 } 2934 2935 /** 2936 * netif_start_queue - allow transmit 2937 * @dev: network device 2938 * 2939 * Allow upper layers to call the device hard_start_xmit routine. 2940 */ 2941 static inline void netif_start_queue(struct net_device *dev) 2942 { 2943 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2944 } 2945 2946 static inline void netif_tx_start_all_queues(struct net_device *dev) 2947 { 2948 unsigned int i; 2949 2950 for (i = 0; i < dev->num_tx_queues; i++) { 2951 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2952 netif_tx_start_queue(txq); 2953 } 2954 } 2955 2956 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2957 2958 /** 2959 * netif_wake_queue - restart transmit 2960 * @dev: network device 2961 * 2962 * Allow upper layers to call the device hard_start_xmit routine. 2963 * Used for flow control when transmit resources are available. 2964 */ 2965 static inline void netif_wake_queue(struct net_device *dev) 2966 { 2967 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2968 } 2969 2970 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2971 { 2972 unsigned int i; 2973 2974 for (i = 0; i < dev->num_tx_queues; i++) { 2975 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2976 netif_tx_wake_queue(txq); 2977 } 2978 } 2979 2980 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2981 { 2982 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2983 } 2984 2985 /** 2986 * netif_stop_queue - stop transmitted packets 2987 * @dev: network device 2988 * 2989 * Stop upper layers calling the device hard_start_xmit routine. 2990 * Used for flow control when transmit resources are unavailable. 2991 */ 2992 static inline void netif_stop_queue(struct net_device *dev) 2993 { 2994 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2995 } 2996 2997 void netif_tx_stop_all_queues(struct net_device *dev); 2998 2999 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3000 { 3001 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3002 } 3003 3004 /** 3005 * netif_queue_stopped - test if transmit queue is flowblocked 3006 * @dev: network device 3007 * 3008 * Test if transmit queue on device is currently unable to send. 3009 */ 3010 static inline bool netif_queue_stopped(const struct net_device *dev) 3011 { 3012 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3013 } 3014 3015 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3016 { 3017 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3018 } 3019 3020 static inline bool 3021 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3022 { 3023 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3024 } 3025 3026 static inline bool 3027 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3028 { 3029 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3030 } 3031 3032 /** 3033 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3034 * @dev_queue: pointer to transmit queue 3035 * 3036 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3037 * to give appropriate hint to the CPU. 3038 */ 3039 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3040 { 3041 #ifdef CONFIG_BQL 3042 prefetchw(&dev_queue->dql.num_queued); 3043 #endif 3044 } 3045 3046 /** 3047 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3048 * @dev_queue: pointer to transmit queue 3049 * 3050 * BQL enabled drivers might use this helper in their TX completion path, 3051 * to give appropriate hint to the CPU. 3052 */ 3053 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3054 { 3055 #ifdef CONFIG_BQL 3056 prefetchw(&dev_queue->dql.limit); 3057 #endif 3058 } 3059 3060 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3061 unsigned int bytes) 3062 { 3063 #ifdef CONFIG_BQL 3064 dql_queued(&dev_queue->dql, bytes); 3065 3066 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3067 return; 3068 3069 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3070 3071 /* 3072 * The XOFF flag must be set before checking the dql_avail below, 3073 * because in netdev_tx_completed_queue we update the dql_completed 3074 * before checking the XOFF flag. 3075 */ 3076 smp_mb(); 3077 3078 /* check again in case another CPU has just made room avail */ 3079 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3080 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3081 #endif 3082 } 3083 3084 /** 3085 * netdev_sent_queue - report the number of bytes queued to hardware 3086 * @dev: network device 3087 * @bytes: number of bytes queued to the hardware device queue 3088 * 3089 * Report the number of bytes queued for sending/completion to the network 3090 * device hardware queue. @bytes should be a good approximation and should 3091 * exactly match netdev_completed_queue() @bytes 3092 */ 3093 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3094 { 3095 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3096 } 3097 3098 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3099 unsigned int pkts, unsigned int bytes) 3100 { 3101 #ifdef CONFIG_BQL 3102 if (unlikely(!bytes)) 3103 return; 3104 3105 dql_completed(&dev_queue->dql, bytes); 3106 3107 /* 3108 * Without the memory barrier there is a small possiblity that 3109 * netdev_tx_sent_queue will miss the update and cause the queue to 3110 * be stopped forever 3111 */ 3112 smp_mb(); 3113 3114 if (dql_avail(&dev_queue->dql) < 0) 3115 return; 3116 3117 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3118 netif_schedule_queue(dev_queue); 3119 #endif 3120 } 3121 3122 /** 3123 * netdev_completed_queue - report bytes and packets completed by device 3124 * @dev: network device 3125 * @pkts: actual number of packets sent over the medium 3126 * @bytes: actual number of bytes sent over the medium 3127 * 3128 * Report the number of bytes and packets transmitted by the network device 3129 * hardware queue over the physical medium, @bytes must exactly match the 3130 * @bytes amount passed to netdev_sent_queue() 3131 */ 3132 static inline void netdev_completed_queue(struct net_device *dev, 3133 unsigned int pkts, unsigned int bytes) 3134 { 3135 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3136 } 3137 3138 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3139 { 3140 #ifdef CONFIG_BQL 3141 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3142 dql_reset(&q->dql); 3143 #endif 3144 } 3145 3146 /** 3147 * netdev_reset_queue - reset the packets and bytes count of a network device 3148 * @dev_queue: network device 3149 * 3150 * Reset the bytes and packet count of a network device and clear the 3151 * software flow control OFF bit for this network device 3152 */ 3153 static inline void netdev_reset_queue(struct net_device *dev_queue) 3154 { 3155 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3156 } 3157 3158 /** 3159 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3160 * @dev: network device 3161 * @queue_index: given tx queue index 3162 * 3163 * Returns 0 if given tx queue index >= number of device tx queues, 3164 * otherwise returns the originally passed tx queue index. 3165 */ 3166 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3167 { 3168 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3169 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3170 dev->name, queue_index, 3171 dev->real_num_tx_queues); 3172 return 0; 3173 } 3174 3175 return queue_index; 3176 } 3177 3178 /** 3179 * netif_running - test if up 3180 * @dev: network device 3181 * 3182 * Test if the device has been brought up. 3183 */ 3184 static inline bool netif_running(const struct net_device *dev) 3185 { 3186 return test_bit(__LINK_STATE_START, &dev->state); 3187 } 3188 3189 /* 3190 * Routines to manage the subqueues on a device. We only need start, 3191 * stop, and a check if it's stopped. All other device management is 3192 * done at the overall netdevice level. 3193 * Also test the device if we're multiqueue. 3194 */ 3195 3196 /** 3197 * netif_start_subqueue - allow sending packets on subqueue 3198 * @dev: network device 3199 * @queue_index: sub queue index 3200 * 3201 * Start individual transmit queue of a device with multiple transmit queues. 3202 */ 3203 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3204 { 3205 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3206 3207 netif_tx_start_queue(txq); 3208 } 3209 3210 /** 3211 * netif_stop_subqueue - stop sending packets on subqueue 3212 * @dev: network device 3213 * @queue_index: sub queue index 3214 * 3215 * Stop individual transmit queue of a device with multiple transmit queues. 3216 */ 3217 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3218 { 3219 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3220 netif_tx_stop_queue(txq); 3221 } 3222 3223 /** 3224 * netif_subqueue_stopped - test status of subqueue 3225 * @dev: network device 3226 * @queue_index: sub queue index 3227 * 3228 * Check individual transmit queue of a device with multiple transmit queues. 3229 */ 3230 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3231 u16 queue_index) 3232 { 3233 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3234 3235 return netif_tx_queue_stopped(txq); 3236 } 3237 3238 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3239 struct sk_buff *skb) 3240 { 3241 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3242 } 3243 3244 /** 3245 * netif_wake_subqueue - allow sending packets on subqueue 3246 * @dev: network device 3247 * @queue_index: sub queue index 3248 * 3249 * Resume individual transmit queue of a device with multiple transmit queues. 3250 */ 3251 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3252 { 3253 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3254 3255 netif_tx_wake_queue(txq); 3256 } 3257 3258 #ifdef CONFIG_XPS 3259 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3260 u16 index); 3261 #else 3262 static inline int netif_set_xps_queue(struct net_device *dev, 3263 const struct cpumask *mask, 3264 u16 index) 3265 { 3266 return 0; 3267 } 3268 #endif 3269 3270 /** 3271 * netif_is_multiqueue - test if device has multiple transmit queues 3272 * @dev: network device 3273 * 3274 * Check if device has multiple transmit queues 3275 */ 3276 static inline bool netif_is_multiqueue(const struct net_device *dev) 3277 { 3278 return dev->num_tx_queues > 1; 3279 } 3280 3281 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3282 3283 #ifdef CONFIG_SYSFS 3284 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3285 #else 3286 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3287 unsigned int rxq) 3288 { 3289 return 0; 3290 } 3291 #endif 3292 3293 static inline struct netdev_rx_queue * 3294 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3295 { 3296 return dev->_rx + rxq; 3297 } 3298 3299 #ifdef CONFIG_SYSFS 3300 static inline unsigned int get_netdev_rx_queue_index( 3301 struct netdev_rx_queue *queue) 3302 { 3303 struct net_device *dev = queue->dev; 3304 int index = queue - dev->_rx; 3305 3306 BUG_ON(index >= dev->num_rx_queues); 3307 return index; 3308 } 3309 #endif 3310 3311 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3312 int netif_get_num_default_rss_queues(void); 3313 3314 enum skb_free_reason { 3315 SKB_REASON_CONSUMED, 3316 SKB_REASON_DROPPED, 3317 }; 3318 3319 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3320 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3321 3322 /* 3323 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3324 * interrupt context or with hardware interrupts being disabled. 3325 * (in_irq() || irqs_disabled()) 3326 * 3327 * We provide four helpers that can be used in following contexts : 3328 * 3329 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3330 * replacing kfree_skb(skb) 3331 * 3332 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3333 * Typically used in place of consume_skb(skb) in TX completion path 3334 * 3335 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3336 * replacing kfree_skb(skb) 3337 * 3338 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3339 * and consumed a packet. Used in place of consume_skb(skb) 3340 */ 3341 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3342 { 3343 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3344 } 3345 3346 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3347 { 3348 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3349 } 3350 3351 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3352 { 3353 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3354 } 3355 3356 static inline void dev_consume_skb_any(struct sk_buff *skb) 3357 { 3358 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3359 } 3360 3361 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3362 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3363 int netif_rx(struct sk_buff *skb); 3364 int netif_rx_ni(struct sk_buff *skb); 3365 int netif_receive_skb(struct sk_buff *skb); 3366 int netif_receive_skb_core(struct sk_buff *skb); 3367 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3368 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3369 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3370 gro_result_t napi_gro_frags(struct napi_struct *napi); 3371 struct packet_offload *gro_find_receive_by_type(__be16 type); 3372 struct packet_offload *gro_find_complete_by_type(__be16 type); 3373 3374 static inline void napi_free_frags(struct napi_struct *napi) 3375 { 3376 kfree_skb(napi->skb); 3377 napi->skb = NULL; 3378 } 3379 3380 bool netdev_is_rx_handler_busy(struct net_device *dev); 3381 int netdev_rx_handler_register(struct net_device *dev, 3382 rx_handler_func_t *rx_handler, 3383 void *rx_handler_data); 3384 void netdev_rx_handler_unregister(struct net_device *dev); 3385 3386 bool dev_valid_name(const char *name); 3387 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3388 bool *need_copyout); 3389 int dev_ifconf(struct net *net, struct ifconf *, int); 3390 int dev_ethtool(struct net *net, struct ifreq *); 3391 unsigned int dev_get_flags(const struct net_device *); 3392 int __dev_change_flags(struct net_device *, unsigned int flags); 3393 int dev_change_flags(struct net_device *, unsigned int); 3394 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3395 unsigned int gchanges); 3396 int dev_change_name(struct net_device *, const char *); 3397 int dev_set_alias(struct net_device *, const char *, size_t); 3398 int dev_get_alias(const struct net_device *, char *, size_t); 3399 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3400 int __dev_set_mtu(struct net_device *, int); 3401 int dev_set_mtu(struct net_device *, int); 3402 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3403 void dev_set_group(struct net_device *, int); 3404 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3405 int dev_change_carrier(struct net_device *, bool new_carrier); 3406 int dev_get_phys_port_id(struct net_device *dev, 3407 struct netdev_phys_item_id *ppid); 3408 int dev_get_phys_port_name(struct net_device *dev, 3409 char *name, size_t len); 3410 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3411 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3412 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3413 struct netdev_queue *txq, int *ret); 3414 3415 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3416 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3417 int fd, u32 flags); 3418 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3419 struct netdev_bpf *xdp); 3420 3421 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3422 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3423 bool is_skb_forwardable(const struct net_device *dev, 3424 const struct sk_buff *skb); 3425 3426 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3427 struct sk_buff *skb) 3428 { 3429 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3430 unlikely(!is_skb_forwardable(dev, skb))) { 3431 atomic_long_inc(&dev->rx_dropped); 3432 kfree_skb(skb); 3433 return NET_RX_DROP; 3434 } 3435 3436 skb_scrub_packet(skb, true); 3437 skb->priority = 0; 3438 return 0; 3439 } 3440 3441 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3442 3443 extern int netdev_budget; 3444 extern unsigned int netdev_budget_usecs; 3445 3446 /* Called by rtnetlink.c:rtnl_unlock() */ 3447 void netdev_run_todo(void); 3448 3449 /** 3450 * dev_put - release reference to device 3451 * @dev: network device 3452 * 3453 * Release reference to device to allow it to be freed. 3454 */ 3455 static inline void dev_put(struct net_device *dev) 3456 { 3457 this_cpu_dec(*dev->pcpu_refcnt); 3458 } 3459 3460 /** 3461 * dev_hold - get reference to device 3462 * @dev: network device 3463 * 3464 * Hold reference to device to keep it from being freed. 3465 */ 3466 static inline void dev_hold(struct net_device *dev) 3467 { 3468 this_cpu_inc(*dev->pcpu_refcnt); 3469 } 3470 3471 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3472 * and _off may be called from IRQ context, but it is caller 3473 * who is responsible for serialization of these calls. 3474 * 3475 * The name carrier is inappropriate, these functions should really be 3476 * called netif_lowerlayer_*() because they represent the state of any 3477 * kind of lower layer not just hardware media. 3478 */ 3479 3480 void linkwatch_init_dev(struct net_device *dev); 3481 void linkwatch_fire_event(struct net_device *dev); 3482 void linkwatch_forget_dev(struct net_device *dev); 3483 3484 /** 3485 * netif_carrier_ok - test if carrier present 3486 * @dev: network device 3487 * 3488 * Check if carrier is present on device 3489 */ 3490 static inline bool netif_carrier_ok(const struct net_device *dev) 3491 { 3492 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3493 } 3494 3495 unsigned long dev_trans_start(struct net_device *dev); 3496 3497 void __netdev_watchdog_up(struct net_device *dev); 3498 3499 void netif_carrier_on(struct net_device *dev); 3500 3501 void netif_carrier_off(struct net_device *dev); 3502 3503 /** 3504 * netif_dormant_on - mark device as dormant. 3505 * @dev: network device 3506 * 3507 * Mark device as dormant (as per RFC2863). 3508 * 3509 * The dormant state indicates that the relevant interface is not 3510 * actually in a condition to pass packets (i.e., it is not 'up') but is 3511 * in a "pending" state, waiting for some external event. For "on- 3512 * demand" interfaces, this new state identifies the situation where the 3513 * interface is waiting for events to place it in the up state. 3514 */ 3515 static inline void netif_dormant_on(struct net_device *dev) 3516 { 3517 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3518 linkwatch_fire_event(dev); 3519 } 3520 3521 /** 3522 * netif_dormant_off - set device as not dormant. 3523 * @dev: network device 3524 * 3525 * Device is not in dormant state. 3526 */ 3527 static inline void netif_dormant_off(struct net_device *dev) 3528 { 3529 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3530 linkwatch_fire_event(dev); 3531 } 3532 3533 /** 3534 * netif_dormant - test if device is dormant 3535 * @dev: network device 3536 * 3537 * Check if device is dormant. 3538 */ 3539 static inline bool netif_dormant(const struct net_device *dev) 3540 { 3541 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3542 } 3543 3544 3545 /** 3546 * netif_oper_up - test if device is operational 3547 * @dev: network device 3548 * 3549 * Check if carrier is operational 3550 */ 3551 static inline bool netif_oper_up(const struct net_device *dev) 3552 { 3553 return (dev->operstate == IF_OPER_UP || 3554 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3555 } 3556 3557 /** 3558 * netif_device_present - is device available or removed 3559 * @dev: network device 3560 * 3561 * Check if device has not been removed from system. 3562 */ 3563 static inline bool netif_device_present(struct net_device *dev) 3564 { 3565 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3566 } 3567 3568 void netif_device_detach(struct net_device *dev); 3569 3570 void netif_device_attach(struct net_device *dev); 3571 3572 /* 3573 * Network interface message level settings 3574 */ 3575 3576 enum { 3577 NETIF_MSG_DRV = 0x0001, 3578 NETIF_MSG_PROBE = 0x0002, 3579 NETIF_MSG_LINK = 0x0004, 3580 NETIF_MSG_TIMER = 0x0008, 3581 NETIF_MSG_IFDOWN = 0x0010, 3582 NETIF_MSG_IFUP = 0x0020, 3583 NETIF_MSG_RX_ERR = 0x0040, 3584 NETIF_MSG_TX_ERR = 0x0080, 3585 NETIF_MSG_TX_QUEUED = 0x0100, 3586 NETIF_MSG_INTR = 0x0200, 3587 NETIF_MSG_TX_DONE = 0x0400, 3588 NETIF_MSG_RX_STATUS = 0x0800, 3589 NETIF_MSG_PKTDATA = 0x1000, 3590 NETIF_MSG_HW = 0x2000, 3591 NETIF_MSG_WOL = 0x4000, 3592 }; 3593 3594 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3595 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3596 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3597 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3598 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3599 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3600 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3601 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3602 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3603 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3604 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3605 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3606 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3607 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3608 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3609 3610 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3611 { 3612 /* use default */ 3613 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3614 return default_msg_enable_bits; 3615 if (debug_value == 0) /* no output */ 3616 return 0; 3617 /* set low N bits */ 3618 return (1 << debug_value) - 1; 3619 } 3620 3621 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3622 { 3623 spin_lock(&txq->_xmit_lock); 3624 txq->xmit_lock_owner = cpu; 3625 } 3626 3627 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3628 { 3629 __acquire(&txq->_xmit_lock); 3630 return true; 3631 } 3632 3633 static inline void __netif_tx_release(struct netdev_queue *txq) 3634 { 3635 __release(&txq->_xmit_lock); 3636 } 3637 3638 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3639 { 3640 spin_lock_bh(&txq->_xmit_lock); 3641 txq->xmit_lock_owner = smp_processor_id(); 3642 } 3643 3644 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3645 { 3646 bool ok = spin_trylock(&txq->_xmit_lock); 3647 if (likely(ok)) 3648 txq->xmit_lock_owner = smp_processor_id(); 3649 return ok; 3650 } 3651 3652 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3653 { 3654 txq->xmit_lock_owner = -1; 3655 spin_unlock(&txq->_xmit_lock); 3656 } 3657 3658 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3659 { 3660 txq->xmit_lock_owner = -1; 3661 spin_unlock_bh(&txq->_xmit_lock); 3662 } 3663 3664 static inline void txq_trans_update(struct netdev_queue *txq) 3665 { 3666 if (txq->xmit_lock_owner != -1) 3667 txq->trans_start = jiffies; 3668 } 3669 3670 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3671 static inline void netif_trans_update(struct net_device *dev) 3672 { 3673 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3674 3675 if (txq->trans_start != jiffies) 3676 txq->trans_start = jiffies; 3677 } 3678 3679 /** 3680 * netif_tx_lock - grab network device transmit lock 3681 * @dev: network device 3682 * 3683 * Get network device transmit lock 3684 */ 3685 static inline void netif_tx_lock(struct net_device *dev) 3686 { 3687 unsigned int i; 3688 int cpu; 3689 3690 spin_lock(&dev->tx_global_lock); 3691 cpu = smp_processor_id(); 3692 for (i = 0; i < dev->num_tx_queues; i++) { 3693 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3694 3695 /* We are the only thread of execution doing a 3696 * freeze, but we have to grab the _xmit_lock in 3697 * order to synchronize with threads which are in 3698 * the ->hard_start_xmit() handler and already 3699 * checked the frozen bit. 3700 */ 3701 __netif_tx_lock(txq, cpu); 3702 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3703 __netif_tx_unlock(txq); 3704 } 3705 } 3706 3707 static inline void netif_tx_lock_bh(struct net_device *dev) 3708 { 3709 local_bh_disable(); 3710 netif_tx_lock(dev); 3711 } 3712 3713 static inline void netif_tx_unlock(struct net_device *dev) 3714 { 3715 unsigned int i; 3716 3717 for (i = 0; i < dev->num_tx_queues; i++) { 3718 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3719 3720 /* No need to grab the _xmit_lock here. If the 3721 * queue is not stopped for another reason, we 3722 * force a schedule. 3723 */ 3724 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3725 netif_schedule_queue(txq); 3726 } 3727 spin_unlock(&dev->tx_global_lock); 3728 } 3729 3730 static inline void netif_tx_unlock_bh(struct net_device *dev) 3731 { 3732 netif_tx_unlock(dev); 3733 local_bh_enable(); 3734 } 3735 3736 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3737 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3738 __netif_tx_lock(txq, cpu); \ 3739 } else { \ 3740 __netif_tx_acquire(txq); \ 3741 } \ 3742 } 3743 3744 #define HARD_TX_TRYLOCK(dev, txq) \ 3745 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3746 __netif_tx_trylock(txq) : \ 3747 __netif_tx_acquire(txq)) 3748 3749 #define HARD_TX_UNLOCK(dev, txq) { \ 3750 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3751 __netif_tx_unlock(txq); \ 3752 } else { \ 3753 __netif_tx_release(txq); \ 3754 } \ 3755 } 3756 3757 static inline void netif_tx_disable(struct net_device *dev) 3758 { 3759 unsigned int i; 3760 int cpu; 3761 3762 local_bh_disable(); 3763 cpu = smp_processor_id(); 3764 for (i = 0; i < dev->num_tx_queues; i++) { 3765 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3766 3767 __netif_tx_lock(txq, cpu); 3768 netif_tx_stop_queue(txq); 3769 __netif_tx_unlock(txq); 3770 } 3771 local_bh_enable(); 3772 } 3773 3774 static inline void netif_addr_lock(struct net_device *dev) 3775 { 3776 spin_lock(&dev->addr_list_lock); 3777 } 3778 3779 static inline void netif_addr_lock_nested(struct net_device *dev) 3780 { 3781 int subclass = SINGLE_DEPTH_NESTING; 3782 3783 if (dev->netdev_ops->ndo_get_lock_subclass) 3784 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3785 3786 spin_lock_nested(&dev->addr_list_lock, subclass); 3787 } 3788 3789 static inline void netif_addr_lock_bh(struct net_device *dev) 3790 { 3791 spin_lock_bh(&dev->addr_list_lock); 3792 } 3793 3794 static inline void netif_addr_unlock(struct net_device *dev) 3795 { 3796 spin_unlock(&dev->addr_list_lock); 3797 } 3798 3799 static inline void netif_addr_unlock_bh(struct net_device *dev) 3800 { 3801 spin_unlock_bh(&dev->addr_list_lock); 3802 } 3803 3804 /* 3805 * dev_addrs walker. Should be used only for read access. Call with 3806 * rcu_read_lock held. 3807 */ 3808 #define for_each_dev_addr(dev, ha) \ 3809 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3810 3811 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3812 3813 void ether_setup(struct net_device *dev); 3814 3815 /* Support for loadable net-drivers */ 3816 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3817 unsigned char name_assign_type, 3818 void (*setup)(struct net_device *), 3819 unsigned int txqs, unsigned int rxqs); 3820 int dev_get_valid_name(struct net *net, struct net_device *dev, 3821 const char *name); 3822 3823 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3824 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3825 3826 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3827 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3828 count) 3829 3830 int register_netdev(struct net_device *dev); 3831 void unregister_netdev(struct net_device *dev); 3832 3833 /* General hardware address lists handling functions */ 3834 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3835 struct netdev_hw_addr_list *from_list, int addr_len); 3836 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3837 struct netdev_hw_addr_list *from_list, int addr_len); 3838 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3839 struct net_device *dev, 3840 int (*sync)(struct net_device *, const unsigned char *), 3841 int (*unsync)(struct net_device *, 3842 const unsigned char *)); 3843 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3844 struct net_device *dev, 3845 int (*unsync)(struct net_device *, 3846 const unsigned char *)); 3847 void __hw_addr_init(struct netdev_hw_addr_list *list); 3848 3849 /* Functions used for device addresses handling */ 3850 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3851 unsigned char addr_type); 3852 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3853 unsigned char addr_type); 3854 void dev_addr_flush(struct net_device *dev); 3855 int dev_addr_init(struct net_device *dev); 3856 3857 /* Functions used for unicast addresses handling */ 3858 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3859 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3860 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3861 int dev_uc_sync(struct net_device *to, struct net_device *from); 3862 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3863 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3864 void dev_uc_flush(struct net_device *dev); 3865 void dev_uc_init(struct net_device *dev); 3866 3867 /** 3868 * __dev_uc_sync - Synchonize device's unicast list 3869 * @dev: device to sync 3870 * @sync: function to call if address should be added 3871 * @unsync: function to call if address should be removed 3872 * 3873 * Add newly added addresses to the interface, and release 3874 * addresses that have been deleted. 3875 */ 3876 static inline int __dev_uc_sync(struct net_device *dev, 3877 int (*sync)(struct net_device *, 3878 const unsigned char *), 3879 int (*unsync)(struct net_device *, 3880 const unsigned char *)) 3881 { 3882 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3883 } 3884 3885 /** 3886 * __dev_uc_unsync - Remove synchronized addresses from device 3887 * @dev: device to sync 3888 * @unsync: function to call if address should be removed 3889 * 3890 * Remove all addresses that were added to the device by dev_uc_sync(). 3891 */ 3892 static inline void __dev_uc_unsync(struct net_device *dev, 3893 int (*unsync)(struct net_device *, 3894 const unsigned char *)) 3895 { 3896 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3897 } 3898 3899 /* Functions used for multicast addresses handling */ 3900 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3901 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3902 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3903 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3904 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3905 int dev_mc_sync(struct net_device *to, struct net_device *from); 3906 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3907 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3908 void dev_mc_flush(struct net_device *dev); 3909 void dev_mc_init(struct net_device *dev); 3910 3911 /** 3912 * __dev_mc_sync - Synchonize device's multicast list 3913 * @dev: device to sync 3914 * @sync: function to call if address should be added 3915 * @unsync: function to call if address should be removed 3916 * 3917 * Add newly added addresses to the interface, and release 3918 * addresses that have been deleted. 3919 */ 3920 static inline int __dev_mc_sync(struct net_device *dev, 3921 int (*sync)(struct net_device *, 3922 const unsigned char *), 3923 int (*unsync)(struct net_device *, 3924 const unsigned char *)) 3925 { 3926 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3927 } 3928 3929 /** 3930 * __dev_mc_unsync - Remove synchronized addresses from device 3931 * @dev: device to sync 3932 * @unsync: function to call if address should be removed 3933 * 3934 * Remove all addresses that were added to the device by dev_mc_sync(). 3935 */ 3936 static inline void __dev_mc_unsync(struct net_device *dev, 3937 int (*unsync)(struct net_device *, 3938 const unsigned char *)) 3939 { 3940 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3941 } 3942 3943 /* Functions used for secondary unicast and multicast support */ 3944 void dev_set_rx_mode(struct net_device *dev); 3945 void __dev_set_rx_mode(struct net_device *dev); 3946 int dev_set_promiscuity(struct net_device *dev, int inc); 3947 int dev_set_allmulti(struct net_device *dev, int inc); 3948 void netdev_state_change(struct net_device *dev); 3949 void netdev_notify_peers(struct net_device *dev); 3950 void netdev_features_change(struct net_device *dev); 3951 /* Load a device via the kmod */ 3952 void dev_load(struct net *net, const char *name); 3953 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3954 struct rtnl_link_stats64 *storage); 3955 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3956 const struct net_device_stats *netdev_stats); 3957 3958 extern int netdev_max_backlog; 3959 extern int netdev_tstamp_prequeue; 3960 extern int weight_p; 3961 extern int dev_weight_rx_bias; 3962 extern int dev_weight_tx_bias; 3963 extern int dev_rx_weight; 3964 extern int dev_tx_weight; 3965 3966 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3967 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3968 struct list_head **iter); 3969 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3970 struct list_head **iter); 3971 3972 /* iterate through upper list, must be called under RCU read lock */ 3973 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3974 for (iter = &(dev)->adj_list.upper, \ 3975 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3976 updev; \ 3977 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3978 3979 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3980 int (*fn)(struct net_device *upper_dev, 3981 void *data), 3982 void *data); 3983 3984 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3985 struct net_device *upper_dev); 3986 3987 bool netdev_has_any_upper_dev(struct net_device *dev); 3988 3989 void *netdev_lower_get_next_private(struct net_device *dev, 3990 struct list_head **iter); 3991 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3992 struct list_head **iter); 3993 3994 #define netdev_for_each_lower_private(dev, priv, iter) \ 3995 for (iter = (dev)->adj_list.lower.next, \ 3996 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3997 priv; \ 3998 priv = netdev_lower_get_next_private(dev, &(iter))) 3999 4000 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4001 for (iter = &(dev)->adj_list.lower, \ 4002 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4003 priv; \ 4004 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4005 4006 void *netdev_lower_get_next(struct net_device *dev, 4007 struct list_head **iter); 4008 4009 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4010 for (iter = (dev)->adj_list.lower.next, \ 4011 ldev = netdev_lower_get_next(dev, &(iter)); \ 4012 ldev; \ 4013 ldev = netdev_lower_get_next(dev, &(iter))) 4014 4015 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4016 struct list_head **iter); 4017 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4018 struct list_head **iter); 4019 4020 int netdev_walk_all_lower_dev(struct net_device *dev, 4021 int (*fn)(struct net_device *lower_dev, 4022 void *data), 4023 void *data); 4024 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4025 int (*fn)(struct net_device *lower_dev, 4026 void *data), 4027 void *data); 4028 4029 void *netdev_adjacent_get_private(struct list_head *adj_list); 4030 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4031 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4032 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4033 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4034 struct netlink_ext_ack *extack); 4035 int netdev_master_upper_dev_link(struct net_device *dev, 4036 struct net_device *upper_dev, 4037 void *upper_priv, void *upper_info, 4038 struct netlink_ext_ack *extack); 4039 void netdev_upper_dev_unlink(struct net_device *dev, 4040 struct net_device *upper_dev); 4041 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4042 void *netdev_lower_dev_get_private(struct net_device *dev, 4043 struct net_device *lower_dev); 4044 void netdev_lower_state_changed(struct net_device *lower_dev, 4045 void *lower_state_info); 4046 4047 /* RSS keys are 40 or 52 bytes long */ 4048 #define NETDEV_RSS_KEY_LEN 52 4049 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4050 void netdev_rss_key_fill(void *buffer, size_t len); 4051 4052 int dev_get_nest_level(struct net_device *dev); 4053 int skb_checksum_help(struct sk_buff *skb); 4054 int skb_crc32c_csum_help(struct sk_buff *skb); 4055 int skb_csum_hwoffload_help(struct sk_buff *skb, 4056 const netdev_features_t features); 4057 4058 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4059 netdev_features_t features, bool tx_path); 4060 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4061 netdev_features_t features); 4062 4063 struct netdev_bonding_info { 4064 ifslave slave; 4065 ifbond master; 4066 }; 4067 4068 struct netdev_notifier_bonding_info { 4069 struct netdev_notifier_info info; /* must be first */ 4070 struct netdev_bonding_info bonding_info; 4071 }; 4072 4073 void netdev_bonding_info_change(struct net_device *dev, 4074 struct netdev_bonding_info *bonding_info); 4075 4076 static inline 4077 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4078 { 4079 return __skb_gso_segment(skb, features, true); 4080 } 4081 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4082 4083 static inline bool can_checksum_protocol(netdev_features_t features, 4084 __be16 protocol) 4085 { 4086 if (protocol == htons(ETH_P_FCOE)) 4087 return !!(features & NETIF_F_FCOE_CRC); 4088 4089 /* Assume this is an IP checksum (not SCTP CRC) */ 4090 4091 if (features & NETIF_F_HW_CSUM) { 4092 /* Can checksum everything */ 4093 return true; 4094 } 4095 4096 switch (protocol) { 4097 case htons(ETH_P_IP): 4098 return !!(features & NETIF_F_IP_CSUM); 4099 case htons(ETH_P_IPV6): 4100 return !!(features & NETIF_F_IPV6_CSUM); 4101 default: 4102 return false; 4103 } 4104 } 4105 4106 #ifdef CONFIG_BUG 4107 void netdev_rx_csum_fault(struct net_device *dev); 4108 #else 4109 static inline void netdev_rx_csum_fault(struct net_device *dev) 4110 { 4111 } 4112 #endif 4113 /* rx skb timestamps */ 4114 void net_enable_timestamp(void); 4115 void net_disable_timestamp(void); 4116 4117 #ifdef CONFIG_PROC_FS 4118 int __init dev_proc_init(void); 4119 #else 4120 #define dev_proc_init() 0 4121 #endif 4122 4123 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4124 struct sk_buff *skb, struct net_device *dev, 4125 bool more) 4126 { 4127 skb->xmit_more = more ? 1 : 0; 4128 return ops->ndo_start_xmit(skb, dev); 4129 } 4130 4131 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4132 struct netdev_queue *txq, bool more) 4133 { 4134 const struct net_device_ops *ops = dev->netdev_ops; 4135 int rc; 4136 4137 rc = __netdev_start_xmit(ops, skb, dev, more); 4138 if (rc == NETDEV_TX_OK) 4139 txq_trans_update(txq); 4140 4141 return rc; 4142 } 4143 4144 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4145 const void *ns); 4146 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4147 const void *ns); 4148 4149 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4150 { 4151 return netdev_class_create_file_ns(class_attr, NULL); 4152 } 4153 4154 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4155 { 4156 netdev_class_remove_file_ns(class_attr, NULL); 4157 } 4158 4159 extern const struct kobj_ns_type_operations net_ns_type_operations; 4160 4161 const char *netdev_drivername(const struct net_device *dev); 4162 4163 void linkwatch_run_queue(void); 4164 4165 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4166 netdev_features_t f2) 4167 { 4168 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4169 if (f1 & NETIF_F_HW_CSUM) 4170 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4171 else 4172 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4173 } 4174 4175 return f1 & f2; 4176 } 4177 4178 static inline netdev_features_t netdev_get_wanted_features( 4179 struct net_device *dev) 4180 { 4181 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4182 } 4183 netdev_features_t netdev_increment_features(netdev_features_t all, 4184 netdev_features_t one, netdev_features_t mask); 4185 4186 /* Allow TSO being used on stacked device : 4187 * Performing the GSO segmentation before last device 4188 * is a performance improvement. 4189 */ 4190 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4191 netdev_features_t mask) 4192 { 4193 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4194 } 4195 4196 int __netdev_update_features(struct net_device *dev); 4197 void netdev_update_features(struct net_device *dev); 4198 void netdev_change_features(struct net_device *dev); 4199 4200 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4201 struct net_device *dev); 4202 4203 netdev_features_t passthru_features_check(struct sk_buff *skb, 4204 struct net_device *dev, 4205 netdev_features_t features); 4206 netdev_features_t netif_skb_features(struct sk_buff *skb); 4207 4208 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4209 { 4210 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4211 4212 /* check flags correspondence */ 4213 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4214 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4215 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4216 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4217 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4218 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4219 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4220 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4221 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4222 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4223 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4224 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4225 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4226 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4227 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4228 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4229 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4230 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4231 4232 return (features & feature) == feature; 4233 } 4234 4235 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4236 { 4237 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4238 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4239 } 4240 4241 static inline bool netif_needs_gso(struct sk_buff *skb, 4242 netdev_features_t features) 4243 { 4244 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4245 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4246 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4247 } 4248 4249 static inline void netif_set_gso_max_size(struct net_device *dev, 4250 unsigned int size) 4251 { 4252 dev->gso_max_size = size; 4253 } 4254 4255 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4256 int pulled_hlen, u16 mac_offset, 4257 int mac_len) 4258 { 4259 skb->protocol = protocol; 4260 skb->encapsulation = 1; 4261 skb_push(skb, pulled_hlen); 4262 skb_reset_transport_header(skb); 4263 skb->mac_header = mac_offset; 4264 skb->network_header = skb->mac_header + mac_len; 4265 skb->mac_len = mac_len; 4266 } 4267 4268 static inline bool netif_is_macsec(const struct net_device *dev) 4269 { 4270 return dev->priv_flags & IFF_MACSEC; 4271 } 4272 4273 static inline bool netif_is_macvlan(const struct net_device *dev) 4274 { 4275 return dev->priv_flags & IFF_MACVLAN; 4276 } 4277 4278 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4279 { 4280 return dev->priv_flags & IFF_MACVLAN_PORT; 4281 } 4282 4283 static inline bool netif_is_bond_master(const struct net_device *dev) 4284 { 4285 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4286 } 4287 4288 static inline bool netif_is_bond_slave(const struct net_device *dev) 4289 { 4290 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4291 } 4292 4293 static inline bool netif_supports_nofcs(struct net_device *dev) 4294 { 4295 return dev->priv_flags & IFF_SUPP_NOFCS; 4296 } 4297 4298 static inline bool netif_is_l3_master(const struct net_device *dev) 4299 { 4300 return dev->priv_flags & IFF_L3MDEV_MASTER; 4301 } 4302 4303 static inline bool netif_is_l3_slave(const struct net_device *dev) 4304 { 4305 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4306 } 4307 4308 static inline bool netif_is_bridge_master(const struct net_device *dev) 4309 { 4310 return dev->priv_flags & IFF_EBRIDGE; 4311 } 4312 4313 static inline bool netif_is_bridge_port(const struct net_device *dev) 4314 { 4315 return dev->priv_flags & IFF_BRIDGE_PORT; 4316 } 4317 4318 static inline bool netif_is_ovs_master(const struct net_device *dev) 4319 { 4320 return dev->priv_flags & IFF_OPENVSWITCH; 4321 } 4322 4323 static inline bool netif_is_ovs_port(const struct net_device *dev) 4324 { 4325 return dev->priv_flags & IFF_OVS_DATAPATH; 4326 } 4327 4328 static inline bool netif_is_team_master(const struct net_device *dev) 4329 { 4330 return dev->priv_flags & IFF_TEAM; 4331 } 4332 4333 static inline bool netif_is_team_port(const struct net_device *dev) 4334 { 4335 return dev->priv_flags & IFF_TEAM_PORT; 4336 } 4337 4338 static inline bool netif_is_lag_master(const struct net_device *dev) 4339 { 4340 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4341 } 4342 4343 static inline bool netif_is_lag_port(const struct net_device *dev) 4344 { 4345 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4346 } 4347 4348 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4349 { 4350 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4351 } 4352 4353 static inline bool netif_is_failover(const struct net_device *dev) 4354 { 4355 return dev->priv_flags & IFF_FAILOVER; 4356 } 4357 4358 static inline bool netif_is_failover_slave(const struct net_device *dev) 4359 { 4360 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4361 } 4362 4363 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4364 static inline void netif_keep_dst(struct net_device *dev) 4365 { 4366 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4367 } 4368 4369 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4370 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4371 { 4372 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4373 return dev->priv_flags & IFF_MACSEC; 4374 } 4375 4376 extern struct pernet_operations __net_initdata loopback_net_ops; 4377 4378 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4379 4380 /* netdev_printk helpers, similar to dev_printk */ 4381 4382 static inline const char *netdev_name(const struct net_device *dev) 4383 { 4384 if (!dev->name[0] || strchr(dev->name, '%')) 4385 return "(unnamed net_device)"; 4386 return dev->name; 4387 } 4388 4389 static inline bool netdev_unregistering(const struct net_device *dev) 4390 { 4391 return dev->reg_state == NETREG_UNREGISTERING; 4392 } 4393 4394 static inline const char *netdev_reg_state(const struct net_device *dev) 4395 { 4396 switch (dev->reg_state) { 4397 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4398 case NETREG_REGISTERED: return ""; 4399 case NETREG_UNREGISTERING: return " (unregistering)"; 4400 case NETREG_UNREGISTERED: return " (unregistered)"; 4401 case NETREG_RELEASED: return " (released)"; 4402 case NETREG_DUMMY: return " (dummy)"; 4403 } 4404 4405 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4406 return " (unknown)"; 4407 } 4408 4409 __printf(3, 4) 4410 void netdev_printk(const char *level, const struct net_device *dev, 4411 const char *format, ...); 4412 __printf(2, 3) 4413 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4414 __printf(2, 3) 4415 void netdev_alert(const struct net_device *dev, const char *format, ...); 4416 __printf(2, 3) 4417 void netdev_crit(const struct net_device *dev, const char *format, ...); 4418 __printf(2, 3) 4419 void netdev_err(const struct net_device *dev, const char *format, ...); 4420 __printf(2, 3) 4421 void netdev_warn(const struct net_device *dev, const char *format, ...); 4422 __printf(2, 3) 4423 void netdev_notice(const struct net_device *dev, const char *format, ...); 4424 __printf(2, 3) 4425 void netdev_info(const struct net_device *dev, const char *format, ...); 4426 4427 #define netdev_level_once(level, dev, fmt, ...) \ 4428 do { \ 4429 static bool __print_once __read_mostly; \ 4430 \ 4431 if (!__print_once) { \ 4432 __print_once = true; \ 4433 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4434 } \ 4435 } while (0) 4436 4437 #define netdev_emerg_once(dev, fmt, ...) \ 4438 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4439 #define netdev_alert_once(dev, fmt, ...) \ 4440 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4441 #define netdev_crit_once(dev, fmt, ...) \ 4442 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4443 #define netdev_err_once(dev, fmt, ...) \ 4444 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4445 #define netdev_warn_once(dev, fmt, ...) \ 4446 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4447 #define netdev_notice_once(dev, fmt, ...) \ 4448 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4449 #define netdev_info_once(dev, fmt, ...) \ 4450 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4451 4452 #define MODULE_ALIAS_NETDEV(device) \ 4453 MODULE_ALIAS("netdev-" device) 4454 4455 #if defined(CONFIG_DYNAMIC_DEBUG) 4456 #define netdev_dbg(__dev, format, args...) \ 4457 do { \ 4458 dynamic_netdev_dbg(__dev, format, ##args); \ 4459 } while (0) 4460 #elif defined(DEBUG) 4461 #define netdev_dbg(__dev, format, args...) \ 4462 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4463 #else 4464 #define netdev_dbg(__dev, format, args...) \ 4465 ({ \ 4466 if (0) \ 4467 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4468 }) 4469 #endif 4470 4471 #if defined(VERBOSE_DEBUG) 4472 #define netdev_vdbg netdev_dbg 4473 #else 4474 4475 #define netdev_vdbg(dev, format, args...) \ 4476 ({ \ 4477 if (0) \ 4478 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4479 0; \ 4480 }) 4481 #endif 4482 4483 /* 4484 * netdev_WARN() acts like dev_printk(), but with the key difference 4485 * of using a WARN/WARN_ON to get the message out, including the 4486 * file/line information and a backtrace. 4487 */ 4488 #define netdev_WARN(dev, format, args...) \ 4489 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4490 netdev_reg_state(dev), ##args) 4491 4492 #define netdev_WARN_ONCE(dev, format, args...) \ 4493 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4494 netdev_reg_state(dev), ##args) 4495 4496 /* netif printk helpers, similar to netdev_printk */ 4497 4498 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4499 do { \ 4500 if (netif_msg_##type(priv)) \ 4501 netdev_printk(level, (dev), fmt, ##args); \ 4502 } while (0) 4503 4504 #define netif_level(level, priv, type, dev, fmt, args...) \ 4505 do { \ 4506 if (netif_msg_##type(priv)) \ 4507 netdev_##level(dev, fmt, ##args); \ 4508 } while (0) 4509 4510 #define netif_emerg(priv, type, dev, fmt, args...) \ 4511 netif_level(emerg, priv, type, dev, fmt, ##args) 4512 #define netif_alert(priv, type, dev, fmt, args...) \ 4513 netif_level(alert, priv, type, dev, fmt, ##args) 4514 #define netif_crit(priv, type, dev, fmt, args...) \ 4515 netif_level(crit, priv, type, dev, fmt, ##args) 4516 #define netif_err(priv, type, dev, fmt, args...) \ 4517 netif_level(err, priv, type, dev, fmt, ##args) 4518 #define netif_warn(priv, type, dev, fmt, args...) \ 4519 netif_level(warn, priv, type, dev, fmt, ##args) 4520 #define netif_notice(priv, type, dev, fmt, args...) \ 4521 netif_level(notice, priv, type, dev, fmt, ##args) 4522 #define netif_info(priv, type, dev, fmt, args...) \ 4523 netif_level(info, priv, type, dev, fmt, ##args) 4524 4525 #if defined(CONFIG_DYNAMIC_DEBUG) 4526 #define netif_dbg(priv, type, netdev, format, args...) \ 4527 do { \ 4528 if (netif_msg_##type(priv)) \ 4529 dynamic_netdev_dbg(netdev, format, ##args); \ 4530 } while (0) 4531 #elif defined(DEBUG) 4532 #define netif_dbg(priv, type, dev, format, args...) \ 4533 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4534 #else 4535 #define netif_dbg(priv, type, dev, format, args...) \ 4536 ({ \ 4537 if (0) \ 4538 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4539 0; \ 4540 }) 4541 #endif 4542 4543 /* if @cond then downgrade to debug, else print at @level */ 4544 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4545 do { \ 4546 if (cond) \ 4547 netif_dbg(priv, type, netdev, fmt, ##args); \ 4548 else \ 4549 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4550 } while (0) 4551 4552 #if defined(VERBOSE_DEBUG) 4553 #define netif_vdbg netif_dbg 4554 #else 4555 #define netif_vdbg(priv, type, dev, format, args...) \ 4556 ({ \ 4557 if (0) \ 4558 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4559 0; \ 4560 }) 4561 #endif 4562 4563 /* 4564 * The list of packet types we will receive (as opposed to discard) 4565 * and the routines to invoke. 4566 * 4567 * Why 16. Because with 16 the only overlap we get on a hash of the 4568 * low nibble of the protocol value is RARP/SNAP/X.25. 4569 * 4570 * 0800 IP 4571 * 0001 802.3 4572 * 0002 AX.25 4573 * 0004 802.2 4574 * 8035 RARP 4575 * 0005 SNAP 4576 * 0805 X.25 4577 * 0806 ARP 4578 * 8137 IPX 4579 * 0009 Localtalk 4580 * 86DD IPv6 4581 */ 4582 #define PTYPE_HASH_SIZE (16) 4583 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4584 4585 #endif /* _LINUX_NETDEVICE_H */ 4586